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ABSTRACT 

The synthesis of antitumor agents covers a large part of current medicinal chemistry 

efforts. This thesis mainly focuses on the synthesis of different scaffolds as new potential 

anticancer agents.  

Two different approaches were applied: a hybrid concept and a rational based drug 

design. In the first case, the hybrid concept is useful since it allows combining multiple 

active scaffolds in a unique molecule. As a consequence, several targets could be hit 

simultaneously, making this solution particularly attractive for multi-factorial diseases like 

cancer. Within this category, several isatin-thiazolinone-pyrazoline hybrids were 

synthesized. Some of them were submitted to biological assays, demonstrating good 

activity toward different solid tumour cell-lines. In the second class of compounds, the 

synthetic efforts were combined to computational tools in order to achieve detailed 

information about the structure-activity relationships. Following this approach, psoralen 

derivatives, thought as DNA G-quadruplex stabilizers, were synthesized. For these 

compounds no biological assays were performed so far.   

Finally, the last part of the thesis has been dedicated to the synthesis of 1-alkyl-8-

(piperazine-1-sulphonyl)phenyl xanthines as high-selective A2B antagonists. Even though 

the leading role of adenosine and their receptors in cancer pathogenesis were extensively 

documented, the high therapeutic potential of these compounds requires a wider 

analysis of their pharmacological properties. Also in this case, several compounds were 

synthesized. Some of them were tested in a radioligand binding assay to evaluate the 

affinity and selectivity toward A2BR subtype, further confirming the high potential of these 

compounds as A2B antagonists. 
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THESIS OVERVIEW 

The discovery and exploitation of new drug targets are the main focus for both 

academic research and pharmaceutical industry. Drug target identification and validation 

has radically changed and evolved over the last decades, translating the serendipitous 

drug discovery into a rational and reliable process. In this respect, pharmaceutical 

chemistry is among the most rapidly advancing fields, with constant improvements in 

methods and techniques. The present state of the art in medicinal chemistry has been 

reached, in part, with a rational combination of innovative knowledges derived from 

different areas of life and chemistry sciences.1, 2 

In particular, the advent of computational chemistry and molecular biology is having 

a deep impact on drug discovery. Recombinant proteins and monoclonal antibodies, 

generated using molecular biology knowledges and tools, have greatly enriched the 

therapeutic armamentarium. Moreover, the combination of genome science with the 

computational power of bioinformatics, are facilitating the dissection of the genetic basis 

of multifactorial diseases and the identification of the most suitable druggable sites for 

future medicines.2-4 

At the same time, synthetic chemistry is becoming progressively structure based, 

using physical organic, crystallographic techniques and computational chemistry. 

Therefore, the drug discovery process includes an elaborated experimentation set 

that requires a multidisciplinary intervention and aims to identify the molecular driver of a 

specific disease, to deep the knowledge of its physio-pathological pathways, and to 

demonstrate that the pharmacological modulation of this target leads to a real clinical 

benefit in the considered pathologic state.5 

The majority of targets currently selected for drug discovery are proteins (receptors 

and enzymes)6 while the most common indications are antihypertensive,7, 8 

antineoplastic9, 10 and anti-inflammatory activities.10, 11 

This work is mainly focused on the synthesis of different classes of compounds 

expected to exhibit antitumor activity. To simplify the discussion, the thesis has been 

divided in two sections.  

The first section is in turn subdivided in two chapters and concerns the synthesis of 

different compounds endowed with antitumor activity. More in detail, the first chapter 

describes the synthesis of hybrid molecules, whose molecular skeleton was built by a 

combination of small units, for which anticancer activity has been proven. These 

combinations provide hybrid entities, also defined chimeric structures, ideally equipped 

with a dual mechanism of action.12 Since the hybrids retain the pharmacophoric features 

of each element it is possible to observe synergistic effects on the targeted bio-molecules. 

As illustrated in the chapter, the hybrid approach offers a potential tool to overcome the 

most common problems related to conventional cancer therapy. Therefore, using as 
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starting point the encouraging data reported in the literature for isatin-thiazolinone- and 

pyrazoline based hybrids,13 several compounds were synthesized and some of them were 

submitted to biological assays. The tested compounds show a good activity toward 

different solid tumors. Even though the mechanism of action of synthesized compounds 

has not been established yet, the obtained data validate the hybrid pharmacophore 

approach as a useful means to amplify the activity of individual building blocks. 

The second chapter illustrates the rational design and the subsequent synthesis of 

psoralene derivatives thought as DNA G-quadruplex stabilizers. G-quadruplexes are four-

stranded DNA and RNA structures found in specific and crucial portion of nucleic acids, 

such as telomeric ends, promoter region of several oncogenes such as MYC, KIT and KRAS. 

In addition, RNA G-quadruplexes has been found in 5’-untranslated region (UTR) of the 

small GTPase NRAS.14 Considering the role played by these elements in cancer 

development is clear that the selective recognition and stabilization of quadruplexes 

instead of duplex DNA could provide a powerful and selective anticancer strategy.15, 16 

The second section is focused on the synthesis of 1-alkyl-8-(piperazine-1-

sulphonyl)phenyl xanthines as selective antagonists of adenosine A2B receptors. Because 

of their low affinity, the adenosine is produced locally at high concentrations to interact 

with A2B receptors. Often this process is associated with ischemic events, during which the 

activation of these receptors promotes angiogenesis to compensate for the lack of oxygen. 

It is well established that solid tumors are hypoxic tissues and that their development and 

metastatic spread are strictly dependent on angiogenesis processes.17 Even if the 

antagonists of A2B receptors exert antitumor activity, the high therapeutic potential of 

these pharmacological agents in numerous pathological states such as asthma, diabetes, 

diabetic retinopathy, and inflammatory pain,18, 19 requires a broader and more general 

discussion on the pharmacology, distribution and structural features of synthesized 

antagonists. In fact, considering the ubiquitous distribution of adenosine receptors and, 

consequently the large variety of biological effects related to their activation, high 

selectivity is mandatory to prevent the side effect related to the generalized functional 

antagonism of all adenosine receptor subtypes.20 
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SECTION I 

ANTITUMOR AGENTS 

 

STATE OF THE ART OF CANCER TREATMENT AND MENAGEMENT 

 

Cancer represents a collection of different genetic diseases associable each other by 

specific and redundant hallmarks. Cancer pathogenesis is a progressive, multistep and 

mutagenic process during which the cells acquire some typical properties including 

unlimited proliferation potential, self-sufficiency in growth signals, resistance to anti-

proliferative and apoptotic signals, angiogenesis promotion and capability to escape 

immune system detection and to metastasize distal organsErrore. L'origine riferimento non è stata 

trovata.. The acquisition of this phenotypic set of features is supported by surrounding 

stromal cells, so that tumor microenvironment support can be included in the list of 

cancer hallmarks.1  

Many of these phenotypic traits are brought by genetic alterations that involve the 

gain of function of key oncogenes as a result of mutation, amplification and over-

expression events, generally associated with a simultaneous loss of functions of tumor-

suppressor genes due to mutation, deletion end/or epigenetic silencing.1, 2  

This genetic instability allows the reactivation or modification of existing molecular 

programs normally used during the development or maintenance of tissue homeostasis. 

Therefore, tumorigenesis evolves through random mutations and epigenetic changes that 

alter these pathways, followed by a clonal selection of cells that can survive and 

proliferate under conditions that would normally be deleterious.2  

The complexity of alterations in cancer presents an enormous challenge in 

anticancer therapeutic discovery and development. Although tumorigenesis derives from 

well-established phenomena, cancer is a set of different syndromes showing tissue and 

organ specificity, which contributes to further complicate the scenario related to a 

multifactorial disease with a series of implications in the anti-neoplastic agents 

development, cancer treatment and management.  
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Figure 1. Therapeutic Targeting of the Hallmarks of Cancer.

1
 

 

Conventional anticancer discovery has been focused for a long time on cytotoxic or 

cytostatic agents able to exert their activity on tumor cell lines and tumor regression in 

murine models (Table 1, Figure 2). These agents were discovered mainly by serendipity or 

inhibiting metabolic pathways critical for cell division.3  
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Table 1. Examples of antineoplastic drugs. 

Alkylating agents Antimetabolites 
Topoisomerase 

inhibitors 
Miscellaneous 

busulfan cytarabine dactinomycin arsenic trioxide 

carmustine clofarabine daunomycin asparaginase 

cyclophosphamide fludarabine doxorubicin bleomycin 

dacarbazine gemcitabine etoposide dexamethasone 

ifosfamide mercaptopurine idarubicin hydroxyurea 

lomustine methotrexate irinotecan mitotane 

mechlorethamine nelarabine mitoxantrone  

melphalan thioguanine teniposide  

procarbazine Tubulin binders topotecan  

temozolomide docetaxel Hormonal drugs 
 

thiotepa paclitaxel Prednisone 
 

Cisplatin vinblastine fosfestrol 
 

Carboplatin vincristine tamoxifen 
 

Oxaliplatin vinorelbine letrozole 
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Figure 2. Chemotherapy: mechanisms of action of anticancer drugs. 

 

Even if these strategies provided numerous anticancer agents used in oncology so 

far, their low therapeutic index and the development of molecular biology technologies, 

associated with a deeper and deeper understanding of etiopathology of cancer at a 

molecular level, oriented the anticancer research toward a target-based approach.4 The 

paradigm of this new concept of anticancer drug discovery is the rational design of 

molecules created to interact or modify a specific molecular target, expressed on the 

tumor cells or on their microenvironment, playing a key role in tumor growth, survival 

and progression. Several target-based compounds have emerged over the last years and 

some of them have been approved for the clinical use. Examples of target-based 

compounds are Imatinib mesylate(Tyrosine Protein Kinase Inhibitor), Gefitinib (Epidermal 

growth factor (EGF) receptor inhibitor), Bortezomib (Proteasome Inhibitor), Trastuzumab 

(an monoclonal antibody that binds human epidermal growth factor receptor 2 (HER2).4, 5 
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Figure 3. Target based compounds: a) small molecules; b) Trastuzumab (trade name Herceptin), a 

monoclonal antibody that interferes with the HER2 receptor extracellular region.
6
 

 

New anticancer agents are categorized in different classes based upon their origin, 

chemistry, bioactivity profile, and mechanism of action.  

Targeted therapies comprise monoclonal antibodies and small molecules inhibitors, 

routinely used in the therapy for several common malignancies, including breast, 

colorectal, lung and pancreatic cancers as well as lymphoma, leukemia, and multiple 

myeloma.5, 7-10 Targeted therapies are, in most of cases, better tolerated than 

conventional chemotherapy. However, also these new generation drugs cause severe 

toxic effects, such as hypertension, cardiac dysfunctions, thrombosis, acneiform rush and 

proteinuria. In addition, some small molecules inhibitors are metabolized by P450 

enzymes thus, multiple drug-drug interactions are possible.11, 12 

The clinical use of these compounds is usually proposed in combination with the 

conventional therapy based on cytotoxic and hormonal agents.  

The high number of antitumor drugs currently available enables thousands of 

possible combinations. Drugs used in combination possess, ideally, a set of a priori 

defined characteristics, such as different mechanisms of action, different spectrum of cell 

kill, different toxicity profile, and different profiles of resistance. Synergistic or additive 

cell kill effects, without increasing of toxicity, is a frequent goal of drug combination. 

Generally, combinations of drugs showing additive therapeutic effects are given at full 

doses to increase the percent of cell kill, reduce the number of chemotherapy cycles, 

avoid the onset of drug resistance, and improve clinical outcome and patient survival 

possibilities.13-15 Classical cytotoxic drugs are commonly dosed in short-duration high-
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dose cycles rather than a continuous low-dose administration. The short-duration high-

dose administration is related with both short-term side effects, which disappear at the 

end of therapy, and long-term side effects.  

Severe short-term side effects related to classical cytotoxic therapy have a deep 

impact on the design of drug combinations on the bases of their toxicity profiles. As 

abovementioned, these agents are dosed to the highest tolerated level to achieve the 

maximum therapeutic effect. Thus, toxic effects are often caused by an extension and 

exacerbation of therapeutic effects even on non-cancerous cells, reflecting the 

mechanism of action based on the killing of rapidly-growing normal cells (hair follicle, 

gastrointestinal surface epithelia, and stem cells). 

The late-onset of side effects can be associated with any kind of cancer treatment 

and, generally, shows organ specificity on the basis of cancer therapy. For example, 

chemotherapy to the chest can cause heart or lung problems, including congestive heart 

failure (CHF), coronary artery disease, arrhythmia and difficult breathing. The use of 

Doxorubicin, Trastuzumab, Daunorubicin, Epirubicin and Cyclophosphamide has been 

associated with higher probabilities to induce heart diseases in cancer survivors.11, 13 

Recently, the introduction of novel target-based anticancer agents has allowed changes in 

the regimens to include continuous low-dosages administration of targeted drugs. This 

approach has proven to be successful in the antiangiogenic-based treatment and has 

been named low-dose metronomic (LDM) chemotherapy.4 

In addition to cytotoxic and molecularly targeted anticancer agents, drugs acting 

through several indirect mechanisms are used in cancer management. All these agents 

are aimed at improving the quality of life of cancer patients, increase the compliance, and 

reduce the hospitalization due to side effects. These include chemo-protective agents, 

multidrug resistance reversing agents, analgesic, anti-emetics, and bone marrow growth 

factors.16, 17 Many of these agents are available through a wide variety of drug delivery 

options including immediate and sustained release formulation, transdermal products 

and depot formulation.18 

 

Despite continuing advances in the treatment of neoplastic diseases and the advent 

of new molecular target therapy that changed the prognosis for different malignancies, 

the standard cytotoxic therapy continues to be the first choice in the treatment of many 

cancer types. 

In addition to prolong survival in patients with certain cancers, targeted therapies 

provide treatment options for some patients who may not otherwise be candidates for 

anticancer therapy. For instance, non-small cell lung cancer and non-Hodgkin’s lymphoma 

primarily affect elderly patients, many of whom have medical comorbidities that limit the 

use of standard chemotherapy. Targeted therapies are often less toxic and better  

tolerated than the traditional ones, offering these patients additional treatment 

opportunities.13 
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Although the targeted therapy is conceived as a rational approach able to 

compensate for the lack of selectivity of the traditional chemotherapy, it presents a series 

of limitations. Firstly, the onset of drug resistance, inherently related to the high genetic 

variability of tumors is not a solved problem. 

In addition, the target specificity does not eliminate the short and long term side 

effects. Therefore, exploiting and rationalizing all the information coming from the 

related disciplines, the goal of medicinal chemistry is to design and synthesize new drugs 

which, either as single entities or in combination, can improve selectivity, reduce toxicity, 

prevent the onset of drug resistance and promote the patient adherence to the 

treatment regimens, by developing oral or easily administrating formulations.  
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1 SYNTHESIS OF SUBSTITUTED ISATIN, THIAZOLIDINONE AND 
ARYL-PYRAZOLINE BASED HYBRIDS AS ANTICANCER AGENTS 

1.1 INTRODUCTION 

 

Over the years, the design of chemotherapeutics has become increasingly 

sophisticated. Despite this, to date there is not cancer treatment that is totally effective 

against disseminated cancer.1 Genomic complexity and genetic heterogeneity are the 

main responsible for the limited and transient response of the majority of solid tumors to 

selective one-target therapy. This heterogeneity and, in particular, the possibility of 

having genetically distinct cell subpopulations, results both in the impossibility to adopt 

mono-drug regimens and in a dynamic and unpredictable response to the conventional 

pharmacological treatmentErrore. L'origine riferimento non è stata trovata..2 This feature has been 

recognized as a key factor in the drug resistance phenomena, even though the latter is 

due to a combination of genetic differences and alteration of cancer cells, and host 

factors.3 

Currently, the most widespread strategy used by clinicians for the treatment of 

metastatic or irresponsive patients is based on the combination therapies. Often, these 

antineoplastic combinations are administrated following specific co-therapy protocols 

taking into account the activity and toxicity spectra, in order to amplify the therapeutic 

benefits and to minimize the overlapping of side effects at their optimal doses, and 

considering the known resistance mechanism of each component. In several cases, the 

individual components of combination are co-formulated as a single dosage form, making 

simpler the therapeutic regimens.3,4 In both instances, these associations aim to obtain a 

multi-target action and, consequently, prevent the onset of drug resistance and delay the 

occurrence of relapse, showing more effectiveness over the long term. In the complex 

scenario of multi-factorial diseases, the combination of theoretical and empirical 

observations tends to emphasize the importance of multi-targeted therapies in the 

symptom management and disease remission, leading the search toward the concept 

“one molecule - multiple targets”.1,3,4  

The modulation of different targets simultaneously can be achieved either by 

cocktail drugs or by single chemical entities, containing two or more fragments, that could 

interact with different molecular targets of a multi-factorial disease. Obviously, these 

approaches are not mutually exclusive and, current data support the idea of a possible 

combination of multi-target agents with conventional chemotherapeutics. These 

combinations offer the possibility to achieve the block of different pathways in a vertical 

(different steps of a single pathway) or in horizontal (more than one pathway) mode.1,2 

In this respect, the design of molecular hybrids, able to interact with different 

molecular targets, could have a series of considerable advantages, including the 
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possibility to improve the patient compliance, call off the probability of drug-drug 

interactions, overcome the serious side effects generally related to the combined therapy 

and facilitate clinical trial design. In addition, the use of these hybrids allows to solve the 

issues commonly related to the co-formulation, including chemical and physical 

incompatibilities that affect the pharmacokinetic of each drug, or technical problems, 

inherent to the production process itself.5 

Therefore, molecular hybridization can be defined as a strategy of rational drug 

design based on the combination of two bioactive pharmacophoric units in a single 

molecule. Thus, through the suitable fusion of these sub-structures, it is possible to 

obtain a new highly active architecture that maintains or improves the activity and 

characteristics of the parent molecules.1 

Hybrid drugs can be designed using “post hoc” or “ad hoc” approaches. In the “post 

hoc” method the hybrids are derived from well-known drugs, while in the “ad hoc” 

method conjugates are derived by leads affected by in vivo instability or by missing drug-

like properties. In general, hybrid approaches could be exploited in the early phase of 

drug development to obtain the lead optimization, both in pharmacodynamics and 

pharmacokinetic profiles.3 There are several options to combine the units constituting a 

molecular hybrid. More in detail, multi-target action can be achieved by linking two units 

by cleavable or non-cleavable spacers or by overlapping structural motifs derived from 

different drugs.3,6 Until now, several examples of molecular hybrids have been reported 

for the cancer treatment.7-13 
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1.2 COMBINATION OF ISATIN-THIAZOLIDINONE-PYRAZOLINE MOIETIES 

 

1.2.1 Background 

 

As above mentioned, molecular hybridization techniques have been largely used to 

discover new promising scaffolds with a significant anticancer profile and several 

examples have been reported for microtubule inhibition. In this specific case, some well-

known microtubule inhibitors such as taxol, vinca alkaloids, combretasatin and colchicine 

have been included in hybrid molecules, obtaining compounds that exhibit inhibitor 

activity at nanomolar level.1 

Most in general, several heteroaryl based hybrids have been exploited as antitumor 

agents and, among these, isatin based hybrids have been the object of intense research 

due to the isatin moiety favorable features. In particular, the isatin is a privileged scaffold 

because it not only offers wide possibilities for chemical modifications but also exhibits a 

broad spectrum of biological properties. Among these properties, cytotoxic and 

antineoplastic activities have been related to its inhibition capability of several enzymes, 

such as tyrosine kinase, serine/threonine kinases (e.g. cyclin-dependent kinases, CDKs) 

and carbonic anhydrase isozymes.14, 15 Therefore, the chemical plasticity and the ability of 

isatin to inhibit different enzymes make it one of the most exploited fragment to obtain 

new active multifunctional hybrids. For these reasons, several isatin based hybrids have 

been synthesized. The hybrids, belonging to this class, most frequently reported in the 

literature include conjugates of isatin with uracil, triazole, benzothiazole, pyrazolines, 

calchones and  thiazolidinone moieties.1, 16-18  

Based on the interesting data reported in literature18 and on the activity displayed 

by single fragments, in this work the attention has been focused on isatin-thiazolinone-

pyrazoline conjugates. In this structure the thiazolinone portion acts as essential linker 

between the pyrazoline and isatin moieties. Even if, from a formal point of view, the 

thiazolinone is a molecular bridge between the isatin and pyrazoline units, each element 

of the hybrid contributes to the anti-tumor activity. In fact, similarly to indolinone, 

pyrazolines and thiazolinones and their correlated heterocycles exhibit a variety of 

pharmacological activities, including antifungal, antidepressant, anti-epileptic, anti-

inflammatory, antibacterial and antitumor activities.19 In particular, with respect to these 

molecules, the anti-proliferative effect has been related to their ability to interfere with 

several molecular targets. Regarding the pyrazolines, the antitumor behavior has been 

related to the inhibition of cyclin-dependent kinase, heat shock proteins, vascular 

endothelium growth factor (VEGF), and P-glycoprotein,18 while in the case of the 

thiazolinone, the activity has been associated with their affinity for the tumor necrosis 

factor (TNF), antiapoptotic complex Bcl-XL-BH3, JNK-stimulating phosphatase-1 (JNK-1) 

and non-membrane protein tyrosine phosphatase (SHP-2).18,20 Thus, in principle, the 

association of the three nuclei provides to the molecule a potential, in terms of activity, 
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substantially higher than those associated to each single element or to the possible 

combinations of two of them.18 Several data are reported in the literature about the SARs 

of these conjugates that contribute to validate the hybrid approach as a potential tool to 

obtain multifunctional compounds. More in detail, these data highlight that the 

antitumor activity is strictly dependent on the presence of the three heterocycles on the 

hybrid. It is important to point out that the distribution of the three moieties on the 

hybrid is not random and the role of the thiazolinone as a spacer is required to optimize 

the antitumor activity. The absence of this linker in the pyrazoline-indolinone hybrids 

leads to a decreased activity. Furthermore, it is possible to modulate the activity of these 

molecules on the base of the aryl substituents in position 3 and 5 of pyrazoline and the 

substituent in position 5 of indolinone. Finally, the best activity is generally related to 

compounds with unsubstituted nitrogen on the isatin portion.18 

According to these assumptions, and using as starting point the most active 

compound reported in literature (Figure 1.1),18 a high number of structural analogues of 

this reference compound have been synthesized.  

 

N N

N

S

OCH3

O

NH

O

Br  
Figure 1.1. Most active compounds of previous reported series.

18
 

 

More in detail, this work aims at assessing the contribution to the hybrid activity of 

different substituents, on the basis of their electronic and steric properties, on the isatin 

and pyrazoline moieties. To accomplish this goal and simplify the dissertation, these 

compounds have been grouped into five series (Table 1.1). In each series the molecular 

skeleton of the hybrid is basically unchanged. Therefore, all the structural modifications 

have been carried out to obtain:  

1. Within each series, the variation of position and type of substituent in the 

indolinone moiety; these substitution patterns are recursively adopted in each one of the 

five series; 

2. Among different series, the variation of the aryl substituent in position 3 or 

5 of the pyrazoline. 
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In addition, in each series the indolinone moiety has been substituted with a 2-

methoxy naphtyl group. The aim of this isosteric substitution was to extensively 

investigate the impact of the substituted indolinones on the activity. Therefore, the 

gradual change in the series-specific molecular portions will allow investigating how the 

steric and electronic features of the substituent affect the interaction between these 

compounds and their biological targets. 
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Table 1.1. Reference compound EMAC4000 and new series of analogues compounds 

synthesized EMAC4001-4075. 

Compound Series 

 

Series 1 
(EMAC 4000-

4009) 

Series 2 
(EMAC 4011-

4020) 

Series 3 
(EMAC 4022-

4031) 

Series 4 
(EMAC 

4033-4042) 

Series 5 
(EMAC 4066-

4075) 

Isatin  group (R) 

Ar 
Naphtalen-2-yl 

 
Ar’ 

4-methoxy-
phenyl 

Ar 
Thiophen-2-yl 

 
Ar’ 

4-methoxy-
phenyl 

Ar 
Naphtalen-2-yl 

 
Ar’ 

4-fluoro-
phenyl 

Ar 
4-Acetyl 
biphenyl 

Ar’ 
4-methoxy-

phenyl 

Ar 
Naphtalen-2-yl 

 
Ar’ 

4-chloro-
phenyl 

7-bromo EMAC 4000 EMAC 4011 EMAC 4022 EMAC 4033 EMAC 4066 

5-chloro EMAC 4001 EMAC 4012 EMAC 4023 EMAC 4034 EMAC 4067 

4,7-dichloro --- --- EMAC 4024 --- --- 

5,7-dimethyl EMAC 4003 EMAC 4014 EMAC 4025 --- EMAC 4069 

5-fluoro --- EMAC 4015 EMAC 4026 EMAC 4037 EMAC 4070 

7-fluoro EMAC 4005 EMAC 4016 EMAC 4027 EMAC 4038 EMAC 4071 

5-iodio EMAC 4006 EMAC 4017 --- EMAC 4039 EMAC 4072 

5-methoxy EMAC 4007 EMAC 4018 EMAC 4029 EMAC 4040 EMAC 4073 

5-methyl EMAC 4008 EMAC 4019 EMAC 4030 EMAC 4041 EMAC 4074 

5-trifluoromethyl      EMAC 4009     EMAC 4020    EMAC 4031  EMAC 4042    EMAC 4075 

 

 

 

N N

Ar'Ar

N

S

O

NH

O

R
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1.2.2 Synthetic pathway  

 

The synthesis of isatin-thiazolinone-pyrazoline derivatives followed the general 

method outlined in the Errore. L'origine riferimento non è stata trovata.. The final 

compounds have been synthesized via one-pot methodology reacting the 3,5-diaryl-1-

thiocarbamoyl-2-pyrazolines with ethyl bromoacetate and the appropriate isatin in the 

presence of anhydrous sodium acetate, refluxing in glacial acetic acid.18 More in detail, 

the synthetic route includes: 

1. The synthesis of 3,5-disubstituted-thiocarbamoyl-2-pyrazolines; 

2. The cyclization of 1,3-thiazol-4(5H)-one and the subsequent reaction of this 

neo-formed nucleus with a substituted isatin to obtain the final compounds. 

 

Ar CH3

O

H Ar'

O

(a) Ar

O

Ar'

(b)

N N

Ar'Ar

S

H2N

 (c)

N N

Ar'Ar

N

S

O

NH

O

R  
Scheme 1.1. Synthetic procedure. Reagents and conditions: (a) NaOH 10%, EtOH, ice bath; (b) KOH 5%, 

thiosemicarbazide, reflux; ethyl bromo acetate, anhydrous sodium acetate, appropriate isatine, glacial 

acetic acid, reflux. 18
 

 

The synthesis of 3,5-substituted-1-carbamoyl-2-pyrazolines has been in turn 

obtained performing two reactions (Scheme 1.1, a and b), including the synthesis of the 

1,3-diaryl-2-propen-1-one, followed by the pyrazoline ring closure. The diaryl-2-

propenones (chalcones) were synthesized via Claisen-Schmidt condensation, reacting 

substituted benzaldehydes with aryl methyl ketones in the presence of a strong base 

(sodium hydroxide 10%) as a catalyst. Usually, this reaction is carried out at room 

temperature, using equimolar amounts of reagents and an alkali aqueous solution with a 
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concentration ranging between 10 to 60%. Notably, under these conditions the non-

enolizable aldehydes undergo to a disproportionation reaction, known as Cannizaro 

reaction, forming the correspondent carboxylic acid and alcohol, that strongly affects the 

reaction yield (Scheme 1.2). To avoid the formation of these by-products, the reaction has 

been performed keeping the temperature at 0°C and adding the aldehyde dropwise to a 

basic solution containing the ketone. Furthermore, the use of a slight excess of aldehyde 

allows to replace this reagent if it is implicate in the Cannizaro reaction. In this way a 

stable calchone has been obtained, which is reacted in the next step with 

thiosemicarbazide and potassium hydroxide 5% alcoholic solution, obtaining the expected 

pyrazoline.21 

 

 
Scheme 1.2. Detailed mechanism of Claisen-Schmidt condensation to obtain 1,3-diaryl-2-propen-1-one. 

 

The last step is a three-component (1-thiocarbamoyl-pyrazoline; ethyl bromo 

acetate, and isatin) one-pot reaction which provides the final compounds, combining two 

reactions in a unique step. It is worth noting that using this procedure is possible to 

achieve the formation of the final hybrids without the need of isolating the pyrazoline-

thiazolinone intermediate for the condensation with the indolinone (Scheme 1.1, c). A 

more detailed description of this reaction mechanism is depicted in Scheme 1.3.  
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More in detail, the cyclization of the thiazolinone, based on Hantzsch’s thiazole 

synthesis, involves the thiocarbamoyl group in position 1 of the pyrazoline and the ethyl 

bromoacetate. Differently from the synthetic procedure reported in the literature,18 in 

which the cyclization is conducted using the chloro acetic acid, this reaction has been 

performed by using the ethyl bromoacetate. This change in the method can be justified as 

follows: 

1. Esters are more reactive than the corresponding acids in the nucleophilic 

substitution reactions;  

2. The use of an acid results in the formation of water, which interferes with 

the second part of the reaction.  

In fact, the condensation reaction between the methylene at C-5 of the thiazolinone 

and the carbonyl group in position 3 of the indolinone involves a dehydration reaction. 

The presence of water in the reaction medium, originating from the previous cyclization, 

likely shifts the equilibrium to the left leading, presumably, to a reduction of yields. For 

the majority of the synthetized compounds, it has been observed that the use of the ester 

with respect to the acid, leads to higher yields. Under these operating conditions (pH 

weakly acid), the thiazolinone methylene in C-5 is able to react with the carbonyl at the C-

3 of the indolinone, leading to the formation of the final product. The pH system is crucial 

for the success of the reaction and is kept around 5 by the acetic acid/sodium acetate 

buffer. In fact, this must be sufficiently acid to allow the protonation of the carbonyl 

oxygen, but not too acid in order to ensure the deprotonation of the thiazolinone 

methylene that leads to the formation of the nucleophilic centre in this position. 
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Glacial acetic acid;
anhydrous sodium acetate;
reflux

THIAZOLINONE-INDOLINONE CONDENSATION

THIAZOLINONE CYCLIZATION

Scheme 1.3. Mechanism of the optimized one-pot reaction which provides the final compounds. 

 

Notably, since the reaction of pyrazoline formation is not enantioselective, both 

enantiomers have been obtained. Therefore, each final compound exists as a couple of 

enantiomers.  

The structure of each compound has been elucidated by 1HNMR spectroscopy.  

The 1,3-diaryl-2-propenones were detected by the typical olefinic proton signals, 

which appear as two doublets at δ 7.84-7.70 ppm with a coupling constant J equal to 15 

Hz, typical of E isomers. 

The 3,5-diaryl carbothioamide pyrazolines were detected by -CH2 and -CH protons 

of the ring and, when detectable, by the -NH2 signal of thiocarbamoil group that appears 

as a broad singlet at δ 7.2-7.1 ppm. In fact, the group –CH2CH is part of a AMX system that 

gives raises to a characteristic set of three doublets of doublets. The AMX system is 

depicted in the Figure 1.2, where an enlargement of the NMR spectrum shows the 
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coupling effect on the pyrazoline system. The -CH2 resonates as a pair of doublets of 

doublets at δ 3.14-3.44 ppm (HA), 3.98-4.04 ppm (HM). The -CH proton appears as a 

doublet of doublets at δ 5.64-6.10 (HX) ppm due to vicinal coupling with two magnetically 

non-equivalent protons of the methylene group at position 4 of the pyrazoline ring (JAM 

18.00 Hz, JAX 4 Hz, JMX 11 Hz). 

 

 
Figure 1.2. Coupling effect on the pyrazoline system. 

 

The NMR spectra of final compound show the signals attributable to the protons of 

the indolinone residue. In each spectrum it is possible to observe a sharp singlet at δ  ̴11 

ppm related to the –NH group in the isatin moiety. Some spectra show two signals for the 

–NH group related to a prototropic equilibrium between the enolic and lactamic forms: 

the first one is detected at 11.92 ppm –e.g. for the compound EMAC 4072- and can be 

related to the enolic tautomer, while the second isomer is detected at  1̴1.29 ppm.  

All the other aromatic and aliphatic protons, when present, were observed at 

expected regions. 

Due to their poor solubility in the commonly used solvent, the purification process 

of the final compound is not easily attainable by re-crystallization or chromatographic 

column. Therefore, when possible the crude reaction products was washed with refluxing 

ethanol or methanol. 
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1.2.3 A promising pharmacophore hybrid approach 

 

Compounds (Series 1, EMAC4000-4009) were submitted to NCI for the preliminary 

evaluation of their biological activity. Among these, only EMAC4001 and EMAC4007 have 

been selected and tested at both single and five concentration levels. Figure 1.3 shows 

the structures of both selected and reference compounds. Each compound of this series 

has the same scaffold of the reference compound. The new compounds only differ for the 

nature of the substituent in the isatin moiety. In particular, while the reference 

compound presents a bromine in the position C-5 of the indolinone portion,18 EMAC4001 

and EMAC4007 have a chlorine and a methoxy group, respectively. In this way it is 

possible to assess directly the effect of the isatin substitution pattern. 

The biological assays have been performed using a panel of approximately 60 

cancer cell lines. This panel includes nine different tumor types: leukemia, colon, lung, 

CNS, renal, melanoma, ovarian, breast and prostate. The protocols used for one-dose and 

five-dose assays are reported in the Experimental section 1.4.3. 

 

 
Figure 1.3. Compounds selected and tested by the NCI for antitumor activity. 

 

Both EMAC4001 and EMAC4007 display a significant activity when tested in a 

single-dose assay. In this case the data are reported as a mean graph of the percent 

growth of cells, treated with 10 μM concentration of analyzed compound. The growth 

value is compared to an untreated control and referred to a number of cells at time zero. 

This allows the detection of both growth inhibition and lethality: the growth inhibition 

percentage is reported in the left side of graph as positive values, while the lethality is 

reported in the right side of the graph as negative values. Figure 1.4 shows, as an 

example, the one-dose mean graph of EMAC4001.  
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Figure 1.4. One dose results of EMAC4001. 

 

In particular, the mean growth value, averaged over the different cancer 

subpopulation, is -46.49 and -45.87 for EMAC4001 and EMAC4007, respectively. These 

compounds show a similar broad range of activities (154.01 EMAC4001 and 150.30 

EMAC4007) that highlight a not uniform activity toward the different cell lines. In both 

cases the most sensitive cancer subtype is SK-MEL-5, a melanoma cell-line, with values of 

-95.18 and -93.26 for EMAC4001 and EMAC4007, respectively. In addition, significant 

results have been found also for other solid tumor subtypes. For example, EMAC4001 
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exhibits interesting growth percentage values for some renal cancer (786-0; A498; UO-

31), ovarian cancer (OVCAR-3), CNS cancer (U251), Non-small Cell lung cancer (NCI-H522), 

for which these values range between -80.46 and -94.63. It is worth noting that both 

EMAC4001 and EMAC4007 have similar behavior, in terms of activity, with respect to the 

reference compound18 but both of them show a worse mean growth percentage and, 

consequently, they result less active when considering the whole cell panel.  

However, considering their good performance, these compounds have been 

selected, by the NCI, for a second screening, performed at ten-fold dilution of five 

concentrations. In this case the resulting activities are reported as dose-response curves 

in which three parameters can be found. More in detail, the Growth Inhibition, GI50, is the 

molar concentration of the analyzed compound that inhibits the 50% of total growth; the 

Total Growth Inhibition, TGI, is the molar concentration leading the total inhibition and, 

finally, the Lethal Concentration, LC50, is the molar concentration of tested compound 

able to determine a lethal effect on the 50% of cells. These values are tabulated for each 

cancer type and plotted in a dose-response graph. Furthermore, a mean graph midpoints, 

similar to the one-dose mean growth percent, is reported for each parameter.   

The GI50, TGI and LC50 mean value are reported in Table 1.2 and compared with the 

corresponding data of the reference compound.18 
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Table 1.2. Biological results obtained by the NCI screening.  

Biological 
results 

Reference compound EMAC 4001 EMAC 4007 

 

N N

N

S

OCH3

O

NH

O

Br  

N N

N

S

OCH3

O

NH

O

Cl  

N N

N

S

OCH3

O

NH

O

3HCO  

One-dose mean graph: 

Mean 
growth, % 
SK-MEL-5 

(most sensitive 
cell-line) 

-59.81 
 

---- 

-46.49 

 
-95.18 

-45.87 

 
-93.26 

Five-dose mean graph: 

GI50 (μM) 0.071 0.028 0.071 

TGI (μM) 0.76 0.11 0.53 

LC50 (μM) 19.76 0.46 8.1 

 

The obtained data confirm that the substituent in position C-5 in the isatin portion is 

crucial for the hybrid activity and show that the variation of the substituent in this 

position has a strong impact on the potency of analysed compounds. As part of this triad 

of compounds, EMAC4001 shows the best values for each parameter considered with a 

mean GI50 equal to 0.028 μM, a mean TGI equal to 0.11 μM and mean LC50 equal to 0.46 

μM. Even though the potency of tested compounds increase in the order Cl>OCH3>Br, the 

data so far available are not sufficient to provide an adequate analysis on the features of 

the substituent in this position.  
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1.3 CONCLUSIONS 

 

This work involves the synthesis of several derivatives whose scaffold has been built 

upon a hybrid pharmacophore model.18 The synthetic method reported in literature has 

been optimized, obtaining the final compounds with quantitative yields.  

All the Series 1 derivatives (EMAC4000-4009) have been submitted to the NCI, but 

among these only EMAC4001 and EMAC4007 have been selected for the biological 

screening. The preliminary data confirm that the synthesized compounds possess anti-

proliferative activity toward the solid cancers and that the substitution pattern proposed 

for the indolinone portion enhances the potency of compounds with respect to the 

reference derivativeErrore. L'origine riferimento non è stata trovata..18 

However, further investigations are needed to elucidate the biological target/s of 

synthesized compounds and their mechanism of action. In particular, a more deep 

analysis of these data will enable to: 

1. establish whether the employed approach may actually be validated as a 

method for the synthesis of molecular hybrids; 

2. optimize the potency on the bases of computational and SARs studies. 

Finally, since the adopted conditions for the pyrazoline synthesis are not 

enantioselective, each compound has been obtained as a couple of enantiomers (Figure 

1.2). Considering the importance of enantiomers in the activity and toxicity of several 

drugs, the chiral separation and the subsequent analysis of biological data could provide 

an interesting way to obtain anticancer drugs with a larger therapeutic window. 

 

1.4 EXPERIMENTAL SECTION 

 

1.4.1 Materials and methods 

 

All the materials, reagents and solvents, where not specified, were purchased from 

commercial suppliers and used without any further purification.  

Each reaction and purification method were monitored using Thin Layer 

Chromatography (TLC), using precoated Merk Silica gel 60 254F plates and petroleum 

ether/ethyl acetate as eluent, with different ratios for intermediates and final products.  

Purification methods were performed by crystallization from ethanol (chalcones 

and pyrazolines) or by chromatographic columns, when possible, for final compounds. 

Chromatographic columns were performed using Silica gel 70-240 mesh.  

Melting points (Mp) were measured using a Stuart Melting Point SMP30 apparatus 

and are uncorrected. 

The 1HNMR spectra of synthesized compounds were recorded on a Varian Unity 

500MHz spectrometer in DMSO-d6, chloroform-d or aceton-d6, using tetramethylsilane 



30 
 

(TMS) as internal standard. Chemical shifts are reported in ppm, with the use of a δ scale, 

coupling constants (J) in Hz. 

Biological assays have been performed at the National Cancer Institute, according 

to well-known protocols. 

 

1.4.2 Chemistry and structural characterization 

 

The general method for the synthesis of 3,5-diaryl-1-thiocarbamoyl-2-pyrazolines 

and of final compounds has been discussed in the Section 1.2.3. In this paragraph a more 

detailed overview of the synthesis of the single compounds for each one of the series will 

be provided. 

 

Series 1: Synthesis of 3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one (EMAC 4000-4009) 

 

Synthesis of 3-(4-methoxy-phenyl)-1-(naphtalen-2-yl)-2-propen-1-one 

An aqueous solution of NaOH 10% (1.2 mmol; 480 μL) was slowly added to a 

solution of 2-acetyl-naphtalene (1 mmol; 170 mg)  in ethanol. The mixture was vigorously 

stirred, until to obtain a cloudy solution. Then, a solution in ethanol of 4-methoxy-

benzaldehyde (1.2 mmol; 163 mg) is added dropwise, obtaining a light yellow suspension. 

The obtained solid was filtered, washed with water and ethanol to obtain a light yellow 

solid. This crude product was crystallized from ethanol. The whole reaction was carried 

out keeping the temperature around 0°C and its progression monitored with TLC, using  

ethyl acetate/petroleum ether 1:1 as eluent. 

Yellow solid; Yield 88%; MW 288.34 g/mol; Mp 90-92°C  
1H NMR (500 MHz, DMSO-d6): δ 8.92 (s, 1H, -CH aromatic), 8.17 (d, 1H, -CH 

aromatic, Jo=8), 8.14 (dd, 1H, -CH aromatic, Jo=8.5; Jm=2), 8.07 (d, 1H, -CH aromatic, 

Jo=8.5), 8.03 (d, 1H, -CH aromatic, Jo=8), 8.00 (d, 1H, -CH propen, JE=15.5), 7.91 (d, 2H, -CH 

aromatic, Jo=8.5), 7.80 (d, 1H, -CH propen, JE=15.5), 7.70 (td, 1H, -CH aromatic, Jo=8.5; 

Jm=2), 7.66 (td, 1H, -CH aromatic, Jo=8.5; Jm=2), 7.06 (d, 2H, -CH aromatic, Jo=8.5), 3.85 (s, 

3H, -OCH3). 

 

Synthesis of 5-(4-methoxyphenyl)-3-(naphthalen-2-yl)-4,5-dihydropyrazole-1-

carbothioamide 

A freshly prepared solution of alcoholic KOH 5% (1.2 mmol; 1.3 mL)  was added 

dropwise to a mixture of 3-(4-methoxy-phenyl)-1-(naphtalen-2-yl)-2-propenone (1 mmol, 

288 mg) and thiosemicarbazide (1.2 mmol; 110 mg) in ethanol. This solution was refluxed 

until reaction completion, checking the progression with TLC. This solution was cooled at 
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room temperature, obtaining a yellow suspension. The solid was filtered out, washed 

with water and crystallized from ethanol.  

Yellow solid; Yield 74%; MW 361.43 g/mol; Mp 210-211°C  
1H NMR (500 MHz, CDCl3): δ 8.02 (d, 1H, -CH aromatic, Jo=8.5), 7.98 ( s, 1H, -CH 

aromatic), 7.89-7.84 (m, 3H, -CH aromatic), 7.58-7.52 (m, 2H, -CH aromatic), 7.20 (d, 2H, -

CH aromatic, Jo=8), 7.15 (bs, 1H, -NH thiocarbamoyl), 6.87 (d, 2H, -CH aromatic, Jo=8), 6.06 

(dd, 1H, -CHx pyrazoline, JAX=4; JMX=11), 3.94 (dd, 1H -CHM pyrazoline, JMA=18.5; JMX=11), 

3.78 (s, 3H, -OCH3), 3.36 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4).  

 

Synthesis of 3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-dihydropyrazol-1-

yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

A mixture of 5-(4-methoxyphenyl)-3-(naphthalen-2-yl)-1-thiocarbamoyl-2-

pyrazoline (1.0 mmol), ethyl bromoacetate (1.0 mmol), appropriate isatin (1.2 mmol), and 

anhydrous sodium acetate (2.0 mmol) was refluxed in glacial acetic acid (5 mL) until 

reaction completion. The mixture was cooled at room temperature and the obtained 

precipitate was filtered off, washed with water and methanol. 

(EMAC 4000) 7-bromo-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange solid; MW 609.49 g/mol; Mp 341-342°C   
1H NMR (400 MHz, DMSO-d6): δ 11.47(s,1H, -NH isatin), 8.99 (d, 1H, -CH aromatic, 

Jo=8.5), 8.46 (s, 1H, -CH aromatic), 8.17-8.04 (m, 4H, -CH aromatic), 7.70-7.63 (m, 2H, -CH 

aromatic), 7.58 (d, 1H, -CH aromatic, Jo=8.5), 7.29 (d, 2H, -CH aromatic, Jo=8.4), 7.04 (t, 

1H, -CH aromatic, Jo=8.5), 6.97 (d, 2H, -CH aromatic, Jo=8.4), 6.01 (dd, 1H, -CHX pyrazoline, 

JAX=4; JMX=11), 4.30 (dd, 1H, -CHM pyrazoline, JMA=18.5; JMX=11), 3.75 (s, 3H, -OCH3), 3.67 

(dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4).  

(EMAC 4001) 5- chloro-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 565.04 g/mol; Mp 314-317°C 
1H NMR (500 MHz, DMSO-d6): δ 11.29 (s, 1H, -NH isatin), 8.97 (s, 1H,-CH aromatic), 

8.42 (s, 1H, -CH aromatic), 8.11 (d, 1H,-CH aromatic, Jo=9), 8.08-8.01 (m, 3H, -CH 

aromatic), 7.67-7.61 (m, 2H, -CH aromatic), 7.39 (dd, 1H, -CH aromatic, Jo=8.5; Jm=2), 7.28 

(d, 2H, -CH aromatic, Jo=8.5), 6.96 (s, 1H, -CH aromatic), 6.95 (d, 2H, -CH aromatic, Jo=8.5), 

, 5.98 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.28 (dd, 1H, -CHM pyrazoline, JMA=18.5; 

JMX=11),  3.74 (s, -3H, -OCH3), 3.67 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4).  

 (EMAC 4003) 5,7-dimethyl-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange solid; MW 558.65 g/mol; Mp 335-336°C 
1H NMR (500 MHz, DMSO-d6): δ 11.07 (s, 1H, -NH isatin), 8.64 (s, 1H, -CH aromatic), 

8.43 (s, 1H, -CH aromatic), 8.14 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.02 (m, 3H, -CH 
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aromatic) 7.68- 7.62 (m, 2H, -CH aromatic), 7.28 (d, 2H, -CH aromatic, Jo=8.5), 7.02 (s, 1H,-

CH aromatic), 6.95 (d, 2H, -CH aromatic, Jo=8.5), 5.98 (dd, 1H, -CHx pyrazoline, JAX=4; 

JMX=11) , 4.28 (dd, 1H -CHM pyrazoline, JMA=18.5; JMX=11), 3.74 (s, 3H, -OCH3), 3.65 (dd, 

1H, -CHA pyrazoline, JAM=18.5; JAX=4), 2.26 (s, 3H, -CH3), 2.21 (s, 3H, -CH3). 

(EMAC 4005) 7-fluoro-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one  

Light orange solid; MW 548.59 g/mol; Mp 308-309°C 
1H NMR (500 MHz, DMSO-d6): δ 11.69 (s, 1H, -NH isatin), 8.79 (d, 1H, -CH aromatic, 

Jo=8), 8.44 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.10-8.02 (m, 3H, -CH 

aromatic), 7.68-7.62 (m, 2H, -CH aromatic) , 7.31 (d, 1H, -CH aromatic, Jo=8.5) , 7.28 (d, 

1H, -CH aromatic, Jo=8.5), 7.09-7.05 (m, 1H, -CH aromatic), 6.95 (d, 1H, -CH aromatic, 

Jo=8.5), 5.98 (dd, 1H, -CHX pyrazoline, JXA=4; JXM=11), 4.30 (dd, 1H, -CHM pyrazoline, 

JMA=18.5; JMX=11), 3.74 (s, 3H, -OCH3), 3.66 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4). 

(EMAC 4006) 5-iodo-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 656.49 g/mol; Mp 288-290°C 
1H NMR (500 MHz, DMSO-d6): δ 10.55 (s, 1H, -NH isatin), 8.36 (s, 1H, -CH aromatic), 

8.11-8.01 (m, 4H, -CH aromatic), 7.84 (s, 1H, -CH aromatic), 7.66-7.60 (m, 2H, -CH 

aromatic), 7.56 (d, 1H, -CH aromatic, Jo=8.5), 7.06 (d, 2H, -CH aromatic, Jo=8.5), 6.99 (d, 

2H, -CH aromatic, Jo=8.5), 6.62 (d, 1H, -CH aromatic, Jo= 8.5), 5.79 (dd, 1H, - CHX 

pyrazoline, JXA=4; JXM=11), 4.20 (dd, 1H, -CHM pyrazoline, JMX=11; JMA=18.5), 3.73 (s, 3H, -

OCH3), 3.48 (dd, 1H, -CHA pyrazoline, JAX=4; JAM=18.5). 

(EMAC 4007) 5-methoxy-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Brown solid; MW 560.62 g/mol; Mp 303-305°C 
1H NMR (500 MHz, DMSO-d6): δ 10.96 (s, 1H, -NH isatin), 8.67 (s, 1H, -CH aromatic), 

8.43 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.10-8.02 (m, 3H, -CH 

aromatic), 7.68-7.62 (m, 2H, -CH aromatic), 7.28 (d, 2H, -CH aromatic, Jo=8.5), 6.98-6.94 

(m, 3H, -CH aromatic), 6.84 (d, 1H, aromatic, Jo=8.5), 5.97 (dd, 1H, -CHX pyrazoline, JXA=4; 

JXM=11), 4.29 (dd, 1H, -CHM pyrazoline, JMA=18.5; JMX=11) 3.75 (s, 3H, -OCH3), 3.74 (s, 3H, -

OCH3), 3.66 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4).  

(EMAC 4008) 5-methyl-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 544.62 g/mol; Mp 288-291°C 
1H NMR (500 MHz, DMSO-d6): δ 11.05 (s, 1H, -NH isatin), 8.78 (s, 1H, -CH aromatic), 

8.43 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.02 (m, 3H, -CH 

aromatic), 7.67-7.62 (m, 2H, -CH aromatic), 7.28 (d, 2H , -CH aromatic, Jo=8.5), 7.17 (d, 1H, 

-CH aromatic, Jo=8.5), 6.95 (d, 2H, -CH aromatic, Jo=8.5), 6.83 (d, 1H, -CH aromatic, Jo=8.5), 

5.98 (dd, 1H, -CHX pyrazoline, JXA=4;JXM=11), 4.28 (dd, 1H, -CHM pyrazoline, JMA=18.5; 
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JMX=11), 3.74 (s, 3H, -OCH3), 3.66 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4), 2.30 (s, 3H, -

CH3). 

(EMAC 4009) 5-trifluoromethyl-3-2-[5-(4-methoxyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 598.59 g/mol; Mp 303-305 °C 
1H NMR (500 MHz, DMSO-d6): δ 11.35 (s, 1H, -NH isatin), 8.98 (s, 1H, -CH aromatic), 

8.44 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.10-8.02 (m, 3H, -CH 

aromatic), 7.68-7.62 (m, 2H, -CH aromatic), 7.38 (d, 1H, -CH aromatic, Jo=8.5), 7.29 (d, 2H, 

-CH aromatic, Jo=8.5), 7.02 (d, 1H, -CH aromatic, Jo=8.5), 6.95 (d, 2H, -CH aromatic, Jo=8.5), 

5.99 (dd, 1H, -CHX pyrazoline, JXA=4; JXM=11), 4.30 (dd, 1H, -CHM pyrazoline, JMA=18.5; 

JMX=11) , 3.74 (s, 3H, -OCH3), 3.68 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4). 

 

Series 2: Synthesis of 3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one (EMAC 4011-4020) 

 

Synthesis of 3-(4-methoxyphenyl)-1-(thiophen-2-yl)-2-propen-1-one. 

An aqueous solution of NaOH 10% (1.2 mmol; 480 μL) was slowly added to a 

solution of 2-acetyl-thiophene (1 mmol; 130 mg)  in ethanol. The mixture was vigorously 

stirred, until to obtain a cloudy solution. Then, a solution in ethanol of 4-methoxy-

benzaldehyde (1.2 mmol; 163 mg) is added dropwise, obtaining a light yellow solution. 

The whole reaction was carried out keeping the temperature around 0°C and its 

progression monitored with TLC, using  ethyl acetate/petroleum ether 1:1 as eluent.  

Since the reaction product is soluble in ethanol, the solution is concentrated in 

vacuum to halve the volume and poured in  ̴ 20 g of chipped ice, obtaining a yellow 

precipitate. The solid was filtered off and washed with water, obtaining a light yellow 

powder that crystallized from isopropanol.  

Yellow solid; Yield 86%; MW 244.31 g/mol; Mp 70°C  
1H NMR (500 MHz, chloroform-d): δ 7.87 (d, 1H, -CH5 thioph., J4-5=3.5), 7.85 ( d, 1H, 

-CH propen, JE=15.5), 7.65 (d, 1H, -CH3 thioph., J3-4=5), 7.63 (d, 2H, -CH aromatic, Jo=8.5), 

7.33 (d, 1H, -CH propen, JE=15.5), 7.20 (t, 1H, -CH4 thioph., J4-5=3.5; J3-4=5), 6.97 (d, 2H, -

CH aromatic, Jo=8.5), 3.88 (s, 3H, -OCH3).   

 

Synthesis of 5-(4-methoxyphenyl)-3-(thiphen-2-yl)-4,5-dihydropyrazole-1-

carbothioamide. 

To a mixture of 3-(4-methoxy-phenyl)-1-(thiophen-2-yl)-2-propenone (1 mmol; 244 

mg) and thiosemicarbazide (1.2 mmol; 110 mg) in ethanol a freshly prepared solution of 

alcoholic KOH 5% (1.2 mmol; 1.3 mL)  was added dropwise at room temperature. After 1 

h the temperature was gradually increased to 50°C and maintained at this level until 
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reaction completion. The reaction was monitored with TLC, using ethyl 

acetate/petroleum ether 1:1 as eluent.   

For the synthesis of this pyrazoline the control of the temperature is absolutely 

required. In fact, both higher and lower  temperatures than 50°C, are related to poor 

yields. In the first case, refluxing the reaction system the yield lowering is due to the 

formation of a mixture of products, in which the pyrazoline is the 38% of the total. On the 

other hand, reacting these compounds at room temperature does not lead to the final 

product, even if the reaction time is prolonged (›48 h). Also in this case a mixture of 

compounds have been obtained, in which the starting material is the prevalent one.  The 

obtained pyrazoline was crystallized from ethanol, obtaining a light yellow solid.  

Yellow solid; Yield 74%; MW 317.43 g/mol; Mp 150-152°C  
1H NMR (500 MHz, chloroform-d): δ 7.50 (d, 1H, -CH5 thioph., J4-5=5), 7.28 (solvent 

peak and –CH3 thioph. signal) , 7.19 (d, 2H, -CH aromatic, Jo=8.5), 7.11 (t, 1H, -CH4 thiph., 

J4-5=5; J3-4=4) , 7.04 (bs, 1H, -NH2 thiocarbamoil), 6.88 (d, 2H, -CH aromatic, Jo=8.5), 6.01 

(dd, 1H, -CHX pyrazoline, JXA=3.5; JXM=11.5), 3.86 (dd, 1H, -CHM pyrazoline, JMX=11.5; 

JMA=18.5), 3.80 (s, 3H, -OCH3), 3.20 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=3.5).    

 

Synthesis of 3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydropyrazol-1-

yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one.  

A mixture of 5-(4-methoxyphenyl)-3-(thiphen-2-yl)-1-thiocarbamoyl-2-pyrazoline 

(1.0 mmol), ethyl bromoacetate (1.0 mmol), appropriate isatin (1.2 mmol), and anhydrous 

sodium acetate (2.0 mmol) was refluxed in glacial acetic acid (5 mL) until reaction 

completion. The mixture was cooled at room temperature and the obtained precipitate 

was filtered off, washed with water and methanol.  

(EMAC 4011) 7-bromo-3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 565.46 g/ml; Mp 323-324°C 
1H NMR (500 MHz, DMSO-d6): δ 11.43 (s, 1H, -NH isatin), 8.96 (d, 1H, -CH aromatic, 

Jo=8), 7.97 (d, -1H, -CH5 thioph., J4-5=5), 7.73 (d, 1H, -CH3 thioph., J3-4=3), 7.55 (d, 1H, -CH 

aromatic, Jo=8), 7.27 (t, 1H, -CH4 thioph., J4-5=5; J3-4=3), 7.23 (d, 2H, -CH aromatic, Jo=8), 

7.02 (t, 1H, -CH aromatic,Jo1,2=8), 6.94 (d, 2H, -CH aromatic, Jo=8), 5.93 (dd, 1H, -CHX 

pyrazoline, JXA=3.5; JXM=11.5), 4.18 (dd, 1H, -CHM pyrazoline, JMX=11.5; JMA=18.5), 3.74 (s, 

3H, -OCH3), 3.54 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=3.5). 

(EMAC 4012) 5-chloro-3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 521.01 g/mol; Mp 307-309°C 
1H NMR (500 MHz, DMSO-d6): δ 11.29 (s, 1H, -NH isatin), 8.98 (s, 1H, -CH aromatic), 

7.97 (d, -1H, -CH5 thioph., J4-5=4.5), 7.74 (d, 1H, -CH3 thioph., J3-4=3), 7.41 (d, 1H, -CH 

aromatic, Jo=8), 7.27 (t, 1H, -CH4 thioph., J4-5=4.5; J3-4=3), 7.23 (d, 1H, -CH aromatic, 

Jo=8.5), 6.95-6.94 (m, 3H, -CH aromatic), 5.94 (dd, 1H, -CHX pyrazoline, JXA=3.5; JXM=11.5), 
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4.17 (dd, 1H, -CHM pyrazoline, JMX=11.5; JMA=18.5), 3.74 (s, 3H, -OCH3), 3.54 (dd, 1H, -CHA 

pyrazoline, JAM=18.5; JAX=3.5). 

(EMAC 4014) 5,7-dimethyl-3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Brown solid; MW 514.62 g/mol; Mp >350°C 
1H NMR (500 MHz, DMSO-d6): δ 11.05 (s, 1H, -NH isatin), 8.62 (s, 1H, -CH aromatic), 

7.96 (d, -1H, -CH5 thioph., J4-5=5), 7.71 (d, 1H, -CH3 thioph., J3-4=3), 7.26 (t, 1H, -CH4 

thioph., J4-5=5; J3-4=3), 7.23 (d, 1H, -CH aromatic, Jo=8.5), 7.01 (s, 1H, -CH aromatic), 6.94 

(d, 1H, -CH aromatic, Jo=8.55.94 (dd, 1H, -CHX pyrazoline, JXA=3.5; JXM=11.5), 4.17 (dd, 1H, 

-CHM pyrazoline, JMX=11.5; JMA=18.5), 3.74 (s, 3H, -OCH3), 3.54 (dd, 1H, -CHA pyrazoline, 

JAM=18.5;JAX=3.5),2.25 (s, 3H, -CH3), 2.20 (s, 3H, -CH3). 

(EMAC 4015) 5-fluoro-3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 504.56 g/mol; Mp 318-320°C 
1H NMR (500 MHz, DMSO-d6): δ 11.17 (s, 1H, -NH isatin), 8.74 (dd, 1H, -CH 

aromatic, Jm=2.5; JoH-F=10), 7.97 (d, 1H, -CH thioph., J4-5=4.5), 7.73 (d, 1H, -CH thioph., J3-

4=3), 7.27 (t, 1H, -CH thioph., J3-4=3; J4-5=4.5), 7.24 (d, 2H, -CH aromatic, Jo=8.5), 7.22-7.20 

(m, 1H, -CH aromatic), 6.95 (d, 2H, -CH aromatic, Jo=8.5), 6.93-6.91 (m, 1H, -CH aromatic), 

5.92 (dd, 1H, -CHX pyrazoline, JXA=3.5; JXM=11.5), 4.17 (dd, 1H, -CHM pyrazoline, JMX=11.5; 

JMA=18.5), 3.74 (s, 3H, -OCH3), 3.54 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=3.5). 

(EMAC 4016) 7-fluoro-3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange; MW 504.56 g/mol; Mp 299-300°C  
1H NMR (500 MHz, DMSO-d6): δ 11.43 (s, 1 H, -NH isatin), 8.96 (d, 1H, -CH aromatic, 

Jo=8), 7.97 (d, 1H, -CH thioph., J4-5=4.5), 7.73 (d, 1H, -CH thioph., J3-4=3), 7.55 (d, 1H, -CH 

aromatic, Jo=8), 7.27 (t, 1H, -CH thioph., J3-4=3; J4-5=4.5), 7.23 (d, 2H, -CH aromatic, Jo=8), 

7.02 (t, 1H, -CH aromatic, Jo=8), 6.95 (d, 2H, -CH aromatic, Jo=8), 6.02 (dd, 1H, -CHX 

pyrazoline, JAX=4; JMX=11), 4.32 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -

OCH3), 3.54 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4).  

(EMAC 4017) 5-iodo-3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 512.46 g/mol; Mp 307-308°C 
1H NMR (500 MHz, DMSO-d6): δ 11.27 (s, 1H, -NH isatin), 9.28 (s, 1H, -CH aromatic), 

7.97 (d, 1H, -CH thioph., J4-5=4.5), 7.73 (d, 1H, -CH thioph., J3-4=3), 7.67 (d, 1H, -CH 

aromatic, Jo=8), 7.27 (t, 1H, -CH thioph., J3-4=3; J4-5=4.5), 7.24 (d, 2H, -CH aromatic, Jo=8.5), 

6.95 (d, 2H, -CH aromatic, Jo=8.5), 6.79 (d, 1H, -CH aromatic, Jo=8), 5.93 (dd, 1H, -CHX 

pyrazoline, JXA=3.5; JXM=11.5), 4.17 (dd, 1H, -CHM pyrazoline, JMX=11.5; JMA=18.5), 3.74 (s, 

3H, -OCH3), 3.54 (dd, 1H, -CHA pyrazoline, JAM=18.5;JAX=3.5). 

(EMAC 4018) 5-methoxy-3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 
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Brown solid; MW 516.59 g/mol; Mp 283-284°C 
1H NMR (500 MHz, DMSO-d6): δ 10.95 (s, 1H, -NH isatin), 8.65 (d, 1H, -CH aromatic, 

Jm=2.5), 7.97 (d, 1H, -CH thioph., J4-5=4.5), 7.73 (d, 1H, -CH thioph., J3-4=3), 7.27(t, 1H, -CH 

thioph., J3-4=3; J4-5=4.5), 7.23 (d, 2H, -CH aromatic, Jo=8.5), 6.97 (m, 1H, -CH aromatic), 

6.95 (d, 2H, -CH aromatic, Jo=8.5), 6.84 (d, 1H, -CH aromatic, Jo=8), 5.91 (dd, 1H, -CHX 

pyrazoline, JXA=3.5; JXM=11.5), 4.17 (dd, 1H, -CHM pyrazoline, JMX=11.5; JMA=18.5), 3.74 (s, 

6H, -OCH3), 3.53 (dd, 1H, -CHA pyrazoline, JAM=18.5;JAX=3.5). 

(EMAC 4019) 5-methyl- 3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 500.59 g/mol; Mp 285-286°C 
1H NMR (500 MHz, DMSO-d6): δ 11.04 (s, 1H, -NH isatin), 8.76 (s, 1H,-CH isatin), 

7.96 (d, 1H,-CH5 thioph., J4-5=5), 7.72 (d, 1H, -CH3 thioph., J3-4=3.5), 7.26 (t, 1H, -CH4 

thioph., J4-3=3.5; J4-5=5), 7.23 (dd, 2H, -CH aromatic, Jo=8,5), 7.17 (d, 1H, -CH isatin, Jo=8), 

6.94 (d, 2H, -CH aromatic, Jo=8,5) 6.82 (d, 1H, -CH isatin, Jo=8), 5.92 (dd, 1H, -CHX 

pyrazoline, JAX=4; JMX=11), 4.16 (dd, 1H, -CHM pyrazoline, JMA=18.5; JMX=11),  3.74 (s, -3H, -

OCH3), 3.52 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4), 3.29 (s, 1H, -CH3).  

(EMAC 4020) 5-trifluoromethyl- 3-{2-[5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 554.56 g/mol; Mp 302-303°C 
1H NMR (500 MHz, DMSO-d6): δ 11.34 (s, 1H, -NH isatin), 8.96 (s, 1H,-CH aromatic), 

7.97 (d, 1H,-CH5 thioph., J4-5=5), 7.74 (d, 1H, -CH3 thioph., J3-4=3.5), 7.37 (t, 1H, -CH4 

thioph., J4-3=3.5; J4-5=5), 7.27-7.23 (m, 3H, -CH aromatic), 7.02 (d, 1H, -CH aromatic, 

Jo=8.5), 6.94 (d, 1H, -CH aromatic, Jo=8), 5.93 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.18 

(dd, 1H, -CHM pyrazoline, JMA=18.5; JMX=11), 3.74 (s, -3H, -OCH3), 3.54 (dd, 1H, -CHA 

pyrazoline, JAM=18.5; JAX=4). 

 

Series 3: Synthesis of 3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one (EMAC 4022-4031) 

 

Synthesis of 3-(4-fluorophenyl)-1-(naphtalen-2-yl)-2-propen-1-one 

An aqueous solution of NaOH 10% (1.2 mmol; 480 μL) was slowly added to a 

solution of 2-acetyl-naphtalene (1 mmol; 170 mg) in ethanol. The mixture was vigorously 

stirred, until a cloudy solution was obtained. Then, a solution in ethanol of 4-fluoro-

benzaldehyde (1.2 mmol; 149 mg) is added dropwise and a light yellow suspension is 

formed. The obtained solid was filtered, washed with water and ethanol to give a light 

yellow solid. This crude product was crystallized from ethanol. The whole reaction was 

carried out keeping the temperature around 0°C and its progression monitored with TLC, 

using  ethyl acetate/petrol ether 1:1 as eluent. 

Yellow solid; Yield 79%; MW 276.3 g/mol; Mp 135-137°C  
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1H NMR (500 MHz, chloroform-d): δ 8.55 (s, 1H, -CH aromatic), 8.12 (d, 2H, -CH 

aromatic, Jo=8.5), 8.03 (d, 1H, -CH aromatic, Jo=8), 7.97 (d, 1H, -CH aromatic, Jo=8.5), 7.93 

(d, 1H, -CH aromatic, Jo=8), 7.87 (d, 1H, -CH propen, JE=16), 7.71 (dd, 2H, -CH aromatic, JH-

H=8.5; JH-F=6), 7.66-7.58 (m, 3H, -CH aromatic and propen, J=nd), 7.17-7.14 (m, 2H, -CH 

aromatic).  

 

Synthesis of 5-(4-fluorophenyl)-3-(naphthalen-2-yl)-4,5-dihydropyrazole-1-

carbothioamide 

A freshly prepared solution of alcoholic KOH 5% (1.2 mmol; 1.3 mL)  was added 

dropwise to a mixture of 3-(4-fluoro-phenyl)-1-(naphtalen-2-yl)-2-propenone (1 mmol, 

288 mg) and thiosemicarbazide (1.2 mmol; 110 mg) in ethanol. This solution was refluxed 

until reaction completion, checking the progression with TLC. This solution was cooled at 

room temperature, obtaining a yellow suspension. The solid was filtered out, washed 

with water and crystallized from ethanol.  

Yellow solid; Yield 80%; MW 349.42  g/mol; Mp 243-245°C  
1H NMR (500 MHz, chloroform-d): δ 8.03 (d, 1H, -CH aromatic, Jo=8.5), 7.99 (s, 1H, -

CH aromatic), 7.88 (m, 3H, -CH aromatic), 7.53 (m, 2H, -CH aromatic), 7.27 (dd, 2H, -CH 

aromatic, JH-H=8.5; JH-F=6), 7.16 (bs, 2H, -NH2 thiocarbamoyl), 7.04 (t, 2H, -CH aromatic, JH-

H=8.5; JH-F=6), 6.10 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 3.99 (dd, 1H, -CHM pyrazoline, 

JMA=18.5; JMX=11), 3.35 (dd, 1H, -CHA pyrazoline, JAM=18.5; JAX=4). 

  

Synthesis of 3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-dihydropyrazol-1-yl]}-

4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

A mixture of 5-(4-fluorophenyl)-3-(naphthalen-2-yl)-1- thiocarbamoyl-2-pyrazoline 

(1.0 mmol),  ethyl bromoacetate (1.0 mmol), appropriate isatin (1.2 mmol), and 

anhydrous sodium acetate (2.0 mmol) was refluxed in glacial acetic acid (5 mL) until 

reaction completion. The mixture was cooled at room temperature and the obtained 

precipitate was filtered off, washed with water and methanol.  

(EMAC 4022) 7-bromo-dichloro-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange; MW 597.46 g/mol; Mp nd 
1H NMR (500 MHz, DMSO-d6): δ 11.45 (s, H, -NH isatin), 8.96 (d, 1H, -CH aromatic, 

Jo=8), 8.43 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.10-8.02 (m, 3H, -CH 

aromatic), 7.68-7.62 (m, 2H, -CH aromatic), 7.56 (d, 1H, -CH aromatic, Jo=8), 7.42 (dd, 2H, 

-CH aromatic, JmH-F=5.5; JoH-H=8.5), 7.24 (t, 2H, -CH aromatic, Jo=8.5), 7.03 (t, 1H, -CH 

aromatic, Jo=8), 6.06 (dd, , 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.33 (dd, 1H, -CHM 

pyrazoline, JMA=18; JMX=11), 3.69 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4).  

(EMAC 4023) 5-chloro-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 553.01 g/mol; Mp 346-348°C 
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1H NMR (500 MHz, DMSO-d6): δ 11.31 (s, 1H, -NH isatin), 8.99 (s, 1H, -CH aromatic), 

8.44 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.10-8.03 (m, 3H, -CH 

aromatic), 7.68-7.62 (m, 2H, -CH aromatic), 7.43-7.41 (m, 3H, -CH aromatic), 7.24 (t, 2H, -

CH aromatic, Jo=8.5), 6.96 (d, 1H, -CH aromatic, Jo=8), 6.07 (dd, , 1H, -CHX pyrazoline, 

JAX=4; JMX=11), 4.33 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.69 (dd, 1H, -CHA 

pyrazoline, JAM=18; JAX=4).  

(EMAC 4024) 4,7-dichloro-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange solid; MW 587.45 g/mol; Mp 280-282°C  
1H NMR (500 MHz, DMSO-d6): δ 11.70 (s, 1 H, -NH isatin), 8.42 (s, 1H, -CH aromatic), 

8.11 (dd, 1H, -CH aromatic, Jo=8.5; Jm=1.5), 8.09-8.06 (m, 2H, -CH aromatic), 8.03 (d, 1H, -

CH aromatic, Jo=8.5), 7.67-7.61 (m, 2H, -CH aromatic), 7.45-7.38 (m, 3H, -CH aromatic), 

7.25-7.22 (m, 2H, -CH  pyrazoline, JAX=4; JMX=11), 4.32 (dd, 1H, -CHM pyrazoline, JMA=18; 

JMX=11), 3.68 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4). 

(EMAC 4025) 5,7-dimethyl-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 546.61 g/mol; Mp 355-356°C 
1H NMR (500 MHz, DMSO-d6): δ 11.08 (s, 1 H, -NH isatin), 8.63 (s, 1H,-CH aromatic), 

8.42 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.02 (m, 3H, -CH 

aromatic), 7.68-7.62 (m, 2H, -CH aromatic), 7.41(dd, 2H, -CH aromatic, JoH-H=8; JoH-F=6), 

7.23 (t, 2H, -CH aromatic, Jo=8), 7.02 (s, 1H, -CH aromatic), ), 6.06 (dd, 1H, -CHX pyrazoline, 

JAX=4; JMX=11), 4.32 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.68 (dd, 1H, -CHA 

pyrazoline, JAM=18; JAX=4), 2.26 (s, 3H, -CH3), 2.21 (s, 3H, -CH3).  

(EMAC 4026) 5-fluoro-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 536.55 g/mol; Mp 315-317°C 
1H NMR (500 MHz, DMSO-d6): δ 11.20 (s, 1 H, -NH isatin), 8.74 (dd, 1H, -CH 

aromatic, Jo=8.5; Jm=2.5), 8.43 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 

8.09-8.02 (m, 3H, -CH aromatic), 7.68-7.61 (m, 2H, -CH aromatic), 7.42 (dd, 2H, -CH 

aromatic, JoH-H=8; JoH-F=6), 7.25-7.20 (m, 3H, -CH aromatic), 6.94 (dd, 1H, -CH aromatic, JoH-

H=8; JoH-F=6), 6.06 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.32 (dd, 1H, -CHM pyrazoline, 

JMA=18; JMX=11), 3.68 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4).  

(EMAC 4027) 7-fluoro-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange solid; MW 536.55 g/mol; Mp 327-329°C 
1H NMR (500 MHz, DMSO-d6): δ 11.69 (s, 1 H, -NH isatin), 8.78 (d, 1H, -CH aromatic, 

Jo=8), 8.42 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.02 (m, 3H, -CH 

aromatic), 7.68-7.61 (m, 2H, -CH aromatic), 7.41 (dd, 2H, -CH aromatic, JoH-H=8; JoH-F=6), 

7.30 (t, 1H, -CH aromatic, Jo1,2=8), 7.23 (t, 2H, -CH aromatic, Jo=8), 7.09-7.05 (m, 1H, -CH 
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aromatic), 6.06 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.32 (dd, 1H, -CHM pyrazoline, 

JMA=18; JMX=11), 3.68 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4).  

(EMAC 4029) 5-methoxy-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Brown solid; MW 548.59 g/mol; Mp nd 
1H NMR (500 MHz, DMSO-d6): δ 10.99 (s, 1H, -NH isatin), 8.66 (d, 1H, -CH aromatic, 

Jm=2.5) , 8.43 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.10-8.02 (m, 3H, -

CH aromatic), 7.68-7.61 (m, 2H, -CH aromatic), 7.43-7.40 (m, 2H, -CH aromatic), 7.23 (t, 

2H, -CH aromatic, Jo=8.5), 6.97 (dd, 1H, -CH aromatic, Jm=2.5; Jo=8), 6.85 (d, 1H, -CH 

aromatic, Jo=8), 6.05 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.32 (dd, 1H, -CHM 

pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -OCH3), 3.68 (dd, 1H, -CHA pyrazoline, JAM=18; 

JAX=4). 

(EMAC 4030) 5-methyl-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 
1H NMR (500 MHz, DMSO-d6): δ 11.06 (s, 1H, -NH isatin), 8.77 (s, 1H, -CH aromatic), 

8.42 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.02 (m, 3H, -CH 

aromatic), 7.68-7.61 (m, 2H, -CH aromatic), 7.41 (dd, 2H, -CH aromatic, JoH-H=8; JoH-F=6), 

7.23 (t, 2H, -CH aromatic, Jo=8), 7.18 (d, 1H, -CH aromatic, Jo=8), 6.83 (d, 1H, -CH aromatic, 

Jo=8), 6.05 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.31 (dd, 1H, -CHM pyrazoline, JMA=18; 

JMX=11), 3.68 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4), 2.29 (s, 3H, -CH3). 

Orange solid; MW  532.59 g/mol; Mp 310-311°C 

(EMAC 4031) 5-trifluoromethyl-3-{2-[5-(4-fluorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 586.56 g/mol; Mp 318-320°C 
1H NMR (500 MHz, DMSO-d6): δ 11.36 (s, 1H, -NH isatin), 8.97 (s, 1H, -CH aromatic), 

8.43 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.02 (m, 3H, -CH 

aromatic), 7.69-7.61 (m, 2H, -CH aromatic), 7.42 (dd, 2H, -CH aromatic, JoH-H=8; JoH-F=6), 

7.38 (d, 1H, -CH aromatic, Jo=8.5), 7.23 7.23 (t, 2H, -CH aromatic, Jo=8.5), 7.02 (d, 1H, -CH 

aromatic, Jo=8.5), 6.06 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.32 (dd, 1H, -CHM 

pyrazoline, JMA=18; JMX=11), 3.69 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4).  

 

Series 4: Synthesis of 3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one (EMAC 4033-4042) 

 

Synthesis of 3-(4-methoxy-phenyl)-1-(4-biphenyl)-2-propen-1-one 

An aqueous solution of NaOH 10% (1.2 mmol; 480 μL) was slowly added to a 

solution of 4-acetyl-biphenyl (1 mmol; 196 mg)  in ethanol. The mixture was vigorously 

stirred, until to obtain a cloudy solution. Then, a solution in ethanol of 4-methoxy-

benzaldehyde (1.2 mmol; 163 mg) is added dropwise, obtaining a light yellow suspension. 

The obtained solid was filtered, washed with water and ethanol to give a light yellow 
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solid. This crude product was crystallized from ethanol. The whole reaction was carried 

out keeping the temperature around 0°C and its progression monitored with TLC, using  

ethyl acetate/petrol ether 1:1 as eluent. 

Light yellow solid; Yield 80%; MW 314.38 g/mol; Mp 105°C  
1H NMR (500 MHz, chloroform-d): δ 8.11 (d, 2H, -CH aromatic, Jo=8), 7.84 (d, 1H, -

CH propen, JE=16), 7.74 (d, 2H, -CH aromatic, Jo=8), 7.67 (d, 2H, -CH aromatic, Jo=8), 7.64 

(d, 2H, -CH aromatic, Jo=8), 7.52-7.47 (m, 3H, -CH aromatic and –CH propen, Jaromatic=nd; 

JE=16), 7.42 (t, 2H, -CH aromatic, Jo=8), 6.97 (d, 2H, -CH aromatic, Jo=8). 

 

Synthesis of 5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-dihydropyrazole-1-

carbothioamide 

A freshly prepared solution of alcoholic KOH 5% (1.2 mmol; 1.3 mL)  was added 

dropwise to a mixture of 3-(4-methoxy-phenyl)-1-(4-biphenyl)-2-propenone (1 mmol, 314 

mg) and thiosemicarbazide (1.2 mmol; 110 mg) in ethanol. This solution was refluxed until 

reaction completion, checking the progression with TLC. This solution was cooled at room 

temperature and a yellow suspension is formed. The solid was filtered out, washed with 

water and crystallized from ethanol.  

Light yellow solid; Yield 70%; MW 387.5 g/mol; Mp 130-132°C  
1H NMR (500 MHz, chloroform-d): δ 7.83 (d, 2H, -CH aromatic, Jo=8), 7.69 (d, 2H, -

CH aromatic, Jo=8), 7.61 (d, 2H, -CH aromatic, Jo=8), 7.45 (d, 2H, -CH aromatic, Jo=8), 7.41 

(t, 1H, -CH aromatic, Jo=8), 7.21 (d, 2H, -CH aromatic, Jo=8), 7.12 (bs, 2H, -NH2 

thiocarbamoil); 6.89 (d, 2H, -CH aromatic, Jo=8),  6.03 (dd, 1H, -CHx pyrazoline, JAX=4; 

JMX=11), 3.87 (dd, 1H -CHM pyrazoline, JMA=18.5; JMX=11), 3.80 (s, 3H, -OCH3), 3.26 (dd, 1H, 

-CHA pyrazoline, JAM=18.5; JAX=4). 

 

Synthesis of 3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-dihydropyrazol-1-yl]}-4-

oxothiazol-5(4H)-ylidene)-indolin-2-one 

A mixture of 5-(4-methoxyphenyl)-3-(4-biphenyl)-1-thiocarbamoyl-2-pyrazoline (1.0 

mmol), ethyl bromoacetate (1.0 mmol), appropriate isatin (1.2 mmol), and anhydrous 

sodium acetate (2.0 mmol) was refluxed  in glacial acetic acid (5 mL) until reaction 

completion. The mixture was cooled at room temperature and the obtained precipitate 

was filtered off, washed with water and methanol. 

(EMAC 4033) 7-bromo-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange solid; MW 635.53 g/mol; Mp 331-334°C 
1H NMR (500 MHz, DMSO-d6): δ 11.43 (s, 1H, -NH isatin), 8.97 (d, 1H, -CH aromatic, 

Jo=8), 8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -

CH aromatic, Jo=8.5), 7.55 (d, 1H, -CH aromatic, Jo=8), 7.53 (d, 2H, -CH aromatic, Jo=8.5), 

7.45 (t, 1H, -CH aromatic, Jo1,2=8.5), 7.26 (d, 2H, -CH aromatic, Jo=8.5), 7.02 (t, 1H, -CH 

aromatic, Jo1,2=8), 6.95 (d, 2H, -CH aromatic, Jo=8.5), 5.95 (dd, 1H, -CHX pyrazoline, JAX=4; 
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JMX=11), 4.21 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -OCH3), 3.57 (dd, 1H, -

CHA pyrazoline, JAM=18; JAX=4).  

(EMAC 4034) 5-chloro-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 591.08 g/mol; Mp 340-342°C 
1H NMR (500 MHz, DMSO-d6): δ 11.28 (s, 1H, -NH isatin), 8.99 (s, 1H, -CH aromatic), 

8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -CH 

aromatic, Jo=8.5), 7.53 (t, 2H, -CH aromatic, Jo1,2=8.5), 7.46-7.40 (m, 2H, -CH aromatic), 

7.27 (d, 2H, -CH aromatic, Jo=8.5), 6.95 (d, 3H, -CH aromatic, Jo=8.5), 5.95 (dd, 1H, -CHX 

pyrazoline, JAX=4; JMX=11), 4.21 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.75 (s, 3H, -

OCH3), 3.57 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4).  

(EMAC 4037) 5-fluoro-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 574.62 g/mol; Mp nd 
1H NMR (500 MHz, DMSO-d6): δ 11.17 (s, 1H, -NH isatin), 8.75 (d, 1H, -CH aromatic, 

Jo=9), 8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -

CH aromatic, Jo=8.5), 7.53 (t, 2H, -CH aromatic, Jo1,2=8.5), 7.44 (t, 1H, -CH aromatic, 

Jo1,2=8.5), 7.27 (d, 2H, -CH aromatic, Jo=8.5), 7.22 (t, 1H, -CH aromatic, Jo1,2=8.5), 6.96-6.91 

(m, 3H, -CH aromatic), 5.95 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.21 (dd, 1H, -CHM 

pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -OCH3), 3.57 (dd, 1H, -CHA pyrazoline, JAM=18; 

JAX=4). 

(EMAC 4038) 7-fluoro-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; Mw 574.62 g/mol; Mp 311-313°C 
1H NMR (500 MHz, DMSO-d6): δ 11.67 (s, 1H, -NH isatin), 8.79 (d, 1H, -CH aromatic, 

Jo=8), 8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -

CH aromatic, Jo=8.5), 7.53 (t, 2H, -CH aromatic, Jo1,2=8.5), 7.45 (t, 1H, -CH aromatic, 

Jo1,2=8.5), 7.32-7.26 (m, 3H, -CH aromatic), 7.09-7.05 (m, 1H,-CH aromatic), 6.95 (d, 2H, -

CH aromatic, Jo=8.5), 5.95 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.21 (dd, 1H, -CHM 

pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -OCH3), 3.57 (dd, 1H, -CHA pyrazoline, JAM=18; 

JAX=4).  

(EMAC 4039) 5-iodo-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-dihydropyrazol-

1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 682.53 g/mol; Mp nd 
1H NMR (500 MHz, DMSO-d6): δ 11.27 (s, 1H, -NH isatin), 9.29 (s, 1H, -CH aromatic), 

8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -CH 

aromatic, Jo=8.5), 7.68 (d, 1H, -CH aromatic, Jo=8.5), 7.53 (t, 2H, -CH aromatic, Jo1,2=8.5), 

7.45 (t, 1H, -CH aromatic, Jo1,2=8.5), 7.27 (d, 2H, -CH aromatic, Jo=8.5), 6.95 (d, 2H, -CH 

aromatic, Jo=8.5), 6.79 (d, 1H, -CH aromatic, , Jo=8.5), 5.95 (dd, 1H, -CHX pyrazoline, JAX=4; 
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JMX=11), 4.21 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -OCH3), 3.57 (dd, 1H, -

CHA pyrazoline, JAM=18; JAX=4). 

(EMAC 4040) 5-methoxy-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 586.66 g/mol; Mp 322-323°C 
1H NMR (500 MHz, DMSO-d6): δ 10.96 (s, 1H, -NH isatin), 8.66 (d, 1H, -CH aromatic, 

Jm=2.5), 8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -

CH aromatic, Jo=8.5), 7.53 (d, 2H, -CH aromatic, Jo=8.5), 7.45 (t, 1H, -CH aromatic, 

Jo1,2=8.5), 7.26 (d, 2H, -CH aromatic, Jo=8.5), 6.98-6.94 (m, 3H, -CH aromatic), 6.84 (d, 1H, -

CH aromatic, Jo=8.5), 5.94 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.21 (dd, 1H, -CHM 

pyrazoline, JMA=18; JMX=11), 3.75 (s, 6H, -OCH3), 3.57 (dd, 1H, -CHA pyrazoline, JAM=18; 

JAX=4). 

(EMAC 4041) 5-methyl-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 570.66 g/mol; Mp 336-338°C 
1H NMR (500 MHz, DMSO-d6): δ 11.04 (s, 1H, -NH isatin), 8.77 (s, 1H, -CH aromatic), 

8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -CH 

aromatic, Jo=8.5), 7.53 (d, 2H, -CH aromatic, Jo=8.5), 7.44 (t, 1H, -CH aromatic, Jo1,2=8.5), 

7.26 (d, 2H, -CH aromatic, Jo=8.5), 7.18 (d, 1H, -CH aromatic, Jo=8.5), 6.95 (d, 2H, -CH 

aromatic, Jo=8.5), 6.83 (d, 1H, -CH aromatic, Jo=8.5), 5.94 (dd, 1H, -CHX pyrazoline, JAX=4; 

JMX=11), 4.21 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -OCH3), 3.57 (dd, 1H, -

CHA pyrazoline, JAM=18; JAX=4), 2.29 (s, 3H, -CH3). 

(EMAC 4042) 5-trifluoromethyl-3-{2-[5-(4-methoxyphenyl)-3-(4-biphenyl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 624.14 g/mol; Mp 343-344°C 
1H NMR (500 MHz, DMSO-d6): δ 11.34 (s, 1H, -NH isatin), 8.98 (s, 1H, -CH aromatic), 

8.03 (d, 2H, -CH aromatic, Jo=8.5), 7.88 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 2H, -CH 

aromatic, Jo=8.5), 7.53 (d, 2H, -CH aromatic, Jo=8.5), 7.45 (t, 1H, -CH aromatic, Jo1,2=8.5), 

7.38 (d, 2H, -CH aromatic, Jo=8.5), 7.27 (d, 1H, -CH aromatic, Jo=8.5), 7.02 (d, 2H, -CH 

aromatic, Jo=8.5), 6.95 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.22 (dd, 1H, -CHM 

pyrazoline, JMA=18; JMX=11), 3.75 (s, 3H, -OCH3), 3.58 (dd, 1H, -CHA pyrazoline, JAM=18; 

JAX=4).  

 

Series 5: Synthesis of 3-{2-[5-(4-chlorophenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one (EMAC 4066-4075) 

 

Synthesis of 3-(4-chlorophenyl)-1-(naphtalen-2-yl)-2-propen-1-one 

An aqueous solution of NaOH 10% (1.2 mmol; 480 μL) was slowly added to a 

solution of 2-acetyl-naphtalene (1 mmol; 170 mg)  in ethanol. The mixture was vigorously 

stirred, until to obtain a cloudy solution. Then, a solution in ethanol of 4-methoxy-
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benzaldehyde (1.2 mmol; 163 mg) is added dropwise and a light yellow suspension is 

formed. The obtained solid was filtered, washed with water and ethanol to give a light 

yellow solid. This crude product was crystallized from ethanol. The whole reaction was 

carried out keeping the temperature around 0°C and its progression monitored with TLC, 

using  ethyl acetate/petroleum ether 1:1 as eluent. 

Light yellow solid; Yield 63%; MW 292.76 g/mol; Mp 147-148 °C  
1H NMR (500 MHz, chloroform-d): δ 8.56 (s, 1H, -CH aromatic), 8.12 (d, 1H, -CH 

aromatic, Jo=8.5), 8.03 (d, 1H, -CH aromatic, Jo=8.5), 7.97 (d, 1H, -CH aromatic, Jo=8.5), 

7.93 (d, 1H, -CH aromatic, Jo=8.5), 7.85 (d, 1H, -CH propen, JE=15.5), 7.69 (d, 1H, -CH 

propen, JE=15.5), 7.66-7.59 (m, 4H, -CH aromatic), 7.44 (dd, 2H, -CH aromatic, Jo=8.5; 

Jm=2). 

 

Synthesis of 5-(4-chlorophenyl)-3-(naphthalen-2-yl)-4,5-dihydropyrazole-1-

carbothioamide 

A freshly prepared solution of alcoholic KOH 5% (1.2 mmol; 1.3 mL)  was added 

dropwise to a mixture of 3-(4-chloro-phenyl)-1-(naphtalen-2-yl)-2-propenone (1 mmol,  

293 mg) and thiosemicarbazide (1.2 mmol; 110 mg) in ethanol. This solution was refluxed 

until reaction completion, checking the progression with TLC. This solution was cooled at 

room temperature, obtaining a yellow suspension. The solid was filtered out, washed 

with water and crystallized from ethanol.  

Yellow solid; Yield 81%; MW 365.88 g/mol; Mp 203-204°C  
1H NMR (500 MHz, chloroform-d): δ 8.03 (d, 1H, -CH aromatic, Jo=8.5), 7.99 (s, 1H, -

CH aromatic), 7.92-7.86 (m, 3H, -CH aromatic), 7.60-7.54 (m, 2H, -CH aromatic), 7.33 (d, 

2H, -CH aromatic, Jo=8.5), 7.23 (d, 2H, -CH aromatic, Jo=8.5), 6.09 (dd, 1H, -CHX pyrazoline, 

JAX=4; JMX=11), 4.00 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.35 (dd, 1H, -CHA 

pyrazoline, JAM=18; JAX=4). 

 

Synthesis of 3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-dihydropyrazol-1-

yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one  

A mixture of 5-(4-chlorophenyl)-3-(naphthalen-2-yl)-1- thiocarbamoyl-2-pyrazoline 

(1.0 mmol),  ethyl bromoacetate (1.0 mmol), appropriate isatin (1.2 mmol), and 

anhydrous sodium acetate (2.0 mmol) was refluxed in glacial acetic acid (5 mL) until 

reaction completion. The mixture was cooled at room temperature and the obtained 

precipitate was filtered off, washed with water and methanol. 

(EMAC 4066) 7-bromo-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Light orange solid; MW 613.91 g/mol; Mp 347-348°C  
1H NMR (500 MHz, DMSO-d6): δ 11.45 (s, 1H, -NH isatin), 8.96 (d, 1H, -CH aromatic, 

Jo=8), 8.42 (s, 1H, -CH aromatic), 8.12 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.02 (m, 3H, -CH 

aromatic), 7.68-7.61 (m, 2H, -CH aromatic), 7.56 (d, 1H, -CH aromatic, Jo=8), 7.47 (d, 2H, -
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CH aromatic, Jo=8), 7.39 (d, 2H, -CH aromatic, Jo=8), 7.03 (t, 1H, -CH aromatic, Jo1=Jo2=8), 

6.06 (dd, 1H, -CHX pyrazoline, JXA=4; JXM=11), 4.31 (dd, 1H, -CHM pyrazoline, JMA=18; 

JMX=11), 3.68 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4). 

(EMAC 4067) 5-chloro-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 569.49 g/mol; Mp 359-360°C  
1H NMR (500 MHz, DMSO-d6): δ 11.31 (s, 1H, -NH isatin), 8.97 (s, 1H, -CH aromatic), 

8.41 (s, 1H, -CH aromatic), 8.11 (d, 1H, -CH aromatic, Jo=8.5), 8.08-8.01 (m, 3H, -CH 

aromatic), 7.67-7.61 (m, 2H, -CH aromatic), 7.47 (d, 2H, -CH aromatic, Jo=8), 7.41-7.39 (m, 

3H, -CH aromatic), 6.97 (d, 1H, -CH aromatic, Jo=8), 6.06 (dd, 1H, -CHX pyrazoline, JXA=4; 

JXM=11), 4.32 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.69 (dd, 1H, -CHA pyrazoline, 

JAM=18; JAX=4). 

(EMAC 4069) 5,7-dimethyl-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 563.07 g/mol; Mp 365-366°C 
1H NMR (500 MHz, DMSO-d6): δ 11.08 (s, 1H, -NH isatin), 8.63 (s, 1H, -CH aromatic), 

8.41 (s, 1H, -CH aromatic), 8.13 (d, 1H, -CH aromatic Jo=8.5), 8.09-8.02 (m, 3H, -CH 

aromatic), 7.68-7.61 (m, 2H, -CH aromatic), 7.47 (d, 2H, -CH aromatic, Jo=8), 7.38 (d, 2H, -

CH aromatic, Jo=8), 7.02 (s, 1H, -CH aromatic), 6.06 (dd, 1H, -CHX pyrazoline, JXA=4; 

JXM=11), 4.31 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.68 (dd, 1H, .CHA pyrazoline, 

JAM=18; JAX=4), 2.26 (s, 3H, -CH3), 2.21 (s, 3H, -CH3). 

(EMAC 4070) 5-fluoro-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 553.01 g/mol; Mp 367-368°C 
1H NMR (500 MHz, DMSO-d6): δ 11.20 (s, 1H, -NH isatin), 8.74 (dd, 1H, -CH isatin, 

JoH-F=10.5; JmH-H=2.5), 8.41 (s, 1H, -CH aromatic), 8.11 (d, 1H, -CH aromatic, Jo=8.5), 8.09-

8.02 (m, 3H, -CH aromatic), 7.67-7.61 (m, 2H, -CH aromatic), 7.47 (d, 2H, -CH aromatic, 

Jo=8.5), 7.39 (d, 2H, -CH aromatic, Jo=8.5), 7.22 (td, 1H, -CH isatin, JoH-H=8.5; JoH-F=10.5; JmH-

H=2.5), 6.93 (dd, 1H, -CH isatin, JoH-H=8.5; JmH-F=5), 6.05 (dd, 1H, -CHX pyrazoline, JXA=4; 

JXM=11), 4.33 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.70 (dd, 1H, .CHA pyrazoline, 

JAM=18; JAX=4). 

(EMAC 4071) 7-fluoro-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 553.01 g/mol; Mp 336-338°C  
1HNMR (500 MHz, DMSO-d6): δ 11.69 (s, 1 H, -NH isatin), 8.77 (d, 1H, -CH isatin, 

Jo=8), 8.40 (s, 1H, -CH aromatic), 8.11 (d, 1H, -CH aromatic, Jo=8.5), 8.09 (d, 1H, -CH 

aromatic, Jo=8.5), 8.07 (d, 1H, -CH aromatic, Jo=8.5), 8.05 (d, 1H, -CH aromatic, Jo=8.5), 

8.02 (d, 1H, -CH aromatic, Jo=8.5), 7.67-7.60 (m, 2H, -CH aromatic), 7.47 (d, 2H, -CH 

aromatic, Jo=8.5), 7.39 (d, 2H, -CH aromatic, Jo=8.5), 7.29 (t, 1H, -CH isatin, JoH-H=8.5), 7.06 
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(dt, 1H, -CH isatin, JoH-H=8.5; JmH-F=5.5), 6.05 (dd, 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.31 

(dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.67 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4).   

(EMAC 4072) 5-iodo-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Orange solid; MW 660.91 g/mol; Mp 338-340°C 
1HNMR (500 MHz, DMSO-d6): δ 11.92 (s, 1H, -N=C-OH isatin, enolic tautomer), 

11.29 (s, 1H, -NH isatin), 9.27 (s, 1H, -CH isatin), 8.41 (s, 1H, aromatic), 8.11 (d, 1H, -CH 

aromatic, Jo=8.5), 8.09-8.05 (m, 2H, -CH aromatic), 8.02 (d, 1H, -CH aromatic, Jo=8.5), 

7.67-7.61 (m, 3H, -CH aromatic and -CH isatin), 7.47 (d, 2H, -CH aromatic, Jo=8.5), 7.39 (d, 

2H, -CH aromatic, Jo=8.5), 6.79 (d, 1H, -CH isatin, Jo=8), 6.06 (dd, , 1H, -CHX pyrazoline, 

JAX=4; JMX=11), 4.32 (dd, 1H, -CHM pyrazoline, JMA=18; JMX=11), 3.69 (dd, 1H, -CHA 

pyrazoline, JAM=18; JAX=4).  

(EMAC 4073) 5-methoxy-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Brown solid; MW 565.04 g/mol; Mp 313-314°C 
1HNMR (500 MHz, DMSO-d6): δ 10.97 (s, 1H, -NH isatin), 8.65 (s, 1H, -CH isatin), 

8.41 (s, 1H, aromatic), 8.11 (d, 1H, -CH aromatic, Jo=8.5), 8.09-8.05 (m, 2H, -CH aromatic), 

8.02 (d, 1H, -CH aromatic, Jo=8.5), 7.67-7.60 (m, 2H, -CH aromatic), 7.47 (d, 2H, -CH 

aromatic, Jo=8.5), 7.39 (d, 2H, -CH aromatic, Jo=8.5), 6.98 (dd, 1H, -CH isatin, Jo=8.5; Jm=2) 

,6.84 (d, 1H, -CH isatin, Jo=8.5), 6.04 (dd, , 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.31 (dd, 

1H, -CHM pyrazoline, JMA=18; JMX=11), 3.74 (s, 3H, -OCH3), 3.68 (dd, 1H, -CHA pyrazoline, 

JAM=18; JAX=4). 

(EMAC 4074) 5-methyl-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 549.04 g/mol; Mp 348°C 
1HNMR (500 MHz, DMSO-d6): δ 11.05 (s, 1H, -NH isatin), 8.75 (s, 1H, -CH isatin), 

8.40 (s, 1H, aromatic), 8.11 (d, 1H, -CH aromatic, Jo=8.5), 8.08-8.04 (m, 2H, -CH aromatic), 

8.02 (d, 1H, -CH aromatic, Jo=8.5), 7.67-7.60 (m, 2H, -CH aromatic), 7.47 (d, 2H, -CH 

aromatic, Jo=8.5), 7.39 (d, 2H, -CH aromatic, Jo=8.5), 7.16 (d, 1H, -CH isatin, Jo=8.5) ,6.82 

(d, 1H, -CH isatin, Jo=8.5), 6.04 (dd, , 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.30 (dd, 1H, -

CHM pyrazoline, JMA=18; JMX=11), 3.67 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4), 3.31 (s, 3H, 

-CH3). 

(EMAC 4075) 5-trifluoromethyl-3-{2-[5-(4-chloroyphenyl)-3-(naphtalen-2-yl)-4,5-

dihydropyrazol-1-yl]}-4-oxothiazol-5(4H)-ylidene)-indolin-2-one 

Red solid; MW 603.01 g/mol; Mp 328-330°C 
1HNMR (500 MHz, DMSO-d6): δ 11.92 (s, 1H, -N=C-OH isatin, enolic tautomer), 

11.36 (s, 1H, -NH isatin), 8.96 (s, 1H, -CH isatin), 8.42 (s, 1H, aromatic), 8.12 (d, 1H, -CH 

aromatic, Jo=8.5), 8.09-8.05 (m, 2H, -CH aromatic), 8.02 (d, 1H, -CH aromatic, Jo=8.5), 

7.67-7.61 (m, 3H, -CH aromatic and -CH isatin), 7.47 (d, 2H, -CH aromatic, Jo=8.5), 7.39 (d, 

2H, -CH aromatic, Jo=8.5), 7.38 (d, 1H, -CH isatin, Jo=8.5), 7.02 (d, 1H, -CH isatin, Jo=8.5), 
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6.06 (dd, , 1H, -CHX pyrazoline, JAX=4; JMX=11), 4.32 (dd, 1H, -CHM pyrazoline, JMA=18; 

JMX=11), 3.69 (dd, 1H, -CHA pyrazoline, JAM=18; JAX=4). 

 

1.4.3 Biological assays 

 

Biological assays have been performed in the National Cancer Institute on the bases 

of specific protocols. NCI-60 screening is carried out in two parts 

(dtp.cancer.gov/discovery_development/nci-60): at first a single concentration is tested in 

all 60 cell lines at a single dose of 10-5 M or 15 µg/mL. If the results obtained meet the 

established criteria, the compound is tested again in all 60 cell lines in 5  10-fold dilutions. 

In this screening the highest dose is 10-4 M or 150 µg/mL.  

The human tumor cell lines of the cancer screening panel are grown in RPMI 1640 

medium containing 5% fetal bovine serum and 2 mM L-glutamine. For a typical 

experiment, cells are inoculated into 96 well microtiter plates in 100 μL at plating 

densities ranging from 5,000 to 40,000 cells/well, depending on the cell line . After cell 

inoculation, the microtiter plates are incubated at 37°C, 5% CO2, 95% air and 100% 

relative humidity for 24 h prior to add the tested compound. After 24 h, two plates of 

each cell line are fixed in situ with TCA, to represent a measurement of the cell population 

for each cell line at the time of drug addiction (Tz). Experimental compounds are 

solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration 

and stored frozen prior to use. At the time of drug addition, an aliquot of frozen 

concentrate is thawed and diluted to twice the desired final maximum test concentration 

with complete medium containing 50 μg/mL gentamicin. Additional four, 10-fold or ½ log 

serial dilutions are made to provide a total of five drug concentrations plus control. 

Aliquots of 100 μL of these different drug dilutions are added to the appropriate 

microtiter wells already containing 100 μL of medium, resulting in the required final drug 

concentrations. Following drug addition, the plates are incubated for an additional 48 h at 

37°C, 5% CO2, 95% air, and 100% relative humidity. For adherent cells, the assay is 

terminated by the addition of cold TCA. Cells are fixed in situ by the gentle addition of 50 

μL of cold 50% (w/v) TCA (final concentration, 10% TCA) and incubated for 60 minutes at 

4°C. The supernatant is discarded, and the plates are washed five times with tap water 

and air dried. Sulforhodamine B (SRB) solution (100 μL) at 0.4% (w/v) in 1% acetic acid is 

added to each well, and plates are incubated for 10 minutes at room temperature. After 

staining, unbound dye is removed by washing five times with 1% acetic acid and the 

plates are air dried. Bound stain is subsequently solubilized with 10 mM trizma base, and 

the absorbance is read on an automated plate reader at a wavelength of 515 nm. For 

suspension cells, the methodology is the same except that the assay is terminated by 

fixing settled cells at the bottom of the wells by gently adding 50 μL of 80% TCA (final 

concentration, 16% TCA). Using the seven absorbance measurements [time zero, (Tz), 

control growth, (C), and test growth in the presence of drug at the five concentration 
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levels (Ti)], the percentage growth is calculated at each of the drug concentrations levels. 

Percentage growth inhibition is calculated as: 

[(Ti-Tz)/(C-Tz)] x 100 for concentrations for which Ti>/=Tz 

[(Ti-Tz)/Tz] x 100 for concentrations for which Ti<Tz. 

Three dose response parameters are calculated for each experimental agent. 

Growth inhibition of 50% (GI50) is calculated from [(Ti-Tz)/(C-Tz)] x 100 = 50, which is the 

drug concentration resulting in a 50% reduction in the net protein increase (as measured 

by SRB staining) in control cells during the drug incubation. The drug concentration 

resulting in total growth inhibition (TGI) is calculated from Ti = Tz. The LC50 (concentration 

of drug resulting in a 50% reduction in the measured protein at the end of the drug 

treatment as compared to that at the beginning) indicating a net loss of cells following 

treatment is calculated from [(Ti-Tz)/Tz] x 100 = -50. Values are calculated for each of 

these three parameters if the level of activity is reached; however, if the effect is not 

reached or is exceeded, the value for that parameter is expressed as greater or less than 

the maximum or minimum concentration tested. 
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2 DESIGN AND SYNTHESIS OF PSORALEN DERIVATIVES AS DNA G-
QUADRUPLEX STABILISERS 

2.1 INTRODUCTION 

 

From a molecular point of view, tumours can be defined as a consequence of 

impaired functions of DNA. Considering the complexity of the events related to cancer 

development, this definition could appear simplistic, however it shows immediately the 

reason why DNA has been the main target of anticancer therapy and research for several 

decades. The continuous advances in molecular biology and in the correlated fields 

provide a better knowledge of the physio-pathological processes and expand the number 

of potential targets for the antitumour therapy. In particular, a deeper appreciation of 

DNA functions arises from the recognition of its plasticity and its consequent ability to 

form a variety of conformations.1 

These non-conventional forms of DNA, including Z-DNA, triplex, cruciform and 

quadruplexes, were originally individuated in vitro using biophysical methods, such as 

circular dichroism. Their existence has been confirmed in vivo using structure-specific 

antibodies and structure-binding ligands.2 Among these possible DNA conformations, 

increasing attention has been focused toward G-quadruplex secondary structures. These 

structures are found in some repetitive genome sequences, in which guanine rich motifs 

are present, having relevant functions in the regulation of DNA metabolic processes, such 

as transcription and replication. More in detail, these sequences are found at the 

telomeric ends of chromosomes and in the transcriptional regulatory regions of several 

important oncogenes. Because both telomeric regions and activation of oncogenes are 

very important targets for anti-cancer drug design, G-quadruplex sequences are more and 

more attractive molecular targets in the anticancer drug development.1, 3 

The high potential of the quadruplexes-interacting molecules is related to the 

privileged position of these structures in the over-activated regions of the malignancy 

genome. Therefore, the selective stabilization of these structures in cancer cells could 

pave the way for high selective targeted antitumour therapies. 

 

2.2 G-QUADRUPLEX: STRUCTURE AND CONFORMATIONS 

 

Generally, DNA is thought as a double-helix in which the two self-complementary 

strands are held together by Watson-Crick base pairs. Actually, DNA is a polymorphic and 

dynamic macromolecule that exhibits a number of structures, which significantly differ 

from canonical B-form.  In particular, certain DNA sequences containing purine rich tracts 

(guanine runs) can form non-canonical four-strand architectures, named G-quadruplexes. 

The elemental skeleton of a DNA G-quadruplex structure is formed by at least two 
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contiguous stacked tetrads, in physiological ionic conditions. Each tetrad, also named G-

quartet, stems from the planar association of four guanines in a cyclic Hoogsteen 

hydrogen bonding arrangement.1, 4 G-tetrads are linked each other by short sequences, 

indicated as loops, whose nucleotides are not usually included in the tetrads. 

These structures can be composed of one, two or four different strands of a nucleic 

acid. Therefore, the combination of different structural parameters, as the number of 

stacked tetrads, the strand polarity and the loop sequence, size and localization explain 

the high conformation variability of G-quadruplex topologies.5, 6 G-quadruplex 

architecture can be also described in terms of grooves, whose dimensions (depth and 

width) and accessibility are a direct consequence of both tetrad arrangements and loop 

conformation.7 

Monovalent cations, such as K+ and Na+, further stabilize these structures 

coordinating the eight carbonyl oxygen atoms (in the position 6 of guanine) included 

among following tetrads. In fact, as a result of Hoogsteen bond formation, these groups 

are oriented toward the inner side of the G-quartet, creating a strong negative 

electrostatic potential. As a consequence, a channel is formed into the tetrads, that can 

accommodate monovalent cations (Figure 2.1).8 

 

 
Figure 2.1. Illustration of a G-4 structure: G-4 architecture (on the right) are formed by the association of 

tetrades. Each tetrad (on the left) stem from the planar association of four guanines, stabilized by 

monovalent cations.
8
 

 

Thus, the cation-dependent stability of G-quadruplexes is associated to the ability of 

these positive charged species to minimize this electrostatic potential. The effective 

location of dehydrated cations between tetrads depends on the nature of the ion. For 

example, the different size of K+ and Na+ influences their positioning and, in particular, 

Na+ ions are mainly located in the plane formed by G-tetrads whilst K+ can be found 

between G-tetrad planes. Therefore, K+ ions are always equidistant from the two 

subsequent G-tetrad planes and form a symmetric tetragonal bi-pyramidal configuration 
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with the eight oxygen atoms of tetrads. In general K+ is a better stabilizer of G-

quadruplexes compared to Na+ and this probably reflects, in part, a much greater 

energetic penalty for Na+ dehydration. Finally, as shown by NMR analysis, the same 

sequence can adopt different G-quadruplex conformations in Na+ or K+ solutions. Thus, 

the nature of cation affects both stability and architecture of quadruplex DNA.5-7  

As above mentioned, the highly polymorphic nature of G-quadruplex structures is 

strictly related to the association of different factors, including: the strand orientation, 

the syn/anti glycosidic conformation of guanines and the loop features (Figure 2.2). 

First, the different strand directionalities are function of the glycosidic conformation 

of the guanines. In this regard, four possibilities are known: 

1. the four strands are oriented in the same direction and the glycosidic 

angles are anti-anti-anti-anti and occasionally syn-syn-syn-syn; 

2. three strands are oriented in the same direction and one is oriented in the 

opposite direction: the glycosidic angles can be syn-anti-anti-anti or anti-syn-syn-syn; 

3. two adjacent strands are oriented in one direction and the others are 

oriented in the opposite manner: in this way each strand has as neighbours both parallel 

and anti-parallel strands and the glycosidic angles are syn-syn-anti-anti; 

4. the last possibility is the geometry anti-syn-anti-syn, in which all the 

strands have anti-parallel neighbours.7 

Finally, the loops can also affect the structural variability of G-quadruplex 

depending on their size and sequence, and are classified in four main families: 

1. edge-wise or lateral loops connect two adjacent anti-parallel strands and 

are generally composed by at least two residues; 

2. diagonal loops connect two opposing anti-parallel strands and are 

generally composed by three or more residues; 

3. double-chain reversal or propeller loops connect adjacent parallel strands 

and can be very small (only one residue) or large (six or more residues). When the single 

residue double-chain reversal loop is an adenine that bridges two G-tetrads planes, there 

is the probability that this residue forms hydrogen bonds with one edge of G-tetrad, 

forming an A-(G-G-G-G) pentad. 

4. V-shaped loops connect two corners of a G-tetrad core characterized by a 

missing support column. 

In addition, loop residues can form base pairing alignments, which stack with 

terminal G-tetrads, further stabilizing quadruplex DNA.7  
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Figure 2.2. Schematic representation of loops and glycosidic conformations: a) edge-wise; b) diagonal; c) 

double chain reversal and d) V-shaped loops; glycosidic conformation are indicated as blue (anti) and 

magenta (sin).
7 

 

It is worth noting that each element of a tetraplex provides a possible target in the 

design of anticancer therapeutics. For example, the different topologies assumed by loops 

or grooves make them a target for small molecule-based ligand recognition. In addition, 

the conformation specificity in diverse genome sequences, arising from the mutual 

association of the possible structural features, complicates significantly the scenario. 

However, these differences could be exploited to confer high selectivity in the ligand-

substrate recognition process, making possible the differentiation between two G-

quadruplex forms (e.g. telomeric vs oncogene promoting region).7  

 

2.3 DNA G-QUADRUPLEX: GENOMIC LOCALIZATION AND BIOLOGICAL ROLE 

 

The presence of putative G-quadruplexes in the human genome has been dissected 

by predictive algorithms, resulting in more than 370.000 potential quadruplex structures.8 

The actual presence of these structures in vivo was confirmed by the discovery of G-

quadruplex interacting proteins, including both stabilizing proteins as well as helicases 

and nucleases, that display G-quadruplex specificity. These findings indicate that each cell 

may be able to stabilize, form and remove quadruplex motifs and, most importantly, that 

G-quadruplexes might be routinely assembled and disassembled from duplex DNA during 

favourable physiologic conditions. Moreover, during the replication, recombination, 

transcription and telomeric elongation, the two strands of the ordinary B-form are 

transiently unpaired, providing an opportunity for the G-rich strand to form quadruplex 

structures.4, 5 

According to these considerations, potential quadruplex sequences have been 

identified in G-rich eukaryotic telomeres and in non-telomeric genomic DNA such as 

nuclease-hypersensitive promoter regions.6, 8   
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2.3.1 DNA G-quadruplex in telomeric ends 

 

Telomeres are nucleoprotein complexes located at the ends of linear eukaryotic 

chromosomes, to promote chromosomal stability and genetic stability. In addition, 

telomeric ends provide sites for recombination events and transcriptional silencing, and 

are crucial in cellular aging and tumorigenesis. Telomeric ends are composed by double 

strands and guanine rich 3’-overhang segments. Telomeric overhangs can be elongated by 

the telomerase, a ribonucleoprotein complex endowed with reverse transcriptase 

activity. Since this enzyme is expressed in the majority of cancer cells, the maintaining of 

the telomere length that leads to immortalization has been related to cancer 

pathogenesis.9 The 3’-overhang G-rich sequence (TTAGGG)n, can exist both as single-

strand and in a number of  G-quadruplex folding variants. These forms are in equilibrium 

and telomeric quadruplexes have been found to block the telomerase activity, making 

inaccessible its target. Therefore, the stabilization of telomeric G-quadruplexes in cancer 

cells by rationally designed small-molecules may be a valid strategy in anticancer drug 

development. Nevertheless, since the telomeric shortening is also associated with several 

pathology states and premature cell aging, the unselective stabilization of these 

structures in healthy cells could be related to the onset of adverse effects.7  

 

2.3.2 DNA G-quadruplex in oncogene promoter regions 

  

The presence of G-quadruplex structures was also discovered in the promoter 

regions of genes generally involved in growth and proliferation. These genes are TATA-

less and contain GC-rich motifs in the proximal regions of promoters. It has been 

demonstrated that the occurrence of these structures is more probable in oncogene 

promoters rather than in onco-suppressor genes and have been reported for human c-

MYC, human-BCL-2, human and mouse KRAS, human VEGF, human c-KIT, human HIF-1 

and several other promoter regions. The G-rich sequences of gene promoters present 

different and peculiar structures with respect to telomeric quadruplexes. More in detail, 

promoter sequences may contain more than four G-motifs and each of them is unique for 

number and length of the G-tracts, as well as for the number of intervening bases. 

Different combinations of these parameter are possible, and thus multiple G-rich 

promoter sequences topologies were found. The GC-rich region in the proximal region of 

these promoters is usually hypersensitive to nucleases and may form an altered structure 

with a single-stranded character, which is often a feature of transcriptionally active genes. 

Promoter regions of c-MYC, VEGF, HIF-1, c-KIT, KRAS, and Bcl-2, form three-tetrads G-

quadruplex geometries. The comparison of the G-quadruplex-forming motifs among 

these genes reveals a sequence similarity, leading to a unique transcriptional regulation 

mechanism that involves the interconversion between a G-quadruplex, unwound single-
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stranded DNA, and duplex DNA. In addition, in the 3’-end of each one of these sequences, 

an identical motif (G3NG3) is present, which forms a single-nucleotide double-chain-

reversal loop. Since the G3NG3 motif is widespread in the promoter intramolecular G-

quadruplex structures, it has been proposed as the stable core around which the different 

intramolecular G-quadruplex structures can be assembled.10, 11 

The most extensively studied system for the G-quadruplex formation in gene 

promoters is c-MYC, whose overexpression has been associated with a large number of 

human malignancies, including colon, breast, prostate, cervical, and small-cell lung 

carcinomas, osteosarcomas, glioblastomas, lymphomas and myeloid leukemia.12 

Considering the importance of c-MYC in cell proliferation, differentiation and apoptosis, it 

is not surprising that its transcriptional expression is tightly regulated by several 

promoters and start sites. A highly conserved 27-base-pair nuclease hypersensitivity 

element III1 (NHE III1), located in the proximal region of the c-MYC promoter, controls 80–

90% of the transcriptional activity. The formation of a G-quadruplex structure in this 

portion is critical for c-MYC transcriptional silencing. Therefore, compounds that bind and 

stabilize G-quadruplex conformations, formed in NHE III1, may reduce c-MYC expression 

and, consequently, display antitumour activity.13 

Similarly to c-MYC, the proximal promoters of other human oncogenes, such as BCL-

2, VEGF, HIF-1 KRAS, PDGF-A and c-MYB also contain poly-G regulatory elements and 

have been shown to form intramolecular G-quadruplex structures. These findings further 

confirm the high therapeutic potential of DNA G-quadruplex stabilizers.10 

 

2.4 SMALL MOLECULES TARGETING G-QUADRUPLEX DNA 

 

The recognition of the biological significance of G-quadruplex architectures 

provided a novel approach to anticancer drug design and development. In the last 

decades, different families of small-molecule G-quadruplex interactive compounds have 

been proposed, with continuous improvements in affinity and specificity. 
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Figure 2.3. Chemical structures of G-quadruplex binders: a) daunomycin, b) 9-benzylamino-substituted 

acridine, c) bisquinolinium-substitued phenantroline, d) 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphyrin, 

e) Mn(III) porphyrin with flexible cationic arms, f) telomestatin, g) oxazole containing 24-membered 

macrocycle, h) steroid diamine funtumine and left-hend chiral cyclic helicene with a short linker.
7
 

 

Among them, it is possible to observe some structural features commonly found in 

the G-quadruplex targeting-ligands. In particular, each compound exhibits a planar fused-

ring system, which enables staking interactions with terminal G-tetrads. The insertion of a 

lateral chain, in which a positive charge group can be present, increases the propensity of 

these molecules to interact with G-quadruplex grooves, leading a comprehensive 

tetraplex structure stabilization.10 

Despite the continuing advancing in the understanding of the structural features 

necessary for an optimal interaction, none of the synthesized compounds passed the 

clinical trial so far. This unbalance between the SARs knowledges acquired and the lack of 

G-quadruplex binders in the market is related to a series of limitations inherent to these 

compounds, including the poor selectivity and druggability properties (poor water 

solubility, propensity to aggregate in aqueous media, chemical instability).14  
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2.5 RATIONAL DESIGN OF PSORALEN DERIVATIVES 

 

2.5.1 Computational study  

 

This work aims to the synthesis of different series of compounds, characterized by a 

psoralen scaffold, thought to interact and stabilise DNA G-quadruplex. Despite several 

examples reported in literature, only a restricted number of G-quadruplex ligands 

reached the clinical phase, but none of them is in the market. Therefore, to increase the 

success possibilities, the synthetic work of these psoralens was derived by a 

computational study in which ligand-based, structure-based, and in silico ADMET 

prediction approaches were combined.15 The applied methods include fingerprints 

Molecular ACCess System (MACCS) MDL public Keys,16 implemented in Pipeline Pilot17 

and Rapid Overlay of Chemical Structures (ROCS),18 which aligns molecules according to 

their shape and chemical similarity. These similarity filters were combined with a tool able 

to predict molecular properties in order to discard, at an early stage, compounds with 

unfavourable ADMET profiles.19 Then, ligand based selected compounds were submitted 

to ensemble docking simulations on all the four major structurally characterized 

conformations of the human telomeric sequence. The finally identified compounds were 

evaluated by biophysical methods to evaluate their G-quadruplex binding properties.15  

In particular with this virtual screening  around 2.7 million compounds from the 

ZINC database were screened, using RHPS4,20, 21 CX-3543 (Quarfloxin),22, 23 SYUIQ5,24, 25 

Triazine-115405,26 Braco-19,27, 28 Phen-DC3,29-31 and BMVC32, 33 as queries (Figure 2.4 a). 

These compounds were selected on the bases of their high affinity and selectivity toward 

G-quadruplex over duplex DNA, chemical diversity, in vitro activity in tumour cells, and, 

eventually, preclinical and clinical studies.  
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Figure 2.4. a) Chemical structures of the queries selected for the similarity VS ; b) Virtual screening 

workflow.
15

  

 

The similarity of each molecule in the database was calculated with respect to each 

query, and the compounds were ranked according to their maximum similarity score, 

obtained using MACCS and ROCS. The best ranked molecules, identified for each query 

with the applied similarity approaches, were merged obtaining the so-called “data 

fusion”. This group fusion technique turned out to be more efficient in retrieving hits than 

searches performed using a single reference compound. In this way, 3906 compounds 

were selected with MACCS and 2592 compounds with ROCS. The two methods exhibited 

very low overlap because only 73 compounds were found in common. After discarding 

the duplicates, we ended up with 6425 compounds (Figure 2.4 b).15 Moreover, as drug-

likeness properties are a key factor in drug development, a further succession of filter 

were applied, based on the chemical-physical characteristics of drugs in the market. The 
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properties considered in this protocol included: molecular weight, number of rotatable 

bonds, hydrogen bond donors and acceptors, lipophilicity (by predicting ALogP), polar, 

molecular, and solvent accessible surface area, molecular volume, aqueous solubility (Log 

S), and number of atoms of each molecule.19 Only 4005 compounds out of 6425 passed 

this multiple filter. The selected hits were submitted to ensemble docking experiments 

considering four quadruplex folds (Figure 2.5).  

 

 
Figure 2.5. Schematic and 3D representation of the a) antiparallel or basket-type (pdb code 143d),

34
 b) 

parallel or propeller-like (1kf1),
35

 c) hybrid type-1 (2hy9)
36

 and d) hybrid type-2 (2jpz)
37

 DNA G-quadruplex 

conformations of d(AG3[T2AG3]3) sequence. 

 

In fact, the human telomeric sequence has been shown to fold into at least four 

distinct structures. They derive from remarkably different arrays of guanine pairing, 

resulting in distinct strand orientations and loop arrangements. Hence, an efficient 

approach to overcome the polymorphism hitch is to consider multiple rigid receptor 

conformations. With ensemble docking, a single ligand library is docked to each target 

conformation. To properly compare the score energy of the complexes generated by the 

docking experiments, the receptors are required to have the same sequence. 

Consequently, the two additional nucleotides at the head and tail caps of the hybrid 

receptors were removed. We picked up the best compounds according to the highest 

docking consensus score (<−7,5 kcal/mol). The threshold was chosen after the docking 

score comparison of active and decoys sets.  

Following the described steps, we obtained 904 molecules: 540 were selected by 

MACCS fingerprints, 351 by ROCS only, and 13 by both. In addition, to take into account 

the reciprocal ligand-target flexibility, the best poses of the 904 compounds generated by 

the AutoDock Vina38 docking were submitted to full energy minimization for each of the 

four G-quadruplex folds. Hence compounds containing unfavourable functional moieties 

(e.g., sulfonic ester, terminal vynil, enol ether, more than one hydroxamic acid, too many 
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heteroatoms, and phosfonamide groups) were discarded. By sampling the diversity space 

of the clustered ligands, according to availability from the vendors, we reduced our data 

set to 28 compounds: 19 were selected from MACCS hit list, eight from ROCS, and one by 

both methods.  

The potential efficiency of the selected compounds in binding G-quadruplex 

structures was assessed by fluorescence melting studies on a labelled sequence based on 

the human telomeric one (HTS), an approach extensively validated for screening of G-

quadruplex ligand library and already applied to our queries. Most of our selected 

molecules were not able to increment the thermal stability of the telomeric G-quadruplex 

when used in the 0.5−10 μM concentration range. Nevertheless, one compound induced 

a quite relevant shift of the G-quadruplex melting temperature (Tm ≈ 14 °C at 10 μM 

ligand concentration). This efficiency was reduced in comparison to those exerted by two 

queries (Tm ≈ 32 and 30°C at 10 μM Braco-19 and RHPS4, respectively) in the same 

experimental conditions. This was not unexpected due to the selection procedure, thus 

we considered it worth of further investigation. This positive hit, labelled P1, was selected 

by MACCS fingerprints based on similarity with the reference query CX3543. This active 

compound P1 contained a psoralen moiety. Thus, all psoralen derivatives identified by the 

virtual screening were selected (P1−P7). The resulting new small library (Figure 2.6) was 

further incremented by “in house” available psoralens structurally related to the hit 

(P8−P13).  
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Figure 2.6. Chemical structure of psoralens resulting to VS workflow P1-7 and their “in house” structural 

analogues submitted to bio-physic assays. 

 

All of them were tested in a wide concentration range to confirm the hit. Moreover, 

a short double-stranded DNA sequence was used as additional target in order to evaluate 

the ligands selectivity. This screening confirmed P1 and P3 as the most effective G-

quadruplex stabilizers. Also P2, P6, and P8 were effective, although higher concentrations 

were required, with respect to P1 and P3, to achieve a similar effect. Interestingly, none 

of the selected ligands were able to stabilize the double helix. These results suggest 

phenyl-psoralen as the basic scaffold required to selectively stabilize the tested G-

quadruplex and emphasize some structure-activity relationships: 

1. the role of the aromatic ring at position 3 of the psoralen core is relevant: 

its presence was confirmed to be essential, as P7 and P9−P13 are inactive, and the 

bulkiness/electronic properties of the substituents are able to modulate the activity; 

2. a strong influence of the side chain was highlighted: it should be not too 

rigid as in P5 and P7, and a small (P1, P2, P3) or a flexible chain (P6 and P8) is preferred; 

3. the distance between the aromatic core and the amide group is also 

important: increasing the length of this linker a reduction in activity occurred. The most 

active compounds P1 e P3 have a methylene linker.  

In addition, the opening of furan ring is detrimental for G-quadruplex recognition 

because the system loses its planarity, a key parameter to provide stability to the 
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complex. By analysing the energy minimized docking poses of the best compound P1, 

these considerations were sustained. In particular, the positively charged substituent was 

found to interact with the negatively charged phosphate backbone of the G-quadruplex 

within the grooves/loops, whereas the aromatic portion was alternatively involved in 

stacking with the bases.15  

 

2.5.2 Synthetic strategy 

 

On the bases of the SARs obtained by computational analysis the synthesis of 

different psoralen derivatives has been conceived. 

Taken into account these features and combining some structural characteristics of 

most active compounds (P1 and P3), two series of compounds have been synthesized. 

Each compound is characterised by a phenyl-psoralen portion. In both series the aromatic 

ring is substituted with a chlorine atom, but the central core of second series differs from 

the one of the first series of derivatives, because of the introduction of a methyl group in 

the position 5 of psoralen. The lateral chain contains both amidic and tertiary amine 

groups that are spaced by a flexible ethyl- or propyl- group. The nitrogen of amine group 

is included in a six membered-ring. (Figure 2.7) 

 

 
Figure 2.7. General structure of synthesized compounds (on the right) compared with the structure of the 

most active compounds (P1, P3), deriving from VS. The green lines highlight the length of the lateral chain. 

 

Final compounds were obtained by a multi-step synthetic procedure, including: 

a. the synthesis of the psoralen moiety; 

b. the introduction of a lateral chain. 

The general method of reaction is reported in Scheme 2.1. 
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Scheme 2.1. General scheme of reaction: in the last compound n indicates the length of the lateral chain 

(n=2, 2) whilst X indicate the possibility to have different atoms in the cycle (oxygen or carbon). 
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The synthesis of substituted psoralen requires, in turn, a set of reactions. Methyl-2-

(7-hydroxy-4-methyl-2-oxo-2H-3-chromenyl)acetate and methyl-2-(7-hydroxy-4,8-

dimethyl-2-oxo-2H-3-chromenyl)acetate, that were necessary for further 

transformations, were prepared by Pechmann condensation of dimethylacetylsuccinate 

with resorcinol or 2-methylresorcinol, respectively. The reaction is performed in the 

presence of H2SO4 concentrated as a condensing agent, at room temperature and without 

any solvent.39  

Several approaches for the linear fusion of a furan ring to a coumarin core are 

known.40, 41 In particular, psoralen systems were prepared by several methods, the 

majority of which involve numerous steps, low yields and limited possibilities to modify 

the coumarin and furan ring.39 Since high flexibility in the synthetic method is required to 

achieve the final compounds, the method proposed by MacLeod for the total synthesis of 

psoralens was appliedErrore. L'origine riferimento non è stata trovata..42 Thus, the 7-hydroxy-cumarins, 

obtained in the first step, were reacted with an appropriate -halogeno-ketone (2-

bromo-4’-chloroacetophenone) in acetone using potassium carbonate as proton 

scavenger, to obtain the correspondent substituted-oxoether. Then, the oxoether 

derivative was purified and further reacted to obtain psoralen with high yields in the 

following step. The cyclization of 7-(2-oxoethyl)coumarin in sodium hydroxide, leads the 

expected linear furocoumarin. In fact, the position 6 of the coumarin ring is less activated 

than the position 8. Therefore, the possible formation of the angular isomer is strongly 

un-favoured and its formation has never been observed. This assumption has been 

confirmed by 1H-NMR spectra  In fact, a pattern of three expected singlets, definitely 

demonstrate that, in these conditions, only the psoralen system is formed (Figure 2.8). 
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Figure 2.8. 

1
HNMR spectrum: characteristic signal pattern of synthesized psoralen. 

 

The insertion of the lateral chain involves an amidic bond formation via mixed 

carbonylic-carboxylic anhydrideErrore. L'origine riferimento non è stata trovata..43 The procedure involves 

separate preparation of the mixed anhydride (activation) and the relative amide 

derivative (aminolysis). Ethyl chloroformate is slowly added to a solution containing the 

obtained psoralen and a tertiary amine (triethylamine). The activation is rapid and the 

formation of mixed anhydride has been observed after 1-2 minutes by the addition of 

chloroformate. The reaction was performed using dry solvent, keeping the temperature 

around 0°C. Because of its instability, the mixed anhydride is directly used for the next 

step. Therefore, it was added dropwise in a solution of the appropriate amine. All stages 

of this reaction are performed at low temperatures to prevent side reactions.44 The main 

side reaction associated with the mixed anhydride method is the aminolysis at the 

carbonyl of the carbonate moiety, giving a urethane (Figure 2.9).  
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Figure 2.9. Urethane formation in the mixed anhydride synthesis. 

 

In most cases, this reaction is not significant because the use of these mixed 

anhydrides guarantees an excellent regioselectivity, related to electronic effects. In fact, 

the carbonate electrophilic centre (a) is more reactive than the carboxylic site (b) as the 

reactive centre a is less stabilised by resonance. However, an additional source of 

urethane may result from the reaction of unconsumed reagent with the nucleophile. 

Aminolysis of chloroformate occurs when there is an excess of reagent or when the 

anhydride-forming reaction is incomplete. This side reaction can be prevented limiting 

the amount of chloroformate and extending the time of activation. In addition, the 

analysis of mass spectroscopy data deriving from a sample at the end of the activation 

reaction, subsequent supported by 13C-NMR, highlighted the presence of a ester, which 

formation could be related to an intramolecular reaction (Figure 2.10).   
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Figure 2.10. Proposed intramolecular reaction for the formation of a ester as side product during the 

activation reaction. 

 

The success of mixed anhydride reactions is considered to be extremely dependent 

on the choice of conditions used. In particular, the use of dry solvents, like dry THF and 

DCM, is mandatory.  

In order to find the best solvent different trials were done by using THF, DCM or 

mixtures of this solvents in various ratios. Since the mixture DCM/THF 1:3 provided the 

best result, the following procedure was applied. Firstly, during the activation, the 

obtained psoralen was suspended in the minimum amount of DCM. Once obtained, the 



67 
 

mixed anhydride is slowly added to a THF solution containing an excess of the appropriate 

amine. By using this method yields improvements, in the order of 15%, were obtained.  

The obtained compounds are reported in Figure 2.11. 
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Figure 2.11. Chemical structure of synthesized compounds: series 1 (EMAC5000-5004) and series 2 

(EMAC5004-5007). 

 

2.6 EXPERIMENTAL SECTION 

 

2.6.1 Materials and methods 

 

All the materials, reagents and solvents, where not specified, were purchased from 

commercial suppliers and used without further purification.  

Reactions were monitored using Thin Layer Chromatography (TLC), using precoated 

Merk Silica gel 60 254F plates and petroleum ether/ethyl acetate as eluent.  
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Purification methods were performed by crystallization from an appropriate solvent 

or by chromatographic columns for final compounds. Chromatographic columns were 

performed using Silica gel 70-240 mesh.   

Melting points (Mp) were measured using a Stuart Melting Point SMP11 apparatus 

and are uncorrected. 
1HNMR spectra were recorded on a Varian Unity 500MHz spectrometer in DMSO-d6 

or chloroform-d, using tetramethylsilane (TMS) as internal standard. Chemical shifts are 

reported in ppm, with the use of a δ scale, coupling constants (J) in Hz. 

 

2.6.2 Chemistry and structural characterization 

In this paragraph a more detailed overview of the synthesis of each single 

compound is given. 

 

Series 1: Synthesis of 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-furo[3,2-

g]chromen-6-yl)-N-(substituted)acetamide (EMAC 5000-5007) 

 

Synthesis of methyl 2-(7-hydroxy-4-methyl-2-oxo-2H-chromen-3-yl)acetate 

A mixture of resorcinol (1 mmol), dimethylacetylsuccinate (1 mmol) and sulfuric 

acid 98% (2.8 mmol) was vigorously stirred at room temperature. The progression of the 

reaction was monitored by TLC, using ethyl acetate/n-hexane 2:1. After 30 minutes a 

homogeneous sticky solid was obtained wich was dissolved in methanol and poured into 

ice. The mixture was stirred until ice melting and then filtered off to obtain a light yellow 

solid. The crude product was washed with ethyl ether giving a white powder which was 

re-crystallized from methanol.     

White solid; Yield 68%; MW 248.23 g/mol; Mp 180-182°C 
1H NMR (500 MHz, DMSO-d6): δ 10.56 (s, 1H, -OH phenol), 7.74 (d, 1H, -CH 

aromatic, Jo=8.5), 6.89 (dd, 1H, -CH aromatic, Jo=8.5; Jm=2), 6.80 (d, 1H, -CH aromatic, 

Jm=2 ), 3.73 (s, 2H, -CH2), 3.70 (s, 3H, -OCH3), 2.42 (s, 3H, -CH3). 

 

Synthesis of methyl 2-{7-[2-(4-chlorophenyl)-2-oxoethyl]-4-methyl-2-oxo-2H-

chromen-3-yl}acetate 

Methyl 2-(7-hydroxy-4-methyl-2-oxo-2H-chromen-3-yl)acetate (1 mmol) in 

anhydrous acetone was treated with potassium carbonate (1 mmol) and 2-bromo-4’-

chloro acetophenone (1 mmol). The mixture was refluxed in acetone until reaction 

completion (4-5 hours). The reaction was monitored by TLC using ethyl acetate/n-hexane 

2:1 as eluent. The reaction was stopped and the hot mixture filtered to remove the 

inorganic salt formed during the reaction. The solution was poured in H2SO4 (15 mL, 

0.01N) and a  precipitate was formed wich was filtered off and re-crystallized from 

aqueous methanol. 

White solid; Yield 84%; MW 400.81 g/mol; Mp 177°C 
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1H NMR (500 MHz, DMSO-d6): δ 8.05 (d, 2H, -CH aromatic, Jo=8.5), 7.77 (d, 1H, -CH 

aromatic, Jo=8.5), 7.67 (d, 2H, -CH aromatic, Jo=8.5),  7.12 (d, 1H, -CH aromatic, Jm=2.5), 

7.06 (dd, 1H, -CH aromatic, Jo=8.5; Jm=2.5), 5.73 (s, 2H, -CH2), 3.68 (s, 2H, -CH2), 3.63 (s, 

3H, -OCH3), 2.40 (s, 3H, -CH3).        

 

Synthesis of 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-furo[3,2-g]chromen-6-

yl)acetic acid 

A suspension of methyl 2-{7-[2-(4-chlorophenyl)-2-oxoethyl]-4-methyl-2-oxo-2H-

chromen-3-yl}acetate in ethanol was refluxed until a clear solution was obtained. Then  

NaOH water solution (0.1 N) was added dropwise. The reaction mixture was heated for 3-

4 hours, obtaining a dark solution. The solution was cooled at room temperature and 

concentrated under reduced pressure. The pH of this solution was acidified to 4-5 by the 

addition of concentrated HCl, obtaining a suspension that was cooled overnight. Then the 

precipitate was filtered off and re-crystallized from aqueous ethanol.  

White solid; Yield 82%; MW 368.77 g/mol; Mp 246-247°C 
1H NMR (500 MHz, DMSO-d6): δ 12.49 (s, 1H, -COOH), 8.53 (s, 1H, -CH aromatic), 

8.21 (s, 1H, -CH aromatic), 7.87 (d, 2H, -CH aromatic, Jo=8.5), 7.83 (s, 1H, aromatic), 7.61 

(d, 2H, -CH aromatic, Jo=8.5), 3.66 (s, 2H, -CH2), 2.55 (s, 3H, -CH3). 

 

Synthesis of 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-furo[3,2-g]chromen-6-yl)-N-

(substituted)acetamide  

A suspension of 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-furo[3,2-g]chromen-6-

yl)acetic acid (1 mmol) in DCM was treated with equimolar amounts of triethylamine. The 

suspension was stirred for 10 minutes at low temperature, using an ice bath. Then, ethyl 

chloroformate was added dropwise. The reaction was stirred until completion monitored 

by TLC, using as eluent ethyl acetate/n-hexane 2:1. Then, a light yellow mixture was 

obtained and added dropwise to a THF solution containing an appropriate ammine (2 

mmol). The reaction was stirred for 1 hour, obtaining a white precipitate. The precipitate 

was filtered off and a white solid was obtained. The crude product was purified by column 

chromatography, using a ethyl acetate/n-hexane gradient and ethyl acetate/n-

hexane/methanol.    

 

(EMAC 5000) 2-(3-(4-chlorophenyl)-5-methyl-7oxo-7H-furo[3,2-g]chromen-6-yl)-N-

(2-morpholino ethyl)acetamide 

White solid; MW 480.94 g/mol; Mp 231-233°C 
1H NMR (500 MHz, chloroform-d): δ 7.43 (s, 1H, -CH aromatic), 7.29 (s, 1H, -CH  

aromatic), 7.02 (d, 2H, -CH aromatic, Jo=8.5), 6.98 (s, 1H, -CH aromatic), 6.96 (d, 2H, -CH 

aromatic, Jo=8.5), 3.13-3.15 (m, 4H, -CH2 morfoline), 3.10 (s, 2H, -CH2), 2.79 (q, 2H, -CH2 

lateral chain), 2.12 (s, 3H, -CH3), 1.95-1.89 (m, 6H, -CH2).   
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(EMAC 5001) 2-(3-(4-chlorophenyl)-5-methyl-7oxo-7H-furo[3,2-g]chromen-6-yl)-N-

(3-morpholino propyl)acetamide 

White solid; MW 494.97 g/mol; Mp 195-196°C 
1H NMR (500 MHz, chloroform-d): δ 7.95 (s, 1H, -CH aromatic), 7.80 (s, 1H, -CH 

aromatic), 7.55 (d, 2H, -CH aromatic, Jo=8.5), 7.79 (d, 2H, -CH aromatic, Jo=8.5),7.47 (s, 

2H, -CH aromatic), 4.30 (bs, 2H, -CH2), 4.00 (bs, 2H, -CH2), 3.66 (s, 2H, -CH2), 3.56 (bs, 2H, -

CH2), 3.45 (q, 4H, -CH2 lateral chain), 3.16 (t, 2H, -CH2 lateral chain), 2.87 (bs, 2H, -CH2), 

2.56 (s, 3H, -CH3), 2.14 (q, 2H, -CH2 lateral chain)  

(EMAC 5002) 2-(3-(4-chlorophenyl)-5-methyl-7oxo-7H-furo[3,2-g]chromen-6-yl)-N-

(3-(piperidin-1-yl) ethyl)acetamide 

White solid; MW 478.97 g/mol; Mp 192-194°C 
1H NMR (500 MHz, chloroform-d): δ 7.98 (s, 1H, -CH aromatic), 7.83 (s, 1H, -CH 

aromatic), 7.57 (d, 2H, -CH aromatic, Jo=8.5), 7.53 (s, 1H, -CH aromatic), 7.52 (d, 2H, -CH 

aromatic), 3.66 (s, 2H, -CH2), 3.34 (, 2H, –CH2 lateral chain), 2.65 (s, 3H, -CH3), 2.46 (t, 2H, -

CH2 lateral chain), 2.40 (bs, 4H, -CH2 piperidine), 1.57-1.55 (m, 4H, -CH2 piperidine), 1.41 

(bs, 2H, -CH2 piperidine). 

(EMAC 5003) 2-(3-(4-chlorophenyl)-5-methyl-7oxo-7H-furo[3,2-g]chromen-6-yl)-N-

(3-(piperidin-1-yl) propyl)acetamide 

White solid; MW 498.99 g/mol; Mp 173-174°C 
1H NMR (500 MHz, DMSO-d6): δ 8.52 (s, 1H, -CH aromatic), 8.18 (s, 1H, -CH 

aromatic), 7.86 (d, 2H, -CH aromatic, Jo=8.5), 7.81 (s, 1H, -CH aromatic), 7.60 (d, 2H, -CH 

aromatic, Jo=8.5), 3.35 (s, 2H, -CH2), 3.13 (q, 2H, -CH2 lateral chain), 2.98 (t, 2H, -CH2 

lateral chain), 2.90-2.81 (m, 6H, -CH2 piperidine and lateral chain), 2.53 (s, 3H, -CH3), 1.80-

1.74 (m, 6H, -CH2 piperazine). 

 

Series 2: Synthesis of 2-(3-(4-chlorophenyl)-5,9-dimethyl-7-oxo-7H-furo[3,2-

g]chromen-6-yl)-N-(substitited)acetamide (EMAC 5004-5007) 

 

Synthesis of methyl 2-(7-hydroxy-4,8-dimethyl-2-oxo-2H-chromen-3-yl)acetate 

A mixture of 2-methyl-resorcinol (1 mmol), dimethylacetylsuccinate (1 mmol) and 

sulfuric acid 98% (2.8 mmol) was vigorously stirred at room temperature. The progression 

of the reaction was monitored by TLC, using ethyl acetate/n-hexane 2:1. After 30 minutes 

a homogeneous sticky solid was obtained. The solid was dissolved in methanol (minimum 

quantity) and poured into ice. The mixture was stirred until ice melting and then filtered 

off to obtain a light yellow solid. The crude product was washed with ethyl ether, 

achieving a white powder re-crystallized from methanol. 

White solid; Yield 66%; MW 262.26 g/mol; Mp 174-176°C 
1H NMR (500 MHz, DMSO-d6): δ 10.35 (s, 1H, -OH phenol), 7.51 (d, 1H, -CH 

aromatic, Jo=8.5), 6.87 (d, 1H, -CH aromatic, Jo=8.5), 3.64 (s, 2H, -CH2), 3.60 (s, 3H, -OCH3), 

2.33 (s, 3H, -CH3), 2.15 (s, 3H, -CH3). 
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Synthesis of Synthesis of methyl 2-{7-[2-(4-chlorophenyl)-2-oxoethyl]-4,8-dimethyl-

2-oxo-2H-chromen-3-yl}acetate 

Methyl 2-(7-hydroxy-4,8-dimethyl-2-oxo-2H-chromen-3-yl)acetate (1 mmol) in 

anhydrous acetone was treated with potassium carbonate (1 mmol) and 2-bromo-4’-

chloro acetophenone (1 mmol). The mixture was refluxed in acetone until reaction 

completion (4-5 hours) monitored with TLC using ethyl acetate/n-hexane 2:1 as eluent. 

The reaction was stopped and the hot mixture filtered to remove the inorganic salt 

formed during the reaction. The obtained solution was poured in H2SO4 solution (15 mL, 

0.01N). The resulting precipitate was filtered off and re-crystallized from aqueous 

methanol. 

White solid; Yield 70%; MW 414.84 g/mol; Mp 173-176°C 
1H NMR (500 MHz, DMSO-d6): δ 8.04 (d, 2H, -CH aromatic, Jo=8.5), 7.66 (d, 2H, -CH 

aromatic, Jo=8.5), 7.61 (d, 1H, -CH aromatic, Jo=8.5), 7.05 (d, 2H, -CH aromatic, Jo=8.5), 

5.76 (s, 2H,-CH2), 3.67 (s, 2H, -CH2), 3.61 (s, 3H, -OCH3), 2.36 (s, 3H, -CH3), 2.27 (s, 3H, -

CH3). 

 

Synthesis of 2-(3-(4-chlorophenyl)-5,9-dimethyl-7-oxo-7H-furo[3,2-g]chromen-6-

yl)acetic acid 

A suspension of methyl 2-{7-[2-(4-chlorophenyl)-2-oxoethyl]-4,8-dimethyl-2-oxo-

2H-chromen-3-yl}acetate in ethanol was refluxed until a clear solution was obtained. 

Then NaOH water solution (0.1 N) was added dropwise. The reaction mixture was heated 

for 3-4 hours, obtaining a dark solution. The solution was cooled at room temperature 

and concentrated under reduced pressure. The pH of this solution was acidified to 4-5 by 

the addition of concentrated HCl, obtaining a suspension that was cooled overnight. Then 

the precipitate was filtered off and re-crystallized from aqueous ethanol. 

White solid; Yield 78%; MW 382.79 g/mol; Mp 241-243°C 
1H NMR (500 MHz, DMSO-d6): δ 12.46 (bs, 1H, -COOH), 8.52 (s, 1H, -CH aromatic), 

8.04 (s, 1H, -CH aromatic), 7.84 (d, 2H, -CH aromatic, Jo=8.5), 7.58 (d, 2H, -CH aromatic, 

Jo=8.5), 3.64 (s, 2H, -CH2), 2.55 (s, 3H, -CH3), 2.52 (s, 3H, -CH3). 

 

Synthesis of 2-(3-(4-chlorophenyl)-5,9-dimethyl-7-oxo-7H-furo[3,2-g]chromen-6-

yl)-N-(substituted)acetamide 

A suspension of 2-(3-(4-chlorophenyl)-5,9-dimethyl-7-oxo-7H-furo[3,2-g]chromen-6-

yl)acetic acid (1 mmol) in DCM is treated with equimolar amounts of triethylamine. The 

suspension was stirred for 10 minutes at low temperature, using an ice bath. Then, ethyl 

chloroformate was added dropwise. The reaction was stirred until completion end the 

progression was monitored by TLC, using as eluent ethyl acetate/n-hexane 2:1. Then, a 

light yellow mixture was obtained and added dropwise to a THF solution containing an 

appropriate ammine (2 mmol). The reaction was stirred for 1 hour, obtaining a white 
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precipitate. The precipitate was filtered off obtaining a white solid. The crude product 

was purified by chromatographic column, using a gradient of ethyl acetate/n-hexane and 

ethyl acetate/n-hexane/methanol. 

The NMR data of compounds EMAC 5006 and 5007 are not available. 

(EMAC 5004) 2-(3-(4-chlorophenyl)-5,9-dimethyl-7oxo-7H-furo[3,2-g]chromen-6-

yl)-N-(2-morpholino ethyl)acetamide 

White solid; MW 494.97 g/mol; Mp 254-255°C 
1H NMR (500 MHz, chloroform-d): δ 7.85 (s, 1H, -CH aromatic), 7.84 (s, 1H, -CH 

aromatic), 7.57 (d, 2H, -CH aromatic, Jo=8.5), 7.51 (d, 2H, -CH aromatic, Jo=8.5), 3.68-3.66 

(m, 6H, -CH2 and –CH2 morpholine), 3.34 (q, 2H, -CH2 lateral chain), 2.66 (s, 6H, -CH3), 2.47 

(t, 2H, -CH2 lateral chain), 2.43 (bs, 4H, -CH2 morpholine). 

(EMAC 5005) 2-(3-(4-chlorophenyl)-5,9-dimethyl-7oxo-7H-furo[3,2-g]chromen-6-

yl)-N-(3-morpholino propyl)acetamide  

White solid; MW 508.18 g/mol; Mp 260-263°C 
1H NMR (500 MHz, chloroform-d): δ 7.85 (s, 2H, -CH aromatic), 7.57 (d, 2H, -CH 

aromatic, Jo=8.5), 7.51 (d, 2H, -CH aromatic, Jo=8.5), 3.74-3.72 (m, 4H, -CH2 morpholine), 

3.62 (s, 2H, -CH2), 3.31 (q, 2H, -CH2 lateral chain), 2.67 (s, 3H, -CH3), 2.66 (s, 3H, -CH3), 2.45 

(bs, 4H, -CH2 morpholine) , 2.41 (t, 2H, -CH2 lateral chain), 1.68 (q, 2H, -CH2 lateral chain). 

 (EMAC 5006) 2-(3-(4-chlorophenyl)-5,9-dimethyl-7oxo-7H-furo[3,2-g]chromen-6-

yl)-N-(2-(piperidin-1-yl) ethyl)acetamide 

White solid; MW  492.18 g/mol 

NMR data are not available. 

 (EMAC 5007) 2-(3-(4-chlorophenyl)-5,9-dimethyl-7oxo-7H-furo[3,2-g]chromen-6-

yl)-N-(2-(piperidin-1-yl) propyl)acetamide 

White solid; MW 507.02 g/mol 

NMR data are not available. 

 

2.7 CONCLUSIONS 

 

In this work, different psoralen derivatives has been synthesized and the synthetic 

procedure optimized. The combination of synthetic effort with computational tools was 

exploited to provide more detailed information on structure-activity relationships, to 

design compounds characterized by high affinity and selectivity toward quadruplexes 

over duplex-DNA and, possibly able to distinguish among diverse G-quadruplex 

structures. All the synthesized compounds will be tested to gain insight into their 

mechanism of action and further optimize this scaffold.  

Since the presence of a positive charge in the lateral chain give the possibility to 

better stabilize DNA G-quadruplex arrangements, on the bases of the obtained results will 

be evaluated the possibility to carried out a quaternization reaction, achieving a charged 

derivative for each final compound.  
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SECTION II 

A2B ANTAGONISTS 

ADENOSINE RECEPTORS: STRUCTURE, DISTRIBUTION AND BIOLOGICAL 

FUNCTIONS 

 

Adenosine is an endogenous purine nucleoside constitutively present at low 

concentrations in the extracellular space of several mammalian tissues.1 In particular, 

extracellular adenosine acts as a local modulator both in  physiological and physio-

pathological conditions, in response to stress in organs and tissues, in both peripheral and 

central nervous system. In the brain, both neuronal and glial cell functions are regulated 

by adenosine.2 Adenosine acts as a local modulator of the action of various other 

neurotransmitters, including biogenic amines and excitatory amino acids, attenuates the 

release of many stimulatory neurotransmitters and can counteract the excitotoxicity 

associated with excessive glutamate release in the brain. Adenosine can also modulate 

the interaction of neurotransmitters, such as dopamine, with their own receptors (Figure 

1).3, 4 

In the periphery, adenosine has been shown to attenuate excessive inflammation, 

to promote wound healing, and to protect tissue against ischemic damage.5 In the 

cardiovascular system, adenosine promotes vasodilation, vascular integrity, and 

angiogenesis and counteracts the lethal effects of prolonged ischemia on cardiac 

myocytes and skeletal muscle.2, 6 

 

 
Figure 1. Schematic illustration of central and peripheral distribution of adenosine receptors. 
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The biological effects of adenosine are mediated by cell surface receptors coupled 

with intracellular signalling cascades. There are four known subtypes of adenosine 

receptors, ARs or AdoR, referred to as  A1, A2A, A2B, and A3, each one with a unique 

pharmacological profile, tissue distribution and effector coupling.7 All of them are 

members of the super-family of G-protein-coupled receptors, GPCRs, and are most closely 

related to the receptors for biogenic amines. Extracellular levels of adenosine are quite 

variable, depending on the tissue and the degree of stress experienced, and so the basal 

level of stimulation of these receptor subtypes by the endogenous agonist varies 

enormously.7, 8  

Different sources of adenosine are known. Notably, adenosine is not stored in 

vesicles and its extracellular release can be obtained through an equilibrative transporter 

or as a result of cell damage, or nucleotidase-mediated hydrolysis of extracellular adenine 

nucleotides (Figure 2), which have their own signal pathways mediated by purinergic P2 

receptors.9 Ectonucleotidases, including apyrase CD39 and the 5’-nucleotidase, are 

present on the extracellular surface of many tissues and are involved in numerous crucial 

functions.10, 11
  

 

 
Figure 2. Biosynthesis and catabolism of adenosine.

11
 

 

Adenosine receptor signalling is classically associated with the inhibition or the 

stimulation of adenylate cyclase but also other pathways, such as phospholipase C (PLC), 

Ca2+ and mitogen activated protein kinases (MAPK), are relevant.12 Specifically, A1 and A3 

are coupled with inhibitory G proteins, resulting in the inhibition of adenylate cyclase, 

while A2A and A2B are coupled with stimulatory G proteins, so that their activation 

increases the adenylate cyclase activity.13 

  



80 
 

 
Figure 3. Schematic representation of adenosine receptors signalling pathways.

7 

 

Activation of A1 receptors inhibits adenylate cyclase activity through the activation 

of pertussis toxin-sensitive Gi proteins  with an increase of the PLC activity. In cardiac 

muscle and neurons A1 receptors can activate also pertussis toxin sensitive K+ channels, 

KATP channels, as well as Q-, P- and N-type Ca2+ channels. Activation of A2A receptor 

increases adenylate cyclase activity. Gs and Golf are the proteins associated with this 

receptor subtype in the peripheral system and in the striatum, respectively.14 Activation 

of A2A induces inositol phosphate to raise intracellular calcium and activates protein 

kinase C. A2B receptors are positively coupled with adenylate cyclase and PLC. In 

particular, the activation of PLC through Gq proteins mediates many important functions 

of A2B receptors. The A3AR couples to classical second-messenger pathways that inhibit 

adenylate cyclase, stimulate PLC and calcium mobilization. Likewise to other ARs, A3ARs 

couple to MAPK, indicating their involvement in cell growth, survival, death and 

differentiation.13  

All these receptors undergo agonist-induced regulation by desensitization and 

trafficking.15 For all adenosine receptor subtypes, there is evidence to implicate arrest in 

agonist-induced desensitization and trafficking, but there is also evidences for other 

possible forms of regulation, including second messenger-dependent kinase regulation, 

heterologous effects involving G proteins, and the involvement of non-clathrin trafficking 

pathways.16 The rapidity of this process is related to the receptor subtype. Moreover, 

since adenosine receptors couple to multiple signalling pathways, these pathways may 

desensitize differentially.13 In addition to receptor desensitization, adenosine mediated-

signalling is rapidly silenced by adenosine kinases and, to a lesser degree, by adenosine 
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deaminase that metabolizes the adenosine to AMP and inosine, respectively, which are 

both less active than adenosine at the ARs.10 

The development of potent and selective agonists and antagonists of ARs has been 

a hot research topic in medicinal chemistry for more than three decades.1, 17, 18 The main 

approach to discover AR agonists and antagonists has been the modification of adenosine 

itself and xanthines, like caffeine and theophylline, respectively. Selective agonists and 

antagonists have been found using both empirical and rational approaches, based on 

molecular modelling studies, supported by the knowledge derived from mutagenesis 

studies and the crystal structure of the seven transmembrane rhodopsine receptor. In 

addition, structural information for the ARs have been available since 200819 thanks to 

the high resolution X-ray structure of the human A2AAR in complex with the antagonist 

ZM241385  4-(2-[7-amino-2-(2-furyl)]1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl) 

phenol (Figure 4). 20 21 
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Figure 4. 2D and 3D representations of three crystal structures of Adenosine A2A in complex with the bound 

antagonists : a) PDB code: 3UZA, b) PDB code: 3UZC and c) 3EML. 

 

The crystal structure of the A2AAR in its inactive conformation gave insight into the 

ligand recognition mechanism, showing the key residues involved in the ligand binding 

and the major interactions anchoring the antagonist to the binding site. Many of the site-

directed mutagenesis data previously available for the ARs were structurally explained, 

and new mutational experiments were guided by the knowledge gained from the A2AAR 

structure, helping to further define the ligand binding cavity of this AR.22 New crystal 

structures of the A2AAR in complex with different agonists provide a deeper 

comprehension about the activation mechanism and the conformational changes that 
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occur upon agonist binding to the A2AAR. These new crystal structures lack a coupled G 

protein, but are helpful to understand the function of the ARs, and they support the drug 

design approaches for the AR family, improving the quality of models for other AR 

subtypes.23 A further contribution to the drug discovery process was the introduction of 

radioligands for adenosine receptors, including agonists and antagonists with high affinity 

and high selectivity for the human variants of each receptor. 24Moreover, both agonist 

and antagonist ligands containing positron-emitting radio-isotopes have been developed 

to monitor the in vivo occupancy of adenosine receptors in humans.13, 25-27 Such ligands 

for positron emission tomography (PET) can be useful for diagnostic as well as research 

purposes. Moreover, fluorescent ligands have been introduced for characterization of the 

ARs. Some of these spectroscopic probes are suitable for compound screening and avoid 

the use of radioisotopes.28-30 

  

Due to the involvement of adenosine in various pathological conditions, the 

targeting of specific adenosine receptor subtypes, with selective agonists or antagonists, 

could potentially have significant therapeutic benefits. More in detail, several therapeutic 

indications were identified for cardiovascular31 and neurological3 diseases, as well as 

other pathologic states like inflammatory, renal, pulmonary, endocrine disorders and 

cancer.7 The high therapeutic potential of adenosine receptors has been largely 

documented. Despite the large numbers of selective adenosine receptor agonists and 

antagonists reported in the literature, the clinical application of adenosine ligands is 

lacking. One reason for this may be the ubiquitous distribution of adenosine receptors 

and, consequently, the high possibility of side effects. In addition species differences in 

the affinity in selective ligands complicate preclinical testing in animal models.13, 18       

Other ways to affect and modulate ARs activity could be the use of allosteric 

enhancer of agonist action32-34 or the inhibition of adenosine metabolism35 or its 

extracellular uptake. In particular, the allosteric modulators could selectively amplify the 

effects of endogenous adenosine in an event-responsive manner, with a series of 

therapeutic advantages when compared with agonists acting on the orthosteric binding 

site.36, 37  
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3 SYNTHESIS AND BIOLOGICAL EVALUATION OF 1-PROPYL-8-
(PIPERAZINE-1-SOLPHONYL)PHENYL XANTHINES AS SELECTIVE 
ANTAGONISTS OF ADENOSINE A2B RECEPTORS.  

3.1 INTRODUCTION TO A2B RECEPTOR 

 

3.1.1 A2B receptor. Structure and therapeutic potential 

 

The preeminent role of adenosine A2B receptors have been recognized in the 

aetiology of several pathologic states. A2B are low affinity receptors that are thought to be 

activated when the extracellular adenosine concentration reaches micromolar levels.1 

Hence they are generally silent during normal physiological conditions, in which 

adenosine levels are very low. As a consequence of their low affinity for the endogenous 

ligand, A2B receptors have been considered, for a long time, less physiologically relevant 

than the high-affinity A2A receptors. However, the observation that the A2B receptors 

expression, as well as the high concentration levels reached by extra-cellular adenosine, 

are dramatically increased during low oxygen tension and inflammation, points out the 

relevance of this receptor subtype during pathophysiological conditions. Worth noting, 

A2B receptors are highly responsive to many mediators, which are also able to induce their 

expression at a transcriptional or post-transcriptional level.2 As an example it has been 

observed that different mediators, associated with inflammation, increase A2BAR 

expression.2 The pro-inflammatory cytokine TNF-  increased A2BAR transcription in 

several cell types, both in vitro and in vivo. It has been proposed that in vascular smooth 

muscle cells a TNF-  mediated increase in NAD(P) H oxidase enzymes is responsible for 

the upregulation of A2BAR expression.3, 4 In line with these studies, the pro-inflammatory 

cytokine, IL-1β, induced A2BAR transcription in endothelial cells. Finally, IFN-γ was 

demonstrated to increase A2BAR mRNA expression in macrophages, with a concurrent 

increased expression of the receptor on the cell surface.5 Interestingly, IFN-γ treatment of 

intestinal epithelial cells did not alter A2BAR cell-surface expression, suggesting that A2B 

receptor regulation, by inflammatory mediators, is likely to be cell-type specific.6  

As part of P1 receptor family, A2B are G protein-coupled receptors, whose 

stimulation can activate either adenylate cyclase or phospholipase C, through the 

activation of Gs and Gq proteins, respectively, or both of them simultaneously. Coupling to 

mitogen-activated protein kinases and the activation of membrane ion channels have also 

been described.7 The activation mechanism of membrane ion channels is not completely 

understood and could involve the βγ subunit of G proteins.8, 9  

Consistently with the structural studies deriving from the crystal of A2AAR, several 

structural features of A2BAR have been established. The topological structure is typical of 

GPCRs family A and is characterized by seven alpha-helical trans-membrane domains 
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(TM), connected each other by three extracellular (ELs) and three intracellular loops (ILs). 

The average sequence identity for the receptors subtypes of this family is  around 47% for 

each species and increases approximatively to 57% if only the TM domain is considered. 

The residues in the binding cavity involved in the ligand recognition are conserved among 

the AR subtypes. In the contest of ARs the major differences were found in the active site 

of A3. Importantly, the differences in aminoacid residues at the binding site are likely 

responsible of the ligand selectivity and reflect the unique pharmacologic profile of each 

adenosine receptor.9-11  

The wide expression of A2BARs on mast cells, lungs, bladder and on gastrointestinal 

tract accounts for the effects of their activation. Numerous evidences suggest that A2B 

receptors may play a role in different pathologic states among which asthma, diabetes, 

diabetic retinopathy and cancer are the most dissected,12 but additional therapeutic 

indications have been detected in the treatment of inflammatory pain and in the 

attenuation of neurodegenerative disorders, as Alzheimer disease.8 

The putative role of these receptors in asthma is supported by activation of this 

receptor in mast cells leading to degranulation, releasing of pro-inflammatory cytokines 

(e.g. interleukines IL-4, -8 and -13) and histamine.13 In addition, activation of these 

receptors on bronchial smooth muscle cells leads to the release of the inflammatory 

cytokines monocytic chemotactic peptide (MCP-1) and IL-6.14 A series of experiments 

described the A2B receptor-mediated release of pro-inflammatory cytokines from a 

number of cells and tissues, including bronchial smooth muscle and epithelial cells, lung 

fibroblasts, and intestinal epithelial cells.9 It was demonstrated that activation of the 

A2BAR promotes the differentiation of human fibroblasts into myofibroblasts via IL-6 

release, resulting in airway remodelling, which is known to play an important role in the 

pathophysiology of inflammatory airway diseases.15 A2B antagonists are also proved to 

attenuate the release of IL-19 from human bronchial epithelial cells and to prevent the 

secretion of IL-13 from mouse bone marrow-derived mast cells.8, 12 These evidences led 

CVT 6883, an A2B AR antagonist, in phase I clinical trial for the development of an anti-

asthma drug (CV Therapeutics).14 Moreover, studies in animals models show that A2B 

antagonists may reduce airway reactivity and inflammation in allergic asthma.14 However, 

since activation of A2B receptors on human bronchial epithelial cells (HBECs) may have an 

important function in the CFTR-Cl- (Cystic fibrosis transmembrane conductance regulator) 

channel control, A2B antagonists may reduce airway hydration, promoting secretion 

inspissation, mucus overproduction and plugging in patients with asthma. Although this 

effect of A2B antagonists on airway hydration and mucus viscosity in asthmatics has not 

been demonstrated, it could be a limit for safety and efficacy of this class of drugs in 

asthmatic patients.13 

As adenosine is an ubiquitous metabolic sensing molecule, it is not surprising that 

the activation of its receptors is implicated in different aspects of glucose homeostasis.16 

In this respect, different findings outlined that A2B antagonists and/or mixed A2B/A1 
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antagonists may be useful in the treatment of diabetes. Some studies demonstrated that 

adenosine agonist analogues, NECA (non-selective), CPA (A1 selective) and CGS-21680 

(A2A selective) stimulate glucose production from rat hepatocytes, with NECA having the 

most pronounced effect.17, 18 High affinity A2B antagonists block NECA-induced glucose 

production in rat hepatocytes, although the compounds do not have high selectivity over 

A1AR and A2AAR.18 In a separate study, the inhibition of glucose production was proved to 

have better correlation with the A2BAR affinity.19 A non-selective high affinity A2B 

antagonist was shown to lower plasma glucose following oral dosing (10 and 30 mg/kg 

bodyweight) in a mouse model of non-insulin-dependent diabetes mellitus (NIDDM), KK-

Ay mice.19 However, due to the low selectivity of the antagonists used in the study, the 

role of A2B  antagonism has not been defined absolutely.12, 16 Interestingly, an elevated 

gene expression of A2BAR has been found in women with gestational diabetes mellitus 

(GDM), a pathology characterized by chronic insulin resistance and pancreatic β-cell 

dysfunction.16, 20 The overexpression of A2B receptors on maternal leukocyte has been 

associated with a series of complex alterations in the expression of diabetes-related 

genes involved in insulin action, carbohydrate and lipid metabolism, oxidative stress and 

inflammation. Therefore, the higher expression of this receptor could reflect the elevated 

plasma glucose level in diabetic patients.16, 21  

The involvement of A2B receptors has also been demonstrated in some pathologic 

conditions related to diabetes, like diabetic nephropathy and diabetic retinopathy.16 The 

pathophysiologic mechanisms of diabetic nephropathy are not yet completely 

understood. Since the diabetic nephropathy is mediated by the modulation of vascular 

endothelial growth factor (VEGF)-nitric oxide (NO) balance in renal tissue,  the adenosine 

signalling has been suggested as a target for a possible therapeutic intervention. As 

reported in some studies, A2B receptors regulate VEGF expression under normoxic and 

hypoxic conditions in different tissues.22 In particular, it has been observed that the renal 

content of A2BARs and VEGF was increased after 8 weeks of diabetes induction whilst the 

renal and plasma NO levels were reduced in these  animals, suggesting that adenosine 

signalling might be the critical event in regulating VEGF-NO axis in diabetic nephropathy.22 

These data attribute a protective role for antagonists toward VEGF-induced diabetic 

glomerulopathy. It is important to highlight that the role of A2B agonists and antagonists 

as potential treatment of this condition is still controversial. In fact, in contrast with these 

results, other studies demonstrated that CD73-dependent production of adenosine 

attenuates the diabetic nephropathy acting on endothelial A2B receptors.16 

Proliferative diabetic retinopathy is a process involving the human retinal 

endothelial cells (HREC). During the pathogenic process, ischaemic events lead to new 

vessel formation and disruption of normal vasculature, which are driven by the activation 

of A2BARs.23 A further confirmation on the role of A2B receptors is given by the increase in 

VEGF-mRNA in HRECs caused by NECA, which is then blocked by A2BAR antisense 

oligonucleotides.12, 16  
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A recent study showed that A2BAR knockout mice exhibit attenuated tumour growth 

and decreased levels of VEGF in the tumours after inoculation with Lewis lung carcinoma 

when compared to wild-type mice, pointing at the involvement of A2BAR activation in the 

neovascularization of tumours.24 The release of VEGF was increased by the nonselective 

agonist NECA but not by the A2A-selective agonist CGS-21680 (2-p-(2-carboxyethyl) 

phenethylamino-5′-N-ethylcarboxamidoadenosine), whereas a combination of NECA and 

the selective A2BAR antagonist did not show this effect, indicating that A2B antagonists 

might have the potential to inhibit tumour vascularization.25 With regards to certain 

cancers, researchers at CV Therapeutics suggest that labelled antibodies directed against 

the A2BAR are potentially useful tools in detecting and possibly preventing the 

angiogenesis associated with gliomas, colon cancer and solid tumours.8, 12  

As caffeine is known to have intrinsic anti-nociceptive properties when used in 

combination with NSAID’s or opiates, Müller et al.26 explored the anti-nociceptive effects 

of selective adenosine antagonists in a hot-plate test, and A2B  antagonists were found to 

possess the best anti-nociceptive effects. Furthermore, an A2B AR antagonist was found to 

synergise with morphine for an enhanced anti-nociceptive effect in the same manner as 

caffeine.26 

Finally, another potential application of A2B antagonists might be the attenuation of 

neurodegenerative disorders, such as Alzheimer disease, in which the neurodegeneration 

process could be in part related to A2BAR-mediated IL-6 release in human astrocytoma 

cells.8 

Considering the social impact of the pathologic states in which A2B receptors are 

involved, both in terms of health care costs and life quality of patients, is obvious that 

further efforts are needed for the development of high selective agonists and antagonists 

that could be proposed as useful pharmacologic tool for the fundamental research and/or 

as drugs candidates.  

 

3.1.2  A2B receptor. Agonists and antagonists 

 

Due to its clinical relevance, significant efforts were dedicated to the development 

of A2BAR interacting compounds and, over the last years, large progresses have been 

made in the identification of high affinity A2B agonists and antagonists.27 

Based on the good results obtained for the other adenosine receptor subtypes, the 

starting point for the synthesis of agonists were the endogenous agonist adenosine. 

Despite the high number of adenosine analogues synthesized and investigated for their 

ability to activate A2B receptors, the non-selective NECA (5’-N-ethylcarboxamido 

adenosine) and its derivative (S)-PHP NECA show the highest affinity. However, the most 

active compound synthesized so far as A2B agonist belong to a class of non-ribose 

derivatives, known as dicarbonitrilepyridines.27 
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By contrast, different classes of antagonists, including xanthines, 

pyrrolopyrimidines, triazoles, aminothiazoles, and quinazolines derivatives, have been 

identified. Notably, each class possesses compounds endowed with both high affinity and 

selectivity for the adenosine A2B receptor, but among these, xanthines have been the 

most extensively studied compounds.27 

The natural xanthine derivatives caffeine and theophylline act as nonselective 

antagonists on adenosine receptors, particularly on A1, A2A and A2B subtypes. Some 

synthetic xanthine derivatives, with the exception of the theophylline (which is a naturally 

occurring product), are reported in Figure 3.1.28 Theophylline (1), which has 9 μM affinity 

for the A2BAR, displays no selectivity against the other adenosine receptors. Enprofylline 

(2), a 3-propyl-xanthine derivative has moderate A2B affinity and low selectivity over the 

other AdoRs. However, further structural explorations of this scaffold by several groups 

lead to the discovery of 8-phenylxanthines as selective A2BAR antagonists. Among these, 

different 8-phenylxanthine derivatives, including a p-cyanoanilide derivative MRS-1754 

(3) of Jacobson et al.29 and a negatively charged PSB-1115 (4) of Müller et al.30 stand out 

as selective A2B antagonists. To address the metabolic stability of MRS-1754 (3) in human 

liver microsomal enzymes, Zablocki et al.31 synthesized CVT-5440 (5), in which the 

metabolically labile amide group present in 3 has been substituted with a oxadiazole 

bioisoster group. Compound 5 demonstrated good affinity for the A2BAR, selectivity over 

the other AdoRs and improved in vitro metabolic stability with respect to compound 3. 

However, a very low systemic exposure in rats has been observed when this compound 

were dosed orally, presumably due to low solubility.
28   
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Figure 3.1. Prototypical xanthine-derived A2BR antagonists.
28

 

 

Starting from these evidences, different research groups explored various 

substitutions to achieve selective and high affinity A2B antagonists. As an example, the 

bioisosteric replacement of the phenyl group at the position 8 with different heterocycles 

led to the discovery that 8-(pyrazol-4-yl)xanthines are characterized by a good affinity for 

A2B receptors. The prototypical compound 1,3-dipropyl-8-(1H-pyrazol-4-yl)xanthine (CVT-

5450) showed high affinity but very low selectivity. The most encouraging data with 

respect to this compound was the high systemic exposure after oral dosing in rat. 

Therefore, different structural modifications have been made on the 8-(pyrazol-4-

yl)xanthine to increase the selectivity.32 This optimization process included: 

1. the insertion of an aromatic group on the pyrazole ring, obtaining different 

compounds among which the benzylic derivatives showed the best selectivity value 

compared to the phenyl, phenethyl, and phenpropyl derivatives. A further modification of 

benzylic group, introducing the electron withdrawing groups F and CF3 at the meta-

position increased the selectivity toward the A2B AdoR. 

2. Replacing the 1,3-dipropyl groups of the xanthine core with various alkyl 

groups like methyl, ethyl, butyl, and isobutyl groups suggested that smaller alkyl groups 

relative to propyl increase the A2B AdoR affinity and selectivity compared to the large 

groups.  

3. Investigation of the monosubstitution at the N-1 position of the 8-pyrazolyl 

xanthine provided A2B AR antagonists with very high affinity and selectivity. For example, 
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the compound CVT-7124 (1-propyl-8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-

xanthine) displays high A2B affinity (6 nM) and very good selectivity. Observation in the 8-

phenyl xanthine series of compunds demonstrated that the monosubstitution at the N-1 

position of the xanthine core enhances the A2BAR selectivity.27, 28, 32 

Similarly to 8-(pyrazol-4-yl)xanthines, several xanthine derivatives were synthesized 

and improved in terms of affinity and selectivity. Even though substituted xanthine 

derivatives show the most promising combination of high affinity and selectivity, they 

often show poor water solubility and thus low oral bioavailability. Thus, a further 

optimization of this scaffold is required to obtain new compounds with enhanced 

pharmacokinetic properties.8, 27, 28 

 

3.2 SYNTHESIS OF 1,8-SUBSTITUDED XANYHINES AS SELECTIVE ANTAGONISTS 

OF A2BAR.  

 

3.2.1 Structural features and synthetic pathway 

 

Since the majority of the non-xanthine A2B antagonists developed so far is 

characterized by only moderate selectivity toward other AdoR subtypes, this work focuses 

on the synthesis of xanthine-based A2B antagonists. Taking into account a pharmacophore 

model developed by Yan et al.,33 the aim of this study is to develop high-affinity A2B 

antagonists endowed with high selectivity in humans as well as in rodents. 33This model, 

reported in Figure 3.2, has been obtained by the structural comparison of the most active 

A2B antagonists and is characterized by a xanthine- or, less frequently, a deazapurine-

central core and an aromatic portion linked each other by a long spacer (7-10 atoms 

long), consisting in a cyclic, aromatic or non-aromatic portion with a hydrogen bond 

acceptor.  

 

 
Figure 3.2. Pharmacophore model for the synthesis of high-affinity A2B antagonists.

33
 

 

The central core bears a hydrogen bond acceptor and a hydrogen bond donor in C6-

oxygen and N7-hydrogen of xanthine moiety, respectively. The positions 1 and 3 of this 

core may be substituted with alkyl residues that can fill two lipophilic pockets found in 

AdoRs. In particular, small alkyl substituent (propyl, ethyl and methyl) at position 1 

proved to increase A2BAR affinity, whereas additional alkylation at position 3 led to a 

decrease in A2BAR affinity and an increase in A1 and A2AARs affinity. Several studies 
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demonstrated that the lipophilic propyl residue in position 1 is the best one for enhancing 

A2BAR affinity. Position 8 is substituted with the spacer, which is further connected to an 

aromatic  residue. Therefore, taking 1-propyl-8-p-sulphophenylxanthine, PSB-1115, 

(Figure 3.1, compound 4) as a lead structure, several structural features were found.8, 33 

More in detail: 

1. The central core is a 1-propyl-xanthine derivative. In this portion 

unsubstituted N-3 and N-7 are also important for the receptor interaction. 

2. The spacer, tied to the central core in position 8 of xanthine moiety, 

consists in an aromatic ring, bearing a sulphonamidic group in position 4. The insertion of 

a sulfamidic group in this position may improve the bioavailability with respect to the lead 

compound PSB-1115. In this compound, the sulphonic acid group in the aromatic spacer 

seems to contribute to the high selectivity at A2B over the other AdoRs. Additionally, it 

contributes to the high water-solubility, which makes PSB-1115 a useful tool for in vivo 

studies. However, the polar character of free sulphonic acid groups (deprotonated under 

physiological conditions) is associated with a poor per-oral bioavailability. Thus, the 

introduction of a basic piperazine, which can be protonated under physiological 

conditions, improves water solubility. Importantly, the connection of piperazine via 

sulphonamidic bond leads to a sterically restricted spacer.33  

These structural features are reported in Figure 3.3.  

 

 
Figure 3.3. Structural feature of synthesized compounds. 

 

Starting from this previous study, and considering the importance of the aromatic 

portion, this work is focused on the synthesis of different derivatives in which the 

influence of substituted-phenyl and -benzyl piperazine is analysed, both in terms of 

affinity and selectivity for A2B receptors. 

Based on the abovementioned pharmacophore model, different compounds have 

been synthesized according to the procedure depicted in Scheme 3.1.  
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The synthetic procedure is divided in several steps, including: 

1. the synthesis of precursors 1-propyl-5,6-diaminouracil and 4-(p-

nitrophenoxysulphonyl) benzoic acid; 

2. the amide coupling between 1-propyl-5,6-diaminouracil and 4-(p-

nitrophenoxysulphonyl) benzoic acid; 

3. the ring closure, leading to the xanthine formation; 

4. the aminolysis of p-nitrophenylsulphonates with substituted 4-phenyl- or 

benzyl-piperazine.  
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Scheme 3.1. General scheme of reaction 
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Substituted 5,6-diaminouracil and 4-(p-nitrophenoxysulphonyl) benzoic acid were 

obtained according to following procedures. 

The precursor 3-propyl-6-aminouracil (2) is obtained via a regioselective synthesis 

starting from commercially available 6-aminouracil. During this reaction, the silyation 

with HMDS (hexamethyldisilazane) enables specific alkylation of the uracil N3-position of 

6-aminouracil, leading to 1-propyl-6-aminouracil.34 After nitrosation at the uracil 5-

position (affording derivative 3)35 and subsequent reduction, 5,6-diamino-3-propyluracil 

(4) was obtained. This derivative is unstable towards oxidation and therefore has to be 

freshly prepared each time before performing the subsequent amide coupling reaction.  

Amide coupling was performed reacting 1-propyl-5,6-diaminouracil with 4-(p-nitro-

phenoxysulphonyl)benzoic acid (7), using EDC (N-(3-(dimethylamino)-propyl)-N′-

ethylcarbodiimide) as condensing agent to yield amides (8).36 Compound 7 was obtained 

by a two steps methodology. In particular, the required 4-(chlorosulphonyl)benzoic acid 

(5) can be obtained starting from the corresponding sulphonic acid potassium salt, which 

is converted to 5 using chlorosulphonic acid. In the following step, 5 is reacted with para-

nitrophenol forming 6. Introduction of the p-nitrophenyl substituent (connected via a 

sulphonic acid ester bond) is necessary to insert a good leaving group which activates the 

sulphonate group for nucleophilic substitution.33 

Ring closure to the corresponding xanthine derivatives was achieved by heating 

with polyphosphoric acid trimethylsilyl ester (PPSE), obtaining compound 9. In case of N-

propyl-substitution, PPSE (trimethylsilyl polyphosphate) proved to be the best reagent.  

The final sulphonamides were obtained in the last step by aminolysis of p-

nitrophenylsulphonates with substituted 4- phenyl or benzylpiperazine. Substituted 4-

phenylpiperazine were commercially available, while 4-benzylpiperazine were obtained 

via reductive amination using sodium triacetoxyboro hydride, starting from boc-protected 

piperazine and an excess of the required benzaldehyde. The subsequent deprotection 

using TFA give the expected compound.37 The reaction is reported in the Scheme 3.2, 

while Table 3.1 reports the used benzaldheydes. 

 

 

N

H
N
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O H

R

NaBH(OAc)3

DCE

N

N
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R

TFA NH

N
R
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Scheme 3.2. General scheme for the synthesis of benzylpiperazines 
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Table 3.1. Substituted benzaldheydes: group R in scheme 3.2. 

Benzaldehydes (R) 

 
3-

methoxybenzaldehyde 

 
 

 
4-fluoro-3-

methoxybenzaldehyde 

 
 

 
3-fluoro-5-

methoxybenzaldheyde 

 

 
4-bromo-3-

fluorobenzaldeyde 

 

 

The procedure for the final step (aminolysis of the p-nitrophenylsulphonate) was 

carried out using DMSO as a solvent at 160-170°C. The formation of yellow-coloured side-

products during the final coupling step was observed in all cases. The nature of these 

coloured compounds were elucidated in a previous study, indicating that two competing 

reaction for the nucleophilic substitution of the p-nitrophenylsulphonates are possible 

(Figure 3.4): 

1. The  nucleophilic attack at the sulphur atom leading to S-O bond cleavage; 

2. The nucleophilic attack at the 1-carbon atom of the phenyl ring resulting in 

C-O bond cleavage.  
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Figure 3.4. Nucleophilic substitution of p-nitrophenylsulfonate. 

 

For the aminolysis of p-nitrophenylsulphonate, predominant S-O bond cleavage is 

desirable, while C-O bond cleavage results in reduced yields. Mechanistic investigations 

by Choi et al.38 pointed to several possibilities to influence S-O or C-O bond cleavage (e.g. 

substitution of the sulphur and/or the phenol ester moiety, nucleophile and solvent). 

Importantly, several investigation suggested an important influence of the solvent on S-O 

versus C-O bond. However, in most cases both pathways are likely to occur. In addition to 

this side reaction, the formation of several by-products are observed and has been 

related to high temperatures.8, 33 

The synthetic pathway adopted for the synthesis of compound JJ1533 (Table 3.2) 

differs from the procedures previously indicated. In this specific case, the use of a 

protected piperazine in the last step (aminolysis reaction) is necessary. However, the 

deprotection reaction of nitrogen in position 4 of piperazine, necessary to obtain the final 

product, is a critical step. In fact, the use of strong conditions can lead to hydrolysis of the 

sulphonamide group, with a drastic reduction of the yields. For this reason, the synthesis 

was carried out using N-acetylpiperazine, instead Boc-piperazine, that requires mild 

hydrolysis conditions. The used conditions are reported in the section 3.4.2.6.  

Final compounds  were subsequently purified by reverse-phase high performance 

liquid chromatography (RP-HPLC). All the synthesized xanthine-8-yl-

benzenesulphonamides are reported in Table 3.2. 

The structures of final products were confirmed by mass spectrometry employing 

electron spray ionization (ESI) and by 1H and 13CNMR spectroscopy. Purity was 

determined by RP-HPLC analysis coupled to UV detection at 254 nm and found to be 

higher than 95% in all cases. 
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Table 3.2. Structure of synthesized compounds. 
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3.2.2  Results and discussion 

While maintaining the optimized xanthine core structure, a set of new compounds 

was synthesized, introducing different aromatic portions in position 4 of piperazine. 

These newly synthesized compounds should contribute to extend the understanding of 

structure-activity relationships for the class of xanthine derivatives and, in particular, the 

influence of phenyl and benzyl substituent in the piperazine moiety. Since each 

compound bear different substituents in these aromatic portions, a deeper analysis of 

pharmacological results enables to obtain more detailed information about the nature 

and/or position of substituent in the aromatic portion. As only a part of the synthesized 

compounds has been tested, it is not possible to provide a detailed analysis of structure-

activity relationships of these compounds. 
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Therefore, the activity of JJ1520 and JJ1521 is shown in Table 3.3 and Table 3.4, 

respectively, and compared to the activity of other compounds, previously synthesized in 

the same laboratory. The data reported in these tables show the affinity values (Ki, μM) 

obtained in a competitive radioligand binding assay. 

The activity of JJ1520, bearing a methyl group in position 4 of the piperazine, has 

been compared with an unsubstituted 4-phenylpiperazine and the 4-benzylpiperazine. 

The obtained data indicates that the presence of an aromatic group in this position 

enhance the affinity for A2B receptor, further confirming the pharmacophore model 

predictions. In addition, the different activities of 4-phenyl and 4-benzyl piperazine 

suggest an influence of the length of the spacer between these two moieties. 

 

Table 3.3. JJ1520 activity compared to the activity of other compounds, previously 

synthesized, with Ki expressed in μM. 

Compounds Receptors 

N

N
H

N

H
N

O

O

H3C

S

O
O

R
 

A
1
AR 

(human 
recombinant) 

[
3
H]CCP

A 

A
2A

AR 
(human 

recombinant) 
[

3
H]MS

X-2 

A
2B

AR 
(human 

recombinant) 
[

3
H]PSB

-603 

A
3
AR 

(human 
recombinant) 

[
3
H]PSB

-11 

JJ1520 

N N CH3

 

 

334 ± 109 
 

140 ± 91 
 

48.2 ± 10.9 
 

>1000 

N N

 

 
364 ± 57 

 
122 ± 32 

 
0.643± 0.035 

 
>1000 

N N

 

 
 

2,067 ± 261 

 
 

484 ± 115 

 
 

3.6 ± 0.4 

 
 

>1000 

 

  

The compound JJ1521, instead, presents in the position 4 of the piperazine a 2-

fluorophenyl group and is compared with halogenated structural analogues, having a p-

fluorophenyl and a p-chlorophenyl in position 4 of piperazine moiety. For this set of 

compounds is possible to observe that chlorine is the best substituent and the para 

position is the preferred one. 
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Table 3.4. JJ1521 activity compared to the activity of other compounds, previously 

synthesized, with Ki expressed in μM. 

Compounds Receptors 

N

N
H

N

H
N

O

O

H3C

S

O
O

R
 

A
1
AR 

(human 
recombinant) 

[
3
H]CCP

A 

A
2A

AR 
(human 

recombinant) 
[

3
H]MSX

-2 

A
2B

AR 
(human 

recombinant) 
[

3
H]PSB

-603 

A
3
AR 

(human 
recombinant) 

[
3
H]PSB

-11 

JJ1521 

N N

F

 

 

>1000 
 

>1000 
 

3.22 ± 1.39 
 

>1000 

N N F
 

 
>1000 

 
108 ± 25 

 
0.644 ±0.154 

 
>1000 

N N Cl
 

 

>10000 
 

>10000 
 

0.553 
 

>10000 

 

3.3 CONCLUSIONS 

 

In this work a series of xanthine derivatives were synthesized as high affinity A2B 

antagonists. Some of synthesized compounds (JJ1520 and JJ1521) were tested in a 

competition radioligand binding assay, confirming the structural features predicted in the 

pharmacophore model. A further step toward the understanding of the structure-activity 

relationships will be obtained following the biological results of each compound of this 

series. The critical analysis of these results will be essential to define the structural 

features required to further refine the affinity and selectivity for A2BAdoR. 
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3.4 EXPERIMENTAL SECTION  

 

3.4.1  Materials and methods 

 

All the materials, reagents and solvents, if not specified, were purchased from 

commercial suppliers and used without any further purification.  

Each reaction and purification method were monitored using Thin Layer 

Chromatography (TLC), using precoated Merk Silica gel 60 254F. Detection was carried 

out using UV light at 254 nm and 366 nm.  

Purification methods were performed by  chromatographic columns for precursors, 

when needed, and by HPLC for final compounds. Chromatographic columns were 

performed using Silica gel, while preparative HPLC was performed on a Knauer HPLC 

system using a Wellchrome K-1800 pump, a WellChrome K-2600 spectrophotometer, and 

a Eurospher 100 C18 column (250 mm × 20 mm, particle size 10 μm). A gradient of 

methanol in water was used as indicated below with a flow rate of 20 mL/min.  

Melting points (Mp) were measured using a Buchi 530 apparatus and are 

uncorrected. 

The 1H and 13CNMR spectra of synthesized compounds were recorded  either on a 

Bruker Avance 500 MHz or on a Bruker Ascend™ 600 MHz spectrometer, using 

tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in ppm, with 

the use of a δ scale,  and the coupling constants J in Hz. 

To determine purity and identity of final compounds and precursors, mass spectra 

were recorded on an API 2000 (Applied Biosystems, Darmstadt, Germany) mass 

spectrometer (turbo spray ion source) coupled with an Agilent 1100 HPLC system 

(Agilent, Böblingen, Germany). The standard method uses a gradient of water : methanol 

90:10 to 0:100 with triethylamine as addictive. The UV absorption was detected from 

190-900 nm using a diode array detector (DAD). The purity of all compounds was 

determined at 220-400 nm. 

 

3.4.2 Chemistry and structural characterization 

 

The general method of reaction for the synthesis of 1-propyl-8-(piperazine -1-

sulphonyl)phenylxanthines and 1-propyl-8-(benzylpiperazine -1-

sulphonyl)phenylxanthines has been discussed in the Section 3.2.1. In this paragraph a 

more detailed overview of the synthesis of each compound will be provided. 
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Synthesis of 1-propyl-5,6-diamino uracil  

 

Synthesis of 6-amino-3-propyl-uracil 

A mixture of 4-(6)-aminouracil (1 mmol), ammonium sulfate (0.03 mmol) and 

1,1,1,3,3,3-hexamethyldisilazane, HMDS, (2.4 mmol) was heated at 190°C until the 

solution was clear, obtaining a brown solution. The solution was cooled (65°C) and 1-

iodopropane (1.5 mmol) was added. Then the solution was heated for other 2 hours at 

125°C. The viscous solution was cooled in an ice bath and a saturated solution of sodium 

hydrogen carbonate (200 ml) was gradually added. In this way the viscous residue turned 

into a suspension. The resulting brown precipitate was collected by filtration, washed 

with water, dried and directly used for the next step. 

Light brown powder; Yield 85%; MW 169.18 g/mol  
1H NMR (600 MHz, DMSO-d6): δ 10.26 (s, 1H, -NH), 6.13 (s, 2H, -NH2) 4.53 (s, 1H, -

CH), 3.59 (t, 2H, -CH2CH2CH3), 1.45 (m=6, 2H, -CH2CH2CH3), 0.80 (t, 3H, -CH2CH2CH3) 
13C NMR (151 MHz, DMSO-d6): δ 162.98, 153.94, 150.92, 74.71, 40,61, 21.57, 11.56. 

 

Synthesis of 6-amino-5-nitroso-3-propyluracil 

A solution of 6-amino-3-propyl-uracil (1 mmol) in aq AcOH 50% was prepared 

heating at 70-80°C. The mixture was stirred until it became a clear solution. Then sodium 

nitrite (1.5 mmol) was added in small portions over a period of 20 minutes, leading to the 

formation of a suspension. The mixture was heated (70-80°C) for 30-45 minutes and 

cooled at room temperature. The orange precipitate was separated by filtration under 

reduced pressure, washed with 200 mL of water and then dried. 

Orange solid; Yield 91%; MW 198.18 g/mol 
1H NMR (600 MHz, DMSO-d6): δ 11.45 (s, 1H, -NH), 7.92(s, 2H, -NH2), 3.79 (t, 2H,-

CH2CH2CH3), 1.59 (m=6, 2H, -CH2CH2CH3), 0.89 (t, 3H, -CH2CH2CH3) 
13C NMR (151 MHz, DMSO): δ 161.32, 149.28, 144.22, 41.59, 21.27, 11.17. 

 

Synthesis of 5,6-diamino-3-propyluracil 

A mixture of 5,6-diamino-propyl-uracil (1 mmol) in aqueous ammonia solution 

12,5% was heated at 70°C, observing the formation of a red clear solution. A huge 

amount of sodium dithionite (2.8 mmol) was added in small portions over a period of 20 

minutes, until the solution became colourless. The reaction was monitored with TLC 

(DCM/MeOH 3:1, Rf=5.4). The solution was cooled at room temperature and 

concentrated to obtain a solid. The solid was filtered obtaining a light yellow powder. The 

obtained compound is not stable, thus it was dried (ca. 30’) and directly used for the next 

step.  

Light yellow solid; Yield 73%; MW 184.2 g/mol 
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Synthesis of 4-[(4-nitrofenoxy)sulphonyl]benzoic acid 

 

Synthesis of 4-(chlorosulphonyl)benzoic acid 

Chlorosulphonic acid (10.7 mmol) was slowly added to p-sulphobenzoic acid 

potassium salt (1 mmol) while the temperature was kept below 30°C using an ice bath. 

The mixture turned gradually to a clear solution and was stirred overnight at room 

temperature. The solution was carefully added in a beaker containing chipped ice. In this 

way a white precipitate was obtained. Such precipitate was then filtered and washed with 

250 mL of cold water. The dried solid was directly used for the next step without any 

further purification. 

White solid; Yield 60%; MW 220.63 g/mol  

 

Synthesis of 4-[(4-nitrofenoxy)sulphonyl]benzoic acid 

A solution of 4-(chlorosulphonyl)benzoic acid  (1 mmol) in  THF was slowly added to 

a second solution of p-nitrophenol (1 mmol) in THF and tris HCl buffer using an injection 

pump (6 mL/h). The pH value of the solution was kept around 8-9 by the addition of a 

solution of NaOH 2,5N.  

After stirring at room temperature (at least for other 2 h) the pH value of solution 

was decreased to 7, adding of a solution of HCl 1N and THF was removed under reduced 

pressure . The product of the reaction precipitated when the aqueous solution was 

further acidified to pH 1. The precipitate was collected by filtration and dried over 

vacuum pump. 

White solid; Yield 86%; MW 323.28 g/mol 
1H NMR (600 MHz, DMSO-d6): δ 13.70 (bs, 1H, -COOH), 8.26 (d, 2H, aromatic, Jo=9, 

Jm=3), 8.17 (d, 2H, aromatic, Jo=8.4), 8.02(d, 2H, Aromatic, Jo=8.4), 7.35 (d, 2H, aromatic, 

Jo=9, Jm=3) 
13C NMR (151 MHz, DMSO-d6) δ 165.97, 153.25, 146.25, 137.59, 137.21, 131.18, 

128.84, 126.21, 123.89. 

 

Synthesis of 4-nitrofenil-4-[(6-amino-2,4-dioxo-3-propyl-1,2,3,4-

tetrahydropyrimidin-5-yl) carbamoyl] benzenesulphonate 

 

A solution of  5,6-diamino-3-propyluracil (1 mmol), 4-[(4-

nitrofenoxy)sulphonyl]benzoic acid (1.03 mmol) and 1-ethyl-3-(3-

dimethylaminopropyl)carbodimide, EDC, (1.3 mmol) was stirred for at least 5 h at room 

temperature, using methanol as a solvent. The mixture was stirred under Argon 

atmosphere obtaining a light yellow suspension. The precipitate was filtered obtaining a 

sticky product. The product was washed with water and dried over vacuum pump, 

obtaining a light yellow powder. 

Light yellow solid; Yield 45%; MW 489.46 g/mol  
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LC/MS: positive mode (m/z)=490.4 [M+H]+;  Purity 68% 

 

 Synthesis of 4-nitrofenil-4-(2,6-dioxo-1-propyl-2,3,6,7-tetrahydro-1H-purin-8-

yl)benzenesulphonate 

A mixture of compound 4-nitrofenil-4-[(6-amino-2,4-dioxo-3-propyl-1,2,3,4-

tetrahydropyrimidin-5-yl)carbamoyl]benzenesulphonate (8) (1 mmol) and trimethylsilyl 

polyphosphate, PPSE, (four times the weight of compound 8) was stirred for 1 hour at 

170°C, obtaining a clear solution. After cooling at room temperature, a small amount of 

methanol was added, leading to the formation of a precipitate. The solid was separated 

by filtration, washed with  methanol and dried over vacuum pump. The reaction product 

was purified by chromatography, using DCM/MeOH in gradient, starting from  a mixture 

12:1 as eluent. 

White solid; Yield 67%; MW 471.44 g/mol 

LC/MS: positive mode m/z=472.3 [M+H]+;  Purity 99% 
1H NMR (600 MHz, DMSO-d6): δ 14.12 (s, 1H, -NH), 11.97 (s, 1H, -NH), 8.34 (d, 2H, -

CH aromatic, Jo=8,4), 8.26 (d, 2H, -CH aromatic, Jo=9.5), 8.03(d, 2H, -CH aromatic, Jo=8.4), 

7.38 (d, 2H, -CH aromatic, Jo=9.5), 3.82 (t, 2H, -CH2CH2CH3), 1.57 (m=6, 2H, -CH2CH2CH3), 

0.87 (t, 3H, -CH2CH2CH3). 
13C NMR (151 MHz, DMSO-d6): δ 155.07 (-C6xanth.), 153.22 (-C2xanth.), 151,13 (-

C8xanth.), 147.77 (-C4xanth.), 147.47 (-C aromatic), 146.33 (-C aromatic), 135.02 (-C 

aromatic), 134.29 (-C aromatic), 129.25 (-CH aromatic), 127.49 (-CH aromatic), 126,04 (-

CH aromatic), 123.61 (-CH aromatic), 108.96 (-C5xanth.), 41.66 (-CH2CH2CH3), 20.99 (-

CH2CH2CH3), 11.34 (-CH2CH2CH3). 

 

Synthesis of 4-benzylpiperazines  

 

Boc-piperazine (1 mmol) and a benzaldehyde (1 mmol) were mixed in 1,2-

dichloroethane and treated with sodium triacetoxyborohydride (1.3 mmol). The mixture 

was stirred overnight at room temperature and under Argon atmosphere. The reaction 

was stopped adding aqueous saturated Sodium hydrogen carbonate (NaHCO3) and the 

product was washed with a saturated solution of Sodium Chloride (NaCl), then dried with 

Magnesium Sulphate (MgSO4). The solvent was evaporated to give an oily sample for the 

column. 

To a solution of boc-benzylpiperazine (1 mmol) in  dichloromethane, trifluoro acetic 

acid, TFA, (10 mmol) was added dropwise, while the temperature was kept at 0°C using 

an ice bath. The reaction was stirred vigorously overnight. The mixture was poured in 

25mL of water. The aqueous layer was collected and treated with a saturated solution of 
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NaHCO3 to adjust the pH to 8. Then the mixture was extracted with DCM (3x30mL). The 

organic layer was treated with MgSO4 and concentrated to obtain the expected product. 

 

1-(3-methoxybenzyl)piperazine 

Yellow-orange liquid; Yield 83%; MW 206.28 g/mol 

LC/MS: positive mode m/z=207 [M+H]+; Purity 95% 
1H NMR (600 MHz, chloroform-d): δ 7.21 (t, 1H, -CH aromatic, Jo1,2=7.8), 6.86 (m, 

2H, -CH aromatic), 6.80 (dd, 1H,-CH aromatic, Jo=8; Jm=2.4), 3.78 (s, 3H, -OCH3), 3.53 (s, 

2H, -CH2), 3.17 (bs, 4H, -CH2 piperazine), 2.70 (bs, 4H, -CH2 piperazine). 
13C NMR (151 MHz, chloroform-d): δ 159.87, 129.55 (-CH aromatic), 121.32 (-CH 

aromatic), 114.32 (-CH aromatic), 113.05 (-CH aromatic), 62.42 (-CH2), 55.18 (-OCH3), 

49.45 (-CH2 piperazine), 43.47 (-CH2 piperazine). 

 

1-(4-fluoro-3-methoxybenzyl)piperazine 

White solid; Yield 94%; MW 224.27 g/mol; Mp 90-92°C 

LC/MS: positive mode m/z=225 [M+H]+; Purity 95% 
1H NMR (600 MHz, chloroform-d): δ 7.00 (dd, 1H, -CH aromatic, JoH-H=8.4; JoH-

F=11.4), 6.92 (dd, 1H, -CH aromatic, Jo=7.8; Jm=1.2), 6.79-6.77 (m, 1H, -CH aromatic), 3.87 

(s, 3H, -OCH3), 3.49 (s, 2H, -CH2), 3.16 (bs, 4H, -CH2 piperazine), 2.67 (bs, 4H, -CH2 

piperazine). 
13C NMR (151 MHz, chloroform-d): δ 152.66, 150.99, 121.03(-CH aromatic), 115.69 

(-CH aromatic), 113.72 (-CH aromatic), 62.02 (-CH2), 56.19 (-OCH3), 49.50 (-CH2 

piperazine), 43.52 (-CH2 piperazine). 

 

1-(3-fluoro-5-methoxybenzyl)piperazine 

White solid; Yield 90%; MW 224.27 g/mol; Mp 97-99°C 

LC/MS: positive mode m/z=225 [M+H]+; Purity 92% 
1H NMR (600 MHz, chloroform-d): δ 6.63-6.61 (m, 2H, -CH aromatic), 6.51 (dt, 1H, -

CH aromatic, Jm=1.8 and 2.4; JoH-F=10.8), 3.77 (s, 3H, -OCH3), 3.49 (s, 2H, -CH2), 3.18 (bs, 

4H, -CH2 piperazine), 2.69 (bs, 4H, -CH2 piperazine). 
13C NMR (151 MHz, chloroform-d): δ 164.51, 162.89, 161.08, 110.21 (-CH aromatic), 

107.63 (-CH aromatic), 100.52 (-CH aromatic), 62.30 (-CH2), 55.97 (-OCH3), 49.64 (-CH2 

piperazine), 43.63 (-CH2 piperazine). 
 

1-(4-bromo-3-fluorobenzyl)piperazine 

White solid; Yield 88%; MW 272.03 g/mol; 82-85°C 

LC/MS: positive mode m/z= 272.9 [M+H]+; Purity 91% 
1H NMR (600 MHz, chloroform-d): δ 7.47-7.44 (m, 1H, -CH aromatic), 7.09 (d, 1H,-

CH aromatic, Jo=8.4), 6.95 (d, 1H,-CH aromatic, Jo=8.4), 3.47 (s, 2H, -CH2), 3.09 (bs, 4H, -

CH2 piperazine), 2.61 (bs, 4H, -CH2 piperazine). 
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13C NMR (151 MHz, chloroform-d): δ 159.93, 158.29, 139.52, 133.80 (-CH aromatic), 

125.82 (-CH aromatic), 116.72 (-CH aromatic), 61.57 (-CH2), 50.90 (-CH2 piperazine), 44.26 

(-CH2 piperazine). 
 

Synthesis of 1-propyl-8-(piperazine-1-sulphonyl)phenyl xanthine and 1-propyl-8-

(benzylpiperazine-1-sulphonyl)phenyl xanthine derivatives  

 

Final compounds were obtained reacting 4-nitrofenil-4-(2,6-dioxo-1-propyl-2,3,6,7-

tetrahydro-1H-purin-8-yl)benzenesulphonate with an excess of a proper substituted 

piperazine (3 eq. for the substituted benzylpiperazines and 1.5 eq. for all other 

piperazines). The reaction was performed using the minimum amount of anhydrous 

DMSO as a solvent and heating, under argon atmosphere, at 160-170°C at least for three 

hours. It is worth noting that the lower reactivity of benzylpiperazines requires the use of 

longer reaction times (10-12h). 

 The obtained solution was cooled at room temperature and the reaction product 

was precipitated by the addition of water. The solid was washed with methanol and or 

acetonitrile to facilitate the subsequent purification step. The purification was carried out 

by HPLC, using as eluent a mixture of water and methanol as a gradient. Since the poor 

solubility in this mixture, each final product required a small amount of triethylamine to 

be solubilized in water and methanol (ratio H2O/MeOH/triethylamine 1:1:0.01).  

After the reaction each compound was submitted to LC/MS analysis, to verify the 

formation of the expected reaction product. 

(JJ1517) 8-(4-(4-(3-methoxybenzyl)piperazin-1-ylsulphonyl)phenyl)-1-propyl-3,7-

dihydropurine-2,6-dione  

White solid; MW 538.62 g/mol; Mp >350°C  

LC/MS: positive mode m/z=539.4 [M+H]+; negative mode m/z= 537.19 [M-H]-; Purity 

97%  
1H NMR (600 MHz, DMSO-d6): δ 14.03 (bs, 1H, -NH), 11.95 (bs, 1H, -NH), 8.33 (d, 

2H, -CH aromatic, Jo=8.4), 7.84 (d, 2H, -CH aromatic, Jo=8.4), 7.17 (t, 1H, -CH aromatic, 

Jo=7.8), 6.79-6.76 (m, 3H, -CH aromatic), 3.82 (t, 2H, -CH2CH2CH3), 3.68 (s, 3H, -OCH3), 

3.42 (s, 2H, -CH2), 2.94 (bs, 4H, -CH2 piperazine), 2.42 (bs, 4H, -CH2 piperazine), 1.58(m=6, 

2H, -CH2CH2CH3), 0.87 (t, 3H, -CH2CH2CH3). 
13C NMR (151 MHz, DMSO-d6): δ 159.38, 155.11, 151.10, 148.24, 147.77, 139.44, 

135.84, 133.22, 129.35 (-CH aromatic), 128.40 (-CH aromatic), 127.09 (-CH aromatic), 

121.02 (-CH aromatic), 114.35 (-CH aromatic), 112.53 (-CH aromatic), 109.13, 61.71 (-

CH2), 55.00 (-OCH3), 51.59 (-CH2 piperazine), 46.33 (-CH2 piperazine), 41.97 (-CH2CH2CH3), 

21.27 (-CH2CH2CH3), 11.54 (-CH2CH2CH3). 
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(JJ1520) 8-(4-(4-methylpiperazine-1-sulphonyl)phenyl)-1-propyl-3,7-

dihydropurine-2,6-dione 

White solid; MW 432.5 g/mol; Mp 338-339°C  

LC/MS: positive mode m/z=433.4 [M+H]+; negative mode m/z=431.15 [M-H]-;  Purity 

99% 
1H NMR (500 MHz, DMSO-d6): δ 14.12 (s, 1H, -NH, nd), 11.88 (bs, 1H, -NH), 8.31 (d, 

2H, -CH aromatic, Jo=8.5), 7.83 (d, 2H, -CH aromatic, Jo=8.5), 3.82 (t, 2H, -CH2CH2CH3), 2.93 

(bs, 4H, -CH2 piperazine), 2.35 (t, 4H, -CH2 piperazine), 2.12 (s, 3H, -CH3), 1.57 (m=6, 2H, -

CH2CH2CH3), 0.87 (t, 3H, -CH2CH2CH3). 
13C NMR (126 MHz, DMSO-d6): δ 155.24, 151.11, 151.13, 148.36, 147.77, 135.71, 

133.59, 128.31, 126.96, 109.30, 53.77 (-CH2 piperazine), 46.16 (-CH2 piperazine), 45.45 (-

CH3), 41.58 (-CH2CH2CH3), 21.01 (-CH2CH2CH3), 11.31 (-CH2CH2CH3). 

(JJ1521) 8-(4-(4-(2-fluorophenyl)piperazine-1-sulphonyl)phenyl)-1-propyl-3,7-

dihydropurine-2,6-dione 

White solid; MW 512.56 g/mol; Mp 339-341°C 

LC/MS: positive mode m/z=513.4 [M+H]+; negative mode m/z=511.15  Purity 97%  

NMR data for this compound are not available. 

(JJ1522) 8-(4-(4-(3-fluorophenyl)piperazine-1-sulphonyl)phenyl)-1-propyl-3,7-

dihydropurine-2,6-dione 

White solid; MW 512.56 g/mol; Mp 338-340°C  

LC/MS: positive mode m/z=513.4 [M+H]+; negative mode m/z=511.15 [M-H]-; Purity 

96% 
1H NMR (600 MHz, DMSO-d6): δ 14.01 (bs, 1H, -NH), 11.94 (s, 1H, -NH), 8.33 (d, 2H, 

-CH aromatic, Jo=8.4),  7.88 (d, 2H, -CH aromatic, Jo=8.4), 7.20-7.16 (m, 1H, -CH aromatic), 

6.71 (m, 2H, -CH aromatic), 6.56-6.53 (m, 1H, -CH aromatic), 3.81 (t, 2H, -CH2CH2CH3), 

3.26 (bs, 4H, -CH2 piperazine), 3.05 (bs, 4H, -CH2 piperazine), 1.57 (m=6, 2H, -CH2CH2CH3), 

0.87 (t, 3H, -CH2CH2CH3). 
13C NMR (151 MHz, DMSO-d6): δ 164.09, 162.49, 155.14, 152.24, 151.09, 135.57, 

133.43, 130.46, 128.71, 127.12, 111.66, 105.86, 102.94, 102.48, 47.59 (-CH2 piperazine), 

45.57 (-CH2 piperazine), 41.53 (-CH2CH2CH3), 21.15 (-CH2CH2CH3), 11.56 (-CH2CH2CH3). 

(JJ1523) 8-(4-(4-(3-bromophenyl)piperazine-1-sulphonyl)phenyl)-1-propyl-3,7-

dihydropurine-2,6-dione 

White solid; MW 573.46 g/mol; Mp 322-324°C  

LC/MS: positive mode m/z= 575.3 [M+H]+; negative mode m/z=573.07;  Purity 98% 
1H NMR (500 MHz, DMSO-d6): δ 14.02 (bs, 1H, -NH), 11.93 (s, 1H, -NH), 8.33 (d, 2H, 

-CH aromatic, Jo=8.4),  7.88 (d, 2H, -CH aromatic, Jo=8.4), 7.12 (t, 1H, -CH aromatic, Jo1-

2=8.5), 7.04 (s, 1H, -CH aromatic), 6.92 (d, 1H, -CH aromatic Jo=8.5), 6.89 (d, 1H, -CH 

aromatic, Jo=8.5), 3.82 (t, 2H, -CH2CH2CH3), 3.26 (bs, 4H, -CH2 piperazine), 3.05 (bs, 4H, -

CH2 piperazine), 1.57 (m=6, 2H, -CH2CH2CH3), 0.87 (t, 3H, -CH2CH2CH3). 
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13C NMR (126 MHz, DMSO-d6): δ 155.33, 151.88, 150.98, 148.12, 147.70, 135.84, 

133.34, 131.14, 128.61, 127.20, 122.73, 121.87, 118.38, 114.94, 47.43 (CH2 piperazine), 

46.02 (-CH2 piperazine), 41.49 (-CH2CH2CH3), 21.23 (-CH2CH2CH3), 11.31 (-CH2CH2CH3). 

(JJ1532) tert-butyl 4-(4-(2,6-dioxo-1-propyl-2,3,6,7-tetrahydro-1H-purin-8-

yl)phenylsulphonyl)piperazine-1-carboxylate 

White solid; MW 518.59 g/mol; Mp 340°C 

LC/MS: positive mode m/z=519.2 [M+H]+; negative mode m/z=517.18 [M-H]-; Purity 

99% 
1H NMR (500 MHz, DMSO-d6): δ 14.00 (bs, 1H, -NH), 11.94 (s, 1H, -NH), 8.35 (d, 2H, 

-CH aromatic, Jo=8.4), 7.85 (d, 2H, -CH aromatic, Jo=8.4), 3.82 (t, 2H, -CH2CH2CH3), 3.39 (t, 

4H, -CH2 piperazine), 2.91 (t, 4H, -CH2 piperazine), 1.58 (m=6, 2H, -CH2CH2CH3), 1.32 (s, 

9H, -CH3 tert-buthyl), 0.87 (t, 3H, -CH2CH2CH3). 
13C NMR (126 MHz, DMSO-d6): δ 155.20, 153.51, 151.01, 147.86, 147.70, 135.90, 

133.40, 128.55(-CH aromatic), 127.05 (-CH aromatic), 79.46, 45.84 (-CH2 piperazine), 

41.62 (-CH2CH2CH3), 28.14 (-CH3 tert-butyl), 20.99 (-CH2CH2CH3), 11.31 (-CH2CH2CH3). 

(JJ1533) 8-(4-(piperazin-1-ylsulphonyl)phenyl)-1-propyl-3,7-dihydropurine-2,6-

dione 

Final compound JJ1533 was obtained reacting 4-nitrofenil-4-(2,6-dioxo-1-propyl-

2,3,6,7-tetrahydro-1H-purin-8-yl)benzenesulphonate (1 mmol) with N-acetyl-piperazine 

(1.5 mmol) in DMSO, heating for 3 hours, under Argon atmosphere, at 160°C. The 

solution was cooled at room temperature. A solid was obtained after the addition of 

water. This solid was filtered out and analysed by LC/MS. The acetyl derivative was 

deprotected by aqueous sodium hydroxide 2M, heating in ethanol for eight hours. 

White solid; MW 418.47 g/mol; Mp >350°C 

LC/MS: positive mode m/z=419.3 [M+H]+; negative mode m/z=417.13 [M-H]-; Purity 

97%;  
1H NMR (500 MHz, DMSO-d6): δ 8.35 (d, 2H, -CH aromatic, Jo=8.4), 7.87 (d, 2H, -CH 

aromatic, Jo=8.4), 3.82 (t, 2H, -CH2CH2CH3), 3.07-2.89 (m, 8H, -CH2 piperazine), 1.58 (m=6, 

2H, -CH2CH2CH3), 0.88 (t, 3H, -CH2CH2CH3). 
13C NMR (126 MHz, DMSO-d6): δ 155.13, 151.08, 148.07, 147.69, 135.40, 133.48, 

128.48 (-CH aromatic), 127.12 (-CH aromatic), 108.96, 44.72 (-CH2 piperazine), 43.46 (-CH2 

piperazine), 41.62 (-CH2CH2CH3), 20.99 (-CH2CH2CH3), 11.31 (-CH2CH2CH3).   

(JJ1534) 8-(4-(4-(4-fluoro-3-methoxybenzyl)piperazin-1-ylsulphonyl)phenyl)-1-

propyl--3,7-dihydropurine-2,6-dione 

White solid; MW 556.61 g/mol; Mp >350°C 

LC/MS: positive mode m/z=557.3 [M+H]+; negative mode m/z=555.18 [M-H]-; Purity 

98%  
 1H NMR (500 MHz, DMSO-d6): δ 14.01 (bs, 1H, -NH), 11.94 (bs, 1H, -NH), 8.33 (d, 

2H, -CH aromatic, J= 8.3), 7.84 (d, 2H, -CH aromatic, J= 8.3), 7.07 (t, 1H, -CH aromatic, JoH-

F=9.5), 6.98 (d, 2H, -CH aromatic, JoH-H=7.5), 6.78 (s, 1H, -CH aromatic), 3.82 (t, 2H, -
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CH2CH2CH3), 3.75 (s, 3H, -OCH3), 3.42 (s, 2H, -CH2), 2.95 (bs, 4H, -CH2 piperazine), 2.42 (bs, 

4H, -CH2 piperazine), 1.58 (m=6, 2H, -CH2CH2CH3), 0.88 (t, 3H, -CH2CH2CH3). 
13C NMR (126 MHz, DMSO-d6): δ 155.04, 151.07, 148.12, 147.05, 135.99, 134.56, 

133.13, 128.39 (-CH aromatic), 127.11 (-CH aromatic), 120.95 (-CH aromatic), 115.55 (-CH 

aromatic), 114.22 (-CH aromatic), 108.63, 61.10 (-CH2), 56.05 (-OCH3), 51.76 (-CH2 

piperazine), 46.04 (-CH2 piperazine), 41.63 (-CH2CH2CH3), 20.89 (-CH2CH2CH3), 11.39 (-

CH2CH2CH3). 
(JJ1535) 8-(4-(4-(3-fluoro-5-methoxybenzyl)piperazin-1-ylsulphonyl)phenyl)-1-

propyl-3,7-dihydropurine-2,6-dione 

White solid; MW 556.61 g/mol; Mp >350°C 

LC/MS: positive mode m/z=557.3 [M+H]+; negative mode m/z=555.18 [M-H]-; 

Purity=100% 
1H NMR (500 MHz, DMSO-d6): δ 13.99 (bs, 1H, -NH), 11.93 (bs, 1H, -NH), 8.32 33 (d, 

2H, -CH aromatic, J= 8.3), 7.83 33 (d, 2H, -CH aromatic, J= 8.3), 6.66-6.60 (m, 3H, -CH 

aromatic), 3.82 (t, 2H, -CH2CH2CH3), 3.70 (s, 3H, -OCH3), 3.42 (s, 2H, -CH2), 2.96 (bs, 4H, -

CH2 piperazine), 2.43 (bs, 4H, -CH2 piperazine), (m=6, 2H, -CH2CH2CH3), 0.88 (t, 3H, -

CH2CH2CH3).  
13C NMR (126 MHz, DMSO) δ 164.03, 162.17, 160.74, 155.16, 151.10, 148.36, 

147.72, 141.48, 135.87, 133.36, 128.35 (-CH aromatic), 127.05 (-CH aromatic), 110.63 (-

CH aromatic), 107.13 (-CH aromatic), 100.18 (-CH aromatic), 61.06 (-CH2), 55.64 (-OCH3), 

51.98 (-CH2 piperazine), 46.14 (-CH2 piperazine), 41.83 (-CH2CH2CH3), 21.41 (-CH2CH2CH3), 

11.32 (-CH2CH2CH3). 
(JJ1536) 8-(4-(4-(4-bromo-3-fluorobenzyl)piperazin-1-ylsulphonyl)phenyl)-1-

propyl-3,7-dihydropurine-2,6-dione 
White solid; MW 605.48 g/mol; Mp >350°C 

LC/MS: positive mode m/z=605.1 [M+H]+; negative mode m/z=376.11 [M-H]-; 

Purity=98% 
1H NMR (600 MHz, DMSO-d6): δ 14.02 (bs, 1H, -NH), 11.94 (bs, 1H, -NH), 8.33 (d, 

2H, -CH aromatic, J= 8.4), 7.84 (d, 2H, -CH aromatic, J= 8.4), 7.58 (t, 1H, -CH aromatic, 

Jo=7.8), 7.21 (d, 1H, -CH aromatic,JoH-F=10.2), 7.04 (d, 1H, -CH aromatic, Jo=8.4) , 3.82 (t, 

2H, -CH2CH2CH3), 3.46 (s, 2H, -CH2), 2.95 (bs, 4H, -CH2 piperazine), 2.43 (bs, 4H, -CH2 

piperazine), 1.58 (m=6, 2H, -CH2CH2CH3), 0.88 (t, 3H, -CH2CH2CH3).  
13C NMR (151 MHz, DMSO-d6): δ 159.09, 157.46, 155.14, 151.09, 148.23, 147.76, 

140.78, 133.28 (-CH aromatic), 128.39 (-CH aromatic), 127.06 (-CH aromatic), 126.31 (-CH 

aromatic), 116.78 (-CH aromatic), 116.63, 106.29, 106.16, 60.04 (-CH2), 51.48 (-CH2 

piperazine), 46.07 (-CH2 piperazine), 41.61 (-CH2CH2CH3), 21.05 (-CH2CH2CH3), 11.32 (-

CH2CH2CH3).  
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