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II. Abstract 

Pain is a pathological disease that constitutes one of the most 
important problems of public health. Epidemiological studies showed 
that about 20% of the Europe population is affected by moderate or 
chronic pain. This data highlighted the gigantic impact of this 
problem not only in the suffering people but also in term of costs for 
public health. The classes of drugs most used today in the treatment 
of pain are NSAIDs and opioids. Unfortunately, both have important 
side effects specially when used in chronic treatment. Therefore, the 
research of new drugs which exploiting new targets that have an 
analgesic effect without the side effects is important.  
This thesis describes the design, synthesis and biological activity of 
compounds which have potential analgesic activity by their action on 
three different pathways involved in pain information transmission. 

1. The first class of compounds, are amide derivatives of the 
principal NSAIDs or correlated molecules, they are designed 
to be able to interact with the endocannabinoid system. In 
particular, described compounds were designed and tested as 
inhibitors of FAAH, the principal enzyme involved on the 
metabolization of endocannabinoids. The aim was to cause an 
increase of the endocannabinoids concentration which leads 
to analgesic effect by the potentiation of the 
endocannabinoid tone. Some of the studied compounds 
showed inhibitory activity against FAAH at micromolar to 
nanomolar concentrations. 

2. The second class of compounds were designed to interact 
with prokineticin system. Numerous studies highlighted the 
involvement of this system in different physiological 
processes including nociception. Activation of these receptors 
on the neurons on the pain pathways produces hyperalgesic 
effects. Therefore, the development of prokineticin receptor 
antagonists could be a new strategy for pain therapy.  
Compounds described in this thesis are endowed with 
triazinedione structure.  A new synthetic procedure was set 
up allowing yields up to 50% higher than reported for 
analogue compounds. The triazinediones showed in vivo 
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analgesic activity at picomolar concentrations and 
demonstrated antagonistic activity on prokineticin receptors. 

3. The third target on which the compounds reported in this 
thesis act is the channel-receptor TRPV1, which is an 
important component of pain information transmission 
pathways. TRPV1 opening causes an influx of positive ions 
inside the cell that lead to its depolarization and consequent 
propagation of the information on the upper levels. In this 
case then the block of this channel with antagonist or 
molecules that cause receptor desensitization could result in 
an analgesic effect. The above mentioned triazinediones 
demonstrated a modulatory activity component against 
TRPV1 receptor, which may explain at least in part their in 
vivo analgesic activity.  
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III. Riassunto 

Il dolore inteso nella sua forma patologica quindi non come 
strumento utile alla sopravvivenza dell’uomo è uno dei più 
importanti problemi legati alla salute pubblica. Studi epidemiologici 
hanno mostrato che il dolore, da moderato a cronico, è presente in 
circa il 20% della popolazione Europea. Questo dato mette in luce il 
grosso impatto che ha questo problema non solo sulla persona 
affetta da queste patologie ma anche in termini di costi per la sanità 
pubblica. Le classi di farmaci utilizzate al giorno d’oggi per questo 
problema sono principalmente due, i FANS e gli oppioidi, purtroppo 
entrambe presentano importanti effetti collaterali soprattutto legati 
al loro utilizzo in terapie croniche. Quindi la ricerca di nuovi target 
coinvolti nella mediazione dell’informazione dolorosa riveste un 
ruolo molto importante. 
In questa tesi vengono descritte la progettazione, la sintesi e l’attività 
biologica di composti che possiedono potenziali attività analgesiche 
in quanto agiscono su tre diverse vie implicate nella trasmissione del 
dolore. 
1. I primi composti, derivati ammidici dei principali FANS o di 

molecole correlabili, sono stati studiati per essere in grado di 
interagire con il sistema cannabinoide. In particolare i composti 
descritti sono stati progettati e testati come inibitori del 
principale enzima deputato alla metabolizzazione degli 
endocannabinoidi, la FAAH, con lo scopo di ottenere un effetto 
analgesico dovuto all’aumento dell’attività del sistema 
cannabinoide. Alcuni dei composti studiati hanno mostrato 
un’attività inibitoria nei confronti della FAAH variabile da 
micromolare a nanomolare.  

2. I secondi invece sono stati progettati per interagire con il sistema 
delle prokineticine. Numerosi studi hanno evidenziato il 
coinvolgimento di questo sistema in diversi processi fisiologici tra 
cui la nocicezione, infatti l'attivazione di questi recettori a livello 
dei neuroni delle vie del dolore ha effetti iperalgesici. Quindi lo 
sviluppo di antagonisti di questi recettori può essere una nuova 
strategia per il trattamento del dolore. I composti descritti in 
questa tesi aventi struttura triazinodionica sono stati ottenuti con 
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una nuova procedura sintetica che consente di ottenere i prodotti 
con rese fino al 50% superiori rispetto a quelle ottenute nella 
preparazione di composti analoghi. Nei saggi biologici questi 
composti hanno mostrato attività analgesica in vivo a 
concentrazioni picomolari.  I triazinodioni hanno dimostrato 
attività antagonista nei confronti dei recettori della prokineticina. 

3. Il terzo target su cui agiscono i composti riportati in questa tesi è 
il recettore canale TRPV1, importante componente delle vie di 
trasmissione dell’informazione dolorosa, la sua apertura causa 
infatti un influsso di ioni positivi all’interno della cellula che porta 
alla sua depolarizzazione e conseguente propagazione 
dell’informazione ai centri superiori. In questo caso quindi il 
blocco di questo canale con antagonisti o agonisti-desensitizzanti 
può risultare in un effetto analgesico. I triazinodioni sopra 
menzionati hanno dimostrato una componente di attività 
modulatoria nei confronti dei recettori TRPV1 che potrebbe 
almeno in parte essere responsabile dell’effetto analgesico 
mostrato nei saggi in vivo. 
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1. Pain 

1.1 Pain: Definition and physiological role  

An “unpleasant sensory and emotional experience associated with 

actual or potential tissue damage” is the definition of pain given by 

the International Association for the Study of Pain (IASP).1 This 

unpleasant sensation is also a fundamental component of animal 

lives. Without pain people would not be able to detect injurious 

stimuli, and would lose the ability to protect themselves from 

punctures of sharp objects or the heat of a flame. Also people would 

lose the ability to feel a body problem like the discomfort of bruising 

or a more important problem in a vital organ. A clear example of how 

pain is important for life is given by the greatly reduced life 

expectancy of people affect by the rare occurrence of congenital 

insensitivity to pain, in some of these people it has seen as they fail 

to engage in protective behavior against injuries they inflict on 

themselves.2 

Pain is not useful like an alert system only, the activation of the 

nociceptors by noxious stimuli, which is followed by alteration at 

several levels in the nociceptive pathways is fundamental for 

protecting the injured area. Such as increased blood flow and 

vascular permeability caused by the release of some neuropeptides 

from peripheral nerves activated by mechanism in the injured tissue 

which contribute to the healing process. Also the central nociceptive 

pathways may cause a temporary hyper-sensitization which produces 

enhanced pain and focused attention to the injured area.3 For 

example, after sunburn the affected area is subjected to a temporary 

sensitization, as results normally painful stimuli elicit pain of greater 

intensity (this phenomenon is call hyperalgesia). Even normally 

innocuous stimuli, such as warmth or light touch, are perceived as 

painful (this phenomenon is call allodynia). Allodynia is also present 

as component of the symptoms in the 15-50 % of patient affected by 
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neuropathic pain (that will be better explain below in section 1.2).  

This just described it is the “good” pain, the one needed to live safely 

and to avoid dangerous situations. But there is another one, the 

“bad” pain, that is generated by a wrong adaptation response to a 

nervous or not nervous tissue injure, in this case pain is no longer a 

defense mechanism but it became a pathology called Pain 

Syndrome.4 

The most representative type of “bad pain” is chronic pain, which is 

defined as pain experience for a period of about three to six months, 

which it is felt every day or almost every day. Actually this definition 

is not really exhaustive because it is not true that any pain that is not 

chronic is acute, there are some cases where either or neither are 

entirely satisfactory. 

The temporal aspect, alone, does not define entirely the difference 

between acute and chronic pain, their difference is more correlated 

to the body capacity or incapacity to restore the physiological 

conditions. Chronic pain is self-perpetuating because resulting from 

alterations in nociceptive pathways induced by a starting injure, and 

persists even when the noxious stimuli finish. 

Pain is one of the most important problems for public health; 

epidemiologic data indicate that in Europe about one person in five 

suffers from moderate or severe chronic pain; also almost 90% of 

these people have suffered of chronic pain for over two years, and 

about one in five for much longer periods even more than twenty 

years.5,6 Today in Europe and USA only neuropathic pain afflicts 

fifteen million. 

These numbers indicate the gigantic impact of pain not only for the 

afflicted people, but also for the society in term of costs for public 

health (about two hundred billion for year in Europe only).7 

In this sense it is evident that the research of new pain treatment has 

fundamental importance for several reasons, such as, first of all for 

the preclinical research to find more accurate and effective new 

therapeutic strategies to improve the life of the affected person, but 
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also for public health in the perspective of reduce costs of pain 

therapy, and last but not least for basic research focalized in 

understanding of pain mechanism. 

1.2 Pain: Classification 

On the base of its causes pain can be defined nociceptive, 

neuropathic, inflammatory or somatoform type.  

Nociceptive pain is the most common; it is the classic pain caused by 

tissue damage or by thermic, chemical or mechanical stimuli; it is 

generally proportional activation of nociceptors. Nociceptive pain can 

be divided in visceral or somatic pain; the first one concerns thoracic 

and abdominal organs, usually it is stronger than somatic pain and it 

can be delocalized respect to the organ, which causes pain, such as 

the arm pain during myocardial infarction. While somatic pain 

involves the nociceptors located in the musculoskeletal system, in the 

skin or in the joints; unlike that visceral it is well localized at the 

lesion site.8,9 

Neuropathic pain is caused by an injury or by a malfunction of 

nervous transmission. It can be provoked by an ectopic neuronal 

firing in the soma or axons, or it can be caused by peptides released 

after a nerve injury contributing to the inflammatory response. Lastly 

neuropathic pain can be caused by the inhibition of neuronal system 

involved in the transmission and modulation of peripheral stimuli.8 

Inflammatory pain, caused by a hyper-sensitization is due to an injury 

or an inflammatory process. The nerves of the sensory afferent 

pathways are sensitive to some inflammatory mediators such as 

bradykinin, prostaglandins and leukotrienes. The prolonged 

stimulation, by these mediators, of the nerves can cause peripheral 

and central sensitization, and modifications of the neuronal function 

that can results in chronic pain. Often is very difficult distinguish 
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between neuropathic and inflammatory pain because prolonged 

inflammation can cause neuronal damage that result in neuropathic 

pain. Likewise a neuronal damage can cause an inflammatory 

response that contributes to the appearance of inflammatory pain.10 

Somatoform pain has an important psychological component; 

patients feel a severe pain without the presence of a real injurious 

stimulus that causes it.11 

1.3 Pain transmission 

The pain transmission system is divided in two pathways; the 

ascending path, which sends the information of the pain stimulus to 

the brain, and the descending path, which can have either an 

antinociceptive and/or pro-nociceptive effect on the nociceptive 

afferents.12 

The two pathways are controlled by numerous chemical mediators, 

which can act directly on ionic channels and/or on metabotropic 

receptors that are connected with intracellular second messengers. 

These processes regulate the activation of nociceptors, favoring or 

disfavoring, the progression of the pain information.  

Moreover, the excitability of the afferent fibers can be modified also 

by DNA regulation, resulting in receptors, ionic channels and enzymes 

synthesis and expression. In fact their gene transcription is regulated 

by the information sent to the cell soma of sensory neurons.13 
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1.3.1 Ascending pathways  

The pain sensation, like others, begins by the activation of a specific 

kind of peripheral nerves. 

These nerves are located 

under the skin and in the 

internal organs. There are 

different afferent fibers; 

some respond to stimuli 

at low intensity to 

mediate innocuous 

sensations like a touch or 

a feeling of sensations of 

heat and cold. Others, 

those have a higher 

activation threshold, 

respond to more intense 

stimuli coding for the noxious information. The fibers mediating the 

painful information are called nociceptors, they respond quickly and 

selectively to different kind of stimuli, mechanic, thermal and 

chemical, that have a sufficient intensity to cause tissue damage 

(Figure 1). 

Nociceptors can be classified in two major classes based on 

physiological criteria such as the conduction speed.3 One type, fast 

conducting myelinated, called A fibers, the other type slow 

conducting with small caliber and un-myelinated, called C fibers. 

These can be further divided on the basis of the response 

characteristic and receptors involved.14 

The C fibers respond to severe mechanical and thermal stimuli 

(CMHs) such as temperatures higher than 45° C. The majority of 

these fibers also respond to chemical stimuli, for this reason they are 

considered polymodal. 

Figure 1. Ascending Pathways. 
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The A fibers are divided in two major classes, Awith medium 

diameter axons that mediate acute, well-localized pain. The A with 

larger diameter and rapid conductivity respond to innocuous 

mechanical stimuli. 

The Afibers are divided in two main classes. Type I, high-threshold 

mechanical nociceptors (HTMs), which respond to both mechanical 

and chemical stimuli and have high heat thresholds (>50°C), it is 

important to note that they sensitize in the site of tissue injury. 

Conversely Type II A nociceptors have much lower heat threshold, 

but very high mechanical threshold.15 

From the nerve terminals the pain sensation is sent to the cell body 

located in the dorsal root ganglia (DRG) of the spinal cord. In 

particular C fibers ending in the upper layers at the level of laminas I 

and II; whereas A fibers ending more in depth, up to lamina V.16 

The depolarization of these fibers produces immediate release of 

glutamate, which binding its postsynaptic inotropic receptor, AMPA, 

causes in turn depolarization of the next neuron on the dorsal horn. 

Then the information is distributed by projection neurons, mainly 

located in laminas I, II and V, to supraspinal centers by five major 

ascending pathways17: 

1. Spinothalamic. It includes axons coming from laminas I and V and 

terminate in thalamic nuclei after crossing the midline of the spinal 

cord and ascending in the anterolateral white matter. Evidence 

suggests that this pathway mediates information about intensity and 

location of pain.18 

2. Spinoreticular. It consists in the axons of projection neurons in 

laminas VII and VIII, it terminates in both the reticular formation and 

the thalamus after passing through the anterolateral quadrant of the 

spinal cord, without crossing the midline.19 This tract may be involved 

in the affective-motivational aspect of pain; it can also be involved on 

the nervous activity related on somatic and autonomic motor 

reflexes. Moreover, the descending projection of reticular formation 
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of the raphe nuclei may have effect on the inhibitory control of the 

incoming painful information. 

3. Spinocervical. This tract begins in laminas III and IV of the dorsal horn, 

passes through the lateral white matter of the upper two cervical 

segments of spinal cord. The majority of the axons crosses the 

midline and ascends in the medial lemniscus of brainstem, ending in 

midbrain nuclei and in the ventroposterior lateral and posteromedial 

nuclei of thalamus. Some other neurons send their axons into the 

dorsal columns and terminate in the cuneate and gracile nuclei of the 

medulla. This pathway for the majority mediates tactile stimuli and 

just a few noxious stimuli. 

4. Spinomesencephalic. Neurons of laminas I and V project to the lateral 

part of periaqueductal grey (PAG) and to other mesencephalic 

structures. The axons of this tract pass through the anterolateral 

quadrant of the spinal cord. They also project to parabrachial 

nucleolus, which projects, in turn, to the amygdala, an important 

nucleus of the limbic system that regulates emotional states.20,21 

5. Spinohypothlamic. It includes the axons of neurons with soma in 

laminas I, V and VIII of the dorsal horn, these axons project to 

hypothalamic nuclei. It mediates the autonomic control of 

neuroendocrine and cardiovascular response that accompanies pain 

syndromes.22 

Another important supraspinal center is rostral ventromedial 

medulla, that as well as PAG, is a connection point between 

ascending and descending pathways. 23 

This extensive distribution of pain information in the brain is the 

reason of the pain experience complexity, which included sensory, 

emotional, and motor components.17 

On dorsal horn, thalamus, medulla, reticular and cortical there are 

numerous neurotransmitter systems implicated on the regulation of 

the excitatory inputs. Evidences suggest that electrical stimulation of 

the ascending pathways, causes the release of mediators of 
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nociception: encephalin,24 norepinephrine and serotonin25 on both 

spinal and brainstem. 

Interneurons releasing peptides or monoamines and peptides 

operated medulla-spinal pathway are activated by afferent inputs 

and can modulate the peptides release from C fibers. Some other 

modulators implicated in this circuit are prostanoids and nitric oxide 

(NO) that caused an increase of the Ca2+ conductance on the dorsal 

horn and consequent increase release of substance P (SP).26-28 

1.3.2 Descending pathways 

These pathways have 

modulatory role of the 

pain sensation (Figure 2), 

in the spinal cord acting 

both on the postsynaptic 

projected neurons and on 

the dorsal horn 

interneurons. They are 

also responsible of the 

integration among 

sensitive, cognitive, 

emotional and 

motivational sensation 

with afferent nociceptive information.29 Direct and indirect circuits 

from hippocampus, cortex, thalamus, rostral ventral medial medulla 

(RVM) and PAG are involved in this system. 

This system is critical to regulate the pain sensation and can have 

both excitatory and inhibitory effect.  

From a long time the importance of PAG nucleus is well known, in 

1969 Reynolds demonstrated that electric stimulation of this area has 

enough analgesic effect allowing to perform an abdominal surgery 

without the animal showing any distress sign.30  

Figure 2. Descending Pathways. 
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PAG projects pain information in an area of the brainstem called 

magnocellular nucleus of Raphe (MNR), from here the nerve 

pathways end in the spinal cord. Here the projected neurons, by 

serotonin secretion, modulate the inhibitory activity of encefalinergic 

interneurons at the gelatinous substance. At this level the activity of 

inhibitory interneurons is regulated by the “gate control theory”. This 

control mechanism is influenced by fibers of small and large caliber; 

in particular Afibers inhibit the transmission (close the gate), 

conversely Aand C fibers facilitate the transmission (open the 

gate).31 PAG is also connected to another important structure, the 

locus ceruleous, where noradrenergic neurons come from. These 

project their axons on the dorsal horn and here, by the activation of 

2 presynaptic receptors, cause the inhibition of pain transmission.32 

1.4 Pain: Modulators involved in pain transmission 

In each of the nucleolus mentioned above many mediators are 

involved in the modulation of pain information transmission. 

1.4.1 Glutamate 

Subsequently to the activation of the nociceptors, glutamate is 

released on the dorsal horn, here it binds AMPA receptors (AMPAR) 

on the projected neurons membrane and causes diffusion of the pain 

information. If the single noxious stimuli is prolonged in time or the 

stimuli are more than one the dorsal horn neurons became more 

responsive. This process is caused by increased depolarization of the 

postsynaptic membrane and consequent removal of the block of the 

NMDA receptor (NMDAR) by the action of glutamate, on both 

inotropic NMDA and metabotropic MGluR receptors.33 

Both AMPA and NMDA are also present in further positions of the 

nociceptive pathway; NMDARs have been identified on both 

unmyelinated and myelinated axons in peripheral somatic tissues, 
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after their activation and consequent influx of ions (Na+ and Ca2+) the 

pain information is sent to spinal cord.34 

The central sensitization is caused mostly by the increased excitability 

of the dorsal horn neurons and, as a consequence, its response to 

sensory input is facilitated. Then even low-intensity stimuli generate 

pain (allodynia) and noxious stimuli result in pain response that is 

augmented in duration and amplitude (hyperalgesia). Evidences have 

demonstrated the involvement in allodynia and hyperalgesia of 

dorsal horn NMDAR, suggesting a role for NMDAR even in 

supraspinal sensitization mediation. Indeed, increase NMDAR activity 

caused hyper-excitability of brainstem circuit.35 

Also AMPA receptor is expressed in DRG cell bodies and in both 

unmyelinated and myelinated sensory nerves,34,36 suggesting that 

glutamate release acting on peripheral AMPARs may contribute to 

the initiation of nociceptive signaling.37  

On the dorsal horn of spinal cord, in particular on laminas I e II, 

evidences suggest the dual activity of glutamate receptors, one 

mediated by NMDA receptors located on the postsynaptic neurons 

which send the pain information on the brainstem,38 the other 

mediated by the AMPARs located on primary afferents which inhibit 

glutamate release.39 

As for NMDARs also AMPA receptors are expressed ubiquitously in 

brain regions associated with nociception.40 These receptors, 

probably, mediate the rapid excitatory transmission between many 

nodes within the ascending nociceptive pathways, such as input from 

sensory neurons in the spinal cord to brainstem and thalamus, as 

well as from thalamic neurons to sensory cortex. They are implicated 

also in descending pathways from amygdala and anterior cingulate 

cortex to PAG and RVM. Descending inhibitory inputs to sensory 

neurons in the spinal cord come from PAG and RVM.41 
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1.4.2 Bradykinin and Kallidin 

Two potent pro-nociceptive agents derive from a precursor protein 

termed kininogen, they are the nona-peptide bradykinin and its 

related deca-peptide kallidin. Two receptors have been identified for 

these peptides, namely B1 and B2.42 B1 and B2 receptors belong to the 

family of G protein coupled receptors (GPCRs), most of knowledge 

about the biochemical mechanism of these receptors are related to 

the B2 but they appear to utilize similar signal transduction 

mechanism.  

 
Figure 3. Schematic representation of bradykinin (BK) most important signal transduction mechanism in nociceptive 

sensory neurons. 

There are two major differences between these receptors; the first 

regards the affinity of the peptides, they act preferentially on the B2, 

the other is that B2 receptors are largely constitutive instead the B1 

are induced by tissue trauma, inflammation and nerve injury.43 

Studies demonstrated the presence of these receptors also in the 
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spinal cord and even in higher center, which contribute with those in 

periphery to generate pain and hyperalgesia.44 

The bradykinin signaling mechanism system is very complicated and 

connected with various other systems as shown in Figure 3. 

With the activation of the receptor by bradykinin and subsequent 

activation of the G protein, different intracellular processes begin, 

one signaling mechanism is mediated by the activation of 

phospholipase C (PLC), which by the cleavage of phosphatidylinositol 

4,5-bisphosphate (PIP2) produces an increase of the levels of the 

second messengers inositol 1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG). The last one activates the protein kinase C 

(PKC), which causes, through PKC-mediated phosphorylation of ion 

channels, an influx of ions like Na+, K+ and Ca2+, these ion influxes on 

DRG neurons result in membrane depolarization and subsequent 

signal transmission to the next level. 45 The increase of intracellular 

Ca2+ concentration is mediate also by PLC-activation, that by 

interaction between IP3 and its endoplasmic reticulum (ER) receptors 

produces Ca2+ release from the intracellular stores.46  

Another effect of the influx of extracellular Ca2+ is DAG 

metabolization of by DAG lipase with consequent release of 

arachidonic acid (AA)45, additionally the binding of bradykinin to B2 

receptors causes the activation of phospholipase A2 (PLA2), through 

Gi protein, that result in further AA formation in sensory neurons.47 

AA release leads to production of prostanoids and leukotrienes by 

specific enzymes; the hyper-sensitization effect of these AA 

metabolites will be discussed in the next section. 

Activation of B1 and B2 receptors has also effects on some TRP 

channels, which have considerable importance in pain transmission. 

In particular, the activity of three channel receptors is mediated by 

bradykinin, Transient receptor potential cation channel subfamily V 

(Vanilloid) member 1 (TRPV1), Transient receptor potential cation 

channel, subfamily A (Ankyrin) member 1 (TRPA1) and Transient 
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receptor potential cation channel subfamily M (Melastatin) member 

8 (TRPM8). 

TRPV1, also known as capsaicin receptor, is located on polymodal 

nociceptive primary afferent neurons; it is a nonselective cation 

channel that can be activated also by noxious stimuli, like heat 

(temperature > 43°C), and low pH. TRPV1 is activated also by 

endogenous compounds such as N-arachidonoyl dopamine (NADA)48 

and anandamide (AEA)49 or exogenous molecules like capsaicin.50 The 

channel activation results in two mainly important events, one is the 

membrane depolarization, the other is the release of neuropeptides 

like SP and calcitonin gene-related peptide (CGRP), caused by the Na+ 

and Ca2+ influx respectively.  

In the cascade of second messengers induced by the activation of 

bradykinin receptor two are the pathways that interact with TRPV1; 

one is related to the conversion of the AA by the enzyme 

lipoxygenase (LOX) in products that active the TRPV1,51 the other is 

mediated by the B2 receptor-PLC-PKC signaling pathway.52  

Contrary to the TRPV1, TRPM8 is activated by cold (temperature < 

25°C) and chemicals like menthol and eucalyptol, which induce a 

cool/soothing sensation.53 The activation of bradykinin receptor has 

inhibitory effect on TRPM8, probably due to dephosphorylation of 

the channel by a PKC-activated protein phosphatase.54 

Cold is also responsible of the TRPA1 channel activation, as well as 

endogenous substances and exogenous chemicals like mustard oil. 

Also bradykinin, with its second messengers cascade,55 can activate 

channels and allow the influx of Na+ and Ca2+ ions producing the 

same effects due to the TRPV1 activation.  

Different second messengers produced by the activation of B2 may 

cause up-regulation of TRPA1. DAG, produced by the breakdown of 

PIP2 PLC-mediated, and AA are two of these. Another pathway 

leading to the activation of TRPA1 is mediated by the cAMP-PKA 

cascade due to the activation of receptor B2 coupled with Gs 

protein.56 
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These are just some of the most important bradykinin mediate pain 

information pathways. 

1.4.3 Prostanoids 

AA is converted into prostaglandins (such as PGE2, PGI2, PGD2 and 

PGE2) and thromboxanes (like TXA2) by cyclooxygenase (COX) 

enzymes. A pro-nociceptive role has been reported for these AA 

derivatives in particular for PGE2 and PGI2.  

On the base of the relative agonist affinity numerous prostanoid 

receptors have been cloned and classified: PGE2 binds EP receptors, 

PGI2 binds preferentially IP, TXT2 binds TP and PGD2 binds DP.  

Not all these receptors are implicated on the mediation of the pain 

information, just some of these were revealed in DRG neurons (EP1, 

EP2, EP3A, EP3B, EP3C, EP4, DP1, DP2 and IP).  

 
Figure 4. Schematic representation of prostanoids (PG) most important signal transduction mechanism in nociceptive 

sensory neurons. 
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As for bradykinin the transduction mechanism of prostanoids is very 

complex and involves several second intracellular messengers (Figure 

4), the result of these pathways is the depolarization and the 

transmission of the pain information to the next nucleus.   

Binding of PGE2 and PGI2 to their receptors induces cAMP and IP3 

accumulation in DRG neurons. This means that the depolarization 

evoked by PGE2 or PGI2 begins with the activation of PLC or adenylate 

cyclase (AC) mediated by Gs and Gq proteins respectively.57 

The accumulation of cAMP and the consequent activation of PKA 

causes influx of Ca2+ mediated by the phosphorylation of voltage-

gated Ca2+ channels.58 One of the results of the intracellular Ca2+ 

concentration increasing is the release of SP and CGRP from sensory 

nerves of various organs.59 

Tetrodotoxin-resistant and sensitive voltage-gated Na+ channel (TTX-

R), located in DRG, is positively modulated by PGE2 causing increase 

Na+ current and inducing a hyperpolarizing shift. 60 cAMP-PKA 

signaling pathway is the major responsible for the activation by 

phosphorylation of this channel, the activation by this pathways 

induced leftward shift in its conductance-voltage relationship. 

Although even the PKC causes an enhanced TTX-R Na+ current it 

appears more likely that modulation of this channel is mediated by 

PKA than PKC. Furthermore inhibitors of either PKA or PKC reduce 

PGE2 effects.61 

TRPV1 is another channel modulated by the activation of both EP (in 

particular EP1 for PKC pathway and EP4 for PKA pathway) and IP. 

Conversely to TTX-R, PKA and PKC do not directly phosphorylate 

vanilloid channel, but probably the effects of the activation of 

prostanoids receptors are mediated by the phosphorylation of 

regulatory proteins associated with TRPV1, known as A-kinase anchor 

proteins (AKAP).  On DRG neurons prostaglandins modulate TRPV1, in 

particular the activation of EP1/IP-Gq-PLC-DAG-PKC-AKAP-TRPV1 

pathway has the predominant role, only a minor contribution arrives 

from EP4/IP-Gs-AC-cAMP-PKA-AKAP-TRPV1 pathway.57,62 
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As described for bradykinin, prostanoids display effects on TRPM8 

and TRPA1 also. The activation of PKA pathway by PGE2 causes 

inhibition of the TRPM8 channel.63 Conversely in TRPA1, PGE2 

through PKC pathway phosphorylates the channel resulting in 

increase of intracellular Ca2+ concentration.64 

Hyperpolarization-activate cyclic nucleotide-gate channels (or HCN) 

are a family of channel permeable to both Na+ and K+ that are 

responsible of hyperpolarization-activate current (Ih). In particular 

HCN2 and HCN4 channels are expressed on small sensory neurons in 

DRG.65 These channels are positively modulated by PGE2, forskolin, 

cAMP and cGMP, which promote depolarization and increase the 

maximum amplitude of ionic current.66 

SACC (stretch-activated nonselective cation currents) are channels 

permeable to Na+, K+ and Ca2+ located in DRG neurons, their activity 

is mediated by cAMP-PKA pathway.67 

Some channels are down-regulated by prostanoids signaling. Voltage-

gated K+ channel (VGKC) is one of these. PGE2, through cAMP-PKA 

pathway, suppresses outgoing K+ current that caused decrease of 

after-hyperpolarization by reducing voltage-dependent K+ 

conductance.68,69 

Other two channels are down-regulated through cAMP-PKA 

pathways; Ca2+ activated K+ channel (CAKC) and 

mechanosensitive/osmosensitive K+ channel (TREK-1), both are 

implicated in the decrease of after-hyperpolarization.70,71 

1.4.4 Prokineticin 

Prokineticin 1 and 2 (PK1 and PK2) are two small peptides implicated 

in numerous physiological processes including nociception.72 

These peptides exert the activity binding two GPCRs known as PKR1 

and PKR2. It is important to emphasize that the activation of 

prokineticin system do not cause directly pain but it is responsible for 

lowering pain threshold and hyperalgesic effect. It is possible 
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distinguish two phases on the prokineticin hyperalgesic signaling, the 

first caused by the PKRs on the nociceptors near the injury, the 

secondary caused by central action due to activation of the 

prokineticin receptors located on the DRG and spinal cord.73  

Evidences suggest that PKRs are located in some DRG C and A fibers, 

which present CGRP (one-third) and SP (one-fifth).74 

 
Figure 5. Schematic representation of prokineticin (PK) most important signal transduction mechanism in nociceptive 

sensory neurons. 

At the present time the entire intracellular pathway consequent to 

the activation of the PKRs, which lead to hyperalgesic effect, is not 

completely known. 

Evidences show that PKRs are coupled with Gs, Gq and Gi proteins 

that, when activated, begin a cascade of second messengers leading 

to sensitivity increase to pain stimuli (Figure 5).  
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Probably the activation of Gq proteins stimulates the Ca2+ 

mobilization from intracellular store through IP3-PLC pathways.73 

The increasing of the intracellular Ca2+ concentration is not mediated 

by the release from intracellular stores only, but the activation of 

TRPV1 channel seems to be the major cause of Ca2+ influx. This 

hypothesis is supported by numerous experiments, which showed 

the high co-expression percentage on the same DRG neurons of 

vanilloid channels and PKRs.75 Probably the activation of PKRs 

coupled with Gq and/or Gs proteins lead to the phosphorylation of 

TRPV1 through PKC, PKCand PKA respectively. This is important 

because, experiments highlighted that phosphorylated-TRPV1 is 

more sensible to thermal, mechanical and chemical stimuli.76  

TRPV1 is not the only channel co-expressed with PKRs in nociceptors 

and DRG neurons, TRPA1, although with a lower percentage, is co-

expressed with prokineticin receptors in particular with PKR1. This 

means that the activation of PKRs caused hypersensivity to high and 

low temperatures.77 

Another pathway connecting PKRs to pain information transmission 

is mediated by the release of CGRP and SP on the DRG and spinal 

cord neurons. Some evidences show that these substances are 

released in response to PKC translocation caused by PKRs 

activation.74,77 

Furthermore the prostanoid system appears to be involved in 

prokineticin signaling, in particular some experiments showed that 

the activation of PKRs promotes eicosanoid pathway probably by 

PLC-DAG and/or by directly activation of PLA2.78 

These just described are the most important known mechanisms 

relating prokineticin system and nociception. 

1.4.5 Substance P 

Bradykinin, prostanoids and prokineticin, as just described, are all 

involved on the release of substance P, an undecapeptide belonging 
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to the peptide family called tachykinins (neurokinin-A and 

neurokinin-B are other two members of this family). 

SP is synthesized in the DRG (where the soma of C fibers is located) 

and it is transported to the substantia gelatinosa of the spinal dorsal 

horn and peripherally to the nerve endings. In response to signal of 

an above described mediator, SP is released at the level of the first 

synapse of primary neurons in the superficial layers of the spinal 

dorsal horn (I-III).79 SP was also detected in lamina V80 and in lamina X 

surrounding the central canal.81 

 
Figure 6. Schematic representation of substantia P (SP) most important signal transduction mechanism in nociceptive 

sensory neurons. 

SP is one of the mediators responsible for nociceptive transmission to 

the central nervous system (CNS); after its release and receptor 

binding, SP, causes alterations in cell membrane excitability and 

consequent sending information to the next step. 

SP and the other peptides of the tachykinins family exert their 

function binding three neurokinin receptors (NK-1, NK-2 and NK-3); in 

particular, SP has the best affinity to NK-1. All NK are GPCR; NK-1 is 



1. Pain 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
22 

coupled with Gi, G0, and Gq11.82 NK activation generates various 

second messengers responsible of trigger a wide range of effector 

mechanisms (Figure 6), which regulated the cellular excitability and 

different other functions. In particular it has been reported that the 

activation of NK-1 is responsible of the Ca2+ mobilization from intra- 

and extracellular sources mediated both by PLC that hydrolyzes PIP2 

into DAG and IP3. The first one is responsible, at least partially, of the 

influx of the extracellular Ca2+ by potentiation of NMDA receptors via 

PKC. While IP3 is responsible of the release of Ca2+ from intracellular 

stores.83,84 

Other two important pathways cause, one the mobilization of AA via 

PLA2,85 the other the cAMP accumulation via AC and consequent 

activation of PKA.86 

All the mediators described until now explicate predominantly pro-

nociceptive role, but there are numerous mediators which have 

inhibitor activity, some already mentioned, the majority of these acts 

on the descending pathways.  

1.4.6 Neurotransmitters (Noradrenaline, Serotonin and 

Acetylcholine) 

1. Noradrenaline.  

Noradrenergic neurons originate in the locus ceruleous and project 

their axons to the spinal dorsal horn; the noradreline binding with 2 

receptor on the presynaptic neurons causes suppression of pain 

signals by reduction of both the release of excitatory glutamate from 

primary afferent fibers and the activity of the excitatory 

interneurons.87-89 The 2 receptor is a GPCR associated with Gi 

protein its activation causes inhibition of the AC, reduction of the 

cAMP intracellular concentration and consequent block of the 

progression of the pain information. 
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Noradrenaline may promote suppression of pain signals in spinal 

dorsal horn by activation of the 1 receptor located on the inhibitory 

GABAergic interneurons.90,91 

Furthermore evidences suggested that noradrenaline has pain 

modulatory role even in CNS.92,93 

2. Serotonin.  

Serotoninergic neurons originate on RVM nucleus (including raphe 

magnus and the nucleus reticularis magnocellularis)33 and project 

their axons to the spinal dorsal horn. This pathway that is classically 

considered inhibitory, actually, has both pro- and anti-nociceptive 

effects. RVM contains two types of cells: the OFF cells that are 

inhibited by noxious stimulation and excited by opioids, and the ON 

cells that are excited by noxious stimulation and inhibited by opioids. 

The OFF circuit has inhibitory effect on ascending nociceptive 

transmission; conversely, ON cells facilitate pain information 

transmission through activation of descending pathway to spinal 

cord.94,95 

Different receptor subtypes in the dorsal horn are activated by 

serotonin.33 5-HT1 receptors exert anti-nociceptive effect, in 

particular, postsynaptic 5-HT1A receptors inhibit the excitability of the 

spinothalamic neurons and the excitatory interneurons, while 

presynaptic 5-HT1B/D receptors inhibit neurotransmitter release from 

primary afferents.  

Conversely, the pronociceptive effects are mediated by 5-HT2 and 5-

HT3 receptors.29,96 5-HT3 receptors are cation channel, those located 

on presynaptic membrane facilitate the depolarization and 

consequent neurotransmitters release from primary nociceptive 

afferents, while those located on the postsynaptic neuron increase 

the excitability of the spinothalamic tract. 

As for noradrenaline, also serotonin is present in further brain nuclei 

involved in nociception.97 



1. Pain 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
24 

3. Acetylcholine.  

Acetylcholine (ACh) major activity in nociception signaling is in the 

spinal cord. ACh is released from the cholinergic interneurons in 

dorsal horn, activated by inhibitory descending noradrenergic and 

serotoninergic pathways.98 Cholinergic somas on spinal cord are 

located prevalently in laminas III and IV, from here axons are 

projected both in deep and in superficial laminas.99 ACh inhibitory 

effect in dorsal horn predominantly involves muscarinic receptors 

located in both primary afferent fibers terminal (M2 and M3 

predominantly) and on dorsal horn projected neurons (M2 and 

M4).100  

Activation of nicotinic receptors contribute to the noradrenergic 

antinociceptive activity in dorsal horn.101 ACh can activate directly 

noradrenergic neurons on the spinal cord acting on nicotine 

receptors located on the terminus.102 

1.4.7 Opioid peptides  

Endorphins, encephalin, dynorphins, endomorphins are a series of 

endogenous peptides involved in pain modulation, named 

endogenous opioids. These peptides are located mainly in the brain, 

spinal cord and in the peripheral nervous system.  

The targets of endogenous opiods are three GPCRs,  (mu),  (delta) 

and (kappa). The  receptors are located mainly in brain and spinal 

cord, including many areas involved in nociception such as medial 

thalamus, PAG and MNR, confirming their role in modulating pain 

information. The  receptors have been also localized in the nucleus 

accumbens, cerebellar trunk, thalamus and striatum.103 

The distribution of  receptors is quite similar to that of . Moreover, 

they have been located in the olfactory area and substantia nigra too. 

Conversely, receptors have a quite different localization. They were 

found in the amygdala, hypothalamus, and pituitary as well as in the 

striatum.104 
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The three opiod receptors are coupled with Gi/Go proteins, which 

have overall inhibitory effects, in fact they cause a membrane 

stabilization with consequent decrease of the discharge frequency 

and inhibition of neurotransmitter release. 

The activation of these G proteins opens K+ channels, potassium ions 

come out of the cell causing hyperpolarization. Opioids cause 

inhibitory effect also via closure of the Ca2+ voltage-dependent 

channels on the presynaptic terminal producing action potential 

decrease and consequent reduction of the neurotransmitters (like 

glutamate and/or SP) release.  

Gi proteins coupled with opioid receptors also inhibit AC, then the 

cAMP reduction and consequent decrease of the activity of related 

PKA may be responsible of change of ion channels permeability. 

Despite the signal transduction details are not entirely known, the 

cAMP cascade is clearly involved in the long term effects of the 

opioids like tolerance, dependence and abstinence.105 

Opioid peptides exert their inhibitory action at three levels: 

- in spinal cord through small inhibitory interneurons that 

releasing the endogenous opioids inhibit the activation of the 

spinal projection neurons; 

- through descending pathway from PAG in three different 

ways, directly inhibiting the projection neurons, stimulating 

neurons opioid inhibitors and/or inhibiting excitatory 

interneurons; 

- in brain, which explain the connection between opioid effects 

on emotional and hormonal aspects of pain. 

1.4.8 Endocannabinoids 

The endocannabinoids (ECs) are a class of endogenous compounds 

endowed analgesic mechanism and action site similar to opioids 

peptides.  
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The main representative compounds of this class are anandamide (N-

arachidonoyl ethanolamine or AEA) and 2-arachidonoylglycerol (2-

AG), they exert their activity binding two GPCRs, CB1 and CB2. 

Evidence suggests that CB1 are localized prevalently in the 

presynaptic terminal. CB1 are coupled with Gi/Go proteins and their 

activation, as for the opioid receptors, cause cAMP concentration 

diminution, Ca2+ channels closing and K+ channels opening, causing 

reduction of neurotransmitters release as final consequence. 

AEA and 2-AG are formed starting from AA, and released by the 

postsynaptic neurons as consequence of Ca2+ intracellular 

concentration increasing. 

As opioid peptides, ECs act at different levels of nociceptive 

pathways, supraspinal, spinal and peripheral.  

ECs exert their antinociceptive proprieties in PAG, thalamus, RVM, 

MNR and amygdala supraspinal areas.106 In RVM it has been revealed 

that cannabinoids inhibit the firing of ON cells, whilst promoting the 

firing of OFF cells.107  

In dorsal horn neurons it is not yet completely clear ECs action 

mechanism; evidences suggest that CB1 are located in this area 

prevalently on the presynaptic of nociceptive primary afferents and 

on populations of excitatory interneurons.108 

At peripheral level the ECs antinociceptive effect has been described 

as mainly CB2 mediated.109 The analgesic effect involves different 

mechanisms, inhibition of the production and release of pro-

inflammatory and pro-nociceptive mediators,110 and cytokines by 

peripheral immune cells.111 

It is important to underline that AEA, but not 2-AG, can have pro-

nociceptive effect because it can bind TRPV1 in an intracellular site. 

This binding can cause channel opening and consequent neurons 

depolarization. The affinity AEA RRPV1 affinity is lower as compared 

to the receptors CB1 and CB2.112  
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1.5 Pain: The nowadays pain therapy 

Because the pain information transmission involves numerous 

pathways, systems, mediators, receptors etc. the analgesic drugs can 

act on different way.  

For a proper pain therapy it is essential a correct diagnosis of the 

disease causes since, as previously described, there are many 

different types of pain. In general acute pain does not represent a 

problem because it accurately responds to opioid or non-steroidal 

anti-inflammatory drugs (NSAIDs). 

Treatment of chronic pain is more difficult, because the emotional 

and subjective conditions represent fundamental components of the 

pathologic state. The 50% of chronic pain patients suffer of 

depression, while the 40% of anxiety disorders.6  

The different classes of drugs used in pain:  

- act on the site of inflammation or injury (NSAIDs);  

- block the activity of the primary afferent neurons (local 

anesthetics);  

- enhance the inhibitory system (opioids);  

- stimulate the inhibitory descending pathways (tricyclic 

antidepressants).  

NSAIDs and opioids are the most used analgesic drugs. NSAIDs have 

anti-inflammatory, antipyretic and analgesic properties. As well as for 

the treatment of acute pain (such as headache and acute backache), 

NSAIDs are indicated for treatment of rheumatologic diseases, 

arthrosis and musculoskeletal pain; but they are less useful for 

neuropathic pain.  

NSAIDs activity is due to the inhibition of the COX enzymes and 

consequent inhibition of the prostaglandins formation in particular 

PGE2. At least two different isoforms, COX-1 and -2, exist, the first is 

constitutively expressed, and it is responsible to the normal 

physiological function. While the COX-2 is generally inducible and is 

synthesized during inflammatory processes causing prostaglandin 
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concentrations increase at the site of inflammation. Some NSAIDs are 

non-selective COX-1 and COX-2 inhibitors, some are preferential COX-

2 inhibitors and some other are selective COX-2 inhibitors.  

The problem of the prolonged use of the NSAIDs is related to their 

side effects. In particular the non-selective NSAIDs may cause 

stomach ulcers by inhibition of gastric COX-1, blocking the synthesis 

of the prostaglandins that in turn stimulate the production of the 

gastric wall protective mucus and inhibit the secretion of 

hydrochloric acid. Another important adjunct effect of NSAIDs is the 

inhibition of platelet aggregation by, especially, the inhibition of COX-

1 mediated thromboxane formation. 

Although the selective COX-2 inhibitors do not have the gastric side 

effect, their use is limited because they have some important 

cardiovascular side effects due to lack of anti-platelet activity. 

Analgesic Opioids mimic the effects of opioid peptides binding opioid 

receptors ( and  in particular) at the three above described levels, 

spinal cord, the inhibitory descending pathways and brain, according 

to their ability to cross the blood brain barrier. 

Opioids are used for treatment of acute pain, post-operative pain and 

in palliative care; while their use for chronic pain is not very common. 

Also this class of compounds has numerous important side effects, 

especially related to their chronic use. Short period major toxic effect 

is respiratory depression caused in particular, but not only, by an 

increase threshold of CO2 necessary to the centers of the brainstem 

to stimulate respiration. Short period side effects include nausea, 

constipation and sedation. Long-term side effects included addiction, 

tolerance to the analgesic effect and abstinence. 

NMDA antagonists like ketamine, memantine and dextromethorphan 

display significant analgesic effects counteracting the pro-nociceptive 

activity of glutamate. In addition, in this case there are significant 

systemic side effects, which greatly limit the use also they easily 

develop tolerance. 
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Anticonvulsant drugs like gabapentin, which inhibits Ca2+ and Na+ 

voltage-dependent channels, are mainly used to treat pain in diabetic 

neuropathy and postherpetic neuralgia. Other anticonvulsants like 

carbamazepine and phenytoin are used for treatment of trigeminal 

neuralgia. These drugs may cause hepatotoxicity and show cognitive 

impairment, confusion, drowsiness, dizziness and nausea. 

2-Agonists, like clonidine, behave as anti-nociceptive agents binding 

the adrenergic presynaptic receptors that causes reduction of the 

release of catecholamines. The problem with this class of compounds 

is the lack of selectivity for the 2-receptors in the nociceptive 

pathways. 

Triptans such as sumatriptan and its analogs are selective agonist of 

serotonin receptor (5-HT1B/1D) used for the treatment of primary 

migraine. 

Ergot alkaloids like ergotamine or dihydroergotamine, are used for 

migraine treatment. 

Antidepressants in particular the tricyclic antidepressants cause a 

potentiation of the noradrenaline and serotonin inhibitory pathways 

by the inhibition of the reuptake of nordrenaline and serotonin in the 

spinal cord. The problems of this class of drug are the long on-set 

time and their toxicity. 

For all the problems of the current pain therapies, the research of 

new drugs endowed with better therapeutic efficacy and fewer side 

effects, also taking advantage of new targets is actually very active.   
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2. Endocannabinoid System 

2.1 Endocannabinoid System: History 

Cannabis sativa (Figure 1) is an 

annual herbaceous plant, 

belonging to the family of 

cannabaceae of the urticales 

order, which contains over than 

400 chemical compounds. Of 

these 66 compounds endowed 

with terpene-phenolic structure 

are cannabinoids. This term 

refers to all compounds of plant 

origin (phytocannabinoids), 

endogenous (endocannabinoids) 

or synthetic capable of binding 

cannabinoid receptors (CB). Phytocannabinoids can be found in all 

parts of the plant, and are concentrated in the yellowish resin 

secreted primarily from the far inflorescence of female plant. 

Medical history of this plant in very old and spread all over the world, 

Pen T’sao Chin, the oldest Chinese book about medicinal herbs 

(Figure 2), dating back to 3000 BC, is the first that treats on the 

cannabis curative effect, recommending cannabis for the treatment 

of diseases such as malaria, rheumatism, gout, constipation and 

others. Subsequently the cannabis 

therapeutic indications were 

extended to the treatment of fever, 

anxiety, and as wounds healing 

promoter. 

Cannabis, in India in approximately 

1000 BC, was considered “one of the five sacred plants”, it was 

indicated for the treatment of diarrhea, digestive disorders and lack 

Figure 1. Cannabis Sativa. 

Figure 2. Pen T’sao Chin’s book. 
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of appetite. There are evidence of the use of cannabis by other 

cultures like Egyptians, Assyrians, Romans and Greeks.  

Herbarium of 70 A.D. and Galen (100 A.D.) indicate cannabis for the 

treatment of earaches, jaundice and edema.  

During the XIIth century, the use of cannabis as medicinal plant 

greatly diminished because the Inquisition considered it as witch 

grass. For this reason in some countries, such as France and Spain, its 

use was prohibited, even as medication. 

Only in XIXth century, when some Napoleon's soldiers return in 

France from Egypt cannabis began to spread in Europe, both for 

recreational and medicine purposes, it was adopted as the official 

medicine to treat pain, convulsions and nausea. In those years there 

has been a growing interest of scientists in the therapeutic properties 

of cannabis.   

In the XXth century, first in USA and then in Europe, the increasing of 

the recreational use and the growing interest in the opium 

derivatives and other synthetic drugs led to ban the use of cannabis 

as medicine. 

In the last decades, since the discovery 

and isolation of the most potent active 

ingredient of cannabis, the Δ9-

tetrahydrocannabinol (THC) (Figure 3), 

the interest of the scientific 

community on cannabis is back.1 This 

interest was increased by the discovery of membrane receptor 

capable to bind THC.2,3 

2.2 Endocannabinoid System: Components 

2.2.1 Cannabinoid receptors 

In 1988 the receptor responsible of the pharmacological and 

behavioral effect of cannabinoids was individuated,2 this receptor 

was called CB1 because shortly after another receptor was discovered 

Figure 3. Δ9-tetrahydrocannabinol structure. 
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and called CB2.4 

These receptors, which have 44% structural homology, belong to the 

A class (or rhodopsin class) of GPCR family and are coupled with 

inhibitory G proteins (Gi and Go). CBs activation causes the inhibition 

of AC and the activation of mitogen-activated protein 

kinases (MAPK).5 The activation of CB1, but not CB2, causes also the 

inhibition of N, P/Q type voltage-dependent Ca2+ channels6 and the 

activation of the inwardly rectifying K+ channels.7 

Some evidences suggested that CB1 is also able to activate the PLC 

indicating that it is also coupled with a Gq or a Gs protein.8 

Numerous studies indicate the implication of the cannabinoid system 

on several physiological processes, both in the peripheral nervous 

system and in the CNS. 

CB1 receptors are present in peripheral and central nervous system, 

reproductive system, gastrointestinal tract, eyes,9 liver, bladder and 

adrenergic system. In peripheral nervous system CB1 located on DRG 

interneurons, superior cervical ganglia (SCG) and pre-junctional 

bladder fibers mediate nociception, vascular and gastrointestinal 

functions.10,11 

Cannabinoid system is implicated in modulation of memory, learning, 

locomotor activity, posture and motor coordination, by CB1 receptors 

located in basal ganglia, olfactory bulb, hippocampus and 

cerebellum.12 

Furthermore CB2 are present on immune system,13 microglia cells14 

and in small concentrations in the brainstem.15 

The most important receptors for nociception are located on 

amygdala, PAG and the dorsal horn of the spinal cord.16 

Pharmacological evidences suggest the existence of other 

cannabinoid receptors, but these have not yet been 

characterized.17,18 
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2.2.2 Endocannabinoids 

The discovery of cannabinoid 

receptors in the early 90s 

promted the researchers to 

individuate the endogenous 

ligands of these receptors; the 

first molecule able to bind the CB identified was the N-

arachidonoylethanolamine (Figure 4) also known as anandamide, it is 

the amide originated by two common compounds, AA and 

ethanolamine.19  

Some years after a 

monoacylglycerol derivative, 

the 2-AG (Figure 5), was 

identified as CBs ligand.20 

In subsequent years numerous 

other CBs ligands have been 

identified, such as the 2-arachidonoylglycerolether (2-AGE) an 

analogue of 2-AG, endowed with CB1 better affinity.21  

A compound similar to AEA is 

virodamine also known as O-

arachidonoylethanolamine 

(Figure 6). In this molecule 

the AA is connected to the 

ethanolamine by an ester bond. Virodamine acts as CB1 

agonist/antagonist and CB2 agonist.22  

Further three amides, the 

oleylethanolamide (OEA),23 

palmitylethanolamide (PEA) 

and the N-Arachidonoyl 

dopamine (NADA) (Figure 7) 

were identified. The last one is 

forty times more selective on 

Figure 4. Anandamide structure. 

Figure 5. 2-Arachidonoylglycerole structure. 

Figure 7. Arachidonoyl dopamine structure. 

Figure 6. O-arachidonoylethanolamine structure (Virodamine). 
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CB1 than CB2
24 and is able to activate TRPV1 as AEA.25 All these 

endogenous compounds capable of binding the CBs are called 

endocannabinoids (EC). 

ECs are synthesized from AA coming from membrane phospholipids. 

Conversely to other neurotransmitters, ECs, are too fat-soluble and 

they cannot be stored in vesicles. Thus they are synthesized and 

released when necessary. A plausible mechanism that could lead to 

ECs production is the intracellular level increase of Ca2+, this 

hypothesis is based on the fact that some enzymes of the 

biosynthetic pathways are influenced by Ca2+ (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After their release in extracellular matrix by a specific membrane 

transport protein ECs spread by a retrograde way to the same cell or 

on neighboring cells, acting as autocrine or paracrine mediators. In 

particular on neurons, generally, the CB1 receptors are located on the 

Figure 8. Endocannabinoid system. 
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presynaptic terminal and after activation cause neurotransmitters 

release reduction (Figure 8).26 

Evidences suggested that AEA, in an extended conformation, spread 

with the ethanolamine portion at the level of the polar heads of the 

membrane phospholipids and the hydrophobic portion within the 

bilayer. AEA, diffuses laterally in one of the two layers of the 

membrane and reaches CB1 binding site located in the hydrophobic 

pocket formed by helices 3 and 6, causing receptor activation.27 

The ending of EC signaling begin with the reuptake of the compound 

from the extracellular matrix by the same transporter which bring it 

out, the endocannabinoids membrane transport (EMT) (Figure 8).28 

After being internalized in cells ECs are enzymatically hydrolyzed, the 

principal hydrolytic enzymes for the degradation of AEA and 2-AG are 

fatty acid amide hydrolase (FAAH), which is able of hydrolyzing both 

AEA and 2-AG,29 and monoacylglycerol lipase (MAGL), selective for 2-

AG. MAGL can be found both in membrane and cytosol, in those 

brain areas where the CB1 are expressed (Figure 8).30 

When the activity of FAAH and MAGL is suppressed both AEA and 2-

AG are metabolized by COX-2.31,32 

2.3 Endocannabinoid System: Biosynthesis of the most 

important endocannabinoids  

AEA and 2-AG are the most known ECs and were the first to be 

discovered; AEA is able to bind both CBs as partial agonist,33,34 while 

2-AG is a full agonist of the two receptors.20 The synthetic processes 

that lead to the formation of these two ECs are well known. 
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2.3.1 Biosynthesis of Anandamide 

AEA is produced according three synthetic pathways.  

1. The first involves 

the formation of N-

acylphosphatidylethano-

lamine (NAPE), by a Ca2+-

dependent trans-acylase 

(NAT), which transfers an 

AA unit from position one 

of the membrane phos-

pholipid (phosphatidylco-

line, PC) to the amino 

group of phosphodieth-

anolamine (PE). Then 

NAPE is hydrolyzed to 

AEA by a specific type D 

Ca2+-dependent 

phospholipase (NAPE-

PLD).35 

 

2. The second in-

volves PLA2, which hydro-

lyses NAPE forming N-

arachidonoyl-phosphati-

dylethanolamide (NAr-

lysoPE). Then a specific 

phospholipase releases 

anandamide.36  
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3.  In the third the precursor 

are AA and ethanolamine, which 

are condensed by FAAH, to form 

AEA. This synthetic pathway 

needs high levels of the two 

substrates, necessary to allow 

the enzyme to work on contrary. 

This event is unlikely within the 

cell.37  

 

2.3.2 Biosynthesis of 2-Arachidonoylglycerol 

 Biosynthesis of 2-AG is 

very complex and 

diversified. This EC is in 

part produced by the 

enantioselective 

hydrolysis of DAG, 

operated by a DAG-

lipase.38,39 

DAG is necessary to 

synthesize 2-AG and 

derived or from the 

hydrolysis of 

phosphatidylinositol (PI) 

by a specific PLC Ca2+-

dependent39 or from the 

hydrolysis of phosphatidic acid catalyzed by a specific 

phosphohydrolase Ca2+-dependent (Figure 10).40 

 

Figure 9. Anandamide biosynthetic pathways. 

Figure 10. 2-Arachidonoylglycerol biosynthetic pathway. 
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2.4 Endocannabinoid Degradation: FAAH 

As mentioned above the most important enzyme for the 

metabolization of AEA is FAAH (Figure 11), that was characterized in 

1996.29 

FAAH is localized on the postsynaptic membrane and is mostly 

expressed in brain areas 

rich in CB1 receptors. 

FAAH weighs 64 kDa and 

is a homodimer 

constituted by 579 amino 

acids whose amino acids 

sequence is highly 

conserved.41 

FAAH belongs to the 

serine hydrolase 

superfamily even if it utilizes a different hydrolytic mechanism from 

the typical triad serine-histidine-aspartic acid. FAAH is the first known 

member of a family known as amidase signature (AS).42 These 

enzymes have a 56 amino acids region highly conserved, known as 

amidase consensus sequence, rich in glycine, alanine and serine 

residues. 

FAAH is an integral membrane enzyme with a transmembrane N-

terminal domain, absent in other members of AS. The central portion 

is constituted by a -sheet surrounded by a series of -helix. 

In the enzyme numerous channels are present; one of these is 

located near the hydrophobic domain -18 and -19 and it is 

probably useful to facilitate the movement of the substrate polar 

groups to the active site. Another channel is located near the active 

sites and have the Ile-491 residue important to recognize the 

substrate.43 

An additional channel emerges from the active site and forms a 

pocket exposed to the cytosol, probably with the function to 

Figure 11. FAAH. 
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guarantee the access of the water molecule necessary for the de-

acylation of the reaction intermediate.  

2.4.1 Hydrolytic mechanism 

FAAH hydrolyze AEA and the 

other substrates by the 

activity of its characteristic 

triad, Ser-241, Ser-217 and 

Lys-142. Mullholland44 and 

Jorgensen45 propose a 

hydrolytic mechanism that 

provides initial deprotonation 

by the Lys-142 on Ser-217 

and subsequent formation of 

a zwitterionic intermediate. 

The formed alkoxide removes 

a proton of Ser-241; this 

binds the carbonyl carbon of 

substrate (e.g. AEA) forming a 

tetrahedral intermediate. The 

transfer of the proton from 

Ser-217 to the amino group of AEA leads to the breaking of the amide 

bond, with consequent release of ethanolamine. 

Then Lys-142 returns the proton to Ser-217, while the Ser-241 

remains linked to the rest of the substrate as ester, which will be 

successively released as AA restoring the enzyme (Figure 12). 

 

 

 

Figure 12. FAAH Hydrolithyc Mechanism. 
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2.5 Endocannabinoid System: Exogenous modulators 

Endocannabinoid system is involved on regulation of numerous 

physiological activities such as cognitive function, food consumption, 

blood pressure, heart rate, body temperature, mood, memory, 

inflammation, pain perception, neurodegenerative diseases and 

others.46-49 

2.5.1 CBs agonists 

The Δ9-THC and the other CB ligands (both natural and synthetic) 

could be good analgesic compounds for the antinociceptive and anti-

inflammatory effects mediated by CBs located on the nociceptive 

pathways.50,51  

Compounds that bind both CB1 and CB2 belongs to four classes, the 

classic cannabinoids (such as THC (Figure 3)), not classic cannabinoids 

(CP55940 (Figure 13A)),52 aminoalkyl indoles (WIN55212-2(Figure 

13B))53  and eicosanoids (AEA (Figure 4), 2-AG (Figure 5) and 

methanandamide (Figure 13C)).54 

 

Figure 13. CBs agonists. 

Nevertheless their clinic use is limited for the side effects caused by 

the direct and non-selective activation of CBs, such as psychotropic 

manifestations, dysphoria, dizziness, altered perception, effects on 

motor coordination and memory, depression of the immune system 

and their potential for abuse.55-57 
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2.5.2 AMT inhibitors 

A possible way to profit by the healthy effects of the activation of the 

cannabinoid system but avoiding the side effect may be to enhance 

the activity of endocannabinoids, like AEA. This is possible in two 

ways. One option is by the inhibition of AMT with compounds like 

AM404 (Figure 14A), VDM11 (Figure 14B), UCM707 (Figure 14C), 

OMD-1 and -2; the problem of these compounds is the low 

selectivity, they are also CB agonists and FAAH inhibitors, 

furthermore the AM404 is able to activate TRPV1. Therefore it is not 

clear, if the AMT inhibitors activity is due to the direct transporter 

inhibition or if it is mediated by the activity on CBs and/or FAAH. 

Figure 14. AMT inhibitors. 

2.5.3 MAGL inhibitors 

The other possibility to increase the levels of ECs is by the inhibition 

of the enzyme responsible for their degradation. In this way the ECs 

levels are increased and in turn all their biological effects could be 

prolonged and enhanced, without the risk of incurring in the 

psychotropic effects and/or other side effects, due to the activation 

of the global CBs from direct agonists. 

Some MAGL inhibitors have been reported, their activity leads to 

increase the concentration of 2-AG, but not AEA. Examples of these 

compounds are the OMDM169 (Figure 15A), URB-602 (Figure 15B), 

NAM (Figure 15C) and chloropyrifos (Figure 15D).58 
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Figure 15. MAGL inhibitors. 

2.5.4 FAAH inhibitors 

Numerous compounds able to inhibit FAAH have been reported. 

Phenylmethylsulfonyl fluoride (PMSF) (Figure 16A), the first FAAH 

inhibitor described was accidentally discovered when it was added to 

rat brain homogenate to inhibit protease activity. Unexpectedly 

PMSF was found to inhibit FAAH.59 

 
Figure 16. Early FAAH inhibitors. 

The next step of FAAH inhibitor discovery was the insertion of the 

sulfonyl fluoride group on fatty acids. This combination led to the 

discovery of inhibitors more selective and potent such as 

laurylsulfonyl fluoride, ethoxy oleoyl fluorophosphonate (EOFP) 
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(Figure 16B), methylarachidonoyl fluorophosphonate (MAFP) (Figure 

16C). The last was found to inhibit FAAH with an IC50 value of 2.5 

nM,60 it was also used to obtain the crystal structure of the enzyme.61 

The problem of these compounds is their significant agonist affinity 

for the CB1 receptor that makes them poor drug candidates. 

2.5.4.1 -ketoheterocycle 

Studies conducted before the FAAH was fully characterized and the 

catalytic mechanism understood led to design compounds that use 

activated carbonyl group as putative active sites trap. Amides, -

ketoamides, -ketoesters and trifluoroketones were prepared and 

tested against FAAH for this purpose. The most potent of these was 

arachidonoyl trifluoromethyl ketone (Figure 17A).62 

A paper published in 2000 suggested that AEA and oleamide were 

degraded by the same enzyme, which was later revealed to be 

FAAH.63 On this base, the corresponding oleoyl trifluorometyl ketone 

was prepared and it showed an IC50 value of 0.082 M (Figure 17B). 

 
Figure 17. Trifluoromethyl ketoneFAAH inhibitors. 

As extensions of this study new series of compounds endowed with 

-ketoheterocycle structure were prepared. In these new series the 

trifluoromethyl group of compound 17B was replaced by various 

heterocycles designed to activate the ketone to nucleophilic attack.64 

These compounds exert their inhibitor activity forming a hemiketal 

bond with Ser-241.65,66 These potent and selective FAAH inhibitors 

have been shown to be reversible, competitive and some of these 

showed efficacies on preclinical models of pain also.  
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More is the ability of the heterocycle to activate the ketone to 

nucleophilic attack more potent is the inhibitor, in fact oxazoles were 

found to be superior to thiazoles or imidazoles. 

 
Figure 18. Other -ketoheterocycle FAAH inhibitors. 

The substitution of the trifluoromethyl group with oxazole (Figure 

18A) caused about five times increase in activity (IC50 from 0.082 M 

of 17B to 0.017M of 18A). The conversion of oxazole into 

benzoxazole (Figure 18B) caused reduction in activity (IC50 0.37 M), 

however the conversion in pyridinoxazoles caused significant activity 

increase, in particular for compounds 18C, 18D and 18E (Figure 18) 

(IC50 2.3 nM, 7.2 nM and 3.7 nM respectively). The authors suggested 

that this activity improvement is probably due to the involvement of 

the pyridine nitrogen in hydrogen bond with two or more FAAH 

residues or/and to its ability to enhance the ketone electrophilicity. 

Starting from compound 18C, which shows the better activity, the 

attention was focused on modifications on the alkyl tail. In this way it 

was discovered one of the most potent and selective FAAH inhibitors 

known, OL-92 (Figure 19A) which show an IC50 value of 0.2 nM; 

however, probably due to its poor pharmacokinetics, in vivo studies 

this compound did not showed analgesic activity.67 

Further modification of oxazol-ketone inhibitors led to the design of a 

large number of new compounds with different substituents in 
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oxazolyl ring, including the OL-135 (Figure 19B), which is one of the 

best characterized FAAH inhibitor.65 Furthermore OL-135 

demonstrated its analgesic property in different in vivo assays.67 

 

Figure 19. Other -ketoheterocycle FAAH inhibitors. 

The idea that modification of endogenous substrates may lead to 

create FAAH inhibitors brought to design different compounds such 

as arachidonoyl serotonin (AA5HT) (Figure 20A),68 which was initially 

described as FAAH inhibitor and later as TRPV1 antagonist also, 

AM40469 (Figure 14A) and Arvanil (Figure 20B).70 AA5HT probably for 

its dual activity against FAAH and TRPV1 showed high efficacy on 

both acute and chronic pain.71 

 
Figure 20. Example of FAAH inhibitors. 

The manipulation of the ethanolamine portion of AEA led to the 

discovery of some FAAH inhibitors, the most potent of which was the 

alkyl chloride derivative (Figure 20C) with an IC50 value of 0.9 M, 

these results suggested that small aliphatic and aromatic groups 

were better tolerated than larger lipophilic groups.  

Studies conducted by Fowler on the influence of the length of the 

fatty acid chain highlighted that the decreasing of FAAH inhibition 
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property was directly related with the diminution of chain length 

below 12 carbon atoms.72 

Preparing derivatives of 

Arvanil, in 2001 Di Marzo 

reported a SAR study 

describing the urea 

compound, O-1987 (Figure 

21), which showed an IC50 value of 2.0 M.73 

2.5.4.2 Carbamates 

Starting from knowledge about carbamate AChE inhibitors, a new 

large class of FAAH inhibitors was studied. In particular starting from 

the compound 22A, which did not inhibit FAAH, improvement of 

lipophilic property by replacement of the methylamine with a 

cyclohexylamine led to a compound with an IC50 value of 300 nM 

(Figure 22B). Further modification led to the potent FAAH inhibitor 

URB-524 (Figure 22C) and then to the analog URB-597 (Figure 22D), 

showing IC50 values of 0.063 and 0.0046 M respectively.74 

Kinetic studies showed that these compounds behave as non-

competitive inhibitors and were non-dialyzable, suggesting that they 

are irreversible inhibitors binding covalently FAAH. 

Alexander and Cravatt proposed an URB-597 FAAH inhibition 

mechanism where the O-aryl carbamate moiety acylates the residue 

Ser-241 on the catalytic site.75 

Arylcarbamates are both extremely potent and selective against 

FAAH respect to other serine hydrolases. URB-597 and its analogs 

showed good activity as painkillers and anxiolytics.76,77 

Figure 21. FAAH inhibitor O-1987 structure. 
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Figure 22. Carbamate FAAH inhibitors. 

2.5.4.3 Ureas 

As well as carbamates, also aryl urea derivatives have been explored 

as FAAH inhibitors.  

One of the first urea inhibitor was the 

compound LY-2183240 (Figure 23), 

originally described as anandamide 

transport inhibitor,78 just later it was 

found to be a potent FAAH inhibitor 

with an IC50 value of 12 nM.79 

Evidences suggested that this compound inhibit FAAH by covalent 

binding of the Ser-241, in a similar way such as carbamate inhibitors.  

In 2006 Takeda (Figure 24A) and Janssen in 2007 (Figure 24B) 

published patent applications on piperazine arylurea FAAH 

inhibitors.80,81 Mass spectra analysis of Janssen’s compound JNJ-

1661010 (Figure 24) bound to rat FAAH indicated that the carbonyl of 

the urea was acting as an electrophile covalently modifying the active 

site with the aniline fragment functioning as the leaving group upon 

binding to the enzyme.82  

Figure 23. FAAH inhibitor LY-2183240 structure. 
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Figure 24. Piperazine arylurea FAAH inhibitors. 

In 2007 Cravatt et al. reported very selective FAAH inhibitor 

compounds founded by screening of Pfizer chemical library;83 PF-750 

(Figure 25A), which is a piperidinyl urea and piperazinyl urea 

derivative PF-622 (Figure 25B), both are more potent than URB-597 

with IC50 values of 16.2 nM and 33 nM respectively. Covalent bonding 

mode to FAAH was proven by several methods, e.g. time-dependent 

inhibition and the rapid dilution studies. Another important 

difference between URB-597 and PF-750/622 is about their 

selectivity. In fact the two PF compounds did not show any activity 

against other serine hydrolases conversely to URB-597 and other 

compounds of this class.84 

 
Figure 25. Structure of two urea FAAH inhibitors. 

Some of the most promising FAAH inhibitors reached the early stage 

of clinical trial for treatment of different diseases such as anxiety, 

depression and pain. These FAAH inhibitors are substituted ureas 

endowed with irreversible enzyme inhibition profile. The clinical trials 

on PF-0445784585 (26A), BIA-10-247486,87 (26B) and JNJ-4216527988 

(26C), (Figure 26) have been discontinued due to pharmacological 

activity similar to NSAID used as positive control, severe off target 

effects or voluntary suspension. 
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Figure 26. Structure of three FAAH inhibitors in clinical trials. 

2.6 Endocannabinoid System: AEA as COX substrate 

Despite FAAH is the main enzyme responsible for the metabolism of 

AEA, it is also substrate of other enzymes such as COXs, in particular 

COX-2.31 The different activity of COX-1 and COX-2 on AEA may be 

due to the absence of an arginine residue on the active sites of the 

first enzyme.89 

COX-2 converts AEA in prostaglandin-endoperoxid-ethanolamine, 

which in turn is converted in prostaglandin-ethanolamide.90 

These compounds are bad agonists of prostanoid receptors but they 

cannot be metabolized by FAAH.91 

2.6.1 COXs 

COXs also known as prostaglandin-endoperoxide synthase, as 

mentioned above, are enzymes devoted to formation of 

prostaglandins, thromboxane and prostacyclin starting from AA. 

COXs exist in two isoform, namely COX-1 and COX-2; the first is 

constitutively expressed in numerous tissues and it is responsible of 

the formation of prostanoids necessary to the normal physiological 

activity. Conversely, COX-2 that is generally inducible, is produced 
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during inflammatory process and leads to increase of prostanoids at 

the inflammation site.  

The two isoforms have about 63% structure homology and are dimer 

integrated in cell membranes with a globular structure.  

COX-2, in addition to produce the inflammatory mediators, induces, 

through production of PGE2, a hypersensitivity of the nociceptive 

fibers increasing the sensitivity to pain. 

2.7 Endocannabinoid System: A new analgesic strategy 

It has been demonstrated that in pain state the ECs synthesis is 

increased prevalently in areas involved in pain control (such as PAG). 

Therefore the administrations of substances that inhibit the ECs 

metabolization cause increase of EC concentrations and in turn 

enhancement of the activation of CB1 receptors mostly on PAG.  

Several in vivo studies showed that the co-administration of a FAAH 

inhibitor and a NSAID has synergic effect.  As example the same 

analgesic effect showed by diclofenac as single drug was obtained by 

co-administration of the FAAH inhibitors URB-597 and a dose 

significantly lower of the NSAID. Moreover the typical ulcerogenic 

effect was significantly reduced compared to treatment with only 

diclofenac.92,93 

Another example of the 

useful addictive effect of 

the dual inhibition of 

FAAH and COX was 

highlighted by studies on 

the compound ARN2508 

(Figure 27), which is a hybrid between the covalent FAAH inhibitor 

URB-597 and the NSAID flurbiprofen both sharing a biphenyl core. 

This compound showed antinociceptive propriety without the 

classical gastrointestinal side effects of NSAIDs.94,95 

Figure 27. FAAH inhibitor ARN2508. 
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Given the structural similarities between AEA and AA, COX and FAAH 

and being AEA a substrate of COX also, it is no surprise that NSAIDs 

partially inhibit FAAH; however this inhibitory effect is so slight that 

they are not able to increase ECs concentrations.96,97 For example 

ibuprofen and flurbiprofen showed FAAH inhibitory IC50 values of 270 

and 29 M respectively.98,99 

Concluding, a strategy for the treatment of pain 

could be to design compounds targeting both COX 

and FAAH. For this purpose it was designed the N-

(3-methylpyridin-2-yl)-2-(4’-isobutylphenyl) 

propionamide or Ibu-AM5 (Figure 28), an amide 

analogue of ibuprofen where the carboxylic group 

is functionalized with 2-amino-3-methylpiridine. 

This compound has demonstrated activity as FAAH 

inhibitor 300 times higher than the parent Ibuprofen, moreover 

without giving ulcerogenic effects.100,101 

Ibu-AM5 showed mixed inhibition behavior suggesting the presence 

of more than one binding site on the enzyme.   

Figure 28. Ibu-AM5  
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2.8 Endocannabinoid System: Results and Discussion 

Based on these considerations in this thesis it is discussed the design, 

synthesis and pharmacological activity of new derivatives of profens 

and Ibu-AM5 designed as dual inhibitors of FAAH and COX. 

Are proposed two series of compounds, the profen series and the 

TPA series. The first derived by the modification of the different 

portion of Ibu-AM5. While, the second series derived from the 

modification of the isobutyl moiety of Ibu-AM5 into 

trifluoromethylpyridine.  

All synthesized compounds were tested as FAAH inhibitors; the 

pharmacological assays were performed at the Prof. Christopher 

Fowler laboratories, University of Umea, Sweden. The ability to 

inhibit the FAAH was measured in rat brain homogenates using 

tritiated AEA as substrate. 

All these modifications were based on analysis of the inhibition 

kinetic of ibu-AM5 with the double aim to make SAR and to 

determinate the requirements for the FAAH inhibition keeping in 

mind the putative presence of multiple binding sites.  

2.8.1 Results and Discussion: Profens 

Based on the Ibu-AM5 structure and with the aim to discover the 

better modification improving the activity as FAAH inhibitors, we 

made modification to all moieties of the molecule (Figure 29). As 

showed in Figure 29 we evaluated the influence on FAAH inhibitory 

activity of the distance between the carbonyl and the aromatic ring, 

the position and type of the substituents on the ring of the amide 

portion, the presence and the chirality of the methyl in  to the 

carbonyl group. Furthermore analogs of Ibu-AM5 were prepared 

using as parent acid different profens. 
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Figure 29. SAR scheme of the Ibu-AM5 modifications. 

The Ibu-AM5 is characterized by a three atoms linker between aryl 

and pyridine rings. To evaluate the effect on FAAH inhibitory activity 

of the distance between the two rings, some amides bearing a 4 or 5 

atoms linker were prepared. The synthetic pathway to obtain these 

amides started from the condensation of ibuprofen with ethyl 

glycinate hydrochloride or ethyl-3-aminopropionate using the 

condensing agent 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 

hydrochloride (EDC). The reactions were performed in acetonitrile 

solution (MeCN) in the presence of 1-hydroxybenzotriazole hydrate 

(HOBt). The obtained esters were hydrolyzed under basic conditions 

to obtain the (2-(4-isobutylphenyl)propanoyl)glycine (4) and 3-(2-(4-

isobutylphenyl)propanamido) propanoic acid (5). These two acids 

were then condensed with 3- and 6-methyl-2-aminopyridine and 

picolylamines using the EDC method to obtain the amides Ibu-AM9-

13 (Scheme 1).102,103  
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Scheme 1. Synthesis of Ibu-AM9-13. 

All the amides Ibu-AM9-13 showed FAAH inhibition percentage in the 

81-100% range (Table 1). The increase of the distance between the 

carboxylic group and the pyridine caused a decrease in activity. This 

is highlighted by the reduction in the activity of the compounds Ibu-

AM11, Ibu-AM12 and Ibu-AM13 as compared to Ibu-AM9, and of 

Ibu-AM9 as compared to Ibu-AM5. The difference in activity of the 

compounds Ibu-AM12 and Ibu-AM13 might be due to the 

displacement of the pyridine nitrogen. 

Also the displacement of the methyl on the pyridine from the 3-

position of Ibu-AM9 to 6-position (Ibu-AM10) caused an important 

reduction in inhibitory activity confirming what already described 

with the 6-methylpyridine analog of Ibu-AM5.101 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM5 

 

100 0.52 

Ibu-AM9 

 

100 3.2 

Ibu-AM10 

 

100 150 

Ibu-AM11 

 

90±3 93 

Ibu-AM12 

 

100 90 

Ibu-AM13 

 

81±8 37 

Table 1. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM9-13, 
ibuprofen and Ibu-am5. 
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Chart 1. Mode of inhibition of rat brain FAAH by Ibuprofen (1), Ibu-AM5, and Ibu-AM9. Panel A: AEA hydrolysis at the 
substrate and inhibitor concentrations shown (means and s.e.m, n=3). Panel B: homogenates were preincubated with 
the compounds for the times shown prior to addition of 0.5 µM [3H]AEA and assay for FAAH activity (means and s.e.m., 
n=3-4). 

Ibu-AM9, which completely inhibits the enzyme with an IC50 value of 
3.2 µM is the best of this group of amides, for this reason it was 
selected for further studies. Its inhibitory profile is time-independent, 
probably due to the formation of a non-covalent bond with the 
enzyme. The Vmax and Km values indicated that Ibu-AM9 is a 
competitive inhibitor (Chart 1A and B). 102,103 
Ibu-AM5 and Ibu-AM9 were tested also for their activity against 

COXs (Ovine COX-1 and human COX-2 obtained by recombinant 

DNA). AA was used as substrate for both the isoforms, COX-2 was 

also tested using AEA as substrate because it was reported that 

different substrates may influence the inhibitor activity.104 

 As showed on table 2 Ibu-AM5 and Ibu-AM9 display COX-1 inhibitory 

activity similar to the reference compound ibuprofen. The COX-2 

inhibition depends on the substrate used: when the substrate is AA 

Ibuprofen and its amides display weak activity. Conversely ibuprofen, 

Ibu-AM5, Ibu-AM9 showed a better inhibitory activity when the 

substrate is the AEA.102,103 
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Compound 
pI50 [IC50, μM] 

COX-1 (AA) COX-2 (AA)  COX-2 (AEA) 

Ibuprofen (1) 4.53±0.11 [29] 
<3.5 (36±8% inhib 

at 300 μM) 
5.22±0.09 [6.0] 

Ibu-AM5 4.22±0.06 [60] 
<3.5 (41±4% inhib 

at 300 μM) 
4.72±0.09 [19] 

Ibu-AM9 4.30±0.05 [50] 
<4 (18±5% inhib 

at 100 μM) 

>5 (17±8% inhib a 3 μM, 

complete inhib a 50 μM) 

Table 2. IC50 Values for COX-1 and -2 inhibition by ibuprofen (1) Ibu-AM5 and Ibu-AM9. 

To further study the effect on activity of the linker, the second 

carbonyl group was removed and a new series of ibuprofen 

benzylamides was designed. To synthesize the benzylamide series, 

ibuprofen was condensed with adequately substituted benzylamines 

by EDC method (Scheme 2). 

 
Scheme 2. Synthesis of Ibu-AM14-27. 

In general benzylamide derivatives did not show particularly 

interesting activity (IC50 values ranging 18 and 51 µM) with the 

exception of Ibu-AM22, and Ibu-AM26. Ibu-AM22 and Ibu-AM26 

showed FAAH inhibitory activity with IC50 values of 4.1 and 4.4 µM, 

respectively (Table 2).  

As showed in table 3, the position and the kind of substituent on 

benzyl moiety affect the inhibitory activity. The presence of 4-

substituent is not tolerated. Conversely, substituents in 2-position 

are well tolerated, as showed by the 2-chloro (Ibu-AM22) and 2,5-

dichloro (Ibu-AM26) derivatives. Moreover, the displacement of 

chlorine atom from 5-position of Ibu-AM26 to 6-position (Ibu-AM27) 
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lead to a complete loss of activity. A mild activity was showed by the 

2,4-dichlorophenyl substituted amide Ibu-AM25 (IC50 21 µM).  

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM14 

 

100 21 

Ibu-AM15 

 

100 27 

Ibu-AM16 

 

100 27 

Ibu-AM17 

 

100 25 

Ibu-AM18 

 

100 51 
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Ibu-AM19 

 

100 43 

Ibu-AM20 

 

100 28 

Ibu-AM21 

 

100 18 

Ibu-AM22 

 

100 4.1 

Ibu-AM23 

 

100 18 

Ibu-AM24 

 

100 36 
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Ibu-AM25 

 

100 21 

Ibu-AM26 

 

54±4 4.4 

Ibu-AM27 

 

19±6% inhibition @100 µM 

Table 3. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM14-27. 

With the aim to increase the hydrophilicity of the amides and to 

reduce the flexibility of the amide chain a new series of 

phenylpiperazinamides was designed. Also ibuprofen 

phenylpiperazine derivatives were prepared using the same 

conditions described for the benzylamide series (Scheme 3). 

 
Scheme 3. Synthesis of Ibu-AM28-37. 

In general all the phenylpiperazine derivatives displayed FAAH 

inhibitory activity better than benzylamide series.  As shown in table 

4 the 3- and 4-chlorophenyl amides Ibu-AM29 and Ibu-AM30 were 

the best compounds of this series. Starting from these results we 

designed the 3,4-dichlorophenyl substituted amide Ibu-AM31 that, 
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contrary to the expectation, showed inhibitory activity about 10 

times lower. The substitution of 3-chlorine of Ibu-AM29 with the 

methyl group to afford Ibu-AM35 cause a clear reduction in activity. 

The introduction of second methyl group in 2-position (Ibu-AM36) 

restored the activity, while the displacement of 3-methyl into 2-

position produced loss of activity (Ibu-AM37).  

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM28 

 

100 4.7 

Ibu-AM29 

 

100 1.7 

Ibu-AM30 

 

100 1.7 

Ibu-AM31 

 

100 16 

Ibu-AM32 

 

100 17 
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Ibu-AM33 

 

100 4.5 

Ibu-AM34 

 

41±3% inhibition @100 µM 

Ibu-AM35 

 

65±3 16 

Ibu-AM36 

 

89±4 1.7 

Ibu-AM37 

 

33±3% inhibition @100 µM 

Table 4. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM28-37. 

The further modification made was the insertion of a methylene 

bridge between the piperazine and the aromatic ring. These amides 

were prepared by condensation of ibuprofen with N-BOC-piperazine, 

using the same methods of condensation described above. After 

BOC-deprotection, a benzyl group was added by reductive alkylation, 

treating the intermediate 7 with the suitable substituted benzaldeyde 

in presence of sodium bicarbonate (NaHCO3), sodium borohydride 

(NaBH4) in dichloromethane (CH2Cl2) solution (Scheme 4). 
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Unfortunately, this modification afforded the poor active analogs 

Ibu-AM38-42 (Table 5). 

 
Scheme 4. Synthesis of Ibu-AM38-42. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM38 

 

18±5% inhibition @100 µM 

Ibu-AM39 

 

no inhibition @100 µM 

Ibu-AM40 

 

8±1% inhibition @100 µM 

Ibu-AM41 

 

no inhibition @100 µM 

Ibu-AM42 

 

no inhibition @100 µM 

Table 5. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM38-42. 

As extension of the paper published in 2007,101 where ibuprofen 

amides with different methylaminopyridines were prepared to 

evaluate the better position of pyridine nitrogen and  methyl group, 

we prepared Ibu-AM43 where ibuprofen is condensed with 3-amino-

2-metylpiridine (Scheme 5). This compound showed an IC50 value of 

9.5 µM, confirming that the best activity is related to the presence of 
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both methyl and pyridine nitrogen in ortho positions to the amide 

nitrogen as in Ibu-AM5 (Table 6). 

 
Scheme 5. Synthesis of Ibu-AM43. 

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM5 

 

100 0.52 

Ibu-AM43 

 

100 9.5 

Table 6. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compound Ibu-AM43. 

To evaluate the activity changes produced by replacing of the 

pyridine ring with other heterocycles, compounds Ibu-AM44-47 were 

designed.  These four compounds were prepared through the above 

described EDC procedure (Scheme 6). The inhibitory activity results 

shown in table 7 indicate that the substitution by a methylindole 

(Ibu-AM44) or a thiazole (Ibu-AM45) causes complete loss of activity. 

While compounds bearing a thiadiazole ring (Ibu-AM46 and Ibu-

AM47) showed weak inhibitor activity, with IC50 values of 26 and 36 

µM respectively.  
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Scheme 6. Synthesis of Ibu-AM44-47. 

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM44 

 

36% inhibition @100 µM 

Ibu-AM45 

 

43% inhibition @100 µM 

Ibu-AM46 

 

100 26 

Ibu-AM47 

 

100 36 

Table 7. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM44-47. 

As mentioned above the importance of the methyl on the pyridine 

ring was established, the methyl absence or its moving in a position 

different from ortho to the amide nitrogen results in activity 
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decrease. On this basis to evaluate the influence on the activity of the 

pyridine nitrogen we changed pyridine ring with a phenyl (Scheme 7). 

With this purpose we prepared Ibu-AM48, which is the 2-

methylphenyl analog of Ibu-AM5, and Ibu-AM49, where the methyl 

group is substituted by fluorine. As reported in table 8 the 

replacement of pyridine ring with a phenyl produced activity 

decrease even more pronounced when methyl group is substituted 

with fluorine. 

 
Scheme 7. Synthesis of Ibu-AM48-49. 

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM5 

 

100 0.52 

Ibu-AM48 

 

100 2.0 

Ibu-AM49 

 

100 2.4 

Table 8. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM48-49. 
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As further evaluation a group able to establish hydrogen bond with 

the enzyme was inserted on amide phenyl ring. With this purpose the 

2-hydroxy (Ibu-AM50) and the 4-hydroxy (Ibu-AM51) derivatives 

were designed. As indicated by their IC50 values the presence of the 

hydroxy group in 4-position caused an increase in activity. Next step 

was the integration of this activity enhancement with the presence of 

a 2-methyl group, with this purpose the compound Ibu-AM52 was 

prepared by condensation of ibuprofen with 2-methyl-4-

hydroxyaniline. Ibu-AM52 showed very good activity with an IC50 

value of 0.35 µM. With the aim to study the influence on the 

inhibitory activity of hydrogen bond donor or acceptor group Ibu-

AM52 was modified by introduction of a 4-methoxy for the 4-hydroxy 

group to afford Ibu-AM53 (Scheme 8). The result was decrease in 

activity, indicating that a hydrogen bond donor is better than an 

acceptor (Table 9). 

 
Scheme 8. Synthesis of Ibu-AM50-53. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM50 

 

100 8.5 

Ibu-AM51 

 

100 3.8 

Ibu-AM52 

 

100 0.35 

Ibu-AM53 

 

100 4.6 

Table 9. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM50-53. 

The most active amides bear a pyridine substituted with methyl 

group in ortho to amide nitrogen, while the importance of both 

position and chemical properties of the substituent were not cleared. 

With aim to extend SAR study we designed some Ibu-AM5 analogs. 

As showed in the table the 3-methyl group was replaced with 3-

chlorine (Ibu-AM54), 3-trifluoromethyl (Ibu-AM55), 3-bromine (Ibu-

AM56), 3-iodine (Ibu-AM57) and 3-hydroxyl (Ibu-AM58) substituents 

(Scheme 9). 
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Scheme 9. Synthesis of Ibu-AM54-58. 

The 3-chlorine derivative showed small reduction in activity as 

compared to Ibu-AM5, while the replacement of the chlorine with 

bromine, iodine and trifluoromethyl groups produced improvement 

of activity. Among these, the 3-bromopyridine analog Ibu-AM56 is 

the most potent FAAH inhibitor of the Ibu-AM series with an IC50 

value of 0.083 µM. On the contrary, the introduction of the 3-

hydroxy group is not favorable for the activity. The comparison of 

Ibu-AM58 with Ibu-AM5 reveals that the replacement of the methyl 

with a hydroxyl group produces about 4 times activity decrease, 

confirming the trend showed by the aryl analogs Ibu-AM48 and Ibu-

AM50. However, the comparison of Ibu-AM58 and Ibu-AM50 

activities indicates that the presence of pyridine nitrogen increased 

the inhibitory activity about 4 times (Table 10). 

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM5 

 

100 0.52 

Ibu-AM54 

 

100 0.91 
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Ibu-AM55 

 

100 0.36 

Ibu-AM56 

 

100 0.083 

Ibu-AM57 

 

100 0.12 

Ibu-AM58 

 

100 2.1 

Table 10. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibu-AM54-58. 

Successively the effect on activity of the methyl group at the C- to 

the carbonyl group was taken into consideration. The unmethylated 

Ibuf-AM1 was obtained by the condensation between ibufenac (8) 

and 2-amino-3-methylpyridine (9) (Scheme 10). The deletion of 

methyl group (Ibuf-AM1) resulted in drastic activity reduction of 

about 130 times as compared to Ibu-AM5, highlighting the methyl 

group considerable influence for the inhibitory activity against FAAH 

(Table 11). 
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Scheme 10. Synthesis of Ibuf-AM1. 

To better understand SAR of the C- position further two derivatives 
were designed, the dimethyl derivative Ibu-AM59, and the 
cyclopropyl analog Ibu-AM60. To prepare Ibu-AM59, 8 was 
converted into its methyl ester 10, which was treated with 
iodomethane (MeI) in dimethylformamide (DMF) solution in 
presence of sodium hydride (NaH) to obtain compound 11. The ester 
11 was hydrolyzed into the acid 12, which was finally condensed with 
the 2-amino-3-methylpyridine (9) using EDC procedure (Scheme 11). 
In a similar manner, Ibu-AM60 was obtained by amidation with 9 of 
acid 14, in turn obtained upon treatment of 10 with 1,2-
dibromoethane and NaH in DMF solution, followed by basic 
hydrolysis (Scheme 12). Both these compounds showed a lower 
activity than Ibu-AM5, in particular the insertion of second methyl 
causes about a doubling of the IC50 value, while the cyclopropyl to 
even almost eight times (Table 11). 
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Scheme 11. Synthesis of Ibu-AM59. 

 
Scheme 12. Synthesis of Ibu-AM60. 

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM5 

 

100 0.52 

Ibuf-AM1 

 

100 68 
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Ibu-AM59 

 

100 1.0 

Ibu-AM60 

 

100 4.1 

Table 11. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Ibuf-AM1, Ibu-
AM59-60. 

Given the reported small FAAH inhibitory activity of other 

NSAIDs,98,99,105 we synthesized the amides of flurbiprofen (15), 

fenoprofen (16), ketoprofen (17), naproxen (18), and carprofen (19) 

with 9 (Scheme 13). 

Scheme 13. Synthesis of Flu-AM1, Feno-AM1, Keto-AM1, Napr-AM1 and Carpr-AM1. 

As shown by the results reported in table 12 the amides of 

fenoprofen and ketoprofen are weak FAAH inhibitors and Napr-AM1 

has an IC50 value similar to Ibu-AM5. While, amides of flurbiprofen 



2. Endocannabinoid System 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
90 

and carprofen have better activity than Ibu-AM5, in particular Carpr-

AM1 has an IC50 value of 0.034 µM almost fifteen times better than 

Ibu-AM5. 

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM5 

 

100 0.52 

Flu-AM1 

 

100 0.44 

Feno-AM1 
 

 

100 51 

Keto-AM1 
 

 

100 19 

Napr-AM1 

 

100 0.74 

Carpr-AM1 

 

100 0.034 

Table 12. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Flu-AM1, Feno-
AM1, Keto-AM1, Napr-AM1 and Carpr-AM1. 

Based on these results we prepared the amides of these two profens 

with the amines that gave the best results in the Ibu-AM series.  
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In particular Carprofen was condensed with 2-amino-3-

trifluoromethylpyridine (Carpr-AM5), 2-amino-3-bromopyridine 

(Carpr-AM4) and 2-methyl-4-hydroxyaniline (Carpr-AM2) and 2-

amino-3-iodopyridine (Carpr-AM3) (Scheme14); the corresponding 

flurbiprofen amides were prepared except the iodine analog (Scheme 

15). As expected flurbiprofen amides showed similar behave of 

Ibuprofen derivatives (Table 13). Conversely, preliminary data of 

Carprofen amides indicate a different activity profile (Table 14).  

 
Scheme 14. Synthesis of Carpr-AM2-5. 

 
Scheme 15. Synthesis of Flu-AM2-4. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Flu-AM1 

 

100 0.44 

Flu-AM2 

 

100 0.11 

Flu-AM3 

 

100 0.021 

Flu-AM4 

 

100 0.15 

Table 13. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Flu-AM2-4. 
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Compound Formula 

Max 

inhibition 

(%) 

IC50 (µM) 

Carpr-AM1 

 

100 0.034 

Carpr-AM2 

 

100 <0.05 

Carpr-AM3 

 

90 >5 

Carpr-AM4 

 

100 >10 

Carpr-AM5 

 

100 >15 

Table 14. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds Carpr-AM2-5. 

Being the C- to the carbonyl a chiral center we were interested to 

understand if as well as the presence of this methyl even its 

configuration is important. Therefore, we prepared the single 

enantiomers of Ibu-AM5 and Flu-AM1 and the inhibitor activity 

against FAAH of these was tested. As reported on the table 15 the 

(S)-(+)enantiomer of Ibu-AM5 is almost ten times more active than 

(R)-(-)-Ibu-AM5. Conversely, (R)-(-)-ibuprofen is better FAAH inhibitor 

than (S)-(+)-ibuprofen.106 While the enantiomers of Flu-AM1 exhibit 

similar inhibitory activity, being the (S)-(+)-Flu-AM1 slight less potent 

than the R-enantiomer according to the corresponding acids. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

Ibu-AM5 

(Racemate) 

 

100 0.52 

(S)-(+)-Ibu-AM5 
 

 

100 0.59 

(R)-(-)-Ibu-AM5 
 

 

92±4 5.7 

Flu-AM1 
(Racemate) 

 

100 0.44 

(S)-(+)-Flu-AM1 

 

100 0.99 

(R)-(-)-Flu-AM1 

 

100 0.74 

Table 15. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by enantiomers of Ibu-AM5 
and Flu-AM1. 
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As highlighted by computational studies performed at the Dr. 

Catalanotti and Prof. Luque computational laboratories, University 

Federico II of Naples and University of Barcelona, Flu-AM1 and Ibu-

AM5 bind a region located between the acyl chain binding (ACB) and 

the entrance of the membrane access channel (MAC), as well as 

other non-covalent FAAH inhibitors, such as carprofen107 and  

(3-((3R)-1-(4-(1-benzothiophen-2-yl)pyrimidin-2-yl)piperidin-3-yl)-2-

methyl-1H pyrrolo(2,3- b)pyridin-1-yl)acetonitrile.108 

Docking experiments indicated two possible binding modes, which 

differ in the molecule orientation, the A-mode presents the amide 

moiety pointing toward the catalytic triad, while the B-mode pointing 

toward the membrane interacting helices α18-α19. Nevertheless, 

molecular dynamics (MD) studies suggested that the B-mode is the 

most probable binding mode in terms of stability and of the 

convergence of different runs. The MD simulations result were 

experimentally validated by testing (R)-Flu-AM1 in rat FAAHT488A 

mutant, in collaboration with the group of Dr. E. Pedone (IBB-CNR, 

Naples). The lower activity showed in the mutant FAAHT488A with 

respect to the wild type supported the proposed binding mode, since 

only in the B-mode there is a relevant interaction between ligand and 

the FAAH residue Thr-488. 

The comparison of the best representative poses of the Flu-AM1 

enantiomers (Figure 31) highlighted that they bind the enzyme in two 

very different ways. (S)-enantiomer, conversely to the (R)-Flu-AM1 

that binds the receptor near the catalytic site, has the binding site 

deeper in the MAC, suggesting that chirality is a main determinant of 

the binding mode. 

As suggested by the inhibition results the difference on the binding 

modes have a much greater influence for the enantiomers of Ibu-

AM5 than for those of Flu-AM1. In agreement with the similar 

inhibitor activities, both (R)- and (S)-Flu-AM1 binding mode were 

characterized by a similar pattern of hydrophobic interactions and 

two hydrogen bonds. Conversely, (R)-Ibu-AM5 (Figure 30) showed 
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less hydrogen bond and less flexibility of the isobutyl moiety than (S)-

enantiomer in full agreement with their different activities. 

 

 

  

Figure 30. Representation of (R)- (A) and (S)-Ibu-AM5 (B) in 
the Competitive Bonding Site of the Dimeric FAAH. 

Figure31. Representation of (R)- (A) and (S)-Flu-AM1 (B) in 
the Competitive Bonding Site of the Dimeric FAAH. 



Design, synthesis and SAR of small molecules acting on pain pathways 
_______________________________________________________________________________________ 

 

_______________________________________________________________________________________
97 

2.8.2 Results and Discussion: TPA 

The Ibu-AM derivatives are characterized by the presence of the 

isobutyl chain of the parent Ibuprofen. MD studies on the Ibu-AM5 

enantiomers binding modes, showed that in both (S)- and (R) Ibu-

AM5 the isobutyl chain fail into a wide task within the ACB channel, 

allowing two main populated and opposite positions of the isobutyl 

chain resulting in a great flexibility and freedom (Figure 32). With the 

aim to reduce both rotation freedom and lipophilicity, we explored 

the possibility to substitute the isobutyl group of Ibu-AM5 with 2-

(trifuoromethyl)pyridin-4-ylamino group, obtaining a new series of 2-

(4-((2-(Trifluoromethyl)Pyridin-4-yl)amino)phenyl)propan Amides 

(TPA) (Figure 33). 

The new series derive from the acid 2-(4-((2-(trifluoromethyl)pyridin-

4-yl)amino)phenyl)propanoic acid (TPA0). The starting material used 

for the synthesis of TPA0 is 2-(4-nitrophenyl)propionic acid which is 

first converted into its methyl ester and subsequently submitted to 

reduction of the nitro group. Then the resulting methyl 2-(4-

aminophenyl)propionate was treated with 1,1,1-trifluoro-4-

methoxypent-3-en-2-one (22) at reflux in acetonitrile solution to 

obtain the enaminone 23, which was reacted with N,N-

dimethylformamide dimethyl acetal (DMF-DMA), thus obtaining the 

dienaminone 24. Next step was the cyclization of the dienaminone 24 

Figure 33. Design of TPA5. Figure 32. (R)-Ibu-AM5 MD.  
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with ammonium acetate to obtain the ester 25, which was 

hydrolyzed to the corresponding acid TPA0 (Scheme 16). 

 
Scheme 16. Synthesis of TPA0. 

The TPA0 was converted in its amide with 2-amino-3-methylpyridine 

TPA5 (Scheme 17), which show an IC50 value of 0.59 M, very similar 

to that of Ibu-AM5 (0.52 µM) (Table 16). 

 
Scheme 17. Synthesis of TPA5, 24-27. 

In order to better understand the structure-activity relationship of 

TPAs and to discover the better modification to improve the activity 

as FAAH inhibitors, we made modification to all moieties of the 

molecule (Figure 34). 
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Figure 34. SAR scheme of the TPA5 modifications. 

First we dedicate our attention to extension of the distance between 

the carbonyl group and the pyridine ring. To this purpose TPA0 was 

condensed with 2-picolylamine and 3-picolylamine to obtain the 

amides TPA8 and TPA9 respectively (Scheme 18). Confirming the 

data of the analog Ibu-AMs the presence of a longer linker between 

the carbonyl and the pyridine ring caused a considerable decrease in 

activity (IC50 more than 20 µM) (Table 16). 

 
Scheme 18. Synthesis of TPA8-9. 

The further linker extension was the introduction of second amide 

moiety to give TPA10 (IbuAM9 analog). This compound was prepared 

starting from condensation between TPA0 and ethyl glycinate 

hydrochloride using the EDC method. The obtained ester 26 was 

hydrolyzed under basic conditions to obtain compound 27. This acid 

was finally condensed with the 2-amino-3-methylpiridine using the 

EDC to obtain the amide TPA10 (Scheme 19). TPA10 showed a slight 

reduction of the activity (IC50 value of 2.4 M) as compared to TPA5 

(Table 16). 
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Scheme 19. Synthesis of TPA10. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

TPA5 

 

100 0.59 

TPA8 

 

100 23.0 

TPA9 

 

100 32.0 

TPA10 

 

100 2.4 

Table 16. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds TPA5, 8-10. 

Then we modified the 3-methylpyridoamido moiety: TPA11 and 

TPA12 are TPA5 analogs bearing the methyl group in different 

position of the pyridine ring, respectively in 5-position and 4-position 

(Scheme 20); both showed a highest IC50 as compared to TPA5, 

respectively of 11.0 and 4.0 µM (Table 17). The activity reduction in 

both cases indicates that the position of the methyl on the pyridine 

ring is crucial for the inhibitory activity. 
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Scheme 20. Synthesis of TPA11-12. 

To evaluate the influence of the position of the pyridine nitrogen on 

the activity, we prepared TPA13, TPA14 and TPA15, through 

condensation of TPA0 with 2-aminopyridine, 3-aminopyridine and 4-

aminopyridine respectively (Scheme 21). The pharmacological results 

indicate that the 3-aminopyridine derivative TPA14 shows the better 

IC50 (6.4 µM), followed by TPA13 (2-aminopyridine substituted) 

showing an IC50 value of 12 µM and last by TPA15 (4-aminopyridine 

substituted) showing an IC50 52 µM. Interestingly TPA13 displays 

inhibitory activity about 20 folds lower than TPA5 confirming the 

greater importance of the presence of the 3-methyl pyridine 

substituent than nitrogen atom position. This is also emphasized by 

TPA16, the phenyl analog of TPA5 (Scheme 22), this compound 

showed an IC50 value of 0.74 µM (Table 17).  

 
Scheme 21. Synthesis of TPA13-15. 

 
Scheme 22. Synthesis of TPA16. 
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Based on the results just described we replaced the pyridine ring with 

pyrimidine (TPA17) and pyrazine ring (TPA18) (Scheme 23). As 

displayed on the table 17 both the compounds show an activity 

increased in particular TPA17 displaying an IC50 value of 0.99 µM. 

 
Scheme 23. Synthesis of TPA17-18. 

To evaluate how a larger and more lipophilic ring influenced the 

activity, TPA0 was condensed with 8-aminoquinoline (Scheme 24). 

The obtained amide TPA19, has an activity about seven times lower 

than the reference compound TPA5, indicating that the increase in 

size and lipophilicity of the amide region does not improve the FAAH 

inhibitory activity (Table 17). 

 
Scheme 24. Synthesis of TPA19. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

TPA5 

 

100 0.59 

TPA11 

 

68±4 11.0 

TPA12 

 

100 4.0 

TPA13 

 

93±3 12.0 

TPA14 

 

86±2 6.4 
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TPA15 

 

100 52.0 

TPA16 

 

100 0.74 

TPA17 

 

100 0.99 

TPA18 

 

100 2.0 

TPA19 

 

75±7 4.3 

Table 17. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds TPA11-19. 

Based on the best results obtained for Ibuprofen phenylpiperazine 

derivatives, we prepared the TPA20, TPA21, TPA22, and TPA23 

deriving from 1-(3-chlorophenyl)piperazine, 1-(4-chlorophenyl) 

piperazine, 1-(2,3-dimethylphenyl)piperazine and 1-(2-methylphenyl) 
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piperazine respectively (Scheme 25). Even in these cases, the 

phenylpiperazine derivatives showed inhibitor activity lower than the 

reference compound TPA5. That is particularly evident for 

compounds TPA22 and TPA23, which completely lose the inhibitory 

activity (Table 18). However, the different behavior between the 

halogenated and the methyl phenylpiperazines compared to the Ibu-

AM analogues may, again, suggests a different interaction with FAAH 

of TPA and Ibu-AM derivatives. 

 
Scheme 25. Synthesis of TPA20-23. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

TPA20 

 

100 27 

TPA21 

 

65±8 17 

TPA22 

 

24±2% inhibition @100 µM 

TPA23 

 

24±3% inhibition @ 100 µM 

Table 18. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds TPA20-23. 

In order to evaluate the characteristics of the substituent in ortho to 

the amidic nitrogen we replaced the methyl with halogen such as 

bromine, iodine, trifluoromethyl and chlorine (Scheme 26). All these 

amides showed a very good activity, in every case better than TPA5, 

with IC50 values of 0.13 µM for TPA24, 0.10 µM for TPA25, 0.33 µM 

for TPA26 and even 0.058 µM for the chlorine derivative TPA27, 

which is the best of the series (Table 19). 
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As for the Ibu-AM52 even in this case we prepared the derivative 

with the 2-methyl-4-hydroxyaniline in order to evaluate the effect of 

the presence of a group that can give hydrogen bonds (TPA28) 

(Scheme 26). Also in this case the compound with the hydroxyl group 

has an IC50 lower than the TPA16, as well as Ibu-AM48 and Ibu-AM52 

(Table 19).  

 
Scheme 26. Synthesis of TPA24-28. 

Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

TPA5 

 

100 0.59 

TPA24 

 

100 0.13 

TPA25 

 

100 0.10 
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TPA26 

 

100 0.33 

TPA27 

 

100 0.058 

TPA28 

 

100 0.63 

Table 19. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds TPA24-28. 

TPA5 and TPA27 were also tested in kinetics experiments in order to 

get some information in the mechanism of action of this novel class 

of FAAH inhibitors. TPA5 resulted a competitive inhibitor while 

TPA27 showed different inhibition kinetics, with Ki and alfa values of 

0.28 µM and 1.03, respectively (Chart 2 and 3). Therefore TPA27 

behaves as a non-competitive inhibitor. Further experiments 

highlighted that TPA27 is fully reversible. Taken into account these 

considerations we hypothesized that TPA5 and TPA27 both behave 

as FAAH inhibitors, exerting their effect by binding two different 

binding sites on the enzyme.  
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Chart 2. Mode of inhibition of rat brain FAAH by TPA5. Panel A: homogenates were preincubated with the compounds 
for the times shown prior to addition of 0.5 µM [3H]AEA and assay for FAAH activity (means and s.e.m., n=3-4)Panel B: 
AEA hydrolysis at the substrate and inhibitor concentrations shown (means and s.e.m, n=3). 

 
Chart 3. Mode of inhibition of rat brain FAAH by TPA27. Panel A: homogenates were preincubated with the compounds 
for the times shown prior to addition of 0.5 µM [3H]AEA and assay for FAAH activity (means and s.e.m., n=3-4)Panel B: 
AEA hydrolysis at the substrate and inhibitor concentrations shown (means and s.e.m, n=3). 

Therefore the kinetics experiments highlighted that even small 

modifications on the TPA scaffold may influence dramatically the 

binding preference and therefore the inhibition mechanism. In the 

light of such considerations, caution should be taken in order to 

derive the structure activity relationships, since structure 

modifications could influence a single or more binding mode.  

Conformational studies on TPA5 and TPA27 (Maestro, MM3 

forcefield, =4) revealed a different conformational behavior for 

TPA5 and TPA27 (Figure 35), thus suggesting a potential explanation 

for this finding. 
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Figure 35. Superimposition of global minumum conformers of TPA5 (grey) and TPA27 (orange). 

Docking and MD studies allowed us to get preliminary information 

about the putative binding mode for (S)-TPA5. The pure competitive 

inhibition kinetic showed by (S)-TPA5 addressed us to perform 

docking calculations in the substrate-binding site. As previously found 

for Ibu-AM5 and Flu-AM1 enantiomers, docking indicated two 

possible orientation, namely the A-mode showing the amide moiety 

pointing toward the catalytic triad, and the B-mode with the amide 

pointing toward the membrane interacting helices α18- α 19. MD 

simulations of 100 ns were run on the best four poses (2 for A-mode 

and two for B-mode). The analysis of the MD run suggested that the 

A-mode is the most stable binding mode as shown by the analysis of 

the RMSD during the MD run, showing convergence among different 

MD run. Moreover, QM/MM calculations also demonstrated a lower 



2. Endocannabinoid System 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
112 

ΔG for the A-mode (-78 kcal/mol) compared to the B mode (-59.25 

kcal/mol). 

 
Figure 36. Representation of (S)-TPA5 (violet) in the competitive binding site of the dimeric FAAH (green) as obtained 
from MD simulations. The membrane interacting helices α18- α19 are highlighted in orange. 

The analysis of the most relevant frame in the only cluster resulting 

by the A-mode run (Figure 36), showed the carbonyl moiety 

interacting with to the oxyanion hole, composed of four main chain 

amide N-H groups, including those of Ile238, Gly239, Gly240, Ser241, 

while the methyl pyridine moiety established hydrophobic contacts 

with Met191, Ile238 and Leu192. The central core of TPA5 elongated 

along the ACB channel and the trifluoromethylpyridinamine moiety 

interacted with residues at the gorge of the MAC, establishing face to 

edge π-π interactions with Phe381 and Phe432, and hydrophobic 

contacts with Met436 and Leu380. No interactions with the Thr488 

were observed. To further confirm the putative binding mode, 

experiments on mutated FAAH are currently in progress. 
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As for the Ibu-AM series, we explored the importance of the 

substituent on C- to the carbonyl group; firstly, we deleted the 

methyl (TPA29). To prepare this compound we utilized the same 

synthetic procedure used to prepare TPA0 starting from the methyl 

ester of the 2-(4-aminophenyl)acetic acid (28), the obtained acid 31 

was subsequently condensed with 2-amino-3-methylpyridine using 

EDC method  (Scheme 27). As expected, the activity greatly reduced 

(Table 20). After that, we evaluated how the insertion of a second 

methyl group influenced the activity. To prepare TPA30 (Scheme 28) 

2-(4-nitrophenyl)acetic acid was converted into its methyl ester 

derivative 33, which was treated with iodomethane in DMF solution 

in presence of NaH to obtain compound 34.  The nitro group of 34 

was reduced into its corresponding amine (35). This last was 

converted into TPA30 with the same procedure used to obtain TPA29 

(Scheme 28). Enzymatic assays showed TPA30 to be slightly less 

potent than TPA5. Taken together, results of TPA29 and TPA30 

suggested that the presence of a lipophilic group on C-α to the 

carbonyl group is essential (Table 20). 

 
Scheme 27. Synthesis of TPA29. 
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Scheme 28. Synthesis of TPA30. 

We therefore tried to increase the steric hindrance at the C- to the 

carbonyl group, by inserting three, four, five and six atom rings. 

TPA31, TPA32, TPA33 and TPA34 were prepared with the same 

procedure described to prepare TPA30, using the appropriate di-

halogen derivatives, namely 1,2-dibromoethane, 1,3-diiodopropane, 

1,4-diiodobutane, 1,5-diiodopentane respectively (Scheme 29); all 

the obtained amides show IC50 higher than TPA5. With the exception 

of the compound bearing the cyclopropyl group (TPA31), the 

increase in size of the cycle causes a progressive reduction of the 

activity (Table 20). Therefore it is concluded that the chiral center is 
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not a critical requisite, but the presence of small lipophilic group is 

essential, more likely due to reduction of the region flexibility.  

 
Scheme 29. Synthesis of TPA31-34. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

TPA5 

 

100 0.59 

TPA29 

 

100 48 

TPA30 

 

 

100 1.8 

TPA31 

 

100 14 

TPA32 

 

100 9.1 
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TPA33 

 

100 60 

TPA34 

 

30±3 >100 

Table 20. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds TPA29-34. 

To further extend the SAR we also evaluated the importance of the 

heterocyclic moiety bearing the trifluoromethyl group, preparing the 

compounds TPA35 and TPA36, where a trifluoromethyl quinoline 

replace the trifluoromethylpyridine ring. To prepare these 

compounds the ester 21 was hydrolyzed to the acid 40. That is 

subsequently treated with 4-chloro-8-trifluoromethylquinoline and 4-

chloro-7-trifluoromethylquinoline to obtain the corresponding acids 

65 and 66, which are condensed with 2-amino-3-methylpyridine by 

EDC method to obtain TPA35 and TPA36, respectively (Scheme 30).  

In both cases there is a reduction in the activity, more pronounced 

when the trifluoromethyl group is in 8-position (Table 21). 
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Scheme 30. Synthesis of TPA35-36. 
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Compound Formula 
Max 

inhibition (%) 
IC50 (µM) 

TPA5 

 

100 0.59 

TPA35 

 

100 27 

TPA36 

 

100 3.1 

Table 21. Maximum percentage and IC50 values for inhibition of rat brain AEA hydrolysis by compounds TPA35-36. 
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2.9 Experimental102,103 

Commercially available solvents and reagents were used without 

further purification unless otherwise stated. Tetrahydrofuran (THF) 

was freshly distilled from sodium/benzophenone. Reactions requiring 

anhydrous conditions were performed in oven-dried glassware under 

argon atmosphere. 1H NMR spectra were recorded on a Varian Inova 

500 spectrometer. The chemical shifts (δ) are reported in part per 

million downfield from tetramethylsilane (TMS), which was used as 

internal standard, and the spectra were recorded in DMSO-d6. 

Infrared spectra were recorded on a Bruker Vector 22 spectrometer. 

The main bands are given in cm-1. Optical rotation were assessed at 

10 mg/mL concentrations using a Perkin Elmer 241 polarimeter in a 

10 cm water-jacketed cell at 25 °C. Melting points (m.p.) were 

determined on a Stuart Scientific Melting point SMP1 apparatus and 

are uncorrected. All products reported showed NMR spectra in 

agreement with the assigned structures. The purity of tested 

compounds was determined by combustion elemental analyses 

conducted by the Microanalytical Laboratory of the Chemistry 

Department of the University of Ferrara with a Yanagimoto MT-5 

CHN recorder elemental analyzer. All tested compounds yielded data 

consistent with a purity of at least 95% as compared with the 

theoretical. 

Analytical thin layer chromatography was performed using 0.25 mm 

silica gel 60-F plates. Flash chromatography was performed using 

200-400 mesh silica gel (Merk KGaA). Unless otherwise stated, yields 

refer to chromatography and spectroscopically pure materials.  
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Ethyl (2-(4-isobutylphenyl)propanoyl)glycinate (2) 

 

Ibuprofen (0.41 g, 2 mmol), EDC (0.39 g, 2.2 mmol) and HOBt (0.27 g, 

2 mmol) were dissolved in MeCN (10 mL). The mixture was stirred at 

r.t. for 30 minutes, then were added triethylamine (TEA) (0.4 mL, 4 

mmol) and ethylglicinate hydrochloride (0.56 g, 4 mmol). The mixture 

was stirred at r.t. for 4 hours. After the solvent was removed under 

vacuum. The residue was dissolved in ethyl acetate (AcOEt) (20 mL) 

and washed sequentially with brine (2x5 mL), 10% citric acid (2x5 

mL), saturated NaHCO3 aqueous solution (2x5 mL) and water (2x5 

mL). The organic layer was dried over anhydrous sodium sulfate 

(Na2SO4) and evaporated under vacuum. The residue was treated 

with isopropyl ether (iPr2O); the precipitate was then filtrated and 

purified by recrystallization from 2-propanol (2-PrOH). 

Yield: 70%. m.p. 132-133 °C (2-PrOH). 1H NMR (DMSO-d6) δ 0.91 (d, 

J= 6.6, 6H, CH3), 1.30 (t, J= 7.8, 3H, CH3), 1.44 (d, J= 7.0, 3H, CH3), 1.52 

(d, J= 7.0, 2H, CH2), 1.82 (m, 1H, CH), 2.18 (m, 2H, CH2), 2.43 (m, 1H, 

CH), 3.52 (m, 1H, CH), 4.13 (q, J = 7.8, 2H, CH2), 4.16 (s, 2H, CH2), 7.13 

(m, 2H, Ar), 7.30 (m, 2H, Ar), 8.35 (s, 1H, NH). IR (Nujol) 3230, 2766, 

1712, 1653 cm-1. Elemental analysis: calculated for C17H25NO3 

(291.18) % C70.07; H 8.65; N 4.81; Found % C70.01; H 8.66; N 4.84. 
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Ethyl 3-(2-(4-isobutylphenyl)propanamido)propanoate (3) 

 

Ibuprofen (0.41 g, 2 mmol), EDC (0.39 g, 2.2 mmol) and HOBt (0.27 g, 

2 mmol) were dissolved in MeCN (10 mL). The mixture was stirred at 

r.t. for 30 minutes, then were added TEA (0.4 mL, 4 mmol) and ethyl 

3-aminopropionate (0.61 g, 4 mmol). The mixture was stirred at r.t. 

for 4 hours. After the solvent was removed under vacuum. The 

residue was dissolved in AcOEt (20 mL) and washed sequentially with 

brine (2x5 mL), 10% citric acid (2x5 mL), saturated NaHCO3 aqueous 

solution (2x5 mL) and water (2x5 mL). The organic layer was dried 

over anhydrous Na2SO4 and evaporated under vacuum. The residue 

was treated with iPr2O; the precipitate was then filtrated and purified 

by recrystallization from 2-PrOH. 

Yield: 85%. m.p. 128-130 °C (2-PrOH). 1H NMR (DMSO-d6) δ 0.92 (d, 

J= 6.6, 6H, CH3), 1.28 (t, J= 7.8, 3H, CH3), 1.46 (d, J= 7.0, 3H, CH3), 1.49 

(d, J= 7.0, 2H, CH2), 1.82 (m, 1H, CH), 2.19 (m, 2H, CH2), 2.40 (m, 1H, 

CH), 2.65 (m, 2H, CH2), 3.52 (m, 1H, CH), 4.12 (q, J = 7.8, 2H, CH2), 

4.15 (s, 2H,CH2), 7.17 (m, 2H, Ar), 7.33 (m, 2H, Ar), 8.32 (s, 1H, NH). IR 

(Nujol) 3244, 2754, 1718, 16547 cm-1. Elemental analysis: calculated 

for C18H27NO3 (320.22) % C70.79; H 8.91; N 4.59; found % C70.84; H 

8.88; N 4.56. 
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(2-(4-Isobutylphenyl)propanoyl)glycine (4) 

 

To a solution of the ester 2 (0.29 g, 1 mmol) in ethanol (EtOH) (10 mL) 

5N solution of sodium hydroxide (NaOH) (2mL) and water (2 mL) 

were added. The resulting mixture was stirred at r.t. for 24h. After 

removing EtOH under vacuum to the resulting solution was ice added 

and then acidified with aqueous 20% hydrochloric acid (HCl) solution 

until pH 3-4. The formed precipitate was filtrated, washed with water 

and re-crystallized from EtOH. 

Yield 76%. m.p. 160-161 °C (2-PrOH). 1H NMR (DMSO-d6) δ 0.91 (d, J= 

6.6, 6H, CH3), 1.44 (d, J= 7.0, 3H, CH3), 1.52 (d, J= 7.0, 2H, CH2), 1.82 

(m, 1H, CH), 2.19 (m, 2H, CH2), 2.43 (m, 1H, CH), 3.52 (m, 1H, CH), 

4.14(s, 2H, CH2), 7.13 (m, 2H, Ar), 7.30 (m, 2H, Ar), 8.35 (s, 1H, NH), 

10.82 (s, 1H, OH). IR (Nujol) 3317, 1770, 1661 cm-1. Elemental 

analysis: calculated for C15H21NO3 (263.15) % C 68.42; H 8.04; N 5.32; 

found % C 68.37; H 8.06; N 5.35. 

3-(2-(4-Isobutylphenyl)propanamido)propanoic acid (5) 

 

To a solution of the ester 3 (0.32 g, 1mmol) in EtOH (10 mL) 5N 

solution of NaOH (2mL) and water (2 mL) were added. The resulting 
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mixture was stirred at r.t. for 24h. After removing EtOH under 

vacuum to the resulting solution was ice added and then acidified 

with aqueous 20% HCl solution until pH 3-4. The formed precipitate 

was filtrated, washed with water and re-crystallized from 2-PrOH. 

Yield 84 %. m.p. 147-149 °C (2-PrOH). 1H NMR (DMSO-d6) δ 0.91 (d, J= 

6.5, 6H, CH3), 1.46 (d, J= 7.0, 3H, CH3), 1.52 (d, J= 6.9, 2H, CH2), 1.84 

(m, 1H, CH), 2.19 (m, 2H, CH2), 2.42 (m, 1H, CH), 2.66 (m, 2H, CH2), 

3.52 (m, 1H, CH), 4.16 (s, 2H, CH2), 7.17 (m, 2H, Ar), 7.35 (m, 2H, Ar), 

8.40 (s, 1H, NH), 10.78 (s, 1H, OH). IR (Nujol) 3307, 3061, 1698, 1643 

cm-1. Elemental analysis: calculated for C16H23NO3 (277.17) % C 69.29; 

H 8.36; N 5.05; found % C 68.24; H 8.38; N 5.02 

General procedure for the synthesis of amides Ibu-AM9-13 

A mixture of the appropriate acid 4, 5 (1 mmol), EDC (0.19 g, 1.1 

mmol) and HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was 

stirred at r.t. for 30 minutes. After then the appropriate amine (1 

mmol) was added. The mixture was then stirred for other 24h. After, 

the solvent was removed under vacuum; the residue was dissolved in 

AcOEt (20 mL) and washed sequentially with brine (2x5 mL), 10% 

citric acid (2x5 mL), NaHCO3 10% aqueous solution (2x5 mL) and 

water (2x5 mL). The organic layer was dried over anhydrous Na2SO4 

and evaporated under vacuum to obtain the compounds Ibu-AM9-

13. 
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2-(4-Isobutylphenyl)-N-(2-((3-methylpyridin-2-yl)amino)-2-

oxoethyl)propanamide (Ibu-AM9) 

 

Obtained following the general procedure, by the condensation 

between the acid 2 and 2-amino-3-methylpyridine (9). 

Yield 68%. Oil.  1H NMR (DMSO-d6) δ 0.95 (d, J= 6.6, 6H, CH3), 1.45 (d, 

J= 7.0, 3H, CH3), 1.90 (m, 1H, CH), 2.14 (s, 2H, CH2), 2.20 (s, 3H, CH3), 

2.50 (s, 3H, CH3), 3.60 (m, 1H, CH), 4.04 (m, 2H, CH2), 7.19-7.74 (m, 

7H, Ar), 8.34 (s, 1H, NH), 10.05 (s, 1H, NH). IR (Film) 3264, 1660 cm-1. 

Elemental analysis: calculated for C21H27N3O2 (353.21) % C 71.36; H 

7.70; N 11.89; found % C 71.41; H 7.68; N 11.93. 

2-(4-Isobutylphenyl)-N-(2-((6-methylpyridin-2-yl)amino)-2-

oxoethyl)propanamide (Ibu-AM10) 

 

Obtained following the general procedure, by the condensation 

between the acid 2 and 2-amino-6-methylpyridine. 

Yield 55%. m.p. 121-123 °C (cyclohexane). 1H NMR (DMSO-d6) δ 0.96 

(d, J= 6.3, 6H, CH3), 1.44 (d, J= 6.9, 3H, CH3), 1.92 (m, 1H, CH), 2.42 

(m, 2H, CH2), 2.50 (s, 3H, CH3), 3.54 (m, 1H, CH), 4.10 (s, 2H, CH2), 

7.07-7.93 (m, 7H, Ar), 8.34 (s, 1H, NH), 10.43 (s, 1H). IR (Nujol) 3284, 
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3069, 1682, 1645 cm-1. Elemental analysis: calculated for C21H27N3O2 

(353.21) % C 71.36; H 7.70; N 11.89; found % C 71.30; H 7.72; N 11.86 

2-(4-Isobutylphenyl)-N-(3-((3-methylpyridin-2-yl)amino)-3-

oxopropyl)propanamide (Ibu-AM11) 

 

Obtained following the general procedure, by the condensation 

between the acid 3 and 2-amino-3-methylpyridine. 

Yield 62%; Oil. 1H NMR (CDCl3) δ 0.85 (d, J= 5.5, 6H, CH3), 1.45 (d, J= 

7.3, 3H, CH3), 1.79 (m, 1H, CH), 2.14 (m, 1H, CH), 2.42 (m, 2H, CH2), 

2.48 (m, 2H, CH2), 2.70 (m, 2H, CH2), 3.50 (m, 3H, CH3), 6.98–7.78 (m, 

7H, Ar), 8.11 (s, 1H, NH), 9.13 (s, 1H, NH). IR (Film) 3307, 1779, 1669, 

1650 cm-1. Elemental analysis: calculated for C22H29N3O2 (367.23) % C 

71.90; H 7.95; N 11.43; found % C 71.96; H 7.92; N 11.45. 

2-(4-isobutylphenyl)-N-(2-oxo-2-((pyridin-2-

ylmethyl)amino)ethyl)propanamide (Ibu-AM12) 

 

Obtained following the general procedure, by the condensation 

between the acid 2 and 2-picolylamine. 
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Yield 68%. Oil. 1H NMR (DMSO-d6) δ 0.95 (d, J = 6.5, 6H), 1.44 (d, J = 

7.0, 3H), 1.89 (hept, J = 6.5, 1H), 2.49 (m, 2H), 3.54 (m, 1H), 4.10 (s, 

2H), 4.48 (m, 2H), 7.16, 7.40, 7.88, 8.37, 8.50 (m, 8H), 8.60 (s, 1H), 

10.45 (s, 1H).IR (Film) 3320, 1704, 1672, 1645 cm-1. Elemental 

analysis: calculated for C21H27N3O2 (353.21) % C 71.36; H 7.70; N 

11.89; found % C 71.43; H 7.71; N 11.85. 

2-(4-isobutylphenyl)-N-(2-oxo-2-((pyridin-3-

ylmethyl)amino)ethyl)propanamide (Ibu-AM13) 

 

Obtained following the general procedure, by the condensation 

between the acid 2 and 3-picolylamine. 

Yield 75%. Oil. 1H NMR (CDCl3) δ 0.84 (d, J= 5.9, 6H, CH3), 1.41 (d, J= 

6.5, 3H, CH3), 1.92 (hept, J= 6.5, 2H, CH), 2.38 (t, J= 7.2, 2H, CH2), 3.56 

(m, 1H, CH), 4.14 (s, 2H, CH2), 4.32 (s, 2H, CH2), 7.30-7.65 (m, 8H, Ar), 

8.43 (s, 1H, NH), 8.47 (s, 1H, NH). IR (Film) 3298, 3069, 1692, 1654 

cm-1. Elemental analysis: calculated for C21H27N3O2 (353.21) % C 

71.36; H 7.70; N 11.89; found % C 71.31; H 7.73; N 11.94. 

General procedure for the synthesis of benzylamide derivatives Ibu-

AM14-27 

A solution of ibuprofen (0.21 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and 

HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. 

for 30 minutes. Then the appropriate benzylamine (1 mmol) was 

added. The mixture was then stirred for 24h at r.t. After, the solvent 

was removed under vacuum; the residue was dissolved in AcOEt (20 

mL) and washed sequentially with brine (2x5 mL), 10% citric acid (2x5 
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mL), NaHCO3 10% aqueous solution (2x5 mL) and water (2x5 mL). The 

organic layer was dried over anhydrous Na2SO4 and evaporated 

under vacuum. The obtained residue was tritured with iPr2O; the 

precipitate was then filtrated to obtain the compounds Ibu-AM14-27. 

N-Benzyl-2-(4-isobutylphenyl)propanamide (Ibu-AM14) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and benzylamine. 

Yield 78%. m.p. 60-62 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2) 7.07-7.30 (m, 9H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol) 3311, 1645, 1546, 1466, 1378, 1230 cm-1. Elemental analysis: 

calculated for C20H25NO (295.43) % C 81.31; H 8.53; N 4.74; found % C 

81.36; H 8.51; N 4.73. 

N-(4-Fluorobenzyl)-2-(4-isobutylphenyl)propanamide (Ibu-AM15) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-fluorobenzylamine. 



Design, synthesis and SAR of small molecules acting on pain pathways 
_______________________________________________________________________________________ 

 

_______________________________________________________________________________________
129 

Yield 83%. m.p. 58-61 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2) 7.04-7.22 (m, 8H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol) 3308, 1638, 1538, 1512, 1463 cm-1. Elemental analysis: 

calculated for C20H24FNO (313.42) % C 76.60; H 7.72; N 4.47; found % 

C 76.70; H 7.70; N 4.45. 

N-(4-Chlorobenzyl)-2-(4-isobutylphenyl)propanamide (Ibu-AM16) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-chlorobenzylamine. 

Yield 82%.  m.p. 65-68 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.3 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2) 7.07-7.30 (m, 8H, Ar), 8.42 (t, J=5.0 Hz, 1H, NH). IR 

(Nujol) 3270, 3084, 1904, 1709, 1646, 1560, 1463, 1422 cm-1. 

Elemental analysis: calculated for C20H24ClNO (329.87) % C 72.82; H 

7.33; N 4.25; found % C 72.88; H 7.32; N 4.24. 
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N-(4-(tert-Butyl)benzyl)-2-(4-isobutylphenyl)propanamide (Ibu-

AM17) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-(tertbuthyl)benzylamine. 

Yield 80%. Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, CH3), 1.23 

(s, 9H, CH3) 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (m, 1H, CH), 2.41 (d, J= 

6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 Hz, 2H, 

CH2) 7.07-7.26 (m, 8H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR (Film) 3291, 

1649, 1547, 1514 cm-1. Elemental analysis: calculated for C24H33NO 

(351.53) % C 82.00; H 9.46; N 3.98; found % C 82.07; H 9.44; N 3.97. 

2-(4-Isobutylphenyl)-N-(4-(trifluoromethyl)benzyl)propanamide 

(Ibu-AM18) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-(trifluoromethyl)benzylamine. 

Yield 82%. m.p. 62-64 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2) 7.07-7.60 (m, 8H, Ar), 8.49 (t, J= 5.5 Hz, 1H, NH). IR 
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(Nujol) 3332, 3274, 1639, 1541, 1462 cm-1. Elemental analysis: 

calculated for C21H24F3NO (363.42) % C 69.40; H 6.66; N 3.85; found % 

C 69.48; H 6.64; N 3.83. 

2-(4-Isobutylphenyl)-N-(4-methoxybenzyl)propanamide (Ibu-AM19) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-methoxybenzylamine. 

Yield 81%.  m.p. 78-80 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 3.68 (s, 3H, 

OCH3) 4.23 (d, J= 5.5 Hz, 2H, CH2) 6.08-7.23 (m, 8H, Ar), 8.31 (t, J= 5.5 

Hz, 1H, NH). IR (Nujol) 3284, 2360, 1710, 1648, 1462 cm-1. Elemental 

analysis: calculated for C21H27NO2 (325,45) % C 77.50; H 8.36; N 4.30; 

found % C 77.56; H 8.34; N 4.28. 

2-(4-Isobutylphenyl)-N-(3-(trifluoromethyl)benzyl)propanamide 

(Ibu-AM20) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 3-(trifluoromethyl)benzylamine. 
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Yield 83%.  m.p. 53-55 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2) 7.04-7.41 (m, 8H, Ar), 8.35 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol) 3288, 3073, 1651, 1584, 1452, 1329, 1165 cm-1. Elemental 

analysis: calculated for C21H24F3NO (363.42) % C 69.40; H 6.66; N 

3.85; found % C 69.47; H 6.64; N 3.84. 

2-(4-Isobutylphenyl)-N-(2-methoxybenzyl)propanamide (Ibu-AM21) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-methoxybenzylamine. 

Yield 82%. m.p. 61-63 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 3.68 (s, 3H, 

OCH3) 4.23 (d, J= 5.5 Hz, 2H, CH2) 6.75-7.24 (m, 8H, Ar), 8.15 (t, J= 5.5 

Hz, 1H, NH). IR (Nujol) 3275, 1777, 1641, 1564, 1462, cm-1. Elemental 

analysis: Calculated for C21H27NO2 (325.45) % C 77.50; H 8.36; N 4.30; 

found % C 77.57; H 8.34; N 4.28. 
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N-(2-Chlorobenzyl)-2-(4-isobutylphenyl)propanamide (Ibu-AM22) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-chlorobenzylamine. 

Yield 85%.  m.p. 60-63 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2) 7.08-7.04 (m, 8H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol): 3270, 1710, 1666, 1641, 1562 cm-1. Elemental analysis: 

calculated for C20H24ClNO (329.87) % C 72.82; H 7.33; N 4.25; found % 

C 72.88; H 7.32; N 4.24. 

N-(3-Hydroxy-4-methoxybenzyl)-2-(4-isobutylphenyl)propanamide 

(Ibu-AM23) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 3-hydroxy-4-methoxybenzylamine. 

Yield 80%.  m.p. 82-85 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 3.72 (s, 3H, 

OCH3) 4.23 (d, J= 5.5 Hz, 2H, CH2) 6.62-7.21 (m, 7H, Ar), 8.39 (t, J= 5.5 



2. Endocannabinoid System 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
134 

Hz, 1H, NH) 9.45 (s, 1H, OH). IR (Nujol) 3334, 3276, 1642, 1564, 1462 

cm-1. Elemental analysis: calculated for C21H27NO3 ( 341.45) % C 73.87; 

H 7.97; N 4.10; found % C 73.90; H 7.95; N 4.08. 

N-(3,4-Dichlorobenzyl)-2-(4-isobutylphenyl)propanamide  

(Ibu-AM24) 

 

Obtained following the general procedure to by the condensation 

between ibuprofen and 3,4-dichlorobenzylamine. 

Yield 83%.  m.p. 78-82 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2), 7.07-7.60 (m, 7H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol) 3268, 3072, 1647, 1549, 1428 cm-1. Elemental analysis: 

calculated for C20H23Cl2NO (364.31) % C 65.94; H 6.36; N 3.84; found 

% C 66.03; H 6.35; N 3.82. 
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N-(2,4-Dichlorobenzyl)-2-(4-isobutylphenyl)propanamide   

(Ibu-AM25) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2,4-dichlorobenzylamine. 

Yield 79%.  m.p. 73-75 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 

Hz, 2H, CH2) 7.07-7.60 (m, 7H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol) 3274, 3083, 1646, 1557 cm-1. Elemental analysis: calculated 

for C20H23Cl2NO (364.31) % C 65.94; H 6.36; N 3.84; found % C 66.03; 

H 6.35; N 3.82. 

N-(2,5-Dichlorobenzyl)-2-(4-isobutylphenyl)propanamide  

(Ibu-AM26) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2,5-dichlorobenzylamine. 

Yield 82%. m.p. 93-96 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, 

CH3), 1.34 (d, J= 7.3 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 5.5 
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Hz, 2H, CH2) 7.06-7.40 (m, 7H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol) 3268, 3072, 1647, 1549, 1428 cm-1. Elemental Analysis: 

calculated for C20H23Cl2NO (363.42) % C 65.94; H 6.36; N 3.84; found 

% C 66.03; H 6.35; N 3.82. 

N-(2,6-Dichlorobenzyl)-2-(4-isobutylphenyl)propanamide 

 (Ibu-AM27) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2,6-dichlorobenzylamine. 

Yield 82%. m.p. 130-135 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 

6H, CH3), 1.34 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, 

CH), 2.41 (d, J= 6.5 Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 4.23 (d, J= 

5.5 Hz, 2H, CH2) 7.04-7.45 (m, 7H, Ar), 8.39 (t, J= 5.5 Hz, 1H, NH). IR 

(Nujol) 3310, 1641, 1534, 1437 cm-1. Elemental analysis: calculated 

for C20H23Cl2NO (363.42) % C 65.94; H 6.36; N 3.84; found % C 66.00; 

H 6.35; N 3.82. 

General procedure for the synthesis of phenylpiperazine derivatives 

Ibu-AM28-37 

A solution of ibuprofen (0.21 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and 

HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. 

for 30 minutes, then the appropriate phenylpiperazine (1 mmol). was 

added The mixture was then stirred for 12h at r.t. After, the solvent 

was removed under vacuum; the residue was dissolved in AcOEt (20 

mL) and washed sequentially with brine (2x5 mL), 10% citric acid (2x5 

mL), NaHCO3 10% aqueous solution (2x5 mL) and water (2x5 mL). The 
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organic layer was dried over anhydrous Na2SO4 and evaporated 

under vacuum. The obtained residue was tritured with iPr2O; the 

precipitate was then filtrated to obtain the compounds Ibu-AM28-37. 

2-(4-Isobutylphenyl)-1-(4-phenylpiperazin-1-yl)propan-1-one  

(Ibu-AM28) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-phenylpiperazine. 

Yield 97 %. m.p. 75-80 °C. 1H NMR (DMSO-d6) δ 0.83 (d, J= 7.0 Hz, 6H, 

CH3), 1.30 (d, J= 7.0 Hz, 3H, CH3), 1.80 (hept, J= 7.0 Hz, 1H, CH), 2.42 

(d, J= 7.0 Hz, 2H, CH2), 3.16 (m, 2H, CH2), 3.20 (m, 2H, CH2), 3.40 (m, 

1H, CH), 3.48-3.65 (m, 4H, CH2), 6.81 (m, 1H Ar), 7.04-7.45 (m, 6H, 

Ar), 7.53 (m, 1H Ar), 7.59 (m, 1H Ar). IR (Nujol) 3273, 1741, 1631, 

1600, 1508, 1465 cm-1. Elemental analysis: calculated for C23H30N2O 

(350.51) % C 78.82; H 8.63; N 7.99; found % C 78.89; H 8.67; N 7.85. 
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1-(4-(3-Chlorophenyl)piperazin-1-yl)-2-(4-isobutylphenyl)propan-1-

one (Ibu-AM29) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(3-chlorophenyl)piperazine. 

Yield 95%. Oil. 1H NMR (DMSO-d6) δ 0.84 (d, J= 6.5 Hz, 6H, CH3), 1.32 

(d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 2.43 (d, J= 

7.0 Hz, 2H, CH2), 2.89 (m, 2H, CH2), 3.23 (m, 2H, CH2), 3.41 (q, J= 7.0 

Hz, 1H, CH), 3.45-3.68 (m, 4H, CH2), 6.70 (m, 1H Ar), 7.06-7.43 (m, 6H, 

Ar), 7.50 (m, 1H Ar). IR (Film) 3437, 1732, 1646, 1594, 1486, 1463, 

1384, 1231 cm-1. Elemental analysis: calculated for C23H29ClN2O 

(384.95) % C 71.76; H 7.59; N 7.28; found % C 71.75; H 7.60; N 7.35. 

1-(4-(4-Chlorophenyl)piperazin-1-yl)-2-(4-isobutylphenyl)propan-1-

one (Ibu-AM30) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(4-chlorophenyl)piperazine. 

Yield 83%. Oil. 1H NMR (DMSO-d6) δ 0.94 (d, J= 7.0 Hz, 6H, CH3), 1.32 

(d, J=6.5 Hz, 3H, CH3), 1.81 (hept, J= 7.0 Hz, 1H, CH), 2.66 (m, 2H, 

CH2), 2.95 (m, 2H, CH2), 3.11 (m, 2H, CH2), 3.50-3.68 (m, 4H, CH2), 
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4.17 (q, J=6.5Hz, 1H, CH), 6.89 (m, 1H, Ar), 7.03 (m, 1H, Ar), 7.16-7.21 

(m, 5H, Ar), 7.30 (m, 1H, Ar). IR (Film) 3421, 2955, 1731, 1645, 1497, 

1463, 1384 cm-1. Elemental analysis: calculated for C23H29ClN2O 

(384.95) % C 71.76; H 7.59; N 7.28; found % C 71.70; H 7.65; N 7.30. 

1-(4-(3,4-Dichlorophenyl)piperazin-1-yl)-2-(4-

isobutylphenyl)propan-1-one (Ibu-AM31) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(3,4-dichlorophenyl)piperazine. 

Yield 90%. Oil. 1H NMR (DMSO-d6) δ 0.86 (d, J= 6.5 Hz, 6H, CH3), 1.33 

(d, J= 7.0 Hz, 3H, CH3), 1.80 (hept, J= 6.5-7.0 Hz, 1H, CH), 2.41 (d, J= 

7.0 Hz, 2H, CH2), 2.92 (m, 2H, CH2), 3.17 (m, 2H, CH2), 3.22 (m, 1H, 

CH), 3.40-3.71 (m, 4H, CH2), 6.88 (m, 1H Ar), 7.06-7.43 (m, 5H, Ar), 

7.53 (m, 1H Ar). IR (Film) 3433, 1728, 1645, 1594, 1555, 1484, 1230 

cm-1. Elemental analysis: calculated for C23H28Cl2N2O (419.39) % C 

64.87; H 6.73; N 6.68; found % C 64.78; H 6.68; N 6.59. 
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1-(4-(4-Fluorophenyl)piperazin-1-yl)-2-(4-isobutylphenyl)propan-1-

one (Ibu-AM32) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(4-fluorophenyl)piperazine. 

Yield 97 %. m.p. 45-50 °C. 1H NMR (DMSO-d6) δ 0.90 (d, J= 7.0 Hz, 6H, 

CH3), 1.36 (d, J=6.5 Hz, 3H, CH3), 1.87 (hept, J= 6.5-7.0 Hz, 1H, CH), 

2.61 (m, 2H, CH2), 2.99 (m, 2H, CH2), 3.06 (m, 2H, CH2), 3.44-3.61 (m, 

4H, CH2), 4.19 (q, J=6.5Hz, 1H, CH), 6.97 (m, 1H, Ar), 7.02 (m, 1H, Ar), 

7.10-7.27 (m, 5H, Ar), 7.34 (m, 1H, Ar). IR (Nujol) 3445, 2955, 2929, 

1644, 1510, 1441, 1230 cm-1. Elemental analysis: calculated for 

C23H29FN2O (368.23) % C 74.97; H 7.93; N 7.60; found % C 75.01; H 

7.90; N 7.55. 

2-(4-Isobutylphenyl)-1-(4-(4-methoxyphenyl)piperazin-1-yl)propan-

1-one (Ibu-AM33) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(4-methoxyphenyl)piperazine. 

Yield 95 %. Oil. 1H NMR (DMSO-d6) δ 0.95 (d, J= 7.0 Hz, 6H, CH3), 1.30 

(d, J=6.5 Hz, 3H, CH3), 1.83 (hept, J= 6.5-7.0 Hz, 1H, CH), 2.62 (m, 2H, 
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CH2), 3.03 (m, 2H, CH2), 3.09 (m, 2H, CH2), 3.40-3.59 (m, 4H, CH2), 

3.66 (s, 3H, CH3), 4.22 (q, J=6.5Hz, 1H, CH), 7.01 (m, 1H, Ar), 7.04 (m, 

1H, Ar), 7.12-7.23 (m, 5H, Ar), 7.38 (m, 1H, Ar). IR (Film) 3440, 2954, 

2930, 1732, 1644, 1464, 1442, 1246 cm-1. Elemental analysis: 

calculated for C24H32N2O2 (380.53) % C 75.75; H 8.48; N 7.36; found % 

C 75.80; H 8.53; N 7.30. 

2-(4-Isobutylphenyl)-1-(4-(3-methoxyphenyl)piperazin-1-yl)propan-

1-one (Ibu-AM34) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(3-methoxyphenyl)piperazine. 

Yield 92%. Oil. 1H NMR (DMSO-d6) δ 0.82 (d, J= 7.0 Hz, 6H, CH3), 1.28 

(d, J=6.0 Hz, 3H, CH3), 1.79 (hept, J= 6.0-7.0 Hz, 1H, CH), 2.87 (m, 2H, 

CH2), 3.01 (m, 2H, CH2), 3.13 (m, 2H, CH2), 3.44-3.54 (m, 4H, CH2), 

3.68 (s, 3H, CH3), 4.08 (q, J= 6.5Hz, 1H, CH), 6.34 (m, 2H, Ar), 6.42 (m, 

1H, Ar), 7.05-7.10 (m, 3H, Ar), 7.16 (m, 2H, Ar). IR (Film) 2956, 2928, 

1734, 1647, 16071460,1203 cm-1. Elemental analysis: calculated for 

C24H32N2O2 (380.53) % C 75.75; H 8.48; N 7.36; found % C 75.70; H 

8.50; N 7.34. 
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2-(4-Isobutylphenyl)-1-(4-(m-tolyl)piperazin-1-yl)propan-1-one  

(Ibu-AM35) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(3-methylphenyl)piperazine. 

Yield 91 %. Oil. 1H NMR (DMSO-d6) δ 0.81 (d, J= 7.0 Hz, 6H, CH3), 1.27 

(d, J= 6.0 Hz, 3H, CH3), 1.78 (hept, J= 6.0-7.0 Hz, 1H, CH), 2.20 (s, 3H, 

CH3), 2.50 (d, J= 7.0 Hz, 2H, CH2), 2.83 (m, 1H, CH2), 2.98 (m, 1H, CH2), 

3.13 (m, 1H, CH2), 3.46-3.53 (m, 4H, CH2), 3.73 (m, 1H, CH2), 4.09 (q, 

J= 6.5 Hz, 1H, CH), 6.58-6.64 (m, 3H, Ar), 7.05 (m, 1H, Ar), 7.09 (d, J= 

8.0, 2H, Ar), 7.16 (d, J= 8.0 Hz, 2H, Ar). IR (Film) 3483, 2955, 1926, 

1644, 1602, 1494, 1434, 1233,1185 cm-1. Elemental analysis: 

calculated for C24H32N2O (364.25) % C 79.08; H 8.85; N 7.68; found % 

C 79.15; H 8.92; N 7.60. 

1-(4-(2,3-Dimethylphenyl)piperazin-1-yl)-2-(4-

isobutylphenyl)propan-1-one (Ibu-AM36) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(2,3-dimethylphenyl)piperazine. 
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Yield 90%. Oil. 1H NMR (DMSO-d6) δ 0.83 (d, J= 7.0 Hz, 6H, CH3), 1.30 

(d, J=7.0 Hz, 3H, CH3), 1.78 (hept, J= 7.0 Hz, 1H, CH), 2.12 (m, 3H, 

CH3), 2.18 (m, 3H, CH3), 2.40 (m, 2H, CH2) 2.12 (m, 2H, CH2), 2.50 (m, 

2H, CH2), 2.72 (m, 2H, CH2), 3.56 (m, 2H, CH2), 4.09 (q, J= 7 Hz, 1H, 

CH), 6.76 (m, 1H, Ar), 6.69 (m, 1H, Ar), 6.99 (m, 1H, Ar), 7.11 (m, 2H, 

Ar), 7.17 (m, 2H, Ar). IR (Film) 2959, 1731, 1644, 15111471, 1367, 

1235 cm-1. Elemental analysis: calculated for C25H34N2O (378.56) % C 

79.32; H 9.05; N 7.40; found % C 79.28; H 9.02; N 7.50. 

2-(4-Isobutylphenyl)-1-(4-(o-tolyl)piperazin-1-yl)propan-1-one  

(Ibu-AM37) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 1-(2-chlorophenyl)piperazine. 

Yield 91%. Oil. 1H NMR (DMSO-d6) δ 0.83 (d, J= 6.5 Hz, 6H, CH3), 1.29 

(d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 6.5-7.0 Hz, 1H, CH), 2.21 (s, 3H, 

CH3), 2.24 (m, 1H, CH2), 2.41 (d, J= 6.0 Hz, 2H, CH2), 2.63 (m, 2H, CH2), 

2.76 (m, 1H, CH2), 3.43 (m, 1H, CH2), 3.56 (m, 2H, CH2), 3.69 (m, 1H, 

CH2), 4.10 (q, J= 7.0 Hz, 1H, CH), 6.82 (m, 1H, Ar), 6.93 (m, 1H, Ar), 

7.07-7.14 (m, 4H, Ar), 7.42 (d, J= 7.5, 2H, Ar). IR (Film) 2923, 1639, 

1600, 1494, 14631377,1224, 1147 cm-1. Elemental analysis: 

calculated for C25H32N2O (364.25) % C 79.32; H 8.85; N 7.68; found % 

C 79.27; H 9.00; N 7.59. 
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2-(4-Isobutylphenyl)-1-(piperazin-1-yl)propan-1-one 

 (ibupiperazine 7) 

 

Ibuprofen (2.06 g, 10 mmol), EDC (2.09 g, 11 mmol) and HOBt (1.35 g, 

10 mmol) were dissolved in MeCN (10mL). The mixture was stirred at 

r.t. for 30 minutes, BOC-piperazine (1.86 g, 10 mmol). The mixture 

was stirred at r.t. for 12 hours. After the solvent was removed under 

vacuum. The residue was dissolved in AcOEt (20 mL) and washed 

sequentially with brine (2x5 mL), 10% citric acid (2x5 mL), saturated 

NaHCO3 aqueous solution (2x5 mL) and water (2x5 mL). The organic 

layer was dried over anhydrous Na2SO4 and evaporated under 

vacuum. The obtained residue was dissolved in dichloromethane 

without further purification, added trifluoroacetic acid (TFA) (20 mL) 

and stirred at r.t. for 24h. Then the solvent was removed under 

vacuum and to the obtained residue diethyl ether (Et2O) (20 mL) was 

added leading to formation of a solid that was filtered to give the title 

compound. 

Yield 97%. Oil. 1H NMR (DMSO-d6) δ 0.84 (d, J= 5.0 Hz, 6H, CH3), 1.28 

(d, J= 5.0 Hz, 3H, CH3), 1.81 (m, 1H, CH), 2.41 (d, J= 6.0 Hz, 2H, CH2), 

2.56 (m, 1H, CH2), 3.00 (m, 3H, CH2), 3.34 (m, 1H, CH2), 3.58 (m, 1H, 

CH2), 3.74 (m, 2H, CH2), 4.09 (m, 1H, CH), 7.11 (m, 2H, Ar), 7.18 (d, 

2H, Ar), 8.88 (s, 1H, NH). IR (Film) 2957, 2925, 2854, 1674, 16361461, 

1442, 1367, 1199, 1082 cm-1. Elemental analysis: calculated for 

C17H26N2O (274.20) % C 74.41; H 9.55; N 10.21; found % C 74.35; H 

9.58; N 10.29. 
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General procedure for the synthesis of benzylpiperazine  

Ibu-AM38-42 

To a solution of ibupiperazine (7) (0.39 g, 1 mmol) in CH2Cl2 (10 mL) 

the appropriate benzaldehyde (1.6 mmol), sodium NaHCO3 (0.10 g, 

1.2 mmol) and sodium triacetoxyborohydride (NaBHAc3) (0.32 g, 1.5 

mmol) were added; the mixture was then stirred for h at r.t. for 24h. 

After the mixture was basified to pH 10 with a solution of NaOH 0.1 

N, then extracted with CH2Cl2 (3x20 mL). The organic phases were 

collected, dried over sodium Na2SO4, filtrated and the solvent 

removed to obtain the desired compound.  

1-(4-Benzylpiperazin-1-yl)-2-(4-isobutylphenyl)propan-1-one  

(Ibu-AM38) 

 

Obtained following the general procedure by the reductive alkylation 

between 7 and benzaldehyde. 

Yield 91%. Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J= 7.0 Hz, 6H, CH3), 1.25 

(d, J= 7.0 Hz, 3H, CH3), 1.78 (m, 1H, CH2), 1.81 (q, J= 6.0 Hz, 1H, CH), 

2.21 (m, 1H, CH2), 2.34 (m, 1H, CH2), 2.41 (d, J= 7.5 Hz, 2H, CH2), 2.50 

(s, 1H, CH2), 3.36 (m, 3H, CH2), 3.38 (s, 2H, CH2), 3.60 (m, 1H, CH2), 

4.03 (m, 1H, CH), 7.08 (m, 2H, Ar), 7.13 (d, 2H, Ar), 7.23 (m, 3H, Ar), 

7.29 (d, 2H, Ar). IR (Film) 3448, 2954, 2929, 2645, 1462, 1230, 1032, 

1000 cm-1. Elemental analysis: calculated for C24H32N2O (364.25) % C 

79.08; H 8.85; N 7.68; found % C 79.15; H 8.80; N 7.65. 
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1-(4-(2-Chlorobenzyl)piperazin-1-yl)-2-(4-isobutylphenyl)propan-1-

one (Ibu-AM39) 

 

Obtained following the general procedure by the reductive alkylation 

between 7 and 2-chlorobenzaldehyde. 

Yield 87%. Oil. 1H NMR (DMSO-d6) δ 0.83 (d, J= 7.0 Hz, 6H, CH3), 1.23 

(d, J= 7.0 Hz, 3H, CH3), 1.79 (q, J= 6.0 Hz, 1H, CH), 2.40 (d, J= 7.5 Hz, 

2H, CH2), 3.32-3.75 (m, 8H, CH2), 4.00 (m, 1H, CH), 4.56 (s, 2H, CH2), 

6.99-7.56 (m, 8H, Ar). IR (Film) 3416, 2955, 2927, 1628, 1060, 1033 

cm-1. Elemental analysis: calculated for C24H31ClN2O (398.98) % C 

72.25; H 7.83; N 7.02; found % C 72.30; H 7.81; N 7.08. 

1-(4-(3-Chlorobenzyl)piperazin-1-yl)-2-(4-isobutylphenyl)propan-1-

one (Ibu-AM40) 

 

Obtained following the general procedure by the reductive alkylation 

between 7 and 3-chlorobenzaldehyde. 

Yield 90 %. Oil. 1H NMR (DMSO-d6) δ 0.96 (d, J= 6.5 Hz, 6H, CH3), 1.36 

(d, J= 7.5 Hz, 3H, CH3), 1.94 (q, J= 6.5-7.5 Hz, 1H, CH), 2.52 (d, J= 7.5 

Hz, 2H, CH2), 3.37-3.85 (m, 8H, CH2), 4.14 (m, 1H, CH), 4.62 (s, 2H, 

CH2), 7.13-7.55 (m, 8H, Ar). IR (Film) 3414, 2955, 2928,1702, 1631, 
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1464, 1434, 1228, 1196 cm-1. Elemental analysis: calculated for 

C24H31ClN2O (398.98) % C 72.25; H 7.83; N 7.02; found % C 72.38; H 

7.85; N 7.00. 

2-(4-Isobutylphenyl)-1-(4-(4-(trifluoromethyl)benzyl)piperazin-1-

yl)propan-1-one (Ibu-AM41) 

 

Obtained following the general procedure by the reductive alkylation 

between 7 and 4-(trifluoromethyl)benzaldehyde. 

Yield 50 %. Oil. 1H NMR (DMSO-d6) δ 0.96 (d, J= 6.5 Hz, 6H, CH3), 1.37 

(d, J= 6.5 Hz, 3H, CH3), 1.90 (q, J= 6.5 Hz, 1H, CH), 2.53 (s, 2H, CH2), 

2.61 (d, J= 6.5 Hz, 2H, CH2), 3.43-3.70 (m, 8H, CH2), 4.12 (m, 1H, CH), 

7.13-7.27 (m, 8H, Ar). IR (Film) 3332, 2955, 32868, 1644, 1510, 1462, 

1367, 1228, 1164, 1125, 1066 cm-1. Elemental analysis: calculated for 

C25H31F3N2O (432.53) % C 69.42; H 7.22; N 6.48; found % C 69.48; H 

7.21; N 6.53. 
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1-(4-(3-Fluorobenzyl)piperazin-1-yl)-2-(4-isobutylphenyl)propan-1-

one (Ibu-AM42) 

 

Obtained following the general procedure by the reductive alkylation 

between 7 and 3-fluorobenzaldehyde.  

Yield 49 %. Oil. 1H NMR (DMSO-d6) δ 0.96 (d, J= 6.5 Hz, 6H, CH3), 1.36 

(d, J= 6.5 Hz, 3H, CH3), 1.89 (q, J= 6.5 Hz, 1H, CH), 2.51 (s, 2H, CH2), 

2.61 (d, J= 6.5 Hz, 2H, CH2), 3.32-3.52 (m, 8H, CH2), 4.12 (m, 1H, CH), 

7.15-7.25 (m, 8H, Ar). IR (Film) 3407, 2955, 2926, 1713, 1696, 1631, 

1591, 1254, 1001 cm-1. Elemental analysis: calculated for C24H31FN2O 

(382.52) % C 75.36; H 8.17; N 7.32; found % C 75.40; H 8.05; N 7.40. 

General procedure for the synthesis of amides Ibu-AM43-58 

A solution of Ibuprofen (0.21 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and 

HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. 

for 30 minutes, after the appropriate amine (1 mmol) was added. The 

mixture was then stirred for 24h at r.t. After the solvent was 

removed under vacuum; the residue was dissolved in AcOEt (20 mL) 

and washed sequentially with brine (2x5 mL), 10% citric acid (2x5 

mL), NaHCO3 10% aqueous solution (2x5 mL) and water (2x5 mL). The 

organic layer was dried over anhydrous Na2SO4 and evaporated 

under vacuum. The obtained residue was triture with iPr2O; the 

precipitate was then filtrated to obtain the compounds Ibu-AM 43-

58. 
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2-(4-Isobutylphenyl)-N-(2-methylpyridin-3-yl)propanamide 

 (Ibu-AM43) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 3-amino-2-methylpyridine. 

Yield 61 %.  Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J= 7.0 Hz, 6H, CH3), 1.34 

(d, J= 7.0 Hz, 3H, CH3), 1.40 (d, J= 7.0 Hz, 2H, CH2), 1.80 (m, 1H, CH), 

2.42 (s, 3H, CH3), 3.89 (m, 1H, CH), 7.11-7.71 (m, 7H, Ar), 9.52 (s, 1H, 

NH). IR (Film) 3295, 1708, 1560, 1513, 1464 cm-1. Elemental analysis: 

calculated for C19H24N2O (296.41) % C 76.99; H 8.16; N 9.45; found % 

C 77.03; H 8.07; N 9.50. 

2-(4-Isobutylphenyl)-1-(2-methyl-1H-indol-1-yl)propan-1-one 

 (Ibu-AM44) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-methylindole. 

Yield 54 %. m.p. 28-30 °C. 1H NMR (DMSO-d6) δ 0.86 (d, J= 6.0 Hz, 6H, 

CH3), 1.34(d, J= 6.0 Hz, 3H, CH3), 1.82 (q, J= 6.0 Hz, 1H, CH), 2.41 (s, 

3H, CH3), 2.50 (m, 2H, CH2), 3.63 (m, 1H, CH), 6.10 (s, 1H, Ar), 6.91-
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6.98 (m, 2H, Ar), 7.10 (m, 2H, Ar), 7.18 (m, 2H, Ar), 7.25 (m, 1H, Ar), 

7.38 (m, 1H, Ar). IR (Nujol) 3385, 2924, 1719, 1549, 1456, 1421 cm-1. 

Elemental analysis: calculated for C22H25NO (319.45) % C 82.72; H 

7.89; N 4.38; found % C 82.75; H 7.92; N 4.44. 

2-(4-Isobutylphenyl)-N-(thiazol-2-yl)propanamide (Ibu-AM45) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-aminothiazole. 

Yield 47 %.  m.p. 150-153 °C. 1H NMR (DMSO-d6) δ 0.86 (d, J= 6.6 Hz, 

6H, CH3), 1.43 (d, J= 7.0 Hz, 3H, CH3), 1.81 (m, J= 6.6 Hz, 1H, CH), 2.42 

(d, J= 7.0 Hz, 2H, CH2), 3.96 (m, 1H, CH), 7.12-7.46 (m, 6H, Ar), 12.25 

(s, 1H, NH). IR (Nujol) 3167, 1682, 1575, 1507 cm-1. Elemental 

analysis: calculated for C16H20N2OS (288.41) % C 66.63; H 6.99; N 

9.71; found % C 66.70; H 7.06; N 9.75. 

2-(4-Isobutylphenyl)-N-(1,3,4-thiadiazol-2-yl)propanamide 

(Ibu-AM46) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-aminothiadiazole. 
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Yield 62 %. m.p. 174-176 °C. 1H NMR (DMSO-d6) δ 0.84 (d, J=7.0 Hz, 

6H, CH3), 1.44 (d, J= 7.0 Hz, 3H, CH3), 1.80 (m, J= 7.0 Hz, 1H, CH), 2.40 

(d, J= 7.0 Hz, 2H, CH2), 4.0 (d, J= 7.0 Hz, 1H, CH), 7.12 (d, J= 7.5 Hz, 2H, 

Ar), 7.27 (d, J= 7.5 Hz, 2H, Ar), 9.15 (s, 1H, Ar). IR (Nujol) 1685, 1564, 

1457 cm-1. Elemental analysis: calculated for C15H19N3OS (289.40) % C 

62.26; H 6.62; N 14.52; found % C 62.30; H 6.60; N 14.60. 

2-(4-Isobutylphenyl)-N-(5-(trifluoromethyl)-1,3,4-thiadiazol-2-

yl)propanamide (Ibu-AM47) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-amino-5-trifluoromethylthiadiazole. 

Yield 34 %. m.p. 186-190 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 

6H, CH3), 1.45 (d, J= 7.0 Hz, 3H, CH3), 1.80 (q, J= 6.5 Hz, 1H, CH), 2.40 

(d, J= 7.0 Hz, 2H, CH2), 4.0 (m, 1H, CH), 7.13 (d, J= 7.7 Hz, 2H, Ar), 7.27 

(d, J= 7.7 Hz, 2H, Ar), 13.42 (s, 1H, NH). IR (Nujol) 3136, 1696, 1534, 

1467 cm-1. Elemental analysis: calculated for C16H18F3N3OS (357.40) % 

C 53.77; H 5.08; N 11.76; found % C 53.80; H 5.05; N 11.80. 
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2-(4-Isobutylphenyl)-N-(o-tolyl)propanamide (Ibu-AM48) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-methylaniline. 

Yield 95 %. Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J= 7.0 Hz, 6H, CH3), 1.41 

(d, J= 7.0 Hz, 3H, CH3), 1.83 (q, J= 7.0 Hz 1H, CH), 2.04 (s, 3H, CH3), 

2.42 (q, J= 7.0 Hz, 2H, CH2), 3.88 (q, J= 7.0 Hz, 1H, CH), 7.04-7.10 (m, 

6H, Ar), 7.31 (m, 2H, Ar), 9.30 (s, 1H, NH). IR (Film) 3265, 2955, 2929, 

1738, 1659, 1528, 1456, 1367, 1170 cm-1. Elemental analysis: 

calculated for C20H25NO (295.43) % C 81.31; H 8.53; N 4.74; found % C 

81.35; H 8.56; N 4.70. 

N-(2-Fluorophenyl)-2-(4-isobutylphenyl)propanamide (Ibu-AM49) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-fluoroaniline. 

Yield 55 %. m.p. 87 °C. 1H NMR (DMSO-d6) δ 0.84 (d, J= 6.5 Hz, 6H, 

CH3), 1.39 (d, J= 7.0 Hz, 3H, CH3), 1.80 (q, J= 7.0 Hz 1H, CH), 2.40 (q, J= 

6.5 Hz, 2H, CH2), 3.97 (q, J= 6.5 Hz, 1H, CH), 7.09-7.84 (m, 8H, Ar), 

9.74 (s, 1H, NH). IR (Nujol) 3297, 1666, 1616, 1534, 1454, 1376 cm-1. 
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Elemental analysis: calculated for C19H22FNO (299.39) % C 76.22; H 

7.41; N 6.53; found % C 76.30; H 7.50; N 6.55. 

N-(2-Hydroxyphenyl)-2-(4-isobutylphenyl)propanamide (Ibu-AM50) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-hydroxyaniline. 

Yield 52 %. m.p. 120-125 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 7.0 Hz, 

6H, CH3), 1.40 (d, J= 6.5 Hz, 3H, CH3), 1.82 (hept, J= 6.5-7.0 Hz 1H, 

CH), 2.40 (q, J= 6.5 Hz, 2H, CH2), 4.00 (q, J= 6.5 Hz, 1H, CH), 6.72 (m, 

1H, Ar), 6.82 (m, 1H, Ar), 6.91 (m, 1H, Ar), 7.10 (m, 2H, Ar), 7.30 (m, 

2H, Ar), 7.79 (m, 1H, Ar), 9.12 (s, 1H, OH), 9.73 (s, 1H, NH). IR (Nujol) 

3359, 3091, 2733, 1654, 1592, 1541, 1454, 1380, 1282 cm-1. 

Elemental analysis: calculated for C19H23NO2 (297.17) % C 76.74; H 

7.80; N 4.71; found % C 76.71; H 7.86; N 4.76. 

N-(4-Hydroxyphenyl)-2-(4-isobutylphenyl)propanamide (Ibu-AM51) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-hydroxyaniline. 
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Yield 47 %. m.p. 112-115 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 7.0 Hz, 

6H, CH3), 1.37 (d, J= 7.0 Hz, 3H, CH3), 1.80 (q, J= 7.0 Hz, 1H, CH), 2.40 

(d, J= 7.0 Hz, 2H, CH2), 3.72 (q, J= 7.0 Hz, 1H, CH), 6.66 (d, J= 8.5 Hz, 

2H Ar), 7.01 (d, J= 8.0 Hz, 2H, Ar), 7.28 (d, J= 8.0 Hz, 2H, Ar), 7.35 (d, 

J= 8.5 Hz, 2H, Ar), 9.14 (s, 1H, OH), 9.77 (s, 1H, NH). IR (Nujol) 3299, 

1653, 1609, 1538 cm-1. Elemental analysis: calculated for C19H23NO2 

(297.17) % C 76.74; H 7.80; N 4.71; found % C 76.72; H 7.84; N 4.73. 

N-(4-Hydroxy-2-methylphenyl)-2-(4-isobutylphenyl)propanamide 

(Ibu-AM52) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-hydroxy-2-methylaniline. 

Yield 63 %. m.p. 133-135 °C. 1H NMR (DMSO-d6) δ 0.83 (d, J= 7.0 Hz, 

6H, CH3), 1.35 (d, J= 7.0 Hz, 3H, CH3), 1.77 (hept, J= 7.0 Hz, 1H, CH), 

1.90 (s, 3H, CH3), 2.40 (d, J= 7.0 Hz, 2H, CH2), 3.75 (q, J= 7.0 Hz, 1H, 

CH), 6.48-7.28 (m, 7H, Ar), 9.09 (s, 1H, OH). (MANCA UN CH3) IR 

(Nujol) 3398, 3292, 1656, 1610 cm-1. Elemental analysis: calculated 

for C20H25NO2 (311.43) % C 77.14; H 8.09; N 4.50; found % C 77.10; H 

8.11; N 4.58. 
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2-(4-Isobutylphenyl)-N-(4-methoxy-2-methylphenyl)propanamide 

(Ibu-AM53) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 4-methoxy-2-methylaniline. 

Yield 49 %. m.p. 100-102 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 7.0 Hz, 

6H, CH3), 1.40 (d, J= 7.0 Hz, 3H, CH3), 1.81 (hept, J= 7.0 Hz, 1H, CH), 

1.99 (s, 3H, CH3), 2.42 (d, J= 7.0 Hz, 2H, CH2), 3.70 (s, 3H, CH3), 3.81 

(d, J= 7.0 Hz, 1H, CH), 6.69-7.31 (m, 7H, Ar), 9.21 (s, 1H, NH). IR 

(Nujol) 3298, 1655, 1613, 1521, 1458 cm-1. Elemental analysis: 

calculated for C21H27NO2 (325.45) % C 77.50; H 8.36; N 4.30; found % 

C 77.55; H 8.40; N 4.25. 

N-(3-Chloropyridin-2-yl)-2-(4-isobutylphenyl)propanamide  

(Ibu-AM54) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-amino-3-chloropyridine. 
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Yield 39 %. Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.5 Hz, 6H, CH3), 1.34 

(d, J= 7.0 Hz, 3H, CH3), 1.41 (d, J= 7.0 Hz, 2H, CH2), 1.82 (m, J= 7.0 Hz, 

1H, CH), 3.88 (m, 1H, CH), 7.09-8.37 (m, 7H, Ar), 10.25 (s, 1H, NH). IR 

(Film) 1707, 1512, 1462 cm-1. Elemental analysis: calculated for 

C18H21ClN2O (316.83) % C 68.24; H 6.68; N 8.84; found % C 68.33; H 

6.74; N 8.80. 

2-(4-Isobutylphenyl)-N-(3-(trifluoromethyl)pyridin-2-

yl)propanamide (Ibu-AM55) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-amino-3-(trifluoromethyl)pyridine. 

Yield 59 %.  m.p. 110-114 °C. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.0 Hz, 

6H, CH3), 1.39 (d, J= 7.0 Hz, 3H, CH3), 1.81 (q, J= 6.5 Hz, 1H, CH), 2.42 

(d, J= 7.0 Hz, 2H, CH2), 3.87 (q, J= 7.0 Hz, 1H, CH), 7.10-8.71 (m, 7H, 

Ar), 10.25 (s, 1H, NH). IR (Nujol) 3253, 1670, 1583, 1516, 1441 cm-1. 

Elemental analysis: calculated for C19H21F3N2O (350.16) % C 65.13; H 

6.04; N 8.00; found % C 65.15; H 6.08; N 7.95. 
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N-(3-Bromopyridin-2-yl)-2-(4-isobutylphenyl)propanamide 

 (Ibu-AM56) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-amino-3-bromopyridine. 

Yield 67 %. Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J= 6.0 Hz, 6H, CH3), 1.34 

(d, J= 7.5 Hz, 3H, CH3), 1.42 (d, J= 7.0 Hz, 2H, CH2), 1.81 (m, 1H, CH), 

3.86 (q, J= 7.0 Hz, 1H, CH), 7.1-8.41 (m, 7H, Ar), 10.22 (s, 1H, NH). IR 

(Film) 3240, 1703, 1580, 1509, 1444 cm-1. Elemental analysis: 

calculated for C18H21BrN2O (360.08) % C 59.84; H 5.86; N 7.75; found 

% C 59.96; H 5.80; N 7.81. 

N-(3-Iodopyridin-2-yl)-2-(4-isobutylphenyl)propanamide (Ibu-AM57) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-amino-3-iodopyridine. 

Yield 53 %. Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J=7Hz, 6H, CH3), 1.42 (d, 

J=7Hz, 3H, CH3), 1.80 (m, J=7Hz, 1H, CH), 2.41 (m, 2H, CH2), 3.84 (m, 

J=7Hz, 1H, CH), 7.02-8.40 (m, 7H Ar e Py), 10.18 (s, 1H, NH). IR (Film) 

3233, 1701, 1574, 1509, 1425 cm-1. Elemental analysis: calculated for 
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C18H21IN2O (408.28) % C 52.95; H 5.18; N 6.86; found % C 53.01; H 

5.25; N 6.92. 

N-(3-Hydroxypyridin-2-yl)-2-(4-isobutylphenyl)propanamide 

(Ibu-AM58) 

 

Obtained following the general procedure by the condensation 

between ibuprofen and 2-amino-3-hydroxypyridine. 

Yield 38 %. Oil. 1H NMR (DMSO-d6) δ 0.85 (d, J= 7.0 Hz, 6H, CH3), 1.42 

(d, J= 7.5 Hz, 3H, CH3), 1.79 (hept, J= 7.0 Hz, 1H, CH), 2.40 (d, J= 7.0 

Hz, 2H, CH2), 3.62 (q, J= 7.0 Hz, 1H, CH), 7.09-7.88 (m, 7H, Ar), 10.24 

(s, 1H, NH), 10.75 (s, 1H, OH). IR (Film) 1622, 1512, 1458, 1366 cm-1. 

Elemental analysis: calculated for C18H22N2O2 (298.39) % C 72.46; H 

7.43; N 9.39; found % C 72.49; H 7.45; N 9.42. 

Methyl 2-(4-isobutylphenyl)acetate (10) 

 

A solution of Ibufenac (1.92 g, 10mmol) in methanol (MeOH) (10 mL) 

was treated at room temperature with 37 % HCl (0.5mL) and refluxed 

for 4 h. The solvent was removed under vacuum and the crude 

methyl ester was used for without purification in the further step. 
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Yield 85 %. Oil. 1H NMR (DMSO-d6) δ 0.98 (d, J= 7.0 Hz, 6H, CH3), 1.93 

(m, 1H, CH), 2.42 (d, J= 7.0 Hz, 2H, CH2), 3.65 (s, 2H, CH2), 3.78 (s, 3H, 

CH3), 7.15 (m, 2H, Ar), 7.19 (m, Hz, 2 H, Ar). Elemental analysis: 

calculated for C13H18O2 (206.29) % C 75.69; H 8.80; found % C 75.71; 

H 8.86. Physical and spectral data were in accordance with literature 

values.109 

General procedure for the synthesis of esters 11 and 13 

Lithium bis-(trimethylsilyl)amide (4.00 g, 24 mmol) was added to a 

solution of ester 10 (2.00 g, 9.7 mmol)  in dry THF (40 mL) under 

argon  at -78 °C, the mixture was stirred at this temperature for 45 

minutes. Then MeI (3.40 g, 24 mmol) or 1,2 dibromoethane (4.51 g, 

12 mmol) was added dropwise to the stirred solution for an 

additional 1h. The mixture was poured in water and the desired 

product was extracted with Et2O (2x30 mL). The solvent was dried 

over Na2SO4, and then the solvent was evaporated under reduced 

pressure and the residue purified by silica gel column 

chromatography with petroleum ether 40-60 °C and AcOEt 20:1. 

Methyl 2-(4-isobutylphenyl)-2-methylpropanoate (11) 

 

Yield 80 %. Oil. 1H NMR (DMSO-d6) δ 0.95 (d, J= 7.0 Hz, 6H, CH3), 1.63 

(s, 6H, CH3), 1.82 (m, 1H, CH), 2.42 (d, J= 7.0 Hz, 2H, CH2), 3.66 (s, 3H, 

CH3), 7.07 (d, J= 7.5 Hz, 2H, Ar), 7.25 (d, J= 7.5 Hz, 2 H, Ar). Elemental 

analysis: calculated for C15H22O2 (234.16) % C 76.88; H 9.46; found % 

C 76.92; H 9.52. Physical and spectral data were in accordance with 

literature values.110 
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Methyl 1-(4-isobutylphenyl)cyclopropane-1-carboxylate (13) 

 

Yield 60 %. Oil. 1H NMR (DMSO-d6) δ 0.91 (d, J= 7.0 Hz, 6H, CH3), 1.25 

(m, 2H, CH2), 1.58 (m, 2H, CH2), 1.84 (m, 1H, CH), 2.43 (d, J= 7.0 Hz, 

2H, CH2), 3.69 (s, 3H, CH3), 7.15 (d, J= 7.5 Hz, 2 H, Ar), 7.23 (d, J= 7.5 

Hz, 2 H, Ar). Elemental analysis: calculated for C15H20O2 (232.32) % C 

77.55; H 8.68; found % C 77.62; H 8.72. Physical and spectral data 

were in accordance with literature values.110   

2-(4-Isobutylphenyl)-2-methylpropanoic acid (12) 

 

Obtained following the procedure used to obtain acid 5 starting from 

ester 11. 

Yield 90%. m.p. 70-72 °C. 1H NMR (DMSO-d6) δ 0.90 (d, J= 7.0 Hz, 6H, 

CH3), 1.64 (s, 6H, CH3), 1.90 (m, 1H, CH), 2.55 (d, J= 7.0 Hz, 2H, CH2), 

7.09 (d, J= 7.5 Hz, 2H, Ar), 7.33 (d, J= 7.5 Hz, 2 H, Ar). Elemental 

analysis: calculated for C14H20O (220.15) % C 76.33; H 9.15; found % C 

76.33; H 9.03. Physical and spectral data were in accordance with 

literature values.110 
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1-(4-Isobutylphenyl)cyclopropane-1-carboxylic acid (14) 

 

Obtained following the procedure used to obtain acid 5 starting from 

ester 13. 

Yield 90 %. 74-76 °C. 1H NMR (DMSO-d6) δ 0.87 (d, J= 7.0 Hz, 6H, CH3), 

1.08 (m, 2H, CH2), 1.41 (m, 2H, CH2), 1.80 (m, 1H, CH), 2.42 (d, J= 7.0 

Hz, 2H, CH2), 7.06 (d, J= 7.5 Hz, 2 H, Ar), 7.21 (d, J= 7.5 Hz, 2 H, Ar). 

Elemental analysis: calculated for C14H18O2 (218.30) % C 77.03; H 

8.31; found % C 77.10; H 8.25. Physical and spectral data were in 

accordance with literature values.110
 

General procedure for the synthesis of amides Ibu-AM59 and Ibu-

AM60 

The solution of acid 12 or acid 14 (1 mmol), EDC (0.19 g, 1.1 mmol) 

and HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at 

r.t. for 30 minutes, after that was added the 2-amino-3-

methylpyridine (0.108 g, 1 mmol). The mixture was stirred at r.t. for 

36 hours. After the solvent was removed under vacuum. The residue 

was dissolved in AcOEt (20 mL) and washed sequentially with brine 

(2x5 mL), 10% citric acid (2x5 mL), saturated NaHCO3 aqueous 

solution (2x5 mL) and water (2x5 mL). The organic layer was dried 

over anhydrous Na2SO4 and evaporated under vacuum. The obtained 

residue was tritured with iPr2O and filtered to obtain Ibu-AM59 or 

Ibu-AM60 respectively. 
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2-(4-Isobutylphenyl)-2-methyl-N-(3-methylpyridin-2-

yl)propanamide (Ibu-AM59) 

 

Yield 70 %. Oil. 1H NMR (DMSO-d6) δ 0.86 (d, J= 7.0 Hz, 6H, CH3), 1.57 

(s, 6H, CH3), 2.02 (m, 1H, CH), 2.03 (s, 3H, CH3), 2.44 (d, J= 7.0 Hz, 2H, 

CH2), 7.12-7.20 (m, 3H, Ar), 7.30-7.35 (m, 2H, Ar), 7.62 (m, 1H, Ar), 

8.22 (m, 1H, Ar), 9.27 (s, 1H, NH). IR (Film) 3167, 2956, 1731, 1686, 

1583, 1448, 1384, 1366 cm-1. Elemental analysis: calculated for 

C20H26N2O (310.44) % C 77.38; H 8.44; N 9.02; found % C 77.34; H 

8.50; N 9.07. 

3-Methylpyridin-2-yl 1-(4-isobutylphenyl)cyclopropane-1-

carboxylate (Ibu-AM60) 

 

Yield 73 %. Oil.1H NMR (DMSO-d6) δ 0.87 (d, J= 7.0 Hz, 6H, CH3), 1.10 

(m, 2H, CH2), 1.44 (m, 2H, CH2), 1.82 (m, 1H, CH), 2.03 (s, 3H, CH3), 

2.42 (d, J= 7.0 Hz, 2H, CH2), 7.07-7.25 (m, 4H, Ar), 7.37 (m, 1H, Ar), 

7.62 (m, 1H, Ar), 8.19 (m, 1H, Ar), 8.59 (s, 1H, NH). IR (Film) 3397, 

1774, 1687, 1582, 1489, 1446, 1338, 1290, 1192 cm-1. Elemental 
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analysis: calculated for C20H24N2O (308.43) % C 77.89; H 7.84; N 9.08; 

found % C 77.34; H 8.50; N 9.07. 

General procedure for the synthesis of Ibuf-AM1, Feno-AM1, Keto-

AM1, Napr-AM1, Flu-AM1-4, Carpr-AM1-5 

The solution of the appropriate acid (1 mmol), EDC (0.19 g, 1.1 mmol) 

and HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at 

r.t., after 30 minutes the opportune amine (1 mmol). The mixture 

was stirred at r.t. for 36 hours. After the solvent was removed under 

vacuum. The residue was dissolved in AcOEt (20 mL) and washed 

sequentially with brine (2x5 mL), 10% citric acid (2x5 mL), saturated 

NaHCO3 aqueous solution (2x5 mL) and water (2x5 mL). The organic 

layer was dried over anhydrous Na2SO4 and evaporated under 

vacuum. To give the title amides. 

2-(4-Isobutylphenyl)-N-(3-methylpyridin-2-yl)acetamide (Ibuf-AM1) 

 

Obtained following the general procedure by the condensation 

between ibufenac and 2-amino-3-methylpyridine. 

Yield 77 %. Oil. 1H NMR (DMSO-d6) δ 0.86 (d, J= 7.0 Hz, 6H, CH3), 1.82 

(m, 1H, CH), 2.42 (s, 3H, CH3), 2.50 (d, J= 7.0 Hz, 2H, CH2), 3.55 (s, 2H, 

CH2), 7.09-7.64 (m, 7H, Ar). IR (Nujol) 3310, 3270, 3070, 3050, 1668, 

1620, 1569 cm-1. Elemental analysis: calculated for C18H22N2O 

(282.17) % C 76.56; H 7.85; N 9.92; found % C 76.44; H 7.96; N 9.99. 
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2-(2-Fluoro-(1,1'-biphenyl)-4-yl)-N-(3-methylpyridin-2-

yl)propanamide (Feno-AM1) 

 

Obtained following the general procedure by the condensation 

between fenoprofen and 2-amino-3-methylpyridine. 

Yield 82 %.  Oil. 1H NMR (DMSO-d6) δ 1.57 (d, J= 7.0 Hz, 3H, CH3), 2.15 

(s, 3H, CH3), 3.83 (q, J= 7.0 Hz, 1H, CH), 7.10-8.18 (m, 12H, Ar). IR 

(Film) 3198, 1698 cm-1. Elemental analysis: calculated for C21H20N2O2 

(332.40) % C 75.88; H 6.06; N 8.43; found % C 75.96; H 6.03; N 8.56.  

 

2-(3-Benzoylphenyl)-N-(3-methylpyridin-2-yl)propanamide 

(Keto-AM2) 

 

Obtained following the general procedure by the condensation 

between ketoprofen and 2-amino-3-methylpyridine. 

Yield 87 %.  Oil. 1H NMR (DMSO-d6) δ 1.58 (d, J= 7.0 Hz, 3H, CH3), 2.16 

(s, 3H, CH3), 3.84 (q, J= 7.0 Hz, 1H, CH), 7.12-8.16 (m, 12H, Ar). IR 

(Film) 3180, 1708, 1659 cm-1. Elemental analysis: calculated for 

C22H20N2O2 (344.41) % C 76.72; H 5.85; N 8.13; found % C 76.72; H 

5.85; N 8.13. 
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2-(6-Methoxynaphthalen-2-yl)-N-(3-methylpyridin-2-

yl)propanamide (Napr-AM1) 

 

Obtained following the general procedure by the condensation 

between naproxen and 2-amino-3-methylpyridine. 

Yield  40 %. Oil. 1H NMR (DMSO-d6) δ 1.50 (d, J= 7.0 Hz, 3H, CH3), 1.96 

(s, 3H, CH3), 3.86 (s, 3H, CH3) 4.05 (q, J= 7.0 Hz, 1H, CH), 7.14-8.21 (m, 

9H, Ar), 10.15 (s, 1H, NH). IR (Film) 3243, 2971, 2934, 1697, 1633, 

1505, 1392, 1217 cm-1. Elemental analysis: calculated for C20H20N2O2 

(320.39) % C 74.98; H 6.29; N 8.74; found % C 75.01; H 6.25; N 8.76. 

2-(2-Fluoro-(1,1'-biphenyl)-4-yl)-N-(3-methylpyridin-2-

yl)propanamide (Flu-AM1) 

 

Obtained following the general procedureby the condensation 

between flurbiprofen and 2-amino-3-methylpyridine. 

Yield 52 %. Oil. 1H NMR (DMSO-d6) δ 1.56 (d, J= 7.0 Hz, 3H, CH3), 2.05 

(s, 3H, CH3), 3.79 (m, 1H, CH), 7.15-7.51 (m, 9H, Ar),  7.98 (m, 1H, Ar), 

8.14 (m, 1H, Ar). IR (Film) 3034, 2979, 2934, 1736, 1669, 1581, 1484, 

1418, 1388, 1200 cm-1. Elemental analysis: calculated for C21H19FN2O 

(334.39) % C 75.43; H 5.73; N 8.38; found % C 75.41; H 5.71; N 8.31. 
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2-(2-Fluoro-(1,1'-biphenyl)-4-yl)-N-(3-(trifluoromethyl)pyridin-2-

yl)propanamide (Flu-AM2) 

 

Obtained following the general procedure by the condensation 

between flurbiprofen and 2-amino-3-(trifluoromethyl)pyridine. 

Yield 45 %.  m.p. 112 °C. 1H NMR (DMSO-d6) δ 1.45 (d, J= 7.0 Hz, 3H, 

CH3), 3.99 (m, 1H, CH), 7.28-8.73 (m, 11H, Ar e Py), 10.39 (s, 1H, NH). 

IR (Nujol) 3267, 1673, 1583, 1515 cm-1. Elemental analysis: calculated 

for C21H16F4N2O (388.37) % C 64.95; H 4.15; N 7.21; found % C 65.00; 

H 4.10; N 7.22. 

N-(3-Bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-

yl)propanamide (Flu-AM3) 

 

Obtained following the general procedure by the condensation 

between flurbiprofen and 2-amino-3-bromopyridine. 

Yield 60 %. m.p. 90 °C. 1H NMR (DMSO-d6) δ 1.45 (d, J= 7.0 Hz, 3H, 

CH3), 3.99 (q, J= 7.0 Hz, 1H, CH), 7.23-8.42 (m, 11H, Ar), 10.35 (s, 1H, 

NH). IR (Nujol) 3265, 1667, 1511, 1460, 1377 cm-1. Elemental analysis: 
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calculated for C20H16BrFN2O (398.26) % C 60.17; H 4.04; N 7.02; found 

% C 60.20; H 4.10; N 7.08. 

2-(2-Fluoro-(1,1'-biphenyl)-4-yl)-N-(4-hydroxy-2-

methylphenyl)propanamide (Flu-AM4) 

 

Obtained following the general procedure by the condensation 

between flurbiprofen and 4-hydroxy-2-methylaniline. 

Yield 30 %. m.p. 123 °C. 1H NMR (DMSO-d6) δ 1.43 (s, 3H, CH3), 1.99 

(s, 3H, CH3), 3.90 (s, 1H, CH), 6.52-7.53 (m, 11H, Ar), 9.18 (s, 1H, OH), 

9.27 (s, 1H, NH). IR (Nujol) 3282, 1655, 1461, 1377, 1223 cm-1. 

Elemental analysis: calculated for C22H20FNO2 (349.41) % C 75.63; H 

5.77; N 4.01; found % C 75.65; H 5.80; N 3.98. 

2-(6-Chloro-9H-carbazol-2-yl)-N-(3-methylpyridin-2-yl)propanamide 

(Carpr-AM1) 

 

Obtained following the general procedure by the condensation 

between carprofen and 2-amino-3-methylpyridine. 

Yield 44 %. m.p. 208 °C. 1H NMR (DMSO-d6) δ 1.42 (d, J= 7.0 Hz, 1H, 

CH), 1.48 (d, J= 7.0 Hz, 3H, CH3) 1.95 (s, 3H, CH3) 7.07-7.58 (m, 6H, 

Ar), 8.05-8.19 (m, 3H, Ar), 10.12 (s, 1H, NH). IR (Nujol) 3204, 1727, 
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1650, 1516 cm-1. Elemental analysis: calculated for C21H18ClN3O2 

(363.85) % C 69.32; H 4.99; N 11.55; found % C 69.36; H 5.02; N 

11.60. 

2-(6-Chloro-9H-carbazol-2-yl)-N-(4-hydroxy-2-

methylphenyl)propanamide (Carpr-AM2) 

 

Obtained following the general procedure by the condensation 

between carprofen and 4-hydroxy.2-methylaniline. 

Yield 26 %. m.p. 126 °C. 1H NMR (DMSO-d6) δ 1.52 (d, J= 6.5 Hz, 3H, 

CH3), 4.04(d, J= 7.0 Hz, 1H, CH), 7.03-8.40 (m, 9H, Ar), 10.25 (s, 1H, 

NH), 11.35 (s, 1H, NH). IR (Nujol) 1659, 1569, 1460, 1377 cm-1. 

Elemental analysis: calculated for C22H19ClN2O2 (378.86) % C 69.75; H 

5.06; N 7.39; found % C 69.80; H 5.08; N 7.42. 

2-(6-Chloro-9H-carbazol-2-yl)-N-(3-iodopyridin-2-yl)propanamide 

(Carpr-AM3) 

 

Obtained following the general procedure for the synthesis of amides 

derivatives, by the condensation between carprofen and 2-amino-3-

iodopyridine. 

Yield 17 %.  m.p. 191 °C. 1H NMR (DMSO-d6) δ 1.52 (d, J= 6.5 Hz, 3H, 

CH3), 4.04 (d, J= 7.0 Hz, 1H, CH), 7.03-8.40 (m, 9H, Ar), 10.25 (s, 1H, 

NH), 11.35 (s, 1H, NH). IR (Nujol) 1659, 1569, 1460, 1377 cm-1. 

Elemental analysis: calculated for C20H15ClIN3O (474.71) % C 50.50; H 

3.18; N 8.83; found % C 50.55; H 3.15; N 8.96. 
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N-(3-Bromopyridin-2-yl)-2-(6-chloro-9H-carbazol-2-yl)propanamide 

(Carpr-AM4) 

 

Obtained following the general procedure by the condensation 

between carprofen and 2-amino-3-bromopyridine. 

Yield 23 %. m.p. 118 °C. 1H NMR (DMSO-d6) δ 1.43 (d, J= 6.5 Hz, 3H, 

CH3), 3.82(q, J= 7.0 Hz, 1H, CH), 6.58-8.10 (m, 9H, Ar), 11.34 (s, 1H, 

NH). IR (Nujol) 1648, 1562, 1461, 1377, 1273, 1212 cm-1. Elemental 

analysis: calculated for C20H15BrClN3O (428.71) % C 56.03; H 3.53; N 

9.80; found % C 50.96; H 3.60; N 9.96. 

2-(6-Chloro-9H-carbazol-2-yl)-N-(3-(trifluoromethyl)pyridin-2-

yl)propanamide (Carpr-AM5) 

 

Obtained following the general procedure by the condensation 

between carprofen and 2-amino-3-(trifluoromethyl)pyridine. 

Yield 31 %. m.p. 115 °C. 1H NMR (DMSO-d6) δ 1.44 (d, J= 6.5 Hz, 3H, 

CH3), 3.82(d, J= 7.0 Hz, 1H, CH), 6.58-8.16 (m, 9H, Ar e Py), 11.34 (s, 

1H, NH). IR (Nujol) 1688, 1648, 1561, 1461, 1377, 1341, 1273, 1212 

cm-1. Elemental analysis: calculated for C21H15ClF3N3O (417.82) % C 

60.37; H 3.62; N 10.06; found % C 60.40; H 3.60; N 10.10. 
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(S)-(+)-2-(4-Isobutylphenyl)-N -(3-methylpyridin-2-yl)propanamide 

((S)-(+)-Ibu-AM5) 

 

Obtained following the general procedure by the condensation 

between (S)-Ibuprofen and 2-amino-3-methylpyridine. 

Yield 57%. m.p. 93-94 °C. 1H NMR (DMSO-d6) δ 0.86 (d, J= 6.5 Hz, 6H, 

CH3), 1.47 (d, J= 7.0 Hz, 3H, CH3), 1.83 (hept, J= 6.5 Hz, 1H, CH), 2.03 

(s, 3H, CH3), 2.41 (d, J= 7.0 Hz, 2H, CH2), 3.88 (q, J= 7.0 Hz, 1H, CH), 

6.15 (s, 1H, NH), 6.70 (m, 1H, Ar), 7.22 (d, J= 8.0 Hz, 2H, Ar), 7.26 (d, 

J= 8.0 Hz, 2H, Ar), 7.35 (m, 1H, Ar), 7.90 (m, 1H, Ar). IR (Nujol) 3309, 

3245, 3098, 3054, 1666, 1615, 1592 cm-1. Optical rotation [α]= 

+60.8°. Elemental analysis: calculated for C19H24N2O (296.41) % C 

76.99; H 8.16; N 9.45; found % C 76.94; H 8.19; N 8.20. 

(R)-(-)-2-(4-Isobutylphenyl)-N -(3-methylpyridin-2-yl)propanamide 

((R)-(-)-Ibu-AM5) 

 

Obtained following the general procedure by the condensation 

between (R)-Ibuprofen and 2-amino-3-methylpyridine. 



Design, synthesis and SAR of small molecules acting on pain pathways 
_______________________________________________________________________________________ 

 

_______________________________________________________________________________________
171 

Yield 58%. m.p. 94-95 °C. 1H NMR (DMSO-d6) δ 0.84 (d, J= 6.5 Hz, 6H, 

CH3), 1.50 (d, J= 7.0 Hz, 3H, CH3), 1.78 (hept, J= 6.5 Hz, 1H, CH), 2.07 

(s, 3H, CH3), 2.44 (d, J= 7.0 Hz, 2H, CH2), 3.90 (q, J= 7.0 Hz, 1H, CH), 

6.11 (s, 1H, NH), 6.72 (m, 1H, Ar), 7.28 (d, J= 8.0 Hz, 2H, Ar), 7.35 (d, 

J= 8.0 Hz, 2H, Ar), 7.41 (m, 1H, Ar), 7.87 (m, 1H, Ar). IR (Nujol) 3297, 

3253, 3087, 3050, 1672, 1620, 1579 cm-1. Optical rotation [α]= -60.9°. 

Elemental analysis: calculated for C19H24N2O (296.41) % C 76.99; H 

8.16; N 9.45; found % C 77.05; H 8.18; N 8.13. 

(S)-(+)- 2-(2-Fluoro-(1,1'-biphenyl)-4-yl)-N-(3-methylpyridin-2-

yl)propanamide ((S)-(+)-Flu-AM1) 

 

Obtained following the general procedure by the condensation 

between (S)-Flurbiprofen and 2-amino-3-methylpyridine. 

Yield 52%. Oil. 1H NMR (DMSO-d6) δ 1.42 (d, J= 7.0 Hz, 3H, CH3), 2.10 

(s, 3H, CH3), 3.91 (q, J= 7.0 Hz, 1H, CH), 7.21-7.52 (m, 10H, Ar), 7.98 (s, 

1H, Ar), 10.03 (s, 1H, NH). IR (Film) 3330, 3020, 2965, 1675, 1638, 

1576 cm-1. Optical rotation [α]= +11.5°. Elemental analysis: calculated 

for C21H19FN2O (334.39) % C 75.37; H 5.75; N 8.90; found % C 75.47; H 

5.72; N 8.89. 

 

 

 

 

 



2. Endocannabinoid System 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
172 

(R)-(-)- 2-(2-Fluoro-(1,1'-biphenyl)-4-yl)-N-(3-methylpyridin-2-

yl)propanamide ((R)-(-)-Flu-AM1) 

 

Obtained following the general procedure by the condensation 

between (R)-Flurbiprofen and 2-amino-3-methylpyridine. 

Yield 54%. Oil. 1H NMR (DMSO-d6) δ 1.48 (d, J= 7.0 Hz, 3H, CH3), 2.14 

(s, 3H, CH3), 3.87 (q, J= 7.0 Hz, 1H, CH), 7.25-7.50 (m, 10H, Ar), 7.99 (s, 

1H, Ar), 10.10 (s, 1H, NH). IR (Film) 3333, 3018, 2978, 1665, 1631, 

1570 cm-1. Optical rotation [α]= -11.2°. Elemental analysis: calculated 

for C21H19FN2O (334.39) % C 75.43; H 5.73; N 8.83; found % C 75.40; H 

5.77; N 8.85. 

Methyl 2-(4-aminophenyl)propanoate (21) 

 

A solution of 2-(4-nitrophenyl)propionic acid (20) (5g, 26 mmol) in 

MeOH (25 mL) was treated at room temperature with 37 % HCl (1 

mL) and then refluxed for 4 h. The solvent was removed under 

vacuum and crude methyl ester was used for the further step. 

Iron powder (14 g, 256 mmol) was suspended in a mixture of MeCN 

(50 mL) and water (4 mL); the mixture was treated with 37% HCl (0.1 

mL), than refluxed for 1h. After cooling at room temperature a 
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solution of crude methyl ester in MeOH (5 mL) was added dropwise 

in 30 minutes and the resulting solution was refluxed overnight. The 

hot suspension was filtered on a celite pad and the filtrate 

evaporated to afford an orange oil (4 g) that was dissolved in CH2Cl2 

(40 mL) and extracted with a saturated NaHCO3 aqueous solution (3 x 

35 mL), dried over anhydrous Na2SO4 and evaporated under vacuum 

to give the methyl-2-(4-aminophenyl)propanoate (21) as orange oil.    

Yield 75%. Oil.  1H NMR (DMSO-d6) δ 1.45 (d, J= 7 Hz, 3H, CH3), 3.60 

(s, 3H, CH3), 3.75 (s, 2H, NH2), 3.80 (m, 1H, CH), 6.65 (d, J= 7.0 Hz, 2H, 

Ar), 7.05 (d, J= 7.0 Hz, 2H, Ar). IR (Film) 3458, 3374, 2979, 2951, 1729, 

1626, 1517, 1455, 1435, 1339, 1267, 1210, 1168 cm-1. Elemental 

analysis: calculated for C10H13NO2 (179.22) % C 67.02; H 7.31; N 7.82; 

found % C 67.06; H 7.36; N 8.86. Physical and spectral data were in 

accordance with literature values.111 

Methyl (E)-2-(4-((5,5,5-trifluoro-4-oxopent-2-en-2-

yl)amino)phenyl)propanoate (23) 

 

A mixture of methyl ester 21 (1.79 g, 10 mmol), and enol ether 22 

(2.52 g, 15 mmol) in anhydrous MeCN (10 mL) was refluxed for 2 h. 

After cooling, the formed precipitate was collected by filtration, 

washed with iPr2O, dried, and used without further purification. 

Yield 78 %. m.p. 43-45 °C. 1H NMR (DMSO-d6) δ 1.45 (d, J= 5.0 Hz, 3H, 

CH3), 2.24 (s, 3H, CH3), 3.70 (s, 3H, CH3), 3.98 (m, 1H, CH), 5.74 (s, 1H, 

CH), 6.94 (d, J= 8.4 Hz, 2H, Ar), 7.73 (d, J= 8.4 Hz, 2H, Ar), 12.48 (s, 1H, 

NH). IR (Nujol) 3376, 2981, 2936, 1729 cm-1. Elemental analysis: 
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calculated for C15H16F3NO3 (315.29) % C 57.14; H 5.12; N 4.44; found 

% C 57.19; H 5.20; N 4.50. 

Methyl 2-(4-(((1E,3E)-1-(dimethylamino)-6,6,6-trifluoro-5-oxohexa-

1,3-dien-3-yl)amino)phenyl)propanoate (24) 

 

A mixture of 23 (1.58 g, 5 mmol), and DMF-DMA (1.79 g, 15 mmol) in 

anhydrous toluene (20 mL) was refluxed for 1 h, then was allowed to 

reach the room temperature and stirred for additional 24 h. The 

mixture was carefully concentrated in vacuum to give 24. 

Yield 88 %. Oil. 1H NMR (DMSO-d6) δ 1.41 (d, J= 6.5 Hz, 3H, CH3), 2.75 

(s, 3H, CH3), 3.10 (s, 3H, CH3), 3.60 (s, 3H, CH3), 3.85 (m, 1H, CH), 4.98 

(d, J= 10.5 Hz, 1H, CH), 5.74 (s, 1H, CH), 7.25 (d, J= 7.5 Hz, 2H, Ar), 

7.33 (d, J= 7.5 Hz, 2H, Ar), 7.91 (d, J= 10.5 Hz, 1H, CH), 12.76 (s, 1H, 

NH). IR (Film) 1722, 1671 cm-1. Elemental analysis: calculated for 

C18H21F3N2O3 (377.37) % C 58.37; H 5.72; N 7.56; found % C 58.45; H 

5.80; N 7.60. 
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Methyl 2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanoate (25) 

 

To a solution of 24 (0.74 g, 2 mmol) in dry DMF (5 mL), ammonium 

acetate (0.31 g, 4 mmol) was added and the mixture was gently 

refluxed for 1.5 h. The mixture was carefully concentrated in vacuum, 

and then ice-water (15 mL) was added. The formed solid was filtered 

off, washed with water, air-dried, and then recrystallized with iPr2O 

to give 25. 

Yield 75 %. m.p. 36-39 °C. 1H NMR (DMSO-d6) δ 1.57 (d, J= 6.5 Hz, 3H, 

CH3), 3.92 (m, 1H, CH), 3.98 (s, 3H, CH3), 6.50 (m, 2H, Ar), 6.75 (m, 2H, 

Ar), 7.02 (m, 2H, Ar), 8.48 (m, 1H, Ar), 9.69 (s, 1H, NH). IR (Nujol) 

3346, 3312, 1737, 1670 cm-1. Elemental analysis: calculated for 

C16H15F3N2O2 (324.11) % C 59.26; H 4.66; N 8.64; found % C 59.30; H 

4.25; N 8.70. 
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2-(4-((2-(Trifluoromethyl)pyridin-4-yl)amino)phenyl)propanoic acid 

(TPA0) 

 

To a solution of the ester 25 (0.65 g; 2mmol) in EtOH (20mL) 5N 

solution of NaOH (4 mL) and water (4 mL) were added. The resulting 

mixture was stirred at r.t. for 24h. After removing EtOH under 

vacuum, ice was added to the residue and then acidified with 

aqueous 20% HCl solution until pH 3-4. The formed precipitate was 

filtered, washed with water and re-crystallized with EtOH to obtain 

the title compound. 

Yield 69 %. m.p. 36-39 °C. 1H NMR (DMSO-d6) δ 1.37 (d, J= 7.0 Hz, 3H, 

CH3), 3.67 (q, J= 7.0 Hz, 1H, CH), 7.08 (m, 1H, Ar), 7.20 (m, 3H, Ar), 

7.30 (m, 2H, Ar), 8.30 (m, 1H, Ar), 9.22 (s, 1H, NH), 12.28 (s, 1H, OH). 

IR (Nujol) 3336, 3296, 2485, 1683, 1603, 1520, 1462, 1413, 1359, 

1310 cm-1. Elemental analysis: calculated for C15H13F3N2O2 (310.28) % 

C 58.07; H 4.22; N 9.03; found % C 58.10; H 4.25; N 8.90. 

General procedure for the synthesis of amides TPA5, 8-9, 11-28 

A solution of TPA0 (0.31 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and HOBt 

(0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. for 30 

minutes, then the appropriate amine (1 mmol)was added. The 

mixture was stirred at r.t. for 36 hours. After the solvent was 

removed under vacuum. The residue was dissolved in AcOEt (20 mL) 

and washed sequentially with brine (2x5 mL), 10% citric acid (2x5 

mL), saturated NaHCO3 aqueous solution (2x5 mL) and water (2x5 
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mL). The organic layer was dried over anhydrous Na2SO4 and 

evaporated under vacuum to give the title amides. 

N-(3-Methylpyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA5) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-amino-3-methylpyridine. 

Yield 79 %. m.p. 110 °C. 1H NMR (DMSO-d6) δ 1.15 (d, J= 6.2 Hz, 3H, 

CH3), 1.50 (s, 3H, CH3), 3.79 (q, J= 6.2 Hz, 1H, CH), 7.18-7.53(m, 8H, 

Ar), 8.40 (m, 2H, Ar), 9.28 (s, 1H, NH), 10.26 (s, 1H, NH). IR (Nujol) 

1674, 1620, 1603, 1521, 1459, 1360 cm-1. Elemental analysis: 

calculated for C21H19F3N4O (400.15) % C 62.99; H 4.78; N 13.99; found 

% C 63.05; H 4.70; N 13.90. 

N-(Pyridin-2-ylmethyl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA8) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-picolylamine. 
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Yield 71 %. m.p. 70-75 °C. 1H NMR (DMSO-d6) δ 1.49 (m, 3H, CH3), 

3.29 (m, 1H, CH), 4.47 (s, 2H, CH2), 7.19-7.49 (m, 7H, Ar), 7.83 (m, 1H, 

Ar), 8.41 (m, 1H, Ar), 8.59 (m, 1H, Ar), 8.76 (m, 1H, Ar), 9.39 (s, 1H, 

NH). IR (Nujol) 2924, 1600, 1532, 1459, 1360, 1325, 1218 cm-1. 

Elemental analysis: calculated for C21H19F3N4O (400.15) % C 62.99; H 

4.78; N 13.99; found % C 62.90; H 4.77; N 13.95. 

N-(Pyridin-3-ylmethyl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA9) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 3-picolylamine. 

Yield 58 %. m.p. 140-145 °C. 1H NMR (DMSO-d6) δ 1.14 (m, 3H, CH3), 

2.64 (s, 2H, CH2), 4.39 (m, 1H, CH), 7.16-7.66 (m, 8H, Ar), 8.40-8.71 

(m, 3H, Ar), 9.36 (s, 1H, NH). IR (Nujol) 2906, 1657, 1601, 1521, 1463, 

1360, 1321 cm-1. Elemental analysis: calculated for C21H19F3N4O 

(400.15) % C 62.99; H 4.78; N 13.99; found % C 62.95; H 4.82; N 

13.94. 
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N-(2-((3-Methylpyridin-2-yl)amino)-2-oxoethyl)-2-(4-((2-

(trifluoromethyl)pyridin-4-yl)amino)phenyl)propanamide (TPA11) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-amino-5-methylpyridine. 

Yield 25 %. m.p. 145-150 °C. 1H NMR (DMSO-d6) δ 1.46 (m, 3H, CH3), 

2.64 (s, 3H, CH3), 3.90 (m, 1H, CH), 7.19-7.69 (m, 9H, Ar), 8.39 (m, 1H, 

Ar), 9.39 (s, 1H, NH). IR (Nujol) 1666, 1601, 1514, 1461, 1377cm-1. 

Elemental analysis: calculated for C21H19F3N4O (400.15) % C 62.99; H 

4.78; N 13.99; found % C 63.01; H 4.80; N 13.94. 

N-(4-Methylpyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA12) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-amino-4-methylpyridine. 

Yield 31 %. m.p. 50-55 °C. 1H NMR (DMSO-d6) δ 1.47 (m, 3H, CH3), 

2.65 (s, 3H, CH3), 3.94 (m, 1H, CH), 7.06-7.56 (m, 9H, Ar), 8.40 (m, 1H, 

Ar), 9.40 (s, 1H, NH). IR (Nujol) 2923, 1681, 1601, 1462, 1320 cm-1. 
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Elemental analysis: calculated for C21H19F3N4O (400.15) % C 62.99; H 

4.78; N 13.99; found % C 62.90; H 4.75; N 13.90. 

N-(Pyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA13) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-aminopyridine. 

Yield 30 %. m.p. 130-135 °C. 1H NMR (DMSO-d6) δ 1.14 (m, 3H, CH3), 

4.22 (m, 1H, CH), 7.18-7.84 (m, 10H, Ar), 8.39 (m, 1H, Ar), 9.34 (s, 1H, 

NH). IR (Nujol) 3298, 2924, 1668, 1602, 1517, 1463, 1377, 1182, 1140 

cm-1. Elemental analysis: calculated for C20H17F3N4O (386.38) % C 

62.17; H 4.44; N 14.50; found % C 62.20; H 4.50; N 14.60. 

N-(Pyridin-3-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA14) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 3-aminopyridine. 
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Yield 44 %. m.p. 156-152 °C. 1H NMR (DMSO-d6) δ 1.44 (m, 3H, CH3), 

3.99 (m, 1H, CH), 7.13-8.33 (m, 11H, Ar). IR (Nujol) 3274, 2955, 1695, 

1603, 1522, 1462, 1376, 1322 cm-1. Elemental analysis: calculated for 

C20H17F3N4O (386.38) % C 62.17; H 4.44; N 14.50; found % C 62.22; H 

4.45; N 14.55. 

N-(Pyridin-4-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA15) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 4-aminopyridine. 

Yield 22 %. m.p. 120-130 °C. 1H NMR (DMSO-d6) δ 1.15 (d, J= 5.5 Hz, 

3H, CH3), 3.61 (q, J= 5.5 Hz, 1H, CH), 7.06 (m, 2H, Ar), 7.19 (m, 4H, Ar), 

7.31 (m, 2H, Ar), 7.57 (m, 1H, Ar), 8.28 (m, 2H, Ar), 9.24 (s, 1H, NH), 

10.54 (s, 1H, NH). IR (Nujol) 1602, 1515, 1460, 1361, 1181 cm-1. 

Elemental analysis: calculated for C20H17F3N4O (386.38) % C 62.17; H 

4.44; N 14.50; found % C 62.15; H 4.40; N 14.60. 

 

 

 

 

 

 

 

 



2. Endocannabinoid System 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
182 

N-(o-Tolyl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA16) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-methylaniline. 

Yield 60 %. m.p. 210-215 °C. 1H NMR (DMSO-d6) δ 1.03 (d, J= 6.0 Hz, 

3H, CH3), 2.08 (s, 3H, CH3), 3.92 (q, J= 7.0 Hz, 1H, CH), 7.07 (m, 2H, 

Ar), 7.13-7.23 (m, 5H, Ar), 7.32 (m, 1H, Ar), 7.44 (m, 2H, Ar), 8.29 (m, 

1H, Ar), 9.22 (s, 1H, NH), 9.38 (s, 1H, NH). IR (Nujol) 1667, 1604, 1532, 

1456, 1362, 1181 cm-1. Elemental analysis: calculated for C22H20F3N3O 

(399.16) % C 66.16; H 5.05; N 10.52; found % C 66.20; H 5.10; N 

10.63. 

N-(Pyrimidin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA17) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-aminopyrimidine. 
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Yield 31 %. m.p. 95-100 °C. 1H NMR (DMSO-d6) δ 1.40 (d, J= 7.0 Hz, 

3H, CH3), 4.10 (q, J= 7.0 Hz, 1H, CH), 7.17 (m, 1H, Ar), 7.20 (m, 4H, Ar), 

7.40 (m, 2H, Ar), 8.28 (m, 1H, Ar), 8.64 (m, 2H, Ar), 9.21 (s, 1H, NH), 

10.71 (s, 1H, NH). IR (Nujol) 1701, 1602, 1519, 1459, 1360, 1181 cm-1. 

Elemental analysis: calculated for C19H16F3N5O (387.37) % C 58.91; H 

4.16; N 18.08; found % C 58.99; H 4.20; N 18.12. 

N-(pyrazin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA18) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-aminopyrazine. 

Yield 46 %. m.p. 80-85 °C. 1H NMR (DMSO-d6) δ 1.44 (d, J= 7.0 Hz, 3H, 

CH3), 4.06 (q, J= 7.0 Hz, 1H, CH), 7.07 (m, 1H, Ar), 7.21-7.22 (m, 3H, 

Ar), 7.32 (m, 1H, Ar), 7.43 (m, 2H, Ar), 8.27-8.39 (m, 2H, Ar), 9.22 (s, 

1H, CH), 9.34 (s, 1H, NH), 10.95 (s, 1H, NH). IR (Nujol) 1701, 1602, 

1511, 1460, 1378, 1180 cm-1. Elemental analysis: calculated for 

C19H16F3N5O (387.37) % C 58.91; H 4.16; N 18.08; found % C 58.96; H 

4.22; N 18.10. 
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N-(Quinolin-8-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino) 

phenyl)propanamide (TPA19) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 8-aminoquinoline. 

Yield 69 %. m.p. 187 °C. 1H NMR (DMSO-d6) δ 1.50 (d, J= 7.0 Hz, 3H, 

CH3), 3.57 (m, J= 7.0 Hz, 1H, CH), 7.15 (m, J= 8.0 Hz, 4H, Ar), 7.57 (m, 

J= 8.5 Hz, 5H, Ar), 8.26 (d, 1H, Ar), 8.37 (d, J= 8.5 Hz, 1H, Ar), 8.63 (d, 

J= 8.0 Hz, 1H, Ar), 8.85 (s, 1H, Ar), 9.21 (s, 1H, NH). IR (Nujol) 1657, 

1600, 1523, 1487 cm-1. Elemental analysis: calculated for C24H19F3N4O 

(436.44) % C 66.05; H 4.39; N 12.84; found % C 66.00; H 4.30; N 

12.95. 

1-(4-(3-Chlorophenyl)piperazin-1-yl)-2-(4-((2-

(trifluoromethyl)pyridin-4-yl)amino)phenyl)propan-1-one (TPA20) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 1-(3-chlorophenyl)piperazine. 
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Yield 67 %. m.p. 75-80 °C. 1H NMR (DMSO-d6) δ 1.44 (d, J= 7.5 Hz, 3H, 

CH3), 2.66 (m, 1H, CH2), 2.99 (m, 1H, CH2), 3.18 (m, 2H, CH2), 3.50-

3.68 (m, 4H, CH2), 4.16 (q, J= 7.0 Hz, 1H, CH), 6.78 (m, 1H, Ar), 6.83 

(m, 1H, Ar), 6.89 (m, 1H, Ar), 7.03 (m, 1H, Ar), 7.18 (m, 4H, Ar), 7.31 

(m, 2H, Ar), 8.26 (m, 1H, Ar), 9.18 (s, 1H, NH). IR (Nujol) 1596, 1519, 

1463, 1377, 1228, 1182 cm-1. Elemental analysis: calculated for 

C25H24ClF3N4O (488.94) % C 61.41; H 4.95; N 11.46; found % C 61.46; 

H 4.91; N 11.50. 

1-(4-(4-Chlorophenyl)piperazin-1-yl)-2-(4-((2-

(trifluoromethyl)pyridin-4-yl)amino)phenyl)propan-1-one (TPA21) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 1-(4-chlorophenyl)piperazine. 

Yield 82 %. m.p. 80-85 °C. 1H NMR (DMSO-d6) δ 1.32 (d, J= 6.5 Hz, 3H, 

CH3), 2.66 (m, 1H, CH2), 2.95 (m, 1H, CH2), 3.11 (m, 2H, CH2), 3.50-

3.68 (m, 4H, CH2), 4.17 (q, J= 6.5 Hz, 1H, CH), 6.89 (d, J= 8.0 Hz, 2H, 

Ar), 7.03 (m, 1H,Ar), 7.16-7.21 (m, 5H, Ar), 7.30 (d, J= 8.0 Hz, 2H, Ar), 

8.27 (m, 1H, Ar), 9.18 (s, 1H, NH). IR (Nujol) 1645, 1600, 1519, 1496, 

1461, 1365 cm-1. Elemental analysis: calculated for C25H24ClF3N4O 

(488.94) % C 61.41; H 4.95; N 11.46; found % C 61.36; H 4.85; N 

11.40. 
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1-(4-(2,3-Dimethylphenyl)piperazin-1-yl)-2-(4-((2-

(trifluoromethyl)pyridin-4-yl)amino)phenyl)propan-1-one (TPA22) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 1-(2,3-dimethylphenyl)piperazine. 

Yield 62 %. m.p. 85 °C. 1H NMR (DMSO-d6) δ 1.33 (d, J= 6.0 Hz, 3H, 

CH3), 2.14 (s, 3H, CH3), 2.19 (s, 3H, CH3), 2.31 (m, 1H, CH2), 2.65 (m, 

2H, CH2), 2.73 (m, 1H, CH2), 3.48-3.64 (m, 4H, CH2), 4.16 (q, J= 6.0 Hz, 

1H, CH), 6.74 (d, J= 7.5 Hz, 1H, Ar), 6.86 (d, J= 7.0 Hz, 1H, Ar), 6.98 (m, 

1H, Ar), 7.05 (m, 1H, Ar), 7.18-7.21 (m, 3H, Ar), 7.31 (d, J= 8.0 Hz, 2H, 

Ar), 8.28 (m, 1H, Ar), 9.20 (s, 1H, NH). IR (Nujol) 3280, 2924, 1601, 

1518, 1461, 1377, 1137 cm-1. Elemental analysis: calculated for 

C27H29F3N4O (482.55) % C 67.20; H 6.06; N 11.61; found % C 67.22; H 

6.08; N 11.56. 

1-(4-(o-Tolyl)piperazin-1-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propan-1-one (TPA23) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 1-(2-methylphenyl)piperazine. 
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Yield 68 %. m.p. 80 °C. 1H NMR (DMSO-d6) δ 1.33 (d, J= 6.5 Hz, 3H, 

CH3), 2.22 (s, 3H, CH3), 2.36 (m, 1H, CH2), 2.69 (m, 2H, CH2), 2.78 (m, 

1H, CH2), 3.60-3.67 (m, 4H, CH2), 4.16 (q, J= 6.5 Hz, 1H, CH), 6.87 (m, 

1H, Ar), 6.94 (m, 1H, Ar), 7.05-7.22 (m, 5H, Ar), 7.31 (m, 1H, Ar), 7.31 

(m, 2H, Ar), 8.28 (m, 1H, Ar), 9.21 (s, 1H, NH). IR (Nujol) cm-1. 

Elemental analysis: calculated for C26H27F3N4O (468.21) % C 66.65; H 

5.81; N 11.96; found % C 66.70; H 5.89; N 11.90. 

N-(3-Bromopyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA24) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-amino-3-bromopyridine. 

Yield 77 %. m.p. 200 °C. 1H NMR (DMSO-d6) δ 1.43 (d, J= 6.5 Hz, 3H, 

CH3), 3.88 (q, J= 6.5 Hz, 1H, CH), 7.05 (m, 1H, Ar), 7.18 (d, J= 8.5 Hz, 

2H, Ar), 7.21-7.24 (m, 2H, Ar), 7.41 (d, J= 8.0 Hz, 2H, Ar), 8.10 (m, 1H, 

Py), 8.28 (m, 1H, Py), 8.41 (m, 1H, Py), 9.19 (s, 1H, NH), 10.26 (s, 1H, 

NH). IR (Nujol) 1670, 1603, 1532, 1462, 1377 cm-1. Elemental analysis: 

calculated for C20H16BrF 3N4O (464.05) % C 51.63; H 3.47; N 12.04; 

found % C 51.70; H 3.50; N 11.99. 
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N-(3-Iodopyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA25) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-amino-3-iodopyridine. 

Yield 33 %. m.p. 210 °C. 1H NMR (DMSO-d6) δ 1.44 (d, J= 7.0 Hz, 3H, 

CH3), 3.88 (q, J= 7.5 Hz, 1H, CH), 7.05 (m, 2H, Ar), 7.18 (m, 1H, Ar), 

7.19 (d, J= 8.0 Hz, 2H, Ar), 7.41 (d, J= 8.5 Hz, 2H, Ar), 8.28 (m, 2H, Ar), 

8.41 (m, 1H, Ar), 9.19 (s, 1H, NH), 10.23 (s, 1H, NH). IR (Nujol) 1667, 

1602, 1531, 1459, 1424 cm-1. Elemental analysis: calculated for 

C20H16F 3IN4O (512.03) % C 46.89; H 3.15; N 10.94; found % C 46.90; H 

3.21; N 11.02. 

N-(3-(Trifluoromethyl)pyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-

4-yl)amino)phenyl)propanamide (TPA26) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-amino-3-(trifluoromethyl)pyridine. 



Design, synthesis and SAR of small molecules acting on pain pathways 
_______________________________________________________________________________________ 

 

_______________________________________________________________________________________
189 

Yield 59 %. m.p. 190 °C. 1H NMR (DMSO-d6) δ 1.42 (d, J= 7.0 Hz, 3H, 

CH3), 3.91 (q, J= 7.0 Hz, 1H, CH), 7.05 (m, 1H, Ar), 7.17 (s, 1H, Ar), 7.20 

(d, J= 6.5 Hz, 2H, Ar), 7.39 (d, J= 7.0 Hz, 2H, Ar), 7.53 (m, 1H, Ar), 8.20 

(m, 1H, Ar), 8.28 (m, 1H, Ar), 8.72 (m, 1H, Ar), 9.20 (s, 1H, NH), 10.28 

(s, 1H, NH). IR (Nujol) 1671, 1603, 1533, 1460, 1376, 1321, 1144 cm-1. 

Elemental analysis: calculated for C21H16F 6N4O (454.38) % C 55.51; H 

3.55; N 12.33; found % C 55.58; H 3.52; N 12.36. 

N-(3-Chloropyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA27) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 2-amino-3-chloropyridine. 

Yield 78 %. m.p. 145-150 °C. 1H NMR (DMSO-d6) δ 1.44 (d, J= 5.5 Hz, 

3H, CH3), 3.93 (q, J= 5.5 Hz, 1H, CH), 7.07 (m, 1H, Ar), 7.21 (m, 3H, Ar), 

7.32 (m, 1H, Ar), 7.41 (m, 2H, Ar), 7.96 (m, 1H, Ar), 8.29 (m, 1H, Ar), 

8.38 (m, 1H, Ar), 9.22 (s, 1H, NH), 10.32 (s, 1H, NH). IR (Nujol) 1670, 

1603, 1531, 1462, 1364, 1187 cm-1. Elemental analysis: calculated for 

C20H16ClF3N4O (420.82) % C 57.08; H 3.83; N 13.31; found % C 57.12; 

H 3.91; N 13.35. 

 

 

 

 

 



2. Endocannabinoid System 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
190 

N-(4-hydroxy-2-methylphenyl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanamide (TPA28) 

 

Obtained following the general procedure by the condensation 

between TPA0 and 4-hydroxy-2-methylaniline. 

Yield 87 %. m.p. 218 °C. 1H NMR (DMSO-d6) δ 1.41 (d, J= 7.0 Hz, 3H, 

CH3), 1.94 (s, 3H, CH3), 3.81 (q, J= 6.5 Hz, 1H, CH), 6.50-8.28(m, 10H, 

Ar), 9.18 (m, 3H, NH OH). IR (Nujol) 3266, 1654, 1605, 1526, 1460, 

1365, 1322, 1227, 1186 cm-1. Elemental analysis: calculated for 

C22H20F3N3O2 (415.15) % C 63.61; H 4.85; N 10.12; found % C 63.66; H 

4.91; N 10.16. 

(2-(4-((2-(Trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanoyl)glycine (27) 

 

TPA0 (0.62 g, 2 mmol), EDC (0.39 g, 2.2 mmol) and HOBt (0.27 g, 

2mmol) were dissolved in MeCN (10mL). The mixture was stirred at 

r.t. for 30 minutes, then TEA (0.4 mL, 4 mmol) and ethylglicinate 

hydrochloride (0.56 g, 4 mmol) were added. The mixture was stirred 
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at r.t. for 4 hours. After the solvent was removed under vacuum. The 

residue was dissolved in AcOEt (20 mL) and washed sequentially with 

brine (2x5 mL), 10% citric acid (2x5 mL), saturated NaHCO3 aqueous 

solution (2x5 mL) and water (2x5 mL). The organic layer was dried 

over anhydrous Na2SO4 and evaporated under vacuum. The residue 

was treated with iPr2O; the precipitate was then filtrated and purified 

by crystallization with 2-PrOH to obtain the ester 26 at almost pure 

state. The ester 26 (0.40 g, 1 mmol) was dissolved in EtOH (10 mL). To 

this solution a 5N solution of NaOH (2mL) and water (2 mL) were 

added. The resulting mixture was stirred at r.t. for 24h. After 

removing EtOH under vacuum ice and then aqueous 20% HCl solution 

until pH 3-4 were added. The formed precipitate was filtrated, 

washed with water and re-crystallized with EtOH. 

Yield 94 %. m.p. 230 °C. 1H NMR (DMSO-d6) δ 1.33 (d, J= 7.5, 3H, CH3), 

3.66-3.79 (m 3H, CH2 CH), 7.04 (m, 1H, Ar), 7.17 (m, 3H, Ar), 7.34 (m, 

2H, Ar), 8.28 (m, 2H, Ar NH), 9.19 (s, 1H, NH), 12.46 (s, 1H, OH). IR 

(Nujol) 3350, 3281, 2854, 2522, 1900, 1707, 1657, 1606, 1538, 1454, 

1364 cm-1. Elemental analysis: calculated for C17H16F3N3O3 (367.33) % 

C 55.59; H 4.39; N 11.44; found % C 55.63; H 4.35; N 11.52. 

N-(2-((3-Methylpyridin-2-yl)amino)-2-oxoethyl)-2-(4-((2-

(trifluoromethyl)pyridin-4-yl)amino)phenyl)propanamide (TPA10) 

 

A solution of acid 27 (0.37 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and 

HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. 

for 30 minutes, then 2-amino-3-methylpyridine (0.108 g, 1 mmol) 

was added. The mixture was stirred at r.t. for 36 hours. After the 
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solvent was removed under vacuum. The residue was dissolved in 

AcOEt (20 mL) and washed sequentially with brine (2x5 mL), 10% 

citric acid (2x5 mL), saturated NaHCO3 aqueous solution (2x5 mL) and 

water (2x5 mL). The organic layer was dried over anhydrous Na2SO4 

and evaporated under vacuum. The obtained residue was washed 

with iPr2O and filtered to obtain the title compound. 

Yield 76 %. m.p. 225-230 °C. 1H NMR (DMSO-d6) δ 1.38 (m, 3H, CH3), 

2.62 (s, 3H, CH3), 3.85-4.05 (m 3H, CH2 CH), 7.19-8.53 (m, 10H, Ar). IR 

(Nujol) 1658, 1602, 1524, 1377, 1181 cm-1. Elemental analysis: 

calculated for C23H22F3N5O2 (457.17) % C 60.39; H 4.85; N 15.31; 

found % C 60.45; H 4.90; N 15.36. 

Methyl (E)-2-(4-((5,5,5-trifluoro-4-oxopent-2-en-2-

yl)amino)phenyl)acetate (29) 

 

Ester 29 was prepared using the same procedure used for the 

synthesis of the compound 23, starting from methyl 2-(4-

aminophenyl)acetate. 

Yield 96 %. m.p. 164-165 °C. 1H NMR (DMSO-d6) δ 2.24 (s, 3H, CH3), 

3.54 (s, 2H, CH2), 3.98 (s, 3H, CH3), 5.82 (s, 1H, CH), 7.34 (d, J= 7.6 Hz, 

2H, Ar), 7.81 (d, J= 7.6 Hz, 2H, Ar), 12.52 (s, 1H, NH). IR (Nujol) 3260, 

1717 cm-1. Elemental analysis: calculated for C14H14F3NO3 (301.27) % 

C 55.82; H 4.68; N 4.65; found % C 55.86; H 4.70; N 4.70. 
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Methyl 2-(4-(((1E,3E)-1-(dimethylamino)-6,6,6-trifluoro-5-oxohexa-

1,3-dien-3-yl)amino)phenyl)acetate (30) 

 

Ester 30 was prepared using the same procedure used for the 

synthesis of the compound 24, starting from ester 29. 

Yield 95 %. m.p. 105-106 °C (n-hexane). 1H NMR (DMSO-d6) δ 2.77 (s, 

3H, CH3), 3.28 (s, 3H, CH3), 3.92 (s, 3H, CH3), 4.03 (s, 2H, CH2), 5.02 (d, 

J=12.8, 1H, CH), 5.96 (s, 1H, CH), 7.49 (m, 2H, Ar), 8.03 (m, 3H, Ar CH), 

12.86 (s, 1H, NH). IR (Nujol) 1724, 1661 cm-1. Elemental analysis: 

calculated for C17H19F3N2O3 (356.35) % C 57.30; H 5.37; N 7.86; found 

% C 57.36; H 5.45; N 7.90. 

Methyl 2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino)phenyl)acetate 

(31) 

 

Ester 31 was prepared using the same procedure used for the 

synthesis of compound 25, starting from ester 30. 
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Yield 90 %. m.p. 48-50 °C (n-hexane).  1H NMR (DMSO-d6) δ 3.58 (s, 

2H, CH2), 3.93 (s, 3H, CH3), 6.93 (m, 1H, Ar), 7.18 (m, 2H, Ar), 7.59 (m, 

2H, Ar), 7.72 (m, 1H, Ar), 8.48 (m, 1H, Ar), 9.70 (s, 1H, NH). IR (Nujol) 

3362, 3205, 1717 cm-1. Elemental analysis: calculated for 

C15H13F3N2O2 (310.28) % C 58.07; H 4.22; N 9.03; found % C 58.10; H 

4.22; N 9.10. 

2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino)phenyl)acetic acid (32) 

 

Acid 32 was prepared using the same procedure used for the 

synthesis of TPA0, starting from ester 31. 

Yield 84 %. m.p. 219-220 °C.  1H NMR (DMSO-d6) δ 3.67 (s, 2H, CH2), 

7.19 (m, 1H, Ar), 7.31 (m, 3H, Ar), 7.40 (d, J= 8.4 Hz, 2H, Ar), 8.40 (d, 

J= 5.8 Hz, 1H, Ar), 9.33 (s, 1H, NH). IR (Nujol) 3325, 2495, 1898, 1693 

cm-1. Elemental analysis: calculated for C14H11F3N2O2 (296.25) % C 

56.76; H 3.74; N 9.46; found % C 56.85; H 3.82; N 9.38. 
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N-(3-Methylpyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)acetamide (TPA29) 

 

A solution of acid 32 (0.30 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and 

HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. 

for 30 minutes, after 2-amino-3-methylpyridine (0.108 g, 1 mmol) 

was added. The mixture was stirred at r.t. for 36 hours. After the 

solvent was removed under vacuum. The residue was dissolved in 

AcOEt (20 mL) and washed sequentially with brine (2x5 mL), 10% 

citric acid (2x5 mL), saturated NaHCO3 aqueous solution (2x5 mL) and 

water (2x5 mL). The organic layer was dried over anhydrous Na2SO4 

and evaporated under vacuum. The obtained residue was washed 

with iPr2O and the resulting precipitate filtered. 

Yield 78 %. m.p. 135-140 °C. 1H NMR (DMSO-d6) δ 2.08 (s, 3H, CH3), 

3.67 (s, 2H, CH2), 7.05-7.37(m, 9H, Ar), 8.28 (m, 1H, Ar), 9.25 (s, 1H, 

NH), 10.20 (s, 1H, NH). IR (Nujol) 1602, 1518, 1462, 1377, 1180, 1135 

cm-1. Elemental analysis: calculated for C20H17F3N4O (386.38) % C 

62.17; H 4.44; N 14.50; found % C 62.20; H 4.46; N 14.60. 
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Methyl 2-methyl-2-(4-nitrophenyl)propanoate (34) 

 

Methyl ester 33 (1.56 g, 8 mmol) was dissolved in anhydrous DMF (20 

mL). The solution was cooled to 0° C. Sodium hydride (0.63 g, 16 

mmol; 60% dispersion in oil) was added slowly and cautiously. The 

resulting mixture was allowed to warm to r.t. and then stirred for 

additional 20 min. The solution was cooled again to 0 °C. 

Iodomethane (2 mL, 32 mmol) was added dropwise, and the resulting 

solution was allowed to stir at 0 °C. for about 30 min. The solution 

was warmed to r.t. and stirred for additional 1 h. The solution was 

cooled to 0 °C and quenched with water, maintaining 0 °C throughout 

the quenching process. The obtained mixture was extracted with 

dichloromethane (2 x 15 mL). The combined organic layers were 

washed with water (2 x 5 mL) and brine (2 x 5 mL); dried over sodium 

Na2SO4. After removing the Na2SO4 by filtration, the filtrate was 

concentrated under vacuum. The residue was purified by column 

chromatography (silica gel, 8:1 petrolium ether: AcOEt) and gave the 

title compound as a yellow solid material. 

Yield 80 %. Oil. 1H NMR (DMSO-d6) δ 1.69 (s, 6H, CH3), 3.74 (s, 3H, 

CH3), 7.45 (d, J= 8.5 Hz, 2H, Ar), 8.13 (d, J= 8.5 Hz, 2H, Ar). Elemental 

analysis: calculated for C11H13NO4 (223.23) % C 59.19; H 5.87; N 6.27; 

found % C 59.15; H 5.90; N 6.28. Physical and spectral data were in 

accordance with literature values.112 
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Methyl 2-(4-aminophenyl)-2-methylpropanoate (35) 

 

To a solution of ester 34 (1.34 g, 6 mmol) in EtOH (15 mL) tin (II) 

chloride dihydrate (5.5 g, 24 mmol) was added. The resulting solution 

was stirred at 85 °C for 4 h. After cooling, the pH was adjusted to with 

40% aqueous NaOH. The mixture was extracted with AcOEt (3 x 5 

mL). The combined organic layers were washed with water (2 x 5mL) 

and brine (2 x 5 mL) and dried over Na2SO4. After removing of the 

Na2SO4 the filtrate was concentrated under vacuum to obtain the 

title compound as yellow oil.  

Yield 87%. Oil. 1H NMR (DMSO-d6) δ 0.63 (s, 3H, CH3), 0.91 (s, 3H, 

CH3), 3.54 (s, 3H, CH3), 4.96 (s, 2H, NH2), 6.49 (d, J= 8.5 Hz, 2H, Ar), 

6.91 (d, J= 8.5 Hz, 2H, Ar). IR (Film) 3435, 3349, 2956, 1723, 1626, 

1517, 1468, 1433 cm-1. Elemental analysis: calculated for C11H15NO2 

(193.25) % C 68.37; H 7.82; N 7.25; found % C 68.40; H 7.90; N 7.28. 

Methyl (E)-2-methyl-2-(4-((5,5,5-trifluoro-4-oxopent-2-en-2-

yl)amino)phenyl)propanoate (36) 

 

Ester 36 was prepared using the same procedure used for the 

synthesis of the compound 23, starting from ester 35. 
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Yield 87%.  Oil. 1H NMR (DMSO-d6) δ 1.53 (s, 6H, CH3), 2.27 (s, 3H, 

CH3), 3.77 (s, 3H, CH3), 5.77 (s, 1H, CH), 7.01 (d, J= 8.5 Hz, 2H, Ar), 

7.77 (d, J= 8.5 Hz, 2H, Ar), 12.58 (s, 1H, NH). IR (Film) 2925, 1721, 

1571, 1515, 1436, 1365, 1247, 1188, 1139 cm-1. Elemental analysis: 

calculated for C16H18F3NO3 (329.32) % C 58.36; H 5.51; N 4.25; found 

% C 58.40; H 5.60; N 4.28. 

2-Methyl-2-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)propanoic acid (39) 

 

A mixture of 36 (1.65 g, 5 mmol) and DMF-DMA (1.79 g, 15 mmol) in 

anhydrous toluene (20 mL) was refluxed for 1 h, then allowed to 

reach the room temperature and stirred for additional 24 h. The 

mixture was carefully concentrated in vacuum. Without isolate it the 

dienaminone intermediate was dissolved in dry DMF (5 mL), 

ammonium acetate (0.308 g, 4 mmol) was added and the mixture 

was gently heated for 1.5 h. The mixture was carefully concentrated 

in vacuum, and then ice-water (15 mL) was added. The formed solid 

was filtered off and washed with water. The obtained 

trifluoromethylpyridine ester was dissolved in EtOH (20 mL), 5N 

solution of NaOH (4 mL) and water (4 mL) were added. The resulting 

mixture was stirred at r.t. for 24h. After removing EtOH under 

vacuum, the residue was ice added and then acidified with aqueous 

20% HCl solution until pH 3-4. The formed precipitate was filtered 

and washed with water. 

Yield 42 %.  m.p. 170-175 °C. 1H NMR (DMSO-d6) δ 1.48 (s, 6H, CH3), 

7.02 (m, 1H, Ar), 7.17 (m, 3H, Ar), 7.52 (m, 2H, Ar), 8.28 (m, 1H, Ar), 
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9.25 (s, 1H, NH). IR (Nujol) 3285, 2924, 1690, 1623, 1602, 1534, 1464, 

1368, 1186 cm-1. Elemental analysis: calculated for C16H15F3N2O2 

(324.30) % C 59.26; H 4.66; N 8.64; found % C 59.30; H 4.70; N 8.60. 

2-Methyl-N-(3-methylpyridin-2-yl)-2-(4-((2-(trifluoromethyl)pyridin-

4-yl)amino)phenyl)propanamide (TPA30) 

 

A solution of acid 39 (0.32 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and 

HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. 

for 30 minutes, then 2-amino-3-methylpyridine (0.108 g, 1 mmol) 

was added. The mixture was stirred at r.t. for 36 hours. After the 

solvent was removed under vacuum. The residue was dissolved in 

AcOEt (20 mL) and washed sequentially with brine (2x5 mL), 10% 

citric acid (2x5 mL), saturated NaHCO3 aqueous solution (2x5 mL) and 

water (2x5 mL). The organic layer was dried over anhydrous Na2SO4 

and evaporated under vacuum. The obtained residue was tritured 

with iPr2O and the obtained precipitate filtered off. 

Yield 61 %. m.p. 220 °C. 1H NMR (DMSO-d6) δ 1.60 (s, 6H, CH3), 2.06 

(s, 3H, CH3), 7.09 (s, 1H, Ar), 7.23 (m, 4H, Ar), 7.46 (s, 2H, Ar), 7.64 (s, 

1H, Ar), 8.24 (s, 1H, Ar), 8.30 (s, 1H, Ar), 9.24 (s, 1H, NH). IR (Nujol) 

3290, 1661, 1605, 1534 cm-1. Elemental analysis: calculated for 

C22H21F3N4O (414.43) % C 63.76; H 5.11; N 13.52; found % C 63.80; H 

5.16; N 13.60. 
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General procedure for the synthesis of esters 40-43 

33 (2.50 g, 12.8 mmol) was dissolved in anhydrous DMF (20 mL). The 

solution was cooled to 0° C. NaH (1.02 g, 25.6 mmol; 60% dispersion 

in oil) was added slowly and cautiously. The resulting mixture was 

allowed to warm to r.t. and was stirred for additional 20 min. The 

solution was cooled again to 0 °C The appropriate dihaloalkane (25.6 

mmol) was added dropwise, and the resulting solution was allowed 

to stir at 0 °C. for 30 min. The solution was warmed to r.t. and stirred 

for additional 1 h. The solution was cooled to 0 °C and quenched with 

water, maintaining 0 °C throughout the quenching process. The 

obtained mixture was extracted with dichloromethane (2x20 mL). 

The combined organic layers were washed with water and brine and 

dried over Na2SO4. This was removed by filtration and the filtrate 

concentrated under vacuum to give product.113 

Methyl 1-(4-nitrophenyl)cyclopropane-1-carboxylate (40) 

 

Compound 40 was prepared following the general procedure starting 

from 1,2-dibromoethane. The obtained product was purified by 

column chromatography (silica gel, 8:1 petrolium ether:AcOEt).  

Yield 45 %. m.p. 96-98 °C. 1H NMR (DMSO-d6) δ 1.24-1.27 (m, 2H, 

CH2), 1.65-1.69 (m, 2H, CH2), 3.62 (s, 3H, CH3), 7.53-7.58 (m, 2H, Ar), 

8.17-8.19 (m, 2H, Ar). IR (Nujol) 2915, 1713, 1603, 1517, 1460, 1305 

cm-1. Elemental analysis: calculated for C11H11NO4 (221.21) % C 59.73; 

H 5.01; N 6.33; found % C 59.75; H 5.05; N 6.42. Analytical and 

spectral data were in accordance with literature values.113 
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Methyl 1-(4-nitrophenyl)cyclobutane-1-carboxylate (41) 

 

Compound 41 was prepared following the general procedure starting 

from 1,3-diiodopropane. The obtained product was purified by 

column chromatography (silica gel, 15:1 petrolium ether:AcOEt).  

Yield 45 %. Oil. 1H NMR (DMSO-d6) δ 1.83-2.18 (m, 2H, CH2), 2.44-

2,52 (m, 2H, CH2), 2.90-3.01 (m, 2H, CH2), 3.69 (s, 3H, CH3), 7.44 (m, 

2H, Ar), 8.20 (m, 2H, Ar).  Elemental analysis: calculated for C12H13NO4 

(235.08) % C 61.27; H 5.57; N 5.95; found % C 61.32; H 5.60; N 5.88. 

Analytical and spectral data were in accordance with literature 

values.113 

Methyl 1-(4-nitrophenyl)cyclopentane-1-carboxylate (42) 

 

Compound 42 was prepared following the general procedure starting 

from 1,4-diiodobutane. The obtained product was purified by column 

chromatography (silica gel, 15:1 petrolium ether:AcOEt).  

Yield 60 %. Oil. 1H NMR (DMSO-d6) δ 1.70-1.86 (m, 6H, CH2), 2.58 (m, 

2H, CH2), 3.55 (s, 3H, CH3), 6.66 (m, 2H, Ar), 7.25 (m, 2H, Ar). 

Elemental analysis: calculated for C13H15NO4 (249.27) % C 62.64; H 

6.07; N 5.62; found % C 62.68; H 6.10; N 5.63. Physical and spectral 

data were in accordance with literature values.113 
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Methyl 1-(4-nitrophenyl)cyclohexane-1-carboxylate (43) 

 

Compound 43 was prepared following the general procedure starting 

from 1,5-diiodopentane. The obtained product was purified by 

column chromatography (silica gel, 15:1 petrolium ether:AcOEt).  

Yield 40 %. Oil. 1H NMR (DMSO-d6) δ 1.39–1.68 (m, 6H, CH2), 1.75 (t, J 

= 13.0 Hz, 2H, CH2), 2.49 (d, J = 13.0 Hz, 2H, CH2), 3.66 (s, 3H, CH3), 

7.56 (d, J = 9.0Hz, 2H, Ar), 8.17 (d, J = 9.0 Hz, 2H, Ar). Elemental 

analysis: calculated for C14H17NO4 (263.29) % C 63.87; H 6.51; N 5.32; 

found % C 71.20; H 7.75; N 6.42. 

General procedure for the synthesis of esters 44-47 

To a solution of ester 40-43 (9.78 mmol) in AcOEt (230 mL) stannous 

chloride hydrate (110 g, 48.9 mmol was added). The reaction mixture 

was stirred at 75 °C for 4 h. Reaction mixture was cooled at r.t and 

then diluted with AcOEt (100 mL) and made alkaline (pH 10) using 

aqueous ammonia chloride solution 25 %. Organic layer was 

separated out, dried over Na2SO4 and the solvent evaporated under 

vacuum to obtain the desired compound 44-47. 
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Methyl 1-(4-aminophenyl)cyclopropane-1-carboxylate (44) 

 

Compound 44 was prepared following the general procedure starting 

from compound 40. 

Yield 89 %. Oil. 1H NMR (DMSO-d6) δ 1.12-1.16 (m, 2H, CH2), 1.50-

1.57 (m, 2H, CH2), 3.66 (s, 3H, CH3), 6.63 (m, 2H, Ar), 7.10 (m, 2H, Ar). 

IR (Film) 3359, 3301, 2926, 1706, 1660, 1637, 1522, 1459, 1376, 1297 

cm-1. Elemental analysis: calculated for C11H13NO2 (263.29) % C 69.09; 

H 6.85; N 7.32; found % C 69.09; H 6.89; N 7.40. 

Methyl 1-(4-aminophenyl)cyclobutane-1-carboxylate (45) 

 

Compound 45 was prepared following the general procedure starting 

from compound 41. 

Yield 90 %.  Oil. 1H NMR (DMSO-d6) δ 2.00 (m, 2H, CH2), 2.41 (m, 2H, 

CH2), 2.78 (m, 2H, CH2), 3.64 (s, 3H, CH3), 6.65 (m, 2H, Ar), 7.08 (m, 

2H, Ar). Elemental analysis: calculated for C12H15NO2 (263.29) % C 

70.22; H 7.37; N 6.82; found % C 70.25; H 7.38; N 6.80. 
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Methyl 1-(4-aminophenyl)cyclopentane-1-carboxylate (46) 

 

Compound 46 was prepared following the general procedure starting 

from compound 42. 

Yield 94 %.  Oil. 1H NMR (DMSO-d6) δ 1.70 (m, 6H, CH2), 2.58 (m, 2H, 

CH2), 3.62 (s, 3H, CH3), 6.57 (m, 2H, Ar), 7.20 (m, 2H, Ar). Elemental 

analysis: calculated for C13H17NO2 (219.28) % C 71.21; H 7.81; N 6.39; 

found % C 71.20; H 7.83; N 6.40. 

Methyl 1-(4-aminophenyl)cyclohexane-1-carboxylate (47) 

 

Compound 47 was prepared following the general procedure starting 

from compound 43. 

Yield 90 %.  Oil. 1H NMR (DMSO-d6) δ 1.28-1.62 (m, 6H, CH2), 2.10 (m, 

2H, CH2), 2.50 (m, 2H, CH2), 3.64 (s, 3H, CH3), 6.32 (m, 2H, Ar), 7.02 

(m, 2H, Ar). Elemental analysis: calculated for C14H19NO2 (233.31) % C 

72.07; H 8.21; N 6.00; found % C 72.08; H 8.30; N 6.08. 
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Methyl (E)-1-(4-((5,5,5-trifluoro-4-oxopent-2-en-2-

yl)amino)phenyl)cyclopropane-1-carboxylate (48) 

 

Ester 48 was prepared using the same procedure used to prepare the 

compound 23, starting from ester 44. 

Yield 45 %.  m.p. 158-160 °C. 1H NMR (DMSO-d6) δ 1.15 (m, 2H, CH2), 

1.55 (m, 2H, CH2), 2.23 (s, 3H, CH3), 3.80 (s, 3H, CH3), 5.70 (s, 1H, CH), 

7.05 (d, J= 8.0 Hz, 2H, Ar), 7.70 (d, J= 8.0 Hz, 2H, Ar), 12.58 (s, 1H, 

NH). IR (Nujol) 1729, 1617, 1572, 1461, 1295, 1249, 1171, 1139 cm-1. 

Elemental analysis: calculated for C16H16F3NO3 (327.30) % C 58.71; H 

4.93; N 4.28; found % C 58.73; H 5.01; N 4.30. 

Methyl (E)-1-(4-((5,5,5-trifluoro-4-oxopent-2-en-2-

yl)amino)phenyl)cyclobutane-1-carboxylate (49) 

 

Ester 49 was prepared using the same procedure used to prepare the 

compound 23, starting from ester 45. 

Yield 52 %. m.p. 153-157 °C. 1H NMR (DMSO-d6) δ 2.20 (m, 2H, CH2), 

2.31 (s, 3H, CH3), 2.49 (m, 2H, CH2), 2.73 (m, 2H, CH2), 3.59 (s, 3H, 

CH3), 5.64 (s, 1H, CH), 7.23-7.35 (m, 4H, Ar), 12.47 (s, 1H, NH). IR 
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(Nujol) 3423, 1721, 1571, 1524, 1437, 1366, 1319, 1295, 1248 cm-1. 

Elemental analysis: calculated for C17H18F3NO3 (341.33) % C 59.82; H 

5.32; N 4.10; found % C 59.86; H 5.30; N 4.15. 

Methyl (E)-1-(4-((5,5,5-trifluoro-4-oxopent-2-en-2-

yl)amino)phenyl)cyclopentane-1-carboxylate (50) 

 

Ester 50 was prepared using the same procedure used to prepare the 

compound 23, starting from ester 46. 

Yield 80 %. m.p. 148-152 °C. 1H NMR (DMSO-d6) δ 1.63 (m, 4H, CH2), 

1.87 (m, 2H, CH2), 2.49 (m, 2H, CH2), 2.53 (s, 3H, CH3), 3.59 (s, 3H, 

CH3), 5.64 (s, 1H, CH), 7.31-7.41 (m, 4H, Ar), 12.46 (s, 1H, NH). IR 

(Nujol) 1720, 1631, 1585, 1525, 1456, 1379, 1364, 1299, 1247 cm-1. 

Elemental analysis: calculated for C18H20F3NO3 (355.36) % C 60.84; H 

5.67; N 3.94; found % C 60.86; H 5.70; N 4.00. 
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Methyl (E)-1-(4-((5,5,5-trifluoro-4-oxopent-2-en-2-

yl)amino)phenyl)cyclohexane-1-carboxylate (51) 

 

Ester 51 was prepared using the same procedure used to prepare the 

compound 23, starting from ester 47. 

Yield 72 %. m.p. 145-147 °C. 1H NMR (DMSO-d6) δ 1.24-1.70 (m, 8H, 

CH2), 2.19 (m, 2H, CH2) 2.49 (s, 3H, CH3), 3.60 (s, 3H, CH3), 5.64 (s, 1H, 

CH), 7.33-7.42 (m, 4H, Ar), 12.46 (s, 1H, NH). Elemental analysis: 

calculated for C19H22F3NO3 (369.38) % C 61.78; H 6.00; N 3.79; found 

% C 61.86; H 6.05; N 3.80. 

General procedure for the synthesis of esters 52-55 

A mixture of ester 48-51 (5 mmol), and DMF-DMA (1.79 g, 15 mmol) 

in anhydrous toluene (20 mL) was refluxed for 1 h, then allowed to 

reach the room temperature and stirred for additional 8 h. The 

mixture was carefully concentrated in vacuum to give the desired 

dienaminone 52-55. 
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Methyl 1-(4-(((1E,3E)-1-(dimethylamino)-6,6,6-trifluoro-5-oxohexa-

1,3-dien-3-yl)amino)phenyl)cyclopropane-1-carboxylate (52) 

 

Dienaminone 52 was prepared using the general procedure starting 

from enaminone 48. 

Yield 70 %. m.p. 100-103 °C. 1H NMR (DMSO-d6) δ 1.45 (m, 2H, CH2), 

2.68 (m, 2H, CH2), 2.54 (s, 6H, CH3), 3.79 (s, 3H, CH3), 5.12 (m, 1H, 

CH), 5.67 (s, 1H, CH), 7.29 (m, 2H, Ar), 7.43 (m, 2H, Ar), 7.78 (m, 1H, 

CH), 12.56 (s, 1H, NH). IR (Nujol) 3583, 2923, 1691, 1604, 1522, 1461, 

1377, 1308, 1183, 1078 cm-1. Elemental analysis: calculated for 

C19H21F3N2O3 (382.38) % C 59.68; H 5.54; N 7.33; found % C 59.61; H 

5.50; N 7.36. 
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Methyl 1-(4-(((1E,3E)-1-(dimethylamino)-6,6,6-trifluoro-5-oxohexa-

1,3-dien-3-yl)amino)phenyl)cyclobutane-1-carboxylate (53) 

 

Dienaminone 53 was prepared using the general procedure starting 

from enaminone 49. 

Yield 64 %.  m.p. 93-97 °C. 1H NMR (DMSO-d6) δ 1.82 (m, 2H, CH2), 

2.49 (s, 6H, CH3), 3.16 (m, 4H, CH2), 3.59 (s, 3H, CH3), 5.01 (m, 1H, 

CH), 5.73 (s, 1H, CH), 7.26 (d, J= 7.5 Hz, 2H, Ar), 7.31 (d, J= 7.5 Hz, 2H, 

Ar), 7.91 (m, 1H, CH), 12.76 (s, 1H, NH). IR (Nujol) 3345, 2855, 1734, 

1633, 1572, 1459, 1397, 1272, 1253, 1211 cm-1. Elemental analysis: 

calculated for C20H23F3N2O3 (396.41) % C 60.60; H 5.85; N 7.07; found 

% C 60.65; H 5.90; N 7.10. 
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Methyl 1-(4-(((1E,3E)-1-(dimethylamino)-6,6,6-trifluoro-5-oxohexa-

1,3-dien-3-yl)amino)phenyl)cyclopentane-1-carboxylate (54) 

 

Dienaminone 54 was prepared using the general procedure starting 

from enaminone 50. 

Yield 62 %.  m.p. 90-92 °C. 1H NMR (DMSO-d6) δ 1.60 (m, 2H, CH2), 

1.68 (m, 2H, CH2), 1.88 (m, 2H, CH2), 2.53 (m, 2H, CH2), 2.74 (s, 3H, 

CH3), 3.15 (s, 3H, CH3), 3.56 (s, 3H, CH3), 4.99 (m, 1H, CH), 5.72 (s, 1H, 

CH), 7.24 (d, J= 8.0 Hz, 2H, Ar), 7.36 (d, J= 8.0 Hz, 2H, Ar), 7.90 (m, 1H, 

CH), 12.76 (s, 1H, NH). IR (Nujol) 3346, 2924, 1732, 1634, 1574, 1452, 

1398, 1273, 1253, 1212 cm-1. Elemental analysis: calculated for 

C21H25F3N2O3 (410.44) % C 61.45; H 6.14; N 6.83; found % C 61.50; H 

6.20; N 6.88. 
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Methyl 1-(4-(((1E,3E)-1-(dimethylamino)-6,6,6-trifluoro-5-oxohexa-

1,3-dien-3-yl)amino)phenyl)cyclohexane-1-carboxylate (55) 

 

Dienaminone 55 was prepared using the general procedure starting 

from enaminone 51. 

Yield 53 %. m.p. 88-90 °C. 1H NMR (DMSO-d6) δ 1.35 (m, 4H, CH2), 

1.70 (m, 4H, CH2), 2.37 (m, 2H, CH2), 2.74 (s, 3H, CH3), 3.16 (s, 3H, 

CH3), 3.60 (s, 3H, CH3), 4.98 (m, 1H, CH), 5.72 (s, 1H, CH), 7.25 (d, J= 

8.0 Hz, 2H, Ar), 7.38 (d, J= 8.0 Hz, 2H, Ar), 7.90 (m, 1H, CH), 12.74 (s, 

1H, NH). IR (Nujol) 3354, 2855, 1731, 1633, 1574, 1459, 1274, 1253, 

1214 cm-1. Elemental analysis: calculated for C22H27F3N2O3 (426.46) % 

C 62.25; H 6.41; N 6.60; found % C 62.30; H 6.50; N 6.55. 

General procedure for the synthesis of acids 60-63 

To a solution of dienaminone 52-55 (2 mmol) in dry DMF (5 mL), 

ammonium acetate (0.308 g, 4 mmol) was added and the mixture 

was gently refluxed for 1.5 h. The mixture was carefully concentrated 

in vacuum, and then ice-water (15 mL) was added. The formed solid 

was dissolved in EtOH (20mL), this solution was added with 5N 

solution of NaOH (4 mL) and water (4 mL). The resulting mixture was 

stirred at r.t. for 20 h. After removing EtOH under vacuum ice was 

added and then aqueous 20% HCl solution until pH 3-4. The formed 

precipitate was filtered and washed with water and dried. 
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1-(4-((2-(Trifluoromethyl)pyridin-4-yl)amino)phenyl)cyclopropane-

1-carboxylic acid (60) 

 

Acid 60 was prepared using the general procedure starting from 

dienaminone 52. 

Yield 59 %.  m.p. 210 °C. 1H NMR (DMSO-d6) δ 1.13 (m, 2H, CH2), 1.45 

(m, 2H, CH2), 7.10 (m, 1H, Ar), 7.16 (m, 2H, Ar), 7.23 (m, 1H, Ar), 7.33 

(m, 2H, Ar), 8.29 (s, 1H, Ar), 9.34 (s, 1H, NH). IR (Nujol) 3285, 2924, 

1677, 1602, 1521, 1480, 1458, 1349, 1307, 1188, 1140 cm-1. 

Elemental analysis: calculated for C16H13F3N2O2 (322.29) % C 59.63; H 

4.07; N 8.69; found % C 59.66; H 4.09; N 8.72. 

1-(4-((2-(Trifluoromethyl)pyridin-4-yl)amino)phenyl)cyclobutane-1-

carboxylic acid (61) 

 

Acid 61 was prepared using the general procedure starting from 

dienaminone 53. 

Yield 78 %.  m.p. 185 °C. 1H NMR (DMSO-d6) δ 1.75-1.96 (m, 2H, CH2), 

2.38 (m, 2H, CH2), 2.70 (m, 2H, CH2), 7.08 (m, 1H, Ar), 7.21 (m, 3H, 

Ar), 7.30 (m, 2H, Ar), 8.28 (s, 1H, Ar), 9.26 (s, 1H, NH). IR (Nujol) 3319, 
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2855, 1671, 1622, 1606, 1519, 1463, 1302 cm-1. Elemental analysis: 

calculated for C17H15F3N2O2 (336.31) % C 60.71; H 4.50; N 8.33; found 

% C 60.75; H 4.58; N 8.40. 

1-(4-((2-(Trifluoromethyl)pyridin-4-yl)amino)phenyl)cyclopentane-

1-carboxylic acid (62) 

 

Acid 62 was prepared using the general procedure starting from 

dienaminone 44. 

Yield 86 %.  m.p. >250 °C. 1H NMR (DMSO-d6) δ 1.65 (m, 4H, CH2), 

1.79 (m, 4H, CH2), 7.07 (m, 1H, Ar), 7.18 (m, 3H, Ar), 7.34 (m, 2H, Ar), 

8.27 (s, 1H, Ar), 9.27 (s, 1H, NH), 12.24 (s, 1H, NH). IR (Nujol) 3301, 

2921, 1691, 1618, 1601, 1518, 1462, 1377, 1353 cm-1. Elemental 

analysis: calculated for C18H17F3N2O2 (350.34) % C 61.71; H 4.89; N 

8.00; found % C 61.75; H 4.92; N 8.10. 
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1-(4-((2-(Trifluoromethyl)pyridin-4-yl)amino)phenyl)cyclohexane-1-

carboxylic acid (63) 

 

Acid 63 was prepared using the general procedure starting from 

dienaminone 55. 

Yield 88 %.  m.p. >250 °C. 1H NMR (DMSO-d6) δ 1.22-1.59 (m, 8H, 

CH2), 2.64 (m, 2H, CH2), 7.07 (m, 1H, Ar), 7.18 (m, 3H, Ar), 7.39 (m, 

2H, Ar), 8.27 (s, 1H, Ar), 9.28 (s, 1H, NH). IR (Nujol) 3305, 1687, 1622, 

1603, 1523, 1459, 1364, 1320, 1229, 1178 cm-1. Elemental analysis: 

calculated for C19H19F3N2O2 (364.37) % C 62.63; H 5.26; N 7.69; found 

% C 62.65; H 5.29; N 7.70. 

N-(3-Methylpyridin-2-yl)-1-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)cyclopropane-1-carboxamide (TPA31) 

 

Amide TPA31 was prepared using the same procedure used for the 

synthesis of TPA30, starting from the acid 60. 

Yield 78 %.  m.p. 210 °C. 1H NMR (DMSO-d6) δ 1.20 (m, 2H, CH2), 1.46 

(m, 2H, CH2), 2.10 (s, 3H, CH3), 7.18 (m, 1H, Ar), 7.21 (m, 1H, Ar), 7.24 
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(m, 3H, Ar), 7.48 (m, 2H, Ar), 7.63 (m, 1H, Ar), 8.19 (s, 1H, Ar), 8.30 

(m, 1H, Ar), 8.79 (s, 1H, NH), 9.28 (s, 1H, NH). IR (Nujol) 3401, 3244, 

2924, 1688, 1599, 1525, 1445, 1359, 1321, 1175 cm-1. Elemental 

analysis: calculated for C22H19F3N4O (412.42) % C 64.07; H 4.64; N 

13.59; found % C 64.09; H 4.70; N 13.50. 

N-(3-Methylpyridin-2-yl)-1-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)cyclobutane-1-carboxamide (TPA32) 

 

Amide TPA32 was prepared using the same procedure used to 

prepare TPA30, starting from acid 61. 

Yield 21 %. m.p. 185 °C. 1H NMR (DMSO-d6) δ 1.83-1.98 (m, 6H, CH2), 

2.88 (s, 3H, CH3), 7.06 (m, 1H, Ar), 7.19 (m, 2H, Ar), 7.22 (m, 2H, Ar), 

7.47 (m, 2H, Ar), 7.61 (m, 1H, Ar), 8.21 (s, 1H, Ar), 8.30 (m, 1H, Ar), 

9.22 (s, 1H, NH), 9.70 (s, 1H, NH). IR (Nujol) 3583, 2925, 1652, 1606, 

1536, 1462 cm-1. Elemental analysis: calculated for C23H21F3N4O 

(426.44) % C 64.78; H 4.96; N 13.14; found % C 64.82; H 4.92; N 

13.20. 
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N-(3-Methylpyridin-2-yl)-1-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)cyclopentane-1-carboxamide (TPA33) 

 

Amide TPA33 was prepared using the same procedure used for the 

synthesis of TPA30, starting from acid 62. 

Yield 27 %. m.p. >250 °C. 1H NMR (DMSO-d6) δ 1.69 (m, 4H, CH2), 1.92 

(m, 4H, CH2), 2.72 (s, 3H, CH3), 7.05 (m, 1H, Ar), 7.20 (m, 4H, Ar), 7.46 

(m, 2H, Ar), 7.58 (m, 1H, Ar), 8.19 (s, 1H, Ar), 8.27 (m, 1H, Ar), 9.22 (s, 

1H, NH), 9.51 (s, 1H, NH). IR (Nujol) 3583, 3201, 2926, 1650, 1607, 

1535, 1460, 1377, 1185 cm-1. Elemental analysis: calculated for 

C24H23F3N4O (440.47) % C 65.44; H 5.26; N 12.72; found % C 65.46; H 

5.20; N 12.76. 

N-(3-Methylpyridin-2-yl)-1-(4-((2-(trifluoromethyl)pyridin-4-

yl)amino)phenyl)cyclohexane-1-carboxamide (TPA34) 

 

Amide TPA34 was prepared using the same procedure used for the 

synthesis of TPA30, starting from acid 63. 
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Yield 55 %. m.p. >250 °C. 1H NMR (DMSO-d6) δ 1.53-1.75 (m, 8H, 

CH2), 1.97 (s, 3H, CH3), 2.59 (m, 2H, CH2), 7.07-7.24 (m, 5H, Ar), 7.49 

(m, 2H, Ar), 7.62 (m, 1H, Ar), 8.20 (s, 1H, Ar), 8.27 (m, 1H, Ar), 9.45 (s, 

1H, NH), 9.47 (s, 1H, NH). IR (Nujol) 3583, 3288, 2925, 1645, 1606, 

1462, 1377, 1180 cm-1. Elemental analysis: calculated for C25H25F3N4O 

(454.50) % C 66.07; H 5.54; N 12.33; found % C 66.10; H 5.60; N 

12.42. 

2-(4-Aminophenyl)propanoic acid (64) 

 

To a solution of the ester 21 (1.79 g, 10 mmol) in EtOH (50 mL) 5N 

solution of NaOH (20 mL) and water (20 mL) were added. The 

resulting mixture was stirred at r.t. for 24h. After removing EtOH 

under vacuum to the resulting solution ice was added and then 

aqueous 20% HCl solution until pH 3-4. The formed precipitate was 

filtered, washed with water, dried and re-crystallized from EtOH.     

Yield 97 %.  m.p. 120-125 °C. 1H NMR (DMSO-d6) δ 1.26 (d, J= 7.0 Hz, 

3H, CH3), 3.43 (q, J= 7.0 Hz, 1H, CH), 6.48 (d, J= 8.5 Hz, 2H, Ar), 6.90 

(d, J= 8.5 Hz, 2H, Ar). IR (Nujol) 2854, 2610, 2188, 1632, 1591, 1514, 

1460, 1380, 1361 cm-1. Elemental analysis: calculated for C9H11NO2 

(165.19) % C 65.44; H 6.71; N 8.48; found % C 65.50; H 6.72; N 8.52. 

General procedure for the synthesis of acids 65-66 

A solution of acid 64 (0.34 g, 2 mmol) in EtOH (40 mL) was added 

with the appropriate 4-chloroquinoline (2 mmol) and refluxed for 24 

h. Then the solvent was removed under vacuum and the formed solid 

was filtered treated with iPr2O, filtered and dried. 
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2-(4-((8-(Trifluoromethyl)quinolin-4-yl)amino)phenyl)propanoic acid 

(65) 

 

Obtained with the general procedure starting from 4-chloro-8-

trifluoromethylquinoline. 

Yield 89 %.  m.p. 155-160 °C. 1H NMR (DMSO-d6) δ 1.42 (m, 3H, CH3), 

4.09 (m, 1H, CH), 6.93 (m, 1H, Ar), 7.45 (m, 4H, Ar), 7.87 (m, 1H, Ar), 

8.38 (m, 1H, Ar), 8.46 (m, 1H, Ar), 9.08 (m, 1H, Ar). IR (Nujol) 2926, 

1726, 1619, 1589, 1544, 1511, 1463, 1377, 1343, 1315 cm-1. 

Elemental analysis: calculated for C19H15F3N2O2 (360.34) % C 63.33; H 

4.20; N 7.77; found % C 63.40; H 4.22; N 7.80. 
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2-(4-((7-(Trifluoromethyl)quinolin-4-yl)amino)phenyl)propanoic acid 

(66) 

 

Obtained with the general procedure starting from 4-chloro-7-

trifluoromethylquinoline. 

Yield 87 %.  m.p. 160-165 °C. 1H NMR (DMSO-d6) δ 1.41 (m, 3H, CH3), 

3.80 (m, 1H, CH), 6.90 (m, 1H, Ar), 7.44 (m, 2H, Ar), 7.49 (m, 2H, Ar), 

8.12 (m, 1H, Ar), 8.45 (m, 1H, Ar), 8.60 (m, 1H, Ar), 9.03 (m, 1H, Ar), 

11.16, (s, 1H, NH), 12.40 (s, 1H, OH). IR (Nujol) 2960, 1720, 1598, 

1542, 1511, 1459, 1377, 1319, 1212 cm-1. Elemental analysis: 

calculated for C19H15F3N2O2 (360.34) % C 63.33; H 4.20; N 7.77; found 

% C 63.30; H 4.25; N 7.71. 

General procedure for the synthesis of amides TPA35-36 

A solution of acid 65-66 (0.36 g, 1 mmol), EDC (0.19 g, 1.1 mmol) and 

HOBt (0.13 g, 1 mmol) in anhydrous MeCN (10 mL) was stirred at r.t. 

for 30 minutes, then 2-amino-3-methylpyridine (0.108 g, 1 mmol) 

was added. The mixture was stirred at r.t. for 36 hours. The solvent 

was removed under vacuum. The residue was dissolved in AcOEt (20 

mL) and washed sequentially with brine (2x5 mL), 10% citric acid (2x5 

mL), saturated NaHCO3 aqueous solution (2x5 mL) and water (2x5 

mL). The organic layer was dried over anhydrous Na2SO4 and 

evaporated under vacuum. The obtained residue was treated with 

iPr2O and the obtained solid filtered off. 
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N-(3-Methylpyridin-2-yl)-2-(4-((7-(trifluoromethyl)quinolin-4-

yl)amino)phenyl)propanamide (TPA35) 

 

Obtained with the procedure used for the synthesis of TPA30 starting 

from acid 65. 

Yield 83 %. m.p. 113 °C. 1H NMR (DMSO-d6) δ 1.45 (d, J= 6.5 Hz, 3H, 

CH3), 2.01 (s, 3H, CH3), 3.96 (q, J= 6.5 Hz, 1H, CH), 6.95-9.20 (m, 12H, 

Ar), 10.17 (s, 1H, NH). IR (Nujol) 1671, 1587, 1514, 1460, 1377, 1311 

cm-1. Elemental analysis: calculated for C25H21F3N4O (450.17) % C 

66.66; H 4.70; N 12.44; found % C 66.70; H 4.75; N 12.50. 
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N-(3-Methylpyridin-2-yl)-2-(4-((8-(trifluoromethyl)quinolin-4-

yl)amino)phenyl)propanamide (TPA36) 

 

Obtained with the procedure used for the synthesis of TPA30 starting 

from acid 66. 

Yield 78 %. m.p. 231 °C. 1H NMR (DMSO-d6) δ 1.40 (d, J= 6.5 Hz, 3H, 

CH3), 2.02 (s, 3H, CH3), 3.97 (q, J= 6.5 Hz, 1H, CH), 6.98-9.19 (m, 12H, 

Ar), 10.16 (s, 1H, NH), 12.31 (s, 1H, NH). IR (Nujol) 1663, 1583, 1536, 

1460, 1378, 1329, 1155, 1121 cm-1. Elemental analysis: calculated for 

C25H21F3N4O (450.17) % C 66.66; H 4.70; N 12.44; found % C 66.69; H 

4.72; N 12.42.  
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3. Prokineticin System  

3.1 Prokineticin System: A brief overview 

From skin secretion of the frog Bombina variegata (Figure 1) in 1999 

was isolated a small peptide (77 

amino acids) rich in cysteine 

residues, named Bv8. The name was 

chosen to indicate its provenience 

and its molecular weight, 8KDa.1 

Afterward Bv8 homologues were 

identified on other amphibian like 

lizard, in Takifugu fish species as 

intestinal toxin and as venom 

component (MIT-1 or VRPA) of the snake black mamba.2 

In numerous other 

species, including 

mammals analogs 

of this peptide 

have been found.  

Variants of MIT-1 

and Bv8 in 

mammals are 

called respectively PK1 (Figure 2A) or endocrine gland-derived 

vascular endothelial growth factor (EG-VEGF) and PK2 (Figure 2B) or 

mammalian Bv8 (mBv8).3 Their name, prokineticin, comes from their 

ability to contract the guinea pig ileum. A variant of PK2 has been 

identified and called PK2, it differs for the presence of additional 21 

amino acids respect to the base sequence.4 

Figure 1. Bombina Variegata. 

Figure 2. 3D structure of prokineticin 1 (A) and prokineticin 2 (B). 
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PK1 and PK2 are constituted by 80-90 amino acids, they belong to the 

protein family AVIT rich in cysteine, especially in the C-terminal 

portion, and both have the same N-terminal sequence.2,5 In addition 

to the N-terminal hexapeptide sequence another structural feature in 

common is the presence of five disulphide bonds among ten 

cysteines. Evidence suggests that both this characteristics are 

essential for their biological activity.6 

PKs exert their activity binding two specific receptors coupled with 

different kinds of G proteins, Gq, Gi and Gs, the activation of each of 

these proteins determines respectively the increased mobilization of 

intracellular calcium, phosphorylation of p44-p42 MAPK, 

phosphorylation of serine/threonine kinase and increase of cAMP 

levels.4 

PK receptors, PKR1 (Figure 3A) and PKR2 (Figure 3B), as all GPCRs, are 

characterized by seven -helix transmembrane segments separated 

by three intra- and three extracellular loops. They have an 85% of 

sequence homology, the major differences are on the N-terminal 

region, on the second intracellular loop and on the C-terminal.6  

Figure 3. 3D structure of prokineticin receptor 1 (A) and prokineticin receptor 2 (B). 
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PK1, PK2 and PK2 do not display the same affinity to the two 

receptors, for PKR1 the best ligand is PK2 the other two have 

approximately the same affinity. The best ligand for PKR2 is PK2 

followed by PK1, whereas PK2 has a much lower affinity.4 

3.2 Prokineticin System: PKRs localization 

PKs and PKRs are expressed differently in different tissues thus 

increasing the functional complexity of the system as well as the PKRs 

coupling with the various G proteins. These facts are determinant to 

guarantee that in different cells there is a different response after the 

stimulation given by a same ligand.7 

The presence of mRNA of both PKR1 and PKR2 in the gastrointestinal 

tract (in particular, PKR1 is mainly expressed in the stomach, small 

intestine and other parts of the digestive tract, whereas PKR2 is only 

expressed in the ileum-cecum) suggest that PKR1 is the prokineticin 

receptor mainly involved in the intestinal motility regulation.8 The 

activity of prokineticin system on gastrointestinal tract could be 

therapeutically useful to increase the gastric motility after surgery.9 

PKR1 are localized in other peripheral tissues like lungs, spleen, 

pancreas, testicles, salivary and endocrine glands.10,11 

PKR2 and PK2 are abundantly expressed on suprachiasmatic nucleus 

where they are involved in the regulation of circadian rhythms;12 in 

the olfactory bulb they regulate morphogenesis.13 

Studies in cultured mouse cells suggest that the PKR2 are expressed 

primarily in neurons, while the PKR1 are predominantly expressed in 

astrocytes and microglia.14  

PK2 is an important modulator of biological processes in CNS, in 

mouse brain it is found in high concentrations and acts on neuronal 

survival as neurotrophic endogenous factor.12 

In various tissues PKs actively participate to physiological 

angiogenesis and in some cases also to the neoplastic one.15 More 

precisely PK1 is implicated in the recruitment of the precursor cells, 
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induces proliferation and stabilizes the nascent blood vessels, while 

PK2 leads to endothelium destabilization that promotes the 

integration and proliferation of endothelial cells.15 PK1 is also known 

as EG-VEGF for its ability to induce angiogenesis in the endocrine 

glands, ovaries and testicles, also it induces proliferation, migration 

and fenestration of endothelial cells derived from the adrenergic 

glands.16,17 

The PK1 is found in small amounts in healthy prostate tissue and its 

increases in tumor tissue appear to be a signal for the development 

of prostate cancer. It is important to emphasize that only the PKR2 

expression is increased in the malignant cells of the prostate, the 

same goes for PK2 than PK1. 18 A high expression of PK1 is also one of 

the characteristics of human neuroblastoma. Conversely, PK1 

expression decreases in endometrial and liver carcinomas.19,20  

PKs are implicated also in the development of hepatocellular 

carcinoma, in liver PK2 is very abundant but much less PK1, however 

their expression vary in the presence of the tumor.20 

PKs are also important on the regulation of other numerous 

processes like alimentation, thirst, circadian rhythms, hyperalgesia 

and inflammation.15 

The PK2/PKR1 system expression on inflamed tissues suggests that 

there is a connection between the cells which infiltrate these tissues 

and the inflammatory pain.21 

Diminution of pain threshold given by the action of PK2 on its 

sensitive neurons receptors implies that the prokineticin system play 

a role on inflammation and neuropathic pain. PK2 released from 

inflammatory cells can bind the PKR1 on primary sensitive neurons 

and contributes in this way to the inflammatory pain signaling.21 

According to this, blocking the activity of PK2 and/or PKR1 might 

have benefits both for treatment of pain and cancer.22 

Furthermore PKs released by tissue damage act as 

autocrine/paracrine regulator of immunoinflammatory response and 
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with a stimulation of the neuronal PKs increase the nociception 

responsiveness.23 

PKRs are expressed on DRG and when PK2 binds the receptors on 

these neurons caused hyperalgesia with different intracellular 

mechanism; included the activation of TRPV1 by phosphorylation, 

which results in reduction of pain threshold to thermal and 

mechanical stimuli.23 

Studies on mice lacking the PKRs have shown the involvement of this 

system in modulation of pain. These mice showed a higher threshold 

for thermal and mechanical pain, and are less sensitive to chronic 

inflammatory pain also.24-26 

Other studies showed that administration of amphibians Bv8 in PAG 

have pro-nociceptive effects due to the intrinsic GABAergic tone 

increase that in turn is responsible for the inhibition of efferent 

antinociceptive neurons from PAG to medullary and rostral 

ventromedial neurons.27 

3.3 Prokineticin System: PKRs exogenous modulators 

To date there are few reported compounds that interact with PKRs. 

The first patents on the synthesis and activity of small non-peptide 

molecule endowed with triazinedione structure (Figure 4A) active on 

these receptors date back to 2006-2007.28-30 In the same years it has 

been filed a patent that describes the PKR inhibitory activity of 

compounds endowed with morpholine structure (Figure 4B).31 Even 

more recently, in 2013 and in 2015 two patents disclosing molecules 

endowed with piperidine/piperazine structure (Figure 4C-D) active on 

these receptors were filed.32,33 
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Figure 4. General scaffolds of patented PKR inhibitors. 

The synthesis of triazinedione compounds reported in the Janssen 

Pharmaceutica’s patent28 starts from the formation of the 

isothiourea derivatives by the reaction between the sulfonic salt of 2-

methyl-isothiourea and benzyl isocyanate. The isothioureas were 

then acylated with methyl chloroformiate in the presence of 

triethylamine. The obtained compounds were cyclized to obtain 

triazinediones functionalized on the N-1 and C-2 in very low overall 

yields.  
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3.4 Prokineticin System: Results and Discussion 

Based on these considerations, we set up a new simpler and high 

yielding synthetic method that can give easy access to new 

triazinediones as potential ligands for prokineticin receptors. 

This new synthetic procedure started from the conversion of 

variously substituted benzylamines into the corresponding ureas 2, 

using potassium cyanate (KOCN) in water in the presence of HCl. 

Ureas were functionalized on the free amino group by treatment 

with ethoxycarbonyl isothiocyanate in refluxing toluene. 

Cyclization of the obtained thioureas 3 was carried out in MeOH 

solution in the presence of sodium methoxide (NaOMe). Triazines 4 

were then methylated on the sulfur with MeI in MeOH solution 

(route A). These last two steps can be performed one pot to improve 

yields (route B). 

Then the thiomethyltriazines 6 were alkylated on the N-1 with the 

appropriate benzyl halide, in DMF solution in the presence of 

potassium carbonate (K2CO3). 

The final step was the replacement of the thiomethyl group with a 

side chain in position 2. Triazinediones 7 were first reacted with 

ethylendiamine in refluxing toluene solution and then the obtained 

intermediates 8 were reacted with 1H-pyrazole-1-carboxamidine in 

MeCN solution in presence of diisopropylethylamine (DIPEA). 

This synthetic procedure allowed obtaining triazinediones PC in 

about 50% overall yields (Scheme 1). 
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Scheme 1. Synthesis of PCs. 

All triazinediones were in vivo screened by the group of Prof. Negri, 

University of Rome La Sapienza, to evaluate their ability to 

antagonize the hyperalgesia induced by administration of Bv8 in mice 

paw. The pain threshold was determined with the test of immersion 

of the paw in 48 °C water, measured as the latency to paw 

withdrawal from water. 

To evaluate the ability to antagonize the Bv8-induced decrease of 

nociceptive threshold to thermal pain the triazinediones have been 

injected, in the same paw region where Bv8 was injected, 5 minutes 

before. The results are showed in table 1.  
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For the structure-activity relationship study of these compounds, 

with reference to the substituents on the benzylic groups, PC1 which 

displays an EC50 value of 5.8 pM, was used as reference compound.  

The substitution of the ethyl group with chlorine (PC18) or methyl 

group (PC15) did not produce significant influence on the EC50 values 

as well as the inversion of the position on triazine core of the 

corresponding benzylic groups (PC29 and PC31). 

While the substitutions with bromine (PC25), fluorine (PC7) and 

methoxy group (PC17) led to more than 10 times increase in the 

activity as compared to the reference compound. Conversely, the 

presence of iodine (PC35) or trifluoromethyl group (PC23) greatly 

reduced the activity. The replacement of the methoxy group of PC23 

with a methyl switches from the compound less active to the more 

active, PC27, displaying an EC50 value of 0.033 pM.  

Inversion of the substituents on the two aromatic rings of the 

compounds PC25 and PC7 to obtain respectively PC24 and PC30 led 

to decrease in activity. On the contrary, activity is slightly improved in 

the compounds PC32 and PC34 as compared to the corresponding 

analogs PC27 and PC35 respectively, even if their EC50 values remain 

far from reference compound PC1. 

The substitution of ethyl group with 3,4-methylenedioxy moiety 

(PC33) or nitro (PC36) group led to a considerable reduction in the 

activity. The replacement of the ethyl with a methoxy group afforded 

the poorest compound of the series (PC8). 

Lastly the replacement of the methoxybenzyl with a 3,4-

dichlorobenzyl and the ethyl group with a methoxy (PC26) or a 

methyl (PC28) group did not lead to significant changes in the activity 

compared to the reference compound. 
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Name Compound EC50 (pM) 

95% 

Confidence 

intervals 

PC1 

 

5.8 3.6 - 9.1 

PC7 

 

0.31 0.16 – 0.59 

PC8 

 

63 44 – 90 

PC15 

 

4.4 2.5 – 7.8 

PC17 

 

0.053 0.038 – 0.067 

PC18 

 

4.0 2.9 – 5.7 
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PC23 

 

51 27 – 83 

PC24 

 

4.3 2.7 – 6.8 

PC25 

 

0.36 0.17 – 0.78 

PC26 

 

4.5 2.9 – 6.4 

PC27 

 

0.033 0.018 – 0.061 

PC28 

 

5.1 3.8 – 6.8 

PC29 

 

4.5 3.4 – 5.6 
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PC30 

 

36 24 – 59 

PC31 

 

4.4 3.1 – 5.9 

PC32 

 

48 33 – 70 

PC33 

 

39 29 – 53 

PC34 

 

39 27 – 52 

PC35 

 

51 32 – 80 

PC36 

 

48 35 – 69 

Table 1. In vivo analgesic activity of triazinedione derivatives. 
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Based on these in vivo activities to evaluate the activity and 

selectivity for PKR1 and PKR2, selected PC halogenated derivatives 

were screened in vitro and in vivo tests. These studies were carried 

out in vitro, using Bioluminescence Resonance Energy Transfer (BRET) 

technology, and in vivo, in transgenic mice expressing only one of the 

PKRs. 

PC7, bearing a 4-fluorobenzyl group, in in vitro assay resulted about 

100 times more selective for PKR1 than PKR2 and it is a 4 times 

better inhibitor than PC1. The chlorine substituted PC18 and the 

iodine substituted PC35, as well as PC7 displayed lower affinity for 

PKR2 than PKR1. However the 4-bromine analog PC25 was the best 

compound for both PKR1 affinity (about 18 times better than PC1) 

and selectivity (about 300 times than for PKR2). 

As further confirmation in in vivo assays on transgenic mice all 

halogenated triazinediones abolished the Bv8-induced thermal 

hyperalgesia with a dose 10 times lower in PKR2(-/-) (15 pmol) than 

PKR1(-/-)mice (150 pmol). The selectivity was more evident in 

compounds PC7 and PC25, which were approximately 100 and 300 

times more selective towards PKR2(-/-) (0.15 and 0.04 pmol) than 

PKR1(-/-) (15 and 14 pmol) respectively. Despite PC18 and PC35 

appeared less active than PC7 and PC25, the selectivity (about 100 

times) for PKR1 was confirmed in these cases also. 

At laboratory of computational medicine, biostatistics unit, Faculty of 

Medicine, Autonomous University of Barcelona (Bellaterra, Spain), 

some computational studies were made. In particular, using a flexible 

docking method the binding mode of PC1 and PC25 on both PKR1 

and PKR2 was evaluated to better understand the reasons of the 

different affinity on the two receptors. The difference in affinity may 

be due to the presence of a different residue in the binding site, in 

PKR1 there is a threonine, which interact with the ethyl benzene 

group of PC1, conversely, in PKR2 the threonine is substituted by 

alanine. This residue may also be the responsible of the different 

activity of PC1 and PC25, because the presence of bromine instead of 
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ethyl group allows a more stable interaction by halogen bonding with 

this residue.  

Further computational studies were conducted in the research group 

of Dr. Stefano Costanzi, at American University (Washington DC, 

USA), with the aim of identifying models putatively endowed with an 

accurate representation of the ligand-binding cavity. In particular we 

focused our attention on the PKR1 receptor. 

Due to the absence of crystal structures for the PKR1 receptor, we 

resorted to the homology modeling technique for the construction of 

the models. Subsequently, was employed the models in controlled 

virtual screening experiments, meant to study their ability to 

distinguish between ligand and non-ligands of the PKR1 receptor. 

Notably, it has been shown by Costanzi and others the models that 

best discriminate between ligands and non-ligands of a given 

receptor tend to be those with the most structurally accurate 

representation of the binding site.34,35 

For the selection of templates to be employed in the construction of 

the models, we clustered the Class A GPCRs for which structures have 

been solved to through X-ray crystallography on the basis of their 

amino acid sequence and, for each branch of the resulting tree, we 

selected the receptor that showed the highest percentage of 

sequence identity with the PKR1 subtype. Namely, the receptors 

selected as templates were the κ-opioid receptor (κ-OPR), the 

neurotensin receptor 1 (NTS1), the -1 adrenergic receptor (1), the 

chemokine receptor type 4 (CXCR4), the protease-activated receptor 

1 (PAR1), rhodopsin receptor (RHOR). After aligning the amino acid 

sequence the PKR1 receptor with those of the templates, were built 

homology models following a protocol similar to that recently 

described by Costanzi.36  

In order to conduct the controlled virtual screening experiments, we 

assembled a database containing all known PKR ligands endowed 

with a triazine structure. After calculating the fingerprints of these 

compounds, thousands of molecules were computationally screened 
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to identify structurally related compounds to be employed as 

“decoys” in the subsequent docking-based virtual screening 

experiment. As a result, a set of about 9000 compounds was 

gathered. 

  
Figure 5. Receiver operating characteristic (ROC) analyses. 

The following step entailed docking-based controlled virtual 

screening analyses intended to evaluate the ability of the various 

models to discriminate between ligands and decoys. After each 

docking experiment, the results were studied through Receiver 

operating characteristic (ROC) analyses. Another criterion that was 

considered to evaluate the reliability of the models was the 

consistency of the docking poses of the ligands within the models of 

the PKR1 receptor. 

As the ROC curves shown in Figure 1 illustrate, the model that best 

discriminated between ligand and decoys was the one build on the 

basis of the PAR1 receptor. The PAR1-based models were also 

deemed satisfactory according to the consistency of the binding 

poses, since the known ligands docked within its binding cavity 

adopted very similar positions and conformations (Figure 2). 
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Figure 6. Example of pose conservation of the first 22 ligands 
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3.3 Experimental Section 

Commercially available solvents and reagents were used without 

further purification unless otherwise stated. 1H NMR spectra were 

recorded on a Varian Inova 500 spectrometer. The chemical shifts (δ) 

are reported in part per million downfield from TMS, which was used 

as internal standard, and the spectra were recorded in DMSO-d6. 

Infrared spectra were recorded on a Bruker Vector 22 spectrometer. 

The main bands are given in cm-1. M.p. were determined on a Stuart 

Scientific Melting point SMP1 apparatus and are uncorrected. All 

products reported showed NMR spectra in agreement with the 

assigned structures. The purity of tested compounds was determined 

by combustion elemental analyses conducted by the Microanalytical 

Laboratory of the Chemistry Department of the University of Ferrara 

with a Yanagimoto MT-5 CHN recorder elemental analyzer. All tested 

compounds yielded data consistent with a purity of at least 95% as 

compared with the theoretical values. 

General procedure for the synthesis of benzylureas 2 

The appropriate benzylamine (2 mmol) was suspended in water (5 

mL) and solubilized trough formation of the corresponding salt by 

adding an equimolar amount of 37% aqueos HCl  (0.17 mL). To the 

obtained solution KOCN (0.16 g, 2 mmol) was added, the mixture was 

heated at 60 °C for 30 minutes. After cooling at r.t. the formed 

precipitated was filtered, washed with ice water and dried.  

4-Ethylbenzylurea (2a) 

 

Yield 82%. m.p. 199-203 °C (2-PrOH). 1H NMR (DMSO-d6) δ  1.25 (m, 

3H, CH3), 2.60 (m, 2H, CH2), 4.25 (s, 2H, CH2), 6.32 (s, 1H, NH), 6.98 

(m, 2H, Ar), 7.18 (m, 2H, Ar), 9.21 (s, 2H, NH2). IR (Nujol) 3439, 3336, 
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1653 cm-1. Elemental analysis: Calculated for C10H14N2O (178.23) % C 

67.39; H 7.92; N 15.72; found % C 67.38; H 7.90; N 15.74. 

4-Fluorobenzylurea (2b) 

 

Yield 78%. m.p. 172-174 °C. 1H NMR (DMSO-d6) δ 4.20 (s, 2H, CH2), 

6.17 (s, 1H, NH), 7.12 (d, J= 8.5 Hz, 2H, Ar), 7.39 (d, J= 8.5 Hz, 2H, Ar), 

8.99 (s, 2H, NH2). IR (Nujol) 3412, 3320, 1659 cm-1. Elemental 

analysis: calculated for C8H9FN2O (168.17) % C 57.14; H 5.39; N 16.66; 

found % C 57.13; H 5.40; N 16.66. Physical and spectral data were in 

accordance with literature values.37 

4-Methoxybenzylurea (2c) 

 

Yield 90%. m.p. 164-165 °C. 1H NMR (400 MHz, CDCl3), δ 3.80 (s, 3H, 

CH3), 4.29 (s, 2H, CH2), 7.21–7.27 (m, 4H, Ar). IR (Nujol) 3427, 3336, 

1651 cm-1. Elemental Analysis: calculated for C9H12N2O2 (180.20) % C 

59.99; H 6.71; N 15.55; found % C 60.01; H 6.70; N 15.50. Physical 

and spectral data were in accordance with literature values.37 

4-Methylbenzylurea (2d) 

 

Yield 88%. m.p. 185-186 °C. 1H NMR (400 MHz, CDCl3), δ 2.95 (s, 3H, 

CH3), 4.25 (s, 2H, CH2), 7.18–7.25 (m, 4H, Ar). IR (Nujol) 3438, 3336, 

1655 cm-1. Elemental analysis: calculated for C9H12N2O (164.20) % C 
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65.83; H 7.37; N 17.06; found % C 65.80; H 7.38; N 17.05. Physical 

and spectral data were in accordance with literature values.38 

4-Chlorobenzylurea (2e) 

 

Yield 82%. m.p. 192-193 °C. 1H NMR (400 MHz, CDCl3), δ 4.31 (s, 2H, 

CH2), 7.23–7.29 (m, 4H, Ar). IR (Nujol) 3440, 3333, 1655 cm-1. 

Elemental analysis: calculated for C8H9ClN2O (184.62) % C 52.04; H 

4.91; N 15.17; found % C 52.01; H 4.90; N 15.18. Physical and spectral 

data were in accordance with literature values.39 

4-Trifluoromethylbenzylurea (2f) 

 

Yield 79%. m.p. 195-199 °C. 1H NMR (DMSO-d6) δ 4.24 (s, 2H, CH2), 

5.60 (s, 2H, NH2), 6.52 (m, 1H, NH), 7.42 (d, J= 8.3 Hz, 2H, Ar), 7.66 (d, 

J= 8.3, 2H, Ar). IR (Nujol) 3440, 3345, 1652 cm-1. Elemental analysis: 

calculated for C9H9F3N20 (218.18) % C 49.55; H 4.16; N 12.84; found % 

C 49.49; H 4.17; N 12.87. Physical and spectral data were in 

accordance with literature values.37 

4-Bromobenzylurea (2g) 

 

Yield 88%. m.p. 199-200 °C. 1H NMR (DMSO-d6) δ  4,19 (s, 2H, CH2), 

6,12 (s, 2H, NH2), 7,12 (d, J= 8.0 Hz, 2H, Ar), 7,85 (d, J= 8.0 Hz 2H, Ar), 

9,03 (s, 1H, NH). IR (Nujol) 3442, 3336, 1654 cm-1. Elemental analysis: 
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calculated for C8H9BrN2O (229.07) % C 41.95; H 3.96; N 12.23; found 

% C 41.97; H 3.97; N 12.24. Physical and spectral data were in 

accordance with literature values.40 

1-(1,3-Benzodioxo-5-yl)methylurea (2h) 

 

Yield 83%. m.p. 180-182 °C. 1H NMR (DMSO-d6) δ 4.20 (s, 2H, CH2), 

6.02 (s, 1H, NH), 6.07 (s, 2H, CH2), 6.76 (m, 1H, Ar), 6.81 (m, 1H, Ar), 

7.03 (m, 1H, Ar), 8.99 (s, 2H, NH2).  IR (Nujol) 3416, 3359, 1647 cm-1. 

Elemental analysis: calculated for C9H10N2O3 (194.19) % C 55.67; H 

5.19; N 14.43; found % C 55.6O; H 5.21; N 14.44.  

4-Iodobenzylurea (2i) 

 

Yield 65%. m.p. 202-204 °C. 1H NMR (DMSO-d6) δ 4.26 (s, 2H, CH2), 

6.34 (s, 1H, NH), 7.00 (d, 8.5 Hz, 2H, Ar), 7.56 (d, 8.5 Hz, 2H, Ar), 9.15 

(s, 2H, NH2). IR (Nujol) 3425, 3352, 1652 cm-1. Elemental analysis: 

calculated for C8H9IN2O (276.07) % C 34.80; H 3.29; N 10.15; found % 

C 34.87; H 3.27; N 10.12. Physical and spectral data were in 

accordance with literature values.41 

4-Nitrobenzylurea (2l) 

 

Yield 88%. m.p. 199-201 °C. 1H NMR (DMSO-d6) δ 4.25 (s, 2H, CH2), 

6.17 (s, 1H, NH), 7.95 (d, J= 8.5 Hz, 2H, Ar), 8.14 (d, J= 8.5 Hz, 2H, Ar), 
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9.21 (s, 2H, NH2). IR (Nujol) 3460, 3307, 1649 cm-1. Elemental 

analysis: calculated for C8H9N3O3 (195.18) % C 49.23; H 4.65; N 21.53; 

found % C 49.25; H 4.66; N 21.53. Physical and spectral data were in 

accordance with literature values.37 

General procedure for the synthesis of ethyl 

((benzylcarbamoyl)carbamathioyl)carbamates (3) 

A mixture of benzylurea (2) (2 mmol) and ethoxycarbonyl 

isothiocyanate (0.28 mL, 2.4 mmol) was refluxed in dry toluene (5 

mL) for 2.5 h. After elimination of the solvent under vacuum, the 

solid residue was suspended in i-Pr2O, filtered, dried and used for the 

next reaction step. 

Ethyl ((4-ethyl-benzylcarbamoyl)carbamathioyl)carbamate (3a) 

 

Yield 93%. m.p. 118-124 °C. 1H NMR (DMSO-d6) δ 1.14 (m, 3H, CH3), 

2.22 (m, 3H, CH3), 2.55 (m, 2H, CH2), 4.16 (m, 2H, CH2), 4.32 (m, 2H, 

CH2) 7.1 (m, 4H, Ar), 8.58 (s, 1H, NH), 11.02 (s, 1H, NH), 12.19 (s, 1H, 

NH). IR (Nujol) 3317, 3202, 1748, 1734, 1718, 1697 cm-1. Elemental 

analysis: calculated for C14H19N3O3S (309.39) % C 54.35; H 6.19; N 

13.58; found % C 54.40; H 6.18; N 13.56.  

Ethyl ((4-fluoro-benzylcarbamoyl)carbamathioyl)carbamate (3b) 

 

Yield 78%. m.p. 130-135 °C. 1H NMR (DMSO-d6) δ 1.38 (t, J= 7.2 Hz, 

3H, CH3), 4.27 (q, J= 7.2 Hz, 2H, CH2), 4.50 (m, 2H, CH2),7.52-7.48 (m, 

4H, Ar), 8.80 (s, 1H, NH), 11.20 (s, 1H, NH), 12.30 (s, 1H, NH). IR 

(Nujol) 3317, 1744, 1702 cm-1. Elemental analysis: calculated for 
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C12H14FN3O3S (299.32) % C 48.15; H 4.71; N 14.04; found % C 48.21; H 

4.70; N 14.02. 

Ethyl ((4-methoxy-benzylcarbamoyl)carbamathioyl)carbamate (3c) 

 

Yield 96%. m.p. 139-141 °C. 1H NMR (DMSO-d6) δ 1.20 (t, 3H, CH3), 

3.83 (s, J= 7.2 Hz, 3H, CH3), 4.13 (q, J= 7.2 Hz, 2H, CH2), 4.25 (s, 2H, 

CH2), 6.87 (d, 8.5 Hz, 2H, Ar), 7.25 (d, 8.5 Hz, 2H, Ar), 8.90 (s, 1H, NH), 

11.09 (s, 1H, NH), 12.15 (s, 1H, NH). IR (Nujol) 3315, 1747, 1698 cm-1. 

Elemental analysis: calculated for C13H17N3O4S (311.36) % C 50.5; H 

5.50; N 13.50; found % C 50.14; H 5.5; N 13.52.  

Ethyl ((4-methyl-benzylcarbamoyl)carbamathioyl)carbamate (3d) 

 

Yield 72%. m.p. 140-142 °C. 1H NMR (DMSO-d6) δ 1.29 (t, J= 7.0 Hz, 

3H, CH3), 2.34 (s, 3H, CH3), 4.13 (q, J= 7.2 Hz, 2H, CH2), 4.25 (s, 2H, 

CH2), 7.11 (m, 4H, Ar), 9.27 (s, 1H, NH), 11.34 (s, 1H, NH), 12.10 (S, 

1H, NH). IR (Nujol) 3324, 1745, 1700 cm-1. Elemental analysis: 

calculated for C13H17N3O3S (295.36) % C 52.86; H 5.80; N 14.23; % C 

52.87; H 5.82; N 14.20. 

Ethyl ((4-chloro-benzylcarbamoyl)carbamathioyl)carbamate (3e) 

 

Yield 95%. m.p. 132-137 °C. 1H NMR (DMSO-d6) δ 1.20 (t, J= 7.2 Hz, 

3H, CH3), 4.09 (q, J= 7.2 Hz, 2H, CH2), 4.25 (s, 2H, CH2), 7.32 (d, J= 8.2 
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Hz, 2H, Ar), 7.37 (d, J= 8.2 Hz, 2H, Ar), 9.30 (s, 1H, NH), 11.60 (s, 1H, 

NH), 12.20 (s, 1H, NH). IR (Nujol) 3189, 1736, 1701 cm-1. Elemental 

analysis: calculated for C12H14ClN3O3S (315.78) % C 454; H 47; N 

13.31; % C 45.60; H 4.48; N 13.29.  

Ethyl ((4-trifluoromethyl-

benzylcarbamoyl)carbamathioyl)carbamate (3f) 

 

Yield 51%. m.p. 122-125 °C. 1H NMR (DMSO-d6) δ 1.27 (t, J= 7.5 Hz, 

3H, CH3), 4.10 (q, J= 7.5 Hz, 2H, CH2), 4.26 (s, 2H, CH2), 7.16 (d, 8.5 Hz, 

2H, Ar), 7.50 (d, 8.5 Hz, 2H, Ar), 9.50 (s, 1H, NH), 10.97 (s, 1H, NH), 

12.00 (s, 1H, MH). IR (Nujol) 3302, 3177, 1734, 1638 cm-1. Elemental 

analysis: calculated for C13H14F3N3O3S (349.33) % C 44.70; H 4.04; N 

12.03; % C 44.77; H 4.05; N 12.00. 

Ethyl ((4-bromo-benzylcarbamoyl)carbamathioyl)carbamate (3g) 

 

Yield 61%. m.p. 129-130 °C. 1H NMR (DMSO-d6) δ 1.30 (t, J= 7.2 Hz, 

3H, CH3), 4.13 (q, J= 7.2 Hz, 2H, CH2), 4.24 (s, 2H, CH2), 7.12 (m, 2H, 

Ar), 7.85 (m, 2H, Ar), 9.14 (s, 1H, NH), 11.22 (s, 1H, NH), 12.10 (s, 1H, 

NH). IR (Nujol) 3582, 3439, 3320, 1745, 1731, 1700 cm-1. Elemental 

analysis: calculated for C12H14BrN3O3S (360.23) % C 40.01; H 3.92; N 

11.66; found % C 40.03; H 3.94; N 11.65. 
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Ethyl (((1,3-benzodioxo-5-yl-

methyl)carbamoyl)carbamathioyl)carbamate (3h) 

 

Yield 44%. m.p. 143-147 °C. 1H NMR (DMSO-d6) δ 1.29 (t, J= 7.0 Hz, 

3H, CH3), 4.13 (q, J= 7.0 Hz, 2H, CH2), 4.25 (s, 2H, CH2), 6.07 (s, 2H, 

CH2), 6.76 (m, 1H, Ar), 6.81 (m, 1H, Ar), 7.03 (m, 1H, Ar), 9.15 (s, 1H, 

NH), 11.30 (s, 1H, NH), 12.02 (s, 1H, NH). IR (Nujol) 3582, 3423, 3312, 

1747, 1697, 1649 cm-1. Elemental analysis: calculated for C13H15N3O5S 

(325.34) % C 47.99; H 4.65; N 12.92; found % C 48.03; H 4.66; N 

12.91. 

Ethyl ((4-iodo-benzylcarbamoyl)carbamathioyl)carbamate (3i) 

 

Yield 76%. m.p. 135-139 °C. 1H NMR (DMSO-d6) δ 1.29 (t, J= 7.2 Hz, 

3H, CH3), 4.13 (q, J= 7.2 Hz, 2H, CH2), 4.25 (s, 2H, CH2), 7.00 (d, J= 8.0 

Hz, 2H, Ar), 7.56 (d, J= 8.0 Hz, 2H,Ar), 9.01 (s, 1H, NH), 11.42 (s, 1H, 

NH), 12.19 (s, 1H, NH). IR (Nujol) 3440, 3320, 1745, 1731, 1696, 1651 

cm-1. Elemental analysis: calculated for C12H14IN3O3S (407.23) % C 

35.39; H 3.47; N 10.32; found % C 35.38; H 3.49; N 10.30. 

Ethyl ((4-nitro-benzylcarbamoyl)carbamathioyl)carbamate (3l) 

 

Yield 71%. m.p. 140-141 °C. 1H NMR (DMSO-d6) δ 1.34 (t, J= 7.5 Hz, 

3H, CH3), 4.28 (q, J= 7.5 Hz, 2H, CH2), 4.65 (s, 2H, CH2), 7.68 (d, 8.5 Hz, 

2H, Ar), 8.33 (d, 8.5 Hz, 2H, Ar), 8.91 (s, 1H, NH), 11.31 (s, 1H, NH), 
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12.28 (s, 1H, NH). IR (Nujol) 3212, 3170, 3080, 1728, 1694 cm-1. 

Elemental analysis: calculated for C12H14N4O5S (326.33) % C 44.17; H 

4.32; N 17.17; found % C 44.20; H 4.33; N 17;16.  

General procedure for the synthesis of 3-benzyl-6-methylthio-1,3,5-

triazin-2,4-diones (5) 

Route A:  

Step I: General procedure for the synthesis of 3-benzyl-6-thioxo-

1,3,5-trihydro-triazin-2,4-diones (4) 

To a mixture of thiourea (3) (2 mmol) in dry MeOH (5 mL) NaOMe 

(0.11 g, 2 mmol) was added. The mixture was heated at 50 °C for 30 

minutes. After solvent elimination under vacuum, the obtained solid 

was dissolved in water (5 mL) and the solution acidified with 10% 

aqueous HCl until pH 5-6. The formed precipitate was filtered, 

washed with Et2O and dried. 

3-(4-Ethylbenzyl)-6-thioxo-1,3,5-triazin-2,4-dione (4a) 

 

Yield 72%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 1.25 (t, J= 7.2 Hz, 3H, 

CH3), 2.60 (q, J= 7.2 Hz, 2H, CH2), 5.02 (s, 2H, CH2), 6.98 (d, 8.3 Hz, 2H, 

Ar), 7.18 (d, 8.3 Hz, 2H, Ar), 11.93 (s, 2H, NH). IR (Nujol) 3069, 1743, 

1680 cm-1. Elemental analysis: calculated for C12H13N3O2S (263.32) % 

C 54.74; H 4.98; N 15.96; found % C 54.70; H 4.97; N 15.98.  
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3-(4-Fluorobenzyl)-6-thioxo-1,3,5-triazin-2,4-dione (4b) 

 

Yield 80%. m.p. 240-241 °C. 1H NMR (DMSO-d6) δ 4.91 (s, 2H, CH2), 

7.25 (m, 2H, Ar), 7.48 (m, 2H, Ar), 12.83 (s, 2H, NH). IR (Nujol) 3085, 

1765 cm-1. Elemental analysis: calculated for C10H8FN3O2S (253.26) % 

C 47.43; H 3.18; N 16.59; found % C 47.40; H 3.15; N 16.59.  

3-(4-Methoxybenzyl)-6-thioxo-1,3,5-triazin-2,4-dione (4c) 

 

Yield 76%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 3.83 (s, 3H, CH3), 5.12 

(s, 2H, CH2), 6.87 (m, 2H, Ar), 7.25 (m, 2H, Ar), 11.88 (s, 2H, NH). IR 

(Nujol) 3105, 1763, 1693 cm-1. Elemental analysis: calculated for 

C11H11N3O3S (265.29) % C 49.80; H 4.18; N 15.84; found % C 49.83; H 

4.19; N 15.82.  

3-(4-Chlorobenzyl)-6-thioxo-1,3,5-triazin-2,4-dione (4e) 

 

Yield 78%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 5.10 (s, 2H, CH2), 7.32 

(d, 8.3 Hz,2H, Ar), 7.37 (d, 8.3 Hz, 2H, Ar), 10.67 (s, 2H, NH). IR (Nujol) 

3075, 1763, 1689 cm-1. Elemental analysis: calculated for 

C10H8ClN3O2S (269.71) % C 44.53; H 2.99; N 15.58; found % C 44.50; H 

2.98; N 15.59.  
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6-Thioxo-3-(4-(trifluoromethyl)benzyl)-1,3,5-triazin-2,4-dione (4f) 

 

Yield 63%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 4.99 (s, 2H, CH2), 7.16 

(d, J= 8.0 Hz, 2H, Ar), 7.50 (d, J= 8.0 Hz, 2H, Ar), 12.01 (s, 2H, NH). IR 

(Nujol) 3073, 1765, 1690 cm-1. Elemental analysis: calculated for 

C11H8F3N302S (303.26) % C 43.57; H 2.66; N 13.86; found % C 43.50; H 

2.65; N 13.85.  

3-(4-Bromobenzyl)-6-thioxo-1,3,5-triazin-2,4-dione (4g) 

 

Yield 70%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 5.20 (s, 2H, CH2), 7.12 

(d, 8.3 Hz, 2H, Ar), 7.85 (d, 8.3 Hz, 2H, Ar), 11.23 (s, 2H, NH). IR (Nujol) 

3074, 1762, 1688 cm-1. Elemental analysis: calculated for 

C10H8BrN3O2S (314.16) % C 38.23; H 2.57; N 13.38; found % C 38.20; H 

2.55; N 13.39.  

3-(Benzo(d)(1,3)dioxol-5-ylmethyl)-6-thioxo-1,3,5-triazin-2,4-dione 

(4h) 

 

Yield 58%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 5.18 (s, 2H, CH2), 6.07 

(s, 2H, CH2), 6.76 (m, 1H, Ar), 6.81 (m, 1H, Ar), 7.03 (s, 1H, Ar), 11.15 

(s, 2H, NH).  IR (Nujol) 3447, 3347, 3262, 3177, 1713, 1647 cm-1. 
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Elemental analysis: calculated for C11H9N304S (279.27) % C 47.31; H 

3.25; N 15.05; found % C 47.33; H 3.27; N 15.01. 

Step II: General procedure for the synthesis of 3-benzyl-6-

methylthio-1,3,5-triazin-2,4-diones (5) 

To a solution of compound (4) (2 mmol) in dry MeOH (5 mL) MeI 

(0.19 mL, 3 mmol) was added. The mixture was heated for 50 °C for 3 

h., then the solvent was evaporated under vacuum. Water (5 mL) was 

added to the resulting residue. The formed solid was filtered off, 

washed with water (2x 5 mL) and dried. 

3-(4-Ethylbenzyl)-6-(methylthio)-1,3,5-triazin-2,4-dione (5a) 

 

Yield 90%. m.p. 170-172 °C. 1H NMR (DMSO-d6) δ 1.25 (t, J= 7.5 Hz, 

3H, CH3), 2.55 (s, 3H, CH3), 2.60 (q, J= 7.5 Hz, 2H, CH2), 5.18 (s, 2H, 

CH2), 6.98 (d, 8.3 Hz, 2H, Ar), 7.18 (d, 8.3 Hz, 2H, Ar), 10.47 (s, 1H, 

NH). IR (Nujol) 3326, 3204, 1754 cm-1. Elemental analysis: calculated 

for C13H15N3O2S (277.34) % C 56.30; H 5.45; N 15.15; found % C 56.32; 

H 5.46; N 15.13. 

3-(4-Fluorobenzyl)-6-(methylthio)-1,3,5-triazin-2,4-dione (5b) 

 

Yield 98%. m.p. 230 °C. 1H NMR (DMSO-d6) δ 2.58 (d, 3H, CH3), 4.96 

(s, 2H, CH2), 7.25 (m, 2H, Ar), 7.45 (m, 2H, Ar), 12.90 (s, 1H, NH). IR 

(Nujol) 3136, 1733, 1658 cm-1. Elemental analysis: calculated for 

C11H10FN3O2S (267.28) % C 49.43; H 3.77; N 15.72; found % C 49.44; H 

3.73; N 15.74. 
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3-(4-Methoxybenzyl)-6-(methylthio)-1,3,5-triazin-2,4-dione (5c) 

 

Yield 88%. m.p. 230-233 °C. 1H NMR (DMSO-d6) δ 2.55 (s, 3H, CH3), 

3.83 (s, 3H, CH3), 5.20 (s, 2H, CH2), 6.87 (d, 8.0 Hz, 2H, Ar), 7.25 (d, 8.0 

Hz, 2H, Ar), 10.9 (s, 1H, NH). IR (Nujol) 3130, 1737 cm-1. Elemental 

analysis: calculated for C12H13N3O3S (279.31) % C 51.60; H 4.69; N 

15.04; found % C 51.62; H 4.68; N 15.05. 

3-(4-Chlorobenzyl)-6-(methylthio)-1,3,5-triazin-2,4-dione (5e) 

 

Yield 97%. m.p. 219-222 °C. 1H NMR (DMSO-d6) δ 2.60 (s, 3H, CH3), 

5.00 (s, 2H, CH2), 7.45 (m, 4H, Ar), 13.0 (s, 1H, NH). IR (Nujol) 3227, 

3136, 1734 cm-1. Elemental analysis: calculated for C11H10ClN3O2S 

(283.73) % C 46.56; H 3.55; N 14.81; found % C 46.58; H 3.58; N 

14.80. 

6-(Methylthio)-3-(4-(trifluoromethyl)benzyl)-1,3,5-triazin-2,4-dione 

(5f) 

 

Yield 57%. m.p. 238-245 °C. 1H NMR (DMSO-d6) δ 2.44 (s, 3H, CH3), 

4.94 (s, 2H, CH2), 7.48 (m, 2H, Ar), 7.65 (m, 2H, Ar), 12.80 (s, 1H, NH). 

IR (Nujol) 2720, 1756 cm-1. Elemental analysis: calculated for 
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C12H10F3N3O2S (317.29) % C 45.43; H 3.18; N 13.24; found % C 45.44; 

H 3.16; N 13.22. 

3-(4-Bromobenzyl)-6-(methylthio)-1,3,5-triazin-2,4-dione (5g) 

 

Yield 57%. m.p. 213-219 °C. 1H NMR (DMSO-d6) δ 2.55 (s, 3H, CH3), 

5.20 (s, 2H, CH2), 6.05 (s, 1H, NH), 7.12 (d, 8.0 Hz, 2H, Ar), 7.85 (d, 8.0 

Hz, 2H, Ar). IR (Nujol) 2178, 1756, 1736 cm-1. Elemental analysis: 

calculated for C11H10BrN3O2S (328.18) % C 40.26; H 3.07; N 12.80; 

found % C 40.28; H 3.05; N 12.81. 

3-(Benzo(d)(1,3)dioxol-5-ylmethyl)-6-(methylthio)-1,3,5-triazin-2,4-

dione (5h) 

 

Yield 38%. m.p. 210-215 °C. 1H NMR (DMSO-d6) δ 2.55 (s, 3H, CH3), 

5.18 (s, 2H, CH2), 6.02 (s, 1H, NH), 6.07 (s, 2H, CH2), 6.76 (m, 1H, Ar), 

6.81 (m, 1H, Ar), 7.03 (m, 1H, Ar). IR (Nujol) 2855, 1728, 1671, 1589, 

1501, 1487, 1442, 1376, 1350, 1238, 1031 cm-1. Elemental analysis: 

calculated for C12H11N304S (293.30) % C 49.14; H 3.78; N 14.33; found 

% C 49.16; H 3.79; N 14.31. 

Route B:  

General procedure for the synthesis of 3-benzyl-6-methylthio-1,3,5-

triazin-2,4-diones (5) 

To a solution of thiourea (3) (2 mmol) in dry MeOH (5 mL) NaOMe 

(0.11 g, 2 mmol) was added. The mixture was heated at 50 °C for 30 

minutes. Then MeI (0.19 mL, 3 mmol) was added and the reaction 
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mixture was heated at 50 °C for additional 3 h. MeOH was 

evaporated under vacuum and water (5 mL) was added. The formed 

solid was filtered, washed with water (2x5 mL) and dried. 

3-(4-Methylbenzyl)-6-(methylthio)-1,3,5-triazin-2,4-dione (5d) 

 

Yield 98%. m.p. 242-247 °C. 1H NMR (DMSO-d6) δ 2.34 (s, 3H, CH3), 

2.55 (s, 3H, CH3), 4.99 (s, 2H, CH2), 7.11-7.43 (m, 4H, Ar), 8.20 (s, 1H, 

NH). IR (Nujol) 3582, 2714, 1754, 1728 cm-1. Elemental analysis: 

calculated for C12H13N3O2S (263.32) % C 54.74; H 4.98; N 15.96; found 

% C 54.70; H 4.96; N 15.99. 

3-(4-Iodobenzyl)-6-(methylthio)-1,3,5-triazin-2,4-dione (5i) 

 

Yield 48%. m.p. 175-179 °C. 1H NMR (DMSO-d6) δ 2.62 (s, 3H, CH3), 

4.90 (s, 2H, CH2), 6.83 (s, 1H, NH), 7.22 (d, 8.3 Hz, 2H, Ar), 7.78 (d, 8.3 

Hz, 2H, Ar). IR (Nujol) 3582, 1665 cm-1. Elemental analysis: calculated 

for C11H10IN3O2S (375.19) % C 35.21; H 2.69; N 11.20; found % C 

35.20; H 2.68; N 11.22. 

6-(Methylthio)-3-(4-nitrobenzyl)-1,3,5-triazin-2,4-dione (5l) 

 

Yield 99%. m.p. 220-223 °C. 1H NMR (DMSO-d6) δ 2.55 (s, 3H, CH3), 

5.18 (s, 2H, CH2), 6.02 (s, 1H, NH), 7.95 (m, 2H, Ar), 8.14 (m, 2H, Ar). 
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IR (Nujol) 3582, 3379, 1757, 1729  cm-1. Elemental analysis: 

calculated for C11H10N4O4S (294.29) % C 44.89; H 3.43; N 19.04; found 

% C 44.87; H 3.45; N 19.07. 

General procedure for the synthesis of 1,3-dibenzyl-6-methylthio-

1,3,5-triazin-2,4-diones (6) 

Thiomethyltriazine (5) (2 mmol) was treated with the appropriate 

benzyl substituted halide (2 mmol) in the presence of K2CO3 (0.55 g, 4 

mmol) in dry DMF solution (1.5 mL). The mixture was stirred at r.t. 

for 48 h, then water (10 mL) was added and the obtained solid was 

filtered, washed with water (2x5 mL) and dried. 

3-(4-Ethylbenzyl)-1-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6a) 

 

Yield 80%. m.p. 120-126 °C. 1H NMR (DMSO-d6) δ 1.24 (t, J= 7.2 Hz, 

3H, CH3), 2.45 (s, 3H, CH3), 2.54 (q, J= 7.2 Hz, 2H, CH2), 3.70 (s, 3H, 

CH3), 4.89 (s, 2H, CH2), 5.01 (s, 2H, CH2), 6.88 (d, 8.0 Hz, 2H, Ar), 7.13 

(d, 8.0 Hz, 2H, Ar), 7.19 (m, 4H, Ar). IR (Nujol) 1729 cm-1. Elemental 

analysis: calculated for C21H23N3O3S (397.49) % C 63.45; H 5.83; N 

10.57; found % C 63.47; H 5.87; N 10.50. 
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3-(4-Fluorobenzyl)-1-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6b) 

 

Yield 74%. m.p. 127-129 °C. 1H NMR (DMSO-d6) δ 2.59 (s, 3H CH3), 

3.85 (s, 3H, CH3), 5.05 (s, 2H, CH2), 5.14 (s, 2H, CH2), 7.02 (d, J= 8.2 Hz, 

2H, Ar), 7.26 (m, 2H, Ar), 7.36 (d, J= 8.2 Hz, 2H, Ar), 7.49 (t, 2H, Ar). IR 

(Nujol) 3582, 1721 cm-1. Elemental analysis: calculated for 

C19H18FN3O3S (387,43) % C 58.90; H 4.68; N 10.85; found % C 58.95; H 

4.68; N 10.80. 

1-Benzyl-3-(4-methoxybenzyl)-6-(methylthio)-1,3,5-triazine-

2,4(1H,3H)-dione (6c) 

 

Yield 84%. m.p. 115-119 °C. 1H NMR (DMSO-d6) δ 2.00 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.95 (m, 2H, Ar), 

7.25 (m, 1H, Ar), 7.26 (m, 2H, Ar), 7.31 (s, 2H, Ar). IR (Nujol) 3581, 

1726 cm-1. Elemental analysis: calculated for C19H19N3O3S (369.44) % 

C 61.77; H 5.18; N 11.37; found % C 61.79; H 5.16; N 11.39. 

 

 



3. Prokineticin System 
_______________________________________________________________________________________ 
 

_______________________________________________________________________________________ 
270 

1-(4-Methoxybenzyl)-3-(4-methylbenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6d) 

 

Yield 82%. m.p. 132-135 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

2.19 (s, 3H, CH3), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 

6.94 (m, 2H, Ar), 6.95 (m, 2H, Ar), 7.12 (m, 2H, Ar). IR (Nujol) 3581, 

1725 cm-1. Elemental analysis: calculated for C20H21N3O3S (383.46) % 

C 62.64; H 5.52; N 10.96; found % C 62.62; H 5.53; N 10.97. 

1,3-bis(4-Methoxybenzyl)-6-(methylthio)-1,3,5-triazine-2,4(1H,3H)-

dione (6e) 

 

Yield 80%. m.p. 106-110 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H CH3). 3.72 

(s, 6H, CH3). 4.42 (s, 4H, CH2), 6.65 (m, 4H, Ar), 6.95 (m, 4H, Ar). IR 

(Nujol) 3582, 1726 cm-1. Elemental analysis: calculated for 

C20H21N3O4S (399.46) % C 60.13; H 5.30; N 10.52; found % C 60.15; H 

5.30; N 10.51. 
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3-(4-Chlorobenzyl)-1-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6f) 

 

Yield 60%. m.p. 130-133 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H CH3), 3.72 

(s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (d, J= 8.2 Hz,2H, Ar), 6.95 (d, J= 8.0 

Hz, 2H, Ar), 7.32 (d, J= 7.2 Hz, 2H, Ar), 7.39 (d, J= 8.0 Hz, 2H, Ar). IR 

(Nujol) 3582, 1724 cm-1. Elemental analysis: calculated for 

C19H18ClN3O3S (403.89) % C 56.50; H 4.49; N 10.40; found % C 56.54; 

H 4.47; N 10.40. 

1-(4-Methoxybenzyl)-6-(methylthio)-3-(4-(trifluoromethyl)benzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (6g) 

 

Yield 80%. m.p. 125 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 3.72 (s, 

3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.95 (m, 2H, Ar), 6.99 (m, 

2H, Ar), 7.54 (m, 2H, Ar). IR (Nujol) 3582, 3395, 1728cm-1. Elemental 

analysis: calculated for C20H18F3N3O3S (437.44) % C 54.91; H 4.15; N 

9.61; found % C 54.89; H 4.18; N 9.60. 
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1-(4-Bromobenzyl)-3-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6h) 

 

Yield 82%. m.p. 117-122 °C. 1H NMR (DMSO-d6) δ 2.01 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.95 (m, 4H, Ar), 

7.31 (m, 2H, Ar). IR (Nujol) 3582, 3493, 1724 cm-1. Elemental analysis: 

calculated for C19H18BrN3O3S (448.33) % C 50.90; H 4.05; N 9.37; 

found % C 50.94; H 4.02; N 9.39. 

3-(4-Bromobenzyl)-1-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6i) 

 

Yield 36%. m.p. 123-126 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.95 (m, 4H, Ar), 

7.31 (m, 2H, Ar). IR (Nujol) 3582, 1725 cm-1. Elemental analysis: 

calculated for C19H18BrN3O3S (448.33) % C 50.90; H 4.05; N 9.37; 

found % C 50.92; H 4,05; N 9.36. 
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1-(3,4-Dichlorobenzyl)-3-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6l) 

 

Yield 43%. m.p. 136-138 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.95 (m, 2H, Ar), 

6.88 (s, 1H, Ar), 7.01 (m, 1H, Ar), 7.09 (m, 1H, Ar). IR (Nujol) 3582, 

3478, 1731 cm-1. Elemental analysis: calculated for C19H17Cl2N3O3S 

(438.33) % C 52.06; H 3.91; N 9.59; found % C 52.08; H 3.90; N 9.57. 

1-(4-Methylbenzyl)-6-(methylthio)-3-(4-(trifluoromethyl)benzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (6m) 

 

Yield 22%. m.p. 115-120 °C. 1H NMR (DMSO-d6) δ 2.03 (s, 3H, CH3), 

2.19 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.94 (d, J= 8.2 Hz, 2H, Ar), 6.99 (d, 

J= 8.0 Hz,2H, Ar), 7.12 (d, J= 8.2 Hz, 2H, Ar), 7.54 (d, J= 8.0 Hz, 2H, Ar). 

IR (Nujol) 3582, 1735 cm-1. Elemental analysis: calculated for 

C20H18F3N3O2S (421.44) % C 57.00; H 4.31; N 9.97; found % C 57.02; H 

4.33; N 9.92. 
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1-(3,4-Dichlorobenzyl)-3-(4-methylbenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6n) 

 

Yield 84%. m.p. 134-139 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

2.19 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.88 (m, 1H, Ar), 6.94 (m, 2H, Ar), 

7.01 (s, 1H, Ar), 7.09 (s, 1H, Ar), 7.12 (m, 2H, Ar). IR (Nujol) 3582, 

1730 cm-1. Elemental analysis: calculated for C19H17Cl2N3O2S (422.33) 

% C 54.03; H 4.06; N 9.95; found % C 54.03; H 4.05; N 9.97. 

3-(4-Methoxybenzyl)-1-(4-methylbenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6o) 

 

Yield 45%. m.p. 119-123 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

2.19 (s, 3H, CH3), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (d, J= 8.0 Hz, 

2H, Ar), 6.94 (d, J= 8.3 Hz, 2H, Ar), 6.95 (d, J= 8.3 Hz, 2H, Ar), 7.12 (d, 

J= 8.0 Hz, 2H, Ar). IR (Nujol) 3582, 1727 cm-1. Elemental analysis: 

calculated for C20H21N3O3S (383.46) % C 62.64; H 5.52; N 10.96; found 

% C 62.61; H 5.53; N 10.98. 

 

 



Design, synthesis and SAR of small molecules acting on pain pathways 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
275 

1-(4-Fluorobenzyl)-3-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6p) 

 

Yield 50 %. m.p. 109-112 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.95 (m, 2H, Ar), 

7.07 (m, 2H, Ar), 7.39 (m, 2H, Ar). IR (Nujol) 3582, 1729 cm-1. 

Elemental analysis: calculated for C19H18FN3O3S (387.43) % C 58.90; H 

4.68; N 10.85; found % C 58.94; H 4.67; N 10.80. 

1-(4-Chlorobenzyl)-3-(4-methoxybenzyl)-6-(methylthio)-1,3,5-

triazine-2,4(1H,3H)-dione (6q) 

 

Yield 25%. m.p. 116-122 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (d, J= 8.0 Hz, 2H, Ar), 6.95 (d 

J= 8.0 Hz,, 2H, Ar), 7.32 (d, J= 8.0 Hz, 2H, Ar), 7.39 (d, J= 8.0 Hz, 2H, 

Ar). IR (Nujol) 3582, 1731 cm-1. Elemental analysis: calculated for 

C19H18ClN3O3S (403.89) % C 56.50; H 4.49; N 10.40; found % C 56.52; 

H 4.47; N 10.41. 
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3-(4-Methoxybenzyl)-6-(methylthio)-1-(4-(trifluoromethyl)benzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (6r) 

 

Yield 41%. m.p. 130-132 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.95 (m, 2H, Ar), 

6.99 (m, 2H, Ar), 7.54 (m, 2H, Ar). IR (Nujol) 3582, 3384, 1735 cm-1. 

Elemental analysis: calculated for C20H18F3N3O3S (437.44) % C 54.91; 

H 4.15; N 9.61; found % C 54.88; H 4.18; N 9.60. 

3-(Benzo(d)(1,3)dioxol-5-ylmethyl)-1-(4-methoxybenzyl)-6-

(methylthio)-1,3,5-triazine-2,4(1H,3H)-dione (6s) 

 

Yield 24%. m.p. 123-125 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.06 (s, 2H, CH2), 6.51 (m, 1H, Ar), 

6.65 (s, 2H, Ar), 6.86 (m, 1H, Ar), 6.95 (m, 2H, Ar), 7.03 (m, 1H, Ar). IR 

(Nujol) 3582, 3312, 1721, 1662 cm-1. Elemental analysis: calculated 

for C20H19N3O5S (413.45) % C 58.10; H 4.63; N 10.16; found % C 58.11; 

H 4.65; N 10.12. 
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1-(4-Iodobenzyl)-3-(4-methoxybenzyl)-6-(methylthio)-1,3,5-triazine-

2,4(1H,3H)-dione (6t) 

 

Yield 30%. m.p. 129-132 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.83 (m, 2H, Ar), 

6.95 (m, 2H, Ar), 7.52 (m, 2H, Ar). IR (Nujol) 3582, 1733, 1673, 1608 

cm-1. Elemental analysis: calculated for C19H18IN3O3S (495.33) % C 

46.07; H 3.66; N 8.48; found % C 46.08; H 3.62; N 8.49. 

3-(4-Iodobenzyl)-1-(4-methoxybenzyl)-6-(methylthio)-1,3,5-triazine-

2,4(1H,3H)-dione (6u) 

 

Yield 80%. m.p. 110-116 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (d, J= 8.0 Hz, 2H, Ar), 6.83 (d, 

J= 8.0 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.52 (d, J= 8.0 Hz, 2H, 

Ar). IR (Nujol) 3582, 1726 cm-1. Elemental analysis: calculated for 

C19H18IN3O3S (495.33) % C 46.07; H 3.66; N 8.48; found % C 46.09; H 

3.62; N 8.47. 
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1-(4-Methoxybenzyl)-6-(methylthio)-3-(4-nitrobenzyl)-1,3,5-

triazine-2,4(1H,3H)-dione (6v) 

 

Yield 44%. 129-131 °C. 1H NMR (DMSO-d6) δ 2.0 (s, 3H, CH3), 3.72 (s, 

3H, CH3), 4.42 (s, 4H, CH2), 6.65 (d, J= 8.2 Hz, 2H, Ar), 6.95 (d, J= 8.0 

Hz, 2H, Ar), 7.32 (d, J= 8.2 Hz, 2H, Ar), 8.17 (d, J= 8.0 Hz, 2H, Ar). IR 

(Nujol) 3582, 3457, 1732 cm-1. Elemental analysis: calculated for 

C19H18N4O5S (414.44) % C 55.06; H 4.38; N 13.52; found % C 55.08; H 

4.37; N 13.53. 

General procedure for the synthesis of 6-((2-aminoethyl)amino)-1,3-

dibenzyl-1,3,5-triazine- 2,4(1H,3H)-dione (7) 

To a solution of S-methyl-triazinedione (6) (2 mmol) in dry toluene 

(10 mL) ethylenediamine (0.7 mL, 10 mmol) was added. The mixture 

was refluxed for 16 h. After solvent elimination under vacuum, the 

residue was suspended in iPr2O (10 mL) and the obtained solid was 

filtered, washed with iPr2O (2x2.5 mL) and dried. 

 

 

 

 

 

 

 



Design, synthesis and SAR of small molecules acting on pain pathways 
_______________________________________________________________________________________ 

 

______________________________________________________________________________________
279 

6-((2-Aminoethyl)amino)-3-(4-ethylbenzyl)-1-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7a) 

 

Yield 99%. m.p. 183-185 °C. 1H NMR (DMSO-d6) δ 1.24 (t, J= 7.0 Hz, 

3H, CH3), 2.59 (q, J= 7.0 Hz, 2H, CH2), 2.91 (m, 4H, CH2), 3.72 (s, 3H, 

CH3), 4.42 (s, 4H, CH2), 5.80 (s, 2H, NH2), 6.65 (m, 2H, Ar), 6.95 (m, 2H, 

Ar), 7.00 (m, 2H, Ar), 7.01 (m, 2H, Ar), 8.12 (s, 1H, NH). IR  3378, 3196, 

1687, 1560 cm-1. Elemental analysis: calculated for C22H27N5O3 

(409.48) % C 64.53; H 6.65; N 17.10; found % C 64.55; H 6.66; N 

17.06. 

6-((2-Aminoethyl)amino)-3-(4-fluorobenzyl)-1-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7b) 

 

Yield 17%. m.p. 182-186 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.92 (s, 2H, NH2), 6.65 (d, J= 8.0 

Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.07 (d, J= 8.0 Hz, 2H, Ar), 7.39 

(d, J= 8.0 Hz, 2H, Ar), 7.89 (s, 1H, NH). IR (Nujol) 3331, 1720, 1561 cm-

1. Elemental analysis: calculated for C20H22FN5O3 (399.42) % C 60.14; 

H 5.55; N 17.53; found % C 60.15; H 5.53; N 17.52. 
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6-((2-Aminoethyl)amino)-1-benzyl-3-(4-methoxybenzyl)-1,3,5-

triazine-2,4(1H,3H)-dione (7c) 

 

Yield 88 %. m.p. 192-195 °C. 1H NMR (DMSO-d6) δ 2,91 (t, J= 7.5 Hz, 

4H, CH2), 3,72 (s, 3H, CH3), 4,42 (s, 4H, CH2), 5.82 (s, 2H, NH2), 6,65 (d, 

J= 8.0 Hz, 2H, Ar), 6,95 (d, J= 8.5 Hz, 2H, Ar), 7,25 (d, J= 8.0 Hz, 1H, 

Ar), 7,26 (t, J= 8.5 Hz, 2H, Ar), 7,31 (d, 2H, Ar), 8.04 (s, 1H, NH). IR 

3342, 1705, 1570 cm-1
. Elemental analysis: calculated for C20H23N5O3 

(381,43) % C 62.98; H 6.08; N 18.36; found % C 62.99; H 6.05; N 

18.35. 

6-((2-Aminoethyl)amino)-1-(4-methoxybenzyl)-3-(4-methylbenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7d) 

 

Yield 83%. m.p. 179-183 °C. 1H NMR (DMSO-d6) δ 2.19 (s, 3H, CH3), 

2.91 (m, 4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.77 (s, 2H, 

NH2), 6.65 (d, J= 8.5 Hz, 2H, Ar), 6.94 (d, J= 8.2 Hz, 2H, Ar), 6.95 (d, J= 

8.2 Hz, 2H, Ar), 7.12 (d, J= 8.5 Hz, 2H, Ar), 8.13 (s, 1H, NH). IR 3328, 

1712, 1587 cm-1. Elemental analysis: calculated for C21H25N5O3 

(395.45) % C 63.78; H 6.37; N 17.71; found % C 63.76; H 6.35; N 

17.76. 
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6-((2-Aminoethyl)amino)-1,3-bis(4-methoxybenzyl)-1,3,5-triazine-

2,4(1H,3H)-dione (7e) 

 

Yield 78%. m.p. 198-200 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.5 Hz, 

4H, CH2), 3.72 (s, 6H, CH3), 4.42 (s, 4H, CH2), 5.78 (s, 2H, NH2), 6.65 

(m, 4H, Ar), 6.95 (m, 4H, Ar), 7.99 (s, 1H, NH). IR  3298, 1703, 1580 

cm-1. Elemental analysis: calculated for C21H25N5O4  (411.45) % C 

61.30; H 6.12; N 17.02; found % C 61.32; H 6.13; N 17.00. 

6-((2-Aminoethyl)amino)-3-(4-chlorobenzyl)-1-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7f) 

 

Yield 88%. m.p. 185-187 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 

4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.67 (s, 2H, NH2), 6.65 (d, 

J= 8.0 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.32 (d, J= 8.0 Hz, 2H, 

Ar), 7.39 (d, J= 8.0 Hz, 2H, Ar), 8.59 (s, 1H, NH). IR 3348, 1696, 1571 

cm-1. Elemental analysis: calculated for C20H22ClN5O3 (415.87) % C 

57.76; H 5.33; N 16.84; found % C 57.77; H 5.30; N 16.86. 
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6-((2-Aminoethyl)amino)-1-(4-methoxybenzyl)-3-(4-

(trifluoromethyl)benzyl)-1,3,5-triazine-2,4(1H,3H)-dione (7g) 

 

Yield  75%. m.p. 180-183 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 

4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.93 (s, 2H, NH2), 6.65 

(m, 2H, Ar), 6.95 (m, 2H, Ar), 6.99 (m, 2H, Ar), 7.54 (m, 2H, Ar), 8.23 

(s, 1H, NH). IR 3323, 1694, 1570 cm-1. Elemental analysis: calculated 

for C21H22F3N5O3 (449.43) % C 56.12; H 4.93; N 15.58; found % C 

56.10; H 4.94; N 15.59. 

6-((2-Aminoethyl)amino)-1-(4-bromobenzyl)-3-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7h) 

 

Yield 82%. m.p. 192-196 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.85 (s, 2H, NH2), 6.65 (d, J= 8.5 

Hz, 2H, Ar), 6.95 (m, 4H, Ar), 7.31 (d, J= 8.5 Hz, 2H, Ar), 7.89 (s, 1H, 

NH). IR 3326, 1717, 1566 cm-1. Elemental analysis: calculated for 

C20H22BrN5O3 (460.32) % C 52.18; H 4.82; N 15.21; found % C 52.19; H 

4.80; N 15.24. 
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6-((2-Aminoethyl)amino)-3-(4-bromobenzyl)-1-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7i) 

 

Yield 80%. m.p. 170-172 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 

4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.80 (s, 2H, NH2), 6.65 (d, 

J= 8.0 Hz, 2H, Ar), 6.95 (m, 4H, Ar), 7.31 (d, J= 8.0 Hz, 2H, Ar), 7.77 (s, 

1H, NH). IR 3337, 1702, 1570 cm-1. Elemental analysis: calculated for 

C20H22BrN5O3 (460.32) % C 52.18; H 4.82; N 15.21; found % C 52.17; H 

4.83; N 15.21. 

6-((2-Aminoethyl)amino)-1-(3,4-dichlorobenzyl)-3-(4-

methoxybenzyl)-1,3,5-triazine-2,4(1H,3H)-dione (7l) 

 

Yield 78%. m.p. 188-192 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.84 (s, 2H, NH2), 6.65 (d, J= 8.0 

Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 6.88 (m, 1H, Ar), 7.01 (m,, 1H, 

Ar), 7.09 (s, 1H, Ar), 8.07 (s, 1H, NH). IR 3340, 1708, 1582 cm-1. 

Elemental analysis: calculated for C20H21Cl2N5O3 (450.32) % C 53.34; H 

4.70; N 15.55; found % C 53.35; H 4.74; N 15.55. 
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6-((2-Aminoethyl)amino)-1-(4-methylbenzyl)-3-(4-

(trifluoromethyl)benzyl)-1,3,5-triazine-2,4(1H,3H)-dione (7m) 

 

Yield 67%. m.p. 203-205 °C. 1H NMR (DMSO-d6) δ 2.19 (s, 3H, CH3), 

2.91 (t, J= 7.5 Hz, 4H, CH2), 4.42 (s, 4H, CH2), 5.67 (s, 2H, NH2), 6.94 

(m, 2H, Ar), 6.99 (m, 2H, Ar), 7.12 (m, 2H, Ar), 7.54 (m, 2H, Ar), 7.89 

(s, 1H, NH). IR 3298, 1697, 1588 cm-1. Elemental analysis: calculated 

for C21H22F3N5O2 (433.43) % C 58.19; H 5.12; N 16.16; found % C 

58.15; H 5.13; N 16.12. 

6-((2-Aminoethyl)amino)-1-(3,4-dichlorobenzyl)-3-(4-methylbenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7n) 

 

Yield 68%. m.p. 199-201 °C. 1H NMR (DMSO-d6) δ 2.19 (s, 3H, CH3), 

2.91 (m, 4H, CH2), 4.42 (s, 4H, CH2), 5.92 (s, 2H, NH2), 6.88 (m, 1H, Ar), 

6.94 (m, 2H, Ar), 7.01 (s, 1H, Ar), 7.09 (s, 1H, Ar), 7.12 (m, 2H, Ar), 

7.78 (s, 1H, NH). IR 3315, 1702, 1567  cm-1. Elemental analysis: 

calculated for C20H21Cl2N5O2 (434.32) % C 55.31; H 4.87; N 16.12; 

found % C 55.30; H 4.85; N 16.18. 
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6-((2-Aminoethyl)amino)-3-(4-methoxybenzyl)-1-(4-methylbenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7o) 

 

Yield 89%. m.p. 176-179 °C. 1H NMR (DMSO-d6) δ 2.19 (s, 3H, CH3), 

2.91 (t, J= 7.0 Hz, 4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.76 (s, 

2H, NH2), 6.65 (d, J= 8.0 Hz, 2H, Ar), 6.94 (d, J= 8.0 Hz, 2H, Ar), 6.95 

(d, J= 8.0 Hz, 2H, Ar), 7.12 (d, J= 8.0 Hz, 2H, Ar), 8.00 (s, 1H, NH). IR 

3330, 3124, 1698, 1577 cm-1. Elemental analysis: calculated for 

C21H25N5O3 (395.46) % C 63.78; H 6.37; N 17.71; found % C 63.79; H 

6.34; N 17.72. 

6-((2-Aminoethyl)amino)-1-(4-fluorobenzyl)-3-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7p) 

 

Yield 83%. m.p. 193-196 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.5 Hz, 

4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.76 (s, 2H, NH2), 6.65 (d, 

J= 8.0 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.07 (m, 2H, Ar), 7.39 (m, 

2H, Ar), 7.98 (s, 1H, NH). IR 3327, 3290, 1699, 1575 cm-1. Elemental 

analysis: calculated for C20H22FN5O3 (399.42) % C 60.14; H 5.55; N 

17.53; found % C 60.17; H 5.52; N 17.50. 
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6-((2-Aminoethyl)amino)-1-(4-chlorobenzyl)-3-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7q) 

 

Yield 86%. m.p. 183-187 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 

4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.89 (s, 2H, NH2), 6.65 

(m, 2H, Ar), 6.95 (m, 2H, Ar), 7.32 (m, 2H, Ar), 7.39 (m, 2H, Ar), 7.99 

(s, 1H, NH). IR 3339, 3287, 1702, 1568 cm-1. Elemental analysis: 

calculated for C20H22ClN5O3 (415.87) % C 57.76; H 5.33; N 16.84; 

found % C 57.70; H 5.33; N 16.84. 

6-((2-Aminoethyl)amino)-3-(4-methoxybenzyl)-1-(4-

(trifluoromethyl)benzyl)-1,3,5-triazine-2,4(1H,3H)-dione (7r) 

 

Yield 89%. m.p. 181-183 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.91 (s, 2H, NH2), 6.65 (d, J= 8.0 

Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 6.99 (d, J= 8.0 Hz, 2H, Ar), 7.54 

(d, J= 8.0 Hz, 2H, Ar), 7.86 (s, 1H, NH). IR 3320, 1699, 1586 cm-1. 

Elemental analysis: calculated for C21H22F3N5O3 (449.43) % C 56.12; H 

4.93; N 15.58; found % C 56.14; H 4.95; N 15.53. 
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6-((2-Aminoethyl)amino)-3-(benzo(d)(1,3)dioxol-5-ylmethyl)-1-(4-

methoxybenzyl)-1,3,5-triazine-2,4(1H,3H)-dione (7s) 

 

Yield 78%. m.p. 196-199 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 

4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 4.50 (s, 2H, CH2), 5.86 (s, 

2H, NH2), 6.06 (s, 2H, Ar), 6.51 (m, 1H, Ar), 6.65 (s, 2H, Ar), 6.86 (m, 

1H, Ar), 6.95 (m, 1H, Ar), 7.03 (d, 1H, NH), 7.84 (s, 1H). IR 3341, 3120, 

1710, 1601 cm-1. Elemental analysis: calculated for C21H23N5O5 

(425.44) % C 59.29; H 5.45; N 16.46; found % C 59.30; H 5.44; N 

16.48. 

6-((2-Aminoethyl)amino)-1-(4-iodobenzyl)-3-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7t) 

 

Yield 84%. m.p. 182-185 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.97 (s, 2H, NH2), 6.65 (d, J= 8.5 

Hz, 2H, Ar), 6.83 (d, J= 8.5 Hz, 2H, Ar), 6.95 (d, J= 8.5 Hz, 2H, Ar), 7.52 

(d, J= 8.5 Hz, 2H, Ar), 8.01 (s, 1H, NH). IR 3333, 1712, 1580 cm-1. 

Elemental analysis: calculated for C20H22IN5O3 (507.32) % C 47.35; H 

4.37; N 13.80; found % C 47.37; H 4.32; N 13.81. 
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6-((2-Aminoethyl)amino)-3-(4-iodobenzyl)-1-(4-methoxybenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7u) 

 

Yield 78%. m.p. 195-196 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 

4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.87 (s, 2H, NH2), 6.65 (d, 

J= 8.0 Hz, 2H, Ar), 6.83 (d, J= 8.0 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, 

Ar), 7.52 (d, J= 8.0 Hz, 2H, Ar), 7.98 (s, 1H, NH). IR 3337, 1702, 1570 

cm-1. Elemental analysis: calculated for C20H22IN5O3 (507.32) % C 

47.35; H 4.37; N 13.80; found % C 47.34; H 4.37; N 13.83. 

6-((2-Aminoethyl)amino)-1-(4-methoxybenzyl)-3-(4-nitrobenzyl)-

1,3,5-triazine-2,4(1H,3H)-dione (7v) 

 

Yield 80%. m.p. 177-179 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 

3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 5.99 (s, 2H, NH2), 6.65 (d, J= 8.0 

Hz, 2H, Ar), 6.95 (d, J= 8.5 Hz, 2H, Ar), 7.32 (d, J= 8.5 Hz, 2H, Ar), 7.99 

(s, 1H, NH), 8.17 (d, J= 8.0 Hz, 2H, Ar). IR 3345, 1700, 1582 cm-1. 

Elemental analysis: calculated for C20H22N6O5 (426.43) % C 56.33; H 

5.20; N 19.71; found % C 56.34; H 5.26; N 19.65. 
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General procedure for the synthesis of 1-(2-((1,5-dibenzyl-4,6-dioxo-

1,4,5,6-tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC) 

A mixture of compound (7) (2 mmol), 1H-pyrazole-1-carboxyamidine 

hydrochloride (0.29 g, 2 mmol) and DIPEA (0.70 mL, 4 mmol) in dry 

MeCN (10 mL) was refluxed for 18 h. After solvent elimination under 

vacuum the obtained residue was suspended in water (10 mL), 

filtered and washed with water (2 x 2.5 mL) and dried. 

1-(2-((5-(4-Ethylbenzyl)-1-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC1) 

 

Yield 92 %. m.p. >250 °C. 1H NMR (DMSO-d6) δ 1.24 (t, J= 7.2 Hz, 3H, 

CH3), 2.59 (q, J= 7.2 Hz, 2H, CH2), 2.91 (t, J= 7.0 Hz, 4H, CH2), 3.72 (s, 

3H, CH3), 4.42 (s, 4H, CH2), 6.63  (s, 2H, NH2), 6.65 (m, 2H, Ar), 6.95 

(m, 2H, Ar), 7.00 (m, 2H, Ar), 7.01 (m, 2H, NH), 7.60 (s, 1H, NH), 8.02 

(s, 1H, NH), 11.20 (s, 1H). IR 3389, 3153, 1720, 1654, 1580 cm-1. 

Elemental analysis: calculated for C23H29N7O3 (451.52) % C 61.18; H 

6.47; N 21.71; found % C 61.13; H 6.49; N 21.70 
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1-(2-((5-(4-Fluorobenzyl)-1-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC7) 

 

Yield 95%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.89 (t, J= 7.0 Hz, 4H, 

CH2), 3.70 (s, 3H, CH3), 4.43 (s, 4H, CH2), 6.63 (s, 2H, NH2) 6.65 (d, J= 

8.0 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.07 (d, J= 8.0 Hz, 2H, Ar), 

7.39 (d, J= 8.0 Hz, 2H, Ar), 7.48 (s, 1H, NH), 9.43 (s, 1H, NH), 11.23 (s, 

1H, NH).  IR (Nujol) 3405, 3157, 1719, 1661, 1572 cm-1. Elemental 

analysis: calculated for C21H24FN7O3 (441.46) % C 57.13; H 5.48; N 

22.21; found % C 57.16; H 5.46; N 22.21. 

1-(2-((1-Benzyl-5-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-tetrahydro-

1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC8) 

 

Yield 98%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.87 (m, 4H, CH2), 3.80 

(s, 3H, CH3), 4.38 (s, 4H, CH2), 6.58 (s, 2H, NH2), 6.65 (m, 2H, Ar), 6.95 

(m, 2H, Ar), 7.25 (m, 1H, Ar), 7.26 (m, 2H, Ar), 7.31 (m, 2H, Ar), 7.62 

(s, 1H, NH), 9.43 (s, 1H, NH), 11.49 (s, 1H, NH). IR 3385, 3142, 1716, 

1669, 1570 cm-1. Elemental analysis: calculated for C21H25N7O3 

(423.47) % C 59.56; H 5.95; N 23.15; found % C 59.58; H 5.94; N 

23.19. 
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1-(2-((1-(4-Methoxybenzyl)-5-(4-methylbenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC15) 

 

Yield 89%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.19 (s, 3H, CH3), 2.93 

(t, J= 7.5 Hz, 4H, CH2), 3.77 (s, 3H, CH3), 4.40 (s, 4H, CH2), 6.65 (d, J= 

8.0 Hz, 2H, Ar), 6.73 (s, 2H, NH2), 6.94 (d, J= 8.0 Hz, 2H, Ar), 6.95 (d, J= 

8.0 Hz, 2H, Ar), 7.12 (d, J= 8.0 Hz, 2H, Ar), 7.81 (s, 1H, NH), 9.50 (s, 1H, 

NH), 11.11 (s, 1H, NH). IR  3420, 3170, 1722, 1597, 1594 cm-1. 

Elemental analysis: calculated for C22H27N7O3 (437.49) % C 60.40; H 

6.22; N 22.41; % C 60.43; H 6.22; N 22.38. 

1-(2-((1,5-bis(4-Methoxybenzyl)-4,6-dioxo-1,4,5,6-tetrahydro-1,3,5-

triazin-2-yl)amino)ethyl)guanidine (PC17) 

 

Yield 93%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.87 (m, 4H, CH2), 3.72 

(s, 6H, CH3), 4.45 (s, 4H, CH2), 6.60 (s, 2H, NH2), 6.65 (m, 4H, Ar), 6.95 

(m, 4H, Ar), 7.84 (s, 1H, NH), 9.38 (s, 1H, NH), 11.32 (s, 1H, NH). IR 

3412, 3190, 1725, 1652, 1583 cm-1. Elemental analysis: calculated for 

C22H27N7O4 (453.49) % C 58.27; H 6.00; N 21.62; found % C 58.29; H 

6.03; N 21.60. 
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1-(2-((5-(4-Chlorobenzyl)-1-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC18) 

 

Yield 91%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.94 (t, J= 7.2 Hz, 4H, 

CH2), 3.81 (s, 3H, CH3), 4.39 (s, 4H, CH2), 6.60 (s, 2H, NH2), 6.65 (d, J= 

8.5 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.32 (d, J= 8.0 Hz, 2H, Ar), 

7.39 (d, J= 8.5 Hz, 2H, Ar), 7.81 (s, 1H, NH), 9.42 (s, 1H, NH), 11.45 (s, 

1H, NH). IR 3408, 3163, 1721, 1655, 1580 cm-1. Elemental analysis: 

calculated for C21H24ClN7O3 (457.91) % C 55.08; H 5.28; N 21.41; 

found % C 55.09; H 5.26; N 21.47. 

1-(2-((1-(4-Methoxybenzyl)-4,6-dioxo-5-(4-(trifluoromethyl)benzyl)-

1,4,5,6-tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC23) 

 

Yield 84%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 4H, 

CH2), 3.69 (s, 3H, CH3), 4.40 (s, 4H, CH2), 6.65 (d, J= 8.2 Hz, 2H, Ar), 

6.95 (d, J= 8.5 Hz, 2H, Ar), 6.84 (s, 2H, NH2), 6.99 (d, J= 8.2 Hz, 2H, Ar), 

7.54 (d, J= 8.5 Hz, 2H, Ar), 7.78 (s, 1H, NH), 9.35 (s, 1H, NH), 11.23 (s, 

1H, NH). IR 3389, 3190, 1729, 1669, 1561 cm-1. Elemental analysis: 

calculated for C22H24F3N7O3 (491.47) % C 53.76; H 4.92; N 19.95; 

found % C 53.72; H 4.93; N 19.97. 
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1-(2-((1-(4-Bromobenzyl)-5-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC24) 

 

Yield 78%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.88 (m, 4H, CH2), 3.77 

(s, 3H, CH3), 4.41 (s, 4H, CH2), 6.58 (s, 2H, NH2), 6.65 (d, J= 8.0 Hz, 2H, 

Ar), 6.95 (m, 4H, Ar), 7.31 (d, J= 8.0 Hz, 2H, Ar), 7.68 (s, 1H, NH), 9.38 

(s, 1H, NH), 11.16 (s, 1H, NH). IR  3415, 3166, 1710, 1660, 1585 cm-1. 

Elemental analysis: calculated for C21H24BrN7O3 (502.36) % C 50.21; H 

4.82; N 19.52; found % C 50.20; H 4.86; N 19.51. 

1-(2-((5-(4-Bromobenzyl)-1-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC25) 

 

Yield 98%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.2 Hz, 4H, 

CH2), 3.81 (s, 3H, CH3), 4.37 (s, 4H, CH2), 6.65 (m, 2H, Ar), 6.73 (s, 2H, 

NH2), 6.95 (m, 4H, Ar), 7.31 (m, 2H, Ar), 7.56 (s, 1H, NH), 9.42 (s, 1H, 

NH), 11.32 (s, 1H, NH). IR 3396, 3149, 1724, 1666, 1578 cm-1. 

Elemental analysis: calculated for C21H24BrN7O3 (502.36) % C 50.21; H 

4.82; N 19.52; found % C 50.20; H 4.79; N 19.53. 
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1-(2-((1-(3,4-Dichlorobenzyl)-5-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC26) 

 

Yield 89%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.86 (m, 4H, CH2), 3.76 

(s, 3H, CH3), 4.40 (s, 4H, CH2), 6.59 (s, 2H, NH2), 6.65 (d, J= 8.0 Hz, 2H, 

Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 6.88 (m, 1H, Ar), 7.01 (m, 1H, Ar), 7.09 

(m, 1H, Ar), 7.86 (s, 1H, NH), 9.38 (s, 1H, NH), 11.40 (s, 1H, NH). IR 

3410, 3172, 1708, 1670, 1584 cm-1. Elemental analysis: calculated for 

C21H23Cl2N7O3 (492.36) % C 51.23; H 4.7; N 19.91; found % C 51.25; H 

4.74; N 19.87. 

1-(2-((1-(4-Methylbenzyl)-4,6-dioxo-5-(4-(trifluoromethyl)benzyl)-

1,4,5,6-tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC27) 

 

Yield 83%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.17 (s, 3H, CH3), 2.90 

(t, J= 7.3 Hz, 4H, CH2), 4.39 (s, 4H, CH2), 6.94 (m, 2H, NH2), 6.99 (m, 

2H, Ar), 7.02 (s, 2H, NH2), 7.12 (m, 2H, Ar), 7.54 (m, 2H, Ar), 7.83 (s, 

1H, NH), 9.41 (s, 1H, NH), 11.32 (s, 1H, NH). IR  3397, 3166, 1721, 

1660, 1579 cm-1. Elemental analysis: calculated for C22H24F3N7O2 

(475.47) % C 55.57; H 5.09; N 20.62; found % C 55.59; H 5.04; N 

20.67. 
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1-(2-((1-(3,4-Dichlorobenzyl)-5-(4-methylbenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC28) 

 

Yield 87%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.19 (s, 3H, CH3), 2.91 

(m, 4H, CH2), 4.42 (s, 4H, CH2), 6.88 (d, 1H, Ar), 6.94 (s, 2H, NH2), 6.99 

(s, 2H, Ar), 7.01 (s, 1H, Ar), 7.09 (s, 1H, Ar), 7.12 (m, 2H, Ar), 7.82 (s, 

1H, NH), 9.38 (s, 1H, NH), 11.25 (s, 1H, NH). IR 3412, 3172, 1718, 

1661, 1570 cm-1. Elemental analysis: calculated for C21H23Cl2N7O2 

(476.36) % C 52.95; H 4.87; N 20.58; found % C 52.97; H 4.82; N 

20.57. 

1-(2-((5-(4-Methoxybenzyl)-1-(4-methylbenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC29) 

 

Yield 89%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.19 (s, 3H, CH3), 2.91 

(t, J= 7.0 Hz, 4H, CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.59 (s, 2H, 

NH2), 6.65 (d, J= 8.0 Hz, 2H, Ar), 6.94 (d, J= 8.0 Hz, 2H, Ar), 6.95 (d, J= 

8.0 Hz, 2H, Ar), 7.12 (d, J= 8.0 Hz, 2H, Ar), 7.81 (s, 1H, NH), 9.40 (s, 1H, 

NH), 11.36 (s, 1H, NH). IR 3422, 3133, 1709, 1667, 1570 cm-1. 

Elemental analysis: calculated for C22H27N7O3 (437.50) % C 60.40; H 

6.22; N 22.41; found % C 60.40; H 6.22; N 22.41. 
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1-(2-((1-(4-Fluorobenzyl)-5-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC30) 

 

Yield 87%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.94 (m, 4H, CH2), 3.82 

(s, 3H, CH3), 4.39 (s, 4H, CH2), 6.65 (d, J= 8.0 Hz, 2H, Ar), 6.84 (s, 2H, 

NH2), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.07 (m, 2H, Ar), 7.39 (m, 2H, Ar), 

7.66 (s, 1H, NH), 9.47 (s, 1H, NH), 11.20 (s, 1H, NH). IR 3405, 3157, 

1719, 1661, 1572 cm-1. Elemental analysis: calculated for C21H24FN7O3 

(441.46) % C 57.13; H 5.48; N 22.21; found % C 57.10; H 5.49; N 

22.26. 

1-(2-((1-(4-Chlorobenzyl)-5-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC31) 

 

Yield 90% .m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.5 Hz, 4H, 

CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.63 (s, 2H, NH2), 6.65 (d, J= 

8.2 Hz, 2H, Ar), 6.95 (d, J= 8.2 Hz, 2H, Ar), 7.32 (d, J= 8.0 Hz, 2H, Ar), 

7.39 (d, J= 8.0 Hz, 2H, Ar), 7.80 (s, 1H, NH). IR 3407, 3125, 1718 cm-1. 

Elemental analysis: calculated for C21H24ClN7O3 (457.91) % C 55.08; H 

5.28; N 21.41; found % C 55.09; H 5.26; N 21.46. 
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1-(2-((5-(4-Methoxybenzyl)-4,6-dioxo-1-(4-(trifluoromethyl)benzyl)-

1,4,5,6-tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC32) 

 

Yield 93%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 3.72 

(s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (m, 2H, NH2), 6.95 (m, 2H, Ar), 6.99 

(m, 2H, Ar), 7.23 (s, 2H, NH2), 7.54 (m, 2H, Ar), 7.89 (s, 1H, NH), 9.14 

(s, 1H, NH), 11.45 (s, 1H, NH). IR 3388, 3150, 1719, 1667, 1560 cm-1. 

Elemental analysis: calculated for C22H24F3N7O3 (491.47) % C 53.76; H 

4.92; N 19.95; % C 53.76; H 4.92; N 19.95. 

1-(2-((5-(Benzo(d)(1,3)dioxol-5-ylmethyl)-1-(4-methoxybenzyl)-4,6-

dioxo-1,4,5,6-tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine 

(PC33) 

 

Yield 89%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 3.72 

(s, 3H, CH3), 4.42 (s, 4H, CH2), 6.51 (m, 1H, Ar), 6.63 (s, 2H, NH2), 6.65 

(s, 2H, CH2), 6.76 (s, 2H, Ar), 6.86 (m, 1H, Ar), 6.95 (m, 2H, Ar), 7.03 

(m, 1H, Ar), 7.86 (s, 1H, NH), 9.38 (s, 1H, NH), 11.24 (s, 1H, NH). IR 

3405, 3157, 1719, 1661, 1572 cm-1. Elemental analysis: calculated for 

C22H25N7O5 (467,48) % C 56.52; H 5.39; N 20.97; found % C 56.50; H 

5.38; N 20.98. 
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1-(2-((1-(4-iodobenzyl)-5-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC34) 

 

Yield 90%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.0 Hz, 4H, 

CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.59 (s, 2H, NH2), 6.65 (d, J= 

8.0 Hz, 2H, Ar), 6.83 (d, J= 8.0 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 

7.52 (d, J= 8.0 Hz, 2H, Ar), 7.84 (s, 1H, NH), 9.36 (s, 1H, NH), 11.41 (s, 

1H, NH). IR 3390, 3153, 1723, 1647, 1584 cm-1. Elemental analysis: 

calculated for C21H24IN7O3 (549.36) % C 45.91; H 4.40; N 17.85; found 

% C 45.93; H 4.40; N 17.87. 

1-(2-((5-(4-Iodobenzyl)-1-(4-methoxybenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC35) 

 

Yield 95%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (m, 4H, CH2), 3.72 

(s, 3H, CH3), 4.42 (s, 4H, CH2), 6.65 (d, J= 8.2 Hz, 2H, NH2), 6.83 (d, J= 

8.2 Hz, 2H, Ar), 6.95 (d, J= 8.2 Hz, 2H, Ar), 7.23 (s, 2H, NH2), 7.52 (d, J= 

8.2 Hz, 2H, Ar), 7.81 (s, 1H, NH), 9.25 (s, 1H, NH), 11.56 (s, 1H). IR 

3405, 3157, 1719, 1661, 1572 cm-1. Elemental analysis: calculated for 

C21H24IN7O3 (549.36) % C 45.91; H 4.40; N 17.85; found % C 45.90; H 

4.45; N 17.82. 
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1-(2-((1-(4-Methoxybenzyl)-5-(4-nitrobenzyl)-4,6-dioxo-1,4,5,6-

tetrahydro-1,3,5-triazin-2-yl)amino)ethyl)guanidine (PC36) 

 

Yield 97%. m.p. >250 °C. 1H NMR (DMSO-d6) δ 2.91 (t, J= 7.5 Hz, 4H, 

CH2), 3.72 (s, 3H, CH3), 4.42 (s, 4H, CH2), 6.63 (s, 2H, NH2), 6.65 (d, J= 

8.2 Hz, 2H, Ar), 6.95 (d, J= 8.0 Hz, 2H, Ar), 7.32 (d, J= 8.0 Hz, 2H, Ar), 

7.85 (s, 1H, NH), 8.17 (d, J= 8.2 Hz, 2H, Ar), 9.42 (s, 1H, NH), 11.12 (s, 

1H, NH). IR 3405, 3157, 1719, 1661, 1572 cm-1. Elemental analysis: 

calculated for C21H24N8O5 (468.47) % C 53.84; H 5.16; N 23.92; found 

% C 53.85; H 5.16; N 23.97. 

.  
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4. TRPV1 Channel  

4.1 TRPV1: The Channel 

Transient Receptor 

Potential Channel 

Vanilloid type 1, or 

TRPV1 (Figure 1), is a 

non-selective cation 

channel receptor. It is 

directly activated by 

numerous external 

stimuli, both physical 

(such as low pH and 

high temperature) and 

chemicals like 

capsaicin (Figure 2A) and resiniferatoxin (RTX) (Figure 2B). These last 

are two natural active components contained in chili pepper and in 

the latex of a cactus-like plant 

the Euphorbia resinifera commonly 

found in Morocco, respectively.1,2 

TRPV1 belong to the Transient 

Receptor Potential (TRP) family; 

these receptors are constituted by 

six transmembrane domains, TM1-

TM4 are voltage sensing while 

TM5-TM6 constitute the pore.3 

TRPV1 is a non-selective cation 

channel with a better permeability 

to Ca2+.  

Both N and C terminal domains are 

intracellular. The N domain has three ankyrin repeated domains, 

important to bind multiple ligands and to modulate channel 

Figure 1. TRPV1 Channel 3D structure. 

Figure 2. Capsaicine (2A) and Resiniferatoxin (2B). 
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sensitivity.4 The C domain presents the binding sites for calmodulin 

and PIP2.5 

TRPV1 is localized in DRG on both nociceptive C and A fibers;6 in 

brain it is located in dopaminergic neurons, in substantia nigra, in 

hippocampal pyramidal neurons, in hypothalamic neurons, in the 

locus coeruleus and in the cortex.7 

TRPV1 is present also in non-neuronal structures like epidermal 

keratinocytes, urothelium, liver, bladder, smooth muscle, 

polymorphonuclear granulocytes and macrophages.  

In DRG, TRPV1 is co-localized with both CBRs and  opioid receptor, 

the activation of these two caused a diminution of vanilloid channels 

activity by down-regulation of PKA activity. 

4.2 Role of TRPV1 in pain 

TRPV1 is an important component of pain information transmission, 

its activation enhances the channel Ca2+ permeability with 

consequent increase of Ca2+ intracellular concentration, which results 

in neuronal depolarization and transmission of the pain information 

to the supraspinal center. 

As illustrated above numerous pain mediators influence the activity 

of this channel, some of these such as bradykinin and prostanoids 

promote its opening, other like ECs and opioids induce its closure. 

Generally, the activation is followed by a desensitized state, which 

makes fibers insensitive to further stimulation. 

The TRPV1 expressed in hypothalamus are responsible for increase in 

body temperature during inflammatory state.   

In addition to endogenous compounds that interact via second 

messengers with the receptor, the endovanilloids (EV) cause directly 

the channel opening. The principal EVs acting on TRPV1 are: AEA 

(Figure 3A),8 NADA (Figure 3B), which is the most potent known EV,9 

and AA metabolites of lipoxygenase action like 12-(S)- and 15-(S)-

hydroperoxyeicosatetraenoic acid (HPETE) (Figure 3C). 
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Figure 3. Three endogenous TRPV1 ligands: Anandamide (3A), N-Arachidonoyl dopamine (3B) and 15-(S) 

hydroperoxyeicosatetraenoic acid (3C). 

TRPV1 is modulated by PKA and PKC phosphorylation.10 The PKA 

phosphorylation makes the receptor more sensitive to the AEA, while 

the PKC enhances the receptor response to capsaicin. 

4.3 TRPV1 exogenous modulators 

The importance of this receptor in nociception information 

transmission makes it a promising target for pain treatment. As 

mentioned above, both the activation with consequent 

desensitization and the inhibition of TRPV1 have as effect the 

blocking of the neuron depolarization and consequent progression of 

the pain information. Thus compound like capsaicin and, the more 

powerful, RTX, produce analgesic effects by desensitization.11  

The problem with the use of agonists is that before desensitization 

effect there is the activation of the TRPV1, which results in an initial 

neuronal excitation, causing 

pain before having the analgesic 

effect. 

For this reason the antagonists 

are preferred. In tests carried 

out on neuronal cell cultures 

the synthetic analogue of 

capsaicin, capsazepine (Figure 4), has been shown to reduce directly 

Figure 4. Structure of the TRPV1 antagonist Capsazepine. 
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the calcium influx induced by an agonist thus blocking the 

depolarization of the cell. In vivo studies confirmed the ability of 

capsazepine to counteract the hyperalgesic effect induced by 

administration of Freund’s adjuvant on paw.12,13 

Pain therapy with TRPV1 antagonist is considered broad-spectrum 

analgesia, lacking the typical side effects of both NSAIDs and 

opioids.14  

In recent years, the interest on TRPV1, as potential target for pain 

therapy, is increased. 

 
Figure 5. Structure of three different TRPV1 modulators. 

Recently Novartis developed a new agonist, SDZ-249665 (Figure 5A), 

which was shown to be more potent than capsaicin orally.15 Another 

interesting compound is the amide AMG-9810 (Figure 5B) that 

showed in vitro interesting characteristic as TRPV1 antagonist, and 

that in vivo demonstrated good anti-inflammatory and analgesic 

properties.16 

The ureido derivative SB-705498 (Figure 5C) is a TRPV1 antagonist 

actually is in phase II of clinical trials and is a promising compound for 

the treatment of acute migraine.17 

Another class of compounds developed by Merck and Princeton 

University are characterized by the presence of a heterocycle ring.   

The further development of this collaboration led to the discovery of 

the isoxazole derivative (Figure 6), which showed analgesic property 
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on Hargreaves test. In this assay it was injected capsaicin into the 

paw, which causes thermal hyperalgesia.18 

  

Figure 6. Isoxazole TRPV1 modulator. 
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4.4 TRPV1 Channels: Results and Discussion 

Recently a new compound endowed with triazine core, namely       

N2-(3-(dimethylamino)propyl)-N4,N6-bis(4-fluorophenethyl)-1,3,5-

triazine-2,4,6-triamine also known as 8aA, has been reported as the 

most potent TRPV1 blocker known.19 

This compound acts as uncompetitive antagonist of TRPV1. The goal 

of the compounds inhibiting TRPV1 with this mechanism is the 

activity-dependent binding that occurs only when the receptor is 

complexed with the agonist or when the channel is in the open state, 

blocking only highly activated receptors. 

Triazine 8aA binds a site located deep within the pore, accessible 

only when the channel is open. This antagonism strategy is better 

than a complete pharmacological block of TRPV1 because the TRPV1 

inhibition with high affinity irreversible, competitive vanilloid 

antagonists can result in hyperthermia and other side effects.20 

On these bases and considering the connections between 

prokineticin system and vanilloid receptors,21 the in vivo 

antinociceptive activity of the triazinedione PCs described on the 

chapter 3 might be produced at least in part by the inhibition of 

TRPV1. As consequence we decided to evaluate the triazinedione PCs 

TRPV1-blocking propriety. To this purpose were selected two of the 

most active PCs, PC7 and PC27 as well as the reference PC1.  

The first evaluation made was about the protonation states of these 

compounds. The pKa value for these PCs, calculated with Epik 22,23 

was 12.44, indicating that at physiological pH they can be protonated 

more than 8aA, which showed a pKa value of 9.51. 

Both agonistic and antagonistic activity of these compounds was 

evaluated on TRPV1 measuring the effect of the influx of Ca2+ on HEK-

23 cells, which overexpress the human TRPV1 receptor (hTRPV1). All 

tested compounds showed no or very low agonist activity (PC27 

EC50> 50 M with an efficacy at 100 M at 20%) (Table 1). 
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PC1 and PC27 inhibited the capsaicin (0.1 M)-induced response in 

hTRPV1-HEK-23 cells, but their antagonist activity was weaker than 

8aA, while PC7 was not able to inhibit the capsaicin effect (Table 1). 

These results indicate that the substitution of the ethyl group with a 

fluorine atom in 4-position on the N-5-benzyl was not tolerated, 

conversely the contemporary substitution of the ethyl with a 

trifluoromethyl group in 4-position of the N-5-benzyl and of methoxy 

with a methyl group on the N-1-benzyl group, causes an increase in 

activity, from 40.8 ± 0.9 M of PC1 to 27.2 ± 1.9 M of PC27 (Table 

1). 
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Name Compound 

TRPV1 IC50 M 

(cells pre-

treated with 

capsaicin 0.1 

M) 

TRPV1 EC50 

M 

(efficacy at 

100 M) 

8aA 

 

21.7±0.7 

(20.5±1.9) 

NA 

(<10) 

PC1 

 

40.8±0.9 

(40.5±1.1) 

NA 

(<10) 

PC7 

 

>100 

(>100) 

NA 

(<10) 

PC27 

 

27.2±1.9 

(31.0±1.0) 

NA 

(<10) 

Table 1. In vitro TRPV1 activity of selected triazine derivatives. 

As previously described, TRPV1 and PKR are often co-located with the 

TRPA1; suggesting that the pro-inflammatory activity mediated by 

the TRPA1 might be due in part to release of PK and activation of 

PKR1 receptors. For this connection it appeared interesting to study if 

the triazinedione PCs and 8aA interact also with TRPA1, however 

none of the tested compounds showed any activity on this channel 

(Table 2). 
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Name Compound 

TRPA1 IC50 

M vs AITC 

100 M 

TRPA1 EC50 M 

(efficacy at 100 

M vs AITC 100 

M) 

8aA 

 

>100 
NA 

(52.7±2.4) 

PC1 

 

>100 
NA 

(18.2±0.1) 

PC7 

 

>100 
NA 

(0) 

PC27 

 

>100 
>50 

(42.6±2.6) 

Table 2. In vitro TRPA1 activity of selected triazine derivatives. 

To evaluate the selectivity of these compounds, triazinodione PCs 

and 8aA were also tested against TRPM8 by measuring their effect on 

TRPM8-mediated elevation of intracellular Ca2+ in HEK-293 cells 

stably transfected with the rat recombinant TRPM8 channel.  

Both agonistic and antagonistic properties of these compounds were 

tested (Table 3); PC1 and PC7 did not show any agonist activity, 

conversely to PC27 displayed a weak activity, causing desensitization 

of TRPM8 after activation with icilin 0.25 M. In addition, PC1 

showed a weak antagonist activity.  
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Name Compound 

TRPM8 IC50 

M vs icilin 

0.25 M 

TRPM8 EC50 M 

(efficacy at 100 

M vs AITC 100 

M) 

8aA 

 

0.95±0.03 
1.1±0.1 

(70.2±1.1) 

PC1 

 

57.5±0.8 
NA 

(<10) 

PC7 

 

>100 
NA 

(<10) 

PC27 

 

34.2±1.5 
57.0±4.7 

(31.1±1.7) 

Table 3. In vitro TRPM8 activity of selected triazine derivatives. 
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