
Proceedings of

COMPSTAT 2014

21st International Conference on

Computational Statistics

hosting the 5th IASC World Conference

Geneva, Switzerland August 19–22, 2014

Manfred Gilli
Gil Gonzalez-Rodriguez
Alicia Nieto-Reyes (Eds.)

ISBN: 978-2-8399-1347-8





Proceedings of COMPSTAT 2014



Manfred Gilli
Geneva School of Economics and Management
University of Geneva
Switzerland
Manfred.Gilli@unige.ch
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Preface

The 21st International Conference on Computational Statistics (COMPSTAT 2014) is held in
Geneva. This year the Conference also hosts the 5th IASC World Congress. The Geneva edition
coincides with the 40th anniversary of this biennial event which started in 1974 in Vienna and has
been organized all over Europe. In the preface of the 1974 proceedings we can read: ‘If we succeed
in making statisticians aware of the great possibilities of modern computing facilities, which at
any rate go beyond simple numerical computations, the Symposium serves its purpose.’ This
goal has since been reached with certainty, as by now statisticians fully integrate computational
tools in their work.

The Geneva edition seems to pursue ‘the success story’ with more than 400 participants and 370
presentations. The electronic Book of Proceedings includes a selection of 84 papers covering 700
pages, all peer reviewed.

Keynote lectures are addressed by Peter Bühlmann from the Swiss Federal Institute in Zurich,
Anthony Davison from the Swiss Federal Institute in Lausanne and Xuming He from University
of Michigan, USA. Two tutorials are o↵ered, one by Dietmar Maringer, University of Basel,
Switzerland and one by Stefan Van Aelst from KU Leuven, Belgium.

The editors thank the contributing authors, the referees and the members of the scientific pro-
gram committee, and most importantly, all participants who are the soul of the conference.

The next edition of COMPSTAT will take place in Oviedo, Spain on August 23-26, 2016 and
will be organized by Prof. Ana Colubi. We wish her the best success.

COMPSTAT 2014 Editors:

Manfred Gilli, University of Geneva, Switzerland.
Gil González-Rodŕıguez, University of Oviedo, Spain.
Alicia Nieto-Reyes, University of Cantabria, Spain.
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Incomplete longitudinal binary responses in marginal model 25

Grzegorz Konczak

On the modification of the non-parametric test for comparing locations
of two populations 35

Joan del Castillo, Maria Padilla and Isabel Serra

Comparison of techniques for extreme values using financial data 45

Paulo C. Rodrigues, Andreia Monteiro and Vanda Lourenço

New insights into the usefulness of robust singular value decomposition
in statistical genetics 53

Borja Lafuente–Rego and Jose Antonio Vilar

Time series clustering based on quantile autocovariances 61

ix



x Contents

Frederick Kin Hing Phoa

A Graphical User Interface Platform of the Stepwise Response Refine-
ment Screener for Screening Experiments 69

Helmut Vorkauf

Unravel: A Method and a Program to Analyze Contingency Tables,
Unveiling Confounders. 81

Juan Eloy Ruiz-Castro

Preventive maintenance in a complex warm standby system. A transient
analysis 89

Pranesh Kumar and Faramarz Kashanchi

Linear Regression Models Using L1, L2 and L1-Norms 97

Simon Wilson et al.

Using Storm for scaleable sequential statistical inference 103
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Propensity score matching with
clustered data: an application to
birth register data

Massimo Cannas, University of Cagliari, massimo.cannas@unica.it
Bruno Arpino, Universitat Pompeu Fabra, bruno.arpino@upf.edu

Abstract. In this paper we consider the implementation of propensity score matching for clus-
tered data. Di↵erent approaches to reduce bias due to cluster level confounders are considered:
matching within clusters and random or fixed e↵ects models for the estimation of the propensity
score. All the methods are illustrated with an application to the estimation of the e↵ect of
caesarean section on the Apgar score using birth register data from Sardinia hospitals.

Keywords. Causal inference, Propensity score, Matching, Multilevel data, Caesarean section,
Apgar score.

1 Introduction

Methods based on the propensity score are widely used in many fields to estimate causal e↵ects
with observational data. When treatment assignment is not randomized but it is reasonable
to assume that selection is on observables, matching (as well as weighting and stratification)
methods are used to adjust for di↵erent distributions of the observed characteristics in the
treated and the control groups [7]. Apart from few exceptions [2, 8, 11] these methods have been
considered only for unstructured data. However, in many applications data show a hierarchical
structure (e.g., students nested into schools, patients nested into hospitals, individuals nested
into geographical areas). We consider situations where both individual and cluster-level (e.g.,
hospital) characteristics can influence both treatment intake and the outcome. In these contexts
ignoring cluster-level confounding factors would introduce a bias.

In this paper, we consider di↵erent approaches to take into account the hierarchical structure
of the data with the aim of reducing the bias due to group-level characteristics. These methods
are particularly useful when it is not possible to measure all cluster-level confounders. To
illustrate the methods, we consider estimating the e↵ect of caesarian section on the Apgar score.
In our application, the relevant structure is represented by a hierarchy of 2 levels (individuals
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nested into hospitals) and we will consider this type of data structure in the following. However,
the approaches we consider can be easily adapted to more complex structures.

Propensity score matching with clustered data

Suppose we have a two-level data structure where N micro units at the first level, indexed
by i (i = 1, 2, ..., nj), are nested in J macro units at the second level (clusters), indexed by j
(j = 1, 2, ..., J). We consider a binary treatment administered at the individual level, T , and an
outcome variable, Y also measured at the individual level. Pre-treatment variables can be first
(X) or second level (Z) variables.

Under the potential outcome framework, let Yij(t) be the potential outcome if unit ij was
assigned to treatment t, t 2 {0, 1}. An individual causal e↵ect is a comparison of Yij(1) with
Yij(0), yet only one of the two potential outcomes is observed depending on the value of Tij .
Usually, the Average Treatment e↵ect on the Treated (ATT) is considered as an interesting
summary of individual causal e↵ects: ATT = E(Yij(1) � Yij(0) | Tij = 1).

To identify the ATT with observational data, the following assumptions are often invoked:

• SUTVA: If T = T 0 then Y (T ) = Y (T 0) for all T, T 0 in {0, 1}N

• Unconfoundedness: Y (1), Y (0) ? T |(X, Z);

• Overlap: 0 < P (T = 1 | (X, Z)) < 1.

The Stable Unit Treatment Value Assumption (SUTVA, [9]) requires that potential outcomes
for a unit are not a↵ected by the treatment received by other units, and there are no hidden
versions of the treatment. Unconfoundedness asserts that the probability of assignment to
a treatment does not depend on the potential outcomes conditional on observed covariates
[9]. Unconfoundedness essentially assumes that within subpopulations defined by values of the
covariates, we have random assignment of the treatment; it rules out the role of unobserved
variables and therefore is often referred to also as selection on observables [7].

Rosenbaum and Rubin [9] showed that under the previous assumptions, adjustment on the
propensity score eliminates bias due to observed confounders. The propensity score, e, is defined
for each unit as the probability to receive the treatment conditional given its covariate values.
In our setting, assuming that all covariates are observed we have eij = Pr(Tij = 1|(Xij , Zj)).
The propensity score is a one-dimensional summary of the multidimensional set of covariates,
such that when the propensity score is balanced across the treatment and control groups, the
distribution of all covariates are balanced in expectation across the two groups. In this way
the problem of adjusting for a multivariate set of observed characteristics reduces to adjusting
for the one-dimensional propensity score and this can be done using several Propensity Score
Matching (PSM) algorithms that, for each given unit, determine a set of units in the opposite
treatment condition with similar value for the propensity score.

In observational studies the propensity score is not known and must be estimated from the
data, usually using logit or probit models. Obviously, an incorrectly estimated propensity score
may lose its balancing property. More importantly, if one or more variables a↵ecting the selection
into treatment and potential outcomes are not observed, then unconfoundedness is violated and
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ATT estimators based on PSM will be biased. In fact, PSM can only balance variables used in
the propensity score model. In the following we shall assume that we have good measurement
on all individual level confounders, X, but we may have no information on all or some of the
second-level confounders, Z. We consider di↵erent approaches to implement PSM with a 2-level
data structure. Two groups of strategies can be adopted in order to take into account the
hierarchical structure of the data: implementing the matching within clusters; using a model
for the estimation of the propensity score that takes the hierarchical structure explicitly into
account. Therefore, the approaches we compare are as follows:

A Single-level propensity score; matching on the pooled dataset;

B Single-level propensity score; matching only within-clusters;

C Single-level propensity score; preferential within-cluster matching;

D Random-e↵ect propensity score; matching on the pooled dataset;

E Fixed-e↵ect propensity score; matching on the pooled dataset.

Approach A ignores completely the hierarchical structure. In this case, if we do not include
all relevant confounders at the second level in the propensity score and obtain a good balance
on all of them, our ATT estimator based on the PSM will be biased. Approach B deals with
this problem by matching units within clusters only. This automatically guarantees that all
cluster-level variables (measured and unmeasured) are perfectly balanced. This can come to a
cost. Control units to be matched with treated units are only searched within the same cluster.
In this way it could be that we lose some good match and so the balancing of individual level
variables could be worse. Moreover, if we impose a caliper it could be that we do not find a
control matched unit that we would find in other clusters. So, an additional problem could be
losing some treated units.

To avoid these problems and combine the benefits of approaches A and B, approach C starts
by searching control units within cluster. If none is found, control units are searched in other
clusters. This approach improves the balancing of cluster level variables with respect to approach
A and avoids the lost of units of approach B.

In alternative to exploiting the hierarchical structure in the implementation of the matching,
approaches D and E take it into account when modelling the propensity score. In particular,
approach D and E use a random or fixed e↵ect, respectively, to represent unmeasured cluster
level variables. Arpino and Mealli [2] and Thoemmes and West [11] showed that PSM using
random or fixed e↵ects models are able to reduce the bias of ATT due to unmeasured cluster
level variables. However, our simulation exercise is more realistic because it is inspired by a real
case studies, it involves a larger number of individual level variables and strongly unbalanced
dataset.

Estimating the e↵ect of caesarian section on Apgar score

Apart from individual level variables, the literature suggested the relevance of hospital level
factors both on the decision of taking a medical treatment and on the medical outcomes for
several procedures. In other words, these cluster level variables may act as confounders and so
the researcher should adjust the analysis accordingly. For example, Caceras et al. [4] and Bragg
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et al. [3] indirectly measured the impact of hospital variables on the likelihood of a caesarean
delivery. Similarly, since the work of Hughes et al. [6] it is clear that these variables may also
a↵ect the quality of the outcome. When we refer to unobserved variables at the hospital level
we are referring to variables whose role has been proved or conjectured by previous studies; for
example variables which do not vary at the hospital level for a reasonably long period of time,
like obstetrician practice, physicianÕs preferences and guidelines promoting or restricting the
liberal use of caesarean sections. Clearly, it is not always possible to observe all hospital level
factors that contribute to the decision of operating a caesarean section and may also impact
on the infantÕs health as measured by the Apgar score. To this end we adopt the strategies
detailed in the previous section.

2 Data

The data set we consider contains information on deliveries occurred in the 22 hospitals of the
Italian region of Sardinia in 2010 and 2011. The source is the o�cial form on the birth event
(known as CedAP) filled by physicians after the birth and accounting for all hospitalized births in
the specified period. The form is divided in three parts containing sociodemographic information
on the mother, the pregnancy and the infant. From the initial population of 23,925 observations
we extracted the subset of non-complicated pregnancies in order to better isolate the e↵ect of the
caesarian section on the target variable. In particular, we selected nulliparous women at 32 or
more weeks of gestational age with a singleton and living infant in vertex (head-down) position,
without birth anomalies. We further restrict the sample to mothers aged between 15 and 44. The
subset of non-complicated pregnancies is widely used in observational studies related to cesarean
section, for example [3, 4] make analogous variable selections, but the former study also limits
the sample to hospitals with almost 500 deliveries per year. The selected subset contains 14,757
cases clustered in 20 hospitals (the observations of two hospitals were removed since after the
selection they contained only treated or untreated women). Proportions of caesarean sections
across hospitals vary from a minimum of 0.11 to a maximum of 0.64 with an average of 0.35 (see
Table 1). We focus on the 5-minute Apgar score as the outcome variable. This score is a simple
and widely established indicator of the infantÕs health. It is well known that low Apgar scores
are strongly associated with high mortality rates [1]. In our sample the proportion of low (< 7)
scores is 0.0064. The score distribution is highly skewed with an average score of 9.54.

We built the propensity score model for the probability of caesarean section relying on a set
of clinical (X) and social (Z) variables that proved significant in previous studies. In the first
group of predictor we have infant weight, motherÕs gestational age, induction of labour and
pregnancy related pathologies. In the second group we have socio-demographic information like
maternal age and maternal education

3 Empirical Results

We start by reporting in Table 2 the mean di↵erences of covariates across treated and untreated
women for each balancing strategies. The last row of the table averages the (absolute) di↵erences
over all covariates and it known as the standardized bias (ASAM), an overall measure of covari-
ate balance. We report the balance before matching and compare it with the balance we obtain
with approaches A, B, C, D and E. Several variables showed a standardized bias higher than
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Hospital N. births N. caesarean o/o caesarean o/oo low apgar
sections sections infants

1 2,532 1,166 46.0 16.5
2 1,788 623 34.8 2.7
3 1,687 540 32.0 5.3
4 1,473 632 42.9 14.2
5 1,253 410 32.7 0.7
6 1,197 428 35.7 3.3
7 980 240 24.4 2.0
8 875 238 27.2 5.7
9 529 190 35.9 3.7
10 434 135 31.1 6.9
11 403 164 40.6 0
12 396 117 29.5 7.5
13 351 134 38.1 8.5
14 266 74 27.8 7.5
15 208 99 47.5 9.6
16 191 122 63.8 10.4
17 103 40 38.8 9.7
18 50 9 18.0 20
19 32 13 40.6 0
20 9 1 11.1 0
Total 14,757 5,375
Mean 737.8 268.7 35.0 6.75

Table 1: Number of cesarean sections and low Apgar infants by hospital.

commonly accepted threshold (5% or 10%) representing substantive unbalance before matching.
All considered approaches were e↵ective in reducing imbalance even if approaches B and C show
a slightly worse balance. However, these methods compared to method A take into account
possible hospital level confounding e↵ects and give anyway acceptable balance of all individual
covariates. In particular, method B should be the preferred one given that it automatically
balances all hospital level factors but still guarantees good balance of individual observed con-
founders compared to the other approaches. Finally, approaches D and E give slightly better
ASAM than B and C for individual level covariates even if the balance of unobserved covariates
at the hospital level is not guaranteed as is in within cluster matching.

In Table 3 the total number of treated units dropped due to the caliper option is shown. Here
the caliper is 0.25 in standard deviation units so all treated units with a propensity score (e)
outside the range (e� 2�e, e+2�e), where �e indicates the standard deviation of the propensity
score, will be discarded. When matching within hospitals we keep the same criterion by using the
standard deviation of the clusters as the reference value. The matched dataset were obtained
using macros based on the Matching package [10].It is interesting noting that the number of
drops is not a constant proportion of the cluster size (not shown), as the covariate distribution
may vary across clusters.

In Table 4 we show the ATT estimate for unmatched (i.e. the raw e↵ect prior to any
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Variable Before A B C D E

Maternal Age (years)

< 20 -14.942 -0.632 -0.552 -0.551 -0.936 -1.685

20-24 -12.461 1.254 2.278 2.269 1.593 1.223

25-29 -15.048 0.151 1.778 1.780 0.915 1.257

30-35 -6.119 -0.708 -0.854 -0.818 -2.297 0.288

> 35 26.672 0.128 -1.435 -1.461 1.035 -1.383

Maternal Education

Less than High School -2.534 0.239 -4.264 -4.360 -2.495 -3.746

High School 0.575 -1.359 1.794 1.1784 0.452 2.172

Graduate or more 2.802 -0.997 3.063 2.998 0.581 -0.235

Missing -0.056 0.828 0.418 0.688 2.849 2.910

Infant Weight (grams)

< 2500 21.498 0.524 0.413 0.402 0.620 -0.291

2500-4000 -23.880 -1.700 -2.542 -2.544 -0.120 0.193

>4000 9.138 2.187 3.782 3.856 1.160 0.104

Labor Induction -5.038 -1.547 0.393 0.437 -2.562 -2.813

Gestational Age

Preterm (< 37 weeks) 23.273 -1.789 -1.584 -1.622 -1.937 0.193

Early norm (37 � 38 weeks) 26.950 0.400 -1.583 -1.486 -0.099 -1.933

Late norm (� 39 weeks) -40.737 0.798 2.522 2.495 1.367 1.697

Pathology during pregnancy⇤ 20.756 0.353 4.225 4.088 2.616 1.447

ASAM 14.863 0.917 1.970 1.981 1.390 1.386

⇤ This is a dichotomous variable set to 1 if one (or more) of the following diseases occurred during pregnancy:
Diabetes mellitus, Eclampsia, Hypertension, Placenta Previa.

Table 2: Mean di↵erences of mothers characteristics before and after matching.

Hospital N. births N. caesarean N. drops N. drops N. drops N.drops N.drops
sections A B C D E

14,757 5,375 0 38 0 0 0

Table 3: Number of dropped treated units.

adjustment) and matched datasets. The e↵ect of caesarean is consistently estimated to be
positive: it increases the risk of low Apgar score. It is worth noting that approaches B and C
that control for hospital factors show considerably lower estimates than approach A. This may
signal a possible overestimation of the e↵ect of caesarean section when hospital confounding
e↵ects associated to higher prevalence of this section mode are not taken into account. Similarly,
also multilevel and fixed e↵ect propensity score models (approaches D and E) yield a pooled
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estimate lower than that of approach A. Clearly, approaches B-C and D-E have a higher mean
ASAM than approach A (1.197-1.198 and 1.390-1.386 versus 0.94) and this should be considered
the cost of balancing the potential confounders at the hospital level. is not surprising: indeed
these two matching strategies are expected to diverge when there is strong imbalance at the
hospital level but not globally.

Strategy Without A B C D E

Metrics match

Balance

Drops 0 0 38 0 0 0

ASAM 14.8 0.91 1.97 1.98 1.39 1.38

# of outcomes (every 1000 individuals)

in treated 10.9 10.9 11.0 10.9 10.9 10.9

in untreated 5.2 9.1 9.6 9.7 9.9 9.9

ATT 5.75 1.80 1.40 1.23 1.02 1.07

Table 4: Empirical results for unmatched and matched subsets (strategies A-E). For each strat-
egy: Drops is the number of dropped treated units; ASAM is the average standardized mean
di↵erence in covariates values across treated and untreated units; ATT is the mean di↵erence
between the number of outcomes in treated and untreated groups.

Simulation study

Motivated by previous empirical analysis we made a simulation experiment which illustrates
the implications of di↵erent matching strategies when there is unobserved confounding at the
cluster level. We followed a semi-empiric simulation strategy (see for example Huber et al. [5])
in the sense that we kept the original set of covariates and introduced an additional hospital
level variable (H) to analyze the confounding e↵ect. The variable H is set up constant for
all observations in the same hospital. We then simulated the e↵ect of a null, mild and strong
confounding e↵ect of H on the balance and the ATT by increasing its coe�cient (�H) in the
outcome and treatment equations.

Simulation results show that when there is no unobserved confounding (�H = 0) approaches
B-E yield a similar average balance, which is only slightly higher than the balance attained
in approach A, which is the best approach in this situation. However, when the size of the
confounding e↵ect increases, approaches B-E yield considerably lower average balance and bias
than approach A and so should be preferred when unobserved confounding at the cluster level
is suspected.

4 Concluding remarks

In this paper we discuss the advantages and drawbacks of di↵erent techniques to implement
propensity score matching with clustered data. We apply these techniques to a population
dataset containing information on the birth event in a two year period, clustered in twenty
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hospitals. When clusters size are big as in our application and there is potential confounding
due to unobserved hospital level variables, an e↵ective approach consists in implementing the
matching within clusters or starting with a within matching approach and then use the pooled
sample for remaining unmatched cases.
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