

University of Cagliari

PhD Course in

Electronic and Computer Engineering

Class XXVI

ACQUISITION SYSTEMS AND DECODING ALGORITHMS OF

PERIPHERAL NEURAL SIGNALS FOR PROSTHETIC APPLICATIONS

Scientific field

ING‐INF/01 (Elettronica)

Author: NICOLA CARTA

PhD Course Coordinator: PROF. FABIO ROLI

Advisor: PROF. LUIGI RAFFO

Academic year of PhD defence 2012 – 2013

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

IN INGEGNERIA ELETTRONICA ED INFORMATICA

Ciclo XXVI

ACQUISITION SYSTEMS AND DECODING ALGORITHMS OF

PERIPHERAL NEURAL SIGNALS FOR PROSTHETIC APPLICATIONS

Settore scientifico disciplinare di afferenza

ING‐INF/01 (Elettronica)

Presentata da: NICOLA CARTA

Coordinatore Dottorato PROF. FABIO ROLI

Tutor/Relatore PROF. LUIGI RAFFO

Esame finale anno accademico 2012 – 2013

Un grazie infinito alla mia famiglia ed alla mia ragazza

i

Abstract

During the years, neuroprosthetic applications have obtained a great deal of attention by
the international research, especially in the bioengineering field, thanks to the huge invest-
ments on several proposed projects funded by the political institutions which consider the
treatment of this particular disease of fundamental importance for the global community.
The aim of these projects is to find a possible solution to restore the functionalities lost by a
patient subjected to an upper limb amputation trying to develop, according to physiological
considerations, a communication link between the brain in which the significant signals are
generated and a motor prosthesis device able to perform the desired action. Moreover, the
designed system must be able to give back to the brain a sensory feedback about the sur-
rounding world in terms of pressure or temperature acquired by tactile biosensors placed at
the surface of the cybernetic hand. It in fact allows to execute involuntary movements when
for example the arm comes in contact with hot objects.

The development of such a closed-loop architecture involves the need to address some
critical issues which depend on the chosen approach. Several solutions have been proposed
by the researches of the field, each one differing with respect to where the neural signals are
acquired, either at the central nervous system or at the peripheral one, most of them follow-
ing the former even that the latter is always considered by the amputees a more natural way
to handle the artificial limb. This research work is based on the use of intrafascicular elec-
trodes directly implanted in the residual peripheral nerves of the stump which represents
a good compromise choice in terms of invasiveness and selectivity extracting electroneuro-
graphic (ENG) signals from which it is possible to identify the significant activity of a quite
limited number of neuronal cells. In the perspective of the hardware implementation of
the resulting solution which can work autonomously without any intervention by the am-
putee in an adaptive way according to the current characteristics of the processed signal
and by using batteries as power source allowing portability, it is necessary to fulfill the tight
constraints imposed by the application under consideration involved in each of the various
phases which compose the considered closed-loop system.

Regarding to the recording phase, the implementation must be able to remove the un-
wanted interferences mainly due to the electro-stimulations of the muscles placed near the
electrodes featured by an order of magnitude much greater in comparison to that of the
signals of interest amplifying the frequency components belonging to the significant band-
width, and to convert them with a high resolution in order to obtain good performance at
the next processing phases. To this aim, a recording module for peripheral neural signals
will be presented, based on the use of a sigma-delta architecture which is composed by
two main parts: an analog front-end stage for neural signal acquisition, pre-filtering and

i

sigma-delta modulation and a digital unit for sigma-delta decimation and system config-
uration. Hardware/software cosimulations exploiting the Xilinx System Generator tool in
Matlab Simulink environment and then transistor-level simulations confirmed that the sys-
tem is capable of recording neural signals in the order of magnitude of tens of µV rejecting
the huge low-frequency noise due to electromyographic interferences.

The same architecture has been then exploited to implement a prototype of an 8-channel
implantable electronic bi-directional interface between the peripheral nervous system and
the neuro-controlled hand prosthesis. The solution includes a custom designed Integrated
Circuit (0.35µm CMOS technology), responsible of the signal pre-filtering and sigma-delta
modulation for each channel and the neural stimuli generation (in the opposite path) based
on the directives sent by a digital control system mapped on a low-cost Xilinx FPGA Spartan-
3E 1600 development board which also involves the multi-channel sigma-delta decimation
with a high-order band-pass filter as first stage in order to totally remove the unwanted in-
terferences. In this way, the analog chip can be implanted near the electrodes thanks to its
limited size avoiding to add a huge noise to the weak neural signals due to long wires connec-
tions and to cause heat-related infections, shifting the complexity to the digital part which
can be hosted on a separated device in the stump of the amputee without using complex lab-
oratory instrumentations. The system has been successfully tested from the electrical point
of view and with in-vivo experiments exposing good results in terms of output resolution
and noise rejection even in case of critical conditions.

The various output channels at the Nyquist sampling frequency coming from the ac-
quisition system must be processed in order to decode the intentions of movements of the
amputee, applying the correspondent electro-mechanical stimulation in input to the cyber-
netic hand in order to perform the desired motor action. Different decoding approaches
have been presented in the past, the majority of them were conceived starting from the rel-
ative implementation and performance evaluation of their off-line version. At the end of the
research, it is necessary to develop these solutions on embedded systems performing an on-
line processing of the peripheral neural signals. However, it is often possible only by using
complex hardware platforms clocked at very high operating frequencies which are not be
compliant with the low-power requirements needed to allow portability for the prosthetic
device.

At present, in fact, the important aspect of the real-time implementation of sophisticated
signal processing algorithms on embedded systems has been often overlooked, notwith-
standing the impact that limited resources of the former may have on the efficiency/effec-
tiveness of any given algorithm. In this research work it has been addressed the optimization
of a state-of-the-art algorithm for PNS signals decoding that is a step forward for its real-time,
full implementation onto a floating-point Digital Signal Processor (DSP). Beyond low-level
optimizations, different solutions have been proposed at an high level in order to find the
best trade-off in terms of effectiveness/efficiency. A latency model, obtained through cycle
accurate profiling of the different code sections, has been drawn in order to perform a fair
performance assessment. The proposed optimized real-time algorithm achieves up to 96%
of correct classification on real PNS signals acquired through tf-LIFE electrodes on animals,
and performs as the best off-line algorithm for spike clustering on a synthetic cortical dataset
characterized by a reasonable dissimilarity between the spike morphologies of different neu-
rons.

When the real-time requirements are joined to the fulfilment of area and power mini-
mization for implantable/portable applications, such as for the target neuroprosthetic de-

ii

vices, only custom VLSI implementations can be adopted. In this case, every part of the al-
gorithm should be carefully tuned. To this aim, the first preprocessing stage of the decoding
algorithm based on the use of a Wavelet Denoising solution able to remove also the in-band
noise sources has been deeply analysed in order to obtain an optimal hardware implementa-
tion. In particular, the usually overlooked part related to threshold estimation has been eval-
uated in terms of required hardware resources and functionality, exploiting the commercial
Xilinx System Generator tool for the design of the architecture and the co-simulation. The
analysis has revealed how the widely used Median Absolute Deviation (MAD) could lead
to hardware implementations highly inefficient compared to other dispersion estimators
demonstrating better scalability, relatively to the specific application.

Finally, two different hardware implementations of the reference decoding algorithm
have been presented highlighting pros and cons of each one of them. Firstly, a novel ap-
proach based on high-level dataflow description and automatic hardware generation is pre-
sented and evaluated on the on-line template-matching spike sorting algorithm which rep-
resents the most complex processing stage. It starts from the identification of the single
kernels with the greater computational complexity and using their dataflow description to
generate the HDL implementation of a coarse-grained reconfigurable global kernel charac-
terized by the minimum resources in order to reduce the area and the energy dissipation for
the fulfilment of the low-power requirements imposed by the application. Results in the best
case have revealed a 71% of area saving compared to more traditional solutions, without any
accuracy penalty. With respect to single kernels execution, better latency performance are
achievable still minimizing the number of adopted resources.

The performance in terms of latency can also be improved by tuning the implemented
parallelism in the light of a defined number of channels and real-time constraints, by using
more than one reconfigurable global kernel in order that they can be exploited to perform
the same or different kernels at the same time in a parallel way, due to the fact that each
one can execute the relative processing only in a sequential way. For this reason, a second
FPGA-based prototype has been proposed based on the use of a Multi-Processor System-on-
Chip (MPSoC) embedded architecture. This prototype is capable of respecting the real-time
constraints posed by the application when clocked at less than 50 MHz, in comparison to
300 MHz of the previous DSP implementation. Considering that the application workload
is extremely data dependent and unpredictable due to the sparsity of the neural signals, the
architecture has to be dimensioned taking into account critical worst-case operating condi-
tions in order to always ensure the correct functionality. To compensate the resulting over-
provisioning of the system architecture, a software-controllable power management based
on the use of clock gating techniques has been integrated in order to minimize the dynamic
power consumption of the resulting solution.

Summarizing, this research work can be considered a sort of proof-of-concept for the
proposed techniques considering all the design issues which characterize each stage of the
closed-loop system in the perspective of a portable low-power real-time hardware imple-
mentation of the neuro-controlled prosthetic device.

iii

Contents

Abstract i

Contents v

List of Figures viii

List of Tables x

1 Neuroprostheses Design: Problem Formulation 1

1.1 Introduction . 1
1.2 System Architecture . 3

2 A Sigma-Delta Architecture for the Recording of Peripheral Neural Signals 7

2.1 Introduction . 7
2.2 Sigma-Delta A/D conversion . 8
2.3 System Architecture . 10

2.3.1 Design and modelling of the analog module 11
2.3.2 Design and realization of the digital module 13

2.4 Simulation Results . 16

3 A Multi-Channel Electronic Interface for PNS Recording and Stimulation 21

3.1 Introduction . 21
3.2 System Architecture . 22

3.2.1 Analog Front-End . 22
3.2.2 Digital Back-end . 24

3.3 Testing Environment Setup . 26
3.3.1 Custom Designed Printed Circuit Board 28
3.3.2 Digital Control System . 28

3.4 Experimental Results: electrical tests . 35
3.4.1 Recording unit tests . 35
3.4.2 Stimulation module tests . 40
3.4.3 Real in-vivo tests . 42

4 Real-time neural signals decoding onto off-the-shelf DSP processors 45

4.1 Introduction . 45
4.2 A state-of-art ENG-based signal processing algorithm 46

v

vi CONTENTS

4.2.1 Wavelet Denoising . 48
4.2.2 Spike Detection . 52
4.2.3 Spike Sorting . 53
4.2.4 Classification . 55

4.3 The DSP implementation: porting details . 57
4.4 Test Data . 59
4.5 Experimental Results . 60

4.5.1 Effectiveness analysis . 61
4.5.2 Efficiency analysis . 65

5 VLSI Wavelet Denoising of Neural Signals 71

5.1 Introduction . 71
5.2 Algorithmic solutions for threshold estimation 72
5.3 Architecture Design exploiting Xilinx System Generator 73
5.4 Experimental Results . 77

5.4.1 Functional Evaluation . 78
5.4.2 Hardware Figures of Merit . 80

6 A Coarse-Grained Reconfigurable Approach for Low-Power Neural Signal Decoding 85

6.1 Introduction . 85
6.2 Exploiting the Multi-Dataflow Composer Tool 86

6.2.1 Multi-kernel datapath generation . 86
6.2.2 HDL components library and Communication Protocol 88
6.2.3 Computing kernels . 90

6.3 FPGA test environment . 92
6.4 Experimental results . 94

6.4.1 Accuracy results . 94
6.4.2 Latency analysis . 96
6.4.3 Area occupancy and power consumption 97

7 An FPGA-based MPSoC for On-line Neural Signal Decoding 101

7.1 Introduction . 101
7.2 Related work . 102
7.3 Target application and related constraints . 103

7.3.1 Wavelet Denoising . 105
7.3.2 Spike Detection . 105
7.3.3 Spike Sorting . 106
7.3.4 Real-time constraints . 106

7.4 Parallelization and programming model . 107
7.5 Sequential application profiling . 108
7.6 Partitioning and mapping description . 109
7.7 Hardware architecture . 111
7.8 Integrated power consumption control . 111
7.9 Experimental results . 113

7.9.1 Timing Constraints Evaluation . 113
7.9.2 Power consumption reduction . 114
7.9.3 Synthesis Results . 115

CONTENTS vii

8 Conclusions 117

Bibliography 121

List of Figures

1.1 Neuroprosthetic solution: different approaches . 2
1.2 Block diagram of the closed-loop system used for the neuroprosthesis control. . . 4
1.3 Typical electrodes able to acquire PNS neural signals. 5

2.1 Power Spectral Density of the Quantization Noise. 9
2.2 Typical block diagram of a Sigm-Delta Analog-to-Digital Converter. 9
2.3 Block diagram of a First Order Sigm-Delta Modulator. 10
2.4 System architecture . 11
2.5 Behavioral Simulink model . 12
2.6 Behavioural Simulink model with non-idealities and digital module 12
2.7 Blocks diagram of a 2nd order CIC filter . 14
2.8 Sigma-delta modulator: Power spectral density of the complete real model 17
2.9 Signal to Noise Ration variations with different signal amplitudes 17
2.10 Recording chain response of three input sines . 19
2.11 Sigma-Delta modulator: pre-recorded neural signal processing 20

3.1 Block diagram of the neural recording and stimulation system 23
3.2 Eight-channels analog front-end mapped on the custom designed IC. 24
3.3 Block diagram of the multi-channel version of the digital BPF. 26
3.4 Architecture of the Digital Control System. 27
3.5 Implementation of the Testing Environment. 27
3.6 SPI communication protocol between the chip and the controller 30
3.7 Biphasic neural stimulus waveform . 32
3.8 Set-up of the testing environment during stimulation. 33
3.9 Bode diagram of the reconfigurable analog band-pass prefilter 36
3.10 BPF: gain programmability. 36
3.11 Frequency response of the 16th order digital BPF . 37
3.12 Modulator and decimator output with a sinusoidal input with 0.5V at 5kH z . . . 38
3.13 SNR vs. Input Amplitude. 38
3.14 Recording system results in high-gain configuration 39
3.15 Pre-recorded neural signal processed by the recording module 40
3.16 Stimulation current amplitude programmability. 41
3.17 Stimulation biphasic pulses varying the relative phase width. 41
3.18 Stimulation biphasic pulses varying the relative period. 42
3.19 In-vivo tests at the EPFL laboratories. 42

viii

LIST OF FIGURES ix

3.20 In-vivo recording results with seven channels . 43
3.21 In-vivo recording results: zoom on a single spike . 43

4.1 Structure of the tf-LIFEs. 46
4.2 Schematic representation of the PNS decoding process on a real signal. 47
4.3 The proposed approach to the WD stage . 51
4.4 The flow chart of the spike detection and the sorting steps. 54
4.5 SVM hyperplane which separates the features vectors belonging to the two classes. 56
4.6 Correlation among the various couples of spike templates for each dataset. 60
4.7 Spike detection results in terms of TP rate . 62
4.8 Spike detection results in terms of FP per minute . 63
4.9 Performance comparison of the various spike detection approaches 65
4.10 SVM classifier accuracy . 66
4.11 The maximum of processable spikes per second in TPh 68
4.12 The maximum of processable spikes per second in SPh 69

5.1 Example of a system developed by Xilinx System Generator. 75
5.2 Simulink model of the wavelet denoising scheme using System Generator blocks. 75
5.3 Simulink Model of the Threshold Estimator block 76
5.4 Simulink Model of the sorter using an unfolded approach 76
5.5 Simulink Model of the sorter using an iterative approach 78
5.6 Simulink Model of the Threshold Estimator block 79
5.7 Wavelet Denoising input and outputs: low level noise, N=64 samples. 80
5.8 Wavelet Denoising input and outputs: high level noise, N=64 samples. 81
5.9 Wavelet Denoising input and outputs: low level noise, N=128 samples. 82
5.10 Threshold variation over time using different observation windows 83

6.1 Coarse-grained reconfigurable platform composition flow. 88
6.2 Floating Point Adder: the Block Diagram of the Two Path algorithm. 89
6.3 Multi-kernel datapath of the communication protocol. 90
6.4 The flow diagram of the implemented algorithm. 91
6.5 Block diagram of the proposed wavelet denoising solution 91
6.6 Single-stage decomposition dataflow kernel, dec. 91
6.7 Single-stage recomposition dataflow kernel, rec. 92
6.8 Thresholding dataflow kernel, thr. 92
6.9 Test system block diagram. 93
6.10 Input and output denoised signals. Low level noise. Haar mother wavelet 95
6.11 Input and output denoised signals. High level noise. Haar mother wavelet 96
6.12 Input and output denoised signals. Low level noise. Debauchies 2 mother wavelet. 96
6.13 Latency comparison between the totally software and the coarse-grained solutions 97

7.1 Flow diagram of the target neural signal processing algorithm 104
7.2 The Wavelet Denoising scheme. 105
7.3 Application graph resulting from the application partitioning 110
7.4 Custom MPSoC architecture implemented on the FPGA device. 111
7.5 Power consumption of the system measured on the FPGA 113
7.6 Execution trace of the multi-core system. 114

List of Tables

2.1 Sigma-delta modulator: coefficients . 13
2.2 Digital design parameters . 16

3.1 Digital filter parameters . 25
3.2 Synthesis results in case of 8 parallel channels and the multiplexed solution 26
3.3 Biphasic neural stimulus waveform . 32
3.4 BPF parameters . 36

4.1 Template matching percentage using the Haar and the Symlet 7 mother wavelet. . 64

5.1 FPGA synthesis results for the Threshold Estimator 83

6.1 Number of spikes for each template . 97
6.2 Number of adder and multiplier FUs of the wavelet denoising implementations . 98
6.3 Synthesis results for the most interesting FUs. 99
6.4 FPGA synthesis results only considering the kernels for the wavelet denoising . . . 99
6.5 FPGA synthesis results considering all the kernels of the algorithm. 99
6.6 ASIC synthesis results. 100
6.7 ASIC synthesis results. 100

7.1 Execution time of the main processing steps. 109
7.2 Percentage of time with enabled Normalized cross-correlators 115
7.3 FPGA Synthesis . 116

x

Chapter 1

Neuroprostheses Design: Problem

Formulation

1.1 Introduction

Neuroprostheses aim at restoring the functionalities lost by a patient subjected to an upper
limb amputation in order that he/she is able to perform the common actions which char-
acterize the daily life of a person without this disease. It involves the possibility of grasping
and manipulate objects or receiving sensorial feedback from the surrounding world in terms
of temperature or pressure when the cybernetic hand comes into contact with these ones in
comparison to other previous commercial solutions which make sense only from the cos-
metic point of view. Most of the efforts made on this research field have been done thanks to
the large investments funded by American institutions due to the huge number of mutilated
veterans, especially after the conflict in Vietnam, subjected to these amputations. The inter-
est has been then expanded across the entire international research world, getting a massive
attention from the experts of the field.

Several approaches have been presented in the years obtaining even an academic and a
commercial dissemination. However, none of these has determined the development of a
versatile prosthetic limb which can be controlled in an intuitive way and which can be con-
sidered by the patients as a real part of their body, without having critical functional con-
ditions due to, for example, phantom limb syndromes. The objective is to create a bidirec-
tional communication link between the brain and the artificial peripheral cybernetic hand
analysing the information encoded into physiological measurements, even in case of low
signal-to-noise ratio conditions and generating the correspondent electro-mechanical stim-
ulations which must be given in input to the prosthesis.

The neural activity can be captured at the level of either the Central Nervous System
(CNS) or the Peripheral Nervous System (PNS) [82]. The decoded intention is usually used
to operate mechatronic prostheses: exploiting the natural pathways of motor control, they
are more easily and finely managed (and then accepted) by the amputees compared to tra-
ditional Electromyographic (EMG) controlled ones which instead exploit the stimulations at
the surface of the muscles, normally not involved in the common process of handling the
upper limb. This is due to the fact that the human brain does not adapt easily to the my-
oelectric control of the upper limb prosthesis because the muscles, on whose surface the

1

2 CHAPTER 1. NEUROPROSTHESES DESIGN: PROBLEM FORMULATION

signals of interest are extracted (for instance, bicep or tricep muscles), are not normally ex-
ploited to direct the movements of the hand. However, EMG-based prosthesis represent the
solution which have had the most academic and commercial dissemination [3, 2] thanks to
its limited invasivity even if this method allows only a single motion at a time needing that
the operations must be done sequentially.

Beyond approaches based on the processing of the Electroencephalographic (EEG) sig-
nal [62] through the development of customized Brain-Machine Interfaces (BMIs), all the
others require invasive procedures to access the neural signals. In this case, the decoding
techniques are strongly influenced by the chosen neural interface and the consequent selec-
tivity [88, 74, 16]. Selectivity, in this context, is inversely proportional to the number of motor
neurons whose firing activity (i.e. the development of action potentials, usually called spikes)
is captured on a single channel of the neural interface. The higher the selectivity, the higher
the possibility of identifying the activity of the single neurons through spike sorting tech-
niques looking at the action potential morphology as the fingerprint of different neurons
[46], and then the finer will be the control of the prosthesis.

(a) EEG-based Brain Machine Interfaces (b) EMG-based solution

(c) Targeted Muscle Reinnervation (d) ENG-based solution

Figure 1.1: Neuroprosthetic solution: different approaches

For these reasons, prostheses controlled by Electroneurographic (ENG) signal at PNS
level is surely the most promising approach thanks to the fact that they must access directly
to the peripheral residual nerves of the stump to acquire the significant signal extracted by
the implanted electrodes [60]. It helps the amputees to consider the available cybernetic
hand as an effective part of their body, avoiding situations of rejection crisis. Moreover, this
last approach has the advantage that the ENG signal provides much more information in

1.2. SYSTEM ARCHITECTURE 3

comparison to the other signal sources allowing to control more degrees of freedom but at
the cost of greatly complicating the necessary neural signal processing algorithms.

EMG-based prostheses exploiting Target Muscle Reinnervation (TMR) techniques [40,
39] represent a compromise design choice between the two considered solutions trying to
take advantage of the benefits provided by them. TMR uses the peripheral residual nerves of
the amputated upper limb and redirects them onto other muscle groups that are not func-
tional due that they are no longer to the missing arm. In particular, the median nerve can be
retargeted on the pectoral muscle decoding the information related to the desired motor ac-
tion from the signals coming from a grid of monopolar surface electrodes implanted on the
reinnervated muscle by a difficult surgery procedure. With a proper training, the amputee
is able in a few days to use in the correct way the prosthetic hand, closing or opening it by
only contracting the pectoral muscle. Moreover, a bidirectional interface can be obtained
by using in the same way the Targeted Sensory Reinnervation (TSR). It adopts sensors in the
prosthesis which can quantify temperature or pressure and transmit these measurements
over the reinnervated skin so that the amputee can have a sense of touch in the missing
limb. As said before, in this case the patient must give his/her written informed consent
to the difficult surgery procedure due to its possible risks which can cause for example the
permanent paralysis of the target muscle and the recurrence of phantom limb pain.

Taking into account these considerations, in the following it will be considered the ENG-
controlled upper limb prosthesis as the reference solution trying to address in an effective
way the issues which characterize the various processing stages involved in the proposed
solution to allow the realization of the relative hardware implementation.

1.2 System Architecture

The design of a motor neuroprosthesis involves the implementation of a close-loop system
which can work autonomously without any external setting performed by the amputee. Fig.
1.2 shows the block diagram of its typical architecture in which it is possible to highlight the
presence of both an efferent path from the CNS to the PNS and, in the opposite direction,
of an afferent one from the PNS to the CNS. It determines the creation of a bidirectional
communication link between the brain in which the neural signals are generated and the
cybernetic hand which represents the actuator of the movements required by the patient.

The aim of the direct path is to acquire the neural signals coming from the brain, convert
them from the analog to the digital domain with an acceptable resolution even in case of low
signal-to-noise ratio conditions and decoding the intentions of movement by analysing the
information encoded into the physiological measurements, for example in terms of spike-
ness of the significant neuronal cells in order to properly apply the correct electro-mechanical
stimulations in input to the prosthesis device. At the same time, the opposite path must be
able to give to the amputee a sensorial feedback about the outside world in terms of, for ex-
ample, pressure or temperature values coming from tactile biosensors placed in the external
surface of the cybernetic hand. This research work is focused on the design and the develop-
ment of the compact portable low-power electronic devices, especially with a greater atten-
tion for those belonging to the digital domain, which must be involved in this closed-loop
system.

As can be seen in Fig.1.2, the general processing flow adopted for the implementation of
a neuroprosthesis at PNS level is characterized by the following phases:

4 CHAPTER 1. NEUROPROSTHESES DESIGN: PROBLEM FORMULATION

Neural
Electrodes

Neural Signal Acquisition

Band-Pass
Prefilter

A/D
Converter

Movements
Intentions
Decoding

Multi DoFs
Electromechanical

Control System

Artificial
Sensory
System

Stimulation
Patterns

Generations

Efferent Path

Afferent Path

Figure 1.2: Block diagram of the closed-loop system used for the neuroprosthesis control.

• the acquisition of the neural signals through the direct implantation of multi-channel
electrodes on the peripheral residual nerves accessible from the stump of the amputee;

• the recording of the neural signals which includes a low-order pre-filtering stage to
partially remove the unwanted interferences and the analog-to-digital conversion with
high resolution trying to relax the timing constraints at downstream;

• the pre-processing phase for the removal of the in-band and the out-of-band noise
overimposed on the significant signal and the decoding of the intentions of movement
of the amputee through the implementation of complex digital signal processing algo-
rithms;

• the generation of the corresponding electro-mechanical stimulations to give in input
to the cybernetic hand;

• finally in the opposite path, starting from the external sensory information coming
from the tactile biosensors, determines the generation of stimulation patterns in the
form of bi-phasic pulses with variable morphology and frequency which must be given
in input to the same electrodes used for the recording phase.

Surely, the choice of the electrodes used to acquire the neural signals coming to the pe-
ripheral nerves strongly influences the design of the following recording and decoding stages
because each one of them has particular characteristics in terms of selectivity and output sig-
nificant bandwidth. For example, exploiting multi-site Cuff electrodes as in [49] it is not pos-
sible to determine the activity of each neuronal cell from the extracted physiological mea-
surements even if they have a low level of invasiveness. This is due to the fact that these ones
represent a sort of cumulative signals of the overall activity generated by the neuronal cells
from which the intentions of movements of the amputee can be decoded only by applying
adaptive amplitude thresholding or adopting complex unsupervised clustering algorithms
without achieving several degrees of freedom in terms of possible grasps of the cybernetic
hand. On the contrary, Sieve electrodes [42] are characterized by high performance in terms
of selectivity but, at the same time, several unresolved problems with their chronic stabil-
ity and the requirement to sectioned nerves which limit their usability in real applications

1.2. SYSTEM ARCHITECTURE 5

which can degrade the decoding performance. Therefore, an acceptable compromise de-
sign solution can be instead the use of Longitudinal Intra-Fascicular electrodes (tf-LIFEs)
[58] for their level of selectivity and invasiveness.

(a) Cuff Electrodes (b) Sieve Electrodes

(c) tf-LIFE Electrodes

Figure 1.3: Typical electrodes able to acquire PNS neural signals.

Good performance of the recording stage are also necessary for the correct implementa-
tion of the prosthesis device because it must be able to reject the huge interferences over-
lapped to the signals of interest which have typically an order of amplitude significantly
lower in comparison to the unwanted sources. For this reason, a pre-filtering stage with a
programmable gain is usually mandatory. Regarding to the decoding step, most of the previ-
ous works were based on the use of spike sorting algorithms in order to obtain the intentions
of movements of the amputees according to the significant activity of each single neuron.
These algorithms were conceived starting from the development of the relative off-line im-
plementation determining a significant drop of the achievable performance when they must
be modified in order to allow an on-line processing. Other solutions were not absolutely
portable in a hardware implementation that can work on-line so the results presented do
not have a practical sense since the purpose of the research is not to use solutions that will
work well only on work stations. It is due to the need of the fulfilment of real-time constraints
especially when they are characterized by techniques with high computational complexity.
These aspects have been often overlooked in the literature and will be deeply considered in
this thesis.

This research work has in fact focused its efforts in the study, the design and the devel-
opment of hardware implementations related to the neural signal acquisition aimed at the
recording and stimulation phases and the decoding of peripheral neural signals for the phys-
ical realization of the prosthetic device. The target is to realize hardware solutions which can
be partially implanted near the electrodes, avoiding heat-related infections and the overim-
posing of relevant noise sources to the signals of interest. The remaining part can be mapped

6 CHAPTER 1. NEUROPROSTHESES DESIGN: PROBLEM FORMULATION

on low-power and low-area embedded systems able to perform complex digital signal pro-
cessing algorithms at a reasonable operating frequency allowing portability using batteries
as power source for the resultant implementation. The thematics related to the power con-
sumption has been in fact exacerbated, in particular when it is necessary to place in the
stump of the amputee both the acquisition system and the processing element. The devel-
opment of implantable solutions is motivated by the need of avoiding long wired connec-
tions between the neural implant and the external world. A wireless link can not be always
possible due to the huge amount of data which must be transmitted through a link with a
limited useful bandwidth.

In this way, it will be possible to satisfy the tight real-time constraints imposed by the
reference application even exploiting hardware platforms with embedded electronics char-
acterized by limited resources for recording, processing and stimulation in comparison to
other previous solutions which however needed the use of powerful laboratory instruments
to perform the various tasks involved in the closed-loop system. This work would be a sort
of proof-of-concept for the proposed approaches in order to finally implement a versatile
solution which can have in the future perspective a wide dissemination from the academic
and the commercial point of view thanks to its limited cost.

The remainder of this thesis is as the following. In the Chap.2 will be proposed a sigma-
delta analog-to-digital conversion architecture able to properly record the weak signals of
interest, evaluating the relative performance in terms of output resolution and noise rejec-
tion by accurate hardware/software cosimulations and then by transistor-level simulations.
The same architecture will be exploited in the Chap.3 to implement a multi-channel bidi-
rectional bio-electronic interface to acquire and digitalize the physiological signals coming
from the electrodes and to generate stimulation patterns of bi-phasic pulses restoring the
sensory feedback to the amputee, involving the use of a custom designed Integrated Circuit
for the analog part and an FPGA hosting the digital part and a control system able to handle
the tests from the electrical point of view and the various phases during in-vivo experiments.
In the Chap.4, a state-of-the-art decoding algorithm will be ported into a floating-point off-
the-shelf DSP to verify the fulfilment of the tight real-time constraints imposed by the ap-
plication. With the aim of a perspective ASIC low-power implementation, its first process-
ing step based on the use of a Wavelet Denoising algorithm will be tuned in the Chap.5 in
order to obtain the optimal solution for the costly-operation thresholding estimation. Con-
sequently, two alternative hardware implementations will be presented to satisfy the low-
power requirements for the realization of a portable solution able to work autonomously
with batteries as power source and without using high operating frequency, respectively the
first one based on a coarse-grained reconfigurable architecture in the Chap.6 and the second
one adopting a Multi-Processor System-on-Chip with an efficient power consumption con-
trol by the use of a software-controlled clock-gating manager. Finally, in the Chap.8 a final
discussion will be reported summarizing the achieved results with respect to the required
performance.

Chapter 2

A Sigma-Delta Architecture for the

Recording of Peripheral Neural

Signals

2.1 Introduction

To allow the multi-channel acquisition of the peripheral neural signals coming from the elec-
trodes implanted in the residual nerve of the stump, it is necessary to develop a dedicated
hardware system with great performance in terms of resolution and noise rejection even
in case of low signal-to-noise ratio (SNR) conditions. At the same time, it is necessary to
fulfil strict constraints in terms of area and power constraints imposed by the fact that the
recording module must be placed near the electrodes avoiding of causing infections due to
overheating of the skin tissues.

It must be able to acquire the peripheral neural signals with amplitudes in the order of
tens of µV, subjected to noise due to the contractions of the muscles near the electrodes
(EMG interferences). Such noise is in the order of magnitude of mV and can thus mask the
neural signal. Furthermore, Power Spectral Densities (PSDs) of the interferences and of the
useful signal are very close to each other and partially overlap [75, 26]. To this aim, it is
necessary to design a high-pass frequency response with a sharp transition band in order
to reject these interferences which can limit the performance of the next processing steps
in the digital domain but these requirements do not allow implantable or implantable so-
lutions. Therefore, the recording system must be able in real-time to acquire the signals at
output of the electrodes, to digitalize them with the best allowable resolution rejecting the
interferences which are not useful and finally to transmit the relative samples in input to
the device responsible of the decoding of the movements intentions performed by optimal
complex digital signal processing algorithms mapped on embedded systems.

An analog front-end amplification and filtering stage is then mandatory in order to boost
the weak neural signal and to filter out the huge EMG components. Many papers concerning
neural interfaces have been presented in literature, but the majority of them are focused
on the CNS [27, 34]. However, in this last case, the relative solutions are not influenced by
these physiological interferences but only the background activity of the neurons at a greater
distance from the acquisition electrodes due to their limited selectivity. Regarding to the PNS

7

8
CHAPTER 2. A SIGMA-DELTA ARCHITECTURE FOR THE RECORDING OF PERIPHERAL NEURAL

SIGNALS

recording, the most used approach is oriented to a a fully analogical implementation based
on multi-stage high selective filters [47, 45, 86] followed by standard, Nyquist-rate, Analog to
Digital Converters (ADC) while an alternative approach is based on oversampling converters
using a sigma-delta architecture. For example, in [90] a first order sigma-delta converter has
been presented, reaching an 8-bit resolution with a 40 oversampling ratio over a 6.25kH z
frequency whereas, in [85], a second order sigma-delta modulator that exploits a new super-
inverter amplifier that allows to reach a 11 bit resolution considering a 8kH z bandwidth.

Following the latter approach, it has been implemented a recording system based on a
sigma-delta architecture which combines high resolution and high integration capacity al-
together with the possibility of easily decoupling the sensitive and potentially implantable
analog module and the robust external digital module which can placed in a different device.
Sigma-delta oversampling converters are particularly suited for low bandwidth applications
since they are capable of increasing the achieved resolution by increasing the sampling fre-
quencies, as can be seen below. Moreover, they shift the design complexity from the analog
to the digital domain exploiting the greater integration capability of this domain thanks to
the improvements in terms of CMOS processes performed in these last years. In this way, it
is possible to integrate on an implantable chip only a limited number of simple, low-power,
low-noise analog components near the electrodes. Such components include a pre-filtering
stage and the sigma-delta modulator, made-up of integrators and a 1-bit quantizer. The
output signal is represented by the 1-bit output of the quantizer for each channel thus re-
quirements for the communication channel are less stringent.

The complex digital unit that finalizes the A/D conversion and provides the highly selec-
tive band-pass filter needed to remove the EMG interferences at low frequencies, can thus
be accommodated on an external digital module such as a Field-Programmable Gate Ar-
ray (FPGA) or a low-power custom designed Application Specific Integrated Circuit (ASIC).
In the following, it will be reported a short introduction to the sigma-delta conversion, the
description of the adopted system architecture tested through hardware-software cosimula-
tions exploiting the Xilinx System Generator tool on the user-friendly Matlab Simulink en-
vironment for the digital part taking into consideration an accurate software model for the
analog part and, finally, some experimental results will be properly discussed.

2.2 Sigma-Delta A/D conversion

Sigma-delta converters offer high resolution and high integration, making them a good de-
sign choice for a wide range of applications. They are based on an architecture which allows
to obtain low cost conversion with high dynamic range and flexibility especially in convert-
ing low bandwidth input signals such as in the considered target application for the record-
ing of the ENG-based peripheral neural signals.

This solution tries to improve the achieved resolution and the SNR value at output of
the Analog-to-Digital converter in comparison to other traditional implementations at the
cost of complicating the relative digital part, exploiting two main theoretical concepts, over-
sampling and noise shaping. Taking into account an approximated model, a quantizer with
N output bits can be considered as a linear system which introduces the addictive quantiza-
tion noise with a constant-distributed Power Spectral Density (PSD) in the frequency domain
(white noise) assuming that it has a random behaviour which overlaps the useful bandwidth
of the signal of interest. If the input signal which must be converted has a limited bandwidth

2.2. SIGMA-DELTA A/D CONVERSION 9

until the frequency f0, the Nyquist theorem imposes the minimum sampling rate fs at 2 f0

while in the case of a sigma-delta converter, it must be fixed to a larger value spreading the
quantization noise over a wider spectrum. The latter is still the same but the relative percent-
age in the band of interest of the input signal is greatly reduced. Fig.2.1 shows the PSD of the
quantization noise and the SNR of an A/D converter in the case of respectively a Nyquist and
an oversampling solution where OSR indicates the oversampling factor (fs /2 f0), equal to 1
in the first case.

S (f)e

0-fs/2 f /2=fs 0

f

NYQUISTsf

1

12

q

1.76)dB(6.02NSNR bit +=

S (f)e

0-fs/2
ff0

2
2

NYQUISTs

s

fOSR
/f

×
=

sf

1

12

q

oversampling
process

dB10log(OSR)1.76)dB(6.02NSNR bit ++=

Figure 2.1: Power Spectral Density of the Quantization Noise.

Regarding to the noise shaping, it is based on the fact that the signal and the quantiza-
tion noise are filtered by the system in two different ways. In particular, the former is applied
to a low-pass filtering process whereas the latter is applied to a high-pass one in order that
the latter is shifted at the frequencies above the significant bandwidth of the considered sig-
nal and which can be removed by the next processing stages in the digital domain thanks
to its greater integration capacity exploitable to obtain high-selective filters. Fig.2.2 shows
the typical block diagram of a sigma-delta A/D converter which is composed by an analog
front-end and a digital back-end: the analog part involves a low-pass filter to prevent aliasing
effects due to the next sampling process at the oversampling frequency fs and a sigma-delta
modulator generating at output a 1-bit stream whereas the digital one involves a sigma-delta
decimator which brings back the sampling frequency at the Nyquist frequency.

Digital

Low-Pass

Filter

Downsampler
Sigma-Delta

Modulator

Sample &

Hold
Anti-Aliasing

FIlter

Sigma-Delta Decimator

ANALOG FRONT-END DIGITAL BACK-END

x (t)in
x (t)s x (t)sh

x (t)m x (t)lp x (t)s

fs fs
fs fs 2f0

Figure 2.2: Typical block diagram of a Sigm-Delta Analog-to-Digital Converter.

Taking into account the architecture of a sigma-delta modulator, as can be seen in fig. 2.3
for a first order solution, it is possible to demonstrate that it performs a low-pass filtering on

10
CHAPTER 2. A SIGMA-DELTA ARCHITECTURE FOR THE RECORDING OF PERIPHERAL NEURAL

SIGNALS

the input signal while a high-pass one on the quantization noise, shifting the significant fre-
quency components above the band of interest of the considered signal. It is the aim of the
digital part to totally remove the out-of-band contribution of the quantization noise through
a high-order low-pass filter which must avoid aliasing effects before the downsampling pro-
cess and remove the quantization noise shifted at high frequencies by the noise shaping. In
the particular case, the first stage of the sigma-delta decimator must involve even the use of
a high-order high-pass filter in order to totally remove the significant electro-stimulations of
the muscles placed near the electrodes (EMG interferences) and other low frequency inter-
ferences.

ò
åå

Quantization
Noise
N(s)

Integrator
H(s)=1/s

å
X(s) +

-

1-bit
DAC

I(s)
Y(s)

W(s)

I(s) Y(s)

Figure 2.3: Block diagram of a First Order Sigm-Delta Modulator.

Due to the fact that the resultant digital band-pass filter works at the oversampling fre-
quency, the relative dynamic power consumption is very high at the increase of the order
and the number of the processing channels which depends on the type of electrodes used
to extract the physiological signals. For this reason, over the years, alternative decimation
filters architecture have been proposed by the researchers of the field trying to limit the rela-
tive number of hardware resources in order to map them in a low-power embedded platform
and hosted in the stump of the amputee.

2.3 System Architecture

The block diagram in Fig. 2.4 shows the multi-channel system architecture of the proposed
neural recording module, following the scheme specified in the previous section, which is
composed of two main components: the analog front-end and the digital back-end.

The multi-channel signal comes from the various sensitive sites of the electrodes which
must be implanted directly in the residual nerve of the stump in order to acquire the rele-
vant activity of the neurons. In this proposed block diagram it has been considered the use
of thin-film Longitudinal Intra-Fascicular Electrodes (tf-LIFEs) which have presented in pre-
vious works as in [59] very good performance in terms of selectivity determining relevant
results in terms of decoding of intentions of movements for the next processing stages. This
signal is, thus, filtered and amplified by a 1st order Band-Pass Pre-Filtering/Pre-amplifier

2.3. SYSTEM ARCHITECTURE 11

Figure 2.4: System architecture

block as close as possible to the recording site. In this way, the noise due to cables and con-
nection paths can be avoided. The conditioned signal is then converted into a 1-bit digital
stream for each channel by the sigma-delta modulator and sent to the digital module for
decimation and further processing. One of such signal’s streams is needed for each input
channel if the device is connected to a multichannel electrode. The digital module is hosted
on an external board; it implements the decimation block of the sigma-delta converter al-
together with the highly selective band-pass filter. The digital module is also responsible
of the management of the communication between the artificial limb and the implanted
electrodes. The hardware digital unit has been implemented and tested on a Xilinx FPGA
Virtex-5 LX330 to be hosted on the robotic limb thanks to its considerable amount of avail-
able resources.

2.3.1 Design and modelling of the analog module

As said before, the analog part of the circuit is composed by the pre-amplifier/pre-filtering
block and by a third order sigma-delta modulator (Fig. 2.5). The 1st order Band-Pass Fil-
ter (BPF) was realized cascading a High-Pass Filter (HPF) with a Low-Pass Filter (LPF). The
frequency response specifications require a bandwidth between 800H z and 8kH z which
is considered the useful bandwidth for the peripheral neural signals of interest and a gain
of 200V /V . The required gain is determined by the need to maximize the amplification at
neural signal frequencies avoiding the risk of amplifier saturation due to EMG interferences.
Once that the useful signal has been properly amplified it is possible to convert it in the dig-
ital domain. With this purpose, a 3r d order switched-capacitor, sigma-delta modulator in a

12
CHAPTER 2. A SIGMA-DELTA ARCHITECTURE FOR THE RECORDING OF PERIPHERAL NEURAL

SIGNALS

b1_2

b1_1

a3_2

c2_2

a2_1

-1

c1_1

a3_1

HP_b

a2_2

HP_a

c1_2
LP_b

LP_a

a1_2

a1_1

c2_1

VinP

VinN

Relay

Digital

 Decimator

 and Downsampler

HPF LPF z -1

1-z -1

z -1

1-z -1
z -1

1-z -1

FILTER SIGMA DELTA MODULATOR DIGITAL UNIT INPUTS

Figure 2.5: Behavioral Simulink model

Cascade of Integrators with FeedBack (CIFB) configuration was designed. Preliminary tests
were performed using a behavioural model (shown in Fig. 2.5) in Simulink environment and,
only once that the specifications were satisfied, the circuit was implemented at transistor
level in a 0.35µm CMOS technology process from Austriamicrosystems (AMS).

 In

rst

a3_b

c2_b

-1

c3_b

a2_b

-1

c2_a

a3_a

-1

a2_a

c3_a

b1_b

-a1_a

b1_a

Vth

lpgain_b

lpgain_a

Vth

hpgain_b

hpgain_a

-a1_b

VinP

VinN

Step FFT

Spectrum

Scope

Scope

IN

Vth
Y

Sampling Jitter2

IN

Vth
Y

Sampling Jitter1

switch non id.

kT/C

kT/C

kT/C

switch non id.

kT/C

kT/C
switch non id.

switch non id.

kT/C Relay

IN

IN1

Out1

Out2

REAL

Integrator

 Out

Out_decimator

OpNoise

OpNoise

OpNoise

OpNoise

OpNoise

OpNoise

IN

IN1

Out1

Out2

LPF

 In

In_decimator

IN

IN1

Out1

Out2

IDEAL

Integrator4

IN

IN1

Out1

Out2

IDEAL

Integrator1

IN

IN1

Out1

Out2

HPF

hpgain_b

Gain1

hpgain_a

Gain

z
-1

↓↓↓↓128

Down Sample

rst

filter_in

filter_out

Band-Pass Butterworth IIR 32nd order filter

System

Generator

FILTER INPUTS SIGMA DELTA MODULATOR

SIGMA DELTA DECIMATOR

Figure 2.6: Behavioural Simulink model with non-idealities and digital module

The Simulink model has great advantages in terms of simulation time saving and it al-
lows the modelling of noise sources and operational amplifier (OpAmp) non-idealities, thus
ensuring a good agreement with transistor level simulations exploiting its user-friendly en-
vironment which allows to design the system at a higher level. Moreover, it allows to perform
hardware/software cosimulations exploiting the Xilinx System Generator tool to design the
digital part which can be mapped on the target FPGA device, handling the communication
with the software blocks used for the analog part and having a high-level model view before
the realization of the successive totally hardware implementation.

The sigma-delta behavioural model is a modification of what presented in [52] and [91]
which take into consideration saturation, slew rate, finite gain and bandwidth limitations.
K T /C noise, thermal noise of the amplifier, switches non-idealities and clock jitter effects
have also been included. The original models were adapted to accurately model the switched-
capacitors, fully-differential architecture of the implemented circuit. Component’s mismatch
effects were also modelled by generating the filter coefficients as capacitor ratios whose val-
ues have been extracted randomly from a normal distribution within a 6σ range around the
nominal value. Non-idealities of the switches take into account the use of transmission gates

2.3. SYSTEM ARCHITECTURE 13

Table 2.1: Sigma-delta modulator: coefficients

Coefficient Value

a1 0.05
a2 0.3
a3 0.8

Coefficient Value

b1 0.05
c1 1
c2 1

(pair of NMOS-PMOS switches) and the clock jitter has been modified in order to consider
the differential path of the fully-differential architecture. The complete model, including all
non-idealities and the digital decimation described later is shown in Fig. 2.6.

The HPF and LPF transfer functions in the frequency domain (Eq. 2.1 and Eq. 2.2) can be
easily determined once that cut-off frequencies have been defined (τhp = 1/ fhp and τl p =
1/ fl p).

T Fhp (s) =
τhp s

τhp s +1
(2.1)

T Fl p (s) =
1

τl p s +1
(2.2)

The equivalent expression for the discrete time domain can be obtained using the bilin-
ear transform (or Tustin’s Method) based on the equivalence of Eq. 2.3

s ≈
2

T
×

z −1

z +1
(2.3)

The resulting transfer function are reported in Eq. 2.4 and Eq. 2.5

T Fhp (z) =
2τhp −2τhp z−1

(2τhp +T)− (2τhp −T)z−1
(2.4)

T Fl p (z) =
T +T z−1

(2τl p +T)− (2τl p −T)z−1
(2.5)

where T is the sample period and τ is the filter time constant.
The closed-loop transfer function is then expressed by Eq. 2.6, where T F (z) is the filter

transfer function of Eq. 2.1 or Eq. 2.2 and A is the finite gain of the open loop amplifier.

T FCL(z) =
T F (z)

1+ T F (z)
A

(2.6)

The coefficients (summarized in in Table 2.1) of the sigma-delta modulator were chosen
using the Schreier Toolbox [77] with a 18-bits target resolution. The oversampling ratio that
allows to reach this target resolution is OSR = 128 that, considering a signal bandwidth of
8kH Z results in a sampling frequency fs = 2.048M H z.

2.3.2 Design and realization of the digital module

The main task of the digital block is to process the oversampled 1-bit signal provided by the
analog modulator. In order to remove the EMG noise at low frequencies and the quantization

14
CHAPTER 2. A SIGMA-DELTA ARCHITECTURE FOR THE RECORDING OF PERIPHERAL NEURAL

SIGNALS

noise pushed at high frequencies by the analog modulator, it is necessary to use a high-
order band-pass anti-aliasing filter as the first decimator stage, before the downsampling
process. The filter works at the same sampling frequency of the modulator which is equal
to 2.048M H z, with a 128 oversampling ratio with respect to the Nyquist frequency (16kH z
in our case). For these reasons, it is necessary to adopt some particular techniques in order
to limit the area occupation and the dynamic power consumption in order to fulfill the tight
constraints of the application under consideration in the perspective of the development of
an ASIC solution which can work with batteries as power sources.

A classical approach optimized in terms of area occupancy and power consumption for
the design of high-selective digital anti-aliasing filters in the case of low-pass sigma-delta
A/D converters is based on a multi-stage structure using a Cascaded Integrator-Comb (CIC)
filter [30]. This solution is widely used in commercial applications, especially in systems with
multi-rate processing domains synchronized with respect to multiples of the same clock fre-
quency.

In this case, the 1-bit stream at output of the sigma-delta modulator is given in input
to the digital decimation filter that averages and downsamples it, thus producing an n-bit
sample at the desired sampling rate. This process of averaging has the effect of low-pass fil-
tering applied to the 1-bit signal in the frequency domain, which attenuates the quantization
noise and removes aliases from the band of interest. It represents a Finite Impulse Response
(FIR) filter and, at the same time, a cost-effective way of implementing decimation because
it doesn’t require multipliers but only addictions, subtractions and delay registers. Fig.2.7
shows the typical block diagram for a CIC filter in which R, M and N represent respectively
the decimation factor (equal to the oversampling ratio), the differential delay and the num-
ber of sections of the digital filter. The transfer function of a common CIC filer is in the form
of the Eq.2.7:

H(z) =
(1− z−RM)

(1− z−1)
(2.7)

Figure 2.7: Blocks diagram of a 2nd order CIC filter

As can be seen, the CIC architecture is very simple and it avoids the use of multipliers that
are typically the greatest power consumers among the possible hardware digital modules.
It includes the function of low-pass anti-aliasing filtering and downsampling at the same
time. The number of sections N, that in the proposed example is equal to 2, influences the
frequency response of the CIC filter. The higher the filter order, the more selective is the
frequency response and consequently the greater the attenuation between the gain at low
frequencies compared to the relative value at the first peak in stop-band frequencies. The
position of the downsampler before the Comb section allows the use of a limited number of

2.3. SYSTEM ARCHITECTURE 15

delay registers in this last section and a reduction of the dynamic power consumption thanks
to the fact that these registers work at a lower clock frequency. In general, the typical value
assigned for the differential delay parameter M is 1 or 2 and it effectively sets the number of
nulls in the frequency response of a decimation filter.

It has been demonstrated in [30] that the CIC order must be chosen at least larger by
one with respect to the order of the sigma-delta modulator. Moreover, to avoid overflow
conditions it is necessary to use a 2’s complement internal representation and the integrator
word width has to be so long in order to handle the growing of data stored in the various
registers of the CIC filter due to the relative DC gain higher than 1. Due to the fact that their
frequency-magnitude-response envelopes are sin(x)/x-like, CIC filters are typically followed
by higher performance linear-phase low-pass tapped-delay-line FIR filters whose tasks are
to compensate the CIC filter’s non-flat passband. In such a way, it is possible to obtain a total
gain equal to 1 in the passband which could be a design constraint for real use cases.

However, in the target application, a band-pass solution is needed which can not be ob-
tained with the use of only CIC filters. For these reasons, it has been decided to adopt a But-
terworth Infinite Impulse Response (IIR) filter with a 3dB attenuation at 800H z and 8kH z
cut-off frequencies, as first stage of the sigma-delta decimator which allows to obtain good
filtering techniques. IIR filters are useful for their high efficiency compared to that offered by
FIR filters, in fact, they require less memory and fewer multipliers-accumulators. The main
drawbacks are due to the instability problems, but they occur less likely using, as in this
case, high order filters designed by cascading second-order sub-stages [38]. Moreover, in the
perspective of a multi-channel processing context, if a Time Division Multiplexing (TDM)
technique is used to reduce the number of necessary hardware resources for the resulting
CIC filter, the gain in terms of slices saving becomes lower than what can be obtained for a
single-channel implementation. In fact, for the CIC filters it is possible to share among the
various channels only the logic cells related to adders and subtractors while the larger regis-
ters due to the not-null DC component must be replicated for each of them. In the IIR case,
even those related to the multipliers can be shared.

Exploiting the Matlab tools, a 32nd order Butterworth IIR band-pass filter has been cre-
ated with the required frequency response and simulated in Simulink environment in order
to evaluate if the output signal, pre-recorded during previous experimental tests, is correctly
cleaned from the unwanted EMG interferences. A downsampler has been cascaded to the
IIR filter; it is characterized by a simple Hardware Description Language (HDL) implemen-
tation, corresponding to a hardware module that picks up one sample every R which repre-
sents the oversampling factor equal to 128 in the considered case to bring back the sampling
frequency at the Nyquist frequency 16kH z. After verifying the correct functionality of the IIR
filter on Simulink using a double-precision floating-point representation of the internal sig-
nals, the same behaviour has been verified in the case of fixed-point implementation. Values
reported in Table 2.2 represent a good design parameter choice.

The decimation filter and the downsampler hav been properly coded in HDL and mapped
on a FPGA in order to evaluate the percentage of the necessary resources and the behaviour
of the whole system taking into account the hardware implementation of the digital part
and the Simulink modules related to the analog one. A hardware-software co-simulation
performed exploiting Xilinx System Generator (Fig. 2.6) has been set-up. In particular, the
co-simulation allows to simulate the Simulink model of the analog module (including all
non-idealities) and to send the results directly to the HDL implementation of the designed
digital decimation filter mapped on the target FPGA. In this way, the software blocks gener-

16
CHAPTER 2. A SIGMA-DELTA ARCHITECTURE FOR THE RECORDING OF PERIPHERAL NEURAL

SIGNALS

Table 2.2: Digital design parameters

Response Type Band-Pass Filter
Design Method IIR Butterworth

Filter Arithmetic Fixed-Point
Passband 0.8 - 8 KHz

Input Sampling Frequency 2.048 MHz
Order 32

Coefficient Word Length 32 bit
Input Word Length 32 bit

Input Fraction Length 20 bit
Output Word Length 32 bit

Rounding Mode Floor
Overflow Mode Wrap

ate the oversampled 1-bit stream that is set as input of a specific pin of the FPGA.
The tool allows to choose whether to use the hardware blocks coded by the user provid-

ing the relative HDL file or those provided by Xilinx. The latter only require to define the
internal signal representation (fixed-point, unsigned or signed as 2’s complement, etc.) as
for the desired functionality, whereas the former must adhere to a standard interface mainly
requiring an enable signal for each input clock to synchronize the modules inside the model
due that the hardware blocks work at the clock frequency of the board whereas the software
ones according to the Simulink simulation period. The Gateway In and the Gateway Out
blocks delimit the hardware part of the Simulink model, defining the interface signals to be
mapped on the various pins available on the FPGA whereas the System Generator block fixes
the co-simulation parameters. When the design has been completely created, the set of the
hardware blocks can be mapped on a real FPGA board in order to evaluate the percentage of
used resources and the behaviour by hardware/software co-simulations. This is very useful
to accelerate the simulation time compared to the totally software case.

The 2.048M H z sampling frequency was generated using a clock enable that delays the
significant edges of the board clock signal in order to handle the synchronization of the dig-
ital decimation filter with the output signal coming from the software analog blocks. The
designed decimation filter was tested on a Xilinx FPGA Virtex-5 LX330 but the hardware im-
plementation can be mapped even on a smaller Spartan-3E 1600 development board, char-
acterized by a lower amount of available resources, determining a slices utilization equal to
100%.

2.4 Simulation Results

The PSD of the output signal for a full-scale sinusoidal input allows to compute the Effective
Number of Bits (ENOB) achievable by the converter. Considering only the sigma-delta mod-
ulator, without taking into account non-idealities effects and with an input at 2.7kH z of a
0.5V amplitude, the modulator grants to achieve a SNR = 98dB corresponding to an ENOB
of 16bi t .

2.4. SIMULATION RESULTS 17

10
2

10
3

10
4

10
5

10
6

−160

−140

−120

−100

−80

−60

−40

−20

0
PSD of a 3 order Sigma−Delta Modulator

Frequency [Hz]

P
S

D
 [d

B
]

SNR = 56.2dB @ OSR=128

Rbit = 9.05 bits @ OSR=128

Figure 2.8: Sigma-delta modulator: Power spectral density of the complete real model

PSD results obtained simulating all the recording chain (filter + modulator), including
also all the noise sources, show a deep degradation in terms of resolution, leading to a SNR =
56dB corresponding to a 9bi t converter resolution (Fig. 2.8). The plot was obtained using
an input with an amplitude of 2mV at 2.7kH z. It should be clear that this is a worst case
condition, in which the overlapped noise has been extra-estimated, while in the real imple-
mentation it will be expected to have better noise performances.

1u 10u 100u 1m
−10

0

10

20

30

40

50

60

Input amplitude (V)

S
N

R
 (

dB
)

Figure 2.9: Signal to Noise Ration variations with different signal amplitudes

Fig. 2.9 depicts the system response in terms of SNR for increasing input amplitudes. As
expected, the SNR increases for increasing input amplitudes and starts to degrade when a
2mV input amplitude is reached. This value corresponds to a modulator input of 0.5V , i.e.

18
CHAPTER 2. A SIGMA-DELTA ARCHITECTURE FOR THE RECORDING OF PERIPHERAL NEURAL

SIGNALS

Vr e f /2. The sigma-delta modulator performances drop drastically [77] because of satura-
tion. It can be observed that the minimum detectable signal (corresponding to SNR = 0dB)
is equal to 2µV which is an acceptable result for the signal of interest.

Transistor level design was validated by simulating the whole recording chain with an in-
put given by the sum of 3 sine waves at 3 different frequencies. A 100µV signal at 2.7kH z
has been used to emulate the neural signal, while two components with an amplitude of
1mV at 100H z and 16kH z have been used to model out-of-band interferences. In particular,
the low-frequency sine wave represents a realistic EMG signal. The input signal is shown in
Fig. 2.10(a) and Fig. 2.10(b). The signal has been pre-filtered and pre-amplified by the analog
block before being converted in a 1−bi t stream by the sigma-delta modulator. The resulting
signal is shown in Fig. 2.10(c) and its PSD can be observed in Fig. 2.10(d). The 3 components
are still detectable and, as expected, the 2.7kH z component has been amplified more than
the two out-of-band signals. The noise shaping effect due to the delta delta modulator is also
evident. In order to remove the unwanted components, the signal has been decimated with
a 32nd order IIR Butterworth filter mapped in the Xilinx FPGA Virtex-5 LX330. The results in
the time and frequency domain are reported in Fig. 2.10(e) and Fig. 2.10(f); it is evident how
the unwanted components are completely filtered out and only the in-band frequency, am-
plified by the 45.5dB filter gain, is allowed to pass. The results obtained with transistor level
simulation are then exactly what expected, confirming the high reliability of the developed
behavioural model.

2.4. SIMULATION RESULTS 19

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

Time (ms)

A
m

pl
itu

de
 (

m
V

)

(a) Input Signal

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
m

pl
itu

de
 (

m
V

)

(b) Input Spectrum

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Time (µs)

M
od

ul
at

or
 o

ut
pu

t (
V

)

(c) Modulator Output Signal

10
2

10
3

10
4

10
5

−150

−100

−50

0

Frequency [Hz]

P
S

D
 [d

B
]

(d) Modulator Output Spectrum

0 2 4 6 8 10 12

−20

−10

0

10

20

Time (ms)

A
m

pl
itu

de
 (

m
V

)

(e) Output Signal

10
2

10
3

10
4

10
5

0

0.5

10

15

20

Frequency (Hz)

A
m

pl
itu

de
 (

m
V

)

(f) Output Spectrum

Figure 2.10: Recording chain response to an input composed by the sum of three sines at
100H z, 2.7kH z and 16kH z

Once that the proper behaviour of the Simulink model has been confirmed comparing
short-simulation time results with those achieved in Cadence environment, longer simula-
tions can be reliably run using the more lean and flexible Simulink model.

20
CHAPTER 2. A SIGMA-DELTA ARCHITECTURE FOR THE RECORDING OF PERIPHERAL NEURAL

SIGNALS

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

A
m

pl
itu

de
 (

m
V

)

(a) Input Signal

10
2

10
3

10
4

0

1

2

3

4

5

6

7

8

Frequency (Hz)

A
m

pl
itu

de
 (

m
V

)

(b) Input Spectrum

0 0.5 1 1.5 2 2.5
−15

−10

−5

0

5

10

15

20

Time (s)

A
m

pl
itu

de
 (

m
V

)

(c) Output Signal

10
2

10
3

10
4

0

50

100

150

200

Frequency (Hz)
A

m
pl

itu
de

 (
m

V
)

(d) Output Spectrum

Figure 2.11: Sigma-Delta modulator: pre-recorded neural signal processing

In order to evaluate the system capability to work with real neural signals, the whole sys-
tem has been tested with a pre-recorded neural signal extracted in clinical trials from the
PNS of a rabbit subjected to cutaneous afferent stimulation at 50H z and 100H z. The signal
was filtered and modulated by the Simulink model of the analog module and the resulting
stream of bits was fed to the IIR decimator filter mapped on the same FPGA Xilinx Virtex-5
LX330. The input pattern, represented in Fig. 2.11(a), corresponds to 2.5 seconds of record-
ing. The input signal is affected by EMG and ECG interferences with a very large amplitude
(in the millivolts range) and a spectrum (Fig. 2.11(b)) concentrated below 300H z. Such in-
terferences completely mask the underlying neural content.

Fig. 2.11(c) displays the input-referred output signal and Fig. 2.11(d) its power spectral
density: the low-frequency interferences are completely removed and the weak neural sig-
nal is now amplified and visible, as well as its frequency signature. Some tests have been
also performed by processing a part of the track recorded in absence of external stimulation
and, as expected, no evidence of neural spikes was detected and only the underlying noise
was visible at the system output. In this way, it has been verified the functionality of a neural
recording interface based on a sigma-delta architecture which can be exploited for the de-
velopment of a real-time hardware implementation able to record multi-channel peripheral
neural signals, working even in case of critical conditions.

Chapter 3

A Multi-Channel Electronic Interface

for PNS Recording and Stimulation

3.1 Introduction

The human brain and the way it communicates with the rest of the body has always fasci-
nated the researchers of all the world. The possibility to extract the neural signals and to
use them outside of the human body in order to control a prosthetic device and re-establish
the functionalities lost by a patient subjected for example to an upper-limb amputation is,
in fact, one of the most challenging ideas of ever. To perform this task, the relative solution
depends basically on the place where the signals are extracted. In literature there are a lot of
works concerning the CNS neural recording systems [87, 21, 78, 83, 44, 28, 84], while a fewer
number of works have been published related to the PNS signal acquisition [57, 17, 48, 50].

This is partially due to the wide range of possible applications offered by a CNS implant,
being the brain the part of the body in which each neural signal is generated, this solution
can be in fact exploited for many diseases related to the nervous system such as Epilepsy,
Alzheimer, Multiple Sclerosis, damages to the spinal cord and neuroprosthetics [29]. More-
over with a CNS interface it is possible to acquire different types of signals: in particular
the Local Field Potential (LFP) and the Extracellular Neural Action Potential (ENAP) [21, 27].
Nevertheless such kind of implant is highly invasive and implies the electrode insertion in-
side the skull. An alternative way to reach the neural fibers is the implantation of electrodes
in the peripheral nerves, such a solution is less flexible and more focused on a specific dis-
ease than that based on the CNS, but has the great advantage to be less invasive and re-
cent studies show that it allows to achieve excellent results in the decoding the intentions of
movements for prosthetic applications [57], especially using multi-channel intra-fascicular
electrodes [63].

The general trend in neural recording is to acquire the signal by using multi-channel elec-
trodes in order to discriminate the significant electrical activity of single axons and to evalu-
ate the correlation between the signals coming from near recording sites. In literature many
systems with a large number of electrodes have been presented, especially referring to the
CNS systems extracting the signals of interest by Multi-Electrode Arrays (MEAs) character-
ized by a number of electrodes up to 256 [87, 21, 12]. The number of channels explosion has
a deep impact also on the chip area in the perspective of a low-power real-time implementa-

21

22
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

tion responsible to the recording phase, that should not exceed the size of few mm2 to allow
an easy implantation.

All these considerations are still true considering the PNS but in this case the constraints
are less stringent due to the fact that these electrodes have typically 8-16 channels. The main
concern in PNS recording is to amplify the neural signals, whose typical amplitudes are in the
tens of microvolt range, as specified in the previous section, filtering the electro-stimulations
signals (EMG interferences) of the muscles which surround the electrodes whose spectrum
partially overlaps the bandwidth of the signals of interest and with amplitudes in the range
of millivolt. For these reasons, the recording module front-end must be designed with a spe-
cial care aimed to amplify the weak neural signals avoiding the risk of amplifier saturation
due to the huge EMG interferences. At the same time, the stimulation unit plays a key role
in neural interfaces, since it permits to restore the sensory feedback to the patient giving in-
formation about the external world. The sense of touch can, in fact, be emulated by special
sensors collocated in the cybernetic hand and activated by pressure, and the picked up in-
formation can be transduced in electrical currents to be injected in the patient’s stump with
the same electrodes used in the recording phase with amplitudes and morphologies strictly
dependent on the information which must be sent to the brain, usually encoded though a
neuromorphic model [20].

In this part of the research activity a bidirectional multi-channel neural interface, in-
tended to record neural signals picked up from an electrode implanted in the PNS and to
elicit the neural fibers with bi-phasic current pulses generated by a stimulation module, has
been implemented. In particular, in this way, it is possible to send the peripheral neural sig-
nals to an external host processor in order to perform the next processing steps at off-line or
to an electronic hardware platform able to decode the intentions of movements in real-time
and give the correspondent electro-mechanical stimulations in input to a prosthetic device.

3.2 System Architecture

The system, as represented in Fig. 3.1, is aimed to permit the communication between the
PNS of an amputee patient and a robotic limb in order to re-establish the functionalities lost
by the former. It includes 8 parallel recording channels that are based on sigma-delta A/D
converters following the architecture described in the previous chapter 2, and 8 independent
stimulators, implemented as current D/A converters. The architecture has been developed
on two different levels: an analog front-end and a digital back-end. The analog part has
been implemented in an Integrated Circuit (IC) designed in a 0.35µm CMOS process from
AMS (Austriamicrosystems) with double-poly capacitors and 4 metal layers while the digital
back-end is hosted in the Xilinx FPGA Spartan-3E 1600 development board.

3.2.1 Analog Front-End

The analog front-end includes all the devices that directly interact with the implanted elec-
trode. The system is capable of recording 8 channels in parallel, nevertheless, it has been
thought to work with 16 channel electrodes, therefore an internal switch network has been
introduced to allow choosing 8 out of the 16 available channels. The recording path is com-
posed by a 1st order Switched Capacitor (SC) band-pass filter (BPF) with programmable gain
and a 3r d order sigma-delta modulator with an oversampling ratio (OSR) of 125. It slightly

3.2. SYSTEM ARCHITECTURE 23

BPF
Sigma-Delta
Modulator

Sigma-Delta
Modulator

Sigma-Delta
Modulator

BPF

BPF

Sigma-Delta
Decimator...

Stimulator

Stimulator

Stimulator

5-bit Current DAC

5-bit Current DAC

5-bit Current DAC

...

...
Stimulation

Pattern
Generation

Analog Front-End Digital Back-End

Figure 3.1: Block diagram of the neural recording and stimulation system

differs from what presented in the previous chapter in order to obtain an integer factor be-
tween the FPGA clock signal frequency and the oversampling frequency used for the sigma-
delta A/D converter. In this way, considering an useful bandwidth for the signal of interest
in the range between 800H z and 8kH z, the input oversampling frequency for each channel
must be equal to 2M H z.

Concerning the analog BPF, its main aim is to filter the neural signal from noise and un-
wanted biological interferences such as the low-frequency EMG interferences and to amplify
it as close as possible to the site where the signal has been extracted, avoiding signal cor-
ruption. Due to the strict area constraints, to allow the implementation of an implantable
device, it has been chosen a low order solution shifting the filtering complexity to the digi-
tal side exploiting the greater integration capacity. The gain must be set properly to benefit
from the amplification effect without risking the loss of information due to amplifier satu-
ration. To prevent this risk, the gain can be modified in a 46dB −56dB range according to
the actual input amplitude. The analog signal is then converted into a digital one using a
3r d order sigma-delta modulator, the two level quantizers generate 8 single-bit streams at
the oversampling frequency that are encoded using an SPI (Serial Peripheral Interface) pro-
tocol and sent to the FPGA to be processed by the high-selective sigma-delta decimator. The
stimulation unit is a 5-bit current D/A converter, it provides a bi-phasic current that can
range from 24µA to a maximum of 384µA with impedances up to 4.8kΩ, for higher values
the maximum reachable current value scales down proportionally. The layout of the chip
implementing the multi-channel analog part for recording and stimulation is reported in
Fig.3.2(a) together with its view in Fig.3.2(b) obtained using a common electron microscope,
the total area occupation is 4.1mm ×4.1mm.

24
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

(a) Layout (b) Electron Microscope view

Figure 3.2: Eight-channels analog front-end mapped on the custom designed IC.

3.2.2 Digital Back-end

The main task of the digital part is the implementation of the sigma-delta decimator. As
detailed in the previous chapter, it is typically composed by two main stages: a low-pass
anti-aliasing filter and a downsampler. The former reconstructs a multi-bit signal from the
one-bit stream generated by the modulator, removes the quantization noise shaped at high
frequencies and preserves the signal from aliasing effects before the downsampling process
in which one sample every R is picked up to bring back the signal to the Nyquist frequency
relaxing the real-time constraints for the next steps of , especially in the case of a periph-
eral neuroprosthetic device. The R factor is fixed to 125 and must coincide with the over-
sampling ratio (OSR) of the sigma-delta converter. Since, in this specific application, one
of the most critical design issue is the low-frequency EMG interferences rejection, the dig-
ital filter has been designed as a high-selective band-pass filter (BPF). In particular, a BPF
in a 800H z − 8K H z bandwidth has been implemented using a 16th order Infinite Impulse
Response (IIR) Butterworth solution that allows obtaining a good compromise in terms of
out-of-band attenuation and necessary hardware resources utilization as it has been demon-
strated performing hardware/software cosimulations exploiting the Xilinx System Generator
tool in Matlab Simulink environment. In this case, a lower order has been chosen in com-
parison to what described in the previous chapter due to the fact that the target FPGA must
host a more complex digital control system to manage the various phases of recording and
stimulation and to test in real conditions the performance of the proposed solution.

After verifying the correct operation of the IIR filter on Matlab Simulink using a double-
precision floating-point representation of the internal signals, the same functionality has
been evaluated in the case of fixed-point for which it is necessary to specify the number of
bits and the correspondent fraction length. The main filter parameters for the fixed-point
representation are summarized in Table 3.1. Regarding the input word length and the rela-
tive fraction part, the values have been chosen considering that the recording system must
be able to detect neural pulses with amplitudes in the order of tens of microvolt. The risk of
overflow for the integer parts of the internal signals is prevented thanks to the fact that the
obtained coefficients have values less than unity.

3.2. SYSTEM ARCHITECTURE 25

Response Type Band-Pass Filter
Design Method IIR Butterworth
Filter Arithmetic Fixed-Point
Passband 0.8 - 8 KHz
Input Sampling Frequency 2 MHz
Order 16
Coefficient Word Length 32 bit
Input Word Length 32 bit
Input Fraction Length 22 bit
Output Word Length 32 bit
Rounding Mode Floor
Overflow Mode Wrap

Table 3.1: Digital filter parameters

The HDL code corresponding to the simulated 16th order quantized IIR filter has been
developed in order to verify the correct functionality when it is mapped on a real FPGA. Mat-
lab FDATool, exploited for the design of the band-pass filter and to verify the functionality
in the target application at simulation time, determines the architecture of the desired filter
as a cascaded of 2nd order Biquad sections using a pipeline mode in order to maximize the
throughput of the digital filter. The pipelined structure is simply created positioning a delay
register between two consecutive subsections.

Once that the filter performances on one channel have been verified, the results have
been extended to a multi-channel implementation. A solution based on a common Time
Division Multiplexing (TDM) technique has been adopted in order to exploit the same hard-
ware resources for each channel. As shown in Fig.3.3, the resultant block diagram of the
multi-channel digital filter has been implemented in which the various delay registers present
in the single-channel solution and located in each Biquad section are replaced with banks
of 8 registers used as circular buffers according to the current value of a 3-bit counter in-
cremented at the significant edges of a clock signal of frequency 8×2M H z = 16M H z. For
this purpose, a sampling frequency of 16M H z (that is eight times the value necessary for
each channel) has been used. Synthesis results in terms of slices utilization on the target
FPGA and area occupancy have also been calculated in the perspective of a low-power ASIC
implementation.

Table 3.2 compares the results achieved with the TDM method with a static solution that
simply replicates eight IIR filters. In the latter case, the actual ratio in FPGA synthesis would
be greater than 100% making the implementation through TDM a mandatory solution for
the target device. It should also be noticed that the number of the embedded multipliers
used for the multi-channel solution of the digital filter is less than the corresponding number
for the single channel version because some of them have been synthesized as logic blocks.
These results have been obtained exploiting the Xilinx Synthesis Tool (XST) and mapping
the hardware implementation on a Xilinx FPGA Spartan-3E 1600 while the ASIC results have
been derived through a commercial release of the Cadence SoC Encounter software with a
90nm low-power technology library.

The digital module is also responsible of generating the stimulation patterns which must
be given in input to the same electrodes used in the recording phase based on external in-

26
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

Figure 3.3: Block diagram of the multi-channel version of the digital BPF.

FPGA synthesis 8 single ch. 8 mux. ch.

Number of slices 39656/14752 9374/14752
Number of slice flip flop 6432 4933
Number of 4 Input LUTs 76768/29504 14941/29504
Number of MUL18x18SIOs 288/36 32/36
Actual ratio [%] 268 63
Maximum frequency [MHz] 40.476 30.878

ASIC synthesis 8 single ch. 8 mux. ch.

Cells 135016 27095
Cell Area [µm2] 1083624 255439
Leakage Power [µW] 790.38 161.32
Dynamic Power [mW] 24.08 12.09
Total Power [mW] 24.87 12.25

Table 3.2: Synthesis results in the case of 8 parallel channels (column 1) and in the case of 8
multiplexed channels (column 2)

formation extracted by particular sensors placed in the surface of the cybernetic hand and
in particular to define the pulse parameters in terms of pulse duration, frequency and am-
plitude as it will be described in the next sections.

3.3 Testing Environment Setup

To verify the functionalities of the implemented bi-directional neural interface in recording
and stimulation, firstly from the electrical point of view and secondly by means of in-vivo
experiments on sedated animals in real critical conditions, a dedicated test environment has
been developed. Fig.3.4 highlights the relative structure which is mainly divided into two
parts: a custom designed Printed Circuit Board (PCB) and a Digital Control System (DCS)
mapped on a Xilinx FPGA Spartan-3E 1600 development board.

In Fig.3.5 a picture of the testing system is shown, involving the Xilinx FPGA Spartan-
3E 1600 Development board on the left side and the custom designed PCB on the right one
that are linked through a 100-pins Hirose connector on which are routed the various signals

3.3. TESTING ENVIRONMENT SETUP 27

 PWR

supply

Electrode

connectors

Vref

Test

DAC

Att.
1/100

Custom

Designed

IC
0

1

CUSTOM DESIGNED PCB

ADC for chip

monitoring

P

L

B

B

U

S

ADC

controller

MUX

controller

Test signal

DACs controller

Xilinx Ethernet

controller

Vref DAC

controller

Xilinx DRAM

controller

UARTLITE

controller

Xilinx Spartan-3E 1600 Development Board

Custom

Designed ΣΔ

decimator

Chip config.

Interface

Stimulation

patterns

 DIGITAL SYSTEM CONTROLLER

ADC for chip

monitoring

Host PC:

MATLAB

user interface

DIGITAL SYSTEM CONTROLLER

Figure 3.4: Architecture of the Digital Control System.

needed to allow the communication between the two parts. In the following both will be
described in details before presenting the significant results of the neural interface in the
conditions of interest.

Figure 3.5: Implementation of the Testing Environment.

28
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

3.3.1 Custom Designed Printed Circuit Board

The PCB has been designed using the software Cadence-Orcad Capture for the schematic
and PCB Editor for the Layout. Special care has been put on the latter, trying to minimize
the connections and keeping as symmetrical as possible the tracks carrying the most critical
analog paths. Wide ground planes have also been used as well as large tracks for ground and
power supply paths.

The main aim of the PCB is to host the ASIC recording and stimulation chip and all the
devices needed to provide power supply and reference voltages to the chip, as well as to gen-
erate the analog input signal needed to verify its behaviour in the test conditions. In particu-
lar, it has been used a 3.3V voltage regulator (component MAX1792 from Maxim Integrated)
for the analog power supply generation. Different power domains have been adopted for the
digital and the analog parts to avoid that the huge digital noise is picked up by the analog
circuits which is more sensitive compared to the previous one.

The digital devices have been supplied with a 3.3V provided by the Spartan-3E 1600
board and transmitted to the PCB through the Hirose connector. The ASIC chip requires
three different reference voltages for its working: a 1.65V as reference voltage in all the
switched capacitor circuits and two voltages (0.65V and 2.65V) for the sigma-delta Vr e f gen-
eration. They are provided by a voltage D AC (component LTC2604 from Linear Technology),
this choice allows tuning the reference voltages and to adjust, by this way, the converter res-
olution if needed during the test phase thanks to the reconfigurability allowed by the digital
control system.

The fully-differential input signals for the chip testing are generated by two 16-bit DACs
(component LTC2641 from Linear Technology has been used), achieving a Least Significant
Bit (LSB) of 50µV . Since the typical neural amplitudes are in the decades of microvolt range,
an attenuator has been cascaded to the DACs to allow the system test with more realistic
signals. A low-noise fully differential operational amplifier (component LT1994 from Linear
Technology) with a proper resistive feedback network has been used to implement the atten-
uator. Thanks to a switch network (component ADG636 from Analog Devices) it is possible
to select if use as system input the DACs or the attenuator output. The PCB hosts also two
12-pin connectors for the electrodes connection to test the system during the in-vivo exper-
iments on animals. An ADC (component ADS5560 from Texas Instruments) has also been
introduced to monitor the behaviour of the intermediate stage in the recording channel.

3.3.2 Digital Control System

The Digital Control System (DCS) is aimed, on one hand, to configure and manage the ASIC
chip and all the devices hosted on the PCB and, on the other hand, to handle the communi-
cation with an host PC on which the next processing and decoding steps can be performed
before the realization of a fully portable implementation of the neuroprosthetic device. In
this way, the user can require the execution of a particular test, to record in real-time the var-
ious outputs of the system architecture mapped in the chip during the recording phase or to
send bi-phasic stimulations with a specified set-up in input to the same electrodes used in
recording by exploiting an user-friendly Matlab interface.

The DCS is based on the use of a MicroBlaze processor mapped on the target FPGA which
represents a soft-core used as the micro-controller of the system and the intermediate stage
which allows the communication between the user and the chip, especially to configure its

3.3. TESTING ENVIRONMENT SETUP 29

behaviour in adaptive way according to the recording conditions. It involves several periph-
eral modules devoted to control the different devices placed in the PCB, as shown in fig. 3.4.
The communication between the modules and the processor is performed through a Pro-
cessor Local Bus (PLB) by which the MicroBlaze can assess on them by a memory-mapped
solution.

In particular, besides the sigma-delta decimator that is an integral part of the recording
unit (described in section 3.2.2) responsible of cutting the low-frequency interferences and
avoiding aliasing effects before the downsampling process at the Nyquist frequency for each
channel, the DCS hosts several hardware peripheral controllers. Regarding the devices on
the PCB it contains the controller for the chip configuration and for the stimulation patterns
definition, as well as the controller for the DACs that generate the reference voltages, for
those used to generate the input signals, for the ADC and for the switches configuration. It
includes also a control module for the Ethernet communication with the host PC, a UartLite
controller for the MicroBlaze debug prints and one for an external DDR DRAM memory in
which it is possible to save several amount of data exploiting its greater capacity and to map
the instruction code and the data structures of the MicroBlaze application. The DCS has
been designed exploiting the Xilinx Platform Studio (XPS) tool for the creation of the em-
bedded system at higher level which must be mapped into the target FPGA, specifying the
hand-coded HDL implementation of each hardware controller after the correct evaluation
of its behaviour at simulation time.

In this way, the user can ask the following operations during the electrical or the in-vivo
experimental tests:

• set the value of the internal registers instantiated in the digital interface of the custom
designed IC;

• generate configurable stimulation patterns as bi-phasic pulse trains;

• evaluate one of the intermediate outputs of the analog recording path;

• create fully-differential sinusoidal test signals with variable amplitude and frequency
which can be applied in input to the designed IC and processed even by the digital part
to verify the resultant frequency response of the system in the band of interest and the
out-of-band attenuation, enabling or not the attenuator cascaded at downstream of
the two DACs;

• acquire in real-time the samples coming from the different channels of the sigma-delta
modulators and filtered by the decimator in order to allow an on-line recording and
processing or a plot on a graphical user interface (GUI).

The hardware controllers, connected to the PLB, are accessible by the MicroBlaze through
read/write operations on defined registers specified by an univocal address. The communi-
cation between these controllers and the correspondent components on the PCB is usually
based on an SPI protocol specified in the relative datasheets. In the following the solutions
adopted for some of the modules are described with more details.

Chip configuration

The digital interface integrated in the chip is characterized by a bank of eight registers, each
one of 16 bit. Seven registers encode the information concerning the chip configuration

30
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

such as the gain value of the band-pass pre-filter, the input test set-up bypassing one of the
various stages involved in the recording path, the stimulation current values, the electrodes
selection. They can be either read or written. The last one is a read-only register used to store
the eight 1-bit generated by the sigma-delta modulators which must be applied in input to
the multi-channel sigma-delta decimator.

The communication between the custom designed IC and its hardware controller is based
on a custom SPI link synchronized with respect to a clock signal at the frequency of 40M H z
handled by a determined Finite State Machine (FSM) which controls each phase of the chip
configuration. This clock signal is created by the oscillator available on the FPGA according
to the system clock of the board at 50M H z and instantiating a Digital Clock Manager (DCM)
module in the digital part which determines the output clock signal properly specifying the
values used as multiplier and divider, and finally transmitting it to the chip through the Hi-
rose connector. In the same way, the relative clock signals are created and sent in input to
the other available components based on the specifics defined in the relative datasheets.

The protocol consists of 20-bit transactions as shown in Fig. 3.6 which involves that each
communication pattern between the digital part mapped on the FPGA and the chip on the
PCB is performed with a frequency of 2M H z.

20 bit

WnR Reg. Address Data

Figure 3.6: SPI communication protocol between the chip and the controller

In detail, the first bit indicates whether the operation is intended to read or to write one
of the chip registers, the next three bits are used to specify the address of which register is
involved in the operation and the last 16 bits are the data which have to be read or written
on the register. Using this protocol it is possible to perform different tasks on the chip:

• “Reset” of the internal registers to their default values;

• “Writing” one of the 7 chip registers for the configuration of the analog front-end;

• “Reading” one of the 8 chip registers;

• “Streaming”, during which the bits generated by the eight sigma-delta modulators are
continuously read at the frequency of 2M H z and sent to the digital decimator;

• “Stimulation” during which trains of bi-phasic pulses are generated as stimulation
waveforms.

The proposed solution of the DCS allows to generate the train of bi-phasic pulses in stim-
ulation mode and, at the same time, between two successive pulses, acquire the signal com-
ing from the neural electrodes and processing them through the sigma-delta decimator. In
streaming mode, the eight 1-bit outputs of the sigma-delta modulators are applied in input
to the multi-channel decimator. They are filtered removing the unwanted low-frequency

3.3. TESTING ENVIRONMENT SETUP 31

interferences and the quantization noise shifted at high frequencies, determining at out-
put a better resolution able to properly reconstruct the signal of interest. Then the outputs
are brought back at the Nyquist frequency, relaxing the timing constraints which must be
satisfied in order to sent them in real-time to the host PC by the Ethernet link using the
MicroBlaze processor as intermediate stage. This is performed by transmitting successive
UDP packets with a payload containing a defined number of decimator output samples for
the various channels represented with the correct fixed-point representation, which must
be properly processed at PC side. To this aim, a buffering mechanism is required before to
sent the samples in real-time to the PC via Ethernet. For this reason, the processor stores
temporarily them on the external DDR DRAM memory. Special care has been in fact put on
buffering operation in order to avoid the loss of samples due to saturation conditions. Due to
the fact that the MicroBlaze must serve several operations at the same time, even the periph-
eral module responsible of the chip configuration saves the decimator output in a bank of 6
slice registers for each channel to further reduce the frequency, with respect to the Nyquist
rate, according to which the processor acquires the relative signals before sending them to
the host PC for the next processing steps.

As specified before, write operations on the internal registers allow the user to reconfig-
ure at runtime:

• the gain of the various processing sub-stages of the analog front-end (high-pass and
low-pass pre-filtering) for all the 8 channels;

• to give the test signal in input to one of the various stages in order to evaluate the fre-
quency response of each of them or considering as input that coming from the neural
electrodes for in-vivo experimental tests;

• to bypass or not the stage of bandpass pre-filtering;

• to set the value of the stimulation currents for each channel;

• to define which of the intermediate outputs of the processing flow connect to the test
pins in order to verify the behaviour with an oscilloscope.

Stimulation pattern generation

The programmed stimuli are bi-phasic pulses (Fig. 3.7) in which parameters such as ampli-
tude (A), width (W), frequency (f) and the number of pulses can be defined by the user at
runtime within pre-defined ranges as indicated in the Table 3.3.

32
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

Figure 3.7: Biphasic neural stimulus waveform

parameter range

A (µA) 24−384
W (µs) 10−300
f (H z) 10−300

Table 3.3: Biphasic neural stimulus waveform

The stimulation pulse is generated by the hardware interface with the following opera-
tions handled by the same FSM dedicated to the chip configuration: first, the digital code
corresponding to the selected amplitude A is written on the chip register, this values stays
on the register for a time interval equal to W , then, the negative value is stored in the same
register for the same time only reversing the relative sign bit and, finally, a recovery period
with 0 current is set. The process is repeated after a period T equal to the inverse of the
requested frequency f . During this recovery period, the operation state of the chip can be
changed to streaming mode in order to continue the acquisition at output from the analog
part of the recording path. Fig. 3.8 shows the set-up of the testing environment during the
stimulation phase, in which it is possible to notice:

• the host PC by which the user can ask to the DCS, via the Matlab interface, the gener-
ation of a specified stimulation pattern;

• the test system involving the Xilinx FPGA Spartan-3E development board connect to
the host PC via Ethernet and the PCB;

• a breadboard on which an equivalent resistive model of the input impedance of the
neural electrodes are placed and connected to the relative pins available in the PCB;

• the MSO6054A mixed signal oscilloscope from Agilent technologies by which it is pos-
sible to evaluate the timing trend of the voltage drop across the resistive model and
determine the stimulation current in input to the neural electrodes.

3.3. TESTING ENVIRONMENT SETUP 33

Figure 3.8: Set-up of the testing environment during stimulation.

Input test signal controller

The controller for the input DACs is aimed to generate electrical signals to test the filter fre-
quency response. The DCS allows the user to select at runtime the type of the signal which
must be applied in input to the chip, choosing among a fully-differential test signal gener-
ated by the two DACs and that coming from the neural electrodes. Regarding to the first
solution, the user can choose between two different alternatives:

• to generate two sinusoidal waves with a phase shift of 180°and variable frequency and
amplitude in order to verify the behaviour of the recording system for components
along the whole band of interest and the attenuation in the case of out-of-band com-
ponents;

• to apply input samples belonging to a real neural signal, recorded during previous in-
vivo experimental tests on sedated animals and saved in the DDR DRAM memory ac-
cessible by the MicroBlaze processor.

Therefore, for the first test case, sinusoidal signals in a wide range of frequencies are re-
quired. Since the filter bandwidth is expected to be in the 800H z − 8kH z range, the test
frequencies cover an interval from 80H z to 80kH z. In such a wide range it is not possi-
ble to use the same number of samples per period for each frequency, therefore 3 different
Look Up Tables (LUTs) have been used: 100 samples/period for frequencies below 4kH z, 24
for frequencies in a [4kH z −20kH z] range and 6 samples for the highest frequency interval
[20kH z − 80kH z]. This choice allows having a better resolution for low frequency signals
considering that, for them, timing constraints are not particularly strict, for higher frequen-
cies the number of samples is reduced in order to meet the constraint on the maximum input
sampling frequency for the DACs. The two DACs receive the same samples with a 180°phase
shift for the generation of a fully differential signal. To do this, the samples sent to the second

34
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

DAC start from half the LUT. For the second test case, the controller is also able to send to
the two DACs generic samples coming from the PC, by this way, any waveform can be set as
system input. To allow the generation of test signals with amplitudes in the order of tens of
microvolt as for the signals of interest, the user can ask to the DCS of enabling or disabling
the attenuator with a transformation ratio equal to 1/100 at downstream of the two DACs.

Ethernet controller

An Ethernet link has been used for the FPGA-PC link in order to exploit its great communi-
cation bandwidth and fulfil the timing constraints imposed by the application under con-
sideration. In particular, the UDP protocol has been preferred to the TCP one for its lower
latency. Indeed, the higher reliability of the TCP protocol is not necessary in this case, con-
sidering that there is a point-to-point connection between the host PC and the FPGA device.

LightWeight IP (LwIP) libraries have been used for the MicroBlaze code, they were in-
cluded in an open-source project of C libraries for the implementation of the TCP/IP proto-
col stack optimized for the use on embedded systems. It can be used in many development
environments for embedded systems including Altera, Xilinx and Honeywell. The mapping
of such a system on the FPGA requires only few tens of kbytes of RAM and approximately
40 kbytes of ROM and has the great advantage of masking all the complexity at low level to
handle the Ethernet communication. To do this, it has been also necessary to instantiate a
Xilinx Ethernet controller, an Interrupt Handler, a hardware timer to handle the timing of
the interrupt handler and the DDR DRAM to store the buffered packets before the sending
and the code of the software library by properly configuring the Linked Script file for the XPS
project of the embedded system. It assumes that in the configuring process of the target
board, by using the XMD (Xilinx Microprocessor Debugger) tool, the ELF (Executable and
Linkable format) file must be downloaded on the available external memory due to the fact
that there is not enough space in the local memory of the processor, resulting in a higher
latency access for read/write operations.

The optimization of the relative parameters can be made directly from the “Software Plat-
form Settings” panel of the XPS tool: the few required operations to do are the maximum
payload size definition for the UDP packets, the selection of the packets queue depth and
the activation of the UDP communication. When the user sends a packet to the DCS, the
MicroBlaze processor keeps track of its IP address and the used port creating the commu-
nication socket, invokes a specific callback function as soon as a packet is received, sends a
response or performs further processing and finally verifies on the network interface if new
packets are incoming. The type of required operation is encoded in the payload as a string.

In this way, the MicroBlaze acts as an asynchronous micro-controller for the DCS accord-
ing to the user requests: at the packet receipt, it decodes the message in the payload, storing
the significant information or delegating the operations to the dedicated controllers. The
use of the LwIP library allows the processor to manage multiple requests at the same time
coming from the PC. The latency introduced by the UDP protocol and the constraints im-
posed in terms of maximum payload size allow to perform a real-time communication only
at the sigma-delta decimator output (i.e. 8 channels downsampled at 16kH z). Nevertheless
it is also possible to acquire the modulator outputs (i.e. 8 channels at 2M H z), but in this
case only an off-line transmission is possible. In this latter case, the number of samples that
can be transmitted is limited by the space available on the DDR DRAM on which they are
temporarily saved.

3.4. EXPERIMENTAL RESULTS: ELECTRICAL TESTS 35

PC-side interface

From the point of view of the user application, an user-friendly interface in Matlab environ-
ment has been developed. It facilitates the Ethernet connection management since it han-
dles the packet transmission and reception to and from the FPGA by running respectively
simple write and read operation to the output buffer of the PC Ethernet interface. To do
this, the communication socket with the board must be defined exploiting the “Instrument
Control” toolbox.

An useful application is for example the feedback streaming audio generation to ear the
neural recorded signals, this is very helpful during in-vivo tests. To perform such a task,
custom scripts were created in order to read the information transmitted by the MicroBlaze,
convert them in the proper format and save the samples on a buffer associated with the
multi-channel audio interface of the host PC (through the instantiation of an AnalogOutput
object). When a defined threshold is reached during the buffer filling, the script invokes
an asynchronous callback whose task is to read and transfer the associated samples to the
AnalogOutput object. By this way, the user can ear in real-time the signal and assess the
presence of significant neural spikes.

3.4 Experimental Results: electrical tests

The first tests are aimed to verify the analog front-end behaviour from an electrical point of
view. The test system based on discrete DACs described in section 3.3.2 has been used for
this purpose. The PCB is provided with two test points used to monitor the chip during the
tests: one is collocated at the chip output, a switch network allows selecting which interme-
diate output connects to them. In this way, it is possible to analyse the temporal trend at the
HPF, the LPF, the 1st , 2nd and 3r d modulator stage outputs observing them with an oscillo-
scope. The other test point is at the chip input and allows verifying the system performances
during the stimulator tests.

3.4.1 Recording unit tests

Firstly, the frequency response of the analog 1st order BPF has been verified, a differential
sinusoidal input with fixed amplitude and variable frequency in the range 80H z − 80kH z
has been used. Fig. 3.9 shows the results, the blue curve was obtained with the lowest gain
while the red one with the highest gain configuration.

The filter parameters, in terms of gain and bandwidth for the maximum and the mini-
mum gain configuration, are reported in Table 3.4. It should be clear that, even though there
is a slight difference with respect to the design specification (800H zÂů8kH z) it does not rep-
resent a problem since the out-of-band frequencies will be completely rejected by the high
selective BPF of the digital decimator stage.

Fig. 3.10 demonstrates the possibility to program the gain of the pre-filter: the traces
were obtained stimulating the chip with a fully-differential sinusoidal signal with a 280µVpp

amplitude at 3kH z. The weak amplitude has been obtained thanks to the attenuator cas-
caded after the two DACs generating the input test signal. The result has been achieved with
5 possible gain configurations; nevertheless, the gain can be configured with a total of 256
values between the minimum and the maximum values.

36
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

10
2

10
3

10
4

20

25

30

35

40

45

50

55

60

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Figure 3.9: BPF Bode diagram. Red curve: higher gain configuration, blue curve: lower gain
configuration.

Gain [dB] Bandwidth [KHz]

High Gain 56.5 0.8-11
Low Gain 45.9 0.8-9.5

Table 3.4: BPF parameters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-100

-50

0

50

100

150

Time (ms)

A
m

p
lit

u
d

e
 (

m
V

)

A=47dB

A=50dB

A=52dB

A=55dB

A=56dB

Figure 3.10: BPF: gain programmability.

As detailed before, the low-order band-pass pre-filter integrated in the custom designed
IC for each channel is aimed only to partially remove the low-frequency interferences. It is
due to the fact that then the greater integration capacity of the digital side and the proposed

3.4. EXPERIMENTAL RESULTS: ELECTRICAL TESTS 37

sigma-delta architecture have been exploited to design the first stage of the decimator with
a highly selective frequency response, as can be seen in Fig.3.11, mapped on the target FPGA
and, in the perspective of portable solution, hosted in the stump of the upper limb prosthesis
device.

10
2

10
3

10
4

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

Figure 3.11: Frequency response of the 16th order digital BPF

The sigma-delta converter resolution was tested setting as input a sinusoidal waveform
of 0.5V @5kH z, bypassing the analog BPF and applying it directly in input to the modula-
tor. Fig.3.12(a) shows the 1-bit stream in the time domain while the resulting Power Spectral
Density (PSD) is reported in Fig. 3.12(b) and confirms a predominant signal component
at 5 kHz. The input amplitude corresponds to Vr e f /2, it has been chosen to test the con-
verter performances with a full-scale signal. In fact, for higher amplitudes the converter
performances start to degrade. According to the resulting PSD it is possible to evaluate the
signal-to-noise ratio that is equal to 57.1dB, corresponding to an Effective Number Of Bits
(ENOB) of 9.2 bit. This can be considered the real resolution of the proposed converter. The
plot points out also the noise shaping effect obtained by the sigma-delta modulator of the
analog front-end even if this high frequency noise is then removed by the high-order digital
decimation filter.

The digital filter output is reported in Fig. 3.12(c) and Fig. 3.12(d), respectively in the time
and in the frequency domain. The digital decimator brought back the sample frequency to
the Nyquist rate, the sine is thus sampled at 16kH z. Therefore, it has only about 3 samples
for each period, for that reason in Fig. 3.12(c) the spline interpolation of the measured sam-
ples has also been reported. The frequency domain shows how the high frequency noise
has been rejected by the decimator filter. The digital BPF, in fact, is a 16th order filter and
its sharpness allows attenuating deeply the out-of-band interferences, a 200H z signal, for
instance (that is a significant example being this frequency in the typical EMG frequency
range) is attenuated by more than 100V /V .

The relation between the signal amplitude (referred to the analog filter input) and the
SNR calculated from the PSD at the modulator output has also been evaluated. The result is
shown in Fig.3.13, a typical sigma-delta characteristic has been obtained, the SNR increases
with the increasing of the input amplitude up to a threshold (in this case 3.6mV referred to

38
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

(a) Time domain: bit-stream (b) Frequency domain: Power Spectral Density

(c) Time domain: digital decimator output (d) Frequency domain: digital decimator output

Figure 3.12: Results at the modulator and at the decimator output with a sinusoidal input
with 0.5V in amplitude at 5kH z

the input) corresponding to about half the reference voltage at the modulator input. For
higher amplitudes the signal saturates and the corresponding SNR starts to drop.

Figure 3.13: SNR vs. Input Amplitude.

3.4. EXPERIMENTAL RESULTS: ELECTRICAL TESTS 39

Since the system has been designed to work with neural signals, it has been also tested
the capabilities of the whole recording chain to work with amplitudes in the order of tens
of microvolts. A 18µV signal at 3kH z has been generated as input signal (the attenuator
cascaded after the two DACs has been used for this purpose). In Fig. 3.14(a), the time 1-bit
stream is reported, while Fig. 3.14(b) presents its PSD, even though such signal is particularly
weak it is still detectable. This is even more evident if the output of the digital filter is anal-
ysed: Fig. 3.14(c) shows the acquired signal in the time domain, the result has been obtained
using the higher gain configuration for the analog bandpass pre-filter in order to amplify the
weak signal as much as possible before the digital conversion. The frequency spectrum, re-
ported in Fig.3.14(c) confirms this result, showing a peak signal at 3kH z as expected. Look-
ing at the underlying noise shape in Fig. 3.14(c), it is evident how the interferences below
800H z are deeply attenuated.

(a) Bitstream (b) Power Spectral Density (PSD)

(c) Decimator output in the time domain (d) Decimator output in the frequency domain

Figure 3.14: Recording system results in high-gain configuration with an input signal of 18µV
at 3K H z.

Finally, the system has been tested with a pre-recorded neural signal acquired during
previous clinical trials with rabbits. The animal was subjected to vibrations at 50H z and
100H z in cutaneous afferents for 10 seconds. The results show how the system is capable
of rejecting the huge low noise components visible in the input signal (Fig. 3.15(a)) and to
highlight the neural spikes.

40
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

A
m

pl
itu

de
 (

V
)

(a) Input Signal

1 2 3 4 5 6 7 8 9 10
−40

−30

−20

−10

0

10

20

30

Time (s)

A
m

pl
itu

de
 (

µV
)

(b) Output Signal

Figure 3.15: Pre-recorded neural signal processed by the recording module

3.4.2 Stimulation module tests

The stimulation module has been tested using the system presented in section 3.3.2 that per-
mits to generate bi-phasic pulse trains with variable current, pulse width and period. A 10KΩ
resistance connected between the input pin and the reference voltage was used to emulate
the impedance introduced by the target neural electrodes. Fig. 3.16 shows the possibility to
vary the current amplitude which, considering this output impedance, can range from 20µA
to 100 µA. Higher currents can be achieved with lower impedances.

3.4. EXPERIMENTAL RESULTS: ELECTRICAL TESTS 41

0 1 2 3 4 5 6 7 8 9
-150

-100

-50

0

50

100

150

Time (ms)

C
u

rr
e

n
t
(µ

A
)

Figure 3.16: Stimulation current amplitude programmability.

Fig. 3.17(a) and Fig. 3.17(b) show how it is possible to change the pulse width W, in fact it
can be programmed in a range from 10µs to 300µs. The signals depicted in the figures have
been acquired with the oscilloscope and they therefore represent the voltage signal drops
across the equivalent input resistance connected at the electrode terminals. To obtain the
corresponding current, the signals should be divided for the 10KΩ resistance value.

10µs

(a) pulse width W=10µs

300µs

(b) pulse width W=300µs

Figure 3.17: Stimulation biphasic pulses varying the relative phase width.

The possibility to change the bi-phasic pulse period T has also been provided, it can span
from a minimum of 4ms to a maximum of 100ms. Fig. 3.18(a) and Fig. 3.18(b) confirm the
proper functionality of the stimulator also in this case.

42
CHAPTER 3. A MULTI-CHANNEL ELECTRONIC INTERFACE FOR PNS RECORDING AND

STIMULATION

4ms

(a) train period D=4ms

100ms

(b) train period D=100ms

Figure 3.18: Stimulation biphasic pulses varying the relative period.

3.4.3 Real in-vivo tests

The in-vivo measurements have been performed on sedated rats at the Ecole Polytechnique
Federale de Lausanne (EPFL) (Switzerland). An eight-channels TIME (Transverse Intra-fascicular
Multi-channel Electrode) was chronically implanted in the sciatic nerve of the animal. All
processes were performed using a protocol approved by the local Ethical Committee. The
tests were performed after a month from the electrode implantation, therefore the results
should be considered highly representative of what can be obtained in a long-term implant,
when the electrode-tissue interface is already degraded. In Fig.3.20 two pictures of the ex-
perimental set-up with the chip connected to the neural electrode chronically implanted in
the rat is shown.

(a) Experimental Set-up (b) Chronic TIME implantation

Figure 3.19: In-vivo tests at the EPFL laboratories.

During the tests the hind pow of the animal has been subjected to flexo-extensor move-
ments. The results, concerning seven different channels, have been reported in Fig.3.20.

3.4. EXPERIMENTAL RESULTS: ELECTRICAL TESTS 43

0 10 20 30 40 50 60

ch1

ch2

ch3

ch4

ch5

ch6

ch7

Time (ms)

125 µV

Figure 3.20: In-vivo recording results with seven channels

The presence of neural spikes with amplitudes of few tens of microvolts is evident as
well as the correlation between the near channels. The test successfully confirms the system
capabilities of recording neural signals with an input referred noise of less than 10µVpp . Fig.
3.21 shows a single spike recorded with the proposed system. As expected for a neural signal,
it is characterized by an amplitude of about one hundred of µV and a duration of 300ns.

0 0.5 1 1.5 2 2.5 3 3.5
−180

−120

−60

0

60

120

Time (ms)

A
m

pl
itu

de
 (

µV
)

Figure 3.21: In-vivo recording results: zoom on a single spike

Chapter 4

Real-time neural signals decoding

onto off-the-shelf DSP processors

4.1 Introduction

Considering the reference architecture of the closed-loop system used for the upper limb
neuroprosthesis, at downstream of the multi-channel sigma-delta decimator, the high-resolution
outputs at the Nyquist sampling frequency must be analysed in order to determine the de-
sired intentions of movements of the amputee. For this reason, it will be presented the con-
tribution related to the decoding algorithms of peripheral neural signals and the develop-
ment of the correspondent hardware implementations in order to fulfill the tight timing and
power constraints imposed by the reference application to allow portability of the resultant
solution, in this first case targeted on a commercial off-the-shelf DSP processor.

As it has been analysed before, several researches have focused their efforts on the iden-
tification of algorithms able to decode the mechanisms with which the brain generates the
electrical stimulations responsible of transmitting information related to the desired motor
actions from the central nervous system to peripheral one. The aim is to extract the inten-
tions of movements of the amputee by analysing the physiological signals, acquired by the
electrodes and digitalized with high resolution by the sigma-delta converter, and to gener-
ate the correspondent electro-mechanical stimulations which must be given in input to a
cybernetic hand.

As said before, the ENG-based prosthesis represents the most promising solution on
which this part of the research activity has concentrated its efforts. In particular, it will be
analysed the development and the implementation of an ENG-based decoding solution on
an embedded system, considering an off-line algorithm of the state of the art [16] as ref-
erence which has been already verified by real experimental tests on sedated animals pre-
senting excellent performance [69]. At the moment, the fundamental aspect of the corre-
spondent real-time hardware implementation has been often overlooked, notwithstanding
the impact that limited resources available on embedded systems may have on the efficien-
cy/effectiveness of any given algorithm. The same results must be in fact confirmed even
in case of using low operating frequency and strict low-power constraints imposed by the
application into consideration in order to allow portability of the resulting device.

The aim of this part of the work is to implement a system which can work autonomously

45

46
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

and in an unsupervised way based on the current characteristics of the acquired signal, in
real-time, by using compact battery-powered devices such as programmable DSPs and FP-
GAs. In the following sections, it will be described the target algorithm for PNS signals decod-
ing and the relative optimizations for the full implementation onto a off-the-shelf floating-
point digital signal processor (DSP) for on-line processing. Beyond low-level optimizations,
different solutions will be proposed at a high level in order to find the best trade-off in terms
of effectiveness/efficiency. A latency model, obtained through cycle-accurate profiling of
the different code sections, will be presented in detail in order to perform a fair performance
assessment and to verify the correct functionalities even in case of worst case timing condi-
tions.

4.2 A state-of-art ENG-based signal processing al-

gorithm

The majority of the decoding algorithms adopted for prosthetic applications involve the gen-
eration of a mathematical model created by examples with which it is possible to under-
stand the desired amputee movement by information related for instance to the spikeness
of the active neurons in a defined time window. For this reason, it is fundamental to have
electrodes with a high degree of selectivity in order not to limit the results at classification
downstream. During the years, among the various proposed approaches able to acquire
the ENG signals at PNS level, neural interfaces based on the use of thin-film Longitudinal
Intra-Fascicular Electrodes (tf-LIFEs) have already demonstrated the capability of extracting
the significant activity of each neuronal cell [59]. They are placed in parallel way to the axe
of the residual nerve accessible at the stump. The relative geometric structure is shown in
Fig.4.1 which highlights the presence of more sensitive sites in order to allow a multi-channel
acquisition and processing.

Figure 4.1: Structure of the tf-LIFEs.

The same interfaces can be used in a closed-loop system as a bi-directional communica-
tion link between the brain and the prosthesis. As said before, it involves a recording phase
along the direct path from the CNS to the PNS and a stimulation phase in the opposite direc-
tion to restore the external sensory feedback to an upper limb amputee. The original work,
considered as the starting point for this part of the research, has been presented in [16] with
the aim of verifying if the proposed off-line algorithm was able to decode the information
related to external stimuli applied on 6 adult sedated rabbits from the signals extracted by
the tf-LIFEs implanted in their sciatic nerve.

This algorithm consists of 4 successive processing stages: wavelet denoising (WD), spike
detection (SD), spike sorting by template matching (SS) for feature extraction and finally,
classification (CL). In comparison to other state-of-art algorithms, this one presents a feature

4.2. A STATE-OF-ART ENG-BASED SIGNAL PROCESSING ALGORITHM 47

N1 N1 N2 N2 N2 N3 N2 N2 N1 N2 N2 N1 N2 N2 N2 N2 N2

N1 N2 N3

24% 70% 6%

a)

b)

c)

d)

e) 24% 70% 6% Class �A�

Figure 4.2: Schematic representation of the PNS decoding process on a real signal.

extraction phase, to feed the classifier of the final stage, based on typical signal processing
techniques which can be easily adapted for an efficient real-time implementation on DSP
architectures, as it will be detailed. At the same time, the template-matching approach is
critical in terms of computational complexity, inserting difficulties on the fulfilment of the
timing constraints of the application under consideration.

For these reasons, a block-on-line approach has been adopted, applying as input a stream
with sampling frequency fs of 12kH z and obtaining as output a class assigned by the clas-
sifier to a feature vector, called pattern, at a rate fp of 4H z. An additional trigger with the
same fs has been processed to provide an on/off flag giving information that the underlying
neural activity extracted by the tf-LIFEs is consequent to the external stimuli applied to the
sedated animals and that it must be used for decoding or for the training phase of the clas-
sifier. A pattern is a vector of n f eat features which each of them represents the percentage
of spikes in a timing window of L samples with a morphology similar to one of the ordered
n f eat templates created in the training phase of the SS stage. A simple representation of the
processing of the neural signals is presented in Fig.4.2.

In particular, the raw signal (a) recorded by the acquisition system is filtered by the WD
approach (b), rejecting the samples which correspond to the noise and unchanging those
of the significant spikes which are identified by means of a SD stage and compared to the
previously extracted templates created by cross-correlation measures. The occurrences of
the spikes with similar morphology with respect to these templates are then determined (c)

48
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

as a percentage of the total pulses identified in a fixed time window. These values represent
the components of a feature vector (d) which must be given in input to the classifier in order
to determine the resulting class related to a particular sensory stimulus.

To achieve a good spikeness for the pattern, intended as the number of spikes per win-
dow, L should be large enough to contain several spikes and should slide on the input signal
with a frame rate r adequate to follow local variations in the signal in real-time. Given tL , the
frame rate r defines the time instants tn in which the patterns will be extracted to be pro-
cessed by the classifier, i.e. tn = n tL

r with n = 1,2, · · · . It is possible to choose L = b_len × r ,
so that b_len is the number of new signal samples, forming a block, needed to push on the
window (the window slides with an overlap of 1−r−1, e.g. 75% for r = 4). Since only the clas-
sifier requires to operate on the whole window, a “virtual” sliding window is implemented
in the code for the first three stages, the last one being in charge of preserving a memory of
the spike sorting results for the latest r blocks (updated block-wise) to compute the features
for a single pattern. This choice reduces the memory requirements and the computational
redundancies.

To provide an overview of the proposed algorithm in its on-line version, Algorithm 1 de-
scribes with a pseudo-code the different processing parts executed every time a new block
of b_len input samples is available. The different conditions responsible of the transitions
between the states of the algorithm can be automatically set by the code at run-time (e.g.
whenever an established number of spikes has been processed, after a specific amount of
time, in response to an external trigger).

The sequence of the macro-states of the algorithm changes over time in order to achieve
the automatic tuning of the various stages before the normal operation:

1. WD with threshold tuning in loop with SD;

2. WD and SD with established thresholds, followed by SS in Tuning Phase (TPh);

3. templates reduction and definition of the final set of n f eat templates;

4. WD and SD with established thresholds, followed by SS in Steady Phase (SPh);

5. CL creation and training;

6. WD and SD with established thresholds, followed by SS in SPh and then by CL (pattern
recognition).

In the following, the different stages are analysed considering optimizations of both the
original algorithm, to improve efficiency and effectiveness in the context of an embedded
system implementation.

4.2.1 Wavelet Denoising

WD is a preliminary processing step used in several biomedical applications to remove the
background noise added to the signal of interest, in particular when it can be modelled as a
Gaussian distributed random source. It is a non-linear filtering process aimed at the reject-
ing of the in-band and the out-of-band samples which belong to these noise sources. Such
a technique transforms the raw data into an orthogonal time-frequency domain by decom-
posing the Nyquist bandwidth in sub-bands of different resolutions (analysis phase), then

4.2. A STATE-OF-ART ENG-BASED SIGNAL PROCESSING ALGORITHM 49

Algorithm 1 Main loop of the on-line algorithm, for every new block of data (b_len samples)

//WD
Wavelet decomposition (Nscal es scales)
if 1st block then

Evaluate the parameters to compute the WD threshold, for this block
Assign them to all the rσ elements required to compute the WD threshold for a whole
window
Compute the WD thresholds at the different scales

else if tuning thr eshold then

Evaluate the parameters to compute the threshold, for this block
end if

for i = 1 to Nscal es do

Perform thresholding at scale 2i

end for

Wavelet recomposition
//SD
Spike detection (different approaches)
//SS
Crosscorrelate incoming spike with existing templates (if any)
if templ ate cr eation mode then

if max(cor r el ation) > thc then

Update corresponding template by synchronized averaging
else

Create a new template from incoming spike
end if

else if passing from templ ate cr eation mode to sor t ing mode then

Perform templates merge and reduction to n f eat templates
else if sor t ing mode then

if max(cor r el ation) > thc then

Periodically update corresponding template by synchronized averaging
Update templates count for feature creation of current pattern

end if

end if

if low spikeness AND tuning thr eshold then

Compute the thresholds at the different scales
Update the WD threshold buffers

end if

//CL
if sor t ing mode then

if tr aining cl assi f ier then

Classifier training
else

Classify the current pattern
end if

end if

50
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

applies thresholding on the resulting coefficients introducing the non-linearity and finally
transforms back into the original domain by recomposition (synthesis phase).

Since the wavelet decomposition represents a matched filtering between the signal and
scaled-shifted versions of a mother wavelet as in the Eq.4.1 where a is the scaling factor while
b represents the shifting one, the latter must be chosen with a shape similar to a typical ac-
tion potential in order to emphasize the presence of the pulses. For example, in the original
algorithm, it has been used the Symlet 7 family or otherwise it can be designed according to
the characteristics of the signal under consideration.

ψa,b (t) =
1
p

a
ψ

(

t −b

a

)

(4.1)

At each stage of decomposition, WD is usually implemented with a pair of Quadrature
Mirror Finite Impulse Response (FIR) filters implementing respectively a low-pass H(z) and
a high-pass G(z) filter. They equally split the bandwidth of the input signal in approxima-
tion a2i (z) given in input to the next stage 2i+1 and detail d2i (z) which is passed through
thresholding. Considering an input sampling frequency fs , the former is composed by the
components until fs/4 whereas the latter with components between fs /4 and fs /2. In case
of orthogonal wavelets, as it happens for the majority of the families, the coefficients of the
filters H ′(z) and G ′(z) at recomposition are simply the mirrored versions of the relative filters
at decomposition.

To achieve timing shift invariance of the WD process, it has been considered the Ã -trous
solution [80] which is the best one for a real-time implementation thanks to its limited com-
plexity in comparison to others, such as those based on the cycle spinning as in the original
off-line work [16]. It determines that the coefficients of the analysis filters at the 2i stage
are simply obtained by oversampling applied to the coefficients of the filters at the previous
stage, always preserving the same sampling rate. Such an approach allows to substitute, at
decomposition, the various filtering paths of the trellis with the equivalent filters, minimiz-
ing the code complexity and the memory requirements for the mapping of the application
into a DSP architecture. At recomposition phase, it is fundamental to consider a 0.5 factor for
the coefficients of the synthesis filters in order to properly reconstruct the output denoised
signal. A block diagram of the filters trellis used for the WD is shown in Fig.4.3.

In the original algorithm, WD works at @ fs equal to 12kH z on the raw data performing
3 levels of decomposition/recomposition with a Symlet 7 mother wavelet. Moreover, it re-
moves the approximation signal at output of the last decomposition stage in order to obtain
a resulting high-pass bandwidth between 750H z and 6kH z, rejecting the low-frequency in-
terferences such as the EMG signals generated by the muscles near to the electrodes and
overlapped to the signal of interest in terms of significant frequency bandwidth. Due to the
support length of the Symlet 7, its use determines the excessive increase of the memory re-
quirements proportional to the number of trellis stages in comparison to the Haar family.
Considering other works in the literature [72], it has been decided to narrow the bandwidth
adding one level of decomposition/recomposition and cleaning the first detail signal in or-
der to obtain a resulting frequency response in the range of [375 - 3000] Hz. The augmented
number of levels would introduce a latency of 196 samples with the Symlet 7 in comparison
to only 16 samples for the simpler Haar, which is then the best design choice in terms of
efficiency for the proposed DSP implementation.

Between analysis and synthesis, it is fundamental to apply a certain delay to the detail
samples in order to obtain a correct alignment in time and thus to avoid synchronization

4.2. A STATE-OF-ART ENG-BASED SIGNAL PROCESSING ALGORITHM 51

G(z)

H(z)

G(z2)

H(z2)

G(z3)

H(z3)

G�(z3)

H�(z3)

G�(z2)

H�(z2)

G�(z)

H�(z)

+
+

+

a21

d21

a22

d22

a23

d23

z-t22

z-t21

x
x̂

Analysis Synthesis

Low spiking activity controlled (SS)
threshold estimation and update

thresholding

G(z4)

H(z4)
a24

d24

z-t23

G�(z4)

H�(z4)

+

H(z)G(z2)

H(z)H(z2)G(z3) G�(z3)

G�(z4)H�(z3)

G�(z2)

H�(z2)

H�(z)

+
+

d22

d23

z-t22

x

x̂

Analysis Synthesis

Low spiking activity controlled (SS)
threshold estimation and update

thresholding

H(z)H(z2)H(z3)G(z4)
d24

z-t23

Figure 4.3: From top to bottom, the proposed approach to WD: original filter bank trellis and
memory-optimized version with equivalent filters.

problems, properly reconstructing the spikes at WD downstream. This can be implemented
taking into account the correct offset in the recomposition filters buffer, needing in such a
way more memory locations, considering the time lag as t2i = t2i+1 + l at2i+1 , where:

l at2i = NGi (z) − (NGi (z)%2) (4.2)

NGi (z) being the length of the Gi (z) filter and % the reminder of the integer division.
Regarding to the thresholding phase, with the aim of obtaining the best optimization of

the original algorithm, it has been preferred the Hard approach for its simplicity (Eq.4.3a, the
detail coefficients with values lower than a defined threshold θ are rejected whereas the re-
maining ones passed unchanged) with respect to the Soft approach (Eq.4.3b, also requiring
the shrinking of the input coefficients towards zero of θ value) [19].

T hrθ
H (xk) =

{

xk , if xk ≥ θ

0, if xk < θ
(4.3a)

T hrθ
S (xk) =

xk −θ, if xk > θ

xk +θ, if xk <−θ
0, if |xk | ≤ θ

(4.3b)

For the same reason, it is important to adopt a method for the on-line calculation of θ
without inserting unnecessary complexity. To provide adaptiveness according to the char-
acteristics of the input signal at the varying of the SNR conditions, this can be done iteratively
computing θ as a scaled version of the standard deviation of the noise σn . The scaling coef-
ficient can be found empirically or exploiting some approaches in literature as the minimax

52
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

and the universal scaling factors. Such methods present a dependency from the length N of
the signal to analyse, which is misleading in an on-line processing where the window length
is extremely short. For this reason it has been used a fixed precomputed scaling factor 3.9
obtained with the minimax approach over a signal frame of 43 seconds as in [69].

The process of updating the threshold value can be performed only at the beginning and
then disabled if the detected spikeness degree in the successive samples window reaches a
certain level. Only when no spikes are detected by the next processing stage, the updating
is enabled again. It means that the sample standard deviation can be used more efficiently
and with similar results compared to the median absolute deviation typically used for its
robustness to the outliers as demonstrated in [19]. It differs from what it has been done in
[69] due that in this case the median absolute deviation is more appropriate for an off-line
processing which needs the onerous operating of the sort of a samples buffer.

In order to evaluate σn over a frame of samples larger than b_len, i.e. b_len×rσ, optimiz-
ing the latency, it is possible to compute for every incoming block of new b_len samples (at
each scale i) their squared sum (all the detail coefficients are zero-mean) s j ,2i =

∑b_l en
n=1 d 2

2i [n],
so that for every new block of samples the last rσ partial squared sums can be summed up,
multiplied by (b_len × rσ−1)−1 and then the squared root computed:

σn2i =

√

√

√

√

1

b_len × rσ−1

rσ
∑

j=1
s j ,2i (4.4)

It should be noted that rσ is different from r and s j ,2i could belong to non contiguous
blocks of the signal.

4.2.2 Spike Detection

Every new block of samples must be scanned sample-wise in order to find the next spike. The
use of a simple absolute threshold obtained starting from the samples values at WD output
has already proven its capability to be effective to detect the onset of a neuronal pulse even
in case of critical real conditions [69]. Such a threshold can be either fixed or self-tunable
exploiting the root mean squared rms of the denoised signal, the latter leading to a worse
estimate when there are bursts of fused spikes, also being computationally expensive.

Such a simple approach for the SD can be improved using a further processing step based
on the use of the Non-linear Energy Operator (NEO) [36] applied to the WD output samples.
As demonstrated in [23], it represents the best compromise choice from the hardware point
of view of the correspondent implementation even maintaining good performance in accu-
racy. In fact, tests performed on a publicly available dataset of synthetic signals [72] have
showed that the NEO is generally less sensitive to the choice of the amplitude threshold of
the SD stage, determines high values of accuracy at the cost of a reduced computational
complexity and it is not very influenced by the variation of the SNR of the signal. Such bene-
fits in detection only increase when the input signal of the NEO has been previously filtered
for noise reduction. It can be used to obtain a pre-emphasis of the spikes, and then a thresh-
old can be applied in order to select the correct time frame around the spike. The NEO is
defined as follows:

η{x̂ [n]} = x̂2 [n]− x̂ [n +1] · x̂ [n −1] (4.5)

4.2. A STATE-OF-ART ENG-BASED SIGNAL PROCESSING ALGORITHM 53

It gives higher values when the signal is characterized by high power and high frequency
components, which happens for the action potentials under consideration. The spike de-
tection threshold is then obtained as a scaled version of the mean value of the NEO in a
predefined time interval:

T hr =C ·
1

N

N
∑

n=1
η{x̂ [n]} (4.6)

where C is chosen by empirical considerations.
Only the detected spikes whose support is at the same time shorter than a parameter len

(expressing a time value in terms of number of samples) and larger than 3 samples are anal-
ysed. len includes a head and a tail of 5 samples each, which must be below the threshold,
respectively before the onset and after the end. During the TPh, larger spikes are discarded
but a counter is incremented in order to have a spikeness index for that window. During SPh,
if a waveform is becoming wider that len, the end (if present) is identified as the rightmost
sample below the threshold preceded by a sample above the threshold, avoiding to look for
the adjacent 5 samples. This is done in order to recognize spikes embedded into bursts, even
if the proposed solution does not address the problem of the fused spikes.

4.2.3 Spike Sorting

The SS is a correlation-based algorithm which must be able to work in real-time both when
all the templates are being created (the tuning phase, TPh) and when they are used to verify
their morphology similarity with the detected spikes (the steady phase, SPh). For the latter,
the aim is to obtain the neural activity of each neuronal cell by cross-correlation measures
between the current spike and the templates before created during the TPh, starting from
the hypothesis that each active neuron fire pulses with a defined morphology. The Fig. 4.4
shows the flow diagram of this processing step.

Once a possible spike has been isolated by the SD, the SS is skipped in case of WD thresh-
olds calculation otherwise the relative samples are stored in a temporary buffer of length
2× len, centering the spike with respect to its maximum value. During the TPh, the algo-
rithm can create up to MNt waveforms in a templates matrix, each one with length of len
elements. MNt should be larger than the number of possible neurons whose activity can be
detected on a single channel because populating this matrix is a blind procedure not involv-
ing a morphological analysis able to discriminate between spikes and noise. Fortunately, the
number of the active cells at PNS level is quite low compared to the CNS case, limiting the
memory requirements for the DSP implementations in this phase.

At the beginning during the TPh, if the current number of created templates Nt is zero,
the central part of the temporary buffer, len samples wide, is standardized and stored in the
first location of the template matrix, incrementing the Nt counter. The standardization is
due to the fact that it is adopted a normalized cross-correlation method for which both the
detected spikes and the templates must have a Gaussian distribution with zero mean and
unit variance, easing the calculation of the Pearson’s product-moment correlation coeffi-
cients. If Nt > 0, the algorithm enters in its main loop in Fig. 4.4 where the cross-correlations
between the temporary buffer and all the current Nt templates are computed, determining
a similarity value of the current standardized spike and the waveforms previously stored in
the relative matrix. The maximum value of the cross-correlations Mc is compared against a
threshold thc .

54
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

Other samples? SPh?

Detected?

INIT

yes

no

yes

no

no

yes

no

MAIN XCORR LOOP
ti: index best-matching
 template
Mc: max correlation

SPh?

yes

no

Buffer queue operations
PART 2 return

Compute features for
CL; update counts

Clear counts for the
next block (sample) return

SD

Tuning WD
thresholds?

Spike extraction

yes

Nt = 0?

yes

no

Create new template.
occurrence(Nt)=1; Nt++

Mc > Thc?

yes

no

occurrence(ii)++

Mc > Thc?

no

yes Update template ti
with synchronized avg.

occurrence(ii)++

Nt < MNt?

no

yes
Create new template.

occurrence(Nt)=1; Nt++

rr = min(occurence)
Create new template in rr

occurrence(rr)=1

Buffer queue operations
PART 1

Figure 4.4: The flow chart of the spike detection and the sorting steps.

During the TPh, a correlation greater than thc leads to the update of the best match-
ing template ti by synchronized averaging, after the alignment of the two waveforms on the
cross-correlation maximum, taking into account the number of the previous spikes with re-
spect to which the considered template has been obtained. On the contrary, during SPh
only a counter of the occurrences of the template ti on the new block is incremented. In this
phase it is also possible, by setting a parameter, to allow the template update (continuously
or every N occurrences) in order to enable a continuous adaptation to small changes in the
spikes morphology. After that, the temporary buffer is cleared to be ready for the next spike.

In this phase several templates are created every time Mc < thc and the templates matrix
is not full. Since the templates matrix size has an influence both on the memory occupation
and on the processing time, the number MNt cannot be too large. To emulate an infinite
template matrix, during TPh if a new template needs to be created and Nt = MNt , the tem-
plate with the lowest occurrence is overwritten and its number of occurrences reset. At the
end of this phase, the available Nt templates are compared evaluating the cross-correlations
with each other: when the maximum of a cross-correlation is above thc the two templates
undergo a weighted synchronized averaging and the process of reduction restarts from the

4.2. A STATE-OF-ART ENG-BASED SIGNAL PROCESSING ALGORITHM 55

very first template until, on a full sweep, no averaging is performed. Then only the most used
n f eat < MNt templates are retained for the SPh.

During SPh, the SS acts as a feature extractor for the classifier which operates down-
stream @ fp = 4H z. This means that a new pattern is generated every 0.25s, and takes into
account the ENG activity over L = b_len × r samples. For such a reason, a matrix has been
used to store row by row the occurrences of each template in each of the r blocks composing
an L−wide sliding window. Such a matrix is updated column-wise at every new block and
a pattern for the classifier is a feature vector obtained summing up by columns the occur-
rences of each template.

4.2.4 Classification

When a supervised classifier is used, labelling of the training set patterns is a necessary step
in order to create a model learned by examples with which then categorize each input pat-
tern. A trigger signal that is always zero except when the significant neural activity is present
can be useful in this step, giving information about the active state during and after the mo-
ment which a particular external stimuli is applied to the sedated animal on test. Labels can
be assigned automatically if it is clear the meaning of the signal under trigger (e.g. different
stimuli in afferent recording or specific movement intentions in efferent ones). In an inter-
active training scenario, labelling can be performed exploiting GPIO pins of the processor,
by manually selecting the performed (or desired) movement among a given set. The trigger
signal is processed in real-time producing a trigger flag for every pattern indicating with 1
that the trigger, for the last block of samples, was high or that it was high no more than 3
seconds before. The trigger flag is set to zero otherwise.

The final features are obtained dividing every template occurrence count for the sum of
all the occurrences in that window (the spikeness index). It is preferred a relative spikes rate
in comparison to the absolute one for the same reasons explained in [16]. The spikeness
index is used to establish whether or not the pattern deserves to be processed by the classi-
fier (either in training or test), avoiding its continuous response at run-time when low ENG
activity is identified. When the trigger flag is 1, the pattern is passed to the classifier only if:

s ≥µs +
1

2
σs (4.7)

whereµs andσs represent respectively the sample mean and standard deviation of the spike-
ness index s computed over the whole signal which will be used for training.

The chosen classifier is a Support Vector Machine (SVM)[10] which represents a typical
supervised algorithm for which representative patterns belonging to each class are known as
well as the number of the existing classes. For each of them, there are a number of examples
of feature vectors that characterize them. This type of algorithm involves two successive
phases: the training and the test. During the first one, starting from a dataset of patterns for
which it is known the relative class, a mathematical model is created at off-line, learned by
examples, so that it can be consequently used to predict at on-line the class of each incoming
feature vector. During the second one, the algorithm accuracy in classification is evaluated
with the remainder of the input dataset.

It is a binary classifier that, starting from a set of feature vectors belonging to the training
set, determines an optimal separating hyperplane in a multidimensional feature space that
maximizes the distance between each vector of the two classes and the decision boundary

56
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

(Fig.4.5). The greater this distance, the lower the generalization error of the classifier. Since
these points are usually not linearly separable, it is possible to map the feature vectors by a
non-linear transformation on a higher dimension space where it is possible to define a linear
decision boundary. This is accomplished by means of a kernel function [79] applied to the
data represented in the original space.

Figure 4.5: SVM hyperplane which separates the features vectors belonging to the two
classes.

The SVM training is a batch processing which does not need to run in real-time because
it is executed only once and the acquisition can be stopped at that time. In particular, some
techniques [43] can be exploited to update the classifier model once in awhile avoiding per-
formance degradation due to the current critical conditions for the prosthesis. This ap-
proach can be advantageous in case of several data or non-stationary data modifying the
mathematical model taking into account the new patterns when they are available, without
repeating the training phase using the whole dataset but starting from the current model
which can be updated based on new examples.

The multi-class problem for the SVM, which was initially conceived as a binary classifier
as said before, originating from the need of discriminating between several stimuli/move-
ments has been solved by means of a “One-vs-The rest” approach [32]. Such a solution ap-
peared to be preferable in the context of a limited-resources implementation compared to
the “One-vs-One” exploited in [16]. With the chosen approach, the number of classifier mod-
els to train is equal to the number of classes q at stake whereas in case of the “One-vs-One”
approach it is necessary to train q(q-1)/2 models, determining an excessive overhead in the
comparison of the current pattern with respect to them.

In every iteration, a model is trained, i.e. the support vectors and the bias parameter of a
non-linear hyperplane are obtained in order to separate the points belonging to a particular
class in the multi-dimensional features space from those related to the remaining classes.
After training, the classifier determines the predicted class on the basis of the minimum ex-
ponential square distance between the point in the features space and the support vectors
belonging to the class related to i − th iteration of the training phase.

4.3. THE DSP IMPLEMENTATION: PORTING DETAILS 57

It has been decided to use the soft-margin version of the SVM classifier (C-SVC) adopting
as kernel function the Radial Basis Function (RBF) to perform the non-linear transforma-
tion. In particular, the optimal values to be assigned to the various parameters in order to
maximize the performance in terms of classification accuracy and processing latency on the
given datasets have been selected:

• a unitary value for the γ parameter of the RBF;

• a unitary value for the cost of the C-SVC algorithm;

• the tolerance of the termination criterion equal to 0.1.

As explained in [16], even if this previous work has exploited a different set-up, it has
been decided to use fixed parameters due that their tuning can introduce unnecessary over-
head for the DSP implementation. Before the training, the patterns undergo a normalization
process in order to remove the bias introduced by those features having a greater range of
variation than the others, maximizing the margin between the separating hyperplane and
the features vectors belonging to a defined class at each iteration. Normalization leads to
the features stretching in the range between −1 and +1. Compared to the work presented in
[69], the trained classifier has been recoded. It has the role of providing in real-time, @4H z in
the current version, an indication of the kind of stimuli (afferent) or the intended movement
(efferent) as decoded from the ENG signal by distance measurements between the current
feature vector and the separation hyperplane of the relative model. In the latter case, such
an information should be used to generate the correct electrical signals to control the active
prosthesis.

4.3 The DSP implementation: porting details

The problem of the implementation of advanced neural signal decoding algorithms onto
embedded platforms is usually overlooked, assuming that every algorithm can be imple-
mented in real time on such platforms. Most of the proposed algorithms are conceived
starting from their off-line solutions, therefore in some cases it is impossible to develop an
equivalent on-line version which allows to obtain at least the same performance. Application
Specific Integrated Circuits (ASIC) and Field Programmable Gate Arrays (FPGA) can provide
a very efficient implementation almost in any case, at the expenses of a complex design and
very limited flexibility which must satisfy tight constraints in terms of power consumption
and area occupancy according to the characteristics of the application under consideration.
Microprogrammed implementations are more flexible: in this case the best choice is repre-
sented by the DSP, expressly designed for advanced signal processing. On a DSP, the limited
resources represent a big challenge for the designer: the assumption above can lead to very
unrealistic conclusions without an accurate investigation.

As target for the proposed hardware implementation, it has been chosen a floating-point
DSP platform, the TMS320C6713 processor by Texas Instruments. This processor can run up
to 300M H z and presents a Very Long Instruction Word (VLIW) architectural model enabling
the execution of up to 8 arithmetic operations (mixed fixed and floating point) in parallel
on different data. The efficiency of the implementation on this kind of processor strongly

58
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

depends on the VLIW code density, representing the number of instructions that can be ac-
tually executed in parallel. The C6000 compiler is very helpful from this perspective but the
best results can be obtained only by means of optimized libraries and an adequate coding
technique, also respectful of the processor memory organization. The chosen DSP presents
a memory hierarchy organized in three levels. There are 2 separate cache memories for data
and instructions (Level 1, L1) for a total of 4kB, and a common configurable RAM/2nd level
cache memory by 256kB (Level 2, L2). The L2 cache (configurable to be used as a RAM, 1-
way, 2-way, 4-way cache) can be as large as 64kB (4-way). The external memory (Level 3,
L3) is off-chip. It should be noted that the access to L3 introduces a penalty of several clock
cycles compared to the access to L2, so memory allocation is not a secondary issue in this
kind of architectures.

The application code has been developed in C programming language. All the parame-
ters requiring an on-line tuning are automatically set up by the algorithm at run-time with-
out any interaction with the user. The SVM training, performed off-line in Matlab in the first
tentative real-time implementation of the algorithm [69], has been also integrated on the
DSP. Carrying out the whole training process on the embedded system has significant rever-
berations on the possibility of performing the training of the prosthetic device autonomously
by the patient himself without external tools. For the sake of the embedded porting, the orig-
inal C++ code of the LIBSVM [13] has been deeply modified in order to transform it in plain
C avoiding the object oriented parts unsupported in most DSP platforms. Only the mini-
mal set of functions required to properly operate with the selected design choices has been
ported. This led to a code with a reduced memory footprint and extremely portable.

Some optimizations, which can be enabled or not, limit the portability to the proces-
sors of the same family. For instance, data movements (e.g. buffer updates and initial-
izations) are managed by the Enhanced Direct Memory Access (EDMA) peripheral in or-
der to execute them in parallel with the processing, with no cost in terms of CPU cycles
except for the transfer initializations. Advanced DSP library functions can be enabled at
compile time with the aim of improving the VLIW code density. In particular, thanks to the
block on-line approach, the DSPF_sp_fir_gen() function has been used for the WD stage for
the FIR filtering, the DSPF_sp_maxidx() in the SS both for the identification of the maxi-
mum of every cross-correlation and for the identification of the best matching template,
the DSPF_sp_w_vec() has been used as a weighted sum of vectors for the synchronized av-
eraging, DSPF_sp_vecsum_sq() for the computation of the standard deviation in the cross-
correlation (squared sum of vectors) along with the DSPF_sp_dotprod() one, which performs
the dot product of 2 vectors. It should be noted that the particle sp_ in the function names
above reveals a single precision floating point computation, but also the double precision is
supported in the same library. Another library, the fastRTS one, has been used to speed up
the processing of scalar math operations, as the reciprocal of a number (recipsp()) and the
squared root (rsqrtsp()), again in single precision. All the advanced coding practices for this
kind of platform have also been exploited and the code has been compiled with the highest
optimization (-o3). A great attention has been also spent in the memory allocation in order
to exploit at the most the internal memory of the DSP.

4.4. TEST DATA 59

4.4 Test Data

Different datasets have been used for testing, with different purposes. In order to deeply
evaluate the performance of the first three stages of the algorithm, leaving apart the CL, it has
been decided to exploit a synthetic dataset at first as in [72]. It has been constructed starting
from a database of 594 physiological real spike waveforms obtained during experimental
recordings and extracted from neocortex and basal ganglia at CNS level. Those considered
as test data for the proposed analysis are composed by pulses generated by three neurons,
each one which fires action potentials with a particular morphology.

To simulate the background noise, spikes at random times and amplitudes coming from
neuronal cells placed at a greater distance with respect to the point in which the electrodes
are implanted, were overlapped to the relevant neural activity of the limited number of neu-
rons. This is a realistic condition for cortical implants but not for PNS signals, suffering from
other physiological (mainly EMG) interferences. Such a dataset, providing a ground truth
due to its synthetic nature, can be also used for PNS-oriented algorithms with tf-LIFE elec-
trodes because even in this case the impulsive sources are limited in number by the elec-
trodes selectivity: in fact, intra-fascicular electrodes do not allow to isolate the neural activ-
ity of a single neuron on each channel. This implies that an active pad of the electrode picks
up action potentials coming from multiple axons, characterized by different amplitude and
morphology, thus requiring a properly designed SS.

The synthetic dataset includes different signals (called Easy1, Easy2, Difficult1, Diffi-
cult2) with increasing levels of complexity. The complexity is related to the similarity in the
morphology of the action potentials of the three neurons. Figure 4.6 shows the correlation
between couples of action potentials in the signals. The correlation values are below 0.8 only
for the first dataset (Easy1), with a peak at 0.98 for Difficult2 with a noise level of 0.2. In this
scenario, an algorithm based on template matching as the proposed on-line one cannot per-
form an accurate spike sorting but this is not the typical situation in real PNS recordings. At
the same time, in the light of this assumption, in the following section the results achieved
on the Easy1 dataset should be considered with the greatest attention.

In this case, the neural signal bandwidth is considered in the range between 300 Hz and
3 kHz. Data have been originally created using a sampling frequency of 96 kHz and then
downsampled at the frequency of 24 kHz, considering spikes with support length of 64 sam-
ples. The background noise level is defined in terms of its standard deviation and it ranges
from 0.05 to 0.20 but, only for the Easy1 dataset, it can reach 0.40. The average firing rate is
20 Hz, with a refractory period of 2ms, and the number of pulses associated to each of the
three neurons is approximately equal to 30-35% of the total number of spikes in each signal.

The synthetic database does not allow the CL stage testing because they don’t have in-
formation about external stimuli (afferent) or intentions of movements (efferent). To this
aim, it has been exploited real afferent signals coming from the PNS to train and test the
SVM classifier. These signals, kindly provided by Prof. Xavier Navarro and his team (Uni-
versitat Autònoma de Barcelona), have been acquired through Longitudinal Intra-Fascicular
Electrodes (LIFE) in the sciatic nerve of a sedated rat and recorded according to the protocol
used in [74]. Five classes of sensory events can be identified on segments of the available
signal. More in particular, these are touch sensation elicited over the four different areas of
the rat limb (A to D) stimulated with different Von Frey filaments, and a class associated to
flexion movement performed with animal’s hind limb. Labelling was performed exploiting a
trigger signal as in [69]. The whole dataset has been randomly divided using 80% of samples

60
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

0

0.2

0.4

0.6

0.8

1

ea
sy

1
00

5

ea
sy

1
01

ea
sy

1
01

5

ea
sy

1
02

ea
sy

1
02

5

ea
sy

1
03

ea
sy

1
03

5

ea
sy

1
04

ea
sy

2
00

5

ea
sy

2
01

ea
sy

2
01

5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

S
y
n

th
e

ti
c
 d

a
ta

s
e

t
te

m
p

la
te

s
 c

o
rr

e
la

ti
o

n

1st vs. 2nd

1st vs. 3rd

2nd vs. 3rd

Figure 4.6: Correlation among the various couples of spike templates for each dataset.

for the training set and the rest for the test set, for several randomized trials, in order to eval-
uate the average accuracy of the on-line version of the reference algorithm implemented on
DSP in real operating conditions.

4.5 Experimental Results

The proposed algorithm and its implementation on DSP have been analysed in terms of
effectiveness (quality of the proposed solution in different scenarios) and efficiency (in the
light of a real-time implementation). For a comparative evaluation of the former aspect, the
on-line algorithm (except the CL stage) has been compared to a top state-of-the-art off-line
algorithm for spike sorting such as the unsupervised super-paramagnetic clustering (SPC)
[72] included in the WaveClus tool. It consists of the following processing steps:

• a 4th order non-causal bidirectional elliptic IIR bandpass filtering between 300 Hz and
3 kHz;

• SD using an amplitude threshold on the filtered signal;

• SS based on super-paramagnetic clustering.

The bandpass filtering has the main role of removing the background noise. The bidirec-
tional approach limits the distortion on the detected spikes morphology typically introduced
by IIR filters, at the expenses of a limited increase in the computational complexity. The SD
stage uses a positive amplitude threshold, applied on the output signal of the elliptic filter,
derived from the estimation of the standard deviation of the noise as T hr = 4σn where

4.5. EXPERIMENTAL RESULTS 61

σn = medi an

{

|x|
0.6745

}

(4.8)

A time windowing ensures the extraction of templates limited to 64 samples at the sam-
pling frequency of 24 kHz for each detected spike. The algorithm assumes a refractory period
of about 2 msec, thus not including any strategy for the overlapped spikes. For each detected
spike, the algorithm uses as features for the classifier the wavelet transform coefficients that
meet the criterion of Kolmogorov-Smirnof normality (i.e. only those that have a multi-modal
distribution) and able to determine the best performance in the SS. As last stage, the algo-
rithm includes the unsupervised SPC, originally presented in [9]. Such a clustering auto-
matically selects the temperature parameter value, exploited to influence the cluster size
and modifiable by the user in order to really achieve the best performance, through a Monte
Carlo simulation. Such an off-line algorithm has only the objective of deriving the spike
templates associated with each neuron of interest (i.e. single-unit activity), since for the pre-
diction of the movement intention a successive stage would be required.

4.5.1 Effectiveness analysis

Compared to the original algorithm [16] and its first tentative embedded implementation
[69], several modifications have been implemented at the level of the WD and SD stages,
beyond the complete porting of the classifier and its improvement, giving rise to different
versions:

• V1 is similar to [69] (WD with 3 levels, removing approximation a23 , bandwidth 750Hz-
6kHz, SS on the output of the WD stage) but the NEO has been introduced in the SD;

• V2 is a modified version of V1 (WD with 3 levels, removing approximation a23 , band-
width 750Hz-6kHz, NEO for SD) but the SS is performed on the output of a band-pass
filter between 300Hz and 3kHz as in [72], using the WD stage only for the SD;

• V3 is a modified version of V2 (NEO for SD, WD only for the SD, SS on the band-pass
filtered signal and not on WD output) but exploiting a WD with 4 levels, removing
approximation a24 and also the detail at the first scale d21 leading to a bandwidth of
375Hz-3kHz which is more similar to that of [72];

• V4 is similar to V1 (NEO for SD, SS on the output of the WD stage) but, as in V3, the WD
has been modified to 4 levels, removing approximation a24 and also the detail at the
first scale d21 leading to a bandwidth of 375Hz-3kHz.

Both the minimum correlation threshold thc and the coefficient C in the NEO have been
determined experimentally in order to improve the performance of the algorithms in rela-
tion to the different signals used for testing.

At first, the different versions of the proposed on-line algorithm have been evaluated
on the synthetic database in order to have a ground truth and to be able to compare them
against the off-line SPC algorithm [72]. In this case, the performance has been evaluated
in terms of True Positives (TP) and False Positives (FP). In particular, the TP rate has been
used, representing the percentage of true detected spikes over those actually present in the

62
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

25

50

75

100

ea
sy

1
00

5

ea
sy

1
01

ea
sy

1
01

5

ea
sy

1
02

ea
sy

1
02

5

ea
sy

1
03

ea
sy

1
03

5

ea
sy

1
04

ea
sy

2
00

5

ea
sy

2
01

ea
sy

2
01

5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

T
P

 r
a

te
 [

%
]

SPC

V1, V2 using Haar

V3, V4 using Haar

0

25

50

75

100

ea
sy

1
00

5

ea
sy

1
01

ea
sy

1
01

5

ea
sy

1
02

ea
sy

1
02

5

ea
sy

1
03

ea
sy

1
03

5

ea
sy

1
04

ea
sy

2
00

5

ea
sy

2
01

ea
sy

2
01

5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

T
P

 r
a

te
 [

%
]

SPC

V1, V2 using Sym7

V3, V4 using Sym7

Figure 4.7: Spike detection results in terms of TP rate using the Symlet 7 (top) and the Haar
(bottom) wavelets compared to SPC.

signal. Furthermore, rather than simply using the number of FP, the FP per minute have
been computed.

To evaluate the usefulness of the WD on the successive SD stage, it has been tested the
different versions of the algorithm with both Symlet 7 and Haar wavelets looking at the TP
rate (Fig. 4.7). In both cases, the proposed SD algorithm, joining WD and the NEO, is su-
perior to the simple amplitude threshold applied to the band-pass filtered signal in the SPC
for the largest part of the signals, the Haar wavelet revealing superior performances than
the Symlet 7. Another interesting related metric is the number of FP per minute, related to
the detected spikes belonging to the background noise. In this case, the superior detection
performance could lead to a worse performance. However, Fig. 4.8 reveals that the proposed
SD including a WD pre-filtering performs better than the SPC detection, with isolated excep-
tions on the Easy1 database. At the same time, the Haar wavelet seems to lead to a poorer de-

4.5. EXPERIMENTAL RESULTS 63

10

30

50

70

F
P

/m
in

SPC

V1, V2 using Haar

V3, V4 using Haar

ea
sy

1
00

5
ea

sy
1

01
ea

sy
1

01
5

ea
sy

1
02

ea
sy

1
02

5
ea

sy
1

03
ea

sy
1

03
5

ea
sy

1
04

ea
sy

2
00

5
ea

sy
2

01
ea

sy
2

01
5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

10

30

50

70

F
P

/m
in

SPC

V1, V2 using Sym7

V3, V4 using Sym7

ea
sy

1
00

5
ea

sy
1

01
ea

sy
1

01
5

ea
sy

1
02

ea
sy

1
02

5
ea

sy
1

03
ea

sy
1

03
5

ea
sy

1
04

ea
sy

2
00

5
ea

sy
2

01
ea

sy
2

01
5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

Figure 4.8: Spike detection results in terms of FP per minute using the Symlet 7 (top) and the
Haar (bottom) wavelets compared to SPC.

noising and then to an increased number of FP in the signal. From the above results, it seems
that the combined WD and NEO lead to an effective SD that, in case of the Haar wavelet, is
also very efficient from a computational perspective for a real-time implementation.

In terms of percentage of matching, from Tab. 4.1 it is possible to see that the results
seem to be strongly influenced by the noise level and are largely worse than those achievable
off-line with the SPC for all the dataset but the Easy1 one. The problem is the correlation-
based approach exploited in the on-line algorithm, unable to correctly operate on very simi-
lar spikes. In fact, the best performance can be achieved with the V4 version of the algorithm
and the Haar wavelet, limitedly to the Easy1 dataset, with even better results than the SPC for
some noise level. Results are even worse for the versions of the on-line algorithm performing
the SS on a band-pass filtered version of the signal rather than on the wavelet denoised one,
with increasing levels of noise. Again the Haar wavelet seems to be more effective than the

64
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

Table 4.1: Template matching percentage using the Haar and the Symlet 7 mother wavelet.

E
a

sy
1

_
n

o
is

e
0

0
5

E
a

sy
1

_
n

o
is

e
0

1

E
a

sy
1

_
n

o
is

e
0

1
5

E
a

sy
1

_
n

o
is

e
0

2

E
a

sy
1

_
n

o
is

e
0

2
5

E
a

sy
1

_
n

o
is

e
0

3

E
a

sy
1

_
n

o
is

e
0

3
5

E
a

sy
1

_
n

o
is

e
0

4

E
a

sy
2

_
n

o
is

e
0

0
5

E
a

sy
2

_
n

o
is

e
0

1

E
a

sy
2

_
n

o
is

e
0

1
5

E
a

sy
2

_
n

o
is

e
0

2

D
if

f1
_

n
o

is
e

0
0

5

D
if

f1
_

n
o

is
e

0
1

D
if

f1
_

n
o

is
e

0
1

5

D
if

f1
_

n
o

is
e

0
2

D
if

f2
_

n
o

is
e

0
0

5

D
if

f2
_

n
o

is
e

0
1

D
if

f2
_

n
o

is
e

0
1

5

D
if

f2
_

n
o

is
e

0
2

SPC 94 96 95 96 96 92 92 90 95 95 83 58 97 96 85 43 96 97 62 15
V1-H 66 69 71 64 85 72 89 80 32 28 34 15 15 38 28 36 54 51 55 59
V1-S7 63 59 77 61 73 74 72 72 60 58 43 42 26 47 43 30 49 49 41 50
V2-H 96 95 95 89 75 62 65 39 63 78 64 50 50 39 32 33 49 64 52 48
V2-S7 94 93 90 87 86 47 44 28 94 77 64 27 49 42 33 24 49 62 56 47
V3-H 96 96 95 87 85 67 61 46 82 79 52 46 45 39 36 22 48 52 51 48
V3-S7 96 96 93 85 78 47 52 35 62 77 67 41 44 48 33 30 48 63 49 54
V4-H 96 96 97 95 95 93 90 89 62 67 31 27 30 37 43 48 56 52 60 63
V4-S7 95 81 94 95 59 78 51 57 57 60 31 51 34 50 52 25 50 58 53 21
V4-H abs 96 96 96 96 95 92 88 83 60 41 14 39 28 37 31 36 57 44 53 63

Symlet 7.
Since all the V1-4 versions of the on-line algorithm present the NEO as SD stage, it is

worth to evaluate how much this stage influences both detection and sorting, compared to
a solution based on a fixed threshold. To this aim, it has been limited the analysis to V4
with the Haar wavelet, compared to SPC (using an absolute threshold on a bandpass filtered
signal).

The behaviour of the two solutions is very similar, the number of FP per minute being
slightly better for the SD with NEO (Fig. 4.9). In terms of matching, as can be seen comparing
SPC , V 4− H and V 4− Habs rows in Tab. 4.1, the results exploiting the NEO in the spike
detection are better than those achievable with a fixed threshold.

From the results achieved on the synthetic database, it is possible to see how the adop-
tion of 4 levels for the WD, with a Haar wavelet, removing both the approximation and the
first detail, exploiting the NEO for the SD and performing the SS on the output of the WD
leads to the best results. In a comparison with a top off-line SS algorithm such as the SPC,
the results are similar until the correlation between the action potentials belonging to differ-
ent neurons is lower than the level used in the on-line SS. However, the on-line WD and SD
approach is superior to the one adopted in the SPC.

It is then worth to see whether such results reflect what happens on the real PNS sig-
nals, the target of the original algorithm [16]. Tests have been performed varying both the
length (len) of the templates and the time frame for a pattern (tL). Performance were evalu-
ated comparing the algorithm implemented in [69] with the current V4 version. Figure 4.10
shows the accuracy obtained at the end of the SVM classifier testing phase on the real sig-
nals. Accuracy has been computed as average over 3000 different training/test partitions
of the same dataset, as described in Sect.4.4. The trend for the V4 version is less steep, de-
termining a minor influence of the tL values, allowing to obtain a more efficient hardware
implementation for the same classifier performance. Moreover, it is possible to note that the
classification accuracy is always higher for the V4 solution, from a minimum of about 74%
to a maximum of 96% with a standard deviation that decreases as tL increases, regardless of
the len value in the considered range.

4.5. EXPERIMENTAL RESULTS 65

25

50

75

100

ea
sy

1
00

5

ea
sy

1
01

ea
sy

1
01

5

ea
sy

1
02

ea
sy

1
02

5

ea
sy

1
03

ea
sy

1
03

5

ea
sy

1
04

ea
sy

2
00

5

ea
sy

2
01

ea
sy

2
01

5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

T
P

 r
a
te

 [
%

]

Absolute Threshold

SPC Spike Detection

NEO

F
P

/m
in

20

40

60

Absolute Threshold

NEO

SPC Spike Detection

ea
sy

1
00

5

ea
sy

1
01

ea
sy

1
01

5

ea
sy

1
02

ea
sy

1
02

5

ea
sy

1
03

ea
sy

1
03

5

ea
sy

1
04

ea
sy

2
00

5

ea
sy

2
01

ea
sy

2
01

5

ea
sy

2
02

di
ff1

 0
05

di
ff1

 0
1

di
ff1

 0
15

di
ff1

 0
2

di
ff2

 0
05

di
ff2

 0
1

di
ff2

 0
15

di
ff2

 0
2

Figure 4.9: Performance comparison of the various spike detection approaches in terms of
TP rate and number of FP per minute.

4.5.2 Efficiency analysis

The code of the best performing V4 version of the proposed algorithm using the Haar wavelet
has been profiled in order to derive a latency model. It is a mathematical model, descend-
ing from cycle-accurate profiling, able to provide (with some approximations) the expected
latency (CPU clock cycles) for a given code under different test conditions. Since the code
optimizations, and consequently its performance, can be different if only a part of the code
is compiled, in order to create a fair latency model the code was not modified (except for the
parameters to tune) for the analysis of the different sections but the input data changed in
order to be able to trigger specific behaviours. Compared to other techniques, this approach
is very time consuming but allows pursuing accuracy.

The main issue in the creation of the latency model is the high number of branches that
the algorithm can take during the different phases of the execution. Referring to Fig.4.4, it
is clear that different latencies will be experienced when only the SD is performed or when

66
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

0.5 1 1.5 2 2.5 3 3.5
60

65

70

75

80

85

90

95

100

tL [sec]

len = 40

len = 44

len = 48

0.5 1 1.5 2 2.5 3 3.5
60

65

70

75

80

85

90

95

100

tL sec]

S
V

M
 c

la
s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 [
%

]

len = 40

len = 44

len = 48

Figure 4.10: SVM classifier accuracy (mean and standard deviation over 3000 random train-
ing/test pairs on the same dataset) varying len and tL parameters, comparing the algorithm
implemented in [69] (top) with the current V4 version using the Haar wavelet(bottom).

the system is creating the templates (TPh) or during normal operation (SPh). Even if it has
been created a model for each possible combination, varying the proper parameters, only
the 2 most important working conditions will be analysed hereafter. The worst case in the
TPh is identified in Fig.4.4 with the darkest shading, whereas the branches including the
lighter shading are those related to the SPh. White blocks can be considered not part of any
worst case scenario. Only the parts of the code that must be executed in real time have been
evaluated for the latency model: the CL training and the templates reduction have been
profiled apart.

The memory allocation strongly influences the code performance. All the code sections
working on the data @12kHz, and the related variables, have been placed in L2 (configured

4.5. EXPERIMENTAL RESULTS 67

as all-RAM) along with the on-line CL code @4Hz, whereas both the code and the variables
used for the CL training have been placed in L3. The real-time code requires only 49kB of
memory and the data in L2 expressly instantiated in the code require 114 kB of memory.
Taking into account also the other code sections (used by the DSP/BIOS operating system of
the DSP and its variables), the code on the internal RAM reaches 191 kB of the available 192
kB. The L3 memory usage reaches 1.28MB:259kB are reserved to the external data section for
the CL whereas 26 kB for the related code section.

From the code profiling, the WD for the V4 version of the algorithm, with the chosen
window length, requires about 380kcycles with the Haar wavelet. Such a result cannot be
compared with that reported in [69], because the current memory requirements are higher
and then it is necessary a larger exploitation of the external memory, with the consequent
latency penalties. Within the current framework, the implementation of the original 3-level
WD stage with the Symlet 7 wavelet would require about 640 kcycles. Taking also into ac-
count the demonstrated superiority in terms of performance of the Haar wavelet compared
to the Symlet 7 one, the adoption of the former should be preferred. The final model during
the TPh is described by the following relation:

c =
[

1.1sl en +1563+
(

1562MNt +51.4
)

len + −31810MNt

]

ns +0.6len +580280 (4.9)

where c is the cycle count, sl en is the duration in samples of the spikes, MNt is the number
of elements of the templates matrix, len is the template length in samples, ns is the number
of spikes in a b_len-sample window (b_len = 3000 in this case). It is worth to note that the
dependence from sl en is very small compared to the other parameters. For this reason, con-
sidering an average case of sl en = 16.6, as from the available signals, the final model during
the TPh is:

c =
[

1581+
(

1562MNt +51.4
)

len −31810MNt

]

ns +0.6len +580280 (4.10)

Using this model it is possible either to:

• know the latency for a given ns when the maximum number of templates in this phase
is fixed to MNt and every template length is len or

• invert the model considering the maximum number of available cycles (Real-Time
Bound RT B , which is 75Mcycles when clocking the DSP @300MHz) so that, fixing the
structural parameters, it is possible to know how many spikes can be analysed in real
time.

The second choice leads to the following model:

ns =
RT B −580280−0.6len

1581+
(

1562MNt +51.4
)

len −31810MNt

(4.11)

Some of the implemented optimizations forbid the adoption of this model at a very fine
granularity because, for instance, the parameter len must be a multiple of 4. The set of
curves in Fig. 4.11 allows evaluating the maximum number of processable spikes per second,
during TPh, as a function of MNt , for different values of len.

68
CHAPTER 4. REAL-TIME NEURAL SIGNALS DECODING ONTO OFF-THE-SHELF DSP

PROCESSORS

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

1800

M
N

t

sp
ik

es
/s

ec

len = 32
len = 36
len = 40
len = 44
len = 48
len = 52

Figure 4.11: The maximum of processable spikes per second in TPh as a function of MNt

(from top to bottom, the curves are drawn for increasing values of len).

Following a similar reasoning during the SPh, the final latency model is the following,
where n f eat is the number of templates after their fusion (i.e. in the SPh) and nSV is the
number of support vectors.

ns =
RT B −280n f eat −1133nSV −574755

(1562len −31810)n f eat +781
(4.12)

The number of spikes per second in this case is depicted in Fig. 4.12, where nSV has been
fixed to a typical value of 700. With 40 templates in TPh and 10 in the SPh, and exploiting
the same len of the SPC algorithm for the synthetic database (32 samples @12kHz), the on-
line algorithm is able to process more than 400 spikes per second in TPh and more than
1600 in SPh, which represents an important result in terms of possible exploitation even in
case of extension to multichannel recordings. In this case, the computational power can be
distributed across the different channels with acceptable performance levels.

Summarizing, it has been developed the optimization of a state-of-the-art algorithm for
PNS signals decoding in order to obtain the best performance on a limited-resources em-
bedded platform such as an off-the-shelf DSP. Compared to custom VLSI or FPGA imple-
mentations, the adoption of these highly efficient micro-programmed architectures leads to
a greater flexibility. For the time being, this is particularly useful for closed-loop experiments
when the signal processing algorithms need to be quickly adapted to previous experimen-
tal evidences. The proposed analysis also identifies improvements to the original algorithm
able to guarantee the real-time performance with improved quality in the results.

4.5. EXPERIMENTAL RESULTS 69

5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

3500

n
feat

sp
ik

es
/s

ec

len = 32
len = 36
len = 40
len = 44
len = 48
len = 52

Figure 4.12: The maximum of processable spikes per second in SPh as a function of MNt

(from top to bottom, the curves are drawn for increasing values of len).

Several tests have been performed both on synthetic neural datasets and on real afferent
signals recorded in-vivo from rodents. The optimal version (V4) of the algorithm allows to
achieve an accuracy up to 96% in classification, respecting what it has been achieved in [16]
through an off-line processing based on the same algorithm, giving the possibility of per-
forming the training of the prosthetic device autonomously by the patient himself without
external tools. It uses 4 levels in the wavelet denoising stage and the simplest Haar mother
wavelet rather than the commonly used Symlet 7 one.

The main implementation issues regarding the porting of the whole processing algo-
rithm on a floating point DSP platform, allowing the fulfilment of real-time constraints, have
been discussed. A complex latency model has been derived, allowing the identification of
the working point under different parameters setting. In a single-channel implementation,
the algorithm is able to process up to 400 spikes per second when the unsupervised tem-
plates creation procedure is running, and up to 1600 in a use case where 10 templates are
required to obtain the pattern features. Such numbers prompts the possible extension to a
multi-channel scenario involving closed-loop real-time experiments including the complex
phase of classifier training, now included in the same embedded framework so that also the
training phase could be carried out without any external tool.

Chapter 5

VLSI Wavelet Denoising of Neural

Signals

5.1 Introduction

The design of a portable/implantable low-power implementation for the real-time decod-
ing phase of the peripheral neural signals for prosthetic solutions needs an efficient tuning
process of the various processing stages in order to minimize the hardware resources neces-
sary to correctly perform each of them, giving more attention to the wavelet denoising stage.
With the increasing integration capabilities and the advancements in CMOS processes, it is
progressively more common to require wearable or implantable electronics for such a pro-
cessing. Applications like electrocardiography (ECG) [7] and electroencephalography (EEG)
[11] often require these features. However, the low bandwidth of these signals and the rel-
atively low number of channels (except for very specific applications like potential surface
mapping or high density EEG) impose looser constraints compared to other applications like
the neural signal processing under consideration.

As detailed in the previous chapter regarding to the first DSP implementation, wavelet
denoising represents a common preprocessing step in case of low signal-to-noise ratio, as
it happens in real operating conditions. It is especially fundamental for prosthetic applica-
tions to remove the background noise and the low-frequency EMG interferences related to
the muscle stimulations placed near the electrodes added to the significant signal in order
to obtain good performance at downstream of the next processing stages. When the real-
time requirements are joined to the fulfilment of strict constraints about area occupancy
and power consumption to allow the development of portable/implantable devices, only
Application Specific Integrated Circuit (ASIC) implementations can be adopted.

Compared to micro-programmed solutions involving the use of microcontrollers or low-
power digital signal processors (DSP), ASIC design requires highly specific skills and a longer
development time [61], unfortunately leading to non-flexible architectures. This has been
verified in [61] where pros and cons of FPGA and DSP solutions for a different wavelet-based
denoising algorithm have been carefully evaluated. At the end of the analysis it has been
achieved that the possibility of using a greater operating frequency on FPGA allows to use
this type of implementations for biomedical applications which need high values of sam-
pling frequency in a multi-channel scenario, compared to what it is possible for a DSP which

71

72 CHAPTER 5. VLSI WAVELET DENOISING OF NEURAL SIGNALS

has a fixed miprocessor architecture, without taking into account power constraints. On the
contrary, it is fundamental to verify if a low-cost FPGA device using a typical fixed-point rep-
resentation permits to obtain a satisfactory accuracy for the considered application avoiding
performance degradation.

Some tools for automatic creation of hardware description language (HDL) designs have
been presented to address such issues (e.g. ORCC, http://orcc.sourceforge.net/ [64] or the
commercial Xilinx System Generator, http://www.xilinx.com/tools/sysgen.htm). Even though
unable to significantly address the low-power requirements, these tools provide the possibil-
ity of exploiting an alternative language/method rather than HDL in the design phase [67].
The integration with well-known tools such as Simulink enables a faster development and,
leveraging on parameterized HDL libraries, good performance in terms of area and power
can be also achieved. For these reasons, in such a way every part of the algorithm must be
carefully tuned quantifying the consequences of each of the possible design choices for an
optimal hardware implementation in terms of necessary resources and performance degra-
dation. In this part of the research activity, the overlooked phase of threshold estimation
has been deeply analysed exploiting the Xilinx System Generator tool for the design of the
architecture and the realization of hardware/software cosimulations, as in [5] where it has
been used to remove power-line interference from ECG signals, with the aim of implement-
ing efficient solutions from the hardware point of view allowing the realization of portable
solutions.

This commercial tool has been chosen for its rapid prototyping advantage, evaluating
the main performance figures associated to the hardware implementation of the wavelet de-
noising algorithm used for neural signal processing [18]. The ASIC implementation of this
algorithm would be particularly useful in a multi-channel neural signal processing context,
especially for neural prostheses [16] which must be able to work exploiting batteries as power
source or in case that the WD stage should be placed nearby the acquisition system. At the
same time, it allows highlighting the possible pitfalls hidden in the straightforward creation
of an architecture from its typical algorithmic version. In particular, the threshold estimation
stage is marginally considered in the largest part of the applications, usually exploiting fixed
precomputed thresholds [41] or preferably opting for the estimation of the standard devia-
tion of the noise by the Median Absolute Deviation (MAD), known to be a robust estimator
of the dispersion in presence of outliers. Such an approach has been challenged in order to
evaluate how it could lead to very inefficient or even infeasible architectures, not compliant
with the requirements of the target application.

5.2 Algorithmic solutions for threshold estimation

Due that the implementation details related to the adopted wavelet denoising technique
have been properly described in the previous chapter, in this part of the work it will be
paid more attention on the methods for calculating the thresholds applied at decomposi-
tion downstream. The choice of the threshold influences the quality of the denoising so
much that even data-specific approaches have been presented so far [54]. It can be fixed [41]
based on empirical considerations or adaptive [73] according to the characteristics of the
signal of interest, the same or different for all the detail signals at output of the various high-
pass filters for each stage of the decomposition trellis. In particular, adaptive thresholds are
typically computed estimating the root mean square r ms or the standard deviation σ of the

5.3. ARCHITECTURE DESIGN EXPLOITING XILINX SYSTEM GENERATOR 73

signal at the different levels and then correcting it by a scaling factor. Different multiplica-
tive factors have been derived and are preferred by different authors, as for the Minimax [16],
Stein’s Unbiased Risk [51] or Universal [6] methods. Due to the robustness to the presence
of outliers, usually the preferred method is to estimate σ by the median absolute deviation
(MAD), defined as:

M AD = medi ani
(

|Xi −medi an j (X j)|
)

(5.1)

Thanks to the high-pass nature of the detail signals, it is common to implement the MAD
as simply the median of the absolute value of the details:

M AD = medi an j
(

|X j |
)

(5.2)

It is possible to prove that M AD ≈ 0.6745σ. Nevertheless, the MAD is preferred for the
aforementioned robustness, especially in neural signal processing where the neural spikes
can be considered as partly composed of outlier samples in recordings with a good signal
to noise ratio. Such an approach, which is perfect for off-line processing, overlooks the real
computational complexity of the median operator in case of continuous adaptation. This
approach has been challenged by some authors trying to develop efficient implementations
for different biomedical signal processing applications [69, 93]. In the following, the adop-
tion of the MAD and the sample standard deviation on a sliding window has been compared
not only in terms of denoising quality, but also in terms of feasibility in the perspective of
a low-power real-time implementation as needed for an implantable unit for the control of
a neuroprosthetic device [16], using as a testbed a prototypical FPGA implementation pro-
grammed exploiting the Xilinx System Generator tool.

5.3 Architecture Design exploiting Xilinx System Gen-

erator

As starting point, it has been considered even in this case the translation-invariant wavelet
denoising trellis according to what defined by the Ã -trous algorithm [80]. In order to keep
low the resource requirements in the perspective of an FPGA implementation, the cost-
effective Haar mother wavelet has been chosen even remembering that it requires very small
filters and allows to achieve good performance combined with the next processing steps of
the decoding algorithm for prosthetic applications as verified by the previous DSP solution.
Having an input signal sampled at 12kH z, with 4 levels and removing the last approximation
signal, an overall high-pass behaviour able to reject the low-frequency interference compo-
nents below 375H z, outside the bandwidth of neural signal, can be obtained. In order to
evaluate the impact of the thresholding stage, no specific optimizations have been made at
the level of the filter banks for decomposition and recomposition. The low-pass and the
high-pass FIR filters have been implemented in the Transposed Direct-Form I, inserting reg-
isters with delay equal to increasing powers of 2 between the internal adders to perform the
required oversampling process in the different stages.

As it has been already said before, the choice of the threshold can have an impact on
the quality of the denoising. However, the repercussions in terms of hardware requirements
need to be carefully evaluated in the perspective of a low-power implementation targeted on

74 CHAPTER 5. VLSI WAVELET DENOISING OF NEURAL SIGNALS

the reference prosthetic application. In this application, two alternative solutions have been
considered which are based respectively on the calculation of:

• the MAD of the signal, using either a combinatorial or an iterative approach;

• the sample standard deviation σ of the signal.

As scaling factor, the Universal one has been adopted, so that:

θ =
M AD

0.6745

√

2 log M (5.3)

in the first case, and:

θ =σ
√

2 log M (5.4)

in the second one. M is the length of the signal frame in terms of number of samples.
In order to provide adaptiveness in an on-line scenario based on the characteristics of

the processed signals, both the first and the second solution have been adapted to work on
a sliding window of variable size, with an overlap of three quarters of the overall window
length. In the first case, this requires sorting the new window every time in order to extract
the median, however in the second case a faster solution can be implemented taking into
account only the remaining quarter of the last samples window. Starting from the technique
used in [69] and thanks to the zero-mean nature of the high-pass detail signals, for each N
new input samples in the window, the related sum of squares for the j-th decomposition level
is computed as:

s j =
N
∑

n=1
d 2

j [n] (5.5)

and then used to determine σ for the 4 times larger windows as:

σ=

√

√

√

√

1

4N −1

4
∑

k=1

s j (5.6)

According to the sliding window approach, the threshold value is updated every N sam-
pling periods taking into account the 4 times larger observation window (M = 4×N). The
longer the observation window, the better the estimation accuracy, provided that instanta-
neous variations (neural spikes) do not influence the threshold computation which must
represent the current noise level added to the significant signal. Such a processing can be
delegated to a host processor picking up the detail samples at the high-pass filters output
and computing the various thresholds. However, when a non-microcoded solution is pur-
sued, because of the need to fulfil the real-time and low-power constraints, threshold esti-
mation can be performed by dedicated cost-effective hardware. In this case, the complexity
depends on both the chosen threshold estimation method and the length of the observation
window M .

In order to evaluate the different solutions from the hardware perspective, starting from
a high-level model with an acceptable complexity even for researchers not accustomed to
HDL modelling, it is possible to use tools such as Xilinx System Generator. In this way, the
user-friendly environment provided by Matlab Simulink can be exploited both to create the

5.3. ARCHITECTURE DESIGN EXPLOITING XILINX SYSTEM GENERATOR 75

hardware design and to perform accurate co-simulations taking into account the hardware
implementation of a part of the system under test, as in the example shown in Fig.5.1.

Figure 5.1: Example of a system developed by Xilinx System Generator.

The tool allows to choose whether to use the hardware blocks coded by the user (provid-
ing the HDL file) or those provided by Xilinx. The latter only require to define the internal
signal representation (fixed-point, unsigned or signed as 2’s complement, etc.) as for the de-
sired functionality, whereas the former must adhere to a standard interface mainly requiring
an enable signal for each input clock to synchronize the modules inside the model. When
the design has been completely created, the set of the hardware blocks can be mapped on
a real FPGA board in order to evaluate the percentage of used resources and the behaviour
by hardware/software co-simulations. This is very useful to accelerate the simulation time
compared to the totally software case.

threshold_est4

In1 Out1

threshold_est3

In1 Out1

threshold_est2

In1 Out1

threshold_est1

In1 Out1

denoised

 Out

Terminator

Signal From
WS

easynoise01
Scope

Hard_Thres4

wc

thr
twc1

Hard_Thres3

wc

thr
twc1

Hard_Thres2

wc

thr
twc1

Hard_Thres1

wc

thr
twc1

H4(z)

In1 Out1

H4’(z)

In1 Out1

H3(z)

In2 Out2

H3’(z)

In2 Out2

H2(z)

In1 Out1 H2’(z)

In1 Out1

H1(z)

In1 Out1

H1’(z)

In1 Out1

G4(z)

In1 Out1

G4’(z)

In1 Out1

G3(z)

In2 Out2

G3’(z)

In2 Out2

G2(z)

In1 Out1

G2’(z)

In1 Out1

G1(z)

In2 Out2

G1’(z)

In2 Out2

Down Sample4

z−1

↓266752

Down Sample3

z−1

↓266752

Down Sample2

z−1

↓266752

Down Sample1

z−1

↓266752

Delay2

z−14

Delay1

z−12

Delay

z−8

Data In

 In

CMult6

x 0.5

CMult5

x 0.5

CMult4

x 0.5

CMult3

x 0.5

CMult2

x 0.5

CMult1

x 0.5

AddSub3

a

b
a + b

AddSub2

a

b
a + b

AddSub1

a

b
a + b

System
Generator

Figure 5.2: Simulink model of the wavelet denoising scheme using System Generator blocks.

The wavelet denoising algorithm, created exploiting the Xilinx System Generator tool, is
shown in Fig. 5.2. The Gateway In and the Gateway Out blocks delimit the hardware part of
the Simulink model, defining the interface signals to be mapped on the various pins available
on the FPGA. The System Generator block fixes the co-simulation parameters, the Simulink

76 CHAPTER 5. VLSI WAVELET DENOISING OF NEURAL SIGNALS

thr
1

Mult

a

b
a × b

Med

x Med(x)

Constant

4.27459716796875

Abs

x abs(x)

x
1

Figure 5.3: Simulink Model of the Threshold Estimator block with the constant defined as for
the case of M=64 samples per window.

Med(x)
1

Sort9

A

B

H

L

Sort8

A

B

H

L

Sort7

A

B

H

L

Sort6

A

B

H

L

Sort5

A

B

H

L

Sort4

A

B

H

L

Sort3

A

B

H

L

Sort23

A

B

H

L

Sort22

A

B

L

Sort21

A

B

H

Sort20

A

B

L

Sort2

A

B

H

L

Sort19

A

B

H

L

Sort18

A

B

H

Sort17

A

B

L

Sort16

A

B

H

L

Sort15

A

B

H

L

Sort14

A

B

H

Sort13

A

B

H

L

Sort12

A

B

H

L

Sort11

A

B

H

L

Sort10

A

B

H

L

Sort1

A

B

H

L

Sort

A

B

H

L

Delay9

z−1

Delay8

z−1

Delay7

z−1

Delay6

z−1

Delay12

z−1

Delay11

z−1

Delay10

z−1

CMult8

x 0.5

AddSub

a

b
a + b

x
1

Figure 5.4: Simulink Model of the sorter using an unfolded combinatorial approach for win-
dows with M=8 samples.

system period, the target board to map the hardware sub-model, and so on. In these tests,
a Xilinx FPGA Virtex-5 LX330 has been chosen for its considerable amount of available re-
sources.

In case the M AD is used, the System Generator implementation involves the extraction
of the absolute value of each input samples, the computation of the median value of the
incoming windows of M input samples and the multiplication by a constant, as defined in
(5.3). The corresponding Simulink model is depicted in Fig. 5.3. The median value calcula-
tion requires the hardware implementation of a sorting algorithm which represents a costly
operation from the hardware point of view.

A first possible solution can be the unfolded sorter presented in [6], for which the Simulink
model considering windows of M = 8 input samples is presented in Fig. 5.4. The basic sort-
ing cell makes the comparison between two inputs A and B and swaps them if A < B . It is
possible to demonstrate that, if the comparators work in parallel, M−1 steps are sufficient to

5.4. EXPERIMENTAL RESULTS 77

properly perform the sorting of M elements. The output is updated in a combinatorial way
every time a sample arrives in input at the sampling frequency fs , after the proper shift of the
values saved into the registers needed to prepare the input samples for the processing. The
M AD is computed as the arithmetic mean of the two central elements of the sorted array for
an even number of samples.

This solution presents several pitfalls from a hardware implementation perspective. In
particular there is a clear scalability issue related to the enlargement of the observation win-
dow. In this case, the increasing internal critical path determined by the cascade of compara-
tors limits the maximum operating frequency, beyond the penalty associated to the huge
amount of hardware resources.

To overcome such problems, an iterative (folded) approach to the sorter able to reuse
the same resources at each step, similar to that proposed in [53] about the Burrows-Wheeler
transform but adapted to the wavelet denoising case, can be used. In this case, the sorting
strategy uses only two levels of comparators. At the beginning, the swaps are performed only
for the registers related to odd adjacencies, activating only the first level of comparators. If
the vector is not yet sorted, at the next iteration only the comparators of the second level are
active, and so on until the sorting process is completed. It is possible to demonstrate that the
number of necessary steps is M/2 if M is the number of samples to sort. Figure 5.5 shows
the iterative scheme.

The swp signal coming out from the comparator block is used to specify that the two
inputs have been swapped. The samples in input to the parallel sorter, belonging to each
observation window, are temporarily saved into a single-port memory. Immediately after
the last sample of the window has been saved in this memory, its content is copied into the
registers and the sorting process can start. When all the swp signals are equal to 0 during
the last iteration, the input vector is correctly sorted. A finite state machine, one for each
Threshold Estimator block (i.e. one for each decomposition level), is used to control the
various phases of the process.

In order to compare the hardware characteristics of these models of threshold estimation
based on the M AD against those of a traditional sample standard deviation as described
above, an hardware model has been designed also for such an approach. Fig. 5.6 shows the
Simulink model for this implementation. Every time an input sample arrives, it is squared
and added to the current value of s j . After N samples, the final value of s j is saved in one
of the 4 locations of the single-port RAM used as circular buffer in order to determine the
correct value of σ over the sliding window.

Regardless the chosen approach, the value of the threshold θ is sent in input to the
Thresholder block, able to apply the hard thresholding on the detail samples. It should be
also considered that the value of θ is different for the various levels.

5.4 Experimental Results

Before analysing the results in terms of hardware resources which are necessary for the dif-
ferent solutions presented above, such solutions have been evaluated from a functional per-
spective. To this aim, the same publicly available dataset of simulated neural signals [72]
described in the previous chapter has been exploited as input test data. The synthetic sig-
nals are obtained by linearly mixing an artificial sequence of real spikes from three neurons
to other spikes at random times and amplitudes, representative of the background activity

78 CHAPTER 5. VLSI WAVELET DENOISING OF NEURAL SIGNALS

median
2

Ready_Flag
1

we2

A
sample_counter

clr

en
hit8

reset8

RST

reset7

RST

reset6

RST

RST

reset58

RST

RST

reset5

RST

reset4

RST

reset3

RST

reset2

RST

reset1

RST

reset

RST

d

rst
qz−1

register

d

rst
qz−1

median calculator

en

rst

a

b

medianaout

MED_B

MED_A

level activator

en_comp

1st lev

2nd lev

en_median

C

delayed_ready flag

B

Subsystem3

In1

In2

In3

In4

In5

In6

In7

lev_sel

Out1

Single Port RAM

addr

data

we

rst

z−1

Register7

d

rst
qz−1

Register6

d

rst
qz−1

Register5

d

rst
qz−1

Register4

d

rst
qz−1

Register3

d

rst
qz−1

Register2

d

rst
qz−1

Register1

d

rst
qz−1

Register

d

rst
qz−1

Mux7

sel
d0
d1

Mux6

sel
d0
d1

Mux5

sel
d0
d1

Mux4

sel
d0
d1

Mux3

sel
d0
d1

Mux2

sel
d0
d1

Mux1

sel
d0
d1

Mux

sel
d0
d1

Logical2

and

Goto6

LEV_SEL

Goto5

SEL
Goto4

EN2

Goto3

EN1

Goto2

MED_B

Goto1

MED_A

From9

[SEL]

From8

[SEL]

From7

[SEL]

From6

[EN1]

From5

[EN1]

From4

[EN1]

From3

[EN1]

From2

[EN2]

From14

[LEV_SEL]

From13

[SEL]

From12

[SEL]

From11

[SEL]

From10

[SEL]

From1

[EN2]

From

[EN2]

Comparator7

C

A1

B1

swp

A

B

Comparator6

C

A1

B1

swp

A

B

Comparator5

C

A1

B1

swp

A

B

Comparator4

C

A1

B1

swp

A

B

Comparator3

C

A1

B1

swp

A

B

Comparator2

C

A1

B1

swp

A

B

Comparator1

C

A1

B1

swp

A

B

we
6

address
5

en input
4

lev selector
3

Data
2

rst
1

en_median

Figure 5.5: Simulink Model of the sorter using an iterative approach for windows with M=8
samples.

(of tunable intensity) of the neurons at a greater distance from the recording electrodes. The
sampling frequency has been scaled to 12 kHz and the useful bandwidth is declared to be in
the range [300Hz - 3kHz].

5.4.1 Functional Evaluation

The different versions of the whole wavelet denoising system have been mapped on the
target FPGA in order to evaluate, by hardware-software co-simulations, the system perfor-
mance under real conditions. Fig. 5.7 shows in the first row the neural signal with a low
level of background noise used as input for the two hardware implementations based on the
calculation of the M AD and of the σ (the two versions of the one implementing the M AD
produce the same results). The next rows present the related outputs considering observa-
tion windows of M = 4×64 samples.

It is possible to see that for both solutions, the wavelet denoising is able to remove, after
an initial transient, the background noise added to the neural signal without cutting signif-

5.4. EXPERIMENTAL RESULTS 79

Out1
1

to−sqrt

 Out

sum

d

rst
qz−1

sel_generator

rst

clr_reg

hit_sample

sel

sample counter

clr

en
hit64

rst

 In

new sample

rst hit_sample

count4

clr

en
hit4

controller

rst

hit_sample

hit_window

hit_buffer

addr_inc

en_mul

en_add

en_count4

clr_count4

clr_reg

we

en_s_adder

address incr

inc

rst
address

Step

Single Port RAM

addr

data

we

rst

z−1

Register7

d

rst
qz−1

Register6

d

rst
qz−1

Register5

d

rst
qz−1

Register4

d

rst
qz−1

Register3

d

rst
qz−1

Register2

d

rst
qz−1

Mux1

sel

d0

d1

Mux

sel

d0

d1

Mult

a

b

en

a × bz−1

Logical

or

Goto1

A

Goto

RST

From9

A

From8

A

From7

A

From6

RST

From5

RST

From4

RST

From3

RST

From2

RST

From14

RST

From11

RST

From10

RST

From1

RST

From

RST

Fcn

f(u)

Constant1

1

Constant

0

AddSub3

a

b

en

a + bz−1

AddSub2

a

b

en

a + bz−1

AddSub1

a

b

en

a + bz−1

AddSub

a

b

en

a + bz−1

In1
1

square

dataout

current sample

data_in

Nth

Figure 5.6: Simulink Model of the Threshold Estimator block based on the calculation of the
sample standard deviation.

icant spikes. The same performance can be achieved using the same input signal but with
a stronger background noise for which it is difficult to identify the various spikes on the raw
signal, as can be shown in the first row of the Fig. 5.8. Even using neural signals with very low
SNR, the two implementations behave similarly preserving the relevant spikes.

Then, the possibility of enlarging the observation window has been considered in order
to provide a more significant frame for computing the statistics on the signal. For example,
Fig. 5.9 shows the outputs of the two solutions using M AD and σ in the case of windows
of N = 128 samples and a low level of background noise. The initial transient is obviously
longer in comparison to the previous cases.

It has been also analysed the trend of the thresholds in output from the same decomposi-
tion level for different observation window lengths, for the two hardware solutions. The aim
is to verify which is the minimum value of N , considering a sliding window length of 4×N ,
that allows obtaining good performance in denoising.

As can be noticed from Fig. 5.10, after a variable transient period according to the chosen
value of N , the longer the observation window the better the stability of the threshold, not
influenced by the presence of the neural spikes of interest. In fact, in the case of N = 128, the
threshold estimation assumes an almost constant trend; the goal should be that of select-
ing the solution which provides the best compromise in terms of threshold estimation and
required hardware resources.

80 CHAPTER 5. VLSI WAVELET DENOISING OF NEURAL SIGNALS

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 in
pu

t

(a) Input Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 M

A
D

(b) WD output using the M AD-based threshold

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 S

td
 D

ev

(c) WD output using the σ-based threshold

Figure 5.7: Wavelet Denoising input and outputs: low level noise, N=64 samples.

5.4.2 Hardware Figures of Merit

Thanks to the possibilities offered by Xilinx System Generator, also to map the implemented
designs on real hardware, in this case the Xilinx FPGA Virtex-5 LX330 device, pros and cons in
terms of necessary hardware resources have been evaluated for the different solutions pre-
sented above. The final goal is to determine which is the best solution allowing to achieve a

5.4. EXPERIMENTAL RESULTS 81

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 in
pu

t

(a) Input Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 M

A
D

(b) WD output using the M AD-based threshold

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 S

td
 D

ev

(c) WD output using the σ-based threshold

Figure 5.8: Wavelet Denoising input and outputs: high level noise, N=64 samples.

good accuracy with limited area and power consumption, in the light of the realization of a
VLSI chip implementing such a processing stage for an implantable unit in the neuropros-
thetic field.

Synthesis results are presented in Table 5.1, which shows the percentage of available
slices and Look-up Tables (LUTs) needed for the three considered threshold estimation blocks
only, since the remainder of the wavelet denoising implementation is the same regardless of
this stage.

82 CHAPTER 5. VLSI WAVELET DENOISING OF NEURAL SIGNALS

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 in
pu

t

(a) Input Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 M

A
D

(b) WD output using the M AD-based threshold

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 S

td
 D

ev

(c) WD output using the σ-based threshold

Figure 5.9: Wavelet Denoising input and outputs: low level noise, N=128 samples.

The solution based on the combinatorial (unfolded) M AD implementation, as high-
lighted in Table 5.1, is absolutely inefficient, taking into account that it has been presented
only for N = 8 with the usual 4-times larger observation window. A rough estimation of the
hardware resources required in case of N = 32 would lead to more than 330kLUT over the
207360 available ones, thus exceeding the considerable amount of physical resources on the
target FPGA device. The huge amount of LUTs, compared to the folded version, is incompat-
ible with a real implementation in the context of this application, taking into account that

5.4. EXPERIMENTAL RESULTS 83

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

Time [sec]

T
hr

es
ho

ld
 A

m
pl

itu
de

N = 32
N = 64
N = 128

(a) M AD-based solution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

Time [sec]

T
hr

es
ho

ld
 A

m
pl

itu
de

N = 32
N = 64
N = 128

(b) σ-based solution

Figure 5.10: Threshold variation over time using different lengths of the observation window

Table 5.1: FPGA synthesis results for the Threshold Estimator varying the length of the ob-
servation window.

N fmax [M H z] Slice Registers LUTs

σ

32 417.34 156 / 207360 (0.07%) 80 / 207360 (0.04%)
64 416.61 157 / 207360 (0.07%) 82 / 207360 (0.04%)

128 416.02 160 / 207360 (0.07%) 84 / 207360 (0.04%)

unfolded M AD 8 417.08 558 / 207360 (0.27%) 20270 / 207360 (9.77%)

folded M AD
32 242.78 2493 / 207360 (1.20%) 7164 / 207360 (3.45%)
64 246.70 4932 / 207360 (2.38%) 14377 / 207360 (6.93%)

128 221.42 9806 / 207360 (4.73%) 28861 / 207360 (13.91%)

the observation window length should be large enough to properly estimate the statistics of
a signal sampled at 12kHz.

FPGA synthesis results demonstrate that the wavelet denoising solution based on the
threshold estimation by the sample standard deviation allows minimizing the necessary
hardware resources regardless the length of the observation window. Furthermore, the us-
age of slices and LUTs of the M AD-based solution, even using a folded approach, is clearly

84 CHAPTER 5. VLSI WAVELET DENOISING OF NEURAL SIGNALS

incompatible with an efficient implementation of this processing stage, especially compared
to the same data related to the σ-based implementations.

Summarizing, the choice of the threshold estimation technique, more than having an in-
fluence on the quality of the wavelet denoising algorithm, has significant reverberations on
the feasibility and efficiency of a custom VLSI architecture aimed at an implantable chip in
the context of neural prostheses. The comparison between a sample standard deviation and
the widespread M AD has revealed similar functional performance with dramatically better
characteristic of the former in terms of hardware implementation, regardless the M AD is
implemented as a combinatorial trellis as suggested by some authors or in a more efficient
folded version. This optimal approach can be thus exploited in order to develop the hard-
ware implementation of the wavelet denoising stage with the minimum resources which can
be mapped on an embedded system allowing portability and satisfying the timing and power
constraints imposed by the target application.

Chapter 6

A Coarse-Grained Reconfigurable

Approach for Low-Power Neural

Signal Decoding

6.1 Introduction

Starting from the analysis proposed in the previous chapters and considering the aim of pro-
viding an implantable/portable implementation of the considered neural signal decoding
algorithm for prosthetic applications, efficient resource management and specialized low-
power design techniques must be adopted in order to fulfil tight real-time constraints with
the use of the minimum hardware resources.

Extracting information in real-time from physiological signals to determine the intention
of movements of an amputee and generating the relative electro-mechanical stimulations in
input to a cybernetic hand represents a computational intensive task, especially in case of a
huge number of channels. Fortunately, it is not the case of PNS interfaces compared to the
CNS one for which the number of active channels is often quite limited. Nevertheless, given
similar timing constraints imposed by the application, it is fundamental to exploit massive
parallelism in order to minimize the execution latency, even that it comes at the expenses
of a power profile not compatible with implantable battery-powered devices which must be
placed nearby the acquisition system.

Several works have been presented so far in this field, the largest part of them proposing
Field Programmable Gate Arrays (FPGAs) as implementation target to guarantee more par-
allelism than processor-based solutions [8]. However, FPGA potential flexibility (needed to
adapt the algorithms to the ongoing experimental evidences) is in contrast with the complex
traditional ways to design digital architectures. In fact, specific abstraction tools, such as
those based on Simulink [24], cannot be used when the control on the low-level implemen-
tation details is pursued. Furthermore, such tools are not aimed at the maximum reuse of
the basic building blocks (at a coarse granularity) so that their outcomes are not efficient in
terms of area and power, assigning more responsibility to the designer in the creation of the
HDL implementation.

For these reasons, it is proposed to adopt a novel approach in the specification and in
the hardware implementation of the considered decoding algorithm, taking into account

85

86
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

the various processing steps described in the previous chapters except the final SVM classi-
fication part. This approach is based on the use of an automatic tool, called Multi-Dataflow
Composer (MDC), which allows to create a coarse-grained reconfigurable architecture with
the minimum hardware resources exploiting the same Functional Units (FUs) to perform dif-
ferent parts of the algorithm. Moreover, the MDC approach is extremely attractive because
the generated hardware platforms are flexible, fitting to parametric solutions adjustable at
runtime based on the characteristics of the processed signal.

In [67] it has been demonstrated the applicability of this tool in the field of image/video
processing. The MDC tool has been in fact conceived with studies related to the MPEG Re-
configurable Video Coding (RVC) [1] so that its application was straightforward. Neverthe-
less, the possibility of automatically managing the composition of reconfigurable platforms,
power and area aware, makes it potentially suitable for other applications domains too, such
as the biomedical one. It leads to a final implementation characterized by area and power
saving that is mandatory for PNS implantable devices. The goals of this part of the work are
the following:

• to exploit strategies of hardware reusability through runtime reconfiguration to per-
form consecutive processing steps in order to provide area and power minimization;

• to verify the orthogonality at application level of the MDC approach with respect to
the original reconfigurable video coding domain;

• to test the proposed approach for the implementation of the real-time neural signal
decoding algorithm creating an embedded system including a host processor and a
reconfigurable coprocessor mapped on an FPGA;

• to evaluate the performance in terms of accuracy and typical metrics of a digital hard-
ware design verifying the proper functionality with the same dataset of synthetic neu-
ral signals described in the previous chapters.

6.2 Exploiting the Multi-Dataflow Composer Tool

6.2.1 Multi-kernel datapath generation

Systems based on a reconfigurable approach are often called adaptive, in the sense that their
logic functionality and interconnect can be customized to suit a specific application, by pro-
gramming them at the hardware level. Dealing with reconfiguration, there are mainly two
major levels of configurability:

• fine-grained, complete or runtime partial reconfiguration of the substrate (e.g. FPGA
platforms);

• coarse-grained, reconfiguration of the interconnections among the involved functional
units (FUs).

Fine-grained architectures are more flexible than coarse-grained ones but the counter-
balance is that the overhead of passing from a configuration to another is huge, limiting the

6.2. EXPLOITING THE MULTI-DATAFLOW COMPOSER TOOL 87

set of applications in which they can be exploited. Moreover, opting for a fine-grained ap-
proach, besides the shut-down state of operation necessary to change the context, it is neces-
sary also to be able to afford a dedicated storage space to memorize the bitstream file needed
to configure the various cells available on a FPGA. On the contrary, coarse-grained reconfig-
uration is still affected by the target physical space limitation, but it is able to provide faster
switching at runtime between different hardware implementations: neither requiring any
context change nor any need of specifying and storing fine-grained FPGA bitstreams. The
latter approach can be useful in the case that an algorithm is partitioned into a sequence
of computational kernels and its execution can be improved building up a reconfigurable
platform able to switch among them during its execution.

For these reasons, the proposed MDC approach allows us to create a coarse-grained re-
configurable coprocessor able to map on a minimal set of FUs the functionalities required
by the computational kernels identified in the target neural decoding algorithm. They must
present commonalities at actor level to maximise the benefits in terms of area and power
saving, where actors represent the high-level computing elements of a dataflow description
integrating a particular functional unit. This type of description is widely used in signal pro-
cessing, allowing to describe the required functionalities through the interaction of actors
representing the nodes of the dataflow graph. It is particularly suitable when it is necessary
to map in hardware only some parts of the whole application, generating a sort of computing
accelerator at the disposal of other general-purpose processors.

These kernels are selected in the application flow diagram as the best candidates for a
hardware implementation, characterized for being: repetitive, computationally intensive
and with a reduced amount of conditional executions. Runtime reconfiguration and FUs
reuse are allowed by the use of low-overhead switching modules (Sboxes) instantiated in the
final platform activating different paths according to a specified kernel code which identifies
the required computation.

Mapping kernels on a reconfigurable hardware substrate is not so straightforward as
their number grows. Therefore, support tools are needed to speed-up this process. MDC
[68] is a tool that can effectively serve the aforementioned purposes providing the automatic
generation of reconfigurable coarse-grained platforms starting from the high-level dataflow
descriptions of the identified kernels. Such description are given in the Network Language
(NL), a dialect derived from XML and based on the Open Dataflow format (http://opendf.sf.net).
An overview of the tool is shown in Fig.6.1.

The tool front-end (Mutli-Dataflow CAL Composer, MDCC) acquires the input specifica-
tions and combines them, identifying the common actors and properly inserting the Sboxes,
into a multi-dataflow specification called Directed Flow Graph (DFG), able to implement all
the given kernels of the application under consideration, preserving their computational
correctness. The back-end (Platform Composer) maps the DFG into a coarse-grained recon-
figurable hardware platform (Global Kernel) described in a Hardware Description Language
(HDL).

To provide that such Sboxes can switch at runtime among the different datapaths with-
out a low-level bitstream reconfiguration, they are controlled by dedicated Look-Up Tables
(LUTs) whose content is automatically defined at design-time by the MDC tool. The LUTs
are addressed by the kernel code and return the selection bits for the Sboxes. Such bits are
used inside them to drive the internal multiplexer/demultiplexer in order to physically re-
shape the datapath accommodating the desired processing. Due to the low complexity of
the switching modules, it is possible to change the implemented kernel in the generated

88
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

D1

MDCC
N:1

PC
1:1

DAG

dataflow 1

dataflow 2

dataflow 3

A

B

C

D

E

A F G

B E G

dataflow specifications

Verilog/VHDL Implementation

MDC
Tool

A Sbox

C

F

B Sbox

Sbox E

D

Sbox G

configuration

GLOBAL KERNEL

Sys

Sbox

PE
V

e
ri
lo

g
/

V
H

D
L

 I
m

p
le

m
e

n
ta

ti
o

n

HDL Components
library

A

B
C

D
E

F H

Sbox

Figure 6.1: Coarse-grained reconfigurable platform composition flow.

platform within a single clock cycle and without any need of a reset phase. Obviously, to
exploit at the most the MDC tool strength, the kernels should share the actors so that the
resource saving on the final platform will compensate the additional hardware necessary to
handle runtime reconfiguration.

Since the MDC tool is not a high-level hardware synthesizer, this step requires an HDL
library of components, the FUs implementing the required actors and also the interconnec-
tion modules. Therefore, the HDL implementation of the actors must be manually coded
by the user or defined using HDL generation tools [81] while the NL files which describe the
single kernels could also be generated using the open source graphical Graphiti tool [25],
greatly reducing the overall development time.

6.2.2 HDL components library and Communication Protocol

As previously announced, this approach needs to have the HDL implementation of the var-
ious actors instantiated in the reconfigurable platform due that the MDC tool is only able
to manage the interconnections among them starting from the dataflow description of the
single kernels. In order to deal with the IEEE 754-1985 single precision floating-point num-

6.2. EXPLOITING THE MULTI-DATAFLOW COMPOSER TOOL 89

ber representation [33], an appropriate HDL components library of standard-compliant FUs
has been developed. It is built up of arithmetic and control flow modules managing num-
bers composed by the three fields: sign, mantissa and exponent. The arithmetic modules are
an adder, a multiplier, an absolute value calculator and a comparator. The latter two are the
simplest. The absolute value calculator just reverts the sign bit if it is set. The comparator is a
mere integer comparator, since the represented rational numbers are ordered as the integer
ones.

Swap

Align
yes

no
SA

Exp
Diff

SA

Conv LOD Norm

operand B

operand A

result

FAR

CLOSE

d > 1 (d = expA - expB)
0

1

A = +4·2
3

B = +3·2
1

-3,2+3 = -0,2 sign = - n = 1 0,2<<n = 2

d=2 4<<d = 400 400+3 = 403

res = -2·2
1

res = +403·2
1

A = -3,2·2
2

B = +3·2
2

Figure 6.2: Floating Point Adder: the Block Diagram of the Two Path algorithm.

The multiplication operation is performed by the sum of the exponents and the product
of the two mantissa fields, being careful to the biased exponent1 and underflow/overflow
situations. In the implemented multiplier, the product is computed in two clock cycles.

The most complex arithmetic block is the adder. Its implementation leverages on a vari-
ant of the Two Path algorithm [66], diversifying the computation according to the distance
between the exponents of the two addends (Fig. 6.2). If the distance is less than/equal to 1
the CLOSE case is executed, otherwise the FAR case is. In the CLOSE case the two mantissa
fields are summed using a Sign Addiction (SA). Through a detection process, called Leading
One Detection (LOD), it is calculated the number of shifts necessary to normalize (Norm)
the result2. In the FAR case, the mantissa fields are aligned (Align), according on the dis-
tance between the exponents (Exp Diff). The sign fields are added (SA). In both the FAR
and the CLOSE cases, a preliminary (Swap) operation may be performed to switch the adder
operands (the greatest one should always be the first). Three clock cycles are required to
perform a floating point addition.

Beyond the arithmetic blocks, needed for the chosen application, also flow control blocks
have been implemented in the library: two demuxes, respectively with 3 and 4 outputs, each
one having an input buffer that stores a stream of incoming data and sends them towards
multiple output channels at the same time; an out_ filter module to supervise, at the same
time, two filtering processes useful to perform each stage of the denoising; finally, a thresh-
older which establishes whether the input data stream has to be forwarded or not.

All the FUs within the designed HDL components library obey to the communication
protocol depicted in Fig. 6.3. It means that each FU has been encapsulated with an homo-
geneous wrapper managing the handshake and allowing the correct streaming of data in the
system [67]. Dataflow paradigms typically implement a FIFO-based communication proto-

1In the IEEE 754-1985 single precision number representation a bias value of 127 is subtracted to the expo-
nent.

2The integer part of the mantissa is represented always with only one implicit bit set to 1.

90
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

clk

src_DATA

src_VALID

src_SIZE

dst_ACK

0 0

0 02

16 10

Figure 6.3: Multi-kernel datapath of the communication protocol.

col. To limit the required hardware resources, it has been adopted a single register for each
I/O port of the FU instead of a FIFO memory allocated on each communication channel.

6.2.3 Computing kernels

To maximize the FUs reuse in order to obtain a low-power hardware platform with the mini-
mum actors compliant with respect to the constraints imposed by the target application, it is
fundamental to choose the single kernels with the higher computational complexity which
use the same basic operations to perform the relative processing.

Figure 6.4 highlights the various kernels identified in the reference application based on
the use of a template-matching spike sorting decomposed into the three typical parts (spike
detection, alignment and sorting) plus a preliminary step of wavelet denoising, as detailed
in the previous chapters, except the use of the final classifier stage. The resulting hardware
implementations, obtained using the MDC tool, must be able to work on-line both when the
action potentials of the single neurons are being identified determining the spike morphol-
ogy with which each of them fires (training phase) and when they have been already iden-
tified recognizing, for each detected spike, what has been the neuron that has generated it
(sorting phase).

Regarding to the wavelet denoising processing stage, considering an input sampling fre-
quency of 12kH z, the block diagram shown in Fig. 6.5 represents a possible solution, ap-
plying the non linear band-pass filtering between 375Hz and 6kHz, able to remove the low
frequency interferences. In this scheme, it has been highlighted three different kernels: the
single-stage decomposition (dec), the single-stage recomposition (rec) and the thresholding
(thr).

The dec kernel (Fig. 6.6) performs a pair of FIR filtering operations (low pass and high
pass) on the same input signal, generating the correspondent approximation and detail
outputs. Looking at the Fig. 6.5, 4 successive executions of this kernel will be required to
complete the decomposition phase, one for each level in the proposed solution. The one-
input/three-output demux acquires an input stream containing the data sample and two
filter coefficients at a time. The multiply and accumulate (MAC) operations need a pair of
one multiplier and one adder, in parallel, for both the low pass filter and the high pass one.
The out_ filter actor monitors the filter operations and gives at output the approximation
and the detail samples related to the provided input data samples.

6.2. EXPLOITING THE MULTI-DATAFLOW COMPOSER TOOL 91

INIT

New
Input Block?

yes

no

Wavelet
Denoising

NEO

Spike
Detection

Spike
detected?

Extract
spike Nt==0?

Standardize
spike

Create new
template

yesno

no

yes

Xcorr
loop

i :Mc index
max corr

M :C max
corrSorting

phase?

M > Th ?C C

Incr occ
i templateMc

yes

yes

no

M > Th ?C C

yes

no

Update
i templateMc

Block
finished? noyes

Sorting
phase? STOP

Templates
Reduction

no

yes

dec_filter
thr

rec_filter
neo

avg
sqr_sum

weight_mul
dot_prod
idx_max

avg
sqr_sum

weight_mul

avg
sqr_sum

weight_mul
sync_avg

avg
sqr_sum

weight_mul
sync_wavg

idx_max_abs

INIT

STOP

no

no

Figure 6.4: The flow diagram of the implemented algorithm.

x

H(z)
2

G(z)
2

H(z)
3

G(z)
3

H(z)
4

G(z)
4

H(z)

G(z)

a21

a22

a23

H’(z)
4

G’(z)
4

+ H’(z)
3

G’(z)
3

+ H’(z)
2

G’(z)
2

+ H(z)

G(z)

+ x̂
d21

d22

d23

a24

z
- t23

z
- t22

z
- t21

d24

Decomposition Recomposition

Thr[4]

Thr[3]

Thr[2]

Thr[1] Thresholding

dec
rec

thr

Figure 6.5: The proposed wavelet denoising solution block diagram with the three identified
kernels

in1

out1

out2

mul1

in1 out

in2

mul2

in1 out

in2

out_filter

in1 out1

in3 out2

in2 out3

in4 out4

add1

in1 out

in2

add2

in1 out

in2

demux_3out

in1 out1

out2

out3

Figure 6.6: Single-stage decomposition dataflow kernel, dec.

The rec kernel (Fig. 6.7) is very similar to the dec one. As already said for the dec kernel,
4 successive kernel executions are required to perform the whole recomposition phase for

92
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

the considered WD scheme. The initial demux provides a couple of input samples/relative
coefficients both to the low pass and the high pass filters. At the end of the recomposition
kernel flow an adder actor is required to correctly reconstruct the denoised signal, bringing
back together the approximation signal and the detail one.

in1

out1

mul1

in1 out

in2

mul2

in1 out

in2

add2

in2 out

in1

add3

in1 out

in2

out_filter

in1 out1

in3 out2

in2 out3

in4 out4

demux_4out

in1 out1

out2

out3

out4

add1

in1 out

in2

Figure 6.7: Single-stage recomposition dataflow kernel, rec.

The thr kernel (Fig. 6.8) compares the absolute value of an input sample with a threshold.
If the sample (whose absolute value is extracted with an absolute value calculator actor) is
greater than the threshold, it is forwarded to the output, otherwise the output is set to zero
(a thresholder actor evaluates the comparator response and properly sets the output data).

in1

in2

out1
abs

in1 out
comp

in1 out

in2

threshold

in1 out

in2

Figure 6.8: Thresholding dataflow kernel, thr.

In the same way, the remaining kernels have been implemented exploiting the actors
belonging to the HDL components library. Thanks to the sequentiality of the operations,
it is not necessary to instantiate other actors to execute, for instance, the arithmetic mean
of a data vector (avg), the multiplication by a constant (weight_mul) or the squared sum
(sqr_sum). Finally, the overall reconfigurable datapath includes only 3 adders, 3 multipliers,
1 subtractor, 1 comparator and 1 absolute value calculator to perform the various identified
kernels.

6.3 FPGA test environment

To verify pros and cons of the proposed approach, a Xilinx FPGA Spartan-3E 1600 Develop-
ment Board has been used as the target device on which it is possible to map the test envi-
ronment system. The MDC-derived reconfigurable architecture has been integrated into a
coprocessor at the disposal of a MicroBlaze soft-core processor to accelerate the execution
of the single kernels. A block diagram of the whole test system is shown in the Fig. 6.9.

A point-to-point connection has been adopted between the coprocessor and the MicroB-
laze to reduce the communication latency. The Fast Simplex Links (FSLs), composed of 32-
bit wide uni-directional channels, have been instantiated on the system. The FIFO depth of
the FSL-based links have been fixed to 32, a good design compromise to reduce the FPGA
slices utilization and, at the same time, to limit the number of “full” conditions.

The runtime coprocessor configuration, based on the MicroBlaze requests for the execu-
tion of the single kernels, needs the preliminary sending of a control word defining the value

6.3. FPGA TEST ENVIRONMENT 93

COPROCμBlaze

DDR
SDRAM

Ethernet
Controller

UARTLITE

PLB bus

tx

rx

FSL
FIFO

in1 in2

out1 out2

dinBaddrBwnrBdoutBdinAaddrAwnrAdoutA

OUTPUT MEMORY

dout
INPUT MEMORY

wnr addr din

GLOBAL
KERNEL

IN
FSM

OUT
FSM

OUT
FSM

IN
FSM

F
S

L
0

F
S

L
1

kernelID

a
d

d
r

Figure 6.9: Test system block diagram.

of the possible parameters. Among them, it is necessary to specify the Kernel ID which rep-
resents the correct index of the invoked kernel to be computed by the Global Kernel block,
properly configuring the Sboxes. For instance regarding to the wavelet denoising, the de-
signer can choose:

• the number of levels used in decomposition/recomposition;

• the number and the values of the coefficients used for the filters based on the selected
mother wavelet;

• the possibility of removing the last approximation signal determining an equivalent
band-pass non-linear filtering;

• the threshold values for the details at each decomposition level;

• the b_len number of samples for each input frame (considering 512 as the maximum
possible value for the memory resources available on the selected FPGA).

The Input Memory block has been instantiated to temporarily store the input data which
must be used in the following invocations of the coprocessor. For example, during the execu-
tion of the wavelet denoising stage, at the first call of the dec and the rec kernels the processor
transmits to the coprocessor the filters coefficients which are saved in this memory in order
to be reused by the subsequent levels of the filtering trellis. Similarly in the decomposition
phase, the processor sends to the coprocessor also the current input buffer that is going to
be stored in the Input Memory block. Storage is necessary since each N-tap filter output
depends on the previous N −1 old input samples.

Processor to coprocessor handshake and storage on the Input Memory block are man-
aged by the Input FSM blocks, which are in charge also of the proper address generation for
the Input Memory access. The Input Memory block contains the H(z) and the G(z) filter co-
efficients along with the input samples in the dec kernel case, and the H ′(z) and the G ′(z)
filter coefficients along with their respective input samples in the rec kernel case. The latter
situation imposes the memory size since two buffers of samples have to be stored.

94
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

Global Kernel output data are stored into the Output Memory block. Local storage is con-
venient to facilitate both the decomposition, just from the second level on, and the recom-
postion phases whereas in sorting phase, it can contain the various samples of the obtained
templates with respect to verify the similarity with the incoming detected spikes. This allows
to reduce the processor-coprocessor communication overhead.

The Output Memory block is able to perform two simultaneous read/write operations in
the same system clock cycle. In fact, internally this memory is driven by a clock signal two
times faster than the system one. Moreover, a dual-port memory is adopted to store the out-
put of the H(z) and the G(z) filters when a dec kernel is executed. At the end of the decom-
position phase, when the entire sequence of dec kernels has been sequentially executed, the
Output Memory contains the various detail signals a2i [n] and the last approximation sig-
nal d2Nlev [n] adopting different base addresses. Coprocessor to processor handshake and
storage on the Output Memory block are managed by the Output FSM block.

The assembled testing environment allows the user transmitting the input data and the
coprocessor parameters to the MicroBlaze at runtime. To this aim, a Xilinx Ethernet con-
troller, accessible by the MicroBlaze, has been connected to the PLB (Peripheral Local Bus)
exploiting an UDP communication between the FPGA and a host PC. For this reason, even
in this case the LightWeight Internet Protocol (LwIP) software library, which allows to im-
plement the TCP/IP protocols stack optimized for embedded systems mapped on FPGAs,
has been used. The related source code, the MicroBlaze application and the temporary data
buffers are linked to the external DDR SDRAM attached to the same PLB.

6.4 Experimental results

To evaluate the benefits of this proposed approach, it is necessary to verify the system func-
tionality of the reconfigurable coprocessor at the disposal of the MicroBlaze to perform the
various processing steps of the considered neural decoding algorithm. To this aim, it has
been used the same datasets of simulated neural signals used in the previous chapters, con-
structed starting with a database of physiological spikes, representing the action potentials
obtained during real experimental recordings [72] on animals at the CNS level. To simulate
the background noise, spikes from different neuronal cells at random times and amplitudes
were overlapped to the relevant neural activity, considering that the useful signal bandwidth
for these signals, sampled at the frequency of 12kH z, is between 300H z and 3kH z.

6.4.1 Accuracy results

The first thing which must be tested is the presence of action potentials at the output of the
WD, removing all the background noise without corrupting the signal of interest (i.e. avoid-
ing to filter out any relevant spikes). As said before, the significant bandwidth of the exploited
test data lies between 300H z and 3kH z, so the wavelet denoising stage has been customized
to obtain an equivalent bandwidth between 375H z and 3kH z (4 levels of decomposition/re-
composition), discarding the last approximation signal and the lowest-frequency detail us-
ing the simpler Haar family as mother wavelet which determines the value of the filters co-
efficients.

Figure 6.10 shows the input signal (top), corrupted with a low level of background noise,
and the denoised output signal (bottom) obtained adopting the proposed reconfigurable

6.4. EXPERIMENTAL RESULTS 95

hardware solution using frames of 500 samples and the Haar wavelet. The mother wavelet
influences the number of taps, in this case 2, of the H(z) and G(z) in decomposition phase
and of the H ′(z) and G ′(z) in recomposition phase, and those of the descending filters. As
can be noticed, the background noise has been properly removed, reaching a good degree of
accuracy.

0.16 0.18 0.2 0.22 0.24 0.26 0.28

−1

−0.5

0

0.5

1

Time [sec]

D
en

oi
si

ng
 In

pu
t[V

]

0.16 0.18 0.2 0.22 0.24 0.26 0.28

−1

−0.5

0

0.5

1

Time [sec]

D
en

oi
si

ng
 O

ut
pu

t [
V

]

Figure 6.10: Input (top) and output denoised (bottom) signals. Low level background noise.
Haar mother wavelet.

Filtering performance has been assessed also considering a larger background noise over-
lapped to the input signal. Figure 6.11 shows the input signal (top), corrupted with a larger
background noise, and the denoised output signal (bottom). As can be noticed, in the de-
noised output signal the action potentials are again clearly visible, demonstrating that even
a larger background noise is efficiently filtered out.

The reconfigurability of the proposed approach allows selecting different mother wavelets
without any modification of the system based on the current characteristics of the processed
signal. Different filter coefficients have to be transmitted to the coprocessor, whose overall
structure does not change. Opting for a Daubechies 2 mother wavelet modifies the number
of filters taps, incremented to 4, leading to the results shown in Fig. 6.12.

To verify the performance of the hardware implementation even at output of the template-
matching spike sorting, among the possible test signals, the Easy1 one has been selected
since it is the only one where the spike waveforms from different neurons present a corre-
lation value lower than 0.9 between them. This is fundamental taking into account that the
considered spike sorting algorithm must be able to recognize the differences among the var-
ious spikes, associating each of them to a particular template characterized by having the
largest correlation with it. Easy1 signal includes the activity of three neurons and, in 60 sec-
onds, each neuron fires approximately 1100 times. Table 6.1 shows the results in terms of
number of spikes associated to the different templates autonomously identified by the algo-
rithm, limitedly to the N = 10 most significant ones. Even increasing the background noise,
the proposed system is able to detect the spikes with a reasonable accuracy.

96
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

0.16 0.18 0.2 0.22 0.24 0.26 0.28

−1

−0.5

0

0.5

1

Time [sec]

D
en

oi
si

ng
 In

pu
t [

V
]

0.16 0.18 0.2 0.22 0.24 0.26 0.28

−0.5

0

0.5

1

Time [sec]

D
en

oi
si

ng
 O

ut
pu

t [
V

]

Figure 6.11: Input (top) and output denoised (bottom) signals. High level background noise.
Haar mother wavelet.

0.16 0.18 0.2 0.22 0.24 0.26 0.28

−1

−0.5

0

0.5

1

Time [sec]

D
en

oi
si

ng
 In

pu
t [

V
]

0.16 0.18 0.2 0.22 0.24 0.26 0.28

−2

−1

0

1

Time [sec]

D
en

oi
si

ng
 O

ut
pu

t [
V

]

Figure 6.12: Input (top) and output denoised (bottom) signals. Low level background noise.
Debauchies 2 mother wavelet.

6.4.2 Latency analysis

Even though the main goal of the proposed approach is that of semi-automatically creat-
ing small/low-power architectures implementing complex dataflows fostering FUs reuse,
the hardware implementation can mark significant improvements also in terms of latency,
compared to a purely software implementation, in order to satisfy the relative real-time con-
straints of the application under consideration. A comparison in terms of execution cycles
of the individual kernels, performed exploiting the MicroBlaze processor alone or the archi-
tecture including also the reconfigurable coprocessor, is presented in Fig. 6.13. The better
performance with the coprocessor represents a lower bound, since the minimum number

6.4. EXPERIMENTAL RESULTS 97

Table 6.1: Number of spikes associated to each template while varying the background noise
level of the synthetic signal.

N
o

is
e

T
e

m
p

la
te

1

T
e

m
p

la
te

2

T
e

m
p

la
te

3

T
e

m
p

la
te

4

T
e

m
p

la
te

5

T
e

m
p

la
te

6

T
e

m
p

la
te

7

T
e

m
p

la
te

8

T
e

m
p

la
te

9

T
e

m
p

la
te

1
0

0.05 1080 1016 992 25 22 11 10 9 6 5
0.10 1120 1002 998 130 46 17 9 8 7 7
0.15 1079 1039 979 246 11 9 6 5 1 1
0.20 1010 788 723 469 12 6 4 4 3 3
0.25 1065 870 868 60 12 3 3 0 0 0
0.30 1053 930 582 67 0 0 0 0 0 0
0.35 1124 854 593 83 0 0 0 0 0 0
0.40 742 561 262 45 0 0 0 0 0 0

of FUs has been instantiated in order to save both area and power. Giving up some saved
resources, the performance can be improved in the light of a defined number of channels
and real-time constraints.

Figure 6.13: Latency comparison between a totally software solution by the MicroBlaze core
and the architecture including also the low-power reconfigurable coprocessor.

6.4.3 Area occupancy and power consumption

Synthesis have been performed to evaluate the effectiveness of the proposed approach in
terms of area and power saving. It has been done a preliminary study on the reconfigurable
datapath generated by the MDC tool only considering the single kernels to perform the pre-
processing wavelet denoising stage and then all the single kernels identified in the flow di-
agram of the algorithm shown in Fig. 6.4. Initially, it has been considered as target device
for the Global Kernel the same FPGA development board adopted for the test environment

98
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

Table 6.2: Number of adder and multiplier FUs composing the considered wavelet denoising
implementations.

IMPL adders multipliers

MGK 3 2
SGK 6 4

Parallel WD 20 32

exploiting the dedicated Xilinx Synthesis Technology (XST) tool. Afterwards, it has been per-
formed a second synthesis trial with RTL Compiler of the Cadence SoC Encounter commer-
cial release, using an ASIC 90nm low-power CMOS technology.

Regarding to the wavelet denoising, the Global Kernel assembled with the MDC tool
(hereafter named MGK) has been compared with:

• the datapath obtained by the 3 identified kernels (dec, rec, thr) without any resource
sharing (Static Global Kernel, SGK);

• the parallel system (Cascaded Kernel) implementing the wavelet denoising solution in
Fig. 6.5.

Results reported for the Cascaded Kernel constitute an estimation, whose values are de-
termined taking into account the number of required FIR filters. The chosen FIR filter imple-
mentation model is the Direct Form I [4], composed by two multipliers and an adder. Such
estimations leverage on the results achieved for the implemented floating-point HDL com-
ponents library, whose synthesis outcomes for the multiplier and the adder FUs are reported
in Tab. 6.3. It has been enforced in XST the use of MULT18X18SIO hardware multipliers,
avoiding the less efficient and more area-hungry implementation on distributed logic. For
these estimations, it has been decided to discard the contributions of all the other compo-
nents (i.e. those used in the thresholding phase) that are less significant in terms of area and
power.

Table 6.2 summarizes the amount of resources used for the three aforementioned Global
Kernel implementations. For the Cascaded Kernel it has been estimated the usage of 32 mul-
tipliers and 20 adders, a decomposition phase and a recomposition one has been consid-
ered, both composed of four levels each containing in turn two FIR filters (2×4×2×2 = 32
multipliers and 2×4×2×1= 16 adders) plus an additional adder at the end of each recom-
position level (4×1 = 4 adders).

The synthesis results for the FPGA target device are exposed in Tab. 6.4. It is evident that
adopting the MDC tool has a significant impact on the resource usage. The MDC Global
Kernel in terms of slices is able to achieve 36% of saving compared to the SGK and 82% com-
pared to the Cascaded Kernel estimation. Considering the Xilinx multiplier primitives, the
resource saving percentage is 50% and 97% respectively. The MDC-based solution presents
a very small resource occupation percentage on the target device, whereas the Cascaded Ker-
nel requires a considerable amount of resources and, due to its large multipliers request,
cannot be mapped onto the considered FPGA.

Tab. 6.5 summarizes the results of the FPGA synthesis for the unique dataflow imple-
mentation as generated by the MDC tool (MGK) in comparison to those achievable for the
architecture resulting from the implementation of all the kernels of the whole decoding al-
gorithm but without resource sharing (SGK) and the whole Coprocessor (including the MGK

6.4. EXPERIMENTAL RESULTS 99

Table 6.3: Synthesis results for the most interesting FUs.

FPGA

FU slices [%] FFs [%]a MULs [%]b

adder 341 116 0
multiplier 138 131 11

ASIC

FU area [µm2] power [mW] freq [MHz]

adder 8644 1,679 555,56
multiplier 113497 2,031 357,14

aFlip Flop slices.
bMULT18X18SIO dedicated multipliers.

Table 6.4: FPGA synthesis results only considering the kernels for the wavelet denoising

IMPL slices [%] FFs [%]a MULs [%]b

MGK 14 5 22
SGK 22 8 44

Cascaded Kernel 76 22 356

aFlip Flop slices.
bMULT18X18SIO dedicated multipliers.

Table 6.5: FPGA synthesis results considering all the kernels of the algorithm.

IMPL slices [%] FFs [%]a MULs [%]b

SGK 81 23 100
MGK 26 7 33

Coprocessor 32 9 36

aFlip Flop slices.
bMULT18X18SIO dedicated multipliers.

wrapped by an external layer that allows its easy exploitation). As it can be seen, the re-
configurable MGK allows saving about the 61% of the slices available on the chosen device
compared to the SGK.

About the ASIC synthesis, Tab. 6.6 reports the results extracted using RTL compiler. It is
confirmed, both considering the area occupancy (the synthesis reports provide the effective
system area on a die) and the power consumption (the synthesis reports provide an estima-
tion of the consumption), that the proposed MDC-based approach is able to provide supe-
rior performance. The area estimation of the MDC Global Kernel is respectively 40% and 86%
smaller than the SGK and the Cascaded Kernel ones. The power consumption estimation of
the MGK is 40% less than the SGK one, whereas it is the 90% less than the Cascaded Kernel
one. The maximum operating frequency is fixed by the floating point multiplier, so that it
is equal for all the considered Global Kernel implementations. This result also for the MGK
demonstrates that, for this particular application, the overhead of introducing the Sboxes to
handle reconfigurability does not impact on the frequency. Consequently, even though there
may be chains of Sboxes introduced by the merging kernel process, these do not contribute

100
CHAPTER 6. A COARSE-GRAINED RECONFIGURABLE APPROACH FOR LOW-POWER NEURAL

SIGNAL DECODING

Table 6.6: ASIC synthesis results.

IMPL area [µm2] power [mW] freq [MHz]

MGK 86353 12,880 357,14
SGK 142927 21,499 357,14

Cascaded Kernel 604784 128,593 —

Table 6.7: ASIC synthesis results.

IMPL area [µm2] power [mW] freq [MHz]

SGK 462807 61,556 357,71
MGK 133949 14,691 312,5

Coprocessor 159325 15,160 208,33

to the critical path. In the Cascaded Kernel case the value of the operating frequency is not
reported since an effective implementation of the system has not been performed.

Finally, the ASIC synthesis results considering all the kernels identified in the decoding
algorithm are presented in Tab. 6.7. The MGK still has significant advantages compared to
the SGK, saving 71% of the area and 76% of power dissipation. In this case, it has been ob-
tained a 13% decrease of the maximum operating frequency. Compared to the MGK, the
coprocessor requires a larger area (+19%) and dissipates more power (+3%). It suffers fur-
ther penalties in terms of the operating frequency (-42%) compared to the SGK.

Summarizing, both the synthesis trials, targeting FPGA and ASIC devices, have showed
that the adoption of the MDC approach in the implementation of the on-line neural decod-
ing algorithm for neuroprosthetic applications is a very effective choice, especially when it
is necessary to develop an implantable/portable solutions. In this way, the implemented so-
lution, but more generally the proposed approach itself, can be very useful where there are
stringent physical constraints, mainly related to area and power. The performance in terms
of latency can also be improved by tuning the implemented parallelism in the light of a de-
fined number of channels and real-time constraints, by using more than one reconfigurable
global kernel in order that they can be exploited to perform the same or different kernels at
the same time in a parallel way, due to the fact that each one can execute the relative pro-
cessing only in a sequential way.

Chapter 7

An FPGA-based MPSoC for On-line

Neural Signal Decoding

7.1 Introduction

Opting for a coarse-grained reconfigurable approach to automatically create a low-power
implementation of the target decoding algorithm with the minimum hardware resources
determines some difficulties in the fulfilment of the real-time constraints imposed by the
application under consideration. It has been demonstrated that the use of a reconfigurable
coprocessor allows to accelerate some computational intensive kernels in comparison to a
totally micro-programmed case but the desired processing performed by the Global Kernel
and invoked by the MicroBlaze processor can be done only in a sequential way, once a time.
For this reason, in the perspective of the development of a multi-channel decoding imple-
mentation which must satisfy the tight real-time constraints, it is necessary to exploit some
effective techniques of parallelism even considering the problems related to the power con-
sumption to allow portability of the resulting solution.

As detailed in the previous chapter, spike sorting algorithms, especially those based on
template-matching approaches, are complex considering the relatively high sampling fre-
quency required by the neural signals [18] in comparison to other physiological signals (e.g.
EEG) and the possible presence of multiple channels [65]. This hampers the difficulty of the
design of low-power miniaturized embedded systems that could be implanted enabling low-
bandwidth communication with the external prosthesis, limited to the motor commands.
The aim of this part of the research activity is to make a step further in the definition of novel
power-efficient methodologies for the implementation of such algorithms. The main idea
is to take profit from the inherent parallelism in the reference application to effectively ex-
ecute it on a custom Multi-Processor System-on-Chip (MPSoC). For this reason, the same
PNS signal decoding algorithm considered in the previous chapters has been taken into ac-
count [16] thanks to the fact that its on-line version has revealed good performance even in
case of low SNR conditions, both on a synthetic dataset of neural signals and a database of
real recordings extracted during in-vivo experimental tests on sedated animals.

As described before, it presents two main critical features that must be duly taken into
account. Firstly, the application has to be executed in real-time to be safely capable of de-
coding every useful information in a timely manner for the control of the neuroprosthesis,

101

102 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

providing a robust support to the patient requiring significant processing power. The idea
is to exploit the potentiality of the MPSoCs, increasing computing capabilities through par-
allel computing but using lower working frequency to reduce the power consumption. Sec-
ondly, spikes distribution over time is not regular. Due to the relationship between spikes
distribution and the motion intention, the workload that the processing system has to un-
dergo is deeply dependent on it and, in turn, on the signal itself. The performance levels
needed in each different timing interval are hardly predictable and can be very changeable.
To ensure robustness, worst-case conditions must be assumed. Such assumption results in
an over-dimensioning of the system that has to be counter-balanced with adequate power
management measures to improve battery lifetime.

To this aim, it will be proposed an approach that is focused on the software-based con-
trol of the power consumption. When, due to the absence of useful information in the input
stream, the processing elements in charge of analysing the spikes extracted from the signal
are inactive, they are put in low-power mode by calling an adequate Application Program-
ming Interface (API) in the application code. The demonstration of the proposed approach
is provided implementing it on a low-cost FPGA. The designed MPSoC is capable of pro-
cessing the neural signal in real-time when clocked at a reasonable frequency. The power-
reduction API selectively gates the clock signals routed to those processors that are active
only when the presence of useful information is detected. In such a proof-of-concept sys-
tem, the power reduction is thus limited only to the dynamic part of the power dissipation
which usually represents the largest contribution in terms of energy consumption. However,
it demonstrates the possibility of applying more aggressive power reduction techniques on
a prospective ASIC implementation of the system which can be placed near the stump of
the prosthesis working with batteries as power source allowing portability for the resulting
solution.

7.2 Related work

As already mentioned, spike sorting techniques aim at recognizing the different neurons,
whose firing activity has been recorded, on the basis of the information encoded at different
levels in the morphology of their action potentials [46]. Even when selectivity of the used
multi-channel electrodes is high, the activity of multiple motor neurons can be found on the
same channel, thus requiring the adoption of such techniques in order to extract the motor
commands destined to control different muscles. Depending on the chosen neural inter-
face, the number of channels can considerably change from 4-8 for PNS intraneural and
epineural electrodes to more than one hundred for microelectrodes arrays in cortical im-
plants. Considering the relatively high bandwidth required, typically around 5−6kH z, and
the invasiveness of the electrodes, the best solution would be that of implanting the whole
decoding platform coming out only with the control signals for the prosthesis, requiring far
less bandwidth. However, the real-time constraints required by an usable device and the
low-power profile aimed at a long battery life and, more, at a reduced heating of the patient’s
tissues are contrasting.

Several works on neural signal processing have been presented in the years, the largest
part of them proposing FPGAs [92, 89, 8] as implementation target to guarantee more flex-
ibility than ASICs [15, 71] with more parallelism than general-purpose processors. In [92],
a fully implantable programmable neuroprocessor mappable on a low-power nano-FPGA is

7.3. TARGET APPLICATION AND RELATED CONSTRAINTS 103

presented. It manages data acquisition and reduction by particular compression techniques
in order to minimize the output bitrate exploiting the sparse representation of the neural sig-
nals. In this way, it is possible to overcome the limitation of the wireless telemetry bandwidth
by transmitting only the samples associated to the detected spikes to an external device for
cortically-controlled Brain-Machine Interfaces. This solution has been tested on raw extra-
cellular signals recorded through micro-electrode arrays chronically implanted in the brain
of sedated rats. The feasibility of this approach in terms of power consumption has been
investigated on standard CMOS VLSI [94]. However, in this approach, the computational
complexity is shifted at downstream of the implantable device in order to perform the de-
coding which can be executed on many-core platforms [14] or FPGA-accelerated solutions
[24].

Other energy-efficient implementations for multi-channel spike sorting have been pub-
lished so far [37], most of them concerning the processing of signals coming from the CNS.
Some of them focus on the analysis, in terms of necessary hardware resources and accuracy,
of some typical processing steps of spike sorting algorithms [61, 23], optimized in order to
be mapped on a dedicated chip. In these cases, massive parallelization is in contrast with
the low-power requirements. Despite the approach aiming to solve the neural signal decod-
ing trough the PNS seems to be the most attractive for the time being [56], there is a lack of
studies in terms of architectures able to cope with the application constraints. As demon-
strated in the previous chapters, the same algorithm has been ported on a complex VLIW
floating-point processor by the Texas Instruments but the claimed real-time results have
been obtained on a device clocked at 300M H z: such an architecture, and the operating fre-
quency, determines an excessive contribution in terms of dynamic power consumption that
is not allowable in case of implantable or portable solutions. The methodological aspects re-
lated to power-efficient and effective multi-processor architectures aimed at implementing
in real-time state-of-the-art neural signal decoding algorithms seems to lack in the scientific
literature, and will be preliminarily addressed in the next sections.

7.3 Target application and related constraints

Even though the target algorithm was originally conceived for single-channel PNS signal de-
coding, this choice does not limit in principle the prospective scalability of the proposed ap-
proach. Without considering the final SVM classifier stage, as in the previous coarse-grained
case, which is not the most computational intensive processing step of the algorithm, it takes
as input a single PNS signal channel whereas its output is an indication, for each detected
spike, of the class the spike belongs to. Classes are represented by an average spike wave-
form (hereafter called template) univocally associated to a single motor neuron, so that ev-
ery spike resembling a given template can be considered as produced by that neuron. The
results of such a processing could be used to train a classifier to recognize the movement
intentions, looking at the global firing activity in a sliding window of a predefined size.

Such a process could be performed in a remote computing facility with more relaxed
requirements in terms of low-power consumption sending out, through a wireless network
interface, the class identifier associated to the last processed spike. It will be considered
in this case only the part of the algorithm which must be performed in on-line processing
mode, i.e. when all the templates have been already created, due that it can be done at off-
line by using for example an equivalent Matlab implementation as specified in the literature

104 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

[76]. Fig.7.1 shows the flow diagram of the reference decoding application, highlighting the
presence of the various steps involved in the on-line processing which are described in detail
in the following subsections.

Wavelet
Denosing

NEO operator
calculation

Spike
Detection

Extract
Spike from WD

M > Th ?c c

Spike
Detected?

Spike
Detected?

Other
template?

Pearson
cross-correlation

maximum Mc

of the maximum
Pearson cross- correlation

START

incr templateiMc

occurences

maximum
Pearson

cross-correlation

yes

yes

no

yes

no

no

Figure 7.1: Flow diagram of the target neural signal processing algorithm (Thc represents the
cross-correlation threshold).

7.3. TARGET APPLICATION AND RELATED CONSTRAINTS 105

7.3.1 Wavelet Denoising

As described before, Wavelet Denoising is typically used to remove noise that lies in the same
bandwidth of the signal, especially when it can be approximated as a Gaussian distributed
random source. Compared to traditional linear filtering it could be a very useful tool for low-
SNR signals. According to what is shown in Fig. 7.2, the same settings of the previous DSP
implementation have been used:

• the so called à trous algorithm [80] to allow time invariance and the same resolutions
at the various decomposition bands;

• an Hard approach for the thresholding phase applied to the detail signals (the coeffi-
cients with values below the threshold are discarded whereas those above the thresh-
old are retained);

• the cost-effective Haar family as mother wavelet, which determines the coefficients
values of the FIR filters at decomposition and recomposition phase;

• an input sampling frequency fs of 12kH z, using 4 trellis levels and clearing the last
approximation signal in order to perform a band-pass non-linear filtering in the range
between 375−6000H z considered as significant output bandwidth.

H(z)
2

G(z)
2

H(z)
3

G(z)
3

H(z)
4

G(z)
4

a2
1

d2
1

a2
2

d2
2

a2
3

d2
3

a2
4

d2
4

G’(z)
4

H’(z)
4

G’(z)
3

H’(z)
3

G’(z)
2

H’(z)
2

H’(z)
1th3

th2

H(z)

G(z)

z
-t3

z
-t2

z
-t1

+

+

+

G’(z)
1

+

th1

th4

x x´

Decomposition Recomposition

Figure 7.2: The Wavelet Denoising scheme.

Filtering operations are convolutions requiring several multiply-and-accumulate opera-
tions. Compared to the block-based processing proposed in the previous DSP implementa-
tion, introduced to improve the relative latency performance, a sample-by-sample approach
has been exploited in order to limit the size of the data structures to be stored in the local
memory of the assigned processor. The WD buffering required by the filtering operations is
performed locally, without impacting on functional and timing performance.

7.3.2 Spike Detection

The neural activity represented by the spikes should be detected in the denoised signal in
order to trigger the spike sorting phase. The detection mechanism is based on an amplitude
threshold derived by applying the Non-Linear Energy Operator (NEO) on the WD output.
Such operator has the advantage of emphasizing the presence of the pulses [36] since it as-
sumes high values in correspondence of those sample windows that are characterized by

106 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

high power and high frequency components, as typical of actions potentials. After the NEO
calculation has been performed, a spike extraction procedure identifies the windows in the
NEO signal for which the NEO values are above the threshold, storing the correspondent
WD-processed samples in a buffer to be passed to the spike sorting phase. A head and a tail
of ten samples before and after these events are also considered as part of the spike.

7.3.3 Spike Sorting

As shown in Fig. 7.1, the algorithm involves a template-matching spike sorting to obtain the
class representing the motor neuron who fired the given detected spike. Morphological sim-
ilarity between the current detected pulse and the set of reference templates, created off-line
and representative of the neural activity recorded during the training phase of the algorithm,
is evaluated through normalized cross-correlations based on the Pearson product-moment
correlation coefficient. The number of reference templates (hereafter referred to as Nt) is
a parameter of the algorithm, fixed off-line, descending from the training phase. It means
that such a value can change between different executions as far as a new training is per-
formed. This could be required due to a relative movement between electrode and nerve or
to the progressive reaction to the living tissue to the synthetic material leading to a decreas-
ing quality of the acquired signal [63].

In this particular implementation, both the maximum number of samples in a spike and
in a template (Len) have been set to 40 since, at a sampling rate of 12 kHz, the window size
of 3.3 ms is compatible with the size of isolated spikes. Cross-correlation has been preferred
to simple correlation between spike and template in order to evaluate the best alignment. To
this aim, the spike under analysis is centred in a buffer of 2×Len = 80 elements on its maxi-
mum. Then, the algorithm calculates a Pearson product-moment correlation coefficient for
each different overlap of Len samples between the buffer and the template, and the maxi-
mum value is taken as result. The normalized correlation method produces a result whose
absolute value is ≤ 1. In order to speed up the computation, the templates could be loaded
already standardized (i.e. centred and with unitary variance). If the overlapping part of the
2×Len buffer is also standardized (which must be performed at on-line computing ahead
the mean and the standard deviation of that buffer part), the calculation of the Pearson coef-
ficient is merely a dot product. For every overlap, the spike standardization takes place only
once whereas the actual Pearson coefficient calculation, hereafter called SpikeVSTemplate
xcorr measurement, has to be repeated for every template. The index of the template with
the highest value is the final result of the spike sorting.

7.3.4 Real-time constraints

As already stated, the sampling frequency considered during the development of the system
is 12 kHz. It has been assumed, quite conservatively according to in-vivo experiments, to
need enough processing power to analyse one spike every 23 samples. This means that the
worst case condition involves the presence of about 524 spikes/sec, defining a lower limit to
the throughput of the entire system.

7.4. PARALLELIZATION AND PROGRAMMING MODEL 107

7.4 Parallelization and programming model

The considered neural signal decoding algorithm is a typical streaming application. The
data received in input has to go through several processing steps, represented by explicit
function calls, operating on a block of samples. The execution is thus the body of an infinite
while() loop that triggers a new iteration every time that a new block of samples is available.
The algorithm was studied and defined in the form of a sequential Matlab program, then
converted in a C code as presented as presented in the Listing 7.1.

Listing 7.1: Sequential form of the target application

void main() {

float input_sample, denoised_sample;

float detected_spike[SPIKE_SIZE];

bool spike_detected;

while (1){

get_sample_from_ADC(input_sample);

wavelet_denoising(input_sample, denoised_sample);

spike_detection(denoised_sample, spike_detected, detected_spike);

if (spike_detected)

spike_sorting(detected_spike, output_class);

}

}

Specifying the application as a sequential program is comfortable during the algorithm
definition, since such form represents the most intuitive description, but it does not match
the need to exploit parallelism. To this aim, it has been modified the code implementing the
same algorithm using a Model of Computation (MoC) based on process networks. Such MoC
is basically derived from Kahn Process Networks [35] and it is based on parallel processes
that communicate through FIFOs. Each process is a repeated execution of a functional actor
which receives input data from one (set of) FIFO(s) and writes output data to another one.

Process networks are well known to still represent a very intuitive way of specifying the
application behaviour. The identification of the parallel tasks is almost straightforward,
since each parallel node is a processing step of the functional process. Generally, each par-
allel node is in a form such as the Listing 7.2.

Listing 7.2: Example of the typical KPN structure code

while (1){

read(upstream_FIFO_1);

...

read(upstream_FIFO_n);

compute();

write(downstream_FIFO_1);

...

write(downstream_FIFO_n);

}

The nodes communicate with each other exchanging tokens through FIFOs. At each node
iteration, a compute function elaborates the received tokens and produces new ones that
have to be sent to the downstream nodes. The compute function represents the computation
workload of the parallel node.

108 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

Theoretically the FIFO size in KPNs is unbounded, preventing an implementation on real
memory-limited computing architectures. However, implementation is still possible [70, 22]
by means of blocking reads and blocking writes to/from the FIFO, meaning that the process
stalls when the input FIFO is empty or when the output FIFO is full. Using this kind of im-
plementation, in general, can potentially bring to deadlocks if the chosen size of the FIFOs is
not sufficient or if the scheduling of the processes on the different processors is not carefully
tuned. In the considered case, such tuning steps are simplified by the very simple KPN graph
resulting from the target application.

The Listing 7.3 represents a possible solution for the parallel node implementing the
spike detection. The input token is the denoised block of samples, received from the node
implementing the wavelet denoising. The compute function, spike detection in this case,
elaborates it and, if a spike is detected, produces the detected spike as output token.

Listing 7.3: The parallel application node implementing the spike detection elaboration step

void parallel_spike_detection() {

float denoised_sample;

float detected_spike[SPIKE_SIZE];

bool spike_detected;

while (1){

read(upstream_FIFO, denoised_block);

spike_detection(denoised_block, spike_detected, detected_spike);

if (spike_detected)

write(downstream_FIFO, detected_spike, output_class);

}

}

Once the application has been converted in a network of parallel nodes, the mapping of
the different tasks on the different available processing elements has to be defined.

7.5 Sequential application profiling

The aim is to speed up the execution implementing a software pipeline. Provided that enough
buffering resources are instantiated between different processes, the elaboration step envi-
sioned in each process step can run in parallel on subsequent blocks of samples. The even-
tual performance can be pre-estimated using an analytical model of the dependence of the
throughput on the node workloads. The work in [55] presents an approach for modelling the
overall throughput of a KPN network, by calculating the throughput τPi of every KPN pro-
cess and propagating the minimum process throughput to the sink process (i.e. the output
node). Each process Pi of the KPN can be annotated with a workload number WPi :

WPi =C Pi +x ·C Rd + y ·C Wr ,

where C Pi denotes the number of time units (i.e. clock cycles) required to execute the pro-
cess function once, x and y denote how many FIFOs are read and written per process fir-
ing, and C Rd and C Wr denote the communication costs. The throughput of each process is,
hence, τPi =

1
WPi

. The overall KPN throughput is denoted by τout and is defined as the aver-

age number of tokens produced by the network per time unit. Because it is known from [55]
that the slowest process determines the system throughput, then τout = τPslowest

.

7.6. PARTITIONING AND MAPPING DESCRIPTION 109

To find an effective mapping solution for the decoding algorithm, the pipeline stages
have to be as balanced as possible. In order to provide this balance, an optimal partitioning
of the application can require the splitting of some nodes. Moreover, the designer does not
always have enough processing resources to map every process onto a different processing
element. In this case, the process have to be clustered, identifying a “mapping” that min-
imizes the number of processors while keeping the same throughput. Thus, the choice of
the optimal system configuration requires a preliminary profiling phase. The evaluation of
the computation workload inside each function was firstly obtained running the sequential
application on a system including one Microblaze processor implemented on FPGA. Using
a dedicated performance counter it was possible to measure the execution time associated
to the main steps of the elaboration.

In Table 7.1 the results of such profiling have been presented. The communication la-
tency is an estimated value obtained by means of a simple analytic model derived from a
preliminary training set of experiments. It provides an estimation of the latency associated
with the reading and the writing operations that should be performed if a node has to read
inputs and write outputs through FIFOs, according to the size of the tokens that have to be
exchanged. The number of iterations reported in Table 7.1 indicates how many times each
function has to be executed to process one spike. The first three nodes iterate over each sam-
ple. Each iteration can prospectively determine the need for a spike analysis. This part of the
processing, thus, is obviously not limiting the overall throughput.

Table 7.1: Execution time of the main processing steps.

Elaboration step Exec. time (cycles) Comm. latency iterations
Wavelet denoising 1981 25 1

NEO extraction 210 25 1
Spike detection 253 450 1

Spike standardization − 1 55584 1800 1
Spike standardization − 2 62434 26100 1

SpikeVStemplate xcorr 22001 25700 Nt

Maximum search 45 15×Nt 1

The profiling clearly shows that the most computationally intensive processing phase in
the algorithm is the spike sorting. Considering it as a single node would result in an un-
balanced partitioning reducing the achievable speed-up. Thus it has been considered the
sub-steps involved in the spike sorting as independent functions. The spike standardization
is performed once for every overlap between a template and the overlapping part of the de-
tected spike, whereas the spike-template cross-correlation measurement has to be repeated
also for each reference template, thus exposing further parallelism.

7.6 Partitioning and mapping description

The chosen partitioning involves that the standardization process is decomposed into two
different steps considered as independent nodes and the cross-correlation measurement
into Nt nodes, where Nt is the templates number previously created at off-line. In this way,
the parallel application graph assumes the form represented in Fig. 7.3. The first phase of

110 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

the spike standardization computes the required statistic moments, namely the mean and
the variance of the segment of the enlarged spike buffer used for that cross-correlation step.
The second phase derives the standard deviation and performs the actual standardization of
that part of the enlarged buffer, preparing the segment for the next processing step.

Looking at the entry Table 7.1 related to the second phase of the spike standardization, it
is easy to notice that such node has to communicate a significant amount of data with the
downstream nodes. This can prospectively be a criticality of the proposed partitioning. A
possible countermeasure could be the integration of the second standardization phase in
each downstream node, which would reduce significantly the communication requirements
(the communication execution time overhead would be reduced from 25700 to around 1800
as in the upstream communication link). However, the spike standardization is not depen-
dent on the reference template, thus, using this solution, each SpikeVsTempalte xcorr down-
stream node would repeat the same computation on the same input data, wasting FLOPs
(Floating-Point Operations) in the assigned processing elements.

Wavelet
Denoising NEO

Spike
Detection

Spike
Standardization

Spike
Template

x-corr
measurement

Spike
Template

x-corr
measurement

Spike
Template

x-corr
measurement

Spike
Standardization

Spike
Standardization

SAMPLE SAMPLE SAMPLE SPIKE STANDARDIZED SUBSETS

PU 0

SPIKE + METRICS

PU 1 PU 2

PU 3

PU 4

PU -n

…

Maximum
x-correlation

SEARCH

Figure 7.3: Application graph resulting from the application partitioning. The gray boxes
indicate the task-to-processor mapping.

The task-to-processor mapping has to provide a good balancing of the workload distri-
bution over the different processing elements. The Spike standardization - 2 node has the
heaviest workload. Selecting it as the limiting node for the overall throughput sets an exe-
cution time limit for the other nodes. To respect this limit, it has been selected the mapping
represented by the gray boxes in Fig. 7.3. The first three nodes are merged on one single node
and mapped on the processing unit PU0. On PU1 and PU2 it has been mapped respectively
Spike standardization - 1 and Spike standardization - 2. The rest of the processors are used as
Normalized cross-correlators, each one performing an instance of the SpikeVsTemplate xcorr,
over the incoming spike and one of the reference templates.

According to the latency associated with the SpikeVsTempalte xcorr task, given the pro-
posed mapping, it is possible to observe that two different iterations of the node can be per-
formed without impacting on the overall throughput of the network. Thus it is possible to
assume that, if needed, each normalized cross-correlator can measure the cross-correlation
of the incoming spike with two different reference templates. Finally, the spike sorting phase
that searches for the maximum cross-correlation value is assigned to one of the normalized
cross-correlators.

7.7. HARDWARE ARCHITECTURE 111

7.7 Hardware architecture

Given the previously described partitioning of the application, to implement the comput-
ing platform on the FPGA, the Embedded Development Kit tool-suite by Xilinx has been
exploited. As shown in Fig. 7.4, 8 tiles have been instantiated in the multi-processor system.
Each tile is composed of a Microblaze processor connected by means of a Local Memory Bus
to a double-port memory (two ports implement the instruction and data sides). Each tile
is connected to the neighbours, according to the communication needs posed by the task
graph represented in Fig. 7.3, by means of Fast Simplex Link (FSL) FIFO-based structures.

The FIFO links are 32-bit wide. The transmission of tokens is implemented using a ded-
icated API that, according to the size specified as parameter, wraps a variable number of
the dedicated assembly primitives available in the Microblaze instruction set. In the shaded
area of Fig. 7.4, it has been highlighted the part of the system that has been implemented
on FPGA only for prototyping purposes. It includes a PLB (Peripheral Local Bus), providing
to the PEs access to a set of shared peripherals (a serial I/O to enable communication with
a host workstation, a performance counter exploited during the profiling, a DDR2 interface
that is exploited by the first node to emulate the access to the analog back-end in order to
acquire the input signal samples coming from the recording phase). Hence, the hardware
parts in the shaded area are only useful to demonstrate the functionality of the system but
will not be needed in a prospective industrial implementation of the computing platform.

UI

clock
gating

manager

DDR
memory

UART

Prototyping-purposeadditional modules

Microblaze

0

L
M

B

L
M

B

PLB

DI UI

Microblaze

1

L
M

B

L
M

B

DI UI

Microblaze

2

L
M

B

L
M

B

DI UI

Microblaze

3

L
M

B

L
M

B

DI UI

Microblaze

4

L
M

B

L
M

B

DI UI

Microblaze

5

L
M

B

L
M

B

DI UI

Microblaze

6

L
M

B

L
M

B

DI UI

Microblaze

7

L
M

B

L
M

B

DI

PLB

FSL - 512 FSL - 512 FSL - 2048

FSL - 2048

FSL - 2048

FSL - 2048

FSL - 2048

performance
counter

FSL - 16

FSL - 16

FSL - 16

FSL - 16

Microblaze3 CLK

Microblaze4 CLK

Microblaze5 CLK

Microblaze6 CLK

Microblaze7 CLK

PU CLK

Microblaze2 CLK

Microblaze1 CLK

Figure 7.4: Custom MPSoC architecture implemented on the FPGA device.

7.8 Integrated power consumption control

The overall approach is based on the already mentioned structure of the input neural sig-
nal. The idea is to provide enough computing power to process in real-time bursts of very
frequent spikes, making the application robust and secure in the very worst-case condition,
but being capable of reducing the power consumption when the hardware elements are not
used, in those time slots where neural activity is below the background activity. To this aim, a

112 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

clock-gating manager has been implemented that can selectively switch off the clock signals
in input to the processing elements and the communication infrastructures that have been
mapped into the last stages of the processing pipeline. They usually determine the greatest
contribution in terms of dynamic power consumption due to the fact that the relative inter-
nal registers are updated at each clock period even if their input signals do not change when
they are not involved in the current processing.

In digital systems, power consumption is in fact composed of two contributions: dy-
namic and static. The former is mainly due to the charging and recharging of parasitic ca-
pacitances when logic transitions occur (i.e. switching-activity during execution) and it is
influenced by the characteristics of the reference application in terms of probability with
which the various internal wires of the system change their logic state. The latter is dissi-
pated while no circuit activity is present in the system and is due to leakage currents and it
depends on the used technology library. As said before, the aim is to strongly reduce the for-
mer by using clock-gating techniques according to considerations performed on the signal
of interest.

The clock-gating manager can be controlled by calling a set of related APIs in the appli-
cation software. It has been integrated in a peripheral module shared among the various
processing units which can access it through the same PLB. According to the current state
of a Finite State Machine (FSM), the clock signal in input to each core is enabled or disabled
assigning the correct logic value to a 1-bit wire in input to the dedicated BUFGCE block avail-
able on Xilinx FPGAs whereas in case of ASIC implementations, it can be performed easily
by exploiting AND gates having in input the enable and the clock signals.

In the presented solution, the clock signals of the processors in charge of analysing the
spikes are initially disabled at the application start-up. The detection stage, when a spike
is identified in the output of the Wavelet Denoising stage, enables the clock applied to the
downstream pipeline stage. Then the activation process continues similarly: each process-
ing stage activates the following right before writing the data to be processed in the related
connecting FIFO. Every process than takes care of disabling its own clock when the received
token has been processed. In order to avoid such auto-disabling to overwrite previous acti-
vations received by the upstream node during the processing phase, the clock-gating man-
ager hardware has been designed to take care of tracking the history of activations and dis-
activations. Thus, it ensures that all the tokens are processed.

The implemented clocking manager is parametric. The number of clocks to control can
be configured at design time. Thus the designer can choose to control each “Normalized
cross-correlator” independently. This feature is useful since the template definition can be
repeated periodically to update and refine the shapes and the number of the templates that
have to be compared with the detected spike. Thus, if the number of spikes to check is re-
duced, the application can activate only the needed number of Normalized cross-correlators
and can keep the power consumption as low as possible. Fig. 7.5 shows how it is possible to
reduce the power consumption of the system implemented on a Xilinx FPGA Virtex-5 LX50T
by means of the proposed clock gating techniques. The plot represents the power levels
that can be selected, when different numbers of Normalized cross-correlators are enabled.
The trend of the instantaneous consumption is obtained exploiting the Digilent Adept tool
which allows to perform the software real-time power monitor on all the supply rails after the
proper configuration of the designed MPSoC system into the target FPGA device, buffering
the relative samples for a defined time window at the frequency of 16H z.

While only clock gating can be implemented using FPGAs as target technology, the pro-

7.9. EXPERIMENTAL RESULTS 113

posed system can serve as a proof of concept with respect to the usefulness of the consid-
ered approach for the perspective of a future ASIC implementation, where a more aggressive
switching policies, involving gating of power islands can be adopted in order to allow porta-
bility of the resultant prosthetic solution with a long battery life. In fact, the achieved abso-
lute values of the instantaneous power consumption of the system mapped into the FPGA
shown in Fig.7.5 do not have significant importance whereas the relative percentage vari-
ation after the shut-down process of one or more processing units strongly highlights the
utility of this approach. The KPN nodes that can be switched off are stateless, thus no infor-
mation has to be stored between two successive firings. In this way, switching off the whole
processor power supply is totally feasible.

1 PU 4 PU 5PU 6 PU 7 PU 8PU 1PUUnconfigured FPGA

0,7

0,72

0,74

0,76

0,78

0,8

0,82

0,84
Power (W)

Figure 7.5: Power consumption of the system measured on the FPGA. The background bars
indicate the number of non clock-gated CPUs in each time interval.

7.9 Experimental results

7.9.1 Timing Constraints Evaluation

To verify the actual performance of the implemented prototype and the correct functionality
even in worst-case conditions, evaluating that the balance of the tasks mapped on each pro-
cessing unit of the system matches with the expected results after the profiling, a synthetic
test signal has been used. It has been created from a publicly available dataset of synthetic
neural signal [72] as a continuous sequence of the same real physiological spike. This spike
has been selected with the minimum allowable number of samples according to physiologi-
cal considerations in order to stimulate the worst case condition for the decoding algorithm
throughput requirements and to verify the satisfaction of the real-time constraints in the
FPGA MPSoC system. As said before, for each instance of the considered spike in the input

114 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

signal, the hardware implementation must be able to determine the output class at real-time
without any loss of information.

The timing diagram in Fig. 7.6 demonstrates that the proposed architecture is able to
meet the constraints imposed by the application. To do this, the Grasp [31] software has
been exploited which represents a tool for tracing, visualizing and measuring the behaviour
of hierarchical multi-processor real-time systems. The resulting throughput, tested during
the on-hardware execution, is obtained by means of a performance counter accessible in the
architecture by the same PLB which is read by each processor every time the relative compute
part respectively starts and finishes. The time interval between the end of the compute part
mapped on a defined processor and the starting of that of the next processor in the pipeline
depends on the amount of data which must be transmitted among them. Due to the fact
that the spikes in the test signal are too close, in the Fig. 7.6 it is not possible to see the same
interval for the first processor of the pipeline which is in charge of detecting the various
pulses and send them to the next processing stage.

The throughput is, as expected, limited by that of the pipeline node performing the phase
2 of the spike standardization, which is the most critical in terms of computational complex-
ity according to the used process mapping. The system is able to elaborate around one spike
every 89 kcycles and, to meet the worst-case constraint of 524 spikes/second defined by the
need of processing pulses with at least 23 samples at the input sampling frequency of 12kH z,
the clock frequency has to be set at least to 47 MHz. It allows to further reduce the dynamic
power consumption of the proposed solution in comparison to the previous DSP implemen-
tation.

Figure 7.6: Execution trace of the multi-core system.

7.9.2 Power consumption reduction

Fig. 7.5 shows the power consumption levels that can be set for the architecture. The even-
tual effectiveness of the power reduction technique is obviously dependent on the rate at
which the spikes are detected in real neural signals. To evaluate it, the target application has
been executed to analyse a test set of physiologically plausible signals [72].

To this aim, the Easy1 dataset of synthetic neural signals constructed starting from a
database of real physiological spikes extracted from neocortex and basal ganglia at CNS level
has been used considering that each signal in the dataset has a duration time of 60 sec. It has
been detected, by means of a dedicated counter instantiated in the clock-gating manager for
prototyping purposes, the percentage of cycles during which the clock to the sorters was ac-
tually enabled. The obtained percentages are reported in Table 7.2.

7.9. EXPERIMENTAL RESULTS 115

Table 7.2: Percentage of time with enabled Normalized cross-correlators

Signal Cycles % with disabled clock gating
Easy1-noise005 11.05%
Easy1-noise01 11.73%

Easy1-noise015 11.44%
Easy1-noise02 10.69%

Easy1-noise025 9.71%
Easy1-noise03 8.97%

Easy1-noise035 9.78%
Easy1-noise04 8.24%

unpublished PNS recordings 10.09%

Thanks to sparse nature of the neural signals, it can be noticed that the Normalized cross-
correlators are inactive for most of the whole processing time. The possibility of switching off
their clock at runtime results in a significant impact of the proposed approach. Such impact
is expected to be even greater in an ASIC implementation where power gating can also be
exploited to cut off also the static part of the power consumption. It allows portability for the
resulting solution and a longer battery life.

7.9.3 Synthesis Results

The previous results demonstrate the applicability of the proposed approach to create an
FPGA hardware implementation able to perform real-time neural signal decoding for neu-
roprosthetic applications. Such results have been achieved starting from the hypothesis that
there is enough availability of slices and memory resources (blocks of RAMs) to allow the
instantiation of the various processors into the considered board. In particular, due to the
computational complexity of the cross-correlation measurements which must be done in
parallel, it is necessary to have a number of processors equal to Nt +3, where Nt represents
the templates number, together with the logic to handle the communication among them
according to the implemented scheme shown in Fig. 7.4 and the dedicated local memory to
store the relative text code and the data structures to perform the correspondent task.

As it has been analysed before, the processing using a sample-by-sample approach in
comparison to the block-based one has allowed to minimize the requirements of each pro-
cessor in terms of memory resources thanks to the fact that they don’t need large data struc-
tures and large tokens which must be transmitted among them. In this subsection, the hard-
ware resources requirements which the MPSoC solution needs are properly evaluated by
FPGA synthesis exploiting the dedicated Xilinx Synthesis Tool (XST) and different FPGAs be-
longing to the same Virtex-5 architecture as target devices at the varying of the number of
templates Nt .

Table 7.3 shows the number of Slice Registers, Slice LUTs, DSP48E devices and Block
RAMs which are necessary for the various processors instantiated in the considered system,
at the varying of the templates number Nt , considering the relative requirements according
to the task which each one must execute, analysing the synthesis reports generated by XST.
They allow to demonstrate how in a Xilinx FPGA Virtex-5 LX50T it is possible to map up to
Nt = 5 processors performing in parallel way the cross-correlation calculation between the

116 CHAPTER 7. AN FPGA-BASED MPSOC FOR ON-LINE NEURAL SIGNAL DECODING

Table 7.3: FPGA Synthesis

Resources
uBlaze0 uBlaze1 uBlaze2 uBlaze3/4

C
o

re

M
e

m
o

ry

F
S

L
li

n
k

C
o

re

M
e

m
o

ry

F
S

L
li

n
k

C
o

re

M
e

m
o

ry

F
S

L
li

n
k

C
o

re

M
e

m
o

ry

F
S

L
li

n
k

Slice

Registers
2807 6 29 2574 6 29 2582 6 35×Nt 1842 6 0/7

Slice

LUTs
2885 12 469 2572 12 469 2789 12 1819×Nt 1592 12 0/44

DSP48Es 6 0 0 6 0 0 6 0 0 4 0 0
Block

RAMs
0 16 0 0 4 0 0 8 0 0 4 0

current spike and a defined template, whereas in a Virtex-5 LX110T device the maximum
value for Nt can be fixed up to 25. This constraint for the two considered devices are im-
posed by the needs in terms of memory requirements for the instantiated processors which
determine a percentage usage of 100% of Block RAMs.

Typically, the number of classes per channel is limited by the selectivity of the elec-
trode up to 3-4 in the very best case, more otherwise, so the number of Normalized cross-
correlation processors which must be used to satisfy the real-time constraints of the appli-
cation can be very low. However, with this approach, the multi-core systems can contain the
maximum number of functional units working in parallel, determining the use of a worst-
case architecture, enabling or not some of them based on the current considered Nt adopt-
ing the clock gating approach.

Summarizing, the proposed implementation enables to face the challenge posed by the
data-dependence in the target application. Enough processing power is instantiated to re-
spect real-time constraints in the worst case operating condition. The needed computa-
tion capabilities can be achieved setting a reasonable operating clock frequency, lower than
50M H z. To counterbalance the overprovisioning of the system deriving from the worst-case
assumption, an integrated power management relying on software-controlled clock-gating
has been implemented and tested. Such feature allows saving a significant energy consump-
tion related with dynamic power in the FPGA-based prototype, and demonstrates an even
greater prospective usefulness of similarly controlling more aggressive techniques like power
gating in an ASIC implementation of the system. Such a study could lead to the realization
of an integrated decoding architecture potentially able to be hosted in the stump of the am-
putee using batteries as power source, in this way addressing the main issue motivating the
choice of this specific application.

Chapter 8

Conclusions

In this thesis, the design issues concerning the development of a neuroprosthetic device able
to restore the functionalities lost by an upper limb amputee in the common daily life have
been addressed, trying to give a practical solution for each of the various phases involved in
the reference closed-loop system without the use of complex laboratory instrumentations.
The efforts of the research have been especially focused in the hardware implementation of
the electronic devices needed in the direct path for the recording and processing of periph-
eral neural signals in order to decode the movements intentions, trying to create a commu-
nication link between the brain and the cybernetic hand, and for the stimulation patterns
generation in the opposite one to give sensory information about the surrounding world to
the patient subjected to this particular disease. The research lack that this work wants to
cover is the necessity of satisfying the tight constraints imposed by the application under
consideration on embedded systems with limited resources to finally obtain a solution for
the optimal ENG-based approach which can have a great dissemination from the academic
and the commercial point of view.

In particular, a sigma-delta architecture for the recording of significant neural signals at
PNS level has been conceived, designed and simulated. It is composed by an analog front-
end unit (bandpass pre-filtering and sigma-delta modulator) modelled at behavioural (Mat-
lab Simulink) and transistor level and by a digital back-end hosted on a Xilinx FPGA Virtex-5
LX330 and tested together with the analog part by hardware/software cosimulations exploit-
ing the Xilinx System Generator tool. The analog module amplifies and filters the weak neu-
ral signal as close as possible to the recording site and converts it in a digital bit stream by
means of a third order single loop sigma-delta modulator. The digital unit provides sigma-
delta decimation and downsampling at the Nyquist rate as well as configuration and control
of the analog part. In this way, it has been demonstrated that the converter is able to to-
tally remove the unwanted EMG interferences thanks to the high integration capacity of the
digital domain, obtaining a good output resolution allowing to detect signals in the order of
magnitude of tens of microvolt.

The same architecture has been then used to implement a novel 8-channel bidirectional
interface, aimed at the recording of the peripheral neural signals coming from the electrodes
and the generation of bi-phasic stimulation pulses. Even in this case, the resulting system
has been designed by two separated parts: the analog front-end mapped on a custom de-
signed Integrated Circuit which exhibits a maximum power consumption of 27.2mW and a

117

118 CHAPTER 8. CONCLUSIONS

total area occupation of 16.8mm2, implementing the band-pass pre-filtering and the sigma-
delta modulation for the recording phase and eight D/A converters for stimulation, which
can be implanted near the electrodes avoiding to add huge noise due to long wires con-
nections; the digital back-end hosted into a Xilinx FPGA Spartan-3E prototyping board per-
forming the multi-channel sigma-delta decimation and controlling the configuration of the
analog chip. The device has been successfully tested by means of in-vivo experiments with
rats, in which an eight-channels TIME electrode has been chronically implanted.

Regarding to the decoding phase, it is necessary that the dedicated hardware implemen-
tation hosted in the stump of the amputee is able to ensure the correctness of the required
functionality even in case of critical conditions, performing the complex processing in real-
time on portable low-power devices with limited resources operating at a frequency compli-
ant with respect to the constraints imposed by the target application. To this aim, a complete
study of the optimization of a state-of-the-art algorithm for PNS signals decoding has been
deeply analysed in order to obtain the best performance on an embedded platform such
as an off-the-shelf DSP. Several tests have been performed both on synthetic neural datasets
and on real afferent signals recorded in-vivo from rodents allowing to achieve an accuracy up
to 96% in classification. The main implementation issues regarding the porting of the whole
processing algorithm on the target floating-point DSP platform, allowing the fulfilment of
real-time constraints, have been discussed. In a single-channel implementation, the algo-
rithm is in fact able to process up to 400 spikes per second when the unsupervised templates
creation procedure is running, and up to 1600 in an use case where 10 templates are required
to obtain the pattern features. Such numbers have evaluated and demonstrated the possible
extension to a multi-channel scenario involving closed-loop real-time experiments includ-
ing the complex phase of classifier training, included in the same embedded framework so
that also the training phase could be carried out without any external tool.

However, when the real-time requirements are joined to the fulfilment of area and power
minimization for portable/implantable solutions only custom VLSI implementations can
be adopted. In this case, every part of the algorithm should be carefully retuned. For this
reason, this process has been initially performed for the first Wavelet Denoising stage for
which the choice of the threshold estimation technique, more than having an influence on
the quality of the denoising, has significant reverberations on the feasibility and efficiency
of a custom VLSI architecture. The comparison between a sample standard deviation and
the widespread median absolute deviation has revealed similar functional performance with
dramatically better characteristic of the former in terms of hardware implementation, re-
gardless the MAD is implemented as a combinatorial trellis or in a more efficient folded ver-
sion.

Finally, two different hardware implementations of the reference decoding algorithm
have been presented, highlighting pros and cons of each one of them. Initially, a novel ap-
proach based on high-level dataflow description and automatic hardware generation has
been presented and evaluated on the on-line template-matching spike sorting algorithm.
Results in the best case have revealed a 71% of area saving compared to more traditional so-
lutions thanks to hardware resources sharing to perform different kernels with higher com-
putational complexity, without any accuracy penalty. Better latency performance have been
achieved still minimizing the number of adopted resources even if these can also be im-
proved by tuning the implemented parallelism in the light of a defined number of channels
and real-time constraints. It can be done by using more than one reconfigurable platform in
order that they can be exploited to perform the same or different kernels at the same time

119

in a parallel way, due to the fact that each one can execute the relative processing only in a
sequential way.

For this reason, a second FPGA solution have been proposed based on the use of a Multi-
Processor System-on-Chip (MPSoC) embedded architecture. It has been verified that this
prototype is capable of respecting the real-time constraints posed by the application when
clocked at less than 50 MHz, in comparison to 300 MHz of the previous DSP implementa-
tion. Considering that the application workload is extremely data dependent and unpre-
dictable due to the sparsity of the neural signals, the architecture has been dimensioned
taking into account critical worst-case operating conditions in order to always ensure the
correct functionality. To compensate the resulting over-provisioning of the system architec-
ture, a software-controllable power management based on the use of clock gating techniques
has been integrated in order to minimize the dynamic power consumption of the resulting
solution.

At first sight, it might seem that the objective of the development of a portable, low-power
and real-time hardware implementation of the neuro-controlled prosthetic device has been
correctly reached in all the design aspects but, however, there are still a lot of open problems
which must be addressed. Probably, the most important one of this research topic is due
to the difficulty of performing experimental tests on animals or humans in order to verify
and optimize the performance of the resulting solutions because every time it is necessary
to obtain a specific consensus by the ethical committee. Moreover, it is fundamental to eval-
uate how the results can change or degrade when the proposed implementations for each
of the various phases involved in the closed-loop system are assembled together. This is the
next step which must developed at short term. In particular, it must be evaluated how its
behaviour can evolve based on the current characteristics of the acquired signal which can
be very critical in case of a chronic implantation, for example due to the growth of cellular
tissues around the position in which the electrodes are placed in the peripheral nerves, in-
creasing the relative input impedance. For these reasons, this research topic can be one of
the most attractive on which much progress still to be made before to achieve a great dissem-
ination but this contribution can be considered an important milestone among the several
works presented in the literature during the years.

Bibliography

[1] ISO/IEC 23001-4 (2009).MPEG systems tech.—Part 4: Codec configuration representation.
[cited at p. 86]

[2] Otto Bock Healthcare, Minneapolis, MN. [cited at p. 2]

[3] Touch EMAS Ltd, Edinburgh, U.K. [cited at p. 2]

[4] K. Azadet and C.J. Nicole. Low-power equalizer architectures for high speed modems. Commu-

nications Magazine, IEEE, 36(10):118–126, 1998. [cited at p. 98]

[5] M. Bahoura, M. Hassani, and M. Hubin. DSP implementation of wavelet transform for real
time ECG wave forms detection and heart rate analysis. Computer Methods and Programs in

Biomedicine Volume, 52(1):35–44, January 1997. [cited at p. 72]

[6] Mohammed Bahoura and Hassan Ezzaidi. FPGA-implementation of discrete wavelet transform
with application to signal denoising. Circuits, Systems, and Signal Processing, 31(3):987–1015,
2012. [cited at p. 73, 76]

[7] Mirza Mansoor Baig, Hamid Gholamhosseini, and Martin J. Connolly. A comprehensive survey
of wearable and wireless ECG monitoring systems for older adults. Medical & Biological Engi-

neering & Computing, 51(5):485–495, 2013. [cited at p. 71]

[8] K. Balasubramanian and I. Obeid. Reconfigurable embedded system architecture for next-
generation neural signal processing. In Engineering in Medicine and Biology Society EMBC, 2010

Annual International Conference of the IEEE, pages 1691–1694, 2010. [cited at p. 85, 102]

[9] Marcelo Blatt, Shai Wiseman, and Eytan Domany. Superparamagnetic clustering of data. Physi-
cal review letters, 76(18):3251–3254, 1996. [cited at p. 61]

[10] B. Boser, I. Guyon, and V. Vapnik. An training algorithm for optimal margin classifiers. In Proc.

Fifth Annual Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, 1992.
[cited at p. 55]

[11] A.J. Casson, D. Yates, S. Smith, J.S. Duncan, and E. Rodriguez-Villegas. Wearable electroen-
cephalography. Engineering in Medicine and Biology Magazine, IEEE, 29(3):44–56, 2010.
[cited at p. 71]

[12] M.S. Chae, Zhi Yang, M.R. Yuce, Linh Hoang, and W. Liu. A 128-channel 6 mw wireless neu-
ral recording ic with spike feature extraction and uwb transmitter. IEEE Transaction on Neural

Systems and Rehabilitation Engineering, 17(4):312–321, 2009. [cited at p. 21]

121

122 BIBLIOGRAPHY

[13] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm. [cited at p. 58]

[14] Dan Chen, Lizhe Wang, Gaoxiang Ouyang, and Xiaoli Li. Massively parallel neural signal pro-
cessing on a many-core platform. Computing in Science & Engineering, 13(6):42–51, 2011.
[cited at p. 103]

[15] Tung-Chien Chen, Wentai Liu, and Liang-Gee Chen. 128-channel spike sorting processor with
a parallel-folding structure in 90nm process. In Circuits and Systems, 2009. ISCAS 2009. IEEE
International Symposium on, pages 1253–1256, May 2009. [cited at p. 102]

[16] Luca Citi, Jacopo Carpaneto, Ken Yoshida, Klaus-Peter Hoffmann, Klaus Peter Koch, Paolo Dario,
and Silvestro Micera. On the use of wavelet denoising and spike sorting techniques to pro-
cess electroneurographic signals recorded using intraneural electrodes. Journal of Neuroscience

Methods, 172:294–302, 2008. [cited at p. 2, 45, 46, 50, 55, 56, 57, 61, 64, 69, 72, 73, 101]

[17] G. S. Dhillon and K. W. Horch. Direct neural sensory feedback and control of a prosthetic
arm. IEEE Trans. on Neural Systems and Rehabilitation Engineering, pages 468–472, dec 2005.
[cited at p. 21]

[18] A Diedrich, W Charoensuk, R.J. Brychta, A.C. Ertl, and R. Shiavi. Analysis of raw microneuro-
graphic recordings based on wavelet de-noising technique and classification algorithm: wavelet
analysis in microneurography. IEEE Trans Biomed Eng, 50(1):41–50, 2003. [cited at p. 72, 101]

[19] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika,
81(3):425–455, 1994. [cited at p. 51, 52]

[20] Stefano Fusi, Mario Annunziato, Davide Badoni, Andrea Salamon, and Daniel J Amit. Spike-
driven synaptic plasticity: theory, simulation, vlsi implementation. Neural Computation,
12(10):2227–2258, 2000. [cited at p. 22]

[21] H. Gao, R.M. Walker, P. Nuyujukian, K.A.A. Makinwa, K.V. Shenoy, B. Murmann, and T.H. Meng.
Hermese: A 96-channel full data rate direct neural interface in 0.13 µm cmos. IEEE Journal of

Solid-State Circuits, 47(4):1043–1055, 2012. [cited at p. 21]

[22] Marc Geilen and Twan Basten. Requirements on the execution of kahn process networks. In
Pierpaolo Degano, editor, Programming Languages and Systems, volume 2618 of Lecture Notes

in Computer Science, pages 319–334. Springer Berlin Heidelberg, 2003. [cited at p. 108]

[23] S. Gibson, J.W. Judy, and D. Markovic. Technology-aware algorithm design for neural spike de-
tection, feature extraction, and dimensionality reduction. IEEE Transactions on Neural Systems

and Rehabilitation Engineering, 18(5):469–478, October 2010. [cited at p. 52, 103]

[24] Sarah Gibson, Jack W. Judy, and Dejan Markovic. An fpga-based platform for accelerated offline
spike sorting. Journal of Neuroscience Methods, 215(1):1 – 11, 2013. [cited at p. 85, 103]

[25] Graphiti Editor, . [cited at p. 88]

[26] R. R. Harrison. A versatile integrated circuit for the acquisition of biopotentials. Custom Inte-

grated Circuits Conference, pages 115–122, 2007. [cited at p. 7]

[27] R. R. Harrison and C. Charles. A low-power low-noise cmos amplifier for neural recording appli-
cations. IEEE Journal of Solid-State Circuits, 38:958–965, 2003. [cited at p. 7, 21]

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 123

[28] R. R. Harrison, R. J. Kier, C. A. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, B. Greger, F. Solzbacher,
and K. V. Shenoy. Wireless neural recording with single low-power integrated circuit. IEEE Trans-

actions on Neural Systems and Rehabilitation Engineering, pages 322–329, 2009. [cited at p. 21]

[29] Jiping He, Chaolin Ma, and R. Herman. Engineering neural interfaces for rehabilitation of lower
limb function in spinal cord injured. Proceedings of the IEEE, 96(7):1152–1166, 2008. [cited at p. 21]

[30] E Hogenauer. An economical class of digital filters for decimation and interpolation. IEEE Trans-

actions on Acoustics Speech and Signal Processing, 29(2):155–162, 1981. [cited at p. 14, 15]

[31] Mike Holenderski, Reinder J Bril, and Johan J Lukkien. Grasp: Visualizing the behavior of hier-
archical multiprocessor real-time systems. Journal of Systems Architecture, 59(6):307–314, 2013.
[cited at p. 114]

[32] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector ma-
chines. IEEE Transactions on Neural Networks, 13(2):415–425, March 2002. [cited at p. 56]

[33] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. August
1985. [cited at p. 89]

[34] T. Jochum, T. Denison, and P. Wolf. Integrated circuit amplifiers for multi-electrode intracortical
recording. J. Neural Eng., 6:1–26, 2009. [cited at p. 7]

[35] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor,
Information processing, pages 471–475, Stockholm, Sweden, Aug 1974. North Holland, Amster-
dam. [cited at p. 107]

[36] J.F. Kaiser. On a simple algorithm to calculate the ‘energy’ of a signal. In Proc. International

Conference on Acoustics, Speech, and Signal Processing, ICASSP-90, volume 1, pages 381–384,
April 1990. [cited at p. 52, 105]

[37] V. Karkare, S. Gibson, and D. Markovic. A 130- µ w, 64-channel neural spike-sorting dsp chip.
Solid-State Circuits, IEEE Journal of, 46(5):1214–1222, May 2011. [cited at p. 103]

[38] W. Kester. Mixed signal and dsp design techniques. Analog Devices, Inc., 2000. [cited at p. 15]

[39] Todd A. Kuiken, Guanglin Li, Blair A. Lock, Robert D. Lipschutz, Laura A. Miller, Kathy A. Stubble-
field, and Kevin B. Englehart. Targeted muscle reinnervation for real-time myoelectric control
of multifunction artificial arms. JAMA, 301(6):619–628, 2009. [cited at p. 3]

[40] Todd A. Kuiken, Laura A. Miller, Robert D. Lipschutz, Blair A. Lock, Kathy Stubblefield, Paul D.
Marasco, Ping Zhou, and Gregory A. Dumanian. Targeted reinnervation for enhanced prosthetic
arm function in a woman with a proximal amputation: a case study. Lancet, 369:371–380, Febru-
ary 2007. [cited at p. 3]

[41] Koichi Kuzume, Koichi Niijima, and Shigeru Takano. FPGA-based lifting wavelet processor for
real-time signal detection. Signal Processing, 84(10):1931–1940, 2004. [cited at p. 72]

[42] Natalia Lago, Dolores Ceballos, Francisco J Rodrı?guez, Thomas Stieglitz, and Xavier Navarro.
Long term assessment of axonal regeneration through polyimide regenerative electrodes to in-
terface the peripheral nerve. Biomaterials, 26(14):2021–2031, 2005. [cited at p. 4]

[43] Pavel Laskov, Christian Gehl, Stefan Krüger, and Klaus-Robert Müller. Incremental support vec-
tor learning: Analysis, implementation and applications. The Journal of Machine Learning Re-

search, 7:1909–1936, 2006. [cited at p. 56]

124 BIBLIOGRAPHY

[44] J. Lee, H. G. Rhew, D. R. Kipke, and M. P. Flynn. A 64 channel programmable closed-loop neu-
rostimulator with 8 channel neural amplifier and logarithmic adc. IEEE Journal of Solid-State

Circuits, 45:1935–1945, 2010. [cited at p. 21]

[45] S. Y. Lee and S. C. Lee. An implantable wireless bidirectional communication microstimulator
for neuromuscolar stimulation. IEEE Trans. Circuit System, 52:2526–2538, 2005. [cited at p. 8]

[46] M. S. Lewicki. A review of methods for spike sorting: the detection and classification of neural
action potentials. Network, 9(4):R53–R78, November 1998. [cited at p. 2, 102]

[47] K. Limnuson, D. J. Tyler, and P. Mohseni. Integrated electronics for peripheral nerve recording
and signal processing. 31st Annual International Conference of the IEEE EMBS, pages 1639–1642,
2009. [cited at p. 8]

[48] X. Liu, A. Demosthenous, A. Vanhoestenberghe, Dai Jiang, and N. Donaldson. Active books: The
design of an implantable stimulator that minimizes cable count using integrated circuits very
close to electrodes. IEEE Transaction on Biomedical Circuits and Systems, 6(3):216–227, 2012.
[cited at p. 21]

[49] GE Loeb and RA Peck. Cuff electrodes for chronic stimulation and recording of peripheral nerve
activity. Journal of neuroscience methods, 64(1):95–103, 1996. [cited at p. 4]

[50] D. Loi, C. Carboni, G. Angius, G.N. Angotzi, M. Barbaro, L. Raffo, S. Raspopovic, and X. Navarro.
Peripheral neural activity recording and stimulation system. Biomedical Circuits and Systems,
IEEE Transactions on, 5(4):368–379, 2011. [cited at p. 21]

[51] Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab, and Fatma H. Elfouly. Signal de-
noising by wavelet packet transform on FPGA technology. Special Issue of Ubiquitous Computing

and Communication Journal of Bioinformatics and Image, 2008. [cited at p. 73]

[52] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and A. Baschirotto. Behavioral
modeling of switched-capacitor sigma delta modulators. IEEE Trans. on Circuits and Systems-I,
5:352–364, 2003. [cited at p. 12]

[53] J. Martinez, R. Cumplido, and C. Feregrino. An FPGA-based parallel sorting architecture for
the Burrows Wheeler transform. In International Conference on Reconfigurable Computing and

FPGAs, ReConFig 2005, 2005. [cited at p. 77]

[54] C.A. Medina, A. Alcaim, and J.A. Apolinario Jr. Wavelet denoising of speech using neural net-
works for threshold selection. Electronics Letters, 39(25):1869–1871, 2003. [cited at p. 72]

[55] S. Meijer, H. Nikolov, and T. Stefanov. Throughput modeling to evaluate process merging trans-
formations in polyhedral process networks. In Design, Automation Test in Europe Conference

Exhibition (DATE), 2010, pages 747–752, 2010. [cited at p. 108]

[56] S. Micera, J. Carpaneto, and S. Raspopovic. Control of hand prostheses using peripheral infor-
mation. IEEE reviews in biomedical engineering, 3:48–68, 2010. [cited at p. 103]

[57] S. Micera, L. Citi, J. Rigosa, J. Carpaneto, S. Raspopovic, G. Di Pino, L. Rossini, K. Yoshida,
L. Denaro, P. Dario, and P. M. Rossini. Decoding information from neural signals recorded using
intraneural electrodes: Toward the development of a neurocontrolled hand prosthesis. Proceed-

ings of the IEEE, 98(3):407–417, 2010. [cited at p. 21]

BIBLIOGRAPHY 125

[58] S Micera, PN Sergi, J Carpaneto, L Citi, S Bossi, K-P Koch, KP Hoffmann, A Menciassi, Ken
Yoshida, and P Dario. Experiments on the development and use of a new generation of intra-
neural electrodes to control robotic devices. In Engineering in Medicine and Biology Society,

2006. EMBS’06. 28th Annual International Conference of the IEEE, pages 2940–2943. IEEE, 2006.
[cited at p. 5]

[59] Silvestro Micera, Xavier Navarro, Jacopo Carpaneto, Luca Citi, Oliver Tonet, Paolo Maria Rossini,
Maria Chiara Carrozza, Klaus Peter Hoffmann, Meritxell Vivo, Ken Yoshida, et al. On the use of
longitudinal intrafascicular peripheral interfaces for the control of cybernetic hand prostheses
in amputees. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 16(5):453–
472, 2008. [cited at p. 10, 46]

[60] Silvestro Micera, Paolo M Rossini, Jacopo Rigosa, Luca Citi, Jacopo Carpaneto, Stanisa
Raspopovic, Mario Tombini, Christian Cipriani, Giovanni Assenza, Maria C Carrozza, Klaus-
Peter Hoffmann, Ken Yoshida, Xavier Navarro, and Paolo Dario. Decoding of grasping infor-
mation from neural signals recorded using peripheral intrafascicular interfaces. Journal of Neu-

roEngineering and Rehabilitation, 8(53):1038–1051, 2011. [cited at p. 2]

[61] M. Montani, L. De Marchi, A. Marcianesi, and N. Speciale. Comparison of a programmable DSP
and FPGA implementation for a wavelet-based denoising algorithm. In Proc. IEEE 46th Midwest

Symposium on Circuits and Systems, volume 2, pages 602–605, 2003. [cited at p. 71, 103]

[62] Gernot R. Muller-Putz, Reinhold Scherer, Gert Pfurtscheller, and Rudiger Rupp. EEG-based neu-
roprosthesis control: A step towards clinical practice. Neuroscience Letters, 382(1?2):169 – 174,
2005. [cited at p. 2]

[63] X. Navarro, T.B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario. A critical review of inter-
faces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic
systems. J Peripher Nerv Syst, 10(3):229–258, 2005. [cited at p. 21, 106]

[64] J. Nezan, N. Siret, M. Wipliez, F. Palumbo, and L. Raffo. Multi-purpose systems: A novel dataflow-
based generation and mapping strategy. In Proc. IEEE International Symposium on Circuits and

Systems (ISCAS), pages 3073–3076, 2012. [cited at p. 72]

[65] R.A. Normann and A. Branner. A multichannel, neural interface for the peripheral nervous sys-
tem. In Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings, volume 4,
pages 370–375, 1999. [cited at p. 101]

[66] Stuart F Oberman and Michael J Flynn. A variable latency pipelined floating-point adder. In
Euro-Par’96 Parallel Processing, pages 183–192. Springer, 1996. [cited at p. 89]

[67] F. Palumbo, N. Carta, D. Pani, P. Meloni, and L. Raffo. The multi-dataflow composer tool: gener-
ation of on-the-fly reconfigurable platforms. Journal of Real-Time Image Processing, pages 1–17,
2012. [cited at p. 72, 86, 89]

[68] Francesca Palumbo, Nicola Carta, and Luigi Raffo. The multi-dataflow composer tool: A runtime
reconfigurable hdl platform composer. In Conf. on Design and Architectures for Signal and Image

Proc., pages 178–185, 2011. [cited at p. 87]

[69] D. Pani, F. Usai, L. Citi, and L. Raffo. Real-time processing of tfLIFE neural signals on embed-
ded dsp platforms: a case study. In Proc. 5th International IEEE EMBS Conference on Neural

Engineering, pages 44–47, 2011. [cited at p. 45, 52, 57, 58, 59, 61, 64, 66, 67, 73, 74]

126 BIBLIOGRAPHY

[70] T.M. Parks. Bounded Scheduling of Process Networks. Memorandum (University of California,
Berkeley. Electronics Research Laboratory). University of California, Berkeley, 1995. [cited at p. 108]

[71] Yevgeny Perelman and Ran Ginosar. An integrated system for multichannel neuronal record-
ing with spike/lfp separation, integrated a/d conversion and threshold detection. Biomedical

Engineering, IEEE Transactions on, 54(1):130–137, 2007. [cited at p. 102]

[72] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul. Unsupervised spike detection and sorting with
wavelets and superparamagnetic clustering. Neural Comput., 16(8):1661–1687, August 2004.
[cited at p. 50, 52, 59, 60, 61, 77, 94, 113, 114]

[73] S. Radovan, K. Saša, K. Dejan, and D. Goran. Optimization and implementation of the wavelet
based algorithms for embedded biomedical signal processing. Computer Science and Informa-

tion Systems, 10:502–523, 2013. [cited at p. 72]

[74] S. Raspopovic, J. Carpaneto, E. Udina, X. Navarro, and S. Micera. On the identification of sensory
information from mixed nerves by using single-channel cuff electrodes. J Neuroeng Rehabil.,
7(17), April 2010. [cited at p. 2, 59]

[75] R. Rieger, J. Taylor, A. Demosthenous, N. Donaldson, and P. J. Langlois. Design of a low-noise
preamplifier for nerve cuff electrode recording. IEEE Journal of Solid-State Circuits, 38(8):1373–
1379, 2003. [cited at p. 7]

[76] P.M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. Cipriani, L. Denaro,
V. Denaro, G. Di Pino, F Ferreri, E. Guglielmelli, K.P. Hoffmann, S. Raspopovic, J. Rigosa,
L. Rossini, M. Tombini, and P. Dario. Double nerve intraneural interface implant on a human
amputee for robotic hand control. Clin. Neurophysiol., (121):777–883, May 2010. [cited at p. 104]

[77] R. Schreier and T. Gabor C. Understanding delta sigma data converters. IEEE Press/Wiley-

Interscience, 2001. [cited at p. 13, 18]

[78] F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L. Carlen, and R. Genov. The 128-channel fully dif-
ferential digital integrated neural recording and stimulation interface. IEEE Trans. Biomedical
Circuit System, 4:149–161, 2010. [cited at p. 21]

[79] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge uni-
versity press, 2004. [cited at p. 56]

[80] M.J. Shensa. The discrete wavelet transform: wedding the a trous and mallat algorithms. IEEE

Transactions on Signal Processing, 40(10):2464–2482, October 1992. [cited at p. 50, 73, 105]

[81] N. Siret, M. Wipliez, J. F Nezan, and A. Rhatay. Hardware code generation from dataflow pro-
grams. In Design and Architectures for Signal and Image Processing (DASIP), 2010 Conference on,
pages 113–120, Oct 2010. [cited at p. 88]

[82] M. Tombini, J. Rigosa, F. Zappasodi, C. Porcaro, L. Citi, J. Carpaneto, P.M. Rossini, and S. Micera.
Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.
Neurorehabilitation and Neural Repair, 26(3):275–281, 2012. [cited at p. 1]

[83] M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, and A.B. Schwartz. Cortical control of a pros-
thetic arm for self-feeding. Nature, 453:1098–1101, 2008. [cited at p. 21]

[84] S. Venkatraman, K. Elkabany, J. D. Long, Y. Yao, and J. M. Carmena. A system for neural recording
and closed-loop intracortical microstimulation in awake rodents. IEEE Transaction on Biomed-

ical Engineering, 56:15–22, 2009. [cited at p. 21]

BIBLIOGRAPHY 127

[85] L. Wang and L. Theogarajan. A micropower delta-sigma modulator based on a self-biased super
inverter for neural recording systems. Custom Integrated Circuits Conference (CICC), pages 1–4,
2010. [cited at p. 8]

[86] Y. Wang, Z. Wang, X. Lu, and H. Wang. Fully integrated and low power cmos amplifier for neu-
ral signal recording. IEEE Engineering in Medicine and Biology Society, pages 5250–5230, 2005.
[cited at p. 8]

[87] W. Wattanapanitch and R. Sarpeshkar. A low-power 32-channel digitally programmable neural
recording integrated circuit. IEEE Transaction on Biomedical Engineering, 5(6):593–602, 2011.
[cited at p. 21]

[88] Paul B. Yoo and D.M. Durand. Selective recording of the canine hypoglossal nerve using a multi-
contact flat interface nerve electrode. IEEE Transactions on Biomedical Engineering, 52(8):1461–
1469, August 2005. [cited at p. 2]

[89] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, and C.-S. Poon. Real-time fpga-based multichannel
spike sorting using hebbian eigenfilters. Emerging and Selected Topics in Circuits and Systems,

IEEE Journal on, 1(4):502–515, Dec 2011. [cited at p. 102]

[90] A. Zabihian and A.M. Sodagar. A new architecture for multi-channel neural recording microsys-
tems based on delta-sigma modulation. IEEE Conference on Biomedical Circuits and Systems,
pages 81–84, 2009. [cited at p. 8]

[91] H. Zare-Hoseini, I. Kale, and O. Shoaei. Modeling of switched capacitor delta sigma modulators
in simulink. IEEE Trans. on Instrumental and Measurement, 54:1646–1654, 2005. [cited at p. 12]

[92] Fei Zhang, Mehdi Aghagolzadeh, and Karim Oweiss. A fully implantable, programmable and
multimodal neuroprocessor for wireless, cortically controlled brain-machine interface applica-
tions. J. Signal Process. Syst., 69(3):351–361, December 2012. [cited at p. 102]

[93] Ming Zhang, Rangyu Deng, Zhuo Ma, and Minxuan Zhang. A FPGA-based low-cost real-time
wavelet packet denoising system. In Proc. of 2011 Int. Conf. on Electronics and Optoelectronics

(ICEOE), volume 2, pages V2–350–V2–353, 2011. [cited at p. 73]

[94] Zachary S Zumsteg, Caleb Kemere, Stephen O’Driscoll, Gopal Santhanam, Rizwan E Ahmed, Kr-
ishna V Shenoy, and Teresa H Meng. Power feasibility of implantable digital spike sorting circuits
for neural prosthetic systems. Neural Systems and Rehabilitation Engineering, IEEE Transactions

on, 13(3):272–279, 2005. [cited at p. 103]

List of Publications Related to the

Thesis

Published papers

Journal papers

• F. Palumbo, N. Carta, D. Pani, P. Meloni, L. Raffo, The Multi-Dataflow Composer tool: generation
of on-the-fly reconfigurable platforms., Journal of Real-Time Image Processing (JRTIP), 2012,
pp. 1-17. ISSN : 1861-8200, DOI: 10.1007/s11554-012-0284-3. (Relation to Chapter 6)

Conference papers

• F. Palumbo, N. Carta, L. Raffo, The Multi-Dataflow Composer tool: a Runtime Reconfigurable

HDL Platform Composer, 2011 Conference on Design and Architectures for Signal and Image
Processing (DASIP), Tampere, Finland, November 2011, pp. 178-185, ISBN: 978-1-4577-0620-2,
Best Paper Award (Relation to Chapter 6)

• C. Carboni, N. Carta, M. Barbaro, L. Raffo, A sigma-delta architecture for recording of peripheral

neural signals in prosthetic applications, Biomedical Robotics and Biomechatronics (BioRob),
2012 4t h IEEE RAS and EMBS International Conference on, Rome, Italy, June 2012, pp. 448-453,
ISBN: 978-1-4577-1199-2. (Relation to Chapter 2)

• M. Wipliez, N. Siret, N. Carta, F. Palumbo, L. Raffo, Design IP Faster: Introducing the C High-

Level Language, IP-Embedded System Conference and Exhibition (IP-SOC 2012), Grenoble,
France, December 2012. Best Paper Award (Relation to Chapter 6)

• N. Carta, C. Sau, F. Palumbo, D. Pani, L. Raffo, A Coarse-Grained Reconfigurable Wavelet De-

noiser exploiting the Multi-Dataflow Composer tool, 2013 Conference on Design and Architec-
tures for Signal and Image Processing (DASIP), Cagliari, Italy, October 2013, pp. 141-148, ISBN:
979-10-92279-01-6. (Relation to Chapter 6)

• N. Carta, C. Sau, D. Pani, F. Palumbo, L. Raffo, A Coarse-Grained Reconfigurable Approach for

Low-Power Spike Sorting Architectures, The 6t h International IEEE EMBS Neural Engineer-
ing Conference (NER 2013), San Diego, California, USA, 6-8 November 2013, pp. 439-442,
ISBN:978-1-4673-1969-0. (Relation to Chapter 6)

• N. Carta, D. Pani, L. Raffo, VLSI Wavelet Denoising of Neural Signals, Critical Appraisal of Differ-

ent Algorithmic Solutions for Threshold Estimation, Proceedings of the 7t h International Con-
ference on Biomedical Electronics and Devices (BIODEVICES), Angers (France), 3-6 March

129

130 BIBLIOGRAPHY

2014, pp. 45-52, DOI: 10.5220/0004865700450052. Best Student Paper Award. (Relation to
Chapter 5)

• C. Carboni, N. Carta, L. Bisoni, M. Barbaro, L. Raffo, A Bio-Electronic recording module for pe-

ripheral neural signals, National congress of Bioengineering (GNB), Roma, Italy, June 2012,
ISBN:978 88 555 3182-5. (Relation to Chapter 2)

• L. Bisoni, C. Carboni, N. Carta, M. Barbaro, L. Raffo, A Bidirectional Interface to the Periph-

eral Neural System based on a Sigma-Delta Recording unit and on a high-voltage Stimulator,
National Congress on Electronics (GE 2013), Udine, Italy, June 2013. (Relation to Chapter 3)

Posters with published proceedings

• N. Carta, F. Palumbo, L. Raffo, Coarse-Grained Reconfigurable Approach for Multi-Dataflow

Systems, Advanced Computer Architecture and Compilation for High-Performance and Em-
bedded Systems (ACACES 2011), Fiuggi, Italy, July 2011, pp. 97-100, ISBN: 978 90 382 1798-7.
(Relation to Chapter 6)

Submitted papers

• D. Pani, N. Carta, L. Citi, S. Raspopovic, S. Micera, L. Raffo, Real-time neural signals decoding

onto off-the-shelf DSP processors for neuroprosthetic applications. Submitted to the Journal of
IEEE Transactions on Biomedical Circuits and Systems (TBCAS). (Relation to Chapter 4)

• N. Carta, P. Meloni, G. Tuveri, D. Pani, L. Raffo, A custom MPSoC architecture with integrated

power management for real-time neural signal decoding. Submitted to the IEEE Journal on
Emerging and Selected Topics in Circuits and Systems (JETCAS). (Relation to Chapter 7)

• F. Palumbo, C. Sau, N. Carta, L. Raffo, Early-Stage Low-power Management of Signal Processing

Systems. Submitted to the Journal of Signal Processing Systems. (Relation to Chapter 6)

• L. Bisoni, N. Carta, R. Puddu, C. Carboni, M. Barbaro and L. Raffo, A multi-channel recording/s-

timulation device for neuro-prosthetic application. Submitted to National congress of Bioengi-
neering (GNB), June 2014. (Relation to Chapter 3)

• C. Carboni, L. Bisoni, N. Carta, M. Barbaro, L. Raffo, Compact, Multi-Channel, Electronic Inter-

face for PNS Recording and Stimulation. Submitted to the 17th IASTED International Confer-
ence on Robotics Applications, June 2014. (Relation to Chapter 3)

	Abstract
	Contents
	List of Figures
	List of Tables
	Neuroprostheses Design: Problem Formulation
	Introduction
	System Architecture

	A Sigma-Delta Architecture for the Recording of Peripheral Neural Signals
	Introduction
	Sigma-Delta A/D conversion
	System Architecture
	Design and modelling of the analog module
	Design and realization of the digital module

	Simulation Results

	A Multi-Channel Electronic Interface for PNS Recording and Stimulation
	Introduction
	System Architecture
	Analog Front-End
	Digital Back-end

	Testing Environment Setup
	Custom Designed Printed Circuit Board
	Digital Control System

	Experimental Results: electrical tests
	Recording unit tests
	Stimulation module tests
	Real in-vivo tests

	Real-time neural signals decoding onto off-the-shelf DSP processors
	Introduction
	A state-of-art ENG-based signal processing algorithm
	Wavelet Denoising
	Spike Detection
	Spike Sorting
	Classification

	The DSP implementation: porting details
	Test Data
	Experimental Results
	Effectiveness analysis
	Efficiency analysis

	VLSI Wavelet Denoising of Neural Signals
	Introduction
	Algorithmic solutions for threshold estimation
	Architecture Design exploiting Xilinx System Generator
	Experimental Results
	Functional Evaluation
	Hardware Figures of Merit

	A Coarse-Grained Reconfigurable Approach for Low-Power Neural Signal Decoding
	Introduction
	Exploiting the Multi-Dataflow Composer Tool
	Multi-kernel datapath generation
	HDL components library and Communication Protocol
	Computing kernels

	FPGA test environment
	Experimental results
	Accuracy results
	Latency analysis
	Area occupancy and power consumption

	An FPGA-based MPSoC for On-line Neural Signal Decoding
	Introduction
	Related work
	Target application and related constraints
	Wavelet Denoising
	Spike Detection
	Spike Sorting
	Real-time constraints

	Parallelization and programming model
	Sequential application profiling
	Partitioning and mapping description
	Hardware architecture
	Integrated power consumption control
	Experimental results
	Timing Constraints Evaluation
	Power consumption reduction
	Synthesis Results

	Conclusions
	Bibliography

