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ABSTRACT 

Composite materials have been increasingly used in many wind energy and 

transport applications due to their high strength, stiffness and excellent corrosion 

resistance. One of the main limitations of composites is their high susceptibility to 

impact-induced damage, which may result in significant strength reduction or even 

structural collapse. A detailed understanding of the extent and nature of impact damage is 

thus greatly needed for damage tolerance based structural design and a reliable estimation 

of the residual strength of a damaged structure. 

In this thesis, fracture mechanics based progressive damage models, cohesive 

interface elements and crushable foam models were used to predict the structural 

response and internal failure mechanisms of sandwich composites subjected to low-

velocity impact; various failure modes typically observed in composites including 

delaminations, fibre fracture and matrix cracking were simulated and implemented into 

ABAQUS/Explicit through user-defined subroutines VUMAT. 

Numerical simulations were assessed and validated by a series of experimental 

analyses carried out through low-velocity impact tests (using drop-weight testing 

machine) and damage calibration tests (using X-radiography, Ultrasonics and optical 

microscopy of polished cross-sections). Good agreements were obtained between 

experiments and predictions not only in terms of structural responses as well as regarding 

the shape and size of internal damage under various investigated cases. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Motivation 

Increasing energy demands and environmental concerns have led in recent years 

to a rapid expansion of the wind energy sector, with a corresponding steady increase not 

only in total installed power size and capacity of wind farms, but also in size of 

individual wind turbines (EWEA 2012) (IEA 2013). 

 

Figure 1-1: Diagram detailing the increase of turbine size since 1985. (UpWind 2011) 

Driven by the desire to improve the cost effectiveness of electricity production, 

increasingly larger wind turbines have been developed in the last decades to enhance 
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energy capture and increase the energy output per unit of swept rotor area. Turbines with 

rotor diameters larger than 120 m and total height approaching 200 m are currently in 

service, and systems with power outputs of 10 MW and blade lengths close to 90 m are 

expected to be built and installed within the next few years (Thomsen 2009) (IEA 2013).  

Large turbines typically require large and heavy rotor blades, which, as a 

consequence of the high gravity loads, inevitably induce severe stresses in the blade 

materials and transmit high loads to the rotor shaft as well as to the tower of the wind 

turbine. Figure 1-2 illustrates the development of rotorblade weight as a function of 

rotorblade length. A key role in the design of wind turbine rotor blades is therefore 

played by the choice of appropriate materials, and advanced lightweight materials have 

been used to a growing extent in the construction of modern wind turbine blades. 

 

Figure 1-2: Development in rotorblade weight versus length. Symbols indicate 

different manufacturers and processing technologies. (Brøndsted, Lilholt and Lystrup 

2005) 

A number of primary requirements, which pose serious challenges to the 

optimization of materials and of structural configurations adopted in large turbine blades, 
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must be satisfied to ensure that the blades will meet the expected service life (Burton, et 

al. 2011) (Brøndsted, Lilholt and Lystrup 2005) (Thomsen 2009): 

 low blade weight is required to reduce gravity loads; 

 high material stiffness is required to avoid instability of structural components 

under compression loads and to prevent collision with the tower; 

 high static strength is required to resist the extreme loads during the life of the 

structure; 

 high fatigue strength is required to resist the time-varying loads and reduce 

material degradation; 

Low weight, high stiffness and buckling properties (both at a local and at a global 

level), as well as good static and fatigue performances are thus the major design factors 

guiding the optimal selection of materials. The mechanical design of a rotorblade 

corresponds nominally to a beam, and the merit index is for this case (Ashby 1992): 

           Eq. 1-1 

where E is the material stiffness and ρ is the material density. Figure 1-3 shows the 

diagram of stiffness versus density of commonly used materials. Lines of constant Mb are 

superimposed on the diagram, and materials that fulfill the relative stiffness criterion 

(partially or completely) are on the line and to the upper-left of the line. 

In terms of materials strength, i.e., resistance against long-time fatigue loads, and 

extra high loads, it is also important to consider materials fracture toughness. The 

toughness in relation to density is collected in a similar diagram, which can be found in 

Reference (Ashby 1992). The combined materials performance criteria identify woods 

and composites as the best candidates for rotorblades.  
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Figure 1-3: Diagram showing stiffness versus density for various materials. The merit 

index for a beam Mb = E
1/2

/ρ is represented by sloping lines with Mb equal to 0.003 

(lower line) and 0.006 (upper line). The criterion for absolute stiffness E = 15 GPa is 

indicated by the horizontal line. (Lovatt and Shercliff 2002) 

Woods are potentially interesting because of their low density, but their rather low 

stiffness makes it difficult to limit the (elastic) deflections for very large rotorblades; at 

the same time it‘s difficult to obtain woods in reproducible high quality, which is a 

requirement for stable and economical manufacturing of rotorblades and thus 

economically attractive wind energy. As a result, modern blades are typically made from 

composite materials, such as glass or carbon fibre reinforced polymers, used in a 

combination of monolithic (single skin laminates) and sandwich configurations 

(Brøndsted, Lilholt and Lystrup 2005) (Hayman, Wedel-Heinen and Brøndsted 2008) 

(Thomsen 2009). 
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(a) 

 
(b) 

Figure 1-4: Diagram of laminate (a) and sandwich (b) configurations. 

Composite sandwich structures consisting of two thin fibre-reinforced composite 

skins (also called facesheets or facings) separated by a thick core material of low density 

(typically a polymeric foam, balsa wood, or aluminium honeycomb) are widely used as 

lightweight structural components in wind turbine blades because of their high bending 

stiffness, superior buckling resistance and good static and fatigue strength properties 

(Thomsen 2009). 
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Composite sandwich construction is currently used in many portions of the blades, 

including the leading and trailing edges of the wing shells, the webs of the main spar or 

the internal stiffeners, to increase the compressive or shear buckling resistance of the 

structure (Figure 1-5). Most recently, with the development of large wind turbine blades, 

characterized by the presence of large unstiffened panels that are prone to failure in local 

buckling, sandwich configurations are being also considered, as an alternative to single 

skin designs, for potential use in other primary structural elements of the blade, such as 

the load carrying flange of the main spar or the spar-caps of the wing shells (Berggreen, 

et al. 2007) (Thomsen 2009). 

 

Figure 1-5: Design details of typical wind turbine blade. (Thomsen 2009) 

One of the main limitations of sandwich composites is the high susceptibility to 

localized damage caused by foreign object impact events (Abrate 1997). Typical impact 

damage occurring in sandwich composites involves the superposition of different failure 

mechanisms, such as delaminations, matrix cracking, fibre fracture, face-core debonding 

and core crushing, which may be difficult – if not impossible- to detect by visual 
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inspection (this internal damage is known in aerospace applications as Barely Visible 

Impact Damage - BVID). Damage induced by impact, notably delaminations, may induce 

significant reductions in stiffness and strength of the composite blade and result in a local, 

or even global, collapse of the structure.  

During their service life, wind turbine blades are subjected to loading conditions 

consisting of complex combinations of aerodynamic, gravitational and inertial loads, as 

well as of loads generated by the actions of the control systems (Burton, et al. 2011). 

Further load cases associated to operational conditions likely to occur during the entire 

lifespan of the blade must also be considered, including those experienced by the blade 

during the manufacturing, transportation, installation and maintenance phases (DNV. 

2002). In particular, loads arising from impact with hail and foreign objects during 

operation, or from accidental impacts that inevitably occur during manufacturing, 

assembly, transport, assembly and construction, assume a special importance in view of 

the high vulnerability of composite materials to impact damage. 

As an example, the Offshore Standard (DNV 2006) suggests as a guideline that 

―Accidental impact should lead to visible damage if it is critical for the strength of the 

blade. Otherwise the blade shall be designed for a maximum impact determined based on 

the packaging, transport and installation procedures‖. Furthermore, ―it has to be shown 

that impact damage that can be realistically expected from manufacturing, transport, 

installation, and operation will not reduce the design resistance strength below the design 

load‖. Currently adopted design methodologies account for the presence of impact 

damage by the use of very conservative safety or knock-down factors (DNV. 2002) 

(DNV 2006); more advanced damage tolerance concepts (Hayman 2007) are however 
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being gradually introduced in the design process of critical elements of composite blades, 

so as to take full advantage of the weight-saving potentiality offered by sandwich 

materials. Design schemes based on a damage tolerance approach (Sierakowski 2000) 

(Zenkert, et al. 2005) accept  the presence of pre-existing damage (such as that introduced 

during manufacturing or induced by accidental loads) and verify that the structure retain 

the required residual properties in the presence of the assumed damage. Reliable design 

procedures for composite blades should therefore include a reasonably accurate 

estimation of the internal damage locally induced by possible impacts, and make sure that 

the existing damage does not immediately lower the load carrying capability of the 

component below the design level, and will not grow to critical sizes under service loads, 

thus reducing the long term performance of the structure. 

A detailed knowledge of the nature and extent of damage induced by impact 

events in composite sandwich elements is thus required for a safe estimation of residual 

strength and expected life of the damaged structure, and will play a critical role for the 

successful development and design of next generation wind turbine blades. A number of 

impact test procedures and destructive or non-destructive damage assessment techniques 

are available to characterize the impact damage resistance of laminated and sandwich 

composites; experimental testing is however extremely expensive and time-consuming, 

or even impracticable, at early stages of development, because of the wide range of 

possible structural configurations and loading conditions to be characterized. Accordingly, 

in order to reduce testing requirements and enable faster design procedures, there is a 

great need for numerical models and simulation tools capable of predicting the structural 
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and damage response of sandwich composites to impacts that can reasonably occur 

during the whole life of wind turbine blades. 

It should be observed that damage developing in laminated and sandwich 

composites subjected to impact exhibits a very complicated pattern, involving the 

presence of a number of different interacting failure modes. The complexity of the 

damage mechanisms taking place in impacted composite structures necessitates the 

adoption of more sophisticated simulations than those used for conventional metallic 

materials, thus restricting the applicability of analytical models to basic structural 

configurations and simplified loading conditions.  

In contrast, numerical finite element (FE) tools based on appropriate fracture 

models may provide an efficient alternative, at least at a preliminary or intermediate 

design phase, to costly experimental tests for prediction of the impact response of 

complex composite sandwich components and structures.  

1.2 Objective 

This research work is aimed at the development and application of a reliable finite 

element tool for damage prediction in composites for possible use in damage-tolerant 

optimized designs of composite sandwich configurations. The main objectives of this 

study include:  

 To develop and implement fracture mechanics based models to simulate the 

damage and fracture mechanisms typically observed in impacted composite 

structures; 

 To apply the developed models to investigate the performance of sandwich 

composites subjected to transverse low-velocity impacts; 
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 To assess the capability and reliability of the FE tool by comparing numerical 

predictions with the observations carried out during experimental tests.  

1.3 Approach 

The research activities were carried out in two parallel and collaborative 

approaches: experimental investigations and numerical analyses, as shown in Figure 1-6. 

.

Specimen preparation

Low-velocity impact

Comparison and 

discussions

Experimental tests

Damage models

Impact modelling

Numerical simulations

Damage characterization Post-processing

 

Figure 1-6: Diagram of research approach. 

Experimental tests were conducted in the Composite Materials Lab at University 

of Cagliari. Sandwich panels with various configurations were prepared and impacted 

through a Drop-Weight Testing system; impact-induced damage was assessed by various 

characterization techniques including conventional and stereoscopic penetrant-enhanced 

X-Radiography, Ultrasonic C-Scans and Microscopic Observations of polished sections.  
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As to the numerical analyses, damage models based on Fracture Mechanics were 

developed to simulate the failure mechanisms typically occurring in impacted composite 

structures (delaminations between layers with different fibre orientations, fibre fracture, 

matrix cracking, face/core debonding and core crushing); the failure models were 

implemented in the FE package ABAQUS/Explicit via user material subroutines 

VUMAT and applied to investigate transverse low-velocity impacts on sandwich panels; 

all FE analyses were performed on a distributed-memory CLUSTER system of Linux 

Workstations using the MPI-based parallel solver available in ABAQUS/Explicit. 

Numerical predictions were compared with experimental findings and the 

assessment on the developed numerical tool and further discussions were carried out. 

1.4 Overview 

Chapter 2 gives a brief introduction on impact damage in composites. 

Experimental techniques for conducting impact test and damage assessment are briefly 

presented. Experimental findings on impact-induced failures (from initiation of damage, 

final failure, to post-impact performance) and the importance of considering impact 

damage in structural design are summarized. Chapter 3 makes a quick literature review 

on modelling impact-induced damage in laminated and sandwich composites. 

Chapter 4 presents the experimental tests that were carried out in this study to 

investigate impact-induced damage.  The whole investigation process, including 

specimen preparation, drop-weight testing and damage characterization, as well as the 

various calibration tests on material properties is described. 

Chapter 5 introduces in detail the numerical tool developed to simulate impact 

damage in composites. Derivation, implementation of failure models specific to each 
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failure mechanism, and preliminary tests conducted using a single-element model or 

simple FE models are also illustrated. 

Chapter 6 shows the finite element models constructed in ABAQUS/Explicit for 

carrying out numerical analyses. 

Chapter 7 and Chapter 8 illustrate and discuss the results through comparisons 

between numerical simulations and experimental results, based on 10 mm-thick PVC 

foam core sandwich panels with either cross-ply laminate skins (lamination sequence: 

[0/903/0], in Chapter 7) or multidirectional laminate facesheets (lamination sequence: 

[03/+45/-45]S, in Chapter 8).  

Chapter 9 further assesses the predicting capability of the developed numerical 

tool through analyses of different configurations: impacts on sandwich panels with 

different core thickness, different panel size and boundary condition.  Simulation of 

impacts on laminates and the importance of modelling in-ply damage modes for accurate 

simulation of impact events are finally discussed in Chapter 10. 

In Chapter 11, a conclusion of the research work is made. 

1.5 Sponsorship 

This work has been supported by the EU funded FP7-ITN-Marie Curie project 

SYSWIND (Grant No. FP7-PEOPLE-ITN 238325). 
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CHAPTER 2 

 

IMPACT DAMAGE IN COMPOSITES 
 

2.1 Introduction 

Composite structures are much more susceptible to impact damage than similar 

metallic structures. Impacts caused by foreign objects can be expected to occur during the 

whole life span of a structure including manufacturing, transportation, service, and 

maintenance operations (Abrate 1998). Such impact events can range from the most 

ordinary low-velocity impact of a tool dropped on a product to the hypervelocity impact 

of space debris on a spacecraft. 

Unlike impact cases in metals where damage is easily detected as it starts at the 

impacted surface, impact-induced damage in composites often begins on the non-

impacted surface or in the form of an internal delamination; the internal damage, even 

though usually undetected or underestimated by visual inspection, may however cause 

substantial losses in stiffness and residual strength of the composite structures. 

In metal structures, due to the ductile nature of the material, large amounts of 

energy may be absorbed during impacts, so impact damage is generally not considered to 

be a threat. At yield stress the material may flow for very large strains (up to 20%) at 

constant stress before entering the hardening stage. In contrast, composite materials may 

fail in a wide variety of modes and contain barely visible impact damage (BVID) which 
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nevertheless severely reduces the structural integrity of the component. Most composites 

are brittle and so can only absorb energy in elastic deformation and through damage 

mechanisms, and not plastic deformation (Richardson and Wisheart 1996). 

Obviously, most impacts on composite structures are in the transverse direction, 

but because of the lack of through-thickness reinforcement, transverse damage resistance 

is extremely poor. Interlaminar damage is often the first failure mode to take place due to 

the correspondingly low interlaminar strengths. As a result, very low design strains were 

generally adopted to guard against impact failure; that greatly limits the advantage of the 

excellent in-plane strength and stiffness properties provided by composite materials. 

 

2.2 Low-velocity Impact 

Extensive experimental and numerical studies show that impact velocity is an 

important factor in assessment of impact response. High-velocity impact usually brings 

about larger transverse deflection, more damage, and even perforation. Hence, the type of 

impact response is generally categorized into either low or high velocity (sometimes 

hyper velocity), but the transition between the two categories has been unclear for quite 

long time and various criteria were proposed by different researchers to distinguish a 

low-velocity impact from a high-velocity one.  

Sjöblom et al. (Sjöblom, Hartness and Cordell 1988) and Shivakumar et al. 

(Shivakumar, Elber and Illg 1985) define low-velocity impacts as events which can be 

treated as quasi-static, the upper velocity limit of which can vary from one to tens of ms
-1

 

depending on the target stiffness, material properties and the impactor‘s mass and 

stiffness. High-velocity impact response is dominated by stress wave propagation through 
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the material, in which the structure does not have time to respond, leading to highly 

localized damage.  Boundary condition effects can be ignored because the impact event is 

over before the stress waves have reached the edge of the structure. In low-velocity 

impact, the dynamic structural response of the target is of utmost importance as the 

contact duration is long enough for the entire structure to respond to the impact and as a 

result more energy is absorbed elastically. 

Cantwell and Morton (Cantwell and Morton 1991) conveniently classified low 

velocity as up to 10 ms
-1

, by considering the test techniques which are generally 

employed in simulating the impact event (instrumented drop weight testing). While 

Abrate (Abrate 1991) in his review of impact on laminated composites stated that low-

velocity impacts occurs for impact speeds of less than 100 ms
-1

. 

Liu and Malven (Liu and Malvern 1987) and Joshi and Sun (Joshi and Sun 1987) 

suggest that the type of impact can be classified based on induced damage, especially if 

damage is the prime concern. High velocity is thus characterized by delamination and 

matrix cracking. 

Robinson and Davies (Robinson and Davies 1992) define a low-velocity impact 

as being one in which the through-thickness stress wave plays no significant part in the 

stress distribution and suggest a simple model to give the transition to high velocity. A 

cylindrical zone under the impactor is considered to undergo a uniform strain as the stress 

wave propagates through the plate, giving the compressive strain as: 

   
       

                  
 

For failure strains between 0.5 and 1%, this gives the transition to stress wave dominated 

events at 10-20 ms
-1

 for epoxy composites. 
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In the book of Abrate (Abrate 1998), the expression ―low-velocity impacts‖ refer 

to those where the ratio between impact velocity and the velocity of compressive waves 

propagating through the thickness is smaller than the maximum strain to failure in that 

direction.  

Stronge (Stronge 2000) suggested that the amount of plastic deformation (or 

damage) nearing the impact zone governed the difference between low- and high-velocity 

impacts. Under low-velocity impact, the plastic deformation is localized around the 

contact area. In contrast, high-velocity impact leads to a larger area of deformation or 

damage around the area of contact. It should be noted that, for some cases, these two 

criteria gave the same impact response. 

Literature reviews by Bland and Michelle (Bland and Michelle 2005) and by Chai 

and Zhu (Chai and Zhu 2011) show that impact mass should be taken into account jointly 

with the impact velocity. The impact response and damage may be quite different for 

impact of the same velocity and different impact masses (Abrate 1997) (Abrate 1998) 

(Zhou and Stronge 2006). Besides impact velocity and impact mass, impact duration is 

also a key parameter that distinguishes a low-velocity impact response from a high-

velocity impact one (Richardson and Wisheart 1996) (Olsson 2000). 

 

2.3 Experimental Technologies for Investigation of Impact Damage 

2.3.1 Impact Test 

To simulate actual impact by a foreign object, a number of test procedures have 

been suggested (Abrate 1998). Although many details of the specific experimental test 

apparatus may differ, two types of impact tests are basically used by most investigators to 
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replicate actual situations under controlled conditions. For example, during aircraft take-

off and landing, debris flying from the runway can cause damage; this situation, with 

small high-velocity projectiles, is best simulated using a gas gun. Another concern is the 

impact of a composite structure by a larger projectile at low velocity, which occurs when 

tools are accidentally dropped on a structure. This situation is best simulated through 

striking a flat plate with a falling weight. 

A significant progress was made on low-velocity impact tests throughout the 

1980s and 1990s, and corresponding test equipment was developed (Adams and Adams 

1989) (Abrate 1998). This typically consisted of an instrumented impact drop tower and 

associated data-reduction equipment, and today it remains as the impact test method of 

choice for composite materials (ASTM-D7136-07 2007). Typically, a plate on the order 

of 150 mm is simply supported around its four sides and then is impacted at its center. 

The impacting tup is typically hemispherical and is of the order of 15 mm in diameter. 

The delivered level of impact energy is selectable. Therefore, test technicians have the 

option to ensure full penetration, in which case the results of interest are the maximum 

force and the energy absorbed to maximum force, and total energy absorbed during the 

full penetration process. Alternatively, the test panel may be subjected to a prescribed 

level of impact energy, selected to induce local damage without penetration.  

 

2.3.2 Damage Assessment 

The damage induced by low energy impact events may often not be evident by 

visual inspection of a structure; surface damage may be barely visible. It is generally 

accepted that an accurate description of the impact-induced damage state, not only the 



18 

surface damage but also the position and spatial geometry of internal damage, is desired 

before a reliable assessment of residual mechanical properties can be conducted. The 

significant importance of accurate damage assessment in composites has lead to the 

development of experimental techniques that can be classified into destructive and non-

destructive means (J. Kim 2000).  

The destructive techniques include de-ply technique and cross-sectional 

fractography. The non-destructive methods involve visual inspection, X-radiography (de-

ply radiography, stereo radiography, X-ray computed tomography and X-ray 

tomographic microscopy), as well as ultrasonic techniques (acoustic backscattering and 

volume visualization scanning acoustic microscopy). 

 Visual inspection 

Visual inspection is by far the most common nondestructive examination (NDE) 

technique (Allgaier and Ness 1993). It is possible to obtain useful information about the 

internal quality of quite thick optically transparent composite components by examining 

them visually against a brightly light background. The visual inspection is particularly 

useful for moving components made from composites and sandwich structures, such as 

helicopter rotor blades, turbine compressor buckets and water impellers. Careful visual 

inspection can also help identify the regions to be inspected by more sophisticated non-

destructive methods.  

It was shown that visual inspection of glass fibre-thermoset matrix composites 

could reveal internal defects and damage (Hirai, Hamada and Kim 1998). The reduction 

in transmission of light by delaminations can be accurately quantified using a solid state 

camera, whose image can be stored in a PC for the construction of digitised images. 
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 X-radiography 

X-radiography is one of the most useful forms of NDE because it can be used 

effectively on very complicated structures. X-ray techniques have long proved 

complementary to other techniques in finding volumetric defects in composite materials. 

The X-ray image is recorded as darker and lighter tones according to the intensity of the 

X-rays that pass through the different parts of material (Figure 2-1).  

 

Figure 2-1: Schematic diagram of X-radiography. (J. Kim 2000) 

However, internal damage, such as delaminations, in polymer matrix composite 

(PMC) laminates poses some difficulties in detection because delaminations tend to lie 

between plies and present a very small apparent thickness change. In addition, there is 

only little difference between absorption by the polymer matrix, fibres and air gaps. This 

requires a liquid having a high X-ray absorption coefficient, e.g. zinc iodide, to penetrate 

into the damaged area to be examined, most often by means of destructive procedures 

such as drilling a hole at the damage centre. The penetrant does not always reach small 

damage areas and delaminations, particularly those emanating from embedded and 

isolated internal structures. 



20 

Significant progress has been made in recent years in developing X-ray imaging 

techniques achieving state-of-the-art methods, such as computed tomography (CT) and 

its variations (J. Kim 2000). 

 Ultrasonics 

Ultrasonic measurements are most commonly used to detect damage in composite 

structures. The principle behind ultrasonic testing is that it sends an ultrasonic pulse into 

the material; if a defect is present below the surface, the echo of the pulse will be stronger 

and arrive earlier than if no defect was present. (Figure 2-2) 

 

Figure 2-2: Principle of flaw detection with ultrasonics. (Romary 2006) 

The ultrasonic map of defects can be presented in three different modes, namely 

A-scan, B-scan and C-scan. In the A-scan mode, the attenuated signals are displayed as a 

series of peaks against the time scale on an oscilloscope. The position of the signal‘s echo 

along the time axis allows the location of the defect in the thickness direction to be 

determined. In the B-scan mode, cross-sectional measurement can be made along any 

vertical plane, eliminating the need for destructive cross-sectioning of specimen. In the 

C-scan analysis, the transducer is moved in a plane parallel to the specimen surface in a 

rectilinear raster pattern to provide a planar view of the defect in a ‗one shot‘ image. 
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 De-ply technique 

In the de-ply technique, after being immersed in a solution of gold chloride, 

individual laminae are separated with a sharp blade, and are examined under an optical 

microscope. Due to its ease and simplicity of use, the de-ply technique has been widely 

employed to characterize impact damage in composites; furthermore, due to the high 

accuracy and reliability, the results of the de-ply technique can be used to calibrate the 

sensitivity of other nondestructive techniques. However, this technique is rather time-

consuming and destructive; and it‘s not suitable for thermoplastic matrix composites due 

to the difficulties involved in partial pyrolysis of the matrix material. 

 

2.4 Failure Mechanisms of Impact Damage 

As revealed by experimental investigations, damage occurring in laminated 

composites subjected to impact consists of a combination of different intralaminar and 

interlaminar (delamination) damage modes, which combine to produce a quite complex 

three-dimensional damage pattern (Cantwell and Morton 1991) (Richardson and 

Wisheart 1996) (Abrate 1998) (Aymerich and Meili 2000). 

Intralaminar damage modes include matrix cracking, where matrix damage occur 

parallel to the fibre direction, as a result of tensile, compressive and shear stresses, and 

fibre fracture, which involves collapse of reinforcing fibres by breakage in tension or by 

buckling in compression. 

Interlaminar damage is the fracture of the thin resin rich interface between 

adjacent layers, which results in separation of the layers (delamination). Delaminations 
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are of particular concern in primary structures, since they may result in dramatic 

reductions of the compressive performance of the material. 

The initiation and growth of impact damage are affected by many parameters. 

Material properties affect the overall stiffness of the structure and the contact stiffness 

and therefore will have a significant effect on the dynamic response of the structure. The 

thickness of the laminate, the density of the core, the size of the panel, and the boundary 

conditions are all factors that influence the impact dynamics, since they control the 

stiffness of the target. The characteristics of the projectile - including its density, elastic 

properties, shape, initial velocity, and incidence angle - are another set of parameters to 

be considered.  

 

Experimental evidence (Richardson and Wisheart 1996) (Schoeppner and Abrate 

2000) shows that no damage occurs in impacted laminates below an energy or load 

threshold; above this threshold, matrix cracks, in the form of shear cracking and tensile 

cracking (see Figure 2-3) generated by shear or normal stresses respectively, initiate and 

propagate in the vicinity of the impact region area, mainly in the intermediate and back 

face layers of the laminate. Matrix cracks are then followed by the onset of delaminations 

(Choi and Chang 1992), which initiate at the tips of pre-existing matrix cracks, as shown 

in Figure 2-3; delaminations always occur at the interfaces between plies with different 

fibre orientations and mainly extend along the fibre direction of the lowermost layer at 

that interface (see Figure 2-4). Impact delaminations grow to generate a characteristic 

three-dimensional spiral staircase (Srinivasan, et al. 1992) (Chester and Clark 1992) 

(Aymerich and Meili 2000) (Feng and Aymerich 2013), with the largest delaminations 
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usually occurring at the interfaces between layers with the highest orientation mismatch. 

As the impact energy is further increased, superficial fiber fractures (see Figure 2-5) 

initiate either at the tensile or at the compressive side of the impacted sample; when 

fibres fail the internal loads must redistribute to other areas of the structure, and may 

trigger other damage modes; finally, for very high impact energies, fibre fractures 

propagate through the remaining layers. 

 

Figure 2-3: Impact damage mechanisms: (a) delamination induced by inner shear 

cracks, (b) delamination induced by surface bending crack. (Abrate 1998) 
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Figure 2-4: Consistency in orientation of delamination and fibre direction of 

lowermost layer at each interface. (Feng and Aymerich 2013) 

 

 

Figure 2-5: Illustration of fibre failure: (a) fibre/matrix debonding and (b) fibre 

breakage. (Sethi and Ray 2011) 

The dominant damage modes likely to occur in impacted sandwich composites 

include damage in the laminated skins and in the core material, together debonding at the 
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interface between core and skin. Even though the type of damage occurring in the 

laminated skins is not dissimilar to that observed in impacted monolithic composites, the 

structural response and the damage resistance of sandwich structures are strongly 

dependent on the deformation of the core material and on the fracture characteristics of 

the skin/core interface (Abrate 1997). In particular, the response of the impacted skin is 

greatly affected by the mechanical behaviour of the core material (Daniel 2010), whose 

properties, which are often strongly nonlinear (as in the case of polymeric closed cell 

foams), must be characterized and modelled in detail in order to predict with reasonable 

accuracy the localized degradation induced by impact on the material. Under impact, the 

core-facing interface may debond in a region surrounding the point of impact, and the 

core experiences permanent deformations (Abrate 1998), as illustrated in Figure 2-6.  

 

Figure 2-6: Diagram of core/facesheet debonding and core crushing. 

 

2.5 Effect of Impact Damage on Residual Properties 

In order to make sure that a damaged structure will not catastrophically collapse 

during service life and will retain sufficient structural efficiency, it is necessary to carry 
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out damage tolerance studies, assessing the residual mechanical properties of the 

structure after impact (MIL-HDBK-17-3E 1997). 

―Damage tolerance‖ refers to a systems capability to perform after-impact. Even 

BVID can lead to strength reductions of up to 50% relative to an undamaged structure 

(Cvitkovich and Jackson 1999). Residual strengths in tension, compression, bending and 

fatigue will be reduced to varying degrees depending on the dominant failure mode. 

2.5.1 Residual Tensile Strength 

Residual tensile strength (Abrate 1991) normally follows a curve as shown in 

Figure 2-7. In region I, no damage occurs as the impact energy is below the threshold 

value for damage initiation. Once the threshold has been reached, the residual tensile 

strength reduces quickly to a minimum in region II as the extent of damage increases. 

Region III sees a constant value of residual strength because the impact velocity has 

reached a point where clean perforation occurs, leaving a net hole. As the fibres carry the 

majority of tensile load in the longitudinal direction, fibre damage is the critical damage 

mode. 

 

Figure 2-7: Residual tensile strength versus impact energy. (Abrate 1991) 
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2.5.2 Residual Compressive Strength 

Poor post-impact compressive strength (PICS) is the greatest weakness of 

composite materials in terms of residual properties. This is mainly due to local instability 

resulting from delamination causing large reductions in compressive strength. As 

delamination can be produced by low-energy impacts, large strength reductions in 

compression can occur for BVID. Delamination divides the laminate into sub-laminates 

which have a lower bending stiffness than the original laminate and are less resistant to 

buckling loads. Under a compressive load, a delamination can cause buckling in one of 

three modes (Abrate 1998): global buckling, local buckling, or a combination of them, as 

illustrated in Figure 2-8. The mode of failure generally changes from global, to local, to 

mixed mode as the delamination length increases.  

 

Figure 2-8: Local, global and local-global buckling modes. (Abrate 1998) 
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To determine compressive strength degradation of the impacted panel, a 

compression after impact (CAI) test is generally used. This is the basis of ASTM D7137 

(ASTM-D7137-07 2007), which uses a 100 mm by 150 mm drop-weight impacted 

specimen subjected to a uniform in-plane compressive force along its 100 mm long edges. 

The specimen is simply supported along all four edges to inhibit buckling. 

2.5.3 Residual Flexural Strength 

Less work has been done in this area, but it has been reported that both flexural 

modulus and strength decreased with increasing low-velocity impact energy for ductile 

specimens (glass/epoxy) whilst brittle graphite/epoxy exhibited no losses until complete 

failure occurred (Abrate 1991). 

2.5.4 Residual Fatigue Life 

Generally, the degradation of composite materials under cyclic loading occurs by 

growth of cracks through the matrix or at the fiber-matrix interface (Challenger 1986). 

With fiber-dominated, carbon-epoxy matrix material, the fatigue SN curve is almost flat 

(Demuts 1990), and it is usually considered that impact damage has more effect on static 

strength than fatigue life.  

 

2.6 Consideration of Impact Damage in Structural Design 

Since impact damage may cause significant strength degradation, in the design of 

a structural component it is important to obtain a sufficiently low failure probability. This 

probability must of course be balanced with other primary needs such as functionality, 

weight, accessibility etc. The failure probability depends both on the strength of the 
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component and on the severity of the loads. Both the strength and the loads show 

statistical variation.  

Applying safety factors is the traditional way of considering the variations and 

uncertainties. The larger the variation and the uncertainties the larger safety factors are 

normally required. The somewhat simplified case in Figure 2-9 (The area under both 

curves represents failure conditions) exemplifies that when the product design produces 

higher strength levels, failure probability decreases; in other words, to ensure a specific 

failure probability, it is necessary to introduce an extra strength margin. 

 

Figure 2-9: Failure probability between stress and strength. (RIAC n.d.) 

The potential to prevent damages is strongly linked to the design requirements 

and how these requirements are in practice implemented. The needs for in service 

damage preventing measures are to a large extent determined by the design. The design 

of the component should provide margins against the damage mechanisms, thus 

providing sufficient robustness for the component in service. Otherwise increased 
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sensitivity may be the case, where deviations from the expected conditions may reduce 

margins so that failure occurs. 

In wind turbine industry, as an example, more advanced damage tolerance 

concepts (Hayman 2007) are being gradually incorporated in the design process of 

critical elements of composite blades, so as to take full advantage of the weight-saving 

potentiality offered by sandwich materials. Design schemes based on a damage tolerance 

approach (Sierakowski 2000) (Zenkert, et al. 2005) accept  the presence of pre-existing 

damage (such as that introduced during manufacturing or induced by accidental loads) 

and verify that the structure retain the required residual properties in the presence of the 

assumed damage. Reliable design procedures for composite blades should therefore 

include a reasonably accurate estimation of the internal damage locally induced by 

possible impacts, and ensure that the existing damage does not immediately lower the 

load carrying capability of the component below the design level, and will not grow to 

critical sizes under service loads, thus reducing the long term performance of the 

structure. 

2.7 Concluding Remarks 

Composite structures are extremely susceptible to damage caused by foreign 

object impacts which may be expected to occur during the whole life span of a structure. 

A number of experimental test procedures and technologies have been suggested to study 

impact damage. Experimental investigations show that impact-induced damage consists 

of a complex combination of different failure modes and may cause a substantial 

degradation of residual mechanical properties of composite structures. Damage tolerance 

concepts are being gradually incorporated in design of composite structures.
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CHAPTER 3 

 

MODELLING OF IMPACT DAMAGE IN COMPOSITES 
 

3.1 Impact Damage in Laminated Composites 

A number of modelling approaches and procedures have been proposed in the 

literature to predict the extent of interlaminar and intralaminar damage resulting from 

impact in monolithic laminates (Elder, et al. 2004).  

Progressive damage models have been extensively used in recent years to 

incorporate onset and growth of failure mechanisms and nonlinear material behaviour in 

FE-based simulations of the impact response of laminated composites (Iannucci, 

Dechaene, et al. 2001) (Iannucci 2006) (Aoki, Suemasu and Ishikawa 2007) (Donadon, et 

al. 2008) (Aymerich, Dore and Priolo 2008) (Lopes, et al. 2009) (Faggiani and Falzon 

2010). In progressive damage procedures, failure criteria are first used to evaluate the 

onset of damage, and material degradation rules are then introduced in the constitutive 

model to simulate the reduction of elastic properties due to material degradation (Garnich 

and Akula 2009).  

In particular, energy-based stiffness degradation schemes developed in the 

framework of continuum damage mechanics (CDM) and based on the assumption that the 

fracture energy is distributed over the element volume (smeared crack approach) are 



32 

being increasingly considered to simulate the initiation and growth of intralaminar 

damage mechanisms such as matrix cracking and fibre fracture.  

Even though continuum damage mechanics has also been adopted in the past for 

the simulation of interlaminar damage (Tay, et al. 2008), this approach is not particularly 

suited to model discrete failure modes such as delaminations, which are characterized by 

highly localized stress fields and invariably occur at the thin interface between 

contiguous layers (Wisnom 2010); for this reason, modelling methods based on fracture 

mechanics, such as the Virtual Crack Closure method (VCC) or a range of cohesive 

interface models (Elder, et al. 2004) (Wisnom 2010), are now more widely adopted to 

study the growth of interlaminar damage by FE analyses.  The VCC technique is a well 

established method that provides the strain energy needed for delamination propagation 

by evaluating the amount of work required to close the crack. However, the VCC 

technique requires the definition of a pre-existing crack and is very sensitive to both the 

geometry of the mesh and the size of the elements at the crack tip, thus entailing the 

implementation of elaborate adaptive re-meshing techniques in order to conform the 

mesh to the moving boundaries of the delaminated area.  

In cohesive interface models, a process zone delimited by cohesive surfaces that 

are held together by cohesive tractions is assumed to develop ahead of the delamination 

front. The cohesive tractions are related to the relative displacements of the cohesive 

surfaces by special constitutive laws that describe the accumulation of damage through 

progressive decohesion of the interface. Cohesive zone models overcome the main 

limitations of VCC methods, since the initiation of damage is explicitly incorporated in 
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the cohesive model and requirements on mesh geometry and mesh density are not as 

strict as those posed by VCC analyses (Turon, et al. 2007). 

Cohesive elements placed at the interfaces between layers were for example 

successfully used in various studies to model delaminations induced by low-velocity 

impact in cross-ply composite laminates (Aymerich, Dore and Priolo 2009) (Amaro, 

Santos and Cirne 2011). The combined effect of intralaminar and interlaminar damage 

was investigated in further analyses, where cohesive (De Moura and Gonçalves 2004) 

(Aoki, Suemasu and Ishikawa 2007) (Aymerich, Dore and Priolo 2008) (Zhang, Zhu and 

Lai 2006) or special spring elements (Bouvet, et al. 2009) were used for modelling both 

delaminations at the interfaces between layers and major matrix cracks (such as bending 

cracks on the bottom layer and shear matrix cracks in the middle layers) developing in 

impacted laminates. 

However, while cohesive elements are especially suitable for modelling cracks 

that are constrained to propagate along well defined fracture surfaces (such as 

delaminations at the interfaces between layers), their use may be problematic for 

simulation of intralaminar matrix cracking in cases where the site of crack initiation is not 

known in advance, such as for damage generated by transverse impact loads. Even when 

placing cohesive interface elements along all interelement boundaries (which would 

likely result in extremely long computation costs), the geometry of the FE mesh would 

restrict the direction of crack propagation to the orientations of the element sides, and the 

presence of the cohesive surfaces would inevitably introduce a spurious artificial 

compliance to the undamaged structure (de Borst, Remmers and Needleman 2006). 
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Simulation schemes based on the combined use of continuum damage mechanics 

(CDM) models and cohesive surface elements have been recently proposed to simulate 

interlaminar and distributed intralaminar damage in laminates subjected to impact.  

In-plane  CDM damage models controlled by energy dissipation and taking into 

account the nonlinear behaviour of the layers under shear loading were for example 

implemented by Iannucci and Willows (Iannucci and Willows 2006) (Iannucci and 

Willows 2007) into an explicit dynamic code for predicting, in association with interface 

cohesive elements, the impact damage resistance of woven composite laminates.  

The response to impact of multidirectional laminates was simulated in (Lopes, et 

al. 2009) (González, et al. 2012) using continuum damage mechanics models for 

simulation of in-ply damage (matrix cracking and fiber breakage damage mechanisms) 

and cohesive interface models for prediction of delamination growth under mixed-mode 

loading conditions. Delaminations predicted at the various interfaces were compared with 

experimental observations carried out by fluorescent penetrant inspection (Lopes, et al. 

2009); good agreement between numerical simulations and experimental results was 

obtained in terms of damage features, even though shapes and absolute sizes of individual 

delaminations were not properly captured for some laminate layups. 

Cohesive interface elements in association with in-ply damage models were also 

used in (Faggiani and Falzon 2010) (Shi, Swait and Soutis 2012) to simulate the 

structural and damage response to impact of quasi-isotropic or cross-ply laminated panels. 

Numerical predictions of planar damage extent were in good agreement with 

experimental observations; no comparisons were however provided to assess the 

accuracy of predictions for individual delaminations on an interface-by-interface basis. 
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3.2 Impact Damage in Sandwich Composites 

As opposed to monolithic laminates, the investigation on the behaviour of 

sandwich composites under impact has been the focus of a rather limited number of 

studies. The analysis of the impact performance of sandwich composites is significantly 

more complex than that of monolithic laminates, because of the need to introduce in the 

model the interaction between the laminated skins and the core material which generally 

exhibits strongly nonlinear mechanical properties (Daniel 2010).  

Shell elements implementing only in-plane damage modes have been generally 

used to simulate the damage induced by impact in the laminated skins of sandwich 

composites. Besant and coworkers (Besant, Davies and Hitchings 2001) utilized for 

example 8-noded shell elements for the skins and brick elements for the core to 

investigate the impact behaviour of sandwich panels with carbon-epoxy skins and 

aluminium honeycomb core. The honeycomb core was modelled as an anisotropic elasto-

plastic material, while in-plane fibre and matrix damage of the laminated skins was 

simulated using the Chang-Chang failure models, and applying a ply-level degradation of 

the stiffness properties of the damaged material. Shell elements together with the Chang-

Chang damage models were also used in (Meo, Vignjevic and Marengo 2005) (Nguyen, 

Jacombs and Thomson 2005) (Klaus, Reimerdes and Gupta 2012)  to simulate in-plane 

matrix and fibre damage modes occurring in the impacted skins of sandwich panels with 

carbon/epoxy facings and honeycomb or folded cores. A tiebreak contact formulation 

based on a cohesive approach and connecting shell elements representing sublaminates 

was used in (Klaus, Reimerdes and Gupta 2012) to model delaminations between layers.  
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A multilayer element was developed and applied in (Icardi and Ferrero 2009)  to 

simulate low-velocity impacts on sandwich panels with carbon-epoxy skins and Nomex 

honeycomb core. Specialized stress-based failure criteria were used to predict the onset 

of interlaminar and intralaminar damage in the composite facings, while the stiffness 

degradation induced by damage accumulation was introduced by a ply-discount method. 

Very few investigations have been carried out up to now to model impact damage 

in sandwich composites with the use of solid elements (Ivanez, Santiuste and Sanchez-

Saez 2010) (Brooks, et al. 2010) (Feng and Aymerich 2013). Stress-based failure criteria 

were employed by Ivañez et al. (Ivanez, Santiuste and Sanchez-Saez 2010) to predict 

initiation of interlaminar and intralaminar damage in the glass/polyester facings of 

impacted sandwich beams with PVC foam core; the degradation of properties induced by 

damage was introduced through a simplified stiffness reduction scheme, where the 

stresses at damaged elements are reduced to near-zero values when the relevant failure 

criterion is met. 

Similarly, a progressive damage model based on a continuum damage mechanics 

approach accounting for in-plane fibre and matrix damage, fibre crushing and 

delamination between layers, was used by Brooks et al. (Brooks, et al. 2010) to estimate 

impact damage in glass/polypropylene fabric facings of sandwich beams and plates with 

polypropylene foam core. 

3.3 Damage Modelling in this Study 

Under the framework of the thesis, a FE tool implementing energy-based CDM 

models and cohesive interface elements was developed and applied to predict the 

structural and damage response of foam-based sandwich composites subject to foreign 
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object impacts; and this work has been partly published in a few journals (Feng and 

Aymerich 2013) (Feng and Aymerich 2014). The model accounts for the initiation and 

propagation of the typical damage modes occurring in the composite skins (fibre fracture, 

matrix cracking and delaminations) by means of progressive failure models for 

intralaminar damage and interfacial cohesive laws for interlaminar damage, and describes 

the nonlinear behaviour of the foam core by a crushable foam plasticity model. 

An extensive series of experimental analyses was designed and carried out to 

validate the developed FE model. Experimental data acquired during impact tests and 

subsequent damage evaluation analyses on sandwich panels consisting of carbon/epoxy 

facesheets bonded to PVC foam were compared with numerical results with the aim of 

assessing the capabilities of the proposed simulation tool for damage prediction in 

impacted composite sandwich structures.  

3.4 Concluding Remarks 

This chapter briefly reviewed the literature on modelling of impact damage in 

composite laminates and sandwiches. Cohesive zone model, fracture mechanics based 

approaches and crushable plasticity models are the state of art for numerical modelling of 

impact damage in composites and were adopted in this study. 
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CHAPTER 4 

 

EXPERIMENTAL TESTS 
 

4.1 Overview 

Various configurations of sandwich panels were examined during the study to 

verify and validate the predictive capabilities of the damage models that will be described 

in the following chapter (CHAPTER 5).  

The composite skins were made with unidirectional carbon/epoxy prepreg layers 

stacked to achieve the desired laminate layup. The prepreg materials are Texipreg® 

HS300/ET223, supplied by Seal, suitable for vacuum-bag-only processing at curing 

temperatures ranging between 85°C and 125°C (RDS01001 2004) with a fibre volume 

ratio of 0.62 and a nominal thickness of 0.32 mm. 

The core material was closed cell PVC foam (DIAB Divinycell HP). Divinycell 

HP is an elevated temperature foam core grade, specifically developed for compatibility 

with low-medium temperature prepreg systems (DIAB 2006). 

Sandwich panels with two different lamination sequences (a 5 layer cross-ply 

[0/903/0] layup and a 10 layer [03/+45/-45]S layup) and three foam core densities (HP60, 

HP100 and HP160, with densities of 65, 100 and 160 kg/m
3
, respectively) were 

manufactured for the experimental analyses. Sandwich panels with two dimensions (250 



39 

x 250 mm
2
 and 350 x 350 mm

2
) and with core thicknesses ranging from 10 mm to 40 mm 

were manufactured and examined in the study. 

4.2 Specimen Preparation 

Figure 4-1 illustrates the whole process of specimen preparation. The laminate 

facesheets were fabricated using prepreg lay-up method (Jang 1994); the raw prepreg 

tapes were profiled and cut to specified dimensions and shapes, then laid up ply-by-ply to 

form the desired lamination sequence of facesheets. Sandwich configuration was 

constructed by bonding the two stacked laminate facesheets to the core without the use of 

additional adhesive material.  

 

Figure 4-1: Preparation of sandwich panel. 

To cure the sandwich specimens, vacuum bagging and autoclaving are required. 

Figure 4-2 shows the vacuum bag configuration. The mold surface is covered with a 

non-sticking separator (Teflon film) on which the specimens are laid up. A porous release 
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cloth and a few layers of bleeder material are placed on top of the specimens. The bleeder 

layer absorbs the excess resin flowing out during the molding procedure. The whole stack 

is then covered with another sheet of separator, a caul plate, a breather and a thin hear 

resistant vacuum bag (a nylon film). The assembled vacuum bag, as shown in Figure 4-3, 

is then placed inside an autoclave (Figure 4-4) where a combination of heat and vacuum 

consolidates and cures the specimens. 

 

Figure 4-2: Vacuum bag configuration. (Carlsson, Adams and Byron 2003) 

 

Figure 4-3: Vacuum bag assembly for autoclave cure. 
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Figure 4-4: Vacuum bag sequence and tool plate placed in an autoclave. 

Figure 4-5 illustrates the curing cycle: a 3°C/min heating stage, followed by a 6 h 

dwell at 100°C and a cooling stage to room temperature maintaining vacuum. 

 

Figure 4-5: Cure cycle for composite specimen. 
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Figure 4-6 shows the specimens after curing process. They were firstly examined 

by ultrasonic C-scans to exclude the presence of significant manufacturing defects and 

then subjected to low-velocity impacts. 

 

Figure 4-6: Samples of specimens after curing process. 

4.3 Drop-Weight Test 

Low-velocity impact tests were performed by an instrumented drop-weight testing 

machine, shown in Figure 4-7, using a 2.34 kg impactor with a hemispherical indentor of 

12.5 mm diameter. The panels were subjected to impact with energies ranging between 

approximately 1 J and 9 J, obtained by varying the drop height of the impactor. It is 

worth remarking that energies up to about 8 J are suggested by the DNV design 

guidelines to characterize the impact damage resistance in wind turbine blades (DNV 

2006). During impact, the 250 x 250 mm
2
 sandwich panels were simply supported on a 

steel plate with a rectangular opening 45 mm x 67.5 mm in size. A number of impact 

tests were also conducted on the larger 350 x 350 mm
2
 panels, which were simply 

supported along two opposite sides (with an inner span of 300 mm) and free over the 

other two edges. 
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Figure 4-7: Drop-weight testing system. 

The force–time history and the impactor velocity just before the impact, as 

respectively measured by a strain-gauge bridge bonded to the impactor tup and by an 

infra-red sensor, were recorded by a data acquisition unit. The absorbed energy and the 

history of indentor displacement were calculated by numerical integration of the force-

time trace.  

4.4 Damage Assessment 

After impact tests, the sizes and shapes of damage areas were assessed by 

penetrant-enhanced X-radiography for all specimens. In a limited number of selected 

samples, the through-thickness distribution of impact-inflicted delaminations was further 

assessed by stereoscopic X-radiography (Palazotto, Maddux and Horban 1989) and 

validated by ultrasonic C-scans or optical microscopy of polished cross-sections. 
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Figure 4-8 and Figure 4-9 show the X-radiography system and the ultrasonic 

scanning system, respectively. Figure 4-10 shows an example of typical impact damage 

in facesheet of HP60 [03/+45/-45]S sandwich panel under a 6 J impact as obtained by X- 

radiography and stereoscopic X-radiography analyses. 

 

Figure 4-8: X-radiography inspection system. 

 

Figure 4-9: Ultrasonic scanning system. 
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Figure 4-10: Typical damage picture obtained by X-radiography (left) and through-

thickness distribution of delaminations constructed by stereoscopic X-ray (right): in 

facesheet of HP60 [03/+45/-45]S sandwich panel under an impact energy of 6J. 

4.5 Characterization of Material Properties 

The elastic and fracture properties used in the FE model were obtained by a series 

of experimental tests or provided by the material manufacturers. In particular, 

constitutive and strength properties of the unidirectional prepreg material were obtained 

by static tests on unidirectional and angle-ply laminates. Tensile tests were conducted on 

[0]4, [90]4 and [+45/-45]S coupon specimens according to the indications provided by the 

ASTM standard D3039/D3039M-08 (ASTM-D3039/D3039M-08 2008). Compressive 

tests were carried out on [0]10 and [90]10 samples with a gauge length of 10 mm (ASTM-

D3410/D3410M-03 2008).  

Fracture energies for matrix failure modes were determined by DCB, ENF and 

MMB tests on unidirectional laminates (Carlsson, Adams and Byron 2003). The tests 

0
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were performed on [0]10 samples (120 mm long, 20 mm wide and 3.2 mm thick) 

containing an initial precrack obtained by placing a thin fluoroethylene polymer film at 

the laminate midplane. The pre-cracked specimens were loaded under pure mode I (DCB; 

GII/Gtot = 0), pure mode II (ENF; GII/Gtot = 1), and mixed-mode (MMB; GII/Gtot = 0.5 and 

0.8) loading using a 5 kN servo-electric testing machine operated at a crosshead speed of 

1 mm/min. Both the force and displacement signals were recorded during the tests, while 

an optical microscope connected to a CCD camera was used to identify the initiation of 

crack propagation. The experimental compliance calibration methods (Berry 1963) 

(Carlsson, Gillespie and Trethewey 1986) were finally used to evaluate the fracture 

energy at the onset of delamination propagation; the cohesive interface strengths S and N 

were selected by fitting the results of numerical simulations to the experimental curves of 

DCB and ENF tests.  

Fibre fracture energy values evaluated for a different carbon/epoxy system 

(Faggiani and Falzon 2010) were used as input to the model owing to the lack of 

experimental data for the HS300/ET223 prepreg system. 

Flatwise transverse compression tests were performed on the HP60, HP100 and 

HP160 PVC foams at a nominal strain rate of 0.1/s using a screw-driven test machine. 

The compressive load was measured by the load cell of the test machine, while the 

compressive strain was deduced from the relative displacement of the compression 

platens. 
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4.6 Concluding Remarks 

The whole process of experimental tests to investigate impact-induced damage 

including specimen preparation, impact test and damage characterization was illustrated; 

Various experimental tests aiming at obtaining the mechanical properties of the material, 

which would be used in the numerical simulations, were also presented in this chapter. 
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CHAPTER 5 

 

PROGRESSIVE DAMAGE MODELS 
 

5.1 Fracture Mechanics 

The failure models developed in this study are based on fracture mechanics. 

Fracture mechanics is the field of mechanics concerned with the study of the propagation 

of cracks in materials. It uses methods of analytical solid mechanics to calculate the 

driving force on a crack and those of experimental solid mechanics to characterize the 

material's resistance to fracture. 

In modern materials science, fracture mechanics is an important tool in improving 

the mechanical performance of mechanical components. It applies the physics of stress 

and strain, in particular the theories of elasticity and plasticity, to the microscopic/ 

macroscopic defects found in real composites in order to predict the mechanical failure of 

bodies. Fractography is widely used with fracture mechanics to understand the causes of 

failures and also verify the theoretical failure predictions with real life failures. The 

prediction of crack growth is at the heart of the damage tolerance discipline. Figure 5-1 

illustrates the three ways of applying a force to enable a crack to propagate: 

 Mode I fracture - Opening mode (a tensile stress normal to the plane of crack), 

 Mode II fracture - Sliding mode (a shear stress acting parallel to the plane of 

crack and perpendicular to the crack front),  
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and 

 Mode III fracture - Tearing mode (a shear stress acting parallel to the plane of 

crack and parallel to the crack front). 

 

Figure 5-1: The three fracture modes. (Philipp, Afsar and Gudmundsson 2013) 

 

5.2 Interlaminar Failure Models 

5.2.1 Modelling Approaches 

A large number of predictive methods have been proposed in the literature to 

simulate initiation and growth of interlaminar delamination in impacted composite 

structures (Elder, et al. 2004).  

Although stress-based continuum damage mechanics has been used in the past to 

study delamination in composites (Allix, Ladeveze and Corigliano 1995) (Tay, et al. 

2008), this approach is not particularly suited to model discrete failure phenomena 

characterized by highly localized stresses at geometrical or material discontinuities 

(Wisnom 2010), and fracture mechanics is now more widely adopted to analyze the 

progression of interlaminar cracks by means of FE-based procedures such as the Virtual 

Crack Closure technique (VCC) or cohesive zone models (Elder, et al. 2004) (Wisnom 
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2010) (T. Tay 2003) (Camanho, Davila and De Moura 2003). The VCC approach is 

however very sensitive to mesh geometry and density, and requires both the assumption 

of a pre-existing crack and the application of adaptive re-meshing techniques in order to 

adjust the mesh to changes in the shape of the delamination front (T. Tay 2003). The use 

of cohesive zone models, which combine strength-based criteria to predict damage 

initiation with fracture mechanics energy criteria to simulate damage propagation and 

subsequent fracture, allows to overcome the main limitations of VCC analyses and 

cohesive interface elements have gained special interest in various studies for the 

simulation of discrete failure modes in impacted composites (Cui and Wisnom 1993) (Mi, 

et al. 1998) (Camanho, Davila and De Moura 2003) (Borg, Nilsson and Simonsson 2004) 

(Wisnom 2010).  

 

5.2.2 Cohesive Zone Model 

In contrast to continuum elements where stress-strain relations are used, relations 

between tractions and relative displacements of the interface surfaces govern the behavior 

of cohesive elements. Cohesive elements do not represent any physical component, but 

describe the traction forces to resist surfaces being pulled apart. The Fracture of cohesive 

elements is regarded as a gradual phenomenon in which separation occurs across an 

extended crack tip, or cohesive process zone (see Figure 5-2) when cohesive tractions 

(Ortiz and Pandol 1999) between upper and lower surfaces reach a prescribed criterion. 

Various cohesive traction-displacement constitutive equations have been 

proposed in the literature to represent the initiation and evolution of an interface model 

(Shet and Chandra 2002). Many studies indicate however that the numerical results show 
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little sensitivity to the shape of the cohesive law (Williams and Hadavinia 2002) (Alfano 

2006); a bilinear constitutive law, as shown in Figure 5-3, which is possibly the most 

widely adopted cohesive curve, was thus used in this study to model each specific failure 

mode because of its implementation simplicity. 

 

Figure 5-2: Diagram of cohesive zone model. 

 

 

Figure 5-3: Cohesive model behaviour for mode I (a) and mode II/III (b) loading. 

The implementation of constitutive law consists of three ingredients: a damage 

initiation criterion, a damage evolution law, and a choice of element removal upon 

reaching a completely damaged state. Damage initiation refers to the beginning of 

degradation of the response of a material point and is predicted using strength-based 

failure criteria. Damage evolution law describes the rate at which the material stiffness is 

degraded once the corresponding initiation criterion is reached; the evolution of damage 
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is defined using  fracture mechanics criteria and monitored by a damage indicator  , 

ranging from the value of 0.0 for the undamaged interface to the value of 1.0 

corresponding to complete decohesion of the interface. The cohesive elements would 

remain in the model even after having completely degraded (     ) to resist 

interpenetration of the surrounding components. 

 

Since delamination failure is driven by a combination of shear and normal stresses, 

the mixed mode behavior of interface elements needs to be taken into account. The 

choice of an appropriate criterion for prediction of damage initiation and propagation 

under mixed-mode loadings is still a subject of much debate, since many unsolved issues, 

such as the apparent increase of shear strength under compressive loading, in situ effects, 

the influence of material non-linearity, the adoption of a characteristic length, etc., remain 

to be clarified (Hinton, Kaddour and Soden 2002) (Orifici, Herszberg and Thomson 

2008). 

In particular, it is indicated by the literature (Li, et al. 2006) (Christensen and 

Deteresa 2004) (Deteresa, Freeman and Groves 2004) (Hart-Smith 1993) that through-

thickness compression can have an enhancing effect on both the shear strength and mode 

II fracture toughness. Some researchers such as Deteresa et al. (Deteresa, Freeman and 

Groves 2004) (Christensen and Deteresa 2004) take this strengthening effect of 

compression on shear strength into account by modifying the stress interaction criterion 

as below: 

 
   
  

 
   
     

 

      
    Eq. 5-1 
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where    is the normal strength in through-thickness direction and        is the shear 

strength. Other investigations such as those by Hart-Smith (Hart-Smith 1993) (Hart-

Smith 1998), Sun and Tao (Sun and Tao 1998) and Rotem (Rotem 1998) suggest it is the 

result of in situ effects in laminates. Work by Cui et al. (Cui, Wisnom and Jones 1994) 

reveals that the through-thickness compression can suppress delamination in terms of 

increasing the critical mode II fracture energy (GIIC) which was expressed as a linear 

function of average through-thickness normal stress. Li et al. (Li, Hallett and Wisnom 

2008) carried out a further investigation and suggests that the increase of GIIC is actually 

a corresponding result of the increased shear strength, and that the normal compression 

can significantly suppress delamination by increasing both the shear strength and fracture 

energy. 

In this study, cohesive zone model with the criterion proposed in (Li, Hallett and 

Wisnom 2008), which includes the strengthening effect of through-thickness compression 

on the shear strength of the interface was adopted for the prediction of interlaminar 

delamination at interfaces between laminar layers. 

 

5.2.3 Failure Criteria 

The implemented failure mechanism is based on the Wisnom Criterion (Li, 

Hallett and Wisnom 2008): 
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                            Eq. 5-3 

Under through-thickness compressive loading, it‘s supposed that the through-

thickness compressive stress does not influence the elastic modulus but increases the 

shear strength and the final failure displacement (Figure 5-4). After initial failure, the 

slope of the softening part of the curve is the same as that of the un-enhanced model. (It 

is thus needed to define a parameter   , which is analogous to an internal friction 

enhancement factor.) 

 
 
 

 
  

                          

  
                 

 

  
           

                   

  
               

   

  Eq. 5-4 

 

 

Figure 5-4: Mode II damage evolution law under through-thickness compressive 

stress. (Li, Hallett and Wisnom 2008) 
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The derivation of key parameters   
  and   

  are as follows: 

If      

From equation Eq. 5-2, we can express the components in terms of trigonometric 

functions: 

 

 
 
 
 

 
 
 
  
 

 
 

    
 

    
   

  
 

  
                 

  
 

 
 

    
 

    
   

  
 

  
           

  
 

 
 

    
 

    
   

  
 

  
           

  Eq. 5-5 

Here,          denote the penalty stiffness in normal and shear direction 

respectively;   
    

    
    

    
    

  denote the normal and shear displacements and stresses 

corresponding to the damage initiation under mixed-mode; while   
     

     
         

denote normal and shear displacement thresholds (damage initiation) and corresponding 

strengths under pure mode I, II or III. For any loading state, a relationship exists between 

the current displacements          and the displacements   
    

    
  corresponding to 

damage initiation under this specific mode ratio: 

  
  
  

  
  
  

  
  
    

Then, we define parameters: 

 

 
 
 
 

 
 
    

  

  
 
  
 

  
   

   
  

  
 
  
 

  
          

   
  

  
 
  
 

  
          

  Eq. 5-6 
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By combining Eq. 5-5 and Eq. 5-6, we can get: 
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So, the key displacement parameters corresponding to damage initiation   
  and 

total failure   
  can be expressed as: 

 

  
      

       
       

        
            

                
            

  
   

    
    

          
    

    
          

    
    

    

   
    

          
    

          
    

    

   
    

    
   

    
    

 

   
    

          
    

          
    

    

   
    

    
   

  
    

    
 

     
    

          
    

          
    

    

       
      

       
  
    

    
 

                    
 
                     

 
                     

  

Eq. 5-7 

   
 
    

   
   

 
  
    

    
 

  
     

     
   

  
 
    

     
   

  
 
    

     
   

  
 
 
 
 

                              Eq. 5-8 

If     , from Eq. 5-3, the key parameters can be easily obtained: 

  
        

    
     
      

  
       

  
   

      
       

  
       

  
   

      
       

  Eq. 5-9 

  
 
 

     
       

   
      
       

  
      
       

   
      
       

                                           Eq. 5-10 
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5.2.4 Implementation 

The failure model was implemented in ABAQUS/Explicit through a User 

Subroutine VUMAT, the whole flowchart is plotted in Figure 5-4. 

ABAQUS

/Explicit

VUMAT 

new time step...

Read variables

Update displacements

 Calculate mixed-mode displacement

 Calculate threshold values

 Calculate point damage value

 Calculate current damage value

 Update stresses

 

Figure 5-5: Flow diagram of VUMAT subroutine for interlaminar failure model. 
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5.2.5 Model Testing 

The developed interlaminar failure model was tested with a single element model 

before being applied to numerical simulation; a single cohesive element model with size 

of 0.0005m × 0.0005m × 0.00002m, the same mesh size as that used for the numerical 

simulation of impact events (Chapter 7-10), was constructed. 

The four nodes on the bottom face were fixed; the load was defined on the four 

nodes of the top face by imposing displacements U1 and U3, as shown in Figure 5-6, for 

shear loading and compressive loading, respectively. Both loading types were imposed in 

the way of smooth loading. 

 

Figure 5-6: Single element model for testing the VUMAT. 

The material properties used in the testing are the same with those used for the 

simulation of impacts in the following chapters and can be found in Table 6-1. 

Firstly, the FE model was loaded without through-thickness compression (U3=0), 

which is actually pure mode II loading. The damage-load curve predicted by the model is 

shown in Figure 5-7. We can also easily calculate the theoretical solution: 

   
       

        
 

    

             
              

   
    

       
 
     

    
                                      

 

U1

U3
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Figure 5-7: Damage-loading displacement curve predicted by the model. 

If we plot the values on Figure 5-7 as point A which represents the initiation of 

damage and point B representing the total damage, it is clearly shown that the numerical 

results correspond well with theoretical solutions. 

Then, the model was loaded by shear together with different extents of through-

thickness compression. The results are shown in Figure 5-8. Under the same shear 

loading condition, the damage initiates later and the damage variable reduces with the 

increase of through-thickness compression. 

 

Figure 5-8: Damage-loading displacement curves for different through-thickness 

compression (h is the thickness of the cohesive element;         ). 



60 

Take the case U3=0.50h as an example, the theoretical solution is: 
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Again, the numerical and theoretical solutions agree well with each other, as 

shown in Figure 5-8 (point C). 

As the final testing case, Figure 5-9 illustrates the effect of parameter   . Larger 

   value means higher through-thickness compression, thus leading to a postponed and 

less development of delamination. 

 

Figure 5-9: Damage-loading displacement curves obtained with different values of 

parameter   . 
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5.3 Intralaminar Failure Models 

5.3.1 Modelling Approaches 

Various models and criteria have been proposed in the last decades to describe the 

intralaminar failures in composite materials subjected to low-velocity impacts.  

A large number of strength-based failure criteria have been proposed to relate 

stresses and experimental measures of material strength for prediction of intralaminar 

failure in composite materials (Soden, Hinton and Kaddour 1998) (Da´vila, Camanho and 

Rose 2005) (Pinho, et al. 2005). Failure criteria predict the onset of the different damage 

mechanisms occurring in composites and, depending on the material, the geometry and 

the loading conditions, may also predict final structural collapse. 

For composite structures that can accumulate damage before final collapse, the 

use of strength-based failure criteria is not sufficient to predict ultimate failure (Maimí, 

Camanho, et al. 2007). Simplified models, such as the ply discount method, can be used 

to predict ultimate failure, but they cannot represent with satisfactory accuracy the quasi-

brittle failure of laminates that results from the accumulation of various failure 

mechanisms. The study of the non-linear response due to the accumulation of damage is 

very important because the rate and direction of damage propagation define the damage 

tolerance of a structure and its eventual collapse.  

Various strategies for progressive damage modelling based on a smeared crack 

approach, which considers the fracture energy distributed over the element width, have 

been developed and extensively used in the last decade to simulate intralaminar damage 

in composites (Iannucci 2006) (Donadon, et al. 2008) (Maimí, Mayugo and Camanho 

2008) (Falzon and Apruzzese 2011). Typical progressive damage models integrate the 
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use of failure criteria with the application of material degradation procedures, to simulate, 

respectively, the initiation of damage and the reduction of elastic properties due to the 

degradation of the material (Garnich and Akula 2009).  

Continuum damage mechanics (CDM), originally proposed by Kachanov 

(Kachanov 1987) and further developed by Lemaitre and Chaboche (Lemaitre and 

Chaboche 1990), has been increasingly used in recent years to deal with modelling of 

impact damage in composite laminates. Iannucci et al. (Iannucci, Dechaene, et al. 2001) 

developed and implemented a two-dimensional CDM model into the explicit FE package 

LS-DYNA to predict matrix cracks and fibre fracture in composite laminates subjected to 

elevated strain rates  The model was later improved and extended to a full 3D 

formulation (Donadon, et al. 2008) (Faggiani and Falzon 2010). Donadon et al. (Donadon, 

et al. 2008) developed a 3D failure model which enables the control of the energy 

dissipations associated with individual failure modes and includes shear non-linearities 

and shear damage using a coupled semi-empirical elasto-damageable-plastic material law. 

Analogous damage models were recently used by Faggiani and Falzon (Faggiani and 

Falzon 2010) to simulate, in association with cohesive interface elements introduced for 

capturing interlaminar damage, the response of a stiffened composite panel under low-

velocity impact. 

In this study, progressive failure models based on continuum damage mechanics 

are used to model intralaminar failure mechanisms of laminate skins.  

 



63 

5.3.2 Constitutive Law 

The intralaminar damage models implemented in this study follow the approach 

illustrated and discussed in (Donadon, et al. 2008) (Falzon and Apruzzese 2011) (Falzon 

and Apruzzese 2011) and are based on the following assumptions: 1) the damage process 

is smeared over the finite element dimension; 2) internal damage variables 
ijd , assembled 

in a damage matrix D , are introduced to quantify damage extent and stiffness 

degradation associated to specific fibre or matrix damage modes; 3) stress/strain based 

initiation criteria and fracture energy based evolution laws are defined for each specific 

failure mode. 

Each of the damage parameters 
ijd  affects a different component of the fictitious 

undamaged stress tensor   (effective stress tensor), which can be related to the true 

stress tensor   through the damage matrix D  as: 

           Eq. 5-11 

where E  denotes the undamaged material stiffness matrix and can be expressed as 

follows: 
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The expression of the damage matrix D  is: 
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The equations pertaining to the constitutive matrix can be derived based on a total 

strain formulation or an incremental strain formulation.  

 

Figure 5-10: Explicit incremental strain formulation. (the item 1 means beginning of 

the time step, while the item 2 means end of the time step)  

Based on the hypotheses of strain equivalence and after elastic-plastic strain 

decomposition into elastic and inelastic components, the explicit incremental stress-strain 

equation can be expressed as (illustrated in Figure 5-10): 

                            Eq. 5-12 

where    is the incremental stress vector,    is the incremental strain vector, which can 

be decomposed into elastic (    ) and inelastic (     ) components, and    is the 

incremental damage matrix; or in form of: 
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The stress-strain equation in total strain formulation (illustrated in Figure 5-11) 

can be expressed as: 

  ED  Eq. 5-13 

or in form of: 
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Figure 5-11: Explicit total strain formulation. 
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Generally speaking, the total strain formulation is intended for history-

independent problems, where the current state of the problem depends only on the total 

strains. The incremental formulation is intended for history-dependent problems, where 

the current state of the problem depends on the state at the beginning of the increment 

and the incremental strains. 

To maintain a positive definite constitutive law, the Poisson‘s ratio is reduced in a 

similar manner to the Young‘s modulus: 

          

          
 
          

          
 Eq. 5-14 

 

5.3.3 Failure Criteria 

In the developed damage model, five intralaminar failure modes are taken into 

account: tensile fibre failure, compressive fibre failure, tensile matrix failure, 

compressive matrix failure and nonlinear shear failure.  

 Tensile Fibre Failure 

The criteria used for simulating the damage initiation and evolution of tensile 

fibre failure are: 

    
        

   

   
   

      Eq. 5-15 

    
       

   
  
        

   

       
  
    

   
 Eq. 5-16 

 Compressive Fibre Failure 

The criteria used for simulating the damage initiation and evolution of 

compressive fibre failure are: 
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      Eq. 5-17 

    
       

   
  
        

   

       
  
    

   
 Eq. 5-18 

In order to introduce the effect of fragment interaction under compression within 

the damaged region, a minimum residual value, assumed equal to the matrix compressive 

strength as shown in Figure 5-12, was considered for the normal compressive stress 

along the fibre direction (Donadon, et al. 2008). 

 

Figure 5-12: Model behavior for fibre failure. 

 

 Tensile Matrix Failure 

Damage initiation and evolution for tensile matrix cracking were defined using 

the following failure criteria:   

 

   
        

   

   
   

     

   
       

   
  
        

   

       
  
    

   

 Eq. 5-19 

 



69 

 Compressive Matrix Failure 

Experiments show that unidirectional laminates under transverse compressive 

loads fail by shear (Puck and Schürmann 1998) (Puck and Schürmann 2002), with a 

fracture plane oriented at           from the laminate plane (Donadon, et al. 2008). 

To correctly describe this phenomenon, the candidate criteria should thus evaluate the 

stress/strain state in the angled fracture plane instead of the nominal coordinate plane 

with the angle of      . 

x (1)

y (2)

z (3)

σnl

θf

σnn

σnt

 

Figure 5-13: Compressive matrix failure and fracture plane. (Donadon, et al. 2008) 

For a general fracture plane l-n-t with fracture angle   , as shown in Figure 5-13, 

the stresses can be obtained through transformation from laminae coordinate system 1-2-

3 or x-y-z: 

  

         
         

                          

                                                                    

                             
           

  Eq. 5-20 

The damage model for simulating transverse failure under compression follows 

the criterion proposed by Puck and Schurmann (1998) (2002), who extended the failure 
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criterion originally proposed by Hashin with two main modifications: 1) to judge the 

failure occurrence, the tractions at the fracture plane             should not be compared 

with the nominal measured strengths from conventional mechanical tests, but with 

strengths corresponding to the fracture plane; 2) the normal compressive stress at the 

fracture plane does not induce the failure directly, while contributing to the increase of 

shear strength. To do so, the criterion based on the Mohr–Coulomb theory, which is 

schematically shown in Figure 5-14, is used to define the damage initiation: 

    
                

   

   
        

 

 

  
   

          
 
 

   Eq. 5-21 

where     is the longitudinal shear strength;    
  is the transverse shear strength in the 

potential fracture plane;     and     are friction coefficients in the transverse and 

longitudinal directions. These parameters are related to the fracture angle: 

                  

   
  

          

     
 

                       

               
  

where    is the standard transverse compressive strength. 

 

Figure 5-14: The criterion used to predict damage initiation of transverse compression. 
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After the damage initiation criterion, Eq. 5-21, is met, it‘s reasonable to assume 

damage growth as a function of total local shear strain: 

    
           

          

          
 Eq. 5-22 

      
     

  

where    is the resultant onset shear strain         
      ;      is the shear strain 

corresponding to the total damage under transverse compression.  

 

 Nonlinear Shear Failure 

Experimental evidence indicates that composite materials exhibit a nonlinear and 

irreversible behaviour under shear loading. As an example, Figure 5-15 shows the 

experimental shear response of the prepreg material used in the facesheets of the 

sandwich panels as obtained by tensile cyclic loading tests on [+45/-45]s laminates.  

 

Figure 5-15: Shear stress-strain response of HS300/ET223 prepreg as obtained by 

tensile cyclic testing on a [+45/-45]S laminate. 
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The total shear strain can be decomposed into elastic and damage strain: 

        
     

                      Eq. 5-23 

where the nonlinear response may be attributed to a combination of plastic deformation 

and progressive stiffness reduction due to micro-damage. 

The nonlinear shear behaviour was introduced in the FE model through a cubic 

polynomial stress-strain curve: 

                     
       

  Eq. 5-24 

where   ,    and    are coefficients determined by fitting the polynomial to the 

experimentally obtained shear stress-strain data. 

The proposed shear damage model is characterized by two distinct stages, as 

illustrated in Figure 5-16. The first phase characterizes to the nonlinear behaviour 

associated to matrix micro-cracking; in this region, the damage parameter is defined as:  

                          
    Eq. 5-25 

where   is a material constant, determined experimentally by cyclic loading unloading 

tests, which represents the gradual shear modulus reduction with increasing strain 

(Figure 5-17). The second phase simulates the post-failure response of the material, 

which is described by a linear softening law, expressed by the following equation: 

 

             
    

    
 
    

          
    

        
      

 
    

    

     
   

    
 
    

          
    

        
      

 
    

    
             

    

   
     

    
       

    

       
       

                                                     

Eq. 5-26 
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where        is the initial shear modulus, and the final shear strain    
  corresponds to 

the end of the failure process.  

 

Figure 5-16: Model behaviour of shear stress-shear strain response implemented in the 

FE model. 

 

Figure 5-17: Reduction of shear stiffness with increasing strain implemented in the FE 

model. 
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5.3.4 Implementation 

The intralaminar failure models were implemented into FE package ABAQUS/ 

Explicit through a user-defined VUMAT subroutine, as shown in Figure 5-18. 

ABAQUS

/Explicit

VUMAT 

new time step...

Read variables

Update strains

 Calculate damage variables

 Calculate stresses: system 1-2-3

 Calculate stresses: system l-n-t

 Update stress and damage variables

 

Figure 5-18: Flow diagram of VUMAT subroutine for intralminar failure models. 
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A smeared formulation is used in this study to avoid strain localization. In 

smeared formulations, the fracture energy is distributed (smeared) over the full volume of 

the element.  

One of the major difficulties related with the smeared formulation approach is that 

the material damage laws have to include a length parameter, in order to achieve a 

constant energy released per unit area of crack generated regardless of the element 

dimensions. Characteristic element lengths specific to the various simulated failure 

mechanisms were introduced in the study to solve this problem. 

 

Figure 5-19: Element loaded in tension to failure (a); material law with failure (b). 

If we consider a single element subject to matrix tensile fracture as an example, as 

shown in Figure 5-19, it can be easily understood how the length parameter enters the 

material law. The energy absorption during the process of failure can be easily obtained: 

               
 

 
     Eq. 5-27 

The fracture energy (or energy dissipated per unit area) can be written as: 

    
 

  
 

 

  
       

 

 
     Eq. 5-28 
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Here the parameter   , the element size perpendicular to the fracture plane, is 

actually what we call Characteristic Length, which relates the three-dimensional 

parameter    (unit:    ) with the two-dimensional parameter    (unit:    ). From Eq. 

5-28, one can easily retrieve: 

    
   
    

 Eq. 5-29 

So, if strain values    that mark the end of the failure process are defined by Eq. 

5-29, the energy absorbed by the plate will be independent of the mesh density. 

The characteristic element lengths for the various failure modes were selected 

according to the procedure outlined in (Pinho, Iannucci and Robinson 2006), as 

illustrated in Figure 5-20. 

 

 

Figure 5-20: Determination of the characteristic length within an element. (Pinho, 

Iannucci and Robinson 2006) 

5.3.5 Model Testing 

Before being applied to simulate impact on composite sandwich panels, the user-

written subroutine VUMAT was tested with simple FE models in which cases the 

theoretical solutions could be easily derived. Let us consider fibre tensile failure mode as 
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an example to show the test results. Figure 5-21 shows the basic information of the 

simple composite coupon (20 mm long, 10 mm wide and 2 mm thick) which is subject to 

tensile loading along the fibre orientation. In order to evaluate the mesh sensitivity of the 

failure model, the virtual coupon was discretized with three different mesh densities as 

shown in Figure 5-22. 

 

Figure 5-21: Simple composite coupon test. 

 

 
Mesh I Mesh II Mesh III 

10mm×5mm×2mm 2mm×1mm×2mm 0.5mm×0.5mm×2mm 

 

Figure 5-22: Models discretized with different element sizes for the mesh sensitivity 

study. 
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Figure 5-23 depicts the failure plots for different meshes. Figure 5-24 shows the 

structural responses (force-displacement curves) with different mesh types. According to 

Figure 5-24, the energy dissipated in the formation of damage is mesh-insensitive. 

 
               Mesh I                                 Mesh II                                Mesh III 

Figure 5-23: Failure localization for different mesh types. 

  

Figure 5-24: Structural responses with different mesh densities. 

The stress-strain curves of damaged elements with different mesh densities are 

plotted in Figure 5-25. The key strain values corresponding to damage initiation    and 

total damage    are compared with theoretical solutions and a good agreement is observed 

for all mesh densities. 
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Analyses using incremental strain formulation and total strain formulation are also 

compared based on the test case. As shown in Figure 5-26, the results obtained using two 

different solutions are practically coincident. 
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Figure 5-25: Comparison of model predicted and theoretical strains corresponding to 

damage initiation and total damage with different meshes. 

 

Figure 5-26: Comparison of results between incremental and total strain formulations. 
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Figure 5-27-Figure 5-30 show another test example, for the non-linear shear 

failure mode. Figure 5-27 illustrates a [+45/-45]S laminate specimen (20 mm long, 5mm 

wide and 1.2 mm thick) subjected to a loading-unloading tensile shear test. The FE 

model is shown in Figure 5-28a; the cyclic loading, with a maximum boundary 

displacement value of dmax = 1mm, is shown in Figure 5-28b. 

 

 

Figure 5-27: Tensile shear test on [+45/-45]S laminate. 

 

 
(a)                                                                   (b) 

Figure 5-28: FE model (a) and cyclic loading (b). 
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Figure 5-29 shows the predicted shear failure. The damage propagates along 45° 

degree from the fibre orientation, which is in accordance with experimental tests. The 

shear stress-shear strain curve of selected damaged element (shown as the red box in 

Figure 5-29) is presented in Figure 5-30, which shows that the model is able to correctly 

reproduce the experimental stress-strain curve. 

 

Figure 5-29: Shear failure predicted by the model. 

 

Figure 5-30: Shear stress-shear strain curve of damage element. 
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5.4 Foam Core Behavior Model 

The crushable foam model applied to simulate the nonlinear material response of 

foam core is based on the model proposed by Deshpande and Fleck (Deshpande and 

Fleck 2000), which has been implemented in ABAQUS (Abaqus 6.10 Analysis User‘s 

manual 2010), and is used in conjunction with the linear elastic material model.  

The elastic part of the response is specified as linear isotropic, and the stress-

strain relationship is given by:  
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 Eq. 5-30 

For the plastic part of the behavior, the yield surface is a Mises circle in the 

deviatoric stress plane and an ellipse in the meridional (p–q) stress plane. Two hardening 

models are available: the volumetric hardening model, where the point on the yield 

ellipse in the meridional plane that represents hydrostatic tension loading is fixed and the 

evolution of the yield surface is driven by the volumetric compacting plastic strain, and 

the isotropic hardening model, where the yield ellipse is centered at the origin in the p–q 

stress plane and evolves in a geometrically self-similar manner.  

The hardening curve must describe the uniaxial compression yield stress as a 

function of the corresponding plastic strain. In defining this dependence at finite strains, 

―true‖ (Cauchy) stress and logarithmic strain values should be given. Both models predict 

similar behavior for compression-dominated loading. However, for hydrostatic tension 

loading the volumetric hardening model assumes a perfectly plastic behavior, while the 
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isotropic hardening model predicts the same behavior in both hydrostatic tension and 

hydrostatic compression. 

 Crushable foam model with volumetric hardening 

The crushable foam model with volumetric hardening uses a yield surface with an 

elliptical dependence of deviatoric stress on pressure stress. It assumes that the evolution 

of the yield surface is controlled by the volumetric compacting plastic strain experienced 

by the material. 

The yield surface for the volumetric hardening model is defined as: 

               
      Eq. 5-31 

Where   is the pressure stress,    is the center of the yield ellipse on the p-axis,   

is the Mises stress,   is the shape factor of the yield ellipse that defines the relative 

magnitude of the axes,   is the size of the (vertical) q-axis of the yield ellipse. 

The yield surface represents the Mises circle in the deviatoric stress plane and is 

an ellipse on the meridional stress plane, as depicted in Figure 5-31. 

 

Figure 5-31: Crushable foam model with volumetric hardening: yield surface and flow 

potential in the p–q stress plane. (Abaqus 6.10 Analysis User‘s manual 2010) 
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The yield surface evolves in a self-similar fashion (constant  ); and the shape 

factor can be computed using the initial yield stress in uniaxial compression,   
 , the 

initial yield stress in hydrostatic compression,   
 (the initial value of   ), and the yield 

strength in hydrostatic tension,   : 

  
  

             
                  

  
 

  
             

  

  
  

For a valid yield surface the choice of strength ratios must be such that       

and     .  

 Crushable foam model with isotropic hardening 

The isotropic hardening model uses a yield surface that is an ellipse centered at 

the origin in the p–q stress plane. The yield surface evolves in a self-similar manner, and 

the evolution is governed by the equivalent plastic strain. 

 

Figure 5-32: Crushable foam model with isotropic hardening: yield surface and flow 

potential in the p–q stress plane. (Abaqus 6.10 Analysis User‘s manual 2010) 



85 

The yield surface for the isotropic hardening model is defined as: 

                Eq. 5-32 

Where   is the pressure stress,   is the Mises stress,   is the shape factor of the 

yield ellipse that defines the relative magnitude of the axes,   is the size of the (vertical) 

q-axis of the yield ellipse. 

The yield surface represents the Mises circle in the deviatoric stress plane. The 

shape of the yield surface in the meridional stress plane is depicted in Figure 5-32. The 

shape factor,   
 , can be computed using the initial yield stress in uniaxial compression, 

  
 , and the initial yield stress in hydrostatic compression,   

 (the initial value of   ), 

using the relation: 

  
  

     
                  

  
 

  
  

The value of k must be thus provided to define the shape of the yield ellipse. For a 

valid yield surface the strength ratio must be such that      . The particular case of 

    corresponds to the Mises plasticity. 

 

It should be noted that PVC foam core may show an increase in the yield stress as 

strain rates increase like many other materials. For many crushable foam materials this 

increase in yield stress becomes important when the strain rates are in the range of 0.1-1/s 

and can be very important if the strain rates are in the range of 10–100/s, as commonly 

occurs in high-energy dynamic events (Abaqus 6.10 Analysis User’s manual 2010). 

According to the findings of previous investigations (Belingardi, Cavatorta and Duella 

2003) (Akil and Cantwell 2002) (Schubel, Luo and Daniel 2005), the low-velocity impact 
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response of foam cored sandwich structures is not greatly affected by the loading rate (at 

least over a range of impact velocities comparable to that examined in this study). In 

contrast, other research work (Brooks, et al. 2010) (Mines, Worrall and Gibson 1998) 

shows some evidence of a rate-dependent behaviour of sandwich structures subjected to 

transverse loads, as a direct consequence of the influence of strain rate on the 

deformation properties of the core material.  

 

5.5 Concluding Remarks 

Cohesive zone model and progressive failure models based on continuum damage 

mechanics were implemented in ABAQUS/Explicit via user-defined subroutines 

VUMAT to model interlaminar and intralaminar failure mechanisms in laminate skins, 

respectively. The criteria used to define each failure mode and the implementation details 

were illustrated. Crushable foam model with volumetric hardening were applied to model 

the nonlinear behaviour of PVC foam core. 

The VUMATs were firstly tested on simple FE models before being applied to 

simulate impact-induced damage in composites; the testing results prove that the failure 

models have been correctly implemented and are reliable to be used to simulate impacts 

on composite panels.  

 

 

 



 

87 

 

CHAPTER 6 

 

NUMERICAL MODELS FOR SIMULATING IMPACTS ON 

SANDWICH PANELS 
 

6.1 Finite Element Models 

Full three-dimensional finite element models of the sandwich panels were 

constructed in ABAQUS/Explicit using solid elements for simulating the foam core and 

the layers of laminate skins, and cohesive elements for modelling the behaviour of the 

interfaces between plies and between core and facesheets (Figure 6-1). Both the impactor, 

which was simulated as a rigid hemispherical body with a 2.34 kg mass, and the 

supporting plate were modelled using R3D4 rigid shell elements. 

Fine mesh regionImpactor

Foam coreFacesheets

 

Figure 6-1: Typical FE model of impacted sandwich panels. 
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Elements with in-plane size of 0.5 mm by 0.5 mm were utilized in a fine mesh 

region (30 mm by 60 mm, as shown in Figure 6-1) centered at the impact location. The 

size of the elements was selected by a sensitivity analysis which shows convergence of 

results (in terms of both structural response and damage pattern and extent) for element 

sizes smaller than about 1 mm. 

The laminated skins were modelled by C3D8R solid elements with reduced 

integration, using one element through the thickness of each layer. Since no damage 

occurs in the facesheets opposite to the impact side, the intralaminar failure models 

presented in Section 5.3 were implemented only in the layers of the upper (impacted) 

facesheet, while the composite layers on the backside of the sandwich panels were 

modelled as linear elastic materials. 

Zero-thickness COH3D8 cohesive elements were inserted at the interfaces 

between layers with different fibre orientations and at the skin/core interface. The failure 

criteria illustrated in Section 5.2 were adopted for predicting the initiation and evolution 

of interlaminar delaminations. 

The core was modelled using a total of 10 C3D8R solid elements through the 

thickness. The crushable foam model with volumetric hardening, as presented in Section 

5.4, which is available in Abaqus (CRUSHABLE FOAM and CRUSHABLE FOAM 

HARDENING options) was used to model the inelastic behaviour of the foam. The 

hardening behaviour was represented in terms of uniaxial compressive stress versus 

plastic strain. The average stress-strain curve obtained from three compression tests was 

used to define the piecewise linear hardening law supplied as input data to the foam 

plasticity model. 
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The interaction between the composite plate and the indentor was simulated by 

surface-to-surface contact pairs, which were also applied to simulate the contact between 

the panel and the supporting plate. The contact constraints were enforced using a penalty 

contact algorithm. A friction model was included in the contact property definition in 

terms of a Coulomb friction model which relates the maximum allowable frictional (shear) 

stress across the interface to the contact pressure between the contacting bodies. A 

friction coefficient of µ=0.3 was adopted.  

Impacts of different energies were simulated by imposing the appropriate 

velocities at the instant of contact to the impactor. The geometrical nonlinearity of the 

problem was taken into account by activating the NLGEOM option for large deformation. 

No mass scaling was used in the model. 

A time increment    of about 5.0E-09s was used for the explicit integration of the 

equilibrium equations. This time-step satisfies the stability restriction imposed by the 

iterative time-stepping algorithm and was selected using the element-by-element 

estimation scheme available in ABAQUS/Explicit, based on the evaluation of highest 

element frequency in the whole FE model (Abaqus 6.10 Analysis User‘s manual 2010). 

6.2 Material Properties 

The elastic and fracture properties used in the FE model were obtained by a series 

of experimental tests or gathered from the literature, as discussed in Section 4.5. The 

values of the main properties adopted in the analyses are summarized in Table 6-1. 

In particular, the experimental shear behaviour of the unidirectional lamina was 

assessed by tensile tests on [+45/-45]S laminates, and the damage parameter describing 

the degradation of shear stiffness under increasing loads was characterized by a sequence 
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of loading-unloading cycles (Figure 6-2). It should be noted that, because of the lack of 

experimental results for out-of-plane shear behaviour, the same curves and mechanical 

properties for in-plane shear were used to model out-of-plane shear non-linearities.  

Table 6-1: Material properties used in FE analyses. 

Layer properties 

E11 = 122 GPa; E22 = E33=6.2 GPa; v12 = v13 = 0.35; v23=0.5; 

Xt = 1850 MPa; Xc = 1470 MPa; Yt = 27 MPa; Yc = 140 MPa; 

Gft= 92 kJ/m2; Gfc = 80 kJ/m2; 

Gmt = 520 J/m2; Gmc = 1610 J/m2 

Interface properties 

kN = 120 GPa/mm; kS = kT = 43 GPa/mm; 

N = 27 MPa; S = T = 55 MPa; 

GIC = 520 J/m2; GIIC = GIIIC = 920 J/m2 

 

 

Figure 6-3 shows the fracture energies at the onset of delamination growth, 

together with the curve of the power law delamination criterion implemented in the 

model for interlaminar fracture. The exponents of the power law criterion were selected 

by fitting to the experimental data. 

 

Figure 6-2: Experimental shear stress-strain behaviour under incremental cyclic 

loading (left) and stiffness degradation under shear loading (right). 
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Figure 6-3: Fracture energy values at the onset of delamination propagation obtained 

by DCB, ENF and MMB tests and power law delamination criterion implemented in 

the FE model. 

Because of the lack of experimental data for the HS300/ET223 prepreg system, 

values for fibre fracture energy evaluated for a different carbon/epoxy system in 

(Faggiani and Falzon 2010) were used as input to the model. Sensitivity analyses, which 

were specifically carried out to assess the influence of these parameters on the 

simulations, show that fibre fracture energy values have little influence on the predicted 

results over a wide range of fibre toughnesses; the indications of these analyses are not 

unexpected, in view of the low entity of fibre damage experimentally observed on 

composite skins even at highest impact energies examined in the study.  

Furthermore, as the low strength of the foams precluded, in spite of various 

attempts, a proper experimental characterization of the fracture properties of the 

facesheet/foam interface, the same fracture energy values used for cohesive elements 

within the laminated skin were adopted to model the cohesive behaviour of the skin/core 

interface. It is worth noting, however, that this assumption has no influence on the quality 

of damage predictions, since debonding between core and facings was neither observed 
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during the experimental analyses, nor predicted by the FE model, even for impact events 

with the highest energy considered during the study. 

Figure 6-4 reports the experimentally obtained stress-strain curves of foams with 

different densities (HP60, HP100 and HP160 foams, with densities of 65, 100 and 160 

kg/m
3
, respectively). The core material exhibits the typical deformation behaviour of 

closed-cell foams under compression, consisting of three regions: an initial linear elastic 

phase, a stress plateau, and a final densification stage, characterized by a steep increase in 

stiffness (Gibson and Ashby 1999). 

 

Figure 6-4: Experimental response of PVC foam under uniaxial compression. 

 

6.3 Parallel Executions on Cluster System 

In view of the computational complexity of investigated problem, the numerical 

solutions were obtained using the Abaqus/Explicit parallel solver. The calculations were 

carried out on a 12 CPU cluster of workstations based on Intel i7-860 processors and 
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Linux operating system, using the MPI library for parallel execution on distributed 

memory platforms supported by ABAQUS/explicit. 

 

6.4 Concluding Remarks 

This chapter gives an overall description of the numerical models constructed for 

simulating impacts on sandwich panels, of the material properties applied in the analyses 

as well as the Linux-based cluster system composed for solving the computational tasks. 

Impacts on sandwich panels with various configurations were simulated and 

analyzed using the numerical models shown in this chapter; the results are presented in 

the following chapters. 
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CHAPTER 7 

 

IMPACTS ON SANDWICH PANELS WITH CROSS-PLY 

LAMINATE SKINS 
 

Impact on sandwich panels with cross-ply laminate facesheets (stacking sequence: 

[0/903/0]) bonded to a 10 mm PVC foam core (with three different foam densities: 65 

kg/m
3
 (HP60), 100 kg/m

3
 (HP100) and 160 kg/m

3
 (HP160)) was simulated for impact 

energies ranging approximately from 1 J to 8 J; numerical predictions were compared 

with experimental results in terms of both structural response and internal damage. 

 

7.1 Analysis of Experimental Results 

Figure 7-1 shows examples of measured impact load histories and force-

displacement curves for sandwich composites with [0/903/0] facings and HP60, HP100 or 

HP160 foam cores (core thickness = 10 mm) impacted with an energy of 6.3 J. The 

sandwich panels, 250 mm x 250 mm in size, were simply supported on a steel plate with 

a 45 mm x 67.5 mm rectangular opening. 

It is seen that, as expected, the structural behaviour of the sandwich panels under 

impact is strongly influenced by the properties of the core material. The load-time 

histories of Figure 7-1a show that the peak load increases of about 25% and the impact 

duration decreases of approximately 30% when the core density is increased from 65 

kg/m3 (HP60 foam) to 160 kg/m3 (HP160 foam). The effect of the core density is also 
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evident in the force-displacement curves of Figure 7-1b, which show that the slope of the 

curve significantly increases with foam density. The force-displacement plots have an 

approximately linear behaviour up to a load level of about 1 kN, above which the curves 

exhibit a stiffness decrease that may be associated to damage and degradation phenomena 

occurring in the laminated skins and in the cores during the impact events. It may be 

worth noting that larger slope reductions are recorded beyond this knee point in sandwich 

panels with the lower density core, thus suggesting that nonlinearities or damage events 

occurring in the core may possibly play a more significant role in low-density than in 

high-density foam sandwich composites. It is also seen that the response measured 

immediately after impact is affected by oscillations and fluctuations, which are signal 

features that typically appear, especially at high impact energies, in force data acquired 

during drop weight tests (Zhou, et al. 2012), and that may be associated to the inertial and 

dynamic behaviour of the plate-impactor system (Feraboli 2006). As the load becomes 

larger, a slight stiffness increase can be observed in the force-displacement plots. 

  
(a)                                                                   (b) 

Figure 7-1: Force-time (a) and force-displacement (b) curves of [0/903/0] sandwich 

panels with HP60, HP100 and HP160 core impacted at 6.3 J. 
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Peak contact forces and energies absorbed during the impact by the composite 

sandwich panels are plotted as a function of impact energy in Figure 7-2 and Figure 7-3. 

Both peak forces and absorbed energies values exhibit a rising trend that is roughly 

proportional to the impact energy, but while the values of the peak forces are evidently 

affected by foam density (as visible in Figure 7-2, significantly larger peak forces are 

sustained by HP100 and HP160 sandwich panels as compared to HP60 panels for the 

same impact energy), the dissipation of energy occurring during impact appears 

essentially independent of the density of the core (Figure 7-3).  

 

Figure 7-2: Peak contact forces recorded during impact on [0/903/0] sandwich panels. 

 

Figure 7-3: Energies absorbed during impact on [0/903/0] sandwich panels. 
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Figure 7-4 shows typical damage occurring in the facings of sandwich panels 

with HP60, HP100 and HP160 foam cores subjected to different impact energies. X-

radiographic and microscopy analyses show that, in the range of impact energies 

investigated (between approximately 1 J and 8 J), the damage induced by impact consists 

of a combination of tensile or shear matrix cracks and delaminations. The experimental 

observations also indicate that the size, the nature and the evolution of the damage modes 

occurring in the laminated skins are not significantly affected by the density of the foam 

material used in the core.  

1 J 2.3 J 4.2 J 6.3 J 7.8 J

HP60

1 J 2.2 J 4.3 J 6.2 J 7.8 J

HP160

1 J 2.3 J 4.3 J 6.2 J 7.8 J
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10 mm

 

Figure 7-4: X-radiographs of damage induced by impacts on sandwich composites 

with [0/903/0] skins and with HP60, HP100 and HP160 foam cores. 
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For all HP60, HP100 and HP160 sandwich panels, initial damage in the impacted 

skin consists of tensile matrix cracks developing in the 0° layer farthest from the impact 

side, and of shear matrix cracking occurring in the middle 90° layers. With increasing 

impact energy, tensile and shear matrix cracks promote the initiation of a peanut-shape 

delamination on the 90°/0° interface between the cracked 0°and 90° plies. Small 

delaminations were observed on the 0°/90° interface close to the impact side. (Figure 7-5) 

No major fibre damage was detected in the impacted facings for the entire range of 

impact energies investigated.  

 

Figure 7-5: X-ray of typical impact damage on the facings of [0/903/0] sandwich 

panels for an impact energy of 6.3J. 

It is worth noting that microscopy inspections on polished cross-sections of 

selected sandwich panels after impact tests showed no clear evidence of major damage 

phenomena within the foam (such as large cavities or fractured cell walls) or of 

debonding between the core and the skin, even when the sandwich panels were impacted 

at the highest impact energies.  
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Figure 7-6 plots the projected delamination areas, defined as the projection onto a 

single plane of the delaminated areas at the two interfaces of the impacted skin, as a 

function of impact energy. It is seen that sandwich panels with HP60, HP100 and HP160 

core have similar damage area values for the same impact energy, thus providing 

indication that the density of the foam core has a small influence on the impact damage 

resistance of the examined sandwich composites. 

Furthermore, the experimental evidence acquired through combined non-

destructive and destructive observations show that very little damage occur in the 

laminated facings at the load level corresponding to the knee point of the force-

displacement curves. This suggests that the stiffness reduction exhibited by the sandwich 

panels at the knee load is mainly induced by nonlinearities associated to localized cell 

buckling of the foam material below the indentation area, rather than by damage in the 

composite skins. 

 

Figure 7-6: Projected delamination areas as a function of impact energy for [0/903/0] 

sandwich panels. 
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7.2 Comparison between Simulations and Experiments 

7.2.1 Structural Response 

Force vs time and force vs displacement curves predicted by the developed FE 

model at different levels of impact energy are compared to experimental data in Figure 

7-7 (HP60 panels), Figure 7-8 (HP100 panels) and Figure 7-9 (HP160 panels). The 

figures show that a rather good agreement is achieved between experiments and 

predictions for both force-time histories and force-displacement curves. The model is 

able to capture with good accuracy the peak force values (even if some minor 

discrepancy may be noticed at the highest impact energy level for HP160 panels) and the 

impact durations for HP60-, HP100- and HP160-based sandwich composites over the 

whole range of impact energies investigated. In addition, the typical nonlinear trends 

exhibited by experimental force versus displacement data, characterized by a distinct 

threshold load above which a clear slope reduction is observed, are also correctly 

predicted by the FE analyses. 

 
(a) 



101 

 
(b) 

Figure 7-7: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for sandwich panels with HP60 core. 

 
(a) 

 
(b) 

Figure 7-8: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for sandwich panels with HP100 core. 
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(a) 

 
(b) 

Figure 7-9: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for sandwich panels with HP160 core. 

Quantitative comparisons of predicted and measured peak contact forces and 

absorbed energies are shown in Figure 7-10, Figure 7-11 and Figure 7-12 for HP60, 

HP100 and HP160 panels, respectively. The predicted values of the absorbed energy 

plotted in the graphs are calculated as the area under the force-displacement curve, 

and represent the total energy dissipated during the impact in irreversible damage 

mechanisms (foam nonlinearities, intralaminar or interlaminar fracture in the 

impacted facesheet, and plastic deformation in the composite layers). The graphs 

show that there is a very good correlation between numerical predictions and 

experimental data, with only a slight tendency of the FE model to underpredict the 



103 

maximum force values at high impact energies for HP160 sandwich panels. 

 
(a) 

 
(b) 

Figure 7-10: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for sandwich panels with HP60 core. 

 
(a) 
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(b) 

Figure 7-11: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for sandwich panels with HP100 core. 

 
(a) 

 
(b) 

Figure 7-12: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for sandwich panels with HP160 core. 



105 

7.2.2 Internal Damage 

Experimental and numerical results for sandwich panels of the three foam 

densities are compared in Figure 7-13-Figure 7-18 in terms of damage occurring in the 

composite skins at different impact energies. Figure 7-13, Figure 7-15 and Figure 7-17 

report experimental and predicted values of projected damage areas, while the graphs of 

Figure 7-14, Figure 7-16 and Figure 7-18 plot length (maximum size along the 0° 

direction) and width (average of the maximum size along the 90° direction of the two 

delaminated lobes, as defined in Figure 7-14) of projected damage. Images of projected 

damage areas as revealed by X-radiography and predicted by FE simulations for various 

impact energies, taking sandwich panels with HP160 foam cores as the example, are 

directly compared in Figure 7-19.  

The comparisons show that the FE simulations predict with reasonable accuracy, 

for all HP60, HP100 and HP160 sandwich panels, length, width and global size of the 

projected damage area induced by impact as well as the general trends of these 

parameters with increasing impact energy. 

 

Figure 7-13: Comparison between measured and predicted projected damage areas for 

sandwich panels with HP60 core. 
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(a)                                                                   (b) 

Figure 7-14: Comparison between measured and predicted damage length (a) and 

damage width (b) for sandwich panels with HP60 core. 

 

Figure 7-15: Comparison between measured and predicted projected damage areas for 

sandwich panels with HP100 core. 
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(a)                                                                   (b) 

Figure 7-16: Comparison between measured and predicted damage length (a) and 

damage width (b) for sandwich panels with HP100 core. 

 

 

Figure 7-17: Comparison between measured and predicted projected damage areas for 

sandwich panels with HP160 core. 
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(a)                                                                   (b) 

Figure 7-18: Comparison between measured and predicted damage length (a) and 

damage width (b) for sandwich panels with HP160 core. 

 

1 J 2.2 J 4.5 J 6.2 J 7.8 J
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FE simulations

 

Figure 7-19: Comparison between experimental and predicted impact damage 

(different gray levels correspond to different delamination depths) in sandwich panels 

with HP160 foam cores under five impact energies. 
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Figure 7-20: Comparison between X-radiograph, ultrasonic C-scan and predicted 

damage areas for [0/903/0] sandwich panels with HP160 core impacted at 4.5 J. 
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Figure 7-21: Through-thickness distribution of main damage modes as predicted by 

FE model and constructed by ultrasonic C-scans for [0/903/0] sandwich panels with 

HP160 core impacted at 4.5 J. 
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Figure 7-20 shows an example of comparison between X-radiograph, ultrasonic 

C-scan and predicted damage areas with HP160 sandwich panel subjected to a 4.5 J 

impact. Figure 7-21 compares the through-thickness distribution of main damage modes 

for the same impact case. It is seen that a good agreement is achieved between numerical 

results and experiment observations. The FE model simulates with reasonably good 

accuracy in size and shape both the bottom 90°/0° delamination, with its typical peanut 

shape elongated in the fibre direction of the lowermost layer, as well as the smaller 

delamination on the top 0°/90° interface. In agreement with experimental evidence, the 

bending matrix cracking in the bottom 0° ply and shear matrix cracks in central 90° plies 

are also correctly predicted by the FE model. 
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Figure 7-22: Sequence of damage events predicted by the FE model for a 7.8 J impact 

on a [0/903/0]/HP160 sandwich panel. 
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The numerical analyses also provide an accurate prediction of the sequence of the 

major damage events and of the key features and shapes of the individual damage modes 

occurring through the laminate thickness at specific interfaces or layers of the sandwich 

panels. As an example, Figure 7-22 shows different stages of damage evolution as 

simulated by the FE model during a 7.8 J impact on a HP160-base sandwich plate. The 

numerical simulations indicate that a significant volume of foam core below the impact 

area reaches the plateau stress stage (where plastic strain of the foam increases at a nearly 

constant compressive stress) at an impact force level of about 1 kN, while only a small 

amount of matrix cracking is predicted in 90° layers of the laminated facesheet; these 

results support the assumption that the stiffness reduction exhibited by the force-

displacement curve at the knee load is mainly induced by localized cell buckling of the 

foam material, rather than by damage of the composite skin. The development of a major 

tensile matrix crack in the bottom 0° layer, a two-lobe delamination at the bottom 90°/0° 

interface and a smaller delamination at the top 0°/90° interface are subsequently 

predicted by the model under increasing contact forces. When the impact force achieves 

about 3 kN, a small area of foam under the impact center reaches the densification stage 

(where the compressive stress of foam increase rapidly with increasing strain); the 

initiation of foam densification, together with membrane effects on the impacted skin, 

could account for the continuous slight increase in slope exhibited by the force-

displacement curve after the stiffness drop at the knee point. In agreement with 

experimental observations, no debonding at the core/skin interface and no fibre breakage 

in the laminated skin is predicted by the model. 
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7.3 Concluding Remarks 

Low-velocity impacts on sandwich panels with cross-ply laminate skins ([0/903/0]) 

were simulated by applying the implemented failure models. Numerical simulations were 

compared with experimental results for sandwich panels with different foam cores (HP60, 

HP100 and HP160) subjected to various impact energies. It is shown that the numerical 

predictions are quite good not only in terms of structural response (force histories, force-

displacement curves and absorbed energies), but also in terms of internal damage 

(temporal sequence of major damage events; projected damage shapes, sizes and through-

thickness distributions). 
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CHAPTER 8 

 

IMPACTS ON SANDWICH PANELS WITH MULTI-DIRECTIONAL 

LAMINATE SKINS 
 

Investigation of impacts on sandwich panels with multidirectional laminate skins 

(stacking sequence: [03/+45/-45]S) bonded to a 10 mm PVC foam core with different 

foam densities(65 kg/m
3
 (HP60), 100 kg/m

3
 (HP100) and 160 kg/m

3
 (HP160)) was also 

carried out. 

8.1 Analysis of Experimental Results 

Typical load histories and force-displacement curves measured during 6.2 J 

impacts on sandwich composites with [03/+45/-45]S facings and 10 mm-thick HP60, 

HP100 and HP160 foam cores are shown in Figure 8-1. Similarly to what observed in 

panels with [0/903/0] skins, [03/+45/-45]S sandwich composites exhibit a strong increase 

in maximum contact force and force-displacement slope, as well as a decrease in impact 

duration, with increasing foam density, thus confirming that the local structural response 

to impact of sandwich composites is greatly affected by the properties of the core. 

In spite of the presence of inertial oscillations during the initial stages of the 

impact, it may be also seen that the force-displacement curves are approximately linear 

up to a load level of about 2 kN, beyond which the curves clearly exhibit a significant 

decrease in slope. 
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(a)                                                                   (b) 

Figure 8-1: Force-time (a) and force-displacement curves (b) for [03/+45/-45]S 

sandwich panels with HP60, HP100 and HP160 foam cores. Impact energy=6.2 J. 

The trends of peak contact forces and energies absorbed during the impact as a 

function of impact energy (Figure 8-2 and Figure 8-3) are also analogous to those 

observed in [0/903/0] sandwich composites. In particular, the dissipation of energy 

appears to be substantially independent of the foam density, in spite of the fact that 

HP100 and HP160 sandwich panels are subjected to larger impact forces, for the same 

impact energy, than HP60-based panels.   

 

Figure 8-2: Peak forces recorded during impact on [03/+45/-45]S sandwich panels. 
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Figure 8-3: Energies absorbed during impact on [03/+45/-45]S sandwich panels. 

The X-radiographs of Figure 8-4 show typical damage induced by impacts in the 

composite facings of HP60, HP100 and HP160 sandwich panels. In all sandwich 

configurations, damage initiates at an impact energy level of about 1 J with a large 

bending matrix crack developing in the lower 0° layers, immediately followed by 

delamination at the -45°/+45° interface and fine matrix cracking in the +45° plies. With 

increasing impact energies, delaminations tend to initiate and grow at all remaining 

interfaces between layers with different orientations, in association with matrix cracking 

in adjacent layers. (Figure 8-5) Significant fibre damage, consisting of short fibre 

fracture paths developing in the top 0° layers in the indentation area, is only observed for 

impact events with energies higher than about 6 J.  

As in sandwich panels with [0/903/0] skins, collapse of the foam material in the 

vicinity of the impacted region, as opposed to damage in the composite layers (which is 

still very limited immediately after reaching the knee point of the force-displacement 

curves), appears as the major degradation mechanism responsible for the change in 

stiffness exhibited by the sandwich panels at the knee load. 
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Figure 8-4: X-radiographs of damage induced by impacts for sandwich composites 

with [03/+45/-45]S skins and with HP60, HP100and HP160 foam cores. 

 

Figure 8-5: X-ray of typical impact damage on the facings of [03/+45/-45]S sandwich 

panels for an impact energy of 6.3J. 
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The areas of the projected damage induced by impact are plotted versus impact 

energy in the graph of Figure 8-6. Even though the features and the temporal sequence of 

the damage mechanisms occurring in sandwich composites with HP60, HP100 and 

HP160 core are very similar, we may notice that sandwich panels with higher foam 

densities (HP100 and HP160) exhibit smaller projected delamination areas (as clearly 

visible in the comparison of Figure 8-4), in spite of the larger impact forces experienced 

by HP100- and HP160-based panels as compared to HP60 panels.  

 

Figure 8-6: Projected delamination areas for [03/+45/-45]S sandwich panels. 

8.2 Comparison between Simulations and Experiments 

8.2.1 Structural Response 

The structural responses predicted by FE simulations at different levels of impact 

energy are compared to experimentally obtained curves in Figure 8-7 - Figure 8-9. It 

may be seen that a good agreement is achieved between FE simulations and experiments 

in terms of both force-time histories and force-displacement relationships for the three 

sandwich configurations. In particular, the developed FE model is capable of reproducing 
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the characteristic nonlinearities, as well as the drastic stiffness change occurring above a 

threshold load level, typical of the deformation response of the sandwich panels.  

The good match achieved between experiments and predictions is also confirmed 

by the comparisons illustrated in the graphs of Figure 8-10 - Figure 8-12, which plot the 

maximum contact forces and the energies absorbed during the impact for sandwich 

composites with the three examined core densities. 

 

 
(a) 

 
(b) 

Figure 8-7: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for sandwich panels with HP60 core. 
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(a) 

 
(b) 

Figure 8-8: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for sandwich panels with HP100 core. 

 
(a) 
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(b) 

Figure 8-9: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for sandwich panels with HP160 core. 

 
(a) 

 
(b) 

Figure 8-10: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for sandwich panels with HP60 core. 
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(a) 

 
(b) 

Figure 8-11: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for sandwich panels with HP100 core. 

 
(a) 
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(b) 

Figure 8-12: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for sandwich panels with HP160 core. 

 

8.2.2 Internal Damage 

Comparisons between experiments and simulations in terms of damage occurring 

in the composite skins at different impact energies for HP60, HP100 and HP160 

sandwich panels are illustrated in the graphs of Figure 8-13 - Figure 8-20.  

Figure 8-13, Figure 8-14 and Figure 8-15 report experimental and predicted 

values of projected damage areas, while the graphs of Figure 8-16, Figure 8-17 and 

Figure 8-18 plot length and width of projected damage (length and width of damage are 

schematically defined in the inset of Figure 8-16). Images of projected delaminated areas 

as revealed by X-radiography and predicted by FE simulations (where different colours 

correspond to different delamination depths) are compared in Figure 8-19 (HP60 

sandwich panels) and Figure 8-20 (HP160 sandwich panels).  

The results illustrated in Figure 8-13 - Figure 8-20 show that the FE model 

accurately predicts the size of total damage induced by impact in the three sandwich 

configurations, correctly simulating smaller damage areas in sandwich composites with 
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higher core density (HP100, HP160); the model is also able to reproduce the elongated 

shape of the projected delaminated areas, with the major axis oriented along the 0° 

direction, and to capture the different rate of growth of projected damage along the 0° 

direction (damage length) and 90° direction (damage width). 

 

 

Figure 8-13: Comparison between measured and predicted projected damage areas for 

sandwich panels with HP60 core. 

 

Figure 8-14: Comparison between measured and predicted projected damage areas for 

sandwich panels with HP100 core. 
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Figure 8-15: Comparison between measured and predicted projected damage areas for 

sandwich panels with HP160 core. 

 

 

 
(a)                                                                   (b) 

Figure 8-16: Comparison between measured and predicted damage length (a) and 

damage width (b) for sandwich panels with HP60 core. 
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(a)                                                                   (b) 

Figure 8-17: Comparison between measured and predicted damage length (a) and 

damage width (b) for sandwich panels with HP100 core. 

 

 
(a)                                                                   (b) 

Figure 8-18: Comparison between measured and predicted damage length (a) and 

damage width (b) for sandwich panels with HP160 core. 
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Figure 8-19: Comparison between experimental and predicted impact damage 

(different gray levels correspond to different delamination depths) in HP60 sandwich 

panels for five impact energies. 
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Figure 8-20: Comparison between experimental and predicted impact damage 

(different gray levels correspond to different delamination depths) in HP160 sandwich 

panels for five impact energies. 
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Figure 8-21: Comparison between X-radiograph, ultrasonic C-scan and predicted 

damage areas for [03/+45/-45]s sandwich panels with HP60 core impacted at 8.5 J. 
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Figure 8-22: Through-thickness distribution of main damage modes as predicted by 

FE model and constructed by ultrasonic C-scans for [03/+45/-45]s sandwich panels 

with HP60 core impacted at 8.5 J. 
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Figure 8-23: Comparison between X-radiograph, ultrasonic C-scan and predicted 

damage areas for [03/+45/-45]s sandwich panels with HP160 core impacted at 8.7 J. 
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Figure 8-24: Through-thickness distribution of main damage modes as predicted by 

FE model and constructed by ultrasonic C-scans for [03/+45/-45]s sandwich panels 

with HP160 core impacted at 8.7 J. 
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Figure 8-21 and Figure 8-23 shows an example of comparison between X-

radiographs, ultrasonic C-scans and predicted delaminated areas, with HP60 and HP160 

sandwich panels respectively. Detailed through-thickness distributions of main damage 

modes predicted by the FE model in the laminated skin of [03/+45-45]S sandwich panels 

with HP60 and HP160 foam cores are compared with those constructed by ultrasonic C-

scans, as shown in Figure 8-22 and Figure 8-24.  

A good agreement is observed between numerical results and experiments for 

different foam densities. In agreement with the internal damage scenario that was 

reconstructed through X-radiography and ultrasonic observations, FE models simulate 

with reasonably good accuracy the size, shape and through-thickness location of 

delaminations at each interface; the characteristic two-lobe shapes of individual 

delaminations, with the axis oriented along the fibre direction of the lower adjacent layer, 

and the three-dimensional arrangement of delaminated areas resulting in a typical spiral 

staircase pattern, are successfully predicted by the FE tool. The FE models also correctly 

predict the development of bending matrix cracking in bottom 0° layers and minor fibre 

fracture in top 0° plies. 

 

As illustrated in the graph of Figure 8-25, which shows an example of individual 

damage modes predicted at various stages during an 8.5 J impact on an HP60-based panel, 

the FE model is also able to simulate correctly the succession of the major damage events 

occurring under increasing impact loads.  
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Figure 8-25: Sequence of damage events predicted by the FE model for a 8.5 J impact 

on a [03/+45/-45]S/HP60 sandwich panel. 

As shown in Figure 8-25, very little damage of the composite skins (a small 

bending matrix crack in the bottom 0° layers) is predicted by the FE model at a load of 2 

kN; the numerical simulations indicate however the initiation of plastic deformation of 

the foam core (reaching the plateau stress of the stress-strain curve) at that load level, 

These results appear to confirm the evidence provided by experimental observations, that 

suggest that foam crushing plays a major role in the noticeable stiffness drop recorded 

during the impact event upon reaching the knee load level. Soon after the knee point, 

delaminations initiate to develop at the +45°/-45° and -45°/+45° interfaces; with 

increasing load, the FE model simulates the development and subsequent growth of 

delaminations at remaining interfaces, together with associated matrix damage in 0° and 
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±45° layers. A small volume of foam core enters the densification stage at a load level of 

about 3 kN, causing the slight stiffness increase after that. Localized fibre fracture, which 

may be possibly related to the small stiffness reduction exhibited at high loads by the 

force-displacement curve, is finally predicted on the indentation area of the top 0° layers 

for a load of about 4.5 kN. In accordance with experimental findings, no delamination is 

predicted by the model at the interface between core and facesheet over the entire impact 

energy range investigated. 

 

8.3 Concluding Remarks 

Low-velocity impacts on sandwich panels with multidirectional laminate skins 

([03/+45/-45]S) and three different foam cores (HP60, HP100 and HP160) were simulated. 

Comparisons between numerical and experimental results were carried out for various 

impact energy levels. Good agreement is again obtained between predictions and 

experiments not only in terms of structural response (force histories, force-displacement 

curves and absorbed energies), but also in terms of internal damage (temporal sequence 

of major damage events; projected damage shapes, sizes and through-thickness 

distributions). 
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CHAPTER 9 

 

IMPACTS ON SANDWICH PANELS WITH DIFFERENT 

CONFIGURATIONS  
 

The developed FE tool was also applied to simulate impacts on sandwich panels 

with different configurations (different core thickness, panel size and boundary 

condition) to further evaluate the accuracy of predictions and the application range of the 

model. 

9.1 Impacts on Sandwich Panels with Different Core Thickness 

The performance of the FE tool was further assessed by comparing the results of 

the numerical analyses to experimental impact data obtained on [03/+45/-45]S/HP60 

sandwich panels with a core thickness of 40 mm.   

9.1.1 Analysis of Experimental Results 

The structural responses to impact of sandwich composites with 10 mm and 40 

mm HP60 foam cores, as characterized by the force vs time and force vs displacement 

curves for an impact energy of about 8.5 J, are compared in the graphs of Figure 9-1. It is 

evident that increasing the core thickness from 10 to 40 mm has a limited effect, for the 

support conditions adopted in the experiments, on the localized response to impact, with 

40 mm core panels only exhibiting a slight reduction in the slope of the force-

displacement curve as compared to 10 mm core panels. X-radiographic inspections also 

show that the extent, features and through-thickness distribution of the damage 
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mechanisms induced by impact in the laminated skins are not significantly influenced, in 

the examined range, by the thickness of the core. 

 
(a)                                                                   (b) 

Figure 9-1: Comparison of force-time (a) and force-displacement (b) curves for 

[03/+45/-45]S sandwich panels with 10 mm and 40 mm thick HP60 cores. 

 

9.1.2 Comparison between Simulations and Experiments 

FE simulations are compared with the results obtained during the experimental 

tests for sandwich panels with 40 mm-thick core in the Figure 9-2 - Figure 9-4.  

It‘s seen that both force-time histories and force-displacement relationships 

(Figure 9-2) are simulated with reasonable accuracy by the model over the whole span of 

investigated impact energies, even though the FE analyses appear to slightly overestimate 

the stiffness reduction produced by damage for high impact energies. As visible in the 

plots of Figure 9-3, the results of the FE analyses are also in good agreement with the 

values of peak contact forces and absorbed energies experimentally measured during the 

impact tests. Similarly, the graphs of Figure 9-4 show that the predictions of the model 

are in very good agreement with the experimental results with regard to the various 
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metrics indicators used to describe the main damage features (projected damage area, 

damage length and damage width).  

A qualitative validation of the predictive capabilities of the model is further 

illustrated in Figure 9-5, which shows, for the whole range of impact energies 

investigated , the good correspondence between the projected delamination pattern as 

predicted by FE calculations and the actual internal damage as experimentally obtained 

by X- radiography. 

 
(a) 

 
(b) 

Figure 9-2: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for sandwich panels with 40 mm thick HP60 core. 
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(a)                                                                   (b) 

Figure 9-3: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for sandwich panels with 40 mm HP60 core. 

 

 
(a)                                                                   (b) 

Figure 9-4: Comparison between predicted and measured projected delamination area 

(a) and damage length and width (b) for sandwich panels with 40 mm HP60 core. 
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Figure 9-5: Comparison between experimental and predicted impact damage in an 

HP60 sandwich panel with 40 mm thick core subjected to five impact energies. 

 

9.2 Impacts on Sandwich Panels with Different Boundary Condition 

The quality of the predictions achieved by the developed FE tool has been further 

assessed and validated against experimental results from a series of impact tests carried 

out on sandwich plates of a larger structural size (350 mm x 350 mm) and different 

boundary condition, as compared to those illustrated in the previous sections.  

9.2.1 Test Configuration and FE Model 

In particular, the experimental data collected during impact tests on 350 mm x 

350 mm panels with [03/+45/-45]S skins and with 20 mm-thick HP60 or HP160 foam 

core was used for comparison with the results of FE simulations. The panels were simply 

supported along two opposite sides parallel to the 0° direction and free over the other two 

edges (Figure 9-6). The support length at the edges of the panels is 25 mm, thus resulting 
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in an inner span of 300 mm. The sandwich panels were impacted at the center with 

energies ranging from 2 to about 6 J.  

 

Figure 9-6: Geometry and boundary conditions of impacted 350 mm x 350 mm 

sandwich composites. 

Figure 9-7 shows the FE model constructed for the numerical calculations. The 

same element size used for meshing the model of the smaller sandwich panels (0.5 mm × 

0.5 mm in the plane of the laminated skins) was used in the fine region of the mesh. 



138 

  

 

Figure 9-7: FE model of 350mm x 350 mm sandwich panels. 

 

9.2.2 Comparison between Simulations and Experiments 

Experimental and predicted force-time and force-displacement curves 

corresponding to impacts of different energy levels are compared in the graphs of Figure 

9-8 and Figure 9-9, for sandwich panels with HP60 and HP160 foam cores, respectively. 

As visible in these graphs, the impact behaviour of the sandwich composite is strongly 

affected by the elastic reaction of the whole sandwich structure, and the force-time and 

force-displacement curves may be seen as the result of the complex combination of the 

localized response to indentation, the global elastic response of the panel, and the 

dynamic interaction between the impactor, the target panel and the surfaces of the 

supporting fixture (Castanié, et al. 2008). In spite of the complexity of the problem, the 

plots of Figure 9-8 and Figure 9-9 show that an acceptable agreement is achieved 
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between FE simulations and experiments in terms of force-time histories and force–

displacement responses for the sandwich configurations with the different foam densities. 

 
(a) 

 
(b) 

Figure 9-8: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for 350mm x 350 mm sandwich panels with HP60 foam core. 

Core thickness = 20 mm. 
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(a) 

 
(b) 

Figure 9-9: Comparison between predicted and experimental force-time (a) and force-

displacement (b) curves for 350mm x 350 mm sandwich panels with HP160 foam core. 

Free span = 300 mm. 

 

Comparisons of simulated and experimental peak forces and absorbed energies at 

various impact energies are reported in the plots of Figure 9-10 and Figure 9-11, which 

show that there is an acceptable match between predictions and experiments in terms of 

maximum contact force and energy dissipated by the panels during the impact. 
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(a)                                                                   (b) 

Figure 9-10: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for a 350 mm x 350 mm sandwich panels (HP60 foam core) 

simply supported on a 300 mm span.  

 

  
(a)                                                                   (b) 

Figure 9-11: Comparison between predicted and measured peak contact forces (a) and 

absorbed energies (b) for 350 mm x 350 mm sandwich panels (HP160 foam core) 

simply supported on a 300 mm span.  

The damage sizes and maps reported in Figure 9-12 - Figure 9-15 show that the 

model provides again damage predictions that are in generally good agreement, both in 

terms of projected planar views and on a ply-by-ply basis, with damage sizes and features 

as obtained through experimental tests at various impact energies. 
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(a)                                                                   (b) 

Figure 9-12: Comparison between predicted and measured projected delamination area 

(a) and damage length and width (b) for 350 mm x 350 mm sandwich panels (HP60 

foam core) simply supported on a 300 mm span.  

 

  
(a)                                                                   (b) 

Figure 9-13: Comparison between predicted and measured projected delamination area 

(a) and damage length and width (b) for 350 mm x 350 mm sandwich panels (HP160 

foam core) simply supported on a 300 mm span.  
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Figure 9-14: Comparison between experimental and predicted impact damage in 350 

mm x 350 mm sandwich panels with HP60 foam cores subjected to three impact 

energies. 

 

X-radiographs

FE simulations

2 J 4.2 J 6.3 J

10 mm

 

Figure 9-15: Comparison between experimental and predicted impact damage in 350 

mm x 350 mm sandwich panels with HP160 foam cores subjected to three impact 

energies. 
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9.3 Concluding Remarks 

The developed failure models were further applied to impact cases with different 

settings: different foam core thickness, different in-plane panel size and boundary 

condition. It is proved that the failure models are applicable to a wide range and show 

reasonably good prediction accuracy. 
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CHAPTER 10 

 

ANALYSIS OF IMPACTS ON LAMINATES 
 

The results in Chapter 7-9 show that the developed model is able to provide quite 

reliable numerical predictions for sandwich panels with various configurations. As a final 

investigation case, the developed damage models were applied to simulate low-velocity 

impact events on composite laminates, for which the structural response and the damage 

resistance may be quite different from those of sandwich composites, because of the lack 

of the supporting effect of the core material. (Foo, Chai and Seah 2008). 

Moreover, additional numerical analyses were conducted to investigate how the 

implementation of intralaminar damage mechanism in the model affects the whole 

prediction accuracy of the model, in order to assess whether a simplified model only 

accounting for interlaminar damage (and thus requiring reduced computational resources 

as compared to the developed model) could provide damage prediction of sufficient 

quality for use in damage tolerance design procedures. 

10.1 Simulation of Impacts on Laminates 

The examined laminate plates have a 10 layer  [03/+45/-45]S stacking sequence 

(the same with that adopted for the facesheets in a class of sandwich panels examined in 

Chapter 8) and a total thickness of 3.2 mm. The experimental setup of the impact test and 
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the finite element model reproducing the laminated plate are similar with the sandwich 

cases, as illustrated in Figure 10-1. 

 

Figure 10-1: FE model of impacted laminate plate. 

 

10.1.1 Structural Response 

Figure 10-2 shows force vs. time and force vs. displacement plots as obtained by 

experimental tests and numerical simulations at various impact energy levels. It is seen 

that the computed results agree well with the experimental ones not only in duration of 

impact events but also in peak contact forces and absorbed energies (Figure 10-3), which 

are calculated as the area under the force-displacement curve and represent the total 

energy dissipated in irreversible damage phenomena (intralaminar or interlaminar 

fracture, matrix plasticity). 
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(a) 

 
(b) 

Figure 10-2: Comparison between experimental and numerical force-time (a) and 

force-displacement (b) curves for laminate panels. 

 

 
(a) 
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(b) 

Figure 10-3: Comparison between experimental and predicted peak forces (a) and 

absorbed energies (b) for laminate panels. 

 

10.1.2 Internal Damage 

Figure 10-4 reports experimental and computed projected damage areas at 

different impact energy levels. The comparison shows that the model is able to reproduce 

the geometry of the projected damage area and its principal orientation along the 0° 

direction. A detailed examination of the damage distribution through the thickness of the 

composite laminates shows that predicted shapes and depth locations of damage areas 

qualitatively agree with the experimental observations, as obtained by X-ray analyses. 

The model is not only capable of reproducing the two-lobe geometry and the main 

orientation of individual damage areas at selected depths (Figure 10-4) but also able to 

predict with reasonable accuracy the damage sizes under various impact energies as 

shown in Figure 10-5. 
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Figure 10-4: Comparison between projected damage areas as obtained by X-ray and 

predicted by FE model (different gray levels in plots indicate different damage depths). 

  
(a)                                                                   (b) 

Figure 10-5: Comparison between predicted and measured projected delamination 

area (a) and damage length and width (b) for laminate panels. 

As a final example, details of the various damage modes predicted by the FE 

model for an impact of 8 J are illustrated in Figure 10-6. It is seen that the FE model not 

only correctly predicts delaminations at individual interfaces, but, in agreement with 
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experimental observations, also simulates other peculiar features of internal damage, such 

as the major bending matrix crack in the lower 0° layers, diffuse in-ply matrix damage in 

±45° layers, and localized fibre fracture at the contact area in the top 0° layers. 

 

Figure 10-6: Interlaminar and intralaminar damage mechanisms predicted by the full 

FE model for impact energy of 8J. 
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10.2 Effect of Implementing In-ply Damage Modes on Prediction Accuracy 

In order to assess the importance of modelling in-ply damage modes for an 

accurate simulation of impact events, numerical analyses were carried out using both the 

full FE model (which incorporates the simulation of both interlaminar and intralaminar 

damage modes) and a reduced FE model, where only delaminations –but not intralaminar 

damage mechanisms- were implemented in the calculations. 

 

The impact force histories obtained by experimental tests and those predicted by 

the FE models both with and without simulation of intralaminar damage are compared in 

the graphs of Figure 10-7 for three impact energies. Good agreement is observed 

between numerical results and experiments for simulations carried out with the full FE 

model, whereas peak loads somewhat higher than those measured experimentally are 

predicted by the reduced FE model.  

The plots of Figure 10-8 show experimental and numerically predicted force-

displacement curves for the same energy levels examined in the graphs of Figure 10-7. 

We note that the force displacement curves simulated by the full FE model show a 

reasonably good match with the experimental observations in both the loading and 

unloading stages. The full FE model correctly reproduces peculiar features of the impact 

response of the laminates, such as the decrease in stiffness observed during the 

experiments at a load level of about 2 kN and the sudden drop in force (associated to 

growth of fibre fracture) recorded at a peak load of 4.6 kN during the 8 J impact test. In 

comparison to the full FE model, the simulations of the reduced FE model still capture 

the general shape of the force-displacement curve, even though both the slope of the 
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curve and the load level at which the curve exhibits a significant stiffness drop appear 

slightly higher than those predicted by the full FE model. 

 

Figure 10-7: Comparison between experimental and numerically predicted force-time 

histories. 

 

Figure 10-8: Comparison between experimental and numerically predicted force-

displacement curves. 

The impact energy-time relationship is represented in Figure 10-9. Following the 

initial contact, the kinetic energy of the impactor is transferred to the laminate in two 

forms: one is stored as elastic energy in the material and the other is dissipated as 

irreversible damage phenomena, including intralaminar and interlaminar damage, and 

material nonlinearities. The kinetic energy of the impactor is totally transformed to the 

laminate when its velocity reduces to zero; afterwards, the elastic energy stored in the 

laminate is transferred back to the impact, causing its upward rebound. The difference 

between the kinetic energy of the impactor immediately before the impact and that 
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measured at the rebound represents the total energy dissipated during the impact event. 

As indicated by the experimental tests illustrated in Figure 10-9, the absorbed energy is 

about 0.49 J for an impact of about 2 J, while the full and reduced FE models predict 

absorbed energies of 0.44 J and 0.28 J, respectively. It is thus evident that better accuracy 

can be achieved on the prediction of energy dissipation when the intralaminar damage is 

taken into account by FE model. Similar conclusions can be drawn for higher energy 

levels, as shown by Figure 10-9 for 4 J and 8 J impacts. 

Eabs

Impact energy = 2 J Impact energy = 4 J Impact energy = 8 J

 

Figure 10-9: Comparison between experimental and numerically predicted histories of 

energy absorbed by the laminate panel.  

Figure 10-10 shows comparisons of peak contact forces and absorbed energies 

obtained by experimental tests and calculated by the FE models over the entire range of 

impact energies investigated. The plots show that a general good agreement is achieved 

between the experiments and the simulated impact behaviour, whether predicted by the 

full FE model or by the reduced FE model, with only a slight tendency of the reduced FE 

model to overpredict peak force values and underpredict dissipated energies, especially at 

the highest impact energy levels. It may be worth remarking that the stiffer laminate 

response and smaller energy dissipation predicted by the reduced FE model as compared 

to the full FE model are not unexpected, since intralaminar damage mechanisms and their 

effect on the laminate behaviour are only taken into account in the full FE model analyses. 
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As an example, fibre fracture energy dissipation of almost 20% of the total absorbed 

energy is estimated using the full FE model for an impact energy of 8 J. 

 
(a) 

 
(b) 

Figure 10-10: Comparison between experimental and predicted peak contact forces 

(a) and absorbed energies (b). 

Comparisons between experiments and simulations in terms of damage 

developing in the laminated plates at different impact energies are illustrated in Figure 

10-11-Figure 10-14.  

Figure 10-11 shows images of projected impact damage as obtained by X-

radiography and as predicted by FE calculations. Both the full and the reduced FE models 

are capable of capturing the elongated shape of the projected damage area, with its major 

axis oriented along the 0° direction. More quantitative comparisons between simulated 
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and experimental results are presented in the graphs of Figure 10-12, where projected 

damage areas, as well as width and height of the damaged area are plotted as a function 

of impact energy. It is seen that the two FE models are able to capture with reasonable 

accuracy the length and the width of the damaged area (Figure 10-12b), while the size of 

the projected damage area, which is correctly predicted by the full FE model, is clearly 

overestimated by the reduced FE model for impact energies above 4 J (Figure 10-12a). 

 

Figure 10-11: Comparison between projected damage areas as obtained by X-ray and 

FE models at various impact energies; different levels in numerically predicted damage 

areas correspond to different damage depths. 
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Figure 10-12: Comparison between experimental and predicted projected damage area 

(a) and damage length and width (b). 

To evaluate in more detail the predictive capabilities of the two FE models, the 

experimental delamination patterns, as reconstructed three-dimensionally by 

combining information acquired through stereoscopic X-radiography and 

micrographic analyses, were compared to those simulated by the models at different 

impact energies. As an example, the illustration of Figure 10-13 shows experimental 

and numerically predicted delamination maps at different depths for an impact energy 
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of 5.6 J. We may see that while the full FE model correctly captures the main features 

of individual delaminations (characterized by a typical two-lobe geometry, with the 

main axis oriented along the fibre direction of the lower layer) at all four damage-

prone interfaces, the reduced FE model only predicts the development of 

delaminations at the 1st (0°/+45°) and 3rd (-45°/+45°) interfaces from the impact side.  

 

Figure 10-13: Through-thickness distribution of delaminated areas as reconstructed by 

stereoscopic X-radiography and predicted by FE models for impact energy of 5.6J. 

Further comparisons between experimental and simulated delaminated areas at 

each interface are presented in the plot of Figure 10-14 for the complete range of 

impact energies. We may observe that while the full FE model provides a reasonable 

estimation of the growth of the four delaminated areas under increasing impact 

energies, the reduced FE model fails –as anticipated above- to predict the onset and 

development of delaminations at the 2nd and 4th interfaces, and largely overpredicts 

delamination sizes at the 1st and 3rd interfaces. The results of the calculations 

suggest, therefore, that even if the structural impact response may be predicted with 

acceptable accuracy without including intralaminar damage models in the FE code, 
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implementation of intralaminar damage mechanisms in the FE analyses may be 

required for a correct simulation of extent and through-thickness location of 

individual delaminations induced by impact. 

 

Figure 10-14: Comparison between experimental and predicted delamination areas at 

different interfaces. 

 

10.3 Concluding Remarks 

The developed failure models were applied to model the low-velocity impact 

response of multidirectional laminated plates over a wide range of impact energies. 
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Rather good agreement was observed between experiments and predictions in terms of 

structural response, extent and shape of the global projected damage area.  

Additional numerical analyses were carried out to investigate the importance of 

modelling in-ply damage modes for accurate simulation of impact events. It was found 

that although the reduced FE model (where only interlaminar damage was included in the 

calculations) could predict with acceptable accuracy the structural impact response of the 

laminates, it was not capable of properly capturing the through-thickness distribution of 

delaminations, thus suggesting that implementation of in-ply damage modes, even if 

significantly increasing the computational complexity of the model, may be required for 

accurate prediction of impact damage pattern in multidirectional laminates. 
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CHAPTER 11 

 

CONCLUSIONS 
 

Sandwich composites, consisting of two thin fibre-reinforced laminate facesheets 

separated by a thick core material of low density, are being increasing used in aerospace, 

marine, automotive, wind energy and many other applications, because of their high 

bending stiffness, superior buckling resistance as well as good static and fatigue strength 

properties. As an example, composite sandwich configurations are nowadays commonly 

adopted in wing shells and internal stiffeners of modern wind turbine blades, and are 

under consideration for potential use in other primary structural elements of the blade, 

such as the load carrying flange of the main spar or the spar-caps of the wing shells. 

One of the main limitations of sandwich composites is their relatively high 

susceptibility to damage caused by foreign object impact events, which can be reasonably 

expected during the whole life (including manufacturing, transport, installation and 

service) of most engineering structures. Typical impact damage occurring in sandwich 

composites involves the combination of different failure mechanisms, such as 

delaminations, matrix cracking, fibre fracture, face-core debonding and core crushing, 

which may be difficult to detect by simple visual inspection (BVID). Damage induced by 

impact, notably delaminations, may induce significant reductions in stiffness and strength 

of the composites and result in a local, or even global, collapse of the structure.  
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While the presence of damage has often been taken into account at the design 

stage by imposing large safety margins, more advanced damage tolerance concepts are 

being gradually introduced in the design process of critical load bearing sandwich 

structures so as to take full advantage of the weight-saving potentiality offered by 

sandwich materials. Design schemes based on a damage tolerance approach require a 

detailed knowledge of the nature and extent of damage induced by impact events for a 

safe estimation of residual strength and expected life of the damaged structure. There is 

thus a strong need for reliable numerical tools capable of providing reasonably accurate 

predictions of impact damage potentially developing during operation lifetime in primary 

sandwich structures. 

Even though various impact test procedures and destructive or nondestructive 

inspection techniques are available to assess the impact damage resistance of sandwich 

composites, experimental testing is extremely time-consuming and cost-intensive, given 

the wide range of possible structural configurations and loading conditions to be 

characterized. While the complexity of physical phenomena involved in an impact event 

restricts the applicability of analytical models to the investigation of simple geometries 

and loading cases, numerical finite element (FE) tools based on appropriate fracture 

models may provide an efficient alternative, at least at a preliminary or intermediate 

design stage, to costly experimental tests for prediction of the impact response of 

composite sandwich structures. 

 

The work of this thesis is to develop a reliable numerical tool to investigate the 

structural and damage response of foam-based sandwich composites.  
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A Finite Element (FE) tool implementing energy-based CDM models and 

cohesive interface elements was developed and implemented into ABAQUS/Explicit 

through user-defined subroutines VUMAT. The model accounts for the initiation and 

propagation of the typical damage modes occurring in the laminate skins (fibre fracture, 

matrix cracking and delaminations) by means of progressive failure models for 

intralaminar damage and interfacial cohesive laws for interlaminar damage, and describes 

the nonlinear behaviour of the foam core by a crushable foam plasticity model natively 

implemented in ABAQUS.  

 

A series of impact tests was conducted on sandwich panels with various 

configurations using an instrumented drop-weight testing machine; impact-induced 

damage was assessed by penetrant-enhanced X-radiography for all specimens. In a 

limited number of selected samples, the through-thickness distribution of impact-inflicted 

delaminations was further assessed by stereoscopic X-radiography and validated by 

ultrasonic C-scans or optical microscopy of polished cross-sections. 

Analyses of experimental findings show that structural and damage resistance to 

impact of sandwich composites is clearly affected by the density of the core material, 

while the thickness of the core has little influence, in the examined range. 

 

Full 3D finite element models were constructed in ABAQUS/Explicit and applied 

to simulate low-velocity impacts on sandwich panels with either cross-ply laminate 

facesheets (stacking sequence: [0/903/0]) or multidirectional laminate skins (stacking 

sequence: [03/+45/-45]S) bonded to a 10 mm PVC foam core with three different foam 
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densities: 65 kg/m
3
 (HP60), 100 kg/m

3
 (HP100) and 160 kg/m

3
 (HP160). Numerical 

predictions were compared with experimental results in terms of both structural response 

and internal damage for impact energies ranging approximately from 1 J to 8 J. 

Good agreement is obtained between numerical simulations and experiments, for 

sandwich panels with both cross-ply and multidirectional laminate skins, not only in 

terms of structural response (force histories, force-displacement curves and absorbed 

energies), but also in terms of internal damage (temporal sequence of major damage 

events; projected damage shapes, sizes and detailed through-thickness distributions). 

Both numerical results and experimental observations support the assumption that the 

stiffness reduction exhibited by the force-displacement curve at the knee load is mainly 

induced by localized cell buckling of the foam material, rather than by damage of the 

impacted composite skin. 

The developed failure models were further applied to impact cases with different 

configurations: different foam core thickness, different in-plane panel size and boundary 

condition. It is proved that the failure models are applicable to a wide range and show 

reasonably good prediction accuracy. 

 

The developed FE tool was finally applied to model the low-velocity impact 

response of composite laminates. Rather good agreement was again observed between 

experiments and predictions in terms of structural response, extent and shape of the 

global projected damage area.  

Moreover, additional numerical analyses were conducted to investigate how the 

implementation of intralaminar damage mechanism in the model affects the whole 
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prediction accuracy of the model. It was found that although the reduced FE model 

(where only interlaminar damage was included in the calculations) could predict with 

acceptable accuracy the structural impact response of the laminate, it was not capable of 

properly capturing the through-thickness distribution of delaminations, thus suggesting 

that implementation of in-ply damage modes, even if significantly increasing the 

computational complexity of the model, may be required for accurate prediction of 

impact damage pattern. 
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