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Abstract

We investigate the reduction to global normal forms of second order Shu-

bin (or Γ) type differential operators P(x,D) in functional spaces on Rn. We

describe the isomorphism properties of normal form transformations, intro-

duced by L. Hörmander for the study of affine symplectic transformations

acting on pseudodifferential operators, in spaces like the Schwartz class, the

weighted Shubin-Sobolev spaces and the Gelfand-Shilov spaces. We prove

that the operator P(x,D) and the normal form PNF(x,D) have the same

regularity/solvability and spectral properties. We also study the stability

of global properties of the normal forms under perturbations by zero order

Shubin type pseudodifferential operators and, more generally, by operators

acting on S (Rn) and admitting discrete representations. Finally, we study

Cauchy problems on Rn globally in time for second order hyperbolic equations

∂ 2
t +P(x,D)+R(x,D), where P(x,D) is a second or der self-adjoint globally

elliptic Shubin pseudodifferential operator and R(x,D) is a first order pseu-

dodifferential operator.
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Introduction

The main goal of the Ph.D. thesis is to address the issue of reduction to

global normal forms of operators of the type

−∆+ 〈A (x),Dx〉+B(x), x ∈ Rn,

where A (x) = {A j,`(x)}n
j,`=1 (respectively, B(x) = {B j,`(x)}n

j,`=1) is a matrix

with entries A j,`(x) (respectively, B j,`(x)) being real or complex polynomials

of degree k (respectively, 2k). In particular, if k = 1, we recapture the second

order Shubin type differential operators of the type

P(x,D) =−∆+< Ax,Dx >+< Bx,x >+< M,Dx >+< N,x >+r,x ∈ Rn,

where A, B are real or complex matrices, M, N ∈ Cn, r ∈ C, < ξ ,η >=

∑
n
j=1 ξ jη j, via conjugation with a normal form transformation (NFT) E

E−1 ◦P(x,D)◦E = PNF(x,D),

In the case of symmetric Shubin type operators we classify the NFT given

by unitary maps E : L2(Rn) 7→ L2(Rn), defined as composition of multiplica-

tion with ei(<Qx,x>+<α,x>) (where Q ∈Mn(R), Qt = Q, α ∈ Rn), translations

Tβ u(x) = u(x + β ), the action of the orthogonal group SO(Rn) and global

Fourier integral operators with quadratic phase function φ(x,η) generating

linear symplectic transformation in R2n

Jv(x) =
∫
R2n

eiφ(x,ξ )−iyξ v(y)dy dξ .
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Such types of global maps have been introduced by Hörmander in the con-

text of the theory of the pseudodifferential operators on Rn (cf. [37], Chapter

18, pp. 157-159), see also [23]. In order to demonstrate that the origi-

nal operator P(x,D) and the normal form operator PNF(x,D) have the same

regularity/solvability and spectral properties, we have to investigate isomor-

phism properties of such type of NFT between function spaces on Rn, like the

Schwartz class S (Rn), the weighted Shubin-Sobolev spaces Qs(Rn), s ∈ Rn,

the Gelfand-Shilov spaces Sµ

ν (Rn), µ,ν > 0, µ +ν ≥ 1. We are also interested

in the study of the stability of the properties of the normal forms under

perturbations

P(x,D)+b(x,D)

with zero order Shubin(Γ-) pseudodifferential operators and we investigate

the corresponding reduction

E−1 ◦b(x,D)◦E = bNF(x,D).

We mention as another source of motivation an approach, based on using

different type of global normal forms of evolution PDEs on Rn for deriving

global estimates in weighted spaces on Rn, proposed by M. Ruzhansky and

M. Sugimoto [54]. We introduce discrete representations for the action of

Shubin type pseudo.differential operators based on eigenfunction expansions

associated to self-adjoint Shubin differential operators. We mention that in

a recent book Ruzhansky and Turunen [55] have proposed a series of fun-

damental new results on pseudodifferential operators on compact Lie groups

and homogeneous spaces based on discrete representations, see also [17], [56]

and the references therein.

We also investigate and classify completely self–adjoint anisotropic Γ el-



ix

liptic operators, which are given for n = 1 by

D2
x +(

k

∑
j=0

a jxk− j)Dx +
2k

∑
`=0

b`x2k− j, k ≥ 2,x ∈ R,

with NFT containing term of the type eiaxk+1
, a ∈ R if a0 ∈ R. However, in

contrast to the case of the Shubin type operators, we are not able to consider

perturbation with p.d.o. since one has to study FIO with phase functions

having at least cubic growth in x (eixk+1
, k ≥ 2).

Clearly we are also inspired, at least indirectly, by ideas coming from

the celebrated Poincaré normal form theory, the Hamiltonian dynamics, the

integrability problems, semi-classical analysis. In fact, if we write the symbol

of the perturbation of the modified multidimensional harmonic oscillator

n

∑
j=1

ω j(ξ
2
j + x2

j)+ p(x,ξ )

and consider the function above locally near the origin (0,0), we find in the

literature an impressive list of fundamental results, we cite [11], [48], [2],

[47] and the references therein. However, we are interested more in global

properties in the context of the theory of Shubin type p.d.o. on Rn which

lead to different notion of normal form.

Next, we consider perturbations of some non self-adjoint Γ−elliptic oper-

ators modeled on 1D complex harmonic oscillators D2
x +ωx2, ω ∈C, ℜω > 0,

ℑω 6= 0. Classes of such operators have been studied in the framework of the

theory of the spectral properties of non self-adjoint operator, for more details

(see [14],[15], [43]). Here we need to use NFT containing non unitary maps

of the type ei(<Qx,x>+i<α,x>) where ℑQ 6= 0 or ℑα 6= 0. Such maps are not

defined on L2(Rn) and S (Rn) and if ℑQ = 0 and ℑα 6= 0, the maps preserve

the Gelfand-Shilov spaces Sµ

µ(Rn) for 1/2≤ µ < 1 while for ℑQ 6= 0 they do

not act even on S1/2
1/2(R

n) but on some scales of Banach spaces in S1/2
1/2(R

n).



We mention that such maps belong to Bargmann-Fock type spaces of entire

functions, which play an important role in the realm of the time-frequency

analysis and Toeplitz operators, cf. see the recent work of Gröchenig and

Toft [31] and Toft [63], and the references therein. The main novelty of

Chapter 3 is the detailed study of reduction to normal forms of multidimen-

sional complex anisotropic Γ differential operators under suitable symmetry

and separation of variables type conditions. Finally, we investigate pertur-

bations with Shubin operators having symbols in S1/2
1/2(R

n). We mention that

pseudodifferential operators with S1/2
1/2(R

n) type symbols have been studied

in different context cf. [63] and [64]. As a consequence of our investigations

we are able to present new results on spectral properties of P(x,D).

We also investigate operators with real non negative principal symbol and

non empty (Shubin type) characteristic set

ΣP = {(x,ξ )∈R2n\0; p2(x,ξ ) := ‖ξ‖2+〈Ax,ξ 〉+〈Bx,x〉= 0} 6= /0, ‖ξ‖2 = 〈ξ ,ξ 〉.

We have two cases: first, the matrix A is symmetric. In that case we are able

to reduce P via unitary NFT to

PNF =−∆u+ i < M,Dx >+(ρ + iσ)x1 + iτx2, M ∈ Rn,ρ,σ ,τ ∈ R.

In the case τ = 0, we obtain Airy type normal form and we are able to describe

completely the hypoellipticity in S (Rn). We observe that the symbol of the

Airy normal form is not hypoelliptic symbol if n ≥ 2. It turns out that for

n≥ 2 the usual functional frame of Shubin spaces Qs(Rn) is not good for the

study of PNF . We outline the notion of new type of spaces suitable for the Airy

type normal form operators and we derive new anisotropic type subelliptic

estimates in such spaces. In the case τρ 6= 0 we are not able to study the

global regularity or solvability on Rn as we encounter serious difficulties for

deriving hypoellipticity-solvability results on Rn, since the Fourier transform
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of the normal form becomes a polynomial perturbation of ∂z1 in C×Rn−2,

z1 = x1 + ix2.

The second case is when A admits nonzero skew–symmetric part. In that

case, we are able, under suitable sharp conditions, to reduce to normal forms

given by multidimensional twisted Laplacian type operators

−∆+
n

∑
j=1

(
τ j(x2 jDx2 j−1− x2 j−1Dx2 j)+

τ2
j

4
(x2

2 j−1 + x2
2 j)

)
+ r, τ j ∈ R,r ∈ R.

and to show new results on regularity and solvability, generalizing previous

results of Dasgupta, Wong [13], Gramchev, Pilipovic and Rodino [23].

Finally, we investigate the Cauchy problem for the second order hyper-

bolic operator D2
t +P(x,Dx)+R(x,D) globally on Rn, where P is a self–adjoint

globally elliptic or twisted Laplacian type Shubin operator and R is a first

order pseudodifferential operator. We derive new results on global in time

well posedness of the Cauchy problem in functional frame containing the

Schwartz class, the weighted Shubin spaces and the Gelfand–Shilov spaces.

The thesis is organized as follows: Chapter 1 is dedicated to some prelim-

inaries on Γ p.d.o. It follows the exposition in the book of Nicola and Rodino

[50].

Chapter 2 is concerned with second order self-adjoint differential opera-

tors. We recall that Sjöstrand [59] studied in details second order differential

operators of Shubin type (see also [38] and [4] and the references therein).

We start by proposing some refinements, namely, we derive a necessary and

sufficient condition for the reduction of P(x,D) to harmonic oscillators by

conjugations defined by multiplication with quadratic oscillation type maps

and orthogonal transformations. More precisely, we show that there are

two different patterns of behaviour, namely, the classification depends on

whether the matrix A = {a jk}n
j,k=1 is symmetric, or stated in an equivalent



way, whether the linear differential form

〈Ax,dx〉= ∑
j,k

a jkx jdxk is closed.

Set A = Asymm+Askew, Asymm = AT
symm, Askew =−AT

skew. If Askew = 0 we show

that all globally elliptic operator are reduced to

Hω =−∆+
n

∑
j=1

ω
2
j x2

j + r, for some ω j > 0, j = 1, . . . ,n, r ∈ R,

using the NFT of the type

Uv(x) = e−i 1
4 (<Qx,x>+<α,x>)v(S0x),

and U is an automorphism of each of the following spaces S (Rn), Qs(Rn),

s ∈ R,Sµ

ν (Rn),µ ≥ ν . Moreover, U preserves the Shubin type operators,

namely b(x,D) ∈ OPΓm iff U∗ ◦b(x,D)◦U ∈ OPΓm.

We also propose, motivated by the paper of Greendfield and Wallach on

global hypoellipticity of commuting differential operators on compact Rie-

mannian manifold cf [30], new discrete representation of the action of b(x,D)

provided b(x,D) commutes with P and the eigenvalues of P are simple, which

is equivalent to the non resonance condition

ω1, . . . ,ωn are linearly independent over Q.

First, we derive easily the complete description of the centralizer P(x,D) in

the algebra of the Γ pseudodifferential operators. However, replacing the

commutativity with less restrictive and more natural condition in the the

pseudodifferential operator theory

[P(x,D),b(x,D)] = R(x,D) ∈ OPΓ
−∞(Rn),

OPΓ−∞(Rn) being the space of regularizing Γ operators, small divisors type

problems arise and we have to impose Diophantine conditions on ω =(ω1, . . . ,ωn),
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namely, there exist C > 0, τ ≥ 0, such that

|〈ω,α〉| ≥ C
|α|τ

, α ∈ Zn \0,

in order to demonstrate the decomposition

b(x,D) = bcomm,P(x,D)+b∞(x,D), where [P,bcomm,P] = 0, b∞(x,D) ∈ OPΓ
−∞.

In the third chapter, we address the reduction to normal form for complex

second order Shubin type operators. We prove, using complex WKB methods

and the theory of complex ordinary differential equations, that one can find

a NFT U with quadratic exponential growth reducing P to the complex

harmonic oscillator

U−1 ◦P◦U ◦ e = D2
x +ωx2 + r, ω ∈ C,ℑω 6= 0.

We describe completely the spectral properties of P. In particular, we reduce

our operator to three cases

L+ = D2
x + iεxDx +(1+ iδ )x2 + ipDx +qx+ τ, (1)

L− = D2
x + iεxDx +(−1+ iδ )x2 + ipDx +qx+ τ, (2)

L0 = D2
x + iεxDx + iδx2 + ipDx +qx+ τ, (3)

where ε,δ ∈ R, q,τ ∈ C. Next, we investigate in details normal forms of

multidimensional anisotropic operators. Finally, perturbations with S1/2
1/2(R

n)

Shubin type operators are discussed. As it concerns the one-dimensional

anisotropic Shubin operators, we mention a paper of Nicola and Rodino [51]

where the authors study global hypoellipticity in S (R). We stress the fact

that our proofs are based on the reduced to the normal form operators

L2k,ρ = D2
x + x2k +

2k−3

∑
j=0

ρ jx2k−3− j. (4)



where ρ ∈ R2k−2.

In Chapter 4, we study the normal form of classes of Shubin type degenerate

operators with non negative principal symbol. We stress that our classes

of degenerate operators is different from those studied in [34], [49]. Two

novelties appear: first, for the Airy type normal from operators we derive

global hypoellipticity in S (Rn) and anisotropic subelliptic type estimates in

new spaces. Our proofs borrow ideas from the approach of F. Treves [65] for

showing local subelliptic estimates for first order p.d.o. of principal type.

Second novelty occurs in the global hypoellipticity result for twisted Lapla-

cian type operators: discrete phenomena appear for the zero order term, in

contrast with the hypoellipticity results in [49], where the estimates depend

only on the sub-principal symbol.

We have again two cases: when Askew = 0 and dim(ΣP) ≥ 1 we find the

Airy type operator and the ∂ operator

PNF =−∆+ i〈M,Dx〉+ρx1 + iσx1 + iτx2.

In τ = 0 we obtain the multidimensional Airy type operator, while if τρ 6= 0

then we have that the Fourier transform of PNF is written as polynomial

perturbation of ∂ type operator. We prove complete classification of the

Airy type normal form case.

In the second case Askew 6= 0 we reduce to normal forms generalizations

of twisted Laplacian type operators and derive a complete description of the

spectral properties and the global hypoellipticity and solvability in S (Rn)

and the Gelfand–Shilov spaces Sµ

µ(Rn), µ ≥ 1/2.

In the last chapter we study the well-posedness for a second order of
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Cauchy problem∂ 2
t u+P(x,D)u+R(x,D)u = 0, t ≥ 0, x ∈ Rn,

u(0,x) = u0 ∈ S′(Rn), ut(0,x) = u1 ∈ S′(Rn).

We prove the well posedness in C∞([0,∞[: S (Rn)),C∞([0,∞[: Qs(Rn)),C∞([0,∞[:

Sµ

ν (Rn)). One of the fundamental ingredients of the proofs is the systematic

use of discrete Fourier analysis defined by the eigenfunction expansions for

self-adjoint globally elliptic differential operators in functional spaces, follow-

ing the approach used by Gramchev, Pilipovic and Rodino [23].
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Chapter 1

Basic notions

In the first section of this chapter we recall some definitions and properties

of function and distribution spaces on Rn, which we shall use in this thesis (see

the book of Rodino [52]for details). In the second one we give an introduction

to the theory of pseudodifferential operators and its symbolic calculus (see

the book of Rodino e Nicola 2010 [50]). The last section is devoted to some

notions of the spectral theory.

1.1 Distribution and Function spaces

1.1.1 The spaces S and S ′

In this section, we introduce the Schwartz space S (Rn) and its dual

spaces the class of temperate(tempered) distribution S ′(Rn).

Definition 1. The Schwartz class S (Rd) is defined as the space of all smooth

functions in Rd such that

sup
x∈Rd
|xβ

∂
α f (x)|< ∞, for all α,β ∈ Nd.

5



6 1. Basic notions

Before recalling some properties of the Schwartz space, we need to define

the space P, the space of C∞ functions with polynomial growths at the

infinity.

Definition 2. We define P0, as the set of all continuous functions ϕ such

that

|ϕ(x)| ≤C(1+ |x|2)N ,

for some constants C and N. While we write ϕ ∈P if ϕ is a C∞ function

such that ∂ αϕ ∈P0, for all α ∈ Zd
+.

As explained by the following Lemma, (we refer the reader to Lemma 1.4

in [57] for more details), S is closed under the operations of differentiation

and multiplication by C∞ functions with polynomial growths at the infinity.

Lemma 1. One has

i) For any α ∈ Zd
+ and ϕ ∈S (Rd). Then ∂ αϕ ∈S (Rd) with

|∂ α
ϕ|k ≤ |ϕ|k+|α|,

for all k ∈ Z+.

ii) For any ψ ∈P there exist two sequence Ck and Nk such that If ϕ ∈

S (Rd) then ϕψ ∈S (Rd) with

|ϕψ|k ≤Ck|ϕ|k+2Nk ,

for all k∈Z+. In particular, if ψ|(x)= xα one has |xαϕ|k≤ 2k(α!)|ϕ|k+|α|.

With |u|k we denote the inductive norm of the Schwartz class.

We point out that one motivation for the introduction of S (Rd) lies in the

fact that when dealing integrals of such function, all the difficult operations
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will be valid thanks to the decay of Schwartz functions at infinity. For this

reason we give the properties of this function class, (for more details see

Theorem 1.6 in [57]).

Proposition 1. Let 1≤ p<∞ and ϕ ∈S (Rd). One has S (Rd)⊂
⋂

p Lp(Rd)

with NormLp(ϕ)≤ (2π)n|ϕ|2n. Moreover

i) For any 1 ≤ p < ∞, u ∈ Lp(Rd) and ϕ ∈ S (Rd). Then uϕ ∈ L1(Rd)

with

|(u,ϕ)| ≤ (2π)nNormLp(u)|ϕ|2d.

ii) For any measurable u such that uϕ ∈ L1(Rd) for all ϕ ∈S (Rd)

(u,ϕ) = 0 for all ϕ ∈S (Rd)⇒ u = 0 a.e.

iii) If ϕ→U(ϕ) is a semilinear form on S (Rd) satisfying |U(ϕ)| ≤C‖ϕ‖L2(Rd)

then there exists a unique u ∈ L2(Rd) such that U(ϕ) = (u,ϕ) for ϕ ∈

S (Rd), and ‖u‖L2(Rd) ≤C.

It is well known that the Fourier transform

Fϕ(ξ ) = ϕ̂(ξ ) =
∫

e−i〈x,ξ 〉 f ((x) dx, dx = (2π)(−d/2)dx

defines an isomorphism of S (Rd) and an isometry of L2(Rd). The inverse

Fourier transform is

F−1
ϕ(x) =

∫
ei〈x,ξ 〉 f̂ (ξ )dξ .

The following Theorem, (see Theorem 1.8 in [57] for more details), estab-

lishes some properties of the Fourier transform in the Schwartz class.

Theorem 1. For any ϕ ∈ S (Rd), one has ϕ̂ ∈ S (Rd). Moreover, the

Fourier transform ϕ̂ of ϕ ∈S (Rd), satisfies
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i) D̂αϕ(ξ ) = ξ α ϕ̂(ξ ) and x̂αϕ(ξ ) = (−1)|α|Dα ϕ̂(ξ ), for any α ∈ Zd
+.

ii) (Parseval formula) (ϕ̂, ψ̂) = (2π)n(ϕ,ψ), for all ϕ ∈S (Rd).

Now we are able to define the space of temperate distributions.

Definition 3. We say that u is a temperate distribution, and we write u ∈

S ′(Rd) if u is a semilinear form ϕ → (u,ϕ) on S (Rd), with two constants

C ∈ R and N ∈ Z+ such that

|(u,ϕ)| ≤C|ϕ|N for ϕ ∈S (Rd).

It is well known that every Lebesgue space Lp(Rd) is a subspace of

S ′(Rd).Thus, we may construct the extension of the Fourier transform to

S ′(Rd).

Theorem 2. Let u ∈S ′(Rd). Then the formulas

(û,ϕ) = (u, ϕ̂), for ϕ ∈S (Rd),

defines distributions û∈S ′(Rd). Moreover if u∈ L2(Rd) it implies û∈ L2(Rd)

via Parseval formula:

(û, v̂) = (2π)n(u,v), for u,v ∈ L2(Rd).

We may also extend to the temperate distributions space the operator of

differentiation. Thus, if u ∈S ′(Rd), the following formula

(Dαu,ϕ) = (u,Dα
ϕ), for ϕ ∈S (Rd)

defines a distribution Dαu ∈S ′(Rd), for any α ∈ Zd
+.

Remark 1. We note that this operation extends the usual differentiation

of functions. We remark the important fact that differentiation is always

possible in the space of distributions. We can now always differentiate a

function, even when it is not classically differentiable.
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Unfortunately, it has been proved that it is impossible to define in general

the product of two distributions with the usual properties of products of

functions. For example the operation of multiplication will be restrict to the

following two situations:

i) when u and ψ are functions;

ii) when ψ ∈P and u ∈S ′(Rd), the formula

(ψu,ϕ) = (u,ψϕ), for ϕ ∈S (Rd)

defines a distribution ψu ∈S ′(Rd).

1.1.2 The spaces D and D ′

As explained by the previous section to have a good theory of Fourier

transformation, we need the control of growth at infinity of temperate distri-

butions. However, if one gives up the Fourier transformations to keep only

the operations of differentiation and multiplication by smooth functions, one

can consider much wider classes of distributions. Before introducing the def-

inition of this distribution class, we need to define the functional space of

D(Ω).

Definition 4. Let Ω ⊆ Rd be an open set of Rd. C∞
0 (Ω) denotes the linear

subset consisting of those functions in C∞
0 (Rd) which have compact support

in Ω.

Now we are able to define the space D ′(Ω).

Definition 5. Let Ω⊆Rd be an open set of Rd. One can define a distribution

in Ω as follows: u ∈D ′(Ω) if u is a linear form on C∞
0 (Ω) continuous in the
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sense that for each compact set K ⊂Ω, there exist two constants Ck,Nk such

that

|(u,ϕ)| ≤Ck|ϕ|NK for ϕ ∈C∞
0 (Ω) and supp ϕ ⊂ K,

where the notation suppϕ means the support of ϕ, and it is define as the

intersection of all closed subsets in whose complement ϕ vanishes.

The product ψϕ ∈D ′(Ω) is defined by the formula (ψu,ϕ) = (u,ψϕ) for any

u ∈D ′(Ω) and ψ ∈C∞(Ω).

Remark 2. The obvious inclusion D(Rd) ⊂S (Rd), is strict. For example

the Gaussian e−|x|
2∈S (Rd); but it is not in D(Rd).

Finally, we recall the Paley-Wiener-Schwartz theorem, which shows that

distributions with compact support can be recognized by their Fourier trans-

form, (see for more details Theorem 1.13 in [57] or see [52])

1.1.3 Sobolev spaces Hs

One property of the Fourier transform states that for a temperate dis-

tribution u, u ∈ L2(Rd) is equivalent to û ∈ L2(Rd). Moreover, there is a

correspondence between differentiation of u and multiplication of û by a poly-

nomial, there is also a correspondence between the smoothness of u and the

growth of û at infinity. This fact is used to define the Sobolev spaces which

are more convenient than the classical Ck(Rd).

Definition 6. Let s ∈ R, and u ∈ S ′(Rd). We will write u ∈ Hs(Rd), if

〈ξ 〉sû(ξ ) ∈ L2(Rd). In other words, u ∈ Hs(Rd) if

‖u‖2
Hs(Rd) =

∫
〈ξ 〉s|û(ξ )|2 dξ < ∞,

where 〈ξ 〉=
√

1+ |ξ |2.
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We note that we have the following inclusions: Hs(Rd)⊂ Ht(Rd) if s≥ t

and S (Rd)⊂ H∞(Rd)⊂ H−∞(Rd)⊂S ′(Rd), where H∞ =
⋂

s Hs and

H−∞ =
⋃

s Hs. These inclusions are strict, for example it is not true that

S = H∞. In fact if one take u(x) = (1+ |x|2)−d, u ∈ H∞ but u /∈S .

As explained by the following Proposition (we refer the reader to Proposition

1.14 in [57]), the Sobolev spaces measure the same smoothness as the Ck(Rd)

up to a fixed shift of exponents.

Proposition 2. For all s ∈ R one has

u ∈ Hs+1(Rd) ⇔ u,Dx1u, . . . ,Dxd u ∈ Hs(Rd),

with the equality ‖u‖2
Hs+1(Rd)

= ‖u‖2
Hs(Rd)

+∑ j ‖Dx ju‖2
Hs(Rd)

. Moreover, for any

k ∈ Z+∪{∞},

i) u ∈ Hk(Rd)⇔ Dαu ∈ L2(Rd), for all |α| ≤ k.

ii) If s > d
2 + k and u ∈ Hk(Rd)⇒ Dαu are bounded continuous functions

for |α| ≤ k.

Using the Riesz’s representation theorem, the Hs distributions can also be

characterized as the continuous semi-linear forms of H−s. More precisely we

have the following Proposition, (for more details see Proposition 1.15 [57]).

Proposition 3. If u ∈ Hs(Rd) and ϕ ∈S (Rd), then

|(u,ϕ)| ≤ ‖u‖Hs(Rd)‖ϕ‖H−s(Rd).

Conversely, if u ∈S ′(Rd) satisfies |(u,ϕ)| ≤C‖ϕ‖H−s(Rd) for some constant

C and all ϕ ∈S (Rd), then u ∈ Hs(Rd) with ‖u‖Hs(Rd) ≤C.

When we study the linear partial differential equation with variable co-

efficients, using Hs(Rd) distributions, we will have to consider products of
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distributions with the coefficients of the equation. To measure the smooth-

ness of these products, we first compute the Fourier transforms, as explained

by the following Lemma, (we refer the reader to Lemma 1.17 in [57] for more

details).

Lemma 2. One has

ûv(ξ ) =
∫

û(ξ −η)v̂(η) dη =
∫

û(ζ )v̂(ξ −ζ ) dζ ,

for any u,v∈ L2(Rd), as well as for any u∈H∞(Rd) and v∈H−∞(Rd). More-

over the Leibniz formula

Dα(uv) = ∑
β

(
α

β

)
(Dβ u)(Dα−β v),

holds for any u,v ∈ H |α|+r(Rd), r > n/2

From the Lemma 2 and the Peetre’s inequality we get the following con-

tinuity properties, as stated by the following Corollary, (for more detail see

Corollary 1.19 in [57])

Corollary 1. Let s ∈ R and ϕ ∈ H∞(Rd). Then

u ∈ Hs(Rd)⇒ ϕu ∈ Hs(Rd)with ‖ϕu‖Hs(Rd) ≤ 2|s|−(d/2)‖ϕ‖H |s|+d(Rd)‖u‖Hs(Rd).

Moreover, if

a(x,D) = ∑
|α|≤m

aα(x)Dα

is a linear partial differential operator of order m with coefficients aα(x) ∈

H∞(Rd) then a(x,D) maps continuously Hs(Rd) into Hs−m(Rd), for any s∈R.

1.1.4 Gelfand-Shilov spaces Sµ

ν

If one would like to know more precisely how fast the decay of f ∈S (Rd)

is at the infinity, then it is convenient to use the spaces Sµ

ν (Rd), subspaces of
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S (Rd). We will define them in terms of simultaneous estimates of exponential

type for f (x) and f̂ (ξ ). We note the symmetrical role of the variables x and

ξ .

Definition 7. Let µ > 0 and ν > 0. The function f (x) is in Sµ

ν (Rd) if f (x) ∈

S (Rd) and there exists a constant ε > 0 such that

| f (x)|. e−ε|x|1/ν

, (1.1)

| f̂ (ξ )|. e−ε|ξ |1/µ

. (1.2)

We note that we have the inclusions Sµ

ν (Rd)⊂ Sµ ′

ν ′ (R
d) for µ ≤ µ ′,ν ≤ ν ′.

It is also well known that application of the Fourier transform interchanges

the indices µ and ν in the above definition. In fact we have the following

Proposition (see Theorem 6.1.2 in [50])

Proposition 4. For f ∈S (Rd), we have f ∈ Sµ

ν (Rd) if and only if

f̂ ∈ Sν
µ(Rd).

Remark 3. In particular the symmetric spaces Sµ

µ(Rd) , µ > 0, are invariant

under the action of the Fourier transform. It will be clear that Definition 7

does not change meaning, if referred to f ∈ L2(Rd), or f ∈S ′(Rd), provided

(1.1), (1.2) make sense.

Now we are interested in passing from the estimates (1.1), (1.2) to esti-

mates involving only f (x). The first step is to convert exponential bounds in

the factorial bounds. For this reason we recall the following Proposition (see

for more details Proposition 6.1.5 in [50])

Proposition 5. The following conditions are equivalent:

i) the condition (1.1) holds, i.e., there exists a constant ε > 0 such that

| f (x)|. e−ε|x|1/ν

. (1.3)
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ii) there exists a constant C > 0 such that

|xα f (x)|.C|α|(α!)ν , α ∈ Nd. (1.4)

The following Theorem, (we refer the reader to Theorem 6.1.6 in [50] for

more details), give us an equivalent definition of Sµ

ν (Rd).

Theorem 3. Assume µ > 0,ν > 0,µ +ν ≥ 1. For f ∈S (Rd) the following

conditions are equivalent:

i) f ∈ Sµ

ν (Rd).

ii) There exists a constant C > 0 such that

|xα f (x)|.C|α|(α!)ν , α ∈ Nd; (1.5)

|ξ β f̂ (ξ )|.C|β |(β !)µ , β ∈ Nd. (1.6)

iii) There exists a constant C > 0 such that

‖xα f (x)‖L2(Rd) .C|α|(α!)ν , α ∈ Nd; (1.7)

‖ξ β f̂ (ξ )‖L2(Rd) .C|β |(β !)µ , β ∈ Nd. (1.8)

iv) There exists a constant C > 0 such that

‖xα f (x)‖L2(Rd) .C|α|(α!)ν , α ∈ Nd; (1.9)

‖∂ β f (x)‖L2(Rd) .C|β |(β !)µ , β ∈ Nd. (1.10)

v) There exists a constant C > 0 such that

‖xα
∂

β f (x)‖L2(Rd) .C|α|+|β |(α!)ν(β !)µ , α,β ∈ Nd. (1.11)

vi) There exists a constant C > 0 such that

|xα
∂

β f (x)|.C|α|+|β |(α!)ν(β !)µ , α,β ∈ Nd. (1.12)
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We note that the assumption µ +ν ≥ 1 in Theorem 3 is not restrictive.

In fact in the Theorem 4 we will prove that for µ +ν < 1 the spaces Sµ

ν (Rd)

contain only the zero function. For this aim we give the following Propositions

(see Proposition 6.1.1, Proposition 6.1.8 and Proposition 6.1.9 in [50])

Proposition 6. Let µ > 0,ν > 0 and f ∈S (Rd). Then the estimates (vi)

in Theorem 3 are valid if and only if there exist positive constants C and ε

such that

|∂ β f (x)|.C|β |(β !)µe−ε|x|(1/ν)
, β ∈ Nd. (1.13)

Hence, when µ +ν ≥ 1 the estimates give an equivalent definition of Sµ

ν (Rd).

Proposition 7. Assume 0 < µ < 1,ν > 0 and f ∈ S (Rd). Let (1.13) be

satisfied for suitable constants C > 0 and ε > 0. Then f extends to an entire

function f (x+ iy) in Cd, with

| f (x+ iy)|. e−ε|x|(1/ν)+δ |y|1/(1−µ)
, (1.14)

where δ is a suitable positive constant. In the case µ = 1,ν > 0, f extends

to an analytic function f (x+ iy) in the strip {x+ iy ∈ Cd : |y|< T} with

| f (x+ iy)|. e−ε|y|(1/ν), |y|< T, (1.15)

for suitable T > 0.

Therefore, if µ +ν ≥ 1 and µ < 1 then every f ∈ Sµ

ν (Rd) extends to the

complex domain as an entire function satisfying (1.14), while if µ + ν ≥ 1

and µ = 1 then every f ∈ Sµ

ν (Rd) extends to the complex domain as an

holomorphic function in a strip satisfying (1.15).

The following Theorem, (see Theorem 6.1.10 in [50] for more details), answers

the question of the triviality of the classes Sµ

ν (Rd), when µ + ν < 1. This

result can be expressed by the statement that a function f (x) and its Fourier

transform f̂ (ξ ) cannot both be small at infinity.
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Theorem 4. Let f ∈S (Rd) satisfy

| f (x)|. e−ε|x|1/ν

, | f̂ (ξ )|. e−ε|ξ |1/µ

,

for some ε > 0,µ > 0,ν > 0 and µ + ν < 1. Then f ≡ 0. In other words,

according to the Definition, the classes Sµ

ν (Rd) are trivial if µ +ν < 1.

Moreover, if µ +ν < 1 each conditions (ii)-(vi) in the Theorem 3 and (1.13),

implies f ≡ 0.

We recall that the symmetric Gelfand-Shilov spaces Sµ

µ(Rd), µ ≥ 1/2, are

invariant under the Fourier transform (see Proposition 4). These spaces play

an important role in the applications to the study of Shubin operator. It is

convenient for Sµ

µ(Rd) to reformulate (v), Theorem 3, in the following form,

(see Proposition 6.1.12 in [50]).

Proposition 8. Let µ ≥ 1
2 . A function f ∈S (Rd) belongs to Sµ

µ(Rd) if and

only if there exists a constant C > 0 such that

‖xα
∂

β f (x)‖L2(Rd) .CNNNµ , for |α|+ |β | ≤ N, N = 0,1,2, . . . .

1.2 Symbols and pseudodifferential operators

1.2.1 Symbol classes

Before introducing the definition of pseudodifferential operator we need

to define the general notion of symbol classes. We begin with the following

concepts of sub-linear weight and temperate weight

Definition 8. A positive continuous function φ(x,ξ ), (x,ξ ) ∈ R2d, is called

a sub-linear weight if

1≤ φ(x,ξ ). 1+ |x|+ |ξ |, (1.16)
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A positive continuous function φ(x,ξ ) is called temperate weight, if there

exists s > 0, such that

φ(x+ y,ξ +η). φ(x,ξ )(1+ |y|+ |η |)s, (1.17)

Now we define the symbol classes S(M;φ ,ψ)

Definition 9. Let φ(x,ξ ) and ψ(x,ξ ) be sub-linear and temperate weights.

Let M(x,ξ ) be a temperate weight. With S(M;φ ,ψ) we denote the space of

all smooth functions a(x,ξ ), (x,ξ ) ∈ R2d such that for every α,β ∈ Nd,

|∂ α

ξ
∂

β
x a(x,ξ )|. M(x,ξ )ψ(x,ξ )−|α|φ(x,ξ )−|β |. (1.18)

In this thesis we will use a particular kind of symbols, the so called Γ-

symbols. They are defined by taking φ(z)=ψ(z)= 〈z〉, where z=(x,ξ )∈R2d,

in the Definition 9.

Definition 10. Let m ∈ R. We define Γm(Rd), as the set of all function

a(z) ∈C∞(R2d) satisfying,

|∂ γ
z a(z)|. 〈z〉m−|γ|, (1.19)

for all γ ∈ N2d.

For completeness, we also define the G-classes (introduced by Parenti

and Cordes). Note that, differently from the Γ-classes, the symbols in the

G-classes have independent asymptotic behaviour in x and ξ . However, they

can be seen as a special case of Definition 9 with ψ = 〈ξ 〉 and φ = 〈x〉.

Definition 11. Let m,n ∈R. We define Gm,n(Rd), as the set of all functions

a(x,ξ ) ∈C∞(R2d) satisfying the estimates

|∂ α

ξ
∂

β
x a(x,ξ )|. 〈ξ 〉m−|α|〈x〉n−|β |, (1.20)

for all α,β ∈ Nd,
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For the symbolic calculus in S(M;φ ,ψ), it is very important that the sub-

linear and temperate weights satisfy the following strong uncertainty princi-

ple:

ψ(x,ξ )φ(x,ξ )& (1+ |x|+ |ξ |)δ for some δ > 0. (1.21)

It is well known (see [50]), that if (1.21) holds, then the symbols in S(Mhn;φ ,ψ),

where h(x,ξ ) is the Plank function, decay at infinity, together with their

derivatives provided that n is large enough. Then, one can introduce a no-

tion of asymptotic expansion in S(M;φ ,ψ)

Definition 12. Let n ∈ N and a ∈ S(M;φ ,ψ), for any given sequence of

symbols an ∈ S(Mhn;φ ,ψ)), we write

a(x,ξ )∼∑
n

an(x,ξ ) (1.22)

if, for every N ≥ 1,

a(x,ξ )−
N−1

∑
j=0

a j(x,ξ ) ∈ S(M;φ ,ψ). (1.23)

The right-hand side of (1.22) is called asymptotic expansion of a.

As explained by the following Proposition (we refer the reader to Propo-

sition 1.1.16 in [50] for more details), if the strong uncertainty principle is

satisfied we have an asymptotic expansion modulo a Schwartz function.

Proposition 9. Assume the strong uncertainty principle (1.21). Let an ∈

S(Mhn;φ ,ψ), n ∈ N. Then there exists a symbol a(x,ξ ) ∈ S(M;φ ,ψ) such

that

a(x,ξ )∼∑
n

an(x,ξ )

Moreover a is uniquely determined modulo Schwartz functions.
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1.2.2 Pseudodifferential operators

Oscillatory integrals

In this section we want to sketch a theory of oscillatory integrals which

will be used to define pseudodifferential operators. For more details we refer

the reader to [57]. Note that these integrals are in general not absolutely

convergent.

Definition 13. (Spaces of amplitudes) Let m ≥ 0. With Am we denote the

space of all functions a ∈C∞(Rn) such that

sup
x∈Rn
〈x〉−m|∂ α

x a(x)|< ∞ for all α ∈ Zn
+. (1.24)

In this space we will use the following seminorms

‖a‖Am,k = max
|α|≤k
‖〈x〉−m

∂
αa‖L∞(Rn). (1.25)

The following Theorem (given by [57] Theorem 2.3) defines the notion of

oscillatory integrals

Theorem 5. Let q be a non degenerate real quadratic form on Rn (i.e.

∇q(x) 6= 0, for x 6= 0) a ∈ Am and ϕ ∈S (Rn), such that ϕ(0) = 1. Then the

limit

lim
ε→0

∫
eiq(x)a(x)ϕ(εx)dx (1.26)

exists, is independent of ϕ (as long as ϕ(0)= 1), and is equal to
∫

eiq(x)a(x)dx,

when a ∈ L1(Rn). When a /∈ L1(Rn) the limit in (1.26) is still denoted by∫
eiq(x)a(x)dx, and fulfils∣∣∣∫ eiq(x)a(x)dx

∣∣∣≤Cq,m‖a‖Am,m+n+1, (1.27)

where the constant Cq,m depends only on the quadratic form q and on the

order m.
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Some properties of oscillatory integrals are listed below (see Theorem 2.5

[57])

Proposition 10. -

i) Change of the variable: if A is an invertible real matrix, then∫
eiq(Ay)a(Ay)|detA|dy =

∫
eiq(x)a(x)dx.

ii) Integration by parts: if a ∈ Am, b ∈ A` and α ∈ Zn
+, then∫

eiq(x)a(x)∂ αb(x)dx =
∫

b(x)(−∂ )α(eiq(x)a(x))dx.

iii) Differentiation under
∫

: if a∈Am(Rn×Rp) then
∫

eiq(x)a(x)dx∈Am(Rp)

and

∂
α
y

∫
eiq(x)a(x,y)dx =

∫
eiq(x)

∂
α
y a(x,y)dx for all α ∈ Zp

+.

iv) Interchange of the
∫

: if a ∈ Am(Rn×Rp) as in iii) and if r is a non

degenerate real quadratic form on Rp,∫
eir(y)

(∫
eiq(x)a(x,y)dx

)
dy =

∫
ei(q(x)+r(y))a(x,y)dxdy.

Pseudodifferential operators

Definition 14. Let m ∈R. We say that a(x,ξ ) belongs to the set of symbols

Sm(R2n) if and only if a(x,ξ ) ∈C∞(R2n) and the following is satisfied

|∂ α

ξ
∂

β
x a(x,ξ )|. 〈ξ 〉m−|α|, (1.28)

∀α,β ∈ Nn. We also denote
⋃

m Sm by S∞ and
⋂

m Sm by S−∞.

We define, also, for these symbol classes the asymptotic expansion.
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Definition 15. Let m ∈ R and a j ∈ Sm j(R2n) for j ∈ N, where

m = m0 ≥ m1 ≥ . . .≥ mn→−∞.

We say that ∑ j a j is an asymptotic expansion of a and we write a∼∑
∞
j=0 a j,

if

∀N ∈ Z+, a−
N−1

∑
j=0

a j ∈ SmN (R2n).

The following Proposition, (we refer the reader to Theorem 10.9 in [18]

for more details), give us the conditions to have the asymptotic expansion

modulo a symbol in S−∞.

Proposition 11. Let m ∈ R and a j ∈ Sm j(R2n), j ∈ N, with m0 = m and

m j↘−∞. Then, there exists a ∈ Sm(R2n) such that a∼ ∑ j a j. The symbol a

is unique modulo S−∞.

Now we can introduce the adjoint symbol a∗ and the compound symbol

a]b (see Theorem 2.7 [57])

Theorem 6. Let a∈ Sm(R2n) and b∈ S`(R2n). Then the oscillatory integrals

a∗(x,ξ ) =
∫
R2n

e−iyηa(x− y,ξ −η)dy dη ,

at(x,ξ ) =
∫
R2n

e−iyηa(x− y,−ξ +η)dy dη ,

a]b(x,ξ ) =
∫
R2n

e−iyηa(x,ξ −η)b(x− y,ξ )dy dη ,

define symbols in Sm(R2n), in Sm(R2n) and in Sm+`(R2n), respectively. Fur-

thermore, we have the following asymptotic expansion:

a∗ ∼∑
α

1
α!

∂
α

ξ
Dα

x a(x,ξ ),

at ∼∑
α

(−1)|α|

α!
∂

α

ξ
Dα

x a

a]b∼∑
α

1
α!

∂
α

ξ
aDα

x b.
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Now we can define pseudodifferential operators.

Definition 16. Let a∈ Sm(R2d). We call pseudodifferential operator of sym-

bol a the operator defined on S (Rn) as follows

a(x,D) f (x) =
∫
Rn

eixξ a(x,ξ ) f̂ (ξ ) dξ . (1.29)

It is known that the pseudodifferential operator a(x,D) in (1.29) is a

continuous linear operator on the Schwartz class S (Rn). In fact the following

Theorem (Theorem 3.1 in [57]) holds

Theorem 7. If a ∈ S∞(R2n) and f ∈ S(Rn) the formula

a(x,D) f (x) =
∫
Rn

eixξ a(x,ξ ) f̂ (ξ ) dξ ,

defines a function a(x,D) f ∈ S(Rn) and there exist constants N ∈ Zn
+ and

Ck > 0, for k ∈ Zn
+, depending on a such that ‖a(x,D) f‖pk ≤Ck‖ f‖pk+N .

We note that the pseudodifferential operator a(x,D) (1.29) can be written

in the oscillatory integral form, in fact we recall the following (Proposition

10.7 [18])

Proposition 12. Let a ∈ Sm(R2n) and u ∈ S(Rn). We have that

i) q(y,ξ ) :=−yξ is a non degenerate real quadratic form,

ii) b(x,y,ξ ) := eixξ a(x,ξ )u(y) ∈ Am(Rn
y×Rn

ξ
) for all x ∈ Rn.

iii)

a(x,D)u(x) =
∫
Rn

eixξ a(x,ξ )û(ξ ) dξ

=
∫
R2n

e−iyξ

(
eixξ a(x,ξ )u(y))

)
dy dξ .
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Now we want to extend the definition of pseudodifferential operator to

the space of Schwartz distribution S ′(Rn). For this reason we recall the

following Theorem (see Theorem 3.2 in [57])

Theorem 8. For any a,b ∈ S∞(R2n) and f ,g ∈S (Rn) one has

i) (a∗(x,D) f ,g)L2(R2n) = ( f ,a(x,D)g)L2(R2n).

ii) (a]b(x,D) f ,g) = (a(x,D)b(x,D) f ,g).

We are now able to extend the operator a(x,D) : S (Rn)→S (Rn) as an

operator from S ′(Rn) into S ′(Rn).

Definition 17. Given a ∈ S∞, we call pseudodifferential operator of symbol

a the operator a(x,D) : S ′Rn)→S ′(Rn) defined as follows

(a(x,D)u,v) = u(at(x,D)v).

From the definition and elementary properties of Sobolev spaces Hs(Rn) it

is well known that a pseudodifferential operator of order m maps continuously

Hs(Rn) into Hs−m(Rn) as stated by the following Theorem (see Theorem 3.6

[57])

Theorem 9. Let a ∈ Sm. Then for every s ∈ R

a(x,D) : Hs(Rn)→ Hs−m(Rn),

and there exists a constant Cs such that ‖a(x,D)u‖Hs ≤Cs‖u‖Hs−m.

Elliptic and hypoelliptic symbols

One of the main achievements of the symbol calculus is a construction

of an approximated inverse for elliptic operators. This has been done for

a general class of hypoelliptic symbols. For this reasons we need the other

particular symbol classes.
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Definition 18. Let m ∈ R and ` ≤ m. The symbol a ∈ Sm is hypoelliptic, if

there exists a radius R > 0, such that

∃ c0 > 0, ∀ x ∈ Rn, ∀ξ , |ξ | ≥ R, |a(x,ξ )| ≥ c0〈ξ 〉`, (1.30)

and

∀α,β ∈ Nn ∃ cα,β > 0 ∀ x ∈ Rn, ∀ξ , |ξ | ≥ R,

|∂ α

ξ
∂

β
x a(x,ξ )| ≤ cα,β |a(x,ξ )|〈ξ 〉−|α|. (1.31)

If `= m then a is an elliptic symbol of order m.

Remark 4. We note that, if the symbol a is elliptic then the bound from

below condition (1.30) implies the condition on the derivatives (1.31).

Now we define the notion of parametrix :

Definition 19. Let a(x,D) a pseudodifferential operator. a(x,D) has a left

parametrix (right parametrix, respectively) if there exists a pseudodifferential

operator p(x,D) such that

p(x,D)a(x,D) = I + r(x,D)
(

resp. a(x,D)p(x,D) = I + r(x,D)
)
,

where r ∈ S−∞ and I is the identity operator on S ′(Rn). If there exist

left and right parametrix then we call p(x,D) the parametrix of the operator

a(x,D).

We recall the following Theorem on the parametrix construction for ope-

rator with elliptic symbol, (see for details Theorem 2.10 [57])

Theorem 10. Let a ∈ Sm. Then the following statements are equivalent

i) There exists a b ∈ S−m such that a]b−1 ∈ S−∞;
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ii) There exists a b ∈ S−m such that b]a−1 ∈ S−∞;

iii) There exists a b0 ∈ S−m such that ab0−1 ∈ S−1;

iv) There exists an ε > 0 such that |a(x,ξ )| ≥ ε〈ξ 〉m for |ξ | ≥ 1/ε.

Now we may construct a parametrix for a hypoelliptic operator. This is

done by constructing formal series of symbols to whom to apply Proposition

11. For this reason, we recall the following Proposition (see [18])

Proposition 13. Let a be a hypoelliptic symbol of type (m, `). We set

p0(x,ξ ) = a−1(x,ξ )ϕ(ξ ),

with ϕ ∈C∞(Rn), ϕ(ξ ) = 0 for |ξ | ≥ 2R.

i) p0 is an element of S−`(R2n);

ii) for all α,β ∈ Nn, p0∂ α

ξ
∂

β
x a ∈ S−|α|.

iii) We define for h≥ 1,

ph(x,ξ ) =−

(
∑

|γ|+ j=h, j<h

(−i)|γ|

γ!
∂

γ
x a(x,ξ )∂ γ

ξ
p j(x,ξ )

)
p0(x,ξ ) (1.32)

Then ph(x,ξ ) ∈ S−`−h(R2n) for all h.

Now we are able to recall the following Theorem (Theorem 10.20 [18])

Theorem 11. Let a be a hypoelliptic symbol of type (m, `). Then there exists

p ∈ S−`(R2n) such that

p(x,D)a(x,D) = I + r(x,D)

a(x,D)p(x,D) = I + s(x,D),

where r(x,D) and s(x,D) are regularizing operators (i.e. r and s are symbols

in S−∞.
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1.3 Γ- differential operators

1.3.1 Γ- pseudodifferential operators

The main subject of this section, and in general of this thesis, is the

study of some properties for relevant classes of operators, including as basic

examples partial differential operators with polynomial coefficients in Rd

∑
|α|+|β |≤m

cα,β xβ Dα .

For this reason in this section, attention is confined to Γ-pseudodifferential

operators corresponding to the Γ−symbols defined in Definition 10. More

generally we can introduce the following classes

Definition 20. Let m ∈ R and 0 < ρ ≤ 1. We define Γm
ρ (Rd), as the set of

all functions a(z) ∈C∞(R2d) satisfying,

|∂ γ
z a(z)|. 〈z〉m−ρ|γ|, (1.33)

for all γ ∈ N2d.

In this definition we assume ρ > 0, so the strong uncertainty princi-

ple (1.21) is satisfied. Note that Γm
1 (Rd) = Γm(Rd), if a ∈ Γ

m1
ρ (Rd) and

b ∈ Γ
m2
ρ (Rd), then ab ∈ Γ

m1+m2
ρ (Rd), ∂ α

z a ∈ Γ
m1−ρ|α|
ρ (Rd) and for all α ∈ N2d

⋂
m

Γ
m
ρ (Rd) = S (Rd).

One can also introduce a notion of asymptotic expansion in Γm
ρ .

Definition 21. Let a j ∈ Γ
m j
ρ (Rd), j = 1,2, . . . ,m j→−∞ and a∈C∞(Rn). We

will write

a∼
∞

∑
j=1

a j, (1.34)
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if, for any integer r ≥ 2,

a−
r−1

∑
j=1

a j ∈ Γ
m̃
ρ (Rd), (1.35)

where m̃ = max j≥r m j. The right-hand side of (1.34) is called asymptotic ex-

pansion of a.

As explained by the following Proposition (we refer the reader to Proposi-

tion 23.1 in [58] for more details), we have existence and uniqueness (modulo

a Schwartz function) of a symbol having a given asymptotic expansion.

Proposition 14. Let a j ∈ Γ
m j
ρ (Rd), j = 1,2, . . . ,m j→−∞ as j →+∞. Then

there exists a function a such that a∼∑
∞
j=1 a j. If another function b has the

same property, then a−b ∈S (Rn.)

Now we can define another symbol classes Γm
c`(R

d)

Definition 22. Let m ∈ R. We define Γm
c`(R

d), as the subset of Γm(R2d) of

all symbols a(z) which admit asymptotic expansion

a(z)∼
∞

∑
k=0

am−k(z), (1.36)

for a sequence of functions am−k ∈C∞(R2d \0) which are positively homoge-

neous of degree m− k.

We will denote by OPΓm(Rd), OPΓm
ρ (Rd) and OPΓm

c`(R
d) the classes of

pseudodifferential operators with symbols in Γm(Rd), Γm
ρ (Rd) and Γm

c`(R
d)

respectively. Note that the pseudodifferential operator

a(x,D)u(x) =
∫

eixξ a(x,ξ )û(ξ ) dξ ,

maps S (Rd) into S (Rd) continuously and S ′(Rd) into S ′(Rd).

We now recall the composition formula: If a ∈ Γ
m1
ρ (Rd), b ∈ Γ

m2
ρ (Rd) with
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0< ρ ≤ 1 then the operator c(x,D) = a(x,D)b(x,D) belongs to OPΓ
m1+m2
ρ (Rd)

with symbol

c(x,ξ )∼∑
α

(α!)−1
∂

α

ξ
a(x,ξ )Dα

x b(x,ξ ),

For these operators we want to construct an approximate inverse for the

elliptic operators. For this reason we define the notion of Γ-elliptic symbols:

Definition 23. Let m ∈ R and a ∈ Γm(Rd). We say that a is Γ-elliptic if

there exists R > 0 such that

|z|m . |a(z)| for |z| ≥ R. (1.37)

When applying this definition in Γm
c`(R

d) ⊂ Γm(Rd), we shall rather rely

on the following equivalent notion of Γ-ellipticity (see for more details Propo-

sition 2.1.5 [50]).

Proposition 15. The symbol a ∈ Γm
c`(R

d) is Γ− elliptic if and only if the

principal part am satisfies

a(z) 6= 0 for every z 6= 0. (1.38)

Now we may construct a parametrix for a Γ-elliptic operator. For this

reason we recall the following Theorem (Theorem 2.1.6 [50])

Theorem 12. Let a ∈ Γm(Rd) be Γ-elliptic. Then there exists b ∈ Γ−m(Rd)

such that b(x,D) is a parametric of a(x,D), i.e.

a(x,D)b(x,D) = I +S1(x,D) b(x,D)a(x,D) = I +S2(x,D),

where S1(x,D) and S2(x,D) are regularizing operators. Hence a(x,D) is glo-

bally regular i.e. u ∈S ′(Rd) and a(x,D)u ∈S (Rd) imply u ∈S (Rd).
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Γ−operator in QS(Rn)

The natural functional frameworks of Γ-operators are weighted Sobolev

spaces, the Shubin spaces Qs(Rn). We can define Qs(Rn) using arbitrary Γ-

symbols, as stated the following Proposition (see for more details Proposition

2.1.9 [50]):

Proposition 16. Let T ∈ OPΓs(Rd) have a Γ-elliptic symbol. Then

Qs(Rd) = {u ∈S ′(Rd) : Tu ∈ L2(Rd)} (1.39)

We can provide Qs(Rd) of the structure of Hilbert space by this scalar product

(u,v)Qs(Rd) = (Tu,T v)L2(Rd)+(Ru,Rv)L2(Rd), (1.40)

where R is a regularizing operator associated to a parametrix T̃ ∈OPΓ−s(Rd)

of T , namely T̃ T = I +R.

From the definition and elementary properties of Sobolev spaces, we have

the following Theorem (see Theorem 2.1.10 [50]).

Theorem 13. Every A ∈ OPΓm(Rd) defines, for all s ∈ R, a continuous

operator

a(x,D) : Qs(Rd)→ Qs−m(Rd).

One of the properties of the Qs(Rd) spaces is the compactness of the map

A : OPΓs(Rd)→ OPΓt(Rd), for A ∈ OPΓm(Rd) whenever s− t > m. In par-

ticular if A is regularizing, (A ∈ OPΓ−∞(Rd) :=
⋂

m ∈ OPΓm(Rd)), then it is

continuous and compact from Qs(Rd) to Qt(Rd), for any s, t ∈ R. Moreover,

for every s ∈ R we have the continuous immersions

j : S (Rd)→ Qs(Rd), j : Qs(Rd)→S ′(Rd).
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The following equivalent definition, when s ∈ N, is peculiar for the spaces

Qs(Rd), as stated by the following Theorem (for more details see Theorem

2.1.12 [50])

Theorem 14. Let s ∈ R. An equivalent definition of the space Qs(Rd) is

given by

Qs(Rd) = {u ∈S ′(Rd) : xβ Dαu ∈ L2(Rd), for |α|+ |β | ≤ s} (1.41)

with the equivalent norm

‖u‖Qs(Rd) = ∑
|α|+|β |≤m

‖xβ Dα‖L2(Rd). (1.42)

We can give a more precise statement of Theorem 12, in the context of

weighted spaces Qs(Rd). This is the following Theorem 15 (we refer the reader

to Theorem 2.1.13 in [50] for more details).

Theorem 15. Let A ∈ OPΓm(Rd) with Γ-elliptic symbol and assume u ∈

S ′(Rd), Au ∈ Qs(Rd). Then u ∈ Qs+m(Rd) and for every t < s+m,

‖u‖Qs+m(Rd) ≤C
(
‖Au‖Qs(Rd)+‖u‖Qt(Rd)

)
(1.43)

for a positive constant Cs,t .

In particular if m is a positive integer, we may refer to equivalent norm (1.42)

and rewrite (1.43) for s = 0, t = 0 :

∑
|α|+|β |≤m

‖xβ Dα‖L2(Rd) ≤C
(
‖Au‖L2(Rd)+‖u‖L2(Rd)

)
(1.44)

If we denote by As the restriction of A : S ′(Rd)→ S ′(Rd) to Qs(Rd),

s ∈ R, or equivalently the extension of A : S (Rd)→S (Rd) to Qs(Rd), then

the operator As is a Fredholm operator and for this reason we recall the

following Theorem (for more details see Theorem 2.1.14 [50])
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Theorem 16. Consider A ∈ OPΓm(Rd) with Γ-elliptic symbol. Then:

i) As ∈ Fred
(

Qs(Rd),Qs−m(Rd)
)

.

ii) indAs = dimKer(A)−dimKer(A∗), indAs = dimKer(A)−dimKer(At), where

A∗ is the formal adjoint and At is the transposed. Observe that the index

is then independent of s.

iii) If T ∈OPΓn(Rd), with n < m, Then As+Ts ∈ Fred
(

Qs(Rd),Qs−m(Rd)
)

and ind(As +Ts) = ind(As).

iv) If A : Qs(Rd)→ Qs−m(Rd), is invertible for some s ∈ R; then it is in-

vertible for all s ∈ R, and the inverse is an operator in OPΓ−m(Rd).

We have denoted by indAs the index of the Fredholm operator As, (namely

indAs = dimKerAs−dimCoKerAs).

In conclusion, we consider the notion of hypoelliptic symbol in the frame

Γm
ρ (Rd), 0 < ρ ≤ 1.

Definition 24. Let m∈R. We say a(z)∈Γm
ρ (Rd), 0< ρ ≤ 1, is Γρ-hypoelliptic,

if there exist m1 ∈ R, m1 ≤ m and R > 0 such that

|z|m1 . |a(z)|, f or |z| ≥ R, (1.45)

and for every γ ∈ N2d,

|∂ γ
z a(z)|. |a(z)|〈z〉−ρ|γ|, f or |z| ≥ R. (1.46)

If m1 = m in (1.45) then (1.46) holds. It follows that if a symbol is Γ-elliptic

then it is also Γρ-elliptic

Now we may construct a parametrix for a hypoelliptic operator. For this

reason, we recall the following Theorem (see Theorem 2.1.16 [50])
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Theorem 17. Let a ∈ Γm
ρ , 0 < ρ ≤ 1 be a Γρ-hypoelliptic for some m1 < m

in (1.45). Then there exists b ∈ Γ−m1(Rd) such that

a(x,D)b(x,D) = I + s1(x,D) b(x,D)a(x,D) = I + s2(x,D),

where s1(x,D) and s2(x,D) are regularizing operators. Hence a(x,D) is global

regular. Moreover, if we assume u∈S ′(Rd), a(x,D)u∈Qs(Rd), then we have

u ∈ Qs+m1(Rd) and for every t < s+m1

‖u‖Qs+m1(Rd) ≤C
(
‖Au‖Qs(Rd)+‖u‖Qt(Rd)

)
, (1.47)

for a positive constant C depending on s and t.

Γ-elliptic differential operator

It is well known that all differential operators in OPΓm
ρ (Rd), 0 < ρ ≤ 1

have polynomial coefficients. In fact we have the following Proposition (see

Proposition 2.2.1 [50])

Proposition 17. Assume p(x,ξ ) ∈ Γm
ρ (Rd) is of the form

p(x,ξ ) = ∑
|α|≤m

aα(x)ξ α ,

for some aα(x) ∈C∞(Rd). Then aα(x) is a polynomial.

Let us then consider

P = ∑
|α|+|β |≤m

cα,β xβ Dα , cα,β ∈ C. (1.48)

with symbols

p(z) = ∑
|γ|≤m

cγzγ , where γ = (β ,α), z = (x,ξ ). (1.49)
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The principal part is given by

pm(z) = ∑
|γ|=m

cγzγ , (1.50)

and the equivalent Γ-ellipticity condition (1.38) is

pm(z) = ∑
|γ|=m

cγzγ 6= 0, for z 6= 0. (1.51)

We may now consider the case of a generic ordinary differential operator with

polynomial coefficients in R. The Γ-ellipticity condition (1.51) reads

pm(x,ξ ) = ∑
α+β=m

cα,β xβ
ξ

α 6= 0, for (x,ξ ) ∈ R2 \0. (1.52)

Factorizing we obtain

pm(x,ξ ) = c(ξ − r1x)(ξ − r2x) . . .(ξ − rmx), (1.53)

with ℑr j 6= 0, j = 1, . . .m,c 6= 0. Hence we may write our operator P (after a

multiplication by c−1)

P = (Dx− r1x)(Dx− r2x) . . .(Dx− rmx)+ ∑
α+β<m

aα,β xβ Dα , (1.54)

for some constants αα,β ∈ C. We may regard P as a Fredholm operator

P : Qm(R)→ L2(R).

Thus, we obtain the following result (see for more details Theorem 2.2.2 [50],

and the reference therein).

Theorem 18. Consider P in (1.53), (1.54) and assume ℑr j > 0 for j =

1, . . .m+, ℑr j < 0 for j = m++1, . . .m, m = m++m−. Then P is a Fredholm

operator with

indP = m+−m−.
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From this Theorem, concerning the existence of a non-trivial solution u ∈

S ′(R), hence u ∈S (R), of Pu = 0, we may obtain the following conclusions

(see [50]):

• If indP > 0 then dimKer(P)> 0 and a non trivial solution exists.

• If m+ = 0,m− = m then indP = 0 and a non trivial solution does not

exist.

A motivating example is the Harmonic oscillator of Quantum Mechanics:

H =−∆+ |x|2. (1.55)

We begin here to compute eigenvalues and eigenfunctions of H. We have the

following result (see Theorem 2.2.3 [50])

Theorem 19. The equation

Pu = Hu−λu =−∆u+ |x|2u−λu = 0, u ∈ S
′
(Rd),

admits for

λ = λk =
d

∑
j=1

(2k j +1), k = (k1, . . . ,kn) ∈ Zd
+,

the solution in S(Rd),

uk(x) =
d

∏
j=1

Pk j(x j)exp(−|x|2/2), (1.56)

where Pr(t) is the r–th Hermite polynomial. Note that the family uk, k ∈ Zd
+,

forms an orthogonal system in L2(Rd).

Remark 5. Because of the completeness of the Hermite functions uk we know

from the spectral theory (for more details see the Theorem 24) that for λ 6= λk

the map

P = H−λ : Q2(Rd)→ L2(Rd)
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is an isomorphism, with inverse

P−1 = (H−λ )−1 : L2(Rd)→ Q2(Rd),

belonging to OPΓ−2(Rd) (see Theorem 16 (iv)).

Γ-operator in Gelfand-Shilov Sµ

ν (Rd)

Let us consider the liner partial differential operators with polynomial co-

efficients in Rd (1.48) and assume the fulfilment of the Γ-ellipticity condition

pm(x,ξ ) 6= 0 for (x,ξ ) 6= (0,0). (1.57)

The following result holds in Gelfand-Shilov spaces (see [20] and Theorem

6.2.1 in [50])

Theorem 20. Let P in (1.48) satisfy the Γ-ellipticity condition (1.57). If

u ∈S ′(Rd) is a solution of Pu = f with f ∈ Sµ

µ(Rd), µ ≥ 1
2 then u ∈ Sµ

µ(Rd).

In particular, the equation Pu = 0, with u ∈S ′(Rd) implies u ∈ S
1
2
1
2
(Rd).

Recently, Gramchev, Pilipovic and Rodino [24] have characterized the

Gelfand-Shilov spaces Sµ

µ(Rd) by the decay of the Fourier coefficients associ-

ated to the eigenvalues. For this reason we recall the following theorem (for

more details see Theorem 1.2 [24])

Theorem 21. Suppose that P in (1.48) is Γ-elliptic and normal operator,

PP∗ = P∗P. Then spec (PP∗) = {λ 2
1 ≤ . . . ≤ λ 2

j ≤ . . .}, λ j ≥ 0 with an or-

thonormal basis {ϕ j}∞
j=1. Let µ ≥ 1/2. Then for any u ∈S ′(Rd) we have

u ∈ Sµ

µ(Rd)⇐⇒
∞

∑
j=1
|a j|2eε|λ j|1/(mµ)

< ∞, (1.58)

for some ε > 0⇐⇒ ∑
∞
j=1 |a j|2eε j1/(mµ)

< ∞, for some ε > 0⇐⇒ there exist

C > 0,ε > 0 such that

|a j| ≤Ce−ε j2/dµ

, j ∈ N, (1.59)
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where a j = u(ϕ j) are the Fourier coefficients of u.

1.4 Spectral Theory

1.4.1 Unbounded Operators in Hilbert spaces

In this section we recall some basic facts about unbounded operators in

Hilbert spaces.

Let H1 and H2 be Hilbert spaces and suppose we are given an unbounded

operator

A : H1→ H2

The adjoint operator

A∗ : H2→ H1

is defined if the domain of A (denote by DA) is dense in H1 and, in this case,

DA∗ is the set of all v ∈ H2, for which there exists g ∈ H1 such that

(Au,v) = (u,g), u ∈ DA.

It is clear that g is uniquely defined and by definition A∗v = g. In particular,

we have the identity

(Au,v) = (u,A∗v), u ∈ DA, v ∈ DA∗.

Let H be a Hilbert space. An operator A : H→ H is called symmetric if

(Au,v) = (u,Av), u,v ∈ DA,

while an operator A : H → H is called self-adjoint if A = A∗. Note that a

self-adjoint operator is symmetric. The converse is in general not true.

Let A : H1→ H2. We define the graph of A as the liner subspace {(u,Au) ∈
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H1×H2 : u∈DA} of H1×H2. A is called closed if its graph is a closed subspace

in H1⊕H2.

A is called closable if the closure of its graph is still a graph of a linear

operator, which is then denoted by A.

Note that, any symmetric operator A : H → H has a closure if DA is dense,

and its closure A is, also, symmetric, (see Proposition 4.1.1 in [50]).

A densely defined symmetric operator A is called essentially self-adjoint if A is

self-adjoint. Note that, it is equivalent to saying that A∗ = A, because for any

closable operator A we have A∗ = A∗. A criterion for essential self-adjointness

is given by the following Proposition (for more details see Theorem 26.1 [58])

Proposition 18. A symmetric operator A : H → H with dense domain is

essentially self-adjoint if and only if the following inclusions

Ker(A∗− iI)⊂ DA,

Ker(A∗+ iI)⊂ DA.

hold.

Now we can introduce the resolvent set and the spectrum of an operator

A.

Definition 25. Let A be a closed densely defined operator on a complex

Hilbert space H. We define the resolvent set of A as the set ρ(A) of complex

numbers λ such that A−λ I is a bijection DA→ H, with a bounded inverse

RA(λ ) = (A−λ I)−1. RA(λ ) is called resolvent operator of A. The spectrum of

A is the complementary set of ρ(A) in C

σ(A) = C\ρ(A).

It is well known that self-adjoint operators have a real spectrum. For this

reason we recall the following Proposition (see Proposition 4.1.2 [50])
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Proposition 19. If A is self-adjoint, then σ(A)⊂ R.

As explained by the following proposition (see for more details Proposition

4.13 in [50]), if there exists λ ∈ ρ(A) such that RA(λ ) is compact then A has

a compact resolvent.

Proposition 20. If A has a compact resolvent, then RA(λ ) is compact for

all λ ∈ ρ(A).

We note that self-adjoint operators with compact resolvent have very

simple spectrum. In order to show this, we recall the following theorem,

about the spectrum of compact operators, combined with the subsequent

lemma (we refer the reader to Theorem 4.1.4 and Lemma 4.1.5 in [50] for

more details).

Theorem 22. Let A be a compact operator on a complex Hilbert space H.

Then σ(A) is at most countable set with no accumulation point from 0. Each

non zero λ ∈ σ(A) is an eigenvalue with finite multiplicity. If A is also self-

adjoint, then all eigenvalues are real and H has an orthonormal basis made

of eigenvectors of A.

Lemma 3. Let A be a closed densely defined operator on a complex Hilbert

space H such that ρ(A) 6= /0. Then for any λ0 ∈ ρ(A) we have

ρ(A) = {λ0}∪{λ ∈ C : λ 6= λ0 and (λ −λ0)
−1 ∈ ρ(RA(λ0))}.

Now we are able to describe the spectrum of a self-adjoint operator with

compact resolvent (see Theorem 4.1.6 [50]).

Theorem 23. Let A be a densely defined self-adjoint operator on a complex

Hilbert space H. If A has compact resolvent, then σ(A) is a sequence of real

isolated eigenvalues, diverging to ∞. Each eigenvalue has finite multiplicity

and H has an orthonormal basis made of eigenfunctions of A.
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1.4.2 Spectrum of hypoelliptic symmetric operator

In this section we want to describe the spectrum of operators with hy-

poelliptic symbols. For this reason we recall the following definition.

Definition 26. A symbol a∈ S(M;φ ,ψ) is called (global) hypoelliptic, if there

exist a temperate weight M0(x,ξ ) and a radius R > 0, such that

|a(x,ξ )|& M0(x,ξ ) for |x|+ |ξ | ≥ R, (1.60)

and, for every α,β ∈ Nd

|∂ α

ξ
∂

β
x a(x,ξ )|. |a(x,ξ )|ψ(x,ξ )−|α|φ(x,ξ )−|β |, |x|+ |ξ | ≥ R. (1.61)

We denote the class of such symbols by Hypo(M,M0).

Now we study the spectrum of operators with hypoelliptic symbols. For

this reason we recall the following proposition (see for more details Proposi-

tion 4.2.5 [50])

Proposition 21. Assume the strong uncertainty principle (1.21). Consider

a pseudodifferential operator A with symbol in H(M,M0), with M0(x,ξ )→+∞

at infinity. Then its closure A in L2 has either spectrum σ(A) = C or has a

compact resolvent.

Now we can recall the main result: the spectral theorem for operators

with hypoelliptic symbols (see Theorem 4.2.9 [50])

Theorem 24. Assume the strong uncertainty principle (1.21). Consider

a pseudodifferential operator A with real-valued symbol in H(M,M0), with

M0(x,ξ )→ +∞ at infinity. Its closure A in L2 has spectrum given by a se-

quence of real eigenvalues either diverging to +∞ or −∞. The eigenvalues

have all finite multiplicity and the eigenfunctions belong to S (Rd). Moreover

L2(Rd) has an orthonormal basis made of eigenfunctions of A.
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1.4.3 Weyl Asymptotics

In this section, we consider the classes OPΓm
ρ (Rd), m > 0, 0 < ρ ≤ 1, (see

Definition 20), and we recall the asymptotic distribution of the eigenvalues

of some special classes of elliptic self-adjoint operators.

In particular, we denote by λ j the eigenvalues of an operator A and we define

the so-called counting function

N(λ ) = ]{ j : λ j ≤ λ}.

We can describe the asymptotic behaviour of the N(λ ). For this reason we

recall the following theorem (for more details see Theorem 4.6.3 [50])

Theorem 25. Let a ∈ Γm
ρ (Rd), m > 0, 0 < ρ ≤ 1 be real valued,

a(x,ξ ) = am(x,ξ )+am−ρ(x,ξ ) for |x|+ |ξ | large,

where am(x,ξ ) is real value and satisfies 0 < am(tx, tξ )+ tmam(x,ξ ),

for t > 0, (x,ξ )∈Rd, and am−ρ(x,ξ )∈Γ
m−ρ

ρ (Rd). Then the counting function

N(λ )of the operator a(x,D) has the asymptotic behaviour

N(λ )∼Cλ
2d
m as λ →+∞, (1.62)

where C is given by

C =
(2π)−d

2d

∫
S2d−1

am(Θ)−
2d
m dΘ. (1.63)

We note that, by using the homogeneity of am, we can rewrite the formula

(1.62) as

N(λ )∼
∫

am(x,ξ )≤λ

dx dξ as λ →+∞, (1.64)

which is, up to the factor (2d)−1, the volume of the set

{(x,ξ ) ∈ R2d : am(x,ξ )≤ λ}.
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We can also deduce the asymptotic behaviour of eigenvalues and we recall

the well known Theorem (for more details see Theorem 4.6.4 [50])

Theorem 26. Under the hypotheses of Theorem 25 we have

λ j ∼C−
m
2d j

m
2d as j→+∞, (1.65)

where C is given in (1.63).
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Chapter 2

Normal forms and conjugations

for second order self-adjoint

globally elliptic operators

We consider second order self–adjoint differential operators generalizing

the harmonic oscillator

P(x,D) =−∆+< Ax,Dx >+< Bx,x >+< M,Dx >+< N,x >+r, (2.1)

where A,B ∈ Mn(R), B is symmetric, M,N ∈ Rn, r ∈ C. We decompose the

matrix A to symmetric and skew-symmetric components

A = Asymm +Askew, Asymm =
1
2
(A+AT ), Askew =

1
2
(A−AT ), (2.2)

with AT
symm = Asymm and

AT
skew =−Askew. (2.3)

There exist non zero skew-symmetric matrices only for n ≥ 2. We note

that (2.3) implies that the quadratic form

< Askewx,x >= 0, x ∈ Rn, (2.4)

43
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and if Askew is non singular it is called symplectic.

The hypothesis A = Asymm is equivalent to the closedness of the 1−form

Axdx, namely, there exists a quadratic form U(x) such that ∇U = Ax. One

notes that Askew 6= 0 is equivalent to Axdx is not closed.

Example 1. Consider the following symmetric Shubin operator on R2

L(x,D)=−∆+σ(x1Dx1 +x2Dx2)+τ(x2Dx1−x1Dx2)+b1x2
1+b2x2

2, σ ,τ,b1,b2 ∈R.

(2.5)

One checks easily that L is globally elliptic iff min{b1,b2} > σ2/4+ τ2/4,

Askew 6= 0 if τ 6= 0 while for σ = 0, b1 = b2 = |τ|2/4 > 0 we recapture self

adjoint generalizations of the twisted Laplacian L (τ =−1) and its transposed

Lt (τ = 1), cf. [13], [25] and the references therein.

We also investigate perturbations P + b(x,D) of (2.1) with zero order

pseudodifferential operators b(x,D) on Rn of Shubin type

b(x,D)u =
∫
Rn

eixξ b(x,ξ )û(ξ ) dξ . (2.6)

Our goals could be summarized as follows

• To derive reductions of P (and P+b) to simpler normal forms by means

of transformations associated to affine sympletic maps introduced by

Hörmander [37] for general classes of p.d.o. on Rn, namely, via unitary

maps of L2(Rn) generated by ei<Qx,x>, Q being real symmetric n× n

matrix, ei<α,x>, α ∈ Rn, translations, the action of SO(n) and global

FIO with quadratic phase functions. .

• To prove that the corresponding normal form transformations (NFT)

preserve the Schwartz class S (Rn) and and the Gelfand–Shilov spaces

Sµ

µ(Rn), µ ≥ 1/2, and the classes of Shubin type pseudodifferential op-

erators.
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• To apply the normal forms for getting novel discrete representation of

the action of Shubin type p.d.o. and for the study of the spectral prop-

erties as well as the hypoellipticity and the solvability of P in S (Rn)

and Sµ

ν (Rn).

The first set of new result of the thesis could be summarized as follows:

we show that the only obstruction to the reduction of the second order self-

adjoint globally elliptic operator P to a multidimensional harmonic oscillator

Hω is the presence of non zero skew-symmetric mixed term in < Askewx,Dx >.

More precisely, we solve completely the problems related to the reduction to

harmonic oscillator normal form of P and to aforementioned issues provided

there are no rotations in the mixed term perturbation < Ax,D >, namely

A is symmetric. (2.7)

Clearly the symmetry condition above is not superfluous if n≥ 2. We point

out that a globally elliptic self-adjoint operator in R2 containing, as the

twisted Laplacian , a skew–symmetric part in A, is an example when no

separation of variables is possible as outlined above.

The second main goal is to study normal forms for anisotropic versions of

elliptic self-adjoint Shubin type operators which might be viewed as perturba-

tions of anisotropic harmonic oscillators of the type −∆+
n

∑
j=1

ω
2
j x2k

j , ω j > 0,

k ≥ 2. It turns out that it is not enough to ask for the symmetry of the

mixed term. One needs additional separation of variables type hypothesis in

order to derive and classify the possible normal forms and the spectral and

hypoellipticity-solvability properties. However we do not consider perturba-

tions with zero order p.d.o. since the conjugation encounters nontrivial issues

like the appearance of global Fourier integral operators with phase functions

admitting superquadratic (at least cubic) growth for |x| → ∞.
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2.1 Preliminaries on symmetric Shubin type

second order operators

Using standard arguments on quadratic forms and integration by parts we

characterize completely the second order linear symmetric Shubin operators.

Proposition 22.

P =−∆+ 〈Ax,Dx〉+ 〈Bx,x〉+ 〈L,Dx〉+ 〈M,x〉+ p, (2.8)

where A,B ∈ Mn(R) are symmetric matrix, and L, M ∈ Cn, p ∈ C. Then

following assertions are equivalent

i) P is symmetric,

ii) L,M ∈ Rn, p+ i
tr(Asymm)

2
∈ R.

Finally, P is globally elliptic iff the symmetric matrix

B−
A2

symm

4
+

A2
skew
4

+
1
4
(AsymmAskew−AsymmAskew)> 0. (2.9)

Proof. One has, taking into account that tr (A) = tr (Asymm),

P∗(x,D) =−∆+ 〈Ax,Dx〉+ 〈Bx,x〉+ 〈L,Dx〉+ 〈M,x〉+ p− i
Tr(Asymm)

2
, (2.10)

which yields the equivalence i)⇔ ii). As it concerns the global ellipticity, we

write explicitly the principal symbol and we obtain the hypothesis.

Remark 6. We observe that if P is defined by (2.8) its transposed Pt is

defined as follows

Pt =−∆−〈Ax,Dx〉+ 〈Bx,x〉−〈L,Dx〉+ 〈M,x〉+ p. (2.11)

It is easy to check that if P = P∗ we have Pt = P iff A = 0.
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2.2 Reduction to a global normal form

Let P be a second order globally symmetric linear differential operator of

Shubin type in Rn

P =−∆+ 〈Ax,Dx〉+ 〈Bx,x〉+ 〈L,Dx〉+ 〈M,x〉+ p− i
TrAsymm

2
, (2.12)

where A,B ∈Mn(R), B is symmetric matrix, and L, M ∈ Rn, p ∈ R.

We propose refinements of results of Sjöstrand [59] on the classification

of second order Shubin differential operators.

Theorem 27. Suppose that

A = Asymm. (2.13)

Then the following assertions are equivalent for P defined by (2.12):

i) P is globally elliptic.

ii) There exists an unitary transformation U : L2(Rn) 7→ L2(Rn), where

Uv(x) = e−i 1
4 (<Asymmx,x>+<α,x>)v(S0x), α ∈ Rn,S0 ∈ SO(Rn), (2.14)

such that

U∗ ◦P◦U = Hω =−∆+
n

∑
j=1

ω
2
j x2

j + r =−∆+< D2
ωx,x >+r (2.15)

for some ω = (ω1, . . . ,ωn), ω j > 0, j = 1, . . . ,n, r ∈ R.

The spectrum of P which coincides with the spectrum of Hω is given by

spec (Hω) = {λω(k)+ r :=
n

∑
j=1

ω j(2k j +1)+ r = 2 < ω,k >+|ω|+ r, k ∈ Zn
+}

(2.16)

with an orthonormal basis of eigenfunctions

Hω
k (x) :=

(
n

∏
j=1

ω j

)1/2

Hk(D
1/2
ω x) =

(
n

∏
j=1

ω j

)1/2 n

∏
j=1

Hk j(ω
1/2
j x j). (2.17)
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and setting

{ω1, . . . ,ωn}= {θ j : j = 1, . . . ,d,θ j 6= θ`,1≤ j < `≤ d}

with mult (θ j) = n j, n1 +n2 + . . .+nd = n, we rewrite (2.16)

spec (Hω) := {sθ (q)+r : s(q)=
d

∑
s=1

nsθs(2qs+1)= 2< θ ,q>+n1θ1+. . .+ndθd, q∈Zd
+}

(2.18)

with the multiplicity of sθ (q)+ r expressed in the following way

mult (sθ (q)) = ( ∑
k1∈Zn1

+ ;|k1|=q1

1) . . .( ∑
kd∈Znd

+ ;|kd |=qd

1) (2.19)

provided that θ1, . . . ,θd are non resonant.

Finally, Hω + r is invariant under the linear action of the subgroup SOω(Rn)

defined as follows:

SOω(Rn) :=⊕k
j=1SO(Rn j). (2.20)

In particular, if ω j 6= ω`, j 6= `, SOω(Rn) consist of 2n symmetries

x = (x1, . . . ,xn) 7→ (ε1x1, . . . ,εnxn), ε j ∈ {1,−1}, j = 1, . . . ,n.

Next, we show that the NFT U is an automorphism in the scale of function

spaces in the theory of the Shubin type operators.

Theorem 28. Let U be a unitary transformation defined by (2.14). Then U

and the convolution map U∗ defined by

U ∗ v(x) = e−i 1
4 (<Asymmx,x>+<α,x>) ∗ v(S0x)

=
∫
Rn

e−i 1
4 (<Asymm(x−y),(x−y)>+<α,x−y>)v(Sy)dy (2.21)

are automorphisms of B(Rn), where

B(Rn) = S (Rn), B(Rn) = Qs(Rn),s ∈ R,

B(Rn) = Sµ

ν (Rn),µ ≥ ν ≥ 1/2. (2.22)
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Finally, we show that the conjugation with U is an automorphism in the

space of Shubin class symbols and p.d.o. of fixed order m.

Theorem 29. Let b(x,D) be a Shubin p.d.o. of order m ∈ R. Then

U∗ ◦b(x,D)◦U = bNF(x,D) (2.23)

where bNF is a Shubin p.d.o. of order m whose symbol bNF(x,ξ )= b̃NF(St
0x,S0ξ )

satisfies

b̃NF(x,ξ )∼ ∑
α∈Zn

+

1
α!

(A∂ξ )
αDξ b(x,ξ +2Ax+a) (2.24)

If we want summarize the results above, we can say that the spectrum of

the original perturbed operator P(x,D)+ b(x,D), the global solvability and

global hypoellipticity in function spaces S (Rn), Qs(Rn), Sµ

µ(Rn), is charac-

terized by the family of equivalent NF, using the action of SOω(Rn)

ST ◦U∗ ◦ (P(x,D)+b(x,D))◦U ◦S = Hω + r+bNF(Sx,ST D). (2.25)

In view of the fact that Hω + r is globally hypoelliptic in S (Rn) and

Sµ

µ(Rn) (e.g., see [58], [6]) and globally solvable iff

λω(k)− r 6= 0, k ∈ Zn
+, (2.26)

we can derive the following perturbation result on the solvability of P+b.

Proposition 23. Suppose that (2.26) holds. Then there exists a small posi-

tive constant C such that

max
α,β∈Zn

+,|α|≤n+1,|β |≤n+1
sup

(x,ξ )∈R2n
|∂ β

x ∂
β

ξ
bNF(x,ξ )|<C min

k∈Zn
+

|λω(k)+ r| (2.27)

then P+b is invertible in L2(Rn) and solvable in S (Rn).
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Next, we derive the one the main novel results, motivated by and bor-

rowing ideas from the fundamental paper Greendfield and Wallach [30]. In

this paper, they study the global hypoellipticity of commuting differential op-

erators on compact Riemannian manifold using discrete representations for

commuting normal differential operators. In fact, we derive perturbations

the discrete representation in the case when of commuting operators and

simple eigenvalues and application . We characterize completely the global

properties of P+b, if the commutator [P,b] = 0, provided the eigenvalues of

P are simple.

Theorem 30. Suppose that the eigenvalues of P are simple, i.e.,

ω1, . . . ,ωn are non resonant. (2.28)

Then there is a unique map N 3 j 7→ k( j) ∈ Zn
+ such that

λ j = λk( j) = 2 < ω,k( j)>+|ω|+ r, j ∈N, λ1 < λ2 < .. . < λ j < .. . (2.29)

(k( j) = j−1 when n = 1) and if

[P(x,D),b(x,D)] = 0, (2.30)

then b(x,D) has the following discrete representation

b(x,D)u = ∑
k∈Zn

+

b(k)Φk(x) =
∞

∑
j=1

b̃ jϕ j(x), (2.31)

where Φk = U(Hkω) stands for the orthonormal basis of P, b̃ j = b(k( j)),

ϕ j(x) = Φk( j)(x), j ∈ N with bk, b̃ j satisfying

sup
k∈Zn

+

|bk|= sup
j∈N
|b̃ j|<+∞. (2.32)

Finally, we claim that

P(x,D)+b(x,D)is global hypoelliptic in Sµ

µ(Rn), µ ≥ 1/2. (2.33)
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We stress the important point concerning (2.33): we do not require that

b(x,D) is Gelfand–Shilov Shubin type p.d.o. as in [5], [6], [7], [8]. For ex-

ample, if g(t) is smooth bounded function which is not analytic, satisfying

|g( j)(t)| = O(|t|− j), t → ∞, j ∈ Z+, g(P) is well defined Shubin p.d.o. with

principal symbol g(P(x,ξ )) which commutes with P.

One is led to conjecture, taking into account the fact that the p.d.o. cal-

culus rules are valid modulo smoothing operators, that if P and q commute

modulo regularizing operator we can assume that b equals commuting ope-

rator plus a regularizing one.

2.2.1 Proof of the NF result

In the proof of Theorem 27 we will make use of the following well known

lemmas:

Lemma 4. Let P be the operator

P =−∆+
n

∑
j=1

a jx jDx j + 〈Bx,x〉+ 〈L,Dx〉+ 〈M,x〉+ p, (2.34)

where a = (a1, . . . ,an) ∈ Rn, B ∈Mn(R) is symmetric, L, M ∈ Rn and p ∈ C.

Then u = eiψ(x)v(x), where ψ(x) =
1
4

n

∑
j=1

a jx2
j satisfies

P(eiψv(x)) = eiψ(x) (−∆+ 〈Cx,x〉+ 〈L,Dx〉+ 〈N,x〉+q)v(x),

where C = B− 1
4 ∑

n
j=1 a jx2

j , N = M+diag {a1, . . .an}L ∈ Rn, q = p− i
2 ∑

n
j=1 a j.

Lemma 5. Let P be the operator

P = D2
x +

n

∑
j=1

c jx2
j + 〈L,Dx〉+ 〈M,x〉+ p, (2.35)
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where c = (c1, . . . ,n) ∈ Rn, L,M ∈ Rn and p ∈ R. Then u = eiψ(x)v(x), where

ψ(x) =−〈L,x〉
2

satisfies

P(eiψ(x)v(x)) = eiψ(x)

(
D2

x +
n

∑
j=1

c jx2
j + 〈M,x〉+ p− ‖L‖

2

4

)
v(x).

Now we can prove Theorem 27.

Proof. First we reduce A to diagonal form diag {a1, . . . ,an} by orthogonal

transformation x→ S1x, S1 ∈ SO(n), so the operator P becomes

D2
x +

n

∑
j=1

a jx jDx j + 〈B
′x,x〉+ 〈L′,Dx〉+ 〈M′,x〉+ p′, (2.36)

where B′ = St
1BS1, L′ = St

1L and M′ = St
1M.

Now we apply Lemma 4 and reduce (2.36) to

D2
x + 〈B′′x,x〉+ 〈L′′,Dx〉+ 〈M′′,x〉+ p′′. (2.37)

with B′′ symmetric. Next, we reduce B′′ to diagonal form diag {b1, . . . ,bn},

by means of orthogonal transformation x→ S2x, S2 ∈ SO(n), so the operator

(2.37) becomes

P′′′ = D2
x +

n

∑
j=1

b jx2
j + 〈L′′′,Dx〉+ 〈M′′′,x〉+ p′′, (2.38)

where L′′′ = St
2L′′ and M′′′ = St

2M′′. We note hat the global ellipticity is in-

variant under the previous transformations which means that the global el-

lipticity is equivalent o b j > 0 for j = 1, . . . ,n. Next, we apply Lemma 5 and

transform the operator (2.38) to

P̃ = D2
x +

n

∑
j=1

b jx2
j + 〈L̃,x〉+ `. (2.39)

Now we apply the translation Tγ(x j) = x j + γ j, where γ j = −
L̃ j

2
, j = 1, . . . ,n

and we obtain the normal form operator

PNF =−∆+
n

∑
j=1

ω
2
j x2

j + r, ω j =
√

b j, j = 1, . . . ,n, r = `−
n

∑
j=1

L̃ j

2
. (2.40)
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Ad it concerns the explicit form of the spectrum and the eigenfunctions,

the dilations x j = ω
−1/2
j y j, j = 1, . . . ,n transform PNF to

n

∑
j=1

ω j(D2
y j
+ y2

j)+ r.

The invariance under the action of SOω(Rn) follows from the definition of the

centralizer of matrices and the restriction to the corresponding orthogonal

groups. The proof is complete.

2.3 Normal form transformations in Gelfand-

Shilov spaces

We introduce decreasing scales of Banach spaces defining Sµ

ν (Rn):

HSµ

ν (L
p(Rn);ρ,σ) =

{
f ∈ Sµ

ν (Rn) : ‖ f‖Lp;µ,ν ;ρ,σ := sup
α,β∈Zn

+

(
ρ |α|σ |β |
α!µβ !ν

|xβ
∂

α f |Lp

)}
,

(2.41)

If µ < 1 we will use the fact that the functions of Sµ

ν (Rn) are restrictions

of entire functions f ∈ O(Cn) belonging for some a,b > 0 to the following

Banach space of entire functions OSµ

ν (Rn;a,b) ={
f ∈ O(Cn) : ‖ f‖O;µ,ν ;a,b := sup

z=x+iy∈Cn

(
| f (x+ iy)|ea|x|1/ν−b|y|1/(1−µ)

)
<+∞

}
(2.42)

Another useful Sµ

ν (Rn) norms containing exponential decay are defined by

f | µ,ν ;a,b := sup
α∈Zn

+

(
a−|α|

α!µ
|eb|x|1/ν

∂
α
x f (x)|L∞

)
, a,b > 0. (2.43)

Next we derive some estimates typical for decreasing scales of Banach

spaces.

Proposition 24. Let ρ > ρ̃,σ > σ̃ . Then

HSµ

ν (L
p(Rn);ρ,σ) ↪→ HSµ

ν (L
p(Rn); ρ̃, σ̃).
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Moreover, the Gelfand–Shilov spaces are defined as inductive limits

Sµ

ν (Rn) =
⋃

ρ↘0,σ↘0

HSµ

ν (L
p(Rn);ρ,σ), 1≤ p≤+∞.

for all µ,ν > 0, µ +ν ≥ 1 and

Sµ

ν (Rn) =
⋃

a↘0,b↘0

OSµ

ν (Rn;a,b),

provided 0 < µ < 1, µ +ν ≥ 1.

Proof. The proof for the L∞(Rn) based norms is well known, while for the

Lp(Rn) based norm we use the Sobolev embedding type theorems.

We recall that by the Sobolev embedding theorem we get that if f ∈

H [n/2]+1(Rn) we have

| f (x)| ≤ κn

√
‖ f‖2 +

n

∑
k=1
‖∂ [n/2]+1

xk f‖2, x ∈ Rn,κn :=

(∫
Rn

1

1+∑
n
k=1 ξ

2[n/2]+2
k

dξ

)1/2

.(2.44)

Next, we derive L2 Sobolev type embedding theorem in the Gelfand–

Shilov spaces. We write for brevity ‖ f‖ρ,σ := ‖ f‖L2;µ,ν ,ρ,δ for fixed µ,ν > 0.

Theorem 31. Let µ,ν > 0, µ+ν ≥ 1. Then HSµ

ν (L∞(Rn);ρ,σ) ↪→HSµ

ν (L2(Rn);ρ,σ)

and the following estimates hold:

‖ f‖L∞;µ,ν ;ερ,δσ ≤κnKµ,ν(ρ,σ ,ε,δ )‖ f‖ρ,σ , f ∈ HSµ

ν (L
2(Rn);ρ,σ), (2.45)

where

Kµ,ν(ρ,σ ,ε,δ ) =
√

1+(ρ−1 +σ)2[n/2]+2C2
µ,ν(ε,δ ), Cµ,ν(ε,δ )> 0, (2.46)

for ρ,σ > 0, 0 < ε < 1, δ = 1 if ν ≥ 1, 0 < δ < 1 if ν < 1.

Proof. We will make use of the following lemma:
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Lemma 6. Let µ,ν > 0, µ +ν ≥ 1, ρ,σ > 0, γ ∈Zn
+\0, 0 < ε < 1, 0 < δ ≤ 1,

with δ < 1 if ν < 1. Then the following estimates hold:

‖∂ γ
x u‖ερ,δσ ≤ (ρ−1 +σ)|γ|Kµ(ε, |γ|)Kmax{0,1−ν}(δ , |γ|)‖u‖ρ,σ , (2.47)

where

Kt(ω,s)=

 supk≥0
(
ωk((k+1) . . .(k+ s))t)<+∞ if 0 < ω < 1,

1 if t = 0,0 < ω ≤ 1
, s∈N.

(2.48)

Proof. We have

[u]α,β ;γ
µ,ν ;ερ,δσ

(x) =
|∂ γ

x (xβ ∂ α
x u(x))|(ερ)|α|(δσ)|β |

α!µβ !ν

≤ ∑
j≤γ

(
γ

j

)
β !

(β − γ + j)!
|xβ−γ+ j∂

α+ j
x u(x)|(ερ)|α|(δσ)|β |

α!µβ !ν

= ε
|α|

δ
|β |

∑
j≤γ

(
γ

j

)
ρ
−| j|

σ
|γ− j|

(
β !

(β − γ + j)!

)1−ν((α + j)!
α!

)µ

×

(∣∣∣∣∣xβ−γ+ j
∂

α+ j
x u(x)

∣∣∣∣∣ ρ |α+ j|σ |β−γ+ j|

(α + j)!µ(β + γ− j)!ν

)

≤ ε
|α|(

|γ|

∏
s=1

(|α|+ s))µ
δ
|β |(

|γ|

∏
s=1

(|β |+ s))max{0,1−ν}
∑
j≤γ

(
γ

j

)
ρ
−| j|

σ
|γ− j|

×

(∣∣∣∣∣xβ−γ+ j
∂

α+ j
x u(x)

∣∣∣∣∣ ρ |α+ j|σ |β−γ+ j|

(α + j)!µ(β + γ− j)!ν

)

which, in view of the identity ∑
j≤γ

(
γ

j

)
ρ
−| j|

σ
|γ− j| = (ρ−1 +σ)|γ| yields the

desired estimates.

Now we get immediately (2.45), (2.46). Indeed, taking into account the

identity

∂
`
xk

(
xβ

∂
α
x u
)
=

`

∑
j=0

 `

j

βk . . .(βk− j+1)xβ− jek∂
α+(`− j)ek
x f , k = 1, . . . ,n,
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(2.44) for xβ ∂ α f (x)

sup
x∈Rn
|xβ

∂
α f (x)| ≤κn

√
‖xβ ∂ α

x f‖2 +
n

∑
k=1
‖∂ [n/2]+1

xk (xβ ∂ α
x f )‖2

and (2.47), (2.48), we obtain

‖u‖L∞;µ,ν ;ερ,δσ ≤κn

√
1+n(ρ−1 +σ)2[n/2]+2K2

µ(ε, [
n
2
]+1)K2

max{0,1−ν}(δ , [
n
2
]+1)‖u‖ρ,σ

which yields (2.45) with Cµ,ν(ε,δ ) =
√

nKµ(ε, [
n
2 ]+1)Kmax{0,1−ν}(δ , [

n
2 ]+1).

Next, we classify the action of quadratic oscillations on Banach spaces in

the full scale of Gelfand–Shilov spaces Sµ

ν (Rn), µ,ν > 0, µ+ν ≥ 1, recapturing

as a particular case the automorphism of the NFT in the symmetric Gelfand–

Shilov spaces Sµ

µ(Rn), µ ≥ 1/2. Since the Fourier transform F is isomorphism

F : Sµ

ν (Rn) 7→ Sν
µ(Rn) one readily obtains that a map U : Sµ

ν (Rn) 7→ Sν
µ(Rn) is

isomorphism iff the convolution map U∗ : Sν
µ(Rn) 7→ Sµ

ν (Rn) is isomorphism.

Hence it is enough to study the map U .

Theorem 32. Let E : L2(Rn) 7→ L2(Rn) be the unitary map defined by Eu(x)=

ei<Ax,x>u(x), x ∈ Rn, A being real symmetric matrix. We have.

1. Let 0 < ν ≤ µ, µ +ν ≥ 1. Then

E is an automorphism of Sµ

ν (Rn). (2.49)

2. Let now 0 < µ < ν, µ +ν ≥ 1. Then

E : Sµ

ν (Rn) 7→ Sν
ν(Rn). (2.50)

and (2.50) is sharp. In particular, E does not preserve Sµ

ν (Rn).
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Proof. In view of the invariance of Sµ

ν (Rn) under linear maps x 7→ Sx and the

reduction to the case A diagonal, it is enough to consider the one-dimensional

case and E = eix2
. Let f ∈ Sµ

ν (R). Then one can find positive constants C0, a

and b such that

| f (k)(x)| ≤ C0akk!µe−b|x|1/ν

, k ∈ Z+,x ∈ R. (2.51)

We get by the Faa’ di Bruno type formula

(eix2
f (x))(k) =

k

∑
j=0

 k

j

(
d
dx

) j(eix2
) f (k− j)(x)

= eix2
f (k)(x)+ eix2

f [k−1](x) (2.52)

where

f [k−1](x) = eix2
k

∑
j=1

∑
j/2≤`≤ j

Θ
k
j,`i

`x2`− j f (k− j)(x) (2.53)

Θ
k
j,` =

 k

j

 `

2`− j

( j− `)!22`− j. (2.54)

Clearly

|Θk
j,`| ≤ 2k+3`− j( j− `)!, k, j, ` ∈ N, j/2≤ `≤ j ≤ k. (2.55)

In view of (2.53) and (2.54) we get that for every ε ∈]0,b[ the following

estimates hold

e(b−ε)|x|1/ν

|(eix2
f (x))(k)| ≤C0

(
akk!µ +

k

∑
j=1

∑
j/2≤`≤ j

Θ
k
j,`a

k− j(k− j)!µ |x|2`− je−ε|x|1/ν

)
.

(2.56)

Since sup
t≥0

(tse−εt) = ss
ε
−se−s, s > 0, ε > 0, we obtain that

sup
t≥0

(
t2`− je−εt1/ν

)
= ε

−ν(2`− j)(ν(2`− j))ν(2`− j)e−ν(2`− j) =
(

ν

εe

)ν(2`− j)
(2`− j)ν(2`− j),

(2.57)
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for j, ` ∈N, j/2≤ `≤ j. By the Stirling formula we can find C =Cν > 0 such

that

sup
t≥0

(
t2`− je−εt1/ν

)
≤C2`− j

ε
−ν(2`− j)(`− j/2)!2ν , j, ` ∈ N, j/2≤ `≤ j.

(2.58)

Plugging (2.58) into (2.56) we show, taking into account (2.51) and (2.54),

that

e(b−ε)|x|1/ν |Dk(eix2
f (x))|

akk!µ
≤C0

(
1+4k

k

∑
j=1

∑
j/2≤`≤ j

a− j(ε−νC)2`− j ( j− `)!(`− j/2)!2ν

j!µ

)
(2.59)

Now we see that the hypotheses 0< ν ≤ µ is necessary and sufficient condition

for estimating the RHS in (2.59) by Ck, k ∈ N. Indeed, µ ≥ ν and µ +ν ≥ 1

implies 2µ ≥ 1 and therefore

( j− `)!(`− j/2)!2ν

j!µ
≤ ( j− `)!1−2µ(( j− `)!(`− j/2)!)2µ

j!µ
≤ (( j/2)!)2µ

j!µ
≤ 1

which implies that

|Dk(eiαx2
f (x))| ≤C0(a+

C
εν

)kk!µe−(b−ε)|x|1/ν

, k ∈ Z+, 0 < ε � 1. (2.60)

The proof in the case ν > µ follows from the fact 2ν ≥ 1 (otherwise

µ < ν < 1/2 contradicts µ +ν ≥ 1) by the estimates

( j− `)!(`− j/2)!2ν

j!µ
≤ ( j− `)!(`− j/2)!2ν

j!ν
≤ (( j/2)!)2ν

j!ν
≤ 1.

We propose another proof if µ < 1. We use the norms of the spaces

OSµ

ν (Rn;a,b), namely f ∈ Sµ

ν (Rn), µ < 1 means that f is an entire function

in Cn and there exist positive constants C0,a,b such that

| f (x+ yi)| ≤ C0e−a|x|1/ν+b|y|1/(1−µ)
, x,y ∈ Rn. (2.61)
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Without loss of generality we consider the onedimensional case n = 1.

One notes that

|ei(x+iy)2
f (x+ yi)| = |e−2xy f (x+ yi)|

≤ C0e−a|x|1/ν+b|y|1/(1−µ)−2xy, x,y ∈ R. (2.62)

If ν ≤ µ , by the Hölder inequality we get

2|xy|= 2|ενx||ε−νy| ≤ 2
(

νε|x|1/ν +(1−ν)ε−ν/(1−ν)|y|1/(1−ν)
)
,

by which, combined with (2.62), we derive the following exponential decay in

x estimate for all x,y∈R, 0 < ε� 1. One observes that 1/(1−ν)≤ 1/(1−µ)

if ν ≤ µ which yields |y|1/(1−ν) ≤ |y|1/(1−µ)+1, y ∈ R, and therefore

|ei(x+iy)2
f (x+ yi)| ≤C0e2(1−ν)ε−ν/(1−ν)

e−(a−2νε)|x|1/ν+(b+2(1−ν)ε−ν/(1−ν))|y|1/(1−µ)
,

(2.63)

for x,y ∈ R.

We stress the fact that the transformation ei〈Ax,x〉 does not preserves the

Hs1,s2(Rn), with s1 ∈ N, s2 ≥ 0

2.4 NFT representation of pseudodifferential

operators

Without loss of generality we assume S0 = In and α = 0 in the NFT U

which yields b(x,ξ ) = b̃(x,ξ ). Hence, setting Q = 4−1Asymm, we have

bNF(x,D)v =
∫
Rn

∫
Rn

ei(x−y)ξ+<Qx,x>−<Qy,y>b(x,ξ )v(y)dy dξ

=
∫
Rn

∫
Rn

ei(x−y)ξ+<Qx,x>−<Qy,y>b(x,ξ )
(∫

Rn

∫
Rn

z

ei(y−z)ηv(z)dηdz
)

dy dξ .

(2.64)
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Taking into account the standard oscillatory integral methods and the iden-

tity

ei(x−y)ξ+i(y−z)η = ei(x−z)ηei(x−y)(ξ−η),

we exchange the integration and get

bNF(x,D)v =
∫
Rn

∫
Rn

ei(x−z)ηbNF(x,η)v(z)dz dη , (2.65)

where

bNF(x,η) =
∫
Rn

∫
Rn

ei(x−y)(ξ−η)+<Qx,x>−<Qy,y>b(x,ξ )dy dξ . (2.66)

Since Q is symmetric we can write

< Qx,x >−< Qy,y > = < (x− y),Q(x+ y)> . (2.67)

Indeed, if S ∈ SO(Rn) diagonalizes Q, i.e., ST QS = diag {q1, . . . ,qn}, setting

x = Sx̃, y = Sỹ, we obtain that < Qx,x >−< Qy,y > is equal to

< ST QSx̃, x̃ >−< ST QSỹ, ỹ >=
n

∑
j=1

q j(x̃2
j − ỹ2

j)

=< (x̃− ỹ),diag {q1, . . . ,qn}(x̃+ ỹ)>

=< (x̃− ỹ,ST QS(x̃+ ỹ)>=< (x− y),Q(x+ y)> .

(2.68)

Hence we can rewrite (2.66) as follows:

bNF(x,η) =
∫
Rn

∫
Rn

ei(x−y)(ξ−η+Q(x+y))b(x,ξ )dy dξ

=
∫
Rn

∫
Rn

eiyξ b(x,ξ +η−2Qx+Qy)dy dξ (2.69)

after the change of the variables ξ 7→ ξ−η+Q(x+y)= ξ−η+2Qx−Q(x−y),

y 7→ x− y. Next, following the approach of Shubin used in [58], we apply the
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Taylor formula to

b(x,ξ +η−2Qx+Qy) = ∑
|α|≤N

ξ α

α!
∂

α
η b(x,η−2Qx+Qy)+RN(x,ξ ,η ,y)

(2.70)

RN(x,ξ ,η ,y) = ∑
|β |=N+1

1
β !

∫ 1

0
(1− t)N

∂
β

η b(x, tξ +η−2Qx+Qy)dt.

(2.71)

We have

Bα(x,η) :=
∫
Rn

∫
Rn

eiyξ ξ α

α!
∂

α
η b(x,η−2Qx+Qy)dy dξ

=
∫
Rn

∫
Rn

Dα
y

(
eiyξ

) 1
α!

∂
α
η b(x,η−2Qx+Qy)dy dξ

=
∫
Rn

∫
Rn

eiyξ (−1)|α|

α!
Dα

y
(
∂

α
η b(x,η−2Qx+Qy)

)
dy dξ

=
∫
Rn

∫
Rn

eiyξ (−1)|α|

α!
(QDyη)α

∂
α
η b(x,η−2Qx+Qy)dy dξ

=
∫
Rn

(∫
Rn

eiyξ dξ

)
(−1)|α|

α!
(QDη)

α
∂

α
η b(x,η−2Qx+Qy)dy.

(2.72)

We recall that

(2π)−n
∫
Rn

eiyξ dξ = δ (y),

δ (y) being the Dirac delta function centered in 0. Therefore

Bα(x,η) =
(−1)|α|

α!
(QDη)

α
∂

α
η b(x,η−2Qx). (2.73)

On the other hand, for the same arguments in [58], we derive that

B̃N+1(x,η) :=
∫
Rn

∫
Rn

eiyξ RN+1(x,η ,y,ξ )dy dξ (2.74)

belongs to Γm−N−1(R2n). We have shown that

bNF(x,η)− ∑
|γ|≤N

(−1)|α|

α!
(QDη)

γ
∂

γ

ηb(x,η−2Qx) ∈ Γ
m−N−1(R2n)
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for every N ∈ N.

We observe that

|∂ β
x ∂

α
η Bγ(x,η)| =

1
γ!

∣∣∣∂ β
x

(
(QDη)

γ
∂

α+γ

η b(x,η−2Qx)
)∣∣∣. (2.75)

We plug the identity

∂
β
x (a(x,η−2Qx)) =(∂x−2Q∂ξ )

β a(x,ξ )|ξ=η−2Qx

= ∑
δ≤β

 β

δ

(−2)|δ |(Q∂ξ )
δ

∂
β−δ
x a(x,ξ )|ξ=η−2Qx (2.76)

in (2.75) for a(x,ξ ) = (QDξ )
γ∂

α+γ

ξ
b(x,ξ ), and readily obtain the estimate

|∂ β
x ∂

α
η Bγ(x,η)| ≤ 1

γ! ∑
δ≤β

 β

δ


× 2|δ |

∣∣∣(Q∂ξ )
δ+γ

∂
β−δ+α+γ
x b(x,ξ )|ξ=η−2Qx

∣∣∣
≤ 1

γ! ∑
δ≤β

 β

δ

2|δ |‖Q‖|δ |+|γ|∞

× Cδ+γ,β−δ+α+γ < (x,η−2Qx)>m−2|γ|−|α|−|β | (2.77)

for all (x,ξ ) ∈ R2n, α,β ,γ ∈ Zn
+, with Cp,q defined by

Cα,β := sup
(x,ξ )∈R2n

(
< (x,ξ )>−m+|α|+|β | |∂ β

x ∂
α

ξ
b(x,ξ )|

)
(2.78)

and ‖Q‖∞ := max j,k=1,...,n |q jk|.

Combining (2.78) with the estimates

0 < inf
(x,η)∈R2n

< (x,η−2Qx)>
〈(x,η)〉

≤ sup
(x,η)∈R2n

< (x,η−2Qx)>
〈(x,η)〉

<+∞

we obtain that bNF(x,η) ∈ Γm(R2n). The proof is complete.
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2.5 Discrete representation of pseudodifferen-

tial operators

In this section P will stand for a globally elliptic self-adjoint Shubin pse-

udodifferential operator of order m > 0, semibounded from below. We recall

that (for more details see [58], [50]) the operator P has a discrete spectrum

diverging to +∞.

spec(P) = {λ1 ≤ λ2 ≤ . . .≤ λk < .. .→+∞}, (2.79)

and one can choose an orthonormal basis of L2(Rn) the eigenfunctions {ϕ j}∞
j=1.

We recall several notions on discrete representations of onedimensional

Shubin operators developed by Chodosh [10].

Definition 27. If we define the discrete difference operator ∆ on a function

K : N0×N0→ R by

(∆K)( j,k) = K( j+1,k+1)−K( j,k)

(writing ∆α to signify applying the difference operator α times), then we will

say that a function K is a symbol matrix of order r if for all α,N ∈ N0 there

is Cα,N > 0 such that

|(∆αK)(m,n)| ≤Cα,N(1+m+n)r−α(1+ |m−n|)−N , m,n ∈ N0.

We denote the set of symbol matrices of order r, SMr(N0).

We introduce discrete representation depending on the basis {ϕ j}∞
j=1 of

P. One of our motivations comes from the methods on Fourier analysis

relative to elliptic differential operators on compact manifolds developed by

Greenfield and Wallach in 1973 cf. [30].
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Definition 28. For every Shubin type pseudodifferential operator Q of order

m on , we define the following infinite dimensional matrix:

KQ
P :N0×N0→ R

(α,β )→ KQ
P (α,β ) = 〈Qϕα ,ϕβ 〉.

We note that if P is the onedimensional harmonic oscillator and {ϕα},

α ∈N0, are the Hermite functions, we recapture the definition of matrices of

order m in [10].

Moreover, one is led to ask the following question: can we characterize

the action of the operator Q via the infinite matrix KQ
P for larger classes of

operators?

Our normal form result yields an easy generalization for second order self-

adjoint Shubin differential operators with symmetric mixed term.

Proposition 25. Let n = 1 and P be as in Theorem 27. We denote by

{ϕα}∞
α=1 the basis of eigenfunctions of P. Then Q(x,D) ∈ Γm iff KQ

P belongs

to SMm/2(N0).

Proof. It follows from the application of the NFT U in Theorem 27, and the

fact that ϕα =UHα , namely

KQ
P (α,β ) = 〈Qϕα ,ϕβ 〉= 〈QUHα ,UHβ 〉= 〈U∗QUHα ,Hβ 〉,

where {Hγ}∞
γ=1 are the Hermite functions. By Theorem 28 we know that

Q ∈ Γm if and only if U∗ ◦Q◦U ∈ Γm. Hence we obtain

KQ
α,β ;P = KU∗◦Q◦U

α,β ;H1
= K(α,β ),

with K(α,β ) being the matrix of QNF(x,D) = U∗ ◦Q(,D) ◦U according to

Definition 27 and we can apply the result in [10].
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Next, motivated and inspired again by the paper [30], where global hy-

poellipticity results for commuting differential operators with a normal el-

liptic operator on a compact manifold have been derived, we propose a new

result in the context of the theory of the Shubin type p.d.o. under a Dio-

phantine type condition on the eigenvalues of P.

Theorem 33. Assume that the spectrum of P consists of simple eigenvalues

and there exist C > 0 τ ≥ 0 such that

|λ j−λ`| ≥
C

(| j|+ |`|)τ
, j 6= `. (2.80)

Let Q be a Shubin pseudodifferential operator of order m such that

[P,Q] ∈ OPΓ
−∞(Rn). (2.81)

Then the matrix KQ
P := {κ j,`}∞

j,`=1 admits the following uniquely determined

splitting

KQ
P = diag {k j, j}∞

j=1 + κ̃, κ̃ j,` = (1−δ j`)κ j,`, j, ` ∈ N. (2.82)

with κ̃ j,` = O((| j|+ |`|)−N), j+ `→+∞, ∀N ∈ N.

Proof. From the Theorem 25 we have KP
P = diag {λ j}∞

j=1. Moreover using

standard linear algebra matrix arguments we obtain that the matrix repre-

sentation of the commutator [P,Q]

K[P,Q]
P = KQ

P KP
P −KP

P KQ
P = R ∈ SM−∞(N). (2.83)

Clearly R j, j = 0 while R j,` = (λ j−λ`)K j,`, when j 6= `. Hence

K j,` =
1

λ j−λ`
R j,`, j 6= `.

Here occurs the necessity to use the condition (2.80), because it is well known

that R j,l = O((| j|+ |`|)−∞) and so we need the conditions (2.80) to avoid that
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(λ j−λ`) becomes O(( j+`)−∞) for some subsequence of (k, `), k, ` ∈N, k 6= `.

One notes that if [P,Q] = 0, one gets that (λ j−λ`)K j,` = 0 for j 6= ` and so

we have K j,` = 0 without any additional condition.

Remark 7. Let PNF = Hω + r, with ω = (ω1, . . . ,ωn) being Diophantine.

Then λk 6= λ j, j 6= k and the Diophantine type condition, We can consider

a zero order Shubin operator b(x,D) (not necessarily self–adjoint) such that

[b,P]∈ Γ−∞. The the spectrum of P+b is discrete and we can write b(x,D) =

bdiag(x,D)+b−∞(x,D), with [P,bdiag] = 0 and b−∞ ∈ Γ−∞.

2.6 Discrete representation of centralizers of

operators via eigenfunction expansions

Let H be a separable Hilbert spaces. Let P be a self-adjoint unbounded

operator, semibounded from below. It is well known that P has a discrete

spectrum and we can write the eigenvalues of P like a sequence {µ1 < µ2 <

.. .µk <→ ∞}. We denote by m j the multiplicity of µ j and set Bm j(µ j) the

eigenspace corresponding to µ j, j ∈N. We choose and fix an orthonormal ba-

sis of double index θ`, j, j = 1, . . .m`, `= 1,2 . . . , and define the eigenfunctions

expansion of u ∈ D(P)

u =
∞

∑
`=1

m`

∑
j=1

u`, jθ`, j =
∞

∑
`=1
〈
−→
u` ,
−→
θ
`〉, ,

where
−→
u` = (u`,1, . . . ,u`,m`

) ∈ Cn,
−→
θ ` = (θ`,1, . . . ,θ`,m`

) ∈ (Bm`(µ`))
m` , u`, j =

〈u,θ`, j〉, Moreover, we have

H =⊕+∞

`=1Bm`(µ`)

and

Pu =
∞

∑
`=1

m`

∑
j=1

u`, jµ`θ`, j =
∞

∑
`=1
〈µ`Im`

−→
u` ,
−→
θ
`〉Rm` ,
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where
−→
θ ` =(θ`,1, . . . ,θ`,m`

), are the eigenfunctions associated to the eigenvalue

µ` with multiplicity m` and
−→
u` = (u`,1, . . . ,u`,m`

) and ` = 1, . . . ,∞. If A` ∈

SO(Rm`) (or A` ∈ SU(Rm
` )) we set

−→
θ
` := A`

−→
θ
`,
−→
u` = A`

−→
u` .

So we obtain the invariance of P under the action of the infinite matrix

A =⊕A` (2.84)

namely

P◦Au =
∞

∑
`=1
〈µ`

−→
u`
−→
θ
`〉=

∞

∑
`=1
〈µ`Im`

A
−→
u` ,A
−→
θ
`〉

=
∞

∑
`=1

µ`〈AtA
−→
u` ,
−→
θ
`〉=

∞

∑
`=1

µ`〈Im`

−→
u` ,
−→
θ
`〉= Pu.

Remark 8. Note that if the eigenvalues are simple (m` = 1), the choice of

the eigenfunctions θ` = θ`,1 is unique modulo multiplied by ±1
(
eiβ , β ∈R, if

H is a complex space
)

We consider the centralizer of P

Z(P) = {Q : PQ = QP} (2.85)

the set of all linear operators Q : D(Q)→ C, where D(Q) contains all eigen-

function, commuting with P on D(Q)∩D(P)⊂H. Then we have recall a well

known assertion

Proposition 26. Let Q ∈ Z(P). Then

Qu =
∞

∑
`=1
〈M`
−→
u` ,
−→
θ
`〉Rm` ,

where M` ∈Mm`
(C) and M` = (M`)∗, if Q∗ = Q.
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Proof. We know that since Q is invariant on Bm`(µ`), ` ∈ N, we have

Qu =
∞

∑
`=1
〈M`
−→
u` ,
−→
θ
`〉Rm` , (2.86)

where M`= {µ`
j,k} j,k=1,...,ml ∈Mm`

(C),
−→
θ `=(θ`,1, . . . ,θ`,m`

),
−→
u` =(u`,1, . . . ,u`,m`

).

Next, we consider the action of AMore precisely, if
−→
θ ` = A`

−→
θ ` and

−→
u` = A`

−→
u` ,

we have

Q◦Au =
∞

∑
`=1
〈M`A`

−→
u` ,A`

−→
θ
`〉

=
∞

∑
`=1
〈t(A`)M`A`

−→
u` ,
−→
θ
`〉. (2.87)

We complete the proof by standard linear algebra arguments.

Remark 9. In general we can not reduce a matrix M in a diagonal form by

conjugation with S ∈ SU(m`), if M is not normal (i.e. M∗M 6= M∗M). More-

over, we can reduce M` to a lower triangular form (upper-triangular form)

by a conjugation with a matrix S ∈ SU(m`). In general, case one encounters

families matrices with non trivial Jordan blocks.

2.7 Representation of Shubin Operators

We describe completely the discrete representation of the centralizer of P

in the space of pseudodifferential operators defined by the continuous action

on S (Rn).

Theorem 34. Suppose that Q : S (Rn)→S (Rn) is a linear continuous ope-

rator, that commutes with a globally elliptic self-adjoint operator P. Then we

have

i) the following decomposition

L2(Rn) = Bm1(µ1)⊕Bm2(µ2)⊕ . . .⊕Bmk(µk)⊕ . . .
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where µ1 < µ2 < .. . < µk < .. . are the eigenvalues, m j is the multiplicity

of the eigenvalue µ j, j = 1,2, . . . , further Bm j(µ j) is the eigenspace of the

eigenvalue µ j, j = 1,2, . . . with a orthonormal basis of eigenfunctions

θ`, j, such that Pθ`, j = µ`θ`, j ` ∈ N, j = 1, . . . ,m`;

ii) Qm`
:= Q|Bml (µ)

is invariant on Bml(µ);

iii) There exist matrices Γ` = {γ`rs}
m`
r,s=1 ∈Mm`

(K), where K= R or K= C,

such that
Qθ`,1

...

Qθ`,m`

=


γ`1,1 · · · γ`1,m`

...
...

γ`m`,1 · · · γ`m`,m`




θ`,1
...

θ`,m`

= Γ
`


θ`,1

...

θ`,m`

 .

(2.88)

and the family of matrices {Γ`}∞
`=1 satisfies

sup
`≥1

max
ξ∈Rm` ,|ξ |=1

(
`−N‖Γ`

ξ‖
)
< ∞, for some N > 0. (2.89)

In particular, if Q is a symmetric Shubin operator the matrices Γ`,

` ∈N, are symmetric (respetively, Hermitian) if H is real (respectively,

complex) Hilbert space.

Proof. Set ψ`, j = Qθ`, j. We get

Pψ`, j = PQθ`, j = QPθ`, j = Qµ`θ`, j = µ`Qθ`, j = µ`ψ j,`.

Hence ψ j,` = Qθ j,` ∈ Bm`(µ`), j = 1, . . . ,m` and since Q is invariant on

m`
B (µ`) we deduce i), ii) and iii) (2.88).

We prove (2.89) using the topology on S (Rn) and S ′(Rn.) Finally, the

last sentence is proved by standard linear algebra.
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2.8 Anisotropic form of the 1D harmonic os-

cillator

The main goal of this section is to investigate the reduction to normal

forms and to classify the normal forms of second order self-adjoint anisotropic

1D differential operators. In this section we consider the following operator:

Pu = D2
xu+a(x)Dxu+b(x)u =−u′′+ ia(x)u′+b(x)u, x ∈ R, (2.90)

where a(x) (resp. b(x)) is polynomial of degree k (resp. 2k). Since P = P∗

necessarily

a(x) =
k

∑
j=0

a jxk− j, a0 ∈ R, a j ∈ R, j = 1, . . . ,k, (2.91)

b(x) =
2k

∑
j=0

b jx2k− j, b0 ∈ R, b j ∈ C, j = 1, . . . ,2k. (2.92)

We recall the global anisotropic ellipticity condition (cf. [3], [6])

p2(x,ξ ) = ξ
2 +a0xk

ξ +b0x2k 6= 0, for (x,ξ ) 6= (0,0). (2.93)

Straightforward calculations imply that the operator P defined in (2.90)

is symmetric iff b j ∈ R, j = 0,1, . . . ,k and

2k

∑
j=k+1

b jxk− j− i
2

a′(x) is real valued. (2.94)

This polynomial have real coefficients, while the global anisotropic ellipticity

condition is equivalent to

q0 := b0−
1
4

a2
0 > 0. (2.95)

We define a “canonical” normal form operator depending on 2k− 2 real

parameters, which will generate all globally elliptic self-adjoint operators de-

fined above. Given k ≥ 1 and ρ = (ρ0, . . . ,ρ2k−3) ∈ R2k−2 if k ≥ 2 we set

L2k,ρ = D2
x + x2k +

2k−3

∑
j=0

ρ jx2k−3− j. (2.96)
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Recall that by well known result on the spectral theory of the Schödinger

operators (e.g., cf. [58], [3] and the references therein) we know that the

operator L2k,ρ is essentially self-adjoint with discrete spectrum

spec (L2k,ρ) = {λ1(ρ)< .. . < λ j(ρ) . . .→ ∞}, (2.97)

with the corresponding orthonormal basis of eigenfunctions {ϕρ

j (x)}
∞
j=1 ∈

L2(R). The eigenfunctions belong to the limiting Gelfand–Shilov space Sk/(k+1)
1/(k+1)(R).

Moreover the entire function extensions ϕ j(z), z = x+ yi ∈ C satisfy the fol-

lowing property:

there exists absolute constants c0 = c0(k),ε = ε(k)> 0 and positive numbers

M j, j ∈ N such that

|ϕ j(z)| ≤M je−ε|x|k+1+c0|y|(k+1)
(2.98)

We have

Proposition 27. The following properties are equivalent:

i) P is globally elliptic self-adjoint operator.

ii) there exists a unitary map

U : L2(R) 7→ L2(R), U := Tc ◦EAv(x) = e−iA(x+c)/2v(x+ c),

where A(x) =
∫ x

0
a(t)dt, c ∈ R, dilation Dτv(x) = v(τ−1x), τ > 0, and

r ∈ R, such that

U t ◦D−1
τ ◦P◦U ◦Dτv(x) = τ

2L2k,ρ + r. (2.99)

Clearly (2.99) implies that

spec (P) = {λ j = τ
2
λ j(ρ)+ r}
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and the eigenfunctions are

{ψ j(x) = κ je−iA(x+c)/2
ϕ

ρ

j (x+ c),}∞
j=1

where κ j are constants such that ‖ψ j‖= 1.

Proof. We have

P̃ = E∗A ◦P◦EAu = D2
x +

2k

∑
j=0

q jx2k− j, q j ∈ R,q0 > 0,q j ∈ R, j = 1, . . . ,2k.

Next, we set y = x+ q1
2kq0

and reduce P̃ to

P̃′ = D2
y +q0y2k +

2k−3

∑
j=0

˜̃q jy2k−2− j + r, q̃ j ∈ R, j = 0, . . . ,2k−3, r ∈ R.

We conclude the proof by applying the dilation y = τ−1x, τ = q0
2k+2.

Next we investigate the multidimensional anisotropic case

P =−∆+ 〈A(x),Dx〉+B(x), x ∈ Rn, (2.100)

where A(x) = (A1(x), . . . ,An(x)),

A j(x) =
k

∑
`=0

Ak−`
j (x), Ak−`

j (x) = ∑
|α|=k−`

A j,αxα , (2.101)

B(x) =
2k

∑
`=0

B2k−`(x), B2k−`(x) = ∑
|α|=2k−`

Bαxα , (2.102)

with

Ak(x) = (Ak
1(x), . . . ,A

k
n(x)),B2k(x) real valued. (2.103)

Here we impose a symmetry type condition (an analogue to Askew = 0 or

its geometric version). We suppose that < A(x),dx > is closed form i.e. there

exist

V (x) ∈C∞(Rn : R) such that ∇V (x) = A(x) (2.104)
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with V (x) = ∑
2k+1
j=0 V2k+1− j(x), V2k+1− j(x) real homogeneous polynomial of de-

gree 2k+1− j, j = 0,1, . . . ,2k+1.

Under the hypothesis (2.104) we have

Theorem 35. The operator P is symmetric iff

Q(x) := B(x)− 1
4
‖∇V2k+1(x)‖2 +

i∆V (x)
2

is real for x ∈ Rn (2.105)

Moreover, P is self-addoint globally elliptic operator iff

B2k(x)−
1
4
‖∇V2k+1(x)‖2 = B2k(x)−

1
4
‖Ak(x)‖2 > 0, x ∈ Rn \0. (2.106)

Suppose now that (2.105) and (2.106) hold. We assume in addition that

there exist S ∈ SO(n) and n polynomials of degree 2k

q j(t) =
2k

∑
`=0

q j;`t2k− j, q j;` ∈ R, `= 0,1, . . .2k,q j;` > 0, j = 1, . . . ,n, (2.107)

such that

Q(Sy) =
n

∑
j=1

q j(y j). (2.108)

Then we can find n positive numbers ω j, r ∈ R, γ ∈ Rn such that there

exists a unitary map U : L2(R) 7→ L2(R), U := Tγ ◦EV u(x) = e−iV (x+γ)/2v(Sx+

γ), ρ ∈ Rn, dilation Dωv(x) = v(ω−1
1 x1, . . . ,ω

−1
n xn), τ > 0, and r ∈ R, such

that

D−1
ω ◦St ◦U t ◦P◦U ◦S◦Dωv(x) =

n

∑
j=1

ω
2
j L2k,c j + r. (2.109)

Proof. After the conjugation with e−
i
2V (x) and the change x 7→ Sx we are

reduced to the sum of n 1D model anisotropic operators and we conclude as

in the previous assertion.

We conclude the proof by applying the following well known assertions.
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Lemma 7. Let Pj be unbounded self-adjoint operator in a Hilbert spaces

H j j = 1, . . . ,n, and semi-bounded from below. Let H = H1⊗ . . .⊗Hn. The

operator P

spec (Pj) = {λ j,` : `= 1,2, . . .},

with bases {ϕ j,`}∞
`=1, j = 1, . . . ,n. Then

P = P1⊕ . . .⊕Pn,

has a discrete spectrum defined by

spec (P) = {λ1,`+λ2,`+ . . .+λn,`` ∈ N},

with

{ϕ`}∞
`=1,= {ϕ1,`⊗ . . .⊗ϕn,`}.



Chapter 3

Normal forms for classes of

second order non self-adjoint

Shubin operators

The main goal of this chapter is to investigate the reduction and the

classification of the normal forms of classes of second order non self-adjoint

Shubin type differential operators.

We start with the one dimensional case. As a model (and a candidate

for a complex NF) we have in mind the non self-adjoint (complex) harmonic

oscillator

Pu = Hω := D2
xu+ωx2u =−u′′(x)+ωx2u(x), ω = z2,z ∈ C\0,arg(z)<

π

2
.

(3.1)

If arg(z) ≤ π/4 we have an example of the classes of globally elliptic

quadratic Shubin operators with non negative real part, which are subject of

recent intensive investigations in the context of semiclassical analysis, subel-

liptic estimates, partial regularity, existence of symmetries etc. (cf. [4], [59]

and the references therein). A part from the interest ”per se” in the theory of

75
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the pseudodifferential operators on Rn, we mention another motivation from

recent papers on the spectral properties of non self-adjoint differential opera-

tors (cf. [14], [15], [44] and the references therein). It is well known that Hω

has a discrete spectrum, the set of eigenfunctions is complete in the sense that

its linear span is dense in L2(R), but it does not form a Riesz basis, namely,

one can not find a bounded invertible linear operator K : L2(R) 7→ L2(R) such

that K−1 ◦Hω ◦K becomes a normal operator ( for more details see [15]

and the references therein). In fact, one may choose complex eigenfunctions

Φk(x) (complex Hermite functions) Φk(x) = ω1/4Hk(ω
1/2x)σ(x), Hk(t) being

the Hermite polynomials of degree k, k∈Z+, and σ(x) = e−
ω1/2

2 x2
is a complex

weight function, which form a (pseudo) orthogonal basis, or bi–orthogonal in

L2(R), namely∫
R

Φ j(x)Φk(x)dx = 〈Φ j,Φ
∗
k〉L2 = δ jk, j,k ∈ N. (3.2)

where δ jk stands for the Kronecker symbol, while Φ∗(x) = Φk(x). Note that

the integral in the LHS of (3.2) is without any conjugation. One defines the

(non–orthogonal) projector as Pku = 〈u,Φ∗k〉L2Φk. The authors prove that

lim
k→∞

‖Pk‖1/k = c > 1 or in equivalent form lim
k→∞

ln(‖Pk‖)
k

= d > 0 (3.3)

where the norm of the projector Pk defined by

‖Pk‖2 =
∫
R
|Φk(x)|2dx, k ∈ N. (3.4)

and apply this estimates to show that there exists tω > 0, proportional to d,

such that

e−tP =
∞

∑
j=0

e−tλ jPj is norm convergent if t > tω and divergent if 0 < t < tω .

(3.5)

Recently, Mityagin, Siegel and Viola (see [44]) have studied operators T ,

in a separable Hilbert space H, which are unbounded, densely defined, and
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have compact resolvent. It is well known that the spectrum of T consists of

at most countable number of isolated eigenvalues accumulating at infinity.

They define the spectral projection Pλ via the Cauchy integral formula

Pλ =
1

2πi

∫
|ζ−λ |=ε

(ζ −T )−1dζ ,

where ε > 0 is smaller than the distance from λ to any other eigenvalue.

It is well known, in contrast with the case when T is normal, the spectral

projection of a non normal operator T are, in general, not orthogonal. As

a consequence in the study of simple differential operators on the real line

which admit minimal complete system of eigenvectors {uk}∞
k=0 which is not a

Riesz basis. The authors have proved the existence of a natural class of non

self-adjoint operators for which

lim
k→∞

1
kσ

log |Pk|= c > 0, (3.6)

where σ can take any value in (0,1), (see for more details Theorems 2.6 and

3.7 in [44]). These operators arise as non self-adjoint perturbations B of a

self-adjoint Schrödinger operator T . They study the non self-adjoint operator

Mεu = D2
xu+ x2u+ i2εxDxu =−u′′(x)+ x2u(x)+2εxu′(x), ε ∈ R\0. (3.7)

a skew-adjoint perturbation B = 2iax, a ∈ R\{0} of the harmonic oscillator

D2
x + x2. We point out that both operators Hω and Mε are Γ elliptic.

Finally, we mention that in [15] the authors show growth more rapid

than any power of k for the norms of spectral projections {Pk}∞
k=0 for the

anisotropic operators

Am,ω =− d2

dx2 +ωxm,

acting on L2(R), ω ∈C\R and arg(ω)<C(m), for more details see Theorem

3 in [15].
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Coming back to the issue of NF for non self-adjoint operators, taking into

account that in the one dimensional case all solutions of Pu− λu = 0 are

entire functions (restricted on the real line), it is easy to show that, if P is Γ-

elliptic, we can reduce P to Hω modulo composition under a transformation

of the type u(x) = e(ax2+bx)v(x+c), for some a,b,c∈C, ℑa 6= 0 and/or ℑb 6= 0,

which acts in the space of the entire functions on C. The main challenge is to

describe completely the spectral properties. Here the Gelfand-Shilov spaces

Sµ

µ(R), µ < 1, shall play a fundamental role, since all functions from these

these spaces are extended as entire functions and all possible eigenfunctions

of complex harmonic oscillators on the real line

P = D2
x +αxDx +βx2 + γDx +δx+ r, α,β ,γ,δ ∈ C, (3.8)

belong to S1/2
1/2(R) (see [6]).

We show that if ω1 := ℜ

(
β − α2

4

)
≥ 0 then all perturbations which keep

the Γ ellipticity have discrete spectrum and compact resolvent while in the

case ω1 < 0 there exists a threshold ε0 depending on ω2 = ℑ

(
β − α2

4

)
such

that if |ℑα| < ε0 the spectrum is discrete and we find explicitly the eigen-

functions whereas |ℑα| > ε0 implies that the spectrum of P coincides with

C. For the critical value |ℑα|= ε0 the operator is not globally elliptic. The

crucial ingredient of our proofs is the use of the complex JWKB method.

One easy consequence of our NF is the extension of some of the results

in the aforementioned works for a slightly larger classes of operators.

We also consider non self-adjoint globally elliptic operators in the multi-

dimensional case

P =−∆+ 〈Ax,Dx〉+ 〈Bx,x〉+ 〈g,Dx〉+ 〈h,x〉+ r. (3.9)

where B,A ∈Mn(C), g,h ∈Cn, r ∈C. Here 〈ξ ,η〉= ξ1,η1 + . . .+ξnηn, ξ ,η ∈



79

Cn. Clearly ℜB and ℑB are symmetric, i.e., BT = B with respect to the

complex pseudo inner product above.

We derive reductions via conjugations with NFT of operators given by

(3.9) to multidimensional complex harmonic oscillator modulo complex trans-

lations

Hωu :=−∆u+
n

∑
j=1

ω jx2
ju, ω j ∈ C\0,ℜω j > 0, (3.10)

provided ℜA, ℑA, ℜB, ℑB satisfy suitable commutator and separation of

variables type conditions. Thus we are able to classify the spectral properties

of (3.9).

Next, we investigate the reduction to NF of anisotropic versions of (3.7)

P = D2
x +

k

∑
j=0

a jxk− jDx +
2k

∑
`=0

b`x2k−` (3.11)

where a j ∈ C, a0 6= 0, b` ∈ C, b0 6= 0. We are able to classify completely

the spectral properties of (3.11). Here again we rely heavily on the complex

JWKB methods but unlike the quadratic harmonic oscillator we are not able

to write down explicitly the eigenvalues and the eigenfunctions. However,

under additional restrictions on the complex coefficients, we show that the

spectrum and the bi-orthogonal eigenfunctions are generated by the canonical

self–adjoint NF anisotropic operator L2k,c, c ∈R2k−2 (defined in the previous

chapter) by means of complex dilations and translation and multiplication

by exponential terms of the type eηxk+1+O(|x|k), ℜη 6= 0. We take advantage of

the hypoellipticity in Sk/(k+1)
1/(k+1)(R) of anisotropic elliptic operators of the type

−∆+(‖x‖2)k, see [5].

The major novelty of our investigations this section concerns the case of

multidimensional anisotropic non self–adjoint operators. We derive normal

forms via transformations acting in Gelfand-Shilov spaces of entire functions
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of operators defined by

P = D2
x + 〈A(x),Dx〉+B(x), x ∈ Rn, (3.12)

where A(x) = (A1(x), . . . ,An(x)), A j are polynomials with complex coefficients

of degree k, B is polynomial with complex coefficients of degree 2k, 〈A(x),dx〉

is closed 1 form, with A(x) and B(x) rather restrictive satisfying symmetry

and separation of variables type conditions.

Finally, we study perturbations of complex quadratic harmonic oscillators

with some regularizing pseudodifferential operators b(x,D), whose symbols

belong to the limit Gelfand–Shilov space S1/2
1/2(R

n) and show that despite the

quadratic exponential growth of the NFT we can still conjugate b(x,D) with

eεx2
, provided |ε| � 1.

The chapter is organized as follows: Section 1 is concerned with the classi-

fication of the NF and the study of the spectral properties of the perturbations

of the complex harmonic oscillator. In the second section we study NF and

spectral properties of perturbations of multidimensional complex harmonic

oscillators. The classification of the NF and the study of the spectral proper-

ties of non–self–adjoint 1D anisotropic operators is done in Section 3 whereas

in Section 4 we address the same issues for some classes of multidimensional

anisotropic operators. In the final section we demonstrate a result on the

conjugation of classes of S1/2
1/2(R

n) operators via quadratic exponential NFT.

3.1 NF of perturbations of 1D complex har-

monic oscillators

We consider the second order Shubin differential operator on the real line

P = D2
x +αxDx +βx2 + γDx +δx+ r. (3.13)
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with α,β ,γ,δ ∈ C.

We assume, without loss of generality, that ℜα = 0, ℜγ = 0 - otherwise,

as in Chapter 2, we apply the conjugation with a unitary NFT

ei(Re(α)
4 x2+ γ

2 x) ◦P◦ e−i(Re(α)
4 x2+ γ

2 x). (3.14)

Therefore, we consider the operator P in this form as a perturbation of a

non self-adjoint operator

L = D2
x + iεxDx +ωx2 + ipDx +qx+ r, (3.15)

where ω =ω1+ω2i∈C\0, ω1 > 0, if ω2 = 0, ε, p∈R, q= q1+q2i∈C, q1 = 0

if ω1 6= 0, q2 = 0 if ω1 = 0, r ∈ C.

We derive reductions to normal forms taking advantage of the limiting

Gelfand–Shilov S1/2
1/2(R) regularity of the eigenfunctions of second order glo-

bally elliptic differential operators.

We introduce, following the arguments used in [14], [15], complex inner

product with complex weight function σ(x), σ(x) 6= 0, x ∈ R,

〈 f ,g〉C,σ =
∫
R

f (x)g(x)σ2(x)dx. (3.16)

One checks easily that if for some s ∈ R, t ≥ 0, C > 0

|σ(x)| ≤ Cesx2+t|x|, x ∈ R (3.17)

then (3.16) is well defined for all f ,g ∈ S1/2
1/2(R) (respectively, f ,g ∈ Sµ

µ(R),

1/2≤ µ < 1), decaying exponentially

max{| f (x)|, |g(x)|}=O(e−ηx2
, x→ ∞)

(respectively,O(e−η |x|1/µ

), x→ ∞), k ∈ N, (3.18)

for all 0 < s < η (respectively, η > 0), provided s > 0 (respectively, s≤ 0).

We consider first the simpler case of ε = 0.
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Proposition 28. Suppose that ε = 0. Then there exists a transformation

T = Tp/2,q/(2ω)w(x) = e
p
2 xw(x− q

2ω
i), p,q ∈ C, (3.19)

T−1
a,b = T−a,−b such that

T−p/2,−q/(2ω) ◦L◦Tp/2,q/(2ω) = D2
x +ωx2 + r̃, (3.20)

where r̃ = r− p2

4 + q2

4ω
. L has a discrete spectrum and the eigenvalues are

given by

λk = ω
1/2(2k+1)+ r, k ∈ Z+, (3.21)

with eigenfunctions defined by

ϕk(x) = κe−
p
2 xHk(ω

1/4(x− q
2ω

i)), k ∈ N, (3.22)

with κ
−1 =

∫
R

H2
k (ω

1/4(x− q
2ω

i))dx=ω
−1/4, forming bi-orthogonal basis with

respect to the complex weighted inner product (3.16)

σ(x) = e−
p
2 x+ω1/4(x− q

2ω
i)2), k ∈ N, (3.23)

Finally, we claim that the spaces Sµ

µ(R), 1/2 ≤ µ < 1, are invariant under

the action of Tp/2,q/(2ω) and there exist C > 0 such that

Tp/2,q/(2ω)u µ;ρ−δ ,σ+δ ≤ eC(1−µ)(C
δ
)

µ/(1−µ)

u µ;ρ,σ , (3.24)

for u ∈ BSµ

µ(R;ρ,σ), 0 < δ � 1, 1/2≤ µ < 1.

Proof. We have

L(e
p
2 xv(x)) =D2

x(e
p
2 xv(x))+ωx2(e

p
2 xv(x))+ ipDx(e

p
2 xv(x))

+qx(e−i p
2 xv(x))

= e
p
2 x
(

D2
x +ωx2 +qx+ r− p2

4

)
v(x) = e

p
2 xL̃v(x),
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and the translation x 7→ x+ q
2ω

transforms L̃ into (3.20). We conclude by

observing that for every u ∈ BSµ

µ(R;ρ,σ), ρ,σ > 0, 1/2≤ µ ≤ 1 we get

|e
p
2 xu(x+a1 +(y+a2)i)| ≤ C0e−ρ|x+a1|1/µ+σ |y+a2|1/µ+ p

2 x

≤ C1e−ρ|x|1/µ+σ |y|1/µ+C1(|x|+|y|)

≤ C1e−(ρ−δ )|x|1/µ+(σ+δ )|y|1/µ−δ (|x|1/µ+|y|1/µ )+C1(|x|+|y|)

≤ C1κ2
µe−(ρ−δ )|x|1/µ+(σ+δ )|y|1/µ

, (3.25)

where

κµ = sup
t≥0

(
e−δ t1/µ+C1t

)
= e

(1−µ)C1
Cµ/(1−µ)

1
δ µ/(1−µ) , (3.26)

which implies (3.25).

Remark 10. We note that if ℜp 6= 0 or ℜq 6= 0 the transformation T is not

defined on L2(R) or Sµ

µ(R) for µ ≥ 1. The crucial point for the requirement

µ < 1 is the fact that the all f ∈ Sµ

µ(R) are restrictions on R of entire func-

tions and T acts continuously in Sµ

µ(R) using equivalent topology for entire

functions. For more details see [20],[5].

Let us consider the second order operator

L = D2
x + iεxDx +ωx2 + ipDx +qx+ τ, (3.27)

where ω = ω1 +ω2i ∈ C, ω 6= 0, ε, p ∈ R, q,τ ∈ C.

Actually, using dilation x = |ω1|1/4y, if ω1 is different from zero, we can

consider 3 classes of operators (modulo multiplication with |ω1|1/2, when

ω1 6= 0), reducing to 3 cases: ω1 = 1, ω1 =−1, ω1 = 0, namely

L+ = D2
x + iεxDx +(1+ iδ )x2 + ipDx +qx+ τ, (3.28)

L− = D2
x + iεxDx +(−1+ iδ )x2 + ipDx +qx+ τ, (3.29)

L0 = D2
x + iεxDx + iδx2 + ipDx +qx+ τ, (3.30)
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for ε,δ , p ∈ R, q,τ ∈ C, δ 6= 0 in (3.30).

We classify completely the class of operators (3.27) when ε 6= 0.

Theorem 36. The operator L (3.27) is globally elliptic iff

either ω1 ≥ 0 or ω1 < 0 and ω
2
2 +ω1ε

2 6= 0, (3.31)

or stated equivalently

L+ is globally elliptic for all δ ,ε ∈ R, (3.32)

L− is globally elliptic iff δ
2 6= ε

2, (3.33)

L0 is globally elliptic iff δ 6= 0. (3.34)

Furthermore, there exist a,b ∈ C such that the transformation Ta,b

u(x) = e−
ε

4 (x+b)2
Ta,bv(x) = e−

ε

4 (x+b)2
eaxv(x+b) (3.35)

transforms L to

Hθ v(y)+ rv(y) =−v′′(y)+θx2v(y)+ r, θ ∈ C\0,2ℜ
√

θ 6= |ε|r ∈ C. (3.36)

Under the assumption (3.31) the following properties are equivalent:

i) P has a discrete spectrum with simple eigenvalues in ℜz > 0 with eigen-

functions forming a Schauder basis (but not Riesz basis) and compact

resolvent.

ii) Either ω1 ≥ 0 or ω1 < 0, ω2 6= 0 and |ε|< ε0 =−ω2
2/ω1.

iii) The normal form operator Hθ in (3.36) satisfies

2ℜ
√

θ > |ε|. (3.37)
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In particular, if i) or ii) holds, the eigenvalues are given by

λk = θ
1/2(2k−1)+ r, θ = ω1 +

ε2

4
+ iω2,k ∈ N (3.38)

with eigenfunctions forming bi-orthogonal basis with respect to the complex

weight inner product (3.23)

σ(x) = e
ε

4 x2+ax. (3.39)

defined by

ϕk(x) = κe−
ε

4 x2
e−axHk(θ

1/4(x−b)), k ∈ N, (3.40)

with

κ
−1 =

(∫
R

H2
k (θ

1/4(x−b))dx
)1/2

= θ
−1/4.

Finally,

if ω1 < 0, |ε|> ε0, then spec (L) = C. (3.41)

Remark 11. We can rewrite the result in Theorem 36 for L+, L− and L0

under the hypothesis of global hypoellipticity:

L+ and L0 have discrete spectrum and eigenfunctions defined in (3.21), (3.40)

(3.42)

L− has discrete spectrum as (3.42) iff δ
2 > ε

2 and spec (L−) = C for δ
2 < ε

2,

3.1.1 Proof of the complex harmonic oscillator NF

First we study the Γ ellipticity. Since the principal symbol of P is

p2(x,ξ ) = ξ
2 +ω1x2 + ix(εξ +ω2). (3.43)

one checks easily that that p2(x,ξ ) 6= 0 for (x,ξ ) 6= (0,0) iff ω2
2 +ω1ε2 6= 0.
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The idea of the proof is quite natural. We know by the theory of complex

ODE that all solutions of

Pu−λu = 0, λ ∈ C, (3.44)

are extended to entire functions. Therefore, straightforward calculations

show that u(x) solves (3.44) iff v(x), defined by

u(x) = e−ε
(x+b)2

4 − p(x+b)
2 v(x+b) (3.45)

solves

Hωv+(r−λ )v = 0, λ ∈ C, (3.46)

where

ω = β − ε
2/4, a = p/2, b =

q
2ω

. (3.47)

The spectrum of Hω is discrete, with eigenvalues λk = ω1/2(2k− 1)+ r,

and basis the complex Hermite functions Hk(ω
1/4y). One checks immediately

(returning to u via (3.35))

ϕk(x) := e−ε
(x+b)2

4 − px
2 Hk(ω

1/4(x+b)) ∈ L2(R) if (3.37) holds. (3.48)

In order to complete the proof we have to apply complex WKB methods

(cf. [66]). .

Lemma 8. Let λ ∈ C. Then all solutions of

Lu−λu = 0 (3.49)

are restrictions on the real line of entire functions. Moreover, we can find a

basis ϕ±exp(x;λ ), ϕ
±
dec(x;λ ), x ∈ C satisfying

ϕ
±
exp(x) = a±exp(x)exp

(
ε

x2

4
±
∫ x

x0

√
(ω1 + iω2)t2dt +O(|x|)

)
, x ∈ Γ±, |x| → ∞,

ϕ
±
dec(x) = a±dec(x)exp

(
ε

x2

4
∓
∫ x

x0

√
(ω1 + iω2)t2dt +O(|x|)

)
, x ∈ Γ±, |x| → ∞.
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with Γ± being a complex conic neighbourhood of R±, and the amplitudes

a±dec(x),a
±
exp(x) are holomorphic in Γ± and are O(|x|−1/2), x ∈ Γ±, |x| → ∞.

Proof. We consider the following transformation

Eu(x) := e−
p
2 xu(x),

So the operator L in (3.15) becomes

E∗ ◦L◦E = L̂ = D2
x + iεxDx +

(
ω1 + iω2

)
x2 +hx+ `,

where h = q− iε p
2 and `= r− p2

4 .

We can apply the transformation

Eεv(x) = eεx2/4v(x),

so we have

E−1
ε ◦ L̂◦Eε = L̃ = D2

x +
(

ω̃1 + iω̃2

)
x2 + h̃x+ ˜̀, (3.50)

where ω1 = ω1 +
ε2

2 , and ω̃2 = ω2, h̃ = h, ˜̀− ε

2 . The equation (3.49) is equiv-

alent to

L̃v−λv =−v′′+(ω̃x2 + h̃x+ ˜̀−λ )v = 0 (3.51)

Now we can apply the complex WKB method for the equation above.

More precisely, we can find two linearly independent solutions for x→ +∞

(respectively, −∞), namely

ψ
+
exp(x;λ ) = b+exp(x)e

∫ x
0

√
(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt ,

ψ
+
dec(x;λ ) = b+dec(x)e

−
∫ x

0

√
(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt ,

(3.52)
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for x ∈ Γ+ (respectively,

ψ
−
exp(x;λ ) = b−exp(x)e

−
∫ x

0

√
(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt ,

ψ
−
dec(x;λ ) = b−dec(x)e

∫ x
0

√
(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt ,

(3.53)

for x∈ Γ−) and the amplitudes b±dec(x),b
±
exp(x) are holomorphic in Γ± and are

O(|x|−1/2), x ∈ Γ±, |x| → ∞. We point out that (3.52) (respectively, (3.53))

implies

|ψ+
exp(x)| ∼ κ+

exp|x|−1/2e
∫ x

0 Re
√

(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt

= κ+
exp|x|−1/2e

Re
(√

(ω̃1+iω̃2)x2/2
)
+O(|x|)

|ψ+
dec(x)| ∼ κ+

dec|x|
−1/2e−

∫ x
0 Re
√

(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt

= κ+
dec|x|

−1/2e
−Re
(√

(ω̃1+iω̃2)x2/2
)
+O(|x|)

(3.54)

for x ∈ Γ+, |x| → ∞, where κ+
exp/dec ∈ R+,

(respectively,

|ψ−exp(x)| ∼ κ−exp|x|−1/2e−
∫ x

0 Re(
√

(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt)

= κ−exp|x|−1/2e
−Re
(√

(ω̃1+iω̃2)x2/2
)
+O(|x|)

|ψ−dec(x)| ∼ κ−dec|x|
−1/2e

∫ x
0 Re
√

(ω̃1+iω̃2)t2+h̃t+ ˜̀−λdt

= κ−dec|x|
−1/2e

+Re
(√

(ω̃1+iω̃2)x2/2
)
+O(|x|)

(3.55)

for x ∈ Γ−, |x| → ∞ and κ−exp/dec ∈ R+).

Let C±∓ be the transition matrix from ∓∞ to ±∞. Thus

ψ
+ =

ψ
+
exp

ψ
+
dec

=C+
−ψ
− =C+

−

ψ
−
exp

ψ
−
dec

 , C+
− = (C−+)

−1.
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One observes that∫ x

0

√
(ω̃1 + iω̃2)t2 + h̃t + ˜̀−λdt '

√
(ω̃1 + iω̃2)

x2

2
+O(|x|).

Coming back to the operator P, and using the fact that the solutions of

Pu−λu = 0 are entire functions we obtain

ϕ
+
exp(x;λ )∼ eε

x2
4 ψ

+
exp(x),

ϕ
−
exp(x;λ )∼ eε

x2
4 ψ
−
exp(x),

ϕ
+
dec(x;λ )∼ eε

x2
4 ψ

+
dec(x),

ϕ
−
dec(x;λ )∼ eε

x2
4 ψ
−
dec(x).

and so we can find a solution of our equation (3.49).

Now we are able to prove Theorem 36. We study the spectral properties

using the previous Lemma. We have three cases:

• If ε <−Re
√

(ω1 +
ε2

4 + iω2) then Ker(P−λ I)⊂ S1/2
1/2(R) for any λ ∈C,

so spec(P) = C.

• If ε > Re
√
(ω1 +

ε2

4 + iω2) then Ker(P−λ I) = {0}, so the indP 6= 0, so

the spec(P) = C.

• If |ε| < Re
√
(ω1 +

ε2

4 + iω2) then we have a compact resolvent so the

spectrum of P is discrete.

If ω1 > 0, the operator P is a globally elliptic, so we can reduce P to normal

form in the operator

P̃ =
√

ω

(
D2

z + z2 +
r̃√
ω

)
.
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That operator has compact resolvent and its eigenvalues are

λk =
√

ω(2k+1)+ r, k ∈ Z+. We write the eigenfunctions

ũk(z) = c̃kHk(z)e−z2/2,

where Hk are the Hermite functions. So for the operator P (3.13) a basis of

eigenfunctions is defined as follows:

uk(x) = cke−i(α x2
4 + γx

2 )Hk(
4
√

ω(x+δ/(2ω))e−
(x+δ )/(2ω)2

2 .

The proof is complete.

3.2 Normal forms of 1D anisotropic non self–

adjoint operators

In view of the results in Chapter 2 for self–adjoint anisotropic operators

without loss of generality, applying first the unitary NFT, used in Chapter

2, we consider operators of the following form

Pu = D2
xu+ ia(x)Dxu+b(x)u =−u′′+a(x)u′+b(x)u, x ∈ R, (3.56)

where

a(x) =
k

∑
j=0

a jxk− j, a j ∈ R, j = 0,1, . . . ,k, (3.57)

b(x) =
2k

∑
j=0

b jx2k− j, b j ∈ C, j = 0,1, . . . ,2k, b0 6= 0 (3.58)

We recall the global anisotropic ellipticity condition (cf. [3], [6])

p2(x,ξ ) = ξ
2 + ia0xk

ξ +b0x2k 6= 0, for (x,ξ ) 6= (0,0). (3.59)

It is well known that if u ∈S ′(Rn), Pu = f ∈ Sµ

ν (R), with

µ ≥ k
k+1

ν ≥ 1
k+1

,
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then also u ∈ Sµ

ν (R) cf. [6].

We recall that all solutions of

Pu−λu = 0, x ∈ R, λ ∈ C (3.60)

are extended to entire functions in C because the coefficients are polynomi-

als. Therefore, applying the transformation E−A = e−A(x)/2, where A(x) =∫ x
0 a(t)dt, to the operator (3.56) we get

P̃ = E−1
A ◦P◦EA = D2

x +Q(x), (3.61)

where

Q(x) = b(x)+
a(x)2

4
− ∂x(a(x))

2
i=

2k

∑
j=0

q jx2k− j, q j ∈C, j = 0,1, . . . ,2k. (3.62)

We require that

ℜq0 > 0 , if ℑq0 = 0. (3.63)

Then one checks easily that P is globally (anisotropically) elliptic iff

ℑb2
0 +

1
4

a2
0ℜb0 6= 0 if ℜb0 ≤ 0. (3.64)

We note that Q(x) = q0(x+
q1

2kq0
)2k plus polynomial of degree ≤ 2k− 2.

Hence

Q̃(y) :=Q(y− q1

2kq0
)= q0y2k+

2k−3

∑
j=0

q̃ jx2k− j+r, q̃ j ∈C, j = 0,1, . . . ,2k−3,r∈C.

(3.65)

which leads to

T−1
−q1
2kq0

◦ P̃◦T−q1
2kq0

=−∆+ Q̃(x) (3.66)

Proposition 29. Set J = EA ◦T− q1
2kq0
◦D

q1/(2k+2)
0

. Then

J−1 ◦P◦ J = τL2k,w(x,Dx)+ r,w j :=
q̃ j

τ2k− j , j = 0,1, . . . ,2k−3. (3.67)
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Assume now that

w j := ρ j ∈ R, j = 0, . . . ,2k−3. (3.68)

Then every solution of Pu−λu = 0 is given by

u(x) = eA

(
(q0)

1/(2k+2)(x− q0
2kq1

))

)
2 v

(
(q0)

1/(2k+2)(x− q0

2kq1
)
)

(3.69)

with v solving

L2k,ρv+
r−λ

τ2 v = 0. (3.70)

Proof. One observes that

J−1 ◦P◦ J = T−1
− q1

2kq0

◦ P̃◦T−q1
2kq0

= D
q−1/(2k+2)

0
◦T q1

2kq0
◦ P̃◦T−q1

2kq0
◦D

q1/(2k+2)
0

= D−1
q1/(2k+2)

0

◦ (−∆+ Q̃)◦D
q1/(2k+2)

0
= τ

2L2k,ρ + r. (3.71)

Next, we study the spectral properties.

Theorem 37. Suppose that

|a0|> 2ℜ(q1/2
0 ). (3.72)

Then

spec (P) = C.

Finally, in the case k odd we have

Ker(P−λ )
⋂

S ′(R) = {u ∈ O(C) : Pu−λu = 0},

Ker(P∗−λ )
⋂

S ′(R) = {0}



3.2 Normal forms of 1D anisotropic non self–adjoint operators 93

(respectively

Ker(P∗−λ )
⋂

S ′(R) = {u ∈ O(C) : Pu−λu = 0},

Ker(P−λ )
⋂

S ′(R) = {0})

provided a0 <−2ℜ(q1/2
0 ) (respectively a0 > 2ℜ(q1/2

0 )) while for k even

Ker(P−λ )
⋂

S ′(R) = Ker(P∗−λ )
⋂

S ′(R) = {0}.

Remark 12. We note that under the hypothesis (3.72) we do not require the

zero imaginary part condition.

Next, we investigate the case of discrete spectrum.

Theorem 38. Suppose that that

|a0|< 2ℜ(q1/2
0 ). (3.73)

Then P has compact resolvent and discrete spectrum. Moreover, if the

zero condition holds, we have:

• The spectrum of P is discrete and given by

spec (P) = {λ j : λ j = q1/(k+1)
0 λ j(~ρ)+ r j ∈ N}. (3.74)

with a basis of eigenfunctions ψ j, j ∈ N defined by

ψ j(x) = c je−iA(x)/2
ϕ j(q

1/(2k+2)
0 (x+

q1

2kq0
)), j ∈ N (3.75)

with c j > 0 defined by
∥∥ψ j

∥∥
L2 = 1

3.2.1 Proof of the assertions on the spectral properties

The first ingredient of our proof consists of the use of the complex WKB

(or JWKB) method. We derive an important auxiliary assertion
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Lemma 9. Let λ ∈ C. Then all solutions of

Pu−λu = 0 (3.76)

are restrictions on the real line of entire functions. Moreover, we can find

two basis ϕ±exp(x;λ ), ϕ
±
dec(x;λ ), x ∈ C of Ker(P−λ ) satisfying

ϕ
±
exp(x) = a±exp(x)exp

( a0xk+1

2(k+1)
±
∫ x

x0

√
q0t2kdt +O(|x|k)

)
, x ∈ Γ±, |x| → ∞,

ϕ
±
dec(x) = a±dec(x)exp

( a0xk+1

2(k+1)
∓
∫ x

x0

√
q0t2kdt +O(|x|k|)

)
, x ∈ Γ∓, |x| → ∞.

with Γ± being a complex conic neighbourhood of R±, and the amplitudes

a±dec(x),a
±
exp(x) are holomorphic in Γ± and are O(|x|−k/2), x ∈ Γ±, |x| → ∞.

Proof. We can apply the transformation EA(x)= e−A(x)/2, where A(x)=
∫ x

0 a(t)dt,

to the operator (3.56) and we are reduced to the study of P̃ (3.61). Thus the

equation (3.76) is equivalent to

P̃v−λv =−v′′+ Q̃(x)v = 0, (3.77)

where Q̃(x) = Q(x)−λ .

Now we can apply the complex WKB method for the equation above.

More precisely, we can find two linearly independent solutions for x→ +∞

(respectively, −∞), namely

ψ
+
exp(x;λ ) = b+exp(x)e

∫ x
0

√
q0t2k+q1t2k−1+...+q2k−λ dt ,

ψ
+
dec(x;λ ) = b+dec(x)e

−
∫ x

0

√
q0t2k+q1t2k−1+...+q2k−λ dt ,

(3.78)
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for x ∈ Γ+ (respectively,

ψ
−
exp(x;λ ) = b−exp(x)e

−(−1)k−1 ∫ x
0

√
q0t2k+q1t2k−1+...+q2k−λ dt ,

ψ
−
dec(x;λ ) = b−dec(x)e

(−1)k−1 ∫ x
0

√
q0t2k+q1t2k−1+...+q2k−λ dt ,

(3.79)

for x∈ Γ−) and the amplitudes b±dec(x),b
±
exp(x) are holomorphic in Γ± and are

O(|x|−k/2), x ∈ Γ±, |x| → ∞.

We point out that the WKB method and (3.78) (respectively, (3.79))

imply

|ψ+
exp(x)| ∼ κ+

exp|x|−k/2e
∫ x

0 Re
√

q0t2k+q1t2k−1+...+q2k−λ dt

= κ+
exp|x|−k/2eRe(

√
q0xk+1/(k+1))+O(|x|k)

|ψ+
dec(x)| ∼ κ+

dec|x|
−k/2e−

∫ x
0 Re
√

q0t2k+q1t2k−1+...+q2k−λ dt

= κ+
dec|x|

−k/2e−Re(
√

q0xk+1/(k+1))+O(|x|k) (3.80)

for x ∈ Γ+, |x| → ∞, where κ+
exp/dec ∈ R+,

(respectively,

|ψ−exp(x)| ∼ κ−exp|x|−k/2|e−(−1)k−1 ∫ x
0

√
q0t2k+q1t2k−1+...+q2k−λ dt |

= κ−exp|x|−k/2e(−1)k−1Re(
√

q0xk+1/(k+1))+O(|x|)k

|ψ−dec(x)| ∼ κ−dec|x|
−k/2|e

∫ x
0

√
q0t2k+q1t2k−1+...+q2k−λ dt |

= κ−dec|x|
−k/2e−(−1)k−1Re(

√
q0xk+1/(k+1))+O(|x|k) (3.81)

for x ∈ Γ−, |x| → ∞ and κ−exp/dec ∈ R+), taking into account that∫ x

0

√
q0t2k +q1t2k−1 + . . .+q2k−λ dt '±(−1)k−1√q0

xk+1

k+1
+O(|x|k), x∈Γ±.

Set C±∓ ∗{C±∓( jk)} j,k=1,2 to be the transition matrix from ∓ to ±, namely

ψ
± =

ψ
±
exp

ψ
±
dec

=C±∓ψ
∓ =C±∓

ψ
∓
exp

ψ
∓
dec

 ,
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with C+
− = (C−+)

−1.

Coming back to the operator P, we obtain that

ϕ
±
exp(x) = e−A(x)/2

ψ
±
exp(x),

ϕ
±
dec(x) = e−A(x)/2

ψ
±
dec(x),

ϕ
±
exp(x)∼ κ−exp|x|−k/2e−a0xk+1(2(k+1))+Re(

√
q0|x|k+1/(k+1))+O(|x|k), x ∈ R, |x| → ∞,

ϕ
±
dec(x)∼ eκ−dec|x|

−k/2e−a0xk+1(2(k+1))−Re(
√

q0|x|k+1/(k+1))+O(|x|k), x ∈ R, |x| → ∞

and ϕ± =C±∓ϕ∓, ϕ± = (ϕ±exp,ϕ
±
dec). Evidently the estimates above, combined

with standard arguments in the spectral theory and the explicit formulas for

the eigenvalues of the complex harmonic oscillator complete the proof of both

theorems.

3.3 Normal forms and spectral properties of

multidimensional Shubin operators

We consider the operator in (3.12). Set A=A1+ iA2, B=B1+ iB2, A j,B j ∈

Mn(R), B j, j = 1,2 are symmetric. We assume that

B1 > 0, (3.82)

AT = A, namely, A1 and A2 are symmetric, (3.83)

B1−
A2

1
4

> 0 (3.84)

Θ1 := B1−
A2

1
4

+
A2

2
4

and Θ2 := B1 +
A1A2

4
+

A2A1

4
are commuting. (3.85)

We note that (3.83) implies that Θ1 and Θ2 are symmetric. By well known

classical theorems on the centralizers of finite matrices we obtain that (3.85)
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is equivalent to the existence of S ∈ SO(n) which diagonalizes simultaneously

Θ1 and Θ2

ST
Θ jS = diag {ω j;1, . . . ,ω j;n}, ω j;` ∈ R, j = 1,2, `= 1, . . . ,n. (3.86)

One checks easily that (3.84) yields ω1,` > 0, `= 1, . . . ,n. Under the hypoth-

esis above we have

Theorem 39. The operator P defined by (3.12) is Γ elliptic and one can find

α ∈ Cn, r ∈ C such that the transformation

J = e−
i
4 〈S

T ASx,x〉+〈α,x〉Tβ (3.87)

reduces P to a multidimensional complex harmonic oscillator

J−1 ◦P◦ J =−∆+
n

∑
`=1

(ω1,`+ω2;`i)x2
j + r. (3.88)

Moreover, the spectrum is discrete and we can express explicitly the eigenval-

ues and the eigenfunctions of P via J and the Hermite functions.

The proof follows from the fact that

e−
i
4 〈S

T ASx,x〉 ◦P◦ e−
i
4 〈S

T ASx,x〉 =−∆+
n

∑
`=1

(ω1,`+ω2;`i)x2
j + lower order terms.

(3.89)

So we have separation of the variables and we apply the results for the oned-

imensional harmonic oscillator n times.

Finally, we outline a strategy for the study of normal forms in the multi-

dimensional anisotropic case

P =−∆+ 〈a(x),Dx〉+b(x), x ∈ Rn, (3.90)

where

a(x) = (a1(x), . . . ,an(x)), (3.91)
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with

a j = ∑
|β |≤k

a j,β xβ , a j,β ∈ C,

b(x) = ∑
β≤2k

bβ xβ bβ ∈ C.

We have to require in the multidimensional case, in order to be able to

cancel the mixed term by transformation of the type e−
i
2U(x) to (3.90), the

existence of global polynomial potential U(x) of the linear form < a(x),dx >,

namely ∇U(x) = a(x), or equivalently the form

a1(x)dx1 + . . .+an(x)dxn is closed in Cn. (3.92)

Under the assumption above we get

P̃ = e
i
2U(x) ◦P◦ e−

i
2U(x) =−∆+ B̃(x), (3.93)

where

B̃(x) = b(x)− 1
4
〈a(x),a(x)〉+ i

2
∆U(x)

= ∑
α≤2k

b̃αxα . (3.94)

Now we need a symmetry type condition yielding to separation of the

variables: there exists S ∈ SO(n) and n polynomials of degree 2k

b̃`(t) =
2k

∑
j=0

b̃`; jt2k− j, b̃`; j ∈ C, j = 0,1, . . .2k,ℜb̃`;0 > 0, `= 1, . . . ,n, (3.95)

such that

B̃(Sy) =
n

∑
`=1

b̃`(y`). (3.96)

So (3.93) becomes

˜̃P = ST ◦ P̃◦S =−∆y +
n

∑
`=1

b̃`(y`). (3.97)
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Finally, we assume that for each ` the zero imaginary part condition holds

and thus translations y`→ y`+ b̃`;1/(2kb̃`;0) and dilations y`→ b̃−1/(2(k+1)
`;0 y`

reduce to the normal form

PNF =
n

∑
`=1

ω`L2k,ρ`(y`,Dy`)+ r, ρ
` ∈ R2k−2, `= 1, . . . ,n,r ∈ C. (3.98)

where ω` = b̃−1/(2(k+1)
`;0 , and L2k,ρ stands for the canonical one dimensional

anisotropic NF of order 2k , ρ = (ρ0, . . . ,ρ2k−3) ∈ R2k−2. We recall (see in

Chapter 2) the λ1(ρ)< .. . < λ j(ρ)<→+∞ are the eigenvalues of L2k,ρ` with

a basis of eigenfunctions {ϕρ

j (x)}
∞
j=1 ∈ L2(R).

Set T to be the composition of the maps e−
i
2U(x), S, the translations and

the dilations defined for the last reduction, Under the hypotheses (3.95),

(3.98) we have

Theorem 40. P admits compact resolvent and discrete spectrum which co-

incides with the spectrum of

PNF = T−1 ◦P◦T,

and

spec (PNF) = {λ(α) =
n

∑
`=1

λ`,α`
+ r,α ∈ Nn},

with λ`,α`
= ω`λα`

(ρ`), `= 1, . . . ,n, α ∈ Nn, and a complete system of eigen-

functions {Ψα(x) = cαT Φ
~ρ
α(x)}α∈N (which is not a Riesz basis), where

Φ
~ρ
α(y) = ϕα1(ρ

1)(y1)⊗ . . .⊗ϕαn(ρ
1)(yn),

c−1
α = ‖‖T Φα‖‖L2, α ∈Nn. The eigenfunctions belong to the limiting Gelfand–

Shilov space Sk/(k+1)
1/(k+1)(R

n)

The proof is straightforward since the compact resolvent property and the

global ellipticity follow from (3.95). Furthermore, (3.95) and (3.98) imply
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that Ψα ∈ L2(Rn), while the global hypoellipticity yields Ψα ∈ Sk/(k+1)
1/(k+1)(R

n),

αNn. The completeness of the system of eigenfunctions is obtained by the

general results on the spectrum of unbounded operators

P = P1⊕ . . .⊕Pn

in the separable Hilbert space H = H1⊗ . . .⊗Hn, with Pj being unbounded

operator on a separable Hilbert space H j having discrete spectrum, j =

1, . . . ,n.

Remark 13. We are not able to construct in the multidimensional case ex-

plicit examples of globally elliptic Shubin operators whose spectrum coincides

with C since there are no multidimensional analogues to the complex WBK

methods for linear ODE.

3.4 Perturbation with S1/2
1/2(R

n) smoothing ope-

rator

The main goal of this section is to show that despite of the presence

of quadratic exponential growth in the NFT for perturbations of complex

harmonic oscillators we can conjugate classes of Shubin p.d.o. with sym-

bols p(x,ξ ) ∈ S1/2
1/2(R

n) provided the quadratic growth of the NFT is smaller

than the quadratic exponential decay of the Schwartz kernel canceled by the

quadratic decay of p.d.o. (see [63] where such symbols appear in different

context).

We consider a p.d.o. P(x,D) whose symbol is defined by

p(x,ξ ) = Q(x,ξ )e−ax2−bξ 2
, (x,ξ ) ∈ R2n, a > 0,b > 0. (3.99)
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where

Q(x,ξ ) = ∑
|α|+|β |≤m

qαβ xα
ξ

β

is polynomial. Let A be a non zero n×n symmetric matrix and set

ε± := max
x∈Rn,‖x‖=1

(±< Ax,x >)> 0 (3.100)

Then we have

Proposition 30. The conjugation

P̃(x,D) = e<Ax,x> ◦P(x,D)◦ e−<Ax,x> (3.101)

is well defined in the Schwartz class and P̃(x,D) is smoothing operator with

Schwartz kernel KP̃(x,y) ∈ S1/2
1/2(R

2n) given by

KP̃(x,y) = Q̃(x,x− y)e−<Ax,x>−ax2− 1
4b (x−y)2+<Ay,y> (3.102)

where Q̃(x,z) is polynomial of degree m, provided

1− (4ba−4bε−+1)(1−4bε+) =

−4ab+4bε−+16b2aε+−16b2
ε+ε−+O(max{|ε+|+ |ε−|})< 0, (3.103)

for |ε−|, |ε+| small enough. In particular, if n = 1, A =−ε, we have ε± =±ε

and we can find sharp estimates on the range of ε:

ε ∈]2ab−
√

5ab
4b2 ,

2ab+
√

5ab
4b2 [=]− (

√
5−2)

a
4b

,(2+
√

5)
a

4b
[. (3.104)

Proof. Recall formula for the inverse Fourier transform of e−bξ 2

∫
Rn

eizξ e−bξ 2
dξ = π

n/2b−n/2e−
1
4b z2

. (3.105)

Next, we observe that we can calculate explicitly the Schwartz kernel K(x,y)=

KP(x,x− y) ∈ S1/2
1/2(R

2n). Indeed,

KP(x,z) =
∫
Rn

eixz p(x,ξ ) dξ = e−ax2
Q(x,Dz)

∫
Rn

eixze−bξ 2
dξ

= π
n/2b−n/2e−ax2

Q(x,Dz)(e−
1

4b z2
) = Q̃(x,z)e−ax2− 1

4b z2
,(3.106)
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where

Q̃(x,z) = π
n/2b−n/2

∑
|α|+|β |≤m

qαβ xα(2b)n/2hβ (
1√
2b

z) (3.107)

with hβ (t) = hβ1(t1) . . .hβn(tn), hk(t) = et2/2(e−t2/2)(k) standing for the Hermite

polynomial of degree k. Next, since e<Ax,x> ◦P(x,D)◦ e−<Ax,x>u

=
∫
Rn

e<Ax,x>KP(x,x− y)◦ e−<Ay,y>u(y)dy

= π
n/2b−n/2

∫
Rn

Q̃(x,x− y)e<Ax,x>−ax2− 1
4b (x−y)2−<Ay,y>u(y)dy.(3.108)

We estimate Φ(x,y) :=<Ax,x>−ax2− 1
4b(x−y)2−<Ay,y> using (3.100).

Φ(x,y) ≤ (ε−−a− 1
4b

)x2 +
1

2b
‖x‖‖y‖+(ε+−

1
4b

)y2

=
1

4b

(
(4bε−−4ba−1)x2 +2‖x‖‖y‖+(4bε+−1)y2) (3.109)

Clearly the RHS of (3.109) is negative quadratic form iff ε−< a+
1

4b
, ε+<

1
4b

and

1− (4ab+1−4bε−)(1−4bε+) =−4ab+O(|ε+|+ |ε−|)< 0, (3.110)

which yields (3.103). In the case ε±=±ε we have optimal bound for |ε| since

we are reduced to

1− (4ab+1−4bε)(1+4bε) =−4ab−16ab2
ε +4b2

ε
2 < 0, (3.111)

which is true if and only if

ε ∈]2ab−
√

5ab
4b2 ,

2ab+
√

5ab
4b2 [=]− (

√
5−2)

a
4b

,(2+
√

5)
a
4b

[. (3.112)

Remark 14. If a = b and < Ax,x >= ε‖x‖2 we get that the necessary and

sufficient condition in order the conjugation (3.101) to be well defined is given

by

ε ∈]−
√

5−2
4

,

√
5+2
4

[ and |ε|< a. (3.113)



Chapter 4

Normal forms and global

hypoellipticity for degenerate

Shubin operator

The main goal of the present chapter is to study reduction to normal

forms, the global hypoellipticity and the global solvability of classes of degen-

erate ( second order differential operators of Shubin type P =−∆+〈Bx,Dx〉+

〈Cx,x〉+ lower order terms, with non-negative principal symbol. Such opera-

tors do not fall in the classes of second order operators satisfying subelliptic

estimates in Shubin spaces cf. [34], [49]. Few results on the global regularity

and solvability in S (Rn) for general classes of Shubin operators with non

hypoelliptic symbols are available in the literature.

First we study the operator P when B is symmetric. The main body

of new results covers the case when the zero set of the principal symbol

p2(x,ξ ) is n–dimensional, which turns out to be equivalent to the property

that the zero set is a Lagrangian linear subspace of R2n with respect to the

103
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canonical symplectic form ω =
n

∑
j=1

dξ j ∧dx j. The first main result could be

summarized as follows: broadly speaking, such operators are reduced to a

generalized multidimensional Airy operator

A =−∆+(ρ + iσ)x1, ρ,σ ∈ R,

or to Fourier ∂̄ type normal form

D̂ =−∆+(ρ + iσ)x1 + τx2, τ ∈ R,ρτ 6= 0.

We call the operator A a generalized Airy one, because for n = 1 we recapture

a modified Airy equation Au(x1) =−u′′(x1)+(ρ +σ i)x1u(x1), while the use of

the term Fourier ∂̄ normal form is motivated from the fact that D̂u is Fourier

transform (modulo some constants) of

ρ∂z1 û(ξ )+(|z1|2 +‖ξ ′‖2)û(ξ )

for ρ =−τ 6= 0, σ = 0, z1 = ξ1+ iξ2, ξ ′ = (ξ3, . . . ,ξn), if n≥ 3. We recall that

the Airy functions were one of the fundamental tools for the mathematical

study of diffraction problems and initial boundary value problems for strictly

hyperbolic equations, when the smooth boundary of the domain is convex

with respect to the characteristics of the hyperbolic operator cf. [62], [26]

and the references therein.

We propose complete classification of the hypoellipticity and solvability

in S (Rn) for the generalized Airy NF. Moreover, outline a natural func-

tional scale of seemingly new function spaces which are essentially a direct

sum of anisotropic Shubin spaces Qs
Λ
(Rx1), Λ(x1,ξ1) = (1+ x2

1 +ξ 4
1 )

1/4, with

norm |Λ(x1,Dx1)u|L2 , and SG or G weighted Sobolev spaces Hr1,r2(Rn−1
x′ ) in

x′ = (x2, . . . ,xn). We do not dwell upon generalizations in Gelfand-Shilov

spaces since highly non has to use complicated functional–analytic arguments
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on anisotropic Gelfand–Shilov spaces. Concerning the Fourier ∂̄ NF, the

problems become quite involved and challenging since we enter in the realm

of the complex analysis and global properties of perturbations of ∂z1 . One

is led to conjecture, in view of the fact that ∂̄ is not globally hypoelliptic in

S (Rn), the same is true for the Fourier ∂̄ NF. We can describe the kernel of

D̂ in C∞(Rn) and a possible result on non hypoellipticity depends on whether

or not one can find an entire function on the complex plane with suitable

cubic decay properties in a half plane.

We point out to another problem here: since the spectrum of the NF is

not discrete it is not possible to use the discrete approach.

The second case is when Bskew 6= 0. We mention as a motivating example

the twisted Laplacian L on R2 :

L =−∆+ x1Dx2− x2Dx1 +
1
4
(x2

1 + x2
2). (4.1)

The twisted Laplacian appears in harmonic analysis naturally in the context

of Wigner transforms and Weyl transforms [67], [13], [25] and also in physics.

The transpose Lt of the twisted Laplacian L is given by

L =−∆+
1
4
(x2

1 + x2
2)+ x2Dx1− x1Dx2. (4.2)

In the paper [16], it is shown that L is globally hypoelliptic in the Schwartz

space S (R2), while global hypoellipticity and global solvability in Gelfand–

Shilov spaces Sµ

µ(R2) has been shown in [23], [25], [22] for more general

operators of the type

Lτ(x,Dx) =−∆+τ(x2Dx1−x1Dx2)+
τ2

4
(x2

1+x2
2) = (Dx1 +

τ

2
x2)

2+(Dx2−
τ

2
x1)

2,

(4.3)

where τ ∈ R, τ 6= 0. In our notation (4.3) corresponds to a homogeneous

operator in R2 with B = Bskew =

 0 −τ

τ 0

 and C =

 τ2

4 0

0 τ2

4

.
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First, we focus our attention the the case when the characteristic set is a

Lagrangian set, with respect to the standard canonical form in T ∗Rn, namely,

when the matrix B in the mixed term 〈Bx,Dx〉, is symmetric, namely Bskew =

1/2(B−BT ) = 0. This case corresponds to (global) involutive characteristics.

We note that the characteristic set of L and Lt is two dimensional and

has double characteristics which are symplectic.

Our main result in the skew-symmetric case could be summarized as

follows: if the space dimension in even 2n and the rank(Bskew) is maximal we

reduce our operator to multidimensional twisted Laplacian perturbed by first

order terms, and classify completely the spectral properties and derive sharp

necessary and sufficient conditions for the global hypoellipticity and global

solvability of the operator. Stability under perturbations by zero order p.d.o.

is studied as well.

4.1 Generalized Airy and Fourier ∂̄ type nor-

mal form

We consider the operator P=−∆+〈Bx,Dx〉+〈Cx,x〉+ l.o.t., when Bskew =

0. We require that the characteristic set is not empty

ΣP = {(x,ξ ) ∈ R2n \0; p2(x,ξ ) := ‖ξ‖2 + 〈Bx,ξ 〉+ 〈Cx,x〉= 0} 6= /0, (4.4)

and

p2(x,ξ )≥ 0, (x,ξ ) ∈ R2n \0 and B = Bsymm i.e., B = Bt . (4.5)

Theorem 41. Suppose that (4.5) holds. Then the following properties are

equivalent

i) dimΣP = n;
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ii) C =
1
4

B2;

iii) ΣP is Lagrangian with respect to the canonical symplectic form

ω =
n

∑
j=1

dξ j∧dx j;

iv) There exists a unitary operator T : L2(Rn) 7→ L2(Rn), which is a linear

automorphism in S (Rn),Qs(Rn), Sµ

µ(Rn), s ∈ R, µ > 0, defined, for

some S ∈ SO(n), α,β ∈ Rn, by

T v(x) = ei 1
2 〈S

tBSx+2α,x〉v(Stx+β ) (4.6)

such that

T−1 ◦P◦T = P̃ =−∆+ i〈M,Dx〉+ρx1 + iσx1 + iτx2 + r(ρ,σ ,τ) (4.7)

for some M ∈Rn, ρ, σ , τ ∈R, and r(ρ,σ ,τ)∈C. In particular, we have

τ = 0 if ρ = 0 or n = 1 and r(ρ,σ ,τ) = 0 if ρτ 6= 0, ℜr(ρ,σ ,τ) = 0 if

τ = 0, ρ 6= 0, ℑr(ρ,σ ,τ) = 0 if ρ = 0. Moreover,

τ = 0 iff 2St
ℜq+Aℜp and 2St

ℑq+Aℑp are linearly dependent.

(4.8)

Proof. First we rewrite the principal symbol, taking into account that B is

symmetric:

p2(x,ξ ) = 〈ξ +
1
2

Bx,ξ +
1
2

Bx〉+ 〈Cx,x〉− 1
4
〈Bx,Bx〉

= ‖ξ +
1
2

Bx‖2 + 〈C′x,x〉, C′ =C− 1
4

B2. (4.9)

Since C′ is symmetric, we can diagonalized C′, x = S0y, with S0 ∈ SO(n),

such that St
0C′S0 = diag {c1, . . . ,cn}, with signature (n+,n−), 0≤ n±≤ n, n++

n− ≤ n, c j = µ j > 0, j = 1, . . . ,n+, c j = −ν j < 0, j = n++ 1, . . . ,n−, c j = 0,

j = n++n−+1, . . . ,n. Set η = ξ − 1
2Bx. Hence we get

p2(x,ξ ) = p2(S0y,η−BS0y) =
n

∑
j=1

η
2
j +

n+

∑
k=1

µky2
k−

n++n−

∑
k=n++1

ν jy2
j , (4.10)
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with the convention ∑
s−1
s ·= 0.

We need a well known fact from the theory of the quadratic forms (see

[41] for more details).

Lemma 10. Let p2 be the quadratic form defined by (4.9). Then

dimΣP =

 2n−1 if n− > 0

n−n+ if n− = 0
(4.11)

In particular,

dimΣP = n iff n+ = n− = 0, i.e., C′ =C− 1
4

B2 = 0. (4.12)

Proof. Let n− > 0. The zero set of the quadratic form (4.9) is a union of

graphs of two functions of 2n−1 variables,

yn++1 =±
1

νn1+1

√√√√ n

∑
j=1

η2
j +

n+

∑
k=1

µky2
k−

n++n−

∑
k=n++2

ν jy2
j .

In the case n− = 0 the zero set is the n− n+ dimensional linear subspace

defined by η1 = . . .ηn = y1 = . . .yn+ = 0.

Since the dimension of a Lagrangian manifold in R2n is n, and B is sym-

metric, the lemma above yields the equivalence relations i) ⇔ ii) ⇔ iii),

where the Lagrangian manifold is defined by ξ = Bx, B symmetric (e.g., see

Hörmander, [37]).

Suppose now that C′ = 0. Then we have that

P̃ = e−i 1
2 〈Bx,x〉 ◦P◦ ei 1

2 〈Bx,x〉

becomes

P̃u(x) =
(
−∆+ 〈α,Dx〉+ i〈β ,Dx〉+ 〈M,x〉+ i〈N,x〉+ r

)
u(x), (4.13)



4.1 Generalized Airy and Fourier ∂̄ type normal form 109

where G = α + iβ and F = M+ iN with α,β ,M,N ∈ Rn.

Now we consider the transformation u(x)= eϕ(x)v(x), where ϕ(x)=−i(〈α,x〉)/2

so we have:

P̃(eϕ(x)v(x)) = eϕ(x)
(
(∇ϕ(x))2−2〈∇ϕ(x),Dx〉+ iδϕ(x)−∆+ 〈α,Dx〉

+ 〈α,∇ϕ(x)〉+ i〈β ,Dx〉+ i〈β ,∇ϕ(x)〉+ 〈M,x〉

+ i〈N,x〉+ r
)

v(x).

So our operator becomes

e−ϕ(x) ◦ P̃◦ eϕ(x) = Lv(x) =
(
−∆+ i〈β ,Dx〉+ 〈M,x〉+ i〈N,x〉+ `

)
v(x). (4.14)

We consider a matrix S1 ∈ SO(n), we apply the orthogonal transformation

x→ S1x such that

M = (m1, . . . ,mn)→ M̃ = (ρ,0, . . . ,0), with ρ ∈ R,

which transforms L to:

L̃ṽ(x) =
(
−∆+ i〈β̃ ,Dx〉+ρx1 + i〈Ñ,x〉+ `

)
ṽ(x), (4.15)

where ṽ(x) = v(S1x), Ñ = S−1N β̃ = S−1
1 β . We consider a matrix S2 ∈ SO(n),

preserving (1,0, . . . ,0), i.e., S2 =

 0 01×n−1

0n−1×1 S̃2

, with S̃2 ∈ SO(n− 1),

we apply the orthogonal transformation in Rn−1 x′→ S2x such that

Ñ = (ñ1, ñ2, . . . , ñn)→ N = (σ ,τ,0, . . . ,0), where σ = ñ1, with σ ,τ ∈ R,

so our operator L becomes:

L′v′(x) =
(
−∆+ i〈β ′,Dx〉+ρx1 + iσx1 + iτx2 + `

)
v′(x), (4.16)

where v′(x) = ṽ(S2x), β ′ = S−1
2 β . Setting S = S1S2, we have shown that each

one of i), ii),iii) implies iv). Reversing the arguments of the conjugation to

the normal form, we prove that iv) leads to i), ii), iii).
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Remark 15. We call the NF generalized Airy NF (respectively, generalized

Fourier ∂̄ ) if (4.7) holds, namely τ = 0 (respectively, ρτ 6= 0).

4.2 Weighted spaces

Let s1,r1,r2 ∈ Z+ with s1 even. We define HSCs1;r1,r2(R×Rn−1) as the

spaces such that

HSCs1:r1,r2(R×Rn−1) :=
{

f ∈ S′(Rn) : ‖ f‖s1;r1,r2 < ∞

}
, (4.17)

where x = (x1,x′), x1 ∈ R, x′ = (x2, . . . ,xn) ∈ Rn−1,

‖ f‖2
s1;r1,r2

:= ∑
2β1+α1≤s1

‖xβ1
1 Dα1

x1
f‖2

L2(Rn)

+ ∑
|β ′ |≤r2,|α

′ |≤r1

‖x
′α ′Dβ ′

x′
f‖2

L2(Rn). (4.18)

We can extend this definition for s1,r1,r2 ∈ [0,+∞) by interpolation and by

duality arguments for arbitrary s1,s2,r1.

Proposition 31. Let s1,r1,r2 ∈ Z+, with s1 even. Then the following norms

are equivalent to the norm (4.17)

i)

∑
s̃1/s1+r̃1/r1+r̃2/r2≤1

∑
2β1+α1≤s̃1;|β ′|≤r̃2;|α ′|≤r̃1

‖xβ1
1 Dα1

x1
x′α

′
Dβ ′

x′ f‖L2(Rn) (4.19)

ii)

‖〈x1,D2
x1
〉s1/2 f‖L2(Rn)+‖〈x′〉r̃1〈Dx′〉r̃2 f‖L2(Rn), (4.20)

where s̃1 ≤ s1, r̃1 ≤ r1, r̃2 ≤ r2.

Lemma 11. Let s1,r1,r2 ∈ Z+, and let u ∈ HSCs1;(r1,r2). Then

〈x1,D2
x1
〉s̃1/2〈x′〉r̃1〈Dx′〉r̃2u ∈ L2(Rn). (4.21)

We recall that 〈x1,ξ
2
1 〉=

√
1+ x2

1 +ξ 4
1 .
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The proofs are based on standard arguments for L2 estimates of p.d.o.

4.3 Multidimensional Airy operator

We derive the main result on hypoellipticity and solvability in S (Rn) for

degenerate second order Shubin operators P, with symmetric matrix B in the

mixed term, and Lagrangian characteristic set. It is reduced to generalized

Airy type normal form. We consider the operator P in the Airy form. With-

out loss of generality we suppose that M = 0 and so we want to study the

equation

Pu = (−∆+αx1)u = f , (4.22)

where f ∈S (Rn).

Theorem 42. Suppose that α := ρ +σ i 6= 0. Then we have

i) The symbol p(x,ξ ) = ξ 2+αx1 is not hypoelliptic symbol in the sense of

Shubin iff n≥ 2 or n = 1 and σ = 0.

ii) The operator P is globally hypoelliptic in S (Rn) provided σ 6= 0

We propose more precise estimates in the weighted spaces HSCs;r1,r2(Rn).

Theorem 43. We consider the operator P, then

i) Let ℑ(α) 6= 0, then spec(P) = spec(P∗) = /0 and

(P−λ )−1 : HSCs1;r1,r2(Rn)→ HSCs1+2;r1,r2+2(Rn) ∀λ ∈ C. (4.23)

ii) Suppose now that ℑ(α) = 0. Then spec(P) = spec(P∗) = R and

Ker(P−λ )∩S ′(Rn) =
{

u ∈S (Rn)| u = Jκ(ξ ′), κ ∈S ′(Rn−1)
}
,

(4.24)
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where

J =
∫

eixξ e
1
iα (ξ 2

1 +ξ1ξ ′2)−λξ1dξ =
∫

eix′ξ ′Ai
( x1

3
√

α
+

ξ ′2

3√
α4
− λ

3√
α4

,ξ ′
)

dξ ,

(4.25)

where

Ai(z)' e
−2
3 z3/2

2
√

πz
1
4

Proof. We apply the Fourier transform and the problem (4.22) becomes:

P̂û = (ξ 2 + iα∂ξ1
)û = f̂ . (4.26)

The problem whether (4.26) is hypoelliptic and solvable in S (Rn) is, as

far as we know, open if n≥ 2. Even the one dimensional case of Airy equation

seems not be covered explicitly in the works on anisotropic pseudodifferential

equations.

We observe that the symbol of the operator (4.26) is not hypoelliptic in

the sense of Shubin, in fact it does not satisfy the hypoellipticity condition

|∂ γ

(x,ξ )p(x,ξ )|<C |p(x,ξ )|〈(x,ξ )〉−|γ|, f or|x|+ |ξ | ≥ R. (4.27)

Moreover it doesn’t fall in the class of the SG- operators.

Dividing the equation (4.26) by iα, we get

Lû = (∂ξ1
+a(ξ 2

1 +ξ
′2))û = g =

f̂
iα

, (4.28)

where a = 1
iα . We note that we have

ℑ(α) 6= 0⇐⇒ℜ(a) 6= 0.

Let ℜ(a) 6= 0, and without loss of generality we can consider ℜ(a)> 0. For-

mally we can write the solution of the problem (4.28)

v = L−1g = e−a(
ξ 3
1
3 +ξ1ξ ′2)

∫
ξ1

−∞

ea( t3
3 +tξ ′2)g(t,ξ ′)dt. (4.29)
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We put s1 = r1 = r2 = 0 and we want to prove that

∑
2β1+α1≤2

‖ξ α1
1 Dβ1

ξ1
v‖+ ∑

|β ′ |≤0,|α ′ |≤2

‖x
′α ′v‖<C‖g‖L2(Rn), (4.30)

where v is the solution of (L−λ )v = g, so we have

|ξ ′2v| ≤
∫

ξ1

−∞

|e−a[
ξ 3
1−t3

3 +(ξ1−t)(i λ

α
+ξ ′2)]

ξ
′2g(t,ξ ′)|dt

≤
∫

ξ1

−∞

|e−a[c(ξ1−t)3+(ξ1−t)(i λ

α
+ξ ′2)]

ξ
′2g(t,ξ ′)|dt.

So we can write the last integral like

‖ξ ′2v‖L2(Rn) ≤
∫
R
|K1(ξ1,ξ

′, t)g(t,ξ ′)|dt,

where

K1(ξ1,ξ
′, t) =

∫
R

H(ξ1− t)e−a[
ξ 3
1−t3

3 +(ξ1−t)(i λ

α
+ξ ′2)]

ξ
′2dt.

We bound the last integral, putting s = (ξ1− t)ξ ′2, by

c
∫

∞

0
e
−ℜa( s3

|ξ ′|6
+s)

ds, c > 0

Now we can apply the Schur lemma and we have

‖ξ ′2v‖L2(Rn) ≤C‖g‖L2(Rn).

In the same way we have

|ξ 2
1 v| ≤ |ξ 2

1 e−a[
ξ 3
1
3 +ξ1(ξ

′2+i λ

α
)]
∫

ξ1

−∞

ea[ t3
3 −tξ ′2−i λ

α
]g(t,ξ ′)|dt

≤
∫
R
|K2(ξ1,ξ

′, t)g(t,ξ )|dt,

where

K2(ξ1, t) :=
∫
R

H(ξ1− t)e−a[
ξ 3
1−t3

3 +(ξ1−t)(i λ

α
+ξ ′2)]

ξ
2
1 dt.

We have two cases, the first when −N ≤ ξ1 ≤ N and so we can apply the

Schur’s lemma and we found

‖ξ ′2v‖L2(Rn) ≤C2‖g‖L2(Rn).
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If |ξ1| > N then we use de l’Hôpital theorem and the Schur lemma and we

have

‖ξ 2
1 v‖L2(Rn) ≤C3‖g‖L2(Rn).

The proof of i) is complete.

Let now ℑ(α) = 0. We consider the homogeneous equation (P−λ )u = 0.

We can apply the Fourier transform, only for the variable x′ ∈ Rn−1, to the

problem and we obtain

(−∂
2
x1
+ξ

′2)ũ(x1,ξ
′)+(αx1−λ )ũ(x1,ξ

′) = 0

−
(

ũ′′(x1,ξ
′)−α(x1 +

ξ ′2

α
− λ

α
)ũ(x1,ξ

′)
)
= 0 (4.31)

Now we put t = x1 +
ξ ′2

α
− λ

α
and we have

−
(

v′′(t,ξ ′)−αtv(t,ξ ′)
)
= 0,

where v(t,ξ ′) = ũ(t− ξ ′2

α
+ λ

α
,ξ ′).

We put z = 3
√

αt, and our problem becomes

− 3√
α2
(

ṽ′′(z,ξ ′)− zṽ(z,ξ ′)
)
= 0, (4.32)

where ṽ(z,ξ ′) = v( z
3√α

,ξ ′).

From the theory of the Airy function the solutions are given by

ṽ(z,ξ ′) =C1Ai(z)+C2Bi(z). (4.33)

More details shall be given in the next section.

4.3.1 The one dimensional case: Airy operator

If we are in the one dimensional case we recapture the Airy type operator

Au =−u
′′
+αxu, x ∈ R. (4.34)
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We recall that the symbol of the operator A (4.34) is hypoelliptic if

|∂ γ

(x,ξ )p(x,ξ )|<C |p(x,ξ )|〈(x,ξ )〉−|γ|, (4.35)

(see [58], [3] and the references therein).

We have

Theorem 44. The operator A (4.34) is hypoelliptic iff the ℑ(α) 6= 0

Proof. The hypoellipticity condition is

|∂ γ

(x,ξ )a(x,ξ )|<C |a(x,ξ )|〈(x,ξ )〉−|γ|, for |x|+ |ξ | ≥ R, (4.36)

where a(x,ξ ) = ξ 2 +αx. If (x,ξ ) 6= (0,0) then a(x,ξ ) = 0 iff ℑ(α) = 0, this

concludes the proof.

We consider now the following problem:

Au =−u′′(x)+αxu(x) =−(u(x)′′−αxu(x)) = 0. (4.37)

We put x = α
− 1

3 z, and our problem becomes

−α
2
3 (v′′(z)− zv(z)) = 0, (4.38)

where v(z) = u(α−
1
3 z). From the theory of the Airy function the solution of

(4.38) is

v(z) =C1Ai(z)+C2Bi(z), (4.39)

where

Ai(z)' e
−2
3 z3/2

2
√

πz
1
4

and Bi(z)' e
2
3 z3/2

2
√

πz
1
4

for z→ ∞ (4.40)

Ai(−z)'
sin(2

3z3/2 + π

4 )

2
√

πz
1
4

Bi(−z)'
cos(2

3z3/2 + π

4 )

2
√

πz
1
4

for z→−∞. (4.41)

For the problem (4.37) the solutions are:

u(x) =−α
2
3

(
C1Ai(

x
3
√

α
)+C2Bi(

x
3
√

α
)
)
. (4.42)

We prove the following theorem:
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Theorem 45. If ℑ(α) 6= 0 then the spec (A) = /0

Proof. We apply the Fourier transform to our operator A and we obtain:

Â = ξ
2 + iα∂ξ .

Dividing the last equation for iα we get

L̂ =
1
iα

Â = ∂ξ +aξ
2, (4.43)

where a = 1
iα . We note that we have

ℑ(α) 6= 0⇐⇒ℜ(a) 6= 0.

So we have, if we suppose that ℜ(a)> 0

(L̂+ iλ )−1û =e−(a
ξ 3
3 +i λ

α
ξ )
∫

ξ

−∞

e−a( t3
3 −i λ

α
)g(t)dt

=
∫
R

K(ξ , t)g(t)dt, (4.44)

where K(ξ , t) = H(ξ − t)e−
a
3 (ξ

3−t3)−i λ

α
(ξ−t) ≤ e−

cℜ(a)
3 (ξ−t)3+ℑ( λ

α
)(ξ−t). And so if

we put s = ξ − t, our problem becomes

K(ξ , t)≤
∫

∞

0
e−

cℜ(a)
3 s3+ℑ( λ

α
)sds,

and if we put 3
√

cℜ(a)
3 s→ s the last integral becomes

cℜ(a)
3

∫
∞

0
e−s3+µsds,

where µ = ℑ(λ

α
) 3
√

3
cℜ(a) . We have two cases:

if µ ≤ 1, we put s = |µ|−1r and the integral becomes

1
|µ|

∫
∞

0
e
− r3

|µ|3
+r

dr,
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If µ > 1 we consider

e
2

√
µ3

33
∫

∞

0
e
−s3+µs−

√
µ3

33 ds,

now we put τ = s−
√

µ

3 . So we have

e
2

√
µ3

33
∫

∞

−
√

µ

3

e
−(τ+
√

µ

3 )
3+µ(τ+

√
µ

3 )−2

√
µ3

33 dτ.

4.4 On the global ∂ type normal form

In this section we dwell upon the global regularity and the solvability

properties of the Fourier ∂ normal form operator

Db =−∆+(α + iβ )x1 + iγx2, (4.45)

where α,β ,γ ∈ R with α,γ 6= 0. We want to study the following equation

Dbu =
(
−∆+(α + iβ )x1 + iγx2 + r

)
u = f , (4.46)

in the framework of weighted spaces like Hs1,s2(Rn) (Cordes type), Qs(Rn)

(Shubin type) or S (Rn).

First of all, in view of the well known properties of the action of the Fourier

transform operator in the aforementioned spaces, we are reduced to study

D̂bû=
(

ξ
2−(β−iα)∂ξ1

−γ∂ξ2
+r
)

û=
(

ξ
′2+ξ

′′2−(β−iα)∂ξ1
−γ∂ξ2

+r
)

û= f̂ ,

(4.47)

where ξ ′ = (ξ1,ξ2), ξ ′′ = (ξ3, . . .ξn).

If α 6= 0, we apply a linear transformation M−1 : R2
ξ1,ξ2
→ R2

η1,η2
such that

(ξ1,ξ2)→ ( 1
α

η1,− β

αγ
η1− 1

γ
η2), so we have

P̃w =
(

ξ
′′2 + 〈MtMη ,η〉+ i(∂η1− i∂η2)

)
w = g, (4.48)
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where w(η ,ξ ) = û(M−1ξ ′,ξ ′′) and g(η ,ξ ′′) = f̂ (M−1ξ ′,ξ ′′).

Hence setting z = η1 + iη2 ∈ C, we need to study a perturbation of the ∂ z-

operator depending polynomially on ξ ′′2 = ξ 2
3 + . . . ,+ξ 2

n . If n≥ 3, we demon-

strate the following lemma.

Lemma 12. We have

〈MtMη ,η〉= Az2 +2B|z|2 +Cz2 = ℜ(Az2)+ℑ(Az2)+2B|z|2, (4.49)

where B ∈ R, A,C ∈C,such that A =C and z 6= 0.

Proof. In view of the well known fact that

η1 =
z+ z

2
, η2 =

z− z
2i

.

we get

〈MtMη ,η〉= aη
2
1 +2bη1η2 + cη

2
2

= a
(z+ z

2

)2
+2b

(z+ z
2

)(z− z
2i

)
+ c
(z− z

2i

)2

= Az2 +2B|z|2 +Cz2

= ℜ(A)(η2
1 −η

2
2 +2iη1η2)− iℑ(A)(η2

1 −η
2
2 +2iη1η2)

+ℜ(A)(η2
1 −η

2
2 −2iη1η2)+ iℑ(A)(η2

1 −η
2
2 −2iη1η2)+2B|z|2

= 2ℜ(Az2)+ℑ(Az2)+2B|z|2.

where A = a
4 −

c
4 + ib

2 , C = a
4 −

c
4 − ib

2 and B = a
4 +

c
4 .

So we can write the operator (4.48) as

P̃w =
(

i∂z +ξ
′′2 +ℜ(Az2)+2ℑ(Az2)+2B|z|2

)
w = g. (4.50)

Unlike the generalized Airy normal form, apparently there is no hope for

showing global hypoellipticity in S(Rn) of the Fourier ∂ -operator. Indeed, it

is well known that

∂u = f
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is locally hypoelliptic and solvable for every f ∈C∞
0 (R2), namely any solution

is in C∞(R2). One checks easily that ∂ is not globally hypoelliptic in S (R2).

Let us consider the perturbed ∂z(
∂z +

i
2

ξ
′′2 + i(ℜ(Az2)+ℑ(Az2)+B|z|2)

)
w = g. (4.51)

We can write (formally) the solutions

w(z) = e−(
i
4 z2z+ i

2 ξ ′′z+i(ℜ(Az2)+ℑ(Az2)z)
ϕ(z)+ w̃(z)

w̃(z) = e−(
i
4 z2+ i

2 ξ ′′z+i(ℜ(Az2)+ℑ(Az2)z)∫
R2

e(
i
4 ζ 2ζ+ i

2 ξ ′′2ζ+i(ℜ(Aζ 2)+ℑ(Aζ 2)ζ )g(ζ ,ξ ′′)
dζ ∧dζ

z−ζ
. (4.52)

where ϕ is entire function in z and (we can choose) compactly supported

in ξ ′′ if n ≥ 3 and g ∈ S (Rn), compactly supported in (ξ1,ξ2). The main

problem is whether one can find a nonzero entire function in z1 such that the

first u belongs to S ′(R2) in (ξ1,ξ2) but is not in S (R2).

One is led naturally to conjecture that the perturbed operator is neither

globally hypoelliptic nor globally solvable in S (R2) but it seems that one

has to overcome nontrivial technical difficulties.

4.5 Splitting to globally elliptic and Airy or

∂̄ type normal forms

The main goal of the present section is to study the reduction to normal

form for non globally elliptic operators with non negative principal symbol,

with B symmetric, i.e. (4.5) holds, and the characteristic set ΣP is not La-

grangian, namely its dimension is different from n.

Theorem 46. Let n ≥ 2 and suppose that (4.5) holds. Then the following

properties are equivalent
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i) dimΣP 6= n;

ii) dimΣP < n;

iii) C− 1
4

B2 is non zero and non negative;

iv) There exists a unitary operator T : L2(Rn) 7→ L2(Rn), which is a linear

automorphism in S (Rn),Qs(Rn), s ∈ R, Sµ

µ(Rn), µ ≥ 1/2 defined, for

some S ∈ SO(n), α ∈ Rn, by

T v(x) = ei 1
2 〈S

tBSx+2α,x〉v(Stx+β ) (4.53)

and splitting x = (x′,x′′), x′ ∈ R`, x′′ ∈ Rn−`, 1≤ `≤ n−1, such that

T ∗ ◦P◦T =P̃ = P̃′(x′,Dx′)+ P̃′′(x′′,Dx′′) (4.54)

P̃′(x′,Dx′) =−∆
′+ i〈β ′,Dx′〉+ρx1 + iσx1 + iτx2 (4.55)

P̃′′(x′′,Dx′′) =−∆
′′+ 〈diag {c`+1, . . . ,cn}x′′,x′′〉+ i〈β ′′,Dx′′〉

+i〈Ñ′′,x′′〉+ r̃, (4.56)

for some M ∈ Rn, ρ,σ ,τ ∈ R, with ρ,σ ,τ being as in Theorem 41.

Proof. The lemma on quadratic forms in Section 4.1 and the hypothesis on

the principal symbol we deduce that C′ 6= 0. Then we can reduce this matrix

to diagonal form Dc = diag {c1, . . . ,cn}, where

c1 = c2 = . . .= c` = 0 and 0 < c`+1 ≤ . . .≤ cn. (4.57)

by means of orthogonal transformation x→ Rx, where R ∈ SO(n). Hence the

operator becomes

e−i 1
4 〈R

tBRx,x〉◦P◦ei 1
4 〈R

tBRx,x〉=−∆+〈Dcx,x〉+〈α,Dx〉+i〈β ,Dx〉+〈M,x〉+i〈N,x〉+`.

(4.58)
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Without loss of generality, we may assume that α = 0, by conjugation with

ei 1
2 〈α,x〉 (as in Chapter 2), so we consider the operator

L =−∆+ 〈Dcx,x〉+ i〈β ,Dx〉+ 〈M,x〉+ i〈N,x〉+ ` (4.59)

Next, we split the variables x as follows

x =


x1

x2
...

xn

=

 x′

x′′

 , where x′ =


x1

x2
...

x`

 and x′′ =


x`+1

x`+2
...

xn

 .

We can write

L =L1 +L2 =−∆
′+ i〈β ′,Dx′〉+ 〈M′,x′〉+ i〈N′,x′〉

−∆
′′+ i〈β ′′,Dx′′〉+ 〈diag {c`+1, . . . ,cn}x′′,x′′〉+ 〈M′′,x′′〉+ i〈N′′,x′′〉+ `.

(4.60)

First of all we investigate the operator L1 and considering a matrix S̃′ ∈ SO(`),

we apply the orthogonal transformation x′→ S̃′x such that

M′ = (m1, . . . ,m`)→ M̃′ = (ρ,0, . . . ,0), with ρ = ‖M′‖ ≥ 0,

so L1 becomes:

L̃1 =−∆+ i〈β̃ ′,Dx′〉+ρx1 + i〈Ñ′,x′〉+ r, (4.61)

where Ñ′ = S̃′−1N, β̃ ′ = S̃−1β ′.

If `≥ 2, we consider a matrix T̃ ′ ∈ SO(`−1), we apply the orthogonal trans-

formation in R`−1 x→ T̃ ′x such that

Ñ′ = (ñ1, ñ2, . . . , ñ`)→ N = (σ ,τ,0, . . . ,0), where σ = ñ1, with σ ,τ ∈ R,

which transforms L1 to

L1 =−∆
′+ i〈β ′,Dx′〉+ρx1 + iσx1 + iτx2 + r, (4.62)
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where β = T̃ ′−1β . Now for L2 we consider the following translation

x′′j → x′′j +
M′′j
2c j

So we have

L2 =−∆
′′+ i〈β ′′,Dx′′〉+ 〈diag {c`+1, . . . ,cn}x′′,x′′〉+ i〈Ñ′′,x′′〉+ r̃. (4.63)

So the operator L (4.60) becomes:

L =−∆
′+ i〈β ′Dx′〉+ρx1 + iσx1 + iτx2 + r

−∆
′′+ i〈β ′′,Dx′′〉+ 〈diag {c`+1, . . . ,cn}x′′,x′′〉+ i〈Ñ′′,x′′〉+ r̃. (4.64)

Remark 16. We can summarize the result above as follows: we have reduced

the study of the solvability and hypoellipticity of Pu = f to the study of the

following decomposed equation

P̃u = P̃′(x′,Dx′)u+ P̃′′(x′′,Dx′′)u = f (x), x ∈ Rn, (4.65)

where P̃′ is an Airy type operator and P̃′′ is a globally elliptic operator As

far as we know, such equations have not been studied in the literature on

pseudodifferential operators for solvability and hypoellipticity in functional

spaces on Rn. Clearly one needs to combine different techniques in order to

deal with the challenging problem. At least the normal form equation serves

as model case to test new techniques. We leave this study for the future.
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4.6 Multidimensional twisted Laplacian type

normal form

We recall that the twisted Laplacian L on R2 is the second-order partial

differential operator given by

L =−∆+ x1Dx2− x2Dx1 +
1
4
(x2

1 + x2
2). (4.66)

The twisted Laplacian appears in harmonic analysis naturally in the context

of Wigner transforms and Weyl transforms [67], and also in physics. The

transpose Lt of the twisted Laplacian L is given by

L =−∆+
1
4
(x2

1 + x2
2)+ x2Dx1− x1Dx2. (4.67)

In the paper [16], it is shown that L is globally hypoelliptic in the Schwartz

space S (R2), while global hypoellipticity and global solvability in Gelfand–

Shilov spaces Sµ

µ has been shown in [23], [25], [22] for more general operators

of the type

Lτ(x,Dx) =−∆+τ(x2Dx1−x1Dx2)+
τ2

4
(x2

1+x2
2) = (Dx1 +

τ

2
x2)

2+(Dx2−
τ

2
x1)

2,

(4.68)

where τ ∈ R, τ 6= 0. In our notation (4.67) corresponds to a homogeneous

operator in R2 with A = Askew =

 0 −τ

τ 0

 and B =

 τ2

4 0

0 τ2

4

.

We note that the characteristic set of L and Lt is two dimensional and

has double characteristics which are symplectic.

We require in this chapter the non degeneracy condition

Askew has a maximal rank n. (4.69)

Note that the hypothesis (4.69) holds for the twisted Laplacian and its

transpose Lt .
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Clearly this implies that n is even. So we write 2n instead of n and

consider the linear operator

P =−∆+ 〈Ax,Dx〉+ 〈Bx,x〉+ 〈M,Dx〉+ 〈N,x〉+ r, (4.70)

where A ∈ M2n(R), B is symmetric, and M,N ∈ Cn, r ∈ C. We recall the

definition of the characteristic set

ΣP = {(x,ξ ) ∈ R4n \0; p2(x,ξ ) := ‖ξ‖2 + 〈Ax,ξ 〉+ 〈Bx,x〉= 0}. (4.71)

In view of the identity

〈Qx,x〉= 1
2
〈(Q+QT )x,x〉

for all Q ∈Mn(R) one readily obtains that

〈Askewx,Asymmx〉=〈AsymmAskewx,x〉= 1
2
〈AsymmAskew−AskewAsymmx,x〉.

(4.72)

We note that AsymmAskew−AskewAsymm is symmetric.

We recall that real skew-symmetric matrices are normal matrices (they com-

mute with their adjoint ones). The hypothesis (4.69) and the spectral theo-

rem on 2n×2n real skew-symmetric matrices show that there exist n non-zero

real numbers τ1 ≥ τ2 ≥ . . .≥ τn, j = 1, . . . ,n, two non negative integers n+,n−,

n++n−= n, such that τn+ > 0> τn++1 if n+n−> 0 with the convention n+ = 0

(respectively, n− = 0) if τ1 < 0 (respectively, τn > 0) and an orthogonal ma-

trix S0 which transforms the skew-symmetric matrix to the following block
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diagonal form

ST
0 AskewS0 =



0 −τ1 0 0 . . . 0 0

τ1 0 0 0 . . . 0 0

0 0 0 −τ2 . . . 0 0

0 0 τ2 0 . . . 0 0
...

...
. . .

...
...

0 0 0 0 . . . 0 −τn

0 0 0 0 . . . τn 0


. (4.73)

We need to recall that we can define an explicit symplectic transformation

κ : R2
y×R2

η → R2
x×R2

ξ
,

defined by the generating function

ϕω(x,η) = |ω|(η1η2 +(x1x2)/2+ x2η1 + x1η2)

via

ξ j = ∂x jϕω(x,η), j = 1,2

y j = ∂η jϕω(x,η), j = 1,2,

which leads to explicit formulas for κ

y1 =|ω|x2 + |ω|η2

y2 =|ω|x1 + |ω|η1

η1 =ξ2/|ω|− x1/2

η1 =ξ1/|ω|− x2/2.

Theorem 47. Suppose that (4.69) holds. Then the following properties are

equivalent
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i) dimΣP = 2n;

ii) the matrices B, Asymm, Askew satisfy the identity

C := B− 1
4

A2
symm +

1
4
(AsymmAskew−AskewAsymm)+

1
4

A2
skew = 0; (4.74)

iii) There exists a unitary operator T : L2(R2n) 7→ L2(R2n), which is a linear

automorphism in S (R2n),Qs(R2n),Sµ

µ(R2n),s ∈ R, µ ≥ 1/2, defined by

T v(x) = ei 1
4 〈S

tAsymmSx+2α,x〉v(Stx+β ) (4.75)

for some α,β ∈ R2n and S ∈ SO(R2n) in (4.73), such that

T ∗ ◦P◦T = P̃ =
n

∑
j=1

(
(Dx2 j−1−

τ j

2
x2 j)

2 +(Dx2 j +
τ j

2
x2 j−1)

2
)

+i
n

∑
j=1

ρ j(Dx2 j−1−
τ j

2
x2 j)+ i

n

∑
j=1

σ j(Dx2 j +
τ j

2
x2 j−1)

+
n

∑
j=1

γ j(Dx2 j−1 +
τ j

2
x2 j)+

n

∑
j=1

δ j(Dx2 j −
τ j

2
x2 j−1)

+r̃, (4.76)

for ρ j,σ j ∈ R, γ j,δ j ∈ C, j = 1, . . . ,n, r̃ ∈ C.

• There exists a unitary operator U : L2(R2n) 7→ L2(R2n), which is a linear

automorphism in S (R2n),Qs(R2n),Sµ

µ(R2n),s ∈ R, µ ≥ 1/2, defined by

U = ∏
n
j=1 |τ j|Jτ ◦T , where τ = (τ1, . . . ,τn), τ j > 0, j = 1, . . . ,n+, τ j < 0,

j = n++1, . . . ,n++n−, T is as in iii) and Jτ is the FIO given by

Jτv(x) =Jτ1 ◦ . . .◦ Jτnv(x) :=
∫
R2n

ei∑
n
j=1 |τ j|ϕ(x2 j−1,x2 j,ξ2 j−1,ξ2 j)v̂(ξ ) dξ

(4.77)

Jαv(y) =
∫
R2

ei|α|ϕ(y,η)v̂(η) dη , (4.78)
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such that

U∗ ◦P◦U =
n+

∑
j=1

(τ2
j D2

x2 j
+ x2

2 j)+
n

∑
j=n++1

(τ2
j D2

x2 j−1
+ x2

2 j−1)

+ i
n+

∑
j=1

(ρ jDx2 j + iσ jτ jx2 j)+
n

∑
j=n++1

(ρ jDx2 j−1 +σ jτ jx2 j−1)

+
n+

∑
j=1

(γkDx2 j−1 +ω jτ jx2 j−1)+
n

∑
j=n++1

(γ jDx2 j +ω jτ jx2 j)

(4.79)

for ρ,σ ∈ Rn, γ,ω ∈ Cn, r̃ ∈ C.

Moreover,

P is symmetric iff ρ,σ = 0, γ,ω ∈ Rn, r̃ ∈ R (4.80)

and T has a discrete spectrum iff γ = ω = 0.

Proof. First we rewrite the principal symbol as follows, taking into account

that B is symmetric, the

p2(x,ξ ) = 〈ξ +
1
2

Ax,ξ +
1
2

Ax〉+ 〈Bx,x〉− 1
4
〈Ax,Ax〉

= ‖ξ +
1
2

Asymmx+
1
2

Askewx‖2 + 〈Cx,x〉, (4.81)

C = B− 1
4

A2
symm +

1
4
(AsymmAskew−AskewAsymm)+

1
4

A2
skew. (4.82)

Since B is symmetric, we can diagonalize with some matrix from with

SO(2n) and by the lemma on quadratic forms (replacing n by 2n) we get that

i) is equivalent to ii). As a by product we obtain that the characteristic set

of p2 is defined as

p2(x,ξ ) = {(x,ξ ) ∈ R4n \0;ξ =
1
2

Ax =
1
2

Asymmx+
1
2

Askewx} (4.83)

which is not Lagrangian since Askew 6= 0. Now we show the equivalence of ii)

with iii).
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Step 1. Using the diagonalization matrix S0, by the linear change x 7→ S0x we

may assume that Askew is in the canonical block–diagonal form (4.73).

Step 2. Using the conjugation

P̃ = e−i 1
4 〈Asymmx,x〉 ◦P◦ ei 1

4 〈Asymmx,x〉

we are reduced to the case

P̃ = −∆+ 〈Askewx,Dx〉+ 〈(B−
1
2

AskewAsymm)x,x〉+ P̃1

=
n

∑
j=1

(Dx2 j−1−
τ j

2
x2 j)

2 +(Dx2 j +
τ j

2
x2 j−1)

2

−
n

∑
j=1

τ j(x2
2 j−1 + x2

2 j)+ 〈(B−
1
2

AskewAsymm)x,x〉+ P̃1

=
n

∑
j=1

(Dx2 j−1−
τ j

2
x2 j)

2 +(Dx2 j +
τ j

2
x2 j−1)

2 + 〈Cx,x〉+ P̃1

(4.84)

where

P̃1 = 〈α,Dx〉+ i〈β ,Dx〉+ 〈M+
1
2

αAsymm,x〉+ i〈N,x〉+ r, (4.85)

and G = α + iβ and F = M + iN with α,β ,M,N ∈ R2n. Clearly, ii) implies

C = 0.

Step 3. Using conjugation with eipx and translation we reduce to purely

imaginary coefficients.
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4.7 Normal form transformation

The normal form transformation reduces the original operator P to the

following normal form

PNF(y,Dy)u =
n

∑
j=1
|τ j|(D2

y j
+ y2

j)u+ i
n

∑
j=1

(a jDy j +b jy j)u

+
2n

∑
`=n+1

(γ`Dy` +δ`y`)u+ ru = f , (4.86)

with a j,b j ∈ R for j = 1, . . . ,n, γ`,δ`,r ∈ C, for `= n+1, . . .2n.

We note that the same holds for the perturbation P(x,D)+b(x,D), with zero

order Shubin p.d.o b(x,D). We study the perturbed normal form equation

PNF(y,Dy)u+b(y,Dy)u = f .

We have

Theorem 48. The following properties are equivalent:

i) P(x,D) is symmetric;

ii) PNF(y,Dy) is symmetric;

iii) a j = b j = 0, for j = 1, . . . ,n ℑγ j = ℑδ j = 0, for j = n+1, . . . ,2n, r ∈ R.

Proof. The NFT preserves the symmetry properties, i.e. i)⇔ ii), the equiv-

alence ii)⇔ iii) straight forwards.

Next we derive complete description of the global hypoellipticity and the

global solvability of the twisted Laplacian type operators. We prove the

following theorem:

Theorem 49. Let P (or equivalently PNF) be symmetric. Then the following

properties are equivalent:
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i) PNF(y,Dy) is globally hypoelliptic in S (R2n);

ii) γk = ωk = 0, k = n+1, . . . ,2n and

r 6=−
n

∑
j=1
|τ j|(2k j +1); (4.87)

iii) PNF(y,Dy) is globally solvable in S (R2n);

iv) PNF(y,Dy) is globally hypoelliptic in Sµ

µ(R2n);

v) PNF(y,Dy) is globally solvable in Sµ

µ(R2n).

Finally, if ii) holds the operator PNF (and P) is essentially self-adjoint with

discrete spectrum

spec(PNF){λk : λk = 2
n

∑
j=1
|τ j|k j +

n

∑
j=1
|τ j|+ r, k′ = (k′1, . . . ,k

′
n) ∈ Zn

+}, (4.88)

and the multiplicity of each eigenvalue is infinity. More precisely

Ker(P−λk)∩L2(R2n) = {Hk′(y
′)ψ(y′′), ψ ∈ L2(Rn)}. (4.89)

Moreover, as for the twisted Laplacian in R2, the operator PNF (and P) have

no compact resolvent.

Proof. Suppose that ii) holds. We use the multidimensional Hermite func-

tions expansion

u(y) = ∑
k∈Z2n

+

ukHk(y) = ∑
k′,k′′∈Zn

+

uk′,k′′Hk′(y
′)Hk′′(y

′′) (4.90)

Clearly Pu = f is equivalent to(
2

n

∑
j=1
|τ j|k j +

n

∑
j=1
|τ j|+ r

)
uk = fk, k = (k′,k′′) ∈ Z2n

+ . (4.91)
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One derives, in view of (4.87),

min
k∈Z2n

+

(
2

n

∑
j=1
|τ j|k j +

n

∑
j=1
|τ j|+ r

)
= min

k′∈Zn
+

(
2

n

∑
j=1
|τ j|k′j +

n

∑
j=1
|τ j|+ r

)
= δ0 > 0 (4.92)

which leads to

|uk|=

∣∣∣∣∣ fk

2∑
n
j=1 |τ j|k′j +∑

n
j=1 |τ j|+ r

∣∣∣∣∣≤ 1
δ0
| fk|. (4.93)

The characterization of S (R2n) and Sµ

µ(R2n) by the eigenfunction expansions

yields that ii) implies i), iii), iv),v).

Suppose, now, that ii) is not true: Let γk = ωk = 0, k = n+1, . . . ,2n but

2
n

∑
j=1
|τ j|k′j +

n

∑
j=1
|τ j|+ r = 0.

Then ker(PNF) is infinite dimensional and as a consequence i), ii), iv),v) are

not true.

Suppose, now, that ∑
2n
k=n+1 |γk| 6= 0. Without loss of generality (using linear

change of the variables x′′) we assume γn+1 6= 0, γ j = 0 for j = n+ 2, . . . ,2n.

We use the partial Hermite expansion with respect the variable y′, namely

u(y′,y′′) = ∑
k′∈Zn

+

uk′(y
′′)Hk′(y

′). (4.94)

Thus Pu = f is equivalent to

∑
k′∈Zn

+

(
γn+1Dyn+1 +(

n

∑
`=1

ω`y`)uk′(y
′′)+λk′uk′(y

′′)

)
Hk′(y

′) = ∑
k′∈Zn

+

fk′(y
′′)Hk′(y

′)

(4.95)

i.e.

γn+1Dyn+1uk′+(
2n

∑
`=n+1

ω`y`)uk′+λk′uk′ = fk′. (4.96)



132 4. Normal forms and global hypoellipticity for degenerate Shubin operator

If fk′ ≡ 0, we find explicit solutions (4.96), using the fact that Dy j =
1
i ∂y j , and

(4.96) becomes for fk′ ≡ 0

γn+1∂yn+1 + i(
2n

∑
`=n+1

ω`y`)uk′+ iλk′uk′ = 0 (4.97)

and we write explicit solutions,

uk′(y
′′) =θk′(y

′′′)e
−i ω`

2γn+1
y2

n+1−i∑
2n
`=n+2

ω`
γn+1

y`yn+1−
yn+1
γn+1

λk′ (4.98)

where y′′′ = (yn+2, . . . ,y2n), θk′(y′′′) ∈S ′(Rn−1) and k′ ∈ Zn
+.

Clearly (4.98) implies dim(KerP)=∞, and we conclude as before that i), iii), iv),v)

do not hold.

Finally, if γ` = 0, ` = n + 1, . . . ,2n and ∑
2n
`=n+1 |ω`| 6= 0, we conclude that

dim(KerP) = ∞, constructing infinite dimensional kernels. More precisely, if

δn+1 6= 0 we get

uk′ = δ (yn+1 +
2n

∑
`=n+2

ω`

ωn+1
y`+

λk′

γn+1
)θk′(y

′′′)

where θk′(y′′′) ∈ S′(Rn−1) and δ (yn+1− q(y′′′)) stands for the delta function

on the hypersurface yn+1 = q(y′′′). The proof is complete

We derive also perturbation result

Proposition 32. Suppose that ii) of the Theorem 49 holds. Then there

exists a constant c0 > 0, depending only on n, such that if the normal form

bNF(y,Dy) of the p.d.o b(x,D) satisfies

sup
(y,η)∈R2n,|α|≤n+1,|β |≤n+1

∣∣∣∂ α
y ∂

β

η bNF(y,η)
∣∣∣≤ c0δ0, (4.99)

where δ0 is defined in (4.92). Then PNF +bNF and P+b are globally hypoel-

liptic and globally solvable in S (R2n).

Proof. We use the fact that if c0 << 1 then ‖bNF‖L2(R2n) < δ0, and we have(
P+b

)−1
= P−1(1+P−1b)−1. This completes the proof.
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Applications to global Cauchy

problems

The main goal of the chapter is to investigate the well–posedness in

weighted Shubin spaces Qs(Rn) and in the Gelfand–Shilov classes Sµ

µ(Rn)

of the following second order hyperbolic Cauchy problem∂ 2
t u+P(x,D)u+R(x,D)u = 0, t ≥ 0, x ∈ Rn,

u(0,x) = u0 ∈S ′(Rn), ut(0,x) = u1 ∈S ′(Rn),

(5.1)

where

P(x,D)u =
∫
Rn

eixξ p(x,ξ )û(ξ ) dξ , dξ = (2π)−ndξ

is a second order self-adjoint globally elliptic (namely Γ-elliptic) pseudo–

differential operator (p.d.o.) of Shubin type (namely Γ-pseudodifferential

operator) and semi-bounded from below, (for more details cf. M. Shubin [58]

and the Chapter 1 of this thesis), where

R(x,D)u =
∫
Rn

eixξ r(x,ξ )û(ξ ) dξ

is a first order Shubin type p.d.o. If n = 2, we also consider a second order

symmetric Shubin degenerate operator, modeled by the twisted Laplacian.

133
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We recall that the twisted Laplacian L1 and its transposed L2 = Ltr
1 are not

globally elliptic operators in R2 (see [16], [23]) and they admit rotation terms,

namely

P = Lk = −∆+
1
4
(x2

1 + x2
2)+(−1)k(x2Dx1− x1Dx2), k = 1,2. (5.2)

The fundamental role of the study of the global Cauchy problem for Lk and its

perturbations will play the conjugation of Lτ with the global Fourier integral

operator

Jτv =
∫
Rn

eiτφ(x,η)v̂(η) dη , (5.3)

where φ(x,η) is homogeneous quadratic function cf. [24], see also the section

dedicated to the twisted Laplacian.

We also mention the paper of Popivanov [47], where another class of de-

generate Shubin operators has been studied in the presence of Diophantine

phenomena.

The functional frame for the Cauchy problem is given by the weighted Shu-

bin type spaces Qs(Rn) cf. [58], [50] and the Gelfand–Shilov spaces Sµ

µ(Rn),

µ ≥ 1/2, see [20], [43]. We recall that the spectrum of P(x,D) is discrete

spec(P) = {λ1 ≤ λ2 . . .≤ λk ≤ . . . , lim
k→∞

λk = ∞}, (5.4)

with all eigenvalues having finite multiplicity and with orthonormal basis of

associated eigenfunctions {ϕ j}∞
j=1 yielding Fourier eigenfunction expansions

u =
∞

∑
j=1

u jϕ j, u ∈S ′(Rn), u j = 〈u,ϕ j〉 := u(ϕ j). For more details see Theorem

24.

Remark 17. We note that we can write the spectrum of P as

spec(P) = {µ j : µ1 < .. . < µk < .. . , lim
k→∞

µk = ∞},

where the eigenvalues µ j have the multiplicity m j, with j = 1, . . . ,∞.
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5.1 Previous results

More general results have been proved in the book of Boggiatto, Buzano

and Rodino [3], (for more details see also [33]).

Broadly speaking, they consider more general higher order, strictly hyper-

bolic equations of anisotropic generalizations of Shubin operators but the

solution is local in time.

The crucial ingredient is the reduction of the Cauchy problem to a first order

problem {
DtAt = p(t,x,Dx)At ,

A|t=0 = I,
(5.5)

where p(t,x,Dx) is a C∞ map from an open interval ]−T,T [ of the real line

to the L
2ρ

P,ρ , class of pseudodifferential operators of order 2ρ, ρ ≤ 1
2 and At

is sought in the form of a family of Fourier integral operators also depending

on the parameter t, like

Au(x) =
∫

eiφ(t,x,η)a(t,x,η) dη ,

where φ(t,x,η) is the phase function, smooth real valued function, and

a(t,x,η) stand for the amplitude. The goal is to construct a parametrix

(approximate solution) of the problem (5.5) determining the phase func-

tion φ(t,x,η) and the amplitude a(t,x,η). The phase function satisfies the

Hamilton-Jacobi equation

{
∂tφ(t,x,η) = p2ρ(t,x,∇xφ(t,x,η)),

φ(t,x,η) = xη ,
(5.6)

where p2ρ is the principal part of p. Typically, if n = 1, p2ρ = (1+ ξ 2 +

x2k)1/(2k), with ρ = 1/(2k) and if k = 1 we recapture the case of Shubin

operators. Here the importance of the condition of at most linear growth
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at infinity ρ ≤ 1
2 (i.e. 2ρ ≤ 1) appears, namely, it guaranties the existence

of global solution of the bi-characteristic equations and the boundless of the

Hessian of φx,ξ . After that, in order to compute the symbol a(t,x,η) by

giving an asymptotic expansion. Their results are being with a review of

Hamilton–Jacobi theory in Sm
P,ρ -frame. For this reason, we recall that

f ∈C∞(I,Sm
P,ρ), I =]−T,T [, T > 0,

meaning that for any integer ν and any multi-index γ , there exists a positive

constant kν ,γ such that:

|∂ ν
t ∂

γ

ζ
f (t,ζ )| ≤ kν ,γΛ(ζ )m−ρ|γ|, (5.7)

for ζ = (x,ξ ) ∈ R2n, t ∈ I, and Λ(ζ ) is anisotropic symbol of the type (x2k +

ξ 2)1/(2k). Let p2ρ(t,x,ξ )∈C∞(I,Sm
P,ρ) be real valued and consider the Hamilton–

Jacobi system {
∂tξ j = ∂x j p2ρ(t,x,ξ ),

∂tx j = −∂ξ j p2ρ(t,x,ξ ),
(5.8)

with j = 1, . . . ,n and the following initial condition

{
x(0) = y,

ξ (0) = η .
(5.9)

They prove that the unique solution of this system can be expressed in terms

of the class C∞(]−T ′,T ′[,Sρ

P,ρ) with 0 < T ′ ≤ T . Thanks to the symmetry of

Sρ

P,ρ the system becomes:

{
∂tζ j = ∂̃ j p2ρ(t,ζ ),

ζ (0) = ω,
(5.10)

where ζ = (x,ξ ), ω = (y,η), ∂̃ j =−∂ξ j , j = 1, . . . ,n, ∂̃ j = ∂x j , j = n+1, . . . ,2n.

Now we recall the main theorem (for more details see Theorem 12.5 [3]).
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Theorem 50. Let p(t,x,ξ )= p2ρ(t,x,ξ )+ p̃(t,x,ξ ), with p2ρ ∈C∞(]−T ′,T ′[,S2ρ

P,ρ)

be real valued, p̃∈C∞(]−T ′,T ′[,S0
P,ρ). There exists a T ′> 0 with T ′≤ T, and

a linear map At , depending on the parameter t ∈]−T ′,T ′[ with distribution

kernel A(t,x,y) ∈C∞(]−T ′,T ′[,S ′(Rn
x×Rn

y)) such that for all t ∈]−T ′,T ′[:

At : S (Rn)→S (Rn),

At : S ′(Rn)→S ′(Rn),

At : Hs
P(Rn)→ Hs

P(Rn), for all s ∈ R.

with continuous action, and

(Dt− p(t,x,Dx))A(t,x,y) = R(t,x,y)

A(0,x,y) = δ (x− y)+ R̃(x,y),

where R(t,x,y)∈C∞(]−T ′,T ′[,S ′(Rn
x×Rn

y), R̃(x,y)∈S (Rn
x×Rn

y). More pre-

cisely At can be expressed as a Fourier integral operator depending on the

parameter t ∈]−T ′,T ′[ with phase function

φ(t,x,η) = xη +φ0(t,x,η),

where φ0 belongs to C∞

(
]−T ′,T ′[,S2ρ

P,ρ

)
, and amplitude

a(t,x,η) ∈C∞

(
]−T ′,T ′[,S2ρ

P,ρ

)
.

Remark 18. We stress the fact that the phase function depends on the time.

For this reason the results of Boggiato, Buzano and Rodino are more general

but local, while with our approach we propose global results for a particular

class of operators.

5.2 Equivalent norms

One of the crucial ingredients of our proofs is the use of suitable new

(semi)norms defined in Qs(Rn) and in Sµ

µ(Rn,) depending on the operator
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P(x,D). We are able to define the following norm in Qs(Rn).

Definition 29. If P is a self-adjoint globally elliptic operator of order m > 0,

with 0 /∈ spec(P) (i.e. P is a invertible), we define

‖u‖2
P;s = ‖u‖2

s :=
∞

∑
j=1
|λ j|

2s
m |u j|2 < ∞, (5.11)

where spec(P) = {λ1 ≤ λ2 . . . ≤ λk ≤ . . . , limk→∞ λk = ∞}., and u j are the

Fourier coefficients.

Now we prove that the norm ‖ · ‖P;s is equivalent to the usual norm in

Qs(Rn).

Proposition 33. Let s ∈ R. Then ‖ · ‖P;s is equivalent to ‖ · ‖Qs(Rn), defined

in(1.42), for every self-adjoint invertible operator P of order m > 0.

Proof. It is well known (for more details we refer the reader to [58] and [50]),

that u ∈ Qs(Rn) if and only if P
s
m u ∈ L2(Rn). Let n ∈ N then

‖u‖2
Qs(Rn) = ∑

|α|+|β |≤s
‖xβ Dα

x u‖2
L2(Rn) = ∑

|α|+|β |≤s
〈xβ Dα

x u,xβ Dα
x u〉

= ∑
|α|+|β |≤s

〈Dα
x (x

2β Dα
x u),u〉= 〈A2su,u〉.

Hence there exists a positive operator As :=
√

A2s. Then

‖u‖2
Qs(Rn) =〈Asu,Asu〉= 〈A2su,u〉= 〈P

2s
m P−

2s
m A2su,u〉

= ‖b(x,D)P
s
m u‖2

L2(Rn) ≤C‖P
s
m u‖2

L2(Rn),

where b(x,D) is a pseudodifferential operator of order zero, with C standing

for the operator norm of b(x,D) in L2(Rn), (see for [50], [58]). This concludes

the proof.
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We use this equivalent norm in the second section of this chapter. In fact,

let δ > −λ1 (λ1 is the smallest eigenvalue of the operator P), then P+ δ is

positive globally elliptic, invertible and Qs(Rn) is defined, independently of

δ >−λ1 cf. [58], as follows: Qs(Rn) is the set of all u ∈S ′(Rn) such that

‖u‖2
s :=

∥∥∥(P+δ )s/2u
∥∥∥2

L2
=

∞

∑
j=1

(λ j +δ )s|u j|2 <+∞. (5.12)

Motivated by the study of the well–posedness of our Cauchy problem in the

Gelfand–Shilov symmetric spaces, we introduce a new scale of Banach spaces

depending on two parameters defining the Gelfand–Shilov space Sµ

µ(Rn), µ ≥

1/2 using the operator P+δ , δ >−λ1. We recall that, by Theorem 1.2 [24]

on the characterization of the symmetric Gelfand–Shilov spaces Sµ

µ(Rn), we

have: u ∈ Sµ

µ(Rn) iff for some ε > 0

‖u‖2
µ;ε =

∥∥∥eε(P+δ )1/(2µ)
u
∥∥∥2

µ;ε,P+δ
=

∞

∑
j=1
|u j|2e2ε(λ j+δ )

1
2µ

<+∞. (5.13)

We propose refinement of the semi-norms above, defining the Hilbert spaces

HSµ

µ(Rn : s,ε) as

Definition 30. We define the spaces HSµ

µ(Rn : s,ε) as the set of all u ∈

S (Rn) such that

‖u‖2
µ;s,ε =

∥∥∥(P+δ )s/2eε(P+δ )1/(2µ)
u
∥∥∥2

L2
=

∞

∑
j=1
|u j|2(λ j +δ )se2ε(λ j+δ )

1
2µ

<+∞,

(5.14)

with the inner product < u,v >=
∞

∑
j=1

u jv j(λ j +δ )se2ε(λ j+δ )
1

2µ

.

One get readily the following properties:

Proposition 34. HSµ

µ(Rn : s1,ε2) ↪→ HSµ

µ(Rn : s2,ε2) iff s1 ≥ s2, ε2 ≥ ε2 and

Sµ

µ(Rn) is double inductive limit of HSµ

µ(Rn : s,ε) ε ↘ 0, s↘−∞, i.e.,⋃
s∈R,ε>0

HSµ

µ(Rn : s,ε) = Sµ

µ(Rn).
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5.3 Well-posedness in Qs

First we show global well–posedness for the unperturbed inhomogeneous

Cauchy problem for P(x,D)∂ 2
t u+P(x,D)u = f ∈

⋂N
j=0C j([0,+∞[: Qs+1− j(Rn)), t ≥ 0, x ∈ Rn,

u(0,x) = u0 ∈ Qs+1(Rn), ut(0,x) = u1 ∈ Qs(Rn).

(5.15)

Set JP± := { j ∈N : ±λ j > 0}, J0
P := { j ∈N : ±λ j = 0}. Clearly J−P and J0

P

are finite or empty sets. We have

Theorem 51. There exists a unique solution u ∈ C1([0,+∞[: S ′(Rn)) of

(5.15) defined by

u = ∂tS(t)[u0]+S(t)[u1]+
∫ t

0
∂tS(t− τ)[ f (τ, ·)]dτ, (5.16)

where the Green function type operator S(t) = S−(t)+S0(t)+S+(t),

S−(t)[g]k = ∑
j∈J−P

sinh(
√
−λ jt)√
−λ j

g jϕ j(x), (5.17)

S0(t)[g]k = t ∑
j∈J0

P

g jϕ j(x), (5.18)

S+(t)[g]k = ∑
j∈J+P

sin(
√

λ jt)√
λ j

g jϕ j(x), (5.19)

with the convention S−(t) = 0 (resp. S0(t) = 0) if λ1 ≥ 0 (resp. 0 6∈ spec (P)).

In particular, if u0,u1 ∈S (Rn) and f ∈C∞([0,+∞[;S (Rn)),

then u ∈C∞([0,+∞[;S ′(Rn)).

Proof. We consider the Fourier expansion
∞

∑
j=1

u j(t)ϕ j (resp.
∞

∑
j=1

f j(t)ϕ j) in x

of u (resp. f ). Then our problem is reduced to the following systems of ODE:ü j(t)+λ ju j(t) = f j(t),

u j(0) = u0, j, u̇(0) = u1, j.

(5.20)
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The solutions of (5.20) are written explicitly as follows:

u j(t) = u0, j cosh
(√
−λ jt

)
+u1, j

sinh
(√
−λ jt

)
√
−λ j

+
∫ t

0

sinh
(√
−λ j(t− τ)

)
√
−λ j

f j(τ)dτ, (5.21)

if J−P 6= /0, j ∈ J−P (i.e., λ j < 0).

u j(t) = u0, j +u1, jt +
∫ t

0
(t− τ) f j(τ)dτ (5.22)

provided J0
P 6= /0, j ∈ J0

P (i.e., λ j = 0).

u j(t) = u0, j cos
(√

λ jt
)
+u1, j

sin
(√

λ jt
)

√
λ j

+

+
∫ t

0

sin
(√

λ j(t− τ)
)

√
−λ j

f j(τ)dτ, (5.23)

for j ∈ J+P (i.e., λ j > 0). Clearly (5.21), (5.22), (5.23) yield (5.17), (5.18),

(5.19).

Set uhom = ∂tS(t)[u0]+S(t)[u1], uinh =
∫ t

0 ∂tS(t− τ)[ f (τ, ·)]dτ , and Uhom =

(uhom,∂tuhom), U inh = (uinh,∂tuinh).

Now we are able to enunciate the main result of this section. We note that

this result recaptures a particular case of the global well–posedness results

in [52] and derives new precise estimates and conservation of energy type

estimates in the chosen norm for Qs(Rn), defined by the powers of P+ δ .

We recall that a crucial ingredient of the following proofs is the choice of the

norms (5.12).

Theorem 52. There exist constants c0 ≥ 0, C0 > 0, depending on λ1, δ and

the norm RQs+1(Rn)→Qs(Rn) such that for every u j ∈ Qs+1− j(Rn), j = 0,1, one
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can find a unique solution u∈
⋂1

k=0Ck([0,+∞[: Qs+1−k(Rn)) of (5.1) satisfying

the energy estimate

‖u(t, ·)‖2
s+1 +‖ut(t, ·)‖2

s ≤C0ec0t(‖u0‖2
s+1 +‖u1‖2

s ). (5.24)

Moreover,

u ∈
∞⋂

k=0

Ck([0,+∞[: Qs+1−k(Rn)). (5.25)

which implies the well–posedness in S (Rn). Finally, if R(x,D) = 0, λ1 > 0

and δ = 0, we have the conservation of energy type phenomenon, namely

‖u(t, ·)‖2
s+1 +‖ut(t, ·)‖2

s = ‖u0‖2
s+1 +‖u1‖2

s , t ≥ 0. (5.26)

The proof of this theorem is given by the following propositions. The

next assertion implies the proof of the first result in the unperturbed case,

R = 0.

Proposition 35. Set Cδ := sup
j∈J−P ∪J+P

λ j +δ

|λ j|
<+∞. Then we have

∥∥∥uhom(t)
∥∥∥2

s+1
+
∥∥∥∂tuhom(t)

∥∥∥2

s
≤ max{2Cδ ,e

2
√
−λ1t ,(2+ t)2,Cδ}

× (‖u0‖2
s+1 +‖u1‖2

s ), t ≥ 0. (5.27)

Proof. We note that

Uhom
j (t) =

 cosh(
√
−λ jt)

sinh(
√
−λ jt)√
−λ j√

−λ j sinh(
√
−λ jt) cosh(

√
−λ jt)


 u0, j

u1, j

 ,(5.28)

for j ∈ J−P when J−P 6= /0;

Uhom
j (t) =

 1 t

0 1

 u0, j

u1, j

 , (5.29)
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for j ∈ J0
P if J0

P 6= /0; and

Uhom
j (t) =

 cos(
√

λ jt)
sin(
√

λ jt)√
λ j√

λ j sin(
√

λ jt) cos(
√

λ jt)


 u0, j

u1, j

 , (5.30)

for j ∈ J+P . Given v ∈ C2, λ > 0 we set

‖v‖2
s;λ = λ

s+1|v1|2 +λ
s|v2|2. (5.31)

Then one observes that (5.28), (5.29), (5.30) lead to∥∥∥Uhom
j (t)

∥∥∥2

s;λ j+δ
≤2Cδ e2

√
−λ jt
(
(λ j +δ )s+1|u0, j|2 (5.32)

+(λ j +δ )s|u1, j|2
)
,

for j ∈ J−P when J−P 6= /0,∥∥∥Uhom
j (t)

∥∥∥2

s;δ
≤ (2+ t)2

(
δ

s+1|u0, j|2 +δ
s|u1, j|2

)
, (5.33)

for j ∈ J0
P if J0

P 6= /0, and∥∥∥Uhom
j (t)

∥∥∥2

s;λ j+δ
≤ Cδ ((λ j +δ )s+1|u0, j|2 +(λ j +δ )s|u1, j|2), (5.34)

for j ∈ J+P .

In particular, taking into account that the rotation matrices preserve the

Euclidean norm in R2, if δ = 0 in (5.34) we obtain the equality∥∥∥Uhom
j (t)

∥∥∥2

s;λ j
= λ

s+1
j |u0, j|2 +λ

s
j |u1, j|2, j ∈ J+P . (5.35)

Summation in j completes the proof.

In order to show the global well–posedness for the perturbed operator

P(x,D)+R(x,D) we need precise estimates on U inh. Without loss of gener-

ality we may assume λ1 > 0, and we write P(x,D)+R(x,D) = P(x,D)+ δ +

(R(x,D)−δ ). We point out the fact that R(x,D)−δ remains first order p.d.o.

perturbation.
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Proposition 36. Suppose that f ∈
⋂N

j=0([0,+∞[: Qs− j(Rn)) for some N ≥ 0.

Then uinh ∈
⋂N+2

j=0 ([0,+∞[: Qs− j(Rn)) and one can find c1 > 0 such that the

following estimates hold∥∥∥uinh(t)
∥∥∥2

s+1
+
∥∥∥∂tuinh(t)

∥∥∥2

s
≤ c1

∫ t

0
‖ f (τ, ·)‖2

s dτ, t ≥ 0. (5.36)

Proof. We use the the assumption λ −1 > 0 and apply the same arguments

as in the previous proposition combined with the Schwartz inequality.

Now we conclude the proof for the well–posedness in the spaces Qs(Rn)

for the perturbed equation. We write u = uhom + v, g := R(x,D)uhom, and

reduce the perturbed Cauchy problem to

∂ 2
t v+P(x,D)v = f := g−R(x,D)v, t ≥ 0,x ∈ Rn,

v(0,x) = 0, vt(0,x) = 0.
(5.37)

One notes that since R(x,D) is first order Shubin p.d.o. and

uhom ∈
⋂

∞
k=0Ck([0,+∞[: Qs+1−k(Rn)) we obtain that the source term

g = R(x,D)uhom ∈
∞⋂

k=0

Ck([0,+∞[: Qs−k(Rn)).

Moreover, if the unknown solution v is required to be in
∞⋂

k=0

Ck
(
[0,+∞[:

Qs+1−k(Rn)
)

, then R(x,D)v∈
∞⋂

k=0

Ck([0,+∞[: Qs−k(Rn)) as well. Now we apply

the Green type function S(t− τ) and reduce (5.37) to

v(t, ·) =
∫ t

0
S(t− τ)[g(τ, ·)]dτ +

∫ t

0
S(t− τ)[R(x,D)]v(τ, ·)dτ, t ≥ 0, (5.38)

The first term h(t,x) :=
∫ t

0
S(t−τ)[g(τ, ·)]dτ belongs to

⋂
∞
k=0Ck([0,+∞[: Qs+1−k(Rn))

while the linear operator

K[v](t,x) :=
∫ t

0
S(t− τ)[R(x,D)]v(τ, ·)dτ, t ≥ 0, (5.39)
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satisfies for some c2 > 0 depending only on the norm
∥∥∥R(x,D)Qs+1(Rn)→Qs(Rn)

∥∥∥
the following estimates

1

∑
`=0

∥∥∥∂
`
t K[v](t, ·)

∥∥∥
s+1−`

≤ c2

1

∑
`=0

∫ t

0
‖v(τ, ·)‖s+1−` dτ, t ≥ 0, (5.40)

for all v ∈
⋂1
`=0C`([0,+∞[: Qs+1−`(Rn)).

We write the following Picard scheme

v j+1(t, ·) = h(t, ·)+K[v j](t, ·), t ≥ 0, j = 0,1, . . . , v0 = 0, (5.41)

In fact we have

‖v j+1− v j‖s+1,P =‖K[v j](t, ·)−K[v j−1](t, ·)‖s+1,P ≤Cδ‖K[v j− v j−1]‖s+1,P

=Cδ‖
∫ t

0
S(t− τ)[R(x,D)](v j− v j−1)dτ‖s+1,P

≤C0e2
√
−λ1t‖

∫ t

0
R(x,D)(v j− v j−1)dτ‖s+1,P

≤C0e2
√
−λ1t

κR

∫ t

0
‖v j(t− τ)− v j−1(t− τ)‖s+1,P dτ

≤ . . .≤ C̃0e2
√
−λ1t

κ̃R

∫ t

0
‖v1(t− τ)‖s+1,P dτ ≤C

t j

j!
(5.42)

Moreover from the same reasons we have

‖∂t(v j+1− v j)‖s,P ≤Cδ‖
∫ t

0
∂tS(t− τ)[R(x,D)](v j− v j−1)dτ‖s,P

C0
√
−λ1e

√
−λ1t

κR

∫ t

0
‖v j− v j−1‖s+1dτ ≤C

t j

j!
(5.43)

Hence we have shown the convergence of v j in
⋂1
`=0C`([0,+∞[: Qs+1−`(Rn))

to a solution v of the perturbed Cauchy problem, taking into account (5.40)

and applying the Gronwall inequality. We obtain that v ∈
⋂

∞
`=0C`([0,+∞[:

Qs+1−`(Rn)) via standard regularity methods for second order hyperbolic

equations.
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Remark 19. We point out the fact that the solution of our problem is well–

posed for all t > 0, while in the book of Boggiatto, Buzano and Rodino [3],

the Cauchy problem is studied only for t << 1.

Remark 20. We note that it is an interesting problem to study second order

hyperbolic equations for Shubin type operators, depending on the time vari-

able, and to find global analogues to local results for second order hyperbolic

equations, either strictly hyperbolic but with non smooth time depending co-

efficients and/or weakly hyperbolic equations (e.g. see the recent paper [19]

and the references therein).

5.4 Well-posedness in Sµ

µ

In this section we prove the global well–posedness in Gelfand–Shilov

spaces.

Theorem 53. Let P be differential operator and R= 0. Then Cauchy problem

is globally well posed in Sµ

µ(Rn) for µ ≥ 1/2.

Actually, we demonstrate an assertion that is more general, and we es-

tablish precise estimates using suitable semi norms (5.14) in Sµ

µ(Rn) defined

by P. We have

Theorem 54. Consider the Cauchy problem∂ 2
t u+P(x,D)u = 0, t ∈ R, x ∈ Rn,

u(0,x) = u0 ∈ HSµ

µ(Rn : s+1,ε), ut(0,x) = u1 ∈ HSµ

µ(Rn : s,ε),
(5.44)

for some s∈R, ε > 0. Then there exists a unique solution u of (5.44) belong-

ing to
⋂1

k=0Ck([0,+∞[: HSµ

µ(Rn : s+1− k,ε) and satisfying for some c0 ≥ 0,

C0 ≥ 1 the estimates

‖u(t, ·)‖2
µ;s+1,ε +‖ut(t, ·)‖2

µ;s,ε ≤C0ec0t(‖u0‖2
µ;s+1,ε +‖u1‖2

µ;s,ε), t ≥ 0.(5.45)



5.4 Well-posedness in Sµ

µ 147

Moreover, we have the regularizing result

u ∈
∞⋂

k=0

Ck([0,+∞[: HSµ

µ(Rn : s+1− k,ε))⊂C∞([0,+∞[: Sµ

µ(Rn)).

Finally, if λ1 > 0 and δ = 0, we have the conservation of energy type phe-

nomenon, namely

‖u(t, ·)‖2
µ;s+1,ε +‖ut(t, ·)‖2

µ;s,ε = ‖u0‖2
µ;s+1,ε +‖u1‖2

µ;s,ε , t ≥ 0.(5.46)

Proof. The choice of the Banach spaces HSµ

µ(Rn : s+ 1− k,ε)) depending

on two parameters allows a simple proof as in the Qs(Rn) framework us-

ing homogeneity arguments. Indeed, multiplying in (5.32), (5.33), (5.34) by

eε(λ j+δ )1/(2µ)
we obtain∥∥∥Uhom

j (t)
∥∥∥2

s;λ j+δ
e2ε(λ j+δ )1/(2µ)

≤ 2Cδ e2
√
−λ jte2ε(λ j+δ )1/(2µ)

× ((λ j +δ )s+1|u0, j|2 +(λ j +δ )s|u1, j|2), (5.47)

for j ∈ J−P when J−P 6= /0,∥∥∥Uhom
j (t)

∥∥∥2

s;δ
e2εδ 1/(2µ)

≤ (2+ t)2e2εδ 1/(2µ)

× ((λ j +δ )s+1|u0, j|2 ++δ
s|u1, j|2), (5.48)

for j ∈ J0
P if J0

P 6= /0,∥∥∥Uhom
j (t)

∥∥∥2

s;λ j+δ
e2ε(λ j+δ )1/(2µ)

≤Cδ e2ε(λ j+δ )1/(2µ)

× ((λ j +δ )s+1|u0, j|2 +(λ j +δ )s|u1, j|2), (5.49)

for j ∈ J+P and similarly with the conservation of energy if λ1 > 0, δ = 0.∥∥∥Uhom
j (t)

∥∥∥2

s;λ j
e2ε(λ j)

1/(2µ)
=(λ j)

s+1|u0, j|2 (5.50)

+(λ j)
s|u1, j|2e2ε(λ j)

1/(2µ)
,

for j ∈ N. Summation in j leads to the end of the proof.
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5.5 The twisted Laplacian case

We recall that both L1 and L2 are essentially self-adjoint, their spectrum is

given by a sequence of eigenvalues, which are odd natural numbers. It should

be noted, however, that each eigenvalue has infinite multiplicity. Moreover,

L1 and L2 are globally hypoelliptic in S (R2) and Sµ

µ(R2), µ ≥ 1/2, cf. [16],

[23]. On the other hand, it was shown in [23] that there exists a Fourier

integral operator (FIO) J, associated to linear symplectic transformation in

R4,

J(x) = (2π)−2
∫
R2

ei|ω|Φ(x,ξ )v̂(ξ )dξ , (5.51)

where

Φ(x,ξ ) = ξ1ξ2 +
x1x2

2
+ x2ξ1 + x1ξ2,

and J reduces Lk to simple normal form, the one dimensional harmonic os-

cillator in R2, namely

J−1 ◦Lk ◦ J v(y) = (ω2D2
yk
+ y2

k)v(y), y = (y1,y2) ∈ R2, k = 1,2, (5.52)

with k = 1 if ω > 0 and with k = 2 if ω < 0, as in [23]. Moreover, KJ is an

automorphism of S(R2) and Sµ

µ(R2), µ ≥ 1/2. Applying the same arguments,

as in [23], one shows that J preserves Qs(R2), s ∈ R as well. Therefore, we

are reduced to the Cauchy problem for

(−ω
2
∂

2
y1
+ y2

1)⊗1y2, if ω > 0 or 1y1⊗ (−ω
2
∂

2
y2
+ y2

2), if ω < 0.

As in [24], we choose as orthonormal basis of eigenfunctions of (−∂ 2
y1
+y2

1)×

1y2 the Hermite functions in R2:

Hk(y) := Hk1(y1)Hk2(y2), with (−∂
2
y1
+ y2

1)Hk(y) = (2k1 +1)Hk(y), k ∈ Z2
+.

Now we are able to reduce the study of our Cauchy problem to the study of

tensor type Cauchy problem, by using the reduction to global normal form.
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Proposition 37. Let ω > 0 and set

L = (Dx1 +
ω

2
x2)

2 +(Dx2−
ω

2
x1)

2 +α1(Dx1 +
ω

2
x2)+α2(Dx2−

ω

2
x1)+ r,

with α1,α2,r ∈ R. Then

i) there exists a transformation

J̃ = Tα1/2 ◦Eiα2/(2ω) ◦ J,

Tα1/2v(x) = v
(

x+
α1

2

)
Eiα2/(2ω) = e−i α2ω

2 x,

with J is the transformation (5.51), such that

L = J̃−1 ◦ L̃◦ J̃,

where

L̃ = ω
2D2

x1
+ y2

1 + r̃.

ii) The transformation J̃ is an isomorphism in Qs(Rn) and in Sµ

µ(Rn).

Proof. i) We consider only the case with ω > 0, the other case is similar.

L1 = J ◦L = ω
2D2

y1
+ y2

1 +α1y1 +α2Dy1 + r. (5.53)

ii) J̃ is an isomorphism because is a composition of isomorphisms in Qs(Rn)

and in Sµ

µ(Rn).

We introduce scale of anisotropic Hilbert spaces defining Sµ

µ(R2) with

Shubin space index with respect to y1, namely AHSµ

µ(R2 : s1,ε).
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Definition 31. We define the spaces AHSµ

µ(R2 : s1,ε) as the set of all u ∈

S(R2), u = ∑
k∈Z2

+

ukHk(x) such that

u 2
µ;s1,ε

:=
∞

∑
k∈Z2

+

|uk|2(2k1 +1)s1e2ε|k|
1

2µ

<+∞. (5.54)

These spaces satisfy the following properties:

Proposition 38. AHSµ

µ(Rn : s1,ε2) ↪→ AHSµ

µ(Rn : r1,ε2) if and only if s1 ≥

r1, ε1 ≥ ε2 and Sµ

µ(Rn) is double inductive limit of AHSµ

µ(Rn : s1,ε), ε ↘ 0,

s1↘−∞, i.e., ⋃
s1∈R,ε>0

AHSµ

µ(Rn : s1,ε) = Sµ

µ(Rn).

Without loss of generality, we may assume that ω = 1, indeed using a

dilation transformation. We are able to show the main result

Theorem 55. Consider the Cauchy problem∂ 2
t v(t,y)+(−∂ 2

y1
+ y2

1 + r)v(t,y) = 0 t ∈ R, y ∈ R2,

v(0,y) = v0 ∈ AHSµ

µ(R2 : s1 +1,ε), ut(0,y) = v1 ∈ AHSµ

µ(R2 : s1,ε),

(5.55)

for some s1 ∈ R, ε > 0. Then there exists a unique solution

v ∈
1⋂

k=0

Ck([0,+∞[: AHSµ

µ(R2 : s1 +1− k,ε)

of (5.55) satisfying for some c0 ≥ 0, C0 ≥ 1 the energy estimate

v(t, ·) 2
µ;s1+1,ε + vt(t, ·) 2

µ;s1,ε
≤C0ec0t(v0

2
µ;s1+1,ε + v1

2
µ;s1,ε

). (5.56)

Moreover v∈
⋂

∞
k=0Ck([0,+∞[: AHSµ

µ(R2 : s1+1−k,ε))⊂C∞([0,+∞[: Sµ

µ(R2)).

Next, if λ > −1 and δ = 0, we have the conservation of energy type phe-

nomenon, namely

v(t, ·) 2
µ;s1+1,ε + vt(t, ·) 2

µ;s1,ε
= v0

2
µ;s1+1,ε + v1

2
µ;s1,ε

, t ≥ 0. (5.57)

Finally, the Cauchy problem is not well posed in Qs(R2).
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Proof. We use exactly the same arguments as in the proof of Theorem 54

replacing the Fourier expansion
∞

∑
j=1

u j(t)ϕ j(x) with the double indexed Fourier

expansion

v(t,y) = ∑
k∈Z2

+

vk(t)Hk(y),

and obtaining the following system of ODEv̈k(t)+(2k1 +1+ r)vk(t) = 0

vk(0) = v0,k, v̇k(0) = v1,k.

(5.58)

For the sake of simplicity, we consider the case r ≥ 0. Hence the solutions

are written explicitly

vk(t) = cos(
√

2k1 +1+ rt)v0,k +
sin(
√

2k1 +1+ rt)√
2k1 +1+ r

v1,k, (5.59)

for t ≥ 0, k = (k1,k2)∈Z2
+. Straightforward computations lead to to the proof

of the positive result.

As it concerns the non well–posedness in the scales Qs(Rn), in contrast to

the globally elliptic case, we choose v0 = 0 and v1 ∈ Qs(R2) in the following

way: v1,k = 0, for k1 ≥ N +1, N ∈ N and

v1,k = (2(k1 + k2)+1)−s/2−1/2 1
(ln(2(k1 + k2)+2))1/2+δ0

, k = (k1,k2) ∈ Z2
+,

(5.60)

k1 = 0,1, . . .n and δ0 > 0. It is easy to check that v1 is in Qs(Rn)

‖v1‖2
s =

N

∑
k1=0

∞

∑
k2=0

(2(k1 + k2)+1)−1 1
(ln(2(k1 + k2)+2))1+2δ0

≤ (N +1)
∞

∑
k2=0

1
(2k2 +1)(ln(2k2 +2))1+2δ0

< ∞.

Next, we show that the solution v(t,y) defined by : vk(t) = 0, for k1 ≥ N +1
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and

vk(t) = (2k1 +1+ r)−1/2(2(k1 + k2)+1)−(s+1)/2 sin((
√

2k1 +1+ r)t)
(ln(2(k1 + k2)+2))1/2+δ0

,

(5.61)

t ∈R, k = (k1,k2)∈Z2
+, k1 = 0,1, . . . ,N, does not belong to Qs+η(R2), (η > 0)

for 0 < |t|< π

2
√

2N+1+r
In fact

‖v‖2
s+η =

N

∑
k1=0

∞

∑
k2=0
‖vk‖2(2(k1 + k2)+1)s+η

=
N

∑
k1=0

sin2((
√

2k1 +1+ r)t)
2k1 +1+ r

∞

∑
k2=0

(2(k1 + k2)+1)s+η

(2(k1 + k2)+1)s+1(ln(2(k1 + k2)+2))1+2δ0

Since for 0 < |t|< π

2
√

2N+1+r
one has

sin2((
√

2k1 +1+ r)t)≥ (2k1+1)t2 cos2((
√

2k1 +1+ r)t)≥ cos2(
√

2N + r+1)t)t2 > 0,

we have

‖v‖2
s+η ≥ cos2((

√
2N +1+ r)t)t2

N

∑
k1=0

∞

∑
k2

1
(2(k1 + k2)+1)1−η

1
(ln(2(k1 + k2)+2))1+2δ0

≥ (N +1)cos2((
√

2N +1+ r)t)t2
∞

∑
k2

1
(2(N + k2)+1)1−η

1
(ln(2(N + k2)+2))1+2δ0

≥ (N +1)cos2((
√

2N + r+1)t)t2cε,N

∞

∑
`=0

1
(2`+2N +1)1−η+ε

= ∞

if η > ε > 0 and cε,N = in f`≥0

(
(2`+2N+1)ε

(ln(2`+2N+2))1+2δ0

)
> 0.

So v(t) /∈Qs+η(R2), for 0 < |t|< π

2
√

2N+1+r
, in fact the arguments of the proof

imply that v(t) /∈ Qs+η(R2) for all t 6= 0.
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15-31.
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