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What is Supramolecular Chemistry? 

 

 J. M. Lehn  “Supramolecular chemistry is the chemistry of the intermolecular 

bond, covering the structures and functions of the entities formed by the associa-

tion of two or more chemical species” 

 

F. Vögtle   “In contrast to molecular chemistry, which is predominantly based up-

on the covalent bonding of atoms, supramolecular chemistry is based upon inter-

molecular interactions, i.e. on the association of two or more building blocks, 

which are held together by intermolecular bond” 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1  Introduction 

 

1.1 Supramolecular Chemistry 

Supramolecular chemistry is a branch of chemistry that embraces many different research areas of 

chemistry such as organic and inorganic chemistry, biochemistry, material chemistry and studies the 

properties of different compounds for possible practical applications. Supramolecular chemistry 

was first described by J.M Lehn as the chemistry beyond the molecule.
1
 Fig. 1.1, illustrate an ex-

ample of the differences among molecular and supramolecular chemistry: whilst traditional chemis-

try focuses on the covalent bond, supramolecular chemistry is concerted only with weak and re-

versible non covalent intermolecular interactions that occur between, rather than within molecules. 

Intermolecular interactions include metal-ligand (M-L) coordination bonds, hydrogen-bonding, π-π 

donor-acceptor interactions, van der Waals (vdW), electrostatic and hydrophobic forces. These non-

covalent interactions differ in strength and directionality ranging from hundreds kilojoules per mole 

for the strongest ones (typically ~200 kJ·mol
-1

 for M-L coordination bonds) to a few kilojoules per 

mole for the weakest ones (2-25 kJ·mol
-1

 for hydrogen bonds or π-π interactions). Supramolecular 

chemistry embraces important concepts and construct mechanisms that include host-guest chemis-

try, molecular recognition and self-assembly, molecular folding, mechanically-interlocked molecu-

lar architectures, and reversible and dynamic covalent chemistry.
2
 These interactions and assembly 

processes are reversible and under thermodynamic control, and gaining control over the forces re-

sponsible for the formation of these supramolecular entities that possess the capability of “self-

correction” is challenging and difficult.
3
 Anyway many efforts have been made to control the as-

sembly processes to create deliberate supramolecular networks starting from properly designed 

building blocks. When these methods are specifically applied to crystalline solids, it leads to the ar-

ea of crystal engineering.
4
 

 

 

 

 

 

  



 

 

Figure 1.1 A Schematic Illustration of the Difference among Molecular and Supramolecular Chemistry in 

Structural Terms.
1
 

 

1.1.1 Crystal Engineering 

Crystal Engineering is an important area of supramolecular chemistry which aims to design and 

synthesize new solids with desired structural, chemical, and physical properties,
4
 by applying the 

knowledge of the steric, topological and intermolecular bonding capabilities of the constituent 

building blocks. The term crystal engineering was introduced by Pepinsky in 1955 when he re-

vealed controllable unit cell dimensions and symmetries with metal organic complexes, identifying 

the importance of intermolecular interactions in determining the solid-state structure of crystals.
5
 

Consideration of all types of interactions present within the crystal is needed in order to design and 

build a desired structure since during the crystallization process the individual synthons ‘find’ and 

interact with each other in solution to form the final structure in a spontaneous way. Desiraju firstly 

defined the term supramolecular synthon as “structural units within supermolecules which can be 

formed and/or assembled by known or conceivable synthetic operations involving intermolecular 

interactions”.
6
 A synthon is therefore derived from designed combinations of interactions. As an 

example, the complementary hydrogen bonds between two carboxylic acid moieties form the well-

known carboxylic acid dimer,
7
 and this spatial arrangement coming from an intermolecular interac-

tion is termed a supramolecular synthon.
8
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These supramolecular synthons are dependent on the types of intermolecular interactions that occur 

in the solid state. Recurring motifs between functional groups are termed supramolecular synthons 

and the molecular building blocks of the structure are referred to as tectons (Fig. 1.2). Crystal engi-

neering is an emerging discipline whereby practitioners aim to arrange molecules, both organic and 

metal-organic, in the crystalline phase by rational design. This challenge requires the exploitation 

of well-known supramolecular glues such as hydrogen bonding and coordinate bonding. These are 

augmented by a myriad of nominally weaker and less directional noncovalent interactions that, in-

creasingly, are being demonstrated as important in crystal structure design. Applications in fields as 

diverse as pharmaceuticals, photoluminescent materials, and metal-organic frameworks for gas 

storage are some of the motivations for crystal engineering that draw together scientists from a 

wide range of disciplines. Applications of crystal engineering span from organic to metal-organic 

and inorganic realms and include co-crystal formation, solid-state reactions, and metal-organic 

framework structures.  

 

                      

Figure 1.2 (a) Hydrogen Bonding and (b) Crystal Packing for methyl 3,5-dinitrosalicylate. 

1.1.2 Self-Assembly 

Molecular self-assembly is the spontaneous self-organization
9
 of building blocks into ordered struc-

tures, held together through weak intermolecular forces. Therefore this implies that the interacting 

tectons are previously designed and capable to assemble without any external assistance. This type 

of approach has been named as reticular synthesis and involves supramolecular synthons, which 



 

when combined, form ‘molecular building blocks’ (MBBs), forming the final structure.  To predict 

the structure that forms, it is first necessary to have a knowledge of the interactions involved in the 

self-assembly processes. Because of the weakness of such binding interactions, the formation of su-

pramolecular assemblies is often thermodynamically influenced, since results from spontaneous 

self-assembly processes, rather than from sequential bond-forming processes. Self-organization is 

the real driving force that leads to realization of supramolecular constructs.
10 

After a first step, that 

involves the complementary molecular recognition among the structural subunits, the growth of a 

supramolecular structure progresses through sequential selective binding motifs, according to coop-

erative or linear behaviors. The crystallization is a self-assembly process, where the individual 

synthons interact with each other in solution to form the structure in a spontaneous way. There are 

two main kinds of self-assembly processes: 

 Crystal self-assembly: A non-equilibrium process in which both kinetic and thermodynamic 

factors contribute to the structure construction. Structures that form faster may incurring 

polymorphism phenomena. 

 Solution self-assembly: A thermodynamically controlled equilibrium where components as-

semble into the structure of maximum stability. 

 Therefore the choice of the structural motifs is crucial in supramolecular chemistry, because it goes 

to determine the specific physical and chemical properties of the final structure. Next paragraphs 

will present the main factors that dictate the ways followed by molecules to aggregate in the solid 

state, including a description of the diverse types of non-covalent interactions and other crystal 

packing principles that have being identified as being important in stabilizing crystal structure.  

 

1.1.3 Ion-Ion Interactions  

Ionic bonding is defined as an electrostatic attraction established between two ions of opposite 

charge. It is formed between atoms or groups of atoms where is occurred an exchange of electrons: 

the atom or the atomic group which provides electrons becomes a positive ion (cation), and the at-

om or the atomic group that acquires electrons turns into negative ion (anion). This bond typically 

occurs between metals and non-metals in salts where atoms with low ionization energy combines 

with atoms with high electron affinity. A common example of ionic compound is the sodium chlo-

ride salt. In this molecule the sodium loses an electron, forming a cation, and the chlorine atom 

gains an electron to form an anion. The resulting ions arrange in the solid state in order to maximize 

the electrostatic attraction by multiple ionic interactions so that each chloride anion is surrounded 

by six sodium cations and vice versa, in an infinite array of ions with the well-known face-centered 



 

cubic (fcc) lattice.
11

 Fig.1.3 shows two examples of synthons formed by ionic components held to-

gether through ion-ion interactions.  

                                    

Figure 1.3 Two Examples of  Ion-Ion Interaction between Oxygen and Magnesium Cation. 

 

                    

1.1.4 Ion–Dipole Interactions  

Ion-dipole interactions are among the most intense and common interactions found in Supramolecu-

lar Chemistry and have great important in the solutions since they mainly involve solvents mole-

cules polar in nature and the ionic species dissolved: cations and anions are always surrounded by 

solvent molecules. Ion-dipole interactions feature energies comprise in the range between 50 and 

200 kJ·mol
-1

, and became stronger with the increase of the ionic charge and the dipole moment, and 

depend on the temperature.
11 

An illustrative example of ion-dipole interactions is that occurring be-

tween Na
+
 and H2O (Fig. 1.4a). Other peculiar examples, typical of the host-guest supramolecular 

branch, are provided by the inclusion complexes between metal cations and crown ethers (Fig. 1.4 

b). 

a                                                     b 

Figure 1.4 Examples of Ion-Dipole Interaction (a) Na
+
 Hydrated Ion. (b) K

+
 Crown Ether Complex.

2
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1.1.5 Dipole-Dipole Interactions 

Dipole-dipole interactions are attractive forces quite weaker than ion-dipole forces that involve neu-

tral polar molecules. This electrostatic attraction is established between a polar molecule bearing a 

partial positive charge δ
+
 and another one featuring a partial negative charge δ

-
. They are weak (5 - 

20 kJ mol
-1

) and short-range interactions electrostatic in nature, significant only if the dipoles are 

separated by short distances.
12

 If two molecules have the same mass and size, dipole-dipole forces 

increase with increasing polarity.  

 

Figure 1.5 Example of Dipole-Dipole Interactions between Alkyl Halides. 

 

 

1.1.4 Hydrogen-Bonds 

Exhaustive reports on hydrogen bond can be found in the literature,
12

 and a detailed description of 

this bond is far from the aims of this work, and we illustrate here just few peculiarities on these 

kinds of interactions. Hydrogen bonding is a particular type of dipole-dipole interaction featuring 

bond strength (4-120 kJ mol
-1

) significantly higher than similar intermolecular forces. It is formed 

when one or more hydrogen atoms are covalently bonded to a more electronegative element such as 

Cl, O, N, thus creating a dipole D-H [where the D atom is named donor] in which the hydrogen at-

om has a partial positive charge and can interact with a second electronegative atom called acceptor 

(A) that owns a lone pair available thus forming a D-H···A bond. Although they are weaker than 

conventional bonds, hydrogen bonds have great influence on the properties of hydrogenated com-

pounds (eg. density, viscosity, vapor pressure and acid-base character etc.) and in contrast to cova-

lent bonds, they are reversible and their strength depends on the chemical environment, and depend-

ing on the fact that donor and acceptor atoms are located on the same molecule on in different ones, 

they can be intramolecular or intermolecular respectively.     



 

 

                 

Figure 1.6 3D Model of Hydrogen-Bonds in Water. 

                     

Hydrogen bond is characterized by a specific directionality and great versatility therefore, a suitable 

setting of the external parameters permit to forecast chemical and physical properties of supramo-

lecular molecule based on this kind of interaction.
13

 Not by chance hydrogen bonds have been wide-

ly used in supramolecular chemistry in dendrimers and polymers synthesis (Fig. 1.7). 

                

Figure 1.7 Self-Complementary Dimers of Carboxylic Acids (a), Carboxamides (b). An example of 

Intermolecular Hydrogen Bonding in a Self-Assembled Dimer Complex.  

 

The hydrogen bond lengths (r) depend on many factors such as nature of the involved atoms, inter-

action strength, temperature, pressure, and varies from 1.2 to 2.3 Å. Based on their lengths and 

strengths, G.A Jeffrey and W. Saenger divided hydrogen bonds into three general categories: weak 

(0.01-0.02 kJ mol
-1

), medium (0.63 kJ mol
-1

), and strong (above 0.63 kcal mol
-1

).
14 

Hydrogen bonds 

are often rationalized in terms of geometric parameters
15

 such as bond angles and D···A or H···A 

distances (Fig. 1.7). In a typical hydrogen bond the donor interacts with one acceptor forming a lin-

ear interaction (although experimentally, θ is normally smaller than 180°).  

https://en.wikipedia.org/wiki/Molecular_self-assembly


 

 

Figure 1.8 Representation of Hydrogen Bond.  

 

 

1.1.6 π-π Interactions 

These interactions are among the principal and most important non-covalent forces and play an im-

portant role in supramolecular host-guest system and in self-assembly processes.
16

 π-π stacking is 

referred to as the ensemble of weak electrostatic interactions occurring between aromatic rings due 

to the intermolecular overlapping of p-orbitals in π-conjugated systems that determines stabilization 

in the system.
17

 This charge re-distribution overall the whole π−π system also leads to a induced 

negative dipole above and below the plane of the conjugated carbon system, and a positive dipole 

inside of the hydrogen atoms system. The most important geometry types of aromatic π−π interac-

tions are: 

-Face-to-face (C···C) interactions are present when two or more aromatic rings are parallel disposed 

with distances in the range of 3.3-4.0 Å. Due to electrostatic repulsions, perfect facial alignments 

are quite uncommon, and slipped arrangements are more often found.  

-Edge to face (C-H···π) interactions occur when the positive hydrogen rim of one conjugated sys-

tem is directed towards the π-system of another.  

 

 

Figure 1.9 Face-to-Face and Edge-to-Face Aromatic π −π Interactions. 

 

 



 

1.1.5 Van Der Waals Forces 

Van der Waals Forces are weak attractive and repulsive forces between molecules generated by the 

presence of induced dipoles. They are very low magnitude (1 kJ mol
-1

) and not directional intermo-

lecular forces that act only at very short range since their strength is a function of r
-6

. The origin of 

these forces can be sought in the electrostatic interaction between electron clouds of the involved 

atoms, which is modified by the presence of neighboring atoms molecules and the surrounding en-

vironment. As a consequence, van der Waals forces become very important during the crystalliza-

tion processes when atoms and molecules have saturated their forming chemical bonds possibilities 

and interact each other packing in order to form the more stable solid structure. In supramolecular 

chemistry, they are important in the formation of inclusion compounds where organic molecules are 

incorporated within crystalline lattices or molecular cavities, e.g. the inclusion of toluene within the 

molecular cavity of the p-tert-butylphenol-based macrocycle, p-tert-butylcalix[4]arene.
18

 

 

 
Figure 1.10 Two Examples of  Inclusion Complex between Toluene and  p-tert-butylcalix arene 

and  between water and  p-tert-butylcalix arene. 

 

 

 

1.1.7 Metal-Ligand Bond Coordination 

In a very simply and schematic way, we can describe a coordinative metal-bond as the donor-

acceptor interaction between a Lewis acid (the central metal ion) and a Lewis base (ligand), Fig. 

1.11. The atom of the ligand that directly participates in the formation of the bond with the metal 

ion is called donor atom; the metal ion is the atom acceptor by using its empty or partially filled d-

orbitals.  



 

 

Figure 1.11 Representation of the Metal-Ligand Bond Formation. The ligand ammonia donates electron to 

the metal through sp
3
 hybrid orbital. 

 

 

Without getting in the details of the nature of this bond, we just want to evidence here that coordi-

nation bonds are particularly interesting in the field of supramolecular chemistry, and in particular 

in the crystal engineering, thanks to the high grade of control obtainable by using metal ions or met-

al complexes as building blocks in the construction of extended structures usually referred to as co-

ordination polymers (see below). In fact coordination bonds are high directional and lead to geome-

tries predictable on the bases of the metal ion used coordination, and a large variety of metals hav-

ing different coordination numbers and geometries are known and easily available. Moreover the 

coordination bond is strong (100-500 kJ mol
-1

) thus warranting the formation of robust networks, 

but it is governed by thermodynamic equilibria and can be reversibly replaced and/or modify by 

varying the ligands or the experimental condition used. Moreover, the impressive number of exist-

ing coordination compounds provides a very rich library of different metal-ligand synthons that can 

be used to design and prepare coordination polymers.
19 

 

 

1.2 Coordination Polymers and Metal-Organic Frameworks 

Coordination Polymers are infinite systems built up by metal ions and organic ligands through co-

ordination bonds and weak interaction. They are usually crystalline compounds and can extend infi-

nitely into one, two or three dimensions by covalent metal-ligand bonding. The self-assembly pro-

cesses involving metal ions and well-designed organic ligands is became the most employed ap-

proach in the construction of coordination polymers with predetermined molecular architecture.
 20

 



 

 

Figure 1.12 Coordination Polymers Assembly.
3
 

 

1.2.1 Dimensionality and Motifs  

Coordination polymer architectures certainly depend from characteristic and self-assembly capabili-

ties of the molecular building blocks. In fact crystal structure and dimensionality of the polymeric 

networks are strongly influenced by the coordination geometry of the metal node and by organic 

ligand features such length, rigidity, geometry and nature, number, and position of the donor atoms. 

Transition metals are widely used as nodes since they provide various and easily predictable fea-

tures such as oxidation state, coordination numbers and geometries (linear, square-planar, tetrahe-

dral, square-pyramidal, trigonal-bipyramidal, octahedral, trigonal-prismatic, pentagonal-

bipyramidal) that can be used to direct a particular desired assembly. As an example, metals such as 

Ag
I
, which adopt linear coordination geometries, can be used to form one-dimensional polymers 

combined with linear ligands; whereas metal ions such as Zn
II
 and Ni

II
 that usually adopt tetrahedral 

or octahedral coordination geometries can be employed to form three-dimensional networks (Fig. 

1.13 

 

                                                

 

3
 Image from K.K.Tanabe, S.M. Cohen, Chem. Soc. Rev., 2011, 40, 498-519. 
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Figure 1.13 Topology of Frameworks observed for Coordination Polymers based upon linear, octahedral or 

square-planar nodes and linear bridging ligands: A, square grid planar network; B, 3-D structure by inclined 

interpenetration of square grids; C, 3-D network of NbO type; D, 3-D network of CdSO4 type.
4
 

 

 

The topology of coordination polymers also depends on the ligand, and when different confor-

mations and binding modes are possible for the same ligand, unexpected and unpredictable struc-

tures can be obtained. This is the reason why rigid spacers such for example 4,4'-bipyridine are of-

ten preferred in order to overcome this problem. Many of the organic ligands exploited in the con-

struction of coordination polymers contain oxygen and nitrogen donor atoms, in particular carbox-

ylate- and piridyl-based spacers. Some common examples of N-donor and O-donor ligands are giv-

en in figure below. 
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Figure 1.14 Formula Structures of Common Organic Ligands used in Coordination Polymers Synthesis. 

Pyridine ligands (1,2,3). Carboxylic ligands (4,5,6,). 

 

 

 

One of main interests in the construction of coordination polymers is the obtaining of new function-

al materials, with modulated properties. Coordination polymers in fact, have potential applications 

in various sectors, such as gas storage, ion exchange, catalysis, conductivity, luminescence, chirali-

ty, magnetism, nonlinear optics or deposition of thin layers, often related to the existence of empty 

cavities inside the network (see also § 1.2.3).
21

 

 

1.2.2 Synthesis  

To realize a certain desired framework, is very important a clever choice of metals ions, ligands, 

and framework motifs. Typically, coordination polymers and MOF are synthesized by combining 

organic ligands and metal salts in solvothermal conditions (usually 120–260° C) in high-pressure 

chambers (autoclave). During the reaction it is also necessary to control the temperature, the con-

centrations and the extent of solubility of the reactants in the solvent, and finally the pH of the solu-

tion, in order to obtain single crystals suitable for X-ray diffraction. Other different synthetic meth-

ods are reported in literature such as reactions in non-miscible solvents,
22 

electrochemical reac-

tions,
23

 while ultrasonic and microwave methods are less used at this time. In order to obtain the 

solid product saturation methods are applied. In this process crystals grow from the saturated solu-

tion by slow evaporation of the mother liquor. Diffusion methods are preferred to get single crystals 

suitable for X-ray diffraction analysis especially if the products are poorly soluble. Various methods 



 

can be applied for such a process like solvent liquid diffusion, slow diffusion of reactants etc. Crys-

tallization processes are very hard to predict and isomerism phenomena may occur leading super 

structural diversity for a given molecule.
24

 

Polymorphism : is generally defined as the possibility of a given compound to exist in different mo-

lecular arrangements and or different conformations, Fig. 1.15. In this context thermal and kinetic 

effects play an important role into determine which crystal structures can be isolated.
25

 

Structural Isomerism : it has been defined by B. Moulton and M. J. Zaworotko
26 

as the existence of 

different superstructures obtained by the same building blocks. The resulting supramolecular net-

works can be described as effectively different compounds even though their empirical formula and 

chemical components are identic.  

Conformational polymorphism : is closely related to building blocks conformation and occurs when 

different supramolecular structures are formed due the different conformations of flexible ligands  

and/or in some cases caused  from solvent molecules present in the structure.
27

 

 

 

Figure 1.15 Example of Polymorfism in in Co-crystals of 4,4′-bipyridine and 4-hydroxybenzoic acid.
5
 

 

1.2.3 Metal Organic Frameworks 

Metal-organic frameworks (MOFs) represent a relatively new class of inorganic-organic hybrid 

compounds containing metal ions connected by organic bridging ligands through coordinative bond 

and weak interactions, in extended structures. MOF are characterized by robust networks built up 

through strong coordinative bonds (energies of about 360 kJ mol
-1

), comparable to those of C-C 

single bonds. The structures can contain different metal-ligand linkages and can be mono-

dimensional (1D), bi-dimensional (2D) or three-dimensional (3D), and are usually characterized by 

the presence of voids within the framework able to accommodate organic guest molecules for a 

number of applications (§ 1.2.3.1).
28

 In the ligand structure is possible identify two basic compo-

nents: the functional groups coordinating (linker), which connect the metal nodes in a determined 

                                                

 

5
 Image from: A. Mukherjee,G.R. Desiraju, Chem. Commun., 2011,47, 4090-4092. 

http://pubs.rsc.org/en/results?searchtext=Author%3AGautam%20R.%20Desiraju


 

geometry, and the spacer fragment linking together different centers which may contribute to the 

geometry of the structure, influencing the distance between the nodes. One of the principle ad-

vantages of MOFs is the possibility to modify characteristic of the pores such as dimension and to-

pology by varying, through organic synthesis, the molecular structure of the organic ligands. In this 

way it is possible prepare structures featuring the same topology where only the distance between 

the nodes changes in the framework by using, for example, the same linker and spacers of different 

lengths. An example is the series called IRMOF (IsoReticular Metal Organic Framework) made by 

the research group of O. Yaghi.
29 

One of the first examples of isoreticular metal-organic frame-

works is the IRMOF-1 MOF (Fig.1.16) formed by benzene-1,4-dicarboxylic acid coordinated to 

Zn4O to form a porous cubic framework. On this example, a great number of IRMOFs have been 

developed, which preserve the isoreticular cubic structure as shown in Fig. 1.16. Moreover, if linear 

naphthyl, biphenyl dicarboxylate, pyrene or triphenyl dicarboxylic acids are used in place of ben-

zene, the final structure can be expanded without altering the cubic structure of the resulting 

MOFs.
30

 

 

 

Figure 1.16 Structures of IRMOF-1, IRMOF-10, and MOF-74 respectively with, 4-benzene-1dicarbo= 

=xylate, 4,4′-biphenyldicarboxylate, and 2,5-dichydroxybenzene-1,4-dicarboxylate.
6
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 Image from: S.S. Han, SH.Choi A.C.T. Van Duin, Chem. Commun., 2010, 46, 5713–5715.  

http://www.chemspider.com/Chemical-Structure.135932.html
http://www.chemspider.com/Chemical-Structure.11184361.html


 

1.2.3.1 Application of Coordination Polymers and MOF  

The interest on coordination polymers and metal organic frameworks has exponentially grown in 

the last twenty years, given the potential applications that they have shown, especially related to the 

caves formed inside them. Following some examples are synthetically listed.   

 Gas Adsorption: The MOFs selective adsorption, can allow storage of large amounts of gas 

at constant volume occupied rather than the pressurized storage. This is due to the presence 

of specific interactions adsorbent/adsorbate, that limiting the interactions between molecules 

of the adsorbate, unlike compression systems where the storage capacity depends only on 

the PVT characteristic gas parameters. The IRMOF-1 was the first metal organic framework 

to be used for these investigations because it was cheap and with a large surface area. Af-

terwards, many papers have been reported on the hydrogen adsorption of  MOFs that 

demonstrated that the bigger is the surface area of the framework, the greater the gravimetric 

uptake of hydrogen by weight at 77K.
31

 

 Luminescence: Coordination polymers containing lanthanide ions are mainly used as elec-

troluminescent devices or sensors because of their photophysical properties.
32 

Coordination 

polymers are interesting luminescent materials because they exist in a crystalline form and 

have predictable topologies. Removal of solvent molecules from the framework allows for 

greater luminescence intensity because the solvent molecules can quench emission. Perma-

nent porosity, combined with the rigidity of the framework, may also lead to increased lu-

minescence lifetimes and other features not inherent in traditional inorganic complexes. 

Permanent porosity allows the framework to adsorb certain molecules into the pores with 

close proximity to the metal centers, which may lead to a red shift in their spectra and/or 

help to increase the luminescence intensity of the material. 

 Catalysis: Coordination polymers have been studied for their heterogeneous catalytic prop-

erties.
33 

Differently of zeolites that can be used as catalytic materials just for small organic 

molecules. Due to their high thermal stability they can be used to catalyze certain reactions 

under extreme conditions, where a thermally stable material is needed.  Some MOFs based 

on CuI can be used as catalysts for the reaction of benzaldehyde cyanosilylation .
34

 In this 

case the compound is previously activated by treatment under vacuum, removing the solvent 

molecules coordinates in senior positions, making the metal center accessible to the sub-

strate. 

 

 Magnetism:  The coordination polymers of ligands such as cyanide, azide and thiocyanate 

have long been studied for their interesting magnetic properties.
35

 Actually they exhibit 

many kinds of magnetism: antiferromagnetism, ferromagnetism which are cooperative phe-



 

nomena of the magnetic spins within a solid arising from coupling between the spins of the 

paramagnetic centers due they are able work as magnets, by using bridging ligands to trans-

late magnetic moments between metal centers many types of coordination polymers have 

been synthesized. 

 

 

1.4 Aim of the research 
The design and synthesis of new coordination polymers and molecular crystals of different dimen-

sionality and topology is an area of research in great expansion. One of the most common synthetic 

approaches for the construction of polymers is the use of covalent coordinative bonds  between 

transition metal ions, usually referred to as nodes, and suitable coordinating polydentate organic 

ligands referred to as spacers or linkers. Since the use of “naked” metal ions enlarges the number of 

products potentially available and therefore introduces a certain grade of uncertainty, preformed co-

ordination compounds are used as nodes. In order to be suitable to be used as building blocks, com-

plexes metal ions must feature coordinative unsaturation and therefore be able to coordinate addi-

tional neutral donor molecules. An example is the construction of coordination polymers through 

the interaction between the metal porphyrins or metal phthalocyanines and appropriate donors that 

can able to act as a bridge, as cyanides, thiocyanates and di- or poly-pyridine derivatives.
36

Our re-

search group has gained a certain experience in this research field working on the construction of 

coordination polymers based on square-planar Ni(II) complexes able to interact with multi-dentate 

donor molecules.
37

 In particular, neutral square planar dithiophosphonato [Ni(ROdtp)2] and  dithio-

phosphato [Ni(PS2(OR)2)2] complexes of nickel(II) [dtp = ((CH3O-C6H4)(RO)PS2); R =  Me, Et, Pr, 

Pr
i
] have shown an high tendency to form octahedral complexes with pyridine and its derivatives 

either in the solid state or in solution.
38 

Following this result, studies on the interaction between neu-

tral dithiophosphonato complexes of nickel(II) and poly-pyridyl ligands as building blocks in the 

construction of neutral coordination networks have been started.
39

 The idea is to obtain solid mate-

rials with programmed micro-porous structures that can be used for the recognition and selective 

absorption of small molecules. It is worth to underline that the preparation of polymeric micro-

porous materials by using neutral building blocks presents the advantage of the absence of counter-

anions which otherwise would occupy the micro-cavities defined by the polymeric structure. 

1.5 Organodithiophosphorous  Compounds 

Dithiophosphoric ligands of the type RR′PS2
−
, such as phosphoro- (1) phosphino- (2), phosphono- 

(3) and amidophosphono-dithioates (4), in Fig. 1.17, and their metal complexes, are well known for 



 

their application in industrial and agricultural fields, and widely used as additives to lubricant oils,
40 

antioxidant agents, extraction reagents for metals, flotation agents for mineral ores, insecticides, ro-

denticides, and pesticides.
41  

 

 

 

Figure 1.17 Organodithiophosphorous derivates structures. 

 

Organodithiophosphorous derivatives are mononegative anions of the type (RR´PS2)
-
 formally de-

rived from the corresponding monoprotic acids; they are versatile ligands since the sulphur atoms  

have the potential to bind either in a monodentate or bidentate form, in this last case yielding inor-

ganic chelate rings. The phosphor-1,1,-dithio- set of ligands can coordinate to virtually all main 

group and transition metals, giving rise to a wide variety of coordination patterns. Fig. 1.18 shows 

the coordination patterns for dithio-organophosphorus ligands: monometallic mono- and bi-

connective, aniso- or iso-bidentate coordination. 

 

Figure 1.18 Coordination Modes of Organodithiophosphorous Ligands. Bi-, tri- and tetra-connective. 



 

The kind of coordination that is preferred by a particular metal and organodithiophosphorous lig-

ands depends upon the predominance of one resonance structure of the deprotonated dithiophospho-

rous acid over another, both of which are shown above. 

 

                          

 

Figure 1.19 Contributing Resonance Structures for Dithiophosphonato Ligands. 

 

Depending on type, oxidation state and coordination geometry of the metal ion, resonance struc-

tures 5, 6 or 7 typically predominate. Resonance structures 5 and 6 have been observed for com-

plexes where the ligand binds in a μ
1
-fashion (monodentate) with one sulfur atom only, examples 

can be found in many Pb(II), Hg(II), and Zn(II) complexes.
42

 Resonance structure 7 predominates 

in many dinuclear Au(I) complexes, as well as in the common Ni(II) isobidentate chelating mono-

nuclear complexes. Evidence of 7 is usually shown by the two equal P-S bond lengths in the solid 

state. Structure H is actually unknown for metal dithiophosphonates but included here for com-

pleteness.
43 

Following a new reaction path which exploits 1,3-dithia-2,4-diphosphetane-2,4-

disulfide derivatives, including the most known Lawesson’s Reagent (LR), several metal complexes 

with dithiophosphates, dithiophosphonates and amidophosphonodithioates with several metal ions 

have been prepared by our research group.
44

  

1.5.1 Dithiophosphato Complexes 

Nickel(II) dithiophosphates consist of centrosymmetric units in which the two dithiophosphato units 

are coordinated to the central nickel atom through the sulfur atoms in a square-planar environment 

as exemplified in Fig. 1.20.  

                                                

a                                                                                                                                                        b 

Figure 1.20 Formula (a), and Ball-and-stick Model (b) of the Complex Diethyldithiophosphate Nickel(II), 

[((EtO)2PS2)2Ni]; hydrogen atoms are omitted for clarity. 

 



 

1.5.2 Synthesis 

The opening of the P2S2 tetra-atomic ring of Phosphorus Pentasulfide has proven to be a versatile 

way to synthesize dithiophosphato mononuclear complexes of Ni
II
.
45 

Following the synthetic route 

showed in the following scheme, we prepared metal the dialkyl dithio-phosphates [((MeO)2PS2)2Ni] 

(D1) and [((EtO)2PS2)2Ni)] (D2) by directly reacting phosphorous pentasulfide (P4S10) in Methanol 

and Ethanol, respectively, in the presence of the metal salt. 

P4S10    +
 ROH 

 MX2
M

SS

SS

P P

RO

OR

OR

RO

  

         M = NiII          X = Cl; R = Me, Et 

  

Scheme 1.1 Synthesis of Dithiophosphato Ni
II
 Complexes in Solvothermal Conditions. 

 

1.5.3 Dithiophosphonato Complexes 

Afore our work published in 1997, the chemistry of dithiophosphonates was quite scarce probably 

due to synthetic difficulties. In fact, many routes have been tried like for example the synthesis  de-

veloped by Martin et al. which uses Grignard’s reagent and 2-chloro-1,3,2-dithiaphospholane,
46

 but 

all the ways were difficult and required several reactions steps, leaving this class of ligands quite 

unexplored. In the late nineties, in an attempt to optimize the syntheses of a new class of nickel di-

thiolenes using LR as a sulfuring agent,
47

 incidentally Ni
II
 and Pd

II
 dithiophosphonato complexes 

were obtained, and among them the trans-bis[O-ethyl-(4-methoxyphenyl)dithiophosphonato]Ni 

complex [Ni(EtOdtp)2], dtp = (CH3O-C6H4)PS2,was structurally characterized.(Scheme 3). It was 

then clear that under the appropriate conditions 1,3-dithia-2,4-diphosphetane-2,4-disulfide deriva-

tives, such as the well-known Lawesson’s reagent (LR), and analogous compounds (Fig. 1.21) un-

dergo to P2S4 ring opening, by leading to the corresponding metal complexes in the presence of the 

metal ion (Scheme 1.2).
48

 

 

Figure 1.21 The General Structure of Organodithiophosphonic Anhydride Cyclic Dimers (a), and Lawesson’s 

Reagent (LR) (b). 

 



 

Using this synthetic method, many dithiophosphonates, and their corresponding metal complexes 

have been prepared and fully characterized. 

 

 

Scheme 1.2 Synthetic Route to Dithiophosphonato Complexes starting from Lawesson’s reagent; R= Me, Et. 

 

Nickel(II) dithiophosphonates [(CH3O-C6H4)(CH3O))PS2)2Ni] (D3) and [(CH3O-C6H4)(CH2CH3O) 

(PS2)2Ni] (D4), consist of centrosymmetric units in which the two dithiophosphonato units coordi-

nated to the central nickel atom as S,S-bidentate ligands. The phosphorus atoms reside in a square-

planar sphere with the 4-methoxyphenyl (anisole) and the –OR groups trans disposed with respect 

to the coordination plane define by the P(1), S(1) and S(2) atoms (Fig. 1.22).  
       

 

 a   
                        

 b 

 

Figure 1.22 (a) Chemical Structures of [Ni(MeOdtp)2] ,dtp=(CH3O-C6H4)PS2; (b) Capped sticks 

representation, hydrogen atoms are omitted for clarity. 

 

 

1.5.4 Reactivity of Ni
II

 Dithiophosphato and Dithiophosphonato Complexes towards 

Nitrogen Donors 

Square-planar Ni
II
 dithiophosphato and dithiophosphonato complexes [Ni(ROdtp)2]  react with var-

ious nitrogen donors, both conjugated, such as pyridine and unconjugated.
49

 The reaction between 

these complexes and nitrogen neutral donors such pyridines leads to complexes where the donors 

bind the central metal ion which thus assume a local octahedral geometry.
50 

The tendency of these 



 

square planar metal complexes to form octahedral complexes with pyridine, has led to further inves-

tigations into the propensity of these complexes to be axially coordinated by  N–R–N bidentate lig-

ands. 

 

MeOdtp(Py)2

2

EtOdtf(Py)2

 

Figure 1.23 Formation of trans-bis (O-methyl-(4-methoxyphenyl)dithiophosphonato)-bis-(pyridyl) nickel(II)  

[Ni(MeOdtp)2(Py)2], and bis-(bis-(O-methyl)dithiophosphato)-bis-(pyridyl) nickel(II) [Ni((MeO)2PS2)2(Py)2] 

Complexes. 

 

By using suitable bidentate ligands such as 4,4'-bipyridine that for topology reasons are not allowed 

to chelate the metal ion, polymeric structures were obtained where the bipyridine molecules coordi-

nates two independent complex units acting as linkers. (Fig.1.24). 

 

                           

 

Figure 1.24 1D Polymer Synthesis from Bipyridine Ligand and [Ni(EtOdtp)2]. 

 

Starting from these results, a synthetic program has been developed based on the ability of neutral 

dithiophosphato and dithiophosphonato Ni
II 

complexes  to act as building blocks for the predictable 

assembly of inorganic coordination polymers of the type [Ni(ROpdt)2(N-L-N)]∞ by using suitable 

N-L-N bidentate bipyridyl-based spacers.
51

 It has been demonstrated that the primary structural mo-

+   



 

tif of the polymers depends mainly on the features of the pyridyl-based spacers such as length, ri-

gidity, number and orientation of the donor atoms, whereas the substituents on the phosphorus at-

oms influence the final 3D-architecture through hydrogen bonds and face-to-face or edge-to-face π–

π interactions.
52 

 

1.6 Objectives 

Since the topology of the coordination polymer mainly depends on the nature of the metal ion, the 

geometric features of the donor, and the number and position of the donor atoms, the present re-

search project has been focused on the following objectives: 

 

 The deliberate construction of coordination polymers from rigid bidentate ligands with pro-

grammed topology that allows us to exactly predict the final structure of the resulting poly-

mer. 

 The synthesis of coordination polymers from polydentate spacers in order to expand the 

network dimensionality to the third dimension, in view to construct MOF’s with micro cavi-

ties in the final network. 

 

 

Figure 1.25 Polymers obtained using [Ni(MeOdtp)2] and different Spacers: (a) 1-pyridyl-4-(4’-pyridyl-

ethynyl)-benzene; (b) 3,6-bis(3-pyridyl)-1,2,4,5-tetrazine; (c) 3,6-bis(3-pyridyl)-1,2,4,5-tetrazine. 



 

 

 

 

 

Figure 1.26 2D Packing View along Crystallographic Axis b of the Polymer [Ni(MeOdtp)2(1-pyridyl-4-(4’-

pyridyl-ethynyl)-benzene)] showed in Fig. 1.25 (a). 

 



 

 

 

2 Results and Discussion  
The design and synthesis of oligomeric or polymeric complexes by using neutral coordination 

complexes held together by additional donor molecules or secondary-bonding interactions is 

acquiring increasing importance in the field of crystal engineering.
53

 Following the research lines 

previously discussed, we have developed a program of synthesis and characterization of new 

coordination polymers using as molecular building blocks the dithiophosphato and 

dithiophosphonato Ni
II
 complexes schematized in Fig. 2.1 and various polydentate ligands 

represented in Table 2.3. 

2.1. Building Blocks 

The decision of using square planar Ni
II
 phosphorodithioato complexes as the metal nodes comes 

from the well-known tendency of these coordinatively unsaturated complexes to axially bound two 

additional donor molecules by reaching an octahedral coordination geometry in a quite predicable 

way, thus limiting the number of possible out-coming products and therefore the phenomenon of 

isomerism.
54

 Moreover, by using neutral nitrogen donors as spacers the resulting coordination 

polymers are neutral in charge and do not need the presence counter ions that could participate and 

interfere in the final supramolecular network. The four square planar nickel complexes 

[((MeO)2PS2)2Ni] (D1); [((EtO)2PS2)2Ni] (D2); [((MeO-C6H4)(MeO))PS2)2Ni] (D3); [((MeO-

C6H4)(EtO))PS2)2Ni] (D4) have been synthesized and fully characterized. Crystallographic data and 

selected bond lengths and angles for (D1), (D2), (D3), (D4) are reported in Tables 2.1 and 2.2, 

respectively The synthetic procedure and characterization are reported in the experimental section 

(§ 3.2). 

                                         

                                        (D1)                                                                           (D2) 

                               

(D3)                                                                                                                          (D4) 

Figure 2.17 Dithiophosphato and Dithiophosphonato Ni
II
 complexes formula structures. 



 

 

As can be seen, the four complexes mainly differ for the P-substituents: dithiophosphato complexes 

are characterized by the presence of the symmetric O-alkyl substituents O-Me (D1) and O-Et (D2), 

whilst the dithiophosphonato complexes feature two aromatic p-methoxyphenyl substituents and 

two O-alkyl substituents O-Me (D3) and O-Et (D4), trans disposed with respect to central nickel 

ion. The different chemical nature of these substituents, and the different steric hindrance, are 

responsible for the different types of interactions experimented by the resultant polymeric chains 

and are of primary importance in controlling the packing and the final crystal structures. 

 

Table 2.2 Summary of Basic Crystal Data for (D1),(D2), (D3) and (D4) 

Empirical Formula C4H1 Ni1O4P2S4 
(D1) 

C8H20Ni1O4P2S4 
(D2) 

C16H20NiO4P2S4 
(D3) 

C18H24Ni O4P2S4 
(D4) 

Crystal system Orthorhombic Monoclinic Monoclinic Triclinic 

Space group P b c a P 21/c P 21/c P -1 

a, b, c (Å) 10.290(2); 

8.640(2); 

16.356(4) 

10.493(5); 

10.277(3); 

8.754 (1) 

11.823(3); 

6.5091(15); 

14.414(4) 

6.5023(13); 

7.6448(15); 

13.109(3) 

α, β, γ (°) 90;90;90 90;102.59(5);90 90, 110.464(7), 90 99.37(3); 
99.72(3);104.09(3) 

Volume (Å3) 1454.14 919.49 1039.256 608.619 

Z 4 2 2 1 

Calculated density 
(g cm-3) 

1.68 1.54 1.68 1.51 

R- factor % 7.5 3.06 2.4 7.37 



 

 

 

 The choice of the ligands used as spacers between the phosphonodithioato Ni
II
 complexes is 

essential to programming the topology of the out-coming polymer. In fact, as previously stated, the 

primary structure of the resulting coordination polymer directly depends on the geometry and 

topology of the molecules used as spacers. The following table shows the polydentate ligands 

whose reactivity towards organodithiophosphorous metal complexes has been here investigated. 

The nitrogen donors have been selected according to their rigidity, conformation, number and 

position of donor atoms. We used three different typologies of ligands: bidentate rigid spacers, 

semi-rigid bidentate spacers, and tridentate spacers. These molecules were synthesized optimizing 

the literature synthesis following the three different synthetic routes reported in Scheme 2.1: (a) 

cross coupling reactions; (b) nucleophilic substitution reactions; (c) esterification reactions. The 

ligand L3 was synthesized and characterized in collaboration with Prof. Pasini in the laboratories of 

the University of Pavia (Italy). 

 

Table 2.3 Selected Bond Lengths (Å) and Angles (°) for (D1),(D2), (D3) and (D4) 

Atoms C4 H12Ni1O4P2S4 

(D1) 

C8H20Ni1O4P2S4 

(D2) 

C16H20NiO4P2S4 
(D3) 

C18 H24Ni O4P2S4 
(D4) 

Ni-S1 2.2182 2.2298 2.2330  2.225 

Ni-S2 2.2250 2.2361 2.2413  2.227 

S1-P1 1.984 1.9857  2.0048(7) 1.990(3) 

S2-P1 1.9792 1.9934 2.0042(7) 2.007(3) 

S1-Ni-S2 88.29 88.53 88.87 88.04 

S1-P1-S2 102.66 103.14 102.77(3) 101.4(1) 

Ni-S1-P1 84.49 84.33 82.58 84.18 

 



 

 

 

Scheme 2.1 The three synthetic procedures mainly used in this work here schematized for study cases: (a) 

1,4-bis(4-pyridylethynyl)benzene (L2); (b) N,N',N''-tris(4-pyridin)benzene-1,3,5-tricarboxamide (L8); (c) 

1,3,5-Benzene-tricarboxylic acid-1,3,5-tri-4-pyridinyl ester (L10). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4 Polypyridyl Ligands used as Building Blocks 

 

 



 

 

2.2 Building up of Coordination Polymers: Crystallization Techniques 

The reaction between organodithiophosphorous metal complexes and polypyridinic donors leads to 

the formation of powder products due to their polymeric highly insoluble nature. Since a structural 

characterization performed on single crystals is fundamental to verify the polymeric nature of the 

resulting products and understand their supramolecular characteristics, several crystallization 

methods have been applied to obtain crystalline samples suitable for structural determination by X-

Ray diffraction techniques. The formation of crystals is linked to the ability of molecules to 

organize themselves into crystalline lattices. This implies that the meeting between the building 

blocks has to be enough slow to allow the organization of molecules in an ordered structure. Many 

factors are involved in the process of crystallization such as pressure, temperature, solvent polarity, 

and the ideal conditions vary depending on the characteristics of the reagents and of the final 

product. During the PhD work many different crystallization techniques have been used, but only 

those we mainly used during the building up of coordination polymers are following described. 

 

2.2.1 Solvothermic Reactions 

One of the methods most frequently used for the crystallization of compounds takes advantage of 

the increasing of solubility in a given solvent by increasing of the temperature. In particular, if a 

compound is soluble in a solvent at high temperature values and insoluble in the same solvent at 

low temperatures, is possible to create suitable conditions for the formation of crystals by slow 

cooling of the solution. The synthesized polymers, however, are found to be insoluble in common 

solvents even at high temperatures. Because the solubility of solids usually increases as a function 

of the temperature, we thought to use high-pressure tubes where the solvents can be heated beyond 

their boiling temperature at atmospheric pressure. In fact, as can be seen from the diagram state in 

Fig.2.2 boiling temperature, which corresponds to the passage from the liquid phase to the vapor 

phase, in general, increases with increasing pressure. The method has been applied either to the 

compounds obtained as powders in a precedent reaction, or by directly reacting the starting 

synthons in sealed high pressure tubes in the presence of a pure solvent or a mixture of solvents. In 

this latter case, that we mainly used, we experimented two different behaviors: a) the final product 

can form immediately, precipitate as solid and then get dissolved with increasing of temperature; b) 

the reagents go in solution and combine in the product during the cooling of the reaction mixture. 

 



 

 

 

Figure 2.18 General Phase Diagram.
7
 

 

 
 

2.2.2 Slow evaporation of a Solution of the Precursors 

When the formation of the coordination polymers is not immediate and the reagents dissolve in the 

reaction mixture and do not give sudden precipitation of the product, it is possible to obtain the 

compound in crystalline form, by means of slow evaporation of the solvents of the reaction mixture. 

Crystals suitable for structural characterization can be obtained in a variable time ranging between a 

few days and a few weeks. 

2.2.3 Layering of Solutions 

This method is generally used when a coordination polymer is highly insoluble in almost every 

solvent and the two relevant reagents can be solubilized in different solvents with different density. 

The solution containing the reagent dissolved in the lighter solvent is carefully layered on the 

solution of the second reagent in the heavier solvent. The reagents slowly diffuse and crystals can 

be grown either at layer interface or in different places, usually close to the glass. A third solvent 

with intermediate density can be used to create a buffer zone in order to slow the diffusion rate, 

which controls the rate of crystallization. 
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2.2.3 Solvent Diffusion 

This method can be used when the final product is not immediately formed by reaction of the 

precursors. In this case a solution of the reagents is placed in a vial and a different less dense 

solvent (in which where the reagents are insoluble such ether for example) is carefully layered on 

the reagent solution, and crystals can form by slow diffusion of the lighter solvent . 

 

2.3 Structural Characterizations 

Following the research objectives highlighted before, a synthetic program has been developed to 

prepare coordination polymers using the following three different categories of ligands: 

 

 Bidentate rigid ligands for the construction of coordination polymers with programmed final 

structures. 

 Bidentate semi-rigid ligands used to evaluate the role of the different factors, such as 

solvent, nature of the P-substituents in D1-D4, and nitrogen position in different structural isomers 

of the same ligand, in determining the final structure.  

 Polydentate ligands featuring three pyridyl moieties projected with the intent of constructing 

three-dimensional networks. 

As stated before, in order to exactly understand the nature of the reaction products obtained from 

the reaction between the phosphonodithioato Ni
II
 complexes and the polydentate pyridyl-based 

ligands, X-ray diffraction analysis on single crystal is mandatory. This is the reason why a part of 

my PhD period was spent at the EPSRC UK National Crystallography Service at the University of 

Southampton (U.K) under the supervision of Prof. Simon J. Coles in order to learn how to collect 

and analyze the crystallographic data. Unfortunately, the obtainment of the compounds as single 

crystals suitable for X-ray characterization is not easy. Moreover, the loss of solvent included in the 

crystal structure often leaded to decomposition of the samples, notwithstanding low temperature 

measurements, and rapid data collection diffractometers were used to avoid the problem. Divided 

on the base of the set objectives, we report here a brief description of the structures successfully 

recorded at the EPSRC UK National Crystallography Service at the University of Southampton 

(U.K) during my stage period. Most of the data were collected using a Bruker-Nonius Kappa CCD 

area detector situated at the window of a rotating anode (graphite Mo-K radiation,  = 0.71073Å), 

processed using CrysAlisPro software, solved by direct methods procedure in SHELXL-97, and 

refined by full- matrix least squares on F2 using SHELXL-97 and Olex 2.  



 

2.3.1 Bidentate Rigid Ligands 

2.3.1.2 1,4-bis(3-pyridyl)-butadiyne (L1)   

   

 

 

1,4-bis-(3-pyridil)-butadiyne (L1) has been prepared following the synthetic method described in 

Scheme 3.1 and following the procedure described in § 3.3.1. This ligand falls in the category of 

bis(aryl)diacetylenes, well known in literature as a building blocks and widely investigated due to 

the strong tendency of the diacetylene moiety to arrange into columnar systems thus leading to 

polymeric conjugated systems which display interesting optical and non-linear optical properties.
55

 

Due to the presence of the single C-C bond, two different orientations are allowed for the pyridyl 

moieties leading to a convergent and a divergent configurations depending on the relative 

orientation of the nitrogen donor atoms. Ligand L1 has been reacted under solvothermal conditions 

in a 1:1 molar ratio with the nickel dithiophosphato and dithiophosphonato Ni
II
 complexes 

[((MeO)2PS2)2Ni] (D1), [((EtO)2PS2)2Ni] (D2), [((MeO-C6H4)(MeO))PS2)2Ni] (D3), and [((MeO-

C6H4)(EtO))PS2)2Ni] (D4), using pure chloroform or a mixture of chloroform and the pertinent 

alcohol as solvent. The reactions afforded solid and crystalline compounds, which have been 

isolated and fully characterized as described in § 3.1-3.4. Due to topology reasons, the two nitrogen 

atoms cannot bind to the same Ni
II
 ion, and therefore L1 is expected to bridge two dithiophosphato 

or dithiophosphonato units acting as a rigid spacer. Single crystal X-ray diffraction performed on 

the resulting compounds confirmed their polymeric nature corresponding to the formulations 

(D1·L1)∞, (D2·L1)∞, (D3·L1)∞, and (D4·L1)∞. Crystallographic data and selected bond lengths and 

angles for (D1·L1)∞-(D4·L1)∞ are reported in Tables 2.4 and 2.5, respectively. As exemplified in 

Fig. 2.1, all compounds show the nickel ion lying in a distorted octahedral environment with the 

equatorial positions occupied by two dithiophosphoric units acting as isobidentate ligands with 

almost equivalent Ni-S and P-S bonds, featuring the P-substituents in the original trans 

configuration. The pyridine units of L1 are axially coordinated to the Ni
II
 ion of two adjacent 

dithiophosphoric units, thus forming polymeric chains. The coordination of a neutral donor reduces 

the net positive charge on the central Ni
II
 ion leading to a lengthening of the Ni-S bond lengths and 

a consequent decrease in the S-Ni-S angle with respect to the corresponding Ni
II
 square planar 

complex, as can be observed by comparing the pertinent bond lengths and angles with those of the 



 

corresponding square planar complexes reported in Table 2.5. At the same time the negative charge 

on the sulfur atoms increase with a consequent opening of the S-P-S angle. 

 

Table 2.5 Summary of Basic Crystal Data for (D1·L1)∞, (D2·L1)∞, (D3·L1)∞, and (D4·L1)∞  

Empirical Formula C18H20N2 Ni O4 P2 S4 
(D1·L1)∞ 

C22H28N2NiO4P2S4 
(D2·L1) ∞ 

C30H28N2 Ni O4 P2 S4 
(D3·L1) ∞ 

C64.H64.N4Ni2O8P4S8 
(D4·L1) ∞ 

Formula weight 

 (g mol-1) 

1154.50 633.35 729.43 757.51 

Temperature (K) 100 (2) 100 (2) 100 (2) 100 (2) 

Crystal system Orthorhombic Monoclinic monoclinic Monoclinic 

Space group Pbca P21/n (No.14) I2/a P21/c 

a, b, c (Å) 11.9848(10); 

13.8744(11); 

14.6988(12) 

8.9771(12); 

11.9400(15); 

13.6069(18) 

13.877(3); 11.678(2); 

23.433(6) 

13.8002(9); 
11.8644(8); 
23.223(2) 

α, β, γ (°) 90; 90; 90 90; 107.850(2); 90 90; 98.452(13); 90 90; 97.394(4);90 

Volume (Å3) 2444.1(3) 1388.3(3) 3756.2(14) 3770.7(5) 

Z 2 2 4 2 

Calculated density 
(g cm-3) 

1.569 1.515 1.290 1.404 

Reflections collect-
ed/Unique 

16155/2783 9476 /2783 13255/4255 24705/8576 

Wavelength λ =71075 λ =71075 λ =71075 λ =71075 

Final R indexes 
[I>=2σ (I)] 

R1 = 0.0209, 

wR2 = 0.0593 

R1 = 0.0339, 

wR2 = 0.0825 

R1 = 0.0686, 

wR2 = 0.1863 

R1 = 0.0686, 

wR2 = 0.1863 

 

 

 

 

Table 2.6 Selected Bond Lengths (Å) and Angles (°) for (D1·L1)∞, (D2·L1)∞, (D3·L1)∞, and (D4·L1)∞ 

Atoms C18H20N2 Ni O4 P2 S4 
(D1·L1) ∞ 

C22H28N2NiO4P2S4 
(D2·L1) ∞ 

C30H28N2 Ni O4 P2 S4 
(D3·L1) ∞ 

C64.H64.N4Ni2O8P4S8 
(D4·L1) ∞ 

Ni-S1 2.4793(3) 2.4796(7) 2.4820(13) 2.4703(18) 

Ni-S2 2.5081(3) 2.4710(7) 2.4590(13) 2.4933(10) 

Ni-S3 - - - 2.4781(10) 

Ni-S4 - - - 2.4733(10) 

Ni-N1 2.0944(11) 2.1199(17) 2.110(4) 2.4802(18) 

Ni-N2 - - - 2.117(3) 

S1-P1 1.9883(5) 1.9878(8) 2.0018(18) 1.9980(14) 

S2-P1 1.9884(5) 1.9877(8) 1.9971(17) 1.9997(13) 

S3-P2 - - - 1.9995(14) 



 

S4-P2 - - - 1.9973(13) 

S1-Ni-S2 81.672(11) 82.50(2) 82.48(4) 82.05(6) 

S1-Ni-S3 - - - 97.49(4) 

S3-Ni-S2 - - - 178.85(3) 

S4-Ni-S1 - - - 178.95(4) 

S4-Ni-S2 - - - 98.85(3) 

S4-Ni-S3    82.08(3) 

S1-Ni-N1 91.36(3) 91.20(5) 90.72(11) 88.79(9) 

S2-Ni-N1 88.92(3) 88.64(5) 88.69(11) 91.09(9) 

S3-Ni-N1 - - - 88.19(9) 

S4-Ni-N1 - - - 92.15(9) 

S1-Ni-N2 - - - 91.18(8) 

S2-Ni-N2 - - - 88.29(9) 

S3-Ni-N2 - - - 92.43(9) 

S4-Ni-N2 - - - 87.88(8) 

S1-P1-S2 110.26(2) 110.38(4) 109.08(8) 108.77(10) 

S3-P2-S4 - - - 114.12(14) 

N-Ni-N 180.0 180.0 180.0 179.38(12) 

 

All polymers (D1·L1)∞-(D4·L1)∞ present very similar features with a primary structure 

characterized by the endless repetition of metal centers and L1 molecules in a zig-zag fashion 

where ligands L1, all featuring divergent configurations, bridge two Ni
II
 complex units  with 

Ni···Ni distances of 13.87, 13.81, 13.88, and 13.80 Å for (D1·L1)∞, (D2·L1)∞, (D3·L1)∞, and 

(D4·L1)∞, respectively (Fig. 2.3). It is interesting to note that the alkoxy substituents at the 

phosphorous atoms point the hydrogens of the carbon atoms directly bound to the oxygen atoms 

point towards the pyridyl rings, see the example reported in the inset of Fig. 2.2a. This implies that 

OMe and OEt substituents are oriented towards and forwards the coordination plane, respectively, 

and therefore only OEt P-substituents are available to engage intermolecular interactions and 

contribute to the packing of the polymeric chains.        
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Figure 2.19 Zig-Zag Polymeric Chains of Compounds (a) (D1·L1)∞, (b) (D2·L1)∞, (c) (D3·L1)∞, and 

(d) (D4·L1)∞. Hydrogen atoms are omitted for clarity reasons. 
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Figure 2.20 Packing Views and main Intra-Molecular Interactions: (a) view along c axis of (D1·L1)∞; (b) 

(D2·L1)∞,(c) view along b axis and along a axis (d) of (D3·L1)∞ Polymers. Hydrogen atoms are omitted for 

clarity. 

 

As shown in Fig. 2.2 (a) in the polymer (D1·L1)∞ the chains run along the axis b direction and are 

parallel disposed with metal nodes of adjacent chains shifted of b/2. As previously observed, the 

OMe P-substituents points towards the pyridine rings and do not contribute to link the chain that 

interact each other in the ab plane through weak hydrogen bonds involving the C5-H5 hydrogen 



 

atom of pyridine and the coordinate sulfur atom S2 (Figure 2.4a, C5-H5···S2': H···S 2.75 Å, C···S 

3.5881(14) Å, C-H···S 151°; ' 0.5+x, 0.5-y,1-z). Polymer chains of (D2·L1)∞ pack parallel 

interacting through weak hydrogen bonds involving the C7-H7 hydrogen atom of pyridine and the 

coordinate sulfur atom S2 (C7-H7···S2': H···S 2.83 Å, C···S 3.654(3) Å, C-H···S 146°; ' 0.5-x, -

0.5+y, 1.5-z). It interesting to note that the ethyl substituents in (D2·L1)∞ are directed towards the 

acetylenic triple bond of the ligand, with short contacts (C1···C11 3.25 Å) between the chains that 

influenced the final crystal packing in (D2·L1)∞ (Fig. 2.2 b) In (D3·L1)∞  and (D4·L1)∞ polymers, 

the alkyl substituents are also oriented in a different manner, but the presence of methoxyphenyl 

rings on the phosphorus atoms engenders different interactions. In fact the methoxyphenyl 

appendages are engaged in a hydrogen bond with the acetylenic triple bond of the (C15-H15···C8 Å 

2.77 Å) adjacent chain. The greater steric hindrance conferred by these different substituents at 

phosphorous atom in the dithiophosphonato complexes lead to the formation of cavities in the 

crystal structure that occupy a volume of  206.1 Å  5.5% of the the unit cell volume for (D3·L1)∞ 

and  198.2 Å  5.3 % of the unit cell volume for (D4·L1)∞. (Fig. 2.3). 

a  

 

b  

Figure 2.21 Crystal Packing Voids and Space Filled Representation of (D1·L1)∞ (a) and  (D3·L1)∞ (b) 

polymers. Hydrogen atoms are omitted for clarity. 

  



 

2.3.3 1,4-bis(4-pyridylethynyl)benzene (L2) 

 

 

 

1,4-bis(4-pyridylethynyl)benzene has been prepared following the synthetic method described in 

Scheme 3.3 and following the procedure described in § 3.3.2. It is a rigid bidentate organic spacer 

with the two nitrogen donor atoms of the pyridine units separated by a distance of 16.52 Å. Ligand 

L2 has been reacted under solvothermal conditions in a 1:1 molar ratio with the nickel 

dithiophosphato and dithiophosphonato Ni
II
 complexes [((MeO)2PS2)2Ni] (D1), [((EtO)2PS2)2Ni] 

(D2), [((MeO-C6H4)(MeO))PS2)2Ni] (D3), and [((MeO-C6H4)(EtO))PS2)2Ni] (D4), using pure 

chloroform or a mixture of chloroform and the pertinent alcohol as solvent. The reactions afforded 

solid compounds, which have been isolated and fully characterized as described in § 3.4.6- 3.4.8. 

Single crystals suitable for X-ray diffraction were obtained only from the reactions with D2 and D4, 

which confirmed the expected polymeric nature of the compounds corresponding to the 

formulations (D2·L2)∞ and (D4·L2)∞. In fact, due to topology reasons, the two nitrogen atoms 

cannot bind to the same Ni
II
 ion, and L2 is expected to bridge two dithiophosphato or 

dithiophosphonato units acting as a rigid spacer. Crystallographic data and selected bond lengths 

and angles for (D2·L2)∞ and (D4·L2)∞ are reported in Tables 2.6 and 2.7, respectively. As 

exemplified in Fig. 2.4, the two compounds show the nickel ion lying in a distorted octahedral 

environment with the equatorial positions occupied by two dithiophosphoric units acting as 

isobidentate ligands with almost equivalent Ni-S and P-S bonds, featuring the P-substituents in the 

original trans configuration. The pyridine units of L2 are axially coordinated to the Ni
II
 ion of two 

adjacent dithiophosphoric units, thus forming polymeric chains. The coordination of a neutral donor 

reduces the net positive charge on the central Ni
II
 ion leading to a lengthening of the Ni-S bond 

lengths and a consequent decrease in the S-Ni-S angle with respect to the corresponding Ni
II
 square 

planar complex. At the same time increases the negative charge on the atoms of sulfur with a 

consequent opening of the S-P-S angle. The (D2·L2)∞ and (D4·L2)∞. compounds present very 

similar features with a primary structure characterized by the endless repetition of metal centers and 

L2 molecules in smoothly undulating chains with Ni···Ni distances of 20.72 and 20.64 Å for 

(D2·L2)∞ and (D4·L2)∞, respectively (Fig. 2.4). 
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Figure 2.22 Undulated Polymeric Chains of (D2·L2)∞  and (D4·L2)∞. For clarity reasons, only non-carbon 

atoms have been labeled and hydrogen atoms omitted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2. 7 Summary of Basic Crystal Data for (D2·L2)∞ and (D4·L2)∞ 

Empirical Formula C28 H32 N2 Ni O4 P2 S4 
 (D2·L2)∞ 

C37 H36 N3 Ni O4 P2 S4 
(D4·L2)∞ 

Formula weight 

(g mol-1) 

709.44 835.62 

Temperature (K) 100 100 

Crystal system Monoclinic Triclinic 

Space group P 1 21/c 1 P 1 

a, b, c (Å) 8.7772(19) 

12.607(3) 

14.564(3) 

9.0467(5) 

10.5786(7) 

11.1097(8) 

 

α, β, γ (°) 90; 100.248(3); 90 111.970(11); 93.243(9); 93.874(9) 

Volume (Å3) 1585.9(6) 979.89(14) 

Z 2 1 

Calculated density (g cm-3) 1.486 1.423 

Reflections collected/Unique 3294/ 3602 3111/ 4473 

Wavelength λ =71075 λ =71075 

Final R indexes [I>=2σ (I)] 
R1 = 0.0323 

wR2=  0.0783 

R1 = 0.0586 

wR2 = 0.1517 

 
 

Table 2.8 Selected Bond Lengths (Å) and Angles (°) for (D2·L2)∞ (D4·L2)∞ 

 

 

Atoms C28H32N2NiO4P2S4  

(D2·L2)∞ 

C37H36N3NiO4P2S4  

 (D4·L2)∞ 

Ni-S1 2.4706(5) 2.490(2) 

Ni-S2 2.5062(7) 2.454(2) 

Ni-N1 2.1039(13) 2.118(8) 

S1-P1 1.9934(7) 1.9984(15) 

S2-P1 1.9862(6) 2.0023(16) 

S1-Ni-S2 81.835(12) 97.82(8) 

S1-P1-S2 109.99(2) 108.62(16) 

S1-Ni-N1 90.03(4) 87.9(2) 

S2-Ni-N1 90.36(3) 90.9(3) 

N1-Ni-N1 180.0 180.0 



 

The polymeric chains of (D2·L2)∞ run parallel disposed along the 011 direction thus forming 2D    

layers through weak hydrogen bonds (Figure 2.5a): C2-H2···O2': H···O 2.53 Å, C···O 3.461(2) Å, 

C-H···O 166°; C12-H12B···S1'': H···S 2.86 Å, C···S 3.799(2) Å, C-H···S 161° (' 2-x, 0.5+y, 0.5-z; 

'' 2-x, -0.5+y, 0.5-z). The polymeric chains of (D4·L2)∞ run parallel disposed along the 101 direc-

tion thus forming 2D layers connected through weak hydrogen bonds involving the OEt appendages 

in the formation of a 2

2)6(R  motif (Figure 2.7b): C6-H6···O1': H···O 2.651(7) Å, C···O 3.415(7) Å, 

C-H···O 136°; ' 1-x, -1-y, 1-z. It is interesting to note that the 4-MeOPh P-appendages points to-

wards the pyridyl rings being disposed approximately perpendicular (71.9°), thus allowing edge to 

face π-π intramolecular interactions with a CPh···CPy distances of 3.7 Å, Figure 2.5b.             .      

                    

a                                                                     b 

Figure 2.23 Packing Views and main Intra-Molecular Interactions for (D2·L2)∞ and (D3·L2)∞ polymers. 

Hydrogen atoms are omitted for clarity 

 

                                                        

2.3.2 Chiral and Semi-Rigid Bidentate Ligands 

2.3.2.1 (R)-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-bis(4-pyridyl-amido) (L3)     

                                                 

 



 

 

The enantiopure (R)-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-bis(4-pyridyl-amido) L3 was synthesized 

as described in § 3.3.3, in collaboration with the University of Pavia (Italy), since it was designed as  

an axially chiral spacer capable of bridging the metal connecting sites with the intent of introducing 

chirality and imparting a helicoidal shape to the resultant coordination polymer. The NH amide 

group is locked in an S(6)-type hydrogen-bonded system with the neighboring phenol ether in the 

2,2' positions. This confers rigidity to the ligand in order to transfer the chiral information and 

twisting derived from the binaphthyl chiral axis to the overall coordination polymers. Ligand L3 

has been reacted under solvothermal conditions in a 1:1 molar ratio only with the nickel 

dithiophosphato Ni
II
 complexes [((MeO)2PS2)2Ni] (D1) and [((EtO)2PS2)2Ni] (D2), using pure 

chloroform or a mixture of chloroform and the pertinent alcohol as solvent. Dithiophosphonato 

complexes were not reacted in order to avoid the bulky aromatic appendages. The reactions 

afforded solid and crystalline compounds, which have been isolated and fully characterized as 

described in § 3.4.10 and 3.4.11. Due to topology reasons, the two nitrogen atoms cannot bind to the 

same atom Ni
II
, therefore L3 was expected to bridge two dithiophosphato units acting as a chiral 

spacer. Single crystal X-ray diffraction performed on the resulting compounds confirmed their 

polymeric nature corresponding to the formulations (D1·L3)∞ and (D2·L3)∞. Crystallographic data 

and selected bond lengths and angles for (D1·L3)∞ and (D2·L3)∞ are reported in 2.8 and 2.9 Tables, 

respectively. Polymer (D1·L3)∞ crystallizes in the monoclinic P21 chiral space group, with two 

independent D1 units, two L3 ligands, and one water molecule in the asymmetric unit. The pyridine 

units of L3 are coordinated to the Ni
II
 ion of two adjacent dithiophosphoric units, thus forming 

polymeric chains. As exemplified in Fig. 2.6, both polymers show the nickel ion lying in distorted 

octahedral environments that anyway differ in term of configuration of the metal center, which is 

trans for (D1·L3)∞ and cis  for (D2·L3)∞. The coordination of a neutral donor reduces the net 

positive charge on the central Ni
II
 ion leading to a lengthening of the Ni-S bond lengths and a 

consequent decrease in the S-Ni-S angle with respect to the corresponding Ni
II
 square planar 

complex. At the same time increases the negative charge on the atoms of sulfur with a consequent 

opening of the S-P-S angle. The (D1·L3)∞ and (D2·L3)∞. compounds  consist of helically shaped 

polymers: right-handed helical chain for (D1·L3)∞ and left-handed helical chain for (D2·L3)∞, as 

shown in the Figure 2.7 with Ni···Ni distances of 20.66 Å for (D1·L3)∞ and 18.38 Å (D2·L3)∞. 

 

 

 

 



 

      

 (D1·L3)∞ 

                     

  (D2·L3)∞ 

 

Figure 2.24 Helical Chains: view along the crystallographic axis a (left) and along the propagation direction 

b (right) of (D1·L3)∞ and view along the crystallographic axis b (left) and along the propagation direction a 

(right) of (D2·L3)∞ compounds. For clarity, only non carbon atoms have been labeled and hydrogen atoms 

omitted. 

 
 

 

 

Table 2.9 Summary of Basic Crystal Data for (D1·L3)∞ and (D3·L3)∞ 

Empirical Formula 
C38H38N4NiO8P2S4 H2O 
(D1·L3)∞ 

C42H46N4NiO8P2S4 
(D2·L3) ∞ 

Formula weight 

 (g mol-1) 

936.64 983.74 

Temperature (K) 120 120 

Crystal system 
Monoclinic Orthorhombic 



 

Space group P21 P212121 

a, b, c (Å) 

9.6133(2) 

45.6542(12) 

10.5801(3) 

15.332(2) 

8.6055(10) 

34.795(4) 

α, β, γ (°) 90; 113,202(1); 90 90; 90; 90 

Volume (Å3) 4267.92(19) 4590.8(10) 

Z 2 4 

Calculated density (g cm-3) 
1.458 1.423 

Reflections collected/Unique 44 414/18 504 26 414/7285 

Wavelength λ =71075 λ =71075 

Final R indexes [I>=2σ (I)] 
R1 =0.0587 

wR2 = 0.1325 

R1 =0.1495 

wR2 = 0.3147 

 

 

Table 2.10 Selected Bond Lengths (Å) and Angles (°) for (D1·L3)∞ (D2·L3)∞ 

Atoms 
C38H38N4NiO8P2S4·H2O 
 (D1·L3)∞ 

C42H46N4NiO8P2S4 
(D2·L3)∞ 

Ni1-S1 2.5385(15) 2.513(6) 

Ni1-S2 2.5001(15) 2.499(5) 

Ni1-S3 2.5490(15) 2.514(5) 
Ni1-S4 2.4900(15) 2.538(6) 
Ni1-N1 2.093(4) 2.092(15) 

Ni1-N3 2.085(4) 2.094(14) 
Ni2-S5 2.5196(16) - 
Ni2-S6 2.4738(17) - 

Ni2-S7 2.4647(16) - 

Ni2-S8 2.5332(16) - 

Ni2-N2 2.074(5) - 

Ni2-N4 2.084(4) - 

S1-P1 1.983(3) 2.007(9) 

S2-P1 1.9675(19) 1.949(7) 

S3-P2 1.983(3) 2.010(7) 

S4-P2 1.9731(3) 1.989(9) 

S5-P3 1.985(2) - 
S6-P3 1.974(2) - 

S3-P4 1.986(2) - 

S4-P4 1.987(2) - 

S1-Ni1-S2 81.70(5) 79.66(19) 

S1-Ni1-S3 178.74(5) 98.4(2) 
S3-Ni1-S2 97.48 (5) 174.43(17) 
S4-Ni1-S1 99.42 (5) 93.28(16) 



 

S4-Ni1-S2 178.74(5) 93.99(19) 
S4-Ni1-S3 81.40 (5) 80.86(19) 
S1-Ni1-N1 89.70 (12) 87.4 (4) 

S2-Ni1-N1 90.78 (12) 94.6 (4) 

S3-Ni1-N1 89.48 (12) 90.6 (4) 
S4-Ni1-N1 89.79 (12) 171.4(5) 
S1-Ni1-N2 89.48 (12) 167.0(4) 
S2-Ni1-N2 86.65 (12) 87.6 (4) 
S3-Ni1-N2 89.96(12) 94.5 (4) 
S4-Ni1-N2 90.77 (12) 89.7 (4) 
S5-Ni2-S6 82.03 (5) - 
S5-Ni2-S7 96.23(53) - 

S5-Ni2-S8 178.42(6) - 

S6-Ni2-S7 178.25(6) - 

S6-Ni2-S8 99.43 (5) - 

S7-Ni2-S8 82.32 (5) - 

S5-Ni1-N2 91.19 (13) - 
S5-Ni2-N4 88.71 (12) - 

S6-Ni2-N2 90.38 (13) - 

S6-Ni2-N4 89.26(12) - 

S7-Ni2-N2 90.86 (12) - 

S7-Ni2-N4 89.26(12) - 

S8-Ni2-N2 89.50 (5) - 
S8-Ni2-N4 90.86(12) - 

S1-P1-S2 113.06 (9) 108.5(3) 

S3-P2-S4 112.32 (9) 110.0(3) 
S5-P1-S6 111.75 (10) - 
S7-P2-S8 111.49 (9) - 

N1-Ni2-N4 179.05 (16) 91.6 (5) 
 

 

 

 

 

The spirals of (D1·L3)∞ run along the b direction involving crystallographic 2-fold screw axis, with 

a helical pitch of 45.65 Å coincident with the b-axis length, and intertwine with each other in both 

the a and c directions in a densely interlocked architecture stabilized by an intricate net of H-bonds, 

mainly involving the amido groups, the water molecules and both the P-methoxy substituents, Fig. 

2.7. The spirals of (D2·L3)∞ run parallel along the a direction involving a crystallographic 2-fold 

screw axis with a helical pitch of 15.33 Å, coincident with the a-axis length, Fig. 2.8. Although the 

spirals are homochiral, they pack in the crystal with opposite screw sense: at the left side of Fig. 2.8 

helices running along the -100 (top) and 100 (bottom) directions are shown. Spirals with the same 



 

orientation intertwine with each other and pack in a quite compact arrangement formed by stacking 

planes formed by helices running either along 100 or −100 shown in blue and yellow in Figure 2.8 

(right), respectively. 

 

Figure 2.25 Packing Views of intertwining Helices of  (D1·L3)∞ along b (left) and a (right) axes. H atoms 

have been omitted and the spirals have been pointed out by using different colors for clarity. 

 

 



 

              

Figure 2.26 View of the Helices of (D2·L3)∞ running along the −100 (top) and 100 (bottom) directions; 

right: Packing View along the a axis showing alternating planes formed by intertwining spirals running along 

the −100 (yellow) and 100 (blue) directions. H atoms have been omitted for clarity. 

 

It is interesting to note that, different from what was previously observed for (D1·L3)∞ the crystal 

packing of (D2·L3)∞ does not involve the P atom substituents given that spirals intertwine through 

H bonds involving the amido groups, the MeO substituents and the pyridine rings of the binaphthyl 

ligands and the S1 atom coordinated to the metal ion. The planes formed by differently oriented 

helices pack on each other leaving small empty spaces of about 120 Å3, comprising 2.6% of the cell 

volume. 

 

2.3.2.2  2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine (L4) and 2,5-bis(3-pyridyl)-4-thia-1,3-

thiazolidine (L5) 

 

L4 L5 

 

 

The bis-functional ligands 2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine (L4) and 2,5-bis(3-pyridyl)-4-

thia-1,3-thiazolidine (L5) were firstly isolated by Meltzer et al. in 1955,
56

 but their complexing 

ability towards metal ions, or as Lewis donors, has not ever been investigated to date. They have 

been prepared following the synthetic method described in Scheme 3.5 and following the 



 

procedure described in § 3.3.4. They differ for the position of the N-donor atoms in the pyridinic 

rings. The free rotation of the pyridinic rings allows the spacer to adopt different conformations but 

keeping a certain rigidity tied to the presence of the three aromatic rings that constitute the 

molecule. The pyridyl rings in L4 and L5 feature different geometry and separation lengths (9.95 

and 9.60 Å, respectively). Moreover, due to the different position of the nitrogen atoms in L5 and 

to the different rotational conformations allowed to the pyridyl rings, several orientations of the 

binding sites can be expected. In the case of L5, two planar isomers, cissoid and transoid, are 

possible, differing in energy by less than 1 kcal mol
–1

 and showing similar metric parameters.
57

 

Ligands L4 and L5 have been reacted under solvothermal conditions with nickel dithiophosphato 

and dithiophosphonato Ni
II
 complexes [((MeO)2PS2)2Ni] (D1), [((EtO)2PS2)2Ni] (D2), [((MeO-

C6H4)(MeO))PS2)2Ni] (D3), and [((MeO-C6H4)(EtO))PS2)2Ni] (D4). The reactions afforded solid 

and crystalline compounds, which have been isolated and fully characterized as described in 

paragraphs 3.4.12-3.4.20. Due to topology reasons, the two nitrogen atoms cannot bind to the same 

atom Ni
II
, therefore L4 and L5 are expected to bridge two dithiophosphato or dithiophosphonato 

units acting as a rigid spacers. Single crystals suitable for X-ray diffraction were obtained for all 

compounds with the only exception of (D4·L5), and structural analysis was performed on the 

resulting compounds confirming a polymeric nature in the cases of (D1·L4)∞, (D2·L4)∞, (D3·L4)∞, 

(D3·L5)∞, and (D4·L5)∞. A dimeric nature for compounds (D1·L5)2 and (D2·L5)2 was found 

instead. Crystallographic data and selected bond lengths and angles for (D1·L4)∞-(D3·L4)∞; and 

for (D1·L5)2-(D2·L5)2 and (D3·L5)∞-(D4·L5)∞ are reported in Tables 2.10, 2.11 and 2.12, 2.13, 

respectively. As exemplified in Fig. 2.9, and 2.10 all compounds show the nickel ion lying in a 

distorted octahedral environment with the equatorial positions occupied by two dithiophosphoric 

units acting as isobidentate ligands with almost equivalent Ni-S and P-S bonds, featuring the P-

substituents in the original trans configuration. The pyridine units of L4 and L5 are axially 

coordinated to the Ni
II
 ion of two adjacent dithiophosphoric units, thus forming the above 

mentioned polymeric chains and the two dimers. The coordination of a neutral donor reduces the 

net positive charge on the central Ni
II
 ion leading to a lengthening of the Ni-S bond lengths and a 

consequent decrease in the S-Ni-S angle with respect to the corresponding Ni
II
 square planar 

complex. At the same time increases the negative charge on the sulfur atoms with a consequent 

opening of the S-P-S angle. The polymeric structures obtained by using the ligand L4 are neutral 

parallel chains running in undulated lines with Ni-Ni distances of 13.70, 14.15, and 13.97 Å for 

(D1·L4)∞, (D2·L4)∞, and (D3·L4)∞, respectively, Fig. 2.9. The orientation of the nitrogen atoms 

para-positioned in the outwards pyridyl rings of L4 self-govern the geometry of the resulting 

supramolecular aggregates, leading to coordination polymers with the same primary motif 

independently from the nature of the dithiophosphorous complex used. The polymeric chains 



 

interact by weak hydrogen bonds especially of the C-H···S type, involving the pyridine rings and 

the coordinated sulfur atoms, and pack in 2D layers as shown in the Fig. 2.10. 

 

(D1·L4)∞ 

 

 

(D2·L4)∞ 

 

 

(D3·L4)∞  

Figure 2.27 Polymeric Chains of Compounds (D1·L4)∞ and (D2·L4)∞ (D3·L4)∞. For clarity, only non-

carbon atoms have been labeled and hydrogen atoms omitted. 

 

Table 2.11 Summary of Basic Crystal Data for (D1·L4)∞, (D1·L4)∞ and (D2·L4)∞ 

Empirical 
Formula 

C16H20N4NiO4P2S5 

(D1·L4)∞ 

C20H28N4NiO4P2S5 

(D2·L4)∞ 

C28H28N4NiO4P2S5 

(D3·L4)∞ 

Formula weight 

(g mol-1) 

613.34 669.41 765.52 



 

Temperature (K) 
120(2) 120(2) 120(2) 

Crystal system 
Monoclinic Orthorhombic Triclinic 

Space group 
P2(1)/c (no. 14) Pbcn (no. 60) P-1 (no. 2) 

a, b, c (Å) 

16.542(3) 
7.489(2) 
20.642(6) 

 

11.6939(8) 
15.2594(14) 
15.9310(13) 

 

9.7075(2) 
10.6736(2) 
17.4582(2) 

 

α, β, γ (°) 90; 94.29(2); 90 90; 90; 90 73.230; 87.086(1); 72.131 

Volume (Å3) 
2550.0(11) 2842.8(4) 1647.02(4) 

Z 
4 4 2 

Calculated densi-
ty (g cm-3) 

1.598 1.564 1.544 

Reflections col-
lected/Unique 

32091/5840/0.0707 21763/3263/0.0403 36271/7555/0.047 

Wavelength λ =71075 λ =71075 λ =71075 

Final R indexes 
[I>=2σ (I)] 

R1 = 0.0492, 

wR2 = 0.1031 

R1 = 0.0331, 

wR2 = 0.0817 

R1 = 0.0361, 

wR2 = 0.0798 

 

 

Table 2.12 Selected Bond Lengths (Å) and Angles (°) for (D1·L4)∞, (D2·L4)∞, and (D3·L4)∞ 

Atoms C16H20N4NiO4P2S5(D1·L4)∞ C20H28N4NiO4P2S5(D2·L4)∞ C28H28N4NiO4P2S5(D3·L4)∞ 

Ni-S1 2.5148(12) 2.4847(6) 2.4468(5) 

Ni-S2 2.4628(11) 2.4683(5) 2.4818(5) 

Ni-N1 2.095(3) 2.1042(16) 2.1322(16) 

Ni2-N4 2.100(3) 2.1326(17) - 

S1-P1 1.9700(15) 1.9694(8) 2.0010(7) 

S2-P1 1.9821(15) 1.9884(7) 1.9951(7) 

P2-S3 1.9807(15) - 1.9994(7) 

P2-S4 1.9771(15) - 1.9914(8) 

S1-Ni-S2 81.89(4) 97.99(2) 97.16(2) 

S1-P1-S2 111.27(7) 110.39(3) 109.36(3) 

S1-Ni-N1 91.02(8) 89.72(5) 90.84(4) 

S2-Ni-N1 89.58(9) 90.39(5) 82.84(2) 

N4-Ni2-S3 88.96(9) - 90.94(5) 

N4-Ni2-S4 90.67(8) - 90.73(5) 

S3-Ni2-S4 82.19(4) - 82.27(2) 

S3-Ni2-S4 110.63(6) - 110.03(3) 

 

It is interesting to note that in (D3·L4)∞, the presence and orientation of the aromatic rings bound 

the phosphorus atoms influence the final architecture of the polymers by the formation of C-Hπ or 

π-π intramolecular interactions (D3·L4)∞, (C6H5)···(C5H4N)centroid: 2.61 Å, leading to the formation 

of cavities of about 61 Å
3
. 

 
 



 

 

    

 

                                                

(D1·L4)∞                                                                                                                                  (D2·L4)∞ 

 

(D3·L4)∞ 

Figure 2.28 Crystal Packing Views of Compounds (D1·L4)∞, (D2·L4)∞, and (D3·L4)∞, evidencing the 

following H-bonds interactions: (D1·L4)∞: C2–H2···S1 3.04; C15–H15···S3 2.85; C8–H8···S2 2.89 Å; 

(D2·L4)∞: C9–H9···S1 2.90; C15–H15···S3 2.91 Å; (D3·L4)∞: C2–H2···S1 2.73 Å. Hydrogen atoms not 

involved in the showed interactions have been omitted for clarity reasons. 

The use of L5 as spacer turns out to lead to less predictable final products if compared with the 

results obtained by using L4. The reactions of  L5 with the four dithiophosphorous nickel 

complexes under solvothermal conditions afforded crystalline compounds recognized by means of 

single crystal X-ray diffraction as the dimers (D1·L5)2, (D2·L5)2  and the coordination polymers 

(D3·L5)∞, and (D4·L5) ∞, Fig. 2.11. 



 

                

 (D1·L5)2                                                              (D2·L5)2 

 

(D3·L5)∞ 

 

(D4·L5)∞ 

Figure 2.29 Dimeric Units (D1·L5)2 and (D2·L5)2 and Polymeric Chains (D3·L4)∞ and  (D4·L4)∞. For 

clarity, only non-carbon atoms have been labeled and hydrogen atoms omitted. 

 

 

Notwithstanding the similarities with the results obtained with L4, the use of L5 as a linker leads to 

different constructs. In fact L5 can exist either as a transoid or cissoids isomer, and in this last case 

can show a convergent or a divergent conformation depending on the orientation of N-atoms meta-

positioned in the pyridyl rings that can point inwards or outwards with respect to the ligand bite 

angle. The different constructs experimentally found exemplify the different conformations of the 



 

ligand: (D1·L5)2 and (D2·L5)2 feature L5 in a cissoids convergent conformation, whilst polymers 

(D3·L4)∞ and (D4·L4)∞ feature L5 in a cissoids divergent conformation. 

 

Table 2.13 Summary of Basic Crystal Data for (D1·L5)2, (D2·L5)2, (D3·L4)∞, and  (D4·L4)∞ 

Empirical Formula C32H28N4 Ni O4 P2 S4 
(D1·L5)2 

C40H56N8Ni2O8P4S10 
(D2·L5)2 

C28H28N4NiO4P2S5 
(D3·L5)∞ 

C30.H32.N4Ni2O4P2S5 
(D4·L5) ∞ 

Formula weight 

(g mol-1) 
1226.68 1338.89 765.81 793.58 

Temperature (K) 120 (2) 
120(2) 120(2) 120 (2) 

Crystal system Monoclinic 
Triclinic Monoclinic Monoclinic 

Space group 
P21/n (No.14) P-1 (no. 2) P2/n(No.13) P2/n(No.13) 

a, b, c (Å) 14.0311(13); 

14.9236(13); 

12.8460(5) 

11.728(2) 

14.354(3) 

18.657(4) 

12.8213(3); 

7.2342(2); 

19.1246(6) 

12.8337 (2); 

7.2101 (1); 

20.3035(3) 

α, β, γ (°) 90; 113.786(5); 90 104.40(3);103.02(3); 

101.92(3) 

90; 106.1860(10); 90 90; 101.8880(10);90 

Volume (Å3) 2461.4(3) 
2862.9(13) 

1703.53(7) 1838.43 (5) 

Z 4 
2 

2 2 

Calculated density 
(g cm-3) 

1.655 
1.553 

1.493 1.434 

Reflections collect-
ed/Unique 

19049/5601 25481/2921 19777/3900 24334/4211 

Wavelength λ =71075 λ =71075 λ =71075 λ =71075 

Final R indexes 
[I>=2σ (I)] 

R1 = 0.0641, 

wR2 = 0.1917 

R1 = 1277, 

wR2 = 0.2445 

R1 = 0.0372, 

wR2 = 0.0778 

R1 = 0.0330, 

wR2 = 0.0863 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

Table 2. 14 Selected Bond Lengths (Å) and Angles (°) for (D1·L5)2, (D2·L5)2, (D3·L4)∞, and  (D4·L4)∞ 

 

 

The polymeric structures of (D3·L5)∞ and (D4·L5)∞, consist of undulated chains where the pyridine 

rings are axially coordinated to the Ni
II
 ion of two adjacent dithiophosphoric units. It is interesting 

to note that in (D3·L5)∞ the nickel atoms lay in the corner of the unit cell and the presence of 

aromatic rings to the phosphorous atom disposed parallel (7.48°),influencing the final architecture 

of the polymers by the formation of π-π stacking interactions  (C5H4N)···(C6H5-OCH3)centroid 3.72 Å 

that influence the final network. The coordination polymers pack in parallel chains interacting 

through the substituents at the phosphorus atoms to yield the 3D networks shown in Fig. 2.12. 

Instead as already mentioned the reaction with dithiophosphato complexes yields the dimers. 

(D1·L5)2 and (D1·L5)2  In this case probably, due to the small size of the substituents to the 

phosphorous atoms, a convergent coordination is preferred, leading to the formation of a hexagonal 

dimers. They interact towards S···H-C and N···H-C in (D1·L5)2, S···H-C and  π-π stacking 

interactions  (C2N2S)···(C2N2S)centroid 3.43 Å in (D2·L5)2, creating bidimensional grids that present 

square openings of about 8 x 8 Å. Fig. 2.11 

Atoms C32H28N4 Ni O4 P2 S4 
(D1·L5)2 

C40H56N8Ni2O8P4S10 
(D2·L5)2 

C28H28N4NiO4P2S5 
(D3·L5)∞ 

C30.H32.N4Ni2O4P2S5 
(D4·L5) ∞ Ni-S1 2.5255(18) 2.480(3) 2.4915(6) 2.4772(5) 

Ni-S2 2.4800(18) 2.469(2) 2.4871(6) 2.4886(5) 

Ni-S3 2.4891(18) 2.495(2) - - 

Ni-S4 2.4601(18) 2.501(3) - - 

Ni-N1 2.093(5) 2.109(5) 2.160(2) 2.1582(14) 

Ni-N4 2.4601(18) 2.111(5)  - 

S1-P1 1.971(2) 1.970(4) 1.9974(8) 1.9962(7) 

S2-P1 1.983(2) 1.970(4) - 1.9986(7) 

S3-P2 1.979(2) 1.981(3) - - 

S4-P2 1.987(2) 1.967(4) - - 

S1-Ni-S2 81.67(6) 82.86(8) 81.86(2) 97.82 (2) 

S1-P1-S2 111.75(10) 112.4(2) 109.71(4) 109.58(3) 

S1-Ni-N1 90.66(15) 88.6(2) 88.91(5) 88.86(4) 

S2-Ni-N1 88.99(15) 89.02(18) 90.52(5) 88.76 (4) 



 

 

(D1·L5)2                                                                                                                        (D1·L5)2 

 

(D3·L5)∞ 

 

(D4·L5)∞    

Figure 2.30 Crystal Packing Views of (D1·L5)2, (D3·L5)∞ and (D4·L5)∞ showing the main interactions: 

(D1·L5)2:  C15-H1···S3 2.9 Å,  C14-H14····N3 2.7 Å;  C1-H1a···S12  2.99 Å  C12-H12a····S2 2.88 Å 

(D2·L5)2, C7-H7···S3 2.87Å. , C12-H12···S2 2.80 Å (D3·L5)∞:  For clarity, only non-carbon atoms have 

been labeled and hydrogen atoms omitted. 



 

2.3.3.Polypidiridin Ligands 

2.3.3.1 1,3,5-tris-(3-pyridyl-ethynyl)-benzene  (L6) 

 

 

 

Ligand L6 is a rigid multidentate spacer prepared following the synthetic method described in 

Scheme 3.6 and the procedure described in detail in § 3.3.5. Ligand L6 has been reacted under 

solvothermal conditions in a 1:1 molar ratio with the nickel dithiophosphato and dithiophosphonato 

Ni
II
 complexes [((MeO)2PS2)2Ni] (D1), [((EtO)2PS2)2Ni] (D2), [((MeO-C6H4)(MeO))PS2)2Ni] (D3), 

and [((MeO-C6H4)(EtO))PS2)2Ni] (D4), using pure chloroform or a mixture of chloroform and the 

pertinent alcohol as solvent. The reactions afforded solid compounds, which have been isolated and 

fully characterized as described in § 3.4.20-3.4.24. Single crystals suitable for X-ray diffraction 

were obtained only from the reactions with D2, and, unexpectedly, crystal characterization 

performed on the compound revealed a dimeric nature corresponding to the formulation (D2·L6)2. 

Crystallographic data and selected bond lengths and angles for (D2·L6)2 are reported in Tables 2.14 

and 2.15, respectively. As exemplified in Fig. 2.13, the compound (D2·L6)2 shows the nickel ion 

lying in a distorted octahedral environment with the equatorial positions occupied by two 

dithiophosphato units acting as isobidentate ligands with almost equivalent Ni-S and P-S bonds. 

Only two of the three pyridyl units of L6 interact with the metal ions and are axially coordinated to 

the Ni
II
 ion bridging two adjacent dithiophosphato units forming hexagonal dimers. The convergent 

coordination is probably preferred due to the small size of the substituents to phosphorus atoms. 

The coordination of the pyridyl neutral donors reduces the net positive charge on the central Ni
II
 ion 

leading to a lengthening of the Ni-S bond lengths and a consequent decrease in the S-Ni-S angle 

with respect to the corresponding Ni
II
 square planar complex. At the same time increases the 

negative charge on the atoms of sulfur with a consequent opening of the S-P-S angle.  

 



 

 

 

Figure 2.31 Dimer Structure of Compound (D2·L6)2. Hydrogen atoms are omitted for clarity reason. 

 

 

Table 2. 15 Summary of Basic Crystal Data for (D2·L6)2 

Empirical Formula C35H36N3NiO4P2S4 (D2·L6)2 

Formula weight 

 (g mol-1) 

875.62 

Temperature (K) 100 

Crystal system Triclinic 

Space group P -1 

a, b, c (Å) 9.2130(5);15.0313(11);15.3960(11) 

α, β, γ (°) 73.451(6);75.604(6);86.980(7) 

Volume (Å3) 1979.2(2) 

Z 2 

Calculated density (g cm-3) 
1.458 

Reflections collected/Unique 35815/25.242 

Wavelength λ =0.71075 

Final R indexes [I>=2σ (I)] R1 =0.0603 wR2 = 0.1704 

 

 

 

 



 

 

 

Table 2. 16 Selected Bond Lengths (Å) and Angles (°) for (D2·L6) 

Atoms C35 H36N3NiO4P2S4 (D2·L6)2 

Ni-S1 2.5033(11) 

Ni-S2 2.5267(12) 

Ni-S3 2.5259(16) 
Ni-S4 2.4936(15) 
Ni-N1 2.111(4) 

Ni-N2 2.104(4) 
S1-P1 1.9827(19 

S2-P1 1.9839(19) 

S3-P2 1.979(2) 

S4-P2 1.976(2) 

S1-Ni-S2 82.37(4) 

S1-Ni-S3 178.77(5) 
S3-Ni-S2 98.77(5) 
S4-Ni-S1 96.53(5) 
S4-Ni-S2 178.86(5) 
S4-Ni-S3 82.29(5) 
S1-Ni-N1 90.31(13) 

S2-Ni-N1 89.92(12) 

S3-Ni-N1 89.37(13) 
S4-Ni-N1 90.51(12) 
S1-Ni-N2 91.33(13) 
S2-Ni-N2 90.36(12) 
S3-Ni-N2 88.99(13) 
S4-Ni-N2 89.24(12) 
S1-P1-S2 112.63(6) 

S3-P2-S4 113.22(9) 
N1-Ni-N2 178.35(17) 

 

The dimers mainly interact through the C21-H21···S6' hydrogen bond involving one of the 

coordinated sulfur atoms and a hydrogen of one coordinated pyridine unit thus creating bi-

dimensional grids that present square openings of about 10 x10 Å
2
. (C21-H21···S6': H···S 2.845(2) 

Å, C···S 3.689(5) Å, C-H···S 152° (' -x, 2-y, 1-z;). (Fig.2.14) 

 

 



 

                

 

 

Figure 2.32 Crystal Packing Views of  (D2·L6)2. For clarity, only non-carbon atoms have been labeled and 

Hydrogen atoms are omitted for clarity reason. 

 

 

2.3.3.2  1,3,5-benzene-tri(N-(3-Pyridyl))-carboxamide (L7)  

 

 

 

 

 

 

 

 

 

Ligand L7 has been prepared following the synthetic method described in Scheme 3.7 and the 

procedure described in § 3.3.6. Ligand L7 has been reacted under solvothermal conditions in a 1:1 

molar ratio with the nickel dithiophosphato and dithiophosphonato Ni
II
 complexes 

[((MeO)2PS2)2Ni] (D1), [((EtO)2PS2)2Ni] (D2), [((MeO-C6H4)(MeO))PS2)2Ni] (D3), and [((MeO-

C6H4)(EtO))PS2)2Ni] (D4), using pure chloroform or a mixture of chloroform and the pertinent 



 

alcohol as solvent. The reactions afforded solid compounds, which have been isolated and fully 

characterized as described in § 3.4.24-3.4.29. Single crystals suitable for X-ray diffraction were 

obtained only from the reactions with D2, and D3 and, unexpectedly, crystal characterization 

performed on the compounds revealed the formation of the simple monomeric complexes [D2(L7)2] 

and [D3(L7)2]. Crystallographic data and selected bond lengths and angles for [D2(L7)2] and 

[D3(L7)2] are reported in Tables 2.16 and 2.17, respectively. As exemplified in Fig. 2.14, the two 

octahedral complexes show the nickel ion lying in a distorted octahedral environment with the 

equatorial positions occupied by two dithiophosphoric units acting as isobidentate ligands with 

almost equivalent Ni-S and P-S bonds, with D3 featuring the P-substituents in the original trans 

configuration. Two ligands L7 acting as a monodentate donors, with only one pyridine unit axially 

coordinated to the Ni
II
 ion, complete the metal coordination sphere thus leading to the octahedral 

complexes [D2(L7)2] and [D3(L7)2]. The coordination of a neutral donor reduces the net positive 

charge on the central Ni
II
 ion leading to a lengthening of the Ni-S bond lengths and a consequent 

decrease in the S-Ni-S angle with respect to the corresponding Ni
II
 square planar complex. At the 

same time increases the negative charge on the sulfur atoms with a consequent opening of the S-P-S 

angle.           

 

Figure 2.33 Octahedral Complexes [D2(L7)2] and [D3(L7)2]. For clarity, only non-carbon atoms have been 

labeled and hydrogen atoms omitted. 

 

The four nitrogen atoms of the uncoordinated pyridine rings interact with methanol molecules 

(reaction solvent present in structure) through the very strong hydrogen bonds: [D2(L7)2]: O7-

H7A···N4': H···N 1.91 Å, O···N 2.733(3) Å, O-H···N 166°; O6-H6A···N6'': H···N 2.00 Å, O···N 

2.827(4) Å, O-H···N 169° (' -1+x, y, z; '' 1+x, y, 1+z). [D3(L7)2]: O45-H45···N4': H···N 1.91 Å, 

O···N 2.734(6) Å, O-H···N 176°; O46-H46···N6'': H···N 1.95 Å, O···N 2.755(6) Å, O-H···N 160° 

' -1+x, y, z; '' 2-x, 2-y, 1-z).  

The formation of these bonds can in our opinion explain the unexploited formation of coordination 

polymers. 



 

  

Table 2.17 Summary of Basic Crystal Data for [D2(L7)2] and [D3(L7)2] 

Empirical Formula C56H56N12NiO10P2S4 , 4(CH3OH) 

[D2(L7)2] 

C64H56N12NiO10P2S4, 4(CH3OH), CHCl3 

[D3(L7)2] 

Formula weight 

 (g mol-1) 

1434.18 1649 

Temperature (K) 100 (2) 170 (2) 

Crystal system Triclinic Triclinic 

Space group P-1 P-1 

a, b, c (Å) 7.9460(17); 

12.496(3); 

18.259 4) 

8.496(8); 

12.951(12); 

18.174 (17) 

α, β, γ (°) 100.073(4);99.976(3);95.183 (3) 96.409(8);101.161(13);100.163 (13) 

Volume (Å3) 1744.(7) 1909(3) 

Z 1 1 

Calculated density (g cm-3) 1.365 1.435 

Reflections collected/Unique 23297/8008 15133/8512 

Wavelength λ =71075 λ =71075 

Final R indexes [I>=2σ (I)] R1 = 0.0653 

wR2 =0.1766 

R1 =0.1188 

wR2 = 0.2139 

 

 

 

Table 2.18 Selected Bond Lengths (Å) and Angles (°) for [D2(L7)2]and [D3(L7)2] 

Atoms C56H56N12NiO10P2S4 ·4(CH3OH) 

[D2(L7)2] 

C64H56N12NiO10P2S4, 4(CH3OH), CHCl3 

[D3(L7)2] 

Ni-S1 2.493(2) 2.493(2) 
Ni-S2 

2.489(2) 2.489(2) 
Ni-N1 2.147(4) 2.147(4) 
S1-P1 1.998(2) 1.998(2) 
S2-P1 

1.995(2) 1.993(3) 
P1-S2    1.971 (11) 1.995(2) 

S1-Ni-S2 81.835(12) 97.82(8) 

S1-P1-S2 109.99(2) 108.62(16) 

S1-Ni-N1 90.03(4) 87.9(2) 

S2-Ni-N1 90.36(3)) 90.9(3) 

N1-Ni-N1 180.00(12) 180.0 

 

 



 

The crystal packing of both [D2(L7)2] and [D2(L7)2] is mainly built up through H-bondings 

involving the methanol molecules and the amido groups of the ligands: [D2(L7)2]: N2-H2···O4': 

H···O 2.1 Å, O···N 2.933(3) Å, N-H···O 157°; N3-H3···O6'': H···O 2.01(5) Å, O···N 2.882(3)Å, 

O-H···N 170°; N5-H5···O7''': H···O 2.0 Å, O···N 2.847(3) Å, O-H···N 162° (' 1+x, 1+y, z; ''1-x, 1-

y, 1-z; ''' -x, 1-y, -z); [D3(L7)2]: N5-H5···O45': H···O 1.95(5) Å, O···N 2.859(6) Å, N-H···O 176°; 

N3-H3···O46'': H···O  2.12(5) Å, O···N 2.877(6) Å, O-H···N 171° (' 1-x, 2-y, 1-z; '' -1+x, 1+y, z). 

Weak hydrogen bonds, especially of the C-H···S type that involve the dithiophosphoric units and 

pyridine hydrogens along with π-π intramolecular interactions involving the benzene rings with 

intercentroid distances of 3.95, and 3.91 Å for [D2(L7)2] and [D3(L7)2], respectively, contribute to 

the formation of the bidimensional networks showed in Fig. 2.17 characterized by small cavities 

occupied by solvent molecules.  

 

. 

       [D2(L7)2]                                                                                           [D3(L7)2] 

  

 

 

 

Figure 2.34 Crystal Packing Views of Compounds [D2(L7)2] and [D3(L7)2] along axis a evidencing some 

weak H-bonds: C21–H21···O5 2.23 Å; C27–H27···S1 2.98 Å for [D2(L7)2];  C21–H21···O3 2.24 Å for 

[D3(L7)2]. Hydrogen atoms not involved in the showed interactions have been omitted for clarity reasons. 

 

 

 

 

 



 

2.3.3.1 1,3,5-benzene-tri-(N-(4-Pyridyl))-carboxamide (L8). 

 

 

 

Ligand L8 differs from the previous ligand L7 for the position of the pyridine nitrogen atom. It has 

been prepared following the synthetic method described in Scheme 3.7 and the procedure described 

in § 3.3.6. Ligand L8 has been reacted under solvothermal conditions in a 1:1 molar ratio with the 

nickel dithiophosphato and dithiophosphonato Ni
II
 complexes [((MeO)2PS2)2Ni] (D1), 

[((EtO)2PS2)2Ni] (D2), and [((MeO-C6H4)(EtO))PS2)2Ni] (D4), using pure chloroform or a mixture 

of chloroform and the pertinent alcohol as solvent. The reactions afforded solid compounds, which 

have been isolated and fully characterized as described in § 3.4.29-3.4.31. Single crystals suitable 

for X-ray diffraction were obtained only from the reactions with D4, crystal characterization 

performed on the compound revealed the formation of the coordination polymer (D4·L8)∞. 

Crystallographic data and selected bond lengths and angles for (D4·L8)∞, are reported in Tables 

2.18 and 2.19, respectively. As exemplified in Fig.2.16, (D4·L8)∞ show the nickel ion lying in a 

distorted octahedral environment with the equatorial positions occupied by two dithiophosphoric 

units acting as isobidentate ligands with almost equivalent Ni-S and P-S bonds, featuring the P-

substituents in a cis configuration. Only two of the three pyridine units of L8 are axially 

coordinated to the Ni
II
 ion and bridge of two adjacent dithiophosphonato units, thus forming 

polymeric chains. The non coordinated pyridyl ring features a protonated nitrogen atom that confers 

an overall positive charge counterbalanced by the presence of a dithiophosphonato anion. The 

coordination of a neutral donor reduces the net positive charge on the central Ni
II
 ion leading to a 

lengthening of the Ni-S bond lengths and a consequent decrease in the S-Ni-S angle with respect to 

the corresponding Ni
II
 square planar complex. At the same time increases the negative charge on the 

sulfur atoms with a consequent opening of the S-P-S angle. The (D4·L8)∞ present a zig-zag primary 

structure characterized by the endless repetition of metal centers and L8 molecules with Ni···Ni 

distances of 15.60 Å (Fig. 2.17). 



 

 

 

 

 

Figure 2.35 Unit Cell and Zig-Zag Polymeric Chain of Compounds (D4·L8)∞. For clarity, only non-carbon 

atoms have been labeled and hydrogen atoms omitted 

 

 

Table 2. 19 Summary of Basic Crystal Data for (D4·L8)∞ 

Empirical Formula C42H43N6Ni O10P2S4, (C9H12O2PS2)-· H2O (D4·L8)∞ 

Formula weight 

 (g mol-1) 

1258 

Temperature (K) 100 (2) 

Crystal system Monoclinic 

Space group P21/n 

a, b, c (Å) 14.329(4); 14.873(4); 27.117(7) 

α, β, γ (°) 90; 92.22(5); 90 

Volume (Å3) 5755 

Z 4 

Calculated density (g cm-3) 1.447 

Reflections collected/Unique 40176/10159 

Wavelength λ =71075 

Final R indexes [I>=2σ (I)] R1 = 0.1119 wR2 =0.1624 

 

wR2 =0.1624 

 

 

 

 



 

 

 

 

 

Table 2.20 Selected Bond Lenghts (Å) and Angles (°) for (D4·L8)∞ 

Atoms C42H43N6Ni O10 P2 S4 (C9H12O2PS2)· H2O (D4·L8)∞ 

Ni-S1 2.5068(16) 

Ni-S2 2.5464(15) 

Ni-S3 2.5056(15) 

Ni-S4 2.5492(16) 

Ni-N1 2.084(4) 

Ni-N2 2.101(4) 

S1-P1 1.9989(19) 

S2-P1 1.984(2) 

S51-P51 1.995(2) 

S52-P52 1.993(2) 

S3-P2 1.987(2) 

S4-P2 2.0092(19) 

S1-Ni-S2 81.06(5) 

S1-Ni-S3 91.80(5) 
S3-Ni-S2 171.51(5) 
S4-Ni-S1 171.08(5) 
S4-Ni-S2 107.19(5) 
S4-Ni-S3 80.24(5) 
S1-Ni-N1 92.03(12) 

S2-Ni-N1 86.12(12) 

S3-Ni-N1 89.58(12) 

S4-Ni-N1 91.94(12) 

S1-Ni-N2 171.88(16) 

S2-Ni-N2 91.81(12) 

S3-Ni-N2 87.42(12) 

S4-Ni-N2 97.45(12) 

S1-P1-S2 111.07(9) 

S3-P2-S4 109.20(8) 
N1-Ni-N2 171.88(16) 

 

Compound (D4·L8)∞ packs in parallel chains running along the 101 direction mainly interacting 

through hydrogen bonds involving the water molecules (Fig. 2.18). 

 

 



 

 

 

Figure 2.36 Crystal Packing View of Compounds (D4·L8)∞ along axis b. The main interaction involving 

water co-crystallized molecules are showed.(C34-H34···O61 2.46 Å).Hydrogen atoms not involved in the 

showed interactions have been omitted for clarity reasons. 

 

 

2.3.3.1 1,3,5-Benzenetricarboxylic acid-1,3-bis-4-pyridyl ester (L9b) 

 

 

Ligand L9b has been obtained in a failed attempt to prepare L9 following the synthetic method 

described in Scheme 3.8. The synthetic procedure is described in § 3.3.7. In fact, unexpectedly, the 

reaction yielded the hydrolyzed form of the bis-pyridyl ester. Since the carboxylic group is capable 

to form coordination bonds with the metal center of the nickel dithiophosphoric unit, we proceed by 

reacting L9b under solvothermal conditions in a 1:1 molar ratio with the nickel dithiophosphato and 



 

dithiophosphonato Ni
II
 complexes [((MeO)2PS2)2Ni] (D1), [((EtO)2PS2)2Ni] (D2), [((MeO-

C6H4)(MeO))PS2)2Ni] (D3), and [((MeO-C6H4)(EtO))PS2)2Ni] (D4), using pure chloroform or a 

mixture of chloroform and the pertinent alcohol as solvent. The reactions afforded solid compounds, 

which have been isolated and fully characterized as described in § 3.4.32-3.4.35. Single crystals 

suitable for X-ray diffraction were obtained only from the reaction with D2, crystal characterization 

performed on the compound revealed the formation of the unexpected 3D coordination network 

corresponding to the formulation [2D2·2L9b·Ni(EtOH)2]∞. Crystallographic data and selected bond 

lengths and angles for [2D2·2L9b·Ni(EtOH)2]∞ are reported in Tables 2.20 and 2.21 respectively. 

 

Figure 2.37 Asymmetric Unit with the Numbering Scheme Compounds [2D2·2L9b·Ni(EtOH)2]∞.For 

clarity, hydrogen atoms omitted. 

 

        

 

Figure 2.38 Views of [2D2·2L9b·Ni(EtOH)2]∞ two fragments evidencing the two different coordination 

environment of Ni0A (left) and Ni1 (right). 

 

As can be seen in Fig. 2.18, the complex network [2D2·2L9b·Ni(EtOH)2]∞ contains two nickel ions 

(Ni0A and Ni1) featuring very different coordination environments. One of them (Ni0A) can be 



 

easily recognized as belonging to the dithiophosphato D2 reagent, and show the typical 

configuration with the nickel ion lying in a distorted octahedral environment with the equatorial 

positions occupied by two dithiophosphato units acting as isobidentate ligands with almost 

equivalent Ni-S and P-S bonds, and two pyridine units coming from different L9b ligands axially 

coordinated to the Ni
II
 ion through the nitrogen N16 atom (Figure 2.22 bottom left). The other one 

(Ni1) probably comes from impurities of NiCl2 coming from the synthesis of D2 and feature a 

distorted octahedral coordination geometry with four oxygen atoms in the equatorial plane: two 

coming from the O2AA oxygen of the carboxylate groups of two different L9b ligands and the other 

two belonging to two ethanol molecules (Fig. 2.22 bottom right). This means that each L9b ligand 

is coordinated to three different nickel ions: nitrogen N16 is bound to Ni0A, nitrogen N13 to Ni1 

and the oxygen atom O2AA of the carboxylic group to another N1 ion. The resulting structure can 

be described as a tridimensional grid network formed by the alternation of polymeric parallel chains 

of type (D2·L9b)∞ containing D2 units bridged by L9b ligands and chains of the type 

(Ni(EtOH)2·L9b)∞, formed by Ni1 nickel ions axially bridged by L9b connected through the 

coordination bonds between the carboxylate L9b substituents and Ni1 ions. The result is the 

tridimensional grid with rectangular holes of about 13x7 Å
2
 occupied by additional ethanol 

molecules. 

Table 2.21 Summary of Basic Crystal Data for [2D2·2L9b·Ni(EtOH)2]∞ 

Empirical Formula C27H33N2NiO10PS2 [2D2·2L9b·Ni(EtOH)2]∞ 

Formula weight 

(g mol-1) 

666.59 

Temperature (K) 293(2) 

Crystal system Triclinic 

Space group P-1 

a, b, c (Å) 
9.4529(7);11.2927(8);16.2264(11) 

α, β, γ (°) 103.090(7); 102.147(7); 102.147(7) 

Volume (Å3) 
1567.6(2) 

Z 2 

Calculated density (g cm-3) 1.482 

Reflections collected/Unique 7233/27468 

Wavelength λ =0.71073 

Final R indexes [I>=2σ (I)] R1 = 0.1381 wR2 =0.4138 

 

Table 2.22 Selected Bond Lenghts (Å) and Angles (°) for [2D2·2L9b·Ni(EtOH)2]∞ 

 



 

Atoms C27H0.50N2NiO10PS2 [2D2·2L9b·Ni(EtOH)2]∞ 

Ni0A-S1 
2.478(2) 

Ni0A-S2 
2.489(2) 

Ni0A-N16 
2.115(3) 

Ni1-O1 
2.066(5) 

Ni-O2AA 
2.028(6) 

Ni-N13 
2.110(7) 

S1-P4 1.977(3) 

S2-P4 1.976(4) 

S1-N0A-S2 82.03(7) 

S1-P4-S2 111.07(14) 

S1-Ni0A-N16 88.88(19) 

S2-Ni0A-N16 90.78(18) 

N16-Ni0A-N16 180.00 

O1-Ni1-O2AA 89.3(2) 

O1-Ni1-N13 88.4(2) 

O2AA -Ni1 -N13 90.9(3) 

N13 -Ni1-N13 180.00 

 

 

 

Figure 2.39 Crystal Packing Views along b axis and Space Filled Representation evidencing the cavities of 

[2D2·2L9b·Ni(EtOH)2]∞ 



 

2.4  Spectroscopic  Characterizations 

The synthesized compounds have been characterized by means of different spectroscopic tech-

niques. In particular, on the synthesized building blocks, both on the phosphorodithioato Ni
II
 com-

plexes D1-D4 and on the ligands L1-L10, 
1
H-NMR and Infrared Spectroscopic characterizations 

were performed in order to verify the identity of the compounds and to check for their pureness be-

fore using them for the synthesis of the coordination polymers. UV-Visible and fluorescence spectra 

were recorded for the ligands, and the relevant data reported. Singularly, for ligand L1 UV-vis spec-

troscopic determinations of the formation constants of the octahedral adducts between L1 and the 

D1-D4 square-planar complexes were performed due to a certain solubility of the reagents and of 

the intermediate adducts formed that allowed to accomplish the measurements  before the precipita-

tion of the insoluble polymer. Microcrystalline compounds were also analyzed by X-Ray powder 

diffraction and, when available, the data were compared with the powder spectra calculated from 

the single crystal X-Ray diffraction data.   

 

2.4.1 NMR studies 

NMR measurements were mainly performed in order to confirm the nature and pureness of the syn-

thesized ligands L1-L10, whilst the nickel complexes D1-D4 were usually obtained as crystals and 

characterized by means of melting point and IR spectra comparison with literature data.
45

 In con-

trast, NMR measurements on the synthesized coordination polymers were not performed due to the 

paramagnetic nature of the central ion in the resulting octahedral environment. NMR measurements 

on the ligands were performed solubilizing the samples in suitable deuterated solvents such as 

CDCl3 and DMSO-d6 in standard 5 mm NMR tubes and recording the spectra at 25°C on either a 

Varian INOVAX-400 or Varian INOVAX-500 spectrometer. The spectra were then analyzed and 

compared with literature data, when available. Following is the detailed analysis of the data relative 

to the new ligand (R)-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-bis(4-pyridyl-amido) L3, synthesized as 

described in § 3.3.3 in collaboration with the University of Pavia (Italy), specifically designed in 

order to introduce chirality and impart a helicoidal shape to the resultant coordination polymers. 

Fig. 2.24 shows the 
1
H NMR (CDCl3) spectrum of L3. . The eight signals were assigned to the pro-

tons H1-11 (see L3 formula scheme in the inset of Fig. 2.24) as follows: δ = 10.19 (s) (2H, H7, 

NHCO); δ = 9.03 (s) (2H, H1, binaphthyl); δ = 8.60 (d) (4H, H9,10, J = 5.7, β-pyridine); δ = 8.14 (d) 

(2H, H2, J = 8.1, binaphthyl); δ = 8.03 (d) δ = 7.70 (d) (4H, H8,11, J = 5.7, β-pyridine), δ =7.58 (t) 

(2H, H3, J = 6.6, binaphthyl); δ =7.42 (t),(2H, H4, J = 6.6, binaphthyl) , 7.19 (d) (2H, H5, J = 8.7, 

binaphthyl); δ =3.46 (s) (6H, H6,OCH3). 

 



 

 

 

 

 

 

Figure 2. 40 
1
H NMR (CDCl3) Chemical Shift and Integration Peaks of L3 

 

As far as the other ligands are concerned, the recorder data were analyzed as exemplified for the 

case here presented of ligand 1,3,5-benzene-tri-(N-(4-Pyridyl))-carboxamide (L8). Fig. 2.25 shows 

the 
1
H NMR (DMSO-d6) spectrum of L8 along with main peaks magnification. The four signals 

were assigned to the protons H1-H18 (see L8 formula scheme in the inset of Figure 2.25) as follows: 

δ = 11.10 (s) (3H: H9, H4, H14); δ = 8.79 (s) (3H: H1, H2, H3); δ = 8.57 (d) (6H: H6-H7, H11-H12, H16-

H17); δ = 7.90 (d) (6H: H5-H8, H10-H13, H15-H18). The recorded spectrum was compared with litera-

ture data,
58

 thus confirming the nature of the synthesized compound. Small differences, such as the 

strong visible sharp peak at 3.33 ppm and the signals at 2.08 ppm were attributed to the washing 



 

water used in the experimental synthetic procedure (see experimental § 3.3.6) and to solvent impuri-

ties (acetone), respectively. 

              

 

Figure 2.41 
1
H NMR DMSO(d6) Spectrum of 1,3,5-benzene-tri-(N-(4-Pyridyl))-carboxamide (L8) on the 

top and magnification of main peaks on the bottom.  

 

 

The results recorded for ligands L1-L10 are summarized in Table 2.22, along with the solvent used, 

and the pertinent literature references used for comparison.  



 

  

Table 2. 23 
1
H Chemical Shifts of Ligands used 

 

References Ligands Solvents Chemical Shifts (δ) ppm 

66 L1 CDCl3 δ = 8.77 (d), δ = 8.61 (dd), δ = 7.82 (dt), δ = 7.30 (t) 

59 L2 CDCl3 δ = 8.5 (d), δ = 7.6 (d), δ = 7.45(s) 

70 L3 CDCl3 δ = 10.19 (s) (2H, H7, NHCO); δ = 9.03 (s) (2H, H1, binaphthyl); δ = 8.60 

(d) (4H, H9,10, J = 5.7, β-pyridine); δ = 8.14 (d) (2H, H2, J = 8.1, bi-

naphthyl); δ = 8.03 (d) δ = 7.70 (d) (4H, H8,11, J = 5.7, β-pyridine), δ =7.58 

(t) (2H, H3, J = 6.6, binaphthyl); δ =7.42 (t),(2H, H4, J = 6.6, binaphthyl) , 

7.19 (d) (2H, H5, J = 8.7, binaphthyl); δ =3.46 (s) (6H, H6OCH3). 

 

 

 

60 L4 CDCl3 δ = 8.63(t), δ = 7.51 (m) 

60 L5 CDCl3 δ = 8.64(d), δ = 8.54 (m), δ = 7.86 (tt) δ = 7.37 (q) 

61 L6 CDCl3 δ = 8.79 (d), δ = 8.56 (dd), δ = 7.90 (dt), δ = 7.69 (s), δ = 7.28 (t) 

62 L7 DMSO δ = 10.91 (s), δ =8.98 (s), δ = 8.78 (d), δ = 8.36 (dd), δ = 8.22 (dt), δ = 

7.42(t) 

68 L8 DMSO δ = 11.10 (s), δ =8.79 (s), δ = 8.57 (d), δ = 7.91 (d). 

63 L9b DMSO δ = 9.05 (s), δ = 8.93 (dd), δ = 8.65 (d), δ = 8.55 (dd) 

 

68 L10 DMSO δ = 8.79 (d), δ = 8.75 (d), δ = 8.60 (s), δ = 7.51 (d). 

 

It is interesting to note that the comparison of the 
1
H-NMR data recorded for the theorical com-

pound 1,3,5-benzenetricarboxylic-acid-1,3,5-tris-4-pyridyl-ester (L9) revealed differences with lit-

erature values which have been ascribed to the formation of the hydrolyzed form of the bis-

pyridinyl ester L9b.      

 



 

2.4.1 Infrared Spectroscopic Techniques 

Infrared measurements were recorded on the sample compounds dispersed in anhydrous KBr pellets 

in the 500-4000 cm
-1

 range (see experimental §3.1). The IR spectra of L1-L10 ligands and D1-D4 

complexes were mainly recorded in order to detect the main functional bands and obtain confirma-

tion of their identity. In the case of the octahedral adducts obtained by reacting the molecular build-

ing blocks, the measurement were mainly performed to check for the simultaneous presence of the 

peaks assigned to the ligands and those related to the Ni
II
 complexes, since no information on their 

coordination polymers nature can be obtained from this techniques. The spectra relative to the 

square planar complexes D1-D4 are reported in Fig. 2.26 and compared with the vibrational as-

signments in the literature.
64

 The presence of the aromatic metoxyphenyl ring in D3 and  D4 implies 

many vibrational peaks related in particular to aromatic C=C stretching in the 1600-1475 cm
-1

 

range. It is interesting to note the sharp peaks at 958 and 941 and  cm
-1

 for D2 and D4 spectra, re-

spectively which are assigned to a vibrational mode of  the ethoxy substituent and are therefore ab-

sent in the spectra of complexes D1 and D3. The presence of this strong peak found in the reaction 

products between D2 and D4 and the pyridyl ligands along with the change of color from purple to 

greenish confirms the formation of the relative octahedral adduct.  

  

 

 

 

 



 

 

 

 

 

Figure 2.42 Infrared Spectra of [Nidtf(OMe)](D1), [Nidtf(OEt)](D2), [Nidtp(OMe)](D3),[Nidtp(OEt)](D4). 

 

As an example, the comparison between the IR-spectra of the (D2L9b) and  (D4L9b) adducts ob-

tained by reacting ligand L9b and complexes D2 and D4, and the spectra of the corresponding rea-

gents is reported in Fig.2.26. The ligand spectrum (Fig. 2.26 a) shows a strong peak at 1764 cm
-1

 

and the C-O stretching at 1207 cm
-1

 characteristic for the presence of a carboxylic group. In the 



 

spectra of the adducts, the presence of both L9b and either D3 or D4 can be recognized by the cor-

responding peaks. In particular, a magnification of the three compared spectra shows the presence 

in 964 cm
-1

 and 944 cm
-1 

of the characteristic -OEt vibration in (D2L9b) and  (D4L9b), respec-

tively (Fig. 2.26 d). 

a 

b 

 c 

 



 

         

Figure 2.43 IR Spectra of L9b (a), (D2L9b) (b), (D4L9b) (c), and magnification of the IR-spectra compari-

son between the adducts (green) and the corresponding reagents L9b (red), and complexes (D2, D4, purple) 

(d). 

 

 

2.4.2 Molecular Fluorescence Studies 

Molecular fluorescence studies have been performed on the prepared ligands L1-L10.  Notwith-

standing the measurements have been carried out on all the ligands, only in the case of ligands L1, 

L9 and L10 a reliable fluorescence emission were detected. Preliminary UV measurements per-

formed on a 1.63·10
-6

 M solution of L1 in CHCl3 revealed absorption peaks at 247, 292, 310, and 

330 nm. Therefore, molecular fluorescence measurements on a 1.14∙10
-6

 M solution in CHCl3 of L1 

in the range 240-440 nm were performed with excitation lengths varying between 220 and 345 nm 

performing scans at regular intervals (5 nm) and slit = 5x5. Fig. 2.28 shows the 2D (a) and 3D (b) 

representation of the fluorescence emission spectra recorded at different excitation wavelengths. As 

can be seen, L1 shows emission peaks at 357 nm and 369 nm with a maximum intensity for λex = 

263 nm. 



 

       

 

Figure 2.44 UV-Absorption and 2D (a) and 3D (b) Representation of the Emission spectra of L1 at different 
Excitation Wavelengths. 

 

Preliminary UV measurements performed on a 1∙10
-4

 M solutions of  L9 and L10 in EtOH show 

similar absorption spectra profiles for the two ligands with absorption peaks at 192, 194, and 198 

nm for L9 and at 194, 198, and 203 nm for L10. Therefore, molecular fluorescence measurements 

on a 1.56·10
-4

  M solution in EtOH   of L9 in the range 260-420 nm were performed with excitation 

lengths varying between 220 and 300 nm performing scans at regular intervals (5 nm) and slit = 

5x5. Fig. 2.29 shows the 2D (a) and 3D (b) representation of the fluorescence emission spectra rec-

orded at different excitation wavelengths. As can be seen, L9 shows an emission peak at 311 nm 

with a maximum intensity for λex = 275 nm. 
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Figure 2.45 UV-Absorption and 2D (a) and 3D (b) Representation of the Emission Spectra of L9 at different 

Excitation Wavelengths. 

 

Molecular fluorescence measurements on a 1.45·10
-6

 M solution in EtOH of L10 in the range 280-

440 nm were performed with excitation lengths varying between 220 and 260 nm, performing scans 

at regular intervals (5 nm) and slit = 5x5. Figure 2.30 shows the 2D (a) and 3D (b) representation of 

the fluorescence emission spectra recorded at different excitation wavelengths. As can be seen, L10 

shows an emission peak at 347 nm with a maximum intensity for λex = 240 nm. 

 

0

0.5

1

1.5

2

2.5

190 200 210 220

E
m

issio
n

  In
ten

sity
 

 

λ emission (nm) 

 

E
m

issio
n

  In
te

n
sity

 

 
λ emission (nm) 

 

λ excitation (nm) 

 

A 

λ (nm) 



 

         

 

 

 

 

Figure 2.46 UV-Absorption and Emission Spectrum of L10  (a) and  3D View of  L10 Emission Spectrum 

varying Excitation Wavelengths (b). 

 

2.4.3 Spectrophotometric Titrations  

In order to further investigate the reactivity of Ni
II
 phosphonodithioato complexes toward the lig-

ands synthesized, solution equilibria studies have been performed. Unfortunately, in most of the 

cases the reaction between the ligands and the Ni
II
 complexes, leaded to the immediate precipitation 

of the product with the exception of ligand L1. As a consequence, for ligand L1 UV-vis spectro-

scopic determinations of the formation constants of the octahedral adducts between L1 and the D1-

D4 square-planar complexes were performed. Solutions of the square planar complexes D1-D4 so-

lutions were prepared in CHCl3 and the spectra recorded with an UV spectrophotometer Thermo 

Nicolet Evolution (190-1100 nm) in a range of 400-800 nm. Then known amounts of a solution of 

L1 in the same solvent were added and the spectra recorded after each addition. The set of spectra 
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recorded for each titration has been analyzed using the program SPECFIT
65

 which first calculates 

both the concentration profiles and the spectra of all the absorbing species by Evolving Factor 

Analysis (EFA) without any model assumption and then performs a least-squares optimization 

based on an equilibrium model. A good agreement between the spectra and the distribution curves 

calculated by the model and experimental ones confirm the validity of the proposed model. 

 

2.4.3.1 Titration of D1 with L1 

The Fig. 2.31 reports the UV-visible spectra recorded during the titration of a 9.81·10
-3

 M of D1 so-

lution in CHCl3 with increasing amounts of a 2.49·10
-2

 M L1 solution in CHCl3 using an Eppendorf  

electronic automatic dispenser (5-100µL). The starting volume of the solution, the L1 added 

amounts, the final concentrations calculated for the reagents and their molar ratios are reported in 

Table 2.23. The data were analyzed by "Factor Analysis" and the corresponding eigenvalues, col-

lected in Table 2.24, reveal that only two species are present in solution. In our opinion, the two 

species are the square planar complex D1 and a D1·L12 adduct formed through the addition of two 

L1 ligands to the central Ni
II
 ion. The coordination of the second pyridyl group of the ligand to an-

other D1 moiety leads to the formation of the insoluble coordination polymer that precipitates from 

the solution as a green powder. The data were than fitted by the program following the proposed 1:2 

model and the equilibrium formation constant for the equilibrium: 

             

corresponding to the octahedral adduct formation was calculated with a least squares method, ob-

taining the value:                     In Fig. 2.32 the calculated distribution curves for the two 

absorbing species D1 and D1L12 involved in the equilibrium are reported, and Fig. 2.33 shows the 

plot of the absorbance values relative to the D1L12 adduct as a function of the molar ratio [L1] / 

[D1].  

  



 

 

Figure 2.47 UV-Visible Spectra collected during the Titration of D1 with L1 corrected considering the Dilu-

tion Factor. 

 

 

Table 2.24 Experimental Data for the Titration of D1 with L1 

Solution Addition/μL (± 0.2 %) Vtot/mL [L1]/10-3 M [D1]/10-3 M [L1]/[D1] 

1 - 1.50 0 9.81 0 

2 100 1.60 1.61 8.55 0.19 

3 100 1.70 3.12 6.50 0.48 

4 100 1.80 4.53 4.74 0.96 

5 100 1.90 5.86 3.50 1.68 

6 100 2.00 7.12 2.65 2.69 

7 100 2.10 8.31 2.07 4.02 

 

 

Table 2.25 Factor Analysis Eigenvalues and Parameters for the set of Data Collected for D1 and L1 

NO Eigenvalue Squaresum Sigma(abs) 

1 5.986∙101 0.268 2.860∙10-2 

2 0.252 1.590∙10-2 6.973∙10-3 

3 1.580∙10-2 1.054∙10-4 5.686∙10-4 

4 5.109∙10-5 5.429∙10-5 4.087∙10-4 
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Figure 2.48 Distribution Curves: Percentage Fractions of D1 and D1L12 as a function of the Molar Ratio 

[L1]/[D1]. 

 

 

Figure 2.49 Plot of Absorbance Values at 454 nm as a Function of the Molar Ratio [L1] / [D1].  

 

2.4.3.2 Titration of D2 with L1 

The titration of D2 with L1 has been performed with a procedure analogous to that just described 

for D1. The Fig. 2.34 reports the UV-visible spectra spectra recorded during the titration of a 

9.41·10
-3 

M solution of D2 in CHCl3 with increasing amounts of a 2.49·10
-2

 M solution of L1 in the 

same solvent. The titration data are summarized in Table 2.24. The Factor Analysis on the recorded 

data provided the eigenvalues collected in Table 2.25, confirming in this case also that only two 

species are present in solution, recognizable as the square planar complex D2 and the octahedral 

D2L12 adduct. The data were than fitted by the program following the proposed 1:2 model and the 

equilibrium formation constant for the equilibrium: 

             



 

was calculated with a least squares method, obtaining the value:                     

In Fig. 2.35 the calculated distribution curves for the two absorbing species D2 and D2L12 involved 

in the equilibrium are reported, and Figure 2.36 shows the plot of the absorbance values relative to 

the D2L12 adduct as a function of the molar ratio [L1] / [D2].  

 

 

Figure 2.50 UV-Visible Spectra collected during the Titration of D2 with L1 corrected considering the Dilu-

tion Factor. 

 

Table 2. 26 Experimental Data for the Titration of D2 with L1. 

Solution Addition /μL (± 0.2 %) Vtot/mL [L1]/10-3 M [D2]/10-3 M [L1]/[D2] 

1 - 1.50 0 9.41 0 

2 50 1.55 0.80 9.03 0.17 

3 50 1.60 1.56 8.53 0.27 

4 50 1.65 2.27 7.97 0.37 

5 50 1.70 2.93 7.40 0.48 

6 50 1.75 3.56 6.83 0.61 

7 50 1.80 4.15 6.29 0.75 

8 50 1.85 4.72 5.79 0.91 

9 50 1.90 5.25 5.33 1.08 

10 50 1.95 5.75 4.91 1.27 

11 50 2.00 6.23 4.54 1.57 

12 100 2.10 7.12 3.90 2.04 

13 100 2.20 7.93 3.38 2.57 

14 100 2.30 8.67 2.96 3.16 

15 100 2.40 9.35 2.61 3.81 

16 100 2.50 9.97 2.33 4.52 

17 100 2.60 10.54 2.10 5.29 

18 100 2.70 11.08 1.90 6.10 



 

19 100 2.80 11.57 1.73 6.96 

20 100 2.90 12.03 1.58 7.86 

 

Table 2.27 Factor Analysis Eigenvalues and Parameters for the set of Data collected for D2 and L1 

 

NO Eigenvalue Squaresum Sigma(abs) 

1 1.524∙102 0.333 1.838∙10-2 

2 0.333 4.209∙10-4 6.537∙10-4 

3 1.197∙10-4 3.012∙10-4 5.533∙10-4 

4 9.976∙10-5 2.014∙10-4 4.527∙10-4 

 

 

Figure 2.51 Distribution Curves: Percentage Fractions of D2 and D2L12 as a Function of the Molar Ratio 

[L1]/[D2]. 

 

 

Figure 2.52 Plot of Absorbance Values at 454 nm as a Function of the Molar Ratio [L1] / [D2]. 

 



 

2.4.3.2 Titration of D3 with L1 

Following the same procedure above described, a 9.33·10
-3 

M solution of D3 in CHCl3 was titred by 

adding increasing amounts of a 2.49·10
-2

 M solution of L1 in the same solvent. In Fig. 2.37 the UV-

visible spectra recorded during the titration are reported, and the titration data are summarized in 

Table 2.27. The Factor Analysis on the recorded data provided the eigenvalues collected in Table 

2.28, confirming the presence in solution of the two species D3 and D3L12 adduct. The data were 

than fitted by the program following the proposed 1:2 model and the equilibrium formation constant 

for the equilibrium: 

             

was calculated with a least squares method, obtaining the value:                     

In Fig. 2.38 the calculated distribution curves for the species D3 and D3L12 involved in the equilib-

rium are reported, and Fig. 2.39 shows the plot of the absorbance values relative to the D3L12 ad-

duct as a function of the molar ratio [L1] / [D3].  

 

 

Figure 2.53 UV-Visible Spectra collected during the Titration of D3 with L1, corrected considering the Di-

lution Factor. 

 

Table 2.28 Experimental Data for the Titration of D3 with L1 

Solution Addition /μL (± 0.2 %) Vtot/mL [L1]/10-3 M [D3]/10-3 M [L1]/[D3] 

1 - 1.5 0 9.33 0 

2 50 1.55 0.80 8.84 0.09 

3 50 1.6 1.56 8.10 0.19 

4 50 1.65 2.27 7.25 0.31 

5 50 1.7 2.93 6.41 0.46 

6 50 1.75 3.56 5.64 0.63 

7 50 1.8 4.15 4.95 0.84 



 

8 50 1.85 4.72 4.36 1.08 

9 50 1.9 5.25 3.86 1.36 

10 50 1.95 5.75 3.43 1.68 

11 50 2 6.23 3.06 2.03 

12 100 2.1 7.12 2.49 2.86 

13 100 2.2 7.93 2.07 3.84 

14 100 2.3 8.67 1.75 4.96 

15 100 2.4 9.35 1.50 6.23 

16 100 2.5 9.97 1.31 7.63 

17 100 2.6 10.54 1.15 9.16 

18 100 2.7 11.08 1.03 10.80 

19 100 2.8 11.57 0.92 12.56 

20 100 2.9 12.03 0.83 14.42 

 

 

Table 2.29 Factor Analysis Eigenvalues and Parameters for the set of Data collected for D3 and L1 

 

NO Eigenvalue Squaresum Sigma(abs) 

1 4.336∙102 0.543 2.360∙10-2 

2 0.543 5.949∙10-3 2.458∙10-3 

3 5.088∙10-3 8.619∙10-4 9.359∙10-4 

4 5.319∙10-4 3.300∙10-4 5.794∙10-4 

 

 

 

Figure 2.54 Distribution curves: Percentage Fractions of D3 and D3L12 as a Function of the Molar Ratio 

[L1]/[D3]. 

 

 



 

 

 

Figure 2.55 Plot of Absorbance Values at 454 nm as a Function of the Molar Ratio [L1] / [D3].  

 

Unfortunately, it was not possible to calculate the formation constant relative to the adduct between 

D4 and L1 due to incipient precipitation of the final product. The calculated formation constants 

have been compared with those previously reported for the adduct formation between D3 and pyri-

dine (Py) and o-, m-, p-aminopyridine (o-, m-, p-NH2Py),
50

 showing very similar values especially 

if compared with the para-substituted aminopyridine (Table 2.29).  

 

Table 2.30 Comparison between the Rxperimental Constant Values and those present in Literature. 

 

Adducts logβeq 

D1L12           

D2L12           

D3L12           

D3(Py)2           

D3(o-NH2Py)2           

D3(m-NH2Py)2           

D3(p-NH2Py)2           

 
 
 
 
 
 
 
 
 

 

 



 

3 Experimental  

Most of the experimental work of the PhD was employed on the organic synthesis of the 

building blocks followed by the preparation of the coordination polymers. Most of the syn-

thesis were performed in oven dried glassware under a positive pressure of nitrogen. Start-

ing materials and solvents were purchased from commercial sources and when necessary 

the solvents have been distilled according to standard literature techniques. 

 

 Melting point measurements were carried in capillaries, using electro thermal melting point 

apparatus (0-250° Celsius range). 

 Elemental analysis were performed with an EA1108 CHNS-O Fisons instrument. 

 1
H-NMR (400-MHz) and 

13
C-NMR (100-MHz, 126-MHz) were recorded at 25 °C on a 

Varian INOVAX-400 spectrometer and Varian INOVAX-500 spectrometer. Chemical 

shifts for 
1
H-NMR  and 

13
CNMR are reported in parts per million (ppm), calibrated to the 

residual solvent peak set, with coupling constants J reported in Hertz (Hz). The following 

abbreviations are used for spin multiplicity: s singlet, d = doublet, t = triplet, m =multiplet. 

  Infrared (IR) spectra were recorded on a Thermo Nicolet 5700 FTXIR spectrophotometer 

using KBr pellets and it's reported in wavenumbers (cm
−1

).  

  FT-Raman spectra (resolution of 4 cm
-1

) were recorded using a Bruker RFS100 FT-Raman 

spectrometer, fitted with an In-Ga-As detector (room temperature) operating with a 

Nd:YAG laser (excitation wavelength 1063 nm) with a 180ºC scattering geometry. The ex-

citation power was modulated between 50 and 800 mW depending on the characteristics of 

the substance.  

 Fluorescence spectra were determined on a Varian Cary Eclypse spectrofluorimeter, with a 

xenon lamp 60-75 kw power, (190-900 nm) wavelength range. 

 Single crystal diffraction data has been record at the EPSRC UK National Crystallography 

service at the University of Southampton (U.K) using a Bruker-Nonius Kappa CCD area 

detector situated at the window of a rotating anode (graphite Mo-K radiation,  = 

0.71073Å). The structures were solved by direct methods procedure in SHELXL-97, and 

refined by full- matrix  least squares on F
2 

using SHELXL-97 and Olex 2.Anisotropic dis-

placement parameters were assigned to all non-hydrogen atoms. Hydrogen atoms are in-

cluded in the refinement but thermal parameters and geometry were constrained to ride on 

the atom to which they are bonded. 



 

3.2 Synthesis and Characterization of Dithiophosphato Complexes 

3.2.1 bis(O-methyldithiophosphato)Ni(II)(D1) 

A mixture of NiCl2·6H2O (0.235 g, 1.0 mmol) and P2S5 (0.222 g, 0.5 mmol) in methyl alcohol (50 

mL) was refluxed for 1 hour, and the solvent was then removed under reduced pressure to give a 

purple solid (0.7423, 1.99 mmol, 43 % yield). The purple solid was then recrystallized with a 1:1 

mixture of CH2Cl2 and MeOH. D1 was obtained as purple crystals, suitable for X-ray analysis. 

M.p.: 121-124 ºC. Elemental analysis found (Calc. for C4H12O4P2S4Ni; formula mass = 373.0 uma): 

C, 13.00 (12.88); H, 3.19 (3.24); S, 34.00 (34.88). FT-IR (KBr, 2000-50 cm
-1

): 1832 vw, 1444 s, 

1173 vw, 1117 s, 796 vs, 654 vs, 532 m, 469 m, 433 m, 396 m 353 m, 351 m, 333 w, 326 w, 325 

vw, 302 w, 279 w, 246 w, 225 vw, 179 w, 151 m, 120 vw, 107 w, 74 w cm
-1

. FT-Raman (3500-50 

cm
-1

, 50 mW, solid state, relative intensities between parentheses related to the highest peak taken 

equal to 10.0): 3022 (0.5), 2944 (3.0), 2841 (1.2), 1438 (0.6), 1067 (0.2), 819 (0.7), 635 (7.3), 522 

(10.0), 471 (1.1), 395 (1.3), 341 (1.7), 312 (6.1), 248 (5.3), 216 (5.8), 124 (6.5) cm
-1

. 

3.2.2 bis(O-ethyldithiophosphato)Ni(II)(D2) 

A mixture of NiCl2·6H2O (1.1971 g, 5.4 mmol) and P2S5 (0.2220 g, 0.5 mmol) in EtOH (50 mL) 

was refluxed for 1 hour, and the solvent was then removed under reduced pressure to give a purple 

solid (0.3731 g, 2.19 mmol, 48.2 % yield). The purple solid was then recrystallized with a 1:1 mix-

ture of CH2Cl2 and EtOH. D2 was obtained as purple crystals, suitable for X-ray analysis. M.p.: 105 

ºC (m). Elemental analysis found (Calc. for C8H20O4P2S4Ni; formula mass = 429.1 uma): C, 22.28 

(22.39); H, 4.88 (4.70); S, 29.29 (29.88). FT-IR (KBr, 2000-50 cm
-1

): 1822 w, 1690 vw, 1659 vw, 

1641 vw, 1549 w, 1529 w, 1473 mw, 1451 m, 1440 m 1389 s, 1282 s, 1159 mw, 1103 mw, 1049 w, 

1004 m, 951 ms, 822 s, 806 s, 642 vw, 542 m, 434 w, 418 vs, 392 s, 357 vs, 325 m, 309 m, 280 m, 

266 vw, 248 s, 226 s, 205 s, 186 m, 166 m, 150 mw, 121 m, 90 m, 73 s, 54 w cm
-1

. FT-Raman 

(3000-50 cm
-1

, 50 mW, solid state, relative intensities between parentheses related to the highest 

peak taken equal to 10.0): 2979 (0.3), 2962 (2.8), 2936 (4.1), 2923 (3.5), 2897 (1.6), 2864 (1.0), 

2720 (0.3), 2472 (0.5), 2452 (1.1), 1388 (0.6), 1104 (1.5), 1053 (0.8), 1005 (0.4), 824 (2.0), 781 

(1.1), 635 (3.4), 547 (9.6), 402 (1.9), 345 (2.2), 332 (4.4), 304 (4.7), 242 (3.3), 159 (6.3), 95 (10.0) 

cm
-1

. 

3.2.3 trans-bis[O-methyl-(4-methoxyphenyl)dithiophosphonato]Ni(II)(D3) 

A mixture of NiCl2·6H2O (0.4788 g, 2.0 mmol) and LR (0.8904 g, 2.2 mmol) in MeOH (100 mL) 

was refluxed for 1 hour, and the solvent was then removed under reduced pressure to give a purple 

solid (0.9432 g, 1.9 mmol, 91 % yield). The purple solid was then recrystallized with a 1:1 mixture 

of CH2Cl2 and CH3OH. D3 was obtained as purple crystals, suitable for X-ray analysis. M.p.: 184 



 

°C (m). Elemental analysis found (Calc. for C16H20O4P2S4Ni; formula mass = 523.9 uma): C, 37.1 

(36.6); H, 3.9 (3.8); S, 24.3 (24.4). FT-IR (KBr, 3500-100 cm
-1

): 3075 vw, 2997 w, 2972 w, 2941 

mw, 2837 vw, 1907 vw, 1597 vs, 1567 mw, 1500 s, 1465 mw, 1440 m 1426 w, 1407 mw, 1348 w, 

1332 vw, 1307 ms, 1294 s, 1269 vs, 1177 s, 1165 m, 1118 vs, 1029 ms, 1011 vs, 1003 vs, 836 m, 

820 vw, 808 mw, 789 vs, 667 s, 640 s, 622 ms, 550 s, 524 m, 491 vw, 435 m, 375 m, 351 m, 297 

mw, 277 w, 256 vw, 252 vw, 202 w, 165 w, 148 vw, 130 w, 122 w, 100 vw, 88 vw, 73 vw, 53 vw 

cm
-1

. FT-Raman (3500-50 cm
-1

, 50 mW, solid state, relative intensities between parentheses related 

to the highest peak taken equal to 10.0): 3074 (3.8), 2998 (2.1), 2943 (3.8), 2838 (1.4), 1590 (6.3), 

1566 (1.2), 1259 (1.2), 1118 (7.2), 1002 (1.2), 801 (2.8), 667 (2.6), 639 (3.3), 553 (9.1), 491 (1.2), 

440 (1.3), 314 (6.1), 296 (1.7), 238 (2.6), 102 (9.7), 84 (10.0) cm
-1

. 

 

3.2.4 trans-bis[O-ethyl-(4-methoxyphenyl)dithiophosphonato]Ni(II)(D4) 

A mixture of NiCl2·6H2O (0.4755 g, 2.0 mmol) and LR (0.8917 g, 2.2 mmol) in EtOH (100 mL) 

was refluxed for 1 hour, and the solvent was then removed under reduced pressure to give a purple 

solid (0.7015 g, 1.3 mmol, 63 % yield). The purple solid was then recrystallized with a 1:1 mixture 

of CH2Cl2 and EtOH. D4 was obtained as purple crystals, suitable for X-ray analysis. M.p: 133 °C 

(m). Elemental analysis found (Calc. for C18H24O4P2S4Ni; formula mass = 553.3 uma): C, 39.4 

(39.1); H, 4.4 (4.4); S, 23.9 (23.2). FT-IR (KBr, 3500-100 cm
-1

): 2969 mw, 2928 w, 2838 mw, 2559 

vw, 2055 vw, 1912 vw, 1776 vw, 1594 vs, 1566 ms, 1500 s, 1461 m, 1452 m, 1438 m, 1408 m, 

1386 m, 1308 s, 1298 vs, 1262 vs, 1175 ms, 1159 m, 1115 vs, 1030 s, 1001 vs, 942 vs, 826 ms, 801 

s, 772 s, 661 s, 638 s, 623 s, 493 m, 445 m, 428 m, 389 w, 359 ms, 346 s, 320 m, 294 m, 286 m, 272 

mw, 262 w, 251 vw, 238 mw, 219 vw, 199 q, 183 w, 163 mw, 125 mw, 116 mw, 72 ms cm
-1

. FT-

Raman (3500-50 cm
-1

, 50 mW, solid state, relative intensities between parentheses related to the 

highest peak taken equal to 10.0): 3068 (2.4), 2968 (1.9), 2922 (2.3), 1593 (5.3), 1566 (0.8), 1306 

(1.0), 1294 (1.0), 1245 (0.8), 1178 (1.8), 1114 (7.8), 802 (2.3), 663 (2.3), 634 (2.3), 616 (2.3), 555 

(5.1), 310 (2.3), 277 (1.9), 234 (1.3), 112 (8.9), 80 (10.0) cm
-1

. 

 

 

3.3 Synthesis and Characterization of the Polypyridyl Ligands. 

3.3.1 1,4-di-3-pyridyl-1,3-butadiyne(L1) 

The ligand 1,4-di-3-pyridyl-1,3-butadiyne (L1) was synthesized by a different way from the litera-

ture methods
66

 thus optimizing yield and reaction time by using small quantity of bis (tri-

phenylphosphine) palladium (II) dichloride catalyst. A mixture of  3-ethynylpyridine (0.996 g, 9.65 



 

mmol), copper iodide ( 0.056 g, 0.30 mmol), bis (triphenylphosphine) palladium(II) dichloride 

(0.133 g 0.19 mmol) and diethylamine (50 mL) was stirred at reflux temperature for 5 hours.The 

mixture was then filtered under reduced pressure, washed with brine (20 mL)  and extracted with 

ethyl acetate (3x15 mL) dried with Na2SO4 and the solvent evaporated under reduced pressure. The 

crystallization of the yellow solid from dichloromethane-ethanol yielded  L1 as a light yellow crys-

tals (0.603 g, 2,95 mmol, 61 % yield). M.p 148 °C.  

 

 

 

Scheme 3.1 1,4-di-3-pyridyl-1,3-butadiyne (L1) Synthetic Procedure.  

 

Spectral data:  
1
H NMR (500 MHz CDCl3 298 K)  δ = 8.77 (d, 2H,), δ = 8.61 (dd), δ = 7.82 (dt), δ = 

7.30 (t).
 
FT-IR (KBr, 4000-400cm

-1
) ṽ =

  
2128 (w), 1577 (m), 1473 (m),  1412 (s), 1188 (m), 1022 

(s), 802 (s), 698 (s), 627 (m), 513 (w). Fluorescence (CHCl3; λex = λex = 263 nm.; slit = 5x5): λem 

= 357 nm and 369 nm, M = 1.14·10
–6

 . 

 

The catalyst bis (triphenylphosphine) palladium (II)dicloride [PdCl2(PPh3)2] was synthesized 

through following synthetic method. A solution of triphenylphosphine (1.0 g, 8.1 mmol) in 10 mL 

of warm EtOH has been add to a solution of (NH4)2PdCl4 (0.6 g 1.9mmol) in 10 mL of warm H2O 

and 10 mL of warm EtOH and stirred for 15 minutes. The yellow solid has been isolated by filtra-

tion, recrystallized in toluene and dried under vacuum. M.p.: >230°C. FT-IR (KBr, 4000-400cm
–1

): 

3420 w, 3048 w, 2360 w, 1480 m, 1435 s, 1330 w, 1309 w, 1186 w, 1159 w, 1098 s, 1027 m, 998 

m, 745 m, 708 m, 692 s, 521 s, 500 s, 455 w, 440 w cm
-1

. FT-Raman (500-50 cm
-1

, 50 mW, solid 

state, relative intensities between parentheses related to the highest peak taken equal to 10.0): 304 

(5.7), 277 (0.9), 254 (1.2), 226 (1.1), 201 (1.9), 151 (3.3), 89 (10.0) cm
-1

.  
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Scheme 3.2 bis(triphenylphosphine)palladium(II)dicloride [PdCl2(PPh3)2] Synthetic Procedure. 

 

 

3.3.2  1,4-bis(4-pyridylethynyl)benzene(L2)  

A mixture of 1,4-diiodobenzene (1.79 g, 2.4 mmol), 4-ethynylpyridine hydrochloride (1.53 g, 11.0 

mmol), copper iodide (0.05 g, 0.25 mmol) and bis(triphenylphosphine)palladium(II) dichloride 

(0.18 g, 0.25 mmol) and freshly distilled diethylamine (50 mL) was degassed and stirred under ni-

trogen at 80 °C for 7 hours and stirred at room temperature for 2 days. The mixture was then fil-

tered under reduced pressure, extracted with CHCl3 and washed with water (3x50 mL). The com-

bined organic extracts were dried (Na2SO4) and the solvent evaporated under reduced pressure. The 

residue was purified by chromatography on alumina using diethyl ether as eluent to yield L2 (0.46 

g, 1.6 mmol, 62 % yield) as pale yellow solid. M.p.: 155-156 °C (m).  

 

 

Scheme 3.3 1,4-bis(4-pyridylethynyl)benzene (L2) Synthetic Procedure. 

 

Spectral data:  
1
H NMR (500 MHz CDCl3 298 K) δ = 8.5 (d), δ = 7.6 (d), δ = 7.45(s). FT-IR (KBr, 

4000-400 cm-1): 3340 m, 2217 m, 1653 m, 1590 s, 1577 m, 1559 m, 1540 m, 1522 m, 1507 m, 

1490 m, 1261 m, 1210 w, 1098 m, 1067 m, 1008 m, 991 m, 841 m, 821 s, 804 s, 714 w, 668 w, 626 

m, 535 m, 521 m, 470 m, 443 w, 419 w cm-1. FT-Raman (500-50 cm
-1

,25 mW, solid state, relative 

intensities between parentheses related to the highest peak taken equal to 10.0): 168 (7.1), 154 (9.0), 

117 (10.0) cm
-1

. 

 

3.3.3 2,2'-dimetoxy-1,1' -binaphtyl-3,3'-bis(4pyridyl-amido)(R)(L3) 

The ligand (R)-L3 was synthesized and characterized in collaboration with Prof. Pasini group in 

University of Pavia (Italy). The spacer is synthesized in two steps from optically-pure (R)-2,2'-

dimethoxy-1,1'-binaphthyl-3,3'-dicarboxylic acid under nonracemizing conditions. The precursor 

could be obtained in enantiopure form after a published four step procedure
67

 (including an enanti-



 

oresolution step) from commercially available 2-naphthol. The dicarboxylic acid was subsequently 

activated as the acid chloride, and then amidation in the presence of 4-dimethylamino pyridine (ex-

cess), and triethylamine as the non nucleophilic acid scavenger, afforded the title compound (R)-L3 

in 30%  yields after purification by column chromatography.  

 

 

DMAPy: 4-dimethylaminopyridine 

Scheme 3.4 2,2'-dimetoxy-1,1' -binaphtyl-3,3'-bis(4pyridyl-amido)(R) (L3) Synthetic Procedure. 

 

Spectral data:
 1

H NMR (200 MHz, CDCl3): δ =10.19 (s, 2H, NHCO), 9.03 (s, 2H, Binaphthyl-H4), 

8.60 (d, 4H, J=5.7, α-pyridine), 8.14 (d, 2H, J=8.1, Binaphthyl), 7.70 (d, 4H, J=5.7, β-pyridine), 

7.58 (t, 2H, J=6.6, Binaphthyl), 7.42 (t, 2H, J=6.6, Binaphthyl), 7.19 (d, 2H, J=8.7, Binaphthyl), 

3.46 (s, 6H, OCH3). 

 

3.3.4 2,5-bis (4-pyridyl)-4-thia-1,3-thiazolidine (L4) and 2,5-bis (3-pyridyl)-4-thia-1,3-      

thiazolidine (L5) 

Ligands 2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine (L4) and 2,5-bis(3-pyridyl)-4-thia-1,3-thiazolidine 

(L5) were synthesized according to literature methods.
56 

To a solution of thioisonicotinamide (for 

L4) or thionicotinamide (for L5) (2.00 g, 14.4 mmol) in 20 mL of warm absolute ethanol, was add-

ed a solution of iodine (5.55 g, 22 mmol) in 50 mL of absolute ethanol. The reaction is  maintained 

itself just under reflux temperature for one  hour. The mixture  was filtered to remove the remaining 

insoluble sulphur and it was then left to stand at room temperature overnight, during which time a 

large mass of dark needles had deposited. The solid filtrate was chilled in an ice-bath and the pre-

cipitated dark needles were removed by filtration and washed with ethanol/hexane 1:1 The dark 

crystals were suspended in 30 mL of water, the mixture was then made alkaline with 1 mL of 4N 

sodium hydroxide, and treated with an excess of solid sodium thiosulfate to effect decolourization. 

The mixture was warmed gently to hasten the reduction of the iodine and then chilled to precipitate 

the product. Recrystallisation of the product from benzene raised L4 (0.94 g, 0.004 mmol, 56 % 



 

yield) as a white solid, M.p 110°C or L5 (0.38 g, 0.002 mmol, 23 % yield) as a pale brown solid, 

M.p 115°C. 

 

 

 

Scheme 3. 5 2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine(L4) and 2,5-bis(3-pyridyl)-4-thia-1,3-thiazolidine 

(L5), Synthetic Procedure. 

 

Spectral data L4.
1
H NMR (500 MHz CDCl3 298 K)  δ = 8.63(t), δ = 7.51 (m).  FT-IR (KBr, 4000-

350    cm–1): 3448 (w), 1589 (m), 1575 (m), 1497 (w), 1478 (s), 1400 (s), 1338 (m), 1297 (m), 

1238 vw, 1127 (w), 1047 (vw), 1023 (m), 989 (m), 811 (s), 727 (s), 698 (vs), 617 (w), 493 (vw) cm-

1. Fluorescence (CH3CN; λex = 240 nm; slit = 5x5): λem = 416 nm, M = 1.08·10
–4

.Spectral data 

L5. 
1
H NMR (500 MHz CDCl3 298 K)  δ = 8.64(d), δ = 8.54 (m), δ = 7.86 (tt) δ = 7.37 (q). FT-IR 

(KBr, 4000-350 cm–1): 3443 (w), 1955 (m), 1600 (s),1466 (w), 1407 (s), 1343 (m), 1291 (m), 1251 

(vw), 1127 (w), 1065 (vw), 1007 (m), 990 (m), 842 (s), 834 (s), 676 (vs), 619 (w), 473 (vw) cm
-1

.
 
 

 

3.3.5 1,3,5 tris (3-pyridylethynyl) benzene (L6) 

The ligand 1,3,5 tris (3-pyridylethynyl) benzene L6 was synthesized through the following synthet-

ic method. A mixture of 1,3,5-tribromobenzene  (0.63g, 2.1 mmol), 3-ethynylpyridine (1.03 g, 10 

mmol), copper iodide (0.04 g, 0.2 mmol) and bis (triphenylphosphine) palladium (II) dichloride 

(0.14g, 0.2 mmol) and freshly distilled diethylamine (50 ml) was degassed and stirred under nitro-

gen at 60 °C  for two days. The solvent was removed  by  reduced  pressure and the solid washed 

with satured acqueous NH4Cl (60mL) and extracted with ethyl acetate (3x75mL). The combined 

organic extracts dried on Na2SO4  and the solvent  evaporated under reduced pressure. Recrystalli-

sation of the residue from ethanol, water (1:1) yielded  L6 (0.49 g, 1,3 mmol 64% yield) M.p  185 

°C. 



 

 

Scheme 3.6 1,3,5 tris (3-pyridylethynyl) benzene  Synthetic Procedure. 

 

Spectral data 
1
H NMR (500 MHz CDCl3 298 K)  δ = 8.79 (d), δ = 8.56 (dd), δ = 7.90 (dt), δ = 7.69 

(s), δ = 7.28 (t). FT-IR (KBr, 4000-400cm
-1

) ṽ =
 
3035 (w), 2212(w), 1635 (m),  1591 (m), 1477 (s), 

1022 (s), 874 (s), 803 (s), 700 (s), 677 (m).   

 

3.3.6  N,N',N''-tris (3-pyridin) benzene-1,3,5 tricarboxamide (L7) and N,N',N''-tris(4-

pyridin) benzene  -1,3,5 tricarboxamide (L8). 

Ligands L7 and L8 were synthesized according to literature methods.
68

 A solution of 1,3,5-

benzenetricarbonyl  chloride (0.78ml, 3.8 mmol) in THF (10 mL) was added drop wise to the THF 

solution (25mL) of 3-aminopyridine or  4-aminopyridine (1.128g ,12.1 mmol) and triethylamine 

(2.6 ml, 19 mmol) at 0 °C under nitrogen atmosphere. The solution was stirred for twenty four 

hours. THF was distilled off and the yellow precipitate  product was washed with water. Recrystal-

lisation of the solid from methanol yielded  (0.43 g, 1,3 mmol 72% yeld). Mp >230°C for both.  



 

 

Scheme 3.7 N,N',N''-tris (3-pyridin) benzene-1,3,5 tricarboxamide (L7) and N,N',N''-tris(4-pyridin) benzene  

-1,3,5 tricarboxamide (L8) Synthetic Procedure. 

 

Spectral data (L7): 
1
HNMR (500MHz, DMSO d-6) δ = 10.91 (s), δ =8.98 (s), δ = 8.78 (d), δ = 8.36 

(dd), δ = 8.22 (dt), δ = 7.42(t).
13

CNMR (500MHz, DMSO d-6) δ = 165.58, δ = 144.95, δ = 142.03, 

δ = 135.55, δ = 134.97 δ = 130.14, δ = 127.48, δ = 123.67. FT-IR (KBr, 4000-400cm
-1

) ṽ =
 
3245 

(w), 3077 (w), 1685 (s),  1606 (w), 1548 (vs), 1483 (m), 1421 (m), 1237 (m), 1127 (w), 1048 (w) 

911 (w), 806(m), 703 (w). Spectral data (L8). 
1
HNMR (500MHz, DMSO d-6) δ = 11.10 (s), δ =8.79 

(s), δ = 8.56 (d), δ = 7.91 (d). FT-IR (KBr, 4000-400cm
-1

) ṽ =
 
3422 (w), 3082 (w), 2116 (w),  1681 

(s), 1604 (vs), 1513 (s), 1419 (m), 1332 (m), 1297 (w), 1195 (w) 1085 (w), 830(m), 712 (w), 527 

(w).      

 

3.3.7 1,3,5-benzenetricarboxylic acid, 1,3,5-tri-3-pyridinyl ester (L9) and 1,3,5 Ben-

zene-tricarboxylic acid 1,3,5-tri-4-pyridinyl ester (L10). 

Ligands L9 and L10 were synthesized according to following  literature methods.
69

 A solution of 

1,3,5 benzenetricarbonyl trichloride (0.37 g 1.4 mmol) in 15 mL of dry CH2Cl2 was added to a solu-

tion of 3-hydroxypyridine (0.40g 4.2 mmol) or 4-hydroxypyridine (0.41 g 4.2 mmol)  and triethyl-

amine (0,5 ml 3.40 mmol) in 50 mL of dry CH2Cl2. The reaction mixture was heated at reflux for 

twenty-four hours and the resultant solution washed with brine (10 mL x3). The organic phase was 

evaporated under reduced pressure and the white  solid obtaineed washed with diethyl ether. 

(0.452g ,1.0 mmol 65% yeld ) M.p 170°C for L9 ; (0.382g 0. 9 mmol 55% yield ) M.p 170°C for 

L10. 

 



 

 

Scheme 3.8 1,3,5-benzenetricarboxylic acid, 1,3,5-tri-3-pyridinyl ester and 1,3,5 benzene-tricarboxylic acid 

1,3,5-tri-4-pyridinyl ester Synthetic Procedure. 

 

Spectral data (L9): 
1
H NMR (500 MHz DMSO-d6  298 K)  δ = 9.05 (s), δ = 8.93 (dd), δ = 8.65 (d), 

δ = 8.55 (dd). FT-IR (KBr, 4000-400cm
-1

) ṽ =
  
3418 (w), 2817 (w), 2490 (w),  1764 (s), 1577 (m), 

1479 (m), 1353 (m), 1207 (w), 1042 (w), 842 (w), 800 (m), 730 (m), 640 (m). Fluorescence 

(CH3OH; λex = λex= 275 nm; slit = 5x5): λem = 311 nm, M = 1.0·10
–4

 shown in the Figure 3.2. 

Spectral data (L10) 
  1

H NMR 500 MHz CDCl3 298 K)  δ = 8.79 (d), δ = 8.75 (d), δ = 8.60 (s), δ = 

7.51 (d). FT-IR (KBr, 4000-400cm
-1

) ṽ =
  
3441 (w), 3078 (w), 1745 (s),  1625 (m), 1506 (m), 1214 

(m), 1192 (m), 924 (w), 839 (m), 676 (m). Fluorescence (EtOH; λex = 240 nm; slit = 5x5): λem = 347 

nm, M = 1.0·10
-4

 

 

 

3.4 Coordination Polymers Synthesis. 

All nitrogen ligands donors have been reacted with the four organo-dithiophosphorous metal com-

plexes with classical solvothermal techniques in different molar ratios and using suitable solvents 

such as chloroform amylene stabilized, methanol and ethanol distilled off.  We have obtained for 

the most part of ligands microcrystalline green solid which were characterized by melting point, 

FT-IR, while the obtaining of single crystals it was more complicated and opportune  crystallization 

methods described in §2.2 have been necessary to in order to obtain the crystals suitable for the x-

ray analysis diffraction X-ray analysis.  



 

 

3.4.1 [((MeO)2PS2)2Ni]· (1,4 bis (3-pyridyl)butadiyne)]∞,(D1L1)∞ 

(29.6 mg, 0.08 mmol) of [((MeO)2PS2)2Ni] (D1) and (30.5 mg, 0.15 mmol) of (1,4 bis (3-pyrdyl) 

butadiyne) (L1), have been reacted at 130 °C in high pressure Aldrich tube in 15 mL of MeOH and 

15 mL of CHCl3 (amylene stabilized). After complete dissolving of the reagents, the reaction mix-

ture was transferred in a vial, and  slowly cooled at room temperature. After two weeks green nee-

dles crystals of (D1L1)∞, suitables for X-ray analysis have been obtained (10 mg, 0.13·10
-3 

mmol, 

55% yield). M.p > 250°C (m) not detectable. FT-IR (KBr, 4000-400cm
-1

): 3415 m, 2937 w, 1638 

w, 1478 w 1175 w, 1016 s, 798 s, 695 w, 673 w, 659 w.  

3.4.2 [((EtO)2PS2)2Ni·(1,4 bis (3-pyridyl)butadiyne)]∞,(D2L1)∞ 

(56.8 mg, 0.13mmol) of [((EtO)2PS2)2Ni] (D2) and (51.0 mg, 0.25 mmol) of (1,4 bis (3-

pyridyl)butadiyne) (L1) , were reacted at 130 °C in a high pressure Aldrich tube in 15 mL of EtOH 

and 15 ml of  CHCl3 (amylene stabilized).  After complete dissolving of the reagents, the reaction 

mixture was tranferred in a small vial and slowly cooled at room temperature. After two weeks was 

obtained very few green palette crystals of (D2L1)∞ suitable for X-ray analysis. M.p=170°C. FT-IR 

(KBr, 4000-400cm
-1

): 3441 m, 2973 m, 2925 w, 1738 w 1618 w, 1440w, 1384 vw, 1101 m, 1023 s, 

801 m 644 m 538 w, cm
-1

 

 

3.4.3 [(MeO-C6H4)(MeO)PS2)2Ni·(1,4 bis (3-pyridyl)butadiyne)]∞,(D3L1)∞ 

(96.0 mg,  0.18 mmol) of [((MeO)2PS2)2Ni] (D3) and (70 mg ; 0.35 mmol ) of (1,4 bis (3-

pyridyl)butadiyne) (L1) , have been reacted at 50 °C in a flask with 15 mL of MeOH and 15 mL of 

CHCl3 (amylene stabilized). After complete dissolving of the reagents, the reaction mixture was 

slowly cooled at room temperature. After twentyfour hours a green microcristalline powder of  

(D3L1)∞ is precipitated from solution. (45 mg; 0.48 mmol; 89%yeld) M.p.: 180 °C (m). Green 

crystals suitable for X-ray analysis were obtained  by preparing a solution of D3 (20 mg; 0.458 

mmol) in 5 mL of CHCl3 (amylene stabilized ) in a small vial  wich was then introduced into a big-

ger one containing solution of L1 (17.5 mg; 0.08 mmol) in 10 mL of MeOH, and left to stand at 

room temperature for a week. FT-IR (KBr, 4000-400cm
-1

): 1598 vs, 1568 w, 1531 vw, 1500 s, 1455 

w, 1440 w, 1389 w, 1297 ms, 1259 s, 1216 mw, 1178 mw, 1114 vs, 1064 w, 1029 vs, 949 s, 830 w, 

810 mw, 646 s, 628 mw, 545 ms, 521 w, 500 vw, 472 mw, 438 vs, 383 vs, 383 s, 326 vw, 301 w, 

287 vw, 235 s, 199 mw, 167 vs, 112 ms, 102 s cm
-1

.  

 



 

3.4.4 [MeO-C6H4)(EtO))PS2)2Ni] ·(1,4 bis (3-pyrdyl)butadiyne)]∞,(D4L1)∞ 

(35.6 mg, 0.65 mmol) of [((EtO)2PS2)2Ni] (D4) and (25.1 mg, 0.12 mmol) of (1,4 bis (3-pyridyl) 

butadiyne) (L1), have been reacted at 50 °C in a flask with 13 mL of EtOH and 15 mL of CHCl3 

(amylene stabilized). After complete dissolving of the reagents, the reaction mixture was slowly 

cooled at room temperature. After twentyfour hours a green microcristalline powder of (D4L1)∞ 

was filtered from solution (60 mg;  0.06·10
-3

mmol; 32% yield) M.p: 180 °C (m). Green crystals 

suitable for X-ray analysis have been obtained by reacting in Aldrich high pressure tube the same 

quantity of reagents and solvents. After complete reagent dissolving, the reaction mixture was trans-

ferred in a vial and  slowly cooled at room temperature diffusion. FT-IR (KBr,
–1

4000-400 cm
-1

): 

3445 w, 2933 w, 2831w, 1500 s, 1567 w, 1499 m, 1473 m, 1461 m, 1295 m, 1032 s, 801 m, 776 m, 

692 w, 659 w, 545 m, 520 w, 439 m, cm
-1

.  

3.4.5  [Ni((MeO)2PS2)2(1,4-bis(4-pyridylethynyl)benzene)]∞,(D1L2)∞ 

A solution of [Ni((MeO)2PS2)2](D1) (18.6 mg, 0.05 mmol) in 10 mL of CHCl3 (amylene stabilized) 

was added  dropwise  to a solution of 1,4-bis(4-pyridylethynyl) benzene (L2) (14.0 mg, 0.05 mmol) 

in  15 mL of MeOH. The mixture  was reacted in a flask at 100° C for 1h and  after twentyfour 

hours a green powder of  (D1L2)∞ was filtered from the solution (12.16 mg; 0.020 mmol; 40 % 

yield). M.p. 165-170 °C (d). Elemental analysis found (calc. for C24H24N2O4P2S4Ni;  formula mass 

= 653.3 uma): C, 44.12 (44.10); H, 3.47 (3.70); N, 4.36 (4.29); S, 17.33 (19.63). FT-IR (KBr, 4000-

350 cm
1
): 3455 w, 2224 w, 1638 m, 1604 s, 1508 w, 1449 w, 1413 w, 1384 w, 1215 mw, 1167 mw, 

1036 m, 1010 s, 848 w, 833 w, 779 s, 737 w, 682 m, 663 m, 547 vw, 528 w cm
-1

. FT-Raman (4000-

0 cm
-1

, 50 mW, solid state, relative intensities between parentheses related to the highest peak taken 

equal to 10.0): 3365 (1.9), 3067 (1.9), 2657 (1.3), 2220 (10.0), 1919 (1.0), 1596 (3.4), 1140 (1.1) 

cm
-1

.  

3.4.6 [Ni((EtO)2PS2)2(1,4-bis(4-pyridylethynyl)benzene)]∞,(D2L2)∞  

A solution of [Ni((EtO)2PS2)2](D2) (21.3 mg, 0.05 mmol) in 10 mL of CHCl3 (amylene stabilized ) 

was added  to a solution of 1,4-bis(4-pyridylethynyl) benzene (L2) (14.0 mg, 0.050 mmol) in 15 

mL of EtOH. The resultant solution it was  placed into a straight sample tube and left to stand at 

room temperature for two weeks. Crystals of (D2L2)∞ suitable for X-ray analysis have been ob-

tained (2.0 mg, 0.003 mmol, 6% yield). M.p.: 225-226 °C (d). Elemental analysis found (calc.for 

C28H32N2O4P2S4Ni; formula mass = 709.5 uma): C, 45.37(47.40); H, 5.19 (4.55); N, 3.47 (3.95); S, 

14.30 (18.08). FT-IR (KBr, 4000-400 cm
–1

): 3463 vw, , 2974 w, 2218 w, 1603 s, 1541 vw, 1509 w, 

1438 w, 1408 w, 1385 m, 1261 s, 1214 m, 1157 w, 1098 w, 1017 s, 942 s, 800 s, 770 s, 680 s, 540 s 



 

cm
-1

. FT-IR (KBr, 4000-400 cm
–1

): 3463 vw, , 2974 w, 2218 w, 1603 s, 1541 vw, 1509 w, 1438 w, 

1408 w, 1385 m, 1261 s, 1214 m, 1157 w, 1098 w, 1017 s, 942 s, 800 s, 770 s, 680 s, 540 s cm
-1

. 

3.4.7 [Ni(MeOdtp)2(1,4-bis(4-pyridylethynyl)benzene)]∞,(D3L2)∞  

[Ni(MeOdtp)2] (D3) (26.3 mg, 0.05 mmol) and 1,4-bis(4-pyridylethynyl)benzene (L2) (14.0 mg, 

0.05 mmol) were reacted at 130 °C in a high pressure Aldrich tube in 15 mL of MeOH and 15 mL 

of CHCl3 (amylene stabilized). After complete dissolving of the reagents, the reaction mixture was 

trasferred in a vial and  slowly cooled at room temperature. After two weeks was obtained a green 

precipitate of  (D3L2)∞ (17.3 mg, 0.021 mmol, 43 % yield) M.p 187 (d), 198-200 °C (f). Crystals 

suitable for X-ray analysis have been obtained by purifing the green precipitate of (D3L2)∞ in a 

high pressure Aldrich tube in 15 mL of MeOH and 15 mL of CHCl3 (amylene stabilized) (11.3 mg, 

0.014 mmol, 28 % yield). Elemental analysis found (calc. for C36H32N2O4P2S4Ni; formula mass = 

805.5 uma): C, 52.94 (53.68); H, 4.33 (4.00); N, 3.54 (3.48); S, 17.81 (15.92). FT-IR (KBr, 4000-

400 cm
–1

): 1648 m, 1600 vs, 1565 s, 1542 w, 1515 w, 1498 s, 1456 m, 1407 m, 1321 vw, 1303 w, 

1292 m, 1255 vs, 1213 m, 1176 m, 1112 vs, 1066 vw, 1027 vs, 1014 vs, 842 w, 827 vs, 800 m, 779 

vs, 736 w, 715 w, 659 m, 644 vs, 628 s, 345 vs, 520 m cm
-1

. FT-Raman (4000-0 cm
-1

, 50 mW, solid 

state, relative intensities between parentheses related to the highest peak taken equal to 10.0): 2221 

(10.0), 1598 (5.5), 1140 (2.3) cm
-1

. 

  

3.4.8 [Ni(EtOdtp)2(1,4-bis(4-pyridylethynyl)benzene)]∞,(D4L3)∞  

[Ni(EtOdtp)2] (27.7 mg, 0.05 mmol) (D4) and 1,4-bis(4-pyridylethynyl)benzene (L2) (14.2 mg, 

0.05 mmol) were reacted at 150 °C in a high pressure Aldrich tube in 30 mL of EtOH and 5 mL of 

CHCl3 (amylene stabilized). After complete dissolving of the reagents, the reaction mixture was 

transferred in a big vial and slowly cooled at room temperature. After one week a green powder of 

(D4L3)∞ was filtered from the solution (13.8 mg, 0.017 mmol, 33 % yield). M.p.: 204-205 °C (m). 

Elemental analysis found (calc. for C38H36N2O4P2S4Ni; formula mass = 833.6 uma): C, 54.74 

(54.81); H, 4.35 (4.36); N, 3.48 (3.37); S, 15.82 (15.37). FT-IR (KBr, 4000-400 cm–1): 1604 vs, 

1598 vs, 1565 s, 1542 m, 1517 m, 1498 s, 1457 m, 1442 m, 1411 m, 1386 m, 1303 w, 1290 m, 1255 

vs, 1213 m, 1176 m, 1157 w, 1135 vw, 1110 s, 1068 w, 1025 s, 1018 s, 991 w, 981 vw, 964 vw, 

937 s, 898 vw, 889 vw, 877 vw, 867 vw, 856 vw, 844 w, 827 s, 800 w, 771 m, 750 w, 738 w, 717 

vw, 673 vw, 655 m, 636 s, 626 m, 617 w, 547 s, 518 w, 443 w cm-1. FT-Raman (4000-0 cm-1, 28 

mW, solid state, relative intensities between parentheses related to the highest peak taken equal to 

10.0): 2238 (10.0), 1603 (8.8), 1150 (7.3), 1012 (4.1) cm-1.  



 

3.4.9 [Ni((MeO)2PS2·(R-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-bis(4-pyridyl-amido))]∞, 

(D1L3)∞ 

A solution of [Ni((MeO)2PS2)2] (D1) (10.5 mg, 0.05 mmol) and (R)-2,2′-dimethoxy-1,1′-

binaphthyl-3,3′-bis(4-pyridyl-amido) (L3) (11.0 mg, 0.05 mmol) was prepared in 0.5 mL of CH2Cl2 

and placed into a straight sample tube. On to this solution were layered carefully 2 mL of distilled  

EtOH. The sample tube was sealed with parafilm and left to stand at room temperature for eight  

weeks. (D1L3)∞ (4.1 mg, 0.41·10
-2

 mmol, 22 % yield) was obtained as green crystal suitable for X-

ray analysis. M.p: 208-210 °C (d), 229-230 °C (m). Elemental analysis found (calc. for 

C38H38N4O8P2S4Ni; formula mass = 927.6 uma): C, 47.41 (49.20); H, 4.10 (4.13); N, 5.91 (6.04); S, 

14.05 (13.82). FT-IR (KBr, 4000-40 0cm
–1

): 2939 vw, 2836 vw, 1686 s, 1588 s, 1509 s, 1456 w, 

1420 m, 1350 vw, 1330 m, 1298 m, 1270 s, 1016 s, 919 w, 788 ms, 675 m, 539 mw cm
-1

. 

 

3.4.10[Ni((EtO)2PS2)(R-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-bis(4-pyridyl-amido))]∞,  

(D2L3)∞ 

A solution of [Ni((EtO)2PS2)2] (D2), (8.6 mg, 0.02 mmol) and (R-2,2′-dimethoxy-1,1′-binaphthyl-

3,3′-bis(4-pyridyl-amido))]∞, (L3)  (11.1 mg, 0.02 mmol) was prepared in 0.5 mL of CH2Cl2 and 

placed into a straight sample tube. On to this solution were layered carefully 2 mL of pure EtOH. 

The sample tube was sealed with parafilm and left to stand at room temperature for eight weeks. 

(D2L3)∞ (6.5 mg, 0.007 mmol, 33 % yield) was obtained as green crystals. M.p.: 204-206 °C (d). 

Elemental analysis found (calc. for C42H46N4O8P2S4Ni; formula mass = 983.7 uma): C, 51.15 

(51.28); H, 4.77 (4.71); N, 5.77 (5.70); S, 13.75 (13.04). FT-IR (KBr, 4000-400 cm
–1

): 1678 s, 1590 

s, 1510 s, 1458 vw, 1422 m, 1388 vw, 1332 s, 1297 m, 1199 m, 1157 w, 1018 s, 943 s, 835 w, 756 

m, 660 m, 623 vw, 543 m cm
-1

. 

3.4.11[Ni(MeOdtp)2·(R-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-bis(4-pyridyl-amido))]∞, 

(D3L3)∞ 

A solution of Ni(MeOdtp)2 (D3) (10.4 mg, 0.02 mmol) and R-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-

bis(4-pyridyl-amido) (L3) (11.0 mg, 0.02 mmol) was prepared in 0.5 mL of CH2Cl2 and placed into 

a straight sample tube. On to this solution were layered carefully 2 mL of pure MeOH. The sample 

tube was sealed with parafilm and left to stand at room temperature for eight weeks. (D3L3)∞ 

(0.004 mg, mmol, 18 % yield) was obtanined as green powder. M.p.: 208-209 °C (d). Elemental 

analysis found (calc. for C50H46N4O8P2S4Ni; formula mass = 1079.8 uma): C, 58.54 (55.62); H, 

4.52 (4.29); N, 6.43 (5.19); S, 6.52 (11.88). FT-IR (KBr, 4000-400 cm
–1

): 2936 vw, 2834 vw, 1685 



 

vs, 1589 s, 1509 s, 1456 w, 1417 m, 1350 m, 1330 m, 1296 mw, 1209 m, 1112 m, 1068 w, 1017 s, 

919 w, 863 s, 827 w, 753 m, 649 m, 623 m, 543 s cm
-1

.  

3.4.12[Ni(MeOdtp)2·(R-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-bis(4-pyridyl-amido))]∞, 

(D4L3)∞ 

A solution of [Ni(EtOdtp)2] (D4) (11.1 mg, 0.02 mmol) and R-2,2′-dimethoxy-1,1′-binaphthyl-3,3′-

bis(4-pyridyl-amido) (L3) (11.1 mg, 0.02 mmol) was prepared in 0.5 mL of CH2Cl2 and placed into 

a straight sample tube. On to this solution were layered carefully 2 mL of pure EtOH. The sample 

tube was sealed with parafilm and left to stand at room temperature for eight weeks. (D4L3)∞ (2.1 

mg, 0.2·10
-2

mmol, 10 % yield) was obtained as a green precipitate. M.p.: 184-187 °C (d). Ele-

mental analysis found (calc. for C52H50N4O8P2S4Ni; formula mass = 1107.9 uma): C, 56.76 (56.38); 

H, 4.69 (4.55); N, 5.39 (5.06); S, 9.78 (11.58). FT-IR (KBr, 4000-400 cm
–1

): 1604 vs, 1565 m, 1517 

w, 1498 s, 1459 w, 1442 w, 1411 w, 1386 vw, 1303 vw, 1290 w, 1255 vs, 1213 w, 1176 w, 1157 

vw, 1110 s, 1068 vw, 1022 s, 935 m, 842 w, 827 s, 798 w, 771 w, 655 w, 636 s, 626 m, 545 vs, 520 

vw cm
-1

. 

3.4.13[Ni((MeO)2PS2)2(2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine)]∞,(D1L4)∞ 

[Ni((MeO)2PS2)2] (18.6 mg, 0.05 mmol) (D1) and 2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine (L4) 

(12.0 mg, 0.05 mmol) were reacted at 130 °C in a high pressure Aldrich tube in 30 mL of MeOH. 

After complete dissolving of the reagents, the reaction mixture was tranferred in a small vial and 

slowly cooled at room temperature. After five  days (D1L4)∞ few green crystals suitable for X-ray 

analysis were obtained. M.p.:170 °C (d). Elemental analysis found (calc. for C16H20N4O4P2S5Ni; 

formula mass = 611.9 uma): C, 31.63 (31.33); H, 2.38 (3.29); N, 9.31 (9.14); S, 21.75 (26.14). FT-

IR (KBr, 3000-300 cm
–1

): 2938 w, 2834 vw, 2361 vw, 1608 m, 1462 m, 1411 m, 1335 m, 1290 w, 

1210 w, 1176 w, 1130 vs, 827 s, 798 s, 709 m, 691 s, 675 s, 665 m, 530 m, 439 vw, 398 w, 324 m 

cm
–1

. FT-Raman (3500-100 cm
-1

, 600 mW, solid state, relative intensities between parentheses re-

lated to the highest peak taken equal to 10.0): 1922 (6.0), 1894 (6.4), 1877 (6.0), 1811 (6.4), 1758 

(4.6), 1612 (10.0), 1513 (8.6), 1459 (9.3), 1410 (9.3), 1335 (6.1), 1293 (6.0), 1020 (6.2) cm
–1

. 

 

3.4.14 [Ni((EtO)2PS2)2(2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine)]∞,(D2L4)∞ 

[Ni((EtO)2PS2)2] (21.4 mg, 0.05 mmol) (D2) and 2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine (L4) 

(12.0 mg, 0.05 mmol) were reacted at 160 °C in a high pressure Aldrich tube in 30 mL of EtOH. 

After complete dissolving of the reagents, the reaction mixture was slowly cooled at room tempera-

ture. After a few days (D2L4)∞ (4.1 mg, 0.6·10-2 mmol, 12 % yield) was obtained as green crys-



 

tals suitable for X-ray analysis by slow evaporation of the solvent. M.p.: 155 °C (d). Elemental 

analysis found (calc. for C20H28N4O4P2S5Ni; formula mass = 668.0 uma): C, 36.31 (35.89); H, 

4.17 (4.22); N, 8.46 (8.37); S, 24.12 (23.95). FT-IR (KBr, 3000-350 cm–1): 3054 vw, 3032 w, 2934 

w, 2893 vw, 2459 vw, 2285 vw, 1931 vw, 1609 s, 1496 vs, 1440 m, 1412 m, 1336 m, 1121 m, 1019 

vs, 945 vs, 848 w, 830 m, 805 m, 773 s, 713 m, 673 s, 657 s, 644 m, 620 w, 546 w, 410 w cm–1. 

FT-Raman (3500-0 cm-1, 150 mW, solid state, relative intensities between parentheses related to 

the highest peak taken equal to 10.0): 3075 (4.8), 3027 (4.2), 2933 (5.1), 2888 (5.0), 1981 (4.1), 

1611 (10.0), 1513 (5.7), 1413 (8.5), 1338 (5.9), 1229 (5.3), 1215 (5.5), 1095 (7.7), 1015 (7.7) 999 

(5.7), 729 (4.2), 650 (6.1) 548 (8.8), 376 (7.5) cm–1. 

3.4.15 [Ni(MeOdtp)2(2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine)]∞,(D3L4)∞  

[Ni(MeOdtp)2] (D3)  (26.2 mg, 0.05 mmol) and 2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine (L4) 

(12.0 mg, 0.05 mmol) were reacted at 100 °C in a high pressure Aldrich tube in 30 mL of MeOH. 

After complete dissolving of the reagents, the reaction mixture was slowly cooled at room tempera-

ture. After a week, (D3L4)∞ (29.5 mg, 0.39 mmol, 77 % yield) was obtained as green crystals suit-

able for X-ray analysis. M.p.: 160 °C (d). Elemental analysis found (calc. for C28H28N4O4P2S5Ni; 

formula mass = 764.0 uma): C, 44.73 (43.98); H, 3.38 (3.69); N, 7.53 (7.32); S, 21.08 (20.94). FT-

IR (KBr, 1800-300): 1214 w, 1179 mw, 1130 vw, 1114 s, 1065 w, 1029 vs, 1020 vs, 909 vw, 851 

vw, 830 ms, 779 vs, 754 w, 733 vw, 709 w, 690 vw, 654 ms, 640 s, 625 mw, 546 vs, 520 mw, 508 

w, 457 vw, 442 w, 398 vw, 369 vw, 326 ms cm
-1

. FT-Raman (3500-100 cm
-1

, 150 mW, solid state, 

relative intensities between parentheses related to the highest peak taken equal to 10.0): 3054 (2.8), 

2924 (2.8), 1615 (10.0), 1582 (5.7), 1420 (7.8), 1310 (3.6), 1280 (4.2), 1110 (5.7), 1020 (5.0), 1000 

(5.0), 547 (6.4), 102 (6.4) cm
-1

. 

 

3.4.16[Ni(EtOdtp)2(2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine)]∞,(D4L4)∞  

[Ni(EtOdtp)2] (D4)  (27.7 mg, 0.05 mmol) and 2,5-bis(4-pyridyl)-4-thia-1,3-thiazolidine (L4) (12.4 

mg, 0.05 mmol) were reacted at 100 °C in a high pressure Aldrich tube in 30 mL of EtOH. After 

complete dissolving of the reagents, the reaction mixture was slowly cooled at room temperature. 

After a week, (D4L4)∞ was obtained as green crystals suitable for X-ray analysis (34.9 mg, 4.4·10
-2

 

mmol, 88 % yield).  M.p.: 170-188 °C (m). Elemental analysis found (calc. for C30H32N4O4P2S5Ni; 

formula mass = 792.0 uma): C, 45.61 (45.41); H, 4.25 (4.06); N, 7.14 (7.06); S, 19.20 (20.20). FT-

IR (KBr, 4000-350 cm
–1

): 3457 w, 2973 w, 1595 s,1569 m, 1498 w,1460 m, 1435w, 1407 s, 1384 

w, 1330 w, 1288 s, 1256 s, 1208 w, 1175 s, 1112 s, 1027 vs, 941 s, 825 m, 800 m, 772 s,735 w, 706 

w, 670 m, 623 m, 549 s, 516 m cm
-1

. 



 

3.4.17 [Ni((MeO)2PS2)2(2,5-bis(3-pyridyl)-(4-thia-1,3-thiazolidine)]2, (D1L5)2 

[Ni((MeO)2PS2)2] (D1) (18.6 mg, 0.05 mmol) and 2,5-bis(3-pyridyl)-4-thia-1,3-thiazolidine (L5) 

(18.0 mg, 0.07 mmol) were reacted at 140 °C in a high pressure Aldrich tube in 30 mL of MeOH. 

After complete dissolving of the reagents, the reaction mixture was slowly cooled at room tempera-

ture. After a few days (D1L5)2 ,(5.5 mg, 8.0·10-3 mmol, 18 % yield) was obtained as green crys-

tals suitable for X-ray analysis by slow evaporation of the solvent. M.p.: 180 °C (d). Elemental 

analysis found (calc. for C16H20N4O4P2S5Ni; formula mass = 611.9 uma): C, 31.55 (31.33); H, 2.21 

(3.29); N, 9.13 (9.14); S, 24.69 (26.14). FT-IR (KBr, 4000-400 cm–1): 2938 w, 2834 vw, 2361 vw, 

1608 m, 1462 vm, 1411 m, 1335 m, 1290 w, 1210 w, 1176 w, 1130 vs, 827 s, 798 s, 709 m, 691 s, 

675 s, 665 m, 530 m, 439 vw, 398 w, 324 m cm-1.FT-Raman (4000-0 cm-1, 200 mW, solid in KBr, 

relative intensities between parentheses related to the highest peak taken equal to 10.0): 1922 (6), 

1894 (6.4), 1877 (6), 1811 (6.4), 1758 (4.6), 1612 (10), 1513 (8.6), 1459 (9.3), 1410(9.3), 1335 

(6.1), 1293 (6), 1020 (6.2) cm-1. 

 

3.4.18 [Ni((EtO)2PS2)2(2,5-bis(3-pyridyl)-(4-thia-1,3-thiazolidine)]∞,(D2L5)2  

A solution of [Ni((EtO)2PS2)2] (D2)  (10.3 mg, 0.02 mmol) was prepared in 0.5 mL of CH2Cl2 in a 

small vial. This vial was then introduced into a bigger one containing a solution of 2,5-bis(4-

pyridyl)-4-thia-1,3-thiazolidine (L5) (10.0 mg, 0.04 mmol) in 10 mL of MeOH, and left to stand at 

room temperature for several weeks. Green crystals of (D2L5)2 (16.9 mg, 2.5·10
-2

 mmol, 50 % 

yield) suitable for X-ray analysis have been obtained. M.p.: 159-162 °C (m). Elemental analysis 

found (calc. for C20H28N4O4P2S5Ni; formula mass = 668.0 uma): C, 34.84 (35.89); H, 4.53 (4.22); 

N, 8.11 (8.37); S, 24.15 (23.95). FT-IR (KBr, 4000-50 cm
–1

): 3054 vw, 3032 w, 2934 w, 2893 vw, 

2459 vw, 2285 vw, 1931 vw, 1609 s, 1496 vs, 1440 m, 1412 m, 1336 m, 11215 m, 1019 vs, 945 vs, 

848 w, 830 m, 805 m, 773 s, 713 m, 673 s, 657 s, 644 m, 620 w, 546 w, 410 w cm
-1

. FT-Raman 

(3500-0 cm
-1

, 600 mW, solid state, relative intensities between parentheses related to the highest 

peak taken equal to 10.0): 3075 (4.8), 3027 (4.2), 2933 (5.1), 2888 (5), 1981 (4.1), 1611 (10), 1513 

(5.7), 1413 (8.5), 1338 (5.9), 1229 (5.3), 1215 (5.5), 1095 (7.7), 1015 (7.7), 999 (5.7), 729 (4.2), 

650 (6.1), 548 (8.8), 376 (7.5) cm
-1

. 

3.4.19 [Ni(MeOdtp)2(2,5-bis(3-pyridyl)-4-thia-1,3-thiazolidine)]∞,(D3L5)∞ 

[Ni(MeOdtp)2] (D3)   (26.3 mg, 0.05 mmol) and 2,5-bis(3-pyridyl)-4-thia-1,3-thiazolidine (L5) 

(24.0 mg, 0.1 mmol) were reacted at 100 °C in a high pressure Aldrich tube in 25 mL of MeOH. 

After complete dissolving of the reagents, the reaction mixture was slowly cooled at room tempera-

ture. After a week, (D3L5)∞ (29.5 mg, 0.03 mmol, 62 % yield) was obtained as green crystals suit-



 

able for X-ray analysis. M.p.: 160 °C (d). Elemental analysis found (calc. for C28H28N4O4P2S5Ni; 

formula mass = 764.0 uma): C, 44.73 (43.93); H, 3.38 (3.69); N, 7.53 (7.32); S, 21.08 (20.94). FT-

IR (KBr, 1600-350 cm
–1

): 1593 s, 1569 mw, 1499 s, 1474 ms, 1432 w, 1406 m, 1331 w, 1294 s, 

1254 vs, 1175 ms, 1113 vs, 1021 vs, 827 mw, 775 vs, 730 w, 654 vs, 623 s, 545 vs, 525 w, 436 w, 

406 vw, 327 ms cm
–1

. FT-Raman (4000-0 cm
-1

, 100 mW, solid in KBr, relative intensities between 

parentheses related to the highest peak taken equal to 10.0): 3054 (0.7), 2850 (0.4), 2670 (0.3), 1618 

(5.2), 1477 (2.6), 1418 (2.0), 1199 (6.0), 1156 (10.0), 1031 (2.6), 642 (0.8), 545 (1.2), 125 (4.2), 

104 (2.4) cm
–1

. 

 3.4.20 [Ni(EtOdtp)2(2,5-bis(3-pyridyl)-4-thia-1,3-thiazolidine)]∞,(D4L5)∞  

[Ni(EtOdtp)2] (D4) (27.7 mg, 0.05 mmol) and 2,5-bis(3-pyridyl)-4-thia-1,3-thiazolidine (L5) (12.0 

mg, 0.05 mmol) were reacted at 130 °C in a high pressure Aldrich tube in 15 mL of EtOH and 25 

mL of CHCl3 (amylene stabilized). After complete dissolving of the reagents, the reaction mixture 

was slowly cooled at room temperature. After a week, (D4L5)∞ (21.3 mg, 0.03 mmol, 54 % yield) 

was obtained as green crystals suitable for X-ray analysis. M.p.: 148-151 °C (d), 154-166 °C (m). 

Elemental analysis found (calc. for C30H32N4O4P2S5Ni; formula mass = 792.0 uma): C, 46.78 

(45.41); H, 4.31 (4.06); N, 6.91 (7.06); S, 19.32 (20.20). FT-IR (KBr, 4000-400 cm
–1

): 2973 vw, 

2835 vw, 1593 vs, 1569 vs, 1499 m, 1473 s, 1461 w, 1418 m, 1405 w, 1386 mw, 1304 m, 1293 s, 

1254 vs, 1189 m, 1174 m, 1114 vs, 1026 vs, 943 s, 826 m, 801 mw, 778 s, 690 m, 652 vs, 547 vs, 

524 w cm
-1

. 

3.4.21 [Ni((MeO)2PS2)2(1,3,5-tris(3-pyridylethynyl)benzene)]∞, (D1L6)∞   

A solution of [Ni((MeO)2PS2)2] (D1) (7.6 mg, 0.02 mmol) and 1,3,5-tris(3-pyridylethynyl)benzene 

(L6) (7.3 mg, 0.02 mmol) was prepared in 0.5 ml of MeOH and placed into straight sample tubes. 

On to this solution was layered 1 mL of CH2Cl2. The sample tubes were sealed with parafilm and 

left to stand at room temperature for 3 weeks. (D1L6)∞  (3.2 mg, 0.4·10
-2

 mmol, 21 % yield) was 

obtained as green crystals suitable for X-ray analysis M.p.: 167-168 °C (d). Elemental analysis 

found (calc. for C31H27N3O4P2S4Ni; formula mass = 754.5 uma): C, 34.12 (49.35); H, 3.64 (3.61); 

N, 3.17 (5.57); S, 20.66 (17.00). FT-IR (KBr, 4000-400 cm
–1

): 3442 vw, 2940 w, 1637 m, 1580 ms, 

1480 m, 1453 m, 1419 m, 1384 vw, 117 w, 1106 vw, 1016 vs, 881 w, 788 s, 697 w, 670 s, 648 m, 

530 w, 438 w cm
-1

. 

3.4.22 [Ni((EtO)2PS2)2(1,3,5-tris(3-pyridylethynyl)benzene)]∞,(D2L6)2  

[Ni((EtO)2PS2]2 (D2)  (42.8 mg, 0.1 mmol) and 1,3,5-tris(3-pyridylethynyl)benzene (L6) (19.2 mg, 

0.05 mmol) were reacted at 150 °C in a high pressure Aldrich tube in 30 mL of EtOH. After com-



 

plete dissolving of the reagents, the reaction mixture was slowly cooled at room temperature. After 

three weeks no product has been obtained. Green crystals of (D2L6)2  (2.1 mg, 0.3·10
-2

 mmol, 5 % 

yield) suitable for X-ray analysis have been obtained by evaporating the solution under vacuum and 

slow diffusion of ether into a solution of the precipitate in CH2Cl2. M.p.: 174-176 °C. Elemental 

analysis found (calc. for C35H35N3O4P2S4Ni; formula mass = 810.6 uma): C, 42.90 (51.86); H, 4.04 

(4.35); N, 3.76 (5.18); S, 14.11 (15.82). FT-IR (KBr, 4000-400cm
–1

): 3456 vw, 2977 w, 1639 w, 

1582 m, 1551 w, 1478 m, 1404 mw, 1385 m, 1262 w, 1191 m, 1156 w, 1099 w, 1016 s, 943 s, 876 

w, 806 , 785 m, 760 ms, 695 m, 676 s, 647 w, 582 w, 537 vw cm
-1

. 

 

3.4.23 [Ni(MeOdtp)2(1,3,5-tris(3-pyridylethynyl)benzene)]∞,(D3L6)∞ 

[(Ni(MeOdtp)2] (D3) (26.2 mg, 0.050 mmol) and 1,3,5-tris(3-pyridylethynyl)benzene (L6 ) (19.1 

mg, 0.050 mmol) were reacted at 120 °C in a high pressure Aldrich tube in 30 mL of MeOH and 5 

mL of CHCl3 (amylene stabilized). After complete dissolving of the reagents, the reaction mixture 

was slowly cooled at room temperature. After two weeks (D3L6)∞ (18.9 mg, 0.021 mmol, 42 % 

yield) was obtained as green crystals. Crystals suitable for X-ray analysis have been obtained by 

preparing a solution of D3 (10.5 mg, 0.020 mmol) and 9 (7.6 mg, 0.020 mmol) in 0.5 ml of MeOH 

and placed into straight sample tubes. On to this solution was layered 1 ml of CH2Cl2. The sample 

tubes were sealed with parafilm and left to stand at room temperature for 4 weeks. M.p.: 167-168 

°C (d). Elemental analysis found (calc. for C43H35N3O4P2S4Ni; formula mass = 906.7 uma): C, 

54.12 (56.97); H, 3.88 (3.89); N, 4.48 (4.63); S, 13.12 (14.14). FT-IR (KBr, 4000-400 cm
–1

): 3449 

vw, 1594 s. 1571 ms, 1498 s, 1479 w, 1460 w, 1416 w, 1404 vw, 1205 w, 1292 m, 1255 vs, 1177 s, 

1113 s, 1031 vs, 890 mw, 826 w, 812 m, 761 m, 696 ms, 625 m, 547 s, 522 w, 439 mw cm
-1

. FT-

Raman (4000-0 cm
-1

, 600 mW, solid in KBr, relative intensities between parentheses related to the 

highest peak taken equal to 10.0): 2217 (10.0), 1578 (2.6), 1174 (1.7), 1129 (0.9), 1032 (1.4) 993 

(0.8) cm
-1

. 

3.4.24 [Ni(EtOdtp)2(1,3,5-tris(3-pyridylethinyl)benzene)]∞,(D4L6)∞ 

[Ni(EtOdtp)2](D4) (27.7 mg, 0.05 mmol) and 1,3,5-tris (3-pyridylethynyl)benzene (L6) (19.1 mg, 

0.05 mmol) were reacted at 120 °C in a high pressure Aldrich tube in 15 mL of EtOH. and 15 mL of 

CHCl3 (amylene stabilized ). After complete dissolving of the reagents, the reaction mixture was 

slowly cooled at room temperature. After two weeks (D4L6)∞ (5.2 mg, 0.006 mmol, 11 % yield) 

was obtained as green crystals suitable for X-ray analysis M.p.: 135-141 °C (d) at 160-162 °C (m). 

Elemental analysis found (calc. for C45H39N3O4P2S4Ni; formula mass = 934.7 uma): C, 

48.77(57.83); H, 3.85 (4.21); N, 5.04 (4.50); S, 13.28 (13.72). FT-IR (KBr, 4000-400 cm–1): 3449 



 

vw, 2971 w, 2834 vw, 1594 s, 1569 w, 1499 s, 1477 m, 1459 w, 1439 vw, 1428 w, 1405 w, 1385 w, 

1293 m, 1254 vs, 1177 s, 1113 vs, 1030 vs, 938 s, 872 w, 827 m, 802 m, 777w, 754 w, 695 s, 651 s, 

624 s, 546 vs, 521 w, 490 vw, 446 w cm-1. 

 

3.4.25 [Ni((MeO)2PS2)2(N,N',N''-tris(3-pyridin)benzene-1,3,5-tricarboxamide)]∞, 

(D1L7)∞   

A solution of [Ni((MeO)2PS2)2] (D1) (30.4 mg, 0.08 mmol) in 10 CHCl3 was added dropwise  to a 

solution of  N,N',N''-tris(3-pyridin)benzene-1,3,5 tricarboxamide) (L7) (29.2 mg, 6.7·10
-2

 mmol) in 

20 ml of MeOH. The resultant solution was placed into a vial and slowly cooled at room tempera-

ture for ten days. A green powder was obtained (25mg, 3.8·10
-2 

mmol; 43%). Green crystals of 

(D1L7)∞ suitable for X-ray analysis have been obtained by reacting  (7.6 mg, 0.02 mmol) of  D1 

and 7.3mg, (1.67·10
-2 

mmol) in 15 mL of EtOH. and 15 mL of CHCl3 (amylene stabilized ) at 130 

°C in a high pressure Aldrich tube, but they did diffract. (3.2 mg, 0.4·10
-2

 mmol, 21 % yield) M.p.: 

170 °C (d). FT-IR (KBr, 4000-400 cm
–1

): 3492 w, 2901 vw, 1642 w, 1489 w, 1209 w, 1030 w, 

1420 m, 1380 w, 1277w 1248 w, 1168 w, 1118 m, , 801 w, 708 w, 650 w, 513 w cm
-1

. 

3.4.26[Ni((EtO)2PS2)2(N,N',N''-tris(3-pyridin)benzene-1,3,5-tricarboxamide)], 

[D2(L7)2] 

[Ni((EtO)2PS2]2 (D2) (42.8 mg, 0.09 mmol) and (N,N',N''-tris(3-pyridin)benzene-1,3,5 tricarbox-

amide) (L7) (19.2 mg, 0.04 mmol) were reacted at 130 °C in a high pressure Aldrich tube in 10 mL 

of CHCl3 (amylene stabilized) and 20 mL of EtOH. After complete reagents dissolving, the reaction 

mixture was slowly cooled at room temperature. Twentyfour hours after, was obtained a green 

powder of [D2(L7)2] (30 mg, 0.03·10
-3

 24% yeld) and few green crystals were obtained by high 

pressure Aldrich tube in 15 mL of EtOH. and 15 mL of CHCl3.)  M.p.: 174-176 °C. FT-IR (KBr, 

4000-400cm
–1

): 3456 vw, 2908 w, 1639 w, 1482 m, 1250 w, 1412 m, 1401 mw, 1385 m, 1262 w, 

1191 w, 1156 w, 1016 s, 943 s, 896 w, 785 w, 665 m, , 647 w, 525 w, 531 vw cm
-1

. 

 

3.4.27[Ni(MeOdtp)2(N,N',N''-tris(3-pyridin)benzene-1,3,5-tricarboxamide)],[D3(L7)2] 

[(Ni(MeOdtp)2](D3) (26.2 mg, 0.04 mmol) and (N,N',N''-tris(3-pyridin)benzene-1,3,5 tricarbox-

amide) (L7) (19.0 mg, 0.04 mmol) were reacted at 120 °C in a high pressure Aldrich tube in 30 mL 

of MeOH and 5 mL of CHCl3 (amylene stabilized). After complete dissolving of the reagents, the 

reaction mixture was trasferred in a vial and slowly cooled at room temperature. After two weeks 

[D3(L7)2] (18.9 mg, 0.02 mmol, 20 % yield) green crystals suitable for X-ray analysis have been 



 

obtained. M.p.: 175°C (d). FT-IR (KBr, 4000-400 cm
–1

): 3485 w, 3110 w, 2998 w, 1585 vs, 1579 s, 

1450m, 1421 m, 1386 m, 1281s 1238 vs, 1170 m, 1110 s, 1035 s, 943 m, 820 w, 811 m, 768 w, 648 

m, 612 m, 530 m, 512 w cm
-1

. 

3.4.28 [Ni(EtOdtp)2(N,N',N''-tris(3-pyridin)benzene-1,3,5- tricarboxamide)]∞,(D4L7)∞ 

[Ni(EtOdtp)2](D4) (43.7 mg, 0.09·10
-2

mmol) and N,N',N''-tris(3-pyridin)benzene-1,3,5 tricarbox-

amide (L7) (44.1 mg, 1.02 mmol) were reacted at 120 °C in a high pressure Aldrich tube in 15 mL 

of EtOH. and 15 mL of CHCl3 (amylene stabilized ). After complete dissolving of the reagents, the 

reaction mixture was slowly cooled at room temperature. After two weeks (D4L7)2 was obtained as 

a few green crystals suitable for X-ray analysis that did not diffracted, instead. M.p.: 170 °C (m). 

FT-IR (KBr, 4000-400 cm
–1

): 3490 w, 3112 w, 3002 w, 1599 vs, 1583 s, 1452 m, 1420 m, 1385 m, 

1280s 1250 vs, 1182 m, 1116 s, 1038 s, 942 m, 810 w, 801 m, 758 w, 651 m, 615 m 550 m cm
-1

. 

 

3.4.29[Ni((MeO)2PS2)2(N,N',N''-tris(4-pyridin)benzene-1,3,5-tricarboxamide)]∞, 

(D1L8)∞   

A solution of [Ni((MeO)2PS2)2] (D1) (22.8 mg, 0.06 mmol) in 10 CHCl3 was added dropwise  to a 

solution of  N,N',N''-tris(4-pyridin)benzene-1,3,5 tricarboxamide) (L8) (21.9 mg, 0.05 mmol) in 20 

mL of MeOH. The resultant solution was left to evaporate at room temperature. After two days  

(D1L8)∞ (16 mg, 1.9·10
-2

 mmol, 16 % yield) was obtained as a green powder. Very few green 

crystals of (D1L8)∞ suitable for X-ray analysis have been obtained by reacting  (D1) (7.6 mg, 0.02 

mmol) and (7.3 mg, 0.02 mmol) at 130 °C in a high pressure Aldrich tube in 15 mL of MeOH and 

15 mL of CHCl3 (amylene stabilized), but they were solvent loss sensitive and did not diffract. 

M.p.: 170 °C (d) FT-IR (KBr, 4000-400 cm
–1

): 3225 w, 2995 w, 1695 vs , 1601 vs, 1512 s, 1430 m, 

1315 m, 1308 m, 1212 w 1248 w, 1119 w, 1127 vw, 806 m, 730 w, 703 w, 680 w 528 w cm
-1

. 

3.4.30[Ni((EtO)2PS2)2(N,N',N''-tris(4-pyridin) benzene-1,3,5-tricarboxamide)]∞, 

(D2L8)∞    

[Ni((EtO)2PS2]2 (D2) (42.8 mg, 0.09 mmol) and (N,N',N''-tris(4-pyridin)benzene-1,3,5 tricarbox-

amide) (L8) (32.1 mg, 0.07 mmol) were reacted at 130 °C in a high pressure Aldrich tube in 15 mL 

of CHCl3 (amylene stabilized ) and 10 mL of EtOH. After complete reagents dissolving, the reac-

tion mixture was slowly cooled at room temperature. Twentyfour hours after, precipitated a green 

powder of (D2L7)2 (26 mg, 0.03 mmol, 32 % yield).  M.p.: >250 °C. FT-IR (KBr, 4000-400cm
–1

): 

3423 vw, 3082 w, 2118 w, 1682 m, 1604 s, 1512 s, 1415 m, 1332 m, 1292 m, 1191 w, 1056 w, 

1007 m, 940 w, 866 vw, 830 m, 665 m, , 715 m, 585 w, 527 m, cm
-1

. 



 

 

3.4.31 [Ni(EtOdtp)2(N,N',N''-tris(4-pyridin)benzene-1,3,5 tricarboxamide]∞,(D4L8)∞ 

[Ni(EtOdtp)2] (D4) (27.7 mg, 0.05 mmol) and (N,N',N''-tris(4-pyridin)benzene-1,3,5 tricarbox-

amide) (L8) (22.1 mg, 0.05 mmol) were reacted at 120 °C in a high pressure Aldrich tube in 20 mL 

of EtOH and 10 mL of CHCl3 (amylene stabilized ). After complete dissolving of the reagents, the 

reaction mixture was trasferred in  a vial and  slowly cooled at room temperature. After two weeks 

(D4L8)∞ (11 mg; 0.01 mmol; 10%) green crystals suitable for X-ray analysis were obtained. M.p.: 

172 °C (m). FT-IR (KBr, 4000-400 cm
–1

): 3426 w, 3016 w, 1686 w, 1608 s, 1522 m, 1452 m, 1335 

m, 1291 m 1231 m, 1192 m, 1056 s, 1008 m, 941 m, 830 s, 711 m, 581 w, 524 m 550 m cm
-1

. 

 

3.4.32[Ni((MeO)2PS2)2(1,3-benzenetricarboxylic acid, 1,3-bi-3-pyridinyl ester)]∞, 

(D1L9)∞   

A solution of [Ni((MeO)2PS2)2] (D1) (47 mg; 0.12 mmol
 
) in 10 ml of CHCl3 (amylene stabilized) 

was added dropwise  to a solution of  (L9) of (1,3-Benzenetricarboxylic acid, 1,3-bi-3-pyridinyl es-

ter) (50 mg 0.12 mmol
 
) in 20 mL of MeOH. The resultant solution was left to evaporate  at room 

temperature. After twentyfour hours a green powder of (D1L9)∞ was filtered from the solution and 

washed with 5ml of methanol (47mg, 0.038 mmol, 33 % yield) M.p.: >250°C °C. FT-IR (KBr, 

4000-400 cm
–1

): 3403 w, 2938 w, 1747 m, 1616 m, 1559 m, 1480 w, 1433 m 1297 w, 1261 vw, 

1200 s 1192 w, 1093 m, 1014 m, 796 w, 697 w, 732w w, 659 vw, 640 vw, 615 vw cm
-1

. 

3.4.33 [Ni((EtO)2PS2)2(1,3-benzenetricarboxylic acid, 1,3-bi-3-pyridinyl ester)Ni]∞, 

[2D2·2L9b·Ni(EtOH)2]∞ 

[Ni((EtO)2PS2]2 (D2) (10.8 mg, 0.025 mmol) and (1,3-Benzenetricarboxylic acid, 1,3-bi-3-

pyridinyl ester) (L9b) (10.2 mg, 0.025 mmol) were reacted at 100 °C in a flask in 10 mL of CHCl3 

(amylene stabilized) and 20 mL of EtOH. After complete reagents dissolving, the reaction mixture 

was slowly cooled at room temperature. Twenty-four hours after, was obtained a green powder of 

[2D2·2L9b·Ni(EtOH)2]∞ (90 mg, 0.067 mmol, 34% yield). Very few green crystals of 

[2D2·2L9b·Ni(EtOH)2]∞suitable for X-ray analysis have been obtained by reacting  the same 

quantities of starting materials at 130 °C in a high pressure Aldrich tube in 15 mL of EtOH and 15 

mL of CHCl3 (amylene stabilized) M.p.: >250°C. FT-IR (KBr, 4000-400cm–1): 3419 vw, 2901 w, 

1749 s, 1615 m, 1577 m, 1479 m, 1432 m, 1389 m, 1298 w, 1186 s, 1091 w, 1013 m, 944 m, 788 w, 

733 w, 696 w, , 665 w, cm-1. 

 



 

3.4.34 [Ni(MeOdtp)2(1,3-benzenetricarboxylic acid,1,3-bi-3-pyridinyl ester)]∞, 

(D3L9)∞  

[(Ni(MeOdtp)2](D3) (50.1 mg, 0.09 mmol) and 1,3-Benzenetricarboxylic acid, 1,3-bi-3-pyridinyl 

ester (L9) (10.0 mg, 0.02 mmol) were reacted at 120 °C in a high pressure Aldrich tube in 10 mL of 

MeOH and 10 mL of CHCl3 (amylene stabilized). After complete dissolving of the reagents, the re-

action mixture was transferred in a vial and slowly cooled at room temperature. After twenty-four 

hours a green powder of (D3L9)∞ was filtered from the solution. (42mg, 0.035 mmol, 31 % yield) 

M.p.: >250°C °C M.p.: 175°C (d). FT-IR (KBr, 4000-400 cm
–1

): 3373 vw, 1747 m, , 1615 m, 1563 

m, 1434 m, 1370 m, 1266 m, 1214 m, 1154 w, 1106 vw, 793 w, 717 w, 699 m, 643 w, cm
-1

. 

 

 

3.4.35  [Ni(EtOdtp)2(1,3-benzenetricarboxylic acid, 1,3-bi-3-pyridinyl ester)]∞, 

(D4L9)∞ 

[Ni(EtOdtp)2] (D4) (54.7 mg, 0.012 mmol) and 1,3-Benzenetricarboxylic acid, 1,3-bi-3-pyridinyl 

ester (L9) (50.1 mg, 1.0 mmol) were reacted at 120 °C in a flask in 15 mL of EtOH. and 15 mL of 

CHCl3 (amylene stabilized ). After complete dissolving of the reagents, the reaction mixture was 

slowly cooled at room temperature. Twenty-four hours after, it was observed the precipitation of a 

green solid of (D4L9)∞, (49.1 mg, 0.034 mmol 38% yield) from  the solution that it was filtered 

and washed with 5mL of  methanol. M.p.:>250°C. FT-IR (KBr, 4000-400 cm–1): 2971 w, 1746 s, 

1593 s, 1499 m, 1430 w, 1293 w, 1256 s 1250 vs, 1197 s, 1113 s, 1022 s, 938 m, 800 w, 696 w, 660 

w, 621 w, 547 m cm-1. 

 

3.4.36 [Ni((MeO)2PS2)2(1,3-benzenetricarboxylic acid, 1,3-bi-4-pyridinyl ester)]∞, 

(D1L10)∞   

A solution of [Ni((MeO)2PS2)2] (D1) (100 mg, 0.26 mmol) in 10 ml of CHCl3(amylene stabilized ) 

was added dropwise  to a solution of  (L10) (1,3-Benzenetricarboxylic acid, 1,3-bi-3-pyridinyl es-

ter) (99.0 mg, 0.23 mmol)  in 20 ml of MeOH. The resultant solution it was left to evaporate  at 

room temperature. After twenty-four hours a green powder of (D1L10)∞ was filtered from the solu-

tion and washed with 5ml of methanol (85 mg, 0.067 mmol, 29 % yield) M.p.: >250°C °C. FT-IR 

(KBr, 4000-400 cm
–1

): 3443 w, 2963 w, 1434 m, 1538 m, 1612 m, 1370 m, 1261 s, 1380 w, 1095 m 

1192 w, 1021 m, 800 m, 751 m, 715 m, 601 w, 592 vw, 504 vw cm
-1

. 



 

 

3.4.37 [Ni((EtO)2PS2)2(1,3-benzenetricarboxylic acid, 1,3-bi-4-pyridinyl ester)Ni]2, 

(D2L10)∞   

[Ni((EtO)2PS2]2 (D2) (66.8 mg, 0.15 mmol) and (1,3-Benzenetricarboxylic acid, 1,3-bi-3-pyridinyl 

ester) (L10) (67.2 mg, 0.14 mmol) were reacted at 100 °C in a flask in 10 ml of CHCl3 (amylene 

stabilized) and 20 ml of EtOH. After complete reagents dissolving, the reaction mixture was slowly 

cooled at room temperature. Twenty-four hours after, was obtained a green powder of (D2L10)∞ 

(56 mg,0.043 mmol 30% yield). M.p.: >250°C. FT-IR (KBr, 4000-400cm
–1

): 3448 vw, 1610 m, 

1521 m, 1476 s, 1434 s, 1374 s, 1261 w, 1103 w, 755 w, 724 w, cm
-1

. 

 

 

3.4.38 [Ni(EtOdtp)2(1,3-benzenetricarboxylic acid, 1,3-bi-4-pyridinyl ester)]2, 

(D4L10)∞ 

[Ni(EtOdtp)2] (D4) (10.8 mg, 0.019 mmol) and 1,3-Benzenetricarboxylic acid, 1,3-bi-3-pyridinyl 

ester (L10) (15.1 mg, 0. 035 mmol) were reacted at 120 °C in a flask in 15 mL of EtOH. and 15 mL 

of CHCl3 (amylene stabilized). After complete dissolving of the reagents, the reaction mixture was 

slowly cooled at room temperature. Twenty-four hours after, it was observed the precipitation of a 

green solid of (D4L9)∞, (97.1 mg, 0. 043 mmol) from  the solution that it was filtered and washed 

with 5ml of  methanol. M.p.:>250°C. FT-IR (KBr, 4000-400 cm
–1

): 3449 m, 1609 s, 1522 m, 1477 

m, 1435 s, 1375 s, 951 w, 745 w, 726 s cm
-1

. 



 

 

 

4.1 Conclusions 
 

By using the synthetic approaches described in § 3.4, 38 new coordination polymers have been syn-

thesize of which 20 structural characterized. The use of organodithiophosphorous complexes has 

confirmed their tendency to be axially coordinate by polypyridyl donors, yielding coordination pol-

ymers with different geometrical and topological features. The coordination of the donor determines 

an expansion of the nickel coordination sphere from square planar to distorted octahedral. In all 

cases the donor molecules act as spacers bridging two adjacent dithiophosphoric units thus forming 

monodimensional infinite chains. All polymers show a primary structure directly dependent on the 

nature of the spacer used and linear, waved, zig-zag, or helical shapes, with different Ni-Ni distanc-

es have been prepared confirming the fundamental role of the nitrogen donors in the design of the 

coordination polymers. In fact depending on the ligand rigidity, number, distance and position of 

donor atoms, various structural topologies and coordination environment of the metal ions may be 

observed. This notwithstanding, the predictable construction of coordination polymers with prede-

termined topologies is still a challenging goal. This is the reason why one of the aims of this work 

was that of finding and outlining which elements can be employed to predict the final structure of 

the resulting coordination polymer with a certain grade of confidence. On the basis of the result 

above discussed we can state that the use of rigid spacers or semi-rigid spacers characterized by a 

unique conformation of the donor atoms confers an elevate grade of predictability. This is case, for 

example of the rigid bidentate ligands L1 and L2 that yielded exclusively the expected monodimen-

sional polymers with almost linear or zig-zag primary motifs depending on the position of the endo-

cyclic nitrogen atoms of the pyridyl rings: ligands featuring para-positioned nitrogens lead to linear 

or almost linear polymers (Fig. 4.1 a), whilst ligands featuring meta-positioned nitrogens confer a 

zig-zag shape to the resulting polymer (Fig. 4.1 b). 

 

 

 

 



 

a   

b  

Figure 4.1 Examples of  linear (a) and zig-zag (b) Polymers chains obtained with Ligands L1 and L2 

  

We have demonstrated also that helical shapes can be conferred to the coordination polymers by us-

ing appropriate ligands, such as L3, capable to transfer or impart chiral information. Fig. 4.2 shows 

the chiral helical coordination polymers obtained by reacting the dithiophosphato complexes D1 

and D2 with ligand L3.
70

 

 

a     b 

Figure 4.2 Homochiral Helical Chains obtained by using L3 as spacer: (a) right-handed spiral of Compound 

(D1·L3)∞, (b) left-handed spiral of Compound. (D2·L3)∞. 

 

The case of the less rigid ligands L4 and L5 exemplifies how another important factor that affect 

the predictability of the coordination polymers is the existence of different conformations available 



 

for a certain ligand. The thiadiazolidine L4 and L5 are structural isomers which differ for the posi-

tion of the endocyclic nitrogen atoms in the pyridyl appendages (see § 2.3.2.2). In the case of L4 an 

unique conformation is available whilst for L5, due to the different position of the nitrogen atoms as 

a consequence of the different rotational conformations allowed for the pyridyl rings, two planar 

isomers, cissoid and transoid, and several orientations of the binding sites are achievable. As a con-

sequence, ligand L4, even if less rigid if compared with L1 and L2, has proved to lead to highly 

predictable linear coordination polymers due to the unique coordination conformation available. On 

the contrary, a convergent and a divergent coordination can be expected for L5 leading to either 

dimeric or polymeric constructs as shown in Fig. 4.3.  

         a                           b 

Figure 4.3 Different Products obtained by using L5 as Spacer: (a) Dimeric Structure of (D1·L5)2; (b) 

Polymeric Chain of Compound (D4·L5)∞. 

 

              

Many tridentate ligands have been employed with the intent of expand the network dimensionality 

as a second goal of the research. However, the obtaining of coordination tridimensional networks 

through the use of Polypyridyl ligands is resulted complicated for two reasons: 

 

 Solvent competition: the used Polypyridyl ligands were insoluble in low polar solvents and 

appreciably soluble only in methanol and chloroform/methanol mixtures. Unfortunately, the 

formation of strong H-bonds involving the solvents and the pyridine nitrogen atoms 

hindered the coordination bond formation and consequently the polymerization of 

compound, Fig. 4.4. 

 



 

 

Figure 4.4 Methanol Interactions in [D2(L7)2] and [D3(L7)2] Complexes. 

 

 Donor atom protonation: in many cases, reaction solvents promote the protonation of the 

pyridine nitrogen (involving the formation of counter ion interactions) as observed in 

(D4·L8) competing with the coordination bond formation and hindering in this way the 

tridimensional expansion of the polymer, Fig. 4.5. 

 

                          

Figure 4.5 Polymeric Chain and main Interaction involving the Dithiophosphonato Anion and Water co-

crystallized molecules for (D4·L8)∞. 

 

Finally, some words must be spent on the role of the P-substituents in the phosphorodithioato nickel 

complexes used as metal nodes. In fact they have been proved to play a crucial role in determining 

the final network through secondary intermolecular interactions involving the polymeric chains. 

Depending on the nature of substituents, either H-bonding or aromatic interactions have been found 

(Fig. 4.6).  



 

 

 

 

Figure 4.6 Examples of Intermolecular Interactions between the polymeric Chains involving the P-

substituents: (a) Hydrogen Bond Interaction (N2-H2··O2; 2.9 Å) between Polymeric Chain of Compound 

(D1·L3)∞  

 

Moreover, the presence of aromatic substituents leads to π···π intramolecular face-to-face and/or 

edge-to-face interactions, with the pyridyl rings of the Polypyridyl ligands, Fig. 4.7. 

 

(D3·L4)∞   

 

 

  

     (D4·L5)∞ 

 

Figure 4.7 Examples of  Intramolecular Aromatic Interactions: (a) Edge to Face Interactions in Compound 

(D3·L4)∞; (b) Edge to Face Interactions in Compound (D4·L5)∞.  

In the most of cases, the polymeric structures are organized in very compact crystal pickings, with 

the exception of few polymers that showed small cavities in the crystal structure often occupied by 

solvents, Fig. 4.8 



 

 

. 
(D3·L1)∞                                                                                   (D4·L8)∞. 

Figure 4.8 Crystal Packing Views of (D3·L1)∞ and (D4·L8)∞ showing the presence of small voids  206.1Å
3 

that occupy 5.5% of the unit cell. 

 

4.1 New Perspectives in Coordination Polymers Building-up 

The three dimensional network serendipity obtained corresponding to the formulation of 

[2D2·2L9b·Ni(EtOH)2]∞ (Fig. 4.9) containing nickel ions featuring different coordination environ-

ments, gave us the inspiration for the design and synthesis of new coordination polymers. Starting 

from these results new synthetic strategies will be explored combining the use of Ni
II
 phosphorodi-

thioato complexes with different Ni
II
 nodes that can act as building blocks in order to exploit the 

different coordination behavior of coordinatively unsaturated and free metal ions.  

                    

 

Figure 4.9 Views of [2D2·2L9b·Ni(EtOH)2]∞ evidencing the two different coordination environment of 

Ni0A and Ni1. 
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