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Abstrat

The goal of this researh is to devise and develop an intelligent system for analyzing

heart sound signals, able to support physiians in the diagnosis of heart diseases in

newborns. Many studies have been onduted in reent years to automatially di�er-

entiate normal heart sounds from heart sounds with pathologial murmurs using audio

signal proessing in newborns. Serious ardia pathology may exist without symp-

toms. Sine heart murmurs are the �rst signs of heart disease, we sreen newborns for

normal (innoent) and pathologial murmurs. This thesis presents a variety of teh-

niques in time-frequeny domain suh as Cepstrum, Shannon energy, Bispetrum,

and Wigner Bispetrum for feature extration. A omparison of these tehniques is

onsidered to feature seletion whih has been used to redue the size of the feature

vetor. In the �nal step, di�erent lassi�ers and tehniques, e.g., Multi layer perep-

tron (MLP), deision tree, Classi�ation and Regression Trees (CART) and ensemble

of deision trees, are applied on data in order to ahieve highest performane. High

lassi�ation auray, sensitivity, and spei�ity have been obtained on the given

data by CART. The validation proess has been performed on a balaned dataset of

116 heart sound signals taken from healthy and unhealthy medial ases.
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1

Introdution

Cardia ausultation is one of the most useful investigative tools that the physiian

an use as primary diagnosis tool at the bedside to detet alterations in ardiovasu-

lar anatomy and physiology. Despite remarkable advanes in imaging tehnologies for

heart diagnosis, linial evaluation of ardia defets by ausultation is still a main

diagnosti method for disovering heart disease. In experiened hands, this method

is e�etive, reliable, and heap. Beside, tools for objetive analysis and adequate

doumentation of the �ndings are not e�etive yet.

Heart sound ontains information whih annot be pereived by the human ear.

Reent advanes in data reording tehnology and digital signal proessing have made

it possible to reord and analyze the sound signals from the heart.

Heart diseases are a major ause of death. However, most risk fators an be

dramatially redued by diagnosing them in an early stage of life. In partiular, some

heart diseases an ause life-threatening symptoms and require intervention within

the �rst days or weeks of life. Fortunately, even ritial ongenital heart diseases

are often treatable in the event they are deteted early [51℄. Most patients with sig-

ni�ant valvular heart disease are �rst diagnosed based upon the �nding of a murmur.

The PCG signal disloses information about ardia funtion through vibrations
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aused by the working heart. Pereption of heart sounds is in�uened by their produ-

tion and transmission as well as the apability of the human auditive sensory system

in reognizing orret amplitude and frequeny of eah sound. The human ear is not

equally responsive to sound in all frequeny ranges, and has relative pereption about

loudness and softness of a sound. Two sounds with the same intensity at di�erent

frequenies are pereived di�erently.

The ausultation of ardia sound signals through either a onventional aousti

or an eletroni stethosope needs a long-term pratie and experiene. Namely, note

that it an take years to aquire them. Although the stethosope is the symbol of

physiians, primary are physiians are doumented to have poor ausultatory skill

in atuality. The need for the primary are physiians to improve the ardia aus-

ultation skill is still very strong in the primary sreening examination and beomes

stronger for the general users to perform the ausultation at home (Jiang and Choi,

2006; Reed, Reed, Fritzson, 2004).

An innoent heart murmur still requires an ehoardiogram for reassurane, even

though the ost of an ehoardiogram is not negligible. The result of this pratie is

a misalloation of healthare funds. While it is learly important to prevent healthy

newborn being sent for ehoardiogram, it is also important to avoid that a newborn

that has a pathologial heart murmur is sent home without proper treatment[23℄.

In partiular the struture of the thesis should be learly stated to the design and

implementation of the proposed deision support system is desribed aording to

the atual steps performed in pipeline by the system: i) pre-proessing, ii) feature

extration/seletion and iii) lassi�ation. Figure 1-1 shows the main stages used by

the proposed diagnosti system to lassify heart murmurs.
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Figure 1-1: Main stages used by the proposed diagnosti system to lassify heart

murmurs.
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2

Bakground

2.1 Heart

Heart is a musular organ in humans and many animals that reeives blood from the

veins and pumps it through the arteries to other parts of the body that is loated on

the left of the hest, the heart is about 15 m and a weight of around 325 grams. It

onsists of four main parts: the left atrium, left ventrile, right atrium and right ven-

trile. The heart works as a kind of natural pomp. Propelling the blood throughout

the body, the heart beats are thus responsible for the bloodstream.

The heart has four hambers. The upper hambers are alled the left and right atria,

and the lower hambers are alled the left and right ventriles. A wall of musle alled

the septum separates the left and right atria and the left and right ventriles. The

left ventrile is the largest and strongest hamber in your heart. The left ventrile's

hamber walls are only about a half-inh thik, but they have enough fore to push

blood through the aorti valve and into your body. (See �gure 2-1)

Right Ventrile

The lower right hamber of the heart. During the normal ardia yle, the right

ventrile reeives deoxygenated blood as the right atrium ontrats. During this pro-

ess the pulmonary valve is losed, allowing the right ventrile to �ll. One both
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Figure 2-1: Anatomy of heart.

ventriles are full, they ontrat. As the right ventrile ontrats, the triuspid valve

loses and the pulmonary valve opens. The losure of the triuspid valve prevents

blood from returning to the right atrium, and the opening of the pulmonary valve

allows the blood to �ow into the pulmonary artery toward the lungs for oxygenation

of the blood The right and left ventriles ontrat simultaneously; however, beause

the right ventrile is thinner than the left, it produes a lower pressure than the left

when ontrating. This lower pressure is su�ient to pump the deoxygenated blood

the short distane to the lungs.

Left Ventrile

The lower left hamber of the heart. During the normal ardia yle, the left ven-

trile reeives oxygenated blood through the mitral valve from the left atrium as it

ontrats. At the same time, the aorti valve leading to the aorta is losed, allowing
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the ventrile to �ll with blood. One both ventriles are full, they ontrat. As the

left ventrile ontrats, the mitral valve loses and the aorti valve opens. The losure

of the mitral valve prevents blood from returning to the left atrium, and the opening

of the aorti valve allows the blood to �ow into the aorta and from there throughout

the body. The left and right ventriles ontrat simultaneously; however, beause the

left ventrile is thiker than the right, it produes a higher pressure than the right

when ontrating. This higher pressure is neessary to pump the oxygenated blood

throughout the body.

Right Atrium

The upper right hamber of the heart. During the normal ardia yle, the right

atrium reeives deoxygenated blood from the body (blood from the head and upper

body arrives through the superior vena ava, while blood from the legs and lower torso

arrives through the inferior vena ava). One both atria are full, they ontrat, and

the deoxygenated blood from the right atrium �ows into the right ventrile through

the open triuspid valve.

Left Atrium

The upper left hamber of the heart. During the normal ardia yle, the left atrium

reeives oxygenated blood from the lungs through the pulmonary veins. One both

atria are full, they ontrat, and the oxygenated blood from the left atrium �ows into

the left ventrile through the open mitral valve.
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2.2 Heart murmurs in hildren

A baby's heart develops between the third and seventh weeks of pregnany. Hearts

start as a hollow tube that grows. As the tube beomes longer, it is fored to bend

and rotate. The left and right atria form at the entry end of the tube, and the right

and left ventriles form from the middle setion. Walls divide the hambers and the

valves form. The exit end of the original hollow tube divides into two hannels, whih

beome the pulmonary artery and the aorta.

A ongenital heart defet is a heart problem that a baby is born with. It an inlude

abnormal development of the heart, the heart valves, major arteries, or a ombina-

tion of these problems. Congenital heart disease is muh less prevalent than innoent

murmur, ourring in only about 0.8% of live births [59℄, but the natural history of

many ommon ongenital ardia defets an be one of progressive limitation and

premature death. The primary are physiian, therefore, very frequently faes the

hallenge of distinguishing between the relatively rare but important pathologi mur-

mur and the ubiquitous innoent murmur.

Failure to diagnose heart disease is unaeptable beause urrent treatments an dra-

matially improve outomes [46℄. Congenital heart defets are aused by a problem

in the heart's development during the �rst few weeks of pregnany. Usually the exat

ause of the problem is not known, but often it is just a hane event in the om-

plex development of the baby's heart. Sometimes infetions and drugs ause a heart

defet. For example, German measles (Rubella) and other viruses an damage the

heart as it develops. If a woman takes ertain mediines, smokes or drinks too muh

alohol early in pregnany, this an also ause heart and other problems.

Although a heart murmur is an important presenting feature of a ardia disorder in

infany and hildhood, innoent murmurs are very ommon, ourring in up to 80%

of hildren at some time or other. These murmurs are frequently deteted during a

febrile illness and are also exaerbated by nervousness or on exerise. It is impor-

tant to distinguish between innoent and pathologial murmurs and to arrange more

detailed evaluation of the hild if there is any doubt. Children should be routinely
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sreened for heart murmurs and other evidene of ardia disorder between 6 and

8 weeks of age and at subsequent examinations during hildhood. Serious ardia

pathology may exist without symptoms.

Innoent Murmurs

The ommonest innoent murmur in hildren (usually heard at age 3-6 years, al-

though also oasionally in infants) is the parasternal vibratory ejetion systoli mur-

mur (Still's murmur ) whih has a very harateristi low-frequeny 'twanging' or

musial quality. It is loalized to the left mid-sternal border or midway between the

apex and left lower sternal border, is of short duration, low intensity and is loudest

when the hild is supine often varying markedly with posture. It an be made to

disappear on hyperextension of the bak and nek (Sott's manoeuvre). The venous

hum is a super�ial ontinuous murmur heard beneath the laviles and in the nek

whih an be abolished by head movements, by ompression of the ipsilateral jugular

vein or by lying the hild supine. The innoent right ventriular out�ow trat murmur

(pulmonary �ow murmur) is a soft early to midsystoli ejetion murmur heard at the

right upper sternal border but does not radiate to the bak. In the premature and

newborn infant an innoent pulmonary �ow murmur may be audible radiating to the

axillae and to both lungs at the bak. Innoent arotid bruits ommon in normal

hildren.

What is not innoent ? In addition to listening for murmurs areful attention should

be paid to the presene of other evidene of ardia pathology. Certain features indi-

ate that a murmur is likely to be pathologial and that prompt expert evaluation is

needed:

1. Cyanosis or lubbing

2. Abnormal ardia impulse

3. Abnormal breathing (tahypnoea, interostal reession)
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4. Thrill over preordium or suprasternal noth

5. Cardia failure

6. Abnormal heart sounds

7. Failure to thrive

8. Presene of lik

9. Abnormal pulses - diminished or absent femorals

10. Radiation of murmur to the bak

11. Arrhythmia

12. Murmur whih is purely diastoli

The most ommon ause of murmurs in newborns is when a spei� ondition

alled Patent Dutus Arteriosus (PDA) ours, whih is often deteted shortly after

birth, most ommonly in premature newborns. This is a potentially serious ondition

in whih blood irulates abnormally throughout the dutus arteriosus. In most ases,

the only symptom of PDA is a heart murmur, whih lasts until the dutus loses on its

own, for healthy newborns typially shortly after birth. Sometimes, espeially in pre-

mature newborns, it may not lose on its own, or it may be large and permit too muh

blood to pass through the lungs, whih an plae extra strain on the heart, foring

it to work harder and ausing a rise in blood pressure in the arteries of the lungs. If

this is the ase, a mediation or, rarely, surgery may be needed to help lose the PDA.

Pathologial Murmurs

The pathologial murmurs divided into two ategorize: i) Systoli murmurs, maxi-

mal at the upper sternal borders are more likely to be ejetion in type due to heart

out�ow abnormality or inreased �ow - aorti valve, subvalve or supravalve stenosis

and HOCM being maximal on the right radiating to the nek whilst pulmonary valve,
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subvalve or supravalve stenosis or atrial septal defet murmurs are louder on the left

and radiate to the bak. Those at the lower sternal border are more likely to be of

regurgitant type due to ventriular septal defet, mitral or triuspid regurgitation.

Some pathologial systoli murmurs are heard widely over the whole preordium and

di�erent types of murmur may oexist. Coartation of the aorta is an important ause

of a murmur over the bak partiularly in the intersapular region.

ii) Pathologial diastoli murmurs, Diastoli murmurs should always be re g a rded as

pathologial. Early diastoli deresendo murmurs are assoiated with inompetene

of a semilunar valve - the a o rti valve in biuspid aorti valve or Marfan syndrome,

the pulmonary valve following surgery for tetralogy of Fallot or pulmonary stenosis

and more rarely in onjuntion with pulmonary hypertension. Mid or late diastoli

murmurs are found at the lower sternal borders in patient.

2.3 Heart Sounds

There are two major sounds: The �rst heart sound aused of the losing mitral and

triuspid valves. The sound produed by the losure of the mitral valve is termed M1

and the sound produed by losure of the triuspid valve is termed T1. That mean

�rst heart sound ontent of two omponents (M1 and T1). The M1 sound is muh

louder than the T1 sound due to higher pressures in the left side of the heart, thus

M1 radiated to all ardia listening posts (loudest at the apex) and T1 is usually only

heard at the left lower sternal border. The M1 sound is thus the main omponent of

S1.

The �rst heart sound (S1) is a relatively low frequeny sound usually desribed as a

'lub'. It marks the beginning of mehanial systole and therefore starts some time

shortly after the beginning of the QRS omplex of the ECG. The word murmur de-

sribes a swishing sound made as the blood �ows through any of the heart's hambers

or valves. It makes a sound like water rushing through a pipe. A heart murmur is a

ontinuous sound that is audible with a ommon stethosope, produed when blood
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Figure 2-2: Sample of two yle heart sound, where omponents S1, S2 and heart

murmurs are highlighted.

passes through partiular areas of the heart. Systoli murmurs our between S1

and S2 (�rst and seond heart sounds) and therefore are assoiated with mehanial

systoli and ventriular ejetion.

The seond heart sound is reated by the losing of the aorti and pulmoni valves.

The aorti omponent of S2 produed by the losure of the aorti valve is termed A2

and the sound produed by the losure of the pulmoni valve is termed P2. The A2

sound is normally muh louder than the P2 due to higher pressures in the left side of

the heart, thus A2 radiates to all ardia listening posts (loudest at the right upper

sternal border) and P2 is usually only heard at the left upper sternal border. The A2

sound is thus the main omponent of S2.

Diastoli murmurs our after S2 and before S1; they are therefore assoiated with

ventriular relaxation and �lling. Diastoli murmurs inlude aorti and pulmoni

regurgitation (early diastoli), and mitral or triuspid stenosis (mid-late diastoli).

Triuspid stenosis is very rare and is disussed further in the valvular heart disease

setion. As in Figure 2-2 are shown.

Basi ardia sound signals are mostly omprised of four sound lasses: two out-

standing sounds named as the �rst heart sound (S1) and the seond heart sound
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(S2), and two weak sounds named as the third (S3) and the fourth heart sounds

(S4). These four sounds may be audible by the ausultation of heart and our in

the frequeny range of 20-200 Hz. However, most researhes will restrit the S1 and

S2 beause S3 and S4 appear at very low amplitudes with low frequeny omponents

and are di�ult to be aught in usual ausultation. As for heart defet, in the mean-

while, the unitary murmurs as a systoli ejetion murmur (e.g., aorti stenosis) and

a pansystoli murmur (e.g., mitral regurgitation) mostly appear between the S1 and

S2 with di�erent noise patterns like the diamond and retangular shapes.

Heart murmurs are often the �rst sign of pathologial hanges of heart valves, and

they are usually found during ausultation in primary health are. Heart murmurs

are an important feature to identify ardia disorders in hildhood, infany, and es-

peially in newborns. Unreognized heart disease in newborns arries a serious risk

of avoidable mortality, morbidity and handiap [1℄. The main advantages for early

reognizing a ardia disease are that newborns will be seen and assessed earlier and

in better linial onditions.

Cardia murmurs our frequently in healthy hildren, but it an also be a feature

assoiated to many forms of ongenital heart disease, inluding regurgitation, stenosis

of heart valves, left to right shunt lesions at the atrial, ventriular, or great arterial

levels. Careful examination reveals innoent systoli murmurs in about 72% of shool-

age hildren. A high prevalene of innoent murmur also has been doumented in

infant and neonates. Seven types of innoent heart murmurs are reported in hil-

dren, i.e. pulmonary �ow murmur, innoent pulmonary branh murmur of infany,

supralaviular bruit, venous hum, mammary sou�e, and ardiorespiratory murmur.

Generally, linial history and physial examination are diagnosti for these murmurs.

Traditionally, heart ausultation is a sreening method for early diagnosis of heart

diseases and it is still a main diagnosti method for disovering them in linial eval-

uation. When a physiian visits a newborn with phonoardiography (PCG), heart

murmurs are the most ommon abnormal ausultation �nding. When a murmur is

deteted, the physiian must deide whether to lassify it as pathologial or innoent.

Heart murmurs are the most important feature for deteting a ardia disorder, as
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they are often the �rst sign of pathologial hanges of heart valves. They are an extra

and swishing sound aused by blood �owing through any of the heart's hambers or

valves.

A heart murmur is a swishing sound heard when there is turbulent or abnormal blood

�ow aross the heart valve that a heart murmur is an extra or unusual sound heard

during a heartbeat. Murmurs range from very faint to very loud. Sometimes they

sound like a whooshing or swishing noise. Generally, heart murmurs are divided in

two ategories: physiologial and pathologial murmurs.

We used two ategories for this work normal or innoent murmurs that are very om-

mon. innoent murmurs are very ommon, ourring in up to 80% of hildren at

some time or other. These murmurs are frequently deteted during a febrile illness

and are also exaerbated by nervousness or on exerise. It is important to distinguish

between innoent and pathologial murmurs and to arrange more detailed evaluation

of the hild if there is any doubt.

Many onditions may ause the blood to �ow with turbulene, leading to a heart

murmur on ausultation. All these onditions do not neessary indiate abnormality

and ause no ill e�et on health. Some of the main onditions ausing an innoent

heart murmur are: Small blood vessels to the lungs, this is beause while they were

in their mothers' uterus, there was very little blood �ow to the lungs sine babies

do not breathe prior to birth. This will ause the blood vessels to the lungs to be

small. One the hild is born, blood �ow inreases tremendously to the lungs, this

will ause blood to be turbulent as it rosses these relatively small blood vessels, this

turbulene will produe a heart murmur. Or Blood �ow through the aorti valve and

pulmonary valve (Physiologi pulmonary �ow murmur): Blood �ow aross these two

valves is audible in some newborn. This is not beause there is anything wrong with

these valves, but it may be due to the fat that newborns have a faster heart rate,

whih means that blood normally travels with a higher speed ausing noise, resulting

in the heart murmur. Also, newborns have a thinner hest wall, whih allows sounds

to be more readily audible. These innoent murmurs will disappears with growing

heart.
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Another ategory that we used in this work inludes pathologial systoli murmurs.

Systoli murmurs maximal at the upper sternal borders are more likely to be ejetion

in type due to heart out�ow abnormality or inreased �ow - aorti valve, sub valve

or supravalve stenosis and HOCM being maximal on the right radiating to the nek

whilst pulmonary valve, sub valve or supravalve stenosis or atrial septal defet mur-

murs are louder on the left and radiate to the bak. Those at the lower sternal border

are more likely to be of regurgitate type due to ventriular septal defet, mitral or

triuspid regurgitation. Some pathologial systoli murmurs are heard widely over

the whole preordium and di�erent types of murmur may oexist. Coartation of

the aorta is an important ause of a murmur over the bak, partiularly in the inter

sapular region.

Also alled funtional murmur, the former does not require follow-up visits by a ardi-

ologist, whereas the latter an be related to serious disease onditions. Unfortunately,

physiologial murmurs are often similar to pathologial ones. Among typial physio-

logial murmurs, let us reall PDA (Patent Dutus Arteriosus), often deteted shortly

after birth, whih is a very ommon disease in premature newborns. In patients af-

feted by PDA, the blood irulates abnormally between two of the major arteries

near the heart, due to the failure of a blood vessel (the dutus arteriosis) between

these arteries to properly lose. In most ases, the only symptom of PDA is a heart

murmur, whih ontinues until the dutus loses on its own, usually shortly after

birth.

Major problems in newborns may depend on ongenital heart diseases suh as PDA,

Atrial Septal Defet (ASD) and Ventriular Septal Defet (VSD). All these defets

are expeted to simply resolve on their own, as the hild grows. However, espeially

in premature newborns, sometimes they may not. For instane, the dutus arteriosus

in newborns may not lose on its own, or it may be large and permit too muh blood

to pass through the lungs, whih an plae extra strain on the heart, foring it to

work harder and ausing a rise in blood pressure in the arteries of the lungs. If this

is the ase, a mediation or, rarely, surgery may be needed to lose the PDA.

Although an innoent heart murmur does not entail a disease ondition, a physiian
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Figure 2-3: Disharge proedures for newborns from the hospital.

assuming that a newborn is healthy typially orders an ehoardiogram for reassur-

ane, although its ost may be not negligible. Overall, the result of this pratie is

a misalloation of health are funds. Indeed, while it is learly important to avoid

type-I errors, i.e. healthy newborn sent for ehoardiogram, it is also important to

avoid type-II errors, i.e. newborns having a pathologial heart murmur sent home

without proper treatment (on this matter see also Figure 2-3, whih desribes the

typial disharge proedure from a hospital related to hearth murmurs).

2.4 Data Aquisition

Phonoardiography, diagnosti tehnique that reates a graphi reord, or phonoar-

diogram, of the sounds and murmurs produed by the ontrating heart, inluding its

valves and assoiated great vessels. The phonoardiogram is obtained either with a

hest mirophone or with a miniature sensor in the tip of a small tubular instrument
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Figure 2-4: An eletroni stethosope for reording heart sound.

that is introdued via the blood vessels into one of the heart hambers.

In 1816, the Frenh physiian Rene Laenne invented the �rst stethosope using a

long, rolled paper tube to funnel the sound. The word stethosope is derived from the

two Greek words, stethos (hest) and sopos (examination). Apart from listening to

the heart and hest sounds, it is also used to hear bowel sounds and blood �ow noises

in arteries and veins. Throughout the 20th entury many minor improvements were

made to these ioni devies to redue weight, improve aousti quality, and �lter out

external noise to aid in the proess of ausultation. Eletroni versions of the stetho-

sope were introdued to further amplify sound. Stethosopes are now available in a

wide array of styles, with designs available for virtually every branh of mediine.

An eletroni stethosope has been used to reord heart sounds whih was onneted

to a voie reorder (see Figure 2-4). Sine newborn's heart is small, a single point

reording data is proposed for study. The data reorded for 12 seonds from newborns

and all data is labeled by a ardiologist after heking newborn by ehoardiography.
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2.5 Previous work

Cardia ausultation was used by physiians sine early nineteenth entury and be-

fore that heart sounds ould be listened by applying their ear diretly to the hest,

although human ears are poorly for ardia ausultation. After the stethosope was

introdued by Laenne in 1816,"mediate ausultation" beame possible, introduing

an exiting and pratial new method of bedside examination. Over the past 2 en-

turies, many illustrious physiians have ontributed to the understanding of ardia

ausultation by providing an explanation for the sounds and noises that are heard in

the normal and diseased heart [36℄. Ausultation remains a low ost, though sophis-

tiated proedure that intimately onnets the physiian to the patient and transfers

that all-important linial power known as "the laying on of the hands". When used

with skill, it may orretly determine whether more expensive testing should be or-

dered. In this way, the stethosope deserves our ontinued respet and more attention

as an indispensable aid for the evaluation of our patients.

Prior works performed on heart murmur are onerned with various stages of life

and approahes in feature extration (signal proessing) and lassi�ation tehniques.

Di�erent tools are used for feature extration and lassi�ation of heart sounds Chris-

ter Ahlstrom[1℄ use Phonoardiographi signals that were aquired from 36 patients

with aorti valve stenosis, mitral insu�ieny or physiologial murmurs, and the data

were analyzed with the aim to �nd a suitable feature subset for automati lassi-

�ation of heart murmurs. Tehniques suh as Shannon energy, wavelets, fratal

dimensions and reurrene quanti�ation Analysis were used to extrat 207 features.

157 of these features have not previously been used in heart murmur lassi�ation. A

multi-domain subset onsisting of 14, both old and new, features was derived using

Pupil's sequential �oating forward seletion method. This subset was ompared with

several single domain feature sets. Using neural network lassi�ation, the seleted

multi-domain subset gave the best results; 86% orret lassi�ations ompared to

68% for the �rst runner-up. In onlusion, the derived feature set was superior to the
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omparative sets, and seems rather robust to noisy data.

Curt G. DeGro� [23℄ Used an eletroni stethosope to reord heart sounds from

69 patients (37 pathologial and 32 innoent murmurs). Sound samples were pro-

essed using digital signal analysis and fed into a ustom ANN. With optimal settings,

sensitivities and spei�ities of 100% were obtained on the data olleted with the

ANN lassi�ation system developed. For future unknowns, our results suggest the

generalization would improve with better representation of all lasses in the training

data. This work demonstrated that ANNs show signi�ant potential in their use as

an aurate diagnosti tool for the lassi�ation of heart sound data into innoent

and pathologial lasses. This tehnology o�ers great promise for the development of

a devie for high-volume sreening of hildren for heart disease.

A diagnosti system designed by S. L. Struni [65℄ based on Arti�ial Neural Net-

works (ANN) that an be used in the detetion and lassi�ation of heart murmurs.

Segmentation and alignment algorithms serve as important pre-proessing steps be-

fore heart sounds are applied to the ANN struture. The system enables users to

reate a lassi�er that an be trained to detet virtually any desired target set of

heart sounds. The output of the system is the lassi�ation of the sound as either

normal or a type of heart murmur. The ultimate goal of this researh is to implement

a heart sounds diagnosti system. Testing has been onduted using both simulated

and reorded patient heart sounds as input. The system was able to lassify with up

to 85.4% auray and 95.8% sensitivity.

Cota Navin Gupta [34℄ present a novel method for segmentation of heart sounds

(HSs) into single ardia yle (S1-Systole-S2-Diastole) using homomorphi �ltering

and K-means lustering. Feature vetors were formed after segmentation by using

Daubehies-2 wavelet detail oe�ients at the seond deomposition level. These

feature vetors were then used as input to the neural networks. Grow and Learn

(GAL) and Multilayer pereptron Bak propagation (MLP-BP) neural networks were
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used for lassi�ation of three di�erent heart sounds (Normal, Systoli murmur and

Diastoli murmur). It was observed that the lassi�ation performane of GAL was

similar to MLP-BP. However, the training and testing times of GAL were lower as

ompared to MLP-BP. The proposed framework ould be a potential solution for

automati analysis of heart sounds that may be implemented in real time for lassi-

�ation of HSs.
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3

Data Pre-proessing

We desribe various preproessing tehniques in this hapter. The aim of signal pre-

proessing is to remove noise and prepare the raw signal for further proessing. Data

preproessing desribes any type of proessing performed on raw data to prepare it

for another proessing proedure or data preproessing is a data mining tehnique

that involves transforming raw data into an understandable format.

Commonly used as a preliminary data mining pratie, data preproessing transforms

data into a format that will be more easily and e�etively proessed for the purpose of

the user for example, in a neural network. There are a number of di�erent tools and

methods used for preproessing, inluding: sampling, whih selets a representative

subset from a large population of data; transformation, whih manipulates raw data

to produe a single input; denoising, whih removes noise from data; normalization,

whih organizes data for more e�ient aess; and feature extration, whih pulls out

spei�ed data that is signi�ant in some partiular ontext.

3.1 Down Sampling

Pre-proessing ours in two steps: The �rst step of signal proessing is �ltering heart

sounds, with the goal of removing the unwanted noise. The reording of PCG usu-

ally has a sampling frequeny higher than 8000Hz. In the event that the reording
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Figure 3-1: Row signal of a heart sound.

environment annot be ontrolled enough, noise is oupled into the PCG. To avoid

unpreditable e�ets brought by noise, �ltering beomes important for later proess-

ing. An eletroni stethosope has been used to reord heart sounds, giving rise to a

dataset at 44k Hz whih is shown in Figure 3-1

Heart sounds data reorded with 44100 Hz frequeny sample rate. Feature extra-

tion (signal proessing) in this sample rate due to inreasing a number of omputa-

tions. A useful omponent in DSP systems is the down sampler, whih an be used

to lower the e�etive sampling rate at whih a signal has been sampled. There are a

variety of reasons why suh a devie an be useful. As a �rst example, CD quality

audio reording is typially sampled at 441000 Hz. However, if the sampled signal

is a human voie, a perfetly intelligible signal an be reonstruted from an 8 kHz

sampled signal. The downsampling is a tool to make a digital audio signal smaller by

lowering its sampling rate or sample size (bits per sample). Downsampling is done to

derease the bit rate when transmitting over a limited bandwidth or to onvert to a

more limited audio format. Consider down-sampling a signal x(n) and reduing the

sampling rate by a fator M as shown in Figure 3-2 and the output is de�ned as:

y(m) = x(mM) (3.1)
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Figure 3-2: Down sampling rate by the fator M.

i.e., it onsists of every M th
element of the input signal. It is lear that the

deimated signal y does not in general ontain all information about the original

signal x. Therefore, deimation is usually applied in �lter banks and preeded by

�lters whih extrat the relevant frequeny bands.

In order to analyze the frequeny domain harateristis of a multirate proessing

system with deimation, we need to study the relation between the Fourier transforms,

or the z-transforms, of the signals x and y. For simpliity we onsider the aseM = 2

only. Then the deimated signal y is given by

y(m) = x(2M) (3.2)

or y(m) = x(0), x(2), x(4), ... (3.3)

(3.4)

Given the z-transform of {x(n)},

x̂(z) = x(0) + x(1)z−1 + x(2)z−2 + ...+ x(n)z−n + ... (3.5)

We should like to have an expression for the z-transform of {y(m)},

ŷ(z) = y(0) + y(1)z−1 + y(2)z−2 + ... + x(n)z−m + ...

= x(0) + x(2)z−1 + x(4)z−1 + ... + x(2m)z−1 + ... (3.6)

In order to derive an expression for the z-transform of y, it is onvenient to represent

the deimation in two stages as follows. First, de�ne the signal:
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v(n) = x(0), 0, x(2), 0, x(4), 0, ... (3.7)

whih has the z-transform

v̂(z) = x(0) + x(2)z−2 + x(4)z−4 + ...+ x(2m)z−2m + ... (3.8)

As

x̂(−z) = x(0)− x(2)z−2 + x(4)z−4 − ...+ x(2m)z−2m + ... (3.9)

it follows that

v̂(z) =
1

2
(x̂ (z) + x̂ (−z)) (3.10)

By (3.6) and (3.8), ŷ(z) = v̂(z1/2). Hene, we have obtained the relation

ŷ(z) =
1

2
(x̂(z1/2) + x̂(−z1/2)) (3.11)

In order to determine the frequeny domain harateristis of the deimated signal

{y(m)}, reall that the Fourier transform is related to the z-transform aording to:

Y (ω) = ŷ(z)|z=ejω (3.12)

Hene, we have from (3.11),

Y (ω) =
1

2
(x̂(ejω/2) + x̂(−ejω/2)) (3.13)

Noting that−1 = ejπ

Y (ω) =
1

2
(x̂(ejω/2) + x̂(ejω/2+π)

=
1

2
(X(ω/2) +X(ω/2 + π)) (3.14)

where X is the Fourier-transform of the sequene x(n). But from the properties

of the Fourier transform (periodiity and symmetry) it follows that X(ω/2 + π) =
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Figure 3-3: Heart sound signal with frequeny sample rate 44100

X(ω/2− π) = X(π − ω/2)∗. Hene

Y (ω) =
1

2
(x(ω/2) + x(π − ω/2)∗) (3.15)

The Fourier-transform of {y(m)} thus annot distinguish between the frequenies

ω/2 and π − ω/2 of {x(n)}. This is equivalent to the frequeny folding phenomenon

ourring when sampling a ontinuous-time signal.

Hene, while the signal {x(n)} onsists of frequenies in [0, π], the frequeny on-

tents of the deimated signal {y(m)} are restrited to the range [0, π/2]. Moreover,

after deimation of the signal {x(n)}, its frequeny omponents in [0, π/2] annot be

distinguished from the frequeny omponents in the range [π/2, π].

The row heart sound signal is shown in �gure 3-3 whih the sampling rate is 441000

Hz. The above sequene of numbers represent the indits of the samples of a signal

prior to down sampling, the bottom sequenes of numbers represent the resultant

indits of the signal after subjeting it to downsampling operation. Figure 3-4 shows
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Figure 3-4: Heart sound signal after downsampling.

how to use down sample to obtain the phases of a signal. Downsampling a signal by

M = 11 an produe M unique phases. To avoid unpreditable e�ets brought by

noise, �ltering out the unwanted noise beomes important for later proessing.

3.2 Noises and Filtering

In many situations, the PCG is reorded in hospital that the signal is orrupted by

di�erent types of noise, sometimes originating from another physiologial proess of

the body suh as respiratory sound. Hene, noise redution represents another im-

portant objetive of PCG signal proessing; in fat, the waveforms of interest are

sometimes so heavily masked by noise that their presene an only be revealed one

appropriate signal proessing has �rst been applied.

Removal and measurement of the noises divided in three ategories: baseline wan-

der (hanges in the baseline signal, prinipally due to respiration and mirophone

movement artifats); power-line (due to the power distribution network) and residual

noise (inluding noise arising from the myoeletri potentials of skeletal musles due

to patient movement).

The main spetrum of �rst and seond (s1 and s2 respetively) heart sound ours
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Figure 3-5: Illustration of 4th order a band-pass Butterworth �lter.

within the range of 50 and 250Hz, hene a band pass �lter is used. A band-pass �lter

is a devie that passes frequenies within a ertain range and rejets (attenuates)

frequenies outside that range. Butterworth �lter is implied to reduing noises. The

Butterworth �lter is a type of signal proessing �lter designed to have as �at frequeny

response as possible (no ripples) in the pass-band and zero roll o� response in the

stop-band. The Butterworth �lters are one of the most ommonly used digital �lters

in motion analysis and in audio iruits. They are fast and simple to use. Sine they

are frequeny-based, the e�et of �ltering an be easily understood and predited.

Proposed �lter is a band pass �lter with fourth order as shown in �gure 3-5.

3.3 Heart Sound Segmentation

The third step of preproessing for deteting systoli murmurs uses a segmentation

algorithm aimed at identifying the heart sound omponents S1 and S2. The detetion

an be manual and automati. In this study we'll onsider both.

The manual method is based on the timing between high amplitude omponents.

The fat that the time interval that ours between S1 and S2 (systole) is always less

than the one between S2 and S1 (diastole) is the basis for this proess.

Typially, heart sounds onsist of two regularly repeated thuds, known as S1 and S2

and appearing one after the other for every heartbeat. The time interval between S1

and S2 is the systole, while the gap between S2 and the next S1 orresponds to the

diastole. Currently, the detetion is performed manually; however, we are planning
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Figure 3-6: Heart sound segmentation manually.

to identify of S1 and S2 with an automati proedure in the next future. The seg-

mentation method is based on the timing between those high amplitude omponents.

The fat that the time for systole is always less than the time for diastole is the basis

for this proess.

The largest setion of systoli and diastoli murmur, ommon to all database sam-

ples, was hosen for analysis (represented with 400 and 700 points, for systoli and

diastoli murmurs respetively). The main harateristis of heart sounds, suh as

their timing relationships and omponents, frequeny ontents, their ourrene in

the ardia yle, and the envelope shape of murmurs an be quanti�ed by means of

advaned digital signal proessing tehniques. �gure 3-7 shows the interval distane

between two major sounds (S1 and S2).

The seond method to detet and segment heart sounds that is performed by

automatially algorithm. The segmentation method is based on the timing between

high amplitude omponents. The basis for this proess is that the time interval that

ours between S1 and S2 (systole) is always smaller than the one between S2 and

S1 (diastole). Even after per-proessing, the atual heart sound signal still has very

ompliated patterns with numerous small spikes that have little impat on diagnosis

but may in�uene the loation of S1 and S2. Peak onditioning was performed for the

46



Figure 3-7: Illustration original signal (top), wavelet oe�ients sale olored (mid-

dle), Coe�ients line (bottom).

obtained peaks using wavelet transform, whih enabled the yle detetion proess.

There is a wavelet transfer introdue for deteting peaks. To �nd peak loation we

used the Complex Morlet (Gabor) Wavelet (CMW) transfer whih are very popular

in biomedial data analysis for time-frequeny deomposition. To this end, we used

the Gabor Wavelet for peak detetion (see [35℄), whih an be formally desribed as

follows:

Ψ (t) = C · e−jwt · e−t2
(3.16)

where e−jwt · e−t2
is the omplex Gaussian funtion and C is a normalizing onstant.

The threshold was used to identify the peaks. A threshold value was set to 0.1 for

wavelet sale oe�ients (see Figure 3-9). We identi�ed ardia yle peaks using

K-mean lustering. K-means is a non-hierarhial partitioning and simplest unsuper-

vised learning algorithms whih method is partitions the observations in the data into

K mutually exlusive lusters, and returns a vetor of indiating to whih of the K

lusters it has assigned eah observation. It uses an iterative method that minimizes

the sum of distanes from eah objet to its luster entroid, over all lusters.

The main idea is to de�ne K entroids, one for eah luster. These entroids should

be plaed in a unning way beause of di�erent loation auses varies result. So, the

better hoie is to plae them as muh as possible far away from eah other.
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The next step is to take eah point belonging to a given data set and assoiate it

to the nearest entroid. When no point is pending, the �rst step is ompleted and

an early group-age is done. At this point we need to re-alulate k new entroids as

baryenter of the lusters resulting from the previous step. After we have these K

new entroids, a new binding has to be done between the same data set points and

the nearest new entroid. A loop has been generated. As a result of this loop we may

notie that the k entroids hange their loation step by step until no more hanges

are done. In other words entroids do not move any more.

Eah lass of heart murmurs ontains distintive information in time and frequeny

domains. This stage involves the extration of eah ardia yle of the PCG signal,

after the peak detetion and peak onditioning stages.

Systoli (S1-S2) and diastoli (S2-S1) murmurs our within the time intervals that

were alulated by the peak onditioning proess. These time intervals were lustered

into two lusters. Cluster 1 and luster 2 our onseutively and indiate a single

ardia yle. The yle smaller time interval was then identi�ed as systole while the

other interval was identi�ed as diastole. Conseutive ourrene of luster 1 or luster

2 might be due to loss of peak, extra peak or equal systoli and diastoli intervals

[34℄. We extrated eah single yle of PCG signals using lusters, as shown in Fig-

ure 3-8 for normal heart sound ase, heart sound with systoli and diastoli murmur,

respetively.

In other side, there is another way to segment heart sounds after peak detetion

is using a threshold. Zero-rossing is used to �nd the spots where peaks our, the

number of zero rossings per segment being also an equivalent representation of the

dominant omponent of a signal segment. The algorithm alulates the size of the

intervals in whih the value of the funtion is zero. Let us reall that systoli (S1-

S2) and diastoli (S2-S1) murmurs our respetively in the smaller and bigger time

interval as in Figure 3-9 shows.

After deteting ardia yles, it is important to identify whih yle shows more

signs of heart disease �as deteting the most informative yle an optimize the per-

formane of the lassi�ation proess. For eah patient, reorded data inlude several
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Figure 3-8: a) Systoli murmur (b) Diastoli murmur.

Figure 3-9: Peak detetion using Complex Gabor Wavelet and thresholded by zero-

rossing.
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ardia yles on a time span of few seonds. Despite the fat that �ltering has been

implemented to remove noise, the residual noise may be part of the heart sound signal

�suh as respiratory sound, artifat noise or newborn voies. Pearson's orrelation

oe�ient has been used to selet the yle with minimum noise and most properties

of the whole signal. Pearson's orrelation oe�ient between two signals X and Y

(ardia yles, in this ontext) is de�ned as follows:

rXY =
SSXY

√

(SSXX)(SSY Y )
(3.17)

where:

1

• SSXY =
∑

XY − 1
n
·∑X ·∑Y

• SSXX =
∑

X2 − 1
n
· (
∑

X)2

• SSY Y =
∑

Y 2 − 1
n
· (
∑

Y )2

The Pearson orrelation oe�ient is alulated between pairs of signals, eah

signal inluding several yles. An example of orrelation is is shown in Figure 3-10.

The overall orrelation for eah ardia yle Ci,j is obtained through the following

formula:

rCi
=

1

n− 1

j
∑

i 6=j

rCi.j
(3.18)

where n is the number of ardia yles. In the given example C4 is seleted aord-

ing to Equation (3.18) as the yle with minimum noise (and hene with the most

informative ontent for the whole signal).

1

n is number of data pairs for eah sample; in this ase 1500.
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Figure 3-10: Correlation among ardia yles
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4

Signal Proessing Tehniques and

Analysis

This hapter gives an overview of some of the signal proessing tehniques used in

this thesis. Feature extration is introdued and a tehnique for feature extration

(whih presents the theoretial bakground of time-frequeny methods) used to an-

alyze phonoardiographi data. Loalizing information in both time and frequeny

domains is the main propose of time-frequeny analysis. The purpose of this phase

is developing an automati heart sound signal analysis system and selet feature to

using in intelligent systems whih able to support the physiian in the diagnosing of

heart murmurs at early stage of life.

Heart murmurs are the �rst signs of heart disease. We will able to sreen newborns for

normal (innoent) and pathologial murmurs. This hapter presents an analysis and

omparisons of signal proessing tehniques and also, extrating and seleting signal

features able to highlight signi�ant properties of the PCG signal. These features

have also undergone a seletion proess, aimed at identifying the most appropriate

for lassi�ation purposes. As for feature extration, several metris have been taken

into aount, inluding Maximum value amplitude, Peak to Peak, Variane, Absolute

negative area, Shannon energy, Bispetrum and Wigner Bispetrum [9℄. Feature se-

letion has then been used to redue the size of the feature vetor.

53



Figure 4-1: Maximum and minimum value amplitude of a heart sound signal.

4.1 Maximum and Minimum of Value Amplitude

The amplitude of a periodi variable is a measure of its hange over a single period

(suh as time or spatial period). There are various de�nitions of amplitude whih

are all funtions of the magnitude of the di�erene between the variable's extreme

values. The maximum displaement of a vibrating partile of the medium from its

mean position is alled Amplitude. Here in the sound wave, amplitude represents the

loudness of the sound whih is opposite for minimum. Figure 4-1 shows maximum

and minimum amplitude of a sample heart sound signal (�gure 3-8).

4.2 Peak to Peak Amplitude

Peak-to-peak amplitude is a pretty simple onept whih is the hange between peak

(highest amplitude value) and trough (lowest amplitude value, whih an be negative).

With appropriate iruitry, peak-to-peak (PP) amplitudes of eletri osillations an

be measured by meters or by viewing the waveform on an osillosope. Peak-to-peak
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is a straightforward measurement on an osillosope, the peaks of the waveform being

easily identi�ed and measured against the gratiule. This remains a ommon way of

speifying amplitude, but sometimes other measures of amplitude are more appropri-

ate. peak to peak amplitude of a heart sound signal is shown in �gure 4-1.

4.3 Variane

A measurement of the spread between numbers in a data set. The variane measures

how far eah number in the set is from the mean. Variane is alulated by taking

the di�erenes between eah number in the set and the mean, squaring the di�erenes

(to make them positive) and dividing the sum of the squares by the number of values

in the set. A variane of zero indiates that all the values are idential. Variane is

always non-negative: a small variane indiates that the data points tend to be very

lose to the mean (expeted value) and hene to eah other, while a high variane

indiates that the data points are very spread out around the mean and from eah

other. We use the following formula to ompute variane whih we denote by σ2
is

de�ned as:

σ2 =

∑

(X − µ)2

N
(4.1)

where µ is the mean, N is the number of data values, and X stands for eah data

value in turn.

4.4 Shannon Energy

The Shannon Energy is alulated on signal segments. Here we segment data eah of

0.02-seond and with 0.01-seond signal segment overlapping throughout the signal.

The normalized envelope of Shannon Energy is alulated to delimit the beginning

and end of eah of heart sounds using a �xed threshold from the maximum value

of the envelope whih allows to determinate their average duration. The average

Shannon energy Es(t) for a frame t (see for example [1℄) an be alulated on signal
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Figure 4-2: Shannon energy of PCG signal with additive Gaussian noise.

segments as follows:

Es (t) =
1

N

n
∑

j=1

x2n log x
2
n (4.2)

where xn is a normalized input signal, n the length of data, and N the signal length.

With M(Es(t)) denoting the mean value of Es(t) and S(Es(t)) the standard de-

viation of Es(t), the normalized average Shannon energy Nse(t), also alled Shannon

envelope, is then alulated as follows:

Nse (t) =
Es (t)−M(Es (t))

S(Es (t))
(4.3)

In et al Ali Moukadem [53℄ presented a module for heart sounds segmentation based on

time frequeny analysis (S-Transform). The goal of this study is to develop a generi

tool, suitable for linial and home monitoring use, robust to noise, and appliable

to diverse pathologial and normal heart sound signals without the neessity of any

previous information about the subjet [3℄. The proposed segmentation Shannon

energy is used to detetion of the loalized heart sounds and lassi�ation blok to

distinguish between S1 and S2.
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Figure 4-2 shows the robustness of Shannon energy method against white additive

noise. In this study, the advantage of performing a time-frequeny analysis whih

makes methods more robust against noise is proposed.

4.5 Spetrum

Tehniques have reently been developed and demonstrated that allow the traking

of spetral parameters as time elapses. Approahes of this type have also been alled

time-variant spetral analysis or time-frequeny analysis. For a detailed desription

of the algorithms and methodologies proposed and for some experimental studies,

see referenes Basano et al. (1995), Bianhi et al. (1993), Cerutti et al. (1989),

Keselbrener & Akselrod (1996), Lee & Nehorai (1992), Mainardi et al. (1994, 1995)

and Novak et al. (1993). The advantages of these methodologies are assoiated

mainly with reduing the in�uene of non-stationaries and monitoring transient ar-

dia events ouring in long-term reordings. In Cerutti et al. (1989), a proedure

of ompressed spetral arrays (CSA) was implemented whih an redue the spetral

data obtained from 24 hour ambulatory ECG reordings. The method was based

on the alulation of AR spetral estimates for suessive RR interval segments, and

heking whether a new spetrum di�ers signi�antly from the preeding one.

Spetral analysis, espeially presentation of the dominant frequeny, is a tehnique

whih is muh more ost-e�etive than ehoardiography and magneti resonane

imaging. The magnitude spetrum of an audio signal desribes the distribution of

magnitudes with frequeny i.e. what frequenies (of pure tones) are present and at

what amplitudes. The phase spetrum an display in what way the phase relation-

ship between two signals varies with frequeny. With the advent of miniaturized and

powerful tehnology for data aquisition, display and digital signal proessing, the

possibilities for deteting ardia pathology by signal analysis have inreased. Per-

manent reords permit objetive omparisons of the aousti �ndings [69, 24℄. Many

advaned methods for signal proessing and analysis (e.g. sound spetral averaging
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tehniques, arti�ial neural networks, time-frequeny analysis and wavelet analysis)

have been reported to be e�etive for presentation and analysis of ardia aousti

signals [66℄. Using eletroni mail, it is possible to transmit the reords to remote

sites for further, sophistiated analysis and onlusions.

Let us de�ne Short Time Fourier Transform (STFT) in the ontinuous-time ase,

the funtion to be transformed is multiplied by a window funtion whih is nonzero

for only a short period of time. The Fourier transform (a one-dimensional funtion)

of the resulting signal is taken as the window is slid along the time axis, resulting in

a two-dimensional representation of the signal. Mathematially, this is written as:

STFT x(τ, ω) =

∫ −∞

∞

x(t)ω(t− τ)e−jωtdt (4.4)

where w(t) is the window funtion, ommonly a Hann window or Gaussian window

bell entered around zero, and x(t) is the signal to be transformed. (Note the di�er-

ene between w and ω) X(τ, ω) is essentially the Fourier Transform of x(t)w(t− τ), a

omplex funtion representing the phase and magnitude of the signal over time and

frequeny. Often phase unwrapping is employed along either or both the time axis,

τ , and frequeny axis, ω, to suppress any jump disontinuity of the phase result of

the STFT. The time index τ is normally onsidered to be "slow" time and usually

not expressed in as high resolution as time t. In et. al S.M. Debbal [22℄, The paper is

onerned with a synthesis study of the fast Fourier transform, the short-time Fourier

transform, the Wigner Distribution (WD) and the wavelet transform in analyzing

the phonoardiogram signal. It is shown that these transforms provide enough fea-

tures of the PCG signals that will help linis to obtain qualitative and quantitative

measurements of the time-frequeny PCG signal harateristis and onsequently aid

diagnosis. Similarly, it is shown that the frequeny ontent of suh a signal an be

determined by the FFT without di�ulties. The studied tehniques of analysis an

thus be regarded as omplementary in the TF analysis of the PCG signal; eah will

relate to a part distint from the analysis in question. The magnitudes of the Fourier

transforms of S1 and S2 for these two ases are shown in Figure 4-3.
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Figure 4-3: Fast Fourier Transform for the normal ardia sounds (S1 and S2).

Figure 4-4: The magnitude responses of the S1 and S2 using FFT.

While su�ient study reveals that the basi features shown in the transfer fun-

tions exist in the Fourier transforms of the signals themselves (as they of ourse must),

the distinguishing features between the ases are muh more di�ult to identify. As

seen in Figure 4-4, FFT appeared two major omponent M1 and T1 for the sound S1

and A2 and P2 for the sound S2. Figure 4-4 illustrates the average FFT spetrum of

a normal heart sound (�rst and seond heart sound).

The spetrogram is de�ned as the squared modulus of Short Time Fourier Trans-

form of a given signal x(t). This transform is a liner projetion ombined with a

quadrati operation whih provides an energy estimation of the analyzed signal. As

de�ne:

Spectrogram x(τ, ω) ≡ |X(τ, ω)|2 (4.5)
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The spetral density of a signal haraterizes the distribution of the signal's en-

ergy or power in the frequeny domain. This onept is partiularly important when

onsidering �ltering in ommuniation systems. We need to be able to evaluate the

signal and noise at the �lter output. The energy spetral density (ESD) or the power

spetral density (PSD) is used in the evaluation. For instane, in et. al Norhashimah

Mohd Saad [58℄, the authors disuss how to use digital signal proessing approah

for the detetion of heart bloks in eletroardiogram (ECG) signals. Signal analysis

tehniques suh as the periodogram power spetrum and spetrogram time-frequeny

analysis are employed to analyze ECG variations. Seven subjets are identi�ed: nor-

mal, �rst degree heart blok, seond degree heart blok type I, seond degree heart

blok type II, Third degree heart blok, right bundle branh blok and left bundle

branh blok. Analysis results revealed that normal ECG subjet is able to maintain

higher peak frequeny range (8 Hz), while heart blok subjets revealed a signi�ant

low peak frequeny range (<4 Hz). The results revealed that the periodogram power

spetrum an be used to di�erentiate between normal and heart blok subjets, while

the spetrogram time-frequeny analysis is used to give better haraterization of

ECG parameters. These analyses an be used to onstrut ECG monitoring and an-

alyzing system for heart bloks detetion, As in �gure 4-5 is shown.

Figure 4-5 shows the per-proessing simulation results for normal ECG and third

degree heart blok subjet. For the normal subjet, the power spetrum shows that

the signal frequeny is 8 Hz, while the spetrogram shows that the signal frequeny

lies at all times during the observation interval. For the third degree heart blok

subjet, the power spetrum shows that the signal frequeny is 3.9 Hz, while the

spetrogram represents that the signal frequeny is only appears within the duration

of 500 ms periodially for every 2000 ms. It is not shown on the power spetrum

representations.
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Figure 4-5: a) ECG normal signal, b) Periodogram power spetrum, ) Spetrogram

time-frequeny.
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4.6 Smoothed Spetral Estimation via Cepstrum Thresh-

olding

We use varies tehniques for analyze data and seleting feature. One of those teh-

nique is epstrum thresholding, named SThresh, whih is shown to be an e�etive,

yet simple, way of obtaining a smoothed non-parametri spetrum estimate of a sta-

tionary signal.

Cepstrum thresholding is shown to be an e�etive way for obtaining a smoothed

nonparametri estimate of the spetrum of an audio signal, suh as heart sound.

Introduing the epstrum thresholding-based spetral estimator for non-stationary

signal is of interest to researhers in spetral analysis and allied topis, suh as audio

signal proessing.

The epstrum of y(t) an be de�ned as follows [33℄:

ck =
1

N

N−1
∑

l=0

ln(φl)e
iωlk

(4.6)

K = 0, 1, ..., N − 1

Let us onsider a stationary, real valued signal, real valued signal {y(t)t=N−1
t=0 } its

periodogram estimate φ̂p for p = 0, 1, ..., N
2
is given by:

φ̂p(ω) =
1

N

∣

∣

∣

∣

∣

N−1
∑

t=0

y(t)e−j2πft

∣

∣

∣

∣

∣

2

(4.7)

where it is assumed that φ > 0, ∀p The epstral oe�ients have several interesting

features, one of whih is mirror symmetry, de�ned as:

cN−k = Ck (4.8)

k = 0, 1, ...,
N

2

In other words, only half of the sequene, c0, c1, ..., c(N/2)
−1

is distint and the other

62



half is obtained from eq 4.8.

In c1, ..., c(N/2)
−1

using the periodogram estimate in eq 4.7, a ommon estimate of the

epstral oe�ients is obtained by replaing φ(ω) in φ̂(ω) in the next equation, whih

gives [63℄:

ĉk =
1

N

N−1
∑

l=0

ln[φ̂(ωl)]e
jωlk + γδk,0 (4.9)

k = 0, ...,
N

2

where

δk,0 =







1 if k = 1

0 otherwise

and γ = 0.577 (Euler's onstant) It an be shown (see, e.g.[63℄) that with large

samples the estimated epstral oe�ients {ĉk}N/2
k=0 are independent normally dis-

tributed random variables. In symbols ĉk ∼= N(Ck, S
2
K) with:

S2
k =







π2

3N
if k = 0, N

2

π2

6N
if k = 1, ..., N

2
− 1

Keeping in mind the above equations, the idea behind epstrum thresholding is

straightforward. Let ĉk be a new estimate of Ck and note that ĉk = 0 has a mean

squared error (MSE) equal to C2
k . This estimate is preferred to ĉk as long as C

2
k ≤ S2

k

as now let:

S = {K ∈
[

0,
N

2

]

|c2k ≤ s2k} (4.10)

And let S be an estimate of S . Thresholding {ĉk}k∈S gives the following new estimate

of ck:

c̃k =







0 if k ∈ S̃

ĉk Otherwise
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k = 0, ..., N
2
A good estimate of S is given by (see [64℄ for details):

S̃ = {K ∈
[

0,
N

2

]

|
∣

∣c2k
∣

∣ ≤ µsk} (4.11)

Where the parameter ontrols the risk of onluding that |c2k| is signi�ant" while

this is not true, the so alled "false alarm probability". The following values of µ are

reommended in [63, 33℄ for N ∈ (128, 2048) and µ = µ0 +
N−12
1920

. For sample lengths

N < 500, whih are most ommonly enountered in appliations, we reommend µ0 =

2 and 4 for narrow band and broadband signals respetively, whereas for N ≥ 500 we

suggest µ0 = 3 and 5 for narrow band and broadband signals respetively.

This implies that µ will belong to the interval. (µ0, µ + 1) for other intervals of

the sample length, N . Similar rules an be given. The smoothed spetral estimate

orresponding to {Ĉk} is given by:

φcep(ωl) = exp

[

N−1
∑

k=0

ĉe−jωlk

]

l = 0, ..., N − 1 (4.12)

where the subsript ep signi�es its epstrum dependene. The �nal saled spetrum

estimate

ˆφcep(ω) is then given by φ̂cep(ωl) = α̂φ̃cep(ωl) l=0,...,N-1.

The proposed nonparametri spetral estimate is obtained by a simple saling

α̂ =

∑N−1
l=0 φ̂cep(ωl)φ̃cep(ωl)
∑N−1

l=o φ̃2
cep(ωl)

(4.13)

In et al, Prabhu Babu [11℄ proposed a fully automati method for variane re-

dution of spetrum estimates whih used the tehnique of epstrum thresholding,

named SThresh. The method is shown to be an e�etive, yet simple, way of obtain-

ing a smoothed non-parametri spetrum estimate of a stationary signal. The study

obtained the threshold via a ross-validation sheme and the results are shown to

be in agreement with those obtained when the spetrum is fully known. Smoothed

nonparametri spetral estimation via epstrum thresholding is shown in Figure 4-6.
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Figure 4-6: Smoothed spetrum of simulated narrowband ARMA signal (N=512).

The above �gure 4-6 depit the results related to spetrum estimate via epstrum

thresholding, whereas the one reported below illustrate the result.

Amplitude hanges are observed. This method is nonparametri and apable of pro-

duing smoother and better epstrum estimates without imposing any parametri

model. In �gure ??, we learly see that the variane of the smoothed spetrum is

signi�antly smaller than that of the peridogram.

4.7 Bispetrum

A potential tool for future feature extration or appear heart sound's omponents may

be the estimation of the bispetrum. The power spetrum is based on the seond or-

der statistis of the time series, but the bispetrum make use of third order statistis.

By de�nition, a gaussian random proess has a zero higher-order spetrum of order

two (bispetrum) (Nikias & Petropulu 1993), whih allows the study of the devia-

tion from the gaussianity or to suppress gaussian noise. The method also ontains

information about the phase harater of the signal, whih is failed with the methods

based on the seond order statistis. Moreover, the bispetrum estimation an be
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used in detetion and haraterization of the nonlinearities by analysis of quadrati

phase oupling in the frequeny domain. A preliminary study on quadrati phase

loking in HRV an be found in Calagnini et al. (1996).

The third-order spetrum, alled bispetrum, is a partiular example of higher-order

spetrum (HOS), whih is de�ned as the Fourier transform of third-order umulant

sequene. The power spetrum is member of the lass of higher-order spetra. HOS

are the extension to higher orders of the onept of the power spetrum. In ases

where the proess is non-Gaussian or is generated by nonlinear mehanisms, HOS

provide information whih an not be obtained from the onventional spetrum.

For the sake of ompleteness, let us reall that seond order statistis suh as autoor-

relation and power spetrum provide important information in analysis of Gaussian,

stationary and linear proesses.

mx = E(x) (4.14)

m2
x(i) = E {X(n) X(n+ i)} (4.15)

Higher order statistis, used in the analysis of Gaussian, stationary and non-linear

proesses, typially allow to obtain important results.

Higher order statistis are alulated upon higher order moments (HOM) suh as m3

and m4, i.e., third and fourth order moment, de�ned as follows:

m3
x(i, j) = E {X(n) X(n+ i) X(n+ j)} (4.16)

It is worth noting that moments give more aurate results in the analysis of deter-

ministi signals, while umulants give more aurate results in the analysis of random

signals[2℄. Power spetrum of random signals are de�ned by DFT, i.e., Disrete

Fourier transform, (see also Equation 4):

Bx = (f1, f2) =
∞
∑

m=−∞

∞
∑

n=−∞

Cx
3 (m,n)e

−j2π(mf1+nf2)
(4.17)
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In the event that the signal is a stationary random proess with real values, we an

write:

B(w1, w2) = X(w1) X(w2) X
∗(w1, w2) (4.18)

A diagonal slie of a single variable bispetrum for a speial situation at whih fre-

quenies are equal an be de�ned as follows:

B(w) = X(w) X∗(2w) (4.19)

As bispetrum analysis is not easy to alulate, this slie of spetrum obtained from

a bispetrum is used for giving an idea in the analysis of data that do not exhibit

nonlinear or Gaussian distribution in the signal. In et al Aim�© Lay-Ekuakille [44℄

presented an original implementation of EEG signal proessing using �lter diagonal-

ization method to build a bispetrum and ontour representation to disover possible

abnormalities hidden in the signal for aided-diagnosis. The detetion of neurophysio-

logial features by means of eletroenephalogram (EEG) is one of the most reurrent

medial exams to be performed on human beings. Two di�erent eletroenephalogram

EEG signals are used for this sope. EEG signals are aquired simultaneously with

eletroardiograms (ECG) and ergospirometri ones. ECG signals are also proessed

along with EEGs. A omparison is made with high order spetra approah. All

experimental data regarding EEG, ECG, and ergospirometry are aquired during

suspeted-patient walking along a path of 32 for verifying the impat of fatigue on

neurophysiologial proesses and vie versa �gure 4-7.

Aording to this study, EEG signals for the envisaged intervals show what hap-

pens; that is also orrelated to the distribution of peaks on magnitude spetrum, and

absorption spetra �gures. This distribution allows to understand the oxygen uptake

neessary for brain funtioning. However HOS does not learly point out the issue

related to neurophysiologial aspets.

67



Figure 4-7: a) EEG signal of a patient, b) magnitude bispetrum with HOS, ) ontour

plot of bispetrum.
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4.8 Wigner Distribution

The Wigner Distribution (WD) was introdued in 1932 by Wigner in the ontext of

quantum mehanis, it's usefulness to problems in ommuniation theory was disov-

ered by Ville in 1948, onsequently, it is often alled the Wigner-Ville distribution. In

order to di�erentiate the seond-order WD from the higher order WDs, we will refer

to the onventional WD as the Wigner Spetrum (WS) [21℄.

However Wigner Distribution (WD) and orresponding Wigner Ville Distribution

(WVD) an analyses the non-stationary signal properly. This ability omes from the

fat that WD an separate the signal in both time and frequeny diretions. The

advantage of WD over STFT is that it has no time frequeny trade-o� problem, but

its disadvantage is that in its response it has a ross-term. Nonlinear behavior of the

WD is the main ause of the ross-term. To remove the ross-term it is neessary to

smooth the time frequeny plane but it dereases the time frequeny resolution.

Given a signal x(t), the orresponding Wigner distribution is de�ned by [60℄

W (t, ω) =
1

2π

∫ ∞

−∞

x∗(t− 1

2
τ)x(t +

1

2
τ)e−jτωdτ (4.20)

or, given the assoiated spetrum X(ω) of the signal x(t),

W (t, ω) =
1

2π

∫ ∞

−∞

X∗(ω +
1

2
θ)X(ω − 1

2
θ)e−jtθdθ (4.21)

The two de�nitions an be easily proven to be equivalent by substituting x(t) with

its expression in terms of the spetrum. Figure 4-8 is a ontour plot of Wigner

Distribution from a sinus signal.

4.9 Wigner Bispetrum

Time-frequeny distribution are transform transformations that attempt to desribe

how the spetral ontent of a signal is hanging with time. They are known as dis-

tributions beause somehow they desribe the energy or intensity of a signal in time
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Figure 4-8: Wigner distribution of the above signal, represented as a surfae and as

ontour urves.

and in frequeny simultaneously. Nevertheless, they are not distributions in a prob-

abilisti sense sine positivity an not usually be ensured. An in�nite number of

time-frequeny distributions an be generated from Cohen's general lass formula-

tion [18℄. Speial ases of this general lass inlude the spetrogram, Rihazek, Page,

Wigner-Ville and Choi-Williams distributions [18℄.

Cohen's lass of distributions are bilinear expressions, i.e., they are based on the

seond-order moments of the signal. A de�nition of a general lass of time-frequeny

distributions in terms of higher order moments ould ontribute to the understand-

ing of time-varying higher order moment spetra (HOMS)[55℄ in the same way that

Cohen's general lass does for the time-varying seond-order spetra. The de�nition

of a general lass requires, however, the formulation of the basi representation, i.e.,

the representation for whih the kernel is equal to unity.

In analogy with Cohen's general lass, the Wigner higher order moment spetra

(WHOS) are hosen as the basi representation. For every time instant t, the WHOS

expresses the varying HOMS in the same way that the WD does for the instantaneous

power spetrum. The third-order Wigner distribution was originally introdued by

Gerr [31℄. This de�nition has been arefully oneived to preserve the properties of

the WD. In partiular, the properties related to the instantaneous power and spetral

density funtion in the WD are now related to the instantaneous (k + 1) th-order

moment and (k + 1) th-order HOMS. The properties of this higher order moment

spetra derivation an di�er substantially from a derivation based on higher order

umulant spetra. The study Javier et. al 1993 has proved that under low SNR
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irumstanes, the Wigner Bispetrum is better than the Wigner-Ville distribution

[21℄. The High-Order Spetra of Wigner- Ville Distribution of signal x(t) is de�ned

as follows [29℄:

W (t, f1, f2, · · · , fk) = (4.22)

∞
∫

−∞

· · ·
∞
∫

−∞

x∗(t− 1

k + 1

k
∑

m=1

τm).

k
∏

i=1

x(t +
k

k + 1
τi −

1

k + 1

k
∑

j=1,j 6=1

τi)

exp(−2jπfiτi)dτi.

Where W (t, f1, f2, fk) represents the kth order Fourier transform of a k-dimensional

loal funtion. Let us de�ne Rkt as follows:

Rkt(τ1, τ2, . . . τk) = x∗(t− α)
k
∏

i=1

x(t + τi − α) (4.23)

Where α, is the delay of time. Note that Rt(τ1, τ2, . . . τk) is de�ned suh that one of

the fators in the produt is a delayed version of the onjugate of x(t) and the rest

are delayed versions of x(t).

To ful�ll the three basi properties of time-frequeny distributions, in a higher order

moment spetrum domain, the value of α should be hosen properly. In partiular,

to attain the instantaneous frequeny as the mean frequeny in the multi frequeny

spae at a given time, it will be shown that Rt(τ1, τ2, . . . τk) should be entered at

time instant t, in suh a way that [61℄

1

k + 1

(

(t− α) +
k

∑

i=1

(t+ τi − α)

)

= t (4.24)

Consequently,

α =
1

k + 1

k
∑

i=1

τi (4.25)
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and

Rkt(τ1, τ2, . . . τk) = (4.26)

x∗
(

t− 1

k + 1

k
∑

m=1

τm

)

.

k
∏

i=1

x

(

t +
k

k + 1
τi −

1

k + 1

k
∑

j=1,j 6=

τj

)

This leads to de�nition 4.22. Speial ases of WHOS inlude the Wigner bispe-

trum (WB) for k = 2,

W2x(t, f1, f2) = (4.27)

∫

τ1

∫

τ2

x∗
(

t− 1

3
τ1 −

1

3
τ2
)

x
(

t+
2

3
τ1 −

1

3
τ2
)

x
(

t+
2

3
τ2 −

1

3
τ1
)

exp(−j2πf1τ1)

exp(−j2πf2τ2)dτ1dτ2.

and the Wigner trispetrum (WT) for k = 3,

W3x(t, f1, f2, f3) =
∫

τ1

∫

τ2

∫

τ3

x∗
(

t− 1

4
τ1 −

1

4
τ2 −

1

4
τ3
)

x
(

t+
3

4
τ1 −

1

4
τ2 −

1

4
τ3
)

x
(

t+
3

4
τ2 −

1

4
τ1 −

1

4
τ3
)

x
(

t+
3

4
τ3 −

1

4
τ1 −

1

4
τ2
)

exp(−j2πf1τ1) exp(−j2πf2τ2)

exp(−j2πf3τ3)dτ1dτ2dτ3

(4.28)

72



Figure 4-9: A signal sample in the time frequeny and Wigner Bispetrum.

Observe that for k = 1 the WD follows from 4.22:

W1x(t, f) =

∫

τ

x∗(t− 1

2
τ) x(t +

1

2
τ) exp(−j2πfτ)dτ . (4.29)

The de�nition of WB of 4.22 di�ers from the third order Wigner distribution proposed

by Gerr in [31℄ only in the dependene of the onjugate of the signal. Et al Zhix-

iong Li [45℄ desribes and evaluates the development and appliation of an intelligent

diagnosti tehnique based on the integration of the empirial mode deomposition,

kernel independent omponent analysis, Wigner bispetrum and support vetor ma-

hine. It is work on the fault detetion for a diesel engine using the instantaneous

angular speed. In this study, in order to solve the undetermined blind soure sep-

aration (BSS) problem the ombination of EMD and KICA is �rstly presented to

estimate IAS signals from a single-hannel IAS sensor. The KICA is also applied

to selet distinguished features extrated by Wigner bispetrum whih the Wigner

bispetrum analysis is employed to extrat sensitive amplitude and phasi features

and assess the state of the mahine �gure 4-9.

73



4.10 Wavelet Transform

As we disussed, a Fourier transform based spetral analysis is the dominant analyt-

ial tool for frequeny domain analysis. However, Fourier transform annot provide

any information of the spetrum hanges with respet to time. Fourier transform

assumes the signal is stationary, but PD signal is always non-stationary. To overome

this de�ieny, a modi�ed method-short time Fourier transform allows to represent

the signal in both time and frequeny domain through time windowing funtion. The

window length determines a onstant time and frequeny resolution. Thus, a shorter

time windowing is used in order to apture the transient behavior of a signal; we sa-

ri�e the frequeny resolution. an alternative mathematial tool- wavelet transform

must be seleted to extrat the relevant 36 time-amplitude information from a signal.

In the meantime, we an improve the signal to noise ratio based on prior knowledge

of the signal harateristis.

In this work, we stated only some keys equations and onepts of wavelet transform,

more rigorous mathematial treatment of this subjet an be found in [16, 20, 38℄. A

ontinuous-time wavelet transform of f(t) is de�ned as:

CWTΨ f(a, b) =Wf (a, b) = |a|
1

2

∫ lim

− lim

f(t)Ψ∗(
t− b

a
)dt (4.30)

Here a, b ∈ R, a 6= 0 and they are dilating and translating oe�ients, respetively.

The asterisk denotes a omplex onjugate. This multipliation of |a|
1

2
is for energy

normalization purposes so that the transformed signal will have the same energy at

every sale. The funtion ψ(t), the so-alled mother wavelet, is saled by a, so a

wavelet analysis is often alled a time-sale analysis rather than a time-frequeny

analysis. The wavelet transform deomposes the signal into di�erent sales with dif-

ferent levels of resolution by dilating a single prototype funtion, the mother wavelet.

Furthermore, a mother wavelet has to satisfy that it has a zero net area, whih sug-

gest that the transformation kernel of the wavelet transform is a ompatly support

funtion (loalized in time), thereby o�ering the potential to apture the PD spikes

74



whih normally our in a short period of time [54℄. Daubehies wavelets has used

for our appliation, so let us talk few about Daubehies wavelets.

Based on these equation, Daubehies [19℄, designed a type of wavelet for a given van-

ishing moment p and �nd the minimum size disrete �lter. The onlusion is that if

we want the wavelet funtion with p vanishing moments, the minimum �lter size is

2p. The derivation de�ne as:

Hφ(e
jω) =

√
2(
1 + e−jω

2
)pR(ejω) (4.31)

where Hφ(ω) is the disrete-time Fourier transform of the disrete �lters and the

absolute-square of this funtion is

∣

∣Hφ(e
jω)

∣

∣

2
= Hφ(e

jω)H∗
φ(e

jω) (4.32)

= 2(
1 + e−jω

2

1 + ejω

2
)pR(ejω)R∗(ejω)

= 2(
2 + e−jω + ejω

4
)2p

∣

∣R(ejω)
∣

∣

2

= 2(cos
ω

2
)2pP (sin2ω

2
).

(4.33)

The last step makes P (sin2 ω
2
) = |R(ejω)|2. we an determine the form of P (x).

Let y = sin2 ω
2
. We have

(1− y)pP (y) + ypP (1− y) = 1. (4.34)

A theorem in algebra, alled Bezout theorem, an solve this equation. The unique

solution is

P (y) =

p−1
∑

k=0





p− 1 + k

k



 yk. (4.35)

The polynomial P (y) is the minimum degree polynomial satisfying equation 4.34.

One we have P (y), the polynomial R(ejω) an be derived. First we deompose
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R(ejω) aording to its roots.

R(ejω) =
m
∑

k=0

rke
−jkω = r0

m
∏

k=0

(1− ake
−jω) (4.36)

Let z = ejω, the relation between P and R is

P (
2− z − z−1

4
) = r20

m
∏

k=0

(1− akz
−1)(1− akz) (4.37)

By solving the roots of P (2−z−z−1

4
) = 0, we have the roots of R, {ak, 1/ak}k=0,1,...,m

and r0 = 2p−1
. Usually, we hoose ak lies in the unit irle to have minimum phase

�lter. Taking p = 2 for a example. The obtained polynomial P (y) is

P (y) =
1

∑

k=0





1 + k

k



 yk = 1 + 2y. (4.38)

P (
2− z − z−1

4
) = 2− 1

2
z − 1

2
z−1

(4.39)

The roots are 2 +
√
3 and 2−

√
3. After fatorization, we have the low pass �lter to

be

Hφ(e
jω) =

√
2 +

√
6

8
[n]+

3
√
2 +

√
6

8
e−jω+

3
√
2−

√
6

8
e−j2ω+

3
√
2−

√
6

8
e−j3ω

(4.40)

The disrete-time domain representation is

hφ[n] =

√
2 +

√
6

8
δ[n] +

3
√
2 +

√
6

8
δ[−n] + 3

√
2−

√
6

8
δ[n− 2] +

3
√
2−

√
6

8
δ[n− 3]

(4.41)

The result is the minimum size �lter with 2 vanishing moments and the orresponding

�lter size is 4. Reall the onlusion mentioned above, the �lter size is two times the

vanishing moment. Higher order Daubehies wavelets are derived at similar way.

The oe�ient and the plot of heart sound are shown in �gure 4-10 and �gure 4-11

as normal and pathologial heart sounds respetively.
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Figure 4-10: Daubehies wavelet transform of normal heart sound.
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Figure 4-11: Daubehies wavelet transform of pathologial heart sound.
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5

Data Mining and Classi�ation Tools

There are two forms of data analysis that an be used for extrat models desribing

important lasses or predit future data trends. These two forms are as follows: i)

Classi�ation and ii) Prediation.

These data analysis help us to provide a better understanding of large data. Clas-

si�ation predits ategorial and predition models predits ontinuous valued fun-

tions. For example, we an build a lassi�ation model to ategorize bank loan ap-

pliations as either safe or risky, or a predition model to predit the expenditures in

dollars of potential ustomers on omputer equipment given their inome and ou-

pation.

Data mining involves the use of sophistiated data analysis tools to disover pre-

viously unknown, valid patterns and relationships in large data sets. These tools

an inlude statistial models, mathematial algorithms, and mahine learning meth-

ods suh as neural networks or deision trees. Consequently, data mining onsists

of more than olleting and managing data, it also inludes analysis and predition.

The objetive of data mining is to identify valid, novel, potentially useful, and un-

derstandable orrelations and patterns in existing data. Finding useful patterns in

data is known by di�erent names (e.g., knowledge extration, information disovery,

information harvesting, data arheology, and data pattern proessing) [68℄.

The term "data mining" is primarily used by statistiians, database researhers,

and the business ommunities. The term KDD (Knowledge Disovery in Databases)
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refers to the overall proess of disovering useful knowledge from data, where data

mining is a partiular step in this proess [28, 32℄. The steps in the KDD proess,

suh as data preparation, data seletion, data leaning, and proper interpretation of

the results of the data mining proess, ensure that useful knowledge is derived from

the data. Data mining is an extension of traditional data analysis and statistial ap-

proahes as it inorporates analytial tehniques drawn from various disiplines like

AI, mahine learning, OLAP, data visualization, et.

There are problem ategories that annot be formulated as an algorithm. Problems

that depend on many subtle fators, for example the purhase prie of a real estate

whih our brain an (approximately) alulate. Without an algorithm a omputer

annot do the same. Therefore the question to be asked is: How do we learn to ex-

plore suh problems? Arti�ial Neural Network (ANN) is one of tools that an solve

it [39℄.

5.1 Arti�ial Neural Networks

An Arti�ial Neural Network (ANN) is an information proessing paradigm that is

inspired by the way biologial nervous systems, suh as the brain, proess information.

The key element of this paradigm is the novel struture of the information proessing

system. It is omposed of a large number of highly interonneted proessing ele-

ments (neurones) working in unison to solve spei� problems. ANNs, like people,

learn by example. An ANN is on�gured for a spei� appliation, suh as pattern

reognition or data lassi�ation, through a learning proess. Learning in biologial

systems involves adjustments to the synapti onnetions that exist between the neu-

rones. This is true of ANNs as well [62℄.

Arti�ial neural networks are inspired by attempts to simulate biologial neural

systems. The human brain onsists primarily of nerve ells alled neurons, linked to-

gether with other neurons via stand of �ber alled axons. Axons are used to transmit
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Figure 5-1: Feed-forward Neural Network Model.

nerve impulses from one neuron to another whenever the neurons are stimulated. A

neuron is onneted to the axons of other neurons via dendrites, whih are extensions

from the ell body of the neurons. The ontat point between a dendrite and an axon

is alled a synapse [62℄.

Multilayer pereptron (MLP) is a feed-forward neural networks trained with the

standard bak-propagation algorithm. Figure 5-1 illustrates arhiteture of a simple

feed forward neural network. As training a MLP is a supervised task, MLP requires

a desired response to be trained. They learn how to transform input data in to a

desired response, so they are widely used for pattern lassi�ation. With one or two

hidden layers, they an approximate virtually any input-output map. It has been

shown to approximate the performane of optimal statistial lassi�ers in di�ult

problems. The MLP is trained with error orretion learning, whih is appropriate

here beause the desired response is the arteriography result and as suh known.

Using arti�ial neural networks it is impossible to model the full omplexity of the

brain of anything other than the most basi living reatures, and generally ANNs

will onsist of at most a few hundred (or few thousand) neurones, and very limited

onnetions between them, quite small neural networks have been used to solve what

have been quite di�ult omputational problems, ANNs are basi input and output
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Figure 5-2: Simple Pereptron Arhiteture.

devies, with the neurones organized into layers. Simple Pereptrons onsist of a layer

of input neurones, oupled with a layer of output neuron, and a single layer of weights

between them, as shown in Figure 5-2.

The learning proess onsists of �nding the orret values for the weights between

the input and output layer. The shemati representation given in Figure 5-2 is often

how neural nets are depited in the literature, although mathematially it is useful to

think of the input and output layers as vetors of values(I and O respetively), and

the weights as a matrix. We de�ne the weight matrix Wio as an i x o matrix, where

i is the number of input nodes, and o is the number of output nodes. The network

output is alulated as follows.

O = f(IWio) (5.1)

Generally data is presented at the input layer, the network then proesses the

input by multiplying it by the weight layer. The result of this multipliation is pro-

essed by the output layer nodes, using a funtion that determines whether or not

the output node �res.
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The proess of �nding the orret values for the weights is alled the learning rule,

and the proess involves initializing the weight matrix to a set of random numbers

between −1 and +1. Then as the network learns, these values are hanged until it

has been deided that the network has solved the problem. Finding the orret val-

ues for the weights is e�eted using a learning paradigm alled supervised learning.

Supervised learning is sometimes referred to as training. Data is used to train the

network, this onstitutes input data for whih the orret output is known. Starting

with random weights, an input pattern is presented to the network, it makes an initial

guess as to what the orret output should be [48℄.

During the training phase, the di�erene between the guess made by the network

and the orret value for the output is assessed, and the weights are hanged in or-

der to minimize the error. The error minimization tehnique is based on traditional

gradient desent tehniques. While this may sound frighteningly mathematial, the

atual funtions used in neural networks to make the orretions to the weights are

hosen beause of their simpliity, and the implementation of the algorithm is invari-

ably unompliated.

The pereptron learning rule is omparatively straightforward. Starting with a

matrix of random weights, we present a training pattern to the network, and alu-

late the network output. We determine an error funtion E:

E(O) = (T − O) (5.2)

Where in this ase T is the target output vetor for a training input. In order

to determine how the weights should hange, this funtion has to minimized. What

this means is �nd the point at whih the funtion reahes its minimum value. The

assumption we make about the error funtion is that if we were to plot all of its

potential values into a graph, it would be shaped like a bowl, with sides sloping down
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Figure 5-3: Funtion minimization using di�erentiation.

to a minimum value at the bottom [17℄.

In order to �nd the minimum values of a funtion di�erentiation is used. Di�erenti-

ation is used to give the rate at whih funtions hange, and is often de�ned as the

tangent on a urve at a partiular point 1. If our funtion is perfetly bowl shaped,

then there will only be one point at whih the minimum value of a funtion has a

tangent of zero (i.e have a perfetly �at tangent), and that is at its minimum point

(see Figure 5-3).

In neural network programming the intention is to assess the e�et of the weights

on the overall error funtion. We an take Equation 5.1 and ombine it with Equation

5.2 to obtain the following.

E(O) = (T − O) = T − f(IWio) (5.3)

We then di�erentiate the error funtion with respet to the weight matrix. The

disussion on Multilayer Pereptrons will look at the issues of funtion minimization

in greater detail. Funtion minimization in the Simple Pereptron Algorithm is very

straightforward. We onsider the error eah individual output node, and add that

error to the weights feeding into that node. The pereptron learning algorithm works

as follows.
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1. Initialise the weights to random values on the interval [1,−1].

2. Present an input pattern to the network.

3. Calulate the network output.

4. For eah node n in the output layer...

(a)alulate the error En = Tn − On

(b) add En to all of the weights that onnet to node n (add En to olumn n of

the weight matrix.)

5. Repeat the proess from 2. for the next pattern in the training set.

This is the essene of the pereptron algorithm. It an be shown that this tehnique

minimises the error funtion. In its urrent form it will work, but the time taken

to onverge to a solution (i.e the time taken to and the minimum value) may be

unpreditable beause adding the error to the weight matrix is something of a "blunt

instrument" and results in the weights gaining high values if several iterations are

required to obtain a solution. This is akin to taking large steps around the bowl in

order to and the minimum value, if smaller steps are taken we are more likely to and

the bottom.

In order to ontrol the onvergene rate, and redue the size of the steps being taken,

a parameter alled a learning r ate is used. This parameter is set to a value that is

less than unity , and means that the weights are updated in smaller steps (using a

fration of the error). The weight update rule beomes the following.

Wio(t + 1) = Wio(t) + ǫEn (5.4)

Whih means that the weight value at iteration t + 1 of the algorithm, is equivalent

to a fration of the error ǫEn added to the weight value at iteration t [56℄.
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5.2 Deision Trees

A deision tree (DT) is a lassi�er expressed as a reursive partition of the instane

spae. DT an handle high dimensional data. Their representation of aquired knowl-

edge in tree free from is intuitive and generally easy to assimilate by humans.

A DT is a tree where root and eah internal node are labeled with question. The ars

emanating from eah node represent eah possible answer to the assoiated question.

Eah leaf node represents a predition of a solution to the problem under onsid-

eration. The onstrutions of DT lassi�er don't require any domain knowledge or

parameter setting and therefore is appropriate for exploratory knowledge disovery.

The deision tree onsists of nodes that form a rooted tree, meaning it is a direted

tree with a node alled "root" that has no inoming edges. All other nodes have

exatly one inoming edge. A node with outgoing edges is alled an internal or test

node. All other nodes are alled leaves (also known as terminal or deision nodes).

In a DT, eah internal node splits the instane spae into two or more sub-spaes

aording to a ertain disrete funtion of the input attributes values.

In the simplest and most frequent ase, eah test onsiders a single attribute, suh

that the instane spae is partitioned aording to the attributes value. In the ase

of numeri attributes, the ondition refers to a range.

Eah leaf is assigned to one lass representing the most appropriate target value.

Alternatively, the leaf may hold a probability vetor indiating the probability of the

target attribute having a ertain value. Instanes are lassi�ed by navigating them

from the root of the tree down to a leaf, aording to the outome of the tests along

the path. Figure 5-4 desribes a deision tree that reasons whether or not a potential

ustomer will respond to a diret mailing. Internal nodes are represented as irles,

whereas leaves are denoted as triangles. Note that this deision tree inorporates

both nominal and numeri attributes. Given this lassi�er, the analyst an predit

the response of a potential ustomer (by sorting it down the tree), and understand

the behavioral harateristis of the entire potential ustomers population regarding

diret mailing. Eah node is labeled with the attribute it tests, and its branhes are

86



labeled with its orresponding values.

In ase of numeri attributes, deision trees an be geometrially interpreted as

a olletion of hyperplanes, eah orthogonal to one of the axes. Naturally, deision-

makers prefer less omplex deision trees, sine they may be onsidered more om-

prehensible. Furthermore, aording to Breiman et al. (1984) the tree omplexity

has a ruial e�et on its auray. The tree omplexity is expliitly ontrolled by

the stopping riteria used and the pruning method employed. Usually the tree om-

plexity is measured by one of the following metris: the total number of nodes, total

number of leaves, tree depth and number of attributes used. DT indution is losely

related to rule indution. Eah path from the root of a DT to one of its leaves an

be transformed into a rule simply by onjoining the tests along the path to form the

anteedent part, and taking the leaf's lass predition as the lass value [49, 43℄.

Deision tree induers are algorithms that automatially onstrut a deision tree

from a given dataset. Typially the goal is to �nd the optimal deision tree by mini-

mizing the generalization error. However, other target funtions an be also de�ned,

for instane, minimizing the number of nodes or minimizing the average depth.

Depending on the outome of the test, we go to either the left or the right sub-

branh of the tree. Eventually we ome to a leaf node, where we make a predition.

This predition aggregates or averages all the training data points whih reah that

leaf. Figure 5-4 should help to larify this. Why do this? Preditors like linear or

polynomial regression are global models, where a single preditive formula is sup-

posed to hold over the entire data spae. When the data has lots of features whih

interat in ompliated, nonlinear ways, assembling a single global model an be very

di�ult, and hopelessly onfusing when you do sueed. Some of the non-parametri

smoothers try to �t models loally and then paste them together, but again they an

be hard to interpret. (Additive models are at least pretty easy to grasp.) An alter-

native approah to nonlinear regression is to sub-divide, or partition, the spae into

smaller regions, where the interations are more manageable. We then partition the

sub-divisions again. This is reursive partitioning, as in hierarhial lustering until

�nally we get to hunks of the spae whih are so tame that we an �t simple models
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Figure 5-4: Classi�ation tree for ounty-level outomes in the 2008 Demorati Party

primary (as of April 16), by Amanada Cox for the New York Times.
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to them. The global model thus has two parts: one is just the reursive partition, the

other is a simple model for eah ell of the partition.

Now look bak at Figure 5-4 and the desription whih ame before it. DT use

the tree to represent the reursive partition. Eah of the terminal nodes, or leaves,

of the tree represents a ell of the partition, and has attahed to it a simple model

whih applies in that ell only. A point x belongs to a leaf if x falls in the orrespond-

ing ell of the partition. To �nding whih ell we are in, we start at the root node

of the tree, and ask a sequene of questions about the features. The interior nodes

are labeled with questions, and the edges or branhes between them labeled by the

answers. Whih question we ask next depends on the answers to previous questions.

In the lassi version, eah question refers to only a single attribute, and has a yes

or no answer, e.g.,HSGrad < 0.78 or "Is Region == Midwest?" The variables an

be of any ombination of types (ontinuous, disrete but ordered, ategorial, et.).

You ould do more than binary questions, but that an always be aommodated

as a larger binary tree. Asking questions about multiple variables at one is, again,

equivalent to asking multiple questions about single variables.

That's the reursive partition part; what about the simple loal models? For las-

si regression trees, the model in eah ell is just a onstant estimate of Y . That

is, suppose the points (xi, yi), (x2, y2), ..., (xc, yc) are all the samples belonging to the

leaf-node l. Then our model for l is just ŷ = 1
c

∑c
i=1 yi, the sample mean of the

response variable in that ell. This is a pieewise-onstant model. There are several

advantages to this:

1. Making preditions is fast (no ompliated alulations, just looking up on-

stants in the tree).

2. It's easy to understand what variables are important in making the predition

(look at the tree).
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3. If some data is missing, we might not be able to go all the way down the tree

to a leaf, but we an still make a predition by averaging all the leaves in the

sub-tree we do reah.

4. The model gives a jagged response, so it an work when the true regression

surfae is not smooth. If it is smooth, though, the pieewise-onstant surfae

an approximate it arbitrarily losely (with enough leaves).

5. There are fast, reliable algorithms to learn these trees.

A last analogy before we go into some of the mehanis. One of the most om-

prehensible non-parametri methods is k-nearest-neighbors: �nd the points whih are

most similar to you, and do what, on average, they do. There are two big drawbaks

to it: �rst, you're de�ning "similar" entirely in terms of the inputs, not the response;

seond, k is onstant everywhere, when some points just might have more very-similar

neighbors than others. Trees get around both problems: leaves orrespond to regions

of the input spae (a neighborhood), but one where the responses are similar, as well

as the inputs being nearby; and their size an vary arbitrarily. Predition trees are

adaptive nearest-neighbor methods.

Deision tree lassi�ers are widely used for building lassi�er ensembles. Three im-

portant harateristis of these lassi�ers are:

1. If all the objets are distinguishable, that is, there are no idential elements

of Z with di�erent lass labels, then we an build a tree lassi�er with zero re-

substitution error. This fat plaes tree lassi�ers in the instable group: apable

of memorizing the training data so that small alterations of the data might

lead to a di�erently strutured tree lassi�er. As we shall see later instability

an be an advantage rather than a drawbak when ensembles of lassi�ers are

onsidered.

2. Tree lassi�ers are intuitive beause the deision proess an be traed as a

sequene of simple deisions. Tree strutures an apture a knowledge base in
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a hierarhial arrangement, most pronouned examples of whih are botany,

zoology, and medial diagnosis.

3. Both quantitative and qualitative features are suitable for building deision tree

lassi�ers. Binary features and features with a small number of ategories are

espeially useful beause the deision an be easily branhed out. For quanti-

tative features, a point of split has to be found to transform the feature into a

ategorial one. Hene, DT do not rely on a onept of distane in the feature

spae. As disussed earlier, a distane is not easy to formulate when the objets

are desribed by ategorial or mixed-type features. This is why deision trees

are regarded as non metri methods for lassi�ation [25, 37℄.

Pruning is a tehnique in mahine learning that redues the size of deision trees by

removing setions of the tree that provide little power to lassify instanes. The dual

goal of pruning is redued omplexity of the �nal lassi�er as well as better preditive

auray by the redution of over-�tting and removal of setions of a lassi�er that

may be based on noisy or erroneous data. Sometimes early stopping an be too

shortsighted and prevent further bene�ial splits. This phenomenon is alled the

horizon e�et [67℄. To ounter the horizon e�et, we an grow the full tree and

then prune it to a smaller size. The pruning seeks a balane between the inrease of

the training error and the derease of the size of the tree. Downsizing the tree will

hopefully redue over-training. There are di�erent riteria and methods to prune a

tree summarized by Esposito et al.[27℄ as follows.

5.3 Classi�ation and Regression Trees

The Classi�ation and Regression Trees (CART) have been proposed by Breiman et

al. in 1991. A CART is sophistiated program for �tting trees to data that hooses

the split for eah node suh that maximum redution in overall node impurity is

ahieved, where impurity is measured as the total sum of squared deviations from

node enters. A novel method of hoosing multi way partitions for lassi�ation and
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DT was given by Biggs et al. in 1991 whih hooses the best partition on the basis

of statistial signi�ane. Breiman, again in 1994, developed the bagging preditors

whih is a method of generating multiple versions of a preditor and using them to

get an aggregated preditor. Later on, Loh and Shih (1997) developed the QUEST

(Quik Unbiased E�ient Statistial Tree) method to take are of the seletion bias

towards the variables with more possible splits. To inrease the statistial reliability

of CART, Mola and Siiliano introdued statistial testing approah in the pruning

proedure. Chou (1991) proposed an optimal partitioning method in lassi�ation

tree for ategorial explanatory variables with large number of ategories based on

a kmeans lustering proedure. Shih (2001) proposed methods of seleting the best

ategorial split in a tree based on a family of splitting riterion. These methods

were shown to be useful to redue the omputational omplexity of the exhaustive

searh methods. Cappeli et al.(2002) suggested the use of statistial signi�ane in

the pruning proedure of both lassi�ation and regression trees to obtain a statisti-

ally reliable tree.

Waheed et al.(2006) investigated the potential of hyper-spetral remote sensing

data of experimental orn plots into ategories of water stress, and nitrogen appli-

ation rates for providing better rop management information in preision farming

by using the CART algorithm. The results showed that the auray for the irri-

gation fator was 96% while that of the nitrogen appliation rate was 83%. Olden

and Jakson (2002) provided a omparison between logisti regression analysis, linear

disriminant analysis, lassi�ation trees and ANN to model �sh speies distributions

and they onluded that lassi�ation trees and ANN greatly outperformed tradi-

tional approahes. Rothwell et al. (2008) applied the CART approah to evaluate

the key environmental drivers ontrolling dissolved inorgani nitrogen (DIN) leah-

ing from European forests whih suessfully lassi�ed the sites into the appropriate

leahing ategory.

Using Classi�ation And Regression Tree (CART) analysis is inreasing in various
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appliations. Early diagnosis of heart murmurs in newborns is a novel appliation of

CART for linial and physiologial data. CART analysis is a tree-building tehnique

whih is di�erent from traditional data analysis methods. In a number of studies,

CART has been found to be quite e�etive for reating deision rules whih perform

as well or better than rules developed using more traditional methods. In addition,

CART is often able to unover omplex interations between preditors whih may be

di�ult or impossible using traditional multivariate tehniques. It is now possible to

perform a CART analysis with a simple understanding of eah of the multiple steps

involved in its proedure. Classi�ation tree methods suh as CART are onvenient

way to produe a predition rule from a set of observations desribed in terms of a

vetor of features and a response value. The aim is to de�ne a general predition rule

whih an be used to assign a response value to the ases solely on the bases of their

preditor (explanatory) variables.

Tree-strutured lassi�ation and regression are nonparametri omputationally in-

tensive methods that have greatly inreased in popularity during the past dozen years.

They an be applied to data sets having both a large number of ases and a large

number of variables, and they are extremely resistant to outliers. Tree-strutured

lassi�ations are not based on assumptions of normality and user-spei�ed model

statements, as are some onventional methods suh as disriminant analysis and or-

dinary least square regression. Tree based lassi�ation and regression proedure have

greatly inreased in popularity during the reent years. Tree based deision methods

are statistial systems that mine data to predit or lassify future observations based

on a set of deision rules and are sometimes alled rule indution methods beause the

reasoning proess behind them is learly evident when browsing the trees. The CART

methodology have found favor among researhers for appliation in several areas suh

as agriulture, mediine, forestry, natural resoures management et. as alternatives

to the onventional approahes suh as disriminant funtion method, multiple lin-

ear regression, logisti regression et. In CART, the observations are suessively

separated into two subsets based on assoiated variables signi�antly related to the

response variable; this approah has an advantage of providing easily omprehensible
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deision strategies. CART an be applied either as a lassi�ation tree or as a re-

gressive tree depending on whether the response variable is ategorial or ontinuous.

Tree based methods are not based on any stringent assumptions. These methods an

handle large number of variables, are resistant to outliers, non-parametri, more versa-

tile, an handle ategorial variables, though omputationally more intensive. CART

an be a good hoie for the analysts as they give fairly aurate results quikly, than

traditional methods. If more onventional methods are alled for, trees an still be

helpful if there are a lot of variables, as they an be used to identify important vari-

ables and interations. These are also invariant to the monotoni transformations of

the explanatory variables and do not require the seletion of the variable in advane

as in regression analysis.

CART uses so-alled learning set whih is a set of historial data with pre-assigned

lasses for all observations. An algorithm known as reursive partitioning is the key to

the nonparametri statistial method of CART. It is a step-by-step proess by whih

a deision tree is onstruted by either splitting or not splitting eah node on the tree

into two daughter nodes. An attrative feature of the CART methodology is that

beause the algorithm asks a sequene of hierarhial questions, it is relatively simple

to understand and interpret the results. The unique starting point of a lassi�ation

tree is alled a root node and onsists of the entire learning set L at the top of the

tree. A node is a subset of the set of variables, and it an be terminal or nonterminal

node. A non terminal (or parent) node is a node that splits into two daughter nodes

(binary split). Suh a binary split is determined by a ondition on the value of a single

variable, where the ondition is either satis�ed or not satis�ed by the observed value of

that variable. All observations in L that have reahed a partiular (parent) node and

satisfy the ondition for that variable drop down to one of the two daughter nodes;

the remaining observations at that (parent) node that do not satisfy the ondition

drop down to the other daughter node. A node that does not split is alled a terminal

node and is assigned a lass label. Eah observation in L falls into one of the terminal

nodes. When an observation of unknown lass is "dropped down" the tree and ends

up at a terminal node, it is assigned the lass orresponding to the lass label attahed
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to that node. There may be more than one terminal node with the same lass label.

Two major problems addressed in this point are: i) number of splits ii) Query

Seletion and Node Impurity.

To produe a tree-strutured model using reursive binary partitioning, CART de-

termines the best split of the learning set L to start with and thereafter the best

splits of its subsets on the basis of various issues suh as identifying whih variable

should be used to reate the split, and determining the preise rule for the split, de-

termining when a node of the tree is a terminal one, and assigning a predited lass

to eah terminal node. The assignment of predited lasses to the terminal nodes

is relatively simple, as is determining how to make the splits, whereas determining

the right-sized tree is not so straightforward. In order to explain these in details,

proedure of growing a fully expanded tree and obtaining a tree of optimum size is

explained subsequently.

In general, the number of splits is set by the designer and ould vary throughout

the tree. The number of links desending from a node is sometimes BRANCHING

alled the node's branhing fator or branhing ratio, denoted B. However, every

FACTOR deision (and hene every tree) an be represented using just binary de-

isions. Thus, the root node querying fruit olor (B = 3) in our example ould be

replaed by two nodes: The �rst would ask fruit = green?, and at the end of its "no"

branh, another node would ask fruit = yellow?. Beause of the universal expressive

power of binary trees and the omparative simpliity in training, we shall onentrate

on suh trees Figure 5-5.

ii) Query Seletion and Node Impurity: Reently a number of the work in designing

trees fouses on deiding whih property test or query should be performed at eah

node. With nonnumeri data, there is no geometrial interpretation of how the query

at a node splits the data. However, for numerial data, there is a simple way to

visualize the deision boundaries that are produed by deision trees. For example,

Assumed that the query at eah node has the form xi ≤ xis This leads to hyperplane

deision boundaries that are perpendiular to the oordinate axes, and to deision
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Figure 5-5: A tree with arbitrary branhing fator at di�erent nodes an always be

represent by a funtionally equivalent binary tree whih is one having branhing fator

B=2 throughout, as shown here.

regions of the form shown in Figure 5-6.

The fundamental priniple underlying tree reation is that of simpliity: The

deisions that lead to a simple, ompat tree with few nodes should be preferred.

The important problem is why there is no reason the query at a node has to involve

only one property. One might well onsider logial ombinations of properties, suh

as using (size=medium) AND (NOT(olor=yellow))? as a query. Trees in whih eah

query is based on a single property are alled monotheti; if the query at any of the

nodes involves two or more properties, the tree is alled polytheti. For simpliity, we

generally restrit our treatment to monotheti trees. In all ases, the key requirement

is that the deision at a node be well-de�ned and unambiguous so that the response

leads down one and only one branh. To this end, we seek a property query T at eah

node N that makes the data reahing the immediate desendant nodes as "pure" as

possible. In formalizing this notion, it turns out to be more onvenient to de�ne the

impurity, rather than the purity of a node.
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Figure 5-6: Monotheti deision trees reate deision boundaries with portions per-

pendiular to the feature axes.

Several di�erent mathematial measures of impurity have been proposed, all of

whih have basially the same behavior. Let i(N) denote the impurity of a node N .

In all ases, we want i(N) to be 0 if all of the patterns that reah the node bear the

same ategory label, and to be large if the ategories are equally represented.

The most popular measure is the entropy impurity (or oasionally information im-

purity):

i(N) = −
∑

j

P (ωj)log2P (ωj) (5.5)

where P (ωj) is the fration of patterns at node N that are in ategory ωj. By the well-

known properties of entropy, if all the patterns are of the same ategory, the impurity

is 0; otherwise it is positive, with the greatest value ourring when the di�erent

lasses are equally likely. Another de�nition of impurity is partiularly useful in the

two-ategory ase. Given the desire to have zero impurity when the node represents

only patterns of a single ategory, the simplest polynomial form is

i(N) = P (ω1)P (ω2). (5.6)

This an be interpreted as a variane impurity beause under reasonable assumptions

it is related to the variane of a distribution assoiated with the two ategories. A

generalization of the variane impurity, appliable to two or more ategories, is the
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Figure 5-7: For the two-ategory ase, the impurity funtions peak at equal lass

frequenies and the variane and the Gini impurity funtions are idential. The

entropy, variane, Gini, and mislassi�ation impurities have been adjusted in sale

and o�set to failitate omparison here; suh sale and o�set do not diretly a�et

learning or lassi�ation.

Gini impurity:

i(N) = −
∑

i 6=j

P (ωj)log2P (ωj) =
1

2

[

1−
∑

j

P 2(ωj)

]

. (5.7)

This is just the expeted error rate at nodeN if the ategory label is seleted randomly

from the lass distribution present at N . This riterion is more strongly peaked at

equal probabilities than is the entropy impurity Figure 5-7.

The mislassi�ation impurity an be written as

i(N) = 1−maxP (ωj) (5.8)

and it measures the minimum probability that a training pattern would be mislas-

si�ed at N . Of the impurity measures typially onsidered, this measure is the most

strongly peaked at equal probabilities. It has a disontinuous derivative, though, and

this an present problems when searhing for an optimal deision over a ontinuous

parameter spae. Figure 5-7 shows these impurity funtions for a two-ategory ase,

as a funtion of the probability of one of the ategories.

There is still a key question: Given a partial tree down to node N , what value s

should we hoose for the property test T . An obvious heuristi is to hoose the query
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that dereases the impurity as muh as possible. The drop in impurity is de�ned by

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) (5.9)

where NL and NR are the left and right desendant nodes, i(NL) and i(NR) are

their impurities, and PL is the fration of patterns at node N that will go to NL

when property query T is used. Then the "best" query value s is the hoie for T

that maximizes δi(T ). If the entropy impurity is used, then the impurity redution

orresponds to an information gain provided by the query. Beause eah query in a

binary tree is a single "yes/no" one, the redution in entropy impurity due to a split

at a node annot be greater man one bit.

The way to �nd an optimal deision for a node depends upon the general form

of deision. Beause the deision riteria are based on the extrema of the impurity

funtions, we are free to hange suh a funtion by an additive onstant or overall

sale fator and this will not a�et whih split is found. Designers typially hoose

funtions that are easy to ompute, suh as those based on a single feature or at-

tribute, giving a monotheti tree. If the form of the deisions is based on the nominal

attributes, we may have to perform extensive or exhaustive searh over all possi-

ble subsets of the training set to �nd the rule maximizing δi. If the attributes are

real-valued, one ould use gradient desent algorithms to �nd a splitting hyperplane,

giving a polytheti tree. An important reason for favoring binary trees is that the

deision at any node an generally be ast as a one-dimensional optimization problem.

If the branhing fator B were instead greater than 2, a two or higher-dimensional

optimization would be required; this is generally muh more di�ult.

5.4 Ensembles of Deision Trees

Mahine learning approahes have wide appliations in medial and deision tree is

one of the oldest mahine learning model and usually is used to illustrate the very
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basi idea of mahine learning whih is applied in this �eld.

The aim of adopting a deision tree ensemble is to obtain highly aurate performane

in linial deisions. It is well known that the lassi�ation performane an be

improved by using an ensemble of individual lassi�ers, whih onur to reah the

�nal deision . Several ensemble learning methods exist and di�erent strategies have

been proposed to blend the preditions of individual lassi�ers, whih are expeted to

be diverse and yet aurate. In partiular, in lassi�er fusion, eah ensemble member

is supposed to have knowledge of the whole feature spae. The features set an be as

inputs in two ategories, i) same feature set for all lassi�ers or ii) di�erent feature

set for eah lassi�ers. In Figure 5-8 a shemati representation of these models are

shown.

Two of the most popular tehniques for ensemble fusion are bagging i.e., boost-

rap aggregation, Breiman (1996), and boosting, i.e., Adaboost Freund and Shapire

(1996). Let us spend a few words on the former tehnique, whih has been used in

this work.

Bagging

The idea of bagging is simple and appealing: the ensemble is made of lassi�ers built

on bootstrap repliates of the training set. The lassi�er outputs are ombined by

the plurality vote[15℄.

The diversity neessary to make the ensemble work is reated by using versions of a

training set. Ideally, the training sets should be generated randomly from the distri-

bution of the problem. Eah of these bootstrap data sets is used to train a di�erent

omponent lassi�er and the �nal lassi�ation deision is based on the vote of eah

omponent lassi�er. Traditionally the omponent lassi�ers are of the same general

form-for example, all Hidden Markov Models, or all neural networks, or all deision

trees merely the �nal parameter values di�er among them due to their di�erent sets

of training patterns.
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Figure 5-8: A shemati representation of the inputs system.
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In pratie, we an only a�ord one labeled training set, Z = {z1, ..., zN}, and have to

imitate the proess or random generation of L training sets. We sample with replae-

ment from the original training set (bootstrap sampling [26℄) to reate a new training

set of length N . To make use of the variations of the training set, the base lassi�er

should be unstable, that is, if "small" hanges in the training data lead to signi�-

antly di�erent lassi�ers and relatively "large" hanges in auray. Otherwise, the

resultant ensemble will be a olletion of almost idential lassi�ers, therefore unlikely

to improve on a single lassi�er's performane. Examples of unstable lassi�ers are

neural networks and deision trees while k-nearest neighbor is an example of a stable

lassi�er. The training and operation of bagging is (The bagging algorithm):

Training phase

1. Initialize the parameters

D = 0, the ensemble.

L, the number of lassi�ers to train.

2. For k = 1, ..., L

Take a bootstrap sample Sk from Z. Build a lassi�er Dk using Sk as the

training set. Add the lassi�er to the urrent ensemble, D = D ∪Dk.

3. Return D.

Classi�ation phase

4. Run D1, ..., DL on the input x.

5. The lass with the maximum number of votes is hosen as the label for x.

If the outputs of lassi�er were independent and lassi�ers had the same individ-

ual auray p, then the majority vote (we will talk in this hapter) is guaranteed to

improve on the individual performane [42, 13℄. Bagging aims at developing indepen-

dent lassi�ers by taking bootstrap repliates as the training sets. Bagging is our �rst
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enounter with multilassi�er systems, where a �nal overall lassi�er is based on the

outputs of a number of omponent lassi�ers. The global deision rule in bagging-

a simple vote among the omponent lassi�ers is the most elementary method of

pooling or integrating the outputs of the omponent lassi�ers. The samples are

pseudo-independent beause they are taken from the same Z. However, even if they

were drawn independently from the distribution of the problem, the lassi�ers built

on these training sets might not give independent outputs.

Boosting

We now look at the ensemble method of boosting. Boosting was inspired by an

on-line learning algorithm alled Hedge(β) [30℄. The goal of boosting is to improve

the auray of any given learning algorithm. In boosting we �rst reate a lassi�er

with auray on the training set greater than average, and then add new omponent

lassi�ers to form an ensemble whose joint deision rule has arbitrarily high auray

on the training set. In suh a ase we say that the lassi�ation performane has

been "boosted". In overview, the tehnique trains suessive omponent lassi�ers

with a subset of the training data that is "most informative" given the urrent set of

omponent lassi�ers. For example, we suppose that as a patient, you have ertain

symptoms. Instead of onsulting one dotor, you hoose to onsult several. Suppose

you assign weights to the value or worth of eah dotor's diagnosis, based on the

auraies of previous diagnoses they have made. The �nal diagnosis is then a om-

bination of the weighted diagnoses. This is the essene behind boosting.

For de�niteness, onsider reating three omponent lassi�ers for a two-ategory

problem through boosting. First we randomly selet a set of n1 < n patterns from

the full training set D (without replaement); all this set D1. Then we train the �rst

lassi�er, C1, with D1. Classi�er C1 need only be a weak learner-that is, have au-

ray only slightly better than hane. (Of ourse, this is the minimum requirement;

a weak learner ould have high auray on the training set. In that ase the bene�t
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of boosting will be small).

Now we seek a seond training set, D2, that is the "most informative" given ompo-

nent lassi�er C1. Spei�ally, half of the patterns in D2 should be orretly lassi�ed

by C1, half inorretly lassi�ed by C1. Suh an informative set D2 is reated as fol-

lows: We �ip a fair oin. If the oin is heads, we selet remaining samples from D and

present them, one by one to C1 until C1 mislassi�es a pattern. We add this mislas-

si�ed pattern to D2. Next we �ip the oin again. If heads, we ontinue through D to

�nd another pattern mislassi�ed by C1 and add it to D2 as just desribed; if tails, we

�nd a pattern that C1 lassi�es orretly. We ontinue until no more patterns an be

added in this manner. Thus half of the patterns in D2 are orretly lassi�ed by C1,

half are not. As suh, D2 provides information omplementary to that represented in

C1. Now we train a seond omponent lassi�er C2 with D2.

Next we seek a third data set, D3, whih is not well lassi�ed by voting by C1 and C2.

We randomly selet a training pattern from those remaining in D and then lassify

that pattern with C1 and with C2. If C1 and C2 disagree, we add this pattern to the

third training set D3, otherwise we ignore the pattern. We ontinue adding informa-

tive patterns to D3, in this way; thus D3 ontains those not well represented by the

ombined deisions of C1 and C2. Finally, we train the last omponent lassi�er, C3,

with the patterns in D3.

Now onsider the use of the ensemble of three trained omponent lassi�ers for lassi-

fying a test pattern x. Classi�ation is based on the votes of the omponent lassi�ers.

Spei�ally, if C1 and C2 agree on the ategory label of x, we use that label; if they

disagree, then we use the label given by C3 (See Figure 5-9).

We skipped over a pratial detail in the boosting algorithm: how to hoose the

number of patterns n1 to train the �rst omponent lassi�er. We would like the �nal

system to be trained with all patterns in D of ourse; moreover, beause the �nal

deision is a simple vote among the omponent lassi�ers, we would like to have a

roughly equal number of patterns in eah (i.e., n1
∼= n2

∼= n3
∼= n/3). A reasonable

�rst guess is to set n1
∼= n/3 and reate the three omponent lassi�ers. If the lassi-

�ation problem is very simple, however, omponent lassi�er C1 will explain most of
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Figure 5-9: A two-ategory lassi�ation task is shown at the top in two-dimensions.

The middle row shows three omponent (linear) lassi�ers Ck trained. where their

training patterns were hosen through the basi boosting proedure. The �nal lassi-

�ation is given by the voting of the three omponent lassi�ers and yields a nonlinear

deision boundary, as shown at the bottom. Given that the embedded lassi�ers are

weak learners (i.e., eah an learn a training set at least slightly better than hane),

the ensemble lassi�er will have a lower training error on the full training set D than

does any single omponent lassi�er. Of ourse, the ensemble lassi�er has lower error

than a single linear lassi�er trained on the entire data set.
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the data and thus n2 (and n3) will be muh less than n1, and not all of the patterns in

the training set D will be used. Conversely, if the problem is extremely di�ult, then

C1 will explain only a small amount of the data, and nearly all the patterns will be in-

formative with respet to C1; thus n2 will be unaeptably large. Thus in pratie we

may need to run the overall boosting proedure a few times, adjusting n1 in order to

use the full training set and, if possible, get roughly equal partitions of the training set.

There are a number of variations on basi boosting. The most popular, AdaBoost

from "adaptive boosting-allows" the designer to ontinue adding weak learners until

some desired low training error has been ahieved. In AdaBoost eah training pattern

reeives a weight that determines its probability of being seleted for a training set

for an individual omponent lassi�er. The AdaBoost algorithm is as follows:

AdaBoost

1. begin initialize D = x1, y1, ..., x
n, yn, kmax,W1(i) = 1/n, i = 1, ..., n

k → 0

2. do k + 1 → k

3. train week learner Ck using D sampled aording to Wk(i)

4. training error of Ck measured on D using Wk(i)

5.

1
2
ln[(1 −Ek)/Ek] → αk

6.

wk(i)
Zk

× eα
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7. k = kmax

8. return Ck and αk for k = 1 to kmax (ensemble of lassi�ers with weights)

9. end

Note that in line 5 the error for lassi�er Ck is determined with respet to the

distribution Wk(i) over D on whih it was trained. In line 7, Zk is simply a nor-

malizing onstant omputed to ensure that Wk(i) represents a true distribution, and

hk(x
i) is the ategory label (+1or−1) given to pattern xi by omponent lassi�er Ck.

Naturally, the loop termination of line 8 ould instead use the riterion of su�iently

low training error of the ensemble lassi�er.

"How does boosting ompare with bagging?" Beause of the way boosting fouses

on the mislassi�ed tuples, it risks over�tting the resulting omposite model to suh

data. Therefore, sometimes the resulting "boosted" model may be less aurate than

a single model derived from the same data. Bagging is less suseptible to model

over�tting. While both an signi�antly improve auray in omparison to a single

model, boosting tends to ahieve greater auray.
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6

Results and Disussion

This hapter illustrates experimental results onerning signal proessing and las-

si�ation of heart sound signals. The most important the goal of signal proessing

tehniques is to extrat e�ient features, to be used as inputs for the lassi�ation

proess. The problem faed in feature extration from row data is to determine what

features are to be used. If too many features are extrated and used, the training

proess of the lassi�er at hand might be omplex. On the other hand, if few features

are seleted the the information given to the training algorithm might be poor. More-

over, training of the lassi�er will be also di�ult and testing results will be poor. In

this researh, we applied in pipeline feature extration.

Classi�ation involves assigning a lass to an unknown objet. Both supervised

and unsupervised lassi�ation methods have been used for obtaining the �nal results

of the analysis. In this work, several lassi�ation tehniques have been experimented

on available data.

6.1 Data Analysis and Feature Extration

Data Analysis Results

Some relevant signal proessing tools have been applied to newborn heart sound sig-

nals. This setion reports experimental results and disusses the appliations of eah
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tool that better highlights the properties of the PCG signal, with the goal of iden-

tifying those that are more suitable for lassi�ation purposes. In partiular, the

following tools have been seleted: Shannon Energy, Spetrum, Bispetrum, Wigner

Distribution and Wigner Bispetrum.

Shannon Energy The Shannon Energy of a PCG signal is shown in �gure 6-1.

In our ase signal segments have been obtained with a granularity of 0.02 seonds

and with signal segment overlapping of a 0.01 seonds. Aording to these �gures (as

shown in hapter 4), we an see that Shannon entropy and Shannon Energy an absorb

the magnitude of osillations of high intensity as well as those in low amplitudes.

Figure 6-1 a) shows a ardia yle magni�ed, indiating the normal heart sound

murmurs. Figure 6-1 b) shows pathologial heart sound magni�ed, indiating early

systoli murmurs. The �gures learly highlights the existene of signi�ant extra

peaks in the systoli area of pathologial sample. This tehnique proves very useful

in enhaning signal details and an generally be applied on any pathologial ase.

Spetrum Time-frequeny visualization is a ommon preliminary step in the analysis

of nonstationary signals. The most popular tehnique is the spetrogram, whih es-

timates the power spetral density (PSD) by applying the periodogram to windowed

segments separated by a �xed interval. This is omputationally e�ient beause it

inorporates the Fast Fourier transform (FFT). The user spei�es the window shape

and length that ontrols the trade-o� between time and frequeny resolution of the

image.

The time-frequeny representation of the PCG signal is evaluated with the help of the

spetrogram. This is a very important parameter for window analysis. We estimated

spetrograms using an FFT applied to a series of signal segment multiplied by a Hann

window. The window was based on �rst and seond heart sound. Figure 6-2 shows

the spetrogram of �rst and seond heart sound in newborn.

The dereasing frequeny and growing amplitude are learly visible in the spetro-

gram. Two beats of normal PCG signal and appropriate spetrogram are shown in

�gure 6-2. Heartbeat onsists of time intervals that are determined with S1 and S2,
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Figure 6-1: Shannon energy of heart sound with a) normal and b) pathologial mur-

murs.
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Figure 6-2: Spetrogram of a) �rst (S1) and b) seond (S2) heart sound.

i.e., systole and diastole peaks, where diastole has a longer interval than systole. In

this �gure we an �nd out that the �rst heart sound S1 ontains more information

than the seond one. Indeed, this systoli sound oupies a relatively large bandwidth,

from 20 Hz up to 100 Hz, when aquired from mitral fous upon the hest. The di-

astoli heart sound S2 appears in very short duration with approximately the same

spetral range of S1, but with di�erent shape. Periods of heart murmurs are har-

aterized by horizontal bands of elevated power spetral density (PSD) in the range

of 0.01 kHz. These bands indiate low-frequeny osillations in the heart sound. By

applying the spetral analysis to di�erent PCG signals, we an identify whih sounds

(either S1 or S2) is diretly onerned by the pathology, and more preisely whih

omponent of these sounds is a�eted.

Bispetrum Bispetral analysis makes use of phase information by deteting

whether the phase of signal omponents at frequenies f1, f2, f3 and are interdepen-

dent. The Bispetrum has applied to the normal �rst and seond sounds to analyze

the frequeny ontent, as shown in Figure 6-3. The two internal omponents for the

sound S1 (M1 and T1) and the two omponents A2 and P2 of the sound S2 are

obvious in �gure 6-3. This Bispetrum analysis annot give the time delay between

these internals omponents. Therefore, the usual Bispetrum is unable to aurately

diagnose heart diseases. It is thus essential to look for a transform whih will desribe

a kind of "time-varying" spetrum.
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Figure 6-3: Bispetrum of �rst and seond heart sounds with omponents.

The implementation of Bispetrum on normal and pathologial heart murmurs

data is shown in �gure 6-4, whih learly highlights the existene of signi�ant peaks

in the bispetra. Thorough experimental results shows that the same kind of heart

murmurs have signi�ant similarities in their Bispetra shapes and in the loations of

peaks. The loation of signi�ant bispetral peaks in bifrequeny are quite di�erent

depending on the PCG signal in di�erent kind of diseases.

Wigner Distribution

As we disussed in hapter 4, Wigner Distribution provide a time-frequeny shifted
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Figure 6-4: A ontour plot of the magnitude of the indiret estimated bispetrum on

the bifrequeny plane, for (a) normal and (b) pathologial heart murmurs.
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Figure 6-5: Wigner Distribution of normal (upper) and pathologial (lower) �rst

ardia sound.

versions of PCG signal. Figure 6-5 shows the WD applied to a normal (upper) and

pathologial lower (S1). The spetrogram is alulated by a linear then a bilinear

operations. Firstly, the linear operator onsists of a Fourier transform, and seondly

the squared modulus as a bilinear operator is applied to the signal to be analysed.

In ontrast, the WVD begins with a quadrati estimation of the energy and then

a Fourier transform is applied to the signal aording to equation 4.21. The WVD

ombines the time and the frequeny representations with some required properties

to adequately represent a given signal x(t) in the time-frequeny domain [14℄.

In ontrast, the WVD provides an extraordinary time-frequeny representation whih

retraes perfetly the di�erentiation of the S1 heart sound. One an notie here that

the two main omponents (A2 and P2) start to appear in the presene ross-terms.

The information ontained in a WD may be improved by inreasing the sampling rate
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of the original signal, but it would still su�er from the ross-terms problem due to the

nonlinearity of the WD analysis. However the WD have shown good performanes

in the analysis of non-stationary signals. This omes from ability to separate signals

along both time and frequeny diretions. One advantage of the WD over the STFT

is that it does not su�er from the time-frequeny trade-o� problem. On the other

hand, the WD has a disadvantage sine it shows ross-terms in its response. These

ross-terms are due to the nonlinear behavior of the WD, and bear no physial mean-

ing. One way to remove these ross-terms is by smoothing the time-frequeny plane,

but this will be at the expense of dereased resolution in both time and frequeny. We

believe that the time-frequeny saling of the PCG may �nd important appliations

in the improvement of the diagnosis of heart and heart valve disease.

Wigner Bispetrum The Wigner distribution is de�ned somewhat di�erently

from the spetrogram, but also provides information regarding the frequeny ontent

of the signal versus time. Like the spetrogram, it redues to the power spetrum

when the signal is stationary. Using the Bispetrum as a model, we have extended the

Wigner distribution to third order in away that preserves many of its essential features

and appealing properties. A third-order Wigner distribution or Wigner Bispetrum of

heart sound with normal (innoent) and pathologial murmurs are shown in �gure 6-6.

Figure 6-6 learly highlights S1 and S2, together with the feature of heart murmur

whih are systoli and diastoli murmurs. For the sake of readability, they are put

into deviane for separating innoent and pathologi murmurs.

Feature Extration and Seletion

This phase is foused on extrating signal features that better highlight the proper-

ties of the PCG signal, with the goal of identifying those that are more suitable for

lassi�ation purposes. This part onsists of two major steps: feature extration from

row data and feature seletion.
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Figure 6-6: Contour map of the Wigner Bispetrum from heart sound: (a) Heart

sound with innoent murmur and (b) pathologial murmur.
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Feature Extration

Feature extration is an essential perproessing step in pattern reognition and ma-

hine learning problems. It is often followed by feature seletion.

In our ase, eah signal is represented by the features summarized in Table 6.1.

No Variables Feature Set

1 Max Maximum Value Amplitude

2 Min Minimum Value Amplitude

3 Positive Area Sum of Positive Area

4 Absolute Negative Area Absolute Sum of Negative Area

5 Total Absolute Area Sum of Absolute Area

6 Variane Variane

7 Peak to Peak Peak to Peak Time window

8 SE Shannon Energy

9 C1, C2, C3 Bispetrum

10 WD Wigner Distribution

11 WB Wigner Bispetrum

Table 6.1: List of Features Extrated for Classi�ation

Overall, a total of 13 features from time domain, frequeny domain, higher order

spetral and statistial features were extrated that ould have potential to disrimi-

nate among the normal and murmur signals. This study uses the ommon assumption

that systole is shorter than diastole. Unlike other studies, the features in the whole

signal as well as separately in systoli and diastoli regions have been extrated in

order to deal with the situations of systoli and diastoli murmur. All the features

are alulated from the available PCG signals whih are 116 samples.

Feature Seletion

Feature seletion has then been used to redue the size of the feature vetor. To

measure the sore of eah variable we made use of the gain and variable importane
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Figure 6-7: Variable importane averaging.

metris whih are provided as seondary outputs by the algorithm used for training

an ensemble of deision trees.

To alulate the importane sore of a variable, the training algorithm for deision

trees looks at the improvement measure of eah variable, in its role as a surrogate to

the primary split. The values of these improvements are summed over eah node and

are saled aording to the best performing variable [12℄.

A variable an obtain an importane sore of zero in a deision tree only if it never

appears as primary or surrogate splitter. As suh kind of variables play no role

anywhere in the tree, eliminating them from the data set does not a�et the training

proess. Importane variable sores for the proess in hand are reported in Figure 6-7.

Figure 6-7 shows all variables used (or not used) in the tree building proess. A

sore is assoiated to eah variable, based on the improvement eah variable makes as

a surrogate to the primary splitting variable. Variable importane allows to highlight

variables whose signi�ane is masked or hidden by other variables in the tree building

proess.

In this study some signi�ant features have been introdued. By using these

features the lassi�ation auray improved in ase of various lassi�ers as shown

in Table 6.2. So, these new features proved to be very e�ient for lassi�ation of

normal and murmur signals. Here, also proposes the approah of evaluating some
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Table 6.2: Sore of importane variable

No Feature Improvement IVS

7 Peak to Peak 0.26727 100.000

1 Maximum 0.24242 98.3110

8 Shannon Energy 0.22668 82.6663

9 Bispetrum, C1 0.20649 72.6115

12 Wigner Bispetrum 0.16474 54.7318

4 Absolute Negative Area 0.14060 48.2417

11 Bispetrum, C2 0.03019 43.8223

already existing features in both the systoli and diastoli regions in order to deal

with the situations of systoli and diastoli murmurs. In partiular, the variable with

the highest sum of improvements is sored 100, while other variables have lower sore.

Importane variable sores (IVS) are summarized in Table 6.2.

6.2 Classi�ation of Heart Diseases in Newborn

This setion reports experimental results and disusses about mahine learning and

data mining tehniques that applied in this researh. Various lassi�ers were used in

this study in order to �nd out the best lassi�er that suits the problem. The goal

of implementation of lassi�ers is reduing of two types of errors. As we disussed

about heart murmurs in newborns that an innoent heart murmur does not entail a

disease ondition, a physiian assuming that a newborn is healthy typially orders

an ehoardiogram for reassurane, although its ost may be not negligible. Overall,

the result of this pratie is a misalloation of health are funds. Indeed, while it

is learly important to avoid type-I errors, i.e. healthy newborn sent for ehoardio-

gram, it is also important to avoid type-II errors, i.e. newborns having a pathologial

heart murmur sent home without proper treatment
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Arti�ial Neural Networks

The �rst lassi�er that has been implemented for diagnosis of systoli defet onsists

of a multilayer pereptron with one hidden layer. The �nal ANN arhiteture was

determined by trial and error. In partiular, to identify the number of hidden layers

and the amount of neurons to be used in the input and hidden layers, system om-

plexity was redued until performane began to degrade. The result of this proedure

was MLP arhiteture with the hidden layer equipped with 5 neurons.

We have trained the lassi�ers on medial data labeled healthy or unhealthy. Sen-

sitivity, see Equation 6.1, is a very important measure for this partiular researh,

as in our ase it measures the perentage of patients with unhealthy hearts that are

reognized as suh. High sensitivity means that the system has fewer Type II errors,

i.e. few unhealthy hearts lassi�ed as healthy [65℄.

Sensitivity =
(true positives)

(true positives + false negatives)
(6.1)

Spei�ity, see Equation 6.2, in our ase gives the perentage of healthy ases that

are lassi�ed as healthy. With high spei�ity, the system has fewer Type I errors,

i.e. a healthy newborn lassi�ed as unhealthy.

Specificity =
(true negatives)

(true negatives+ false positives)
(6.2)

The lassi�ation auray was alulated using the leave-one-out ross-validation

1

method, whih repeatedly trains the lassi�er with all samples but one and tests it

on the sample exluded from training. The method iterates over all available samples

and the �nal performane metris are obtained by onsidering the results of all steps.

Results are shown in Table 6.3 in the form of a onfusion matrix, together with per-

entage lassi�ation auray.

1

One of the most ommon forms of ross validation is "leave-one-out" (LOO) in whih the model

is repeatedly re�t leaving out a single observation and then used to derive a predition for the left-out

observation.
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Normal Pathologial

Normal 96.4% 3.6%

Pathologial 3.6% 96.4%

Table 6.3: Classi�ation results of systoli murmurs in newborns. Cross-validation:

obtained with the leave-one-out method, %: Perentage of lassi�ation.

It an be seen that out of 28 normal signals, 96.4% were orretly lassi�ed as

normal, and 3.6% were mislassi�ed as pathologial. Similarly, out of 28 pathologial

signals, 96.4% were orretly lassi�ed as pathologial and 3.6% were mislassi�ed as

normal. A detailed analysis of the mislassi�ed signals showed that they were in fat

very di�ult to lassify, even by human experts. Summarizing, 96.4% auray, 97%

sensitivity and 97% spei�ity were obtained by the MLP, distinguishing between the

58 innoent and pathologial heart murmurs in newborns.

Let us point out that for this system, both high sensitivity and spei�ity are impor-

tant. In partiular, higher spei�ity redues the number of newborns with innoent

murmurs who are identi�ed as pathologial murmur and sent to ehoardiogram for

further testing. More importantly, higher sensitivity redues the number of newborns

with pathologial murmurs that are identi�ed as innoent murmurs and have been

released with a potentially deadly heart ondition.

Classi�ation and Regression Trees (CART)

This setion reports experimental results and disusses the appliation of Classi�a-

tion and Regression Trees (CART) to early diagnosis of heart disease in newborns.

Early diagnosis of heart murmurs in newborns is a novel appliation of CART for lin-

ial and physiologial data. K-fold ross validation (K=10) has been used as training

and test strategy. Experiments have been run using an implementation of CART

provided by Salford System In, USA. It is a step-by-step proess in whih a deision

tree is onstruted by either splitting eah node on the tree in two daughter nodes.
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The realisti objetive of partitioning is to �nd partitions of the data suh that ter-

minal nodes are as suh homogeneous as possible. The quantitative measure of node

homogeneity is alled the impurity funtion. The simplest idealization of the impurity

funtion is the number of patients who meet an objetive riteria divided by the total

number of patients in the node. Ratios lose to 0 or 1 are onsidered more pure.

To partition a node, CART examines all possible splits of the explanatory variables.

In general, the number of possible splits for ordinal or ontinuous variables is 1 less

the number of distintly observed values. A potential split is judged by its redution

of the impurity funtion for both daughter nodes it reates. The partitioning itera-

tively ontinues by splitting eah node in two daughter nodes and ontinues until the

tree is saturated that is, until no further partitions an be found [70℄.

The DT start at the top of the tree and follow di�erent branhes, depending on on-

ditions involving the preditor variables. Trees with multiple layers of splits may be

oneptualized as desribing interations between preditor variables. One we arrive

at an end-point of the tree, we used 12 nodes and variables lassi�ed in two lasses

(lasses 0 and 1 were Innoent and pathologial murmurs respetively [47℄).

We alulated the likelihood ratio (LR) to obtain sensitivity and spei�ity on a

tree, de�ned as follows:

LR+ =
sensitivity

1− specificity
(6.3)

(6.4)

LR− =
1− sensitivity

specificity

The interpretation of likelihood ratios is intuitive: the larger the positive likelihood

ratio, the greater the likelihood of heart disease; the smaller the negative likelihood

ratio, the lesser the likelihood of heart disease.

Results are shown in Table 6.2 in the form of a onfusion matrix, together with

lassi�ation auray. It an be seen that out of 58 normal signals, 57 were orretly
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Figure 6-8: Illustration of deision tree struture.

Atual Group Normal Pathologial Perent Corret

Normal 57 1 98.28%

Pathologial 0 58 100%

Average/Overall 116 99.14%

Table 6.4: Classi�ation result of heart disease in newborns using CART.
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Figure 6-9: CART deision tree Error urve.

lassi�ed as normal, and 1 was mislassi�ed as pathologial. As for 58 pathologial

signals, they were orretly lassi�ed as pathologial without mislassi�ation. A

detailed analysis of the mislassi�ed example showed that it was in fat very di�ult

to lassify, even by human experts.

Summarizing, 99.14% auray, 100% sensitivity and 98.28% spei�ity were obtained

by CART, when used to distinguish between the 116 innoent and pathologial heart

murmurs in newborns.

Let us point out that, for this system, both high sensitivity and spei�ity are im-

portant. In partiular, high sensitivity redues the number of newborns with innoent

murmurs who are identi�ed as pathologial murmur and sent to ehoardiogram for

further testing. More importantly, high spei�ity redues the number of newborns

with pathologial murmurs that are identi�ed as innoent murmurs and have been

released with a potentially deadly heart ondition.

For eah fold, learning has been performed in two steps: growing and pruning. It

is worth noting that pruning has been performed provided that deision tree error

urve did not trespass the threshold of 1%.

Figure 6-9 shows a urve whih outlines the relationship between lassi�ation

errors and tree size. The sale is always between 0 and 1, so it is alled a relative

error urve. A tree with a relative error of 0 or nearly 0 is usually too good to be

true. The proposed model shows exellent performane for appliation of diagnosis

of heart disease.

The CART deision tree error urve arhived automated growing of a too large

tree, followed by automated pruning to �nd the right-sized tree [52℄. The rationale

for the growing/pruning proess is illustrated in the error urve (�gure 6-9). In a
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Figure 6-10: ROC urve of innoent (a) and pathologial murmurs (b) lassi�ed.

Reeiver Operating Charateristi (ROC)

2

urve for a binary lassi�ation problem,

the true positive rate (Sensitivity) is reported as funtion of the false positive rate

(100-Spei�ity) for di�erent ut-o� points. ROC urve are reported in �gure 6-10 a

and �gure 6-10 b are targeted for innoent and pathologial murmurs, respetively.

A suessful lassi�er will result in an ROC urve tending towards the upper-left or-

ner. The area under the ROC urve (AUC) is often used as a summary statisti sine

2

In statistis, a reeiver operating harateristi (ROC), or ROC urve, is a graphial plot that

illustrates the performane of a binary lassi�er system as its disrimination threshold is varied. The

urve is reated by plotting the true positive rate against the false positive rate at various threshold

settings.
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it relates to the Mann-Whitney U-test. A preditive model with perfet performane

has an area under ROC urve equal to 1. We obtained, on average, an auray of

0.99 the ROC urve highlights the exellent performane of CART to disriminate of

heart murmurs.

Ensembles of Deision Trees

As disussed in a previous hapter a deision tree is typially trained using a greedy

proedure whih, at eah node of the tree, deides whether to assign a lass label

to the node or to reursively split the node in two or more daughter nodes. The

whole proess ends when no more splitting is required (or feasible). The deision of

assigning a lass label to a node or ontinuing with splitting depends on the training

samples assoiated to the node.

The goal of the underlying partitioning proedure is to split data suh that termi-

nal nodes are as muh homogeneous as possible. The quantitative measure of node

homogeneity is alled impurity funtion. The simplest idealization of the impurity

funtion is the number of patients who meet an objetive riterion divided by the total

number of patients in the node. Ratios lose to 0 or 1 are onsidered more pure. To

partition a node, the training algorithm of a deision tree examines all possible splits

of the explanatory variables. In general, the number of splits for ordinal variables is

the number of distintly observed values minus 1. Several proposals have also been

made to deal with ontinuous variables (see for instane Usama M. Fayyad, Keki B.

Irani (1992)). A potential split is judged by its redution of the impurity funtion

for all daughter nodes it reates. The partition proess keeps splitting nodes until no

further partitions an be found [57℄.

A DT starts at the top of the tree and follow di�erent branhes, depending on the

onditions involving the preditor variables. Trees with multiple layers of splits may

be oneptualized as desribing interations between preditor variables [70℄.

The aim of adopting a deision tree ensemble is to obtain highly aurate performane

in linial deisions. It is well known that the lassi�ation performane an be
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improved by using an ensemble of individual lassi�ers, whih onur to reah the

�nal deision. Several ensemble learning methods exist and di�erent strategies have

been proposed to blend the preditions of individual lassi�ers, whih are expeted to

be diverse and yet aurate. In partiular, in lassi�er fusion, eah ensemble member

is supposed to have knowledge of the whole feature spae. As for the orresponding

voting poliy, let us use a metaphor involving dotors and newborns: let us suppose

that there is a newborn patient and that we would like to have a diagnosis made

based on her/his symptoms. Instead of asking one dotor, one may deide to ask

several dotors. The �nal diagnosis an be obtained using majority voting, in whih

the underlying assumption is that eah dotor has the same power to in�uene the

outome of voting. Replaing eah dotor with a single deision tree, we render the

main idea that lies behind bagging with majority voting. It is worth pointing out

that bagging works better when base lassi�ers are unstable. Indeed, deision trees

are known to be unstable (also due to the greedy poliy adopted by the partitioning

proedure), as small hanges in the training set an result in signi�antly di�erent

trees.

For testing the performane of individual lassi�ers, the hold-out method (some-

times alled test sample estimation) has been used. This method requires the given

data be randomly partitioned in two independent sets (training and testing) [40℄. A

ommon solution onsists of designating two thirds of the data as training set and

one third as test set. The hold-out method performs a �xed number of experiments

on the given data. At eah experiment, data is split in training and test set using

random sub-sampling. Experimental results are then averaged over the splits.

This setion reports experimental results and disusses the appliation of the adopted

ensemble of deision trees to perform linial deisions for newborns with heart mur-

murs. The �nal ensemble onsists of 12 trees, used as lassi�er ensemble �as shown

in Figure 6-11.

Results are shown in Table 6.5 in form of onfusion matrix. The blending poliy

for deision trees was majority voting.

Experiments have been performed on a balaned set of 110 samples (meaning that
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Figure 6-11: A shemati representation of the system.

Figure 6-12: Average auray of modules.

the number of samples was the same for physiologial and pathologial murmurs). The

overall auray has been alulated by averaging the results obtained over 20 runs

with deision tree ensembles. Note that the minimum error on auray is obtained

by tree 7 (see Figure 6-12).

It an be seen that, out of 36 normal signals (72 random samples as training set

and 38 random samples as testing set), on average 91.82 % were orretly lassi�ed

as normal, and 8.18% were mislassi�ed as pathologial. As for the 36 pathologial

signals, on average 96.28% were orretly lassi�ed as pathologial and 3.72% were

mislassi�ed as physiologial. It is worth pointing out that a detailed analysis per-

formed on the mislassi�ed examples highlighted that it was indeed very di�ult to

lassify them even by human experts.

As already pointed out, the �nal deision on eah sample submitted to the system

is taken by majority voting. Majority voting onsiders all outputs of lassi�ers and

makes deision based on 50 perent of votes+1. With Nc number of lassi�ers and p

probability for eah lassi�er to give the orret answer, the following equation holds
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Table 6.5: Ensemble of deision trees results.

Model Average ROC Average Auray Overall Auray Pmaj Pmaj − p

Tree 0 0.8784 0.8784 0.8750 0.9 0.0

Tree 1 0.9704 0.9667 0.9583 0.9 0.0

Tree 2 0.9965 0.9762 0.9792 0.9 0.0

Tree 3 0.9167 0.9167 0.8958 0.9 0.0

Tree 4 0.9921 0.9444 0.9375 0.9 0.0

Tree 5 0.9667 0.9667 0.9583 0.9 0.0

Tree 6 0.9677 0.9677 0.9583 0.9 0.0

Tree 7 1.0000 1.0000 1.0000 1 0.1

Tree 8 0.9071 0.9071 0.9167 0.9 0.0

Tree 9 0.9883 0.9844 0.9792 0.9 0.0

Tree 10 0.9496 0.9165 0.9167 0.9 0.0

Tree 11 0.9310 0.9310 0.9167 0.9 0.0

Tree 12 0.9570 0.9375 0.9583 0.9 0.0

for the auray of the ensemble [41℄, provided that (i) Nc is odd, (ii) lassi�ers are

homogeneous, and (iii) the outputs of lassi�ers are (largely) independent:

Pmaj =
N
∑

M=(N/2)+1





L

M



 pM1− pN−M
(6.5)

It an also be shown that, with p > 0.5 and Pmaj monotonially inreasing, Pmaj → 1

for N → ∞.

The probabilities of orret lassi�ation of the ensemble for p auraies of 12 trees

are displayed in Table 6.5, whih shows the individual auray required by a pool of

deision trees so that highest possible Pmaj = 1 is obtained. Tree 7 an be identi�ed as

the �pattern of suess�. Aording to Kunheva's de�nition [41℄ the pattern of suess

is a distribution of the Y lassi�er outputs for a pool D suh that the probability of

any ombination of orret and inorret votes and the probability of all Y votes being

inorret.

For values of individual auray p > 0.5, the pattern of failure is always possible.

The pattern of failure is symmetrial with the pattern of suess in ensemble lassi�ers.

The upper and lower bounds of the majority vote auray in various individual

auraies are de�ned by Matan [50℄ as funtion of the pattern of suess and the
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pattern of failure respetively. Given an ensemble of N lassi�ers {D1, D2, ..., Di} and
k = N + 1/2. The upper and lower bound for majority voting are:

max Pmaj = min
{

1,
∑

(k),
∑

(k − 1), ...,
∑

(1)
}

(6.6)

min Pmaj = max {0, ξ(k), ξ(k − 1), ..., ξ(1)} (6.7)

where

∑

(m) ≡ 1

m

N−k+m
∑

i=1

pi, m = 1, ..., k (6.8)

ξ(m) ≡ 1

m

N
∑

i=k−m+1

pi − N − k

m
m = 1, ..., k (6.9)

We have arhived 1 and 0.79 as upper and lower bounds on the lassi�ers, whih are in-

diators for the performane of individual members. Results are best- and worst-ase

senarios and not neessarily typial. All possible ombinations of orret/inorret

votes of the N lassi�er outputs. The pattern of suess is when the orret votes are

used in the most e�ient way, whereas the pattern of failure is when most orret

votes are "wasted"

In a Reeiver Operating Charateristi (ROC) urve for a binary lassi�ation

problem, the true positive rate (i.e., sensitivity) is reported as funtion of the false

positive rate (1-spei�ity) for di�erent ut-o� points. The ROC for normal and

pathologial murmurs is reported in Figure 6-13. The area under the ROC urve

(AUC) is used as a measure of performane. A preditive model with perfet perfor-

mane has an AUC equal to 1. On average, we obtained a value of 0.9587 for AUC,

highlighting the exellent performane of the deision tree ensemble in the task of

disriminating heart murmurs.

Summarizing, 93.91% auray, 96.15% sensitivity and 91.67% spei�ity were

obtained by the deision tree ensemble, when used to distinguish between the 116

innoent and pathologial heart murmurs in newborns.
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Figure 6-13: ROC urve of normal and pathologial murmurs.

Figure 6-14: Ensemble deision trees error urve.

A neessary and su�ient ondition for an ensemble of lassi�ers to be more

aurate than any of its individual members is if the lassi�ers are aurate and

diverse. An aurate lassi�er is one that has an error rate of better than random

guessing on new data. The lassi�ers are diverse if they make di�erent errors on new

data points. Figure 6-14 shows unorrelated errors for the ensemble of deision trees.

The proposed model shows exellent performane for appliation of diagnosis of

heart disease that aused by varieties of error.

132



7

Conlusions

In this thesis, we have studied PCG signal proessing and lassi�ation tehniques

in order to design an intelligent diagnosti system for sreening newborns applia-

tion, with three main objetives: 1) Preproessing, for removing unwanted noises and

preparing signal for signal proessing, 2) Feature extration and seletion, based on

signal proessing and data mining tools that used as input and training proess for

the neural network, 3) Designing an intelligent system using mahine learning and

data mining tools to distinguish heart sound with normal and pathologial murmurs.

Chapter 1 and 2 ontain bakground material deemed relevant to better under-

stand the ontent of this thesis. In hapter 1, �rstly, the basi onept heart physiol-

ogy, anatomy and types of heart diseases were presented and heart diseases in newborn

or ongenital heart defets (CHD) modalities whih were onsidered throughout the

thesis were introdued. Then, a theoretial overview of heart valves disease, most

ommon heart defet in newborns suh as Patent Dutus Arteriosus (PDA) was pro-

vided. The researh presented in this thesis �nds its appliation in diagnosing heart

sound normal (innoent) and pathologial murmurs. After that, a short review of

these two medial ase studies, underlying the potential of signal proessing and las-

si�ation tehniques in their prediation and diagnosis was onsidered.

In hapter 3, several preproessing steps are desribed, aimed at improving the
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quality of data and to failitate aurate lassi�ation. A �lter is designed to remove

unwanted noises and a down sampling tehnique is applied to reduing the number

of sampling frequeny. The detetion of ardia sounds and the de�nition of systole

and diastole are the �rst steps towards automating the analysis of ardia aousti

signals. We introdued various methods for manually and automatially deteting

and segmentation of ardia yles in heart sound signal. A novel automati seg-

mentation algorithm is proposed to deteting �rst (S1) and seond (S2) heart sound.

Also, seleting the best ardia yles to extrating feature is presented in this hapter.

Chapter 4, investigates di�erent tehniques for feature extration and seletion

aimed at improving lassi�ation performane. The features, whih represent the

lassi�ation information ontained in the signals, are used as inputs to the lassi-

�ers. Time-frequeny analysis has been applied on PCG signals. This part onsists

of two major steps: feature extration and feature seletion. In the former step we

extrated several features inluding Maximum value amplitude, Peak to Peak, Energy

Shannon, Bispetrum and Wigner bispetrum. The latter step (i.e.feature seletion)

was aimed at reduing the size of the feature vetor. In partiular, we used gains and

importane variable in CART to measure the sore eah of variable.

In hapter 5, di�erent lassi�ation algorithms onsidered throughout the studies

presented in this thesis were over viewed. multi layer pereptrons, deision trees,

lassi�ation and regression trees and ensemble of deision trees were introdued.

The high performane is arhived by ensemble of deision trees whih is use bagging

tehnique to ombine lassi�ers.

This thesis introdues novelties in both segmentation of heart sound and appli-

ation of lassi�ation. We demonstrated that CART and a suitable data enoding

have signi�ant potential for lassifying heart sound data as innoent or pathologial

murmurs in newborns. Given an unknown heart sound, the system outputs its las-

si�ation. The orresponding support system has shown high disriminant apability
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on both type-I and type-II errors, thus beoming a good andidate for giving help to

dotors in the ativity of monitoring newborns at health are enters.

We expet this system to be very useful for a dotor to deide whether a newborn

should be sent for proper treatment or not. The proposed tehnology is intended for

high-volume sreening of newborns suspeted of having a heart disease. The software

system proposed in this work an be onsidered as a diagnosti tool for the �rst re-

lease able to support physiians in their diagnosti task or health are support system

in telehealth are or mobile health as a diagnosti system.
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