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Abstract

Recent advances in genome sequencing technologies and modern biological data

analysis technologies used in bioinformatics have led to a fast and continuous increase

in biological data. The difficulty of managing the huge amounts of data currently

available to researchers and the need to have results within a reasonable time have

led to the use of distributed and parallel computing infrastructures for their analysis.

In this context Grid computing has been successfully used. Grid computing is based

on a distributed system which interconnects several computers and/or clusters to

access global-scale resources. This infrastructure is flexible, highly scalable and can

achieve high performances with data-compute-intensive algorithms.

Recently, bioinformatics is exploring new approaches based on the use of hardware

accelerators, such as the Graphics Processing Units (GPUs). Initially developed as

graphics cards, GPUs have been recently introduced for scientific purposes by rea-

son of their performance per watt and the better cost/performance ratio achieved in

terms of throughput and response time compared to other high-performance com-

puting solutions.

Although developers must have an in-depth knowledge of GPU programming and

hardware to be effective, GPU accelerators have produced a lot of impressive results.

The use of high-performance computing infrastructures raises the question of finding

a way to parallelize the algorithms while limiting data dependency issues in order

to accelerate computations on a massively parallel hardware.

In this context, the research activity in this dissertation focused on the assessment

and testing of the impact of these innovative high-performance computing technolo-

gies on computational biology. In order to achieve high levels of parallelism and, in

the final analysis, obtain high performances, some of the bioinformatic algorithms

applicable to genome data analysis were selected, analyzed and implemented. These

algorithms have been highly parallelized and optimized, thus maximizing the GPU

hardware resources. The overall results show that the proposed parallel algorithms

are highly performant, thus justifying the use of such technology.

However, a software infrastructure for workflow management has been devised to

provide support in CPU and GPU computation on a distributed GPU-based in-

frastructure. Moreover, this software infrastructure allows a further coarse-grained

data-parallel parallelization on more GPUs. Results show that the proposed appli-

cation speed-up increases with the increase in the number of GPUs.





Acknowledgments

I am grateful to many people who have contributed towards shaping this thesis.

At the outset, I would like to express my sincere gratitude and appreciation to my

advisor, Associate Professor Giuliano Armano, for his advice during my doctoral

research enterprise, for the past four years. I thank him for believing in me and for

providing me with the opportunity to work with a talented team of researchers. His

talent and achievements serve as inspiration and model for any researcher.

I would also like to express my sincere gratitude to my co-advisor Andrea Manconi.

I have to thank him for all the support, the suggestions, the patience, and every kind

of help that he gave to me. His observations and comments helped me to establish

the overall direction of the research and to move forward with investigation in depth.

This thesis would not have been possible without his support and in-sights.

I am grateful to Luciano Milanesi, the coordinator of the CNR Interdepartmental

Bioinformatics Research Network, for establishing the high-level scientific environ-

ment were I had the opportunity of expending these years as researcher. He has

constantly forced me to remain focused on achieving my goals.

I thank my colleagues, especially Alessandro Giuliani, Mario Franco Locci, Emanuele

Tamponi, Francesca Fanni, Amir Mohammad Amiri, Mohammad Reza Farmani,

Matteo Baire, Andrea Addis, Eloisa Vargiu, Alessandro Orro, Francesco Maxia and

Filippo Ledda for creating good working environment and for always smiling with

me.

I am also grateful to the coordinator of the PhD program, Prof. Fabio Roli, for his

efforts, and to his collaborator Carla Piras, for their helpfulness.

I acknowledge the funding support from the CNR-ITB (Italian National Research

Council at the Institute of Biomedical Technologies), Regione Sardegna and my

University, for providing scholarships to pursue my doctoral studies.

I am really grateful to my family for supporting and encouraging me during these

four years.

Last, but not least, I would like to dedicate this thesis to my children, Niccolò and
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Chapter 1

Introduction

1.1 Overview

Bioinformatics is an interdisciplinary research area that involves the use of tech-

niques including applied mathematics, informatics, statistics, computer science, ar-

tificial intelligence, chemistry and biochemistry to solve biological problems usually

at molecular level. The ultimate goal of bioinformatics is to uncover and decipher

the richness of biological information hidden in the mass of data and to obtain a

clearer insight into the fundamental biology of organisms. The beginning of the

twenty-first century has been characterized by an explosion of biological informa-

tion. The avalanche of data grows daily and arises as a consequence of advances in

the fields of molecular biology and genomics and proteomics. The need of managing

this huge amount of complex data and to obtain results within a reasonable time

have increasingly led to the use of Grid and High Performance Computing (HPC)

for their analysis.

The research activity in this dissertation has focused on the use of Grid and HPC

infrastructures for solving computationally expensive bioinformatics tasks, where,

due to the very large amount of available data and the complexity of the tasks, new

solutions are required for efficient data analysis and interpretation.

1.2 Motivations and Objectives

Recent advances in genome sequencing technologies and modern biological data

analysis technologies used in bioinformatics have led to a fast and continuous increase
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in biological data, also shown by the exponential increase in the Genbank genome

sequences and in the Protein Data Bank (PDB) structures over the last ten years

(see Figure 1.1). The difficulty of managing the huge amounts of data currently

available to researchers and the need to obtain results within a reasonable time have

led to the use of distributed and parallel computing infrastructures for their analysis.

In this context Grid computing has been successfully used.

Figure 1.1: Yearly Growth of GenBank genome sequences/Protein Data

Bank (PDB) structures

Grid computing is a form of distributed computing that combines geographically dis-

tributed resources to create a high throughput computing infrastructure [50]. This
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global infrastructure facilitates the sharing of resources and access to a large-scale

computational platform that would otherwise be unavailable. The original motiva-

tion for the Grid was the need for a distributed computing infrastructure allowing

for coordinated resource sharing and problem-solving in dynamic, multi-institutional

environments. Problem solving of advanced science and engineering problems with

emphasis on collaborative and multi-disciplinary applications requires the coordi-

nated and well organized interaction of groups of individuals and organizations.

This has led to the concept of a virtual organization (VO) [51] which represents the

mode of use of Grids. Examples of VOs could include the members of a research

group in a university or physicists collaborating in an international experiment. A

Virtual Organization has the responsibility of providing a scalable, flexible and se-

cure environment for researchers [191]. It must conform to a set of open standards

and protocols when developing Grid solutions.

An example of virtual organization based on the Grid technology whose infrastruc-

ture is dedicated or involved with bioinformatics is the Enabling Grids for E-sciencE

project (EGEE) [54] which brings together scientists and engineers from more than

240 institutions in 45 countries world-wide to provide a seamless Grid infrastructure

for e-Science. The EGEE project provides researchers in academia and industry with

access to a production-level Grid infrastructure, independent of their geographic lo-

cation. The biomedical applications area is a broad scientific field which has been

divided in three different sectors in the EGEE project. The medical imaging sec-

tor targets the computerized analysis of digital medical images. The bioinformatics

sector targets gene sequences analysis and includes genomics, proteomics and phy-

logeny. The drug discovery sector aims at helping to speed-up the process of finding

new drugs through in-silico simulations of proteins structures and dynamics.

Grid infrastructures can execute a variety of tasks from many research project areas

such as high-energy physics, bioinformatics and chemistry. These applications may

be also distributed in nature and require high-throughput or fast data processing

capabilities. Applications are run on the resources best suited to perform them. A

data-intensive task might be executed on a remotely located supercomputer, while

a less-demanding task might run on a smaller, local machine. The assignment of

computing tasks to computing resources is determined by a scheduler, and ideally

this process is hidden to the end user. Coordinating applications on Grids can be a

complex task, especially when coordinating the flow of information across distributed

computing resources. Grid workflow systems have been developed as a specialized

form of a workflow management system designed specifically to compose and execute

a series of computational or data manipulation steps, or a workflow, in the Grid

context.
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Many bioinformatics projects are based on Grid infrastructures, such as:

• ROSETTA project for protein folding design and docking [187] – it is a dis-

tributed computing project for protein structure prediction on BOINC Desk-

top Grid, run by the Baker laboratory at the University of Washington. Goal

of this project is the use of distributed computing to predict and design protein

structure and protein complexes with the help of about sixty thousand active

volunteered computers processing at 83 teraFLOPS on average.

• Projects for the identification of genes and regulatory patterns [183] – this

project uses evolutionary algorithms implemented in a Grid computing infras-

tructure to create computational models of gene-regulatory networks based on

observed microarray data.

In addition to Grid computing, bioinformatics has recently showed a growing interest

in innovative HPC technologies, such as hardware accelerators. Accelerators were

initially developed as CPU coprocessors intended for the execution of specific data-

compute-intensive tasks. State-of-the-art accelerators are based on a SIMD (Single

Instruction Multiple Data) or MIMD (Multi Instruction Multiple Data) many-core

architecture, affording a very high level of parallelism. In particular, bioinformatics

is exploring new approaches based on the use of Graphics Processing Units (GPUs).

Driven by the increasing industry demand for real-time, high-definition 3D graph-

ics, the GPU hardware accelerator has evolved into a highly-parallel, multi-threaded,

and many-core processor. It is preliminary dedicated to efficiently support the graph-

ics shader programming model, in which a program for one thread draws one vertex

or shades one pixel fragment. The GPU excels with fine-grained, data-parallel work-

loads consisting of thousands of independent threads executing vertex, geometry,

and pixel-shader program threads concurrently. GPUs have been recently intro-

duced for scientific purposes by reason of their performance per watt and the better

cost/performance ratio achieved in terms of throughput and response time compared

to other HPC solutions. The speed of many data-processing-intensive applications

can be increased just by using the GPUs as co-processors to CPU to accelerate its

general purpose computations that were once handled by the CPU alone. NVIDIA

and AMD are the main GPU manufacturers with a long list of different models and

features. These companies have been producing different platforms that can use

parallel computing architectures to utilize the GPU stream processors, in tandem

with the CPU, to significantly accelerate any computing process. The use of GPUs

for scientific purposes encouraged graphics card manufacturers to develop a new

unified graphics and computing GPU architecture and introduce new programming
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models dedicated to general purpose computations, such as CUDA by NVIDIA and

OpenCL Accelerated Parallel Processing (APP) by AMD, which provide low-level or

direct access to the multi-threaded computational resources and associated memory

bandwidth of GPUs, exposing them as large arrays of parallel processors.

Even if their main limitation and difficulty is that the developer must have an

in-depth knowledge of GPU programming and hardware, GPU accelerators have

produced a lot of impressive results.

Recently, GPUs have been successfully used to parallelize some important bioinfor-

matic algorithms. Examples thereof are:

• G-BLASTN – a GPU-based tool for multiple sequence alignment [206];

• GENIE – a software package for gene-gene interaction analysis in genetic as-

sociation studies using multiple GPU or CPU cores [38];

• CUDASW++ – a GPU-based tool for sequence database searching [118].

The use of high-performance computing infrastructures thus raises the question of

finding a way to parallelize the bioinformatic algorithms while limiting data depen-

dency issues in order to accelerate computations on a massively parallel hardware.

In this context, the research activity in this dissertation focused on the assessment

and testing of the impact of these innovative HPC technologies on computational

biology. In order to achieve high levels of parallelism and, in the final analysis, obtain

high performances, some of the bioinformatic algorithms applicable to genome data

analysis were selected, analyzed and implemented.
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1.3 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2 – This chapter gives an overview of parallel computing exploring

different parallel architectures, while showing some important aspects of each.

It also explains in great detail the NVIDIA GPU architectures and CUDA pro-

gramming model used to implement the bioinformatic applications described

in the next chapters.

Chapter 3 – This chapter describes a GPU-based tool aimed at mapping

nucleotide sequences representative of a single-nucleotide base polymorphism

on a reference genome. This chapter quotes [II] (see Publications above).

Chapter 4 – This chapter describes a GPU-based tool aimed at mapping

bisulfite-treated reads with the aim of detecting methylation levels of cytosines.

This chapter quotes [III] (see Publications above).

Chapter 5 – This chapter describes CUDA-Quicksort, a GPU-based imple-

mentation of the quick-sort. This chapter quotes [IV] (see Publications above).

Chapter 6 – This chapter describes G-CNV, a GPU-based tool for preparing

data to detect CNVs with read depth methods. This chapter quotes [V] (see

Publications above).

Chapter 7 – This chapter gives an overview of the gUSE science gateway and

the BOINC Desktop Grid, highlighting some important aspects of each. It also

illustrates the Distributed GPU- and CPU-based Infrastructure system imple-

mented through gUSE and BOINC. Finally, it describes how the proposed

tools have been ported to Distributed GPU- and CPU-based Infrastructure.

Chapter 8 – This chapter gives a summary of the thesis and highlights future

work.
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Chapter 2

GPU Computing

GPUs are hardware accelerators that are increasingly used to deal with computa-

tionally intensive algorithms. From an architectural perspective, GPUs are very

different from traditional CPUs. Indeed, the latter are devices composed of few

cores with lots of cache memory able to handle a few software threads at a time.

Conversely, the former are devices equipped with hundreds of cores able to handle

thousands of threads simultaneously, so that a very high level of parallelism can be

reached. GPGPU (General Purpose Computing on Graphics Processing Units) is

a methodology for high-performance computing that combines CPUs with GPUs

to deal with data parallel and throughput intensive algorithms. As CPUs are more

effective than GPUs for serial processing, they are used to perform serial parts of the

algorithm, whereas GPUs are used to perform parts of the algorithm where process-

ing of large blocks of data is done in parallel. The main disadvantage of using GPUs

is related with the effort required to code algorithms. To take advantage of the GPU

technology, algorithms must be coded to reflect the architecture of these hardware

accelerators. Incorporating GPU support into existing codes is very difficult and

typically requires significant changes of the code and of the algorithm.

This chapter gives an overview of parallel computing exploring different parallel

architectures, while showing some important aspects of each. It also explains in

great detail the NVIDIA GPU architectures and CUDA programming model used

to implement the bioinformatic applications described in the next chapters.
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2.1 Parallel computing overview

Parallel computing is a form of computation in which many calculations are carried

out simultaneously, operating on the principle that large problems can often be di-

vided into smaller ones, which are then solved in parallel. There are several different

forms of parallelism: instruction-level, data, and task parallelism. Parallel proces-

sors can be roughly classified according to the level at which the hardware supports

parallelism. Actually, parallelism has been employed for many years, mainly in high

performance applications, but it has received growing concern recently due to the

physical constraints preventing clock frequency scaling. As power saving has become

a concern in recent years, parallel computing has become the dominant paradigm in

computer architecture, mainly in the form of multi-core and many-core processors.

Nowadays the traditional single-core processors are being replaced by multi-core or

many-core processors.

Multi-core processors are characterized by a processing unit containing a relatively

small number of cores, where two or multiple independent processing elements are

typically integrated onto a single integrated circuit die. Intel i7 processor is an ex-

ample of a multi-core processor. This processor may have either 2 or 4 cores on

chip. The ability of multi-core processors to increase applications performance is

strongly constrained by the use of multiple threads within applications. It relies on

effective exploitation of multiple-thread parallelism. To exploit their full potential,

applications will need to move from a single to a multi-threaded model. Threads can

be much smaller and still be effective, and in addition to that, the automatic paral-

lelization is more feasible, and allows scheduling the workload across multiple cores.

This scheduling is performed by the operating system, which maps threads/pro-

cesses to different cores. The main limitation of multi-core processors is due to their

low scalability. As adding more cores to the on-chip bus results in an information

traffic jam limiting the benefits of multiple cores.

A many-core processor is a highly integrated complex system in which the number

of cores is large enough that traditional multi-processor techniques are no longer

efficient (this threshold is somewhere in the range of several tens of cores). In

fact, all data must pass through the same path. An examples of many-core is the

Tilera processor [131] that addresses the multi-processor scalability problem with a

architecture that can harness the processing power of hundreds of cores on a single

chip, it provides general purpose many-core processors with 16 to 100 identical

processor cores (tiles) interconnected with on-chip network.

One of the many-core architectures that received more interest during the last years
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are GPUs. GPUs are hardware accelerators that are increasingly used to deal with

computationally intensive algorithms. Driven by the increasing industry demand for

real-time, high-definition 3D graphics, the programmable GPUs have evolved into a

highly parallel, multi-threaded, and many-core processor. As shown in Figure 2.1,

GPU devices lead the way in peak computing performance. It should be noted that

the performance levels shown in Figure 2.1 are very rarely achieved by real-world

applications, but are speeds theoretically attainable by such devices. As shown in

Figure 2.1 the performance increase have been huge with multi-core CPUs too, but

the raw computing capabilities have increased most on the GPU.

Figure 2.1: CPU and GPU compute capabilities. Image from [151]

GPUs have been recently introduced for scientific purposes by reason of their perfor-

mance per watt and the better cost/performance ratio achieved in terms of through-

put and response time compared to other parallel computing solutions. With such

large amounts of raw computational power theoretically attainable with GPU de-

vices, a growing number of scientists have begun porting their algorithms to GPU-

based computing systems.
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Currently there are two dominating hardware vendors in the field of general-purpose

GPU computing – NVIDIA and AMD. These companies have been producing dif-

ferent platforms that can use parallel computing architectures to utilize the GPU

processors, in tandem with the CPU, to significantly accelerate computing process.

NVIDIA and AMD have alternative proprietary GPU platforms each of which is

compatible only with their own hardware. Specifically, NVIDIA’s distributes the

CUDA (Compute Unified Device Architecture) Toolkit [151] while AMD distributes

the OpenCL Accelerated Parallel Processing (APP) SDK [17], both provide low-

level or direct access to the multi-threaded computational resources and associated

memory bandwidth of GPUs, exposing them as large arrays of parallel processors.

APP SDK by AMD uses OpenCL (Open Computing Language)[141], a vendor-

independent standard, which has been designed to allow HPC application developing

independently from hardware.

2.2 Architecture models of GPUs

The exponentially increasing performance levels of GPU devices has largely been

driven by the video game industry. Interactive 3D video games demand a very

high level of data throughput and an absolutely staggering number of floating-point

operations per second. Consider that for a SXGA (1280x1024) display, there is a

total of about 1.3Million individual pixels. With a commonly desired frame rate

of 30fps, there is a worst-case scenario of having to compute > 39Million pixel-

values every second with each value requiring multiple floating point and memory

read/write operations. With such high demands for throughput, programmers in

the computer graphics community adopted thread-level parallelism as the dominant

paradigm for producing satisfactory results and GPU manufactures followed suit by

building hardware that could realize the performance benefits of this paradigm.

A high-level comparison between modern CPU and GPU architecture is given in

Figure 2.2. As shown in figure the CPU architecture is composed of few cores with

lots of cache memory able to handle a few software threads at a time. Indeed, the

GPU architecture is equipped with hundreds of cores able to handle thousands of

threads simultaneously. The main difference is that most of the GPU transistors are

used for strict computation while much of the CPU transistors are used for caching,

branch prediction, out-of-order execution optimization during run-time that has

become part of the optimizing pipeline for a general-purpose processor. The reason

to this evolution is that the GPU have evolved to run the needed graphic rendering

pipeline at high throughput, containing many parallel operations that are totally
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Figure 2.2: Multi-core and many-core processors Multi-core processors as

CPUs are devices composed of few cores with lots of cache memory able to han-

dle a few software threads at a time. Conversely, many-core processors as GPUs

are devices equipped with hundreds of cores able to handle thousands of threads

simultaneously.

independent of each other.

2.2.1 NVIDIA GPUs

NVIDIA has been very vocal in promoting the GPU-based approach to parallel

computing. NVIDIA GPU computing solutions enable the necessary transition to

fast and energy-efficient parallel computing power. The GPU architecture is built

around a scalable array of multithreaded Streaming Multiprocessors (SM)(see Fig-

ure 2.3). It is viewed as a compute device capable of executing a huge number

of threads in parallel. GPUs can operate as co-processors of the main CPU (or

host); so, data-independent, compute-intensive portions of applications running on

the host are off-loaded into the GPU (or device).

In the NVIDIA GPU-based architecture, parallelization is obtained through the

execution of tasks in a number of CUDA cores. Cores are grouped in streaming

multiprocessors that execute in parallel (see Figure 2.4). Each core has both floating-

point and integer execution units and all cores in a streaming multiprocessor execute

the same instruction at the same time. This computational paradigm, called SIMT

(Single Instruction Multiple Thread), can be considered as an advanced form of the

SIMD (Single Instruction Multiple Data) paradigm. The code is executed in groups

of 32 threads, called warps. The dispatching and scheduling of each thread in a
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Figure 2.3: GPU Architecture. The NVIDIA GPU is a many-core processor

equipped with hundreds of cores able to simultaneously handle thousands of threads.
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warp, are managed individually for each SM by a warp scheduler unit and a dispatch

unit (see Figure 2.4). The GPU architecture supports a DRAM (Dynamic Random

Access Memory) memory, with a low-latency L2 cache and a high-bandwidth L1

cache per streaming multiprocessor. Each multiprocessor has also a programmable

L1 cache called shared memory, managed by a specific software.

Figure 2.4: Stream Multiprocessor of Fermi Architecture. Image derived

from [58].

13



2.2. Architecture models of GPUs

GPU Memory Hierarchy

NVIDIA GPUs have several memory spaces available each with its own benefits

and limitations. Effectively understanding and appropriate use of these memory

spaces is essential for achieving acceptable performance on the GPU. The fastest

available memory for GPU computation is represented by device registers. Regis-

ters are divided among all threads which reside simultaneously on the SM. Each

multiprocessor also has a region of shared memory space, which performs almost as

fast as registers. The on-chip shared memory has very low access latency and high

bandwidth similar to an L1 cache (see Figure 2.4). The shared memory allows the

parallel threads to run on the cores in a SM to share data without sending them

over the system memory bus. GPUs have DRAM called global memory with a high

access latency when compared to registers or shared memory.

The SM provides load/store instructions to access the global memory. It coalesces

individual accesses of parallel threads in the same warp into fewer memory-block

accesses when the addresses fall in the same block and meet alignment criteria. A SM

takes few clock cycles to issue one memory instruction for a warp. When accessing

global memory, there are, in addition, hundreds of clock cycles of memory latency.

Because global memory latency can be hundreds of processor clocks, programs may

copy the data to shared memory when it must be accessed multiple times by a

thread block. GPU load/store memory instructions use integer byte addressing to

facilitate conventional compiler code optimization. The large thread count in each

SM, together with support for many outstanding load requests, helps to cover load-

to-use latency to the global memory. The modern architecture GPUs also provide

atomic read-modify-write memory instructions, facilitating parallel reductions and

parallel-data structure management.

Hardware details

Different modern architecture GPUs are available from NVIDIA (e.g., Fermi, Kepler

and Maxwell).

With the launch of Fermi GPU in 2009, NVIDIA ushered in a new era in the HPC

industry [58]. This architecture consists of a SM array. Each SM includes 32 cores,

16 load/store units, four special-function units, a 32K-word register file, 64K of local

SDRAM split between cache and shared memory, and thread control logic. Each

core has both floating-point and integer execution units. This architecture has up

to 6GB of GDDR5 memory.
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In 2012, with the Kepler GPU [149], NVIDIA raises the bar for the HPC industry,

yet again. The main changes available in the Kepler GPU architecture include:

• Dynamic parallelism – it supports GPU threads launching new threads, so that

the GPU can work more autonomously from the CPU by generating new work

for itself at run-time. The dynamic parallelism allows the implementation of

recursive algorithms.

• Hyper-Q – it enables CPU cores to initiate work on the same GPU simulta-

neously. Hyper-Q increases the total number of connections (work queues)

between the host and the Kepler GPU compared to the single connection of

the Fermi GPU.

• SMX architecture – it provides a new streaming multiprocessor design opti-

mized for performance per watt. Each SMX contains 192 CUDA cores (up

from 32 cores in Fermi), 64K-word register, 32 special function units (SFU),

and 32 load/store units. Unlike Fermi SM, which has two scheduler and two

dispatch units (see Figure 2.4), each SMX features four warp schedulers and

eight instruction dispatch units, allowing four warps (groups of 32 threads) to

be issued and executed concurrently. The quad scheduler selects four warps,

and two independent instructions per warp can be dispatched each cycle.

In 2014, NVIDIA implements a new GPU architecture called Maxwell [152], es-

pecially designed for high power saving (see Table 2.1). The first Maxwell GPU,

called GM107, has been designed for using in power limited environments. Maxwell

GM107 provides few consumer-facing additional features. NVIDIA increased the

amount of L2 cache reducing the memory bandwidth needed. NVIDIA also changed

the streaming multiprocessor design of Kepler, naming it SMM. The layout of SMM

units is partitioned so that each of the four warp schedulers controls isolated CUDA

cores, load/store units and special function units, unlike Kepler, where the warp

schedulers share the resources. SMM allows for a finer-grain allocation of resources

than SMX, saving power when the workload is not optimal for shared resources.

Table 2.1 shows a comparison among these architectures. As shown in the table,

the Kepler architecture offers a huge leap forward in power efficiency, achieving up

to 3x the performance per watt of Fermi. The performance per watt for single-

precision operation achieved by Kepler and Maxwell GPUs is similar, but the latter

outperforms the first in terms of power saving. As to peak performance, Kepler

GPUs outperform both Fermi and Maxwell architectures.
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Chip name GF110 GK110 GK110b GK210 GM107

Product name
GeForce

GTX 570

Tesla

k20

Tesla

k40

Tesla

k80

GeForce

GTX 750Ti

Architecture Fermi Kepler Kepler Kepler Maxwell

Peak

performance [TF]
1.40(SP)

4.10(SP)

1.17(DP)

5.36(SP)

1.43(DP)

8.74(SP)

2.91(DP)

1.30(SP)

40GF(DP)

Wattage (TDP) 219W 225W 235W 300W 60W

Performance

per watt[GF/W]
6.4(SP)

18.24(SP)

5.21(DP)

22.82(SP)

6.08(DP)

29.13(SP)

9.70(DP)

21.86(SP)

0.66(DP)

Onboard

GDDR5 Memory
2GB 5GB 12GB 24GB 2GB

Memory

bandwidth [GB/s]
152 208 288 480 86

Table 2.1: Comparison among Fermi, Kepler and Maxwell Architectures.

2.2.2 AMD GPUs

AMD is the main competitor of NVIDIA in the HPC industry. It has recently

launched a new GPU Architecture called Graphics Core Next (GCN)[18]. GCN

Architecture is also AMD’s first design specifically engineered for general comput-

ing. Representing the cutting edge of AMD’s graphics expertise, GCN GPUs are

more than capable of handling workloads and programming languages-traditionally

exclusive to the main processor. Coupled with the dramatic rise of GPU-aware

programming languages like C++ and OpenCL.

GCN is a RISC SIMD architecture, it replaces AMD’s TeraScale family of VLIW

(Very Long Instruction Word) SIMD architectures used since the Radeon HD 2000

Series. It is used in 28 nm graphics chips in the Radeon HD 7000, HD 8000 and Rx

200 series. The heart of GCN is the new Compute Unit (CU) design. CUs are the

basic computational building blocks of the GCN Architecture. Each CU includes

4 separate SIMD engines, each of consisting of up to 16 ALUs (see Figure 2.5). In

NVIDIA parlance, a CU can be thought of as a streaming processing cluster, a SIMD

Engine can be thought of as a streaming processing, a SIMD ALU as four CUDA

cores. Each ALU could execute bundles of 4 or 5 independent VLIW instructions,

and is fully IEEE-754 compliant for single-precision and double-precision floating

point operations. SIMD units can handle groups of 64 threads (called wavefronts)

and execute one wavefront at a time as happens to warps (groups of 32 threads) in

NVIDIA GPU. Each of these SIMD units executes different operations simultane-

ously, but all threads within a wavefront execute the same instruction. This means

that a GCN GPU with 32 CUs, such as the AMD Radeon HD 7970, can be working
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on up to 8192 (32 CUs x 4 SIMDs x 64 threads) threads at a time.

Figure 2.5: Compute Unit of AMD GPU Architecture. Image derived from

[18].

The GCN architecture supports a DRAM memory, with a low-latency L2 cache and

a high-bandwidth 32KB L1 cache shared by a cluster of up to 4 CUs (see Figure 2.5).

The fastest available memory for GPU computation is device registers. Each CU

contains 8KB of scalar registers that are divided into 512 entries for each SIMD that

has also 64 KB of personal registers. The scalar registers are shared by all wavefronts

on the SIMD, this is essential for wavefront control flow, for example, comparisons

will generate a result for each of the 64 threads in a wavefront. Like NVIDIA GPU

streaming multiprocessor each CU has a 64KB region of shared memory space,

which performs almost as fast as registers. This shared memory called Local Data

Share (LDS) has very low access latency and high bandwidth (see Figure 2.5). LDS

memory is an explicitly addressed memory that acts as a third register file specifically

for synchronization and communication within a work-group of threads.

Table 2.2 shows a comparison between the best AMD and NVIDIA GPU archi-

tectures. The overall performance achieved by AMD and NVIDIA GPUs is really

similar. As shown in the table, the performance per watt achieved by NVIDIA Tesla

K80 outperforms AMD GPUs. As to peak performance for single precision opera-

tions, AMD Radeon R9 295X2 outperforms NVIDIA architectures. As to peak per-

formance for double-precision operations, NVIDIA GPUs outperform AMD GPUs.
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Vendor AMD AMD NVDIA NVIDIA

Product name
Radeon

HD 8990

Radeon

R9 295X2

Tesla

k80

GeForce

GTX Titan Z

Peak

performance [TF]

8.19(SP)

2.04(DP)

11.46(SP)

1.43(DP)

8.74(SP)

2.91(DP)

8.12(SP)

2.70(DP)

Wattage (TDP) 375W 500W 300W 375W

Performance

per watt[GF/W]

21.86(SP)

5.46(DP)

22.90(SP)

2.86(DP)

29.13(SP)

9.70(DP)

21.76(SP)

7.20(DP)

Onboard

GDDR5 Memory
6GB 8GB 24GB 12GB

Memory

bandwidth [GB/s]
288x2 320x2 240x2 336.4x2

Table 2.2: Comparison between AMD and NVIDIA GPU Architectures.

2.3 GPGPU Programming Models

General-purpose computing on GPU (GPGPU) is the use of a GPU – which typi-

cally handles the computations for computer graphics – to perform computations in

applications typically handled by the CPU. A GPGPU programming model enables

the programmer to write and execute programs according to a defined execution and

memory model that takes advantage of the underlying massively parallel hardware

architecture provided by the GPU.

The idea of using a GPU programming model for general purpose computing is a

concept that dates back nearly two decades. Initially, utilizing GPU devices for the

execution of non-graphics related algorithms was a very difficult task. Essentially,

programmers were forced to use graphics application programming interfaces (APIs)

such as OpenGL or Direct3D to gain access to the GPU chip. The main strategy for

doing GPGPU computing was to find clever ways to fit some target algorithms into

computer graphics abstractions that are compatible with the graphics API being

used.

The process of doing GPGPU computing changed dramatically with the release of

NVIDIA’s CUDA toolkit in 2007 and and OpenCL (vendor-independent) in 2008.

CUDA can only be used on NVIDIA GPUs, while OpenCL is an open standard and

is aimed at heterogeneous computing platforms. These programming models allowed

programmers to ignore the underlying graphical concepts in favor of more common

high-performance computing concepts. With the introduction of the CUDA and

OpenCL general-purpose computing APIs, in new GPGPU codes it is no longer

necessary to map the computation to graphics primitives.
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In the early days, NVIDIA realized that the interest in using GPU devices for

general purpose computing was growing and wished to capitalize on this emerging

market. The goal was to provide a specially extended version of some high-level

programming language that would allow programmers to gain direct access to GPU

devices without needing in-depth knowledge of computer graphics algorithms and

techniques. The result was the CUDA toolkit that allows programmers to write

parallel code in a specially extended version of the C programming language for

parallel execution on most modern NVIDIA GPUs. CUDA allows for a much more

generic parallel programming model than was possible in earlier generation GPUs

and allows programmers to use common parallel programming abstractions such as

parallel threads, barrier synchronization, and atomic operations in GPU-based code.

OpenCL was initiated by Apple and is now maintained by the Khronos group. It

is an open and royalty-free standard for performing heterogeneous computing. The

programming models of OpenCL and CUDA are quite similar, except that OpenCL

also supports parallel task programming and is designed to run on many different

kinds of devices. Indeed, it can be used to run code for multi-core CPUs, GPUs and

other devices supporting the OpenCL specification.

Programming models like CUDA and OpenCL give a fine-grained optimization at

the cost of good level of abstraction. Tools using CUDA or OpenCL consist of host

code running on CPU and separate code snippets that are compiled for the current

system GPU. The host code orchestrates allocation and deallocation of memory

buffers on the GPU, executing programs and copying data to and from the device.

None of these tools are really high-level, and none of them is as easy to program as

making a standard C program on the CPU. Since CUDA and OpenCL are both fairly

low-level programming models, more high-level approaches have also been released

in the last few years including compiler directive-based programming models like

OpenACC.

The following sections offer a detailed description of the CUDA programming model

and a short introduction to the OpenACC and OpenCL programming models.

2.3.1 CUDA Programming Model

CUDA was first introduced in November 2007 with the aim to make it easier to

create GPU computing programs by avoiding using traditional shader languages

meant for graphics programming such as DirectX and OpenGL. Instead CUDA uses

the C/C++ programming language with syntax extensions and library functions to

express parallelism, data locality, and thread cooperation mapping to the underlying
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hardware architecture. NVIDIA recently released CUDA version 6.5 which includes

the CUDA toolkit, samples, and a unified CUDA enabled driver for NVIDIA devices.

CUDA programs are compiled using the NVIDIA LLVM-based C/C++ compiler

called nvcc. The two most important concepts of the CUDA programming model is

its execution and memory model.

The CUDA execution model (see Figure 2.6) can be described as follow: the GPU

creates an instance of the kernel program that is made of a set of threads grouped

in blocks in a grid. Each thread has a unique ID within its block and a private

memory and registers, and runs in parallel with others threads of the same block.

All threads in a block execute concurrently and cooperatively by sharing memory

and exchanging data. A block, identified by a unique ID within the block grid, can

execute the same kernel program with different data that are read/written from a

global memory. Each block in the grid is assigned to a streaming multiprocessor in

a cyclical manner.

Figure 2.6: CUDA execution model Threads are grouped in blocks in a grid.

Each thread has a private memory and runs in parallel with the others in the same

block.

The memory model is logically partitioned into four regions: global memory, local

memory, texture memory, and constant memory. Global memory is available to

all threads and is persistent between GPU calls. Local memory is available only
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to individual threads and is used as a backup when the compiler is unable to fit

requested data into the device’s registers, in which case registers are said to spill

to local memory. Texture memory is read-only with a small cache optimized for

manipulation of textures. Constant memory, as the name implies, is also a read-

only region which also has a small cache. Finally, host memory (the system’s main

memory) is available indirectly and relatively slowly to the GPU. This memory space

is only available to the GPU when copied over the PCI-Express bus to the GPU’s

device memory. For details see subsection 2.3.1.2.

2.3.1.1 Execution model

A GPU computing program written in CUDA consists of function that can run on

either the CPU, also called the host, or the GPU which is called the device. The

functions executed on the GPU are commonly referred to as CUDA kernels and can

be executed in parallel across threads on the device and also asynchronous from

the host. This parallel execution is not only bound to the execution of a specific

kernel, but also allows the execution of a multiple of different kernels at once, where

the number of kernels that can be executed is limited by the amount of SMs on

the GPU. To specify if a function should be executed on the host or the device the

qualifiers shown in Table 2.3 are used.

Qualifiers Callable From Executes On

device Device Device

global Host Device

host Host Host

Table 2.3: CUDA Function Qualifiers. Table shows from where the functions

with the specific qualifiers are callable from and from where the functions are exe-

cutes on. The host qualifier is usually omitted since it is the default if no other

qualifier is specified.

A kernel is executed in parallel across a set of parallel threads, which are grouped

into parallel thread blocks. When a kernel is launched it is initiated on the GPU

as a grid of parallel blocks with each thread within a thread block executing an

instance of the kernel. Threads in a grid are organized into a two-level hierarchy.

At the top level, the grid is organized as a two-dimensional array of blocks where

all blocks have the same number of threads. At the second level, each thread block

is organized as a three-dimensional array of threads. When the host code invokes
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a kernel, it sets the grid and thread block dimensions via execution configuration

parameters (see Figure 2.7).

Figure 2.7: Increment Array Example in C and CUDA.

The first parameter of the execution configuration specifies the dimensions of the

grid in terms of number of block. The second specifies the dimensions of each block in

terms of number of threads. Each such parameter is a dim3 type, which is essentially

a C struct with three unsigned integer fields (x, y and z). Because grids are 2D arrays

of block dimensions, the third field of the grid dimension parameter is ignored.

Because all threads in a grid execute the same kernel function, they rely on unique

coordinates to distinguish themselves from each other and to identify the appropriate

portion of the data to process. These threads are organized into two-level hierarchy

using unique coordinates – blockIdx for block index and threadIdx for thread index

– assigned to them by CUDA runtime system. The blockIdx and threadIdx appear

as built-in, preinitialized variables that can be accessed within kernel functions.

When a thread executes the kernel function, references to the blockIdx and threadIdx

variables return the coordinates of the thread (see Figure 2.7). Additional built-

in variables, gridDim and blockDim, provide the dimension of the grid and the

dimension of each block respectively. It is the responsibility of programmer to use

these variables in kernel functions so the threads can properly identify the portion

of the data to process. This model of programming compels the programmer to

organize threads and their data into hierarchical and multidimensional organizations.

Once a kernel is launched, the CUDA runtime system generates the corresponding

grid of thread blocks. Each block of the grid is cyclically assigned to a Streaming

Multiprocessor (SM) in arbitrary order (see Figure 2.6). Up to 16 blocks can be

assigned to each SM in the Kepler architectures as long as there are enough resources

to satisfy the needs of all of the blocks. In situations with an insufficient amount
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of any one or more types of resources needed for the simultaneous execution of 16

blocks, the CUDA runtime automatically reduces the number of blocks assigned to

each SM until the resource usage is under the limit. The runtime system maintains a

list of blocks that need to execute and assigns new blocks to SMs as they complete the

execution of blocks previously assigned to them. One of the SM resource limitations

is the number of threads that can be simultaneously tracked and scheduled. In the

Kepler device, up to 2048 threads can be assigned to each SM. This could be in the

form of 8 blocks of 256 threads each, 16 blocks of 128 threads each, etc. It should

be obvious that 32 blocks of 64 threads each is not possible, as each SM can only

accommodate up to 16 blocks.

Once a block is assigned to a SM, it is further divided into 32-thread units called

warps. The warp scheduler of a SM selects a warp that is ready to execute and

issues the instruction to the threads of the warp. The SM maps each thread of a

warp to one thread core (see Figure 2.6), so at any given clock cycle, each thread of

a warp executes the same instruction, but operates on different elements of the data

set in parallel (data-parallel model SIMT). A warp executes one common instruc-

tion at a time, so full efficiency is realized when all 32 threads of a warp agree on

their execution path. If threads of a warp diverge via a data-dependent conditional

branch, the warp serially executes each branch path taken; disabling threads that

are not on that path, and when all paths complete, the threads converge back to

the same execution path. Branch divergence occurs only within a warp; different

warps execute independently regardless of whether they are executing common or

disjointed code paths [147].

At any time, the SM executes only a subset of its resident warps for execution. This

allows the other warps to wait for long-latency operations without slowing down the

overall execution throughput of the massive number of execution units. When an

instruction executed by the threads in a warp must for the result of a previously

initiated long-latency operation, the warp is not selected for execution. Another

resident warp that is no longer waiting for results is selected for execution. If more

than one warp is ready for execution, a priority mechanism is used to select one for

execution. This mechanism of filling the latency of expansive operations with work

from other threads is often referred to as latency hiding. The selection of ready

warps for execution does not introduce any idle time into the execution timeline,

which is referred to as zero-overhead thread scheduling. With warp scheduling,

the long waiting time of warp instructions is hidden by executing instructions from

other warps. For example if a warp is waiting for memory access, the scheduler can

perform a zero-cost, immediate context switch to another warp.
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Threads synchronization

CUDA allows threads in the same block to coordinate their activities using a barrier

synchronization function, syncthreads(). When a kernel function calls ensure that

all threads in a block have completed a phase of their execution of the kernel before

any moves on the text phase. The barrier synchronization function is highly used

when threads within a same block must coordinate their communication with each

other by writing or reading per-block memory at a synchronization barrier.

Barrier synchronization is not allowed among threads in different blocks. Threads

in different blocks can only safely synchronize with each other by terminating the

kernel and starting a new kernel for the activities after the synchronization point.

Therefore, the CUDA runtime system can execute blocks in any order relative to

each other because none of them must wait for each other. This flexibility enables

scalable implementations as shown in Figure 2.8.

Figure 2.8: Transparent scalability for CUDA programs. Image derived from

[151].

In a low-cost implementation with only a few execution resources, one can execute

a small number of blocks at the same time. In a high-end implementation with
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more execution resources, one can execute a large number of blocks at the same

time. Both execute exactly the same application program with no change to the

code. The ability to execute the same application code on hardware with different

numbers of execution resources is referred to as transparent scalability, which reduces

the burden on application developers and improves the usability of applications.

2.3.1.2 Memory model

In addition to the CUDA execution model the CUDA memory model, describing the

GPU memory hierarchy and memory access, is also very important to consider when

creating GPU computing programs. With traditional CPUs data is stored in a large

main memory that has a high-latency memory access. This high-latency memory

access can become a performance constraint when executing programs where the

computational problem is memory and not compute bound. To hide this latency

the data is moved closer to the CPU with the use of fast and very low-latency

on-chip caches. The use of these caches is transparent and all memory access is

uniform, which means that the programmer does not need to explicitly handle the

use of caches. It can however be beneficial to limit the workloads of the program to

the size of the caches since this will decrease cache misses and access to the main

memory.

Similar to the CPU the GPU also has a large high-latency main memory called the

global memory, caches that are called local memory (compute capability 2.0 and

above), and registers. However, due to the number of computation cores on a GPU

there is a very limited space for caches on the chip, and therefore the hiding of la-

tency must instead be achieved through high bandwidth utilization by concurrently

executing threads. The achievable bandwidth utilization is determined by restric-

tions to the memory access pattern of thread warps which enables the coalescing

of memory access into as few accesses transactions as possible (see Figure 2.9). In

details when all threads in a warp execute a load instruction, the hardware detects

if the threads access consecutive global memory locations. That is, the most fa-

vorable access pattern is achieved when the same instruction for all threads in a

warp accesses consecutive global memory locations (see Figure 2.9). In this case,

the hardware combines, or coalesces, all of these accesses into a consolidated access

to consecutive DRAM locations. For example, for a given load instruction of a warp

if thread 0 accesses location N, thread 1 accesses location N+1, thread 2 accesses

location N+2, etc., then all of these accesses will be coalesced, or combined into a

single request for all consecutive locations when accessing the global memory. Such

coalesced access allows the DRAMs to deliver data at a rate close to the peak global
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memory bandwidth.

(a) Coalesced access - all threads access one memory segment

(b) Unaligned sequential addresses that fit into two memory segments

Figure 2.9: Access pattern to global memory. Image derived from [150]

In addition the the global memory, caches, and registers, the GPU also has a shared

memory, constant memory and a texture memory. The shared memory is a small

and fast low-latency on-chip memory available on each SM that has its own address

space, and can be accessed by all threads in a thread block allocated to the SM.

The shared memory is divided into banks which can be accessed simultaneously by

as many threads as it has banks. However, if multiple threads try to access the

same banks at the same time bank conflicts can occur, forcing the bank access to

be serialized and thereby much slower. Such bank conflicts can be avoided by block

synchronization using the synchthreads() barrier function within a kernel. If there

are no bank conflicts the shared memory can have a similar performance as registers.

Shared memory must be explicitly declared by the programmer and it is commonly

used for communication and sharing frequently used data between threads. The

constant and texture memory is located on the device (off-chip) alongside the global,

local, and constant memory. The constant memory is used to store constant global

variables, and the texture memory is traditionally used for graphics textures, but

can also be used to store more general structures. The texture memory also has the

added benefit of hardware units that perform interpolation when accessing the stored

data, clamping and wrapping memory accesses to prevent out-of-bounds faults, and

spatial caching.

Figure 2.10 shows an illustration of the CUDA memory model and the connection

between memory and GPU grid, thread blocks, threads and the CPU host. As the

figure shows the CPU can access the GPUs global, constant, and texture memory.

This access is done through the PCI-Express bus and is often viewed as a major
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bottleneck in GPU computing because of the latency involved. It is therefore rec-

ommended to limit the transfer of data between the host and the device, and if

possible only at the initialization and end of a GPU programs execution. Figure

2.10 also shows that global, constant and texture memory can be accessed by all

the threads in every threads block, but shared memory is restricted to all threads

within a thread block and that both local memory and registers are private for each

thread.

Figure 2.10: The CUDA memory model. Image derived from [151]

Similar to the kernel qualifiers also has a set of qualifiers to indicate what type of

memory a variable is allocated to. For variables declared in the global scope (outside

the scope of a kernel) the qualifier device is used, for variables in shared memory

the qualifier shared , and for constant variables the constant qualifier.

Allocation of memory on the device from the host is possible by using the CUDA

function cudaMalloc(), and freed by using cudaFree(). Memory can also be copied

by using the CUDA function cudaMemcpy() with a keyword defining if the data

should be copied from host to host, host to device, device to host, or device to

device.
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2.3.2 OpenCL

OpenCL is an open standard targeted for general-purpose parallel programming on

different types of processors. The goal of OpenCL is to provide software developers

a standard framework for easy access to heterogeneous processing platforms. The

focus is to enable parallel programming on any hardware that supports parallel

execution, including GPUs, CPUs, DSPs, and FPGAs. The OpenCL standard

specifies a set of API and a programming language based on C. For the purpose

of this thesis it is only necessary to describe the OpenCL concepts rather than the

technical details. The technical details of the OpenCL framework can be found in

the OpenCL specification [141].

Under the OpenCL programming model, computation can be done in data parallel,

task parallel, or a hybrid of these two models. The main focus of the OpenCL

programming model is the data parallel model, where each thread (called work-

item in OpenCL) works on a data item - effectively implementing SIMD. The task

parallel model can be realized by enqueuing the execution of multiple kernels, where

only one work-item for each kernel is created. Even though some of the GPUs

support this model, this is highly inefficient model for GPUs. It is possible to have

a hybrid model where multiple kernels each with multiple work-items are enqueued

for execution at the same time.

OpenCL and CUDA are similar in their execution and memory model when used

with a GPU, but differ in how kernels are created. In OpenCL kernels are created

in separate program files that are collected in program objects that are compiled at

runtime into kernel objects which are passed to the device driver for optimization.

The OpenCL syntax is also generally a bit more verbose then the CUDA syntax and

uses different terminology for execution constructs and components. The different

terminology used in CUDA an OpenCL is reported in Table 2.4).

The OpenCL programming model is based on a virtual architecture model mapped

on really device only during phase compiling. Virtual architecture model called

OpenCL platform model is composed of one or more Compute Units (CU) that

correspond to CUDA streaming multiprocessors (see Figure 2.11). However, a CU

can also correspond to CPU cores or other types of execution units in compute

accelerators such as DSPs and FPGAs. Each CU, in turn, has one or more Processing

Elements (PE), which correspond to the cores in CUDA (see Figure 2.11).
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CUDA OpenCL Description

SM Compute Unit A cluster of Core

CUDA Corer Processing Element Executing a single instruction

Thread Work-item Single instance of a kernel

Thread Block Work-group Group of work-items/threads

Kernel Kernel Parallel code

Grid (of thread blocks) NDRange Array of threads blocks

Global Memory Global Memory main memory

Shared Memory Local Memory Shared within a work-group

Local Memory Private Memory Thread memory

Table 2.4: CUDA vs. OpenCL terminology.

Figure 2.11: OpenCL platform model. Image derived from [95]

29



2.3. GPGPU Programming Models

Execution model

Like for CUDA, the execution model of an OpenCL application has two components.

One part, called the kernel, executes on one or more devices, and the other part that

executes on the host that manages the execution of kernels. In OpenCL, devices

are managed through contexts. In order to manage one or more devices in the

system, the OpenCL programmer first creates a context that contains these devices.

Then, to submit work for execution by a device, the host program must create a

command queue for the device. Once a command queue is created, the host code can

perform a sequence of API function calls to insert a kernel along with its execution

configuration parameters into the command queue. When the device is available

for executing the next kernel, it removes the kernel at the head of the queue for

execution. Therefore, using the OpenCL API, the host part of the application

creates a context object and the other objects under it (i.e. kernel object, program

object, memory objects, and command queues object). Each device in the context

has an associated command queue, and kernel execution and memory transfer are

coordinated using the command queue. There are three types of commands that

can be issued. Memory commands are mainly used to transfer memory between the

host and the device. Kernel commands are issued to start the execution of kernels

on the device. Synchronization commands can be used to control the execution

order of the commands. Once the commands are scheduled on the queue, there are

two possible execution modes. The commands can be executed in-order, meaning

the previous command on the queue must finish execution for a command to start

execution. The other option is for the commands to execute out-of-order, where

commands do not wait for previously queued commands to finish. However, explicit

ordering can be enforced in an out-or-order queue by synchronization commands.

A virtual N-dimensional indexed space is defined for the execution of the kernel,

and one kernel instance (i.e. a work-item) is executed for each point in this indexed

space (1 ≤ N ≤ 3). All the work-items (threads) execute the same code, however,

they usually work on different data and their execution path through the code can

diverge. Each work-item is assigned a global ID that is unique across the indexed

space. Equal numbers of work-items are grouped together to form work-groups

(thread blocks), with all the work-groups having the same dimensions. The work-

item in a work-group has a unique ID, and has also access to shared local memory

(see Figure 2.11). It is important to note that with proper device support, the total

number of work-items can be much greater than the number of processing elements

present in a device. Through API calls an application can find out the maximum

number of work-items a device supports.

30



GPU Computing

Memory model

The host manages the kernels and the memory objects under a context through

command queues. The memory objects are visible to both the host and the kernels,

and used to transfer data between the host and the device. The host creates memory

objects, and through the OpenCL API allocates memory on the device for them.

The memory model in OpenCL is divided into four types (see Figure 2.11):

• Global Memory: all work-items have read-write access to this memory region.

Usually the input data for the work-items are written to this region by the

host, and the computed output data is written there by the work-items.

• Constant Memory: this is a read-only global memory accessible to all work

items. The host part of the application allocates and initializes this memory

region.

• Local Memory: it is the local memory of a work-group. All the work-items in

a work-group shares this memory region. This memory allows work-items to

communicate with each other within a work-group.

• Private Memory: this memory region represents the local variables of the

kernel instance. Each work-item has its own copy of the local variables and

they are only visible to the work-item.

2.3.3 OpenACC Version 1.0

Both the CUDA and OpenCL programming models feature a function rich and low

level API for GPU programming, giving the programmer fine grained control over

the execution and memory management of a GPU program. Even though this fine

grain control can enable the programmer to create very fast and efficient programs,

it can also make it difficult to program complicate software design, and tie code a

specific device or vendor. As a solution to this, recent approaches try to improve

programmability with an abstraction to GPU programming by making the compiler

responsible for many of the low-level programming tasks through compiler directive-

based high-level APIs such as OpenACC.

OpenACC is a open programming standard developed by NVIDIA, The Portland

Group, CAPS, and Cray, for parallel computing on heterogeneous systems using

compiler directives. The OpenACC standard was first released as version 1.0 [145] in

November 2011 and it describes a API for GPU programming that includes compiler
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directives, library routines and environment variables. In March 2013 draft for

OpenACC version 2.0 [146] was released and is currently open for public comment.

The OpenACC API and its directives can currently be used in combination with

the C, C++, and Fortran programming languages and aims to be portable across

operating systems, host CPUs and accelerators.

The primary goal of OpenACC is to simplify programming applications on hetero-

geneous systems that are composed of general purpose processors, such as CPUs,

with attached accelerator devices, such as GPUs. This simplification is done by

using directives to indicate what loops or region of code should be executed on the

accelerator in parallel and letting the compiler create the needed target code. This

gives the programmer a simple start to GPU programming without the need to think

as much about the execution and memory model, but the OpenACC API also has

features for a more explicit control of the program execution. It is also important to

note that the use of directives does not make parallel programming easier in general,

as it is still up to the programmer to identify parallel regions or modify existing code

to make it suitable for parallelism.

Since OpenACC is only a standard describing the API, it is up to developers to

create compilers with OpenACC support and decide how the GPU program should

be created. A common approach is to perform a source-to-source translation of the

regions marked by the OpenACC directives to CUDA or OpenCL target code built

for the appropriate architecture.

Execution model

OpenACC is generally aimed at heterogeneous systems that has a host processor,

such as a CPU, and an attached accelerator device, such as a GPU. On such systems

a program is usually executed on the host until a compute intensive region that can

be executed in parallel is reached. Such regions are typically called parallel regions

and usually contains one or more work-sharing loops that can be executed as a kernel.

When such a region is reached the host can offload the region to the accelerator for

fast parallel execution. After the execution is finished the results are transfer back

to the host again. Because of this behavior OpenACC has a host-directed execution

model.

The host must allocate device memory, initiate data transfer, send code to the device,

pass needed arguments to the parallel region, wait for the execution to complete,

transfer results back again, and deallocate the device memory. Most of this process

is done by the OpenACC compiler, but it can also be specified in more detail by the
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programmer.

In OpenACC accelerators executes parallel regions that are similar to CUDA kernels,

which typically contains single or nested work-sharing loops. These regions are

indicated by the use of directives #pragma acc kernels or #pragma acc parallel,

that can either be executed synchronously or asynchronously.

The parallel regions can be executed with three levels of parallelism, called gang,

worker, and vector. Generally these are mapped to an architecture that is a col-

lection of processing elements, where there is one or more processing element per

node, each processing element is multithreaded, and each processing element can

execute vector instructions. The mapping between gang, worker, and vector is

implementation-dependent, but typical mappings to a CPU might be that gang is

the number of CPUs, worker is the number of CPU cores, and vector is the number

of SIMD instructions per core. On CUDA a typical mapping is that gang corre-

sponds to the number of thread blocks in a grid, vector is the number of threads per

thread block, and worker is locked to the warp size. If no specific number of gangs,

workers, and vectors is specified the compiler will select values that matches the

size of the computing domain and the underlying hardware architecture. However,

there are no guarantees that the values selected by the compiler result is the optimal

choice, and in some cases it might be wise to tune the code to fit particular target

architecture.

Memory model

Since OpenACC is mainly targeting heterogeneous systems with a host CPU and a

attached accelerator device, such as an GPU, the memory of the host and accelerator

is usually completely separated. All data allocation and data movement between

host memory and accelerator device memory must be performed by the host through

runtime library calls. Besides the host and device memory OpenACC also has the

notion of private and shared memory, where the private memory is usually hardware-

managed caches and the shared memory is software-managed cache like the shared

memory on CUDA. All of these memory concepts are implicit and managed by the

compiler, based on compiler directives declared by the programmer.

The directives can describe the allocation and data movement by telling the compiler

that memory should be allocated in device memory, data should be copied from the

host to the device and back again, only copied from the host to the device, only

copied to the host from the device, or that the data already exists in the device

memory.
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In a typical parallel region data is copied to the device from the host at the start

of the region, and copied back to the host when the region ends. However, when

there are multiple parallel regions that all work on the same data in sequence the

copying of data back and forth between each region might slow down performance.

It is therefore possible to use the OpenACC runtime API to allocate memory at the

start of the program and pass the device memory pointers to the parallel regions,

allowing the data to stay on the device through the programs execution. In addition

the compiler also creates barrier constructs to prevent simultaneous access to the

same memory that might result in memory coherence issues.

2.4 Discussion and Conclusions

Nowadays, many scientific and engineering applications tend towards using more

specialized high-performance processor technologies over conventional CPU proces-

sors. Some of the graphics computing solutions have been expanding their intended

use in current and future graphic systems, as well as in high-performance computing

systems (Such as, IBM Cell, Intel Xeon, and NVIDIA and AMD GPUs).

Semiconductor capability and advances in fabrication process have increased for both

CPUs and HPC platforms, but the main growth disparity is due to architectural

differences: CPUs have large caches and they are optimized for high performance on

sequential code or coarse-grained multi-thread, focusing branch prediction and out-

of-order execution. On the other hand, GPUs that focus on highly parallel general

purpose computations achieve higher arithmetic intensity. Thus, it increases the

system performance without compromising the overall system power consumption.

Table 2.5 shows a comparison among the best CPUs, HPC co-processors, and GPU

architectures. The comparison is very complex because all of them have different

features, but if we compare them in terms of peak performance and performance per

watt, GPUs perform most efficiently. However, Cell/BE is cheaper than other ac-

celerators. The AMD GPU hardware implementations are architecturally different

from the NVIDIA’s one but, on average, performances are very similar. Making the

best choice of platforms greatly depends on applications. If an application contains a

massive amount of independent data and still needs to gain performance while main-

taining the power consumption low, then GPU is a better choice. Since the GPU is

a massively multi-threaded parallel machine with high-end shared memory, it is a

great choice for fine-grained parallelism. However the main limitation and difficulty

is that the developer must have an in-depth knowledge of GPU programming and

hardware. For this reason the graphics card manufacturers have developed a new
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CPU Coprocessor GPU

Vendor Intel Intel IBM NVIDIA AMD

Product name
Xeon

E5-2687v3

Xeon Phi

3120A

PowerX

Cell 8i

Tesla

k80

Radeon

R9 295X2

Peak

performance [TF]
0.39(SP) 0.71(SP)

0.20(SP)

0.10(DP)

8.74(SP)

2.91(DP)

11.46(SP)

1.43(DP)

Wattage (TDP) 160W 300W 260W 300W 500W

Performance

per watt[GF/W]
2.4(SP) 2.36(SP)

0.76(SP)

0.38(DP)

29.13(SP)

9.70(DP)

22.90(SP)

2.86(DP)

Memory

bandwidth [GB/s]
68 240 32 240x2 320x2

Price 2145$ 1695$ 1100$ 5000$ 1499$

Table 2.5: Comparison among CPU, HPC Coprocessors, and GPU archi-

tectures.

unified graphics and computing GPU architecture and introduce new programming

models dedicated to general-purpose computations, which provide low-level or direct

access to the multi-threaded computational resources and associated memory band-

width of GPUs. As to programming models, the vendor-independent OpenCL is

used by both AMD and NVIDIA, which also uses its proprietary language CUDA.

OpenCL draws heavily on CUDA in the areas of supporting a single code base

for heterogeneous parallel computing, data parallelism, and complex memory hier-

archies. On the other hand, it has a more complex platform and device manage-

ment model that reflects its support for multi-platform and multi-vendor portability.

Whereas the OpenCL standard is designed to support code portability across de-

vices produced by different vendors, such portability does not come free. OpenCL

programs must be prepared to deal with much greater hardware diversity and thus

will exhibit more complexity. As a result, a portable OpenCL code may not be able

to achieve its performance potential on any of the devices. In particular, as shown

in [89], in the specific case of NVIDIA GPUs, CUDA kernel execution is consistently

faster than OpenCL’s, despite the two implementations run nearly identical code.

The main reason for CUDA outperforming OpenCL is that CUDA builds kernels us-

ing a compiler thus obtaining a better optimized code than OpenCL, which builds

them at runtime. Moreover, the most recent CUDA releases offer more features

than OpenCL. For example, CUDA allows SM register sharing among threads and

implementation of recursive algorithms is only available on OpenCL starting from

OpenCL 2.0 and is not supported in NVIDIA drivers.

The bioinformatics applications detailed in the following chapters have been par-
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allelized on NVIDIA GPUs using CUDA, as the NVIDIA GPUs were among the

most performant at the time they were bought and CUDA outperforms OpenCL on

NVIDIA GPUs.
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Chapter 3

G-SNPM: A GPU-based SNP

Mapping Tool

Single Nucleotide Polymorphism (SNP) genotyping analysis is very susceptible to

SNPs chromosomal position errors. SNPs mapping data are provided along the

SNP arrays without any necessary information to assess in advance their accuracy.

Moreover, these mapping data are related to a given build of a genome and need

to be updated when a new build is available. As a consequence, researchers often

plan to remap SNPs with the aim to obtain more up-to-date SNPs chromosomal

positions.

Specialized tools as LiftOver, AssemblyConverter, and the NCBI Genome Remap-

ping Service have been devised to project the coordinates of genomic regions from

a given build to another build of a genome. These tools are very useful to update

chromosomal coordinates between different reference sequences; however they might

be unable to perform a given conversion between different assemblies. In fact, these

tools typically allow only a limited set of assembly-assembly conversion combina-

tions. Then, it might be impossible to use them to update SNPs positions on a given

build of a genome. Moreover, new positions obtained using these tools are strongly

related to the initial positions provided by the vendor. Unfortunately, if a SNP

has been wrongly mapped by the vendor, the error will be spread to the updated

position. Finally, these tools are specialized to convert coordinates from a build to

another and do not permit to remap a SNP against the same reference build to look

for discrepancies with the vendor positions. Researchers use also tools as BLAST or

BLAT to analyze SNP probe positions and/or to update them to the genome or to

the transcriptome. However, using tools as BLAST or BLAT to update thousands

or millions of SNPs is a very expensive task in terms of computing time.
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G-SNPM is a tool devised to map a short sequence representative of a SNP against

a reference DNA sequence in order to find the physical position of the SNP in that

sequence. In G-SNPM each SNP is mapped on its related chromosome by means of

an automatic three-stage pipeline. In the first stage, G-SNPM uses the GPU-based

short-read mapping tool SOAP3-dp to parallel align on a reference chromosome

its related sequences representative of a SNP. In the second stage G-SNPM uses

another short-read mapping tool to remap the sequences unaligned or ambiguously

aligned by SOAP3-dp (in this stage SHRiMP2 is used, which exploits specialized

vector computing hardware to speed-up the dynamic programming algorithm of

Smith-Waterman). In the last stage, G-SNPM analyzes the alignments obtained

by SOAP3-dp and SHRiMP2 to identify the absolute position of each SNP. Used

to remap the SNPs of some commercial chips, G-SNPM has been able to remap

without ambiguity almost all SNPs. Based on modern GPUs, G-SNPM provides

fast mappings without worsening the accuracy of the results. G-SNPM can be used

to deal with specialized genome wide association studies, as well as in annotation

tasks that require to update the SNP mapping probes.

3.1 Introduction

GWAS have shown that genetic variants are often responsible of traits expressed

in phenotypes. Genetic variants may be associated with the cause (e.g., [132]) or

with the predisposition (e.g., [186]) of a disease, and may determine individual drug

responses (e.g., [46]). SNPs are the most common type of genetic variant in human

genome. More than 10 million SNPs are estimated to be in the human genome

[28]. The scientific community has placed a great interest in the analysis of SNPs,

widely exploiting their knowledge in GWAS [188, 171, 72]. Hence, different public

resources have been devised to share their knowledge (e.g., dbSNP [174], the Inter-

national HapMap Project [57], the 1000 Genomes Project [8]), as well as specialized

tools for SNP calling (e.g. MAQ [111], SOAPsnp [112], SNVMix [63]) and SNP anal-

ysis (e.g., FAST-SNP [202], SNPLims [154], SNPInfo [197], SNPranker 2.0 [136]). In

this context, SNP genotyping arrays represent an important tool for genetic analysis.

It should be pointed out that the reliability of the genotype-phenotype associations

that may be discovered analyzing SNPs is strongly related to the accuracy of the

data that describe them. In particular, SNP genotyping analysis is very susceptible

to SNPs chromosomal position annotation errors. In fact, wrongly mapped SNPs

may in some cases affect data analysis and lead to erroneous conclusions. An inter-

esting study about wrongly mapped SNPs in commercial SNP chips, and on their
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possible functional consequences, has been presented in [45]. In this work, SNPs

of various chips have been remapped using highly sensitive alignment parameters

against their reference genomes, with the goal to highlight discrepancies between the

found genomic positions and those provided by the chip vendors. These discrepan-

cies highlighted that more sensitive aligner parameters should be used to achieve an

accurate alignment instead of retrieving a partial best alignment with extra SNPs,

indels or less SNP flanking sequence aligned. This suggests that researchers should

closely examine how mapping data have been obtained, with the goal of analyzing

their accuracy and if necessary taking into account the opportunity to update them.

However, mapping data are provided to the users along the SNP chips, omitting

any information about the algorithm and the parameter settings used to obtain

them. Then, meticulous researchers often plan to remap the SNPs to obtain more

accurate chromosomal positions before performing association studies. In general,

when a new build of a genome is available it might be productive to re-analyze the

data of old genotyping experiments while exploiting the new reference sequences.

In this case, as the mapping data of SNP chips are related to a given build of the

genome under consideration (irrespective of their original accuracy), chromosomal

positions need to be updated according to the newest build. Moreover, in genotyp-

ing analysis often researchers need to merge genetic datasets coming from different

genotyping platforms, which in turn use different sets of SNPs to represent genetic

polymorphisms. To this end, it is necessary to know the exact position of a SNP in a

chromosome and update this information when new builds of the reference genome

are available.

Specialized tools as LiftOver [4], AssemblyConverter [1], and the NCBI Genome

Remapping Service [5] have been devised to project the coordinates of genomic

regions from a given build to another build of a genome. These tools are very useful

to update chromosomal coordinates between different reference sequences; however

they might be unable to perform a given conversion between different assemblies. In

fact, these tools typically allow only a limited set of assembly-assembly conversion

combinations. Then, it might be impossible to use them to update SNPs positions

on a given build of a genome. Moreover, new positions obtained using these tools are

strongly related to the initial positions provided by the vendor. Unfortunately, if a

SNP has been previously wrongly mapped by the vendor, the error will be spread to

the updated position. Finally, these tools are specialized to convert coordinates from

a build to another and do not permit to remap a SNP against the same reference

build to look for discrepancies with the vendor positions.

Researchers use tools as BLAST [15] or BLAT [91] to analyze the SNP probes posi-

tions and/or to update them to the genome or to the transcriptome. For instance,

39



3.2. Related work

some researchers highlighted that many of the Illumina probes have unreliable orig-

inal annotations and defined a pipeline that exploits both BLAST and BLAT to

perform complete genomic and transcriptomic re-annotation of the probe sequences

[23]. AffyProbeMiner [117] is a platform-independent tool that uses all RefSeq ma-

ture RNA protein coding transcripts and validated complete coding sequences in

GenBank [25] to regroup the individual probes into consistent probe sets to remap

them to the correct sets of mRNA transcripts exploiting a local implementation of

the BLAT server. The Bioconductor [56] package named altcdfenvs has been used to

investigate how probes found on Affymetrix microarrays were matching on more re-

cent curated collections of human transcripts. Experiments showed that not all the

probes matching a reference sequence were consistent with the grouping of probes

by the manufacturer of the chips [55]. However, using tools as BLAST or BLAT to

update thousands or millions of SNPs is a very expensive task in terms of computing

time.

In this work, an improved version of G-SNPM (standing for GPU-SNP Mapping)

[155] was presented, an accurate and very fast tool devised to cope with the problem

of updating SNPs chromosomal positions. Written in Python, G-SNPM is mainly

based on the SOAP3-dp [122] short-read mapping tool to exploit the computation

power of modern GPUs.

G-SNPM is available at the following address http://www.interomics.eu/sp1-wp2.

3.2 Related work

Several tools have been devised to perform short-read mappings. Without aiming to

be exhaustive, some of the most popular solutions are cited, as MAQ [111], RMAP

[179, 178], Bowtie [104], BWA [108], CloudBurst [169], and SHRiMP2 [166, 40].

MAQ maps short sequence reads to a reference genome by calculating the prob-

ability of a read alignment to be correct, and consensus genotype calling with a

model that incorporates correlated errors and diploid sampling. It supports gapped

alignment and can align reads up to 128bp. RMAP uses quality scores to provide

accurate ungapped alignments. In so doing, it exploits two different mapping cri-

teria. A first criterion is based on a simple count of mismatches between a read

and the aligned genomic region, while a second criterion makes use of the base-

call quality scores. By manipulating the quality-score cutoff, the second criterion

provides another means of adjusting sensitivity and specificity. In particular, it al-

lows positions to contribute when they are of high-quality, but not be penalizing
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if they are low-quality. Bowtie is a memory-efficient short-read aligner that ex-

ploits the Burrows-Wheeler Transform (BWT) to index the genome allowing only

ungapped alignments. BWA is another tool that exploits the BWT to index the

reference sequences. It can also provide gapped alignments, while Bowtie cannot.

It consists of three algorithms (i.e., BWA-backtrack, BWA-SW and BWA-MEM),

devised to perform both short and long read alignments. CloudBurst is a parallel

seed-and-extend read-mapping tool able to align reads with a specified number of

differences, including both mismatches and indels (insertions/deletions). It exploits

the open-source Hadoop [190] implementation of MapReduce [41] to parallelize the

execution using multiple computing nodes. SHRiMP2 exploits specialized vector

computing hardware to speed-up the Smith-Waterman [180] dynamic programming

algorithm. It is a multi-core short-read mapping tool that enables the alignment

of reads with extensive polymorphism and sequencing errors. A comparative study

aimed at assessing the accuracy and the runtime performance of different state-of-

the-art Next-Generation Sequencing (NGS) read alignment tools highlighted that

among all SOAP2 [113] is the one that showed the higher accuracy [165]. Exhaustive

reviews of the tools cited above can be found in the literature (e.g., [22]).

In general, the mentioned solutions exploit some heuristics to find a good com-

promise between accuracy and running time. Recently, GPU-based solutions have

been proposed to cope with different bioinformatics problems [125, 203, 119, 175].

GPUs have also been exploited to cope with the exponentially increasing through-

put of NGS. In particular, the computational power of these hardware accelerators

is helping researchers to speed the short-read mapping process without compro-

mising accuracy and sensitivity. Lately, the GPU-based short-read mapping tools

Barracuda [96], CUSHAW [120], SOAP3 [116] and SOAP3-dp have been proposed

to the scientific community. Experimental results show that SOAP3, which is the

GPU evolution of SOAP2, outperforms the popular tools BWA and Bowtie. When

tested to align millions of 100-bp read pairs to the human genome, it resulted at

least 7.5 times faster than BWA, and 20 times faster than Bowtie. Moreover, SOAP3

does not exploit heuristics and it is able to align correctly slightly more reads than

BWA and Bowtie. SOAP3 is able to align a read to a reference sequence with up to

four mismatches while it does not support gapped alignments. Lately, the SOAP3

research team released SOAP3-dp, a new version of the aligner that exploits dy-

namic programming to support gapped alignments. Compared with BWA, Bowtie2

[103], SeqAlto [140], GEM [128], and the previously mentioned GPU-based aligners,

SOAP3-dp is two to tens of times faster, while maintaining the highest sensitivity

and lowest false discovery rate on Illumina reads with different lengths. Table 3.1

summarizes the described tools.
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Table 3.1: Short-read mapping tools. A summary of some of the most

popular short-read mapping tools.
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3.3 Methods

G-SNPM is a tool that maps a sequence representative of a SNP against a refer-

ence sequence in order to find the absolute position of the SNP in that sequence.

For genotyping analysis a SNP is represented by a oligonucleotide probe for each

possible allele. In turn, these probes can be synthetically described by a reg-

ular expression obtained by combining the flanking sequences of a SNP with a

grouping construct that represents its possible alleles (e.g., GCACTCTCACATG-

GATTAGGGAATTA[CG]ATGCAGACCTCCTGCACAACTGCCC). Since public

repositories as dbSNP provide short and fixed length flanking sequences, it has been

assumed that typically the probes used to design a SNP chip are represented by

short sequences. Starting from this consideration, a short-read mapping tool could

be successfully used to cope with the SNP mapping task.

In the following of this section, firstly existing state-of-the-art short-read mapping

tools are introduced. Then, the strategy used is outlined, devised to deal with SNP

mapping problems. Successively, the adopted alignment constraints are discussed.

Finally, the minimal hardware and software equipment required to use G-SNPM are

briefly resumed.

3.3.1 The implemented strategy

As previously seen, a SNP can be synthetically represented by means of a regular

expression R that uses a single grouping construct to describe the possible alle-

les. However, short-read mapping tools are not designed to work with sequences

described by a regular expression with specialized constructs. Then, two trivial ap-

proaches could be used to map a SNP with a short-read mapping tool. As for the

former approach (see Figure 3.1), the probe sequences related to the alleles of a given

SNP are dealt with separately in the alignment process. In other words, each probe

sequence is aligned against a reference sequence independently from the others using

the same mapping tool and identical setting parameters. After that sequences have

been aligned, results are merged and analyzed to detect and eventually update the

SNPs mapping positions. As for the second approach (see Figure 3.2), the probe

sequences related to the alleles of a given SNP are dealt with simultaneously in

the alignment process. To this end, a single sequence must be used to represent the

probes related to a SNP. This sequence can be obtained by substituting the grouping

construct in R that describes the possible alleles with a aN y symbol that represents

any possible nucleotide. In so doing, the expressiveness of the new sequence increases

with respect to that of the starting one, while its information content decreases. In
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this case, results obtained by aligning the new sequence against a reference sequence

must be analyzed to filter out false positive alignments: i.e., those alignments for

which the aN y symbol that represents the SNP does not match with one of the pos-

sible alleles for that SNP. Only after this step alignments can be analyzed to update

SNPs mapping positions. This approach can significantly reduce the computational

load needed to perform the alignment task. For instance, for biallelic SNPs it will

be almost halved with respect to the first approach. Basically, G-SNPM uses this

approach to align a sequence representative of a SNP by means an automatic three

stage pipeline (see Figure 3.3).

Figure 3.1: Use of two sequences to represent a SNP: two sequences are

separately aligned for a SNP. After the alignment, results are analyzed to cal-

culate the absolute position of the SNP.
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Figure 3.2: Use of two sequences to represent a SNP: only a sequence is

aligned for a SNP. After the alignment results are analyzed to remove those false

positives and to calculate the absolute position of the SNP.
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Figure 3.3: G-SNPM mapping strategy. G-SNPM exploits a three-stage

pipeline to update the chromosomal position of a SNP. In the first stage, SOAP3-dp

is used to unambiguously map a SNP against a reference sequence. Unmapped

or ambiguously mapped SNPs are remapped at the second stage by exploiting

SHRiMP2. At the third stage, mapped SNP sequences are analyzed to identify

the SNP chromosomal position.
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First stage of the pipeline

G-SNPM uses the GPU-based SOAP3-dp short-read mapping tool to align a se-

quence related to a SNP against its related chromosomal sequence. Typically, a

short-read mapping tool is used to map a read against the overall genome. In fact,

the genome region from which the read has been generated from the sequencer is

unknown. To reduce the running time G-SNPM uniquely aligns each SNP against

the reference chromosomal sequence shown in the mapping data of the chip. In fact,

it is very unlikely that a SNP has been mapped to a wrong chromosome. Then,

since SOAP3-dp exploits the BWT to index a reference sequence, it is necessary to

index separately each chromosomal sequence involved in the mapping task.

In general, the alignment process can generate one of three possible results. In

particular, also depending on the setting parameters, SOAP3-dp:

i. provides a unique alignment;

ii. provides multiple alignments;

iii. is unable to find an alignment with respect to the given constraints.

As previously explained, the adopted mapping strategy requires that G-SNPM an-

alyzes the resulting alignments to filter out false positives. During the alignment,

SOAP3-dp aligns each aN y symbol in a sequence as a mismatch against any pos-

sible nucleotide in the reference sequence. Therefore, G-SNPM i) analyzes each

alignment to look for false positives, ii) removes them, and then iii) updates the

edit distance of those alignments classified as true positives. To detect a unique

SNP chromosomal position, a unique alignment must be considered valid. To this

end, G-SNPM analyzes all valid alignments of each SNP sequence to detect the best

hit and discard the others. Basically, the best hit might be detected by calculating

the score alignment of each hit and selecting the best. However, G-SNPM ana-

lyzes a more complex score. In particular, it detects the best hit by analyzing the

BWA-like MAPQ score provided with the last releases of SOAP3-dp that is intended

to indicate confidence of read placement accuracy. This score assigns a Phred-like

mapping quality score to each read based on match uniqueness, sequence identity,

end-pairing, and inferred insert size.

Second stage of the pipeline

It is aimed at refining the mapping process. At this stage, G-SNPM tries to remap

those SNPs (if any) that have not been mapped at the first stage of the pipeline;
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in other words, those SNPs for which SOAP3-dp has not been able to provide

valid alignments for their representative sequence and/or those SNPs for which G-

SNPM has not been able to find unambiguous mapping chromosomal positions (i.e.,

SNPs for which SOAP3-dp found multiple valid alignments with the same mapping

quality score). G-SNPM uses the Smith-Waterman based short-read mapping tool

SHRiMP2 to perform this stage of the pipeline. As for the first stage, also in this

stage G-SNPM adopts an identical policy to detect and discard false positives align-

ments that might be found by SHRiMP2, while exploiting the SHRiMP2 mapping

quality score to detect the best alignment. At the end of this stage, G-SNPM reports

those SNPs for which SHRiMP2 has been unable to find a unique valid alignment

of their representative sequences or an unambiguous SNP chromosomal position.

Third stage of the pipeline

G-SNPM analyzes unique valid alignments of each successful mapped SNP to cal-

culate the absolute position of each SNP. An output file is generated, containing for

each SNP, its name, the related chromosome, the original SNP position, and the

mapped SNP position. Moreover, information about the alignment as the strand,

and the CIGAR string are also provided. Then, the pipeline is re-executed to map

against the overall genome i) those SNPs that G-SNPM has been unable to map

against a unique chromosomal sequence and ii) those SNPs unmapped by the chip

vendor.

In G-SNPM reference DNA sequences are accepted in standard FASTA format,

whereas SNPs must be represented by using two files: a FASTA file with the repre-

sentative reads of the SNPs, and another flat file with information about the SNP,

in particular the original absolute SNP position and its alleles. Currently, automatic

generation of these files is provided for SNP probes of the Illumina Chip. G-SNPM

analyzes Illumina files to automatically generate the previously described files for

each chromosome.

3.3.2 Alignment constraints

G-SNPM defines different mapping constraints at the first and second stage of its

pipeline, according to the different two mapping tools exploited.
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First stage

Typically, due the time required to find an alignment, short-read mapping tools allow

to set some parameters to limit the maximum alignments allowed for read sequence.

For instance, by default Bowtie allows only one alignment for read sequence. In

general, this limitation might affect the quality of the final results, especially when

no sensitive alignment parameters are imposed. Short-read mapping tools that

exploit modern GPUs allow to easily by-pass the limitations of this constraint. By

default, SOAP3-dp generates up to 1000 alignments for read. This is deemed to be

a good constraint and it was not modified in G-SNPM. However, users can easily

modify it to decrease, increase, or avoid the upper limit to the alignments that may

be found for each sequence.

As already pointed out, SOAP3-dp is the evolution of SOAP3 that exploits dy-

namic programming to support indels in alignments. Depending on whether dy-

namic programming is enabled or not, SOAP3-dp will generate gapped or ungapped

alignments. When dynamic programming is enabled, SOAP3-dp performs the align-

ment in two steps. In the first step it looks for ungapped alignments that meet a

given constraint on the allowed number of mismatches. Up to 4 mismatches are

allowed for this step. In the second step, it exploits dynamic programming to look

for gapped alignments. By default, in the first step SOAP3-dp allows up to 2 mis-

matches to speed-up the overall alignment process. However, G-SNPM modifies this

constraint to allow alignments with up 4 mismatches. Users can decreases this value

in G-SNPM.

Second stage

SHRiMP2 is an accurate short-read mapping tool that has been designed to paral-

lelize the alignment process on multi-core CPUs. By default SHRiMP2 uses only

a CPU-core. Then, to speed-up the analysis performed at this stage, G-SNPM as-

signs all available CPU-cores to SHRiMP2. In particular, it automatically detects

the number N of available CPU-cores, and then runs SHRiMP2 on N-1 cores; a

CPU-core is reserved to the operating system. However, it is possible to set manu-

ally how many CPU-cores must be assigned to SHRiMP2.

Depending on the number of available CPU cores, it might be useful to limit the

maximum number of alignments for sequence, with the aim to reduce the overall

mapping time. However, it should be noted that most SNPs are successfully mapped

at the first stage of the pipeline. So, the activation of the second stage is sporadic

and involves only some SNP sequences. It was deemed useful not imposing any
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limitation on the number of alignments at this stage, to prevent any worsening of the

overall accuracy of G-SNPM. At this stage, SHRiMP2 is enabled to allow ungapped

alignments. Alignment score and penalties are those of default of SHRiMP2 (i.e.,

match score = 10; mismatch penalty = 15, gap open penalty = 33, gap extend

penalty = 33). It is possible to change these values to meet user constraints.

3.3.3 Requirements

G-SNPM works on linux based systems with a custom installation of Python and

equipped with a CUDA (Compute Unified Device Architecture) enabled GPU-card.

It was tested on two families of NVIDIA GPU cards. In particular tests have been

carried out on the NVIDIA FERMI architecture based GTX 480 card, and on the

NVIDIA Kepler architecture based k10 and k20c cards. Currently, SOAP3-dp can

be run on CUDA-3.2 and CUDA-4.2 releases, while no support for the CUDA 5.0

release has been provided yet. It is suggested to scientists interested to use G-SNPM

to install the CUDA-4.2 release.

3.4 Results

To assess G-SNPM, it was used in the task to remap about i) 1.2 millions of SNPs

of the Illumina Chip HumanOmni 1S (version 1) aligned by the chip vendor on the

build 37.1 of the human genome, ii) 370 thousands of SNPs of the Illumina Chip

CNV370 (version 3) aligned on the build 36.1 of the human genome, and iii) 318

thousands of SNPs of the Illumina Chip HH300 (version 2) also aligned by the chip

vendor on the build 36.1 of the human genome. Experiments have been mainly

executed i) to highlight discrepancies in respect in map positions provided by the

chip vendor, and ii) to assess the capability of G-SNPM to deal with the mapping

problem. In the following of this section, firstly both the hardware configuration

and the short-read mapping tool releases exploited to carry out experiments are

briefly summarized. Then, it is described the way data have been prepared, so

that a scientist can easily reproduce experiments. Finally, results are presented and

discussed.

3.4.1 Hardware and Software Configuration

Experiments described hereinafter have been carried out on a 12 cores Intel Xeon

CPU E5-2667 2.90GHz with 128 GB of RAM. An NVIDIA Kepler architecture
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based Tesla k20c card with 0.71 GHz clock rate and equipped with 4.8 GB of global

memory has been exploited to execute SOAP3-dp. Moreover, the following software

releases were used: SOAP3-dp rel. 2.3.116 and SHRiMP2 rel. 2.2.3.

3.4.2 Data Preparation

The .csv file version of the Manifest of the analyzed chips was downloaded from

the Illumina website. Then, the Illumina parser was used, which is distributed to-

gether with G-SNPM, to automatically generate the working files used by G-SNPM.

Successively, the builds 36.1, 37.1 and 37.3 of the human genome were downloaded

from the NCBI Reference Sequence Database [162]. Then, G-SNPM-Builder (also

distributed along G-SNPM) was used to build the BWT indexes required in the first

stage of the pipeline.

3.4.3 Analysis of Mapped SNPs

G-SNPM was used to perform two different experiments. As for the former, it was

used to remap the SNPs of each chip against the same genome build previously used

by the chip vendor. This experiment permits to put into evidence and to analyze

possible discrepancies between the SNPs positions obtained with G-SNPM and those

provided by the chip vendor. As for the second experiment, first the G-SNPM was

used to remap the SNPs against the newest build 37.3 of the human genome and

then, the reliability of the updated positions was analyzed. Table 3.2 reports some

details about the SNPs of the analyzed chips. As for the HumanOmni 1S chip, it was

observed that the vendor provided the positions of 1.180.662 SNPs. As the overall

number of SNPs was 1.185.662 no information about the position of 5.314 SNPs was

provided. The chip vendor provided the positions of all the 373.397 SNPs of the

CNV370 chip, version 3, and of all the 318.237 SNPs of the HH300 chip, version 2.

Remapping SNPs against the same reference sequence used by the chip

vendor

Table 3.3 summarizes results obtained remapping SNPs with G-SNPM against the

same reference sequences used by the chip vendor. In the table are reported: i) the

overall number of SNPs mapped using G-SNPM, ii) the number of those uniquely

mapped, iii) the number of SNPs for which G-SNPM has been unable to find any

alignment, and iv) the number of SNPs for which the proposed tool found positions
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CHIP name hg build SNPs unmapped SNPs

HumanOmni 1S 37.1 1.185.976 5.314

CNV370 ver 3 36.1 373.397 0

HH300 ver 2 36.1 318.237 0

The first column reports the name of the chips and the second the reference build of the human

genome used by the chip vendor to map the SNPs. The third and fourth column report the overall

number of SNPs of the chip and the number of them unmapped by the chip vendor, respectively.

Table 3.2: Analyzed chips

.

that differ from those provided by the chip vendor. As for the chip HumanOmni 1S,

G-SNPM has been able to remap 4.460 of the 5.314 SNPs for which the chip vendor

did not provide any mapping position. Most of these SNPs have been mapped at the

first stage of G-SNPM. In particular, they have been mapped by SOAP3-dp looking

for ungapped alignments and without exploit any heuristic. Only 35 of these SNPs

have been mapped looking for gapped SNPs. In the last column of Table 3.3 is

reported that 4.626 SNPs have been differently mapped with G-SNPM. It should

be observed that this value includes also the 4.460 SNPs mapped only by G-SNPM.

SNPs

CHIP name hg build mapped
uniquely

mapped
unmapped

differently

mapped

HumanOmni 1S 37.1 1.185.122 1.185.118 854 4.626

CNV370 ver 3 36.1 373.397 373.382 0 14.391

HH300 ver 2 36.1 318.237 318.237 0 1.822

A summarization of the discrepancies observed remapping the SNPs with G-SNPM against the

same reference builds previously used by the chip vendor to detect the SNPs positions. The first

and the second column report the name of the chip and its reference build, respectively. The third

column reports the overall number of SNPs mapped using G-SNPM, whereas the fourth column

reports the number of them that are uniquely mapped. The fifth column reports the number of

SNPs for which G-SNPM did not provide any valid alignment. Finally, the sixth column reports

the number of mapped SNPs for which G-SNPM provided different positions with respect to those

detected by the chip vendor.

Table 3.3: Results obtained using G-SNPM to remap the SNPs against

the same reference build used by the chip vendor.

Analyzing the SNPs mapped by the chip vendor, only 166 of them have been mapped

differently with G-SNPM, one on a different chromosome. As for the other chips,
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G-SNPM mapped uniquely against their related reference build almost all SNPs.

Experimental results shown that G-SNPM mapped differently 14.391 SNPs (7 on

a different chromosome) of the chip CNV370, version 3, and 1.822 SNPs (none

on a different chromosome) of the chip HH300, version 2. Also for these chips

G-SNPM mapped almost all SNPs without considering gapped alignments. The

differences between the SNPs mapped by G-SNPM with respect those mapped by

the chip vendor could be attributed to differences in the alignment algorithms and

settings. As reported in the background section, different works have proved that

often unreliable positions are provided along the chip, typically due to the fact that

not very accurate alignment were obtained. The algorithm and alignment settings

used by the vendor were unknown. Then, it was difficult to compare the accuracy

of the proposed tool with the one of the vendor. In any case G-SNPM is very

accurate. Being based on SOAP3-dp, it looks for ungapped alignments with up to

four mismatches without exploiting any heuristics. It is worth pointing out that

only a very low percentage of SNPs positions have been calculated starting from

gapped alignments and that almost all sequences representative of the SNPs have

been uniquely mapped. As for the SNPs of the HumanOmni 1S mapped by G-SNPM

and for which the chip vendor did not provide any position, it can be supposed that

either no valid alignment have been found for them or, conversely, that multiple

valid alignments have been found making impossible to unambiguously map these

SNPs. As for the 854 SNPs unmapped also by the proposed tool, it is assumed that

G-SNPM tried to map them using some heuristics that did not permitted to find

valid alignments.

CHIP name hg build mapped SNPs
uniquely

mapped SNPs
unmapped SNPs

HumanOmni 1S 37.3 1.185.108 1.185.103 868

CNV370 ver 3 37.3 373.374 373.371 23

HH300 ver 2 37.3 318.217 318.216 20

The first and the second columns report the name of the chip and its reference build, respectively.

The third column reports the overall number of SNPs mapped using G-SNPM, whereas the fourth

column reports the number of them uniquely mapped. The fifth column reports the number of

SNPs for which G-SNPM did not provide a valid alignment.

Table 3.4: Results obtained using G-SNPM to remap the SNPs against

the build 37.3 of the human genome.
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Remapping SNPs against the build 37.3 of the human genome

Table 3.4 summarizes results obtained remapping SNPs with G-SNPM against the

build 37.3 of the human genome. It should be observed that results are slightly

different from those obtained remapping the SNPs against the same build used

by the chip vendor. Results show that G-SNPM has been unable to remap some

SNPs previously mapped against the oldest builds. As for the chip HumanOmni

1S, almost all SNPs unmapped by the chip vendor have also been mapped against

the newest build of the genome. In particular, G-SNPM has been unable to find a

valid alignment for 868 SNPs (i.e., 14 SNPs more than in the previous experiment).

For the other SNPs unmapped by the vendor, G-SNPM found that they map to the

same positions in both builds. As for the other chips, G-SNPM has been unable to

find a valid alignment for 23 SNPs of the chip CNV370, version 3, and for 20 SNPs

of the chip HH300, version 2. As for the unmapped SNPs, it is possible that, i) due

to the refinement of the reference sequence, some SNPs are no longer present in the

latest build or that ii) the refinement of the reference sequence required complex

gapped alignments that G-SNPM is unable to find, due to the procedures adopted in

the two stages of its pipeline. As in the previous experiment, almost all SNPs have

been mapped at the first stage of G-SNPM, while looking for ungapped alignments.

To analyze the reliability of the proposed tool, a comparison was made of the SNPs

positions on the build 37.3 obtained with G-SNPM with i) those obtained using

a genome remapping tool, and with ii) those retrieved by dbSNP. As for the first

comparison, the NCBI Genome Remapping Service was used because at the time of

writing of this thesis it is the only assembly-assembly converter tool able to project

features from the build 36.1 to the build 37.3, whereas neither the NCBI Genome

Remapping Service nor the UCSC LiftOver and Ensembl AssemblyConverter ser-

vices are currently able to project features from the build 37.1 to the build 37.3.

Therefore, this experiment has not been performed for the chip HumanOmni 1S.

The NCBI Genome Remapping Service projects the coordinates of a chromosomal

region between two different builds of a genome. In this case, the aim is to project

against the build 37.3 the coordinates of those regions that contain the SNPs in

the build 36.1. Assuming that the SNPs positions provided by the chip vendors are

correct, it is possible to identify these regions retrieving the sequences representa-

tive of the SNPs, their relative positions within these sequences, and their absolute

positions within the chromosome sequence. This information is present in .csv files

of the Manifest of the chips analyzed for this study. Table 3.5 summarizes results

obtained with the NCBI service. It should be observed that it has been unable to

convert the coordinates of several regions if compared with the number of SNPs

54



G-SNPM: A GPU-based SNP Mapping Tool

unmapped by G-SNPM. In particular, it has been unable to project the coordinates

of 212 SNPs of the CNV370 chip, version 3, and the coordinates of 28 SNPs of the

HH300 chip, version 2. Typically, regions are unmapped either as they are deleted

in the new reference or as intersects multiple chains. Moreover, it was analyzed if

the SNPs mapped with G-SNPM fall in the regions that have been projected with

the NCBI service. Results reported in Table 3.6, show that G-SNPM mapped 7.296

SNPs of the chip CNV370, version 3, in different regions of those obtained with the

NCBI service, as well as 454 SNPs of the chip HH300, version 2. Differences might

be related to the fact that G-SNPM looks for the nucleotide present in the SNP posi-

tion and discard those alignments that do not match with one of the possible alleles

for the SNP. As the NCBI service does not perform this check, it can report also

wrong regions. As for the second comparison, the SNPs of the HumanOmni 1S chip

were differently analyzed from those of the chips CNV370 and HH300. In particu-

lar, the SNPs of the HumanOmni 1S chip unmapped by the vendor were retrieved

from dbSNP. Only 47 of them have a rsID whereas the others have been derived

from the 1000 Genomes Project (kgp identifiers). The SNPs with kgp identifiers

were converted to rsIDs in dbSNP132 using MegaBLAST [204] to align against the

database the sequences representative of the SNPs. It was observed that only 859

of 5.314 SNPs were present in dbSNP132 and all of them with multiple positions.

Only a little percentage of them validated. For about half of these KGP SNPs,

and for all SNPs in the chips with rsID In dbSNP were found the same positions

obtained with the proposed tool. As for the other chips, all SNPs mapped by G-

SNPM were searched on dbSNP. About 281 thousands SNPs of the CNV370 chip

and about 238 thousands SNPs of the HH300 chip were present in dbSNP. It was

observed that G-SNPM did not provide identical SNPs positions for 1.447 SNPs

of the CNV370 chip and for 1.281 SNPs of the HH300 chip. As for the SNPs for

which G-SNPM provided different positions, It was observed that dbSNP reports

longer flanking sequences that those reported by the vendor. This can be related to

the different mappings of G-SNPM as well as the regions unprojected by the NCBI

Genome Remapping Service.

Performance Analysis

Table 3.7 summarizes the performance of G-SNPM in terms of overall mapped SNPs

and running time. Results are reported for all experiments performed and are dis-

tinct according to the mapping option. As previously explained, G-SNPM tries to

remap against the overall genome sequence those SNPs that have been unmapped

against the same chromosomal sequence detected by the chip vendor. In these cases,
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CHIP name projected regions unprojected regions

CNV370 v. 3.0 373.185 212

HH300 v. 2.0 318.209 28

A summarization of the results observed converting from the build 36.1 to the build 37.3 of the

human genome the coordinates of the regions containing the SNPs detected by the chip vendor.

The first column reports the name of the chip, whereas the second and the third report the number

of regions successfully projected against the build 37.3 and the number of regions for which the

NCBI service has been unable to provide any conversion, respectively.

Table 3.5: SNPs chromosomal regions projected with the NCBI Genome

Remapping Service against the build 37.3 of the human genome.

CHIP name regions differently remapped

CNV370 ver 3 7.296

HH300 ver 2 454

The table shows for each analyzed chip the number of SNPs remapped with G-SNPM against the

build 37.3 of the human genome whose positions did not fall inside the regions obtained with the

NCBI Genome Remapping Service.

Table 3.6: Comparison between G-SNPM and the NCBI Genome Remap-

ping Service.

analysis at the second stage of G-SNPM can require a very long running time. G-

SNPM by default tries to align these SNPs only at the first stage. To force the

second stage alignment, users must specify the “D” option. In the table, results

are summarized for both cases. It should be observed that the running time greatly

increases when the “D” option is used. Only a small percentage of SNPs is further

mapped against the overall genome sequence at the second stage of G-SNPM. The

time for mapping the SNPs of chip HH300, version 2, do not change after activating

this option “D”, as all SNPs are in fact mapped at the first stage. Moreover, the

table shows that G-SNPM aligns almost 1.2 million of SNPs of the HumanOmni

1S chip faster than the almost 370 thousands SNPs of the CNV370 chip, version

3, and the almost 318 thousands SNPs of the HH300 chip, version 2. Justification

must be sought in the fact that in the HumanOmni 1S chip almost all SNPs are

mapped at the first stage of G-SNPM. As for the others, G-SNPM required more

time to try to map SNPs at the second stage. Table 3.8, summarizes the number

of sequences that G-SNPM tried to align at the second stage of the pipeline and

its related processing time. Results shown in Table 3.8 highlight the presence of a
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considerable imbalance with respect to the number of sequences processed at the

first stage (for instance considering the HumanOmni 1S chip, G-SNPM processed

about 1.2 millions of SNPs against the build 37.1 in 20 minutes, of which 13 minutes

to process 17 sequences at the second stage).

option D disabled option D enabled

CHIP name
reference

build

mapped

SNPs
global time

mapped

SNPs
global time

HumanOmni 1S 37.1 1.184.688 20m 1.185.118 1h 34m

HumanOmni 1S 37.3 1.185.031 19m 1.185.103 1h 30m

CNV370 v. 3.0 36.1 373.382 56m 373.382 2h 5m

CNV370 v. 3.0 37.3 373.367 52m 373.371 2h 2m

HH300 v. 2.0 36.1 318.237 29m 318.237 29m

HH300 v. 2.0 37.3 318.216 37m 318.216 37m

The table is divided in two parts. The first summarizes the performance of G-SNPM when only

its first stage has been used to remap against the overall genome sequence those SNPs previously

unmapped against the same chromosomal sequence detected by the chip vendor (option “D” dis-

abled). The second part of the table summarizes the performance of G-SNPM when both stages

have been used to remap against the overall genome sequence those SNPs previously unmapped

against the same chromosomal sequence detected by the chip vendor (option “D” enabled).

Table 3.7: Overall analysis of mapped SNPs and running time

CHIP name reference build sequences analyzed time

HumanOmni 1S 37.1 17 13m

HumanOmni 1S 37.3 17 12m

CNV370 v. 3.0 36.1 56 41m

CNV370 v. 3.0 37.3 81 49m

HH300 v. 2.0 36.1 10 22m

HH300 v. 2.0 37.3 36 27m

A summarization of the performance in terms of running time at the second stage of the G-SNPM.

The table shows the number of sequences that G-SNPM tried to align at the second stage and the

time required to align them. It is evident a considerable imbalance of the processing time between

the first and the second level. The table summarizes the performance with option “D” disabled.

Table 3.8: Analysis of the performance at the second stage of G-SNPM
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3.5 Discussion and Conclusions

G-SNPM is a useful and powerful tool that can simplify the work of researchers that

plan to remap the SNPs chromosomal positions before to perform any GWAS. Typ-

ically, researchers use sequence alignment tools as BLAST or BLAT to update the

mapping position of a SNP to a genome or a transcriptome. However, no generalized

and/or computationally efficient solutions have been proposed to address this prob-

lem. G-SNPM is the only general-purpose tool devised to deal with the mapping of

SNPs. Being based on modern GPUs, it exploits the computational power of these

hardware accelerators to guarantee a very fast mapping without compromising the

accuracy. G-SNPM can be easily integrated in specialized pipelines and workflows

devised to cope with specialized GWAS, as well as annotation tasks that requires to

remap the SNP probes.
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Chapter 4

GPU-BSM: A GPU-Based Tool to

Map Bisulfite-Treated Reads

Cytosine DNA methylation is an epigenetic mark implicated in several biological

processes. Bisulfite treatment of DNA is acknowledged as the gold standard tech-

nique to study methylation. This technique introduces changes in the genomic DNA

by converting cytosines to uracils while 5-methylcytosines remain nonreactive. Dur-

ing PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils

and thymines as thymine.

Two main protocols have been developed to construct bisulfite-treated libraries for

high-throughput sequencing. These protocols, methylC-seq and BS-seq, mainly dif-

fer in the PCR amplification procedure. In methylC-seq libraries are generated in a

directional manner: a single amplification step is performed, so that reads are related

to the forward (+FW) or to the reverse (-FW) direction of the bisulfite-treated se-

quence. Libraries generated using the methylC-seq protocol are termed directional.

In BS-seq, two amplification steps are performed, so that bisulfite reads may be

related to four different directions of the bisulfite-treated sequence: forward Watson

strand (+FW) and its reverse complement (+RC), forward Crick strand (-FW) and

its reverse complement (-RC). Libraries generated using the BS-seq protocol are

termed non-directional.

The main limitation of the widely used whole-genome bisulfite sequencing (WGBS)

is related to its cost, which is very high. Reduced representation bisulfite sequencing

(RRBS) is an alternative and cost-effective technique used to study methylation. In

RRBS, DNA genome is first digested using specific restriction enzyme to enrich for

CpGs. Then, the DNA fragments are size-selected and subsequently, as for WGBS,
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treated with bisulfite to be sequenced. Hence, in RRBS, only specific CpG-rich

regions are considered.

To detect the methylation levels, reads treated with the bisulfite must be aligned

against a reference genome. Mapping these reads to a reference genome represents

a computational challenge mainly due to i) the increased search space and ii) the

loss of information introduced by the bisulfite treatment.

To deal with this computational challenge the GPU-based tool GPU-BSM has been

devised. GPU-BSM is a tool able to map bisulfite-treated reads from both WGBS

and RRBS, and to estimate methylation levels, with the goal of detecting methy-

lation. Due to the massive parallelization obtained by exploiting graphics cards,

GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions,

while outperforming most of them in terms of unique mapped reads.

4.1 Introduction

Regulation of gene expression is a very complex process controlled by multiple fac-

tors, including epigenetic ones. Epigenetics studies changes in gene expression that

do not involve changes in the underlying DNA sequence [84]. Specifically, it refers

to functionally relevant modifications that permit the genes of an organism to ex-

press themselves differently. Cytosine DNA methylation is a stable epigenetic mark

that plays a very important role in several biological processes, including genomic

imprinting, and is often responsible of phenotypic expressions (e.g., cancer) [43]. It

involves the addition of a methyl group to the cytosine DNA nucleotides (see Figure

4.1). Mechanisms of epigenetic regulation include methylation at CpG islands in the

promoter region of the gene. In many disease-causing processes gene promoter CpG

islands acquire abnormal hypermethylation [85], which results in transcriptional si-

lencing that can be inherited by daughter cells upon cell division. Three main

approaches (i.e., endonuclease digestion, affinity enrichment and bisulfite conver-

sion) [102] have been developed to analyze DNA methylation and various molecular

biology techniques, as probe hybridization and sequencing, can be used to identify

methylated cytosines in genomic DNAs treated with one of these approaches.

Bisulfite treatment of DNA [52] is considered the gold standard technique to study

methylation. This technique introduces specific changes in the DNA sequence, de-

pending on the methylation status of individual cytosine residues. Genomic DNA is

modified by converting cytosines to uracils, while 5-methylcytosines remain nonreac-

tive. In particular, during PCR amplification, only 5-methylcytosines are amplified
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Figure 4.1: Cytosine DNA Methylation. Cytosine DNA methylation is a epige-

netic mechanisms that affects gene expression. It involves the addition of a methyl

group to the cytosine DNA nucleotides.

as cytosine, whereas uracils and thymines are amplified as thymine. Two main proto-

cols have been developed to construct bisulfite-treated libraries for high-throughput

sequencing. These protocols, methylC-seq [115] and BS-seq [39], mainly differ in

the PCR amplification procedure. In methylC-seq libraries are generated in a di-

rectional manner: a single amplification step is performed, so that reads are related

to the forward (+FW) or to the reverse (-FW) direction of the bisulfite-treated se-

quence. Libraries generated using the methylC-seq protocol are termed directional.

In BS-seq, two amplification steps are performed, so that bisulfite reads may be

related to four different directions of the bisulfite-treated sequence: forward Watson

strand (+FW) and its reverse complement (+RC), forward Crick strand (-FW) and

its reverse complement (-RC) (see Figure 4.2). Libraries generated using the BS-seq

protocol are termed non-directional.

The main limitation of whole-genome bisulfite sequencing (WGBS) is related to its

cost, which is very high. Reduced representation bisulfite sequencing (RRBS) [135]

is an alternative and cost-effective technique used to study methylation. In RRBS,

DNA genome is first digested using specific restriction enzyme to enrich for CpGs.

Then, the DNA fragments are size-selected and subsequently, as for WGBS, treated

with bisulfite to be sequenced. Hence, in RRBS, only specific CpG-rich regions are

considered.

To calculate the methylation levels, bisulfite-treated reads are aligned against a refer-

ence genome. Mapping these reads to a reference genome represents a computational

challenge mainly due to i) the increased search space and ii) the loss of informa-

tion introduced by the bisulfite treatment. As for the former issue, considering that

bisulfite affects only cytosines, non complementary Watson and Crick strands are
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Figure 4.2: Bisulfite treatment. Two main type of libraries can be generated,

directional and non-directional. As for directional libraries, a single amplification

step is performed so that reads are related either to the forward (+FW) or to the

reverse (-FW) direction of the bisulfite-treated sequence. Conversely, as for non-

directional libraries, two amplification steps are performed, so that bisulfite reads

may be related to four different directions of the bisulfite-treated sequence: forward

Watson strand (+FW) and its reverse complement (+RC), forward Crick strand

(-FW) and its reverse complement (-RC).

generated. As previously highlighted, this implies that PCR amplification of both

strands will produce up to four different strands and the bisulfite treated read can

be derived from any of these strands. Moreover, the alignment process is further

complicated by the asymmetric mapping between cytosines and thymines. In fact,

a thymine in a read can be mapped to a cytosine in the reference genome, but the

inverse is not allowed (see Figure 4.3). As for the latter issue, it should be pointed

out that only a very small portion of cytosines is methylated in mammalian [164],

making more difficult the alignment process along the reference genome.

Some tools have been proposed in the literature to address this mapping challenge.

These tools can be divided in two classes, according to the strategy adopted to

deal with the asymmetric mapping between cytosines and thymines. Tools belong-

ing to the first class are specifically designed to perform alignments by allowing

cytosines and thymines in the reads to match with cytosines in the reference se-

quence. By contrast, tools in the second class adopt an unbiased strategy that

reduces the complexity of involved sequences converting cytosines to thymines. In

so doing, sequences are represented with a simplified 3-letter nucleotide alphabet

and alignments can be carried out with common and available short-read mapping

tools. Alignments obtained exploiting this strategy must be post-processed to avoid

those ambiguous and false positives. Tools in the first class provides the highest
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Figure 4.3: Asymmetric mapping. Due to the bisulfite treatment, unmethylated

cytosines are converted to thymines during the PCR amplification. This conversion

must be take into account during alignment by allowing an asymmetric mapping.

A thymine in a read mapped to a cytosine in the reference genome sequence is

considered as a match, whereas a thymine in the genome sequence mapped to a

cytosine in a read is considered as a mismatch.

mapping efficiency. However, it should be observed that with the mapping strategy

adopted by these tools, methylated read sequences will be aligned with greater effi-

ciency than unmethylated ones. This means that tools in this class can overestimate

methylation levels. By contrast, tools in the second class provide a slightly reduced

mapping efficiency whereas alignment of reads is unaffected by their methylation

state [101].

With no claim of being exhaustive, BSMAP/RRBSMAP [194][193] (it is pointed out

that the latest release of RRBSMAP has been merged into BSMAP) and segemehl

[157] are cited as tools of the first class, and BS-Seeker/BS-Seeker2 [36][65], Bismark

[100], and BRAT-BW [67] are of the second class. BSMAP, applies to the reads a re-

verse bisulfite conversion, converting thymines to cytosines only at cytosine positions

in the reference genome; then, it maps the masked reads to the genome. RRBSMAP,

was the first tool specifically tailored for RRBS libraries. Based on suffix arrays,

segemehl was the first tool able to take into account indels (insertions/deletions) in

alignments of bisulfite-treated reads. Its high speed and accuracy are obtained by

means of multi-threading, and with a very high memory consumption compared to

those of others state-of-the-art tools. BS-Seeker performs a 3-letter alphabet reduc-

tion by converting cytosines to thymines on the FW reads and on both strands of

the reference genome. Then, it uses the Bowtie [104] short-read alignment tool to

map the converted FW reads against the converted Watson and Crick strands. In

63



4.1. Introduction

the event that reads are generated from the BS-seq protocol, a guanine to adenine

conversion is performed on the RC of both reads and reference genome. Bowtie is

then used to map the converted RC reads to the converted RC of the Watson and

Crick strands. BS-Seeker runs in parallel the different instances of Bowtie. A final

post-processing phase is performed to detect false positive alignments and methyla-

tion. BS-Seeker2 is an updated version of BS-Seeker that can also map reads from

RRBS. Furthermore, BS-Seeker2 supports gapped global and local alignments with

the newest multi-threading Bowtie2 [103] release. Bismark is an alternative tool

able to map bisulfite-treated reads generated with both WGBS and RRBS. Simi-

larly to BS-Seeker2, Bismark uses Bowtie2 and Bowtie to map preprocessed reads

with and without indels supports respectively. Unlike from BS-Seeker2, Bismark

does not support local alignments when used with Bowtie2. BRAT-BW uses the

same strategy adopted by BS-Seeker and Bismark, while efficiently implementing the

FM-index [47] in terms of memory occupancy. In general, due to the computational

effort that may be required to cope with this mapping task, these tools present one

or more implicitly or explicitly imposed constraints on the alignment process (e.g.,

number of mismatches, number of hits for reads, indels support). Table 4.1 reports

a summarization of some features of the cited tools.

tool 3-letter mismatches indels support hits/reads WGBS-RRBS

Bismark Yes Unlimited Yes∗ Unlimited Yes

BSMAP No 15 Yes 1000 Yes

BS-Seeker Yes 3 No 2 only WGBS

BS-Seeker2 Yes Unlimited Yes∗ 2 Yes

BRAT-BW Yes Unlimited No Unlimited only WGBS

segemehl No Unlimited Yes Unlimited only WGBS

Some bisulfite-treated reads mapping tools listed according to some relevant features. The second

columns indicates whether the corresponding tool adopts a 3-letter conversion strategy. The third

column reports the maximum number of mismatches allowed for the read. The fourth column

reports whether the corresponding tool supports gapped alignments. The fifth column reports the

maximum number of hits allowed for a read. The sixth column reports whether the corresponding

tool supports WGBS and RRBS protocols.
∗ Using Bowtie2.

Table 4.1: Bisulfite-treated reads mapping tools.

In this work, GPU-BSM (standing for GPU-BiSulfite reads Mapping) is presented,

an accurate and very fast tool devised to map bisulfite-treated reads and to estimate

methylation levels. Written in Python, GPU-BSM exploits the 3-letter nucleotide

alphabet reduction strategy and it is mainly based on SOAP3-dp [122], a short-read

mapping tool able to take advantage of the computational power of modern Graphics
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Processing Units (GPU). GPU-BSM has been designed to support ungapped and

gapped (global and local) alignment with libraries generated with both WGBS and

RRBS. Currently, GPU-BSM can be run parallelized on up to 4 different GPU

cards. The massive parallelization obtained by means of GPUs enables GPU-BSM to

map bisulfite-treated reads without imposing stringent limitations on the alignment

process.

4.2 Methods

Based on the 3-letter nucleotide alphabet reduction strategy, GPU-BSM implements

an approach similar to the one adopted by similar tools as BS-Seeker, Bismark,

and BRAT-BW. In particular, similarly to other tools, GPU-BSM uses a third-

part short-read mapper (i.e., SOAP3-dp) to align 3-letter converted reads. In the

following of this section, it is first given a short introduction to GPUs and to existing

state-of-the-art short-read mapping tools. Then, a new strategy is presented, devised

to deal with the bisulfite-treated reads mapping problem. Subsequently, the adopted

alignment constraints are discussed. Finally, the hardware and software equipment

required to use GPU-BSM are briefly resumed.

4.2.1 The implemented strategy

Reads alignment may be very expensive in terms of both computing time and ex-

ploited hardware resources. Modern short-read mapping tools try to speed the

alignment i) by parallelizing the overall process, and ii) by using ad-hoc heuristics.

Parallelization could considerably accelerate the alignment, but it is often limited

by the available hardware resources (i.e., CPU cores and memory). On the other

hand, the adoption of heuristics may degrade sensitivity and affect the quality of

the final results. As already pointed out, the computational challenge is heightened

in the process to map bisulfite-treated reads, in which to map a read two or four

different alignments must be performed according to the used protocol. Massive

parallelization that may be obtained exploiting GPUs has been successfully used to

address the short-read mapping problem and it is deemed that it may be exploited

to address also the mapping of bisulfite-treated reads. In fact, GPU-BSM uses the

GPU-based SOAP3-dp mapping tool to align bisulfite-treated reads.

Initially, GPU-BSM creates two sequences from the forward genomic strand. The

first sequence is obtained by converting cytosines to thymines, whereas the second se-

quence is obtained by converting guanines to adenines. These sequences are created
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differently, depending on the sequencing technique used to generate the analyzed

library. As for WGBS libraries, sequences are created from the original forward ge-

nomic strand, whereas for RRBS libraries they are created from a modified version

to take into account the sequencing parameters. In particular, GPU-BSM modifies

the genomic strand masking those DNA fragments that do not meet the sequencing

parameters. In so doing, GPU-BSM notably improves the computing time required

to align RRBS libraries.

Directional and non-directional libraries are treated differently. To map reads from

a directional library, GPU-BSM performs two different alignments using SOAP3-

dp (see Section 3.2). The first alignment is obtained by converting cytosines to

thymines in the reads and then aligning them to the first sequence. The second is

obtained by converting guanines to adenines in the reverse complement of the reads

and then aligning them to the second sequence (see Figure 4.4). To map reads from

a non-directional library, GPU-BSM performs four different alignments. In addition

to the alignments performed for a directional library, GPU-BSM uses SOAP3-dp to

map the reverse complement of the reads with cytosines converted to thymines to

the first sequence, and the reverse complement of the reads with guanines converted

to adenines to the second sequence. Then, GPU-BSM analyzes the mapped reads,

detecting and removing ambiguous reads and those that are in fact false positives (see

Figure 4.5). Those reads for which i) a best match exists for at least two of two/four

alignments performed according to the exploited library or ii) at least two best hits

exist for a single alignment are considered ambiguous. However, users interested in

these mappings can disable this filtering option. To detect false positives, GPU-

BSM calculates the number of mismatches of the mapped reads using the 4-letter

nucleotide alphabet. Note that, due to the bisulfite treatment, a thymine in a read

can be aligned to a cytosine in the reference sequence. Similarly, a guanine in the

reverse complement of a read can be aligned to an adenine in the reference sequence

(see Figure 4.6).

To take advantage of multiple GPUs, GPU-BSM automatically runs in parallel the

two (four) different alignments for directional (non-directional) libraries. In the

current release, GPU-BSM performs alignments on up to four GPUs. In particular,

it uses up to two GPU cards to perform two different alignments required for reads

of directional libraries, whereas it uses up to four cards to perform four different

alignments required for reads of non-directional libraries. For machine equipped

with a single GPU card, GPU-BSM sequentially performs the different alignments.
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Figure 4.4: Mapping directional reads. To map directional reads, GPU-BSM

performs two different alignments. As for the former alignment, GPU-BSM maps

the reads of the library against the forward strand of the reference genome, after

that cytosines have been converted to thymines in all sequences. As for the latter

alignment, GPU-BSM maps the reverse complement of the reads against the forward

strand of the reference genome, after that guanines have been converted to adenines

in all sequences. Finally, all 3-letter alignments obtained for a read (i.e., outputs

(1) and (2) in the figure) will be post-processed with the aim to detect and remove

those ambiguous and false positives.
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Figure 4.5: Mapping non-directional reads. To map non-directional reads,

GPU-BSM performs four different alignments. The figure shows that two additional

alignments are performed with respect to ones reported in Fig. 4.4 for directional

reads. As for the first additional alignment, GPU-BSM maps the reads of the library

against the forward strand of the reference genome after that guanines have been

converted to adenines in all sequences. As for the second alignment, GPU-BSM

maps the reverse complement of the reads of the library against the forward strand

of the reference genome after that cytosines have been converted to adenines in all

sequences. Finally, all 3-letter alignments obtained for a read (i.e., outputs (1), (2),

(3) and (4) in the figure) will be post-processed with the aim to detect and remove

those ambiguous and false positives.
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Figure 4.6: False positive alignments. GPU-BSM aligns reads exploiting a re-

duced 3-letter nucleotide alphabet. Alignments obtained using this encoding must

be processed to look for false positives; i.e., those alignments that in the actual

4-letter nucleotide alphabet do not meet the alignment constraints imposed by the

user. A typical case is represented in this figure. A two mismatches alignment ob-

tained with the 3-letter encoding is reported on the left side. The same alignment,

reported on the right of the figure with 4-letter nucleotide alphabet, shows three

mismatches.

4.2.2 Tool settings

Depending on whether dynamic programming is enabled or not, SOAP3-dp will

generate gapped or ungapped alignments. When dynamic programming is enabled,

SOAP3-dp performs the alignment in two steps. In the first step, it uses SOAP3 to

look for ungapped alignments that meet a given constraint on the allowed number

of mismatches. Up to 4 mismatches are allowed for this step and no heuristic is

used. In the second step, it exploits dynamic programming to look for gapped

alignments. A score threshold defines when to use dynamic programming. It is

also possible to skip the first step with the aim to align all reads exploiting the

dynamic programming reducing the computing time. By default, in the first step

SOAP3-dp allows up to two mismatches to speed-up the overall alignment process.

However, GPU-BSM uses SOAP3-dp to aligns reads with up to four mismatches

when it looks for ungapped alignments, whereas it does not allow mismatches in the

first step when used to look for gapped alignments. It should be pointed out that

this constraint refers to the number of mismatches allowed in the alignment when

both read and genome are converted using the 3-letter nucleotide alphabet. Users

can change this value in GPU-BSM as well as disable ungapped alignments. By
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default, GPU-BSM generates up to 2 alignments for a read. Users can easily modify

this value to decrease, increase, or avoid the upper limit to the alignments that may

be found for each sequence. By default, GPU-BSM analyzes only the unique best

alignments found by SOAP3-dp. However, GPU-BSM also permits to analyze all

valid alignments or all best alignments obtained by SOAP3-dp.

4.2.3 Hardware and Software Requirements

GPU-BSM works on linux based systems, equipped with a custom installation of

Python (release>=2.7.3) and with a CUDA enabled GPU-card. It was tested on

two families of NVIDIA GPU cards. In particular tests have been carried out on

the NVIDIA FERMI architecture based GTX 480 card, and on the NVIDIA Kepler

architecture based k10 and k20c cards. Currently, SOAP3-dp can be run on the

CUDA-4.2 and CUDA-5.5 releases. As SOAP3-dp has been successfully deployed

on some cloud computing services (e.g., Amazon EC2, NIH BioWulf and Tianhe-1A)

it is also possible to use the proposed tool on them.

4.3 Results

Experiments have been designed to assess the performances of GPU-BSM to map

WGBS and RRBS libraries with both synthetic and real data. In this section,

first experiments on synthetic data are introduced, mainly aimed at assessing the

reliability of GPU-BSM. Then, evaluation results on real data are presented. Finally,

the hardware and software configuration used for experiments is briefly resumed.

4.3.1 Performance evaluation on synthetic data

Synthetic WGBS and RRBS libraries have been generated with the Sherman bisulfite-

read simulator (http://www.bioinformatics.babraham.ac.uk/projects/sherman/).

For the experiments, libraries of different reads length were used. In particular, li-

braries with reads length of 75 and 120 bp have been generated. Each library

consisted of 250 thousands of reads generated from the build 37.3 of the human

genome with a uniform bisulfite conversion rate of 50% on both strands. Libraries

have been generated simulating the sequencing error rate from 0% to 6% in incre-

ments of 2%. So, sixteen libraries were generated: eight synthetic WGBS libraries

and eight synthetic RRBS libraries. Specifically, for both WGBS and RRBS, eight
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libraries were generated: four libraries for reads of length of 75 bp and four libraries

for reads of length 120 bp with simulated sequencing errors of 0%, 2%, 4% and 6%,

respectively. As for RRBS libraries, an in-silico MspI digestion was performed on

the build 37.3, and 40-500 bp fragments were selected.

Sherman simulates sequencing errors using an error rate curve that follows an ex-

ponential decay model with the aim to mimic real data. In this way, it will be most

likely that the simulated errors are in bases towards the 3’ end rather than in bases

towards the 5’ end.

As for WGBS libraries, GPU-BSM has been compared with Bismark, BSMAP, BS-

Seeker2 and segemehl, whereas for RRBS libraries only with Bismark, BSMAP and

BS-Seeker2 as segemehl does not support this type of data. To provide an accurate

comparison with the other tools, experiments were performed to assess the reliability

of GPU-BSM to look for ungapped and gapped alignments. In particular, as for

gapped alignments, the performance of GPU-BSM when used to look for global and

local alignments was separately assessed. Bismark and BS-Seeker2 have been used

with Bowtie to look for ungapped alignments, and with Bowtie2 to look for gapped

alignments. BS-Seeker2 with Bowtie2 has been run to look for gapped global and

local alignments. BSMAP and segemehl look for gapped global alignments and do

not permit to enable or disable this feature.

Tools compared in this work implement different algorithms that do not allow to

perform experiments using the same constraints. Then, experiments have been

performed setting parameters with the aim to obtain more accurate alignments

according to the analyzed library (see Table 4.2). In particular, tools have been

run to look for alignments with up to five mismatches. It should be pointed out

that Bismark and segemehl do not permit to set the number of mismatches to be

allowed; they permit to set the number of mismatches in the seed. Then, in order

not to overestimate the performance of these tools, their alignments were analyzed

without taking into account those obtained with more than five mismatches.

Very accurate tools will exhibit high precision and high recall (sensitivity). Then,

with the goal of providing a rigorous comparison among the tools, the performances

of the analyzed tools were compared in terms of unique best mapped reads, preci-

sion, and F1. Defined as the harmonic mean between precision (p) and recall (r),

F1 is a measure that weights equally both metrics. It penalizes systems with a

mediocre performance of precision or sensitivity with respect to those that exhibit

good performance on both metrics.
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tool

GPU-BSMu WGBS -m 5 –ungapped -l 1

RRBS -m 5 –ungapped -l 1 -R -d C-CGG

GPU-BSMg WGBS -m 5 –e2e -l 1

RRBS -m 5 –e2e -l 1 -R -d C-CGG

GPU-BSMgl WGBS -m 5 -l 1

RRBS -m 5 -l 1 -R -d C-CGG

Bismarku WGBS -q –directional

RRBS -q –directional

Bismarkg WGBS -q –directional –bowtie2

RRBS -q –directional –bowtie2

BS-Seeker2u
WGBS -m 5 –aligner=bowtie -f sam

RRBS -m 5 –aligner=bowtie -f sam -r -c C-CGG -L 40 -U 500

BS-Seeker2g
WGBS -m 5 –aligner=bowtie2 –bt2–end-to-end -f sam

RRBS -m 5 –aligner=bowtie2 –bt2–end-to-end -r -c C-CGG -L 40 -U 500

BS-Seeker2gl
WGBS -m 5 –aligner=bowtie2 -f sam

RRBS -m 5 –aligner=bowtie2 -r -c C-CGG -L 40 -U 500

segemehl
WGBS -D 0 -F 1 -H 1

RRBS not supported

BSMAP
WGBS -v 5 -w 2 -r 0

RRBS -v 5 -w 2 -r 0 -D C-CGG

Tool settings used to map reads of synthetic libraries. Default settings have been used for not

specified parameters.
u Ungapped alignments. In these experiments Bismark and BS-Seeker2 are used with Bowtie.
g Gapped alignments. In these experiments Bismark and BS-Seeker2 are used with Bowtie2.
gl Gapped local alignments. In these experiments BS-Seeker2 is used with Bowtie2.

Table 4.2: Tool settings used to map synthetic reads.

4.3.1.1 Performance evaluation on WGBS libraries

Figures 4.7 and 4.8 show the percentage of unique best mapped reads as function

of sequencing error for WGBS libraries. In almost all cases GPU-BSM and BS-

Seeker2, both run to support local alignments, have been able to map more reads

than the other tools. GPU-BSM, when run supporting gapped global alignments

was the second tool able to map more reads than the other ones for almost all

simulated sequencing errors. In particular, GPU-BSM outperforms the other tools

that adopt the same unbiased strategy. As for ungapped alignments, the number of

reads mapped by GPU-BSM is comparable with those of Bismark and BS-Seeker2

for simulated sequencing error up to 2%.
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Figure 4.7: Unique best mapped reads for WGBS libraries with reads

length of 75 bp. The graph represents the percentage of unique best mapped

reads obtained for each tool as function of the sequencing error for WGBS synthetic

libraries with reads length of 75 bp.

Figure 4.8: Unique best mapped reads for WGBS libraries with reads

length of 120 bp. The graph represents the percentage of unique best mapped

reads obtained for each tool as function of the sequencing error for WGBS synthetic

libraries with reads length of 120 bp.
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The analysis of precision (see Table 4.3) shows that for local alignments GPU-

BSM is more accurate than BS-Seeker2. As for gapped alignments, BSMAP and

segemehl outperform the other tools, whereas for ungapped alignments Bismark and

BS-Seeker2 are slightly more accurate than GPU-BSM.

simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 93.75% 92.91% 84.48% 58.74%

GPU-BSMg 93.84% 92.68% 87.89% 72.75%

GPU-BSMgl 92.57% 89.92% 88.64% 89.09%

Bismarku 92.69% 92.30% 88.99% 70.86%

Bismarkg 90.01% 77.75% 43.50% 17.85%

BSMAP 93.59% 92.96% 89.21% 71.08%

BS-Seeker2u 92.69% 92.16% 89.36% 88.73%

BS-Seeker2g 92.52% 78.60% 63.41% 49.28%

BS-Seeker2gl 92.69% 90.08% 89.36% 88.73%

segemehl 93.57% 93.30% 91.96% 84.41%

A) Table reports precision varying the sequencing error from 0% to 6% for 250 thousands of 120

bp reads mapped against the build 37.3 of the human genome.

simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 99.39% 99.16% 98.79% 98.56%

GPU-BSMg 99.35% 99.09% 99.08% 99.25%

GPU-BSMgl 99.32% 98.62% 98.29% 98.49%

Bismarku 100% 99.78% 99.57% 98.32%

Bismarkg 100% 99.87% 99.67% 97.76%

BSMAP 100% 99.45% 98.75% 98.07%

BS-Seeker2u 100% 99.67% 99.65% 98.36%

BS-Seeker2g 100% 98.61% 98.65% 94.76%

BS-Seeker2gl 100% 95.41% 96.12% 86.55%

segemehl 100% 99.72% 99.50% 99.30%

B) Table reports precision varying the sequencing error from 0% to 6% for 250 thousands of 75 bp

reads mapped against the build 37.3 of the human genome.

Table 4.3: Precision for WGBS libraries with reads length of 75 bp and

120 bp
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F1 measures concerning all experiments on WGBS libraries are reported in Fig-

ures 4.9 and 4.10. These graphs show that GPU-BSM, when run to support local

alignments, outperforms BS-Seeker2 for all sequencing errors. As for gapped global

alignments, GPU-BSM outperforms Bismark and BS-Seeker2 that exploit the same

unbiased strategy, whereas for ungapped alignments its performance is comparable

with those of Bismark and BS-Seeker2 only for simulated sequencing error of 0%

and 2%.

Figure 4.9: F1 measure analyzing WGBS libraries with reads length of 75

bp. This figure reports F1 measure varying sequencing error from 0% to 6% for 250

thousands of 75 bp reads mapped against the build 37.3 of the human genome.
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Figure 4.10: F1 measure analyzing WGBS libraries with reads length of

120 bp. This figure reports F1 measure varying sequencing error from 0% to 6% for

250 thousands of 120 bp reads mapped against the build 37.3 of the human genome.
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Performance evaluation on RRBS libraries

Figures 4.11 and 4.12 show the percentage of unique best mapped reads as function

of sequencing error for RRBS libraries. Also in this case, GPU-BSM and BS-Seeker2,

both run to support local alignments, have been able to map more reads than the

other tools. As for gapped global alignments, in almost all cases BSMAP has been

able to map more reads than the other tools, whereas GPU-BSM and BS-Seeker2

mapped more reads than Bismark. As for ungapped alignments, the performance of

GPU-BSM is comparable with those of Bismark and BS-Seeker2 for simulated error

sequencing up to 2%. For higher simulated sequencing error BS-Seeker2 mapped

more reads than the other tools.

Figure 4.11: Unique best mapped reads for RRBS libraries with reads

length of 75 bp. The graph represents the percentage of unique best mapped

reads obtained for each tool as function of the sequencing error for RRBS synthetic

libraries with reads length of 75 bp.

The analysis of precision (see Table 4.4 and Table 4.5) shows that GPU-BSM outper-

forms BS-Seeker2 when run to look for local alignments. As for gapped alignments,

BSMAP and Bismark are more accurate than the other tools for reads of length

75 bp and 120 bp respectively. Bismark shows better precision for ungapped align-

ments.

F1 measures concerning all experiments on RRBS libraries are reported in Figures

4.13 and 4.14. These graphs show that GPU-BSM, when run to support local

alignments, outperforms BS-Seeker2 for all sequencing errors. As for gapped global
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Figure 4.12: Unique best mapped reads for RRBS libraries with reads

length of 120 bp. The graph represents the percentage of unique best mapped

reads obtained for each tool as function of the sequencing error for RRBS synthetic

libraries with reads length of 120 bp.

simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 100% 99.26% 98.72% 98.04%

GPU-BSMg 99.98% 99.02% 98.64% 98.64%

GPU-BSMgl 99.95% 98.02% 97.01% 96.27%

Bismarku 100% 98.96% 98.60% 98.49%

Bismarkg 100% 99.43% 98.51% 97.38%

BSMAP 99.92% 99.44% 99.10% 98.48%

BS-Seeker2u 100% 98.72% 97.96% 97.51%

BS-Seeker2g 100% 97.41% 96.15% 96.36%

BS-Seeker2gl 100% 91.42% 87.37% 85.67%

Table reports precision varying the sequencing error from 0% to 6% for 250 thousands of 75 bp

reads mapped against the build 37.3 of the human genome.

Table 4.4: Precision for RRBS libraries with reads length of 75 bp

alignments BSMAP outperforms the other tools for simulated sequencing error up

to 4%. GPU-BSM outperforms the other tools based on the same mapping strategy

for all simulated sequencing errors, and BSMAP for simulated errors of 6%. As for
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simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 99.27% 98.88% 98.71% 98.32%

GPU-BSMg 99.26% 99.08% 99.45% 99.45%

GPU-BSMgl 99.24% 98.74% 98.83% 98.68%

Bismarku 100% 99.72% 99.67% 99.58%

Bismarkg 100% 99.79% 99.62% 99.26%

BSMAP 99.91% 99.69% 99.44% 99.06%

BS-Seeker2u 100% 99.66% 99.63% 99.62%

BS-Seeker2g 100% 99.04% 99.13% 99.26%

BS-Seeker2gl 100% 97.14% 96.30% 95.89%

Table reports precision varying the sequencing error from 0% to 6% for 250 thousands of 120 bp

reads mapped against the build 37.3 of the human genome.

Table 4.5: Precision for RRBS libraries with reads length of 120 bp

ungapped alignments, BS-Seeker2 outperforms all the other tools.

Figure 4.13: F1 measure analyzing RRBS libraries with reads length of 75

bp. This figure reports F1 measure varying sequencing error from 0% to 6% for 250

thousands of 75 bp reads mapped against the build 37.3 of the human genome.
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Figure 4.14: F1 measure analyzing RRBS libraries with reads length of 120

bp. This figure reports F1 measure varying sequencing error from 0% to 6% for 250

thousands of 120 bp reads mapped against the build 37.3 of the human genome.

4.3.2 Performance evaluation on real data

As for WGBS, to assess the performances of GPU-BSM on real data, it was used

to map the reads of two directional libraries obtained by sequencing the human

H1 cell line on the Human NCBI genome build 37.3/hg19. The reads of the same

real-life libraries analyzed in [36] and [157] were mapped to assess the performance

of BS-Seeker and segemehl, respectively: library SRR019597, consisting of 5.9 mil-

lions of 76 bp reads, and library SRR019048, consisting of 15.3 millions of 87 bp

reads. Results have been compared with those of Bismark, BSMAP, BS-Seeker2,

and segemehl.

As for RRBS, GPU-BSM was used to map against the mus musculus genome (mm9)

the reads of the library SRR748751 [173]. The library consists of 11.9 millions of

100 bp reads generated with MspI digestion and selecting fragments of 40-220 bp.

Tables 4.6 and 4.8 summarize experimental results in terms of fraction of unique

best mapped reads and computing time for all tools. In the tables have only been

reported the percentage of unique best mapped reads for alignments with up to five

differences.

Experimental results show that GPU-BSM is a very effective tool for mapping

bisulfite-treated reads, as it outperforms almost all analyzed tools. When run to

look for ungapped and gapped global alignments, it has been able to map more
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reads than the other tools in almost all cases. As for unique best mapped reads,

its performances are only comparable with those of segemehl for WGBS libraries.

GPU-BSM appears to be slightly more effective than segemehl to map reads with

few differences. On the other hand segemehl appears to be slightly more effective to

map reads with more differences. When run to look for local alignment BS-Seeker2

mapped more reads than GPU-BSM.

As for the computing time, GPU-BSM is definitely the faster tool to map WGBS li-

braries, and the second to map RRBS libraries. In particular, as for SRR0195957 and

SRR019048 WGBS libraries, GPU-BSM ran on a single GPU resulted: i) 3.3x/1.25x

faster than Bismark and 3x/2.5x faster than BS-Seeker2 when run to look for un-

gapped alignments; ii) 6.6x/4.3x faster than Bismark, 9x/11.2x faster than BS-

Seeker2, 3.5x/2.4x faster than segemehl, and 1.4x/3.9x faster than BSMAP when

run to look for gapped global alignments; iii) 9x/10.6x faster than BS-Seeker2 to

map reads with gapped local alignments. As for the SRR748751 RRBS library,

GPU-BSM ran on a single GPU resulted: i) 1.9x faster than Bismark and 2.8x

faster than BS-Seeker2 when run to look for ungapped alignments; ii) 2.8x faster

than Bismark and 12.3x faster than BS-Seeker2 when run to look for gapped global

alignments; iii) 7.7x faster than BS-Seeker2 to map reads with gapped local align-

ments. As for RRBS and gapped global alignments, BSMAP resulted 3.3x faster

than GPU-BSM.

4.3.3 Hardware and Software Configuration

Experiments described hereinafter have been carried out on a 12 cores Intel Xeon

CPU E5-2667 2.90 GHz with 128 GB of RAM. Two NVIDIA Kepler architecture

based Tesla k20c cards with 0.71 GHz clock rate and equipped with 4.8 GB of global

memory have been exploited to execute SOAP3-dp rel. 2.3.177.
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library tool time percentage of unique best mapped reads

= 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

SRR019597

GPU-BSMu 15∗/11∗∗m 40.2% 53.0% 58.8% 62.7% 65.8% 66.6%

GPU-BSMg 9∗/7∗∗m 40.3% 53.7% 60.1% 64.3% 67.8% 70.9%

GPU-BSMgl 9∗/7∗∗m 61.6% 77.7% 83.5% 86.3% 87.8% 88.7%

Bismarku 50m 40.3% 52.8% 58.4% 61.9% 64.1% 65.3%

Bismarkg 1h 39.1% 51.5% 56.9% 57.6% 57.8% 57.9%

BSMAP 13m 40.0% 52.6% 58.3% 62.0% 64.7% 66.8%

BS-Seeker2u 45m 39.9% 52.3% 58.0% 61.8% 64.7% 67.1%

BS-Seeker2g 1h22m 38.8% 52.5% 56.7% 59.5.0% 61.9% 64.0%

BS-Seeker2gl 1h21m 61.1% 77.8% 83.8% 86.8% 88.6% 89.9%

Segemehl 32m 39.9% 53.3% 59.7% 64.2% 67.9% 71.2%

SRR019048

GPU-BSMu 44∗/32∗∗m 24.7% 33.6% 38.0% 41.4% 44.4% 45.1%

GPU-BSMg 23∗/19∗∗m 24.7% 34.3% 39.1% 42.9% 46.5% 50.0%

GPU-BSMgl 22∗/19∗∗m 55.2% 69.1% 74.0% 76.6% 78.2% 79.3%

Bismarku 55m 24.5% 33.3% 37.4% 39.8% 41.2% 42.0%

Bismarkg 1h40m 24.0% 32.7% 36.8% 37.4% 37.7% 37.8%

BSMAP 1h30m 24.6% 33.4% 37.7% 41.0% 43.8% 46.4%

BS-Seeker2u 1h51m 24.5% 33.2% 37.4% 40.7% 43.6% 46.2%

BS-Seeker2g 4h18m 24.4% 33.2% 37.0% 40.0% 42.9% 45.6%

BS-Seeker2gl 3h55m 56.2% 71.5% 77.6% 81.2% 83.7% 85.7%

Segemehl 57m 22.8% 33.4% 38.8% 43.2% 47.2% 51.1%

Performances comparison on real-life libraries among GPU-BSM, Bismark, BSMAP, BS-Seeker2,

and segemehl. Two directional libraries are analyzed: SRR019597, which consists of 5.943.586

reads of length 76 bp, and SRR019048, which consists of 15.331.851 reads of length 87 bp. The

first and second column of the table report the library and the name of the tools, respectively.

The third column reports the time required to analyze the libraries. Columns 4 to 9 report the

percentage of uniquely mapped reads according to the number of mapping differences. Differences

are mismatches when the tools are used to look for ungapped alignments, whereas they may be

mismatches and/or indels when the tools are used to look for gapped alignments. Computing time

for GPU-BSM has been reported running it on a single and on two GPUs. As for multi-threading

based tools, computing time has been reported for 12 cores. Tools settings: i) GPU-BSMu -m 5 –

ungapped -l 1, GPU-BSMg -m 5 –e2e -l 1, GPU-BSMgl -m 5 -l 1; moreover for all experiments with

GPU-BSM the following settings have been used: -L 76 for SRR019597 and -L 87 for SRR019048,

-g 0 to run the experiment on a single GPU (-g 0 -g 1 to run the experiment on two GPUs); ii)

Bismarku -q –directional, Bismarkg -q –directional –bowtie2 -p 6∗∗∗; iii) BSMAP -v 5 -w 2 -r 0

-p 12; iv) BS-Seeker2u -m 5 –aligner=bowtie -f sam, BS-Seeker2g -m 5 –aligner=bowtie2 -f sam

–bt2–end-to-end –bt2-p 6∗∗∗, BS-Seeker2gl -m 5 –aligner=bowtie2 -f sam –bt2-p 6∗∗∗ v) segemehl

-F 1 -H 1 -D 0 -A 70 –threads 12.
∗ GPU-BSM run on a single GPU
∗∗ GPU-BSM run on two GPUs
∗∗∗ Bismark and BS-Seeker2 run in parallel two instances of Bowtie2. To ensure that both tools

use 12 core it was used the option -p 6/–bt2-p 6 so that each Bowtie2 instance runs with 6 threads.

Table 4.6: Performance evaluation on WGBS data
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library tool memory

SRR019597

GPU-BSMu/g/gl 20.3/20.3/20.3 GB

Bismarku/g 7.7/10.1 GB

BSMAP 8.3 GB

BS-Seeker2u/g/gl 4.6/7.3/7.3 GB

segemehl 53 GB

SRR019048

GPU-BSMu/g/gl 22.4/40.6/41.6 GB

Bismarku/g 7.7/10.1 GB

BSMAP 8.3 GB

BS-Seeker2u/g/gl 4.6/7.3/7.3 GB

segemehl 53 GB

SRR748751

GPU-BSMu/g/gl 17.3/27.7/29.5 GB

Bismarku/g 7.7/10.1 GB

BSMAP 2.1 GB

BS-Seeker2u/g/gl 3.0/3.0/3.0 GB

Peaks of memory required to run experiments on real-life libraries. Data reported in the table

shows that GPU-BSM is not very efficient in terms of memory consumption.

Table 4.7: Memory consumption
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library tool time percentage of unique best mapped reads

= 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

SRR748751

GPU-BSMu 18∗/15∗∗m 24.7% 32.1% 34.6% 35.9% 37.0% 37.1%

GPU-BSMg 20∗/12∗∗m 24.7% 32.5% 35.1% 35.6% 37.6% 38.3%

GPU-BSMgl 27∗/18∗∗m 41.8% 50.1% 52.4% 53.4% 54.0% 54.3%

Bismarku 34m 24.2% 31.1% 33.2% 33.9% 34.3% 34.6%

Bismarkg 56m 22.3% 28.9% 31.0% 32.2% 32.5% 32.6%

BSMAP 6m 24.6% 31.6% 33.7% 34.9% 35.7% 36.3%

BS-Seeker2u 52m 24.6% 31.7% 33.7% 34.8% 35.5% 35.9%

BS-Seeker2g 4h6m 24.5% 31.8% 34.2% 35.6% 36.7% 37.7%

BS-Seeker2gl 3h29m 48.9% 59.5% 63.4% 65.7% 67.0% 67.9%

Performances comparison on real-life libraries among GPU-BSM, Bismark, BSMAP, and BS-

Seeker2. A directional library SRR748751, which consists of 11.961.710 reads of length 100 bp

has been analyzed. The first and second column of the table report the library and the name of

the tools, respectively. The third column reports the time required to analyze the library. Columns

4 to 9 report the percentage of uniquely mapped reads according to the number of mapping dif-

ferences. Differences are mismatches when the tools are used to look for ungapped alignments,

whereas they may be mismatches and/or indels when the tools are used to look for gapped align-

ments. Computing time for GPU-BSM has been reported running it on a single and on two GPUs.

As for multi-threading based tools, computing time has been reported for 12 cores. Tools settings:

i) GPU-BSMu -m 5 –ungapped -l 1 -R -d C-CGG, GPU-BSMg -m 5 –e2e -l 1 -R -d C-CGG,

GPU-BSMgl -m 5 -l 1 -R -d C-CGG; moreover for all experiments with GPU-BSM the following

setting has been used: -L 100 -g 0 to run the experiment on a single GPU (-L 100 -g 0 -g 1 to run

the experiment on two GPUs); ii) Bismarku -q –directional, Bismarkg -q –directional –bowtie2 -p

6∗∗∗; iii) BSMAP -v 5 -w 2 -r 0 -D -C-CGG -p 12; iv) BS-Seeker2u -m 5 –aligner=bowtie -f sam

-r -c C-CGG -L 40 -U 220, BS-Seeker2g -m 5 –aligner=bowtie2 -f sam -r -c C-CGG -L 40 -U 220

–bt2–end-to-end –bt2-p 6∗∗∗, BS-Seeker2gl -m 5 –aligner=bowtie2 -f sam -r -c C-CGG -L 40 -U

220 –bt2-p 6∗∗∗.
∗ GPU-BSM run on a single GPU
∗∗ GPU-BSM run on two GPUs
∗∗∗ Bismark and BS-Seeker2 run in parallel two instances of Bowtie2. To ensure that both tools

use 12 core it was used the option -p 6/–bt2-p 6 so that each Bowtie2 instance runs with 6 threads.

Table 4.8: Performance evaluation on RRBS data
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4.4 Discussion and Conclusions

GPU-BSM is a mapping tool able to align single-end and paired-end reads gener-

ated from WGBS and RRBS. GPU-BSM supports both gapped and ungapped align-

ments. Massive parallelization on GPUs enables GPU-BSM to map reads without

stringent limitations on the alignment process. Experimental results shown that

GPU-BSM is very accurate and outperforms most of the cutting-edge solutions in

terms of unique best mapped reads, while keeping computational time reasonably

low.

It is deemed there are further margins of improvement of the overall computing

time. The mapping process implemented in GPU-BSM can be represented by a

three-stage pipeline. In the first stage, GPU-BSM performs a 3-letter nucleotide

alphabet reduction. Successively, the bisulfite-treated reads are mapped against the

reference genome. Finally, GPU-BSM analyzes the mapped reads to detect and

remove those ambiguous and false positives. Currently, only the second stage of the

pipeline has been parallelized on GPU cards. In particular, the mapping process can

be run on up to four GPU cards. At the second stage, the gain in terms of computing

time resulted nearly linear with increasing the number of GPU cards. Nevertheless,

the overall gain is not linear due to the fact that the first and third stages of the

pipeline have not yet been parallelized. It is planned to improve GPU-BSM i)

porting to GPU the third stage of the pipeline and ii) extending the parallelization

of the second stage to a cluster of GPUs. Porting to GPUs the analysis performed

at the third stage is essential to obtain a linear gain of the computing time with

increasing the used GPUs. Without this improvement, there will be no benefit from

the parallelization of the second stage on a cluster of GPUs. It is estimated that

the planned updates of GPU-BSM can notably improve the computing time. This

part of the algorithm was implemented with the aim to easily migrate it on GPU. In

doing this, data structures were defined mainly devised for massive parallelization

on GPU that are not optimized for CPU. This implied a huge amount of memory

required to run it. The peaks of memory required from the different tools were

reported in Table 4.7 which shows that only segemehl requires more memory than

GPU-BSM. GPU-BSM is freely available for non-commercial use under the terms

of the Affero GNU General Public License. The current release can be downloaded

at the following addresses:

• http://pypi.python.org/pypi/GPU-BSM/

• http://www.itb.cnr.it/web/bioinformatics/gpu-bsm
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Chapter 5

CUDA-Quicksort: An Improved

GPU-based Implementation of

Quicksort

Sorting is a very important task in computer science and becomes a critical op-

eration for bioinformatics algorithms that make heavy use of sorting algorithms,

in particular when dealing with huge amounts of data. Recently, general-purpose

computing has been successfully used on GPUs to parallelize some sorting algo-

rithms. Two high-performance GPU-based implementations of the quicksort al-

gorithm were presented in the literature: a CUDA iterative implementation (i.e.,

GPU-quicksort), and a recursive implementation (i.e., NVIDIA CUDA Dynamic

Parallel (CDP) advanced quicksort). CUDA-Quicksort is another iterative imple-

mentation of the sorting algorithm designed for NVIDIA GPUs. CUDA-Quicksort

is able to outperform both GPU-Quicksort and NVIDIA CDP-Quicksort in terms of

computing time (up to four times faster than the first and about three times faster

than the latter). CUDA-Quicksort has been used for the implementation of G-CNV,

a tool for preparing data to detect CNVs with read depth methods (see Chapter 6).

5.1 Introduction

Sorting is a very important task in computer science and becomes a critical operation

for programs that make heavy use of sorting algorithms, in particular when deal-

ing with huge amounts of data. To reduce computational time when sorting large

amounts of data, several algorithms have been devised and implemented. Some are

87



5.1. Introduction

problem-specific, while others exploit parallelization strategies. The latter usually

has strong dependence on the adopted hardware and software architecture. Nowa-

days, conventional parallel architectures have the drawback of being complex and

expensive, while not conventional ones, like Graphics Processing Units (GPUs), are

increasingly used in scientific computing due to their low cost and their high par-

allelization capabilities. Recently, general-purpose computing has been successfully

used on GPUs to parallelize some sorting algorithms. GPU-Quicksort [33] is one of

the first GPU-based implementations of the original quicksort algorithm [73]. At the

time that GPU-Quicksort has been presented, recursion was not supported by GPUs

and their authors devised an iterative implementation of the algorithm. Recently,

the NVIDIA laboratories released a recursive GPU-based quicksort implementation

called CDP (CUDA Dynamic Parallel) advanced quicksort [3]. CDP-Quicksort has

been developed for the latest GPUs based on the Kepler architecture supporting

recursion. Both implementations repeatedly perform two steps on the sequence in

hand. In the first step a pivot (say P) is picked and the sequence is partitioned, so

that several thread groups can work in parallel on different parts of the sequence.

Each thread group calculates the coordinates of two partial subsequences by separat-

ing the items with value < P from the items with value > P . Then, thread groups

are synchronized with the aim to merge their partial results. Two subsequences

are then created to separate the items with value < P from those with value > P .

Each thread group moves the items in the appropriate subsequence. The second

step starts when the size of each subsequence is so small that the overhead of using

quicksort becomes too high. In this case, the GPU-based bitonic sort is used instead.

As an efficient synchronization is hardly achievable given the high quantity of threads

used in GPUs, the communication among thread groups and the inter-thread syn-

chronization are critical issues for implementing this algorithm. In GPU-Quicksort,

the synchronization problem is addressed through a block-oriented iterative imple-

mentation, where each partition is processed by one thread block. To keep the inter-

block synchronization low, the first step of the algorithm is divided in two phases:

the first phase proceeds as the above-mentioned step, while the second phase starts

when the size of a subsequence allows to entirely process the subsequence by one

thread block. This phase differs from the first, as here there is no need to partition

the sequence and to provide synchronization among blocks. The CDP-Quicksort

exploits a warp-oriented recursive implementation instead, which uses an inter-warp

synchronization based on atomic primitives [151] (i.e., barrier-functions supported

starting from the NVIDIA Fermi architecture).

In this work a new block-oriented iterative GPU-based implementation of the quick-

sort called CUDA-Quicksort is proposed, which uses atomic primitives to perform
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inter-block synchronizations while performing an optimized access to the GPU mem-

ory. Experimental results show that the proposed implementation outperforms both

the GPU-Quicksort and the CDP-Quicksort in terms of computing time. The rest

of this work is organized as follow: in the next section, the architecture and pro-

gramming model of GPUs is presented. Section 5.2 gives an overview of the related

work. Section 5.3 describes the proposed implementation of the quicksort algo-

rithm. Section 5.4 illustrates and discusses experimental results. In section 5.5

conclusions and future work are discussed. The software is freely available at

http://sourceforge.net/projects/gpu-quicksort.

5.2 Related Work

A first effort to provide a quicksort suitable for GPUs has been proposed in [172].

In this case results were not encouraging: sorting computational time was an order

of magnitude slower than other sorting algorithms they used for comparison. The

first high-performance implementation of quicksort for GPU, called GPU-Quicksort,

has been designed by minimizing the amount of bookkeeping and inter-thread syn-

chronization. It is well known that quicksort is a recursive algorithm based on

the divide-and-conquer paradigm. It recursively picks a pivot from a sequence and

successively moves items with value lower than the pivot to the “left” and items

with value higher than the pivot to the “right”. GPU-Quicksort works in a similar

manner. It parallelizes quicksort by exploiting a straightforward approach [69] [185]

which divides the sequence in hand in different partitions and dynamically assigns

them to available processors.

The first step of the GPU-Quicksort repeatedly performs two phases on the given

sequence. In the first phase, the algorithm picks a pivot (say P) and partitions the

sequence, so that several thread blocks can work in parallel on different parts of

the sequence. Each thread in the block iterates through all the data of its assigned

partition, keeping track of the number of elements that are greater or lesser than P.

This information is stored in two arrays of the shared memory (see Figure 5.1.A).

Then, each thread block calculates the GPU-based prefix-sum [68] of these two

arrays, so that each thread knows the relative offset where to move items that are

higher or lower than the pivot (see Figure 5.1.B). Successively, thread blocks are

synchronized, so that each thread block knows the absolute offset where to move

items. In the inter-block synchronization, the CPU waits for the completion of each

thread block, then calculates another prefix-sum (see Figure 5.1.C). Finally, when

each thread of a block knows its offset, the items < P and > P are moved in their
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respective slice (see Figure 5.1.D). Successively, the items whose value is equal to

P are written between the two subsequences. After a fixed number of N iterations,

GPU-Quicksort starts the second phase. On average, in this phase the size of each

subsequence is such that it can be entirely processed by a thread block. This phase

differs from the first, in that there is no need to partition the sequence and to provide

synchronization among blocks.

In the second step, when subsequences are very small, the NVIDIA GPU-based

bitonic sort is used to obtain the final result.

Recently, NVIDIA proposed a recursive implementation of quicksort for GPU, called

CDP advanced quicksort, based on a recent technology called Dynamic Parallelism.

It allows a GPU kernel to call another GPU kernel, so that the GPU can work more

autonomously from the CPU by generating new work for itself at run-time. The

dynamic parallelism allows the implementation of recursive algorithms, unsupported

until now. It is only available in the most recent Kepler NVIDIA architectures.

CDP-Quicksort and GPU-Quicksort algorithms are very similar. As in the latter

algorithm, CDP-Quicksort partitions the sequence to be sorted. However, in CDP-

Quicksort each partition is processed by a thread warp. Therefore, to move ≤ P

and > P items in their respective subsequences a prior inter-warp synchronization

is required. Summarizing, the algorithm proceeds as follows: i) each warp counts

the number of elements ≤ P . This number is used to update an atomic counter, so

that each warp knows in which slice of the subsequence it can move the items; ii)

an inter-thread synchronization is performed through a single-operation warp scan

(i.e., a warp prefix-sum), so that each thread knows its own offset within this slice;

iii) when each thread of a warp knows its relative offset, the items are moved in

their assigned slice. The same steps are used to move elements > P . As in the GPU-

Quicksort, when subsequences are very small, the final result is obtained through a

GPU-based bitonic sort [6].

GPU-based solutions have also been proposed in literature to efficiently parallelize

other sorting algorithms. In [163], a GPU-based bitonic merge sort has been pre-

sented, based on the implementation proposed in [88]. In [92] and [93] a bitonic

and an odd-even merge sort have been presented. In [62] two sorting solutions have

been developed: a solution based on the periodic balanced sorting network [143]

and a solution based on the bitonic sorting network [61]. In [64], an approach for

parallel sorting on stream processing architectures based on adaptive bitonic sort-

ing, called GPU-ABISort, has been presented. Another algorithm for fast sorting

large lists that makes use of GPUs has been presented in [177]. In this work, the

authors designed a vector-based mergesort using CUDA, designed to work on four
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Figure 5.1: Example of the GPU-Quicksort algorithm for a sequence of

18 elements. The sequence is partitioned in two 9-thread blocks. A) Each thread

compares its related item with P . Then, results of comparison are stored in the

shared memory (block 1 in array 1, block 2 in array 2). B) Each thread block

calculates the prefix-sum on array 1 and on array 2. C) The CPU waits for the

completion of each thread block. Then, the CPU stores in array 3 the number of

elements that are lesser than the pivot associated to each block. Finally, the CPU

calculates the exclusive prefix-sum on array 3 to calculate the slice offset of each

block. D) Each thread of a block gets its offset from the shared memory and moves

the thread-associated item < P in its respective slice. The same algorithm is used

to move items > P .
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32-bit floats simultaneously, resulting in a 4 times speed improvement compared to

mergesorting. In [107], the authors described the design and implementation of a

sample sort algorithm for GPUs CUDA enabled.

5.3 Methods

A new block-oriented iterative GPU-based implementation of the quicksort is pro-

posed, which uses atomic primitives to perform inter-block synchronizations while

guaranteeing an optimized access to the GPU memory. The proposed solution is

an improvement of GPU-Quicksort. The main difference being that the first step is

not divided in two phases. In the first step, a pivot is picked out and the sequence

is partitioned to let several thread blocks work in parallel. Initially, thread blocks

sort their assigned partition independently from each other (i.e., from the rest of the

sequence). In particular, each thread block creates two subsequences in the shared

memory to separate items with value lower than the pivot from those whose value

is higher. Then, the inter-synchronization is used to get an unambiguous slice of an

auxiliary buffer in the global memory where the subsequences will be written. Fi-

nally, all subsequences that keep track of items lower than the pivot are merged into

a single subsequence. The same task is performed while merging all subsequences

that keep track of the items with value higher than the pivot. Then, the items

whose value is equal to the pivot are written between the two subsequences. These

two subsequences are sorted in parallel, and the sorting process can be started over

again on each of them independently. The second step starts when subsequences

are very small. GPU-based bitonic sort, based on NVIDIA CUDA Samples 6.0, is

used to perform the sorting. Figure 5.2 describes these steps.

5.3.1 Partitioning

In GPU-Quicksort, sequence partitioning is based on the number of thread blocks

which is fixed a priori independently from the sequence size. The partition element

size depends on the sequence size and is calculated as the ratio of the sequence size

to a fixed number of thread blocks. In the proposed solution, the partition element

size is fixed a priori and the number of thread blocks depends on the sequence size.

The number of thread blocks is calculated as the ratio of the sequence size to a fixed

partition element size, which is equal to the size of the shared memory necessary to

store elements < P and > P . In CUDA-Quicksort the number of threads in a block

is lower than the number of items in the partition. In this case, a thread block is
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Figure 5.2: CUDA-Quicksort Algorithm. 1) First step: a) the sequence is

partitioned so that several thread blocks can work in parallel on different parts;

b) a thread block is assigned to each different partition element; c) the partial

result of each thread block is merged in two subsequences; d) new subsequences

are partitioned and assigned to threads blocks; 2) second step: subsequences are so

small that each can be assigned to a single thread block. As a final step, bitonic

sort is used to finalize the sorting (not represented in the figure).
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unable to process a partition in a single run, so it divides and processes the partition

in different tiles.

5.3.2 Inter-block Synchronization Using Atomic Primitives

In [33], the need for synchronization among thread blocks has been highlighted. As

previously described, they divide the first step of the algorithm in two phases. In the

first phase, sequences are typically very large and several thread blocks may work on

different partitions. Thread blocks process their partition independently from the

other ones, even though they are responsible to contribute to merge their partial

results with all other ones. Then, appropriate synchronization among thread blocks

is required to merge together the resulting subsequences. Atomic primitives could

be used to synchronize thread blocks in this phase. The authors of GPU-Quicksort

assessed the opportunity to use them. However, as atomic primitives were not

widely supported by GPUs, they decided not to use them with the aim to provide

a more generalized solution for GPU. Hence, in their algorithm synchronization is

guaranteed by simply waiting the completion of each thread block. This implies

that the host is responsible for the synchronization of thread blocks, resulting in

a decrease of the overall performance. This effect depends on i) the serialization

of part of this phase, and ii) the increase of the time spent for transferring data

from device to host and vice versa. To keep the inter-block synchronization low,

a second phase has been implemented. Indeed, the second phase starts after N

iterations of the first phase, when the size of each subsequence is generally such that

it can be processed by a thread block. This phase differs from the first, as each

thread block is assigned its own subsequence, thus eliminating the need for inter-

block synchronizations. In so doing, the synchronization issue is dealt with; however

there is no guarantee that the generated subsequences will be sufficiently small to

be processed in this phase by one thread block. Of course, in the event that a very

big subsequence is processed by only one thread block, a decrease of the overall

performance occurs. Nowadays, the access to atomic primitives is widely provided

by GPUs. In the NVIDIA CDP-Quicksort, partitions are processed by thread warp

and the inter-warp synchronization is performed by atomic primitives. This solution

has a high atomic issue rate, leading to a decrease of the overall performance. A

block-oriented solution is proposed, which uses the atomic primitives to synchronize

thread blocks. In doing so, the computing power of the GPU is used, while providing

a full parallelization of the first step of the algorithm and reducing this high atomic

rate issue.
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5.3.3 Optimizing Memory Access

In GPU-Quicksort, each thread block uses a prefix-sum to calculate the new co-

ordinates of the items to be moved to the left or to the right of the pivot. The

output of the prefix-sum is stored in the shared memory. An auxiliary region of the

global memory is allocated to store the new subsequences in parallel. Then, each

thread in a block i) accesses the shared memory to read the new coordinates of

its assigned item, ii) gets the item value in the sequence, and iii) writes it to the

proper subsequence on the global memory. In doing so, global memory is accessed in

write without any wariness of guaranteeing coalesced access. It is commonly known

that uncoalesced access to the global memory may substantially affect the overall

performance. Coalesced memory access is guaranteed if consecutive threads access

consecutive global memory addresses. However, as each thread in a block may be as-

signed to an item lower or higher than the pivot, consecutive threads may access very

distant memory regions (see Figure 5.3.A). The NVIDIA CDP-Quicksort proceeds

in a quite similar way, with the difference that calculations are more fine-grained as

they are performed at a thread-warp level rather than at a thread-block level. Se-

quence partitioning in thread warps allows using warp vote functions which permit

an inter-thread synchronization without using the shared memory. In particular, in

the CDP-Quicksort each thread of a warp exploits a warp prefix-sum to calculate

the offset of the items to be moved to the left or to the right of the pivot. Then,

when each thread of a warp knows its offset, it writes its items in the appropriate

subsequence in the global memory. Also in this case, access to the global memory is

uncoalesced. The problem of sorting items is overcame in the shared memory before

writing them to the global memory. In particular, in the proposed solution each

thread performs the prefix-sum, then: i) accesses the shared memory to read the

new coordinates of its assigned items; ii) gets the items value in the sequence and

writes it to the proper subsequence in the shared memory; iii) updates the atomic

counter and writes its new assigned item to the proper subsequence in the global

memory. In this way, consecutive threads in a block read sorted items from the

shared memory and write them to consecutive addresses of the global memory (see

Figure 5.3.B).
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Figure 5.3: Uncoalesced access in GPU-Quicksort vs.coalesced access in

CUDA-Quicksort. A) Uncoalesced access in GPU-Quicksort. Each thread in a

block may move its item in not consecutive global memory addresses. B) Coalesced

access in the proposed solution. Items are sorted in the shared memory before being

written in the global memory.
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5.4 Results

Experiments have been carried out on a 12-core Intel Xeon CPU E5-2667 2.90 GHz

and a GPU NVIDIA Tesla Kepler k20. Six sorting benchmarck distributions were

used (see Figure 5.4) used in [33] to evaluate GPU-Quicksort.

Figure 5.4: Sorting benchmarks distributions. a) A uniformly distributed input

obtained with random values from 0 to 231; b) a Gaussian distributed random input

created calculating the average of four randomly generated values; c) a zero entropy

input, created by setting every value to a random constant value; d) an input sorted

into p buckets, such that the first n
p2

elements in each bucket are random numbers

in [0, 231

p
− 1], the second n

p2
elements in [2

31

p
, 232

p
− 1], and so forth; e) after that a

dataset is divided into p partitions. Then, if the partition index i-th is ≤ p
2

(> p
2
)

to their items will be assigned a random value between (2i− 1)2
31

p
and (2i)(2

31

p
− 1)

((2i− p− 2)2
31

p
and (2i− p− 1)2

31

p
− 1); f) sorted uniformly distributed values.

These benchmarks are commonly used in literature to compare the performance of

different sorting algorithms [70]. Performance was evaluated on 32-bit integer and

64-bit floating point sequences, varying their size from 1M to 32M elements (only

power-of-2 sizes).

To assess to which extent the proposed changes affect the overall performance of

the GPU-based quicksort, the average time required to carry out the different tasks

of the first step of CUDA-Quicksort and CDP-Quicksort and the first phase of

GPU-Quicksort were measured. Summarizing, both the first step of the two first
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algorithms and the first phase of the last algorithm are composed of the following

tasks: i) picking out the pivot; ii) partitioning the sequence; iii) reading subse-

quences and calculating their coordinates; iv) synchronizing thread groups; and v)

writing subsequences in the global memory; vi) preparation for the next quicksort

execution. In the assessment performed, summing together the time required to

perform the first four tasks was considered appropriate. Figure 5.5 shows a compar-

ison of the time required to perform these tasks in GPU-Quicksort, CDP-Quicksort

and CUDA-Quicksort for different sequence sizes. For the sake of brevity, only the

behavior for the uniform distribution has been represented.

As shown in Figure 5.5, CUDA-Quicksort performs better than GPU-Quicksort

and CDP-Quicksort, in both synchronization and writing tasks. However, it can

be observed that in CUDA-Quicksort the time required to perform the first four

steps tends to become higher than that required in the GPU-Quicksort for very

long sequences (reported in blue in Figure 5.5). This worsening is mainly due to

the greater quantity of GPU-Quicksort blocks used in the proposed solution, which

however provides an outstanding improvement in the fifth step (reported in red in

Figure 5.5), which yields an overall improvement.

Figure 5.6 shows the single iteration speed-up of the CUDA-Quicksort first step

against the CDP-Quicksort first step and the GPU-Quicksort first phase. Figure

5.6 shows that, with a uniform distribution and when sorting 32M elements, it is

up to 5.8 times faster than GPU-Quicksort and about 1.9 times faster than CDP-

Quicksort. Similar results have been obtained with other distributions, except for

the zero entropy one (see Figure 5.6 for details). As highlighted in the same figure,

when sorting a uniformly distributed sequence, the algorithm speed-up of CUDA-

Quicksort against GPU-Quicksort is about 3.7x. This is mainly due to the fact

that the first step of CUDA-Quicksort is only twice faster than the second phase of

GPU-Quicksort. On the contrary, the speed-up of the proposed solution algorithm

against CDP-Quicksort is about 3.7x. This is mainly due to the fact that the

two solutions choose a different pivot (depending on the value of the pivot, the

quicksort complexity varies between nlog and n2). CUDA-Quicksort uses a mean

value between the minimum and the maximum, while CDP-Quicksort just uses a

random value of the sequence.
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Figure 5.5: Time required to perform the first step. Task 1 : picking out of the

pivot; Task 2 : sequence partitioning; Task 3 : creation of two subsequences for each

thread block; Task 4 : thread block synchronization; Task 5 : writing subsequences

in the global memory; Task 6 : preparation for the next quicksort execution. Ker-

nel sizing: GPU-Qsort and CUDA-Qsort [128 threads per block], CDP-Qsort [512

threads per block].
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Figure 5.6: Single iteration speed-up and overall algorithm speed-up.

The single iteration speed-up of the CUDA-Quicksort first step against the CDP-

Quicksort first step and the GPU-Quicksort first phase is reported for different

benchmarks on the left side. The speed-up of the overall algorithm (first step and

second step) is reported on the right side. The gaussian and staggered distributions

are not shown in B, as CUDA-Quicksort is 60x faster than CDP-Quicksort.
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In order to perform a straightforward comparison between CUDA-Quicksort and

CDP-Quicksort and to assess the opportunity of exploiting the CUDA dynamic par-

allelism, a recursive version of the proposed algorithm called CUDA-R-Quicksort

was developed. As for the quicksort single iteration performance, Figure 5.7 shows

that the CUDA-Quicksort solution and the CUDA-R-Quicksort solution have a sim-

ilar computing time and that both are faster than the NVIDIA solution. As for

the overall performance, Figure 5.7 shows that the proposed iterative solution is

the fastest. For the sake of brevity, only the behaviour for uniform distributions

has been represented, being representative of the expected behaviour on the other

benchmark distributions.

The performance of CUDA-Quicksort was assessed in comparison with those of the

following GPU-based sorting algorithms: GPU-Quicksort, CDP-Quicksort, the radix

sort of the Thrust Library [74], based on [168], bitonic sort [24] and merge sort [168].

Bitonic sort and merge sort are provided in the NVIDIA CUDA Samples 6.0. All

sorting algorithms used for benchmarking purposes are implemented in CUDA.

Figure 5.8 and Figure 5.9 show that CUDA-Quicksort outperforms almost all cited

algorithms. Only the Radix Sort outperforms CUDA-Quicksort when sorting 32-bit

and 64-bit items (see Figure 5.10(a)). This was an expected result. For the sake of

completeness, let us recall that the computational complexity of the not camparison

based radixsort is O(n) while that of the quicksort is O(n log n). However, the

advantage of the quicksort with respect to the radixsort is that it can be used to

sort any set of elements where it is need to compare two elements. When used to sort

structured data, radixsort requires to map the items onto keys (e.g., integers) which

may not always be possible and the performance can decrease with respect to that

of tue quicksort. Therefore, we also performed experiments aimed at comparing

both algorithms to sort structured data. In particular, we used both the Thrust

Radix Sort and CUDA-Quicksort to sort 96-bit data structure items. Figure 5.10(b)

shows that CUDA-Quicksort outperforms the Thrust Radix Sort achieving a speed-

up ranging from 1.58x to 2.18x. In the figure have been plot the performance only

for the benchmarcks with a uniform distribution of the data. Similar behaviour has

been obtained for the other benchmarcks. It should be observed, that 96-bit data

structure are not supported by the other sorting algorithms used in the comparison.
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Figure 5.7: Comparison among CUDA-Quicksort, CUDA-R-Quicksort,

GPU-Quicksort and CDP-Quicksort.
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Figure 5.8: Comparison among CUDA-Quicksort and the other GPU-

based sorting algorithms. MergeSort does not work when sorting 8M elements

or more. BitonicSort does not work when sorting 16M elements or more.
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Figure 5.9: Comparison among CUDA-Quicksort and the other GPU-

based sorting algorithms. MergeSort does not work when sorting 8M elements

or more. BitonicSort does not work when sorting 16M elements or more.
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(a) Performance on 64-bit floating point sequences.

(b) Performance on 96-bit data structure sequences.

Figure 5.10: Comparison among CUDA-Quicksort and RadixSort. Perfor-

mance was evaluated on 64-bit floating point and on 96-bit data structure sequences.
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5.5 Discussion and Conclusions

It is presented a new GPU-based implementation of the quicksort algorithm – de-

signed to take advantage of computing power of modern NVIDIA GPUs. To improve

the performance, a block-oriented iterative GPU-based implementation of quicksort

was designed. The proposed solution uses atomic primitives to perform inter-block

synchronization and is able to optimize the access to global memory. Using atomic

primitives in a block-oriented solution allows to outperform the GPU-based quick-

sort, by reducing the high atomic issue rates of the NVIDIA warp-oriented solution.

The increase of the performance is mainly due to a coalesced memory access. Ex-

perimental results show that the algorithm is about four times faster than GPU-

Quicksort and three times faster than CDP-Quicksort. As for future work, it is

planned to redesign the algorithm to provide a new release able to run on multiple

GPUs.
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Chapter 6

G-CNV: A GPU-based Tool for

Preparing Data to Detect CNVs

with Read Depth Methods

Copy Number Variations (CNVs) are the most prevalent types of structural vari-

ations (SVs) in the human genome and are involved in a wide range of common

human diseases. Different computational methods have been devised to detect this

type of SVs and to study how they are implicated in human diseases. Recently,

computational methods based on high throughput sequencing (HTS) are increas-

ingly used. The majority of these methods focus on mapping short-read sequences

generated from a donor against a reference genome to detect signatures distinctive

of CNVs. In particular, a class of these methods detect CNVs by analyzing genomic

regions with significantly different read-depth from the other ones. Read-depth (RD)

is the average number of reads representing a given nucleotide in the reconstructed

sequence. The pipeline analysis of these methods consists of four main stages: 1)

data preparation, 2) data normalization, 3) CNV regions identification, and 4) copy

number estimation.

Data preparation consists of different tasks aimed at assessing the quality of the read

sequences, mapping the reads against the reference genome, removing low mapping

quality sequences, and sizing the observing window used to calculate the RD signal.

Data normalization is aimed at correcting the effect of two sources of bias that af-

fect the detection of CNVs. In particular, it has been proved that correlation exists

between RD and the GC-content (the percentage of G and C nucleotides in the

observed genomic region); the RD increases with the GC-content of the underlying

genomic region. Moreover, it exists a mappability bias due to the repetitive regions
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in a genome. A read can be mapped to different positions so that ambiguous map-

pings must be dealt with. After normalization, RD data are analyzed to detect the

boundaries of regions characterized by changed copy number. Finally, DNA copy

number of each region within breakpoints is estimated.

The first two stages of the analysis pipeline consist of common operations, whereas

the last two consist of specific operations for each method. However, it should be

pointed out that available tools do not implement most of the operations required at

the first and second stage. Typically, these tools start the analysis by building the

RD signal from the post-processed alignments. All preparatory operations must be

performed by the researchers using third-party tools. Moreover, other tools require

annotation files with information about the GC-content that are pre-computed only

for some reference genome builds. Only some tools provide limited functionalities

to pre-process alignments. For instance RDXplorer and CNV-seq use the samtools

to remove low quality mappings and to select the best hit location for each mapped

read sequence, respectively.

Most of these operations are data-intensive and can be parallelized to be efficiently

run on GPUs. G-CNV is a GPU-based tool devised to perform the common op-

erations required at the first two stages of the analysis pipeline. G-CNV is able

to filter low quality nucleotides, to remove duplicated read sequences using CUDA-

Quicksort, to map the short-reads, to resolve multiple mapping ambiguities, to build

the read-depth signal, and to normalize it. G-CNV can be efficiently used as a third-

party tool able to prepare data for the subsequent read-depth signal generation and

analysis. Moreover, it can also be integrated in CNV detection tools to generate

read-depth signals.

6.1 Introduction

SVs in the human genome can influence phenotype and predispose to or cause dis-

eases [48, 49]. Single nucleotide polymorphisms (SNPs) were initially thought to

represent the main source of human genomic variation [167]. However, following the

advances in technologies to analyze genome, it is now acknowledged that different

types of SVs contribute to the genetic makeup of an individual. SV is a term gener-

ally used to refer different types of genetic variants that alter chromosomal structure

as inversions, translocations, insertions and deletions [80]. SVs such as insertions

and deletions are also referred as CNVs. CNVs are the most prevalent types of SVs

in the human genome and are implicated in a wide range of common human dis-

eases including neurodevelopmental disorders [137], schizophrenia [182] and obesity
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[27]. Studies based on microarray technology demonstrated that as much as 12%

of the human genome is variable in copy number [160], and this genomic diversity

is potentially related to phenotypic variation and to the predisposition to common

diseases. Hence, it is essential to have effective tools able to detect CNVs and to

study how they are implicated in human diseases.

Hybridization-based microarray approaches as a-CGH (array Comparative Genomic

Hybridization) and SNP microarrays have been successfully used to identify CNVs

[31]. The low cost of a-CGH and SNP platforms promoted the use of microarray

approaches. However, as pointed out in [13] microarrays i) have limitations in

the task of detecting copy number differences, ii) provide no information on the

location of duplicated copies, and iii) are generally unable to resolve breakpoints

at the single-base-pair level. Recently, computational methods for discovering SVs

with HTS [94] have also been proposed [134]. These methods can be categorized

into alignment-free (i.e., de novo assembly) and alignment-based (i.e., paired-end

mapping, split read, and read depth) approaches [208]. The former [144, 82] focus

on reconstruct DNA fragments by assembling overlapping short reads. CNVs are

detected by comparing the assembled contigs to the reference genome. The latter

focus on mapping short read sequences generated from a donor against the reference

genome with the aim of detecting signatures that are distinctive of different classes of

SVs. Mapping data hide useful information that can be used to detect different SVs.

Different methods that analyze different mapping information have been devised.

Paired-end mapping (PEM) methods [35, 99, 77, 78, 176, 139] identify SVs/CNVs

by detecting and analyzing paired-end reads generated from a donor that are dis-

cordantly mapped against the reference genome. These methods allow to detect

different types of SVs (i.e., insertions, deletions, mobile element insertions, inver-

sions, and tandem duplications), but they do not allow to detect insertions larger

than the average insert size of the library preparations.

Split read (SR) methods [200, 10, 9, 205] are also based on paired-end reads. Unlike

PEM methods that analyze discordant mappings, SR methods analyze unmapped

or partially mapped reads as they potentially provide accurate breaking points at

the single-base-pair level for SVs/CNVs.

Read depth (RD) methods [37, 195, 201, 138, 11, 192, 83] are based on the assumption

that the RD in a genomic region depends on the copy number of that region. In fact,

as the sequencing process is uniform, the number of reads aligning to a region follows

a Poisson distribution with mean directly proportional to the size of the region and

to the copy number (see Figure 6.1) [37]. These methods analyze the RD of a

genome sequence through non overlapping windows, with the aim of detecting those
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Figure 6.1: The RD in a genomic region depends on the copy number of

that region and follows a Poisson distribution. Duplicated and deleted regions

are characterzed by a RD signal different from that of the other ones.

regions that exhibit a RD significantly different from the other ones. A duplicated

region will differ from the other ones for a higher number of reads mapping on it,

and then for a higher RD. Conversely, a deleted region will differ from the other ones

for a lower number of reads mapping on it, and then for a lower RD. Basically, the

analysis pipeline implemented in RD methods consists of four fundamental stages

[123]: i) data preparation; ii) data normalization; iii) CNV regions identification;

and iv) copy number estimation (see Figure 6.2).

Data preparation consists of different tasks aimed at assessing the quality of the read

sequences, mapping the reads against the reference genome, removing low mapping

quality sequences, and sizing the observing window used to calculate the RD signal.

Data normalization is aimed at correcting the effect of two sources of bias that

affect the detection of CNVs. In particular, it has been proved that correlation

exists between RD and the GC-content [71, 42, 66]; the RD increases with the GC-

content of the underlying genomic region. Moreover, it exists a mappability bias due

to the repetitive regions in a genome. A read can be mapped to different positions

so that ambiguous mappings must be dealt with. After normalization, RD data are

analyzed to detect the boundaries of regions characterized by changed copy number.

Finally, DNA copy number of each region within breakpoints is estimated.

The first two stages of the analysis pipeline consist of common operations, whereas

the last two consist of specific operations for each method. However, it should be

pointed out that available tools do not implement most of the operations required

at the first and second stage. Typically, these tools start the analysis by building

the RD signal from the post-processed alignments. All preparatory operations must

be performed by the researchers using third-party tools. Moreover, other tools as

ReadDepth [138] require annotation files with information about the GC-content
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Figure 6.2: The four main stages of the analysis pipeline of RD-based

methods. The first two stages consist of preparatory operations aimed at gener-

ating the RD signal. Sequencing produces artifacts that affects the alignment and

consequentely the RD signal. Different filtering operators can be applied to reduce

these errors. Moreover, alignments must be post-processed to remove those of low

quality and to resolve ambiguities. Finally, the RD signal is calculated taking into

account the bias related with the GC-content.
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that are pre-computed only for some reference genome builds. Only some tools

provide limited functionalities to pre-process alignments. For instance RDXplorer

[201] and CNV-seq [195] use the samtools [110] to remove low quality mappings and

to select the best hit location for each mapped read sequence, respectively.

Most of these operations are data-intensive and can be parallelized to be efficiently

run on GPUs to save computing time. GPUs are hardware accelerators that are

increasingly used to deal with computationally intensive algorithms. Recently, GPU-

based solutions have been proposed to cope with different bioinformatics problems

(e.g., [125, 203, 119, 175, 207, 126, 127]).

In this work G-CNV (GPU-Copy Number Variation) is presented, a GPU-based tool

aimed at performing the preparatory operations required at the first two stages of

the analysis pipeline for RD-based methods. G-CNV can be used to i) filter low

quality sequences, ii) mask low quality nucleotides, iii) remove adapter sequences,

iv) remove duplicated reads, v) map read sequences, vi) remove ambiguous map-

pings, vii) build the RD signal, and viii) normalize it. Apart the task of removing

adapter sequences all the other tasks are implemented on GPU. G-CNV can be used

as a third-party tool to prepare the input for available RD-based detection tools or

can be integrated in other tools to efficiently build the RD signal.

G-CNV is freely available for non-commercial use. The current release can be down-

loaded at the following address http://www.itb.cnr.it/web/bioinformatics/

gcnv.

6.2 Material & Methods

Data preparation and data normalization are crucial operations to properly detect

CNVs. It is widely known that sequencing is a process subject to errors. These

errors can affect the alignments; hence both the RD signal and the accuracy of

the identified CNVs can be affected as well. G-CNV implements filtering operators

aimed at correcting some errors related to the sequencing process. In particular,

G-CNV is able to analyze the read sequences to filter those read sequences that

do not satisfy a quality constraint, to mask low quality nucleotides with a aN y

symbol, to remove adapter sequences, and to remove duplicated read sequences.

G-CNV uses cutadapt [130] to remove adapter sequences. As for the alignment,

G-CNV uses the GPU-based short-read mapping tool SOAP3-dp [121]. Low quality

alignments are filtered out, while ambiguous mappings can be treated according to

different strategies. To build the RD signal, G-CNV builds a RD signal according
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to a fixed-size observing window. Then, this raw RD signal is corrected according

to the GC-content of the observed windows.

In this section, first it is given a short introduction to GPUs. Then, the strategies

adopted to cope with the tasks implemented by G-CNV are presented. Finally, the

hardware and software equipment required to use G-CNV is briefly recalled.

6.2.1 Quality Control

The sequencing technology has been notably improved. Modern sequencers are able

to generate hundreds of millions of reads in a single run and the sequencing cost

is rapidly decreasing. Despite this improvement, sequencing data are affected by

artifacts of different nature that may strongly influence the results of the research.

Hence, the ability to assess the quality of read sequences and to properly filter them

are major factors that determine the success of a sequencing project. In particular,

as for RD methods, both low quality and duplicated read sequences affect the RD

signal and consequently the identification of CNV regions.

Different tools have been proposed for quality control of sequencing data such as

NGS QC Toolkit [159], HTQC [199], FASTX-Toolkit 1, FASTQC 2, and Picard 3.

Most of these tools support both Illumina and 454 platforms, while only some of

them support CPU parallelization. It should be pointed out that the artifacts gen-

erated during the sequencing process and the massive amount of generated reads

make quality control tasks difficult and computationally intensive. The massive

parallelization that can be provided by GPUs can be used to deal with these com-

putational tasks. Starting from this assumption, G-CNV was integrated with GPU-

based operators to filter low quality sequences, to mask low quality nucleotides,

and to detect and remove duplicated read sequences. Only the removing of adapter

sequences has not yet been implemented on GPU. Currently, these operators are

specialized for short-read sequences generated with Illumina platforms.

6.2.1.1 Filtering low quality sequences

FASTQ files report quality values for each sequence. Basically, G-CNV parses these

files to identify low quality nucleotides. Nucleotides are classified as of low quality

if their quality value is lower than a user-defined threshold. FASTQ files represent

1http://hannonlab.cshl.edu/fastx_toolkit/
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://broadinstitute.github.io/picard/
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quality values using an ASCII encoding. Different encodings are used depending

on the Illumina platform. Illumina 1.0 format encodes quality scores from -5 to 62

using ASCII 59 to 126. From Illumina 1.3 and before Illumina 1.8, quality scores

ranges from 0 to 62 and are encoded using ASCII 64 to 126. Starting in Illumina

1.8, quality scores range from 0 to 93 and are encoded using ASCII 33 to 126.

G-CNV performs filtering in three steps. The first step is performed on CPU,

whereas the last two steps are massively parallelized on a single GPU. As for the

first step, G-CNV analyzes the FASTQ files to detect the Illumina format. Then,

the quality values of sequences are decoded according to the detected Illumina for-

mat. Finally, G-CNV removes those read sequences that exhibit a percentage of low

quality nucleotides that exceed a used defined threshold. As a final result a new

FASTQ file is created with the filtered sequences so that the original FASTQ file is

preserved.

6.2.1.2 Masking low quality nucleotides

G-CNV can also be used to mask low quality nucleotides. Similarly that for the

filtering of low quality sequences, G-CNV performs masking in three steps. The

first step is performed on CPU and it is aimed at detecting the Illumina format.

Conversely, the last two steps are massively parallelized on a single GPU and are

aimed at decoding the quality values sequences according to the Illumina format,

and at masking with a aN y symbol those nucleotides with a quality score lower

than a user-defined threshold. Then a new FASTQ file is created with the masked

nucleotides.

6.2.1.3 Removing adapter sequences

In the current release G-CNV uses cutadapt to remove adapter sequences. Cutadapt

can be used to look for adapter sequences in reads generated with Illumina, 454 and

SOLiD HTS machines. Basically, cutadapt is able to look for multiple adapters in the

5’ and 3’ ends according to different constraints (e.g., mismatches, indels, minimum

overlap between the read and adapter). It can be used to trim or discard reads in

which an adapter occurs. Moreover, it allows to automatically discard those reads

that after the trimming are shorter than a given user defined length. All features of

cutadapt were wrapped in G-CNV.

It should be pointed-out that the current release of cutadapt is not parallelized. In

order to speed up the removing of the adapters G-CNV splits the original FASTQ
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files in chunks and runs in parallel an instance of cutadapt on each of these chunks.

Finally, the output files provided by each instance of cutadapt are merged together

in a new FASTQ file.

6.2.1.4 Removing Duplicated Read Sequences

Duplicate reads are one of the most problematic artifacts. These artifacts are gen-

erated during the PCR amplification. Ideally, duplicates should have identical nu-

cleotide sequences. However, due to the sequencing errors they could be nearly

identical [59]. Alignment-based (e.g., NGS QC Toolkit, SEAL [161], and Picard

MarkDuplicates) and alignment-free (e.g., FastUniq [196], Fulcrum [29]), CD-HIT

[114, 53]) methods have been proposed in the literature to remove duplicated read

sequences. Basically, alignment-based methods start from the assumption that du-

plicated reads will be mapped into a refence genome in the same position. Therefore,

in these methods read sequences are aligned against a reference genome and those

reads with identical alignment positions are classified as duplicates. It should be

pointed out that the final result is affected by both the alignment constraints and

the accuracy of the aligner. In alignment-free methods, read sequences are compared

among them according to a similarity measure. The reads with a similarity score

lower than a given threshold are classified as duplicated.

G-CNV implements an alignment-free method to remove duplicated read sequences

from single-end libraries. Like other tools, it implements a prefix-suffix comparison

approach. The algorithm has been devised taking into account the per-base error

rates of Illumina platforms. Analysis of short read datasets obtained with Illumina

highlighted a very low rate of indel errors (< 0.01%) while the number of occurrences

of wrong bases increases with the base position [42]. Therefore, G-CNV does not

take into account indels and considers as potentially duplicated read sequences those

with an identical prefix. Potential duplicated sequences are clustered together (see

Figure 6.3), and for each cluster G-CNV compares the suffixes of its sequences. The

first sequence of a cluster is taken as a seed and its suffix is compared with those of

the other sequences in that cluster. Those sequences identical or very similar to the

seed are considered duplicated. Duplicated sequences will be condensed in a new

sequence and will be removed from the cluster (see Figure 6.4). Then, the process

is iterated for the remaining sequences in the cluster (if any), until the cluster is

empty or contains only a read sequence.

In G-CNV, clustering is performed sorting the prefixes of the read sequences. Sort-
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Figure 6.3: Cluster of identical-prefix short reads. Short reads with an identical

prefix (of fixed length k) are clustered together as potential duplicated sequences.

This approach takes into account ther error rates of Illumina platforms. Analysis

performed on short reads generated with these sequencing platforms highlighted

that ther number of wrong bases increases with the base position.

Figure 6.4: Identification of duplicates through comparison of sequence

suffixes. Suffixes of sequences in a cluster are compared to identify the duplicates.

The first read is taken as a seed and its suffix is compared with those of the other

ones. Sequences with a number of mismatches lower than a given threshold are

considered duplicates of the seed. These sequences are removed from the cluster

and are represented with a consensus sequences. Then the process is repeated until

the cluster is empty or consists of a single sequence.
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ing is performed on a GPU with CUDA-Quicksort 4. Experimental results shown

that CUDA-Quicksort is faster than other available GPU-based implementations of

the quicksort. In particular, it results be up to 4 times faster than GPU-Quicksort of

[33] and up to 3 times faster than the NVIDIA CDP-Quicksort. As CUDA-Quicksort

sorts numerical values the prefixes must necessarily be subject to a numerical encod-

ing. The encoding was devised with the aim to maximize the length of the prefixes

that can be compared. In doing this, read sequence prefixes are subject to a dual

numerical encoding. Initially, the prefixes were encoded using a base-5 encoding by

replacing each nucleotide with a numerical value ranging from 0 to 4 (i.e., A → 0,

C → 1, G→ 2, T → 3, N → 4). Using CUDA-Quicksort to sort items represented

with 64 bit unsigned long long int data type, prefixes of up to 19 nucleotides can

be sorted. A longer prefix will exceed the limit for this type of data. However, it is

possible to exceed this constraint using a different numerical base to represent the

prefixes. In particular, using the base-10 it is possible to represent a number consist-

ing of up 27 digits with a 64 bit unsigned long long int (see Figure 6.5). Therefore,

G-CNV applies this second encoding to maximize the length of the prefixes used for

clustering.

Figure 6.5: Dual encoding prefixes. Prefixes are subject to a dual encoding. As

for the first encoding, each nucleotide in a prexix is represented with a numerical

value from 0 to 4 (A → 0, C → 1, G → 2, T → 3, N → 4). Then, these

numerical representations are encoded using base-10. Finally sorting is performed

for clustering. In the figure, prefixes of lenght k=8 are represented.

4Submitted to Concurrency and Computation: Practice and Experience: manuscript CPE-14-

0292 entitled ”CUDA-Quicksort: An Improved GPU-based Implementation of Quicksort”
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After that the reads have been clustered G-CNV compares their suffixes. This step

requires a base-per-base comparison of the nucleotides of the seed read sequence with

those of the other reads in a cluster. This approach can require a very high number

of base-base comparisons. Let N be the length of the suffixes, and let m be the

allowed number of mismatches. In the best case m comparisons must be performed

to classify two sequences as not duplicated. In the worst case N-m comparisons must

be performed to classify two sequences as duplicated. Apart the high number of

comparisons required, this approach is not adapted to be efficiently implemented on

GPUs. As GPUs adopt the SIMT paradigm each thread in a block must perform the

same operation on different data. Then, G-CNV implements a different comparison

method. Suffixes are split into fixed length chunks. Subsequence of each chunk is

subjected to the same dual numerical encoding used to represent the prefixes for

clustering. Then for each cluster, the numerical difference between the i-th chunk

of the seed and the related chunk of the other suffixes in a cluster is calculated

(see Figure 6.6). The order of magnitude of the difference provides information

about the position of the leftmost different nucleotides. Then, the subsequences

are cutted corresponding to the mismatch position. The rightmost parts of the

mismatch position are maintained and the process is re-iterated.

Figure 6.6: Chunks of PSuffixes. PSuffixes (in orange in the figure) are analyzed

in chunks. Each chunk is subject to the dual encoding used for prefixes (in red in the

figure). The overall number of mismatches if obtained summing the partial number

of mismatches obtained for each chunk.

6.2.2 Mapping

It is widely known that mapping of short-read sequences is computationally oner-

ous. Several tools have been devised to deal with short-read mappings. Without

claiming to be exhaustive, some of the most popular solutions are cited, i.e. MAQ

[111], RMAP [179, 178], Bowtie [104], BWA [108], CloudBurst [169], SOAP2 [113]
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and SHRiMP [166, 40]. A comparative study aimed at assessing the accuracy and

the runtime performance of different cutting-edge next-generation sequencing read

alignment tools highlighted that among all SOAP2 was the one that showed the

higher accuracy [165]. Exhaustive review of the tools cited above can be found in

[22].

In general, the mentioned solutions exploit some heuristics to find a good com-

promise between accuracy and running time. Recently, the GPU-based short-read

mapping tools Barracuda [96], CUSHAW [120], SOAP3 [116] and SOAP3-dp have

been successfully proposed to the scientific community. In particular, SOAP3-dp

aligns the read sequences in two steps. As for the first step, it looks for ungapped

alignments with up to four mismatches without using heuristics. As for the second

step, it uses the dynamic programming to look for gapped alignments. Compared

with BWA, Bowtie2 [103], SeqAlto [140], GEM [128], and the previously mentioned

GPU-based aligners, SOAP3-dp is two to tens of times faster, while maintaining the

highest sensitivity and lowest false discovery rate on Illumina reads with different

lengths.

Starting from the previous analysis, it was decided to use SOAP3-dp to support

read mapping in G-CNV. G-CNV allows to set different parameters of SOAP3-dp

that can be useful to properly generate alignments for RD methods. Apart from the

constraints on the allowed mismatches, G-CNV allows to set SOAP3-dp parameters

able to filter out alignments that are not of interest for the specific RD method. In

particular, as different methods presented in the literature filter alignments using

different quality mapping scores, G-CNV allows to set a quality mapping threshold

on the alignments that must be reported. To set these constraints, G-CNV needs

to be able to access the SOAP3-dp files to change the initialization file. Moreover,

a short-read may be uniquely aligned or can be aligned to multiple positions onto

a genome. Multiple mappings can be related to the alignment constraints or to the

nature of the sequenced read. A read sequence can be aligned to multiple positions,

as it has been sequenced from repetitive regions or regions of segmental duplication

[11]. In the former case alignments are characterized by different alignment scores,

whereas in the latter case they are expected to have equal or very similar scores. A

common approach to take into account multiple mappings is to randomly select a

best alignment. G-CNV allows to report only unique best alignments or a random

best alignment.
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6.2.3 RD signal

The RD signal depends on the size of the observing window. As methods proposed

in the literature suggest different approaches to estimate the window size, G-CNV

does not impose it. In G-CNV, the window size is a parameter that must be set by

the user.

G-CNV builds the RD signal in two steps. Initially, G-CNV analyzes the genome

sequences to build a GC-content signal according to the fixed window size. A GC-

signal for each genome sequence will be built. Then, G-CNV splits the mapping

for each chromosome sequences, identifies the window where the mappings fall, and

calculates a raw RD-signal. By default, the window related to each alignment is

identified considering the centering of the read. Finally, G-CNV corrects the RD

signal with the same approach proposed in [201] that adjust the RD by using the

observed deviation of RD for a given GC percentage according to the following

equation:

RD
′

wi
=

RD

RDGCwi

·RDwi
(6.1)

where RDwi
is the RD for the i -th window to be corrected, RD is the average

RD signal, RDGCwi
is the average RD signal calculated on the windows with the

GC-content found in the i -th window, and RD
′
wi

is the corrected RD for the i -th

window.

6.2.4 Hardware and Software Requirements

G-CNV has been designed to work with NVIDIA GPU cards based on the most

recent Kepler architecture. G-CNV works on linux based systems equipped with

CUDA (release > 6.0). It was tested on the NVIDIA Kepler architecture based

k20c card. Experiments have been carried-out using the last release of soap3-dp

(rel. 2.3.177) and of cutadapt (rel. 1.7.1).

6.3 Results

Different experiments were performed, aimed at assessing the performance of G-

CNV. In particular, its performance was assessed, when used to filter low quality

sequences, to mask low quality nucleotides, to remove adapter sequences, to remove

duplicated reads, and to calculate the RD-signal. Since G-CNV performs the align-

ments running SOAP3-dp it was deemed not relevant to assess the performance of
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G-CNV in this task. Readers are invited to refer the SOAP3-dp manuscript for a in

depth analysis of the performance of the aligner. Similarly, as G-CNV uses the well

known tool cutadapt to remove adapter sequences, no test was performed aimed at

assessing its reliability in this task. However, experiments were performed aimed at

assessing the benefits of the parallelization of cutadapt provided with G-CNV.

Experiments have been carried-out on both synthetic and real life libraries. Syn-

thetic reads have been used to assess and compare with other tools the reliability

of G-CNV, whereas real life data to assess and compare its performance in terms of

both computing time and memory consumption.

Synthetic reads have been generated from the build 37.3 of the human genome using

the Sherman simulator (http://www.bioinformatics.babraham.ac.uk/projects/

sherman/). Sherman has been devised to simulate HTS datasets for both bisulfite

sequencing and standard experiments. To mimic real data it generates synthetic data

using an error rate curve that follows an exponential decay model. Sherman was

used to generate a single-end synthetic library consisting of 1 millions of 100bp reads.

Library has been generated simulating a sequencing error of 2% and contaminating

the reads with the Illumina singe-end adapter 1 (i.e., ACACTCTTTCCCTACAC-

GACGCTGTTCCATCT). The contamination has been simulated with a normal

distribution of fragment sizes. Moreover, since Sherman generates identical quality

scores for all reads, they were modified to generate a 3% of low quality nucleotides

(PHRED value ≤ 20) and a 9% of low quality sequences. In the following of this

work this dataset will be referred to as the S1 library.

Since Sherman does not permit to control the percentage of duplicates the simulated

reads were modified in S1 to generate a new synthetic library (S2 ) consisting of

30% of duplicated sequences. Read sequences have been duplicated simulating a

sequencing error of 2%. The library S1 has been used to assess the reliability

of G-CNV in the task of filtering low quality sequences and masking low quality

nucleotides, whereas S2 has been used to assess the reliability of G-CNV in the task

of removing duplicated sequences.

As for real life data experiments have been performed on different libraries generated

with Illumina platforms: i) SRR001220 consisting of 3.3 millions of 94bp reads; ii)

SRR001205 consisting of 9.7 millions of 47bp reads; iii) SRR005720 consisting of

26.2 millions of 36bp reads; and iv) SRR921889 consisting of 50 millions of 100bp

reads (see Table 6.1).

Moreover, with the aim to simulate a CNV pre-processing detection analysis two

high coverage (30x) whole genome sequencing experiments were simulated. The first

experiment have been simulated generating 37 synthetic libraries consisting of 25
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Dataset Library layout Reads Read size Organism Instrument

SRR001220 Single 3.3M 94bp Homo Sapiens Illumina Genome Analyzer II

SRR001205 Single 9.7M 47bp Homo Sapiens Illumina Genome Analyzer II

SRR005720 Paired 26.2M 36bp Homo Sapiens Illumina Genome Analyzer

SRR921889 Single 50.0M 100bp Mus Musculus Illumina HiSeq 2000

The first column reports the name of the dataset. The second column reports the library layout.

The third and fourth column report the size of the dataset and the length of the reads, respectively.

Organism and sequencing instrument are reported in column fifth and sixth.

Table 6.1: Real life datasets.

millions of 100bp reads, and the second generating 9 synthetic libraries consisting

of 100 millions of 100bp reads. All libraries have been generated according to the

same constraints used to generate S1. In the following of this work these datasets

will be referred to as HCS1 and HCS2.

In the following of this section the different experiments and present results were

described. Finally, the hardware and software configuration used for experiments is

briefly resumed.

6.3.1 Filtering low quality sequences

To assess G-CNV in the task of filtering low quality read sequences its performance

with those of FASTX-Toolkit and NGS QC Toolkit was compared. Experiments

have been performed setting parameters with the aim to filter those sequences with

a percentage of low quality (PHRED score < 20) bases > 10% (see Table 6.2).

A first experiment has been performed on the S1 synthetic library aimed at assessing

and comparing the reliability of G-CNV with the other tools. As expected all tools

have been able to filter all low quality sequences. The same experiment has been

performed on the real life libraries aimed at assessing the performance of G-CNV in

terms of both computing time and memory consumption. It should be pointed out

that FASTX-Toolkit does not support parallelization whereas in NGS QC Toolkit

parallelization has been implemented in multiprocessing and multithreaded ways.

Multiprocessing parallelization was implemented to process multiple files in paral-

lel whereas multithreading paralellization to process in parallel a single file. The

FASTQ file is split into chunks, processed in parallel and results are merged at the

end. With the aim to provide an in-depth comparison among all tools and to as-

sess as NGS QC Toolkit can scale increasing the CPU cores, the experiments were
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tool commands

GCNV –mf 20 –pf 90

FASTX-Toolkit -Q33 -q 20 -p 90

NGS QC Toolkit1 N A -l 90 -s 20

NGS QC Toolkit2 N A -l 90 -s 20 -c 12

Both FASTX-Toolkit and NGS QC Toolkit consist of different commands. As for FASTX-

Toolkit experiments have been performed using the fastq quality filter command, whereas the

IlluQC PRLL has been used for NGS QC Toolkit. The table reports the settings used to run NGS

QC Toolkit without exploiting parallelization (NGS QC Toolkit1) and parallelized on 12 CPU cores

(NGS QC Toolkit2).

Table 6.2: Tools settings used to filter low quality sequences.

initially run without using parallelization, then experiments have been performed

parallelizing the computation on 12 CPU cores.

It should be pointed out that FASTX-Toolkit does not provide support for paired-

end libraries. Therefore, it has not been possible to test it with the SRR005720

dataset. Experimental results show that G-CNV is most effective than the other

tools in terms of computing time. Table 6.3 reports computing time and peak

of memory required by G-CNV, FASTX-Toolkit, and NGS QC Toolkit to analyze

the differet datasets. G-CNV has been 12.4x/7.8x/NA/21.4x faster than FASTX-

Toolkit and 24x/21x/26.5x/28.3x faster than NGS QC Toolkit parallelized on 12

CPU cores to filter the read sequences of the SRR001220/SRR001205/SRR005720/SRR921889

dataset. Obviously, the performance of G-CNV improves notably when compared

with those of NGS QC Toolkit executed without parallelization. In this case G-

CNV has been 154x/120x/125x/175x faster than NGS QC Toolkit to analyze the

SRR001220/SRR001205/SRR005720/SRR921889 dataset.

For the sake of completeness, it should be pointed out that NGS QC Toolkit auto-

matically also generates statistics for quality check. Therefore, the computing time

reported from NGS QC Toolkit takes into account also the time required to perform

these operations.

As for the memory consuption FASTX-Toolkit is undoubtedly the most effective

tool. Conversely, G-CNV requires more memory than the other tools. Its per-

formance are only comparable with those of NGS QC Toolkit executed in parallel

for the SRR001220 and SRR001205 datasets. Experimental results show that the

memory required by G-CNV increases with the size of the analyzed library. This is

mainly due to the fact that to massively parallelize the computation G-CNV loads
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tool dataset filtered seq. time memory

GCNV

SRR001220 95.3% 5s 0.9GB

SRR001205 98.3% 11s 1.4GB

SRR005720 74.7% 48s 4.5GB

SRR921889 7.9% 1m 10s 10.5GB

FASTX-Toolkit

SRR001220 95.3% 1m 2s 256KB

SRR001205 98.3% 1m 19s 256KB

SRR005720 - - -

SRR921889 7.9% 17m 10s 256KB

NGS QC Toolkit1

SRR001220 95.3% 12m 52s 0.21GB

SRR001205 98.3% 22m 0.18GB

SRR005720 74.7% 1h 40m 0.26GB

SRR921889 7.9% 3h 25m 0.22GB

NGS QC Toolkit2

SRR001220 95.3% 2m 1.4GB

SRR001205 98.3% 3m 52s 1.4GB

SRR005720 74.7% 21m 1.3GB

SRR921889 7.9% 33m 1.9GB

The first and the second column of the table report the tool and the analyzed library, respectively.

The third column the percentage of filtered reads. Column fourth reports the computing time

required to analyze the different libraries. The fifth column the peak of memory required to

perform the analysis.

Table 6.3: Performance of G-CNV to filter low quality sequences.
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into the memory as many as possible read sequences to maximize the occupancy of

the grid of the GPU.

Finally, G-CNV was used to filter the low quality sequences of the HCS1 and HCS2

datasets. Filtering has been performed in ∼ 20 minutes for the HCS1 and in ∼ 34

minutes for HCS2. As for the memory consumption, G-CNV required 5.7GB to

analyze HCS1 and 20.5GB for HCS2.

6.3.2 Masking low quality nucleotides

The performance of G-CNV in the task of masking low quality nucleotides have only

been compared with those of FASTX-Toolkit. NGS QC Toolkit does not provide

support for this operator. G-CNV and FASTX-Toolkit have been run to mask with

aN y symbol the nucleotides with a PHRED quality score < 20 (see Table 6.4). Ex-

periments performed on the S1 synthetic library shown that both tools have been

able to mask all low quality sequences. Experiments performed on real life libraries

show that G-CNV outperforms notably FASTX-Toolkit in terms of computing time.

Results reported in Table 6.5 show that G-CNV has been 12x/6.8x/5x/13.8x faster

than FASTX-Toolkit to analyze the SRR001220/SRR001205/SRR005720/SRR921889

dataset. As previously highlighted FASTX-Toolkit does not support paired-end

reads. However, as for the task of masking low quality nucleotides it can be sepa-

rately used on both the forward and the reverse read sequences. Then, as for the

SRR005720 dataset the Table 6.3 reports the overall computing time required by

FASTX-Toolkit to analyze both files.

tool

GCNV -m 20

FASTX-Toolkit -Q33 -q 20 -r N

As for FASTX-Toolkit experiments have been performed using the fastq quality masker command.

Table 6.4: Tools settings used to mask low quality nucleotides.

As for the high coverave simulated sequencing experiments G-CNV masked the low

quality nucleotides of HCS1 in∼ 23 minutes using 7GB of memory, whereas required

∼ 39 minutes and 21.9GB of memory for HCS2.
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tool dataset masked nucl. time memory

GCNV

SRR001220 24.2% 5s 0.94GB

SRR001205 43.6% 10s 1.38GB

SRR005720 21.8% 52s 3.88GB

SRR921889 3% 1m 15s 12GB

FASTX-Toolkit

SRR001220 24.2% 1m 256KB

SRR001205 43.6% 1m 8s 256KB

SRR005720 21.8% 4m 22s 256KB

SRR921889 3% 17m 20s 256KB

The first and the second column of the table report the tool and the analyzed library, respectively.

The third column the percentage of masked nucleotides. Column fourth reports the computing

time required to analyze the different libraries. The fifth column the peak of memory required to

perform the analysis.

Table 6.5: Performance of G-CNV to mask low quality nucleotides.

6.3.3 Removing adapter sequences

As for the task of removing adapter sequences G-CNV has been compared with both

FASTX-Toolkit and NGS QC Toolkit. To assess the advantages of the implemented

parallelization of cutadapt experiments were initially performed running G-CNV

without exploiting the parallelization, subsequently parallelizing the computation

on 12 CPU cores. Tool settings used to perform these experiments are reported in

Table 6.6.

tool

GCNV1 –ca-a ACACTCTTTCCCTACACGACGCTGTTCCATCT

GCNV2 –ca-a ACACTCTTTCCCTACACGACGCTGTTCCATCT –ca-t 12

FASTX-Toolkit -Q33 -a ACACTCTTTCCCTACACGACGCTGTTCCATCT

NGS QC Toolkit1 <<ADAPTER FILE>> A

NGS QC Toolkit2 <<ADAPTER FILE>> A -c 12

As fo FASTX-Toolkit experiments have been performed using the fastx clipper command, whereas

the IlluQC PRLL has been used for NGS QC Toolkit. In the table have been reported the settings

used to run G-CNV1 and NGS QC Toolkit1 without exploiting the parallelization and in multi-

threading way (G-CNV2 and NGS QC Toolkit2). The table shows the settings used to remove

the Illumina Single End Adapter 1. As for the SRR005720 dataset settings have been modified to

remove the Illumina paired-end adapters.

Table 6.6: Tools settings used to remove adapter sequences.
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Table 6.7 reports results obtained analyzing the real life libraries. Results show that

the performance of G-CNV improves notably with parallelization. With paralleliza-

tion G-CNV has been 6.7x/6.4x/23.4x/2.8x faster to remove the adapter sequences

from the SRR001220/SRR001205/SRR005720/SRR921889 dataset. Moreover G-

CNV parallelized on 12 CPU cores resulted be 18.2x/11x/-/9.4x faster than FASTX-

Toolkit and 11.8x/7.3x/58.3x/6.3x NGS QC Toolkit used exploiting the paralleliza-

tion to remove the adapters from the SRR001220/SRR001205/SRR005720/SRR921889

dataset. Obviously, also for this task the performance of G-CNV improves when

compared with NGS QC Toolkit used without parallelization. In this case G-

CNV resulted be 48x/40x/173x/38x faster than NGS QC Toolkit to analyze the

SRR001220/SRR001205/SRR005720/SRR921889 dataset. As for the memory con-

sumption FASTX-Toolkit provides better performance than the other tools. How-

ever, G-CNV outperforms NGS QC Toolkit. As FASTX-Toolkit does not support

paired-end libraries it has not been used to analyze the SRR005720 dataset.

Finally, when used to remove adapters from the HCS1 G-CNV required ∼ 50m and

250MB of memory, whereas it required ∼ 3h20m and 920MB for HCS2.
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tool dataset time memory

GCNV1

SRR001220 1m 14s 17MB

SRR001205 2m 46s 21MB

SRR005720 8m 12s 26MB

SRR921889 17m 11s 20MB

GCNV2

SRR001220 11s 0.4GB

SRR001205 26s 0.46GB

SRR005720 21s 0.33GB

SRR921889 6m 10s 0.84GB

FASTX-Toolkit

SRR001220 3m 21s 516KB

SRR001205 4m 47s 516KB

SRR005720 - -

SRR921889 57m 40s 516KB

NGS QC Toolkit1

SRR001220 8m 52s 217MB

SRR001205 17m 30s 189MB

SRR005720 1h 48m 269MB

SRR921889 3h 55m 226MB

NGS QC Toolkit2

SRR001220 2m 10s 1.6GB

SRR001205 3m 10s 1.3GB

SRR005720 20m 24s 1.13GB

SRR921889 39m 1.6GB

The first and the second column of the table report the tool and the analyzed library, respectively.

Column third reports the computing time required to analyze the different libraries. The fourth

column the peak of memory required to perform the analysis.

Table 6.7: Performance of G-CNV to remove adapter sequences.

128



G-CNV: A GPU-based Tool for Preparing Data to Detect CNVs with
Read Depth Methods

6.3.4 Removing Duplicated Read Sequences

To assess the performance of G-CNV in the task of removing duplicated sequences,

its performance were compared with those of Fulcrum. G-CNV implements a very

similar algorithm to that implemented in Fulcrum. In particular, similarly to the

proposed tool Fulcrum clusters together the reads with a similar prefix and looks

for duplicates in the same cluster.

tool

GCNV -D << mis >> -p << pref >>

Fulcrum
-b << pref >> -s -t s -c << mis >>

Different experiments were performed with different values for both the prefix length and the

allowed mismatches. Specific values for the prefixes << pref >> and the allowed mismatches

<< mis >> are reported in the tables of the results.

Table 6.8: Tools settings used to remove duplicated sequences.

Table 6.8 reports the main parameters that have been used for the experiments. Ex-

periments on the synthetic S2 library have been performed clustering reads accord-

ing to a prefix length of 25 bp and looking for identical sequences (i.e., 0 mismatches)

and nearly identical sequences with up to 1 mismatch. Results reported in Table 6.9

show that both tools have been able to identify the synthetic duplicate sequences.

It should be pointed out that S2 has been built avoiding to generate mismatches

among the duplicated sequences in their first 25bp. As for tests on real life data,

experiments were performed on the larger SRR921889 dataset. Experiments have

been aimed at assessing the performance of G-CNV to remove duplicated sequences

according to different constraints. In particular, the experiments were performed on

both G-CNV and Fulcrum to cluster sequences according to a prefix size of 10 and

25bp and to look for duplicated sequences with up to 1 and up to 3 mismatches.

Experimental results are reported in Table 6.10. For each experiment were reported

the percentage of removed sequences, the computing time and the peak of memory

required for the analysis. Results show that both tools remove a similar percentage

of duplicated sequences. However, as for the computing time G-CNV outperforms

Fulcrum in all experiments. It should be pointed out that Fulcrum automatically

parallelize the computation on all available CPU cores. Therefore, the computing

times reported in the table have been obtained running Fulcrum parallelized on 12

CPU cores. Results show that the computing time required by G-CNV depends

on both the number of allowed mismatches and the prefix size. The number of se-
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quences that will be classified as duplicated increases with the number of allowed

mismatches. Therefore, increasing this value may involves a lower number of se-

quences comparison. Moreover, the size of a cluster depends on the prefix length.

Typically, the size of the clusters increases as the prefix length decreases involving

more sequences comparison.

tool dataset mismatches perc. of removed

GCNV
S2 0 0%

S3 1 30.1%

Fulcrum
S2 0 0%

S3 1 30.6%

The first column reports the tool. The second column reports the dataset. Column third and forth

report the allowed mismatches and the percentage of removed duplicated sequences.

Table 6.9: Performance of G-CNV to remove duplicated sequences from

the synthetic dataset.

tool dataset prefix mismatches perc. of removed time memory

GCNV

SRR921889 10 1 11.2% 2h 17.3GB

SRR921889 10 3 11.5% 1h 50m 17.3GB

SRR921889 25 1 11.9% 16m 17.3GB

SRR921889 25 3 12.1% 8m 17.3GB

Fulcrum

SRR921889 10 1 11.3% 4h 01m 1.6GB

SRR921889 10 3 11.4 % 3h 23m 1.6GB

SRR921889 25 1 11.6% 1h 24m 1.6GB

SRR921889 25 3 11.9% 1h 33m 1.6GB

The first column reports the tool. The second column reports the length of the prefixes used for

clustering. Column third reports the allowed mismatches. The fourth column reports percent-

age of removed sequences. Column fifth and sixth report the computing time and the memory

consumption, respectively.

Table 6.10: Performance of G-CNV to remove duplicated sequences from

the real life dataset.

For the sake of completeness G-CNV performed the clustering step in ∼ 2 seconds

for both length of the prefixes, whereas Fuclrum required 13 minutes to cluster the

reads according to a prefix of 10bp and 56 minutes to cluster the reads according to

prefix length of 25bp. However, it should be pointed out that G-CNV can not be
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used to cluster reads with a prefix longer than 27bp. Moreover, the clustering phase

implemented by G-CNV requires that all prefixes will be loaded into the memory

of the GPU device. This implies a constraint on the size of the analyzed library,

which depends on the memory of the GPU. As for the memory consumption G-

CNV undoubtedly requires more memory than Fulcrum. Also in this case the high

memory consumption is due to the need of maximize the occupancy of the grid of

the GPU.

Finally, different experiments were performed on the HCS1 dataset. Experiments

have been performed to cluster the reads according to a prefix length of 15bp and

27bp and to look for duplicated with up to 1 and to 3 mismatches. Results are

reported in Table 6.11.

mismatches prefix time memory

1

15 12h 7m 8.8GB

27 5h 33m 6.6GB

3

15 3h 20m 8.7GB

27 1h 30m 5.7GB

The first column reports the allowed mismatches. The second column reports the length of the

prefix used to cluster the reads. Column third and fourth report the computing time and memory

consumption, respectively.

Table 6.11: Performance of G-CNV to remove duplicate sequences from

the HCS1 synthetic dataset.

6.3.5 Generating the RD-Signal

As do not exist other specialized tools to generate the RD signal the performance of

G-CNV cannot be assessed and compared with other tools. However, the FastQC

tool was used (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to as-

sess the reliability of G-CNV in the task of calculating the GC-content that is used

to normalize the RD signal. FastQC is a tool that provides some quality control

checks on HTS data. In particular, it is able to calculate the distribution of the per

sequence GC content of the analyzed read sequences.

As G-CNV calculates the GC content of each observed window in the genome se-

quences, a synthetic library was generated using as reads the subsequences observed

with a window of 100bp along the MT chromosome of the human genome (build

37.3). Then, FastQC was used to analyze the GC content of these sequences and
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the results were compared with those generated by G-CNV. Both tools provided

the same distribution of the GC-content. It should be pointed out that it was not

possibile to comapare the results with those of FASTX-Toolkit and NGS QC Toolkit

as both determine only the perbase GC content. It should be pointed out that the

time required by G-CNV was not compared with that required by FastQC as it

automatically performs several quality checks.

Moreover, to assess the performance of G-CNV to generate a RD-signal an alignment

SAM file on the human genome was simulated (build 37.3). The alignment has been

simulated by assuming a sequencing experiment on the genome with coverage 30x.

Sequencing and alignment errors were not simulated. The SAM file was generated by

assuming an ideal aligner able to map the reads uniquely and without errors. In fact,

these errors do not affect the computing time to generate the RD-signal; they affect

the detection of CNVs. However, for this experiment the main aim was to assess

the computing time of G-CNV in the task of generating the RD-signal. G-CNV

generated the RD-signal with an observing window of length 100 in less than 1h

56m minutes and required 10.4GB of memory. As for the memory used by G-CNV

it depends on the number of alignments in the analyzed genome sequence. G-CNV

generates the RD-signal analyzing separately the genome sequences. To maximize

the parallelization as many as possible alignments on the analyzed genome sequence

are loaded into the GPU.

6.3.6 Hardware and Software Configuration

Experiments described hereinafter have been carried out on a 12 cores Intel Xeon

CPU E5-2667 2.90 GHz with 128 GB of RAM and an NVIDIA Kepler architecture

based Tesla k20c card with 0.71 GHz clock rate and equipped with 4.8 GB of global

memory.

6.4 Discussion and Conclusions

Different RD-based methods and tools have been proposed in the literature to iden-

tify CNVs. Typically, these tools do not support most of the preparatory operations

for RD analysis. Therefore, a specific analysis pipeline must be built with different

third-party tools. G-CNV allows to build the analysis pipeline required to process

short-read libraries for RD analysis according to different constraints. However,

the added value of G-CNV is the fact that almost all operations are performed on

GPUs. In fact, these are data-intensive operations that may require an enormous
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computing power. GPUs are increasingly used to deal with computational intensive

problems. The low cost for accessing the technology and their very high computing

power is facilitating the GPUs success. Experimental results show that G-CNV is

able to efficiently run the supported operations. However, it should be pointed out,

that the current release of G-CNV still has some limitations and/or constraints. In

particular, as for removing duplicates, there are two main limitations of the pro-

posed algorithm. As for the former, the current release of G-CNV supports removal

of duplicates only for single-end reads. As for the latter, it exists a constraint

on the clustering phase. Sorting requires that all prefixes will be loaded into the

memory of the GPU device. This implies a constraint on the size of the analyzed

library, which depends on the memory of the GPU. With a GPU card equipped

with 4.8 GB of global memory, libraries of up to 220M reads can be analyzed. A

solution to overcome this constraint is to parallelize the sorting on multiple GPU de-

vices. It is planned to adapt CUDA-Quicksort to run on multiple GPUs. Although,

CUDA-Quicksort resulted be the fastest GPU-based implementation of the quick-

sort algorithm, the Thrust Radix Sort is currently the fastest GPU-based sorting

algorithm. However, as for clustering, CUDA-Quicksort was adapted and used as it

has been designed to be easily modified to scale on multiple GPUs. Moreover, it is

deemed that the overall performance of G-CNV can be improved by implementing

the trimming of the adapters on GPUs.
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Chapter 7

DGCI: A Distributed GPU- and

CPU-based Infrastructure

Science gateways provide an interface between scientists and Distributed Computing

Infrastructures (DCIs). These gateways provide a workflow-oriented graphical user

interface to create and run complex applications as scientific workflows on DCIs.

At the state of the art, no workflow-oriented software infrastructure exists able to

efficiently manage and schedule GPU applications on distributed GPU-based in-

frastructures. As GPUs are always more frequently used by modern bioinformatics

applications, a Distributed GPU- and CPU-based Infrastructure (DGCI) system

has been designed through a BOINC Grid desktop interfaced to the gUSE science

gateway. DGCI allows submission and management of workflows on a wide variety

of different DCIs. In particular, it allows the development and use of GPU bioinfor-

matics applications on distributed GPU-based infrastructures, providing an efficient

scheduling and distribution of several jobs on more GPUs.

The BOINC (Berkeley Open Infrastructure for Network Computing) Grid desktop

is a Grid platform of Volunteer computing, where each volunteer desktop supplies

computing resources to the platform. BOINC is made of two elements: i) one server

managing job requests and sending and ii) a set of clients (Grid computing units)

performing jobs. This platform offers the advantage of being capable of managing

and scheduling GPU applications.

The gUSE (Grid and cloud User Support Environment) science gateway is a portal

giving standard access to distributed computing infrastructures as Grid and Cloud.

gUSE interfaces with them through a specific application communicating directly

with the middleware (managing hardware and software resources) of DCIs. This
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allows users to easily send jobs and complex applications such as scientific workflows

in the chosen computing infrastructure.

The gUSE science gateway interfaced to BOINC operates as follows: through gUSE,

users can either create a new workflow or use a workflow already existing in the

platform repository. Each job related to a workflow node is then sent to the DCI as-

signed to the node. In particular, GPU jobs are sent to the clients through a BOINC

server based on a specific scheduling policy. Moreover, this DGCI system allows for

a further coarse-grained data-parallel parallelization on more GPUs. Indeed, a job

generator has been developed, able to split the input of each GPU application in

multiple Workunits that will then be sent to the clients for processing. The pro-

cessing outputs of each Workunit will then be merged by a job collector returning

a single output to the user.

This chapter gives an overview of the gUSE science gateway and the BOINC Desktop

Grid, highlighting some important aspects of each. It also illustrates the DGCI

system implemented through gUSE and BOINC. Finally, it describes how the G-

SNPM, GPU-BSM and G-CNV tools have been ported to DGCI (see Chapters 3, 4

and 6).

7.1 BOINC Desktop Grid

BOINC is an open source client-server middleware system created to allow projects

with large computational requirements, usually set in the scientific domain, to use

a technically unlimited number of volunteer machines distributed over large phys-

ical distances [19]. Created in 2002, BOINC has become one of the most popular

volunteer computing middleware systems. The success of BOINC can be attributed

to its simplicity and ease of use, as well as to its architecture in general. BOINC

in based on a basic client-server model. The BOINC server is mainly used to host

scientific projects. Each project on the server has its own applications, database

and website and is not affected by the status of other projects. The BOINC client

is an application installed on the volunteer host aiming at communicating with the

server, mapping the client to one or more projects, organizing computation, execut-

ing applications and returning results to the server.
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(a) BOINC server daemons architecture

(b) Executions of the demons in the time

Figure 7.1: BOINC Architecture. Image derived from [44].
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7.1.1 BOINC Architecture

As shown in Figure 7.1, the BOINC architecture is based on a basic client-server

model. In summary, the overall flow of BOINC is as follows: i) a BOINC client

periodically sends a request to one of its attached projects. The request message

specifies the client’s platform; ii) the BOINC server uses the project’s scheduler to

scan the project’s database for jobs that can be handled by the client, and returns

one or more jobs; iii) the client downloads the files associated with the job(s) and

executes it(them); iv) when the jobs are completed, the client uploads the resulting

output files to the server. This cycle is repeated indefinitely.

The BOINC client is an application installed on a volunteer host. Upon running the

BOINC client for the first time, a series of benchmarks are executed to determine

the actual computing throughput capacity of the host. The total resource capacities

and available disk space are also recorded. Once connected to a scientific project,

the BOINC client will receive an application from the BOINC server for execution.

The application itself typically consists of an executable file, which has been pre-

viously compiled on the target host platform by the server, and a series of input

and output files. During the execution of an application, the BOINC client records

the amount of work performed by the volunteer host and issues credits to the user

which are published on a BOINC server-managed Website. Credits are calculated

by multiplying the application’s CPU and GPU time by benchmark scores.

The BOINC client is a simple application. Much of the system complexity resides

on the BOINC server. It is used to host scientific projects, create and distribute

Workunits, and store and validate results from more than one client. Workunits

are instances of a particular application (i.e. a particular scientific task). Storing

and distribution of these Workunits and their results are performed at server level:

MySQL is used for data storage, while Apache and PHP are used for web access

issues - e.g., to allow a volunteer user to modify project preferences or a project

administrator to set up the project.

The BOINC server is underpinned by a set of running daemons that create and

coordinate project-related items [20] (see Figure 7.1(a)). A set of default daemons

are provided. However, additional daemons can be added dependent on the project

characteristics and on the functionality required. Once an application developer

has created his scientific project, the Submitter first creates one o more project

Workunits and then stores i) the Workunits description in the database and ii) the

executable file and the input files in the Download folder (see Figure 7.1(a) and

step 1 in Figure 7.1(b)). The Transitioner handles the Workunit state transitions.

The communication between client and server is implemented through a shared
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memory. There is a separate shared-memory structure for each running application.

This communication is performed by Feeder and Scheduler daemons. The Feeder

periodically extracts outbound Workunits from the database and enters them into

a shared memory segment. The Scheduler, which communicates with the client

through XML messages, coordinates outbound Workunits going from the shared

memory segment to clients while concurrently dealing with completed Workunits.

The Scheduler then dispatches the Workunits to different clients (see step 2 in 7.1(b))

by sending the application executable and the input files. Received results are

stored in the Upload folder and the Transitioner is notified (see Figure 7.1(a). The

Validator is then instructed to validate these results (see step 3 in 7.1(b)). In order

to do that, the server replicates each job, which is then executed on multiple hosts.

By comparing the results obtained in different clients, the server checks that no host

error or security breach has influenced the results. Credits are issued to hosts only if

results are deemed as valid [20]. Once a result has been validated, a Canonical Result

(the simplest and best of validated results) is created. Optionally, the Assimilator

may perform an administrator-defined action such as archiving Canonical Results

in a long-term storage (see Figure 7.1(a) and step 4 in Figure 7.1(b)). In order to

reduce storage space consumption on the server, the File Deleter removes Workunit

data files and their results that are no longer required (see Figure 7.1(a) and step 5

in Figure 7.1(b)).

7.2 Grid User Support Environment

gUSE is an open-source science gateway framework that enables users to easy access

Grid and Cloud infrastructures [21]. gUSE has been developed by the Laboratory

of Parallel and Distributed Systems (LPDS) at the Institute for Computer Science

and Control (SZTAKI) of the Hungarian Academy of Sciences. As any science gate-

ways, gUSE provides an interface between a scientist (or community) and distributed

computing infrastructures (DCIs) such as supercomputers, clusters, Grids, desktop

Grids and Clouds [87]. These infrastructures are accessed by gUSE through a trans-

parent and web-based interface, that provides a general-purpose workflow-oriented

framework to compose and run workflows on various DCIs.

High-level representation of the gUSE system is provided by the WS-PGRADE (Web

Service – Parallel Grid Run-time and Application Development Environment) Web

application, a web portal hosted in a standard portal framework. WS-PGRADE

Portal introduces many advanced features both at workflow and architecture lev-

els. It supports simple development and fast submission of distributed applications
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executed on a large variety of different DCIs. WS-PGRADE provides a powerful

workflow editor to compose scientific applications into data-flow based workflow

structures. Users select the execution DCI for each workflow node. The workflow is

then transparently submitted to the user by the gUSE services.

The gUSE/WS-PGRADE framework can be easily adapted and customized ac-

cording to the special needs of various user communities, which can develop their

application-specific science gateways. The reasons why scientific user communities

choose this portal are its very flexible workflow system, user-friendly interface and

its capability of submitting and managing workflows on a wide variety of different

DCIs.

7.2.1 gUSE Architecture

The gUSE Architecture is developed in a three-tier structure. The main goal of

designing the multi-tier architecture of gUSE was to enable adaptable access to

many different kinds of DCIs and data storage by different kinds of user interfaces

(see Figure 7.2).

Figure 7.2: gUSE Architecture. Image from guse.hu.

At the top of the three-tier structure, a Presentation tier is provided by the WS-

PGRADE Web application. WS-PGRADE is a Liferay-based Web portal that offers

a graphical user interface for underlying gUSE services (see Presentation tier in Fig-

ure 7.2). All the functionalities of the gUSE services are exposed to the users by

portlets residing in a Liferay portlet container. This layer can be easily customized

and extended according to the needs of the science gateway instances to be derived
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from gUSE. End users can access WS-PGRADE via Web browser. The HTML

pages of WS-PGRADE provide interfaces to generate Grid/Web service applica-

tions in four stages. In the first stage a editor is used to create the Graph (or

Abstract Workflow) that contains information only on the graph structure of the

workflow. In the second stage a HTML page is used to create the Workflow (or

Concrete Workflow) that contains information both on the graph structure and on

the configuration parameters (input file pointers, output file pointers, executable

code and target DCI of workflow nodes). In the third stage a HTML page is used

to create the Template, a workflow containing information on every modifiable pa-

rameter of the workflow and indication of whether they are user-settable. They

play an important role in the automatic generation of executable workflows in the

end-user mode of a WS-PGRADE/gUSE gateway. Finally, in the fourth stage a

HTML page is used to create the Application, a ready-to-use workflow containing

all the Templates and embedded workflows.

The middle tier of the gUSE architecture contains the high-level gUSE services (see

Service tier in Figure 7.2). The Workflow Storage service stores a workflow except

for its input files. The local input files and the local output files created during the

workflow execution are stored in the File Storage service. The Workflow Interpreter

service is responsible for workflow execution. The Information System service holds

information for users about running workflows and workflow job status. Users of

WS-PGRADE gateways work in isolated workspaces (i.e., they see only their own

workflows). In order to enable collaboration among the isolated users, the Applica-

tion Repository service stores the WS-PGRADE workflows in one of their possible

features (i.e., Concrete Workflow, Template, Application and Workflow Project).

The Workflow Project feature provides a collaborative workflow development among

several workflow developers. Indeed, the Workflow Project is not yet a complete

workflow and it can be further developed by the people who uploaded it into the

Application Repository service.

The lowest architecture level, the Middleware tier, is provided by the DCI Bridge

job submission service and the Data Avenue service, that is an independent service

provided by SZTAKI (see Middleware tier in Figure 7.2). DCI Bridge is a web

service-based application providing standard access to various DCIs. It connects

through its DCI plugins to the external DCI resources. When a user submits a

workflow, its job components are submitted transparently into the various DCI sys-

tems via the DCI Bridge service using its standard OGSA Basic Execution Service

1.0 (BES) interface. As a result, the access protocol and all the technical details

of the various DCI systems are totally hidden behind the BES interface. The job

description language of BES is the standardized Job Submission Description Lan-
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guage (JSDL). The Data Avenue service is a file commander tool for data transfer,

enabling easy data moving between various storage services (such as Grid, Cloud,

cluster, supercomputers) by protocols like: HTTP, HTTPS, SFTP, GSIFTP, SRM,

and S3. The Data Avenue interface allows you browsing, downloading and upload-

ing data to and from the supported data stores, and moving data easily between

them, even if they are accessed by different protocols.

7.3 DGCI implemented through gUSE and BOINC

The Distributed GPU- and CPU-based Infrastructure system has been implemented

through a BOINC Grid desktop and gUSE. BOINC offers the advantage of being

capable of managing and scheduling GPU applications. gUSE provides an interface

between the science community and the distributed GPU-based infrastructure, al-

lowing the development and submission of GPU-based applications. Moreover, as

gUSE supports different DCIs, workflows can be created and run on more DCIs thus

allowing the integration of GPU-based applications in a workflow node.

Figure 7.3: DGCI Architecture.

This distributed GPU-based infrastructure system is a GPU cluster where each node

individually hosts a gUSE portal, a BOINC server and the BOINC GPU clients

(see Figure 7.3). This system has been specifically implemented for a local GPU

cluster but can be scaled on a GPU Desktop Grid infrastructure. GPU nodes have

not been provided by volunteers, but by CNR-ITB (http://www.itb.cnr.it/web/

bioinformatics/home), which supported this project. These computers, which are

located in the Milan CNR-ITB headquarters, are all characterized by the following

features: one 12-core Intel Xeon CPU E5-2667 2.90 GHz and four GPU NVIDIA

Tesla Kepler k20c.

142

http://www.itb.cnr.it/web/bioinformatics/home
http://www.itb.cnr.it/web/bioinformatics/home


DGCI: A Distributed GPU- and CPU-based Infrastructure

This system operates as follows: through gUSE, users can either create a new work-

flow or use a workflow already existing in the platform repository. Each job related

to a workflow node is then sent to the DCI assigned to the node. In particular, GPU

jobs are sent to the clients through a BOINC server based on a specific scheduling

policy. Finally, results are sent through the server to the gUSE portal.

Figure 7.4: 3G Bridge Architecture. Image derived from http://doc.

desktopgrid.hu/doku.php

3G Bridge (Generic Grid Grid Bridge), a standard gateway between the various Grid

systems (see Figure 7.3), works as the interface between gUSE DCI-Bridge and the

BOINC server. 3G Bridge developed by SZTAKI (see http://doc.desktopgrid.

hu) is used as a mediator between different types of Grid middleware. The main

task of 3G Bridge is to transfer jobs received from the source Grid to the target

Grid and vice versa. In this case 3G Bridge is used as a gateway between gUSE

DCI-BRIDGE and BOINC server. The architecture of the 3G Bridge is composed

of (see Figure 7.4):

• a web-service interface called WSSubmitter. It is responsible for receiving

incoming jobs;

• a Job Database to store jobs, their status and their input/output files;
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• a Queue Manager for job scheduling.

• Grid Handler interface and plugins to handle Grid-specific jobs;

• a Download Manager for input/output file transmission.

The WSSubmitter web service provides job manipulation functionalities as submis-

sion, state query, result query, cancel. The Job Database stores the job description

and input/output files in a relational database. The Queue Manager creates a queue

for incoming jobs. If connected to more Grids, 3G Bridge will create as many queues

as the number of Grids it is connected to. The Queue Manager is also responsible

for invoking the Grid Handlers to perform activities on a particular job (i.e, submit,

abort, get results, update status). The Grid Handler interface provides a connec-

tion among various target Grids via their Grid plugins, which are responsible for

communication with the back-end Grid system.

In this case, gUSe DCI-Bridge notifies the WSSubmitter of the operation to be

performed on the job. If not already present, it send any Workunits and input files

through the HTTPD protocol. Data are then stored in the Job Database. The Queue

Manager periodically reads Workunits from the database and transmits them to the

Grid Handler interface. This interface will use the BOINC plugin (i.e., the BOINC

Submitter) to take Workunits from the queue and insert them into the BOINC

database. Moreover, the Grid Handler will notify the BOINC server back-end the

operation to be performed. For example, if it is a Workunit submission, the Grid

Handler will also send the input files. Input file transfer is immediate, as the 3G

Bridge is installed on the same computer as the BOINC server. If the query is the

result of a Workunit, the Grid Handler will use the BOINC plugin to take the result

from the BOINC server and save it in the Job Database. The WSSubmitter web

service will then send the job result to the gUSE DCI-Bridge.

7.4 Porting the Proposed Tools on DGCI

gUSE enables parallel execution inside a workflow node as well as among workflow

nodes. It is possible to use multiple instances of the same node with different data

files (see Figure 7.5). These instances are then simultaneously processed by different

Grid nodes. This is a general procedure which is thus valid for a coarse-grained data-

parallel parallelization on more GPUs.

Typically, an application data-parallel parallelization requires developing a three-

node workflow (see Figure 7.5). The first node is a job generator which is responsible
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Figure 7.5: Parallel execution among workflow nodes.
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for dividing the global input data into smaller chunks and sending them to the next

node (see Generator in Figure 7.5). The second node is composed of applications

(see Job Instance in Figure 7.5). In this node, gUSE creates as many instances

as the chunks to be processed by the application. In the specific case of GPU

applications processed on the DGCI, these instances are the Workunits sent by gUSE

to the BOINC server through the DCI-Bridge. Then, based on a specific scheduling

policy, the BOINC server assigns and sends each Workunit to a computer of the

grid for processing. Finally, the third node is a collector job, which is responsible

for combining the processing outputs of each Workunit to form a global output, so

returning one output to the user (see Collector in Figure 7.5).

In general, the number of Workunits in a Grid system is only defined by the opti-

mum parallelization level for a given application, without considering the number

of available resources. This procedure can be adopted with a very high number of

resources, as the probability to find free resources is very high. In DGCI, available

resources are relatively few and when the number of requests is very high there is

a very high risk of system congestion, as many jobs are enqueued for a long time

before processing. This would cause a performance decrease, thus cancelling the

parallelization effects out. This issue has been solved by developing a job generator

capable of calculating a suboptmimum parallelization level based on the number of

available resources. No automatic parallelization is run on the BOINC server. In-

deed, the Workunit generation is left with the user and no middleware functionality

notifies the number of available BOINC clients. Therefore, in order to know the

number of available resources, the job generator eludes the DCI-Bridge by a direct

connection to the BOINC server database. The server replies by sending status

information for each client on the network. Finally, the job generator generates the

number of Workunits to be simultaneously run by clients considering the application

and available resources.

This procedure has been used to execute the parallelization of G-SNPM ((see Chap-

ter 3) and GPU-BSM (see Chapter 4) on more GPUs, whereas G-CNV (see Chapter

6) has been ported to DGCI performing no parallelization.

7.4.1 Porting G-SNPM to DGCI

In order to allow the execution of G-SNPM on more GPUs, a three-node workflow

has been developed (see Figure 7.6).

The first node is a job generator having one input and output port (see ports 0 and

1 of Generator in Figure 7.6). The job generator first reads the SNPS file through
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Figure 7.6: G-SNPM Workflow.

the input port, then divides the file into smaller file chunks based on the GPUs

available on DGCI. Subsequently, the job generator sends SNP file chunks to the

next node through the output port.

In the second node, gUSE generates as many G-SNPM instances as the number of

SNP file chunks to be processed. Each instance produces alignments which are then

sent to the next node in a single file.

In the third node, the collector job combines the processing outputs of each G-SNPM

instance to create a single output.

7.4.2 Porting GPU-BSM to DGCI

GPU-BSM can be performed both in single-end mode and in paired-end mode. In

order to allow execution on more GPUs, a three-node workflow has been developed

(see Figure 7.7).

Figure 7.7: GPU-BSM Workflow.

The first node is a job generator having two input and output ports (see Generator

in Figure 7.7). While working with single-end libraries, only one input and output

port is used (i.e, port 0 and 2 of Generator in Figure 7.7), while working with

paired-end libraries all input/output ports are used. When working in single-end

mode, the job generator divides the bisulfite-treated single-end reads from the input

port into smaller reads chunks based on the GPUs available on DGCI. Then, the job
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generator sends reads chunks to the next node through the output port. In paired-

end mode, the job generator performs this step by dividing the bisulfite-treated

paired-end reads into smaller reads chunks. It then sends these reads chunks to the

next node through the two output ports.

In the second node, gUSE generates as many GPU-BSM instances as the number

of reads chunks to be processed. If GPU-BSM is in single-end mode, the single-end

reads chunks are read by a single port (i.e, the port 0 of Job in Figure 7.7), while

if it is in paired-end mode the paired-end reads chunks are read by the two ports.

Each GPU-BSM instance produces alignments which are then sent to the next node

in a single file.

In the third node, the collector job combines the processing outputs of each GPU-

BSM instance to create a single output.

7.4.3 Porting G-CNV to DGCI

G-CNV has currently been ported to DGCI performing no parallelization on more

GPUs. The removal of adapter sequences and duplicated read sequences is per-

formed through the CUDA-Quicksort sorting algorithm (see Section 6.2.1.4). There-

fore, the development of a multi-GPU solution of G-CNV for DGCI should be pre-

ceded by a CUDA-Quicksort multi-GPU version (see Section 5.5).

In order to allow execution on DGCI, a one-node workflow has been developed. This

node represents the G-CNV application having one input and output port. In the

input port, G-CNV reads the file containing the read sequence library. Then, in a

second task, set at node configuration, G-CNV will generate the relative outputs

which will then be sent to the output port in a single file.

7.5 Discussion and Conclusions

DGCI has been mainly devised for submitting and managing workflows on various

DCIs. In particular, it allows the development and use of GPU bioinformatics

applications on a distributed GPU-based infrastructure. In DGCI, workflows can

be created and run on more DCIs, thus allowing the integration of GPU-based

applications in a workflow node.

Moreover, the DGCI workflow management system allows a further coarse-grained

data-parallel parallelization of GPU applications. Indeed, DGCI enables parallel

execution into a workflow node. More instances of the same node can be used with
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different data files. These instances are then simultaneously processed by different

GPUs. This procedure has been used to parallelize G-SNPM and GPU-BSM on

more GPUs, whereas G-CNV has been ported to DGCI without performing a multi-

GPU parallelization. Results show that the G-SNPM and GPU-BSM execution time

decreases with the increase in the number of GPU devices. Figure 7.8 shows the

GPU-BSM execution time at varying the number of GPUs. As it can be observed,

the execution time decreases with the increase in the number of GPUs. However, this

is not a linear decrease as GPU-BSM is not completely ported to GPUs (see Chapter

4). As shown in figure 7.8, the workflow execution time is higher than the node

execution time. This is mainly due to the time required for the management of the

GPU-BSM node and the transfer of its inputs/outputs being too long compared with

the GPU-BSM node execution time. Similar results are obtained when performing

G-SNPM on more GPUs. This parallelization procedure is more efficient when the

job instances execution time is so long that the time required for their management

and input and output transfer becomes insignificant.
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Figure 7.8: Time required to perform the GPU-BSM workflow at varying

the number of GPUs. Two directional libraries are analyzed: SRR019597, which

consists of 5,943,586 reads with a length of 76 bp, and SRR019048, which consists

of 15,331,851 reads with a length of 87 bp. Computing time for the GPU-BSM node

and the GPU-BSM workflow has been reported running them on 1-8 GPUs. GPU-

BSM settings: -m 4 –ungapped -l 1. The generator and collector nodes execution

times are not plotted in this figure as they are just few seconds.
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Chapter 8

Conclusions and Future Work

The research activity presented in this dissertation has been focused on the adoption

of innovative HPC techniques to deal with bioinformatics challenges. In particular,

GPU-driven solutions aimed at using GPU hardware accelerators to solve bioin-

formatics issues, where new solutions were required for efficient data analysis and

interpretation due to the very huge amount of available data and the complexity

of tasks. In order to achieve high performances, some of the bioinformatics algo-

rithms applicable to genome data analysis were selected, analyzed and implemented

on GPUs. In particular, the following tools and systems were developed:

• G-SNPM: a GPU-based tool aimed at mapping nucleotide sequences rep-

resentative of a single-nucleotide base polymorphism (SNP) on a reference

genome (see [II] in Publications). G-SNPM is a useful tool that maps the SNP

chromosomal positions on a reference genome. G-SNPM is the only general-

purpose tool designed to deal with the mapping of SNPs. It uses modern

GPUs to ensure a very fast mapping without compromising accuracy.

• GPU-BSM: a GPU-based tool aimed at mapping bisulfite-treated reads with

the aim of detecting methylation levels of cytosines (see [III] in Publications).

GPU-BSM is a mapping tool for the alignment of single-end and paired-end

reads on a reference genome. GPU-BSM supports both gapped and ungapped

alignments. Massive parallelization on GPUs enables GPU-BSM to map reads

without severe limitations on the alignment process. Experimental results

show that GPU-BSM is very accurate and outperforms most of the cutting-

edge solutions in terms of unique best mapped reads, while keeping computa-

tional time reasonably low.
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• CUDA-Quicksort: a GPU-based implementation of the quick-sort (see [IV]

in Publications); CUDA-Quicksort is a new GPU-based implementation of

the quicksort algorithm. It outperforms the two high-performance GPU-based

implementations of the quicksort algorithm presented in literature: GPU-

quicksort, an iterative implementation, and CDP-Quicksort, a recursive imple-

mentation. Experimental results show that algorithm is about four times faster

than GPU-Quicksort and three times faster than CDP-Quicksort. CUDA-

Quicksort has been used for the implementation of the G-CNV tool as de-

scribed below.

• G-CNV: a GPU-based tool for Preparing Data to Detect CNVs with Read

Depth Methods (see [V] in Publications). G-CNV is a GPU-based tool used to

filter low-quality read sequences, mask low-quality nucleotides, remove adapter

sequences and duplicated read sequences, map short-reads, solve multiple map-

ping ambiguities, build and normalize the read-depth signal. Experimental

results show that G-CNV is more effective than the other tools in terms of

computing time. Moreover, G-CNV is the only general-purpose tool designed

to generate the read-depth signal.

Moreover, a Distributed GPU- and CPU-based Infrastructure (DGCI) system has

been devised to support CPU and GPU computation. This software infrastructure,

implemented through gUSE and BOINC, allows the submission and management of

workflows on a wide variety of different distributed computing infrastructures. In

particular, it allows the development and use of GPU bioinformatics applications on

distributed GPU-based infrastructures, providing an efficient scheduling and distri-

bution of several jobs on GPUs. Moreover, the DGCI workflow management system

allows a further coarse-grained data-parallel parallelization of GPU applications.

G-SNPM and GPU-BSM have currently been ported to DGCI to perform a par-

allelization on more GPUs. Results show that G-SNPM and GPU-BSM speed-up

increases with the increase in the number of GPU devices. However, experiments

show that the time required for the management of job instances and the transfer

of their inputs/outputs is too long compared with the job instance execution time.

Therefore, this parallelization procedure is efficient only when the job instances ex-

ecution time is so long that the time required for their management and input and

output transfer becomes insignificant.

The above-mentioned algorithms have been massively parallelized on NVIDIA GPUs

using the CUDA programming model. The NVIDIA GPUs have been used as they

were among the most performant at the time they were bought. CUDA, a NVIDIA
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proprietary language, has been chosen because it outperforms OpenCL on NVIDIA

GPUs as the CUDA compiler produces better optimized code. The overall results

show that the proposed parallel algorithms are highly performant. However, their

portability remains limited to the NVIDIA GPUs, thus forcing users lacking such

technology to rest on third-party infrastructures. This issue may be solved by port-

ing the CUDA proposed solutions to OpenCL solutions. Indeed, OpenCL is designed

to run on many different kinds of platforms, thus allowing the proposed algorithms

to be used on several HPC platforms such as CPUs, DSPs, FPGAs and other GPUs -

as the AMD GPUs - whose performance have recently got similar to that of NVIDIA

GPUs. Porting CUDA solutions to OpenCL solutions is not a time-consuming task,

as these two languages are very similar and automatic tools have been recently

developed to perform this task (e.g.CU2CL [2] and Swan [7]).

As for GPU-BSM, it should be pointed out that it has not been completely paral-

lelized on GPUs. GPU-BSM can be represented by a three-stage pipeline and only

the second stage of the pipeline has been parallelized on GPUs. In this stage, the

gain in terms of computing time resulted nearly linear with the increasing of the

number of GPU devices. Nevertheless, the overall gain is not linear due to the fact

that the other two stages of the pipeline have not yet been parallelized. A possi-

ble future work could be the improvement of GPU-BSM, by redesigning the third

stage of the pipeline. Porting to GPUs the analysis performed at the third stage

is essential to obtain a linear gain of the computing time with the increase of used

GPUs.

As for G-CNV, it uses CUDA-Quicksort to remove duplicated read sequences. It

should be pointed out that the current release has some limitations. For example,

the library analyzed by the G-CNV to remove duplicated read sequences is lim-

ited in size. Indeed, as it is loaded in the GPU memory, its size depends on the

memory dimension. So, with a GPU card equipped with 4.8 GB of global memory,

libraries of up to 220 M reads can be analyzed. Therefore, a possible future work

could be using CUDA-Quicksort on more GPUs to increase the size of the analyzed

library. It has been planned to adapt CUDA-Quicksort to run on more GPUs. Al-

though CUDA-Quicksort resulted to be the fastest GPU-based implementation of

the quicksort algorithm, the Thrust Radix Sort is currently the fastest GPU-based

sorting algorithm. However, as for clustering, the proposed CUDA-Quicksort has

been adapted and used on G-CNV as it has been designed to be easily modified to

scale on multiple GPUs. When CUDA-Quicksort is used on more GPUs, the size of

the analyzed library increases linear with the number of GPU devices.
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As for the DGCI system, it has been specifically devised on a local GPU cluster.

The GPU cluster computers are not provided by volunteers, but by CNR-ITB,

which supports this project. Another future work could be to realize an actual

GPU Grid infrastructure (i.e. a geographically distributed infrastructure through

volunteer computing). Finally the DGCI workflow management system could be

used to develop new CUDA and OpenCL-based bioinformatics applications running

on more platforms. In this way, users may exploit all GPU-Grid available resources,

from a simple CPU to a cluster of HPC resources (NVIDIA and AMD GPUs, CPUs

and FPGAs, etc.).

.
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