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Chapter 1

Introduction

Software Engineering field has many goals, among them we can certainly deal
with monitoring and controlling the development process in order to meet the
business requirements of the released software artifact. Software engineers
need to have empirical evidence that the development process and the over-
all quality of software artifacts is converging to the required features. Improv-
ing the development process’s Effectiveness leads to higher productivity, mean-
ing shorter time to market, but understanding or even measuring the software
development process is an hard challenge. Modern software is the result of a
complex process involving many stakeholders such as product owners, quality
assurance teams, project manager and, above all, developers. All these stake-
holders use complex software systems for managing development process, is-
sue tracking, code versioning, release scheduling and many other aspect con-
cerning software development.

In Open Source System the situation is complicated by the complex struc-
tures of open source communities, often spread around the globe, with differ-
ent time shifts, cultures, languages and environments. Beside their complexity,
Open Source Communities provide valuable empirical data that can help re-
searchers in their work. Source code repositories, issue tracking systems, mail-
ing list etc., represent an immense golden mine containing valuable data that
can help researchers understanding the process behind the manufacturing of
a software artifact. Tools for project management and issues/bugs tracking are
becoming useful for governing the development process of Open Source soft-
ware. Such tools simplify the communications process among developers and
ensure the scalability of a project. The more information developers are able to
exchange, the clearer are the goals, and the higher is the number of developers
keen on joining and actively collaborating on a project.

By analyzing data stored in such systems, researchers are able to study and
address questions such as: Which are the factors able to impact the software

1



2 CHAPTER 1. INTRODUCTION

productivity? Is it possible to improve software productivity shortening the
time to market?.

The present work addresses two major aspect of software development pro-
cess: Effectiveness and Affectiveness. By analyzing data stored in project man-
agement and in issue tracking system of Open Source Communities, we mea-
sured the Effectiveness as the time required to resolve an issue and analyzed
factors able to impact it.

Figure 1.1: Measuring Software

Figure 1.1 depict the main goal of this work. In the first part of this thesis,
we investigate, to which extends, the time required to resolve an issue can be
influenced by the maintenance type and by the development team that solved
the issue, showing that the type of maintenance plays a major role. In the sec-
ond part, we first introduce the concept of Affectiveness in software engineer-
ing, then we provide a set of tools for measuring Affectiveness expressed by de-
velopers and finally we analyze the impact of Affectiveness on the time required
to fix an issue, showing that it plays a major role.

1.1 Thesis Overview

This thesis is organized as follows: in Chapter 2 we present the main concepts
that are extensively used in the rest of this thesis.
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Chapter 3 presents a study of the Effectivenss of the software development
process by analyzing the Fixing Time of the maintenance activities performed
on software artifacts. This study shows that the Fixing Time of a maintenance
activity is influenced by the type of the maintenance activity. Then this chap-
ter presents a study of the Effectiveness of developers working teams in Open
Source Software Systems showing that developers in OSS systems are orga-
nized in communities and that these communities have different Effectiveness
as measured by the average Fixing Time and that Effectiveness is independent
by the community size.

Chapter 4 presents a novel point of view of analyzing the software devel-
opment process: the Affectiveness expressed by developers. Affectivenss is a
general term for those aspects able to represent the “’emotional of a person”.
Affectivenss represents the second dimension of software measure analyzed in
this thesis and we measure it by measuring Emotion, Sentiment and Politeness
expressed by developers in text written during development process. This study
first analyses the feasibility of detecting Affectiveness in software showing that
although developers more often express neutral

Chapter 5 presents a literature review of Affectiveness and Effectiveness as
treated in this thesis.

Chapter 6 finally draws the conclusions of this thesis highliting results and
contributions and presenting futures works.
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Chapter 2

Background

2.1 Mining Software Repositories

2.1.1 Software Repositories

Jira

An Issue tracking systems (ITS) is a golden mine for MSR research activity. ITS
store project’s development activities related to project’s issues like bugs, tasks,
enhancements and feature requests. ITS records the history of these reports
providing information related to their status (e.g. opened, closed, fixed), sever-
ity, priority and much more. As far as the authors know, there is not other
dataset publicly available which offers a so high number of developers com-
ments. To achieve such a big number or artifacts we have selected all projects
hosted by four well know open source communities: Apache Software Founda-
tion, JBoss, Spring and Codehaus communities. These big open source com-
munities are indeed rich of issue reports with relevant information about is-
sues’ resolution discussion. We experimented the data mining on Jira since
it offers more valuable data than traditional ITS such as Bugzilla. Indeed, it
records more development information and supports explicit cross-linking from
different repositories (e.g. SCM, ITS). This open new research opportunities
based on more reliable dataset.

Issues in Jira are classified in several categories such as bugs, improvements,
feature requests or tasks.

The database schema is shown in Fig. 2.1.
Our database has four main tables:

Issue Report. It stores the information extracted from the issue reports.

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: Data base schema

Issue Comment. It represents all the comments posted by users and de-
velopers in a Jira issue report. Is is associated to issue report table.

Jira User. It records jira user information.

Version.

Issue Affected Versions. It represents the software versions affected by an
issue.

Issue Fixed VersionsIt represents the software versions that fixed an issue.

Issue Attachment It contains all files attached on an issue report.
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Issue Change Log History It stores all the changes made on an issue, i.e.,
changing the resolution, changing the priority etc.

The dataset contains issues from 2002 to 2013 and was collected during the
research of this thesis. I contains about 700k issue reports along with about 2M
comments and about 1k open source projects.

GitHub

GitHub is a web-based code repository service providing a collaborative soft-
ware development environment and a social network for developers reposi-
tory. We use this repository since it host many open source projects, it is doc-
umented1 and it is publicly available for replication studies [48]. In Figure 2.2,
we report the portion of interest of dataset schema. Issue reports are character-
ized by two elements:

• Events. Events have action and action specific fields used to describe re-
spectively the type of event (e.g. the time the issue was closed or the time
a pull request pointed by the issue was merged).

• Label. Users may add a label to an issue report to signify priority, cate-
gory, or any other information that you and your fellow maintainers find
useful. From labels like “bug", “feature" it is possible to infer the type
of maintenance performed (e.g.; bug fixing, feature introduction). We
assume that these labels are accurate since they are freely provided by
the developer who was aware of the activity performed. This labels are
not attached with default values (like priority normal in Bugzilla) but are
spontaneously added by developers whenever they want to add a rele-
vant information for the issue handling.

2.2 Distribution Functions

In this section, we present the lognormal and Weibull distribution functions.
Such distributions are suited to model sample data presenting leptokurtic be-
havior (a “fat tail" distribution) and were already used for modeling software
metric distributions [25, 26].

Equations 2.1 and 2.2 describe the mathematical function of lognormal and
Weibull distributions respectively. Here, the variable x represents the issue res-
olution time of a particular maintenance activity. Using these functions we can

1http://ghtorrent.org/relational.html
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Figure 2.2: Github dataset schema.
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model the distribution of the issue resolution time for any maintenance type
independently.

In the rest of paragraph we briefly discuss how these distributions might be
linked to the issue resolution time generation.

F (x) = 1
p

2πσx
·e

−
lnx −µ

2σ2 (2.1)

F (x) = 1−e
(
x

λ
)k

(2.2)

2.2.1 Lognormal

The lognormal distribution has been used to analyze the distribution of lines
of code in software systems which presents a fat tail [124]. The associated gen-
erative process considers units with a property characterized by a value, like
classes with a certain number of lines of code. The units are randomly selected
to increment their property value, and such increment is directly proportional
to the actual property value. It can be demonstrated that such process pro-
duces a statistical distribution with a fat tail, which can appear as a power law
with a cut-off at large values.

In our context, the process leading to a lognormal distribution of the issue
resolution time may be obtained considering issues as units and the property
as the fixing time. Developers start working for addressing an issue when it
enters the issue tracking system, in the meanwhile new issues are introduced.
Issues are handled independently and by different developers, and it is likely
that difficult issues are managed in multiple working sessions, so that when an
issues is tackled, developers work on it for a certain time, and then stop, leaving
the remaining work to another session. The time needed to work on an issue
in the following working session can be considered roughly proportional to the
time accumulated in the previous sessions, since it is proportional to the over-
all complexity and difficulty associated to the issue. Furthermore issues can be
considered as randomly selected by developers, since they are randomly intro-
duced in the issue tracking system as they are discovered. This rough hypothe-
sis could explain the good fitting provided by the lognormal distribution.

2.2.2 Weibull

The Weibull distribution models a system with an initially fixed number of com-
ponents with a certain failing rate. Eventually, the fraction of failed components
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saturates to one. Also this process can generate a statistical distribution provid-
ing a power law fat tail.

For what concerns the process leading to a Weibull distribution in our dataset,
the issues represent the components and the fixing time represent the average
failing time. Since this may vary randomly, there will be issues quickly solved,
corresponding to components failing rapidly, and there will be long lasting is-
sues, corresponding to more robust components, whose number decreases as
the duration increases, satisfying the hypotheses of the Weibull model.

2.2.3 Cumulative Complementary Distribution Function

In probability theory and statistics, the cumulative distribution function (CDF)
describes the probability that a real-valued random variable X with a given
probability distribution will be found at a value less than or equal to x. In
the case of a continuous distribution, cumulative complementary distribution
function (CCDF) is its complementary defined as 1-CDF. The plot of CCDF is
useful whenever we are dealing with distributions right-skewed and with fat
tail. Indeed, such distributions cannot be characterized by statistics like mean
and standard deviation [75].

2.3 Affectivenss

In this section, we describe the three kinds of affective metrics studied : po-
liteness, sentiment and emotion. These three metrics have been used by other
researchers, i.e., politeness [77] and [30], sentiment [52] and [88], and emotion
[73].

2.3.1 Sentiment

We measured sentiment using the state-of-the-art SentiStrength tool2, which
is able to estimate the degree of positive and negative sentiment in short texts,
even for informal languages. SentiStrength by default detects two sentiment
polarization:

• Negative: -1 (slightly negative) to -5 (extremely negative)

• Positive: 1 (slightly positive) to 5 (extremely positive)

It uses a lexicon approach based on a list of words in order to detect sen-
timent. SentiStrength was originally developed for English and was optimized

2http://sentistrength.wlv.ac.uk/
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for short social web texts. We used SentiStrenght to measure the sentiment of
developers in issue comments (which often are short).

2.3.2 Politeness

Politeness is "the ability to make all the parties relaxed and comfortable with
one another3." Danescu et al. [30] proposed a machine learning approach for
evaluating the politeness of Wikipedia4 and Stackoverflow5 requests. Since Stack-
overflow is well-known in the software engineering field and is largely used by
software practitioners, the model that Danescu et al. used [30] is suitable for
our domain, i.e., Jira 6 issues, where developers post and discuss about tech-
nical aspects of issues. The authors provide a Web application7 and a library
version of their tool.

Given some text, the tool calculates the politeness of its sentences providing
as a result one of two possible labels: polite or impolite. Along with the polite-
ness label, the tool provides a level of confidence related to the probability of a
politeness class being assigned. We thus considered comments whose level of
confidence was less than 0.5 as neutral (namely the text did not convey either
politeness or impoliteness). Table 2.1 and 2.2 show some examples of polite
and impolite comments as classified by the tool8.

2.3.3 Emotions

Emotion mining tries to identify the presence of human emotions like joy or
fear from text, voice and video artifacts produced by humans. As such, it is
different from sentiment analysis, which instead evaluates a given emotion as
being positive or negative [80]. The field of sentiment analysis as a whole is
currently moving towards emotion mining, since this provides more detailed
insights into the behavior of people [123]. Since these research areas affect the
decision-making process of people [80], a diverse range of actors, from market-
ing departments and investors to politicians make use of their techniques. In
software engineering, emotion mining applied to text artifacts could be used to
provide hints on factors responsible for joy and satisfaction among developers
(e.g., new release), or fear and anger (e.g., deadline or a recurring bug). More-
over, it provides a different perspective to interpret productivity and job sat-

3http://en.wikipedia.org/wiki/Politeness
4https:en.wikipedia.orgwikiMain_Page
5http:stackoverflow.com
6Jira Issue Tracking System https://www.atlassian.com/software/jira
7http://www.mpi-sws.org/cristian/Politeness.html
8User’s names are reported as <dev_name_a> for the sake of privacy.
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Comment Confidence Level
Can you put more detail
in description ? If you
can attach what was done
in 0.89-fb branch, that
would be nice. Thanks,
<dev_name_b>

0.83

<dev_name_a>, can you
open a new Jira for those
suggestions? I’ll be happy to
review.

0.919

<dev_name_a>, can you
submit a patch against
trunk? (Sorry, thought I
tagged this 0.7 to begin
with.)

0.8

Table 2.1: Examples of polite comments.

Comment Confidence
Level

Why are you cloning tickets?
Don’t do that.

0.816

- why blow away rack prop-
erties? - how does this al-
low talking to non-dynamic
snitch?

0.85

<dev_name_a>, What is the
point of doing that?

0.81

Table 2.2: Examples of impolite comments.

isfaction. Since several studies show that it is possible to “contract” emotions
from others through computer-mediated communication systems [50, 56], de-
velopment artifacts like mailing lists or the discussion board of an issue track-
ing system could be a promising source for mining developer emotions during
software evolution.
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Primary Secondary Tertiary
emotions emotions emotions

love
Affection Compassion, Sentimentality, Liking, Caring, . . .
Lust/Sexual desire Desire, Passion, Infatuation
Longing

Joy

Cheerfulness Amusement, Enjoyment, Happiness, Satisfaction, . . .
Zest Enthusiasm, Zeal, Excitement, Thrill,Exhilaration
Contentment Pleasure
Optimism Eagerness, Hope
Pride Triumph
Enthrallment Enthrallment, Rapture

Surprise Surprise Amazement, Astonishment

Anger

Irritability Aggravation, Agitation, Annoyance, Grumpy, . . .
Exasperation Frustration
Rage Outrage, Fury, Hostility, Bitter, Hatred, Dislike, . . .
Disgust Revulsion, Contempt, Loathing
Envy Jealousy
Torment Torment

Sadness

Suffering Agony, Anguish, Hurt
Sadness Depression, Despair, Unhappy, Grief, Melancholy, . . .
Disappointment Dismay, Displeasure
Shame Guilt, Regret, Remorse
Neglect Embarrassment, Humiliation, Insecurity, Insult, . . .
Sympathy Pity, Sympathy

Fear
Horror Alarm, Shock, Fright, Horror, Panic, Hysteria, . . .
Nervousness Suspense, Uneasiness, Worry, Distress, Dread, . . .

Table 2.3: Parrott’s emotion framework.

Parrott’s Framework

Emotion is a “psychological state that arises spontaneously rather than through
conscious effort and is sometimes accompanied by physiological changes” [58].
General types of emotions are joy, sadness, anger, surprise, hate and fear.
However, many other categories and sub-categories can be identified. Since
there is not one standard emotion word hierarchy, many studies in the cogni-
tive psychology domain [101] have focused on research about emotions, result-
ing in various proposals for cathegorizing emotions [96, 89, 84].

One of the more recent classifications of emotions is Parrott’s framework [84],
which classifies human emotions into a tree structure with 3 levels, as is shown
in Table 2.3. Each level refines the granularity of the previous level, making ab-
stract emotions more concrete. For example, level-1 of this classification con-
sists of six primary-emotions, i.e., love, sadness, anger, joy, surprise and
fear. The concise and intuitive nature of the primary emotions makes Par-
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[...] I'm not so convinced that moving all

the static methods out is useful (Fear).

How is a bunch of static methods on a

utility class easier than a bunch of static

methods within the HtmlCalendarRenderer

better? (Anger)

[...] the risk of introducing new bugs for

no great benefit (Fear).

Specific feedback regarding this specific

patch: (1) There is significant binary

incompatibility (Neutral).

[...] Previously almost all these helper

methods were private; this patch makes them

all public [...] (Neutral)

Figure 2.3: Example of issue comments with identified emotions for each sen-
tence

rott’s classification easy to understand by different stakeholders. In particular,
the classification is not just aimed at the people rating a particular artifact as
describing a particular emotion, but also appeals to people like team leads try-
ing to benefit from the emotional classification to understand the emotions of
their team members. In our study, we only consider the six primary emotions,
but in future work we plan to extend our results to secondary and tertiary emo-
tions for the most popular primary emotions.



Chapter 3

Software Effectiveness

3.1 On the influence of maintenance activity types
on the issue resolution time

The ISO/IEC 14764 standard specifies four types of software maintenance ac-
tivities spanning the different motivations that software engineers have while
performing changes to an existing software system. Undoubtedly, this classifi-
cation has helped in organizing the workflow within software projects, however
for planning purposes the relative time differences for the respective tasks re-
mains largely unexplored.

In this empirical study, we investigate the influence of the maintenance
type on issue resolution time. From GitHub’s issue repository, we analyze more
than 14000 issue reports taken from 34 open source projects and classify them
as corrective, adaptive, perfective or preventive maintenance. Based on this
data, we show that the issue resolution time depends on the maintenance type.
Moreover, we propose a statistical model to describe the distribution of the is-
sue resolution time for each type of maintenance activity. Finally, we demon-
strate the usefulness of this model for scheduling the maintenance workload.

3.1.1 Introduction

Software maintenance is a key ingredient of any successful software project,
certainly in modern development processes with their emphasis on iterative
and incremental development. Already in 1976, Swanson introduced the first
classification of software maintenance types to aid researchers and practition-
ers in describing the activities they are performing [107]. Swanson’s classifica-
tion has later been extended and today is incorporated into the ISO/IEC 14764
standard which defines four types of activities: (a) corrective maintenance is

15
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devoted to removing bugs; (b) adaptive maintenance is related to adding new
features; (c) perfective maintenance deals with activities to enhance perfor-
mance; (d) and preventive maintenance takes into account changes on soft-
ware finalized to avoid future bugs.

In this study, we investigate the relationship between the type of mainte-
nance activity (as defined by the ISO/IEC 14764) and the time required for fin-
ishing work items. For our empirical study, we rely on GitHub’s issue repository
that hosts issues that are ascribable as requiring corrective, adaptive, perfec-
tive or preventive maintenance. We try out several statistical distributions to
see which ones are suitable for describing the distribution of the issue resolu-
tion time for each type of maintenance activity.

This work follows the Goal-Question-Metric paradigm [112]. The goal of
this study is to evaluate the impact of the type of maintenance activity in the
issue resolution process. The focus is to evaluate how the metric issue resolu-
tion time changes for the corrective, adaptive, perfective and preventive main-
tenance. For this purpose, we investigate which statistical model is suitable
for describing the resolution time distribution. The viewpoint is that of issue
triager and researchers. The first one, scheduling maintenance workload, is in-
terested in evaluating the resolution time per maintenance activity. The latter,
studying software maintenance based on data mined from software reposito-
ries, is interested on how to exploit the maintenance type for building better
predictive models. The environment of this study regards the issue tracking
repository with 14000 issues taken from 34 open source projects. To achieve
our purpose, we pursue the following research questions:

• RQ1: Is the issue resolution time dependent on maintenance type?

• RQ2: Is it possible to model the distribution of the issue resolution times
with respect to the type of maintenance considered?

This section is organized as follow. In section 2.2, we provide the required
background related to distribution functions. In section 3.1.2 we describe the
data used for the empirical study. In section 3.1.6 we present our results and
in section 3.1.7 we provide an operative example on how to use these findings.
The threats to validity are reported in section 3.1.8.

3.1.2 Experimental Setup

This section presents in 3.1.3 the dataset we use, in 3.1.4 how we map issues to
maintenance activity and finally in 3.1.5 how we measure the issue resolution
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time.

3.1.3 Dataset

For our empirical study we use the issue reports recorded in the GitHub repos-
itory as described in 2.1.1.

Since we are interested in maintenance activity that are complete, we se-
lect only closed issues, namely we removed every issue report without a closed
event. Table 4.14 shows the dataset statistics: almost 50% of issues are labeled,
within this 50%, almost 30% are labeled with keyword we can relate to the main-
tenance activity that was performed. For the empirical study, we use 34 (out of
90) projects since they have at least one issue with a label related to a mainte-
nance activity. Our sample take into account projects developed with different
programming languages (e.g., C, Java, ...) and with few or lot of developers in-
volved (up to 95). From this projects we collect more than 14,000 issues.

Table 3.1: GitHub dataset statistics.

Statistic value

Number of projects 90
Number of projects with labeled
issues

34

Number of different languages per
projects with labeled issues

12

All Issues ' 100000
Issues with at least one label ' 50000
Issues related to maintenance ' 39000
Issues related to maintenance with
status closed

14298

Mean of labeled issues per projects 44
Standard Deviation of labeled issues
in projects

72

Min labeled issues per projects 1
Max labeled issues per projects 345
Min developers per projects with
labeled issues

1

Max developers per projects with
labeled issues

95
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3.1.4 Mapping issue to the maintenance type

Issue reports in GitHub may refer to any type of maintenance. Classification of
these issues is not easy since none of the authors contributed to any of these
projects. For this reason, we relied on our developer experience to classify the
issue according to the label they have. We believe that labels used by developers
in GitHub are reliable since assigned by the person who actually performed the
maintenance activity. The first two authors manually inspected all issue labels
in the dataset and, where feasible, they mapped the label to a particular mainte-
nance activity. As guideline for the labeling we refer to several studies presented
in literature [1, 71, 107]. We used this approach since it was already successfully
adopted by Mockus and Votta and Purushothaman and Perry [71, 91]. In these
cases the authors determine the type of maintenance analyzing the text mes-
sage submitted by the developer.

We did not map any label that was not clear or was not ascribable to a main-
tenance type. For example, labels like GUI and Mobile are generic an do not
give hints on the type of maintenance performed, hence were classified in a
separate category. For the same reason, we did not consider issues that use
labels ascribable to different type of maintenance. Mapping of these labels as
either a corrective, perfective, adaptive and preventive would have introduced
a threats to validity in our analysis.

Table 3.2 shows the mapping with the percentages of maintenance types.

3.1.5 Issue Resolution Time

Figure 3.1 shows the typical issue timeline in GitHub:

• T cr represents the time an issue is created.

• T cl represents the time an issue is closed.

• T a represents the time an issue is assigned to a developer.

• T s is the time a developer subscribe that an issue as been assigned to him.

• T m represent the time when an issue is merged in the repository, namely
the local commit is merged in the remote repository.

In our analysis we are interested in analyzing the working time spent by the
developer to resolve the issue. For this reason, we do not consider the triag-
ing steps needed to assign the issue T a - T cr nor the steps between an issue is
merged into the code base and confirmed as being closed T cl - T mẆe compute
the issue resolution time as the difference between T m and T s namely we com-
pute the difference between the first time the issue is subscribed and the last
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Maintenance type Labels Samples

Corrective

Bug, Bugs, Bug Report, non critical bug,
Type-Bug,Critical,bug, Defect, Framework
bug, Rails bug, browser bug,
Type-Defect,Crashes - 500 errors

6754
(47.9%)

Perfective
Enhancement, Type-Enhancement,
Improvement,Type-Improvement,Cleanup
refactoring, code refactoring

2397 (17%)

Adaptive
Feature, Feature Request, New
feature,Approved feature,Type-New Feature

4723
(33.5%)

Preventive Test, Testing Framework 226 (1.6%)
Not Mapped (due to
doubtful label)

Task, Suggestion, ... 3149 (8% of
all labeled
issues)

Not Mapped (due to
multi type of mainte-
nance performed)

Third party issue, Status-Started, Cleaning, ... 467 (1 % of
all labeled
issues)

Table 3.2: Table of mapping issue-labels/maintenance-type

time the issue is merged in the repository. In this way we take into account also
supplementary fixes due to re-opened bugs. Our assumption is that the de-
veloper subscribes for issue resolution when she is ready for the maintenance
activity; whereas she merges the code change only when the maintenance ac-
tivity is complete. We assume that such time-checkpoints are representative of
the time spent to resolve the issue [16, 81].

3.1.6 Results and Discussion

For each research question, we first discuss its motivation, followed by the ap-
proach we used and finally we present our findings.

RQ1. Is the issue resolution time dependent on maintenance type?

Motivation. Weiss et al. reveal that JBoss’s bugs are on average addressed
quicker than new features [115]. Assuming that bugs and features are addressed
with different type of maintenances, we may hypothesize that issue resolution
time is influenced by the maintenance type.

A similar hint is provided by the relationship between code change and
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Tr = Tm −Ts (3.1)

Figure 3.1: Example of timeline for GitHub issue.

maintenance type. Hindle et al. show that large commits — commits that
involve more than thirty files — are related more likely to perfective than to
corrective maintenance [60]. Purushothaman et al. show that even in each
file the percentage of lines of code modified is not equally distributed among
the different types of maintenance activities [91]. Having evidence that type of
maintenance "correlates" with the amount of files and lines of code handled,
we hypothesize that the type of maintenance “correlates" with issue resolution
time as well.

Approach. In order to detect differences among the resolution times be-
longing to different maintenance activities we adopted the Wilcoxon test [117,
102], which is non-parametric and thus can be used with no restrictions nor
hypotheses on the statistical distribution of the sample populations. The test
is suitable for comparing differences among the averages or the medians of
two populations when their distributions are not gaussian. For the analysis, we
use the one sided Wilcoxon rank sum test using the 5% significance level (i.e.,
p-value < 0.05) and we compare each resolution time dataset with all others
datasets.

Findings. The issue resolution time depends on maintenance type. Fig-
ure 3.2 reports resolution times boxplots in a logarithmic scale (time is expressed
in days). The time distributions are right-skewed with values ranging across
different orders of magnitudes, suggesting a non gaussian distribution of the
data.

Table 4.11 reports the result of the Wilcoxon test. The p-values obtained
for all the couples, which are all below 0.005, indicating that issue fixing times
are significantly different for different maintenance types. In particular the test
performed for each couple shows to a high significance level that: perfective
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Figure 3.2: Resolution time in days grouped by maintenance type
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Pair of Groups Compared Test p-value
Effect
Size

Corrective vs Perfective greater 2.3E-5 0.024
Corrective vs Adaptive less 1.9E-5 0.096
Corrective vs Preventive less 2.4E-5 0.076
Adaptive vs Preventive less 4.3E-3 0.049
Adaptive vs Perfective greater n.s 0.124
Perfective vs Preventive less n.s 0.144

Table 3.3: Wilcoxon test for groups split by maintenance, test column indicates
if the median of the first group is greater or less than the second type(n.s stands
for not statistically significant.)

maintenance is on average faster than corrective maintenance; corrective is
on average faster than adaptive; adaptive is on average faster than preven-
tive.

We conclude that different maintenance activities do have different issue
resolution times.

RQ2. Is it possible to model the distribution of the issue resolu-
tion times with respect to the type of maintenance considered?

Motivation. RQ1 exhibits that the issue resolution time depends on the type of
maintenance handled. Here, we investigate how to describe the distribution of
the issue resolution time to highlight the differences among the maintenance
types. A correct modeling is indeed crucial for scheduling the development
activities and estimate them.

Approach. We analyze the lognormal and Weibull statistical distributions
models. These distributions have been proved to be suitable to model software
metric distributions [25, 26]. Moreover, in section 2.2 we explained which pro-
cess may lead to such distributions in the context of the issue resolution time.

Findings.
In tables 3.4, 3.5 and 3.6 we report the lognormal and Weibull best fitting

parameters with the significance levels, represented by the fitting coefficient
R2, along with the size of dataset used for the fitting. We do not report a similar
table for preventive maintenance because the distribution consists of only 200
sample, thus it is not possible to repeat the same analysis with different sam-
ple size as for the other maintenance activities. We compute these parameters
taking into account issues handled with corrective maintenance, but the same
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behavior is exhibited by the best fitting parameters associated to other mainte-
nance types; here skipped for the sake of simplicity. These tables show that log-
normal and Weibull have good fitting for the raw data in all cases, with a level of
significance higher than 90%. The best fitting parameters are in agreement with
the results of the Wilcoxon rank sum test (table 4.11). Moreover, such parame-
ters are quite stable and do not vary with the considered sample size. This is a
relevant point since it enables these models to be used also in the early stages
of the project development when few hundreds of resolved issues are available.
In our empirical study, just using a random sample of 3% (200 out of 6754 -
number of issues for corrective maintenance) of the issues, we can predict the
issue resolution time. In figures 3.3c, 3.3b, 3.3d and 3.3a we plot the Cumulative
Complementary Distribution Function (CCDF) of issue resolution time. As we
can see, the first 200 points are practically overlapping all other points as well
as the Weibull curve.

For all these reasons, the statistical distribution models are suitable to
quantify how much the issue resolution times is influenced by the type of
maintenance.

Lognormal Weibull
Sample Size µ σ R2 λ k R2

100 11.186 4.9773 0.95285 1.0561e06 0.3502 0.9902
100 11.349 5.0921 0.93528 0.8970e06 0.2852 0.9863
200 11.77 4.5228 0.9271 0.8843e06 0.3128 0.9858
200 11.267 5.023 0.94094 1.1848e06 0.3479 0.9915
500 11.877 4.4152 0.92547 1.0019e06 0.3192 0.9891
500 11.554 4.7862 0.92842 0.8924e06 0.2883 0.9767

1000 11.716 4.605 0.9249 0.9475e06 0.3030 0.9839
1000 11.71 4.4949 0.93989 0.9095e06 0.3033 0.9921

All 11.743 4.5949 0.93899 0.9279e06 0.3008 0.9859

Table 3.4: Lognormal and Weibull fitting parameters for different sample size
for corrective maintenance type

From the comparison of tables 3.4, 3.5 and 3.6, we can highlight some differ-
ences between Weibull and lognormal models. The Weibull distribution shows
less stable best fitting parameters compared to lognormal. However, it has a
better fitting as confirmed by the coefficient R2. This fact is highlighted also in
figures 3.3c, 3.3b, 3.3d and 3.3a where the Weibull distribution exhibits a bet-
ter overlapping with raw data. We must underline that our data is limited to
few years. This introduces a upper cut off on resolution times, which cannot be
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Lognormal Weibull
Sample Size µ σ R2 λ k R2

100 11.313 4.0977 0.9495 5.364e05 0.3151 0.984
200 11.751 4.4427 0.9449 9.7704e05 0.2958 0.9839
500 11.447 4.3648 0.9554 7.1057e05 0.294 0.9875

1000 11.562 4.2992 0.9533 7.6992e05 0.2990 0.9891
All 11.587 4.2370 0.9476 7.6707e05 0.3038 0.9886

Table 3.5: Lognormal and Weibull fitting parameters for different sample size
for perfective maintenance type.

Lognormal Weibull
Sample Size µ σ R2 λ k R2

100 13.073 3.6821 0.9574 2.2962e06 0.3917 0.9875
200 13.148 3.2827 0.9688 2.1859e06 0.4101 0.9963
500 12.611 4.0179 0.9592 1.7755e06 0.4308 0.9895

1000 12.747 3.8036 0.9623 1.8473e06 0.3602 0.9904
All 12.776 3.6721 0.9700 1.8448e06 0.3615 0.9945

Table 3.6: Lognormal and Weibull fitting parameters for different sample size
for adaptive maintenance type

longer than the time span analyzed. This may be the reason why the lognormal
fails to fit well in the tail of the distribution, even if the fitting parameters are
stable. We believe that in the case of data without such upper cut off the log-
normal would provide a better fit and more accurate estimates. In fact the log-
normal curve well overlaps the bulk of the distribution and mainly fails in the
tail, for larger values, where it remains much higher than the data curve. But in
this region data are sparse and rare, because of the finiteness of the dataset. In
principle, with an infinite amount of data, the fat tail would present arbitrarily
large values. Namely, if one could consider arbitrarily large datasets, there will
be maintenance operations lasting an arbitrarily large amount of time. In case
of finite dataset, data in the tail become sparse and the related complementary
cumulative distribution will drop to zero faster than in the case if theoretically
infinite dataset. This explain why the lognormal distribution best fitting, which
suits for a theoretically infinite dataset with no cut off in the tail, fails in fitting
properly the data in the tail while is very good for data in the bulk.



3.1. MAINTENANCE TYPE VS ISSUE RESOLUTION TIME 25

10
2

10
4

10
6

10
8

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Resolution time (sec)

Weibull−Lognormal best fit

 

 

empirical ccdf all data

empirical ccdf 200 samples

Weibull best fit 200 samples

LogNorm best fit 200 samples

(a) Lognormal and Weibull CCDF fit-
ting for corrective maintenance.
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(b) Lognormal and Weibull CCDF fit-
ting for perfective maintenance.
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(c) Lognormal and Weibull CCDF fit-
ting for adaptive maintenance.
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(d) Lognormal and Weibull CCDF fit-
ting for preventive maintenance.
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3.1.7 How to use Statistical Distribution Models

We present two practical examples to show the effectiveness of our model. In
the first example we tackle the problem of estimating the time effort needed
to resolve accumulated issues over time. Suppose a company started working
on solving issues and collected issue resolution times. After (say) six months of
work it accumulated a queue of unsolved issues during the last two weeks or
the last month. We simulated this scenario using our data, considering the six
months commits divided in two groups: “solved issues” (the set SI), and “ac-
cumulated issues” during last two weeks (the set AI), still to be solved. Using
the set SI we estimated the Weibull parameters for the various kinds of mainte-
nance. The set AI is composed by:

• Last two weeks: 8 corrective, 7 adaptive, 3 perfective, 0 preventive

• Last month: 15 corrective, 15 adaptive, 7 perfective, 0 preventive

From the knowledge of the Weibull CCDF we partitioned the set AI into bins,
corresponding to percentage of issues multiple of ten, namely 10%, 20%, and
so on. For each percentage we determined the issue resolution times for each
kind of maintenance. For example, from the Weibull parameters for corrective
maintenance we have that 10% of issues are solved in less than 540 seconds,
20% in less than 6400 seconds, and so on. This procedure corresponds to solve
the inverse transform of the CCDF for issue resolution times at discrete value,
which can be very practical. Next we used these data to statistically infer times
needed for solving the issues. For example, 10% of the 8 corrective maintenance
operations, will be solved in 540 seconds, so that this amount can be estimated
multiplying 0.8 by 540 seconds. Then another 0.8, which together with the first
makes the 20% of data, takes less than 6400 seconds. Thus we multiply 0.8 by
6400 and sum it up with the estimate obtained for the first 10%, and so on. We
stop the count when we reach the 90%, since the Weibull CCDF goes to 100%
when time is infinite.

For the last two week data, the lower estimate provides 207 days for correc-
tive maintenance, 251 days for the adaptive, 62 days for the perfective. Since
we stop the count when we reach the 90%, these can be considered lower es-
timates. Next we randomly selected the issue resolution time for 8 corrective
maintenance operations, for 7 adaptive maintenance operations, and 3 perfec-
tive maintenance operations from our dataset and summed up all the resolu-
tion times, and repeated the procedure three times. The results of the trials are
in table 3.7.

In the second example the company wants to commit with customers re-
quiring a certain amount of improvements, and needs to estimate the fraction
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Maintenance type
TRT

[
days

]
1◦ trial

TRT
[
days

]
2◦ trial

TRT
[
days

]
3◦ trial

8 corrective maintenance 523 313 316
7 adaptive maintenance 437 307 683
3 preventive maintenance 47 119 120

Table 3.7: Issue resolution time estimations (TRT stands for Total Resolution
Time)

of improvements required by customers that can be solved in a given amount
of time, before committing itself. We simulated the number of possible im-
provements required by customers using our data, estimating the perfective
maintenance operations requested in a month. We averaged this number over
10 months, and obtained 20 requests, which is suitable for a medium size com-
pany. Again we used the Weibull CCDF with parameters estimated by the set
SI, and partitioned the number of perfective maintenance operation requested
into bins corresponding to percentage of issues multiple of ten. We suppose
the company wants to estimate the time for solving 70% of requests. From the
Weibull CCDF best fitting we obtain, using the same procedure as above, an
estimate of 43 days for solving 14 issues. Next we randomly selected the issue
resolution time for 14 perfective maintenance operations from our dataset and
summed up all the resolution times, and repeated the procedure three times.
The results of the trials are reported in table 3.8.

# issues TRT
[
days

]
1◦ trial TRT

[
days

]
2◦ trial TRT

[
days

]
3◦ trial

14 532 304 167

Table 3.8: Issue resolution time estimations for preventive maintenance (TRT
stands for Total Resolution Time)

These three trials display a large variability which is intrinsic of data dis-
tributed according to a power-law in the tail. In fact, there are many issues with
relatively low fixing times, but there are also issues with a very large fixing time,
even if these latter are much less. Thus, the result of summing up all resolution
times for 14 issues randomly selected can largely vary according to the possibil-
ities of selecting 14 issues all with low resolution time, or 14 issues containing
even one single issue with a very large resolution time.
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3.1.8 Threats to Validity

In this section we present the threats to validity of our study according to the
guidelines reported in [122].
Threats to internal validity concern confounding factors that can influence the
obtained results. We assume a causal relationship between the issue resolution
time and the type of maintenance performed [60, 71, 91]. However, several fac-
tors can influence the issue resolution time like the complexity of the issue, type
of project, project deadline etc.. Due to the large number of samples, projects
and time frame analyzed, we assume that these factors may compensate each
other. We hypothesize that our dataset is big enough to be avoid the bias related
to specific factors. Threats to construct validity focus on how accurately the
observations describe the phenomena of interest. In this study, the elements
of interest are the issue resolution time and the type of maintenance. The first
element represents the working time spent to address a maintenance activity
(stripped by the triaging times not devoted to code maintenance). We compute
this value as the difference between (1) the time when the issue is subscribed
by the developer and (2) the time when the issue is merged in the repository.
We use these time-checkpoints assuming that the developers subscribe an is-
sue when they ready to change the maintain the code; whereas they merge the
code change only when the maintenance activity is completed. The adoption
of issue fields to determine the resolution time has been already used in litera-
ture [16, 81]. The second element represents the type of activity performed by
the developer to address the issue. We use the labeling provided by developer to
classify the issue and then the type of maintenance performed. Since the label-
ing was done by people aware of the activity performed, we consider accurate
and reliable such labels. To limit the impact of a subjective interpretation of
the labels, the first and the second author referred to definition of maintenance
types provided in literature [1, 71, 107]. We rely on this approach since it was al-
ready successfully adopted in literature [71, 91]. We decided to do not consider
the issue for the analysis whenever the classification of its labels was not possi-
ble or doubtful. We assume that these labels (e.g.; GUI, Mobile) do not belong
to specific maintenance category, namely they do not introduce a bias (due to
a maintenance type underrepresented).

Threats to external validity correspond to the generalizability of our exper-
imental results. In this study, we use more than 30 projects that are represen-
tative of open source domain. To generalize our findings we should extend the
analysis to industrial projects.

Threats to reliability validity correspond to the degree to which the same
data would lead to the same results when repeated. We address this threat de-
scribing all steps of our experiments and using a dataset freely available [48].
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Repeating our analysis may easily lead other researchers to the same results.

3.2 Measuring and Understanding the Effectiveness
of JIRA Developers Communities

Tools for project management and issues/bugs tracking are becoming useful
for governing the development process of Open Source software. Such tools
simplify the communication process among developers and ensure the scala-
bility of a project. The more information developers are able to exchange, the
clearer are the goals, and the higher is the number of developers keen on joining
and actively collaborating on a project. In this study we present a preliminary
empirical analysis of the communities-structure of developers in JIRA by ana-
lyzing 7 popular projects hosted in the repository. We analyze how these com-
munities perform in terms of issue-resolution time of any given issue. The main
contributions of this work are the confirmation of the existence of communities
in developer networks, and the empirical finding that the issue resolution-time
of any given issue is not correlated with the dimension of a developer commu-
nity.

3.2.1 Introduction

During the last decade, researchers have been exploring the effectiveness of
Open Source software communities, and today, Open Source systems are no
longer considered to be children of a lesser God. The quality reached by such
systems is well known and recognised [33]. Faster Internet connections, smart-
phones, tablets and devices always connected to the Internet help open source
developers to stay in touch with each other in order to generate software. Com-
munication processes are a key-factor for open source paradigm development,
and tools able to manage the communication within a group of people devel-
oping and creating something together are therefore vital. In this study we anal-
ysed the developers’ structure for seven projects hosted in JIRA1, a proprietary
issue tracking product developed by Atlassian. JIRA provides bug tracking, is-
sue tracking, and project management functions,and includes tools allowing
migration from competitors. According to Atlassian 2, it is used for issue track-
ing and project management by over 25,000 customers around the world. An
Issue Tracking System (ITS) is a repository used by software developers as a sup-
port for the software development process. It supports corrective maintenance

1https://www.atlassian.com/software/jira
2http://blogs.atlassian.com/2013/05/why-people-choose-jira-6/
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activity like Bug Tracking systems, along with other types of maintenance re-
quests.

Since JIRA is becoming more and more popular among developers, it is
worthwhile to understand the impact of such a product on the structure of
developer communities. Several studies have demonstrated that developers
involved in the process of creating new open source software are organised,
and that a clear structure exists. Linux, for example, is not the result of a dis-
organised process executed by disorganised developers. Their success in de-
veloping a very complex system, used even by NASA3, was not simply based on
luck. However, this doesn’t mean that open source paradigms always lead to the
development of quality products. Questions such as the following arise about
open source communities: "Can I trust something produced by people work-
ing for free, driven only by passion and pleasure?" [57] "Can software developed
without a commercial plan and strict deadlines be of high quality?" "How can
developers work efficiently without central project coordination?" [28].

Diseconomies of scale can affect the communication process of a group of
developers working together. When the number of developers increases (e.g.
when newcomers join a project), the structure becomes more difficult to man-
age, and it may be difficult to keep track of who is doing what. Tools such as
JIRA help to reduce co-ordination problems, to increase the level of communi-
cation and to scale up the project by reducing releases’ time. The main goal of
this study was to provide empirical evidence showing whether developers are
organised with defined structures/teams, and if such teams perform differently
in terms of productivity. We define the productivity of a team as the average fix-
ing time for any given issue. We answer the following research questions: RQ1:
Does the open source software developer’s network graph contain communi-
ties? RQ2: Are there differences in fixing time between work teams? The rest of
the section is organized as follows: in Section 5.1.2 we give an overview of the
related works, in Section 3.2.2 we explain the dataset we used and the method-
ology, in Section 3.2.5 we discuss our results and we conclude with Section 3.2.8
and VI by analyzing the threats to validity.

3.2.2 Experimental Setup

3.2.3 Dataset

We built our dataset by collecting data from the Apache Software Foundation
Issue Tracking system, JIRA4 as described in Sec. 2.1.1. We mined the projects

3http://www.linux.com/news/featured-blogs/191-linux-training/711318-linux-
foundation-training-prepares-the-international-space-station-for-linux-migration

4https://www.atlassian.com/software/jira
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of the Apache Software Foundation collecting issues from 2002 to December
2013, Table 4.14 shows the corpus of the 7 projects selected for our analysis,
highlighting the number of comments recorded for each project and the num-
ber of developers involved. We selected projects with the highest number of
comments.

Project # of comments # of developers

HBase 91016 951
Hadoop Common 61958 1243
Derby 52668 675
Lucene Core 50152 1107
Hadoop HDFS 42208 850
Hive 39002 757
Hadoop Map-Reduce 34793 875

Table 3.9: Selected Projects Statistics

3.2.4 Developer’s Network

We extracted the developer network based on the data contained in JIRA. JIRA
allows users to post issues (with a set of properties such as maintenance type,
priority, etc.) and to comment on them. We built developer network modeling
nodes, which represent developers, and edges from node A to node B, which
represent when developer A was commenting on developer B’s issue. In this
manner, we obtained a directed network.

We then used Gephi5 [5] to analyze the obtained network. Gephi is an in-
teractive visualization and exploration tool. We ran the modularity algorithm,
based on the algorithms developed by Blonde [13] and Lambiotte[67], in order
to obtain the network communities. We finally measured the obtained net-
works.

Project Modularity Avg. Degree Avg. Clustering Coeff. # of Communities

HBase 0.283 5.552 0.459 8
Hadoop Common 0.334 5.617 0.296 15
Derby 0.193 5.170 0.484 11
Lucene Core 0.269 3.493 0.339 14
Hadoop Map-Reduce 0.332 5.040 0.242 12
Hive 0.333 4.358 0.287 16
Hadoop HDFS 0.284 5.275 0.311 8

Table 3.10: Selected Projects Network Statistics

5http://gephi.github.io/
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Figure 3.4: Example of Developer’s Graph Extracted From Lucene-Core Project.
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Figure 3.4 shows an example of network graph we obtained. Node size rep-
resents the number of issues posted by a developer, and the edge size from node
A to node B represents the number of comments posted by node A in response
to issues posted by node B.

3.2.5 Result and Discussion

3.2.6 Does the open source software developer’s network graph
contain communities?

Motivation. Understanding developer structure in open source projects al-
lows both work teams and management to have better control over the whole
project. Both issue triage and workload scheduling may benefit from having a
clear view of how the developers are organized and how productivity is spread
across work teams. For this reason our first research question aims to explore
the presence of communities in JIRA developer networks.

Approach. We created the developer network graph as described in 3.2.4.
Each Node represents a developer who posted/commented on an issue, and
each Edge represents a developer who commented on another developer’s is-
sue. We applied the modularity algorithm [67] to obtain developer communi-
ties.

Findings. Open Source Projects hosted in JIRA do have communities.
Table 3.10 shows the network metrics for the analyzed projects. The Modular-
ity metric represents the fraction of the edges that fall within the given groups
minus the expected such fraction if edges were distributed at random. It is pos-
itive if the number of edges within groups exceeds the number expected on the
basis of chance. For a given division of the network’s vertices into some mod-
ules, modularity reflects the concentration of edges within modules compared
with the random distribution of links between all nodes regardless of modules.
Avg. Degree represents the average node degree (as the sum of in-degree and
out-degree). The Avg. Clustering Coeff. metric quantifies on average how close
node neighbors are to being a clique (complete graph) [114]. The last column
represents the number of communities found by the algorithm [67]. Results
show that the 7 open source projects analyzed have a number of communities,
ranging from 8 to 16.
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3.2.7 Are there differences in fixing time between work teams?

Motivation. Based on the findings related to the first research question, we
know of the presence of communities in JIRA developer networks. It is also of
interest to analyze these communities in order to understand if and how the
workload is distributed. This kind of information can be useful during issue
triaging and scheduling of workload distribution. For example if we find a com-
munity resolving a high percentage of maintenance issues, then it is likely that
a maintenance issue will be assigned to them, or if there is a community with
a fast average issue resolution time, then this community can be assigned bug
issues when the release date is imminent.

Approach. We used the developer network obtained in the first research
question. For each project, we analyzed its developer communities by evalu-
ating the average issue resolution time, the number of issues resolved, and the
distribution of maintenance type and priority of fixed issues.

Findings. While JIRA Developer Communities have different average is-
sue fixing times, the distribution of issue types and priority is similar across
the communities.

Tables 3.11 to 3.17 show, for each project, the number of developers belong-
ing to a particular community, the number of issues resolved, and the average
issue fixing time.

Community Id Community Size # of Fixed Issues AVG Fixing Time [Days]

6 2 1 5.6
4 20 186 159.4

13 6 2 175
3 245 2919 214.7
2 109 879 216.3
1 143 2498 242.1

12 3 2 258.2
0 90 372 260.8

Table 3.11: Derby Communities Statistics.

The first result is related to Pareto’s law (20% of developers doing 80% of the
issue resolution) [63]. There are only a few communities taking care of the ma-
jority of issues. These communities have a different average resolution time,
and this number is independent from the community size and from the num-
ber of fixed issues.
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Community Id Community Size # of Fixed Issues AVG Fixing Time [Days]

9 2 1 0.7
10 5 1 10.9
6 26 221 52.3
3 141 2359 71.8
2 502 2162 86.1
0 293 2992 120.9
1 60 207 122.2
4 84 215 158.8
5 31 363 193.7

Table 3.12: Hadoop Common Communities Statistics.

We evaluated the Pearson’s correlation coefficient between the average is-
sue fixing time and the number of issues resolved, and between the average
issue fixing time and the community size. We found a rather weak correla-
tion (<0.3) with the only exception being for Hadoop Map/Reduce, in which
the correlation between average issue fixing time and the community size was
0.68. This result indicates that the average issue resolution time is a property of
a developer community, and it does not depend on the community size.

There is a great difference in the number of issues resolved by the commu-
nities and the average issue resolution time per community. This fact is consis-
tent across all of the 7 projects analyzed. In order to understand how the pro-
ductivity is distributed across the developer communities, we calculated, for
each community, the fixed issue distribution of maintenance type and priority.
Figures 3.5 and 3.6 show, for each project, the distribution of maintenance type
and the priority of the issues fixed by a community. For each project, the bar-
chart on the left represents the distribution of fixed issue maintenance type,
and the bar-chart on the left represents the distribution of fixed issue priority.

For almost all the projects, these two distributions are similar; namely, there
are no specialized communities, for example, communities solving mostly Bug
with Critical priority. We can then conclude that the average issue resolution
time is property of the community and does not depend on the community
size, the number of fixed issues, or the maintenance type and priority.

3.2.8 Threat to validity

We now discuss the threats to validity of our study, following common guide-
lines for empirical studies [121]. Construct validity threats concern the rela-
tion between theory and observation. For the calculation of the issue resolu-
tion time, we have not taken into account the complexity of a given software,
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Community Id Community Size # of Fixed Issues AVG Fixing Time [Days]

4 3 1 10.7
6 113 1621 45.1
2 199 1803 66
1 146 528 218.5
0 234 595 317.7

Table 3.13: Hadoop HDFS Communities Statistics.

Community Id Community Size # of Fixed Issues AVG Fixing Time [Days]

5 108 519 66.6
2 152 1862 70.8
7 57 84 119.4
0 113 412 128.8
1 169 1049 152.6
3 209 445 471.8

Table 3.14: Hadoop Map/Reduce Communities Statistics.

Community Id Community Size # of Fixed Issues AVG Fixing Time [Days]

0 62 517 45.5
2 153 1629 47.8
6 43 378 60.2
5 91 578 64.3
1 143 1494 69.7
3 286 3215 85.3
4 163 1707 90.2

Table 3.15: HBase Communities Statistics.
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Community Id Community Size # of Fixed Issues AVG Fixing Time [Days]

14 2 1 0.09
9 2 1 0.9

12 2 1 3.2
2 2 1 7.3
8 4 1 14
6 2 2 14.9
1 126 1105 39.4
0 229 967 96.9
7 267 2221 97.9
3 92 383 98.1

10 2 2 100.9
5 50 113 133.2

11 2 1 379.4

Table 3.16: Hive Communities Statistics.

Community Id Community Size # of Fixed Issues AVG Fixing Time [Days]

7 94 1 2.9
14 2 89 28.4
17 211 608 112.7
8 8 7 147.1

13 275 377 208.5
11 86 9 251.6
10 95 8 300.6
20 70 3 323.5
19 193 7 436.9
16 79 46 549.7

Table 3.17: Lucene - Core Communities Statistics.
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or the complexity of a specific sub-system of a software. This simplification
could affect our findings. Our model is a starting point, but in order to obtain
more precise it would be necessary to insert in the model a complexity fac-
tor. Developers working on the core part of a e-commerce system, would need
more time to solve a given issue related to a part of the system that performs
payment-operations, than developers involved in the same project, but work-
ing on a web-page that visualizes an item in the basket.

Threats to internal validity concern our selection of subject systems, tools,
and analysis method. With respect to the system studied in this work we con-
sidered only 7 systems hosted in JIRA.

Threats to external validity are related to generalisation of our conclusions.
Our results are not meant to be representative of all projects hosted in the repos-
itory and we have analyzed only the JIRA issue-traking system.
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Figure 3.5: Examples of Communities Distributions of Issue’s Maintenance
Types and Priorities
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Figure 3.6: Examples of Communities Distributions of Issue’s Maintenance
Types and Priorities



Chapter 4

Affectiveness In Software
Development

4.1 Do developers feel emotions? an exploratory anal-
ysis of emotions in software artifacts

Software development is a collaborative activity in which developers interact
to create and maintain a complex software system. Human collaboration in-
evitably evokes emotions like joy or sadness, which can affect the collaboration
either positively or negatively, yet not much is known about the individual emo-
tions and their role for software development stakeholders. In this study, we
analyze whether development artifacts like issue reports carry any emotional
information about software development. This is a first step towards verify-
ing the feasibility of an automatic tool for emotion mining in software devel-
opment artifacts: if humans cannot determine any emotion from a software
artifact, neither can a tool. Analysis of the Apache Software Foundation issue
tracking system shows that developers do express emotions (in particular grat-
itude, joy and sadness), which can be identified with a certain amount of train-
ing by humans. However, the more context is provided about an issue report,
the more human raters start to doubt and nuance their interpretation of emo-
tions. Hence, more investigation is needed before building a fully automatic
emotion mining tool.

4.1.1 Introduction

In July 2013, the Linux kernel mailing list was shaken up by an agitated discus-
sion between Linus Torvalds and a senior developer [18]: “I am serious about
this. Linus, you’re one of the worst offenders when it comes to verbally abus-

41
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ing people and publicly tearing their emotions apart.” Other people joined her,
noting “scolding people [...] is not likely to encourage people to want to be-
come senior developers” and “Thanks for standing up for politeness/respect.
If it works, I’ll start doing Linux kernel dev. It’s been too scary for years.” On
the other hand, Linus defended himself, claiming “not telling people clearly
enough that I don’t like their approach, they go on to re-architect something,
and get really upset when I am then not willing to take their work.”

This example suggests that a rational view of software development only
provides a partial picture of how stakeholders really behave: the developers
may underperform if they do not feel safe and happy. Positive emotions like
happiness help people to be more creative [42], which is essential for successful
software design [19]. If not, fear, or absence of courage, could refrain develop-
ers from changing or refactoring their code [2]. These effects of emotions are
similar to other domains, where people have found that feelings and emotions
dictate to a large extent our actions and decisions [90]. For example, consumer
opinions on retailer sites influence potential buyer decisions [87]. The mood
of people, evaluated through tweets, correlates with changes in the activity of
buying or selling in the stock market [14]. Since even the most talented devel-
oper could underperform and eventually leave the project just because she is
unhappy with her environment or colleagues it is important to support man-
agers and project leads in detecting emotions in their team. Mining emotions
from discussion boards is relevant when face-to-face meetings are not feasible
or efficient. For example, in distributed development (both open and closed
source), projects have almost no personal interaction except for sporadic con-
ference calls. In such environments, gauging emotions across geographical lo-
cations is essential for managers to become immediately aware of new prob-
lems and be able to take typical managerial action to defuse the situation. They
can then organize conference calls focused on the reasons of a developer’s un-
happiness (e.g., sexual harassment), or schedule a special meeting if developers
suddenly became anxious (e.g., for issue due to an OS update).

Since awareness of emotions in a team currently is a manual activity, we
want to use messages posted on a project’s public discussion boards (i.e., one
of the major means of communication) to mine developer emotions. In par-
ticular, as a first step towards building a tool for automatic emotion mining,
we performed a pilot study (with the four authors) and a full user study (with
16 participants) to determine whether emotions can actually be detected from
typical software maintenance artifacts like issue reports, and, if so, whether hu-
mans can actually agree on the emotions identified and how much information
(context) they need for that. Without such agreement, automated tools would
not make sense to build. In particular, we analyzed a significant sample of 792
developer comments (400 in the pilot study, 392 in the full study) of the Apache
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projects using Parrott’s emotional framework [84] to answer the following re-
search questions:

RQ1) Can human raters agree on the presence or absence of emotions in issue
reports?

We found that raters agree the most on the absence of an emotion, fol-
lowed by the presence of love (i.e., gratitude) and (less strongly) joy and
sadness. Having more than two raters does not significantly improve
agreement.

RQ2) Does context improve the agreement of human raters on the presence of
emotions in issue reports?

We found that providing human raters with more context about an issue
seems to cause doubt (i.e., nuances) instead of more confidence in the
identified emotions. Having more than two raters makes ratings more
robust to this.

To our knowledge, this is the first feasibility study of emotion mining in de-
velopment artifacts like issue reports. Based on our findings, issue comments
have potential as data source for emotion mining, yet more work is needed to
fully understand the role of context on the identification of emotions.

In the remainder of this section, we first describe the the experimental setup
(Section 4.1.2), followed by a discussion up front of mined developer emotions
(Section 4.1.5). We then address the two research questions (Section 4.1.6) and
discuss our findings (Section 4.1.7). After a discussion of the threats to validity
(Section 4.1.10) and related work (Section 5.2.1).

4.1.2 Experimental Setup

In our experiment, we analyze emotions reported in issue reports extracted
from open source systems. This section discusses the data set used in our anal-
ysis, the general procedure used to rate issue report comments, and finally how
pilot and full study where organized.

Dataset

We mined the issue repository of the Apache software foundation1 as described
in Sec 2.1.1, since such a type of repository contains a significant amount of

1https://issues.apache.org/jira/secure/Dashboard.jspa
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Projects Issues Comments Users Start Date End Date
117 81,523 271,416 20,537 10/2000 07/2013

Table 4.1: Apache Software foundation statistics.

information related to a project’s dynamics [55]. The mined issue reports be-
long to 117 open source projects, ranging from large, long-lived projects such
as Tomcat 2, and Lucene3, to smaller projects like RAT4. For the experiment, we
use a random sample of the project’s comments, so the larger the project the
higher the chance that we analyzed some of its comments. Given this wide
range of projects, we believe that this data source provides a representative
overview of open source issue reports.

We parsed Apache’s Jira-based repository in July 2013, fetching all the issue
reports since the 19th of October 2000. For each issue report, we extracted the
developers’ comments, as well as the standard issue report fields mentioned
in Section 4.1.2. Table 4.1 reports the statistics for our dataset. Since an is-
sue comment can consist of multiple sentences, and an issue report of multi-
ple issue comments, we decided to perform our analyses at the level of issue
comments to avoid a too coarse granularity. Given the large number of issue
comments, we sampled enough issue comments to obtain a confidence level
of 95% and confidence interval of 5%. This means that a proportion of X % in
our sample of issue comments actually corresponds to X ±5% in the population
of issue comments. For this reason, we obtained samples of 392 or more com-
ments (out of 271,416 comments). Note that we only focus on publicly available
communication data (in particular, issue reports). Even in an industry setting,
similar publicly available data can be found to use as input for emotion mining,
without privacy concerns.

Emotion Mining

In order to rate a particular issue comment as having a particular emotion,
each rater identified the emotions associated to each sentence of the com-
ment. We use Parrott’s six primary emotions, i.e., love, joy, surprise, anger,
sadness and fear, since we did not know the distribution of emotions across
comments beforehand. Future work could specialize emotions like sadness

towards deeper levels. The rating process was based on (1) each rater’s per-
sonal interpretation of emotions, and (2) a common understanding of Parrott’s

2http://tomcat.apache.org/
3http://lucene.apache.org/
4http://creadur.apache.org/rat/
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Table 4.2: Interpretation of Cohen and Fleiss κ values.

κ value interpretation
<0 poor

0–0.20 slight
0.21–0.40 fair
0.41–0.60 moderate
0.61–0.80 substantial

0.81–1.0 almost perfect

framework. For the latter, we first explained and illustrated such a framework
(Section 2.3.3) to all participants. Figure 2.3 shows an example comment be-
longing to issue 1235 of the Tomahawk project where a developer reveals his
opinions about the risk of moving towards static methods (which he believes
would be useless) To show his dislike, he uses wordings associated with anger

and fear, interspersed with neutral phrases where the author expresses an ob-
jective evaluation of the patch. Although not shown, a sentence can express
more than one emotion. Based on the sentences’ individual emotions, a rater
would mark the entire issue comment as containing anger and fear. We ignore
Neutral annotations, since those correspond to absence of emotions.

Since we have no ground truth, each research question considers agree-
ment on a particular comment’s emotions as a “correct” classification. Agree-
ment boils down to a majority vote of two raters out of two or three or more
raters out of four agreeing on the presence or absence of a particular emotion
for a given issue comment. This is of course a threat to validity, but the only
objective way to decide which emotions are “correct”, since retrospectively ask-
ing the author of a comment about a potentially identified emotion is bound
to generate unreliable results. To measure the degree of inter-rater agreement
on identified emotions, we calculate either Cohen’s κ value [24] (two raters) or
Fleiss’ κ value [40] (more than two raters). Both values can be interpreted ac-
cording to Table 4.2. In order to determine whether inter-rater agreement val-
ues differ statistically significantly, we also provide the values’ corresponding
confidence interval (with α value of 0.05). If this interval overlaps with another
value’s interval, we cannot conclude that the two agreement values are signifi-
cantly different. In addition to these statistical agreement values, we also pro-
vide the more basic percentage of cases for which raters agree on a particular
emotion or set of emotions.
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Table 4.3: Comments assigned to person 1 of Group A (P1A) and person 1 of
Group B (P1B). Their assignments for round 2 switch presence/absence of con-
text.

ID Group A Group B Round 1 (A) Round 1 (B)
1 P1A P2A P1B P2B context no context
2 P1A P2A P1B P2B no context context
... ... ... ... ... ... ...
14 P1A P2A P1B P2B no context context
15 P1A P3A P1B P3B no context context
16 P1A P3A P1B P3B context no context
... ... ... ... ... ... ...
28 P1A P3A P1B P3B context no context
29 P1A P4A P1B P4B no context context
... ... ... ... ... ... ...
98 P1A P7A P1B P7B no context context

4.1.3 Pilot Study

The pilot study is used in RQ1 to investigate (1) the type of emotions in issue
reports and (2) the level of agreement that human raters can achieve on the
identified emotions. We randomly selected 400 issue report comments from
the Apache issue reports. Then, we arbitrarily assigned each comment to two
authors of the study, randomly making sure that authors are not paired up with
the same person all the time (contrary to the full study, we did not enforce that
everyone shares exactly the same number of comments with every other rater).
Eventually, each author received a file containing 200 issue report comments.
Each author then went through his or her list of comments to mark all Parrot’s
emotions that he or she was able to identify.

4.1.4 Full Study

In addition to the pilot study, we also performed a larger (“full”) study to ver-
ify the consistency of the RQ1 results, as well as to investigate the influence
of context on emotion rating in RQ2. A comment’s context in an issue report
is the list of comments of that report that were submitted before that com-
ment. We are interested in validating whether or not knowing the context of
a comment makes rating the emotions in that comment easier. If it is, then one
should always consider this context when rating emotions. From the Apache is-
sue reports we randomly selected 392 issue comments (confidence interval of
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5%) that have at least one comment of context. Contrary to the pilot study, we
only analyzed the closing comments of issue reports, since those have a higher
chance of having context. We then selected 4 Master’s students, 10 PhD stu-
dents and 2 research associates from Polytechnique Montréal and University
of Antwerp. We organized two groups A and B, both with the same number
of master and PhD students. Table 4.3 illustrates how we assigned comments
to group members. First of all, each group should rate each comment twice
(both groups together rate each comment four times), while we also wanted to
limit the bias caused by the wide variety in experience, nationalities and cul-
ture of participants. For these reasons, each group member rated 14 comments
in common with each other group member. Second, in order to compare both
groups’ ratings, we mapped each member in group A to a member in group B
with similar experience (for example, person 1 of group A (p1A) and person 1 of
group B (p1B)). In order to compare the ratings between two groups , each cou-
ple like (p1A,p1B) received the same assignment (modulo random reordering).
Third, since we want to verify the influence of context on emotion rating, we
divided the experiment in two rounds where the participants rate each of the
comments assigned to them twice: once without its context and once with. So,
given a particular couple’s assignment, we randomly added context for some of
the comments in one round, while we added context for the other comments in
the second round, as shown in Table 4.3. Fourth, to reduce the impact of seeing
first a comment with or without context, we made it such that the assignment of
p1A (after randomly adding context) for round 1 corresponds to the assignment
of p1B in round 2, while the assignment of p1A in round 2 corresponds to the
assignment of p1B in round 1. In each round, all participants rate 98 comments
(and each group 392 comments). Finally, to counter the learning effect and at
the same time obfuscate the goal of the study, the two rounds where separated
by a time gap of at least 6 days in between submitting the results of the first
round and starting the second round. Similar to the pilot study, in each round
each participant received a file with comments. As a means of training, he or
she received an explanation about the Parrot framework as well as examples
of each emotion based on the results of the pilot study (Section 4.1.5). Then,
the participants analyzed the list of comments to mark all Parrot emotions that
they were able to identify. For comments with context, the participants rate
only the emotions in the comment (not the other comments of the context).
The dataset of all experiments will be available by contacting the authors5.

5http://bit.ly/1g1olgq
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4.1.5 Developer Emotions on Issue
Comments

This section presents the typical emotions that we identified in issue reports
during the pilot case. We opted to discuss these emotions up front in order to
provide a better understanding of the emotional content of issue reports. For
each of the six primary Parrott emotions, we report the most representative text
snippets as well as an explanation of why the snippet contains that emotion.
Whenever appropriate, we also report the secondary (e.g., shame) or tertiary
(e.g., guilt) emotion.

Love

1. Thanks for your input! You’re, like, awesome

2. Thanks very much! I appreciate your efforts

3. [I] would love any

Love is generally presented in sentences that express gratitude, i.e., a developer
exhibits that he “likes” the person (example 1), the person’s activity (example 2)
or the software artifact delivered (e.g., patch). Love can be expressed also as
a kind of desire (example 3). In issue comments, love is oriented primarily
towards co-workers.

Joy

1. I’m happy with the approach and the code looks good

2. great work you guys!

3. Hope this will help in identifying more usecases

Joy is normally associated to positive achievements, in the form of satisfaction
(example 1) or enthusiasm (example 2). In the first case, the text reports key-
words like “good” or “great”. In the second case, the phrase ends with a “!”. A
less common case of joy is optimism expressed by a positive outlook for a suc-
cessful achievement (example 3). Joy is expressed towards software artifacts or
co-workers.

Surprise

1. I still question the default, which can lead to surprisingly huge memory
use
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2. I also documented an unexpected feature with the
SlingServletResolver

3. Oops. It needs to be added to Makefile

Surprise is expressed for unexpected, generally negative, behavior of the
software (example 1 and 2). A second case is represented by mistakes intro-
duced accidentally by a developer and discovered later on (example 3). We did
not document any case where surprise referred to co-workers.

Anger

1. I will come over to your work and slap you

2. WTF, a package refactoring and class renaming in a patch?

3. This is an - ugly - workaround

Anger generally goes along with menaces (e.g., “slap” or “kill”), negative adjec-
tives (e.g., “ugly”) or profanity (e.g., “WTF”). These emotions reveal hostility
and bullying towards co-workers (example 1) or dislike towards software ar-
tifacts (examples 2 and 3).

Sadness

1. Sorry for the delay Stephen.

2. Sorry of course printStackTrace() wont work

3. wish i had pay more attention in my english class .... now its pay back
time .... :-(

4. Apache Harmony is no longer releasing. No need to fix this, as sad as it is.

Sadness is generally expressed by developers that feels guilty, i.e., they apol-
ogize for a delay (example 1) or for the unsatisfactory code produced (example
2). Sadness can be expressed also for reasons not dependent on the issue han-
dled (example 3), or on the developer actions (example 4).

Fear

1. I’m worried about some subtle differences between char and Character

2. I’m most concerned with some of the timeouts

3. I suspect that remove won’t work either in this case.
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Fear is expressed by a developer in a state of worry or anxiety. This emo-
tion is expressed explicitly using the keyword “worry” or its synonyms like “con-
cern” (example 1 and 2). Another common case is to express a negative outlook
with respect to a particular development choice (example 3). We observed that
fear, differently from other emotions, is limited to software artifacts only.�

�

�

�

Issue comments contain emotional content
of developers. Some emotions can refer to
software artifacts and co-workers (e.g., joy,
anger and sadness), while others target
only software artifacts (e.g., surprise and
fear) or co-workers (e.g., love).

4.1.6 Experimental Results

For each research question, we first discuss its motivation, followed by the ap-
proach we used and our results.

RQ1.

Motivation. Emotion mining from software development artifacts like issue re-
ports, emails or change logs is not trivial, since such artifacts consist of unstruc-
tured data [3, 4]. I.e., they are relatively short, written in an informal way with
emoticons, and, contrary to regular text parsed in sentiment analysis, they typ-
ically contain technical content like stack traces or code snippets interleaved
with regular text. Because of this, it could prove to be difficult to glance emo-
tional content from software development artifacts, let alone agree between
different human raters.
Approach. We use the comment ratings of the pilot study and full study to ad-
dress this research question. As a first step, we measured the percentage of
agreement on the presence and absence of emotions. As a second step, we
used Cohen’s κ to calculate agreement across all raters for each comment. For
the full study, we measured the agreement (a) for each pair of (round, group),
and (b) across both groups. In the latter case, we merge the corresponding rat-
ings of (round 1, group A) with (round 2, group B), and of (round 1, group B)
with (round 2, group A). Comparing cases (a) and (b) allows to evaluate whether
agreement changes when having two, three or four raters for a comment.
Findings. Only in on average 46.11±5% of the comments, both raters had
the same rating for all 6 emotions. Table 4.4 shows for each study the num-
ber and percentage of comments for which both raters assigned to the same
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pilot round 1 round 2
study group A group B group A group B

#common 165 215 193 127 207
%common 41.25±5 54.85±5 49.23±5 32.40±5 52.81±5

#common present 20 36 36 16 40
%common present 5.00±5 9.18±5 9.18±5 4.00±5 10.00±5

Table 4.4: Percentage of comments in which raters agreed on presence or ab-
sence of all 6 emotions, as well as the number of those comments with at least
one emotion present

comment agreed on all 6 emotions. The highest number of such agreement oc-
curred for group A in round 1, while the same group obtained the lowest agree-
ment in round 2, statistically significantly lower than in the four other cases
(except for the pilot study). Since (round 1, group A) and (round 2, group B)
both considered the same comments (and context), that configuration of com-
ments and context seems more easy for raters to agree on.

Furthermore, on average for 7.47±5% of the comments for which raters
agreed on all 6 emotions, at least one emotion was present. Typically, raters
agreed on absence of emotions for dry comments like “committed” and “done”.

Only for love, the raters achieved moderate agreement, while joy and
sadness obtained fair agreement. Table 4.5 and Table 4.5b show the percent-
age and Cohen κ values (with confidence interval) of agreement for each emo-
tion individually, for the pilot and large study respectively. Love clearly obtains
the highest κ agreement, corresponding to a moderate value. Except for the pi-
lot study, joy and sadness have a strong fair agreement. Fear, anger and (es-
pecially) surprise only obtained poor/slight agreement. These numbers are
more or less stable across the five cases, with some fluctuations. For example,
group A did not have any agreement at all for surprise in round 2, contrary to

%agreement %agreed %agreed lower Cohen upper
(#) presence (#) absence (#) κ κ κ

love 90.75±5 (363) 5.75±5 (23) 85.00±5 (340) 0.38 0.51 0.64
joy 69.75±5 (279) 6.50±5 (26) 63.25±5 (253) 0.11 0.19 0.27

surprise 96.75±5 (387) 0.00±5 (0) 96.75±5 (387) -0.02 -0.01 0.00
anger 90.75±5 (363) 0.50±5 (2) 90.25±5 (361) -0.07 0.06 0.19

sadness 80.75±5 (323) 3.50±5 (14) 77.25±5 (309) 0.06 0.18 0.29
fear 93.25±5 (373) 0.50±5 (2) 92.75±5 (371) -0.07 0.10 0.26
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(a) (round one, group A)

%agreement %agreed %agreed lower Cohen upper
(#) presence (#) absence (#) κ κ κ

love 89.03±5 (349) 7.91±5 (31) 81.12±5 (318) 0.40 0.53 0.65
joy 86.48±5 (339) 3.06±5 (12) 83.42±5 (327) 0.10 0.24 0.38

surprise 89.80±5 (352) 1.28±5 (5) 88.52±5 (347) -0.00 0.15 0.30
anger 90.82±5 (356) 1.28±5 (5) 89.54±5 (351) 0.00 0.17 0.33

sadness 93.62±5 (367) 2.04±5 (8) 91.58±5 (359) 0.16 0.36 0.55
fear 93.11±5 (365) 1.28±5 (5) 91.84±5 (360) 0.05 0.24 0.43

(b) Percentage of agreement (absolute
number in parentheses) and Cohen κ val-
ues (with confidence intervals) for each
emotion in RQ1 (full study)

%agreement %agreed %agreed lower Cohen upper
(#) presence (#) absence (#) κ κ κ

love 92.35±5 (362) 5.61±5 (22) 86.73±5 (340) 0.41 0.55 0.69
joy 82.40±5 (323) 3.83±5 (15) 78.57±5 (308) 0.07 0.20 0.33

surprise 89.54±5 (351) 0.77±5 (3) 88.78±5 (348) -0.06 0.07 0.21
anger 90.56±5 (355) 0.26±5 (1) 90.31±5 (354) -0.10 0.00 0.10

sadness 91.58±5 (359) 3.57±5 (14) 88.01±5 (345) 0.25 0.41 0.58
fear 87.76±5 (344) 1.02±5 (4) 86.73±5 (340) -0.05 0.08 0.21

(c) (round one, group B)

%agreement %agreed %agreed lower Cohen upper
(#) presence (#) absence (#) κ κ κ

love 85.71±5 (336) 6.38±5 (25) 79.34±5 (311) 0.27 0.40 0.52
joy 82.91±5 (325) 4.08±5 (16) 78.83±5 (309) 0.11 0.23 0.36

surprise 90.82±5 (356) 0.00±5 (0) 90.82±5 (356) -0.05 -0.03 -0.01
anger 92.86±5 (364) 0.77±5 (3) 92.09±5 (361) -0.04 0.14 0.32

sadness 93.88±5 (368) 1.79±5 (7) 92.09±5 (361) 0.14 0.34 0.54
fear 93.62±5 (367) 0.51±5 (2) 93.11±5 (365) -0.06 0.11 0.28

(d) (round two, group A)

%agreement %agreed %agreed lower Cohen upper
(#) presence (#) absence (#) κ κ κ

love 92.35±5 (362) 3.57±5 (14) 88.78±5 (348) 0.27 0.44 0.61
joy 82.40±5 (323) 5.61±5 (22) 76.79±5 (301) 0.16 0.29 0.41

surprise 89.29±5 (350) 0.77±5 (3) 88.52±5 (347) -0.06 0.07 0.21
anger 92.86±5 (364) 0.51±5 (2) 92.35±5 (362) -0.07 0.09 0.25

sadness 88.78±5 (348) 3.32±5 (13) 85.46±5 (335) 0.17 0.32 0.47
fear 91.58±5 (359) 1.02±5 (4) 90.56±5 (355) -0.01 0.15 0.32

(e) (round two, group B)

Table 4.5: Percentage of agreement (absolute number in parentheses) and Co-
hen κ values (with confidence intervals) for each emotion in RQ1 (pilot study).

most of the other cases.
The percentage of agreement for joy in the pilot study was the lowest, with

30.25±5% of the comments containing disagreement. However, all other emo-
tions and cases had less disagreement than 19.25±5% (sadness in pilot study).

At most 7.91±5% (love) of the comments agreed on the presence of a par-
ticular emotion, whereas up to 96.75±5% (surprise) agreed on the absence
of a particular emotion. Table 4.5 and Table 4.5b indeed show that most of the
comments were rated as not having a particular emotion (an agreed presence
of 0% means that there were no comments where an emotion was present).
This is the reason why, despite the high percentage of general agreement, the
corresponding κ values are low. The emotions with the lowest κ values (fear,
anger and surprise) sometimes have only 0, 1 or 2 agreed occurrences, while
the most frequently agreed emotion (love) had up to 31 occurrences (group A,
round 1).

Only for joy, three raters agree significantly more on an emotion than
only two raters. Table 4.6 breaks these percentages down for each individual
emotion, together with the Fleiss κ value of agreement across the four raters.
Agreement between all four raters obtains lower percentage values than requir-
ing at least three raters to agree. In fact, the Fleiss κ values for four-rater agree-
ment are in the same ballpark as for the case of two raters (Table 4.5 and Ta-
ble 4.5b). However, the agreement between at least three raters overall is higher
than in the case of two (or four) raters, but only in the case of joy there really is
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(a) (round 1, group A) and (round 2, group
B)

%agreement %agreement lower Fleiss upper
of 4 (#) of ≥3 (#) κ κ κ

love 82.91±5 (13) 94.39±5 (24) 0.48 0.49 0.50
joy 69.90±5 (5) 93.88±5 (19) 0.23 0.25 0.26

surprise 78.83±5 (0) 97.19±5 (2) 0.05 0.06 0.07
anger 85.20±5 (2) 96.94±5 (2) 0.15 0.16 0.17

sadness 84.18±5 (7) 96.17±5 (10) 0.34 0.35 0.36
fear 85.97±5 (1) 98.21±5 (7) 0.22 0.23 0.24

(b) (round 1, group B) and (round 2, group
A)

%agreement %agreement lower Fleiss upper
of 4 (#) of ≥3 (#) κ κ κ

love 79.59±5 (9) 95.41±5 (32) 0.45 0.46 0.47
joy 68.37±5 (6) 92.86±5 (17) 0.22 0.23 0.24

surprise 81.63±5 (0) 98.21±5 (2) 0.04 0.05 0.06
anger 84.18±5 (0) 97.70±5 (1) 0.06 0.07 0.08

sadness 85.71±5 (5) 97.19±5 (11) 0.35 0.36 0.37
fear 82.91±5 (1) 97.96±5 (4) 0.12 0.13 0.14

Table 4.6: Percentage of agreement for the full study between four (2nd col-
umn) and at least three (3rd column) raters, together with the Fleiss κ inter-
rater agreement and confidence intervals (4th to 6th column). In parentheses
the number of analyzed cases of a particular emotion in which raters agreed on
the presence of the emotion.

a significant improvement. Hence, having more than two raters does not seem
to make a significant difference.�

�

�

�

While some emotions obtain higher agree-
ment than others, only love, joy and
sadness obtained at least fair agreement.
Although comments clearly contain emo-
tions, raters agree the most on the absence
of an emotion. Having more than two raters
does not change the agreement significantly.

RQ2.

Motivation. Rating a comment without its context can be compared to eaves-
dropping on a group conversation and only catching the last phrase of the con-
versation. It is likely that the interpretation of that phrase depends on the
previous discussion (i.e., context) of the conversation. For example, the sen-
tence “yeah, right” can have a different meaning (both sarcastically and oth-
erwise) [109], when following a sentence like “with java 8 we fix all problems”
than when following “breaking backward compatibility is risky”. However, due
to the technical and unstructured nature of software development artifacts, the
impact of context might be different than in literary English documents. Here,
we want to analyze the impact of context on agreement between raters.
Approach. This research question only considers the full study. Since each
group considers 392 comments once without and once with context (they were
randomly distributed across two rounds), here we merge the results of both
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(a) Group A

%agreement %agreed %agreed lower Cohen upper
(#) presence (#) absence (#) κ κ κ

love
88.78±5 (348) 7.91±5 (31) 80.87±5 (317) 0.40 0.52 0.64
85.97±5 (337) 6.38±5 (25) 79.59±5 (312) 0.27 0.40 0.53

joy
86.22±5 (338) 3.32±5 (13) 82.91±5 (325) 0.11 0.25 0.39
83.16±5 (326) 3.83±5 (15) 79.34±5 (311) 0.10 0.22 0.35

surprise
91.07±5 (357) 1.28±5 (5) 89.80±5 (352) 0.01 0.18 0.34
89.54±5 (351) 0.00±5 (0) 89.54±5 (351) -0.06 -0.04 -0.02

anger
92.86±5 (364) 1.02±5 (4) 91.84±5 (360) 0.00 0.19 0.37
90.82±5 (356) 1.02±5 (4) 89.80±5 (352) -0.02 0.13 0.29

sadness
95.41±5 (374) 1.53±5 (6) 93.88±5 (368) 0.15 0.38 0.60
92.09±5 (361) 2.30±5 (9) 89.80±5 (352) 0.15 0.33 0.50

fear
93.62±5 (367) 1.02±5 (4) 92.60±5 (363) 0.02 0.21 0.41
93.11±5 (365) 0.77±5 (3) 92.35±5 (362) -0.02 0.15 0.33

(b) Group B

%agreement %agreed %agreed lower Cohen upper
(#) presence (#) absence (#) κ κ κ

love
93.11±5 (365) 4.85±5 (19) 88.27±5 (346) 0.40 0.55 0.70
91.58±5 (359) 4.34±5 (17) 87.24±5 (342) 0.31 0.46 0.62

joy
83.16±5 (326) 4.85±5 (19) 78.32±5 (307) 0.14 0.27 0.40
81.63±5 (320) 4.59±5 (18) 77.04±5 (302) 0.10 0.23 0.35

surprise
89.80±5 (352) 0.51±5 (2) 89.29±5 (350) -0.08 0.04 0.16
89.03±5 (349) 1.02±5 (4) 88.01±5 (345) -0.04 0.10 0.24

anger
92.60±5 (363) 0.26±5 (1) 92.35±5 (362) -0.10 0.03 0.15
90.82±5 (356) 0.51±5 (2) 90.31±5 (354) -0.08 0.05 0.18

sadness
91.07±5 (357) 3.32±5 (13) 87.76±5 (344) 0.22 0.38 0.54
89.29±5 (350) 3.57±5 (14) 85.71±5 (336) 0.20 0.35 0.50

fear
90.05±5 (353) 1.02±5 (4) 89.03±5 (349) -0.03 0.12 0.27
89.29±5 (350) 1.02±5 (4) 88.27±5 (346) -0.04 0.10 0.25

Table 4.7: Percentage of agreement and Cohen κ values (with confidence in-
tervals) for comments without and with context (RQ2). The percentages are
relative to the 392 comments without and with context, respectively odd and
even rows.

rounds such that, for each group, we can compare the ratings without and
with context. For this comparison, we calculate similar agreement percentage
and Cohen κ values as for RQ1. Furthermore, we measure how often raters
made a different decision for a particular emotion when seeing context or not,
and whether such different decisions led from agreement to disagreement, dis-
agreement to agreement or did not have any net effect.
Findings. Adding context slightly reduces rater agreement, but not sig-
nificantly. Table 4.7 compares, for each group, the agreement amongst the rat-
ing results of the comments without context (odd rows) and those with context
(even rows). Except for surprise in group A, the κ agreement is not signifi-
cantly different (the confidence intervals still overlap) with or without context,
even though the actual κ values seem lower with context than without. Simi-
larly, the percentages of agreement seem lower with context, but not in a signif-
icant way. Sometimes context finds more evidence of the presence of emotion
than without context, while sometimes the inverse situation holds. Similar to
RQ1, both groups have similar results, except for anger, for which group B had
a much lower agreement (since less occurrences were agreed upon).

Most of the raters pick the same answer without or with context, yet they
tend to switch more from absence to presence of an emotion than the other
way around. Table 4.8 shows for both groups how many raters picked a dif-
ferent answer for an emotion in the absence or presence of context. Clearly,
in most cases (between 90.3% to 95.7% of the time) raters did not change their
rating, which suggests that (1) ratings for a particular comment are fairly stable,
and (2) context does not add substantially new information for the interpreta-
tion of a particular comment. At the same time, we can also see that if a rater
changes his or her mind, he or she rather tends to mark a previously (i.e., with-
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context love joy surprise anger sadness fear

0 1 0 1 0 1 0 1 0 1 0 1

A
0 650 28 658 46 711 28 719 29 722 32 730 21
1 29 77 30 50 32 13 21 15 13 17 21 12

B
0 701 18 644 36 712 28 730 23 691 32 712 25
1 16 49 32 72 21 23 14 17 23 38 22 25

Table 4.8: How often raters changed their rating from the one in a row (com-
ment without context) to the one in a column (comment with context). 0 means
that a particular emotion was not selected, while 1 means that it was selected.

love joy surprise anger sadness fear

d a d a d a d a d a d a

group A
d 26 18 26 28 9 26 13 15 5 13 6 19
a 29 319 40 298 32 325 23 341 26 348 21 346

group B
d 15 12 42 24 19 21 16 13 17 18 19 20
a 18 347 30 296 24 328 20 343 25 332 23 330

3-rater
d 9 8 9 8 1 9 3 8 4 8 1 7
a 14 361 26 349 7 375 7 374 10 370 6 378

Table 4.9: How often raters went from disagreement (d) to agreement (a) or vice
versa when comparing the set of comments without context (rows) to the set of
comments with context (columns), for groups A, B, and when combining both
groups (at least three raters agreeing).

out context) absent emotion as present, than the other way around (except for
love, surprise and fear in group A). In the case of sadness the relative differ-
ence between both cases goes from 50% to more than 100%. This would suggest
that although context does not play a major role in agreement, in cases when it
does, raters become less sure and tend to mark an additional emotion as being
present. The change of mind due to context pushes more pairs of raters from
agreement to disagreement than the other way around. Table 4.9 shows for
each comment and emotion whether the raters’ change of mind has an impact
on the agreement between the raters . Even though the vast majority of cases
did not change agreement/disagreement, the results also show for all emotions
and both groups that more raters went from agreement to disagreement when
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showing context (row “a”, column “d”), than the other way around (row “d”, col-
umn “a”). Again, context does not seem to have a major impact, but when it
does, it causes more uncertainty (disagreement) than agreement. This obser-
vation is less pronounced when using agreement between at least three raters,
as shown in the bottom two rows of Table 4.9. Only for love and joy, there
is still more agreement turning into disagreement than the inverse, but for the
other four emotions, the usage of three or more raters makes the results more
robust to fluctuations introduced by context. Hence, even though more raters
do not significantly improve agreement (RQ1), they make ratings more robust.�




�

	

Context does not play a significant role in the
rating of emotions in issue comments, but
when it does, it seems to cast more doubt
than confidence, unless more raters are used.

4.1.7 Discussion

This section discusses our findings in more detail.

4.1.8 Impact of Context

At first sight, our findings for RQ2 seem counter-intuitive: while one would ex-
pect that the addition of context strengthens agreement due to the availability
of more information, we seem to observe quite the opposite, i.e., raters starting
to doubt and changing their mind. Although more experiments are needed to
confirm and understand this phenomenon, we briefly discuss a couple of hy-
potheses. The worst case scenario would be that emotion mining is so subjec-
tive and nuanced that even for humans it is impossible to correctly determine
the presence of a specific emotion in an issue report. However, we believe that
the truth is more subtle. For example, in RQ2 we only rated the last comment of
an issue report, and reports with context contain (by definition) the viewpoint
of multiple commenters, for which it is not always clear how they relate to the
last commenter’s viewpoint.Consider a hypothetical example of the following
three comments by three different commenters: “Class FooBar is a total waste
of time, just nuke it!”, “We do have users relying on its features, I’m afraid we
should fix this bug” and “I share your view, working on it”. Although the first
comment clearly contains anger and the second one sadness, the third one
is quite ambiguous regarding which view is shared. Without context, the com-
ment might be neutral, while with context it might be neutral, anger, sadness
or a combination. As such, context does not necessarily filter the set of possible
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emotions. On the contrary, it enriches the nuances on the emotions perceived
by a rater and can lead to different interpretations. Another hypothesis is that
using a simple yes/no decision as rating is too large a simplification. Maybe
one should provide multiple ratings, which would allow to model uncertainty
in a rating.

4.1.9 Do Emotions Matter for Issue Reports?

Our premise was that, similar to other domains, emotions could have an im-
pact on software development activities like bug fixing or development of new
features. To get an initial impression of whether this claim contains a grain of
truth, we performed a short analysis with data stemming from this study and
from a smaller, preliminary one made internally. Here, we check whether re-
ports with different emotions tend to be fixed faster, have more comments or
have more people following (’watching’) the issue report. Our analysis uses the
three most frequent emotions (love, joy and sadness) on which raters agree.
For the full study, we included emotions with at least three agreeing raters. This
yields a total of 207 comments: 73 for love, 62 for joy and 72 for sadness (note
that the same report can feature in multiple emotions). We then looked up
the corresponding issue reports’ fix time, number of comments and number
of watchers. We check the null hypothesis that the reports for the three emo-
tions either have the same average fix time, number of comments or number
of watchers. For this reason, we performed (non-parametric) Kruskal-Wallis
tests: if the null hypothesis was rejected (α value of 0.05), i.e., at least one emo-
tion has a different average value for one of the three measured attributes, we
performed post hoc tests to determine the emotion with significantly differ-
ent property values. We found a significant difference for the number of com-
ments, i.e., reports with a comment rated as love tend to have a lower number
of comments (median value of 5) than joy (median value of 7.5) or sadness
(median value of 12). Similarly, the number of watchers of reports with a com-
ment rated as love has a median value of 0 whereas for sadness the median
value is 1, i.e., less people monitor the former reports. Although not strictly
significantly different, the Kruskal-Wallis test for the fixing time of reports ob-
tained a low p-value of 0.057, with reports containing a love comment taking
a median number of 20 days to be resolved, compared to 53.5 for joy and 68.5
for sadness. Of course, more analysis is needed to fully investigate the link
between emotions on software development, however our initial findings for
number of comments, watchers and (to a lesser degree) fixing time suggest that
there might indeed be a link.
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4.1.10 Threats to Validity

Threats to internal validity concern confounding factors that can influence the
obtained results. We assume a causal relationship between a developer’s emo-
tions and what he or she writes in issue report comments, based on empiri-
cal evidence (in another domain) [80]. Moreover, since developer communica-
tion has as first goal information sharing, removing or disguising emotions may
make comments less meaningful and cause misunderstanding. Since the com-
ments used in this study were collected over an extended period from develop-
ers not aware of being monitored, we are confident that the emotions we mined
are genuine. This is also why we could not involve the authors of the comments
in our study. Threats to construct validity focus on how accurately the obser-
vations describe the phenomena of interest. Rating of emotions from textual
issue report comments presents some difficulties due to ambiguity and subjec-
tivity. To reduce these threats, the authors adopted Parrott’s framework as a ref-
erence for emotions. Finally, to avoid bias due to personal interpretation, in all
experiments each commit was analyzed by at least two participants. Threats to
external validity correspond to the generalizability of our experimental results
[20]. In this study, we manually analyze a sample of issue reports belonging
to 117 open source projects. We chose the projects as a representative sample
of the universe of open source software projects, with different development
teams and satisfying different customers’ needs. Replications of this work on
other open source systems and on commercial projects are needed to confirm
our findings. Threats to reliability validity correspond to the degree to which
the same data would lead to the same results when repeated. This research is
the first attempt to manually investigate emotions of developers from issue re-
ports, hence no ground truth exists to compare our findings. We defined the
ground truth through agreement or disagreement of the raters. Since we in-
volved 16 people with a wide variety in experience, nationalities and culture,
other groups of raters might obtain agreement on different emotions and com-
ments, possibly leading to different results. However, RQ2 showed that both
groups of the full study and, to some extent, the pilot study obtained similar
levels of agreement. This study is focused on text written by developers for de-
velopers. To correctly depict the emotions embedded in such comments, it is
necessary to understand the developers’ dictionary and slang. This assump-
tion is supported by Elfenbein and Nalini’s work that provided evidence that for
members of the same cultural and social group it is easier to recognize emo-
tions than for people belonging to different groups [37]. Since all the partici-
pants of this study have a background in computer science, we are confident
that participants may interpret the issue comments in the same manner as the
developers. We did not involve raters with different background (such as lin-
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guists or psychologists), because they may make oversights or misinterpret the
terms used by developers.

4.2 Would you mind fixing this issue? An Empirical
Analysis of Politeness and Attractiveness in Soft-
ware Developed Using Agile Boards

A successful software project is the result of a complex process involving, above
all, people. Developers are the key factors for the success of a software de-
velopment process and the Agile philosophy is developer-centred. Develop-
ers are not merely executors of tasks, but actually the protagonists and core of
the whole development process. This study aims to investigate social aspects
among developers working together and the appeal of a software project devel-
oped with the support of Agile tools such as Agile boards. We studied 14 open
source software projects developed using the Agile board of the JIRA reposi-
tory. We analysed all the comments committed by the developers involved in
the projects and we studied whether the politeness of the comments affected
the number of developers involved over the years and the time required to fix
any given issue. Our results show that the level of politeness in the communi-
cation process among developers does have an effect on the time required to
fix issues and, in the majority of the analysed projects, it has a positive correla-
tion with attractiveness of the project to both active and potential developers.
The more polite developers were, the less time it took to fix an issue, and, in
the majority of the analysed cases, the more the developers wanted to be part
of project, the more they were willing to continue working on the project over
time.

4.2.1 Introduction

According to the 8th Annual State of Agile survey report6, "more people are
recognising that agile development is beneficial to business, with an 11% in-
crease over the last 2 years in the number of people who say agile helps organ-
isations complete projects faster." A main priority reported by users was to ac-
celerate time to market, more easily manage changing priorities, and to better
align IT and business objectives. Agile project management tools and Kanban
boards experienced the largest growth in popularity of all the agile tool cate-
gories, with use or planned use increasing by 6%. In addition, one of the top

6http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
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five ranked tools was Atlassian JIRA7, with an 87% recommendation.
How does one classify a software as agile? The process of defining a software

as "Agile" is not simple. Over the years, a variety of tools have been developed
in order to help developers, team managers and other parties involved in the
development process of a software system. These tools each constitute a spe-
cific aspect of the Agile world. The Agile boards, for example, represent the
central aspect of communication in the Agile philosophy. As Perry wrote [85]
"the task board is one of the most important radiators used by an agile team to
track their progress." The communication aspect is central and is the key to fast
development. When a new developer joins a development team, the better the
communication process works, the faster the new developer can become pro-
ductive and the learning curve can be reduced. The know-how and the shared-
knowledge of a project should always be easily accessible for the development
team during the development process. Fast releases, continuos integration and
testing activities are directly connected to the knowledge of the system under
development and hence the communication process is crucial. Tools such as
the JIRA board are a good solution to bridge the gap between open source soft-
ware development and the Agile world. It is the view of many that agile devel-
opment requires a physical aspect, i.e. developers working together in the same
room or building, or at the same desk because the pair programming paradigm
requires at least two people working simultaneously on the same piece of code,
but can the developers work remotely? Is it possible to apply Agile methodolo-
gies even for open source software developed by a community which is spread
out around the globe?

By using tools such as the JIRA board, it is indeed possible to apply the the-
oretical approach of the Agile board for a software project being developed by
developers working in different physical places.

Working remotely, in different time zones and with different time schedules,
with developers from around the world, requires coordination and communi-
cation. The communication process in this context becomes more difficult (if
compared to the communication process used by developers sharing the same
office) and the politeness, the mood and the social dynamics of the developers
are important factors for the success of the project.

These days, even in the software development process, the social and hu-
man aspects of the development process are becoming more and more impor-
tant. The Google style has become a model for many software start-ups. A
pleasant work environment is important and affects the productivity of em-
ployees. Is politeness important in a software development process? "Polite-
ness is the practical application of good manners or etiquette. It is a culturally

7https://www.atlassian.com/software/jira
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defined phenomenon and therefore what is considered polite in one culture
can sometimes be quite rude or simply eccentric in another cultural context.
The goal of politeness is to make all of the parties relaxed and comfortable with
one another." 8 The last part of the definition is what we are considering in our
analysis. In this specific work we did not take different cultures into account
(although developers involved in a specific project could be from all around
the world); we focused on the politeness of the comment-messages written by
the developers.

This study aims to show how project management tools such as Agile boards
can directly affect the productivity of a software development team and the
health of a software project. We studied the relationship among global project
metrics (magnetism and stickiness) and affective metrics (politeness) by analysing
the communication among developers. We considered 14 open source projects
from the Apache Software Foundation’s JIRA repositories.

This study aims to answer the following research questions:

• Does the politeness among developers affect the issues fixing time?

• Does the politeness among developers affect the attractiveness of a project?

4.2.2 Experimental Setup

Dataset

We built our dataset collecting data from the Apache Software Foundation Is-
sue Tracking system, JIRA 9. An Issue Tracking System (ITS) is a repository used
by software developers as a support for the software development process. It
supports corrective maintenance activity like Bug Tracking systems, along with
other types of maintenance requests. We mined the ITS of the Apache Soft-
ware Foundation collecting issues from 2002 to December 2013. In order to
create our dataset, since the focus of our study was about the usefulness of Agile
boards, we selected projects for which the JIRA Agile board contained a signifi-
cant amount of activity. Table 4.14 shows the corpus of 14 projects selected for
our analysis, highlighting the number of comments recorded for each project
and the number of developers involved. We selected projects with the highest
number of comments.

8en.wikipedia.org/wiki/Politeness
9https://www.atlassian.com/software/jira
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Project # of comments # of developers

HBase 91016 951
Hadoop Common 61958 1243
Derby 52668 675
Lucene Core 50152 1107
Hadoop HDFS 42208 757
Cassandra 41966 1177
Solr 41695 1590
Hive 39002 850
Hadoop Map/Reduce 34793 875
Harmony 28619 316
OFBiz 25694 578
Infrastructure 25439 1362
Camel 24109 908
ZooKeeper 16672 495

Table 4.10: Selected Projects Statistics

Magnet and Sticky Metrics

Yamashita et al. [120] introduced the concepts of magnetism and stickiness
for a software project. A project is classified as Magnetic if it has the ability to
attract new developers over time. Stickiness is the ability of a project to keep
its developers over time. We measured these two metrics by considering an
observation time of one year. Figure 4.1 shows an example of the evaluation of
Magnet and Sticky metrics. In this example, we were interested in calculating
the value of Magnetism and Stickiness for 2011. From 2010 to 2012 we had a
total of 10 active10 developers. In 2011, there were 7 active developers and 2 of
them (highlighted with black heads) were new. Only 3 (highlighted with grey
heads) of the 7 active developers in 2011 were also active in 2012. We can then
calculate the Magnetism and Stickiness as follows:

• Magnetism is the portion of new active developers during the observed
time interval, in our example 2/10 (dev_6 and dev_7 were active in 2011
but not in 2010).

• Stickiness is the portion of active developers that were also active during
next time interval, in our example 3/7 (dev_1, dev_2, dev_3 were active in
2011 and in 2012).

10We consider active all developers that posted/commented/resolved/modified an issue dur-
ing the observed time (from dev_1 to dev_10)
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Figure 4.1: Example of Magnet and Sticky in 2011

Politeness

We measured politeness as described in Section 2.3.2 and we evaluated the
average politeness per month considering all comments posted in a certain
month. For each comment we assigned a value according to the following rules:

• Value of +1 for those comments marked as polite by the tool;

• Value of 0 for those comments marked as neutral (confidence level<0.5);

• Value of -1 for those comments marked as impolite.

We finally averaged the assigned values for a certain month. We analyzed the
politeness of about 500K comments.

4.2.3 Result And Discussion

Does the politeness among developers affect the issues fixing time?

Motivation. Murgia et al. [72] demonstrated the influence of maintenance type
on the issue fixing time, while Zhang et al. [125] developed a prediction model
for bug fixing time for commercial software. There are many factors able to in-
fluence the issues fixing time; in this case we were interested in finding out if
politeness expressed by developers in comments had an influence on the issues
fixing time.
Approach. In order to detect differences among the fixing time of polite and
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impolite issues, we used the Wilcoxon rank sum test. Such a test is non para-
metric and unpaired, and [102] [117] [116]. The test is non-parametric and can
be used with no restrictions or hypotheses on the statistical distribution of the
sample populations. The test is suitable for comparing differences among the
averages or the medians of two populations when their distributions are not
gaussian. For the analysis, we used the one-sided Wilcoxon rank sum test using
the 5% significance level (i.e., p-value<0.05) and we compared issue fixing time
between polite and impolite issues.

We grouped issues together as follows:

• we first divided comments in two sets: polite and impolite, ignoring neu-
tral comments;

• we divided issues in two sets: polite issues, commented only with polite
comments, and impolite issues, commented only by impolite comments.

• we ignored issues with both polite and impolite comments, and ignored
issues with neutral comments.

For each issue we evaluated the politeness expressed in its comments (remov-
ing neutral comments as discussed in section 4.2.2) and we then divided issues
in two groups: polite issues containing polite comments and impolite issues
containing impolite comments. For each of this two groups of issues we eval-
uated the issue fixing time as the difference between resolution and creation
time. Findings. Issue fixing time for polite issues is faster than issue fixing
time for impolite issues for 10 out of 14 analysed projects.

Figure 4.2 shows the box-plot of the issues fixing time for the two groups of
issues considered (polite and impolite) in four projects Harmony,Derby, Hadoop
HDFS and Hadoop Common. The issues fixing time is expressed in hours on a
logarithmic scale. As we can see for the four projects in the example, the me-
dian of the issues fixing time for polite issues is smaller than that for impolite
issues.

Table 4.11 shows the Wilcoxon test results. Test’s column indicates if the
median of the first group (group of polite issues containing polite comments)
is greater or lesser than the second group (group of impolite issues containing
impolite comments).

Table 4.11 shows that for 10 of the 14 projects analysed the issues fixing time
of polite issues is faster than the issue fixing time of impolite issues. Camel
behaved differently, in this case the issues fixing time for impolite issues is
faster than the issues fixing time of polite issues. Furthermore for Infrastruc-
ture, Lucene Core and Cassandra projects the Test value indicates that polite
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Figure 4.2: Box-plot of the fixing-time expressed in Hours. The number in
parenthesis next to polite/impolite indicates the percentage of impolite and
polite issues



66 CHAPTER 4. AFFECTIVENESS IN SOFTWARE DEVELOPMENT

issues fixing time is still lesser than the impolite issues fixing time but the p-
value>0.05 and thus for these projects we cannot conclude that the two dis-
tribution are statistically different. We can see that the size effect is generally
small with a maximum of 0.19 for Hadoop HDFS and a minimum of 0.007 for
Infrastructure.

Project Test p-value effect size

ZooKeeper lesser *** 0.14
Camel greater *** 0.089
Infrastructure lesser 0.67 0.007
OFBiz lesser *** 0.15
Harmony lesser *** 0.133
Hive lesser *** 0.061
Solr lesser *** 0.089
Cassandra lesser 0.51 0.012
Hadoop HDFS lesser *** 0.192
Lucene Core lesser 0.492 0.01
Derby lesser *** 0.15
Hadoop Common lesser *** 0.11
HBase lesser *** 0.144
Hadoop Map/Reduce lesser *** 0.11

Table 4.11: Wilcoxon test results

Figure 4.3 shows the the average politeness per month, calculated as de-
scribed in section 4.2.2. We used the same four project depicted in Figure 4.2.
It is interesting to note that there are variations in the average politeness over
time. This is by no mean a representation of a time dynamics, but simply the
representation of random variation of average politeness over time. In Hadoop
HDFS for example, we can see how the average politeness is negative (namely
majority of comments are impolite) for some time interval and positive of some
others. As we have seen, for those projects polite issues are solved faster, so
monitoring the average politeness over time can be helpful during software de-
velopment. If there is a time period with a negative politeness, then the com-
munity may take action to drive the average politeness back to positive values.
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Figure 4.3: Average Politeness per month

4.2.4 Does the politeness among developers affect the attrac-
tiveness of a project?

Motivation. Magnetism and Stickiness are two interesting metrics able to de-
scribe the general health of a project; namely, if a project is able to attract new
developers and to keep them over time we can then conclude that the project
is healthy. On the contrary, if a project is not magnetic and is not sticky we can
conclude that the project is losing developers and is not attracting new devel-
opers over time. Although there may be many factors influencing magnetism
and stickiness, we were interested in analysing the correlation between polite-
ness expressed by developers in their comments and these two metrics.
Approach. In order to detect if there was a direct correlation between mag-
netism and stickiness of a project and politeness, we considered an observation
time of one year. During this time interval we measured magnetism, stickiness
and percentage of comments classified as polite by the tool. Since we had no
evidence that the politeness in the observed time could affect magnetism and
stickiness in the same time interval or in the next observation time, we evalu-
ated the Pearson’s correlation coefficient and the cross-correlation coefficient.
Findings. In the majority of projects Magnet and Sticky are positively cor-
related with Politeness. Table 4.12 shows the Pearson’s correlation and cross-
correlation coefficient between the percentage of polite comments and mag-
netism and stickiness during an observation time of one year. The first two
columns represent Pearson’s correlation coefficient between Magnetism and
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Stickiness and the percentage of politeness comments during the same ob-
servation time (one year in our case). The second two columns represent the
cross-correlation coefficient between the same metrics. The Pearson’s correla-
tion revealed that 9 out of 14 project have a positive correlation between Mag-
netism, Stickiness and Politeness. In the 5 projects where Pearson’s correlation
is negative we can see that when considering the cross correlation coefficient
is positive in all cases. Although Pearson’s correlation is not always positive,
we can conclude that Politeness is positively correlated with Magnetism and
Stickiness metrics in the subsequent years.

Project Pearson’s Correlation Cross-Correlation
Magnet Sticky Magnet Sticky

HBase 0.672 0.667 0.581 0.667
Hadoop Common 0.848 0.641 0.848 0.641
Derby -0.830 -0.804 0.126 0.240
Lucene Core -0.399 0.705 0.494 0.705
Hadoop HDFS 0.716 0.526 0.716 0.627
Cassandra 0.876 0.631 0.876 0.631
Solr 0.602 0.773 0.602 0.773
Hive 0.372 0.802 0.714 0.802
Hadoop Map/Re-
duce

0.631 0.697 0.631 0.697

Harmony -0.730 -0.784 0.142 0.372
OFBiz 0.692 0.498 0.692 0.498
Infrastructure 0.1 -0.112 0.479 0.610
Camel -0.576 -0.67 0.120 0.293
ZooKeeper -0.535 0 0.319 0.497

Table 4.12: Politeness Vs Magnet and Sticky Pearson’s and Cross-Correlation
Coefficient

4.2.5 Threats To validity

Threats to external validity are related to generalisation of our conclusions.
With regard to the system studied in this work we considered only open source
systems and this could affect the generality of the study; our results are not
meant to be representative of all environments or programming languages. Com-
mercial software is typically developed using different platforms and technolo-
gies, with strict deadlines and cost limitation and by developers with different
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experiences.

4.3 Are Bullies more Productive? Empirical Study of
Affectiveness vs. Issue Fixing Time

Human Affectiveness, i.e., the emotional state of a person, plays a crucial role
in many domains where it can make or break a team’s ability to produce suc-
cessful products. Software development is a collaborative activity as well, yet
there is little information on how affectiveness impacts software productivity.
As a first measure of this impact, this study analyzes the relation between senti-
ment, emotions and politeness of developers in more than 560K Jira comments
with the time to fix a Jira issue. We found that the happier developers are (ex-
pressing emotions such as JOY and LOVE in their comments), the shorter the
issue fixing time is likely to be. In contrast, negative emotions such as SAD-
NESS, are linked with longer issue fixing time. Politeness plays a more complex
role and we empirically analyze its impact on developers’ productivity.

4.3.1 Introduction

Team sports like soccer [49] are a primary example that the productivity of an
organization is not only a product of the talent in a team, but depends heavily
on human affectiveness, i.e., the way in which individuals feel and how they
perceive their colleagues [41]. A rude coach without people management skills
will only alienate his team, prompting them to just do anything to avoid his
scorn rather than focusing on winning the next game. Highly talented play-
ers with family issues likely have difficulties to focus on their job, while selfish,
greedy or opportunistic players disrupt the harmony in a team. On the other
hand, a group of medium-level players could grow into a winning squad if they
enjoy working together and form a cohesive team.

Similar to sports teams, human affectiveness in software engineering has a
huge impact on the abilities of a software organization [29] [53], yet the need
to collaborate with remote teams (both in closed and open source develop-
ment) makes the situation even more challenging [9] [22]. The fact that peo-
ple do not work physically in the same location not only makes coordination
of tasks more difficult, it requires them to align with colleagues and interpret
colleagues’ feelings through emails, discussion boards (e.g., issue tracking sys-
tems) and conference calls. The exclusive use of such systems and the absence
of face to face communication could encourage developers in pursuing impo-
lite communicative behaviour [97], which is known to detract newcomers from
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a project [104]. Many famous examples of this exist on the Linux kernel mailing
list, for example in exchanges between the creator of the Linux kernel and some
of the Linux developers 11.

In previous research [73], the authors manually analyzed whether discus-
sion boards like bug repositories contain emotional content. They indeed found
evidence of gratitude, joy and sadness, and also weak evidence that the pres-
ence of emotions like gratitude was related with faster issue resolution time.
However, due to the manual nature of the analysis, the data sample was rela-
tively limited. Furthermore, emotions are but one of the possible human affec-
tiveness measures, and might not have the strongest relation with issue resolu-
tion time.

In this study, we empirically analyze more than 560K comments of the Apache
projects’ Jira issue tracking system to understand the relation between human
affectiveness and developer productivity. In particular, we extract affectiveness
metrics for emotion, sentiment and politeness, then build regression models to
understand whether these metrics can explain the time to fix an issue. We aim
to address the following research questions:

RQ1: Are emotions, sentiment and politeness correlated to each other? The
considered affective metrics have a weak correlation with each other. RQ2: Can
developer affectiveness explain the issue fixing time? Affective metrics are sig-
nificant for explaining the issue fixing time. Our logistic regression model has
a Precision of 0.67 and a Recall of 0.671 against 0.319 and 0.565 for a Zero-R
baseline model. RQ3: Which affective metrics best explain issue fixing time?
Sentiment and emotions such as JOY and LOVE have a positive effect on the
issue resolution time (i.e., they take longer) whereas negative sentiment and
emotions such as SADNESS have a negative impact on the issue resolution time
(i.e., they take less time). Issue average politeness has a negative impact on the
issue fixing time.

The rest of the section is organized as follows: we first discuss related work (Sec-
tion 5.2.3). In Section ??, we describe how we measure affectiveness by mea-
suring emotions, sentiment and politeness in developers’ comments. Section
4.3.4 introduces the Apache projects’ Jira Issue Tracking System dataset and our
methodology. In Section 4.3.5 we present and discuss our findings, followed by
a discussion of threats to validity in Section VI.



4.3. ARE BULLIES MORE PRODUCTIVE? 71

Figure 4.4: Emotion Classifier Architecture
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Emotion Accuracy Precision Recall F1

ANGER 0.770 0.746 0.737 0.736
JOY 0.892 0.788 0.733 0.746
SADNESS 0.855 0.847 0.798 0.812
LOVE 0.881 0.798 0.772 0.775

Table 4.13: Emotion classifier performance

4.3.2 Measuring Emotions

While sentiment is a measure of positive or negative emotion expressed in a
given text relative to some topic, emotions are more fine-grained and relate to
a particular emotional state. This corresponds to a variety of human feelings
such as LOVE or ANGER. Different emotion framework exists, which decom-
pose emotions into a basic set of emotions. Similar to Murgia et al. [73], we
used Parrott’s emotional framework, which consists of six basic emotions: joy,
sadness, love, anger, sadness, and fear. Despite conceptual frameworks like
Parrott’s Framework, to the best of our knowledge there is no available emotion
analysis tool such as the ones available for measuring sentiment and polite-
ness. For this reason, we built a machine learning classifier able to identify the
presence of four basic emotions: JOY, LOVE, ANGER and SADNESS (these are
the most popular emotions identified by Murgia et al. [73] in issue comments).
Figure 4.4 shows the emotion classifier’s architecture.

As input, the classifier requires all comments posted on a project’s issue
tracking system. For each comment, we used a sentence tokenizer 12 that di-
vides a comment into sentences. For each sentence, we applied a classic text
preprocessing approach, removing all the stop words and the domain words.
Developers’ comments often contain code, such as code snippets or stack traces,
and in order to remove this text (which is irrelevant for emotion detection), we
filtered out non-English words within a sentence using Wordnet13. The output
of the Lemmatizer block is a vector containing all the words of a sentence. We
enhanced each sentence vector considering the bi-grams (all individual words
and all pairs of consecutive words) before performing the affective feature ex-
traction. Using bi-grams is useful for considering negation such as “don’t like”,
which would not be considered using single words.

The Affective Feature Extraction block then extracts the following affective

11http://arstechnica.com/information-technology/2013/07/linus-torvalds-defends-his-
right-to-shame-linux-kernel-developers/

12http://nlp.stanford.edu/software/tokenizer.shtml
13http://wordnet.princeton.edu/
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features:

• Affective labels: we used the Wordnet Affect label [106] to obtain an affec-
tive label 14 for each sentence’s words.

• Mood: we used the tool based of De Smedt et al. [31] to measure the
grammatical mood, i.e., the presence of auxiliary verbs (e.g., could, would)
and adverbs (e.g., definitely, maybe) that express uncertainty.

• Modality: we used the same tool to measure the degree of uncertainty
expressed in a whole sentence.

• Sentiment: the sentence’s sentiment measured using Sentistrength.

• Politeness: the sentence’s politeness measured using Danescu et al.’s tool
[30].

For each of the four emotions, we built a dedicated Support Vector Machine
classifier, since this kind of classifier has proven to be particularly suitable for
text classification. It has several parameters and we used a grid search algo-
rithm 15 using the F1 score 16 in order to find the optimum tuning configura-
tion. We used a manually annotated corpus of comments and their emotion
for training the machine learning Classifiers, one for each emotion. The train-
ing set consisted of 4000 sentences (1000 for each emotion), which was manu-
ally annotated by three raters having a strong background in computer science
(Elfenbein et al. [37] provided evidence that for members of the same cultural
and social group it is easier to recognize emotions than for people belonging to
different groups).

A sentence was marked as containing a particular emotion if at least two
out of three raters marked the presence of that particular emotion. If not, the
sentence was marked as not having that emotion (and also added to the train-
ing set). We validated our emotion classifier using Bootstrap validation with
1000 iterations 17. Bootstrap validation splits a dataset in training and test set
according to a given ratio (we used 90% training - 10% testing) and generates
N sets (1000 in our case) uniformly sampled with replacement from the ini-
tial dataset. This technique yields more stable measures of accuracy precision
and recall, compared to other validation techniques such as cross-validation or

14An affective-label is a label assigned to a word and its synonyms that indicates the emo-
tional state of that word. For example, the word "sad" has X and Y as affective label, see
http://wndomains.fbk.eu/wnaffect.html

15http://en.wikipedia.org/wiki/Hyperparameter_optimization
16http://en.wikipedia.org/wiki/F1_score
17http://en.wikipedia.org/wiki/Bootstrapping_(statistics)
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leave-one-out validation. Table 4.13 shows the performance obtained during
bootstrap for each of the four machine learning classifiers. The models ob-
tained a very high performance on the annotated corpus of comments. Given
the (still) limited size of the training set, this may be due to some degree of
overfitting. However, for emotions like LOVE and SADNESS, the most influen-
tial words used by the classifiers are "thanks" and "sorry", which are extremely
common words across issue comments. In that sense, the models are relatively
general. Since these models are a first attempt to design an emotion classifier,
we decided to adopt the models in our study. Future research should focus on
enhancing emotion classification.

4.3.3 Case Study Setup

Dataset

We used the Jira dataset described in Sec. 2.1.1, selecting issue reports from
projects of the Apache Software Foundation, since Apache is one of the most
studied software ecosystems [110]. An Issue Tracking System (ITS) is a repos-
itory used by software developers as support for corrective maintenance ac-
tivities like Bug Tracking, along with other types of maintenance requests. We
mined the ITS of the Apache Software Foundation, collecting issues from 2002
to December 2013. Table 4.14 shows the corpus of 14 projects selected for our
analysis, highlighting the number of comments recorded for each project and
the number of developers involved. We chose the top 14 projects with the high-
est number of comments since our focus is to measure the affectiveness ex-
pressed in developers’ comments. However, our corpus still contains popular
projects such as Lucene and Hadoop.

4.3.4 Experiment Design

In order to evaluate the impact of affective metrics on the issue fixing time we
designed our experiment as follows. We built a logistic regression model18 for
classifying the issue fixing time as short or long based on a set of independent
variables characterising Jira issues [100]. The output of the logistic regression
model, given the metric values of a particular issue, is the probability of the
issue to be fixed in a short or long time. One then needs to select a thresh-
old probability above which the logistic outcome is interpreted as "long fixing
time". Since the logistic regression model has a binary output, we had to trans-
form the numeric issue fixing times of Jira into a binary value, with 1 meaning

18http://en.wikipedia.org/wiki/Logistic_regression
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Project # issues # comments # developers issues’ average # comments issues’ average # commenters

HBase 9353 91016 951 9.73 2.93
Hadoop Common 7753 61958 1243 7.99 2.98
Derby 6101 52668 675 8.63 2.74
Lucene Core 5111 50152 1107 9.81 2.96
Hadoop HDFS 4941 42208 757 8.54 2.9
Cassandra 6271 41966 1177 6.69 2.54
Solr 5086 41695 1590 8.19 3.18
Hive 5124 39002 850 7.61 2.8
Hadoop Map/Reduce 4747 34793 875 7.32 2.74
Harmony 6291 28619 316 4.54 2.22
OFBiz 5098 25694 578 5.04 2.23
Infrastructure 6804 25439 1362 3.60 1.95
Camel 6147 24109 908 3.92 1.76
ZooKeeper 1606 16672 495 3.32 1.87

Table 4.14: Statistics of the selected projects (developers correspond to the Jira
users that are involved in a project, i.e. committers, issue reporters and comment
posters.)

that the issue fixing time will be longer than the issue fixing time median, and
zero meaning shorter than the median.

As independent variables, we considered a set of control metrics as control
variables for our case study, and a set of affective metrics as controlled vari-
ables. Table 4.15 shows the considered metrics. The controlled variables are
the issue characteristics proposed by Giger et al. [44] as listed in the first half
of Table 4.15. These control metrics cover all dimensions of Giger et al.’s work
[44]. In particular, Giger et al. found that assignee and reporter experience
have the strongest influence on bug fixing time. The second set of indepen-
dent variables, i.e., the controlled variables, are different variations of the three
affectiveness metrics of Section ?? that we deemed related to issue fixing time
(these variations are non-exhaustive).

Instead of building one model with all metrics at once, we used a hierarchi-
cal modelling approach where one metric at a time is added, a model is built,
then the model is compared using an ANOVA test to the previous model (with-
out that metric) to check whether the addition of the metric leads to a statis-
tically significant improvement of the model. We then considered in our final
model, only those metrics that were significant, i.e., those metrics with a p-
value <0.01 (marked with ** or ***). The significant metrics are shown in bold
in Table 4.16.

Finally, we evaluated the impact of each metric in the model as shown in
Figure 4.5, using the general approach proposed by Shihab et al. [100]:

• First, we gave as input to the logistic regression model the median values
of each metric, since those values represent a “common” value for the
metric. The corresponding output probability is called baseline output.
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Control Metrics
metric Type Range Description

reporter previous #
comments

Number >=0
# comments previously posted by
the issue reporter

assignee previous #
comments

Number >=0
# comments previously assigned
to the issue assignee

issue priority Category TRIVIAL..CRITICAL
The priority assigned to the issue
(Major, Minor, Critical etc.)

issue type Category BUG..NEW_FEATURE
The issue maintenance type (Bug,
New Feature, Task etc.)

issue # watchers Number >=0
The number of Jira users watching
the issue

issue # developers Number >=0
The total number of Jira users that
commented on an issue, including
reporter and assignee

issue # status
changes

Number >=0

The total number of times an issue
has been changed (such as chang-
ing status, resolution, type, prior-
ity etc.)

issue # comments Number >=0
The total number of comments
posted on an issue report

Affective Metrics
metric Type Range Description

issue avg sentiment Number [0,1]
The average sentiment expressed
in the issue comments

issue avg politeness Number [0,1]
The average politeness expressed
in the issue comments

issue love
comments
proportion

Proportion%
The percentage of issue comments
expressing love emotion

issue joy comments
proportion

Proportion%
The proportion of issue comments
expressing joy emotion

issue sadness
comments
proportion

Proportion%
The proportion of issue comments
expressing sadness emotion

issue anger
comments
proportion

Proportion%
The proportion of issue comments
expressing anger emotion

issue title
sentiment

Number [0,1]
The sentiment expressed in an is-
sue’s title

issue title
politeness

Number [0,1]
The politeness expressed in an is-
sue’s title

issue first comment
sentiment

Number [0,1]
The sentiment expressed in the is-
sue’s first comment

issue first comment
politeness

Number [0,1]
The politeness expressed in the is-
sue’s first comment

issue last comment
sentiment

Number [0,1]
The sentiment expressed in the is-
sue’s last comment

issue last comment
politeness

Number [0,1]
The politeness expressed in the is-
sue’s last comment

Table 4.15: Metrics used in our study
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Feature z-value p-value

assignee # previous
comments

-19.322 <2e-16 ***

reporter # previous
comments

-0.933 <2e-16 ***

issue
priority:Critical

7.194e-
02

5.94e-09
***

issue
priority:Major

12.263 < 2e-16 ***

issue
priority:Minor

14.200 < 2e-16 ***

issue
priority:Trivial

6.687
2.28e-11

***

issue type:Bug -1.230 0.218550
issue
type:Improvement

-0.872 0.383073

issue type:New
Feature

-0.415 0.677798

issue type:Sub-task -1.050 0.293538
issue type:Task -0.621 0.534872
issue type:Test -1.277 0.201539
issue type:Umbrella 1.136 0.256108
issue type:Wish 0.049 0.961256

issue # watchers 3.590
0.000330

***

issue number of
developers

27.559 < 2e-16 ***

issue number of
changes

40.329 < 2e-16 ***

issue avg
sentiment

-5.594
2.22e-08

***
issue avg
politeness

11.485 < 2e-16 ***

issue avg love -16.329 < 2e-16 ***
issue avg joy -9.099 < 2e-16 ***
issue avg sadness 14.388 < 2e-16 ***
issue avg anger -0.212 0.831741

issue title
sentiment

2.884 0.003922 **

issue title
politeness

3.512
0.000444

***
issue first comment
sentiment

1.676 0.093723 .

issue first comment
politeness

2.108 0.035053 *

issue last comment
sentiment

4.839
1.30e-06

***
issue last comment
politeness

-9.843 < 2e-16 ***

Table 4.16: Coefficient and p-values for the metrics of the logistic regression
model. Metrics in bold are significant to the model.
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• One metric at a time, we add one a standard deviation to the considered
metric k leaving all other metrics unchanged on their median values. This
yields a probability that we call metric k output.

• For each metric k, we calculated the relative increase of the metric k out-
put relative to the baseline output, i.e., (metric k output−baseline output)/baseline output.

• We can then compare the relative increase of each metric to determine
the metric with the largest impact (relative increase), as well as the sign
of the increase (positive/negative), independent of the unit/type of the
metric. For categorical metrics, we used the mode (most frequently used
value) instead of the median.

Figure 4.5: Experiment Schema

4.3.5 Results

RQ1: Are emotions, sentiment and politeness correlated to each other?

Motivation. Our final goal is to understand the impact of affectiveness on the
issue fixing time. For this purpose, we build a regression model using affec-
tive metrics in RQ2. However, since all affective metrics measure something
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about the feelings of stakeholders we first need to understand whether senti-
ment, emotion and politeness are really independent measures, or if there is
overlap between them, in which case we should filter out some of the metrics.
Approach. In order to evaluate the correlation between the considered affec-
tive metrics, we measured the sentiment, emotions and politeness of developer
comments using metrics in Table 4.15, considering only issues with at least two
comments. For each issue, we used the love/joy/sadness/anger comment pro-
portion, average politeness and sentiment per issue considering all comments
posted on the same issue. We first calculated for each issue comment a polite-
ness value according to the following rules:

• Value of +1 for those comments marked as polite by the tool;

• Value of 0 for those comments marked as neutral (confidence level<0.5);

• Value of -1 for those comments marked as impolite.

Then we averaged the assigned politeness across all comments, obtaining a
number in a range from -1 to 1. We finally normalize the average issue polite-
ness in a range from 0 to 1.

Similar to the average issue politeness, we evaluated the average issue senti-
ment measuring for each comment of an issue, the sentiment using SentiStrenght.
As described in Sec. 2.3.1, SentiStrenght yields a value in a range from -5 to 5.
Averaging all comments’ sentiments we obtain the issue average sentiment as a
number in the range from -5 to 5, which we normalize again in a range from 0 to
1. After normalization, issue with average sentiment and politeness 0 means re-
spectively extremely impolite and negative (sentiment), 0.5 means neutral po-
liteness and sentiment and 1 extremely polite and positive (sentiment).

We calculated the emotion proportions, average sentiment and politeness
of about 560K comments (about 68K issues) then computed the Pearson corre-
lation coefficient among all the considered metrics, except for the non-numeric
issue type and priority [44]. As is commonly done, we considered weak a corre-
lation less than 0.4, moderate a correlation from 0.4 to 0.7, and strong a corre-
lation greater than 0.7.
Findings. Weak correlation exists between issue average politeness and issue
first comment politeness, and between issue last comment politeness and is-
sue last comment sentiment . Table 4.17 shows the correlations larger than 0.3.
The affective metrics have a maximum weak correlation of 0.36 between the is-
sue average politeness and issue first comment politeness. Some of the control
metrics instead have a moderate to strong correlation with a maximum value of
0.7 between issue # developers and issue # comments. Given the strong correla-
tion between issue # developers and issue # comments, we considered all metrics
except issue # comments in the remainder of our analysis.
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assignee # previous
comments

n.s 0.49 n.s n.s n.s n.s

issue first comment
politeness

0.36 n.s n.s n.s n.s n.s

issue last comment
politeness

n.s n.s n.s 0.36 n.s n.s

issue # developers n.s n.s 0.55 n.s 0.48 n.s
issue # comments n.s n.s 0.48 n.s 0.67 0.7

Table 4.17: Weak and moderate correlations in our dataset (RQ1)
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RQ2: Can developer affectiveness explain the issue fixing time?

Motivation. Productivity is an important factor for a software organization to
be successful, i.e., achieving shorter time to market, for this reason understand-
ing the factors that impact software productivity is crucial during software de-
velopment. Although there are many factors that impact the issue fixing time
[44], there is little information about the impact of developers’s affectiveness
on the issue fixing time. In this RQ, we investigate a possible relation between
the affective metrics for emotions, politeness, and sentiment with issue fixing
time.

Approach. As explained in Section 4.3.4, we used the metrics in Table 4.15
to build a logistic regression model for explaining the issue fixing time.

Findings. Affective metrics are significant for the explanation of the is-
sue fixing time. Our logistic regression model has a Precision of 0.67 and Re-
call of 0.671 against respectively 0.319 and 0.56 for the ZeroR model. Table
4.16 shows how significant the metrics are for the logistic regression model. We
considered significant all metrics with a p-value<0.01. As expected, the control
metrics such as the issue priority, issue reporter/assignee previous comments and
the issue number of developers/changes are significant. However, more interest-
ing is that affective metrics such as the issue percentage of emotion x and issue
average politeness/sentiment are significant.

To calculate the total performance of the model, we chose only the metrics
from Table 4.16 that are significant (p-value<0.01), then built a final logistic
regression classifier. Table 4.18 shows a comparison between the classification
performance of our logistic regression model and a ZeroR classifier. The latter
is a baseline model that always answers the same output (“long”), and often is
used as a baseline to compare a model to (models performing worse are not
worth the effort). By definition, the ZeroR model has perfect recall for "Long",
but its precision suffers, and recall for the "Short" class is zero, which results
in an average weighted precision and recall (across both classes) of 0.319 and
0.565 respectively. On the other hand, our model obtains good precision and
recall for both classes, resulting in a much higher average precision and recall.
The precision, recall and AUC of our model are comparable to those obtained
by Giger et al. [44] and are better than the precision and recall of the ZeroR
classifier. AUC is the area under the receiver operating characteristic curve. It
can be interpreted as the probability that, when randomly selecting a positive
("Long") and a negative ("Short") example the model assigns a higher score to
the positive example [74]. For a random model, this probability would be 0.5,
which is the AUC obtained for the ZeroR model in our case. Our logistic model
obtains an AUC value higher than 0.5, better than random. Furthermore, we
can see how adding the affective metrics to our model, precision, recall and
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Classifier Class Precision Recall F1 AUC

ZeroR
Short 0 0 0

0.5Long 0.565 1 0.722
Weighted
Avg.

0.319 0.565 0.408

Logistic
without
affective
metrics

Short 0.602 0.6 0.601
0.715Long 0.69 0.7 0.695

Weighted
Avg.

0.655 0.656 0.655

Logistic with
affective
metrics

Short 0.626 0.607 0.616
0.734Long 0.704 0.72 0.712

Weighted
Avg.

0.67 0.671 0.67

Table 4.18: Logistic regression model performance

AUC are all increased.

4.3.6 RQ3: Which affective metrics best explain issue fixing time?

Motivation. We found that the affective metrics are significant for the logistic
regression model that we built, as shown in Table 4.16. Since not all are equally
influential in a regression model, we now are interested in quantifying which
metrics have the strongest link with issue fixing time. In particular, are affec-
tiveness measures as important as traditional issue-related measures?

Approach. In order to understand the impact of affective metrics, we eval-
uated the impact of each metric on the logistic regression model as described
in Sec. 4.3.4.

Findings. Positive sentiment and emotions such as JOY and LOVE have
a negative effect (i.e., reduce issue fixing time) on the issue resolution time
whereas negative sentiment and emotions such as SADNESS have a positive
impact on the issue resolution time. Issue average politeness has a positive
impact on the issue fixing time.

Table 4.19 shows the relative increase in the logistic regression baseline out-
put when fixing all metrics but one on their median values and adding one
standard deviation to one metric’s median value. The two control metrics is-
sue number of developers and issue number of changes have the highest impact
(>100%): the more developers involved or changes being made, the longer the
fixing time. In contrast, the issue assignee/reporter previous comments, which
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are a measure of developer experience, have a negative impact on the issue fix-
ing time, i.e., the more the issue’s assignee or reporter is experienced the more
likely the issue fixing time will be shorter.

Apart from the above control variables, some affective metrics also have a
significant impact. The more polite an issue’s last comment is, the more likely
the issue fixing time was shorter. Similarly, the issue average sentiment im-
pact is -10.52%, which means that the more positive the average sentiment is,
the faster an issue is fixed. JOY and LOVE have a negative impact of -26.42%
and -50.19% respectively, whereas the SADNESS emotion has a positive impact
of 38.49%. In other words, SADNESS is linked with longer issue fixing time,
whereas JOY and LOVE are linked to shorter fixing times.

Feature
% of increment of logistic reg.

output when the adding one SD

issue # changes 192.09%
issue # developers 134.23%
issue average politeness 49.76%
% sadness comments 38.49%
issue last comment sentiment 13.72%
watchers 10.92%
issue reporter prev. comments -9.18%
issue avg sentiment -10.52%
% joy comments -26.42%
issue last comment politeness -29.10%
% love comments -50.19%
assigne # previous comment -54.45%

Table 4.19: Metrics impact on issue fixing time. Affective metrics are high-
lighted in bold.

Similar to the % of sadness comments, the issue’s average politeness increases
the likelihood of a long issue fixing time by 49.76%. This result is somehow
unexpected. One would expect that the more developers communicate in a
polite way, the more they are able to be productive. We discuss the impact of
politeness in the next section.

4.3.7 Discussion

This section investigates in more detail the role played by the issue’s average po-
liteness, since it is somehow unexpected that the issue average politeness is re-
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lated to longer issue fixing time. To enable a deeper analysis, we distinguished
between three groups of issues:

• High-Politeness: issues with average politeness 1.

• Medium-Politeness: issues with average politeness in the range ]0,1[. This
category corresponds to issues that are more or less neutral.

• Low-Politeness: issues with average politeness 0.

We use box plots and hexbin plots 19 to understand how the issue fixing time
is distributed across these three categories.

Figure 4.6 shows the box plot in logarithmic scale of the issue fixing time
for the three categories of average politeness considered. Issues with Low-
Politeness and high-Politeness have the shortest fixing time, containing respec-
tively 38.8% and 10.4% of the total number of issues. This finding is further
confirmed by the hexbin plot of Figure 4.7, where we can see that for Medium-
Low-Politeness the majority of issues are shifted up towards higher values of
issue fixing time compared to Low- and High-Politeness. In other words, the
extreme cases of politeness, both in positive and negative sense, are linked
with faster fixing time compared to more neutral cases. Such a non-linear link
between an independent variable and the dependent variable cannot be cap-
tured by a logistic model, which is why the model suggested in RQ2 that higher
politeness is linked with longer issue fixing time (since the median fixing time
of High-Politeness is slightly higher than for Low-Politeness). This finding for
High-Politeness confirms the findings of Ortu et al. [77].

What is still unclear is why the extreme cases have lower fixing times. One
plausible reason for Low-Politeness issues (which captures 38.8% of all issues,
i.e., the majority of extreme politeness cases) is such issues quickly conclude an
issue because of the negative or positive tone of the comments. Alternatively,
issues of the extreme politeness cases (positive and negative) might have at-
tracted more participants, resulting in more discussion and hence longer fixing
time.

Figure 4.8 shows that Low-Politeness issues indeed have the lowest number
of sentences with Medium- and High-Politeness containing most of the sen-
tences. In other words, negative discussions seem to conclude with less discus-
sion.

19A hexagon bin plot is a kind of scatterplot where instead of individual dots for each data
point, all data points in a hexagonal area are collapsed and the color of the hexagon shows how
many data points are in that area. Hexbin plots are very informative in cases where many data
points would overlap and one would not know how many points are overlapping.
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   Low-Politeness (38.8%)   Medium-Politeness (50.8%)  High-Politeness (10.4%)10-3

10-2
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105  Average Politeness  Vs Issue Fixing Time (68943 Issues)

Figure 4.6: Average Issue Politeness versus Issue Fixing Time Boxplot

Figure 4.7: Average Issue Politeness versus Issue Fixing Time Hexbin Plot
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Furthermore Figure 4.9 shows the box plot of issue # developers for the three
categories of average politeness. Here, the extreme politeness cases both have
the lowest number of participants, with a median value of 2 developers. Medium-
Politeness issues have a median value of the issue # developers of 4. Taken to-
gether, issues with extreme politeness involve less developers and (at least for
negative politeness) have shorter comments, both of which could provide part
of the reason why their issue fixing time is shorter. More research is needed to
fully understand these observations.

   Low-Politeness (38.8%)   Medium-Politeness (50.8%)  High-Politeness (10.4%)100

101

102

103  Average Politeness  Vs Issue Average Number of Sentence (68943 Issues)

Figure 4.8: Distribution of Average Politeness versus Average Number of Sen-
tences for the three groups of issues.

   Low-Politeness (38.8%)   Medium-Politeness (50.8%)  High-Politeness (10.4%)100

101

102

103  Average Politeness  Vs Issue Number of Involved Developers (68943 Issues)

Figure 4.9: Distribution of number of developers versus Politeness for the three
groups of issues.

4.3.8 Threats To Validity

Threats to internal validity concern confounding factors that can influence the
obtained results. We assume a causal relationship between a developer’s emo-
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tional state and what he or she writes in issue report comments, based on em-
pirical evidence (in another domain) [80]. Moreover, since developer commu-
nication has as first goal information sharing, removing or disguising emotions
may make comments less meaningful and cause misunderstanding. Since the
comments used in this study were collected over an extended period from de-
velopers not aware of being monitored, we are confident that the emotions we
mined are genuine. This is also why we could not involve the authors of the
comments in our study. That said, we do not claim any causality between any
of our metrics and the issue fixing time. We mainly built an explanatory model
to understand the characteristics of issues with short and long fixing time.

Threats to construct validity focus on how accurately the observations de-
scribe the phenomena of interest. Mining of emotions from textual issue report
comments presents difficulties due to ambiguity and subjectivity. To reduce
these threats, the authors adopted Parrott’s framework as a reference for emo-
tions. Finally, to avoid bias due to personal interpretation, during the anno-
tation of 4000 sentences for the training corpus of the emotion classifier, each
sentence was analyzed by at least two raters. Furthermore the affectiveness
measures are approximations and cannot 100% correctly identify the correct
affective context, given the challenges of natural language and subtle phenom-
ena like sarcasm. To deal with these threats, we used state-of-the-art tools like
SentiStrength, the tool of Desmedt et al. [31] and Danescu et al.’s politeness
tool, in addition to our own emotion classifier.

Threats to external validity correspond to the generalizability of our exper-
imental results [20]. In this study, we manually analyze a sample of 4000 sen-
tences of comments from issue reports belonging to 14 open source projects.
We consider the projects as a representative sample of the universe of open
source software projects, with different development teams and satisfying dif-
ferent customers’ needs. Replications of this work on other open source sys-
tems and on commercial projects are needed to confirm our findings.

Threats to reliability validity correspond to the degree to which the same
data would lead to the same results when repeated. This research is the first
attempt to manually investigate different measures of affectiveness from issue
reports, and their impact on the issue fixing time, hence no ground truth exists
to compare our findings. We defined the ground truth through agreement or
disagreement of the raters for measuring emotions and existing tools provided
for measuring sentiment and politeness.

This study is focused on text written by developers for developers. To cor-
rectly depict the affectiveness embedded in such comments, it is necessary to
understand the developers’ dictionary and slang. This assumption is supported
by Murgia et al. [73] for measuring emotions. We are confident that the tools
used for measuring sentiment and politeness are equally reliable in the soft-
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ware engineering domain as in other domains.



Chapter 5

Related Works

5.1 Effectiveness

5.1.1 Software Maintenance and Fixing Time

Software maintenance types and issue resolution time are topics commonly
analyzed in software engineering. However, with rare exceptions [71, 115], these
topics are never analyzed together. This section presents how the maintenance
activities have been considered in context of issue resolution time. The bug-
oriented repository Bugzilla played a key-role for the analysis of the time spent
on the maintenance activity. Demeyer et al. showed that this repository is the
most common used in mining software conferences [32]. Bugzilla has been
widely studied because it stores bugs of Eclipse and Mozilla, two of the most
common case studies [81, 11, 45, 124]. Other bug-oriented repositories em-
ployed for these type of study have been the FreeBSD’s bug repository [16] and
the Google Code’s bug tracker [11].

Panjer predicts the bug fixing time analyzing the bug reports of the project
Eclipse [81]. He points out that the resolution time of bugs with severity blocker,
critical and trivial is lower than the resolution time of enhancements. Similar
analysis was performed by Zhang et al. to explore developer’s delays during bug
fixing for three projects of Eclipse [124]. They use Bugzilla’s severity to distin-
guish between bug and enhancement. Investigating the factors that are rele-
vant for the delay of the triaging, they discover that developers who fix a bug
are faster in updating the bug status on the repository.

Bhattachary and Neamtiu investigate which factors influence the bug fix-
ing time using the bug reports of Chrome, Eclipse and three products from the
Mozilla project [11]. They build a bug-fix time prediction model and demon-
strated that several models proposed in literature cannot be replicated when
adopted on large projects used in bug studies. Their results indicate that the
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predictive power of such models is between 30% and 49% and they conclude
that there is a need for more independent variables to construct a prediction
model. Similar analysis is performed by Giger et al. [45] and Bougie [16]. In
Giger et al. [45] they use the projects Eclipse, Mozilla, and Gnome, in Bougie et
al. [16] they use the FreeBSD’s bug repository. Unfortunately, in these cases the
authors do not make any distinction related to the type of issue involved (e.g.;
enhancement, bug), so it is not possible to make any conjecture related to the
type of maintenance they analyzed.

Due to the bug-oriented nature of the repository, the previous works are
mainly focused on the issue resolution time related to the corrective mainte-
nance.

One step toward the analysis of the relationship between maintenance type
and issue resolution time is done by Weiss et al. and Mockus and Votta [115, 71].

Weiss et al. take into account issues labeled as bug and feature, namely is-
sues that can be assumed to be related to corrective and adaptive maintenance
[115]. This study does not have any analysis on perfective and preventive main-
tenance. Moreover, the number of issues ascribable as corrective and mainte-
nance activity are only 273 and all of them belong to just one project. Finally,
they only use mean and standard deviation to characterize the difference be-
tween the issue resolution time of bugs and features. These statistics are not
reliable to characterize right-skewed or fat-tail distributions such as the issue
resolution time distributions. From the comparison of the mean values, they
show that corrective maintenance is faster than adaptive maintenance.

Mockus and Votta analyze the issue resolution time associated to the cor-
rective, adaptive, and perfective maintenance activities [71]. In the study, the
type of maintenance activity is only inferred by the authors reading the devel-
oper commit message. Indeed, the issue tracking system used in the study did
not have any field to specify the type of issue. Moreover, the analysis is limited
to only one commercial switching software. The study uses only plots to show
how the issue resolution time changes according to the type of maintenance.
Comparing the plots, the authors highlights that corrective changes have the
shortest resolution time, followed by perfective changes. Unfortunately, the
analysis does not provide many details related to the distribution of the issue
resolution time.

The last two studies, even if they consider more than one type of mainte-
nance, are not focused on how to model the distribution of the issue resolution
time.

There are two main differences between our study and the previous ones.

• We take into account all categories of maintenance reported in ISO/IEC
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14764, namely corrective, preventive, perfective and adaptive maintenance
[1]. Our investigation, which involves 34 projects, uses the GitHub’s repos-
itory where developers keep track of any maintenance activity performed
in the system.

• We model the issue resolution time using statistical distribution. The
benefits of this analysis is not only the possibility to distinguish among
the different maintenance activities, but also to provide reliable estimates
of the issue resolution times.

5.1.2 Developers Working Team and Fixing Time

The bazaar is one of the most used figurative expression to explain the Linux’s
development style, and several studies have used the "Cathedral-Bazaar" metaphor
[92] to describe the properties of a (differently) organized approach of develop-
ment [10] [15] [12] [21] [65].

The structure of such decentralized development has been deeply analyzed
by many researchers. Small world phenomenon and scale free behaviors are
found in the SourceForge development network by Xu et al [119], considereding
two developers socially related if they participate in the same project. Wagstrom
et al. [113] congregated empirical social network data from blogs, email lists
and web sites, to build a models of development used to simulate how users
joined and left projects. Ehrlich et al [36] used social network analysis to study
how individuals in global software development teams detect and gain exper-
tise.

Crowston et al. [27] examined 120 project teams from SourceForge, detect-
ing that open source development teams vary in their communications central-
ization, from projects centered on one developer to projects highly decentral-
ized and exhibit a distributed pattern of conversation between developers and
active users. Larger teams tend to have more decentralized communication
patterns. Other researchers[69] examined the structure of developer collabo-
ration with the developer network in order to predict failures at the file level.
Failure prediction models were developed using test and post-release failure
data from two releases of a mature Nortel networking product, then validated
against a subsequent release.

Sharif et al. [99] showed that open source developers are "implementation
centric" and "team focused" in their use of mailing lists.

Other studies have analyzed the structure of the open source software com-
munities to understand social aspects in development Steinmacher et al. [105],
identified 20 studies providing empirical evidence of barriers faced by new-
comers to OSS projects while making a contribution. They identified 15 dif-
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ferent barriers, which we grouped into five categories: social interaction, new-
comers’ previous knowledge, finding a way to start, documentation, and tech-
nical hurdles. The authors also classified the problems with regard to their ori-
gin: newcomers, community, or product. Zhou et al. [126] found, using issue
tracking data of Mozilla and Gnome, that the probability for a new joiner to
become a Long Term Contributor is associated with her willingness and envi-
ronment. Shah [98] explored the motivations of participants from two software
development communities and finds that most participants are motivated by
either a need to use the software or an enjoyment of programming. The lat-
ter group, hobbyists or enthusiasts, are critical to the long-term viability and
sustainability of open source software code: they take on tasks that might oth-
erwise go undone, are largely "need-neutral" as they make decisions, and ex-
press a desire to maintain the simplicity, elegance, and modularity of the code.
The motives of hobbyist evolve over time; most join the community because
they have a need for the software and stay because they enjoy programming
in the context of a particular community. G Ortu et al. [77] studied 14 open
source software projects developed using the Agile board of the JIRA repository.
They analysed all the comments committed by the developers involved in the
projects and we studied whether the politeness of the comments affected the
number of developers involved over the years and the time required to fix any
given issue. Results indicated that the level of politeness in the communication
process among developers does have an effect on both the time required to fix
issues and the attractiveness of the project to both active and potential devel-
opers. The more polite developers were, the less time it took to fix an issue, and,
in the majority of the analysed cases, the more the developers wanted to be part
of project, the more they were willing to continue working on the project over
time.

5.2 Affectiveness

5.2.1 Emotions

Software development is a collaborative activity dependent on human interac-
tion between developers towards the timely completion of a high quality soft-
ware system [70]. Existing software development studies are not focused on the
analysis of individual feelings, even though the morale and emotions of individ-
uals can impact on the collaboration process and subsequently the success of
a product [18, 2]. In our study, emotions are the first-class object, we study
how developers feel towards software artifacts and/or colleagues. A project
that is not appealing and unable to motivate developers to join, can be des-



5.2. AFFECTIVENESS 93

tined to fail [43]. For this reason, there has been a great deal of research on the
reasons of developers joining and leaving a software project. Sim et. al have
investigated dynamic strategies and conditions that characterize the joining
process of software immigrants in a software development team [103]. Duch-
eneaut analysed the socialization process of new developers by visualizing the
dynamic networks of both human and material resources incorporated in the
email and code databases of open source software [34]. Herraiz et al. studied
the duration and basic characteristics of the joining process for the developers
and found two groups with clearly different joining patterns: new professionals
and volunteer developers [59]. They could relate those patterns to the different
behavior of volunteers and hired developers.

Rigby et al. analyzed the five big personality traits [78] of software develop-
ers in the Apache httpd server mailing list [93]. They analyzed the personality of
four top developers, assessing the personality of two top developers who have
left the project. Bazelli et al. replicated Rigby’s work on Stack Overflow to an-
alyze the personality traits of different authors [6]. Although both studies deal
with the behaviour of developers, they do not consider the emotions of project
members and how these impact the motivation of project members. Typically,
emotion and sentiment mining studies focus on emotions that people convey
through twitter, question and answer sites and product reviews [79, 66, 68].
Choudhury et al. [23] applied sentiment analysis on microblogging data of a
large global Fortune 500 software corporation used to “disseminate produc-
t/service updates to the larger enterprise community, such as details of new
upcoming features, news about future team meetings, releases or trade shows”.
They found that there is a potential for building systems that assess feelings of
employees in an enterprise. To improve emotional awareness in software devel-
opment teams, Guzman et al. proposed a sentiment analysis approach for dis-
cussions in mailing lists and web-based software collaboration tools like Con-
fluence [54]. They used Latent Dirichlet Allocation to find the topics discussed
in email and web discussions of students in the context of a class project, then
use lexical sentimental analysis to obtain an average emotion score for each of
the topics. Dullemond et al. [35] extended a microblogging tool with a happi-
ness indicator, then deployed the tool across distributed teams in a company.
Employees used the tool to share their message and emotions with their col-
leagues in order to stay more connected and be aware of each other while col-
laborating. Gómez, using a grep-like approach, mined GitHub for extracting
developers commit messages [47]. In his blog he collected several expressions
ascribable as anger, joy and surprise, used during coding activity by develop-
ers. Differently from sentiment analysis on high-level feature and meeting an-
nouncements, our study performs emotion mining on technical artifacts, i.e.,
the comments of issue reports. Although emails and web discussions contain
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more technical details than the microblogging data sources, issue reports con-
tain even more technical detail, since they are used by team members to ask for
advice, express opinion and share opinions related to software maintenance
and evolution. In contrast to sentiment analysis on a given emotion, we tried
to identify and mine the different types of emotions.

5.2.2 Politeness and Agile

Several researchers have analysed [76] [73] [108] [118] [111] the effect of polite-
ness. Gupta et al. [51] presented POLLy (Politeness for Language Learning), a
system which combines a spoken language generator with an artificial intelli-
gence planner to model Brown and Levinson’s theory of politeness in collab-
orative task-oriented dialogue, with the ultimate goal of providing a fun and
stimulating environment for learning English as a second language. An evalu-
ation of politeness perceptions of POLLy’s output shows that: perceptions are
generally consistent with Brown and Levinson’s predictions for choice of form
and for discourse situation, i.e. utterances to strangers need to be much more
polite than those to friends; (2) our indirect strategies which should be the po-
litest forms, are seen as the rudest; and (3) English and Indian native speak-
ers of English have different perceptions of politeness. Pikkarainen et al. [86]
showed that agile practices improve both informal and formal communication.
The studies indicates that, in larger development situations involving multiple
external stakeholders, a mismatch of adequate communication mechanisms
can sometimes even hinder communication. The study highlights the fact that
hurdles and improvements in the communication process can both affect the
feature requirements and task subtask dependencies as described in coordina-
tion theory. While the use of SCRUM and some XP practices facilitate team and
organizational communication of the dependencies between product features
and working tasks, the use of agile practices requires that the team and orga-
nization use also additional plan-driven practices to ensure the efficiency of
external communication between all the actors of software development. Ko-
rkala et al. [64] showed that effective communication and feedback are crucial
in agile development. Extreme programming (XP) embraces both communi-
cation and feedback as interdependent process values which are essential for
projects to achieve successful results. The research presents the empirical re-
sults from four different case studies. Three case studies had partial onsite cus-
tomers and one had an onsite customer. The case studies used face-to-face
communication to different extents along with email and telephone to manage
customer-developer communication inside the development iterations. The
results indicate that an increased reliance on less informative communication
channels results in higher defect rates. These results suggest that the selection
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of communication methods, to be used inside development iterations, should
be a factor of considerable importance to agile organizations working with par-
tially available customers.

5.2.3 Affectiveness

The Manifesto for Agile Development [8] indicates that individuals and inter-
actions are more important than processes and tools. David Parnas defined
software engineering as multi-person development of multi-version programs
[82] [83].

As such, the study of social aspects and psychological states [62] in software
engineering is gaining, lately, more and more importance. Roberts and al. [95]
conducted a study that reveals how the different motivations of open source de-
velopers are interrelated, how these motivations influence participation, and
how past performance influences subsequent motivations. Researchers are
focusing their effort on understanding how the human aspects of a technical
discipline can affect the final results [17] [38][61]. Feldt et al. [39] focused on
personality as one important psychometric factor and presented initial results
from an empirical study investigating correlations between personality and at-
titudes to software engineering processes and tools. To enhance emotional
awareness in software development teams, Guzman et al. proposed a senti-
ment analysis approach for discussions in mailing lists and web-based software
collaboration tools like Confluence [53]. They used lexical sentiment analysis
to analyze the relationship between emotions expressed in commit comments,
with different factors such as programming language, time and day of the week
in which the commit was made. Results showed that projects developed in Java
have more negative commit comments, and that commit comments written on
Mondays tend to contain more negative emotion. Steinmacher et al. [104] ana-
lyzed social barriers that hampered newcomers’ first contributions. These bar-
riers were identified considering a systematic literature review, students con-
tributing to open source projects, and responses collected from OSS projects’
contributors. The authors indicated how impolite answers are considered as a
barrier by newcomers.

Rigby et al. [94] analyzed the five big personality traits of software develop-
ers in the Apache httpd server mailing. Bazelli et al. [7] studied the personality
traits of authors of questions on StackOverFlow.com. As a replication of Rigby
et al.’s work, they applied LIWC (this time on SO questions), then categorized
the extracted personalities based on the online reputations of the analyzed au-
thors. They found that top reputed authors are more extrovert and issue less
negative emotions.

Tourani et al. [110] evaluated the usage of automatic sentiment analysis
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to identify distress or happiness in a development team. They extracted sen-
timent values from the mailing lists of two of the most successful and mature
projects of the Apache software foundation considering both users and devel-
opers. They found that user and developer mailing lists bring both positive and
negative sentiment and that an automatic sentiment analysis tool obtains only
a modest precision on email messages due to their relatively long size com-
pared to tweets or issue comments, and Murgia et al. [73] analyzed whether
development artifacts like issue reports carry any emotional information about
software development. The significant result of the study is that issue reports
express emotions towards design choices, maintenance activity or colleagues.

Gomez et al. [46] analyzed whether the personality factors of team mem-
bers and team climate factors are related to the quality of the developed soft-
ware by the team. Analysis of student projects showed that software quality is
correlated with team members’ personality traits like extroversion and team cli-
mate factors such as participation. They derived guidelines for software project
managers with respect to team formation.

Ortu et al. [77] studied 14 open source software projects developed using
the Agile board of the JIRA repository. They analysed all the issue comments
written by the developers involved in the projects to study whether the po-
liteness of the comments affected the number of developers involved over the
years and the time required to fix any given issue. Results indicated that the
level of politeness in the communication process among developers has an ef-
fect on both the time required to fix issues and the attractiveness of the project
to both active and potential developers. The more polite developers were, the
less time it took to fix an issue, and, in the majority of the analysed cases, the
more the developers wanted to be part of a project, the more they were willing
to continue working on the project over time.

Compared to Ortu et al. [77], our study analyzes two additional affective-
ness metrics (emotions and sentiment), as well as uses logistic regression to
compare the impact of all affectiveness metrics and common issue report met-
rics together, instead of using a univariate model using only politeness.



Chapter 6

Conclusion

The work conducted during the three years of the present PhD is aimed to an-
alyze the development process of software artifacts from two point of view: the
Effectiveness and Affectiveness. The first is meant to analyze the productivity of
Open Source Communities by measuring the time required to resolve an issue.
The latter provided a novel approach for studying the development process by
analyzing the affectiveness expressed by developers in their comments posted
during an issue resolution. Affectivenes is measured by measuring Sentiment,
Politeness and Emotions. All the study present in this work are based on two
real cases of software repositories: Jira and GitHub as described in 2.1.1.

6.1 Effectiveness

This study first analyzed to which extends the time required to fix an issue is
influenced by the issue’s maintenance type. Software maintenance is a pro-
cess difficult to understand and manage and yet crucial to organize the com-
pany’s resource. In literature there is little information on how the mainte-
nance activity influences the issue resolution time. Moreover, in the few cases
where these two topics are both considered, the analysis is oversimplified since
it adopts few statistic measures that cannot properly describe the specificities
(e.g; right-skewness) of the issue resolution time distribution. Our empirical
study analyzes the data stored in the GitHub’s issue tracking system. From this
repository we analyze 34 open source projects and more than 14000 issues that
were ascribable as requiring corrective, adaptive or perfective maintenance.
Empirical results shows that the issue resolution time depends on the type of
maintenance performed. We discovered that corrective and perfective main-
tenance are generally shorter than the other maintenance activities, whereas
adaptive and perfective maintenance requires generally the highest resolution-
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time. Moreover, it points out that models for effort estimation of maintenance
activities based mainly on data extracted from bug oriented repositories (e.g.;
Bugzilla) may provide biased estimation (towards corrective maintenance). By
the use of lognormal and Weibull distribution models this study enables to
quantify the contribute of the maintenance type on the issue resolution time.
For both models, the study demonstrates their suitability to analyze samples
with different size and further demonstrates that statistical distribution mod-
els can be exploited for project’s scheduling.

The second factor that the present study considered for studying effective-
ness is the working team. We analyzed the developer networks of 7 open source
projects hosted in JIRA by building a network in which developers who posted
issues or commented issues are represented by nodes and edges represent a de-
veloper posting a comment on an issue posted by another developer. We then
applied a clustering algorithm in order to detect communities. We found the
presence of developers communities for all the projects analyzed. This result
agrees with other studies about the social structure of open source projects. We
further investigated how the productivity is distributed across the communi-
ties. To measure the productivity we considered factors such as the community
size, the number of fixed issues, the distribution of fixed issues’ maintenance
type and priority, and the average issue fixing time. We found the presence of
Pareto’s law (20% of developers doing 80% of the work), there are a few devel-
opers that post and comment the majority of issues. The presence of Pareto’s
law need further investigation, one may expect this is due to the nature of JIRA
issue tracking system and the structure of the open source community and how
we built the developer’s working network. For example there may be a group of
core developers devoted to report issues. We analyzed the average community
issue fixing time and we found it varies across the communities. We showed the
independence of the average issue resolution time from the other factor con-
sidered, such as the community size and the kind of issues maintenance and
priority. There are many other factors that may impact the average community
issue fixing time, for example software component involved in the issue resolu-
tion or the portion of code involved.

This study is a starting point to better understand how groups of developers
perform when working together. The issue resolution time is a useful metric
that represents the productivity of a certain community.

We conclude this first part highlighting the main contributions.

• We built two statistical distribution models for the issue resolution time
that takes into account the issue maintenance type. These models are
based on real data and we showed, by mean of examples, that they can
be adopted for issue scheduling.
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• We provided a preliminary study for analyzing the productivity of devel-
opers’ working teams by analyzing communities in developers’ network
built from Issue Tracking System.

• Results confirmed that productivity is distributed across working teams
according to Pareto’s law.

• The average issue resolution time greatly varies across communities and
preliminary results suggest that it is independent from the community
size (measured by the number of developers of a community).

6.2 Affectiveness

The work presented in this thesis continues analyzing the development process
of software artifacts from the point of view of the affectiveness expressed by de-
velopers on their comments posted on issue reports. The study was performed
on a real case study based on several projects of the Apache Software Founda-
tion hosted in Jira. Human Affectiveness such as the emotional state of a person
influences human behaviour and interaction. Software development is a col-
laborative activity and thus it is not exempt from such influence. Affective anal-
ysis, e.g., measuring emotions, sentiment and politeness, applied to developer
issue reports, can be useful to identify and monitor the mood of the develop-
ment team, allowing project leaders to anticipate and resolve potential threats
to productivity (especially in remote team settings), as well as to discover and
promote factors that bring serenity and productivity in the community.

In order to measure affectiveness we considered three metrics: Sentiment,
Politeness and Emotion. Sentiment and politeness are measured using two state-
of-art tool, respectively: SentiStrenght and the politeness tool provided by Danescu
et. al. [30]. By the time of this thesis, and to the best of our knowledge, there
is no free available tool for detecting emotions in written text. Since the lack of
such tools for measuring emotions and since emotions have never been stud-
ied before in the software engineering field we first analyzed the feasibility of
studying emotions in software artifacts. As a first step towards evaluating the
feasibility of a tool for automatic emotion mining, we performed an exploratory
study of developer emotions in almost 800 issue comments posted during soft-
ware development, maintenance and evolution. Our study confirms that is-
sue reports do express emotions towards design choices, maintenance activity
or colleagues. Regarding agreement among human raters, results shows that
some emotions like LOVE, JOY and SADNESS are easier to agree on, but that addi-
tional context can cause doubt for raters, unless more raters are used. Findings
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suggest that for LOVE, JOY and SADNESS it makes sense and eventually might be
feasible to automate emotion mining.

Proved the presence of emotions in comments posted by developers dur-
ing development, this work considered the role played by politeness during
software development for system developed using the Agile board of the JIRA
repository. This study presents the results about politeness and attractiveness,
as defined by [120], on 14 open source software projects developed using the
Agile board of the JIRA repository. Results show that the level of politeness in
the communication process among developers does have an effect on both the
time required to fix issues and the attractiveness of the project to both active
and potential developers. The more polite developers were, the less time it took
to fix an issue and, in the majority of the analyzed cases, the more the develop-
ers wanted to be part of project, the more they were willing to continue work-
ing on the project over time. This work provided a a starting point and further
research on a larger number of projects is needed to prove and validate these
findings.

Previous studies showed that emotions are present in developers comments
and for some emotions such as JOY, LOVE or SADNESS it is feasible to build an
automatic tool for emotion mining and thus we built a machine learning tool
for emotion mining, as described in 4.3.2.

We can now consider affectiveness by measuring sentiment, politeness and
emotions.

This work is a first attempt to highlight the impact of developer affective-
ness on productivity in the form of issue fixing time. First, we showed that the
three affective metrics, i.e., emotions, sentiment and politeness, are indepen-
dent, showing a weak correlation of at most 0.36. Then, we showed how af-
fectiveness metrics statistically improve an explanation model of issue fixing
time compared to a model based on control metrics. The 4th, 5th and 6th most
important metrics in the model correspond to % of love comments (-50.19%),
issue average politeness (+49.76%) and % of sadness comments (+38.39%). In
other words, comments containing JOY and LOVE emotions have shorter is-
sue fixing time, while comments containing SADNESS emotion have a longer
fixing time. Although we found that the politeness of the last comment has a
shorter issue fixing time, it is unexpected that less polite comments are linked
with shorter fixing time. After investigation we found that for about the 50%
issue reports with extreme politeness (polite and impolite) have shorter issue
fixing time. Those reports tend to only have a median number of 2 developers
discussing the issue, and the negative issues have the lowest number of sen-
tences in the comments.

We can conclude that affectiveness plays a major role in software devel-
opment being able to explain the time required to fix an issue. The present
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work represent a first attempt to analyze the software development from this
prospective, providing the following contributions.

• A systematic study that highlight the presence of emotions in developers’
comments and the ability of human raters to detect and agree on some
basic emotions such as JOY, LOVE and SADNESS.

• A manually annotated, emotion-based, corpus of 4000 sentences extracted
form the Jira repository of the Apache Software Foundation.

• A novel approach for emotions mining based on machine learning clas-
sifier with good performance.

• An explanatory model for issue resolution time showing that affective
metrics are indeed significant for explaining the issue resolution time.
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