
University of Cagliari

Doctoral Thesis

Dataset Analysis for
Classifier Ensemble Enhancement

Author:

Emanuele Tamponi

Supervisor:

Prof. Giuliano Armano

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in

Electronic and Computer Engineering

ING-INF/05

April 2015

http://www.unica.it
http://www.diee.unica.it/driei/


All that is gold does not glitter,

Not all those who wander are lost;

The old that is strong does not wither,

Deep roots are not reached by the frost.

From the ashes a fire shall be woken,

A light from the shadows shall spring;

Renewed shall be blade that was broken,

The crownless again shall be king.

J.R.R. Tolkien

Jesus knew that his hour was come

that he should depart out of this world

unto the Father, having loved his own

which were in the world,

he loved them unto the end.

John 13,1
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We developed three different methods for dataset analysis and ensemble enhance-

ment. They share the underlying idea that an accurate preprocessing and adap-

tation of the data can improve the system performance, without changing the

classification model. Correlation Score is a generic framework for assessing encoding

techniques by measuring the correlation between the encoded feature vectors and

the corresponding class labels; experiments show its effectiveness in discovering the

best encoding configurations between those tested, on a wide range of classification

domains. Multi-Resolution Complexity Analysis is a method for assessing the

local complexity inside a given domain. It is able to split a domain into regions

of different classification complexity, giving insights on the inner structure of the

populations inside the domain. Finally, Forests of Local Trees are a novel training

algorithm for ensemble classifiers. They are based on the concept of local trees:

classifiers trained with a bias toward a certain region of the domain. This bias

enhances the diversity inside the ensemble, leading to improved performance.

These three topics are meant as a foundation for a more complex framework, that

will eventually utilize them organically.

Emanuele Tamponi gratefully acknowledges Sardinia Regional Government for the financial support

of her PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous

Region of Sardinia, European Social Fund 2007-2013 – Axis IV Human Resources, Objective l.3,

Line of Activity l.3.1.).

http://www.unica.it
http://facolta.unica.it/ingegneriarchitettura/
http://dipartimenti.unica.it/ingegneriaelettricaedelettronica/


Acknowledgements

Acknowledging all the people that helped me through this work is impossible. I

will try to do my best, but please, don’t feel angry if your name is not in this list!

And please consider that I’ve wrote everything in random order!

I wish to thank my advisor, prof. Giuliano Armano, for having mentored me for a

grand total of three different theses, and having always believed in my capabilities.

Thank you to all my colleagues, in particular Alessandro(s), Francesca, Matteo(s),

Amir, Mario and Cristina, for the endless hours of work and laugh, and for having

stood me for so many years. . .

Thank you to Paolo, Luigi, Luigi, Silvia, Miriam, Tore, Roberto, Valeria, Andrea,

Basti, Michele, and all other friends of Communion and Liberation, for having

always sustained me to live the Ideal in the reality.

Thank you to Giulia, Matteo, and Salvatore, for being great friends.

Thank you to Chiara, because you are here and show me that what changes my

life is not my projects on things, but His project on me.

Thank you to Don Felice, as without him I couldn’t understand anything of what I

live.

Thank you, Antonio and Alberto, for always being present, in some way, just as

only brothers can be.

Thank you, mamma and babbo, because you are the best parents anyone can hope

to have!

iii



Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Notation and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Assessing Encoding Techniques through Correlation Scores 6

2.1 Correlation and Association Measures . . . . . . . . . . . . . . . . . 9

2.2 Multivariate Linear Correlation . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Converting Categories to Vectors . . . . . . . . . . . . . . . 11

2.2.2 Correlation Matrices . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Coefficient of Determination . . . . . . . . . . . . . . . . . . 12

2.3 Coefficients of Multivariate Association . . . . . . . . . . . . . . . . 13

2.3.1 Fisher’s Correlation Ratio . . . . . . . . . . . . . . . . . . . 14

2.3.2 Generalized Correlation Ratio . . . . . . . . . . . . . . . . . 15

2.4 Uncertainty Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Definition of Correlation Scores . . . . . . . . . . . . . . . . . . . . 19

2.6 Experiments on Feature Subset Assessment . . . . . . . . . . . . . . 22

2.6.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 22

2.6.2 On the Significance of the Comparison . . . . . . . . . . . . 23

2.6.3 Random Feature Subset Encoder . . . . . . . . . . . . . . . 24

2.6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Multi-Resolution Complexity Analysis 32

3.1 Studies on Classification Complexity . . . . . . . . . . . . . . . . . 34

iv



Contents v

3.2 Multi-Resolution Complexity Analysis . . . . . . . . . . . . . . . . 36

3.2.1 Transformation to the Profile Space . . . . . . . . . . . . . . 37

3.2.2 Clustering Elements in the Profile Space . . . . . . . . . . . 39

3.2.3 Multi-Resolution Index . . . . . . . . . . . . . . . . . . . . . 40

3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Probe Functions . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1.1 Imbalance Probe Function . . . . . . . . . . . . . . 41

3.3.1.2 Linear Boundary Probe Functions . . . . . . . . . 42

3.3.2 Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Feature Space Normalization . . . . . . . . . . . . . . . . . . 45

3.3.4 Cluster Centers . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.5 Weights of the Multi-Resolution Index . . . . . . . . . . . . 47

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Additional Tables and Figures . . . . . . . . . . . . . . . . . . . . . 63

4 Forest of Local Trees: a Novel Ensemble Method 64

4.1 Ensemble Methods from the Literature . . . . . . . . . . . . . . . . 69

4.2 Forests of Local Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Sample Weighting Strategy . . . . . . . . . . . . . . . . . . 71

4.2.2 Picking the Right Centroids . . . . . . . . . . . . . . . . . . 73

4.2.3 Making the Classification . . . . . . . . . . . . . . . . . . . . 75

4.3 Growing Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Using a Weighted Dataset for Training . . . . . . . . . . . . 77

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 87



List of Figures

2.1 Decomposition of a classification system. . . . . . . . . . . . . . . . 6

2.2 Percent of significant results grouped by range of R2. . . . . . . . . 29

2.3 Percent of significant results grouped by range of Wilks’ η2. . . . . . 30

3.1 Profile examples, with t = 15. . . . . . . . . . . . . . . . . . . . . . 38

3.2 Two neighborhoods with same imbalance, but different complexity. 42

3.3 Manual centroids for t = 15. . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Comparison plots (part 1) . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Comparison plots (part 2) . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Comparison plots (part 3) . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Comparison plots (part 4) . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Comparison plots (part 5) . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Comparison plots (part 6) . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 Comparison plots (part 7) . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Graphical demonstration of the bias-variance decomposition. . . . . 66

4.2 Examples of weighting distributions. . . . . . . . . . . . . . . . . . 72

4.3 How the picking probabilities are updated after choosing the centroids. 74

4.4 Overall accuracy comparison. . . . . . . . . . . . . . . . . . . . . . 81

4.5 Accuracy comparison for the two best configurations. In both cases
nc = 30%, ζ = 100%. . . . . . . . . . . . . . . . . . . . . . . . . . 82

vi



List of Tables

1.1 Datasets used in the experiments. . . . . . . . . . . . . . . . . . . . 4

1.2 Datasets used in the experiments (cont.d). . . . . . . . . . . . . . . 4

2.1 Overall significant results per dataset when compared to Random
Forest error rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Overall significant results per dataset when compared to Bagging
error rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Overall significant results per dataset when compared to AdaBoost
error rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Overall significant results per feature subset size when compared to
Random Forest error rate. . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Overall significant results per feature subset size when compared to
AdaBoost error rate. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Profile configuration values. . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Number of positive results for each profile configuration. Classifier:
Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Number of positive results for each profile configuration. Classifier:
Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Results for Imbalance Probe, t = 15, c1 = 5%, ct = 45%. Clusterer:
Custom Centroids. Compared classifier: Random Forest. . . . . . . 53

3.5 Results for Linear Boundary Probe, t = 15, c1 = 5%, ct = 60%.
Clusterer: Custom Centroids. Compared classifier: Random Forest. 54

3.6 Best results for each dataset and number of clusters. Clusterer:
Custom Centroids. Compared classifier: Random Forest. . . . . . . 55

4.1 Parameters used in the experiments. . . . . . . . . . . . . . . . . . 79

4.2 Overview of the results: win/tie/loss triplets. . . . . . . . . . . . . . 80

4.3 Comparison for FLT with nc = 30%, rleaf = 50, and ζ = 100%. . . . 84

4.4 Comparison for FLT with nc = 30%, rleaf = 100, and ζ = 100%. . . 85

4.5 Comparison for FLT with nc = 30%, rleaf = ∞, and ζ = 100%. . . . 86

vii



A Mamma e Babbo!

viii



Chapter 1

Introduction

In the last few years, pattern recognition and machine learning systems have become

ubiquitous. They are used from industrial infrastructure to everyday products, like

mobile phones and cars. However, they are far from being a crystallized research

field. On the contrary, every day sees the light of new classification or regression

algorithms, data mining tools, application fields, theoretical insights.

The focus of this thesis is on classification systems, and in particular, we provide

novel contributions on dataset analysis techniques. The red line that connects the

remaining three chapters of this manuscript (each of which represents the result

of one year of research of our PhD) is our perception that the performance of a

classification system can be widely improved by just choosing the best preprocessing

steps and tuning them optimally, without any modification of the classification

model being used. This approach is surely an hazard, as most of the research effort

on the field of classification systems goes to defining novel, more accurate models

for classification (we cite, for example, the work on Conditional Random Fields,

on Mixtures-of-Experts, and on Gaussian Mixtures), that consider the underlying

data as “immutable”.

With this guiding principle in mind, we developed three different dataset analysis

approaches.

• Correlation Score. Chapter 2 presents Correlation Scores, a novel method to

assess encoding techniques. Defining the optimal description of an object (its

encoding) is a complex task, typically done manually by an expert of the field,

except for few cases like feature selection or discretization: in these cases,

1



Chapter 1. Introduction 2

several algorithms exist, capable of searching through the configuration space

in order to find an optimal (or nearly optimal) configuration. Our method can

instead be applied to any kind of data preprocessing for classification tasks,

and works by computing the overall correlation between the encoded data

(input) and the labels (output). It provides a “score”, that can then be used

to rank the configurations: we show that this score is strongly correlated to

the error rate of a classification system trained using the same encoded data.

Moreover, we show that our Correlation Scores can outperform information-

based approaches. One obvious application of our Correlation Scores is its

use as a fitness function in genetic optimization algorithms and other similar

search methods, when there is no obvious way to compute the derivative

between the fitness function and the parameters to optimize.

• Multi-Resolution Complexity Analysis. Chapter 3 discusses our novel method

for measuring the complexity of a given domain. Once again, we moved away

from the main stream of research work, where complexity analysis may refer

to either the definition of measures able of ranking different classification

domains from the easiest to the hardest (e.g.: the Bayes error rate), or to

the definition of a set of measures related to the complexity of a given domain,

aimed at highlighting why it is complex (e.g.: non-linearity of boundary

between classes, sparseness of the input space, et cetera). In either cases,

such measures are global characteristics of a domain. Instead, our purpose is

to measure the local complexity inside a given domain, in order of splitting

it in regions of different classification complexity. In order to do that, we

developed Multi-Resolution Complexity Analysis (MRCA for short). MRCA

works by evaluating the complexity of each point in a dataset at different

resolutions (hence the name): this gives rise to a complexity profile space, in

which is possible to cluster observations with similar complexity.

• Forests of Local Trees. Chapter 4 presents a novel ensemble algorithm

developed by us, based on Random Forest and on the concept of local trees.

A local tree is a decision tree trained to give more importance to a specific

region of the domain. By training local trees, we increase the diversity of the

ensemble, without impairing the performance of the single learners. We show

that our Forests of Local Trees (FLTs for short) compare favorably to state

of the art algorithms like Random Forests, even for small ensemble sizes.
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The topics that we discuss in this thesis are meant to be a foundation for a

more complex framework. For example, we expect to improve the performance of

our Forests of Local Trees by using Multi-Resolution Analysis to place the local

trees in optimal regions inside the datasets. On the other side, MRCA can be

used together with the Correlation Scores (through the definition of a new probe

function, described in Chapter 3). However, these interactions are not discussed in

the present manuscript.

The reader will surely notice how the maturity of the researcher grows chapter after

chapter. In effect, each topic represents one year of research, and we decided to

present the results in strictly increasing temporal order. Personally, we are proud

of the results achieved each year, in particular the ones obtained by our Forests of

Local Trees.

The rest of this Introduction presents the notation shared by each chapter, that is

then assumed as known in the remaining of the manuscript. We also briefly list

and describe the datasets used in the experiments.

1.1 Notation and Datasets

We assume that the reader is familiar with the field of pattern recognition and in

particular of classification algorithms.

A dataset D is a set of N object-label pairs. It is a sample from the under-

lying population domain. The dataset can be defined in two ways. The first

one doesn’t assume anything about the representation of the objects, and we

indicate it simply as D = {(o1, y1), . . . , (oN , yN)}, where oi is the i-th object

in the sample, and yi is the class label associated to it (we can use also the

expression raw dataset to refer to this one). The second definition of dataset

assumes that the objects have already been encoded in some way, so that they

are represented through a set of measures, or features, that form a feature vector

for the object; in this case, we write D = {(x1, y1) , . . . , (xN , yN)}, where xi is

the feature vector associated to the i-th object in the sample. In either cases,

y ∈ Y, where Y is a finite set of class labels or categories (e.g., it may indi-

cate the state of an instrument: Y = {working, damaged}; or a kind of flower:

Y = {iris-virginica, iris-setosa, iris-versicolor}); the number of class labels is indi-

cated as m. The feature vector may contain either continuous or categorical features,
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Dataset Classes Objects Scalar Discrete
name m N features features

anneal 6 898 6 32
anneal-orig 6 898 6 32
audiology 24 226 69 0
autos 7 205 10 16
balance-scale 3 625 4 0
breast-cancer 2 286 0 10
breast-w 2 699 9 0
colic 2 368 7 16
colic-orig 2 368 7 16
credit-a 2 690 6 9
credit-g 2 1000 7 13
diabetes 2 768 8 0
glass 7 214 9 0
heart-c 5 307 6 7
heart-h 5 294 6 7
heart-statlog 2 270 13 0
hepatitis 2 155 6 13
hypothyroid 4 3772 7 22

Table 1.1: Datasets used in the experiments.

Dataset Classes Objects Scalar Discrete
name m N features features

ionosphere 2 351 34 0
iris 2 150 4 0
kr-vs-kp 2 3197 0 36
labor 2 57 8 8
letter 26 20000 16 0
lymph 4 148 3 15
primary-tumor 22 239 0 17
rootstock 6 48 4 0
segment 7 2310 19 0
sick 2 3772 7 23
sonar 2 208 60 0
soybean 19 683 0 35
splice 3 3190 0 60
vehicle 4 846 18 0
vote 2 435 0 16
vowel 11 990 10 3
waveform 3 5000 40 0
zoo 7 101 2 16

Table 1.2: Datasets used in the experiments (cont.d).
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and we indicate the feature space as X , so that x ∈ X . The number of components

of x is indicated as n and each feature is xj, so that x = (x1, x2, . . . , xn).

A classifier is an algorithm that associates an unlabeled feature vector to a label.

It is generally trained by an algorithm that takes a learning dataset as input and

produces a classifier fitted in order to associate the optimal label to each unlabeled

instance. Optimality is generally defined as minimizing the error rate on a test

dataset that is assumed unknown during the training phase.

Tables 1.1 and 1.2 shows the datasets used in the experiments. Clearly, they are

not raw datasets, as they come with a set of precomputed features. They are part

of the UCI dataset repository, and are used for most experimental comparisons in

the literature [1].



Chapter 2

Assessing Encoding Techniques

through Correlation Scores

Any classification system can be decomposed into two parts, as depicted in Figure

2.1. The decomposition does not consider the training process, but only the “steady

state” of the system.

The “classifier” block represents the classification model. Current research on

classification algorithms attempts to either provide models specialized on specific

domains, or general purpose classifiers that fit well on a wide variety of applications.

Together with the models, the literature provides plenty of information on how to

train them.

The “encoder” block is the necessary connection between the data that comes

from the real world and the classification algorithm. With the terms “encoding”,

“encoding technique” and “encoder”, we refer to all the types of preprocessing

techniques that can be used to provide the classifier with a properly formatted and

enhanced version of the data fetched from the domain at hand. For example, we

could refer to image enhancement, feature extraction, normalization and reduction,

Encoder Classifier
Raw

data

Encoded

features

Prediction

Figure 2.1: Decomposition of a classification system.
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data augmentation, de-noising, et cetera, or even domain-specific techniques like

amino acid encodings [2], [3], [4].

The performance of a classification system greatly depends on the selected encoding

technique and on its parameters. However, it is typically impossible to express

mathematically the connection between the parameters of an encoder and the

performance of the classification system in which it will be used1, so that the encoder

parameters cannot be optimized with derivative-based methods like gradient descent.

For this reason, optimization has to be done using brute-force search techniques,

like grid-search, or using genetic algorithms. However, both optimization systems

are only viable when an effective and fast fitness function is available. A fitness

function is a method for assessing the quality of each candidate element found

during the search, so that the one with the greatest fitness is selected as the optimal

one.

To our best knowledge, such fitness functions have been defined only for a few

types of encodings, e.g. for categorical feature selection (see, for example, [5],

[6], [7]). Most of these functions are based on the concept of mutual information

(shortly discussed in Sec. 2.4) and are typically presented as part of an optimization

algorithm, so that it is difficult to consider them independently from the overall

system.

All other types of encoding techniques lack a fitness function capable of assessing

them in isolation from the rest of the classification system. In fact, as of now,

evaluating the impact of an encoding technique on a classification system typically

requires to train it end-to-end and test it by means of a performance metric deemed

relevant (e.g., the classification error). This leads to the following typical strategy

for encoder parameters optimization: from a set of “candidate” encoders, the

one that optimizes the performance metric of the complete classification system

is chosen as the best one. Assessing a generic encoding technique is thus a

time consuming activity, which introduces some additional degrees of freedom

(the parameters of the training algorithm and of the testing protocol) that are

uncorrelated with the encoding technique to be assessed. The computational cost

of optimizing the encoder is typically so high, and the statistical significance of the

1E.g., the reader would probably agree on the fact that writing down a mathematical expression
for connecting the level of brightness of an image to the classification error of a face recognition
system is not a very effective way to spend anyone’s time.
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presented strategy so low, that the researchers tend to use “reasonable” values for

the encoding parameters, selected by hand.

In this chapter, we propose a general method, the Correlation Score, capable

of assessing the quality of any type of encoding technique in an efficient and

statistically significant manner, and in isolation from the rest of the classification

system. The main application for the Correlation Score is as a fitness function for

genetic optimization algorithms.

The concept that drives the Correlation Score is simple and powerful, and can be

stated as follows: when assessing an encoding technique on a classification dataset,

we want it to maximize the correlation between the encoded feature vectors and

the label associated with each of them, while minimizing the redundancy between

the features. This way, when the Correlation Score of an encoder, say E1, is greater

than the score of another encoder, E2, we expect that also the performance of a

classification system will be better when using E1 than when using E2
2.

Behind this simple concept there are some important technical problems that

needs to be solved: (a) we have to define a correlation coefficient that can handle

both vectorial and categorical variables; (b) the estimation of such a correlation

coefficient has to be stable in presence of high-dimensional feature vectors, large

number of labels and noise; (c) the computational cost of the estimation should

be kept to a minimum in order to make the Correlation Score usable as a fitness

function.

In the remainder of the chapter, we give a brief overview of the correlation measures

present in the literature, then we will describe the general algorithm to calculate

the Correlation Score. We tested our method on a wide range of datasets and

the experimental results show the effectiveness of our work and how it compares

favorably with respect to information-theoretic approaches, that are the direct

generalization of the fitness functions used in categorical feature selection.

We conclude the chapter discussing the results and talking about possible future

research directions.

2Let us note that E1 and E2 do not necessarily need to be different encoders: they might be
two parameter settings for the same underlying encoding technique.
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2.1 Correlation and Association Measures

Let X and Y be two random variables, associated with a probability distribution

PX(x) and PY (y), that can either be continuous or discrete. In the case of vectorial

random variables, we will use the bold symbols X and Y .

Correlation refers to the tendency of two (or more) random variables to diverge

from probabilistic independence: saying that two variables are correlated means

that, to some extent, one of the two (the controlled or dependent variable) can be

described as a function of the other one (the control or independent variable); if

one of the two variables is a functional transformation of the other one, we say that

they are totally correlated; on the other hand, if no relationship exists between the

two, we say that they are totally uncorrelated. An ideal measure of correlation

would then have the following two extreme values:

corr(X, Y ) = 0 ⇐⇒ P(X, Y ) = P(X)P(Y ) (2.1)

corr(X, Y ) = 1 ⇐⇒ Y = f(X) (2.2)

Values of corr(X, Y ) between 0 and 1 should represent an increasing relational

bound between X and Y .

In practice, any given correlation coefficient will provide only an approximation of

the previous two properties, and will work optimally only on selected use cases.

Moreover, exact computation of a correlation coefficient requires the knowledge

of the true distribution of X and Y , while we are typically given with a dataset

of paired observations, D = {(x1, y1) , . . . , (xN , yN)}, from which we can only

calculate an estimate.

Another complication comes from the nature of the variables we are interested in.

We want to calculate the correlation between the encoded feature vectors and the

labels present in a dataset D (in the remainder of the chapter, we will refer to such

type of correlation as vector-label correlation): X is then a vectorial variable, that

is, the feature vector obtained by applying the encoding technique to the data,

while Y represents the label associated with each feature vector, and is thus a

categorical random variable. As we will shortly show, the literature concentrates

on correlation coefficients that are either thought to be used between two scalar

variables, between a vectorial variable and a scalar variable, or between one scalar

variable and a categorical variable.
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For this reason, for each correlation coefficient presented in the next sections, we

will also show the adaptation needed to make it usable with a sample of paired

vector-label observations.

2.2 Multivariate Linear Correlation

We start with the most known coefficient: its use is so widespread that, typically,

when someone refers about a correlation coefficient without specification, he is

probably referring to Pearson’s Product-Moment Correlation Coefficient, also called

Linear Correlation Coefficient.

Pearson’s ρ is defined between two scalar variables and is the ratio between their

covariance and the product of their standard deviations:

ρ(X, Y ) =
cov(X, Y )

σ(X)σ(Y )
(2.3)

To estimate ρ for a sample of N paired observations, we can substitute the

covariance and of the standard deviations in the previous equation with their

estimates, obtaining (when using MLE):

r(x, y) =

∑N
i=1(xi − x)(yi − y)

s(x)s(y)
(2.4)

Pearson’s ρ ranges between −1 and +1, and can be interpreted as follows: when

ρ ≈ +1 or −1, then there is a strong linear relationship between X and Y ; the

sign of ρ is equal to the sign of the slope of the regression line between X and Y ;

when ρ ≈ 0, no linear dependence exists.

The lack of linear correlation does not indicate that the two variables are inde-

pendent, as is shown in. The figure represents various cases in which there is

a clear relationship between X and Y , but because it cannot be expressed as a

linear function, the associated Pearson’s ρ assumes values near to zero. Even if its

interpretation is often misleading, Pearson’s ρ is a great tool to estimate correlation

in a wide range of scenarios.

Pearson’s ρ cannot be directly used to calculate the vector-label correlation, as it

is defined between two scalar variables. We now show the steps needed to obtain a

proper vector-label correlation coefficient based on ρ.
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2.2.1 Converting Categories to Vectors

The first step is to convert the label variable, Y , to a vectorial representation, so

that we can handle both variables, X and Y , as vectors. We call this step label

encoding, but has nothing to do with the encoding technique that we want to assess,

that is the one that was used to calculate X in the first place.

The simplest conversion occurs when there are exactly two possible labels, say

Y = {A,B}. In this case, we just need to map one of the two labels to the number

0 and the other one to 1, so that Y = {0, 1}. We then say that in the case of binary

classification datasets, we can convert the categorical label variable to a scalar that

can only assume two values (zero and one).

In the general case of a set of m labels, we can resort to a one-hot encoding : each

label is converted to an m-dimensional vector with all values set to zero except for

one, whose position depends on the label. For example, if we have Y = {A,B,C},
a possible one-hot encoding would be:

A =


1

0

0

 B =


0

1

0

 C =


0

0

1


What we are doing is turning one m-class classification dataset into m binary

datasets, one for each component of the output vector.

Once the label encoding has taken place, without lack of generality, we end up

with two vectorial variables: X, representing the encoded feature vectors with n

components, and Y , which represents the labels with one component if m = 2, or

with m components if m > 2.

2.2.2 Correlation Matrices

A correlation matrix holds pairwise correlation coefficients between the components

of two vectorial random variables. We are interested in building two correlation

matrices. The first one contains the coefficients calculated between pairs of compo-

nents of the encoded input vector, (Xj, Xh), and we call it input-input correlation
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matrix :

CX =


ρ(X1, X1) ρ(X1, X2) . . . ρ(X1, Xn)

ρ(X2, X1) ρ(X2, X2) . . . ρ(X2, Xn)
...

...
. . .

...

ρ(Xn, X1) ρ(Xn, X2) . . . ρ(Xn, Xn)

 (2.5)

Clearly, CX is symmetric. The ideal input-input correlation matrix would be an

identity matrix, as it would indicate that there is no (linear) redundancy between

the features.

The second matrix we have to build is the one that contains the pairwise correlations

between each feature and each component of the label encoding, (Xj, Yk). This

input-output correlation matrix is defined as:

CXY =


ρ(X1, Y1) ρ(X1, Y2) . . . ρ(X1, Ym)

ρ(X2, Y1) ρ(X2, Y2) . . . ρ(X2, Ym)
...

...
. . .

...

ρ(Xn, Y1) ρ(Xn, Y2) . . . ρ(Xn, Ym)

 (2.6)

Let us notice that the k-th column of CXY represents the correlation between

each feature and the k-th label (remember that Y has been obtained by one-hot

encoding of the labels). We will indicate the k-th column of CXY as cXYk :

cXYk =


ρ(X1, Yk),

ρ(X2, Yk),
...,

ρ(Xn, Yk)

 (2.7)

2.2.3 Coefficient of Determination

Once we defined CX and CXY , we need a way to sum the information contained in

these two matrices up into one variable, which synthetically represents the overall

correlation between the feature vector and the labels.

We find a similar correlation coefficient in multivariate regression, where you need

a metric that indicates how well the regression line fits the actual data. The metric
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we are referring to is the coefficient of (multiple) determination:

R2 = 1−
∑N

i=1 (ŷi − yi)2∑N
i=1 (yi − y)2

(2.8)

eq. (2.8) indicates that R2 increases when the sum of squared errors decreases, that

is, when the values found by the model, ŷi, fit more closely with the available data.

The denominator term is needed to make the sum of squared errors proportional

to the total variance of the data, so that the maximum value of R2 is 1.

We use R2 to calculate the overall correlation between the feature vectors and

the k-th label. It can be shown that such a R2 can be calculated by using the

information contained in the input-input correlation matrix and the k-th input-

output correlation vector:

R2
k =

(
cXYk

)T (
CX
)−1 (

cXYk
)

(2.9)

Equation (2.9) shows that the coefficient of determination is directly proportional

to the correlation between the encoded features and the label, but each feature

is weighted considering the redundancy it has with all the other features. This

way, encoders with high redundancy among features get penalized with respect to

encoders that keep them independent from one another.

2.3 Coefficients of Multivariate Association

The coefficient of determination described in section 2.2.3 is very powerful, yet it

is based on the assumption of a linear relationship between the input vector X

and the encoding of each label, Yk. However, another type of relationship has to

be assessed when considering the dependency between a scalar or a vector and a

category (that is, the label associated with it), and it is investigated by Analysis of

Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA) [8].

Analysis of Variance and its multivariate counterpart give the tools to answer the

following question: if we are given with samples drawn from different populations

(that is, each group comes with a different label), is there enough evidence to

say that there is a significant difference in the means of the populations? Said
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differently, should we reject or accept the following null hypothesis:

H0 : µy1 = · · · = µym = µ (2.10)

In the process of assessing the stated null hypothesis, (M)ANOVA provides a very

useful measure: the coefficient of association, η2. This coefficient is modeled to

be directly proportional to the separation between the means of the considered

populations, and ranges from 0 to 1. Values of η2 near to 1 indicate that there is

a clear distinction between the mean values of each population, and this in turn

suggests the presence of a functional relationship (correlation) between the class

label and the features.

In this section we present the coefficient of association due to Fisher, also called

correlation ratio [9]. Unfortunately, once again this coefficient is not suited to be

used directly to measure vector-label correlation, as it is only defined between a

scalar and a categorical variable. We then describe a generalization of the same

concept in the multivariate case, Wilks’ Measure of Association.

As we shall discuss in section 2.5, Wilks’ Measure of Association would be the

preferred coefficient on which to base our Correlation Score, but its calculation

is too unstable. Finding an improved algorithm for its computation is one of our

main objectives as future works.

2.3.1 Fisher’s Correlation Ratio

When measuring the dependency between a scalar feature and a categorical variable,

often we want to investigate if the knowing the category narrows the variance of the

feature, or modifies its expected values. This kind of dependence can be quantified

by the correlation ratio introduced by Fisher. Various equivalent definition of the

correlation ratio exists. We opted for the following one for the sake of clarity:

η2(X|Y ) =
σ2 [E (X|Y )]

σ2(X)
(2.11)

When Y can only assume discrete values, as in the case of a categorical variable, the

correlation ratio can be interpreted as the ratio between the intraclass dispersion

of X and its overall dispersion.
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In order to explain the correlation ratio, it can be shown that [10]:

η2(X|Y ) = max
f(X)

ρ2(f(X), Y ) (2.12)

that is, η2 equals the maximal linear correlation between Y and any function of X.

Hence, it can be used to highlight non-linear relationships between variables.

An estimate of η2 on a sample of N paired observations, when Y is a categorical

variable, is:

h2 =

∑
y∈Y Ny (xy − x)2∑N
i=1 (xi − x)2

(2.13)

where Ny is the number of observations that fall in the category y, and xy is the

mean of the sample xy.

The correlation ratio is a non-symmetric coefficient (η2(X|Y ) 6= η2(Y |X)), and

ranges from 0 to 1. η2 ≈ 0 indicates no correlation, while η2 ≈ 1 shows that a

strong dependence may exists. In particular, when Y is categorical, so that it

indicates the class from which each observation has been taken, values of η2 near

to 1 indicate that the mean of each class is significantly different from that of the

other ones.

2.3.2 Generalized Correlation Ratio

Fisher’s correlation ratio is a very useful coefficient; however, it is properly defined

only when X is scalar. Here we present a generalization to the multivariate case,

due to Wilks. We just provide a quick overview of the generalization; for further

information see [8].

Let us formalize some concepts first. Each category y ∈ Y is associated with a

vectorial random variable Xy, defined in the feature space X , with population

mean µy. Xy represents the population of feature vectors that belong to the

category y. For each random variable Xy we have a sample xy = (xy,1, . . . ,xy,Ny),

consisting of Ny observations. Let us consider the null hypothesis that there is no

difference in the population means, see eq. (2.10). In order to verify the hypothesis

in the scalar case, we can easily compute the between-sample sum of squares and
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the within-sample sum of squares:

SSb =
∑
y∈Y

Ny (xy − x)2 (2.14)

SSw =
∑
y∈Y

Ny∑
i=1

(xy,i − xy)2 (2.15)

These two measures can be used to form independent estimators for σ2(X), so

that, under the null hypothesis 2.10, the following ratio follows an F -distribution:

F =
SSb/m−1

SSw/m(N−1)
(2.16)

Let us now define an equivalent of eq. (2.14) and eq. (2.15) for the multivariate

case, in order to arrive to an equation similar to 2.16. By writing SSb and SSw in

vectorial form, we obtain the “between” and “within” matrices:

B =
∑
y∈Y

Ny (xy − x) (xy − x)T (2.17)

W =
∑
y∈Y

Ny∑
i=1

(xy,i − xy) (xy,i − xy)T (2.18)

So that we can define a likelihood ratio test for the multivariate H0, equivalent to

eq. (2.16), called Wilks’ Λ:

Λ =
|W |

|W +B| (2.19)

and we reject H0 for small values of Λ: Λ < Λ(α, p, νb, νw), where Λ(α, p, νb, νw) is

the Wilks’ Λ distribution. It can be shown that Λ can be equivalently expressed in

terms of the eigenvalues of the matrix W−1B:

Λ =
s∏
i=1

1

1 + λi
(2.20)

where (λ1, . . . , λs) are the non-null eigenvalues of the matrix W−1B, and s =

min(n,m− 1). This equation is particularly useful for binary problems, in which

s = m− 1 = 1, so that only one eigenvalue, say λ1, is non null. This allows us to

look only for the greatest eigenvalue instead of all of them (so that we can use

algorithms for largest eigenvalue search, such as power iteration, which are far

more stable than full-search algorithms). It follows that for binary problems we
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can write:

Λ =
1

1 + λ1

(2.21)

Once we have Λ, we can define Wilks’ generalized η2:

η2
Λ = 1− Λ (2.22)

Wilks’ η2
Λ is a very powerful coefficient, that provides us with a strong foundation

on which to base our Correlation Score. The use of η2
Λ leaves us with a few minor

technical annoyances, as we will shortly describe, but shows to be more effective

than either the Correlation Score based on the Coefficient of Determination and

than the Score based on Mutual Information.

2.4 Uncertainty Coefficient

One of the reasons for the notoriousness of information theory is its widespread use

in other fields, so it should not be a big surprise for the reader to find it cited here.

Information-based correlation coefficients estimate the dependency between two

variables by considering how the uncertainty about one variable varies when the

other one is known.

Let us recall that the uncertainty of a random variable, from an information-

theoretic point of view, is calculated through its entropy :

H(X) = E [I(x)] =
∑
x∈X

P (x)I(x) (2.23)

Equation (2.23) says that the entropy of a variable is the expected value of the

information it provides:

I(x) = log

(
1

PX (x)

)
= − log (PX (x)) (2.24)

Equation (2.24) asserts that the information to a value x ∈ X is inversely propor-

tional to the probability of obtaining that value.
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Another classical measure from information theory is the mutual information

between two random variables, that is defined as follows:

I(X, Y ) =
∑
x∈X

∑
y∈Y

P(x, y)
P(x, y)

P(x)P(y)
(2.25)

It can be shown that I(X, Y ) can be rewritten as:

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (2.26)

Where H(X|Y ) is called conditional entropy and is defined as:

H(X|Y ) =
∑
y∈Y

P (y)H(X|Y = y) (2.27)

Considering the two previous equations, we can interpret the mutual information

between X and Y as the amount of entropy removed from a variable when the

other is known. If our uncertainty about X remains the same after knowing Y

(or vice versa), we can say that there is no correlation between X and Y . On

the other hand, if all our uncertainty about the value of X is removed after we

know Y , there is clearly a functional relationship between X and Y , so that there

is total correlation between the two. Mutual information can then be used as a

base function for a correlation coefficient. However, it needs to be scaled to [0, 1].

Various normalization methods exists. We will use the uncertainty coefficient :

U(X, Y ) =
I(X, Y )

H(Y )
=
H(X)−H(X|Y )

H(Y )
(2.28)

The reasons for choosing this coefficient among all the possible ones will become

apparent in the following.

As happened for the other correlation coefficients we discussed in the previous

sections, we face the problem that the measures involved in calculating the uncer-

tainty coefficient need some adaptations before we can use them with a vectorial

variable, X, and a categorical one, Y .

In particular, entropy is properly defined only in the case of categorical or discrete

random variables, so that we need a definition for vectorial variables.

Moreover, we need en expression for mutual information that applies when one

variable is vectorial and the other one is categorical. Many estimators for the
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mutual information exists for pairs vectorial variables, but not for the case of

vector-label pairs.

However, by using eq. (2.26) we can write the mutual information as:

I(X, Y ) = H(X)−
∑
y∈Y

P(y)H(X|Y = y) (2.29)

Where we only need an estimate for P(y) and for H(X), as estimating H(X|Y = y)

is just a special case of the estimation of H(X) in which we consider only the

samples labeled as y. P(y) is straightforwardly estimated using the frequentist

definition of probability:

P(y) ≈ Ny

N
(2.30)

where Ny is the number of observations labeled as y.

On the other hand, estimating H(X) is a non trivial task. We tested many different

estimators but only one of them proved effective:

H(X) =
N∑
i=1

log (Nρ(xi,x)) + log 2 + γ (2.31)

where ρ(xi,x) is the distance of xi from its nearest neighbor in the sample x

(obviously excluding xi itself) and γ is the Euler’s constant (approximately equal

to 0.577). Let us point out that when calculating the estimate of H(X|Y = y),

we have to replace x with xy (the observations labeled as y) and consequently N

with Ny.

Using eq. (2.31), eq. (2.30) and eq. (2.23) (the latter to calculate the entropy of

Y ), we can finally compute an effective estimate of the uncertainty coefficient 2.28

for the vector-label case.

2.5 Definition of Correlation Scores

As we have seen, the literature on correlation coefficients is very rich. The main

part of our work was to go further than the classical machine-learning related

statistical methods, which concentrate on information-theoretic stuff or on simple

scalar-to-scalar correlation coefficients. This search has proved to be valuable, as

we found a classical correlation measure, Wilks’ Measure of Association, that is
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substantially ignored in the rest of machine learning literature. Even the use of

the Coefficient of Determination, R2, as a measure of the correlation between the

features and the labels in a dataset is something rare to find in contemporary works

on the subject.

However, these measures prove all their power in assessing the encoding techniques,

as we show in the section dedicated to experimental results.

To “convert” each of the correlation coefficients just presented to a Correlation

Score, very few technical issues needs to be taken care of.

The Correlation Score algorithm can be formally stated as follows:

cs(enc(o), y) =
1

m

m∑
k=1

corr (p(x), lek(y)) (2.32)

where enc(o) = x indicates explicitly that we consider the sample of encoded

feature vectors x = (x1, . . . ,xN). For the sake of clarity, we wrote corr(x, y) to

indicate the estimate of the true correlation coefficient corr(X, Y ).

The Correlation Score can be then described as a “synthetic value” that measures

the effectiveness of an encoding technique by using an underlying measure of

correlation between the encoded instances and the associated labels. In order to

obtain an useful value, we have to make sure that the data is fed to the underlying

correlation coefficient in the correct shape, as indicated in eq. (2.32) with p(x) and

lek(y), functions that we now discuss.

The correlation coefficients described in 2.2, 2.3 and 2.4 are statistical measures that

assume the presence of a certain degree of noise in the data and that enough data

exists to make the computation. This consideration proved true in preliminary tests,

in which we found how injecting a small random gaussian noise to the input sample

x improved the overall performance of the Correlation Scores. Moreover, feeding

the correlation coefficient with a bootstrapped sample of the original observations

may increase the effectiveness of the estimation, in particular when there is a strong

imbalance in the number of observations among classes. For these reasons, we apply

a “preparation” step to the encoded sample x, indicated as p(x) in eq. (2.32).

As for the function lek(y), it indicates that an encoding of the label variable is made,

as discussed in section 2.2.1. This might be needed by the underlying correlation

measure, as in the case of the Coefficient of Determination, or to increase the
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stability of the estimate, as in the case of Wilks’ Measure of Association, that

might become unstable in presence of a large number of classes. The index k in

lek(y) indicates that the k-th component of the label encoding is considered.

In our work, we experimented with three Correlation Scores. The first one is the

Correlation Score based on the Coefficient of Determination:

csρ(x, y) =
1

m

m∑
k=1

R2 (x, lek(y)) (2.33)

in which we always use a one-hot label encoding, but the preparation of the feature

vectors is in general not needed.

The second Correlation Score is based on Wilks’ Measure of Association:

csη(x, y) = η2
Λ (p(x), y) (2.34)

in which we do not need to encode the labels, but the calculation of the eigenvalues

to compute η2
Λ become stabler if we inject Gaussian noise on x, so that p(xi) is:

p(xi) = xi + εnN (µ = 0, σ2 = 1) i = 1, . . . , N (2.35)

and p(x) = (p(x1), . . . , p(xN)). The noise level εn is typically set in the order of

10−4 ÷ 10−6.

Finally, we define a Correlation Score based on the Uncertainty Coefficient:

csU(x, y) = U (p(x), y) (2.36)

that once again does not need encoded labels, just Gaussian noise injection.

csU has been defined for comparison purposes only. In fact, information-based

measures are the standard in feature selection algorithms, and we wanted to

compare our approach with the one most used in the literature. As we show in

the next section, the first two Correlation Scores show overall better performances

when we have to assess multiple continuous features at once, so that they prove to

have a more widespread application for encoding assessment.
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2.6 Experiments on Feature Subset Assessment

We conducted experiments on the 35 UCI datasets presented in the introduction.

This forced us to limit our tests on only one type of encoding technique, that is,

feature selection, as the dataset features were already computed and provided to us

in their definitive form. On the other hand, by using our metrics for assessing feature

subsets, we are able to compare the results obtained by the Correlation Scores

based on the Coefficient of Determination and on Wilks’ Measure of Association

with the one based on the Uncertainty Coefficient, and in so doing, we can compare

our approach on feature selection with the one most present in the literature.

2.6.1 Experimental Protocol

We wanted to verify which of the Correlation Score algorithms described in the

previous section is able to act as a fitness function. In order to make this assessment,

we compared the values found by each Correlation Score with the experimental

error rate of a set of classifiers trained on the same data.

We will now formally describe the experimental protocol. Let us represent each

dataset as D = {(o1, y1), . . . , (oN , yN)}. Here, oi represents the i-th uncoded

instance of the dataset, that comes associated to its own label, yi. Let enc(o|θ) be

an encoding technique for the instances of the dataset, with parameters θ. If we

encode the dataset using Q different configurations for the encoding parameters,

we obtain Q different encoded datasets: Dq = {(xq,1, y1), . . . , (xq,N , yN)}, for

q = 1, . . . , Q. In the experiments, we set Q to 10.

For each encoded dataset, we then compute the Correlation Score, as defined in the

previous section, and the classification error rate obtained by a set of predefined

classifiers (see Section 2.6.2). To ensure statistical significance, we ran a 10-fold

cross validation to compute both the Correlation Score and the error rate.

Once the computation is finished, we have a sample of Correlation Scores, cs =

(cs1, . . . , csQ), and a sample of classification errors, err = (err1, . . . , errQ). In both

cases, the q-th observation in the sample is the value associated to the q-th encoded

dataset.

We can now measure the linear correlation between cs and err. Presence of a strong

linear correlation between the two vectors indicates that the Correlation Score is
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indeed capable of acting as a fitness function. In particular, we look for values of

the correlation near −1, so that high values of the Correlation Score corresponds

to low values of the classification error.

We will show the scatter plot between each Correlation Score and the classification

error of each classifier, in order to show the typical output of the comparison.

Moreover, we provide tables containing the numerical estimates of the linear

correlation between the Correlation Scores and the error rates. Lastly, we highlight

that the Correlation Score as a fitness function is far less expensive than calculating

the classification error, from a time cost point of view.

2.6.2 On the Significance of the Comparison

It could be argued that comparing cs with err to assess the quality of the Correlation

Scores as fitness functions might lack statistical significance, as the error rate of a

classifier is influenced by the parameters of the classification algorithm being used.

It would be better to compare cs with, for example, an estimate of the Bayes error.

However, as our principal aims in this thesis is to improve the performances of

classifier ensembles, it seems reasonable to compare cs with the error rate obtained

by state-of-the-art ensemble algorithms, in order to find out how the Correlation

Scores estimates the error rate of an ensemble when used together with a certain

input encoding.

Moreover, the variance and bias of the predictions of a classifier ensemble is generally

very low, so that the error rate obtained can be used as an estimate of the Bayes

error, in particular when the size of the ensemble is large.

For the sake of completeness, we compared cs with the error rates obtained by three

types of classifier ensembles: AdaBoost, Bagging and Random Forest. We assume

that the reader is already familiar enough with these classification algorithms. For

further information, see Chapter 4 and [11].

We used the default values used by scikit-learn for each classifier. The ensemble

size has been set to 100.
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2.6.3 Random Feature Subset Encoder

Once the experimental protocol has been set, we have to specify the encoder on

which we want to base our tests. For the reasons described at the beginning of the

section, we decided to use a Feature Subset Encoder. Moreover, to make sure that

the encoder itself does not give bias in favor of our Correlation Scores, we opted

for a Random Feature Subset Encoder. That is, the encoding technique selects a

random subset of the features, of specified size t. By running the encoder Q times,

we get Q encoded dataset, each of them with a different subset of t features. By

evaluating the correlation score of each encoded dataset, we are able to rank the

subsets according to their expected discriminative power (that is, their potential of

increasing the classification performance).

For each dataset, we ran a comparison for a maximum of 15 different values for

t: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35. Of course, if the total number of

feature in a dataset was lower or equal to a chosen t, the corresponding experiment

has not been run.

2.6.4 Experimental Results

Table 2.1 shows the overall performance of each Correlation Score on each dataset,

when compared with Random Forest error rate. The value in parenthesis is the

total number of experiments on the corresponding dataset. A value lower than 15

indicates that the dataset does not have enough features to run all the experiments,

as discussed above. For each dataset, we ran experiments on the original feature set

and on a version in which each feature has been normalized to [0, 1]. The number

under each column indicates how many times the corresponding Correlation Score

has reached a significant linear correlation with the error rate of Random Forest.

Values in bold indicate that at least two thirds of the experiments have reached

significance.

The Table shows that the correlation scores based on either the Coefficient of

Determination or Wilks’ η2 perform better than those based on the Uncertainty

coefficient. Preliminary experiments showed the same trend when using other

information-based coefficients. Even on datasets with only categorical features, as

the audiology dataset, the Uncertainty Correlation Score only reaches significance

on very few experiments.
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Dataset (runs) R2 Wilks’ η2 Uncertainty

orig norm orig norm orig norm

anneal-orig (15) 4 4 3 3 1 1

anneal (15) 12 2 10 2 1 1

audiology (15) 3 5 3 5 0 0

autos (15) 9 10 9 10 0 0

balance-scale (3) 0 1 0 1 1 0

breast-cancer (15) 3 8 3 8 0 0

breast-w (8) 7 0 7 0 5 4

colic-orig (15) 14 14 14 14 0 0

colic (15) 4 15 4 15 2 4

credit-a (15) 14 6 14 6 0 0

credit-g (15) 6 10 6 10 0 0

diabetes (7) 4 2 4 2 3 3

glass (8) 1 4 2 4 0 0

heart-c (12) 10 11 10 11 0 0

heart-h (12) 10 10 10 10 0 1

heart-statlog (10) 10 9 10 9 0 3

hepatitis (13) 9 4 9 4 2 0

hypothyroid (14) 14 10 14 10 3 6

ionosphere (14) 2 1 2 1 2 2

iris (3) 2 2 3 1 0 1

kr-vs-kp (15) 15 15 15 15 5 8

labor (13) 11 9 11 9 0 0

letter (11) 11 11 11 11 8 9

lymph (15) 3 1 0 1 0 3

primary-tumor (13) 12 11 12 12 1 0

rootstock (3) 3 1 3 1 1 0

segment (11) 11 11 10 6 9 1

sick (14) 14 10 14 10 7 8

sonar (15) 7 8 7 8 3 0

soybean (15) 13 12 8 10 2 0

splice (15) 14 14 14 14 0 2

vehicle (11) 3 5 3 4 4 2

vote (14) 13 13 13 13 2 2

vowel (13) 13 10 13 10 5 4

waveform (15) 15 15 15 15 14 14

zoo (15) 15 15 11 13 0 0

Total (447) 311 289 297 278 81 79

Table 2.1: Overall significant results per dataset when compared to Random
Forest error rate.
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Dataset (runs) R2 Wilks’ η2 Uncertainty

orig norm orig norm orig norm

anneal-orig (15) 3 3 3 3 1 1

anneal (15) 11 2 10 2 1 1

audiology (15) 3 5 3 4 0 0

autos (15) 9 8 9 8 0 0

balance-scale (3) 0 1 0 1 1 0

breast-cancer (15) 2 6 2 6 0 0

breast-w (8) 4 0 4 0 4 4

colic-orig (15) 14 14 14 14 0 0

colic (15) 4 15 4 15 3 4

credit-a (15) 14 7 14 7 0 0

credit-g (15) 6 10 6 10 0 0

diabetes (7) 5 2 5 2 3 3

glass (8) 2 3 2 4 0 0

heart-c (12) 10 10 10 10 0 0

heart-h (12) 10 11 10 11 0 0

heart-statlog (10) 7 9 7 9 0 2

hepatitis (13) 9 5 9 5 1 0

hypothyroid (14) 14 10 14 10 3 6

ionosphere (14) 1 1 1 1 4 2

iris (3) 2 1 3 2 0 0

kr-vs-kp (15) 15 15 15 15 5 8

labor (13) 13 13 13 13 0 0

letter (11) 11 10 11 11 8 9

lymph (15) 4 1 0 0 0 3

primary-tumor (13) 11 12 11 12 0 0

rootstock (3) 2 1 2 1 1 0

segment (11) 11 11 10 6 9 1

sick (14) 14 10 14 10 7 8

sonar (15) 6 6 6 6 3 0

soybean (15) 13 11 8 10 2 0

splice (15) 14 14 14 14 0 1

vehicle (11) 3 6 3 4 2 2

vote (14) 12 12 12 12 1 2

vowel (13) 12 10 12 11 5 5

waveform (15) 15 15 15 15 14 14

zoo (15) 15 14 11 13 0 0

Total (447) 301 284 287 277 78 76

Table 2.2: Overall significant results per dataset when compared to Bagging
error rate.



Chapter 2. Correlation Score 27

Dataset (runs) R2 Wilks’ η2 Uncertainty

orig norm orig norm orig norm

anneal-orig (15) 1 0 0 1 0 0

anneal (15) 1 0 1 0 0 0

audiology (15) 1 5 5 3 0 0

autos (15) 11 4 11 2 0 0

balance-scale (3) 0 1 0 1 1 0

breast-cancer (15) 10 9 10 9 0 0

breast-w (8) 8 0 8 0 4 4

colic-orig (15) 14 14 14 14 0 0

colic (15) 3 15 3 15 2 3

credit-a (15) 15 7 15 7 0 0

credit-g (15) 9 10 9 10 0 0

diabetes (7) 6 4 6 4 1 4

glass (8) 1 1 1 2 0 0

heart-c (12) 9 11 9 11 0 0

heart-h (12) 9 9 9 9 0 0

heart-statlog (10) 8 10 8 10 0 0

hepatitis (13) 9 1 9 1 0 0

hypothyroid (14) 5 4 5 4 3 7

ionosphere (14) 2 10 2 10 3 1

iris (3) 1 1 2 2 1 1

kr-vs-kp (15) 15 15 15 15 5 8

labor (13) 12 10 12 10 0 0

letter (11) 7 8 8 8 6 6

lymph (15) 7 2 1 2 0 2

primary-tumor (13) 3 3 3 4 0 0

rootstock (3) 3 3 3 3 1 0

segment (11) 2 3 3 3 0 0

sick (14) 14 14 14 14 7 8

sonar (15) 11 7 11 7 1 0

soybean (15) 2 1 1 0 0 0

splice (15) 14 14 14 14 0 1

vehicle (11) 3 3 3 3 0 0

vote (14) 12 12 12 12 1 2

vowel (13) 8 6 8 6 3 0

waveform (15) 15 15 15 15 14 14

zoo (15) 12 13 10 12 0 0

Total (447) 263 245 260 243 53 61

Table 2.3: Overall significant results per dataset when compared to AdaBoost
error rate.
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Subset size (runs) R2 Wilks’ η2 Uncertainty

orig norm orig norm orig norm

1 feature (36) 23 17 23 16 0 0

2 features (36) 26 23 26 22 2 1

3 features (36) 27 22 25 21 5 5

4 features (33) 28 23 26 23 7 5

5 features (33) 24 20 25 20 5 5

6 features (33) 23 24 24 24 6 4

7 features (33) 23 23 22 23 6 7

8 features (32) 23 22 23 22 6 7

9 features (30) 21 22 22 21 5 7

10 features (30) 19 20 19 19 7 9

15 features (29) 18 18 17 18 8 9

20 features (26) 19 16 16 15 7 5

25 features (24) 13 16 11 14 6 5

30 features (20) 12 13 9 11 5 5

35 features (16) 12 10 9 9 6 5

Total (447) 311 289 297 278 81 79

Table 2.4: Overall significant results per feature subset size when compared to
Random Forest error rate.

The comparison with Bagging and AdaBoost error rates is shown in Tables 2.2 and

2.3. The same trend is present, but in particular for AdaBoost with notice less

overall correlation. This effect has still to be investigated.

Table 2.4 presents the same results of Table 2.1 from a different perspective.

It shows the overall performance grouped by sample size. Again, the value in

parenthesis indicates the total number of experiments with the corresponding

subset size. The table shows how the performance of the first two Correlation

Scores remains constant even when larger sets of features are considered at once.

The slight decrease in performance is due to the fact that more data is needed to

evaluate the coefficients, so that the estimate on smaller datasets become instable.

Table 2.5 shows the results of the comparison against AdaBoost error rate.

Another interesting insight is shown in Figures 2.2 and 2.3. They show how the

performance varies when the spread in the Correlation Score increases. Clearly, a

large difference in Correlation Score between two encoding configurations should
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Subset size (runs) R2 Wilks’ η2 Uncertainty

orig norm orig norm orig norm

1 feature (36) 24 19 24 19 0 0

2 features (36) 19 17 20 19 3 1

3 features (36) 23 22 20 21 3 5

4 features (33) 19 20 21 20 3 3

5 features (33) 23 18 23 18 4 4

6 features (33) 22 20 21 20 3 3

7 features (33) 20 17 22 17 3 5

8 features (32) 21 17 21 17 6 6

9 features (30) 16 17 16 16 4 6

10 features (30) 18 17 18 16 5 6

15 features (29) 13 15 14 14 4 6

20 features (26) 15 14 14 13 5 5

25 features (24) 10 12 9 12 4 5

30 features (20) 11 11 10 13 4 4

35 features (16) 9 9 7 8 2 2

Total (447) 263 245 260 243 53 61

Table 2.5: Overall significant results per feature subset size when compared to
AdaBoost error rate.
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R2 vs. Random Forest on original data: 311 significant (444 total)

Figure 2.2: Percent of significant results grouped by range of R2.
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Wilks’ η2 vs. Random Forest on original data: 297 significant (432 total)

Figure 2.3: Percent of significant results grouped by range of Wilks’ η2.

indicate that one of the two is far better than the other. If two configurations have

roughly the same correlation score, the “ranking” between the two becomes less

reliable. In effect, this is what happens, as shown in particular in Fig. 2.2: when

the range of R2 in the cs becomes larger than 0.4, then the correlation between

the error rate and the Correlation Score is almost always significant.

This indicates that the Correlation Scores, and in particular the one based on R2,

can be readily used to prune the most ineffective encoding configurations, so that

the search space for the optimal encoder can be significantly narrowed.

2.7 Conclusions

We have built a framework for assessing encoding techniques and encoder con-

figurations in isolation from the complete classification system. This framework

is based on the well known concept of correlation coefficients, on top of which

we provided a protocol to evaluate the effectiveness of an encoding in improving

the classification performance of the overall system. This is done by calculating

the correlation between the features (input) and the labels (output), and then

adjusting the estimate considering the correlation between the features (intra-input
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or input-input correlation). The experimental results, conducted on the field of

feature selection, proved the effectiveness of our approach, in particular when

compared with information-based methods.

The fact that we only conducted experiments on feature subset assessment should

not mislead the reader. Many other types of encoding exist, and the application

of our Correlation Score for their optimization is definitively one of our priori-

ties in future works. Among these types of encoding techniques, we cite image

enhancement, amino acid encodings and supervised feature discretization.

We provide a short unordered list of our planned future work on the topic:

• Consider the use of better estimates for R2 and η2
Λ, in particular the use of

robust estimates.

• Construct an algorithm that uses our Correlation Scores as fitness function,

capable of optimizing the most broad possible range of encoding techniques.

• Investigate on the use of more correlation coefficients. In particular, distance

correlation seems promising, as it aims at measuring the effective depen-

dence between two samples, with very few conditions on the nature of the

relationship.
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Multi-Resolution Complexity

Analysis

As discussed in the previous chapter, the performance of a classifier system is

strongly affected by the intrinsic characteristics of the domain at hand, and a lot

of studies exist on the evaluation of the classification complexity of a domain. In

the next section, we present the State of the Art on this field.

However, our work has an aim that is somewhat different from the one shared by

most of the literature. In our view there are at least three different objectives in

the field of classification complexity.

The first one is to look for a measure able of ranking domains from the most

difficult to the easiest. A typical measure is the Bayes Error Rate [12], but other

measures have been proposed, as it is often troublesome to compute the Bayes

error rate with enough confidence.

The second objective is to measure the complexity type of a domain: identifying

the characteristics that make a particular problem more or less complex. This

objective stems from the observation that two domains may rank at a similar

complexity level, but their classification complexity may have different reasons

(e.g.: sparseness of data, population overlap, noise, poor dataset quality). The

typical application of such studies is the identification of the domain of competence

of a classification algorithm.

The third objective – our objective – is estimation of the inherent classification

complexity of each instance of a domain. In effect, the classification complexity of

32
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an instance in a dataset varies with its position inside the feature space. Assigning

a “complexity estimate” to each observation in a dataset may help the classifier

algorithm in the labeling task, and may give the researcher a better understanding

of the characteristics of the domain at hand – without the need of comparing it

with other datasets.

In this chapter we present our Multi-Resolution Complexity Analysis (or MRCA

for short), a method for identifying regions of increasing classification complexity

inside a dataset. To our knowledge, no other works in the literature provide a

comparable method.

The idea that drives MRCA is that the classification complexity of each instance

in a domain varies with the characteristics of its neighborhood, so that it is not a

function of the whole domain space, but is associated to the “local” characteristics

of a domain. For example, if an instance of a given class is surrounded by instances

labeled differently, assigning the correct label to that instance would be a very

complex task; on the other hand, an instance surrounded by examples of the same

category is easily labeled in the correct way (this is the idea behind methods like

k-nearest neighbors and Parzen’s windows). In presence of an infinite number of

examples, one could take the previous observation to the limit and consider only

an infinitely small hyper-sphere around any given instance in order to evaluate its

classification complexity. As we are provided with finite datasets, another approach

should be pursued. We would have to look for an hyper-sphere with a population

large enough to convey the desired information, but not too large, as it would lose

the “locality” requirement.

To overcome the problem of looking for the right hyper-sphere, we propose to

take complexity estimates at different resolutions, and to use this multi-resolution

complexity profile as an intermediate space with which we describe the complexity

of each observation. This space would have the following property: instances with

similar complexity would be close to each other, so that it is possible to cluster them.

Once the clusters have been found, it would be possible to estimate the classification

complexity of each cluster by using a metric of our definition, the Multi-Resolution

Index. In this regard, we approximate the the intrinsic classification complexity of

each sample (its “point-wise” complexity) with the complexity of the cluster in

which it resides.
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The rest of the chapter is organized as follows: Section 3.1 shortly describe the

State of the Art on classification complexity; in Section 3.2 we discuss the overall

approach, while the details are described in Section 3.3; in Section 3.4 we show the

experimental results, proving the effectiveness of MRCA. Section 3.5 concludes

the chapter.

3.1 Studies on Classification Complexity

A simple strategy for estimating the intrinsic complexity of a classification task

consists of analyzing the results of several classification trials, typically against

a validation set. This approach has the major limitation already discussed in

the previous chapter: results are not intrinsic properties of the dataset under

analysis, being also related to the characteristics of the selected learning algorithms

– including the way they explore the space of solutions and their dependence on

the parameters that affect their behavior. A trivial solution to this problem is to

increase the number of trials, ranging over the parameters of the learning algorithms.

However, to reach a level of statistical significance, the time required for running

experiments may considerably increase.

On the other hand, estimating the complexity of a domain independently from

a classification algorithm is a hard task. Metrics used to this purpose take into

account some aspects deemed potentially relevant for assessing the characteristics

of the decision surfaces, e.g. the interclass separability or the geometry of clusters.

Hence, to perform a comprehensive analysis of the classification complexity, a large

number of metrics should be used (see [13, 14] for a review on these issues). It is

worth pointing out that the analysis of classification complexity is often framed in

the study of misclassification errors. As the Bayes error represents the lower limit

of the classification error, it can be used to estimate the classification complexity,

which is typically calculated by measuring the error of a Bayes classifier built

on (an estimate of) class-conditional distributions. In [15], these distributions

are represented as parametric models (although they can also be generated using

non-parametric models [16, 17] or density estimators [18]).

In accordance with the principle of divide and conquer, several works focus on

the impact of a single feature on the classification task. Fisher Correlation Ratio
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is a notable example of this approach [19]. The presence of at least one highly-

efficient feature identifies an easy problem (however, the cited metric is not suited in

presence of mutual interactions among features). The volume of overlapping regions

[14] is another relevant metric, which shares similarities with the previous one. It

quantifies the classification complexity by measuring the amount of overlapping on

the tails of class distributions. In a work that goes back to 1998, Ho and Baird [20]

propose the feature efficiency measure, with the goal of estimating to which extent

a feature contributes to class separability. Given a feature, the whole training set is

projected onto it –typically using a linear transformation. The percent of separable

points is then evaluated and the resulting value is considered as an estimate of the

discriminant power of the feature.

The classification complexity can also be estimated by considering the separability

of a problem. In this case, the mutual-interaction among features is analyzed to

estimate the behavior of a classifier. The most commonly adopted measure of

complexity in this framework, called linear separability, is based on the error made

by a linear classifier, which is expected to be an indicator of separability between

classes. Several algorithms have been proposed for this purpose (see, for instance,

[21]). In all cases, a classifier is represented as a hyperplane whose parameters are

calculated by minimizing an error function. Regardless of overlapping, the lesser

the linear separability is, the greater the effort a classifier must make to model

the decision surfaces is. Here, the underlying assumption is that the difficulty in

modeling decision surfaces affects the complexity of the corresponding classification

task.

Separability can also be framed in a statistical perspective. The effectiveness of

defining distinct class-conditional distributions can be related to the identifiability

of classes and therefore to the complexity of the given dataset. This method,

commonly referred as mixture identifiability, is based on a test used for determining

whether different class samples fall in the same or in distinct distributions [22].

Clearly, the more class distributions are interlaced, the greater the effort required

for classification is.

More complex methods have also been proposed. In particular, Hoekstra and Duin

[23] propose a method for estimating the non-linearity of a classification model.

To give an insight of the method, let us consider the points of a linear path drawn

between two arbitrary samples labeled in the same way. This method assumes that

the probability to belong to the same class of the selected samples, for the points
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that occur in between, is related to the non-linearity of the problem. Looking at

the method from a different perspective, we can say that it investigates the shape

of class clusters by detecting the presence of concavities of class boundaries.

In 2003, Singh [13] proposes a multi-resolution analysis for complexity estimation.

In [24], another method based on feature space partitioning is proposed. This

method applies an adaptive partitioning strategy, similar to that used in decision

trees, for estimating the non-linearity and the homogeneity of the resulting clusters.

This method estimates the inherent classification complexity by measuring the so-

called data purity and neighborhood separability, at different degrees of resolution.

Results are then integrated to produce a single estimate. In 2011, Jie Li et al. [25]

study the problem of feature space complexity estimate in a framework of computer

vision, proposing a robust tensor subspace learning algorithm able to capture the

appearance changes by adaptively updating the tensor subspace. In this framework,

the spatial structure information is maintained and utilized for extracting object

features. In 2012, Nan Li et al. [26] address the problem of complexity estimation

proposing an updated version of the k-nearest neighbor algorithm. In particular, to

facilitate the classification task, an optimal subspace classification method has been

devised, able to project different training samples onto their own optimal subspace

and to construct the corresponding class cluster as the basis of classification.

As said at the beginning of the chapter, one of the most common applications

of complexity estimation is to discover the domain of competence of a class of

classification algorithms. For such kind of studies see, for example, [27] and [28].

In [29], the authors describe the design of an algorithm that automatically select

the optimal classifier given the complexity characteristics of a domain. In [30]

the authors apply the measures of complexity to analyze the behavior of various

techniques for imbalance reduction.

3.2 Multi-Resolution Complexity Analysis

Let D be a dataset D = {(x1, y1) , . . . , (xN , yN)}. We want to split D into s disjoint

sets (or clusters) D(1), . . . ,D(s) for which the following inequality has to hold:

err(D(1)) > err(D(2)) > · · · > err(D(s)) (3.1)
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where err(D(k)) is the lowest error rate achievable by a classifier on the elements of

the cluster. Equation (3.1) indicates that we want to split the dataset in regions of

decreasing classification complexity.

Formally assuring that eq. (3.1) holds is achievable only when we know the true

probability distribution of the samples or, equivalently, the optimal classification

boundaries.

We provide an heuristic method to obtain a valid splitting for a reasonable number

of clusters: multi-resolution complexity analysis, or MRCA.

Our algorithm can be divided into three steps:

1. Transform D to a multi-resolution profile space;

2. Building the clusters in the profile space;

3. Estimating the complexity of each cluster and sorting them.

3.2.1 Transformation to the Profile Space

The first step of our algorithm is to transform the elements of the dataset under

exam into a space in which their inherent complexity becomes more evident. The

objective is to construct a space in which observations with similar complexity

become close to each other and distant from observations that are either easier or

more difficult to classify.

To construct such a space, we evaluate t features for each element (xi, yi) of D.

We call this t-dimensional space the (multi-resolution) profile space. Each feature

is estimated through a probe function, that has the following form:

pj(xi, yi) = p(xi, yi;ND(xi, ρj)) j = 1, . . . , t (3.2)

where ND(xi, ρ) is the ρ-neighborhood of xi, that is, the set of the elements of D
that are at a distance not greater than ρ from xi:

ND(xi, ρ) = {(xh, yh) ∈ D : ‖xi − xh‖ ≤ ρ} (3.3)

Equation (3.2) means that the value of the probe pj depends on the observation

under exam, xi, and of its neighborhood. In our view, pj should measure the
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Figure 3.1: Profile examples, with t = 15.

perceived complexity of classifying xi when the only information you have is its

j-th neighborhood ND,j(xi) = ND(xi, ρj).

The profile pi of xi is a vector of probes that represents the perceived complexity

of xi at different resolutions:

pi = p (xi, yi) = (p1 (xi, yi) , . . . , pt (xi, yi)) (3.4)

By design, we have decided to sort the probes in decreasing resolution order:

ρ1 < ρ2 < · · · < ρt (3.5)

In the experimental section we will show that the radii, ρj, needs to be tuned

carefully, as they are the most relevant parameter of the hole MRCA. We provide

an heuristic to choose them in section 3.3.2.

Let us further discuss about the requirements that a function must meet in order

to be used as a probe function, as in eq. (3.2). We designed the rest of the system

on the following assumptions: pj ≈ −1 indicates a very complex zone, in which the

information provided by the neighborhood is against the labeling of the current

instance; on the other hand, pj ≈ 1 indicates an “easy” zone. When pj ≈ 0, a

“change of complexity” is occurring, similar to the phase change in a dynamic

system.
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In section 3.3.1 we provide our proposals for the probe function, but MRCA is

designed to allow any kind of probe that has the properties just described.

We can finally motivate why we call this new space a profile space: each observation

(xi, yi) is associated with a complexity profile, as shown in Figure 3.1, that makes

it easy to associate observations with similar complexity.

3.2.2 Clustering Elements in the Profile Space

Once we have calculated the profile for each observation in the dataset, we have a

profile set :

P = {pi = p (xi, yi) ∀ (xi, yi) ∈ D} (3.6)

Let us note that we can always keep a one-to-one relationship between the i-th

element of the original dataset D, and the i-th element of the profile set, and

between any subset of the profile set and of the original dataset.

Let us cluster the elements in P into s disjoint subset, either manually (please refer

to Section 3.3.4) or using any centroid-based or network-based clustering algorithm.

In this work we decided to experiment with a “manual” selection of centroids and

with the k-means clustering algorithm, as they are the two most straightforward

choices. Both approaches are centroid-based, meaning that the set of clusters is

uniquely defined by a set of s centroids, by using the following expression:

P(k) =

{
pi ∈ P : p(k)

c = argmin
pc

‖pi − pc‖
}

k = 1, . . . , s (3.7)

That is, each instance pi is assigned to the cluster associated with the nearest

centroid. Equation (3.7) ensures that a fixed set of centroids uniquely identifies

the corresponding set of clusters1.

Let us stress again that we always rely on a one-to-one relationship between the

clusters P(k) in the profile set and the clusters D(k) in the original dataset:

D(k) =
{

(xi, yi) : pi ∈ P(k)
}

(3.8)

1Except for the cases in which equality holds in eq. (3.7) for some pi and some pair of indexes
(h, k): in those cases, a rule to assign pi to either cluster P(k) or P(h) must be devised.
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Let us remind that the most important difference between D(k) and P(k) is that

each cluster in the profile space is a connected set, and eq. (3.7) holds, but its

image in original dataset, D(k), could possibly be disconnected.

3.2.3 Multi-Resolution Index

Projecting the observations to the profile space is an intermediate step needed to

cluster together the instances with similar complexity. Once the clusters have been

found, we have to measure their classification complexity. In order to do so, we

propose the following Multi-Resolution Index, or mri for short.

The Multi-Resolution Index is defined both for an instance and for a cluster. The

mri of a cluster is simply the average value of the mri of its elements.

Let us first show the expression for the instance-wise Multi-Resolution Index:

mri(p) =
1∑
j wj

t∑
j=1

wj
1− pj

2
(3.9)

For convenience, we use the same term, mri(·), to refer to the instance-wise index

and to the cluster-wise index, that is defined as:

mri(P(k)) =
1

|P(k)|
∑

p∈P(k)

mri(p) (3.10)

The Multi-Resolution Index operates by shifting and rotating the complexities seen

at different resolutions so that they range from 0 (lowest) to 1 (greatest), and then

averaging these estimates using a different weight for each resolution. In our view,

these weights should be higher for high-resolution estimates, as they carry more

information about the “local” characteristics of the domain:

w1 > w2 > · · · > wt (3.11)

The Multi-Resolution Index ranges between 0 and 1, with 0 indicating the lowest

complexity, while 1 indicates a very difficult cluster. To obtain the inequality in

eq. (3.1), we need to sort the clusters in decreasing mri order.

In the following, with a small abuse of notation, we will use interchangeably the

expressions mri(P(k)) and mri(D(k)), to express the fact that the classification
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complexity of D(k) is evaluated by using its projection to the profile space. For the

same reason, we could write both mri(p) and mri (xi, yi) to refer to the instance-wise

complexity estimate.

3.3 Implementation Details

MRCA is an open approach for estimating the classification complexity of a

domain, so that it doesn’t strictly depend on the implementation details of its single

components. In this section, we discuss our implementation of each component,

but other approaches and solutions are possible.

3.3.1 Probe Functions

Equation (3.2) gives the general form of a probe function. In this section we present

two possible choices for the probe. The first one estimates the complexity as a

function of the local imbalance, while the second one bases its estimate on the

concept of local linear separability.

3.3.1.1 Imbalance Probe Function

In order to estimate the local classification complexity, we can look at the local

imbalance between class labels: if the observation we want to classify, say (xi, yi),

is surrounded by observations with a different label, yh 6= yi, it is less likely for

a classification algorithm to classify that instance correctly; in this case, we say

that there is an imbalance against the class yi. On the other hand, regions with

an imbalance toward a certain class give more chances for a correct classification.

Estimating the local class imbalance can thus provide us with an approximation of

the local classification complexity. As a consequence, we can define the imbalance

probe function:

φ(xi, yi;ND) =
c(ND, yi)−

∑
h6=i c(ND, yh)

|ND|
= 2

c(ND, yi)
|ND|

− 1 (3.12)

Where c(ND, y) is the number of instances in the neighborhood labeled as y:

c(ND, y) = |{(xi, yi) ∈ ND : yi = y}| (3.13)
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(a) Noisy neighborhood (b) Linear boundary neighborhood

Figure 3.2: Two neighborhoods with same imbalance, but different complexity.

It is easy to verify that eq. (3.12) ranges between −1 and +1, with the lower bound

indicating strong imbalance against the class yi and +1 indicating strong imbalance

toward the same class.

3.3.1.2 Linear Boundary Probe Functions

The imbalance probe function just described gives a quick estimate of the local

complexity, but cannot distinguish between noisy and boundary zones, as shown

in Figure 3.2.

In effect, the imbalance probe is proportional to the number of instances in the

neighborhood labeled in the same way as the instance being assessed, as in eq. (3.12),

but does not consider the pattern with which they are scattered around it.

The probe we propose in this section attempts to overcome this limitation by

calculating a local separating hyperplane, using the standard linear classification al-

gorithm trained on the observation found in the neighborhood; once the hyperplane

has been found, the probe measures the distance of the instance being assessed

from the hyperplane; eventually, if it lies on the “wrong” half-space (i.e., if the local

linear classifier would label it in the wrong way), the probe makes the distance

negative, so that the probe properties discussed earlier are kept (see section 3.2.1).

We are then saying that the local classification complexity of each instance is

proportional to its “signed distance”, say d, from the local separating hyperplane.

In particular, d� 0, the instance is deeply inside the correct half-space and the

complexity is very low, so that p ≈ 1; if d � 0, the instance is in the wrong
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half-space, very far from the hyperplane, and the complexity is high, p ≈ −1;

finally, if d ≈ 0, the complexity is undefined, pj ≈ 0, because the instance is near

the separating hyperplane.

The mathematical expression for this linear boundary probe is:

β(xi, yi;ND) = S

(
nTxi −

[
1

2
nT (xyi + x¬yi)

])
(3.14)

Where S is a sigmoid function, n is the normal vector of the separating hyperplane,

xyi is the sample mean of the instances labeled yi in the neighborhood and x¬yi is

the sample mean of the instances not labeled yi. Let us notice that in this case

there is no term that takes into account the local imbalance.

We apply a sigmoid function, S(·), to the term in curly brackets so that the probe

ranges in [−1, 1]. One possible choice for it is the following:

S(x) =
2

1 + e−x
− 1 (3.15)

The normal, n, is obtained by using Linear Discriminant Analysis on the observa-

tions found in the neighborhood:

n = S−1
pl (xyi − x¬yi) (3.16)

In which, of course, the sample mean and the pooled covariance matrix are evaluated

by using only the observations found in the neighborhood. Let us recall that the

pooled covariance matrix between two samples consisting of N1 and N2 observations,

with covariance matrices S1 and S2, is defined as:

Spl =
1

N1 +N2 − 2

[
(N1 − 1)S1 + (N2 − 1)S2

]
(3.17)

The vector obtained using eq. (3.16) has to be divided by its norm in order to be

used in eq. (3.14), because we are measuring the distance between the point xi

and an hyperplane in an affine space.
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3.3.2 Resolutions

As we already pointed out at the beginning of the chapter, in presence of an infinite

number of observations, the classification complexity of each instance of a domain

could be evaluated by simply taking the limit of a given probe function, for the

radius of the neighborhood tending to zero:

complexity(xi, yi) = lim
ρ→0

p
(
xi, yi;ND(xi, ρ)

)
(3.18)

But we only have datasets containing a finite number of observations. To cope

with this, we introduced the multi-resolution profile discussed above: it makes

the complexity estimate, given by the multi-resolution index, more robust with

respect to the sparseness of the input space and to the underlying distribution of

the data points. Nevertheless, choosing the right values for the radii used in the

multi-resolution profile, (ρ1, . . . , ρt), is one of the most important tasks to get a

valuable estimate of the local classification complexity.

We provide some simple heuristics for choosing ρ and t, but a complete analysis of

this problem needs further study, and it is listed as one of our future works.

Let us start by noting that the most sensible radius to set is the smallest one, as

if we set a value too small for ρ1, the associated neighborhood could be empty

for some (or all) the instances of the dataset2, and this is definitively something

we want to avoid. Let us define the c-nearest neighbor distance, dnn(xi, c), as the

distance between the i-th feature vector in the dataset and its c-th nearest neighbor.

Then dnn(c) is the sample vector containing the c-nearest neighbor distances of

every instance in the dataset. We use dnn in the following rule for selecting ρ1:

ρ1 = max dnn(c1) (3.19)

This equation indicates that we are making sure that ND(xi, ρ1) contains at least

c1 elements for any observation in the dataset. In some cases, there could be a

particular observation xi that is too far away with respect to the rest of the dataset,

and it will make the previous rule unreliable; in these cases, the maximum can be

replaced with the sample mean, or with the median, but in both ways we lose the

guarantee that every ρ1-neighborhood contains at least c1 elements.

2Depending on the implementation details for ND, it will never be empty, as its center will
always be at distance zero from itself. However, this doesn’t change the point being discussed,
that an (almost) empty neighborhood does not convey the necessary information for our purposes.
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Once we have set ρ1, we have several options for setting the remaining resolutions.

For example, we can use ρ1 as step between two consecutive radii:

ρj = j · ρ1 j = 2, . . . , t (3.20)

Or we can generalize eq. (3.19) to get the remaining resolutions:

ρj = max dnn(cj) (3.21)

cj = c1 + (j − 1) · ct − c1

t− 1
j = 2, . . . , t− 1 (3.22)

With eq. (3.22) we propose to calculate the values c2, . . . , ct−1 by linearly splitting

the difference between c1 and ct.

An hybrid solution could be also used. Let us suppose we found ρ1 and ρt using

eq. (3.21); we can set all other radii by linearly splitting the difference between the

two radius values, instead of passing through each intermediate c value:

ρj = ρ1 + (j − 1) · ρt − ρ1

t− 1
j = 2, . . . , t− 1 (3.23)

All the approaches proposed require the user to set c1, while eq. (3.22) and

eq. (3.23) require to set manually also ct. Sensible values for these two parameters

are proposed in Table 3.1, and discussed in the experiments. A deeper investigation

on the selection of optimal neighborhood sizes is proposed as future work.

The profile size, t, does not influence too much the performance of MRCA. A

value between 5 and 25 will typically work just fine, as we will show in the next

section.

3.3.3 Feature Space Normalization

The profile transformation, and thus the whole MRCA, relies heavily on the

concept of neighborhood, so that defining a proper distance metric between the

instances in the feature space is fundamental to get valuable complexity estimates.

As we decided to use the euclidean distance function in our implementation, a

proper feature normalization has to be done before any other calculation occurs.

The most straightforward solution is to standardize each feature separately, so that

we have a space in which each component has zero mean and unit variance.
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(c) s = 5

Figure 3.3: Manual centroids for t = 15.

Another approach is to apply the Mahalanobis transformation to the instances in

the dataset [31]. It standardizes the single features and removes the correlation

between them, making the covariance matrix equal to an identity matrix. The

transformation takes each instance in the dataset, xi, and produces a corresponding

instance zi:

zi = S−
1/2 (xi − x) i = 1, . . . , N (3.24)

Where S is the sample covariance matrix and x is the sample mean, both calculated

on the whole dataset.

Applying the Mahalanobis transformation is not always effective, in particular when

we have a large number of features (so that we could have an instable estimate

of the inverse square root of S) or a small number of observations (so that the

estimate of the covariance matrix is not accurate enough). Nevertheless, applying

the Mahalanobis transformation to the dataset has the following advantage: to

calculate n in the Linear Boundary Probe we do not need anymore an estimate of

the pooled covariance matrix, as we know that it is an identity matrix.

3.3.4 Cluster Centers

We propose two ways to define the cluster centers (or centroids). The first one is

the well known k-means algorithm. For reference, see for example [11].

The second one is a “manual” method, that is, the centers are chosen using a fixed

expression, that does not depends on the profiles in P , but only on the number of

clusters and on the number of dimensions of the profile.

Figure 3.3 shows the centroids calculated in the case of 3, 4 and 5 clusters. Let

us motivate this approach. While k-means search for clusters that maximize the
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inter-group distance, this manual approach ensures that each group is similar to a

certain prototype complexity. This enables us to generate clusters that are expected

to have clearly distinct mri values, while with k-means this is not always the case,

as we will show in the experimental results (Section 3.4).

In the experiments, we used the following analytical expression to calculate the

j-th component of the k-th cluster center:

p
(k)
c,j = S

{
−10

[
j − 1

t− 1
− 1.5

k − 1

s− 1
+ 0.25

]}
j = 1, . . . , t

k = 1, . . . , s
(3.25)

Where S is the sigmoid function defined in Eq. 3.15.

3.3.5 Weights of the Multi-Resolution Index

The mri synthesizes the information contained in a profile p by averaging its

components, pj, weighted according to the resolution with which they have been

calculated. In our view, the highest resolutions contain the most information about

the classification complexity of a given instance, and then they should get an higher

weight. We use the following expression to calculate each weight wj:

wj = 1− j − 1

t
j = 1, . . . , t (3.26)

3.4 Experiments

We verified the performance of MRCA on 34 UCI datasets3. We applied stan-

dardization to the feature space of each dataset. As discussed in section 3.3.3,

we did not choose to use the Mahalanobis transformation as many datasets have

too many dimensions or too few samples. We then preferred to apply a simpler

transformation to make the results comparable between datasets.

We tested both the Imbalance Probe and the Linear Boundary Probe, and 5

different profile sizes: 5, 10, 15, 20, and 25 dimensions.

3We had computational problems with the datasets splice and letter, because of the size of
the former and of the number of features of the latter. This will be addressed in the future.
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Parameter name Values

Probe function (pj)
Imbalance Probe (Eq. 3.12)

Linear Boundary Probe (Eq. 3.14)

Profile size (t) 5, 10, 15, 20, 25

Smallest neighborhood (c1) 5%, 10%, 15%, 20%, 25%

Largest neighborhood (ct) 40%, 45%, 50%, 55%, 60%

Table 3.1: Profile configuration values.

To select the resolutions, we opted for the rule expressed in eq. (3.23) together

with eq. (3.22), but the max function has been replaced with the sample mean. We

ran the analysis with five different choices for c1 and for ct, resulting in 25 different

configurations for the pair (c1, ct). As we used datasets with a very different number

of instances among them, it would not be wise to express c as an absolute value.

Instead, we opted for using a number between 0 and 1, indicating the percentage of

dataset instances to consider. The values chosen for c1 and ct are shown in Table

3.1.

The cluster centers have been calculated using the k-means algorithm and the

“manual” procedure described in Section 3.3.4. We experimented with five different

values for the number of clusters, between 2 and 6. The interpretation of the

clustering depends slightly on the number of clusters selected. Clearly, when we

use two clusters we aim at splitting the dataset into one “easy” and one “difficult”

part. When using three clusters, we add an additional “intermediate” region. The

use of more clusters adds more levels of complexity between the easiest and the

most difficult regions.

In order to validate the results, we had to define a way to evaluate the relationship

between the estimated complexity of each cluster, mri(D(k)), and its “actual”

complexity, that we described at the beginning of Section 3.2 as the lowest error

rate achievable by a classifier on the instances of the cluster. However, as already

discussed in the previous chapter, obtaining a sensible estimate of the lowest error

rate for a given dataset is a hard task, so that we decided to replace it with the

error rate obtained by a set of classifier ensembles. The classification error rate has

been obtained by running a 5-fold cross-validation on each dataset. The classifier

ensembles used are: a Bagging Ensemble, a Random Forest and an AdaBoost

Ensemble. Each of them has been trained with the default parameters of scikit-learn

[32] with an ensemble size of 100 classifiers.
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We have to compare two samples, more or less as we have already described in the

previous chapter. In the current case, each dataset is split into s clusters, so that

we produce two samples of s observations for each dataset: a sample of mri values

and one of error rates. We compare the two samples using the linear correlation

coefficient: high positive values of correlation indicates that the splitting is effective,

that is, it properly separates the difficult zones of the dataset from the easy ones.

3.4.1 Experimental Results

The quantity of data produced by our experiments is very large. By testing two

different probes, each five profile sizes, five values of c1 and five more values of ct, we

obtained 250 different estimates for the mri. Moreover, we ran the experiments on

34 datasets, using two different clusterers and five values for the number of clusters,

for a total of 340 clustering configurations. This means that the experiments

generated 250× 340 = 85000 clusterings, 2500 for each dataset. Each clustering

produced a different mri sample, and each mri sample has been compared with

three different error rate samples (each of them produced by a different classifier

ensemble), resulting in 7500 comparisons per dataset, 255000 in total.

We opted to present here the most valuable results, in order to show the effectiveness

of the approach and to indicate its limitations too. Further discussion will be

carried on as future work.

In Table 3.2 we present a synthesis of the performances of all the profile configura-

tions. The table is constructed as follows. Each value represents the number of

times that the corresponding profile configuration has a squared linear correlation

with the error rate of the Random Forest greater than or equal to 64%. We use

the squared linear correlation as it is a measure of the variation on the error rate

explained by the variation in the mri. Then, each value represents the number of

“successes” of the corresponding configuration.

The maximum possible number of successes is 340, that is, on every clustering

configuration, that particular profile configuration has at least 80% correlation

with the error rate sample (80% squared equals 64%).

We built similar tables to compare the mri samples with the Bagging error rate

and the AdaBoost error rate. They are very similar to the one just presented, so

they are not listed here. You can see them in section 3.6.
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Imbalance Probe Linear Boundary

c1 ct 5 10 15 20 25 5 10 15 20 25

40% 257 260 258 258 256 181 172 175 176 173

45% 257 256 261 264 263 176 173 177 174 172

5% 50% 260 258 256 258 257 177 179 178 175 177

55% 256 262 260 256 256 179 179 179 176 176

60% 255 257 259 255 257 180 174 185 175 179

40% 246 243 244 245 244 161 171 173 169 168

45% 243 246 244 248 250 175 167 172 172 170

10% 50% 249 246 249 255 254 177 173 177 169 172

55% 245 245 252 248 254 178 175 165 172 173

60% 245 244 246 255 254 166 166 170 171 176

40% 243 237 240 242 248 179 169 170 175 176

45% 248 245 242 248 246 175 168 171 176 179

15% 50% 249 244 244 247 250 174 169 172 167 169

55% 248 250 252 249 246 173 169 169 174 167

60% 243 242 244 244 248 168 171 166 162 166

40% 229 236 229 234 231 171 168 162 166 164

45% 232 233 234 229 235 166 167 167 165 166

20% 50% 230 235 238 238 238 171 171 163 156 165

55% 236 232 238 236 240 158 171 167 164 164

60% 241 236 242 240 241 167 167 167 165 166

40% 221 227 225 227 231 162 163 158 163 164

45% 226 224 228 228 226 166 169 167 167 165

25% 50% 220 229 230 234 228 175 169 166 168 166

55% 217 230 232 231 233 161 172 171 164 169

60% 227 235 240 239 240 168 174 167 171 168

Table 3.2: Number of positive results for each profile configuration. Classifier:
Random Forest

Let us discuss the overall results. First of all, it is clear that even if less powerful,

the Imbalance Probe proves to be way better than the Linear Boundary Probe

in identifying regions of different complexity. In our view, this is due to the fact

that the added complexity of calculating a Linear Boundary for each neighborhood

reduces the performance of the Linear Boundary probe on smaller datasets, and

on datasets with a large number of features.

From the table we can also evince that the smallest neighborhood has to be kept

as small as possible: the number of successes in the first block of the table are
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Imbalance Probe Linear Boundary

c1 ct 5 10 15 20 25 5 10 15 20 25

40% 88.1 88.2 88.4 88.6 88.8 88.2 88.7 89.4 88.4 89.1

45% 88.0 88.9 88.4 88.5 88.5 88.0 88.5 89.1 89.5 89.3

5% 50% 88.6 88.8 89.0 88.6 89.0 88.3 87.8 88.5 89.5 88.5

55% 88.3 89.1 88.8 88.9 89.2 88.5 88.5 88.2 88.6 88.7

60% 88.6 89.3 88.5 89.1 89.3 88.2 89.2 87.8 88.9 89.2

40% 87.7 88.9 89.1 89.2 88.8 88.2 88.7 88.1 89.0 89.6

45% 89.0 89.3 89.1 88.5 89.1 87.8 88.4 88.6 89.6 88.9

10% 50% 88.5 89.1 89.1 88.7 88.9 87.4 88.4 88.5 89.0 89.4

55% 88.5 89.0 89.2 89.4 89.1 87.7 88.0 88.3 89.3 88.7

60% 89.2 89.3 89.7 89.4 89.1 87.4 88.3 88.0 87.8 88.4

40% 88.2 88.6 88.8 89.2 88.5 87.6 88.7 88.5 88.9 89.4

45% 87.5 88.7 89.1 88.8 88.9 88.2 89.0 89.0 89.2 89.1

15% 50% 87.8 88.8 89.5 88.5 88.6 88.6 88.4 88.6 89.5 88.9

55% 87.5 88.8 88.6 88.9 89.2 87.6 87.6 87.7 88.7 89.3

60% 88.5 89.4 88.9 89.3 89.2 87.8 88.8 87.9 89.2 88.7

40% 88.6 88.2 89.2 89.1 89.4 88.2 88.1 89.7 89.5 89.6

45% 89.2 89.0 88.9 89.4 89.4 88.9 89.0 88.7 89.8 89.6

20% 50% 88.7 88.9 88.9 89.2 89.7 87.9 88.5 88.5 89.0 88.9

55% 88.8 89.3 89.1 89.3 89.8 89.6 88.1 88.4 88.3 88.7

60% 88.3 89.4 89.3 89.5 89.5 88.6 88.5 88.3 89.0 88.2

40% 89.3 88.1 88.9 89.5 89.0 89.4 88.4 88.9 88.1 88.7

45% 88.6 88.9 89.6 89.2 89.4 88.8 88.9 88.4 88.4 89.0

25% 50% 89.0 89.2 89.5 89.5 89.5 88.5 88.9 88.2 88.5 89.0

55% 90.0 88.9 88.8 89.5 88.9 89.0 88.7 87.7 88.9 87.1

60% 88.2 88.5 88.8 88.7 88.6 88.0 88.3 88.6 88.3 87.6

Table 3.3: Number of positive results for each profile configuration. Classifier:
Random Forest

slightly greater than the remaining ones (on average, using c1 = 5% adds around

10 successes with respect to all other configurations).

A different perspective on the same data is given by Table 3.3 where it is shown the

average (squared) correlation on every configuration considered as success in the

previous table. It is evident that on a large part of the clustering configurations,

the correlation between the mri and the error rate is well over the threshold.

This happens using both the Imbalance Probe and the Linear Boundary probe,

indicating that the latter works on a smaller number of clustering configurations,

but, when it works, it does not reduce the effectiveness of MRCA.
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We also present the results obtained on each dataset when using the two best profile

configurations, one with the Imbalance Probe and one with the Linear Boundary

Probe. As in the other cases, the comparison is against the Random Forest error

rate.

Table 3.4 shows the results obtained when calculating the clusterings and the mri

using a profile with t = 15, c1 = 5% and ct = 45%. The clustering algorithm is the

“manual” procedure described earlier. The circle next to each value indicates that

MRCA has succeeded in ranking the clusters in increasing classification complexity.

The table clearly shows that when the number of clusters is small, MRCA is almost

always able to achieve its goal, but it remains effective on two thirds of the datasets

even when using 6 clusters.

Let us highlight a particular result. In the audiology and rootstock datasets, you

can notice that there are high values for the squared correlation, but without a

circle next to them. This is due to the fact that in those cases the correlation

happened to be negative.

The same “inversion” effect becomes more frequent when using the Linear Boundary

Probe, as shown in Table 3.5. The datasets credit-a, audiology, kr-vs-kp, rootstock,

waveform and zoo are affected by such “inversion”. Investigation of the reasons

behind this particular effect will be carried on in the future.

Table 3.6 shows the results obtained when using the best possible configuration

for each dataset. We present this table to demonstrate that, with accurate tuning,

MRCA can be effective on any dataset and with any number of clusters. In effect,

with two or three clusters, MRCA had problems with only one dataset (audiology),

and even with six clusters, MRCA failed on only four datasets out of 34.

We terminate our discussion with the plots of the mri samples compared with

the Random Forest error rate samples, for each dataset and for each number of

clusters: Fig. 3.4 – 3.10. For each clustering configuration, we have plotted the

best result. The mri is on the x-axis, and the error rate on the y-axis. At the top

of each figure it is reported the squared linear correlation between the two samples,

together with a full circle if the plot represents a success. You can easily see that

in the majority of the cases there is an almost perfect correlation between the two

samples, so that they generate a straight line. Only in a few cases you can notice

some minor imperfection in the relationship.
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Number of clusters

Dataset 2 3 4 5 6

anneal-orig 100.00• 70.55• 72.88• 57.97 33.36

anneal 100.00• 75.33• 68.20• 52.51 44.21

audiology 100.00 96.06 26.94 36.52 11.69

autos 100.00• 64.61• 74.76• 68.73• 49.73

balance-scale 100.00• 95.88• 88.24• 88.47• 88.80•
breast-cancer 100.00• 99.78• 82.33• 91.20• 75.77•
breast-w 100.00• 84.71• 82.85• 86.00• 79.33•
colic-orig 100.00• 7.79 13.22 71.91• 2.25

colic 100.00• 93.06• 85.58• 69.15• 81.07•
credit-a 100.00• 91.64• 94.07• 90.67• 81.71•
credit-g 100.00• 94.61• 85.32• 82.91• 90.47•
diabetes 100.00• 96.23• 97.10• 95.51• 96.23•
glass 100.00• 63.68 64.57• 66.20• 53.89

heart-c 100.00• 98.12• 97.02• 95.88• 91.77•
heart-h 100.00• 97.82• 98.64• 92.29• 96.31•
heart-statlog 100.00• 99.31• 92.42• 89.60• 96.52•
hepatitis 100.00• 97.63• 96.35• 90.94• 71.45•
hypothyroid 100.00• 86.67• 71.42• 4.60 2.61

ionosphere 100.00• 89.34• 80.81• 84.13• 86.66•
iris 100.00• 90.33• 85.69• 80.20• 91.66•
kr-vs-kp 100.00• 80.44• 67.79• 59.02 58.07

labor 100.00• 0.00 0.00 0.00 0.00

lymph 100.00• 95.36• 89.32• 80.69• 78.99•
primary-tumor 100.00• 93.84• 92.17• 81.31• 86.85•
rootstock 100.00 31.83 4.10 14.03 1.67

segment 100.00• 79.26• 67.80• 59.93 62.93

sick 100.00• 96.62• 89.61• 83.13• 85.40•
sonar 100.00• 79.89• 86.28• 62.59 69.91•
soybean 100.00• 81.91• 77.53• 72.88• 67.74•
vehicle 100.00• 76.63• 82.98• 78.48• 74.32•
vote 100.00• 99.96• 96.66• 89.81• 83.84•
vowel 100.00• 100.00• 100.00• 100.00• 100.00•
waveform 100.00• 91.50• 86.94• 83.03• 81.49•
zoo 100.00• 85.21• 68.80• 6.61 7.35

Positive results 32 29 30 24 22

Table 3.4: Results for Imbalance Probe, t = 15, c1 = 5%, ct = 45%. Clusterer:
Custom Centroids. Compared classifier: Random Forest.
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Number of clusters

Dataset 2 3 4 5 6

anneal-orig 100.00• 98.41• 5.94 6.02 3.64

anneal 100.00• 73.53• 67.65• 64.91• 61.49

audiology 100.00• 100.00 23.69 92.78 29.58

autos 100.00• 100.00• 85.19• 41.01 46.51

balance-scale 100.00• 100.00• 80.20• 83.58• 84.75•
breast-cancer 100.00• 86.58• 75.62• 74.73• 67.75•
breast-w 100.00• 9.56 25.08 33.63 0.13

colic-orig 100.00• 100.00• 100.00• 11.16 7.66

colic 100.00• 76.32 0.00 0.04 2.15

credit-a 100.00 100.00 3.24 0.96 1.27

credit-g 100.00• 87.68• 90.14• 80.66• 78.83•
diabetes 100.00• 95.33• 84.79• 69.16• 82.18•
glass 100.00• 100.00• 3.07 31.10 12.37

heart-c 100.00• 99.38• 77.75• 41.72 93.44•
heart-h 100.00• 100.00• 45.76 14.78 44.84

heart-statlog 100.00• 94.90• 87.63• 97.87• 73.54•
hepatitis 100.00• 100.00• 86.31• 95.76• 94.14•
hypothyroid 100.00• 93.03• 7.71 2.34 9.18

ionosphere 100.00• 1.44 81.98• 72.42• 75.88•
iris 100.00• 100.00• 92.55• 67.19• 86.87•
kr-vs-kp 100.00 100.00 99.77 13.22 53.91

labor 100.00• 100.00• 0.00 0.00 0.00

lymph 100.00• 100.00 0.04 38.47 16.29

primary-tumor 100.00• 88.50• 23.64 7.79 78.89•
rootstock 100.00• 100.00 46.06 13.89 46.80

segment 100.00• 100.00• 16.73 9.18 20.51

sick 100.00• 82.62• 71.27• 64.69• 67.52•
sonar 100.00 100.00• 72.89• 78.10• 68.23•
soybean 100.00• 100.00• 69.91• 96.57• 97.72•
vehicle 100.00• 100.00• 72.67• 64.72• 56.94

vote 100.00• 100.00• 90.76• 83.71• 41.53

vowel 100.00• 96.29• 87.64• 77.31• 2.77

waveform 100.00 92.26 83.66 76.63 92.96

zoo 100.00 100.00 92.15 6.87 5.95

Positive results 29 24 18 15 13

Table 3.5: Results for Linear Boundary Probe, t = 15, c1 = 5%, ct = 60%.
Clusterer: Custom Centroids. Compared classifier: Random Forest.
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Number of clusters

Dataset 2 3 4 5 6

anneal-orig 100.00• 99.90• 95.76• 83.55• 75.50•
anneal 100.00• 99.60• 88.69• 82.44• 65.55•
audiology 100.00• 29.27 26.22 0.39 31.22

autos 100.00• 100.00• 99.99• 100.00• 100.00•
balance-scale 100.00• 100.00• 96.71• 94.31• 90.93•
breast-cancer 100.00• 100.00• 99.40• 97.58• 98.83•
breast-w 100.00• 100.00• 100.00• 98.02• 95.34•
colic-orig 100.00• 100.00• 100.00• 98.94• 74.68•
colic 100.00• 99.97• 96.74• 89.66• 81.07•
credit-a 100.00• 93.09• 94.64• 91.69• 81.71•
credit-g 100.00• 100.00• 96.87• 95.50• 93.78•
diabetes 100.00• 99.27• 97.68• 96.21• 96.68•
glass 100.00• 100.00• 77.57• 74.96• 71.76•
heart-c 100.00• 100.00• 99.68• 99.47• 99.27•
heart-h 100.00• 100.00• 99.81• 99.93• 97.11•
heart-statlog 100.00• 100.00• 99.94• 99.74• 99.00•
hepatitis 100.00• 100.00• 100.00• 100.00• 99.76•
hypothyroid 100.00• 100.00• 77.98• 84.62• 70.63•
ionosphere 100.00• 99.99• 99.94• 90.30• 89.33•
iris 100.00• 100.00• 99.86• 94.48• 94.12•
kr-vs-kp 100.00• 81.01• 71.52• 62.60 62.33

labor 100.00• 100.00• 0.00 0.00 0.00

lymph 100.00• 99.08• 92.06• 84.89• 82.69•
primary-tumor 100.00• 100.00• 99.98• 98.75• 94.00•
rootstock 100.00• 100.00• 60.39 0.13 3.16

segment 100.00• 100.00• 68.34• 63.11 62.93

sick 100.00• 100.00• 100.00• 100.00• 92.27•
sonar 100.00• 100.00• 99.95• 99.92• 96.30•
soybean 100.00• 100.00• 100.00• 98.95• 99.57•
vehicle 100.00• 100.00• 98.99• 82.35• 79.99•
vote 100.00• 100.00• 99.37• 97.15• 98.91•
vowel 100.00• 100.00• 100.00• 100.00• 100.00•
waveform 100.00• 92.20• 87.70• 96.31• 92.35•
zoo 100.00• 95.65• 96.84• 95.81• 88.13•
Positive results 34 33 31 29 29

Table 3.6: Best results for each dataset and number of clusters. Clusterer:
Custom Centroids. Compared classifier: Random Forest.
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The most important information that emerges from the plots is that the clusters

identified as most difficult, in some cases happen to have an error rate higher than

50%, even for binary problems (see for example the plots for heart-c).

3.5 Conclusions

We developed a novel method to assess the local classification complexity of a

domain, and proved its effectiveness by experimenting with it on a wide range of

datasets. In particular, MRCA is always able at identifying the “hard” region of

the dataset and to separate it from the “easy” region, that is, it works perfectly with

2-3 clusters. The use of MRCA with more clusters needs a more precise tuning,

but we showed that some profile configurations achieve almost perfect performances

on a wide range of cases. In particular, we suggest to use the following one: t = 15,

c1 = 5% and ct = 40%, together with the Imbalance Probe and the “manual”

clustering procedure described in section 3.3.4.

However, a lot of work can still be done to improve MRCA. Moreover, we expect

its use on many applicative domains. Let us highlight the main directions of work

for the nearest future:

• a training algorithm that also learn the optimal parameters to build the

profile space;

• an explanation for the “inversion” effect that has been found when using the

Linear Boundary Probe;

• the use of the Correlation Scores presented in the previous chapter as probe

functions;

• the use of MRCA as part of the training algorithm of a classifier: in particular,

MRCA could be used to generate the weights for a Boosting-like ensemble.

• the knowledge of the local classification complexity of a given instance can

be used as an heuristic for a dynamic ensemble selection algorithm.
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Figure 3.4: Comparison plots (part 1)
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Figure 3.5: Comparison plots (part 2)
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Figure 3.6: Comparison plots (part 3)
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Figure 3.7: Comparison plots (part 4)
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Figure 3.8: Comparison plots (part 5)
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Figure 3.9: Comparison plots (part 6)
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Figure 3.10: Comparison plots (part 7)

3.6 Additional Tables and Figures

This section will be completed in the final version, sorry for the inconvenience. It

will contain the tables with the comparison with Bagging and AdaBoost, and the

plots for the best performing profile configuration.



Chapter 4

Forest of Local Trees: a Novel

Ensemble Method

Methods for classifier combination have been very popular for many years [33],

[34], [35]. The reasons behind their popularity are their conceptual simplicity and

their top-level performances [11].

The basic idea that drives classifier ensembles, the term with which the literature

refers to all methods for classifier combination, is that a pool of weak learners can

achieve a better performance than a single strong learner. Let us explain the idea

with an analogy: a very intelligent person and a group of one hundred normal

people are asked to study a very difficult new discipline from its reference book;

a judge asks questions about that discipline, and who gives most correct answers

wins. The group decides to give to each question the answer most agreed upon,

while the intelligent person must rely on himself alone. Who will win, the lonely

very intelligent person, or the very large group of normal people?

A classifier ensemble, to say it with the help of the analogy, is the group of normal

people. Take each person of the group separately, and the intelligent guy will

always win over him. But take them as a whole, and either the intelligent person

has a deal with the judge, or his chances of victory drop dramatically.

Of course, the theoretical foundations of classifier combination go far beyond the

simple explanation just given, and a lot of effort has been put to quantify how

much performance is gained when using an ensemble instead of a single classifier.

64
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Let us briefly recall a few concepts that will be useful to understand the motivation

behind classifier ensembles in general and behind our algorithm. For a more

complete review on classifier ensembles, see for example [36], [11], [37], [38], [39].

Let us suppose we want to produce an estimate, ŷ, for an instance x. ŷ estimates

a quantity related to x: it can be a class label, or a scalar, or a vector. The “true”

quantity that we want to approximate, y(x), is in general a non deterministic

function of x, that comes from a random variable that we will call Y (x), or

just Y . We aim at identifying an optimal estimate for y, y∗: it is the estimate

that minimizes the expected value of a fixed loss function (this expected value is

calculated over the probability distribution of Y ). As Y is non deterministic, this

minimum expected loss will always be greater than zero. Let us call this minimum

loss the noise or unavoidable error, σ2
ε . The noise is then the loss that we expect

to have even if we are provided with an optimal algorithm to estimate y.

Let us now consider a sub-optimal algorithm: we want to describe its expected loss

in estimating y(x). The estimate, ŷ, produced by this algorithm is in general a

function of the dataset with which it has been trained; we call central estimate, ŷm,

the best estimate obtainable by this classifier if we could train it on all possible

datasets; here, “best” is relative to a certain measure of optimality: in more

rigorous terms, it is the estimate that minimizes the expected loss between itself

and all the estimates obtained over the (infinite) set of possible training datasets.

We can now define the bias of the algorithm: it is the loss between the optimal

estimate, ŷ∗, and its central estimate: L(ŷ∗, ŷm). On the other hand, the variance

of the algorithm is the quantity ED [L(ŷi, ŷm)], that is, the average loss between

the central estimate and each estimate obtained when training over a particular

dataset, D.

It is possible to show that the expected loss of the algorithm when estimating y,

ED,Y [L(Y, ŷ)] is the sum of the three components just described: bias, variance

and noise. For example, the following classical result holds:

E
[
(Y − ŷ)2] = (ŷm − ŷ∗)2︸ ︷︷ ︸

Bias

+E
[
(ŷ − ŷm)2

]
︸ ︷︷ ︸

Variance

+σ2
ε (4.1)

Equation (4.1) is the expression of the bias-variance decomposition when the loss

function is the mean squared error, and is prevalently used in regression problems,

that is, when ŷ is a scalar or a vector.



Chapter 4. Forests of Local Trees 66

y1

y2

ŷ1
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ŷ4

ŷ5
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ŷ9
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Figure 4.1: Graphical demonstration of the bias-variance decomposition.

To better understand eq. (4.1), consider Figure 4.1. It shows the possible results

obtained by a regression algorithm, when y(x) is a two-dimensional vector. Each

black point in the figure is the estimate of the regressor, ŷ(x), when trained on

a certain dataset. As expected, each time we obtain a slightly different estimate.

The square mark is the optimal estimate, ŷ∗. The gray point is the central estimate

of the regressor, ŷm: it is the mean value of all the per-dataset estimates. The

squared distance between ŷm and ŷ∗ is the bias of the regressor, and the mean

squared distance between ŷm and each estimate is the variance of the regressor.

The sum of these two contributions (and of the noise, not depicted) is equal to the

overall loss of estimating y using this imaginary regression algorithm. Of course,

in reality, the sum should be taken over the infinite set of possible estimates, one

for each training dataset.

Equation (4.1) has to be modified when dealing with classification problems, as the

expected value of the zero-one loss, L0-1, is a more suitable indicator of classification

performance than the mean squared error, because in this case ŷ is not a numerical

quantity but a class label [40]. When using this loss function, no unanimous

expression for the bias-variance decomposition exists, but the same concept holds,

so that we can write:

E [L0-1(Y, ŷ)] = Bias + Variance + Irreducible Error (4.2)

As the noise is unavoidable and only depends on the intrinsic relation between the

input features and the label, we don’t discuss it here: we will focus on the first two

terms.

The bias of a predictor is the “systematic” error that it commits, caused by the

intrinsic limitations of the hypothesis space that it generates. For example, a linear
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boundary classifier will show a strong bias when used to classify populations that

are not linearly separable.

How to overcome the bias? By increasing the complexity of the hypothesis space,

i.e., by increasing the number of parameters that can be set by the training

algorithm. But this does not come without a price: increasing the number of

parameters means that the classifier becomes more susceptible of overfitting, that is,

it will not generalize well, or stated in other words, it will not classify unseen data

correctly; moreover, slightly changing the training dataset may cause mayor changes

in the predictor, as happens in polynomial interpolation. All these inconveniences

will cause an increase in the variance term in eq. (4.2).

Classifier ensembles reduce the variance of the classification by averaging. It is

known that the sample mean of N i.i.d. observations, each with variance σ2,

has variance 1
N
σ2. The reduction of variance obtained by classifier ensembles is

based on the same principle, but we cannot expect the observations (i.e., the label

predicted by each weak learner in the ensemble) to be independent between each

other. For example, consider the following inequality:

errRF ≤ ρ
1− s2

s2
(4.3)

It defines an upper bound for the generalization error rate of a Random Forest [41].

In particular, s is the mean strength of the trees in the Forest; broadly speaking, the

strength of a classifier measures how well it separates observations with different

labels among each other — it is inversely proportional to the bias just defined. The

other term in the expression, ρ, represents the pairwise correlation between the

learners in the ensemble. This term is related to the concept of diversity between

learners in an ensemble. Many definitions of diversity exists; qualitatively, it can be

described as the property of two (or more) predictors of committing independent

errors; in turn, many measures exist in the literature to quantify it. Several studies

try to relate those diversity measures to ensemble accuracy, with mixed results and

conclusions [42], [43].

In practice, an ensemble will have an error rate lower than its constituting weak

learners if they have low bias and are diverse between each other. This means that

even if we increase the expected error of the single learners by slightly increasing

its variance, we could in effect improve the performance of the ensemble if we do

so in order to make the learners more diverse. Of course, this process cannot be
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carried on indefinitely: the variance of each classifier eventually reach a critical

value, beyond which the ensemble error rate would start to increase.

In our work, we increase the diversity between the predictors in the ensemble by

sample weighting : it makes them more diverse, at a cost of a slight reduction of

their strength. To express the same concept using the terminology of eq. (4.2),

we train predictors with slightly more variance and bias, but the overall error is

reduced by the “ensemble effect”, because we are increasing their diversity.

Let us provide a simple motivation of our approach, by going back to the metaphor

with which we opened the chapter. To ensure “diversity” in the answers, it is

reasonable to ask each person in the committee to study a different part of the

book. An approach similar to the one used by Bagging would be to give each

person a random subset of the pages of the book (with some pages repeated, by

chance). We propose a slightly more informative approach: we ask each person to

study more carefully a particular chapter of the book, chosen at random. The main

difference between bagging and our approach is that we ensure local competence:

each person of the committee knows which chapter has studied, so that he will be

more confident on answering questions about that chapter, and he knows that he

can be of little or no help when the question is about other parts of the book.

The fact that we inject “locality” during the training phase, together with the

design choice of using decision trees as weak learners, like Random Forests, explain

why we decided to call our classifier ensemble a “Forest of Local Trees”, or FLT

for short.

The rest of the chapter is organized as follows. In the next section, we will give a

quick overview on the main ensemble methods found in the literature: Boosting,

Bagging and Random Forests; in Section 4.2 we will describe our algorithm “out of

metaphor”, in rigorous terms and with mathematical expressions; in order to better

understand the complete system, in Section 4.3 we present in detail the training

algorithm of the weak learners of the ensemble. Section 4.4 provides experimental

results and comparisons with other ensemble classifiers, showing the effectiveness

of our approach: in effect, FLTs compares favorably with respect to the other

algorithms. We conclude the chapter with an overall discussion of the progress so

far and with some proposal for future work.
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4.1 Ensemble Methods from the Literature

In this section we review the main contributions in the field of ensemble methods. Of

course, it doesn’t want to be an exhaustive discussion nor an historical perspective

(please refer to [11] or [37] for more information on the topic).

Breiman first proposed his Bagging method in 1996 [44]. The name is a portmanteau

for Bootstrap Aggregating. Bagging trains each learner in the ensemble by using

different samples of the same underlying population. The classification is carried

out by selecting the most frequent label among those proposed by the weak learners.

In practice, we are not given with many samples of the population that we want

to classify: we only have one dataset. Bagging simulates the presence of multiple

samples by bootstrapping the dataset: each sample is generated by choosing N

observations from the dataset with replacement. Bootstrap samples contains on

average around the 66% of all the observations in the dataset. Taking different

samples makes sure that the learners in the ensemble are diverse. Generally, the

weak learners chosen for a Bagging ensemble are decision trees, because they are

characterized by very low bias and high variance.

In 2001, Breiman himself proposed a similar ensemble algorithm, the Random Forest

[41]. He noticed that more diversity could be injected in a Bagging ensemble, thus

reducing its overall variance, by using random decision trees instead of standard

ones. Random Decision Trees differ from their “deterministic” version in that only

a random subset of all the features is considered to determine each split during the

training phase (see section 4.3).

Since the definition of Bagging ensembles and Random Forests, a lot of studies

have been carried on, both on the theoretical and on the experimental side (see, for

example, [45], [46], [47]). Worth mentioning here are two other algorithm based on

Bagging, and that use decision trees as weak learners: Random Subspace Ensemble,

and Rotation Forests [48], [49].

A different approach to ensemble training is due to Schapire and Freund, who

defined the Boosting algorithm [50]. Bagging and Random Forests are “parallel”

training procedures, in which the learning phase of each tree is independent from

that of the other ones; Boosting proceeds by iteratively improving the overall

performance of the ensemble. In so doing, whereas Bagging and Random Forest

reduce their error rate by reducing the overall variance, Boosting improves its
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performance by reducing also its bias. Let us briefly illustrate this concept by

presenting one of the most notable examples of Boosting: AdaBoost [51]. AdaBoost

acts as follows. The first weak learner of the ensemble is trained normally, on

the whole dataset. Once it has been trained, the algorithm weighs each instance

in the dataset, giving to each misclassified observation a weight higher than that

assigned to the instances classified correctly. Once the weighting phase has been

done, another learner is trained using the weighted dataset just generated. This

procedure is repeated until the expected number of classifiers is reached or the

validation error starts to increase. Samples with higher weight are considered by

the training algorithm of the weak learner as more important, and this increases

the probability that they are classified correctly in successive rounds of training.

This procedure affects the bias of the ensemble because it explicitly corrects the

classification errors of each weak learner.

Another important difference between Boosting and Bagging is in the classification

method. Whereas Bagging and Random Forest do not weigh the contribution of

the weak learners, Boosting gives to each classifier a weight that is proportional to

its validation error rate.

Let us point out that many more ensemble methods exist, and we do not discuss

them here as their approach to classifier combination differs substantially from the

one that we propose [52], [53], [54].

4.2 Forests of Local Trees

Consider a training dataset D, on which we want to train T random decision trees,

that will become the weak learners of our FLT. The training algorithm of each

decision tree is described in section 4.3.

For reasons that will become evident later, every categorical feature must be

transformed to a scalar representation (the most straightforward option being

applying one-hot encoding). Let us notice that the decision surface of a tree is not

influenced by this transformation, and is also invariant to any linear scaling and

translation of the features.

As happens in Boosting, each tree sees the same training dataset D, but with

different weights applied to each observation. They are used by the training
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algorithm to give more importance to the observations that have an higher weight

associated to them (i.e., to increase the probability that they will be classified

correctly). The weighted dataset seen by the t-th tree is:

D(w)
t = {(xi, yi;wi,t) : (xi, yi) ∈ D} (4.4)

We introduce a novel method for calculating the weights of D(w). We want that

each tree becomes more competent on a specific region of the dataset. To do so,

we assign to each observation in the dataset a weight that is inversely proportional

to the distance between that observation and the so called centroid of the tree. As

each tree will be assigned to a different centroid, we are building a forest of local

trees : each of them will become more competent on the region of the dataset that

is near to its centroid.

The algorithm for calculating the weights can thus be split into two parts:

1. pick the centroid from D, considering the centroids already picked;

2. calculate the weight of each instance using the centroid just picked.

Let us discuss each step separately. In the next subsection we review the core of our

method, the sample weighting strategy. The centroid picking policy is discussed in

section 3.3.4.

4.2.1 Sample Weighting Strategy

Consider the usual training dataset D together with a centroid element xct that

we suppose already picked (see section 4.2.2 for details). We define the following

weighting strategy for calculating the weight associated to the i-th observation in

D:

wi,t = exp

{
−1

2

[
(xi − xct)V (xi − xct)T

]p/2} ∀ (xi, yi) ∈ D (4.5)

Where V is the scaling matrix and p is the power of the weighting strategy. When

p/2 = 1, eq. (4.5) is clearly proportional to a multivariate normal distribution with

mean xct and covariance matrix Σ = V −1. In practice, it is often sufficient to use

the following expression for the weighting strategy:

wi,t = exp

{
−1

2
φ ‖xi − xct‖p

}
∀ (xi, yi) ∈ D (4.6)
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Figure 4.2: Examples of weighting distributions.

Where φ is the precision and p is again the power of the weighting strategy. It

is easy to recognize that Equation (4.6) degenerates to a multivariate normal

distribution with covariance matrix Σ = φ−1I when p = 2. Let us highlight that

when using eq. (4.6) instead of 4.5, we are just setting V = φI.

Figure 4.2 shows how the algorithm assigns the weights to the observations in the

dataset. Each gray circle represents an instance, and its radius is proportional to

the weight assigned to it. The black box is the centroid associated to a particular

tree. Clearly, as each trees will focus its training on the instances with higher

weight, it will become more competent on a specific region of the dataset. As

a consequence, our approach is capable of increasing the diversity between the

classifiers in the ensemble.

Of course, choosing the right centroids is fundamental, as it should aim at picking

them with the largest possible “spread”, in order to minimize the probability that
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a region of the dataset remains uncovered.

4.2.2 Picking the Right Centroids

It is important to pick the centroids so that the forest would “span” as widely as

possible on the whole dataset. Finding the best centroids can thus be stated as an

optimization problem. But due to the complexity of that approach, in this thesis

we present an alternative heuristic solution based on picking the centroids on a

semi-random way. Other strategies will be experimented in the future, in particular

the use of techniques like those found in the mixtures of experts [55], [56].

In order to select centroids that are reasonably distant between each other, we

propose the following algorithm. It chooses T centroids by picking them randomly

one at a time among the observations in the dataset D. Initially, the probability

of picking a certain instance xi ∈ D is set to be uniform. Each time that a

centroid is picked, the algorithm updates the probabilities of choosing the remaining

observations in the dataset, making the instances further away from the centroid

just picked more likely to be chosen.

Initially, the picking probability is set to be a discrete uniform distribution over the

observations in the dataset:

P (xc1 = xi) = P c
1 (xi) =

1

N
∀ (xi, yi) ∈ D (4.7)

Equation (4.7) states the following: the probability that xi is chosen as the first

centroid, xc1, is the same for all the instances in D and equals 1
N

.

After each pick, the picking probability of each observation in D is updated using

the following rule:

P c
t (xi) ∝ P c

t−1(xi) · log
(
1 +

∥∥xi − xct−1

∥∥) t = 2, . . . , T (4.8)

Of course, after eq. (4.8) has been applied, the probabilities have to be normalized

so that
∑N

i=1 P
c
t (xi) = 1.

Equation (4.8) does the following: it sets the picking probability of the observation

just chosen as centroid to zero, as log 1 = 0; then, as the logarithm is a monotonically

increasing function, eq. (4.8) ensures that instances further away from the centroids
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(a) Initial situation (b) After first centroid

(c) After second centroid (d) After third centroid

Figure 4.3: How the picking probabilities are updated after choosing the
centroids.

already picked have an higher probability of getting chosen in the successive rounds.

The algorithm terminates when all T centroids have been picked.

The algorithm is explained graphically in Figure 4.3. The gray circles are the ob-

servations in the dataset, and their radius is proportional to the picking probability.

The centroids are represented as black boxes. Initially (Fig. 4.3a) every instance

is equally likely to be picked as centroid. After the first centroid has been picked

(Fig. 4.3b), the instances that are near to the centroid become less likely to be

picked than those further away. The same happens after the second (Fig. 4.3c)

and third (Fig. 4.3d) centroids have been picked. The figures highlight that each

update does not cancel the effect of the previous ones.
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4.2.3 Making the Classification

Once every tree in the forest has been trained, the FLT can be finally used for

classification.

Let us consider an instance x to classify. Each tree in the Forest is fed with x and

produces its guess for the label, ŷt(x), t = 1, . . . , T . When all the trees have made

their prediction, the Forest is fed with this prediction sample, ŷ(x). The Forest

labels the instance using the mode of the prediction sample:

ŷF (x) = Mo [ŷ(x)] (4.9)

This classification rule for an FLT is thus the same used by a Random Forest and

by Bagging.

It is also possible to use a different rule, which considers the probability estimates

for the class labels produced by the single trees and whose output is in turn a

probability estimate instead of a direct class label. In other works, the concept of

probability estimate is called confidence of a classifier on a class label. Now, the

output of each tree is supposed to be a vector ŷt(x) of length m = |Y|, whose k-th

component is the confidence of the t-th tree that the label associated with x is

yk ∈ Y .

The Forest is now fed with the sample of probability estimates (that replaces

the prediction sample), ŷ(x); to produce the final probability vector, the FLT

calculates its mean value:

ŷF (x) =
1

T

T∑
t=1

ŷt(x) (4.10)

Once ŷF (x) has been calculated, the standard MAP rule can be applied to assign

the label to x.

4.3 Growing Decision Trees

A binary decision tree T can be defined a set of nodes, of which one is marked as

root. The classification always starts from this root node, N0. The other nodes are

then eventually called recursively, to obtain the final prediction of the tree, using
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the following expression:

Nc(x) =


yc if Nc is a leaf

Nl(x) if xc < tc

Nr(x) if xc ≥ tc

(4.11)

Equation (4.11) states that when the instance to be classified reaches the node Nc,

three things can happen: if Nc is a leaf, then the output of the node is the label

associated with that leaf, and the classification ends; if Nc is not a leaf, then the

following splitting criterion is applied: a particular feature of x, xc, is compared to

a threshold value, if xc is lower than the threshold, the decision is passed to the left

child node (or left sub-tree) of the current node; if xc is greater than or equal to

the threshold, the decision is passed to the right child node (or right sub-tree) of

the current node. Of course, which feature to check, and the threshold value, both

depend on the current node.

There exists many algorithm for training (or growing) a decision tree [57], [11],

[58], [59], [60], [61]. Let us briefly recall here the learning algorithm that grows

a so called Random Decision Tree, that is the weak learner used by FLT and by

Random Forest. We show first the version that does not make use of the weights

contained in D(w), then in section 4.3.1 we describe how to change the algorithm

to use them.

The algorithm proceeds as follows, starting from the root node and proceeding

until each path that starts from it ends on a leaf. A dataset Dc is associated to

the current node, Nc. If Nc is the root, then Dc is the whole training dataset, D
(or a bootstrap sample of the whole dataset, when it is used inside a Random

Forest). The purity of Dc is estimated through the following measure, called the

Gini impurity index :

g(Dc) = 1−
∑
y∈Y

|{(xi, yi) ∈ Dc : yi = y}|
|Dc|

= 1−
∑
y∈Y

P(y) (4.12)

The Gini index is zero if all the instances in Dc belong to the same class. This is

the first and most important stopping criterion for the training algorithm: if Dc
contains instances coming from only one population, say yc, Nc is set to be a leaf

and the label associated to the node is, of course, yc. More stopping criteria could

be defined, for example the following one, based on the size of Dc: if |Dc| ≤ Nth,
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the node is marked as a leaf and the label associated to it is the most frequent in

Dc.

If no stopping criterion is met, the algorithm has to set the feature, xc, and the

threshold, tc, used by Nc as splitting criterion. xc and tc are chosen as follows.

A set of candidate features are drawn at random from the feature space. The

number of candidate features, nc, is one of the parameters of the training algorithm:

typically, for Random Forests, nc is set to
√
n or log n, where n is the total number

of features. This random choice of feature is the reason for calling the this kind

of trees Random Decision Trees. When nc = n, the algorithm presented here

degenerates to a standard CART Classification Tree [59].

For each candidate feature, xj, the optimal threshold is defined as the one that

maximizes the Impurity Variation:

∆I(Dc, xj, t) = g(Dc)−
1

|Dc|
(
|Dl| g(Dl) + |Dr| g(Dr)

)
(4.13)

Where Dl and Dr are the datasets “generated” by the splitting criterion: Dl
contains the observations in Dc that have xj < t, and Dr contains the ones that

have xj ≥ t.

The feature-threshold pair that maximizes the Impurity Variation among the

candidate features is selected as splitting criterion for the current node, and the

training process proceeds recursively on Nl and Nr, that are fed with the datasets

Dl and Dr, respectively.

The Impurity Variation determines another stopping criterion: if it is zero for all

the candidate features, once again the current node becomes a leaf, and the label

associated to it is the most frequent among those found in Dc.

Let us highlight a small implementation note. Letting the tree output the class

probability estimates instead of the labels themselves is a very simple task: it

suffices to substitute yc with the label probability estimated using the data in Dc.

4.3.1 Using a Weighted Dataset for Training

The overall training algorithm just presented needs only a pair of minor modifica-

tions in order to handle a weighted dataset D(w) instead of D. The first change is
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in eq. (4.12), in which the sample probability estimate, P(y), has to be replaced by

its “weighted” counterpart:

P(y) replaced by Pw(y) =
1∑|D(w)|

i=1 wi

|D(w)|∑
i=1

I(yi = y)wi y ∈ Y (4.14)

Where I is the indicator function, which is 1 only when the argument is true. It is

easy to verify that Pw(y) = P(y) when we use an unweighted dataset, as in this

case wi = 1, ∀i.

The second modification occurs in eq. (4.13), where the cardinality of the datasets

is replaced by the sum of the weights of their elements:

|D| replaced by

|D(w)|∑
i=1

wi (4.15)

4.4 Experiments

We ran the experiments on the full set of UCI datasets presented in the introduction.

We show the effectiveness of our approach by comparing the performance of FLT

with those of the three other ensemble classifiers presented in section 4.1.

4.4.1 Experimental Setup

We tested our algorithm with a wide range of parameter values. In order to compare

the results between datasets, we normalized the features so that they all range in

[0, 1].

We trained each ensemble with 10 weak learners. The remaining parameters of the

competing methods have been left to the standard settings of the software we used

to carry out the experiments, scikit-learn [32].

To train our FLTs, we used the parameters and the values shown in Table 4.1.

Each value is combined with the remaining ones, forming all possible combinations,

for a total of 18 FLTs. Let us now discuss each parameter in detail.

The number of candidate features, nc, has been already discussed in section 4.3: in

the table, it is shown as percent of the total number of features of each dataset.
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Parameter name Symbol Values

Percent of Candidate Features nc 10%, 30%, 50%

Sample Percent ζ 50%, 100%

Maximum Number of Leaves rleaf 50, 100, ∞

Table 4.1: Parameters used in the experiments.

The maximum number of leaves, rleaf, is a little tweak that we applied to the

algorithm presented in section 4.3. As its name suggests, it indicates the maximum

number of leaves that each tree can contain. In order to make sure that a particular

path in the tree does not exhaust the available leaves, the tree must be grown using

a breadth first rule, that is, each “level” of the tree has to be completed before

going deeper (see documentation of [32]).

The sample percent, ζ, indicates how many observations can be used to train

each tree. We opted to use this parameter to see if some datasets may benefit

from the diversity gained when each tree is trained on a different subset of the

whole dataset. We experimented with just two values for ζ: 100%, that indicates

that no observation is removed, and 50%, that indicates that only one half of the

observations are chosen for each tree.

In all the configurations, the precision and the power of the weighting strategy

(see section 4.2.1) are set to 1. Further studies on these two parameters will be

carried on in the future; in preliminary experiments, we noticed that no significant

performance increase (averaged over all the datasets) is expected when choosing a

different value for the precision or the power. However, on selected datasets (e.g.,

on balance-scale), increasing the precision leads to an overwhelming improvement

of the accuracy.

4.4.2 Experimental Results

We repeated 10 times a 10-fold cross validation on every dataset, building a

sample of 100 accuracies for each FLT and for each competing ensemble algorithm.

These samples have been compared using the standard t-test to identify significant

difference in the mean accuracy. The significance level has been set to 5 percent.

Table 4.2 shows a synthesis of the results. Each win/tie/loss triplets is relative

to the classifier at the top of the column, and indicates on how many datasets
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FLT parameters Random

nc ζ rleaf AdaBoost Bagging Forest

10%

50%

50 5/11/20 15/14/7 13/19/4

100 4/ 9/23 15/14/7 13/20/3

∞ 3/ 9/24 14/17/5 11/22/3

100%

50 5/ 5/26 10/15/11 9/17/10

100 4/ 5/27 9/17/10 8/21/7

∞ 3/ 6/27 10/19/7 6/26/4

30%

50%

50 3/ 4/29 7/21/8 3/26/7

100 2/ 5/29 6/22/8 2/29/5

∞ 0/ 4/32 4/25/7 2/27/7

100%

50 2/ 3/31 3/22/11 2/19/15

100 1/ 4/31 2/22/12 3/19/14

∞ 0/ 4/32 1/24/11 2/20/14

50%

50%

50 1/ 5/30 5/26/5 4/22/10

100 1/ 4/31 4/29/3 3/26/7

∞ 0/ 3/33 1/29/6 3/28/5

100%

50 1/ 2/33 3/25/8 7/16/13

100 1/ 3/32 1/25/10 8/17/11

∞ 0/ 3/33 0/25/11 6/16/14

Table 4.2: Overview of the results: win/tie/loss triplets.

that classifier has had an higher/same/lower accuracy than the Forest of Local

Trees whose parameters are shown at the beginning of the row. The results show

that the Forests of Local Trees are significantly better than AdaBoost on more

than 30 datasets, and outperform both Bagging ensembles and Random Forests

on 12 to 15 datasets, while having the same performance on almost every other

domain. The table highlights that on the vast majority of datasets, ζ = 100% is

the better option, but in Table 4.3 it is possible to see that, on some datasets (see

in particular balance-scale), reducing the number of training samples improves the

accuracy of the FLT.

Detailed results for the three best configurations are shown in Table 4.3, 4.4 and 4.5;

the empty circle indicates that the FLT did significantly worse than the classifier

shown at the top of the column, while a full circle indicates a significantly better

result. At the bottom of the table are shown the win/tie/loss triplets. Let us notice

that limiting the maximum number of leaves slightly increases the performance
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Figure 4.4: Overall accuracy comparison.

on some datasets, but at the cost of a strong accuracy reduction on others, in

particular on letter and vowel.

Figure 4.4 gives a graphical overview of the results summarized in Table 4.2. On

the y-axis is the accuracy of the best FLT, and on the x-axis is the accuracy of the

best competing ensemble. If a point lies above the dashed line, the FLT has been

better than the competing ensembles. As this is the case for almost every point

in the scatter plot, we can conclude that our Forests of Local Trees, with proper

tuning, can be used with profit on a wide range of domains.

Figure 4.5 shows how single FLTs compare to the competing methods. In Fig.

4.5a you can clearly see the performance loss for letter and vowel. To increase the

accuracy on these two datasets it is sufficient to remove the leaf limit, as shown

in 4.5b; however, this comes at the cost of a slight performance decrease on some

other datasets.

4.5 Conclusions

We developed and tested a novel training algorithm for ensemble classifiers, which

demonstrated its effectiveness on a wide range of standard classification domains.

In particular, we showed that very good results can be achieved when using the

following settings: nc = 30%, rleaf = ∞, and ζ = 100%; in effect, the accuracy of
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Figure 4.5: Accuracy comparison for the two best configurations.
In both cases nc = 30%, ζ = 100%.

our Forests of Local Trees is almost always higher than that obtained by AdaBoost,

and at least as high as the one obtained by Bagging and Random Forests.

However, our approach deserves further study, that will be carried on as future

work. In particular, we would like to highlight the following noteworthy points:

• Breiman motivates the approach of Bagging (and thus the one used in Random

Forests), by noting that a bootstrap sample taken from the dataset reproduces

the same probability distribution of the original populations that we want

to classify. Our algorithm works by modifying the probability distribution

seen by each classifier. Something similar happens in Boosting and to some

extent also in the mixture of experts model.

It is then very important to investigate why and when modifying the popula-

tion distribution seen by the weak learners improves the overall performance

of the ensemble.

• Similarly, we would like to discover if it is possible to define an optimal

sample weighting strategy, and if it is possible to compute it efficiently.

• Our approach has some similarities with the mixture of experts model. In

effect, our Forest of Local Trees computes the weights to be used only in

the training phase. The mixture of experts model suggests to weight the

prediction coming from each weak learner depending on its confidence on the

instance to be classified. Moreover, the approach used for weight assignment
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is based on a deterministic optimization algorithm that tries to minimize

the error rate by calculating the weights and the parameters of each weak

learner at the same time. Our procedure is different as it determines the

weights in a semi-random way, and the weak learners can be trained only

after the weights have been computed. We would like to investigate if the

two approaches can be merged and seen from an unifying viewpoint.

• As each weak learner is trained to become a local expert, it is straightforward

to apply dynamic ensemble selection techniques to our Forests of Local Trees.

The term dynamic, in this context, refers to the fact that the selection is

made instance-wise: each time a new feature vector x has to be classified, a

different subset of the learners in the forest is activated.

Early experimentation in this direction showed that we are able to reduce

the ensemble size to one tenth, with minimal accuracy loss. In our view, the

performance of the ensemble could even be improved by reducing the number

of active learners in the following way: by selecting only the classifiers that

are most competent on the region of the feature space in which the instance

to be classified resides.

• Centroid selection has to be further studied. For example, we can use our

Multi-Resolution Index (Chapter 3) to identify the best region of the dataset

in which to put each centroid. Another possibility is to use an optimization

based technique like that used in mixtures of experts.

• The term “forest” might be dropped if other types of weak learners can be

used in place of Decision Trees. For example, it may be effective to use

Neural Networks or Naive Bayes classifiers.

• We expect the results to change if we increase T , the number of weak learners

in the ensemble: the difference in performance among the classification

methods should fade out. However, preliminary experiments on biological

data (to be published soon) showed that, on some domains, our Forests of

Local Trees can obtain a far higher performance than Random Forests and

Bagging, even with T � 10. We would like to investigate if this result is

generalizable to a wider range of classification problems.
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Random

Dataset FLT AdaBoost Bagging Forest

anneal-orig 99.68±0.6 98.84±1.1 • 99.47±0.7 • 99.45±0.8 •
anneal 99.68±0.6 98.83±1.1 • 99.29±0.9 • 99.42±0.8 •
audiology 82.39±10.7 77.01±12.0• 83.72±10.5 79.99±12.5

autos 85.88±7.4 74.21±10.8• 83.56±8.2 • 80.99±8.8 •
balance-scale 82.83±3.1 77.67±4.7 • 79.79±3.9 • 81.50±3.5 •
breast-cancer 71.96±7.2 66.96±8.4 • 70.81±6.7 72.43±5.9

breast-w 95.97±2.3 93.65±2.4 • 95.35±2.6 95.98±2.3

colic-orig 97.15±2.7 95.33±4.0 • 97.04±2.6 94.45±3.7 •
colic 96.94±2.7 94.22±3.7 • 96.20±2.8 95.83±3.4 •
credit-a 86.61±3.9 81.07±4.4 • 85.79±4.1 85.96±4.1

credit-g 75.22±3.5 67.79±4.7 • 72.28±4.5 • 73.22±3.5 •
diabetes 75.51±4.3 68.84±5.3 • 74.32±4.4 73.93±4.6 •
glass 75.34±9.1 65.16±9.3 • 73.96±7.7 74.78±9.3

heart-c 80.11±7.6 73.58±6.4 • 79.68±7.6 80.92±7.5

heart-h 79.36±7.0 74.57±7.6 • 78.29±6.4 80.14±6.6

heart-statlog 80.15±7.8 73.22±7.7 • 79.81±6.8 81.30±6.6

hepatitis 90.19±6.4 86.58±8.5 • 89.68±6.7 90.05±7.2

hypothyroid 99.67±0.3 99.58±0.3 99.68±0.3 99.27±0.5 •
ionosphere 92.39±4.6 87.67±6.4 • 90.94±5.1 • 92.96±4.6

iris 94.27±6.0 94.47±6.1 95.60±5.6 95.13±6.2

kr-vs-kp 98.74±0.6 99.18±0.6 ◦ 99.57±0.3 ◦ 98.58±0.6

labor 98.67±4.5 97.47±6.5 98.97±4.1 98.63±4.6

letter 70.30±1.2 85.32±0.9 ◦ 93.10±0.7 ◦ 94.16±0.6 ◦
lymph 82.25±9.9 76.63±10.4• 81.61±10.0 82.54±10.0

primary-tumor 46.27±7.4 35.53±6.5 • 40.25±7.6 • 42.45±7.6 •
rootstock 59.67±24.3 46.83±20.2• 56.67±19.0 54.17±22.0

segment 97.39±1.1 95.47±1.4 • 97.19±1.1 97.45±1.2

sick 98.67±0.5 98.48±0.6 • 98.79±0.5 98.35±0.6 •
sonar 81.47±8.4 70.29±8.4 • 77.35±8.9 • 77.84±8.2 •
soybean 93.64±2.8 90.19±3.7 • 92.77±3.0 • 92.76±2.5 •
splice 95.27±1.0 94.24±1.3 • 95.10±1.1 85.81±2.2 •
vehicle 73.71±3.7 69.16±4.7 • 74.46±3.6 74.32±3.6

vote 95.83±3.0 93.09±3.8 • 94.96±3.2 • 95.79±2.9

vowel 85.29±3.9 76.32±4.9 • 91.01±2.9 ◦ 93.19±2.5 ◦
waveform 82.38±1.7 73.71±1.7 • 80.89±1.7 • 81.33±1.8 •
zoo 96.10±6.2 93.07±7.4 • 95.62±6.0 95.31±6.1

(Win/Tie/Loss) (2/3/31) (3/22/11) (2/19/15)

Table 4.3: Comparison for FLT with nc = 30%, rleaf = 50, and ζ = 100%.
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Random

Dataset FLT AdaBoost Bagging Forest

anneal-orig 99.66±0.6 98.84±1.1 • 99.47±0.7 99.45±0.8 •
anneal 99.68±0.6 98.83±1.1 • 99.29±0.9 • 99.42±0.8 •
audiology 82.60±11.1 77.01±12.0• 83.72±10.5 79.99±12.5

autos 85.88±7.4 74.21±10.8• 83.56±8.2 • 80.99±8.8 •
balance-scale 82.40±3.3 77.67±4.7 • 79.79±3.9 • 81.50±3.5

breast-cancer 70.08±7.8 66.96±8.4 • 70.81±6.7 72.43±5.9 ◦
breast-w 95.99±2.3 93.65±2.4 • 95.35±2.6 95.98±2.3

colic-orig 97.15±2.7 95.33±4.0 • 97.04±2.6 94.45±3.7 •
colic 96.94±2.7 94.22±3.7 • 96.20±2.8 95.83±3.4 •
credit-a 85.88±3.9 81.07±4.4 • 85.79±4.1 85.96±4.1

credit-g 74.89±3.5 67.79±4.7 • 72.28±4.5 • 73.22±3.5 •
diabetes 74.91±4.6 68.84±5.3 • 74.32±4.4 73.93±4.6

glass 75.48±8.8 65.16±9.3 • 73.96±7.7 74.78±9.3

heart-c 79.90±6.8 73.58±6.4 • 79.68±7.6 80.92±7.5

heart-h 79.12±7.4 74.57±7.6 • 78.29±6.4 80.14±6.6

heart-statlog 80.41±7.4 73.22±7.7 • 79.81±6.8 81.30±6.6

hepatitis 90.19±6.4 86.58±8.5 • 89.68±6.7 90.05±7.2

hypothyroid 99.65±0.3 99.58±0.3 99.68±0.3 99.27±0.5 •
ionosphere 92.39±4.6 87.67±6.4 • 90.94±5.1 • 92.96±4.6

iris 94.27±6.0 94.47±6.1 95.60±5.6 95.13±6.2

kr-vs-kp 99.30±0.4 99.18±0.6 99.57±0.3 ◦ 98.58±0.6 •
labor 98.67±4.5 97.47±6.5 98.97±4.1 98.63±4.6

letter 76.99±1.1 85.32±0.9 ◦ 93.10±0.7 ◦ 94.16±0.6 ◦
lymph 82.25±9.9 76.63±10.4• 81.61±10.0 82.54±10.0

primary-tumor 44.51±7.3 35.53±6.5 • 40.25±7.6 • 42.45±7.6

rootstock 59.67±24.3 46.83±20.2• 56.67±19.0 54.17±22.0

segment 97.78±1.0 95.47±1.4 • 97.19±1.1 • 97.45±1.2 •
sick 98.79±0.5 98.48±0.6 • 98.79±0.5 98.35±0.6 •
sonar 81.47±8.4 70.29±8.4 • 77.35±8.9 • 77.84±8.2 •
soybean 93.54±2.8 90.19±3.7 • 92.77±3.0 92.76±2.5 •
splice 95.44±1.1 94.24±1.3 • 95.10±1.1 • 85.81±2.2 •
vehicle 74.85±3.7 69.16±4.7 • 74.46±3.6 74.32±3.6

vote 95.83±3.0 93.09±3.8 • 94.96±3.2 • 95.79±2.9

vowel 92.09±2.7 76.32±4.9 • 91.01±2.9 • 93.19±2.5 ◦
waveform 82.85±1.7 73.71±1.7 • 80.89±1.7 • 81.33±1.8 •
zoo 96.10±6.2 93.07±7.4 • 95.62±6.0 95.31±6.1

(Win/Tie/Loss) (1/4/31) (2/22/12) (3/19/14)

Table 4.4: Comparison for FLT with nc = 30%, rleaf = 100, and ζ = 100%.
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Random

Dataset FLT AdaBoost Bagging Forest

anneal-orig 99.68±0.7 98.84±1.1 • 99.47±0.7 • 99.45±0.8 •
anneal 99.70±0.5 98.83±1.1 • 99.29±0.9 • 99.42±0.8 •
audiology 83.00±10.8 77.01±12.0• 83.72±10.5 79.99±12.5

autos 86.55±6.6 74.21±10.8• 83.56±8.2 • 80.99±8.8 •
balance-scale 78.78±4.0 77.67±4.7 79.79±3.9 81.50±3.5 ◦
breast-cancer 70.12±7.3 66.96±8.4 • 70.81±6.7 72.43±5.9 ◦
breast-w 95.96±2.4 93.65±2.4 • 95.35±2.6 95.98±2.3

colic-orig 97.15±2.7 95.33±4.0 • 97.04±2.6 94.45±3.7 •
colic 96.73±2.8 94.22±3.7 • 96.20±2.8 95.83±3.4 •
credit-a 85.61±3.8 81.07±4.4 • 85.79±4.1 85.96±4.1

credit-g 72.17±4.1 67.79±4.7 • 72.28±4.5 73.22±3.5

diabetes 74.24±4.3 68.84±5.3 • 74.32±4.4 73.93±4.6

glass 75.73±8.3 65.16±9.3 • 73.96±7.7 74.78±9.3

heart-c 79.74±6.8 73.58±6.4 • 79.68±7.6 80.92±7.5

heart-h 78.85±6.9 74.57±7.6 • 78.29±6.4 80.14±6.6

heart-statlog 80.33±7.1 73.22±7.7 • 79.81±6.8 81.30±6.6

hepatitis 90.88±6.7 86.58±8.5 • 89.68±6.7 90.05±7.2

hypothyroid 99.66±0.3 99.58±0.3 99.68±0.3 99.27±0.5 •
ionosphere 92.79±4.0 87.67±6.4 • 90.94±5.1 • 92.96±4.6

iris 94.33±5.8 94.47±6.1 95.60±5.6 95.13±6.2

kr-vs-kp 99.42±0.4 99.18±0.6 • 99.57±0.3 ◦ 98.58±0.6 •
labor 98.50±4.8 97.47±6.5 98.97±4.1 98.63±4.6

letter 95.20±0.5 85.32±0.9 • 93.10±0.7 • 94.16±0.6 •
lymph 82.82±9.2 76.63±10.4• 81.61±10.0 82.54±10.0

primary-tumor 42.05±7.0 35.53±6.5 • 40.25±7.6 42.45±7.6

rootstock 58.83±21.3 46.83±20.2• 56.67±19.0 54.17±22.0

segment 97.80±0.9 95.47±1.4 • 97.19±1.1 • 97.45±1.2 •
sick 98.74±0.5 98.48±0.6 • 98.79±0.5 98.35±0.6 •
sonar 81.65±7.9 70.29±8.4 • 77.35±8.9 • 77.84±8.2 •
soybean 93.33±2.8 90.19±3.7 • 92.77±3.0 92.76±2.5

splice 95.52±1.1 94.24±1.3 • 95.10±1.1 • 85.81±2.2 •
vehicle 74.82±3.6 69.16±4.7 • 74.46±3.6 74.32±3.6

vote 95.97±2.7 93.09±3.8 • 94.96±3.2 • 95.79±2.9

vowel 95.32±2.5 76.32±4.9 • 91.01±2.9 • 93.19±2.5 •
waveform 81.84±1.7 73.71±1.7 • 80.89±1.7 • 81.33±1.8 •
zoo 95.81±5.6 93.07±7.4 • 95.62±6.0 95.31±6.1

(Win/Tie/Loss) (0/4/32) (1/24/11) (2/20/14)

Table 4.5: Comparison for FLT with nc = 30%, rleaf = ∞, and ζ = 100%.
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