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Abstract

The brain can be seen as a complex structural and functional network. Cognitive functioning
strongly depends on the organization of functional brain networks. EEG/MEG resting-state
functional connectivity and functional brain networks studies attempt to characterize normal
brain organization as well as deviation from it due to brain diseases. Despite the impact on the
understanding of brain functioning that these tools provided, there are still methodological
hurdles that might compromise the quality of the results. The main aim of this thesis was to
gain an understanding of the role of functional connectivity and network topology on brain
functioning by: (i) addressing the methodological issues intrinsic in the analysis that can bias
the results; (ii) quantifying functional connectivity differences possibly induced by brain
impairments; (iii) detecting and quantifying how network topology changes, due to brain
impairments.

In order to achieve these objectives, functional connectivity and functional brain networks
obtained by empirical recordings were reconstructed. Recordings were acquired with
different modalities (EEG or MEG) and under different pathologies: epilepsy, diabetes and
amyotrophic lateral sclerosis. Specifically three research questions were addressed:

* Do functional brain network architectures obtained from pharmaco-resistant epileptic
patients responding to vagal nerve stimulation (VNS) change compared to patients not
responding to VNS?

* Are functional connectivity alterations related to cognitive performance and clinical
status in type I diabetes mellitus patients?

* Is functional network topology related to disease duration in amyotrophic lateral
sclerosis patients?

In order to answer these questions, avoiding possible biases which may affect the results, two
key choices were made: first, the selection of the phase lag index [1] as functional connectivity
estimator because it is less sensible to common sources problem; second, the application of
minimum spanning tree (MST) [2] approach to overcome the problem of network comparison
and characterize network topology reliably.

In summary, this thesis confirms that alterations of functional connectivity and functional
brain networks in disease may be used as potential biomarkers for more objective diagnosis
and the choice of effective treatment options. Specifically, in epileptic patients implanted with
VNS the relation between network measures and clinical benefit suggest that these measures
can be used as a marker in monitoring the efficacy of the treatment; in amyotrophic lateral
sclerosis the relation between disease duration and whole brain network disruption suggests
diagnostic relevance of network measures in evaluating and monitoring the disease; and
finally in type 1 diabetic mellitus patients functional connectivity measures can be
complementary to cognitive tests and may help to monitor the effect of TIDM on brain
functions.
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1 General Introduction



1.1 Introduction

The brain can be considered as one of the most complex systems known to man; and this is
true whatever the level of resolution we are looking at, from the microscopic (i.e. where single
neurons are analyzed) to macroscopic levels (i.e. ensembles of neurons or areas of the brain).
Deciphering how interactions, both at microscopic and macroscopic levels, are related to
higher-order cognitive processes (e.g. language comprehension, memory recall, visual
representation etc. etc.) and how neurological diseases result in failure of such interactions
are active neuroscientific topics.[3], [4].

Microscopically signal transmission takes places at the neuron synapses through release of
neurotransmitters, this lead to excitatory and inhibitory post-synaptic potentials (EPSP and
[PSP). Temporal and spatial summations of EPSPs and IPSPs in assemblies of neurons give
rise to a measurable signal at scalp level. Electro-encephalography (EEG) and magneto-
encephalography (MEG) can pick up such signals. These non-invasive recordings allow
exploring brain interactions through signal-processing techniques. One way to define
interaction between different areas is through synchronization of the recorded signals, which
are represented as time-series. Statistical interdependency between time-series is thought to
reflect interactions between brain areas from which those time-series are recorded [5], and is
generally referred to functional connectivity. The term effective connectivity is used when the
directionally is also considered (how a brain area directly influence another one)[6], [7]-

Historically individual brain regions have been associated with specific cognitive functions
(segregation or specialization), an example is given by Broca’s area to which the capacity of
speech is thought to be linked. This area was called Broca’s area after the French surgeon
Pierre Paul Broca who first observed that the incapacity to speak was related to an injury to
the posterior inferior frontal gyrus [8]. However recently it has been shown that speech
production required a collaboration of different areas (such as motor areas in order to
articulate muscles to produce the word) and Broca's area plays a role in mediating
information across large-scale cortical networks involved in speech [9]. Therefore each brain
area needs to communicate with other areas and to integrate information (integration) from
other areas in order to implement higher-order cognitive functions. These two properties,
segregation and integration, coexist in the brain to form a complex communication network.

This complex communication network is referred to as a functional network, however it relies
on and exploits the structural network that is formed by the neuronal fibres connecting
neurons in different areas. A useful analogy to the brain structural and functional networks is
the transport infrastructure of a country (high-ways connecting cities), where the traffic on
the roads reflects the functional network. Using this analogy it is possible to pinpoint at least
two concepts: firstly, that structure and function, even if they are indeed intrinsically related,
can be studied independently. Secondly, that the abstraction of imagining streets as axonal
bundles and cities as brain areas suggests that brain networks as well as transport networks
can be analysed in general terms exploiting the extensive knowledge from other scientific
fields that already dealt with complex systems, such as the social sciences [10], using modern
network theory.

Modern network theory originated from at least three older and established disciplines: graph

theory, statistical mechanics of networks and dynamical system theory [4]. Graph theory is an
old branch of mathematics which birth is attributed to Euler who was the first using abstract
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concepts of nodes and edges to solve the problem of the seven bridges of Konigsberg [11].
Nodes are elements used to represent entities of the system under study while the
presence/absence of an edge between nodes represents the existence of a relationship
between those entities (nodes). Statistical mechanics extended the concepts of graph theory
adding the capacity to deal with larger networks and providing models to describe the
characteristic of the networks. Examples of such models are random graphs [12], small-world
[13], scale-free [14], hierarchical and modular [15] network models. Furthermore dynamical
system theory supplies the theoretical knowledge to study the processes occurring on the
network [16]. Modern network theory therefore provides the tools for the investigation of
complex brain networks [4].

1.2 Methodological issues

During the last fifteen years a wealth of EEG/MEG studies focusing on the investigation of
functional connectivity and functional brain networks were published. These studies
attempted to characterize normal brain organization [7] as well as deviation from it due to
brain diseases [3]. Despite the impact on the understanding of brain functioning that these
tools provided there are still critical issues arising from the pipeline of analysis, due to the
assumptions and choices that are made, that can compromise the results obtained through
these analysis [17]-[19]. The reasons lie on the assumptions and choices made during the
analysis steps. The typical pipeline of analysis consists of three main steps: i) acquisition of
brain signals, ii) estimation of functional connectivity between all pairs of recorded signals
and iii) functional brain networks construction and assessment using the framework of
modern network theory.

Acquisition of brain activity depends on technical details and choices related to the
instruments (EEG or MEG) and their settings. For example during EEG recordings technical
choices such as electrode montage, sampling frequency, impedance, etc., should be specified
carefully, bearing in mind that they will affect the following analysis steps. Furthermore, the
assessment of the quality of the recordings should be performed, thereby discarding
recordings perturbed by activity that it is clearly not originated in the brain (artefacts).
Example of such contaminations include those arising from myogenic activity or external
electromagnetic activity such as cell phones, power line etc..

Once brain signals are stored as time-series their off-line manipulation enable extraction of
information on their statistical relationship. In this context the choice of a functional
connectivity measure should be defined. Nowadays there is a plethora of mathematical
indices for the estimation of functional connectivity: linear, non-linear, information-based
techniques [20]. Every measure has its own assumptions and tries to highlight a different
aspect of interaction between two signals (e.g. amplitude relations, phase relations, spectral
properties).

The estimation of functional connectivity can be affected by a series of problems related to the
lack of a straightforward relation between active brain sources and time-series obtained by
scalp recordings (EEG or MEG). Dealing with these problems is a compulsory prerequisite in
order to avoid spurious estimates of functional connectivity. In literature these problems are
often referred as volume conduction, however at least three different phenomena can be
recognized: volume conduction, field spread and linear mixing.

A brain source typically generates a primary current which EEG can detect (i.e. the summation
of EPSP and IPSP), however this primary current induces a secondary current in the
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surrounding tissues which together with conductive properties of the tissues distort the
signal propagation resulting in a blurred signal at the scalp level: this effect is what correctly
should be called volume conduction [21].

Field spread is the phenomenon consisting of the projection of a single brain source to
multiple EEG/MEG sensors [22]. Moreover since at each time there can be more than one
active brain source, because of field spread, the contribution of multiple sources may be
present in the signal recorded from each EEG/MEG sensor as a weighted summation of the
active sources (linear mixing).

It is clear that these problems together may affect the estimation of synchronization between
two recorded brain signals. The main problem is the detection of spurious correlation
between time-series of different EEG/MEG sensors: there is a high probability to pick up the
same activity from two time-series recorded by nearby EEG/MEG sensors, therefore
(uncorrected) synchronization measures will display high values between the two time-
series.

In the rest of the thesis the term common sources will be used to indicate phenomena that are
due to volume conduction, field spread or linear mixing and an appropriate selection of
functional connectivity measures will be done in order to be less sensitive to these
phenomena. A similar problem specific to EEG that can be added to the category of common
sources is due to the use of a so-called active reference electrode. It arises because every
signal in EEG is not an absolute measurement but is computed as a difference in voltage
potential with respect to a reference electrode (placed in the scalp therefore active), which
influences with similar components the other recording electrodes.

The final steps in the analysis pipeline are the construction of a functional brain networks
from functionally connectivity values and the topological assessment of this network.
Estimating the functional connectivity between every pair of signals related to every pair
recording locations (electrodes/sensors) leads to a definition of the functional connectivity
matrix. Supposing to have Nrecording locations we obtain a NXN matrix in which every entry
of this matrix expresses the degree of interaction between any pair of brain areas under the
recording locations. Every node in the functional network represents a recording location and
every functional connectivity value is used as the weight of the edge connecting a pair of
nodes. This weighted matrix is the starting point to construct the functional brain network. It
can be directly used to form a fully connected weighted network or can be transformed into a
binary matrix to create an unweighted network. Such an unweighted network is obtained by
setting a threshold on the weights to keep only the most important weights whilst discarding
weak connections (low weight values) that are potentially due to noise. The choice of a
threshold is arbitrary and at the same time critical because it influences the resulting network
topology and its topological assessment [23]. The selection of a threshold affects the network
density (i.e. number of connections in a network) which is directly related to the network
comparison problem [23]. It was shown [23] that even when the full weighted matrix is used
the results can be biased.

Comparing networks is the essence of many studies on functional brain networks. Networks
are typically compared across different subject populations (i.e. patients versus healthy
controls) or between different conditions or tasks. One of the goals of network analysis is to
discriminate between these conditions in terms of topological differences of the associated
networks. Topological differences rely on the computation of network metrics [24] allowing
to infer properties of the organization of the network under study. However such metrics
depend on network size (i.e. number of nodes), network density (i.e. number of edge), and on
other network parameters: if these parameters change the network metrics values can change
even if the topology remains the same.



The alteration of the network density is a typical outcome of the threshold choice. Applying
the same threshold to two different networks may result in two different network densities
therefore biasing the network topology comparison.

A straightforward and unbiased method to compare functional brain networks is still missing
although there are strategies that overcome this problem [25], [26].

This brief overview of the analysis pipeline highlights the main and critical issues that should
be addressed and tackled during functional brain network analysis study.

1.3 Aims and Research Questions

The main aim of this thesis was to gain an understanding of the role of functional connectivity
and network topology on brain functioning by:

* addressing the methodological issues intrinsic in the analysis that can bias the results;
e quantifying functional connectivity differences possibly induced by brain impairments;
* detecting and quantifying how network topology changes, due to brain impairments.

In order to achieve these objectives, functional connectivity and functional brain networks
obtained by empirical recordings were reconstructed. Recordings were acquired with
different modalities (EEG or MEG) and different pathologies ranging: epilepsy, diabetes and
amyotrophic lateral sclerosis.

The leitmotif shared by all these different investigations is the methodological choices that are
used in order to deal with typical problems arising from the pipeline of analysis. The inference
connectivity and functional brain networks based on empirical data poses a series of
inevitable assumptions that affect the interpretation of the results. Therefore the aim of the
thesis was twofold, on the one hand investigate new clinical and neuroscientific questions
exploiting network theory and on the other hand enhance the reliability and interpretability
of the results using bias-free methodological choices to address brain network analysis
problems.

In this thesis the following research questions were addressed:

1. Do functional brain network architectures obtained from pharmaco-resistant epileptic
patients responding to vagal nerve stimulation (VNS) change compared to patients not
responding to VNS?

2. Are functional connectivity alterations related to cognitive performance and clinical status
in type I diabetes mellitus patients?

3. Is functional network topology related to disease duration in amyotrophic lateral sclerosis
patients?

The thesis is divided in two parts; the first part starts with an introduction of the basic
concepts regarding the field of brain network analysis. The second part contains the
application of the aforementioned unbiased methodology to analyze experimental data for
each of the former three questions. In the last section we draw general conclusions after
summarizing the key results from this thesis, and describe future research directions, both
from a neurophysiological and methodological point of view.
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2 Concepts and Methodological
pipeline
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Introduction

The invention of electroencephalography is due to Hans Berger, a German psychiatrist, who
from the mid-1920 recorded the first human EEG. In his pioneering paper of 1929 he
described the ‘alpha-rhythm’, the first oscillatory activity observed through recordings of the
voltage changes at scalp level during an eye-closed condition, where the subject was in an
awake and calm state without performing any kind of task. From that time on neuroscientists
have been engaged in the fascinating endeavour of unravelling this dynamic behaviour of the
brain. These efforts are directed to understanding these oscillatory patterns of activity: from
where they originate to their relationship with cognitive functions and pathology.

Nowadays the EEG is used as routine exam for neurologists, especially for pathology such as
epilepsy, where the recorded spontaneous on-going activity helps in the diagnosis. However
its usage spans over other clinical disciplines from EEG monitoring during anaesthesia, during
sleep, in operative and post-operative intensive care units [27]. Furthermore the EEG is
exploited to understand cognitive processes and can be considered a window on the brain for
a discipline such as neuroscience.

EEG is just one of the neuroimaging techniques available to study the brain. Together with
MEG and functional magnetic resonance (fMRI), they are the most employed techniques used
to study the functional aspect (dynamics of neuronal activity) of our brain. Generally, the term
neuroimaging also includes even the techniques such as magnetic resonance imaging (MRI),
computed axial tomography (CAT) and positron emission tomography (PET) that provide
information about the structure and metabolic demands of our brain.

In the following chapter a brief overview of the basic concepts necessary to understand the
analysis and results of the experimental part will be given.

2.1 Basic concepts
2.1.1 Origin of EEG/MEG oscillatory signals

The electrical signal EEG measures as potential difference between two electrodes at scalp
level, as well as the associated magnetic field that MEG can detect, both are originated by the
summation of post-synaptic potentials.

Neurons are cells that have the special properties of sending ‘messages’ between each other.
Three main parts essentially compose a neuron: a cell body, dendrites and an axon. Dendrites
can be considered as the input filaments of the cell through which it receive the input
‘messages’ from other neurons while the axon is the output filament from which the neuron
sends its own ‘messages’ to the receiver neurons (terminal neurons). A synapse is basically a
contact between the axon of a neuron and the cell body or dendrite of another neuron.
Neurotransmitters open ion channels; ions flow in/out altering membrane potential and
current flows. This membrane potential alteration is called excitatory (EPSP) or inhibitory
(IPSP) post-synaptic potentials depending on the how the membrane deviates from its
baseline potential.

A neuron integrates all the EPSP and IPSP arriving from the other neurons to which it is

connected and these can affect the internal state of the neuron that is triggered to fire an
action potential (spike), which is a rapid discharge through the axon caused by a sudden rise
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and fall of the membrane potential. Spikes propagate through the axon to the dendrites of
terminal neurons.

The electric signal that EEG/MEG can pick up at scalp level is not given by this rapid
discharge, however it consists of the addition of EPSP and IPSP from a patch of neighbour
neurons. In fact usually only a small number of neurons fires spikes at the same time, while
EPSPs and IPSPs allow for a temporal integration generating an electromagnetic signal that
reveals the activities of a set interacting neurons. The structural arrangement of cortical
neurons, which are aligned in columns, allow for spatial summation and facilitates the
propagation of this signal till the scalp where it is measured as a wavelike potential
fluctuation. This wavelike activity has been classified and the analysis of its properties is
usually referred as the study of brain rhythms or brain oscillations.

2.1.2 MEG and EEG

The basic principles of EEG technique have essentially been the same from that time on even
though technological developments, better electronics and software, improved the quality and
accuracy of recordings. EEG traces consists of the quantification of the electric potential
differences between pairs of electrodes glued to the scalp [28]. The position and number of
electrodes in the clinical settings are defined by standards [27]. Typically 19 electrodes
covering homogeneously the scalp surface are enough for clinical assessment. However in a
research setting the number of electrodes ranges from 64 to 512 and usually they are
embedded in an elastic cap to allow an easier positioning.

Independently of the number of electrodes two different kinds of set-ups for EEG recording
are used:

* Bi-polar montage, in which electrodes are organized in pairs and the signals arise as
electric voltage potential differences between each pair.

* Mono-polar montage, where each electrode is associated to a unique reference
electrode and voltage potential differences are computed relatively to this reference.

The material employed in the manufacturing of the EEG electrodes is typically silver chloride
because of its low impedance (from 1 to 20 KQ) and its wide frequency response (KHz). EEG
recordings are characterized by fast sampling rate (up to 5KHz) enabling millisecond
precision and multimodal compatibility, in fact EEG can be used simultaneously with fMRI or
MEG [29].

Figure 1 showed the primary electric current (red arrow) originated from the integration of
EPSPs and IPSPs at microscopic level that can be measured at scalp level as a voltage potential
difference (yellow lines). As it can be seen from Figure 1 electric generator (red line) induces
a second current (yellow lines), which propagates through different brain tissues till the scalp,
where can be picked up by a pair of electrodes. As we already discuss this phenomenon is
called volume conduction and affects the quality of the signal recorded at the scalp level.
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Figure 1 EEG and MEG signal origin. EPSP and IPSP add up locally and generate a primary current (shown in red).
This induced secondary currents (shown in yellow) that travel through the head tissues where can be detected using
EEG. Magnetic fields (in green) related to the primary current are less distorted than current flows and they can be
captured using MEG. The picture was adapted from [29].

Among the different analysis approaches two common ways of exploring EEG data are the
study of so called ‘stimulus-locked’ activity (or ‘evoked activity’) and ‘induced’ activity [27].
The former relies on the averaging of EEG traces related to multiple presentation of a sensory
stimulus (i.e. auditory or visual stimulus) or the performance of a task (e.g. movements) in
order to improve the signal to noise ratio and disclose pattern of activity related to presented
stimulus or executed task. This analysis implies that the all the activity that cancels out in the
averaging process is considered as background noise while the brain activity related to the
stimulus is stationary [30]. This hypothesis in general does not hold, inspiring the
investigation of the ‘background noise’ and encouraging the analysis of unaveraged EEG data
(‘induced activity’) [31].

As Hans Berger discloses alpha rhythm for EEG, the first MEG recordings showing alpha
oscillatory activity is due by David Cohen [32] in 1968. After the invention of Superconductive
Quantum Interference Device (SQUID) by Zimmerman and colleagues it was possible to
obtain and record oscillatory activity with quality comparable to EEG [28]. MEG signals
originate from the same electrical activity caused by EPSPs and IPSPs, but rather than the
potential differences MEG picks up the magnetic field (green lines Figure 1) induced by the
primary electric current (red arrow Figure 1).

Describing the details of MEG technology is beyond the scope this thesis however in the
following lines a brief overview of commonalities, advantages and disadvantages of MEG
compared to the EEG will be given, an extensive description of MEG methods and applications
can be found in [27], [33].
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First of all, EEG and MEG (see Figure 2) are both non-invasive techniques, provide a direct
measure of neural activity and share the temporal resolution: their recordings of brain
activity have a millisecond precision.

MEG compared to EEG is an expensive instruments requiring ad-hoc solutions (shielded
room, superconducting sensing technology working at -269 C°, cooling system based on liquid
to maintaining the system at that working temperatures, etc. etc.) in order to pick up the brain
magnetic field which is very small: of the order of femto Tesla (compared to, for example, the
earth magnetic field: ~30 uTesla).

An important advantage of MEG measurements is related to higher spatial discrimination of
brain activity due to the fact that the magnetic field is less sensible to the conductivity of head
tissue (volume conduction). As we will see later (paragraph 2.1.6) this will help in the source
modelling: the attempt to localize assemblies of neurons responsible of the activity recorded
at scalp level. Another benefit of MEG is that differently from the EEG, measurements are
absolute and do depend on the reference choice. Finally it worth to note that EEG and MEG
are sensitive to different kinds of brain source generator: EEG picks up currents with
directions that are both radial and tangential with respect to the head surface while MEG
records magnetic flux associated to currents with tangential directions [34]. The information
about the brain activity both techniques brought can be considered orthogonal and they
should be seen as complementary techniques.

MEG

Figure 2 MEG and EEG. Electroencephalographic (EEG) with 64 channels EEG system (Brain QuickSystem, Micromed,
Mogliano-Veneto, Italy). MEG system in a magnetically shielded room (VacuumSchmelze GmbH, Hanua, Germany)
with a 306-channel whole-head neuromagnetometer (Elekta Neuromag Oy, Helsinki, Finland).
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2.1.3 Brain Rhythms

Communication is one of the most essential operation our brain performs and understanding
how this happens, what are the mechanisms that allow information to flow and how
information is coded are perhaps the most challenging and hard problems researcher are
trying to solve. Brain oscillations represent one of the topics that neuroscientists have
investigated the most because they are considered the framework through which neuronal
communication is implemented[35].

Two key features of brain computations: local-global communications and persistent activity
are thought to exploit brain oscillations to be accomplished. Local communications refers to
computations of nearby assembly of neurons, while global communications allude to
integration of information between distant assemblies of neurons. Persistent activity is the
property of the brain to sustain the effect of a perturbation of the current ‘state’ caused for
example by a stimulus [36].

One of the reasons why brain oscillations have such an important role lies on the observation
that they are preserved across different species with different size of brains: from mice, rats
and cats to monkey and humans. This remark highlights the role of brain rhythms as a
foundational and basic mechanism to allow communication [36].

Furthermore brain oscillatory activity has been found to correlate with different cognitive
processes and behaviour [37]. Examples of such correlations are briefly described in the
following lines with the attempt to introduce some of the most investigated rhythms (both in
animal and human studies), which are usually divided into frequency bands because it is
thought that every band conveys different information. These bands are typically: delta band
(from 0.5 to 4 Hz), theta band (from 4 to 8 Hz), alpha band (from 8 to 13 Hz), beta band (from
13 to 30 Hz) and gamma band (from 30 to 90 Hz). This of course is a extreme generalization
and it should be noted that usually band boundaries are not strict and not only animal studies
differed from human studies, but quite often even within human studies boundary can have
slight differences.

2.1.3.1 Delta rhythm

Oscillation in delta frequency band were first reported to be associated to brain tumours,
Walters [38] was the first who coined the term ‘delta waves’. More recent studies related
delta activity to sleep and anaesthesia [39], [40]. Furthermore delta rhythm is supposed to
play a key role in consolidating memories created during the wakeful state [41].

2.1.3.2 Theta rhythm

Oscillatory activity in the theta band has been historically studied in animals from which
through invasive recording the role of hippocampus as primary generator of such rhythms
has been disclosed [42]. Behavioural correlates of this rhythm consist of different aspect of
movements: from preparation of movements and spatial navigation [43] to the encoding and
retrieval of spatial information [44].

In humans, invasive recording from depth electrodes placed in the hippocampus of epileptic
patients reported the involvement of theta rhythm in different behavioural conditions: from
writing to sitting or walking [45]. Other invasive experiments described the presence of theta
activity even in cortical areas, during a navigation task in a virtual maze [46] or during more
complex virtual scenarios in which both learning of fixed locations and navigation were
involved [47]. Furthermore recent non-invasive works performed with EEG and MEG
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corroborate existing knowledge on the role theta as movement related-rhythm and broaden
its role to support learning and memory processing of spatial features [48]-[50].

2.1.3.3 Alpha rhythm

Alpha rhythm is one of the rhythms with the strongest amplitude/power and it was usually
referred as ‘idling rhythm’ [51] because of its presence (detectable even by naked eye) in
paradigms where the subject has the eyes-closed and is not engaged in a particular task.
Nowadays experimental evidence challenged the ‘idling’ hypothesis and suggested the
important functional role that alpha rhythm plays in information processing [52].
Furthermore alpha activity has been reported in association with different cognitive
processes such as working memory [53] and attention [54]; a comprehensive survey of alpha
rhythm functional correlates was written by Basar [55].

Alpha activity was successfully investigated with a modelling perspective trying to
understand its origin and dynamics from simple abstractions of the underlining physiological
neuronal mechanism. Neural mass model is the name under which such modelling is usually
indicated [56]-[59] and the basic idea is to study with a mean-field approach, in which the
mean activity of cortical neuronal macro-columns is summarized, the dynamics of a whole
neuronal population.

2.1.3.4 Beta rhythm

The functional role of beta band activity is still poorly understood even if classical findings
associated beta rhythm to motor activity. Engel and Fries [60], in a recent review, suggested
that beta band activity is exploited to maintain and signal the current motor set. They pointed
out how beta activity is expressed more strongly during steady muscular contractions and it
is reduced when a change of motor status is engaged: for example starting a voluntary
movement, to be eventually restored when continuation of such movement holds.
Experimental evidence for the contribution of beta rhythm in motor functions is given by two
recent papers [61], [62] in which a perturbation of beta activity is obtained through
transcranial alternating current stimulation (tACS). Feurra and colleagues showed how
cortical stimulation at 20 Hz enhanced the muscular response measured in the hand as a
motor-evoked potential (MEP) induced by transcranial magnetic stimulation. However
Pogosyan and colleagues using the same stimulation technique revealed that 20 Hz tACS is
detrimental, leading to a slowing down of movements. Davis et al. [63] in their work
suggested an interpretation with the attempt to reconcile these two contrasting results. They
claimed that stimulation and enhancement of beta activity improve the excitability of the
whole motor cortex but in an indiscriminate way; so that a physiologically increase of beta
activity (hence the positive outcome recorded with MEP) is not followed by functional better
performance (slowing down of movements).

Strong confirmation of the role of beta activity in motor functions is also given by Parkinson
disease, the ‘movement disorder’ par excellence, of which Kuhn and colleagues [64] reported
an exaggerate beta activity and they attempted to restore its ‘normal’ amount with deep brain
stimulation showing the beneficial effect of such restoration for the movement execution [64].
Moreover beta-activity is typically exploited to train and drive brain computer interfaces [65],
[66].
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2.1.3.5 Gamma rhythm

Gamma oscillatory activity in recent years became one of the most investigated bands because
of its omnipresence in a variety of experimental conditions. It seems related to a broad
spectrum of processes including: feature integrations and object recognition (binding
problem) [67], multi-sensory integration [68], attention and memory [69], [70]. Furthermore
gamma band power (both increase and decrease) has also been related to cognitive
impairments [71].

2.1.3.6 Evoked and Induced activity

Oscillations in the brain arise either spontaneously (without external stimuli, see resting-state
in 2.1.7) or linked to the processing of stimuli. Usually brain oscillatory activity in response to
external stimuli is further divided in two types of activity: ‘evoked’ and ‘induced’. Evoked
oscillations are related to the activity occurring with the same latency and phase-locked to
different repetition of the stimulus, while induced oscillation vary either on latency or phase
with respect to the stimulus. Evoked activity gives rise to so called evoked potentials by
aligning and averaging recorded signals after the stimulus, while to reveal induced activity a
different approach should be taken (i.e. the independent analysis of every single response)
because non phase-locked activity tends to average out [72].

For what concern the EEG and MEG such estimations rely on the analysis of the time-series
consisting of signals recorded at the scalp level. The usual technique exploited to inspect
signal properties is spectral analysis (i.e. Fourier or Wavelet analysis) through which studying
power variations as a function of frequency. Thanks to this approach oscillatory components
of the signal can be disclose and the local activation of a particular brain area can be defined
as increase or decrease in power, for a specific frequency band, of the signal recorded from
the electrode placed above that area. A common example of such technique is called event-
related synchronization (ERS) and event-related desynchronization (ERD) [31] through
which it is possible to explore stimulus induced activity as a ratio of power between a baseline
period (before stimulus occurrence) and an active period (after stimulus occurrence).

This brief description of cognitive correlates in different frequency bands is far from
exhaustive and should not be taken as a suggestion of the existence of a unique relation
between a specific frequency band and a single cognitive process. Similarly, it seems that
single cognitive functions are implemented through the complementary action of different
rhythms [73]-[75]. A unifying theory is still missing but there is nowadays agreement
regarding the fact that oscillations at different frequencies together are related to changes in
the functional brain state.
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2.1.4 Structural, Functional and Effective connectivity

At macroscopic level, connectivity is usually the term employed to represent the
interrelationship existing between two or more brain areas. This term is usually preceded by
an adjective describing the nature of the relationship: structural, functional or effective [7],
[76].

Structural connectivity, also known as connectomics [77], refers to the study of anatomical
connections, efferent or afferent tracts of white matter fibres between different brain areas,
or correlation between cortical thickness of grey matter areas. Functional connectivity refers
to statistical interdependences computed between recordings of the activity of different brain
areas. Recordings of such activity can be acquired either directly through EEG (or MEG),
measuring the differences of electrical voltage potential (or the magnetic field) at scalp level
which are representative of neuronal population activity under the recording electrodes
(sensors); or indirectly analysing the metabolic activity measured as a function of blood
oxygenation through fMRI. This latter is considered an indirect measure because it is based on
the assumption that the metabolic demand is related to the level of activity of the neuronal
population.

Functional and effective connectivity shared the type of data used to investigate functional
interactions, but if on the one hand functional connectivity has a descriptive aim, on the other
hand effective connectivity look into the causal relationship of the functional interactions [7].

The birth of modern study of brain connectivity coincides with a shift of interest from the
concepts of functional segregation and local activation to functional integration. Functional
segregation implies that anatomically defined areas of the brain are specialized to implements
defined brain functions, such as perceptual or motor functions, and therefore it is possible to
localize and trace the execution of a function in a well-defined area of the brain (local
activation). However functional integration reflects the distributed processing of information
among different segregated areas in order to realize brain functions.

During the early days of functional investigations, functional segregation and local activation
were the hypotheses that moved the research of brain activity. This was due by the influence
of earlier studies based on the ‘lesion method’ [78] which gave evidence of a strong relation
between the damage of precise brain areas and the resulting cognitive impairment [8], [79]-
[82]. The prototypical way neuroscientists investigated cognitive, emotional, perceptual,
motor or any mental processes, was by correlating these processes induced by an appropriate
experimental paradigm to the alterations of local brain activity estimated in some way
depending on the modality (e.g. through EEG, MEG or fMRI).

What the early analysis of brain activity based on the functional segregation assumption
shared is the oversimplified attempt to reduce neural information processing to two
dimensions: space and local activation [83]. The idea of the existence of a simple one-to-one
relation between mental processes and a precise brain area turns out to be to naive and
experimentally unsustainable because some mental process can activate more than one areas
or different mental processes can activate the same brain areas. What began to be clear was
that higher mental processes are implemented with a balanced collaboration of different and
distant brain areas communicating and working together (functional integration).

Typically to obtain information about local activation a univariate approach, in which each
signal is analysed independently from the others, is enough. However to have an insight on
the communication and interactions between two or more brain areas a multivariate
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approach is required. This latter exploits the assessment of interdependences between two or
more signals to gain information on the functioning of the brain generating them.

Bivariate time-series analysis (investigating relationship between two signals) is a common
way to enhance the univariate analysis and to explore the communication other than the local
activation. In this context the concept of synchronization [84] between two signals is the
mathematical mean through which to unveil and quantify communication and interactions
between two brain areas.

Two categories of time-series analysis techniques to detect synchronization can be defined:
linear and non-linear!. Linear measures focus on the study of linear relationship between two
signals. One of the most important linear measure used in neurophysiological studies is
coherence, which describes the linear correlation between two signals as a function of
frequency. Non-linear measures were developed and used because of the observation that
neurophysiological data contains non-linear properties derived from the intrinsic non-linear
behaviour of neuronal activity [85]. An extensive review of linear and non-linear measures
with a brief description of their usefulness and examples of their application to
neurophysiological recordings is given by Pereda [20].

Furthermore in the framework of non-linear synchronization two relevant concepts are
generalized and phase synchronization, which determine how measures of the
synchronization are constructed. The intuition of the former is that the synchronization
between two dynamical systems (i.e. two recorded signals from two brain areas) X and Y
exists if the state of a system Y can be written as a function of the state of the system X and the
synchronization can be reconstructed from time-series representing the dynamics of the
attractors [86]. A popular example of a non-linear measure based on the concept of
generalized synchronization is synchronization likelihood [87].

However phase synchronization principle [88] implies that synchronization can be estimated
by quantifying the consistency of phase differences between the two signals recorded from
two brain areas. This latter approach led to the definition of the measure of functional
connectivity used in the experimental part of this thesis to estimate synchronization between
brain areas. This measure is called phase lag index (PLI) [1] and will be the topic of the next
chapter.

1 Strictly speaking synchronization in physics is a term born in non-linear dynamical system theory to describe
weak coupling between two or more oscillatory objects which interact modifying accordingly their phases and
frequency, therefore amplitude adjustment are not compulsory to have synchronization. However typically in
neurophysiological literature the synchronization is often used with a more broad meaning as ‘statistical

dependecy’ between time-series.
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2.1.5 Phase Lag Index

There are typically two approaches in order to correct for the problem of common sources.
The first one is called source reconstruction technique and the main idea is to project the
activity recorded at scalp level back to the generating sources inside the brain (‘source space’)
in order to obtain more reliable information on the activity of each source, so that estimation
of functional connectivity should reflect real interactions [28]. The second approach works
directly on the time-series recorded at the scalp level (‘signal space’) detecting interactions
unlikely produced by common sources.

Phase lag index (PLI) [1] is a measure of statistical interdependence between two time-series
that estimates their synchronization examining their phase relationship and at the same time
handling the common sources problem.

The definition of phase synchronization PLI exploits is the weak phase synchronization, [88]
which states that there exists phase-locking between two time-series if their phase difference
remains bounded. This is a relaxed definition of the stricter concept of phase synchronization
in which phase difference between the time-series is required to be constant.

The intuition of PLI measure is that the activity related to common sources is present in both
time-series with a zero phase lag (i.e. its contribution in both signals is instantaneous)
therefore quantifying consistent non-zero phase lags it is possible to discard common source
influence and disclose real interaction if present.

Consistent non-zero phase lags can be detected studying the distribution of instantaneous
phase differences between the two time-series. An asymmetry in the distribution of phase
differences centred at zero phase lag (0 mod r) represents the presence of synchronization
not ascribable to common sources while a flat or symmetric distribution indicate no
synchronization.

In order to compute and evaluate the distribution of instantaneous phase differences first of
all the instantaneous phase of each time-series should be computed. Hilbert transform
represent a common way to extract instantaneous phase from a signal:

z(t) = x(t) + ix(t) = A(t)e!®® (1)

Where z(t) is the complex valued analytical signal, x(t) is the real time-series, X(t) its Hilbert
transform as function of time t. From equation (1) both instantaneous amplitude A(t) and
instantaneous phase ¢ (t) for a signal can be determined as

A(t) = {x(@®O? + ]2 (2)
P(t) = arctan% (3)

Using equation (3) the instantaneous phase differences between two time-series can be
computed as Ap(t) = ¢, (t) — ¢p,(t) where ¢,(t) and ¢,(t) are the instantaneous phase of
the two time-series at time ¢.
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The time-series of the instantaneous phase difference A¢(t) is the basis for the construction
of the PLI, which is given by:

PLI = | < sign (sin(A¢(tk))) > | (4)

Where t, represents the time in divided discrete steps k = 1..N, with N the total number of
samples considered, <..>is the average across these time steps and |[..|is the absolute
operator. Averaging the sign of phase differences at each time step (t;) and taking the
absolute value of this quantity gives a measure of the asymmetry of the instantaneous phase
distribution. PLI values range from 0 < PLI < 1; with 0 indicating no synchronization at all
and phase differences centred around 0 mod r (possibly influenced by common source). PLI
greater than 0 quantify the level of synchronization in term of asymmetry of the phase
difference distribution: the more asymmetric the distribution is the more the PLI will be high.
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2.1.6 Source Analysis

MEG and EEG data at level of the scalp offer the possibility to explore the dynamics of brain
activity with high temporal resolution. However understanding from which anatomical brain
area this activity originates could be crucial not only for interpretation issues but at the same
time can improve the estimation of the activity per se: as already explained scalp data are
affected by linear mixing (common sources) and blurring effects which are related to both
distance sensors from the electrical sources and volume conduction influences.

The problem to detect which neural sources are responsible for the signals at scalp level is
typically referred as ‘inverse modelling problem’ and it is a problem not confined to
neuroimaging discipline [89].

In general terms the framework to study a physical systems (e.g. the Earth, a quantum
particle, the brain) can be divided into at least three steps: i) define a set of parameters which
completely characterize the system (model parameters); ii) define the physical laws allowing,
for known values of model parameters, to predict measurements of some observable
parameters (forward modelling problem); iii) infer the actual model parameters from
measurements of observable parameters (inverse modelling problem) [89].

In the context of brain functional imaging the model parameters are represented by two
categories: head model parameters (geometry of the head, conductivity of tissues, recording
locations outside the head) and source model parameters (the parameters that describe
neuronal currents such as their location, orientation and amplitude). The observable
parameters are represented by the measurements of the electrical (magnetic) signals outside
the head. The ‘forward modelling problem’ represents the prediction of the electromagnetic
field and potential at the level of the scalp for known model parameters, while the ‘inverse
modelling problem’ is the estimation of unknown sources corresponding to measured
EEG/MEG signals.

A fundamental issue is that whereas the ‘forward problem’ has a unique solution (once
defined the model parameters), the EEG/MEG ‘inverse problem’ non-unique, it admits infinite
solutions [90] making it by definition “ill-posed” [91]. There is a copious and ever growing
literature about brain source reconstruction techniques, which attempt to reduce the
multiples solutions and transform the ill-posed problem in a well-defined and tractable
problem. These techniques basically differ in the assumptions that are used to reduce the
non-uniqueness of the problem. An overview with technical details of different approaches
can be found in [28], whilst here we briefly introduce the beamformer approach [92] which
will be adopted in the experimental part.

2.1.6.1 Beamformer analysis in MEG

Beamformer techniques are basically spatial filters, where the main idea is to estimate activity
at each location of the brain volume blocking the contribution of possible electromagnetic
neuronal sources located elsewhere. The assumption behind beamformer analysis is that
there are no any two macro-neuronal sources (order of mm?) with activity that is correlated
over long time scale [92]. The estimation of activity is obtained by selectively weighting the
contribution of MEG sensor data on the neuronal source at a location of interest.

The MEG signals recorded at scalp level (B) at any time instant is related to the neuronal
activity by the equation:
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B=1Q (5)

Where Q is a Nx1 vector representing the strength of neuronal activity, L is a M XN matrix
also called lead field matrix with M the number of sensors and N the number of element in the
predefined source space.

The lead field is entirely determined by head model parameters and source parameters
(supposing the MEG signal to be produced by unitary strength and optimizing the orientation
of the sources [92]).

Based on the scalp level measurements over time (B), the aim is to define the locations and
strength of the neuronal activity. The following equation shows how the neuronal activity at
source level can be estimated at any latency where C; represents the source covariance matrix

and C,the data covariance matrix.
Q=CL"C,'B (6)

Given the beamformer assumption of uncorrelated sources it is possible to estimate C; as a
diagonal matrix where every entry corresponding to a location 8 is related to the scalp
recording with the following equation:

o2 = (L5Cy L) ™" (7)

Combinations of equations (5), (6), and (7) allow the estimation of the beamformer weights
W and beamformer output Q at 8 location [92].

Qo = (L5C5'Le)  L'C;'B =WTB (8)

The weights specify the spatial filtering characteristics and allow reducing the contribution of
sources at locations different from the source location of interest. Beamformer output is
computed at any time latency generating a source time-series for location of interest [93].
Computing time-series at all the source locations of interest results in a multivariate data set
that can enter the typical signal processing and functional connectivity pipeline.

2.1.7 Resting-state paradigm and resting-state networks

Resting-state paradigm consists of a condition in which an awake subject is recorded while he
is asked to relax and not perform any physical or mental task. During the last fifteen years the
investigation of such a condition of 'rest' has received considerable attention because it is
thought that can help to disclose the intrinsic activity of the brain, which can increase our
understanding of how different brain areas communicate [94]-[96].

Although recordings with such a paradigm were commonly adopted in EEG research
experiments (the birth of EEG began with a resting-state experiment) the renewed interest in
this paradigm is related to important discoveries in fMRI [97], [98] which revealed the
existence of pattern of interactions between brain regions while a subject was not performing
any task. Since then, many studies have established distinct sets of brain regions, so called
resting-state networks (RSNs), which exhibit robust temporal correlations in spontaneous
brain activity under resting condition [96], [97], [99]-[102].

Changes in RSN connectivity patterns have been related to cognitive performance: either too
much or too little RSN activity in various pathologies (Alzheimer, schizophrenia and epilepsy)
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has been correlated with cognitive deficits [103], whereas increased RSN activity after
resective surgery for glioma correlated with improved cognitive performance [104].
Furthermore clinical investigations have also shown that RSN activity can distinguish patients
from healthy subjects and it can correlate with disease severity [105].

The analysis in a resting-state paradigm was not only confined to the study of RSNs, however
MEG and EEG connectivity and functional brain network studies benefit of such paradigm.
These studies have provided evidence on the alterations on connectivity patterns and
abnormal networks organization in disease [3], [4].
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Figure 3 Resting-state networks. Spatial maps representing the resting-state networks: 1 default mode network, 2
sensorimotor network, 3 executive control network, 4 visual network, 5 and 6 fronto-parietal left and right
networks 7 auditory network, 8 temporo-parietal network. Maps display high level of correlated blood oxygen level
depend (BOLD) signal activity. Figure adapted from [105]
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2.2 Network Analysis

2.2.1 General introduction

Modern network science is a combination of at least three different disciplines: graph theory,
statistical mechanics and dynamical system theory. The main aim of modern network theory
is to provide the ability to investigate complex systems and phenomena with simple but
powerful and effective mathematical tools.

It inherits from graph theory the possibility to abstract and summarize the relationships
between entities of a complex system in terms of nodes and edges. Nodes represent entities of
the system under study, while edges represent interactions between entities. Together nodes
and edges compose the network, which is the abstraction of the whole system. This simple
conceptualization comes with a generalization property allowing to study very different
systems. For example, nodes could be individuals and edges can describe social relationships
of different kinds: so-called social networks arise. Nodes can embody computers, while edges
stand for physical or logical connections between them: we construct a description of Internet
or the World Wide Web. Furthermore we can have biological networks (e.g. genetic,
metabolic), transport network, electrical network and so on [106]. It is clear how these two
concepts are extremely practical and helpful to represent heterogeneous systems providing at
the same time very simple approximations of such systems.

Statistical mechanics provides modern network theory with the capability to model large-
scale networks and through the investigation of their topologies it points out unifying
principles of real networks. One of the first examples of such modelling can be considered the
work of Erdos and Renyi [12] which represents a transition from the study of small and
deterministic graphs (ordered graph such as lattices) to the investigation of large and not
deterministic graphs (random graphs).

Two seminal papers that influenced and foster the growth of network science are the Watt
and Strogatz study [13] on small-world networks and the study of Barabasi and Albert on
origin of scale-free networks [14]. Both works had an enormous impact because the described
models can mimic properties present in most real life empirical networks.

Small-world networks are characterized by a topology in between regular (i.e. lattice)
networks and random networks. They take advantage of two properties from both networks:
the local connectedness from regular networks and short path-length between any two nodes
from random networks. Local connectedness implies that neighbour nodes are highly
connected among each other, while short path-lengths reflect the fact that the number of
edges separating any pair of randomly chosen nodes is small. Small-world networks take the
name from the known small-world phenomenon observed by Milgram [10] in his famous
experiment. He described that social networks have the so-called ‘six-degree of separation’
property meaning that, surprisingly, the estimated number of edges in a chain of
acquaintances is almost six. Watts and Strogatz described how this property was also present
in other networks from different contexts such as the neural network of the worm
Caenorhabditis Elegans, the electrical power grid of United States and the collaboration
network of film actors [13], reflecting somehow that the small-world architecture is a very
general one. Furthermore they provide a model to build networks with this property and
explain how the right balance between local connectedness and short path lengths give rise to
small-world networks.

Scale-free network is one of the first models dealing with not homogenous networks.
Homogenous in this context means that the nodes typically are topologically equivalent: the
number of edges each node possesses (i.e. the degree of a node) is similar. This holds true for
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regular lattice and random networks, however many real world networks have very
heterogeneous degree distribution: there exists nodes with extraordinary high number of
edges (hubs) and other nodes with few edges. Barabasi and Albert suggested an algorithm in
order to explain the appearance of hubs. They proposed a growing algorithm for the
construction of a network with a preferential attaching rule. New nodes connect to existing
ones accordingly to their degree: a new node has higher probability to be connected to an
existing node with a higher degree than to connect to low degree node. This growing
procedure affects the degree distribution of the network producing a highly skewed power
law degree distribution explaining the appearance of hubs. Examples of such networks are
Internet and the World Wide Web.

Dynamical system theory supports modern network science with the means and concepts to
study processes taking place on networks. Specifically investigating how the topology
structure affects the emergence of dynamical processes. Of particular interest is the
inclination of a network to synchronize. Synchronization on a network is a phenomenon
relevant in different situations spanning from brain diseases like epilepsy, where an abnormal
synchronization of large neural population occurred, to sociological context with the
emergence of social collective behaviours (i.e. emergence of strikes, new fashion, spread of a
gossip). In both cases it is possible to understand the mechanism underlying the genesis of the
process in terms of synchronization and its interplay with the network topology [106].

Topology, as the title of this thesis stated, is the main issue in here. Characterizing the
topology of a network reveals important information regarding the complex system or
phenomenon under study: from the topology depends the system function.

2.2.2 Brain networks

The brain can be considered a complex system both structurally and functionally: its intricate
structural organization underlies and shapes its complex neural functional dynamics.
Therefore a network perspective can provide the right tools to gain an understanding on how
normal brain function arises and how its breakdown is caused by diseases [3], [4], [76].

Brain networks studies can be divided mostly in two categories: the study of structural
networks and the study of functional networks.

Structural brain networks are based on the mapping of structural connections through
different modalities and at different resolution scales. At the micro-scale, synapse connections
between neurons are investigated with the use of electron microscopy. At the meso-scale the
reconstruction axonal projections through histological dissection and staining studies [107] is
performed to give a description of whole-brain white matter connectivity. Due to the
invasiveness of the techniques these studies are conduct on animals or in post-mortem
human brain. At the macro-scale level, thanks to non-invasive neuroimaging techniques [108],
the whole-brain anatomy in live humans can be explored. Magnetic resonance imaging (MRI)
and diffusion-weighted MRI are nowadays the most used non-invasive techniques to
investigate macroscopically structural connectivity.

As well as structural techniques, physiological methods investigate brain activity from brain
cells to brain regions [109]. It is beyond the scope of this thesis to describe all the techniques
at different resolution scales to estimate brain activity. However, we are mainly interested in
the macroscopically non-invasive techniques allowing the construction of functional brain
networks. Nowadays the three most employed modalities permitting a whole-brain
estimation of brain activity are EEG, MEG and fMRI. The first two give a direct estimation of
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the electromagnetic activity of large neuronal populations, while fMRI estimates brain activity
looking at the metabolic demand. In particular, it measures the blood flow related to energy
consumption of brain areas which is related to neural activity.

2.2.3 Construction of structural and functional brain networks

The construction of structural and functional brain networks requires different steps [110] .

Figure 4 Brain networks construction from empirical data. On the left structural brain network are constructed.
Nodes are defined by parcellating the brain into regions of interest (ROIs) based on structural features (2). The
connections between these nodes are derived by MRI (estimation of cortical thickness) or diffusion MRI (estimation
of white matter tracts) and used to build the structural connectivity matrix (3) from which the structural brain
network is obtained. On the right node assignment is based on the EEG or MEG recording sites (2), functional
interaction between each pair of the recorded signals is estimated with a functional connectivity measure and form
the functional connectivity matrix (3) from which functional brain network is obtained. Figure from [77]

First, nodes of the network should be defined. For what concern structural studies typically a
parcellation of the brain into coherent regions of interest (ROI) is performed. This
parcellation can be done using different criteria, which can be based on previous anatomical
atlas [111] or by defining homogeneously regions taking into account size and shape [112].
The definition of nodes in functional studies depends on the modality of analysis. In EEG/MEG
scalp level studies, typically the nodes are represented by sensors of recordings, while in fMRI
studies can be used strategies similar to the structural node definition (i.e. atlas based).
Furthermore in EEG/MEG studies atlas-based approaches can be adopted thanks to source
reconstruction techniques [93].
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Once the nodes are defined, their relationships should be estimated. For structural brain
networks the relationship between two brain areas (two nodes) can be computed looking at
the estimation of neuronal fibres connecting the two areas. Such estimations can be obtained
with diffusion-weighted MRI, which provides information about the spatial orientation of the
neuronal fibres. The subsequent application of reconstruction algorithms exploiting spatial
orientation information allow for the whole anatomical tract approximation which connects
the two areas [113]. Alternatively, the correlation between thickness or grey matter volume of
two cortical areas (estimated with MRI) can be used as a prediction of presence of anatomical
connections between two areas [114]. The pair-wise computation of all structural relations
between any pair of areas produces a structural connectivity matrix representing the
structural brain network.

In functional brain networks the relationship between two brain areas is computed with
functional connectivity 2.1.4, which corresponds to the strength of temporal correlations in
activity between the two brain areas. As already stated the functional connectivity is
computed between the signals recorded in those areas. The pair-wise estimation of functional
connectivity between any pair of signals results in the functional connectivity matrix
corresponding to the functional brain network.

A generic entry (i, j) of the structural or functional connectivity matrix represents existence or
absence of an edge between node i to node j. If the value in the entry (j, j) is greater than zero
an edge labelled with the value exists between node i and node j otherwise no edge exists.
Finally, once the structural or functional brain network is obtained, network metrics to assess
its topology can be calculated.

2.2.4 Network Measures

Network measures quantify several properties of network elements (nodes and edges) and
allow to depict the whole topology of the network. An overview of the most used network
measures employed in structural and functional brain network analysis is represented by the
work of Rubinov and Sporns [24]. Here, a brief introduction to the most important categories
of network measures will be given (in Table 1 some of them are reported, for a more detailed
reference see [24]).

It is worth to note that a typical approach before to perform a network analysis is to
transform the weighted connectivity matrix into a binary matrix: so, from a weighed network
where every edge has a value, an un-weighted network is obtained in which edges have no
values associated. The main reason of this manipulation is to limit the potential effect of weak
connections (edges with low values) on the overall topology. Weak connections are generally
thought to represent spurious connections and may obscure the topology of strong
connections, which are considered more reliable. This transformation is done either for
structural brain network or functional brain networks and relies on an arbitrary threshold
definition on the values of the connectivity matrix. The implications of such operation will be
explained in paragraph 2.2.6. What is important to mention here is that the metrics computed
for binary networks have their equivalents for weighted networks [24].

Network measures can be divided into different categories reflecting the type of information
they convey about the network or its elements. Three main categories can be distinguished:
measures of network segregation, measures of network integration and measure of network
influence [24]. Measures of segregation investigate the way nodes can be locally connected in
separated cliques (cluster or modules). Measures of integration refer to the global property of
a network to be interconnected as whole: how nodes can ‘easily’ reach each other. Measures
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of influence characterize the importance of individual nodes or edges and the role they play in
the organization of the network.

The simplest and most used example of segregation measures is the clustering coefficient,
which counts the number of triangles in the networks. Triangles (a complete sub-graphs of
three nodes) are important because they reflect the robustness of the network [106]. The
reason why triangles, used as building-blocks of the network, provide error tolerance is
intuitively easy to understand. Imagine three nodes connected with each other (a triangle), if
an edge is removed this small network still remains connected (it is possible from each of the
three nodes to reach every other node). Therefore if a network contains a high percentage of
triangles a random deletion of edges does not compromise the connectedness of the network.
The clustering coefficient represents a nodal measure meaning that it gives an estimate of the
number of triangles around an individual node. However it is possible to compute the
clustering coefficient of the whole network as the average of all the clustering coefficients of
individual nodes [24].

Motifs are another way to investigate local properties around an individual node. A motif is
generalization of triangle, a sub-graph of few nodes connected in a particular way (i.e. from
square, pentagon and other arrangements) that it is likely to have a functional role. In order to
obtain an estimation of a particular motif in the network usually the occurrence of such motifs
are counted and compared to the results obtained with random-networks [115].

More advanced measures of segregation describe the presence of modules in the network.
Modules define a partitioning of the network into sub-networks satisfying a particular
criterion. Typically a module consists of number of nodes in the network that are more
strongly connected to each other (i.e., within the module) than with other nodes outside their
own module [116].

Measures of integration in a network are based on the concept of path. A path between two
nodes A and B consists of a sequence of distinct nodes and edges that should be traversed
from node A to reach node B. The length of a path in binary network is given by the number of
edges that should be traversed while in weighted network a weighted path length is equal to
the total sum of individual edged weights. There could be many paths between node A and
node B, however the shortest path length reflects how easily node A can communicate with
node B therefore represents an estimate of how they can integrate information. The average
shortest path between all pairs of nodes in the network reflects the integration properties of
the whole network and it is the simplest and most used measure of integration [24]. Diameter
is another measures of whole network integration; it consists of the longest shortest path
between any pair of nodes in the network. It is a global measure representing how the
network is more ‘stretched’ or ‘compact’.

Both average path length and average clustering coefficient are the most network measures
employed to provide global information of the network and are commonly used to describe
the brain network topology. As already explained, a short average shortest path length and a
high average clustering coefficient characterize small-world topology. In order to detect such
an optimal network organization an index of small-world-ness was developed based on these
two measures [117].

The third category regards measures influence, reflecting the relative role of a node (or edge)
in the organization of the network. The simplest measure is the degree of a node, which
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represents the number of edges connected to the node. Degree is one of the most common
ways to assess the importance of a node and its contribution to the whole network structure.
There are other measures based on the degree of a node. Degree correlation allows to
evaluate if nodes are connected according to some rule depending on their degree. For
example, it is possible to distinguish between network where high degree nodes tend to be
connected to high degree nodes (assortative mixing) or network where high degree nodes
have a preference to connect to low degree nodes (dissortative mixing) [118]. Furthermore, it
is possible to assess the whole distribution of the degree values in the network that is
informative of the overall topology structure. Using the degree distribution it is possible to
discriminate between different models of networks (i.e. scale-free vs random network).

The importance of a node is commonly referred as centrality and degree is not the only way to
evaluate this parameter. Other measures exploit the concept of path in order to assess the
centrality. Betweenness centrality is nodal measure consisting of the ratio between the
number of shortest paths traversing a node and all shortest paths in the network. Nodes with
high betweenness centrality play an important role on information flow in the network.
Betweenness centrality can be also computed for every edge [119].

Eccentricity of a node is another measure based on the paths, and it is computed as the
longest shortest path from that node to any other node. The shorter the eccentricity of a node
is the more central role it plays in the network because it means that is easily reachable by
any other node.

Node Edge Degree
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Figure 5 Network measures. Illustration of some of the described network measures for characterizing the network
topology. Measures of segregation are based on the number of triangles (orange) or more sophisticated measures
can decompose the network in modules (bottom right network). However measures of integration are based on the
concept of path length (green). Measures of influence are based on a node degree (purple) which can be used to
detect hubs (yellow node on the bottom left network). However hubs can be defined with the number of shortest
path passing through a node (high betweenness centrality, red node on the bottom left network).
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It is important to note that the number of nodes, the number of edges and the degree
distribution of the network influences network measures [23]. Typically the significance of
network measures computed on empirical networks (such as structural or functional brain
networks) is obtained as comparison with the same measures evaluated in reference
networks also referred as null-model networks. These null-model networks are commonly
known model of networks, such as random or regular network, but preserving the same
number of nodes, density (number of edges), and degree distribution of the empirical
network [24].
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Concept Explanation Formula

N | Number of
nodes

M | Number of
edges

k | Degree Number of edges for a given node i. k. — Z a

i ij
a;jis the entry of the connectivity =
matrix ~ which  establish  the
existence/absence of a connection
between node i and node j

C Clustering C it fraction of triangles in the YjheN al-jalha]
coefficient network Z k; (k; —

Cw | Weighted Clustering coefficient for weighted %
clustering networks. Where wj; is the entry of | ¢ — 1 2 nen (Wi WinWjn)
coefficient the weighted connectivity matrix N ki(k; — 1)

representing the value assigned to
the edge connecting node i and node
J
L | Pathlength Average shortest path length 1 (Z;ezv];cz U)
between any two nodes in the =N Z
network. Where dj; is the distance in &N
terms of number of edges

Lw | Weighted Average shortest path length 1 (Z JENj#i U)

path length between any two nodes in the Ly = N Z
network. Where dj¥ is the distance eN
considering the weights assigned to
the edges

BC | Betweenness | Fraction of all shortest path that 1 p](ll])
centrality traverse a particular node i. Where | B(; N—DN=2) Z Pn;

prjis the number of shortest path
between node h and node j and p,(lij)is

the number of shortest path
between node h and node j passing
through node i

n,JEN
hsj hi,j#i

Table 1 Network measures
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2.2.5 Human brain networks in healthy and pathological conditions

Modern network theory has been applied to both structural and functional brain networks in
health and disease [3], [4], [110], [120]. In these last fifteen years several results have been
revealed for both structural and functional brain networks exploiting network theory:

Brain networks display a small-world topology [112], [114], [121] characterized by an high
level of clustering and small average shortest path length.

Brain networks revealed a degree distribution close to a scale-free degree distribution [122],
[123], reflecting the existence of hubs (nodes highly connected). These hubs in structural
networks tend to be connected to each other forming a structural core called ‘rich-club’ [124].

Brain networks exhibit a hierarchical modular structure [125]. Modular structure implies that
brain network can be partitioned in homogeneous (i.e. nodes inside a module are highly
connected with each other than outside the module) sub-networks, while hierarchical
organization reflects the fact that modules can be internally subdivided into sub-modules
over several levels. Importantly modules typically are related to functional systems of the
brain.

These topological properties of structural and functional brain networks seem to capture
aspects of brain organization that have neurobiological relevance. Topology is related to the
development of the healthy brain [126], [127] as well as to its aging [128], [129]. Cognitive
performance seems to be associated with brain architecture, an example is given by
intelligence which seems correlated with shortest average path length [130], [131]. However
the relation between brain network topology and the arising of a pathologic condition can be
considered the most striking result. It seems that the optimal and efficient small-world, scale-
free and hierarchical modular structure of the healthy brain becomes disrupted in disease.
Even the most disparate neurological disorders can be understood as deviation from optimal
network topology. Alzheimer, epilepsy, multiple sclerosis, brain tumours, Parkinson and
schizophrenia can be related to abnormal network organization and network modifications
correlated with disease gravity and cognitive impairments [3], [4].
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2.2.6 Example of pipeline of analysis and network comparison problem

Although network measures have enhanced our knowledge on the complexity of the brain’s
architecture, methodological issues may hinder the interpretation of the results. One of the
main methodological problems dealing with brain networks is related to network
comparison. Comparing networks is a typical operation performed during a brain network
study: network of a patient group are compared with network of healthy subjects with the
aim to find differences in network organization. These differences are computed in terms of
network measures, which permit to infer different aspect of network topology. However
network measures are influenced by: the size (number of nodes) and the density (number of
edges) of the network, the distribution of the weights (if a whole connectivity matrix is used
to construct the network) or by the use of an arbitrary threshold (used to obtain an un-
weighted network).

In order to explain the network comparison problem it is useful to start with an example of
the typical pipeline of analysis of a brain network study. It is worth to note that the
comparison problem is a general problem arising for both structural and functional brain
network. However, since in this thesis the focus is on functional brain networks, the
illustrative example will summarize all the basic steps for functional analysis which will be
later adopted in the experimental part 3.

For the sake of simplicity a schematic example is shown in Figure 6. Figure 6 (a) shows
resting-state recordings that can be obtained by EEG from N electrodes. These recording are
typically divided into epochs of a certain length and a number of artefact-free epochs are
selected (i.e. removing epochs contaminated by muscle artefact, drowsiness, eye movement
etc. etc.), see Figure 6 (b). At this point it is possible to either continue the analysis at level of
the scalp (signal space) or perform a source reconstruction analysis and obtain the
corresponding signals at source level. However, no matter the choice, the next step is to filter
the selected epochs (either signal space or source space) in the frequency bands of interest
(delta, theta, alpha, beta and gamma see 2.1.3) and analyze them independently Figure 6 (c).
Supposing we concentrate on a frequency band, the subsequent step is to compute the
functional connectivity matrix using a synchronization measure for all selected epochs.

In all the studies presented in the experimental part the measure of functional connectivity is
the phase lag index (2.1.5). This results in a NXN functional connectivity matrix for every
selected filtered epoch where each element of the matrix contains the magnitude of the
synchronization for a pair of electrodes (or a pair of reconstructed region of interest), see
Figure 6 (d). A single average functional connectivity NXN matrix is obtained averaging over
all epochs, as depicted in Figure 6 (e). Now the network analysis can continue in two different
ways, Figure 6 (g-h).

The first possibility is to use a threshold T. Nodes in the network correspond to the N EEG
electrodes (or N reconstructed sources) and values in the matrix correspond to the pair-wise
relationship between the signals recorded in those electrodes (or reconstructed signals). Two
nodes i and j are connected in the network if the synchronization value in the functional
connectivity matrix in the position (i, j) exceeds the threshold T, otherwise they are not
connected. A binary network is constructed, where the edges exist or not exist, and no weight
is assigned to the edges.

The alternative is to use the whole functional connectivity matrix to construct a weighted

network and then apply network analysis. In this case each edge is assigned with a weight
obtained from the synchronization value in the functional connectivity matrix.
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The PLI is a measure without direction: the synchronization values between node i and node j
is equal to the one between node j and node i; therefore the PLI matrix is a symmetrical

matrix and the resulted weighed network is undirected. The maximum number of edges m is

N(N-1 . . . . .
% because self-connections (the diagonal of the matrix) are not considered. It is worth to

remember that network analysis for weighted networks requires modified network measures
that take into account the presence of weights [24].

The synchronization values, as in the case of PLI, range from 0 (no synchronization) to 1
(maximum synchronization). Typically in network analysis the importance of an edge is
inversely proportional to its assigned value: the smaller the value, the more important the
edge is. This is due by the fact that usually the edge values represent a cost to pay for its
traversal; so the smaller the cost, the more convenient is to pass through that edge. However
in our case the relation between importance of the edge and value is inverted: the most
important edges represent the strong connections (higher value of synchronization).
Therefore a transformation of the weights should be done in order to comply to the general

network analysis assumption and typically all the weights are re-defined as
1

synchronization value

(i.e. i ). Let’s denote the sum of all transformed weights as W.

() (d) (e)

(b) Filtering Functional Average FC
connectivity (FC) matrix

Epoch selection
Signal space

(a) ! W T
Multi-channel
recordings

ZE R S (f)

Binary matrix

(g) unweighted

(h) weighted
Network Analysis

Network Analysis

Figure 6 Pipeline of analysis: (a) multi-channel resting-state recordings, (b) selection of artefact-free epochs, (c)
filtering in the band of interest delta, theta, alpha, beta and gamma. For each filtered epoch the estimation of
functional connectivity (FC) is computed (d), subsequently the average functional connectivity matrix is calculated
across epochs (e). The average FC matrix is either thresholded (f) and an unweighted network analysis is performed
(g), or the weighted FC matrix is used for weighted network analysis (h).
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With this example it was possible to introduce the parameters useful to explain the nature of
the comparison problem, these parameter are N, T, m and W [23], [26].

Let’s begin with the comparison of two functional un-weighted networks. If G;and G, are two
un-weighted networks with N nodes and where a threshold T was applied, it is likely that
they will have a different number of edges (densities) m;and m,. This is because there is no
guarantee that the two functional connectivity matrices have the same distribution of values,
therefore the application of a common threshold T produce different results. In general a
different value of m affect the network measures. For example it is highly probable that the
clustering coefficient (C) will increase if the density m get bigger: there is a higher probability
to have triangles. However it is likely that the average shortest path length (L) decrease if the
density increases: more edges means higher possibility of ‘short cuts’. In conclusion it is clear
that the comparison between of network measures (like C and L) is biased by different values
of densities (m;and m,).

Two approaches are typically proposed in order to solve the problem: fixing network density
m or normalizing network measures. Moreover it is worth to note that the choice of a
threshold is completely arbitrary and this introduces an additional problem.

The first approach relies on the definition of two different thresholds T;and T, allowing to fix
a common density m for both networks. However this approach is not sufficient to correct the
problem [23]. The reason lies on the fact that typically, as already said, the distribution of
connectivity values for experimental networks, such as the functional brain networks G;and
G, are different. Supposing that G; has a low average connectivity compared to the higher
average connectivity of G,. A fixed value of m could be relatively large for G; so that edges
with low connectivity values will be inserted in the network even tough they could reflect
spurious or noisy connections (i.e. the assumption is that low connectivity value are
potentially influenced by noise). Conversely the same m could be small for G,and connections
that are important (high connectivity values) can be ignored because their inclusion may
result in the exceeding the fixed density m. This may affect the topology of G; and G, biasing
the comparison.

The second approach is normalization of network measures. This is achieved constructing an
ensemble of reference networks (null-model networks) with the same N, T and m of the
original network in order to normalize network measures. These ensembles are typically
random networks or are random networks obtained by rewiring the original network while
preserving some network characteristic (such as average degree, degree distribution) [132].
Network measures such as clustering coefficient (C4n40m) and shortest path length (L, 4n40m)
are computed for every random network.

Then they are averaged over the ensemble giving an average clustering coefficient C,gngom =
< Crandom > and an average path length L, gngom =< Lranaom >- These values are then used

: c L
to normalize the network measures C,,prmatized = =—— and Ly, prmatized = = . However
random Lrandom

even the normalization do not solve the problem and leave the arbitrary choice of a proper m
to compare the networks [23].

In the case of weighted network constructed using the full connectivity matrix and without
applying any threshold there are still problems. As the threshold T affected the network
measures the total weight Wwill affect the corresponding weighted network measures.
Weighted network measures, such as weighted clustering coefficient C,, and weighted
average shortest path L,,, are computed taking into account the weight on the edges.
Therefore a higher value of Wis likely to correspond to higher values C,and L,,. If G;and
G,have different values of W the corresponding weighted network measure will be biased by
this difference [23], [26].
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As the number of edges affects the comparison between networks also the number of nodes N
influences such comparison. Network measures such as clustering coefficient and average
shortest path length are influenced by the number of nodes in the network. This bias as well
cannot be completely solved with normalization [23].

In conclusion the choice of parameters such as N, T, m and the different distribution of
connectivity values resulting from the empirical data (i.e. reflected in differences in W)
influences network measures, which are used to make inferences on network topology. The
comparison between two network topologies based on biased network measures may be
therefore be unreliable. To some extent this may be the reason why studies on network
alterations in brain diseases reported contradictory results [133], [134].

In order to avoid methodological biases when comparing networks in the next paragraph it

will be explained how the use of the minimum spanning tree (MST) might help to solve this
problem.
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2.2.7 Minimum spanning tree

In graph theory a tree is an acyclic connected graph (a graph without any loops, even self-
loops) where a path between any pair of nodes exists [135]. A tree with N nodes has
m = N — 1 edges. Given a graph, a spanning tree is a subgraph including all nodes in the
original graph. In weighted graphs it is possible to have different spanning trees according to
the total sum of the weights included in the spanning tree. The minimum spanning tree (MST)
is the spanning tree that minimizes the sum of the weights in the original weighted graph.
Given a weighted graph one way to compute the MST is using the Kruskal's algorithm [2].
Supposing to have a weighted graph with N nodes, the algorithm begins ordering in a list
(ordered edge-lists) the edges weights of the original graph, from the edge with the lowest
value to the edge with the highest value. Once this edge-list is stored all the edges are
removed from the graph leaving N disconnected nodes. Then the construction starts selecting
the first edge (edge with lowest weight) in the ordered edge-list and connecting the two
nodes that the edge connected in the original graph. Subsequently the edge is removed from
the edge-list, the second edge (second lowest weight) is selected and two other nodes will be
connected in the growing graph. This process continues selecting the edges from the edge-list
and adding them to the growing graph unless a cycle is made, in that case the algorithm stops,
remove the edge causing the cycle, discard the edge from the edge-list and continue to the
next edge in the list. The algorithm continues until N — 1 edges are added to the growing
graph obtaining the MST.

An important property of the MST is that if the weights of the original graph are unique the
MST is unique. MST approach offers an approach to control for differences in network density.
It is possible to compare two MSTs of different weighted networks directly if they have the
same number of node N, because they will have the same number m = N — 1 of edges. The
uniqueness of MST allows avoiding any arbitrary choice of a threshold T or any choice of a
density m to compare the networks. Furthermore another advantage of the MST, if compared
to the analysis of the full weighted network, is that it considers only the most important
subgraph and avoids the problem caused by the differences in the total sum of weights W.

As for traditional networks it is possible to investigate and infer the MST topology using MST
metrics. MST is a simpler structure than the original weighted network and this simplification
limit the study of some properties of the original weighted network. For example the fact that
MST does not contain loops make impossible to compute the clustering coefficient. However
this is not truly a serious disadvantage because it has been reported that traditional network
metrics are strongly correlated and thus redundant [136]. For example it was shown that
clustering coefficient and average shortest path length in the small-world model are highly
correlated thus the information loss computing just one of the two can be considered
negligible.

Some of the traditional metrics can be used as well to characterize the topology of a tree. For
example the degree, the eccentricity and the betweenness centrality of a node are computed
in the same way in trees and can be used to assess the centrality of nodes (see Figure 7).
Furthermore, measures such as the diameter (longest path in the tree) and the average
shortest path can be applied to assess global properties of the tree.

In addition a simple measure that is useful to describe the topology of a tree is the leaf
number. A leaf is a node of the tree with a degree equal to one (i.e. it is attached only to one
edge), thus leaf number represents the number of leaves in the tree. Another useful measure
developed to characterize the hierarchy of a tree is tree hierarchy T} (see Table 2), which
captures how tree is layered.
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Tree topology can vary between two extremes: the path-like topology and the star-like
topology, see Figure 7. If we have a tree with N nodes a path-like topology consists of a tree
where N — 2 nodes are connected to two other nodes (the degree of each node is 2) while the
remaining two nodes are the extreme and each has only one connection. The star-like
topology consists of a tree where one node has N — 1 edges and all the remaining nodes have
one edge (i.e. they are leaves). Using the leaf number these two type of topologies can be
easily characterized: in fact star-like topology has a leaf number equals to N — 1, while path-
like topology has leaf number equals to 2. Star-like and path-like topologies have their pros
and cons. For example a star-like topology can be very efficient in term of communications
between nodes: path lengths between any pair of nodes is no more than two edges (other
than the node with the highest degree that can reach every node in one step). Therefore we
can say that the integration property of the network is maximized. This is not true for path-
like topology where the average shortest path length is greater than two. However in a star-
like topology the connectedness could be easily compromise by removing the node with the
highest degree, while in a path-like configuration the removal of a node results in two
connected sub-trees. Between these extreme topologies many types of different topologies
exist and network measures can help in assessing their respective properties.

@

STAR-LIKE

PATH-LIKE

Figure 7 Schematic representation of minimum spanning tree (MST). Examples of star-like and path-like topologies.
Blue nodes represent leaves. In the star-like topology the red node is the node with higher betweenness centrality (it
is equal to 1) and higher degree (it is equal to 8) and lowest eccentricity (it is equal to 1). All the other nodes in the
star-like topology have degree=1, eccentricity=2 and betweenness centrality=0. In the path-like topology red node
characteristic are degree=2, betweenness centrality=0.5 and eccentricity=2. Tree characteristic in star-like topology
are diameter=2, leaf number=8 and tree hierarchy=0.5. In path-like topology, red node characteristics are: degree =
2, BC = 0.5, and eccentricity = 2. The tree characteristics are leaf number = 2, tree hierarchy = 0.5, and diameter = 4.
Adapted from [137].

An important finding is that MST topology is related to the underlying topology of the
weighted network from which MST is extracted. Changes in the original network topology are
reflected in changes in MST measures. Examples of how different network models, such as
small-world and scale-free, affect MST measures are reported in [25]. Therefore MST still
captures most of the important topological information in the original network.

An increasing number of studies have revealed the importance of MST for network analysis in
resting state EEG and MEG recordings [26], [123], [137]-[139]. These studies have shown that
MST topology measures allow to distinguish healthy subjects from patients and that changes
in MST topology is related to the severity of the disease. Furthermore, theoretical studies have
suggested the importance of the MST. An important finding is that under certain conditions
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[119], [140], [141] and interpreting the original network as a transport network, the MST
tend to form a critical backbone or ‘core’ where all the transport of the original graph flows.
This may be relevant for the interpretation of the MST of brain networks since information
flowing is a fundamental prerogative of the brain.

Concept Explanation Formula
N | Number of
nodes
M | Number of M=N-1
edges
L¢ | Leaf fraction Ratio between number of number of leaves
leaves (nodes with degree=1) M
and maximum number of
possible leaves
D | Diameter of the | Longest shortest path in the
tree tree. In the MST an upper limit
of the diameter is related to
the number of leaves as
dmax =
M — number of leaves + 2
E | Eccentricity Longest shortest path from a
reference node to any other
node in the MST.
Tn | Tree hierarchy | Quantifies the trade-off (number of leaves)
between overall integration | "M = 2MBC, 0

(short path length) and the
overload of central nodes.
Where BC,,,, is the maximum
betweenness centrality of the
tree

Table 2 MST measures
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3 Experimental part
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3.1 Epilepsy and VNS

3.1.1 Introduction

Epilepsy is family of neurological disorders affecting the central nervous, characterized by the
occurrence of recurrent and unpredictable seizures. Seizures are sudden and critical events
represented by abnormal synchronous activity in the brain [142].

Practically the diagnosis of epilepsy is done by detecting two unprovoked epileptic seizures
>24 hours apart. However, in 2005 the international league against epilepsy (ILAE) extends
this definition to consider also situation [143] in which the two seizures criteria does not
hold.

Nowadays it is estimated that about 1% of world population has epilepsy, such a diagnosis
dramatically affects the quality of life [144]. Seizure unpredictability puts in danger even
normal activities of everyday life, for example driving is prohibited. Typically a
pharmacological approach with anti-seizure medications is the adopted treatment. However
in almost 30% of epileptic patients such medications are not sufficient and other alternatives
should be pursued. For refractory epilepsy, surgery can be a possible solution, however only a
small number of cases can be handled with operations even because their outcomes may
compromise cognitive performance [144].

Neuronal stimulation using vagus-nerve stimulation (VNS) is another viable option and can be
considered a well-established add-on treatment for patients with pharmaco-resistant
epilepsy. Vagus-nerve stimulation is a moderately invasive technique in which an electrode is
implanted in the vagus nerve tract nearby the neck. Train of electrical pulses traverse the
vagus nerve projecting fibres that finally impinge in various brain structures (thalamus,
amygdala and other cortical areas) [145]. These kinds of neuronal stimulations even though
are still partially understood [146] seem to induce a reduction in the seizure frequency. The
outcome of VNS stimulation sometime is not successful; there are patients who do not show
any improvement and undergo the removal of the stimulator device. There is still an open
debate on the effectiveness of VNS add-on treatments [147]-[149].

Different and complementary hypotheses have tried to explain the mechanism of action of
VNS for epilepsy. The main hypotheses are the synchronization theory, the neurotransmitter
theory and cerebral blood flow theory [150]. Synchronization theory postulated that VNS has
a desynchronizing effect on the hyper-synchronized activity observed in cortical and thalamo-
cortical circuits occurring during seizure [151]. Neurotransmitter theory suggests that the
chronic stimulations of VNS affect the modulation of neurotransmitter production, which
eventually may lead to seizure suppression [152]. Finally, cerebral blood flow theory
proposes that the alteration of blood flow caused by the VNS stimulation may activate
inhibitory structures in the brain [153]. None of these theories is exhaustive and the precise
mode of action remains not clear.

It has been reported [133], [154], [155] that analysis of functional brain network may reveal
mechanism underlying the development of epilepsy. There is nowadays agreement in
considering epilepsy a disease affecting the overall brain dynamics, characterized by both
functional [156], [157] and structural [19-20] [158], [159] pathological connectivity.
Furthermore, it was also observed how the topology of functional brain networks is altered in
epileptic patients [160]-[163] and that these alterations are related to seizure vulnerability
[164]. Therefore an investigation of possible VNS-induced changes in the topology of
functional brain network is not only advantageous but it is required in order to shed light on
its mechanism of action.
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Previous EEG studies showed that changes in neuronal activity with a reduction in global
synchronization are related to VNS therapy [165], [166]. It could be therefore particularly
relevant to investigate if these changes extend also to the topology of functional brain
networks.

Recent studies on the topological organization of brain networks in epilepsy are in
disagreement: some reported a more regular brain architecture, other a more random
network arrangement [158], [160], [167]-[170]. However a shift toward a less efficient
organization in epileptic patients during the inter-ictal state seems a consistent finding. It
could be therefore beneficial to investigate if VNS is related to a re-organization functional
network topology.

The fact that discording results have been found suggest that care should be taken during all
the analysis steps. As already mentioned bias induced by the network comparison problem or
inappropriate choice of functional connectivity measure can invalidate the results.

In this chapter the question whether VNS induces functional network re-organization in those
patients showing clinical improvements after implantation will be addressed. To reduce the
effects of common sources, PLI will be employed for the estimation of functional connectivity
and in order to deal with network comparison the MST analysis will be exploited. The main
hypothesis is that as a consequence of VNS therapy, functional brain networks modify its
configuration in patients responding to the treatment.

3.1.2 Methods

Ten patients affected by pharmaco-resistant partial epilepsy, who attended the Epilepsy
Diagnostic and Treatment Centre of Cagliari (Italy), were retrospectively selected from a
group who had a VNS (Cyberonics, Houston, TX) implanted for a duration of 5 years. Informed
consent was obtained and the study was approved by the local ethical committee
(NP/2013/438).

The main patient selection criteria for inclusion in the study were: (i) a relative stability of
clinical features related to inter-ictal EEG activity; (ii) the resistance to classical first- and
second-line antiepileptic drugs (AEDs) assessed bi-monthly for optimal therapeutic range;
(iii) homogeneity in their pharmacological treatment; (iv) normal findings of neurological and
psychiatric evaluations; (v) lack of abnormalities of cerebral structure on a recent MRI scan.
The VNS stimulation parameters were set with a standard stimulation cycle of 30 s on and 5
min off and a frequency of 30 Hz. Patient characteristics are summarized in Table 3.

Patients were assigned to two different groups, responders and non-responders, based on the
success of VNS therapy as quantified by the Labar index [171], which quantifies the effect of
therapy in terms of change in seizure frequency/trimester. A previous analysis, which only
studied the effect of VNS on global phase synchronization, has been performed on the same
dataset [165].

Electroencephalographic (EEG) signals were recorded according to standard protocol using a
19 channels EEG system (Brain QuickSystem, Micromed, Mogliano-Veneto, Italy), both at least
three months before the VNS implantation and five years after the onset treatment. During the
EEG recording, patients were instructed to close their eyes, stay awake, and to reduce eye
movements. The reference electrode was placed in close approximation of the electrode POz,
with the ground electrode on the forehead. The acquired signals were digitized with a
sampling frequency of 256Hz and successively band-pass filtered between 0.5 and 70 Hz. For
each subject three eyes-closed (excluding periods indicating drowsiness) artifact-free epochs
of 2048 samples (8 s) were selected and band-pass filtered in the classical EEG frequency
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bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). All the analyses
were performed for each band separately.

The phase lag index [1], was used in order to assess the functional connectivity between EEG
channels with minimal bias due common source problem. All pair wise combinations of
channels results in matrix of 19 x 19 entries, each reporting the corresponding PLI value.
From every matrix, the MST was computed by Kruskal’s algorithm [and from these MST
graphs several measures were successively estimated in order to characterize the topology of
the MST: diameter (largest distance between any two nodes), mean eccentricity (where
eccentricity represents the longest distance between a node and any other node), normalized
leaf number (number of nodes with degree = 1 divided the total number of nodes, where
degree represents the number of edges the node has to other nodes) and hierarchy (refers to
balance in hub nodes). Since the low spatial resolution of EEG, we decided, except for the
eccentricity, to discard any MST nodal measures (i.e., degree and betweenness centrality).
Furthermore, degree, eccentricity, and betweenness centrality represent different parameters
to evaluate relative nodal importance. All the analyses were performed using the BrainWave
software (version 0.9.70, http://home.kpn.nl/stam7883 /brainwave.html).

In Table 4 the results of the MST analysis are provided, but please note that before performing
the statistical analyses a natural log-transformation was applied to these MST metrics in
order to obtain normal distributions. Two-way repeated measure ANOVA was used to test
differences in age and seizure frequency. Multivariate analysis of variance (MANOVA) was
used to evaluate the effect of group (responders/non-responders), condition (pre/post VNS
implantation) and the interaction effect. MST measures were used as dependent variables,
group and condition were the independent variables. In case of significant effect, univariate
tests (ANOVA) were successively used as post-hoc analysis. Partial n? is reported as a
proportion of the total variance explained by the independent factor.

3.1.3 Results

Demographic, clinical and network characteristics are listed in Table 3 and Table 4. No
significant difference in age was observed between groups in either condition (pre/post VNS
implantation). A significant main effect of condition (pre/post VNS implantation) F(1, 8) =
19.61, p = 0.002 and a significant interaction effect (group x condition) F(1, 8) = 13.62, p =
0.006 were observed for seizure frequency.

No effects of group (responders/non-responders) and condition (pre/post VNS implantation)
were observed in any of the frequency bands. However, a significant interaction effect (group
x condition) was obtained, F(4, 5) = 9.25, p = 0.016, Wilks’ lambda = 119, partial n? = 0.881, in
the 4-8 Hz theta band.

Successively, post-hoc ANOVA tests revealed that the observed significant interaction effect
was caused by MST diameter (F(1, 8) = 11.97, p = 0.009, partial n2 = 0.599) and MST
eccentricity (F(1, 8) = 10.85, p = 0.011, partial n?= 0.576). Results for MST leaf fraction and
MST hierarchy were, respectively (F(1, 8) = 4.98, p = 0.056, partial n?= 0.384) and (F(1, 8) =
2.69, p = 0.14, partial n?= 0.251). In particular, MST diameter and MST eccentricity decreased
in patients responding to VNS add-on treatment after the VNS implantation, whereas these
measures increased in non-responders (see Figure 8). Furthermore, even if not statistically
significant, increases of MST leaf fraction and MST hierarchy were observed at trend-level in
the responder to treatment group in the post VNS implantation, whereas these measures
decreased in non-responders (Figure 8). In Figure 9 the schematic representation of the MST
for the average connectivity matrix of responder and non responder combined with condition
(pre/post implantation) is shown.
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VNS-induced change in

Patient Age Sex AEDs . Group
seizure frequency
1 45 M OXC+LMT 0% non-responder
2 54 F CBZ+LMT -3% non-responder
3 32 M CBZ+VA -7% non-responder
4 57 F CBZ+LMT -11% non-responder
5 33 M CBzZ+TOP -14% non-responder
6 36 F CBZ+LMT -67% responder
7 50 M CBZ+VA -67% responder
8 40 F CBZ+TOP -70% responder
9 37 F CBZ+LMT -83% responder
10 51 F CBZ+LMT -95% responder

Table 3 Patient characteristics. AEDs = antiepileptic drugs; VA = valproic acid; CBZ = carbamazepine; LMT =
lamotrigine; TOP = topiramate

Subject results

Non responder Responder

Pre-VNS Post-VNS Pre-VNS Post-VNS
Patients (number) 5 5 5 5
Age (years) 43+7 48 +7 44 + 12 49+ 12
Gender (M/F) 1/4 1/4 3/2 3/2
Seizure frequency (/trimester) 39+25 35+22 44 + 17 9+3
MST diameter 0,404 £0,023 0,4631+0,029 0,433+0,046 0,359+0,045
MST leaf 0,606 £0,034 0,544 +0,064 0,581+0,081 0,667 +0,067
MST hierarchy 0,407 £0,030 0,380%+0,053 0,396+0,064 0,442 +0,036
MST eccentricity 0,328 £0,017 0,365%+0,027 0,347+0,034 0,293+0,029

Table 4 Group characteristics and MST results. Values are expressed as mean and standard deviation
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standard deviation.
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Figure 9 The MST of the average connectivity matrix for non responder (top line) and responder (bottom line) pre
(left column) and post (right column) implantation.
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3.1.4 Discussion

The main result of the present study was a significant interaction effect between VNS
treatment outcome (responder/non-responder) and condition (pre/post VNS implantation)
in the theta band. Specifically MST diameter and eccentricity decrease in those patients
responding to the therapy while in non-responder there was an increase of these measures. It
is worth to note that it was observed an opposite behavior for MST leaf number and hierarchy
(i.e. an increase in responder vs decrease in non-responder), even if it was not significant.

Together these results suggest a functional network re-organization in responder, possibly
induced by the VNS therapy, consisting of a more integrated (smaller diameter and
eccentricity), more balanced (higher hierarchy: no overloading of nodes) and less path-like
(higher leaf fraction) architecture. Results are in line with the formulated hypothesis that VNS
therapy affects functional brain network organization and the more efficient (i.e. more
integrated, more balanced and less path-like) re-organization is related to the clinical benefit
in responder. These findings are also in line with the theory that includes epilepsy in the
framework of network disorders: an aberrant topology of structural and functional networks
promote seizure occurrence [133], [154], [155].

VNS seems to be related to a widespread network re-organization and this may explain why
its potential effect is not only confined to epilepsy but it was reported to be beneficial for
other pathological conditions such as obesity and depression [150], [172].

Results in theta band agree with other works [161] which suggest a pivotal role of theta
functional connectivity and network topology modifications toward a sub-optimal
organization in epileptic patients if compared to healthy controls. This alteration in network
topology in theta band was also observed in [173] where a disruption of global integration
properties in epileptic glioma patients seems to be related to occurrence of seizures.
Furthermore, loss of optimal network configuration in theta band has been shown to correlate
with seizure frequency, duration of the disease and cognitive decline [161], [162], [164],
[170].

This study may be influenced by some limitations:

¢ the small number of subjects involved in the analysis,

¢ the small number of EEG electrodes used to infer topological properties,

* no statistical correction for the multiple comparison problem over frequency bands,

* an active common reference can influence the functional connectivity analysis,

* potentially confounding effects due to the different regime medication are considered,
* potential effect of AED on network topology

Therefore caution should be taken in the interpretation of results. However for some of the
limitations it is plausible to think that the effect on the overall result should be minimal. For
example it is accepted that each frequency band is related to different phenomena,
consequently can be treated as independent and no correction is required. Moreover the
effect of common reference should be reduced due to the use of PLI as a functional
connectivity measure. Furthermore, the very strict inclusion criteria on medication used
during the selection of patients and the comparable drug regime across groups should limit
this confounding factor. Finally even if it is not possible to discriminate between the
independent effect induce by AEDs medications and VNS alone on the topology re-
organization, results support the idea that together both are involved in the functional
network re-configuration. Future studies should address the question if changes to network
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topology induced only by AEDs are different from modifications observed in responder to
VNS.

On the contrary the strong points of the present study are the way common source problem
and network comparison problem are handled. The use of PLI and MST together permit to
overcome problems that typically are neglect in previous connectivity studies leading to
biased results.

In conclusion this study support the hypothesis that VNS add-on treatment promote a
network re-organization in patients responding to the treatment. It also proposes that
functional network properties can be used as a marker in monitoring the efficacy of the
treatment.
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3.2 Diabetes

3.2.1 Introduction

The incapacity to produce insulin is the deficit characterizing Type 1 diabetes mellitus
(T1DM). This impairment is related to destruction of pancreatic beta cell, which are
responsible for the insulin production. As a consequence T1DM patients require the
assumption of external insulin through extra-cutaneous injections to compensate the failure
of insulin secretion.

T1DM patients are vulnerable to dysglycaemia phenomena, hyperglycaemia and
hypoglycaemia, that together with cumulative hyperglycaemic exposure can lead to micro-
vascular damage such as retinopathy and nephropathy [174].

Although T1DM is not a proper neurological disease, recently the potential effect of
dysglycaemia on the central nervous system has been investigated. Structural studies [175],
[176] reported modifications of both grey and white matter. Functional studies described
alterations of functional connectivity and brain networks of T1DM patients compared to non-
diabetes controls [177], [178]. Moreover moderate cognitive impairments affecting speed-
related cognitive performance were observed in these patients [179].

Chronic hyperglycaemia is hypothesized to be related to these cerebral functional alterations
and cognitive impairments [180], [181]. A marker of cumulative hyperglycaemic exposure is
microangiopathy (i.e. retinopathy, neuropathy and microalbuminuria). The retina shares
developmental and physiological characteristics with the brain [182], and proliferative
retinopathy has been related to cognitive decline in T1DM, and may thus be a marker of the
effect of cumulative hyperglycaemia on the brain [183].

Furthermore the importance of proliferative retinopathy was even revealed in EEG/MEG
functional connectivity [177], [184] and fMRI resting-state networks (RSNs) [178] studies,
which reported a reduction in functional connectivity measure in T1DM patients with
proliferative retinopathy, while an increase was observed in T1DM patient without
proliferative retinopathy. Moreover this reduction correlated with cognitive performance
suggesting that functional connectivity is involved in cognitive functioning [177], [178].

Biases in the analysis approach could affect the results of these studies. In particular the
analysis performed at the sensor-level (both EEG/MEG) can be strongly influenced by
common source problem. Furthermore the poor temporal resolution of fMRI may neglect the
richer brain dynamics.

In this study a RSN functional connectivity analysis was performed with a MEG dataset from a
previously described patient cohort with the objective to handle biased from the previous
analysis pipeline [177], [178].

In particular:

e Alarger cohort is used than in the original MEG study [177] to enhance statistical
power;

* Analyses are performed in source-space instead of sensor-space, in order to enhance
the interpretability of the results;

* The phase lag index, that is insensitive to spurious interactions [1] is used, instead of
the synchronization likelihood[87], [185];

¢ Although fMRI allows for the spatially accurate reconstruction of RSNs [178] it does
not capture the rich temporal dynamics of the neuronal activity that underlies the
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Blood Oxygenation Level Dependent (BOLD) signal. Here, using fMRI literature to
define meaningful RSNs [105] in combination with the beamforming technique [93], it
was possible to reconstruct frequency-specific functional connectivity within these
RSNs;

* The focus was not only on functional resting-state sub-networks but also on the
special sub-network represented by the minimum spanning tree.

Our aim was to test whether functional connectivity in RSNs differs according to clinical
status and correlates with cognition in T1DM patients with and without proliferative
retinopathy, using an unbiased approach with high spatio-temporal resolution functional
network.

3.2.2 Methods
3.2.2.1 Participants

Forty-two type 1 diabetes mellitus patients with proliferative retinopathy (T1DM+), 41
diabetes mellitus patients without microvascular complications (T1DM-) and 33 healthy
control subjects, matched for sex, BMI, and education were recruited in this study. Age range
criteria were 18-56 years and participants were excluded if they had a BMI above 35 kg/m?,
use of drugs affecting cerebral functioning, current or history of alcohol (men >21 and women
>14 units a week) or current drug use, psychiatric disorders, anaemia, thyroid dysfunction,
use of glucocorticoids, hepatitis, stroke, severe head trauma, epilepsy, pregnancy, or poor
visual acuity. For T1DM patients a disease duration of at least 10 years was required.

To control for confounding effects of depression on cognitive performance and functional
connectivity, depressive symptoms were assessed using the Centre for Epidemiological
Studies scale for Depression (CES-D). To prevent confounding due to current blood glucose
level differences, these were measured in T1DM patients before the MEG recording. Blood
glucose levels between 4 and 15 mmol/l (72-270 mg/dl) were regarded as appropriate. A
detailed description of the inclusion/exclusion criteria for patients and control subjects is
provided in our previous work [177] where the MEG data from a sub-set of these participants
(n=15, 29, and 26 for T1DM*, T1DM:, and healthy controls, respectively) were analysed at
sensor-level. The original dataset consisted of 148 subjects, but 32 subjects were discarded
either because of bad MEG recordings (n=24) or problems with MRI co-registration (n=8).

3.2.2.2 Neuropsychological assessment

As described in detail in [177] all participants were assessed using a battery of
neuropsychological tests to evaluate cognitive performance in six cognitive domains:
memory, information processing speed, executive functioning, attention, motor speed and
psychomotor speed. For each neuropsychological test z-values were created based on the
mean and standard deviation of the controls. These were then grouped to form the cognitive
domains (see appendix 5.1). When necessary, z-values were transformed so that higher z-
scores represent better performance. In this study ‘general cognitive ability’ was considered
and was obtained by averaging the z-scores over all cognitive domains.

3.2.2.3 MEG

MEG data were recorded using a 151-channel whole-head MEG system (CTF Systems; Port
Coquitlam, BC, Canada) while participants were in a supine position in a magnetically
shielded room (Vacuumschmelze, Hanau, Germany). A third-order software gradient [186]
was used with a recording passband of 0.25-125 Hz and a sample frequency of 625 Hz.
Magnetic fields were recorded for 2 minutes in an eyes-open, 5 minutes in an eyes-closed, 10
minutes in a task, and then 3 minutes in an eyes-closed condition.
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At the beginning and end of each of these recordings, the head position relative to the
coordinate system of the helmet was determined by leading small alternating currents
through three head position coils attached to the left and right preauricular points and the
nasion. Changes in head position of <0.5 cm during a recording were accepted. Here, only the
first (5 minutes) eyes-closed resting-state condition was analyzed, which was divided into 45
trials of 6.55 seconds (4096 samples). Channels and epochs containing artefacts were
discarded after careful visual inspection, rejecting on average 3 channels (range: 0-11). A

minimum of 25 epochs were selected and considered sufficient for the beamformer analysis
[187].

3.2.2.4 Beamforming

A structural T1-weighted MRI-scan was used for co-registration as a first step for
beamforming. Only data with an estimated co-registration error < 1.0 cm were accepted for
further analysis. MRI-data were then spatially normalised to a template MRI using the SEG
toolbox in SPM8 [188], [189], after which anatomical labels were applied [190]. An atlas-
based beamformer approach [93] was used to project MEG sensor signals to an anatomical
framework consisting of 78 cortical regions (ROIs) [190] identified by means of automated
anatomical labelling (AAL) [191]. This resulted in time-series of neuronal activation for all
voxels within a ROI, after which a representative voxel was selected (the one with maximum
power for a given frequency band [93]. The time-series for the 78 ROIs were filtered in the
following frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), lower alpha (8—10 Hz), upper
alpha (10-13 Hz), beta (13—30 Hz), and lower gamma bands (30—48 Hz). This resulted in a
total of 6 sets (one for each frequency band) of 78 time-series (one for each AAL region). Five
artefact-free epochs of 4096 samples (6.55 seconds) were selected from these time-series,
based on careful visual inspection to obtain stable results [104], [137]-[139], [192]-[196].
These data were further analysed using Brainwave v0.9.70 [authored by C.S.; available at
http://home.kpn.nl/stam7883 /brainwave.html].

3.2.2.5 Functional connectivity analysis

Functional connectivity between all 78 reconstructed time-series was estimated using the
phase lag index [1] independently for each frequency band. For each subject and epoch, PLI
values were computed for each pair of ROIs (i.e. a 78x78 adjacency matrix was obtained) and
subsequently the mean PLI values were calculated by averaging over the five selected epochs
(i.e. a 78x78 matrix containing average PLI values per subject was obtained). Using the PLI
adjacency matrix it was possible to estimate phase coupling within so-called resting-state
networks (RSNs) [104], [105], [196]. This was done by averaging the PLI values between the
ROIs belonging to a specific resting-state network (see appendix 5.1). Functional connectivity
was estimated for the auditory, default-mode (DMN), executive control (ECN), left and right
frontoparietal, sensorimotor (SMN), temporoparietal and visual resting-state networks.

In addition, average functional connectivity within the network resulting from a minimum
spanning tree (MST) analysis was estimated.. Here, each ROI was considered as a node and (1
divided by) the PLI value for each pair of ROIs was used as the weight for the edge between
the nodes.. The MST algorithm acts as a filter on the PLI matrix, keeping only the connections
that form part of the critical backbone of the original network (assuming that the strong
disorder limit holds) [138], [197], [198].

3.2.2.6 Statistical analysis

Participant characteristics were assessed using one-way ANOVA or Student’s t-test for
continues variables and chi-square for dichotomous variables.
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Group differences for general cognitive ability were evaluated using an ANCOVA, with group
and gender as independent variables and age, systolic blood pressure and depressive
symptoms as covariates.

For each frequency band independently,a MANCOVA model was used to evaluate differences
in functional connectivity between groups. PLI values of resting-state and MST networks were
used as dependent variables, with group and gender as independent variables. Functional
connectivity values were log-transformed (log10(x/1-x)) to obtain normal distributions to
allow the use of parametric statistics. This resulted in 6 MANCOVAs. When the overall F-test
was significant, post-hoc MANCOVA was used to determine which networks contributed most
to the model. In order to correct for possible confounding factors, age, depression symptoms
and systolic blood pressure were used as covariates in all statistical tests.

Finally, for those networks that differed between groups, it was determined the association
with general cognitive ability using stepwise regression analyses for each patient group
separately. For this analysis, significant RSNs and MST PLI values were used as predictors for
‘general cognitive ability’ z-scores as dependent variable. In order to correct for possible
confounding factors, age, depression symptoms, systolic blood pressure, diabetes duration
were entered in the regression. Statistical analyses were performed with SPSS v.19 (IBM-
SPSS, Chicago, IL, USA).

3.2.3 Results
3.2.3.1 Subject characteristics

Subject characteristics are summarised in Table 5. There were no differences in gender
distribution between groups (p>0.05). Groups were significantly different for age
(F(2,113)=6.55, p=0.002), systolic blood pressure (F(2,113)=4.03, p=0.02), depressive
symptoms (F(2,113)=5.82, p=0.004), diabetes duration (t(81)=6.14, p<0.001) and diabetes
onset age (t(81)=-3.00, p=0.004). T1IDM* patients were the oldest, had highest systolic blood
pressure values and highest scores on the depressive symptoms assessment. The T1DM-and
control groups did not differ on any of these three characteristics.
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Table 5 Subject characteristics.

T1DM+* T1DM- Control p-
patients patients subjects values
N 42 41 33 -
Age (years) 44.7+7.15*# | 38.39+9.18 | 38.21+11.09 | 0.002
Gender (m/f) 19/23 17/24 15/18 0.922

Depressive Symptoms (CES- | 12.07+10.56 | 7.00 £6.61 6.09 £7.12 0.004
D)2

Estimated 1Q (NART)P 110.05+£13.69 | 106.29+11.16 | 108.66+12.14 | 0.306
Systolic Blood Pressure 135.42 128.82 126.34 0.020
(mmHg) +17.41* +13.89 +10.78

Diastolic Blood Pressure 77.26%8.62 77.68+9.72 78.92+6.65 0.694
(mmHg)

BMI (kg/m?) 26.04+4.23 25.12+3.62 24.88+3.40 0.365
Hypertension (%)¢ 30 (71.4) 11 (26.8) - <0.001
Diabetes early onset (%)P 13 (31) 6 (14.6) - 0.077
Diabetes duration (years) 33.78+7.80 21.85+9.78 - <0.001
Diabetes onset age (years) 10.09+7.47 16.53+9.50 - 0.004
Lifetime severe 6.09+£9.83 6.85+11.15 - 0.576

hypoglycaemic eventse

Peripheral neuropathy (%)f | 21(50) - - -

Subject characteristics for T1DM with proliferative retinopathy (T1DM+), T1DM without
complications (T1DM-) and control participants. Data are given as means with SD or absolute
numbers with percentage. * Significantly different from controls (p<0.05); # significantly
different from T1DM- (p<0.05).

a: Depressive symptoms were measured using the Centre for Epidemiological Studies scale
for Depression.

b: Estimated IQ was measured using the Dutch version of the National Adult Reading Test.

c: Hypertension was defined as a systolic blood pressure of 2140 mmHg, a diastolic blood
pressure of 290 mmHg, or use of antihypertensive drugs.

d: Diabetes early onset was defined as an onset age below the age of 7 years.

e: Severe hypoglycaemic events were self-reported and defined as events for which the
patient needs assistance from a third person to recuperate as a result of loss of consciousness
or seriously deranged functioning, coma, or seizure owing to low glucose levels.

f: Peripheral neuropathy was based on medical records or, in case they were not available,
based on self-report.
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3.2.3.2 Neurophysiological assessment

A significant effect of group (F(2,107)=6.86, p=0.002) for general cognitive ability was found,
but no gender effect or interaction effect, was observed. Post-hoc analysis revealed significant
poorer performance in TIDM+ patients compared with T1IDM- (mean difference (MD)=-0.301;
95% confidence interval (CI)=[-0.512, -0.090]; p=0.006) and controls (MD=-0.409; 95% CI=[-
0.636, -0.182]; p=0.001).

3.2.3.3 MEG results

The MANCOVA model with log-transformed PLI values for the RSNs and MST network
revealed a significant effect of group for the lower alpha band (F(20,196)=2.06, p=0.006;
Wilk's A=0.683, partial n?=0.174), while the other frequency bands did not show a significant
group effect. Neither a main effect of gender nor an interaction effect was found.

Post-hoc MANCOVA analysis revealed significant differences in DMN (F(2,107)=3.45, p=0.035,
partial n2=0.061), ECN (F(2,107)=5.55, p=0.005, partial n?=0.094), SMN (F(2,107)=4.67,
p=0.011, partial n2=0.080) and MST (F(2,107)=3.11, p=0.049, partial n2=0.055). Specifically,
for every significant sub-network, T1IDM* patients showed the lowest functional connectivity
values (Figure 10), while T1DM- had similar values to, or showed higher functional
connectivity values than controls.

T1DM-* patients compared to T1DM- patients had significantly lower functional connectivity
within the DMN (log-transformed MD=-0.072; 95% CI=[-1.136, -0.009]; p=0.026), ECN (MD=-
0.144; 95% CI=[-0.230, -0.058]; p=0.001), SMN (MD=-0.100; 95% CI=[-0.177,-0.023];
p=0.011) and MST (MD=-0.061; 95% CI=[-0.109, -0.012]; p=0.015). For the SMN a significant
difference (MD=-0.117; 95% CI=[-0.199, -0.034]; p=0.006) between T1DM* and control
subjects was found, while in DMN a significant difference (MD=0.067; 95% CI=[0.005, 0.128];
p=0.034) was found between T1DM- and controls, with functional connectivity being higher
for the T1DM- group.

Stepwise regression using gender, age, systolic blood pressure, depressive symptoms and
diabetes duration as covariates; and the significant MST and RSN values as predictor, showed
that DMN functional connectivity was a significant predictor (Adj. R2=0.427, standardized
Beta=0.343, p=0.013) for general cognitive ability in TIDM* patients.
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Figure 10: Left panels: Average (and 2 standard errors) connectivity (lower alpha band, log-transformed) within
Resting-state Networks and MST networks that showed a significant group effect. Note that for all these networks
the functional connectivity was significantly lower for the patient group with microvascular complications (T1DM+)
than for the patient group without microvascular complications (T1DM-), as well as in the sensorimotor network
(SMN) for the T1IDM+ group compared to controls. In the default mode network (DMN), the PLI was significantly
higher for the T1DM- group than for the controls. Right panels: shows the areas for the relevant RSN (highlighted in
blue) on a template brain (see also Appendix A), and (bottom panel) the MST of the average connectivity matrix for
the control group (visualized using BrainNet Viewer [199]). Here, cold colours indicate low PLI, hot colours indicate
high PLI.
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3.2.4 Discussion

Type 1 diabetes mellitus with microvascular complications (T1DM*) showed a reduction of
functional connectivity both for MEG resting-state networks (RSNs) and minimum spanning
tree analysis when compared to type 1 diabetes patients without microvascular complications
(T1DM-), as well as compared to healthy subjects. Moreover it was observed an increased
DMN functional connectivity in T1DM- patients relative to controls. The alteration of
functional connectivity was found in the lower alpha band of three resting-state networks
(DMN, ECN, SMN) and for the MST sub-network. Finally, in TIDM* it was observed significant
correlation between a diminished cognitive performance (general cognitive ability) and DMN
functional connectivity in lower alpha.

Nevertheless methodological differences and/or modalities of previous findings [177], [178],
[184] this study confirms and agrees with the main overall result: T1DM influences functional
connectivity. Furthermore the results showed in this study benefit from an enhanced
methodology consisting of: i) a larger cohort of patients [177]; ii) the use of PLI at source-level
which together allow for more reliable estimates of functional interaction and at the same
time improve interpretability revealing more precisely anatomical regions involved [177]; iii)
the advantageous exploit of source-reconstructed MEG RSNs which allow to investigate
directly the rich temporal dynamics of neuronal activity [178]; iv) the MST analysis permit to
capture the connectivity of the core functional network.

Methodological differences might explain why Cooray et al. [184] did not find any diabetes-
related reduction in PLI functional connectivity or why in [178] similar pattern of connectivity
were found but in different RSNs. The former discrepancy in results can be influenced by
many factors such as the different acquisition method, different epoch time lengths, different
resting-protocol and no reconstructed signals at source level. Whereas the different RSNs
compared to [178] may lay in the different modality of investigation, in fact the exact
relationship between functional connectivity estimated through hemodynamic correlations,
and the functional connectivity based on electrophysiological oscillatory activity (as in this
study) is still unknown [200], [201].

It is worth to note that a pattern already described in other studies from different diseases
such as Alzheimer, minimal hepatic encephalopathy, multiple sclerosis and Parkinson was
found [202]-[205]. This pattern consists of an increased of functional connectivity in early
stages of the disease followed by a failure in connectivity in late stages. Specifically this study
pointed out an increased connectivity in TIDM- (early stage) compared to the healthy
controls, followed by a decrease in connectivity in TIDM* (late stage) for DMN, ECN and MST
sub-network. These results revealed that functional alterations are present even before the
appearance of microvascular complications. Although the mechanism underlining this pattern
of an early increase of functional connectivity followed by a decrease later stage is not yet
understood, one hypothesis suggests that a loss of inhibition may be responsible for
triggering the initial increase in connectivity and eventually lead to a breakdown of
connectivity due to activity dependent degeneration [202].

Results only in lower alpha band are in line with previous studies reporting the role of this
rhythm in regulating functional processing, within and between areas, both in healthy
subjects and its deviation in pathology [206], [207]. Moreover the relation between the
reduction of DMN alpha activity and the diminished cognitive performance in TIDM* reported
in this study are supported by other works reflecting the importance of alpha activity in DMN
[208] and the repercussions on cognitive performance due by its dysfunction [103].
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Furthermore the impact of DMN alterations on cognition may be explained by the fact that
DMN contains the strongest functional hubs [100] and these hubs are the more prone to
failure [202].

Strong points of this study are: i) the investigation of functional connectivity within MEG
resting-state networks, which is a worthwhile approach as demonstrated by recent studies
[209]-[211] and it is also sensitive in detecting functional connectivity alterations related to
cognition [137], [196]; ii) the application of an atlas-based beamforming solution to compute
MEG RSNs functional connectivity [93], which improved comparability of this study with
previous results obtained with different modalities [178]; iii) the MST analysis which allowed
also to highlight differences in the ‘functional core’ of the brain network.

Conversely limitations of this study are: i) the interactions between RSNs were neglected
although it is clear that high-order cognitive functions depend on the interactions between
RSNs [212] therefore future studies are desirable; ii) this study could be complemented and
expanded by a topological assessment of the MST properties [127], thereby providing insight
into both local and global properties of the (core of) functional brain networks, and its
relation with cognition.

In conclusion, our results confirmed that functional sub-networks (resting-state networks
such as DMN, ECN and SMN) are affected by T1DM, and these changes are related to cognitive
performance. In addition they showed that the functional core of the network (MST) is also
influenced. Taken together these results indicate that functional connectivity and network
topology may play a key role in T1IDM-related cognitive dysfunction.
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3.3 Amyotrophic Lateral Sclerosis (ALS)

3.3.1 Introduction

Amyotrophic Lateral Sclerosis (ALS) represents one of the most severe neurodegenerative
diseases, which is known to affect upper and lower motor neurons. The progression of the
disease is rapid, several areas of the nervous system can be involved and the survival time is
about 3 years from the onset of symptoms. The genesis of ALS is still unknown and no
treatment seems to be effective in contrasting the disease [213]. There is increasing
agreement in considering ALS a multisystem disorder not only affecting the motor system but
also other cognitive domains [214]. Additionally ALS manifest a pathogenically heterogeneous
component [215]. Indeed such intrinsic variety is also reflected in clinical settings by a poor
diagnostic power in the identification of ALS subtypes [215].

Advanced methods that allow investigating changes in brain organization have introduced
exciting new opportunities for the study of multisystem disorder such as ALS [216]. Modern
network science represents an important tool for understanding complex systems of
interacting units as the human brain [3]. Brain network organization can be described and
changes arising from neurological disorders can be elucidated[4].

Studies using Diffusion Tensor Imaging (DTI) and functional magnetic resonance (fMRI), have
contributed in elucidating basic mechanisms related to ALS onset and progression. With the
introduction of a network perspective, Verstraete et al. [217]have observed (combining DTI
and fMRI) both structural degeneration and positive correlation between functional
connectedness and disease progression of the motor network.

Recently, it has been reported [218] a disease spread over time along structural connections.
In contrast with the classical theory of ALS affecting a fixed set of motor connections, this
latter result represents one of the most interesting finding related to ALS mechanisms of
action and degeneration.

Only a limited number of studies have investigated possible changes in whole-brain functional
organization induced by ALS [219]-[221]. However, Schmidt et al. [222],have reported that
the pathogenic process strongly affects both structural and functional network organization.

Since disease-related cortical whole-brain network organization is yet unknown, the present
study aims to investigate changes in functional network topology related to time from onset
of symptoms on a set of ALS patients. Network modifications were assessed by using the
small-world (SW) index [13] and a set of measures extracted from the minimum spanning
tree (MST). It has been shown [25], [26] that MST provides similar information as
conventional graph measures, but is less sensitive to alterations in connection strength and
link density. Therefore, the use of MST, avoiding the introduction of methodological
limitations, represents an interesting solution to unbiased network analysis.
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3.3.2 Methods

Eight patients, diagnosed with ALS according to the El Escorial criteria, who attended the ALS
Centre of the AOU Cagliari (Italy), were included in the study. Informed consent was obtained
and the study approved by the local Ethical Committee (NP/2013/438). Patient
characteristics are summarized in Errore. L'origine riferimento non e stata trovata..
Electroencephalographic (EEG) signals were recorded using a 64 channels system (Brain
QuickSystem, Micromed, Italy) in resting-state condition. The reference electrode was placed
in close approximation of the electrode POz. Signals were digitized with a sampling frequency
of 256 Hz. For each subject at least four (mean 10,50 + 4,99) eyes-closed artifac-free epochs
of 2048 samples (8 s) were selected and band-pass filtered in the classical frequency bands:
delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz).

The phase lag index (PLI) [1] was used to estimate functional connectivity (FC) between EEG
channels. All pair-wise combinations of channels result in a matrix of 58 x 58 entries
(excluding bad channels), each reporting the corresponding PLI value. From each weighted FC
matrix, the SW index and measures from the MST were estimated. The SW index represents
the ration between the normalized clustering coefficient (a measure of local efficiency) and
the normalized path length (a measure of global efficiency). Furthermore, the diameter, the
mean eccentricity, the normalized leaf number and the hierarchy were extracted from the
MST. To examine the relationship between the network topology and time from onset of
symptoms, the computed measures of the individual networks and the were correlated with
the time from onset of symptoms.

3.3.3 Results

Significant associations between network organization and time were observed in the alpha
band. A significant negative association was found between SW index and time (linear
regression, R? = 0.62, p =0.019) (Figure 11 a). Significant positive associations were observed
between MST diameter and time (linear regression, R? = 0.62, p = 0.021) (Figure 11 b) and
between MST eccentricity and time (linear regression, R? = 0.58, p = 0.029) (Figure 11 ¢). A
trend-level negative association was observed between MST leaf and time (Figure 11 d), while
no association was found between MST hierarchy and time (Figure 11 e).

Patient Age Sex Time from onset of symptoms (months)
1 63 F 16
2 50 M 30
3 64 M 23
4 79 F 12
5 64 M 5
6 77 M 22
7 70 F 13
8 73 F 20

Table 6 Patient characteristics
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Figure 11 Relationship between disease duration and MST measures: from (a-e) linear regressions between the time

from onset of symptoms and MST measures.
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3.3.4 Discussion

The reported results suggest the existence of a strong relationship between disease duration
and the ongoing disruption (i.e., less efficient and less integrated) of functional whole-brain
network.

Other functional imaging studies have observed changes in functional connectivity related to
ALS patients compared to healthy subjects [217], [219]-[221] as well as association with
disease progression. However these results are often confusing: increased functional
connectivity was described as well as decreased functional connectivity. Moreover typically
these studies investigate independently functional connectivity in restricted sub-networks
(such as Default Mode Network, Sensorymotor Network etc. etc.) and a proper and unbiased
whole-brain network analysis focusing on the topology properties is missing. The current
study is an attempt to fill this gap and gain an insight on the overall network dysfunction.

EEG alpha rhythm has been already related with ALS [223] and ALS duration [224].
Furthermore, since it has been reported that dynamics of alpha activity are determined by
white matter architecture [225], our results support the hypothesis of a relationship between
functional and structural brain network disruption in ALS patients.

Despite the interesting results our study suffers from some limitations principally due to the
small number of subjects involved in the analysis and the absence of further observations
from same patients over time (i.e., need for a longitudinal study). Another limitation is given
by the lack of a matched control group of healthy subject in order to compare and assess the
reliability of the results.

In conclusion, although this study is preliminary, it shows an important association between
ALS disease duration and ongoing disruption of functional whole-brain network as measured
by methods (i.e., PLI and MST) robust to both scalp EEG problems and network comparison
bias. As for other neurodegenerative disorders, this analysis could be useful in evaluating and
monitoring the progression of the disease. Furthermore it can help in the definition of a
system-level signature based on network metrics, which can have diagnostic relevance.
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4 Summary and General Conclusion
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4.1 Summary

The experimental studies of this thesis aim to gain more insight into brain functioning and its
impairments induced by the arising of pathology using functional connectivity and brain
network analysis. Two neurological diseases, such as epilepsy and amyotrophic lateral
sclerosis (ALS), and a third one, type 1 diabetes mellitus (T1DM) were studied. Although
T1DM is not a proper neurological disease recently the potential effect of dysglycaemia on the

cognitive performance and central nervous system integrity has been investigated [175]-
[179].

In Chapter 3.1 it has been discussed how clinical benefit in epileptic patients responding to
VNS therapy is related to functional network re-organization in theta band. Results agreed
with the formulated hypothesis that VNS therapy affects functional brain network
organization toward a more efficient (i.e. more integrated) architecture. The MST was used to
characterize the network topology and the observed decrease of MST diameter and
eccentricity in VNS responder patients suggested the shift toward a more integrated
architecture. These findings are in line with the theory that includes epilepsy in the
framework of network disorders: an aberrant topology of structural and functional networks
promote seizure occurrence [133], [154], [155].

In chapter 3.3 the existence of a significant correlation (all p-values<0.05) between ALS
duration and the disruption of the whole functional brain network was reported. Traditional
network measures such as small-world-ness index, and MST measures were used to assess the
topology of ALS function brain network. The small-word-ness index, which reflects the
efficiency of a network topology, showed a negative correlation with the disease duration.
However MST diameter and eccentricity were positively correlated with the disease duration.
Together these two results suggested a shift toward a less efficient and less integrated
network topology in respect to the time from onset of symptoms.

Integrity of resting-state functional brain networks (RSNs) is important for proper cognitive
functioning. In type 1 diabetes mellitus (T1DM) cognitive decrements are commonly
observed, possibly due to alterations in RSNs, which may vary according to microvascular
complication status. In chapter 3.2 it was tested the hypothesis that functional connectivity in
RSNs differs according to clinical status and correlates with cognition in T1DM patients, using
an unbiased approach with high spatio-temporal resolution functional network. Patients with
microvascular complication (T1DM*) showed a reduction of functional connectivity both for
MEG resting-state networks (RSNs) and minimum spanning tree analysis when compared to
type 1 diabetes patients without microvascular complications (T1DM-), as well as compared
to healthy subjects. Significant differences (all p-values<0.05) in terms of RSN functional
connectivity between the three groups were observed in the lower alpha band, in the default-
mode (DMN), executive control (ECN) and sensorimotor (SMN) RSNs, as well as within the
MST network. T1DM patients with microvascular complications showed the weakest
functional connectivity in these networks relative to the other groups. Furthermore for DMN,
functional connectivity was higher in patients without microangiopathy relative to controls
(all p-values<0.05). General cognitive performance for both patient groups was worse
compared with healthy controls. Lower DMN alpha band functional connectivity correlated
with poorer general cognitive ability in patients with microvascular complications.

In conclusion altered RSN functional connectivity and MST was found in T1DM patients
depending on clinical status. Lower DMN functional connectivity was related to poorer
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cognitive functioning. Taken together these results indicate that functional connectivity and
network topology may play a key role in T1DM-related cognitive dysfunction.

4.2 General Conclusion

In recent years, it has become clear that the brain can be seen as a complex structural and
functional network. Cognitive functioning strongly depends on the organization of functional
brain networks [4], [76], [120] [4], [76], [120], [226]. During the last fifteen years EEG/MEG
resting-state functional connectivity and functional brain networks studies attempted to
characterize normal brain organization [7]as well as deviation from it due to brain
diseases[3], [4]. Despite the impact on the understanding of brain functioning that these tools
provided there are still methodological hurdles that might have compromised the results
[17]-[19].

A key choice in the pipeline of analysis is the selection of a functional connectivity estimator
to evaluate functional interactions between brain regions. Different coupling measures can be
used [20]. The most important problem to tackle during this choice is the common source
problem, which reflect the fact the EEG/MEG scalp recordings pick up signals from the same
underlying sources, therefore functional connectivity measures will display spurious results
just because both reflect the same activity not because there is a real interaction. In this thesis
the phase lag index (PLI) [1] was used as a functional connectivity measure. PLI is relatively
insensitive to common source effect because it discards zero-phase lag synchronizations
(likely to be affected by common source). A disadvantage of the PLI might be that real
interaction between nearby brain areas (at zero-phase lag) could be discarded. However in
this thesis the safer approach to avoid zero-phase lag synchronization was preferred at the
cost to possibly underestimated synchronization between nearby brain areas.

In functional brain network construction, deciding the edges to include in the network is
essential. Van Wijk and others [23] showed how this choice can affect the estimation of
network topology and how the comparison between networks can be biased by this choice.
Many network studies have already been performed in many diseases and contradictory
results [133], [134] were obtained because of the lack of a proper methodology for network
comparison. In this thesis the minimum spanning tree (MST) approach was used as a solution
to this problem. MST can be considered as the ‘core’ sub-network consisting of the most
important connections. The results reported in this thesis showed how the MST captures
relevant changes in network topology and along with previous MST studies [26], [137]-[139]
supported the use of MST as a promising approach for network comparison and network
characterization.

This thesis confirms that alterations in functional connectivity and functional brain networks
in disease may be used as potential biomarkers for more objective diagnosis and for the
choice of effective treatment options. Specifically in epileptic patients implanted with VNS
these measures can be used as a marker in monitoring the efficacy of the treatment; in
amyotrophic lateral sclerosis the relation between disease duration and whole brain network
disruption suggests diagnostic relevance of network measures in evaluating and monitoring
the disease; and finally in type 1 diabetic mellitus patients functional connectivity measures
are complementary to cognitive tests and may help to monitor the effect of TIDM on brain
functions.
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5 Appendixes
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5.1 Appendix A

Table 7 Cognitive domains

Cognitive domain

Neuropsychological test

Memory

Rey auditory verbal learning test

WAIS-III-R digit span forward and
backward

WAIS-III-R symbol substitution
incidental learning test

Information processing speed

WAIS-III-R symbol substitution test
Stroop color-word test parts 1 and 2
Concept shifting task parts A and B

Simple auditory and visual reaction
time tests

Computerized visual searching task

Executive functions

Stroop color-word test part 3, correct
for time on part 1 and 2

Concept shifting task part C, correct for
time on part A and B

D2-test total errors

Wisconsin cart sorting test

Category word fluency task

Attention D2-test range with total correct
answers and total span
Motor Speed Tapping test
Concept shifting task part
Psycomotor Letter Digit Modalities Test
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Table 8 Resting-state networks.

Resting-state network

Corresponding AAL atlas ROIs
(Rosazza and Minati, 2011)

Corresponding AAL atlas
ROIs
(1 ROI overlap)

Default mode network

Precuneus, posterior cingulate gyrus,
inferior parietal gyrus, medial
prefrontal gyrus

Precuneus, posterior cingulate
gyrus, anterior cingulate
gyrus*, inferior parietal gyrus,
medial prefrontal gyrus

Executive control

Medial frontal cortex, superior
frontal gyrus, anterior cingulate

gyrus

Medial frontal cortex, superior
frontal gyrus, anterior
cingulate gyrus

Frontoparietal
(left/right)

Inferior frontal gyrus pars
triangularis, inferior frontal gyrus
pars opercularis*, medial frontal
gyrus, precuneus®, inferior parietal
gyrus, angular gyrus

inferior frontal gyrus pars
triangularis, medial frontal
gyrus, inferior parietal gyrus,
superior parietal gyrus*,
angular gyrus

Definitions of the analysed RSNs. Data that were presented as main results in the paper were
based on a slight modification of the ROI definition of Rosazza and Minati. This definition was

proposed by Tewarie [196] and others, it prevents overlap of connections between RSNs

(right column). Our data were analysed using Tewarie’s definition. Differences between both
definitions were marked with *.
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5.2 Appendix B
Papers published during the PhD:

Demuru, M., Fara, F., & Fraschini, M. (2013). Brain network analysis of EEG functional
connectivity during imagery hand movements. Journal of Integrative Neuroscience,
12(4), 441-447. doi:10.1142/S021963521350026 X

Demuru, M., van Duinkerken, E., Fraschini, M., Marrosu, F., Snoek, F. J., Barkhof, F., et
al. (2014). Changes in MEG resting-state networks are related to cognitive decline in
type 1 diabetes mellitus patients. Neurolmage. Clinical, 5, 69-76.
doi:10.1016/j.nicl.2014.06.001

Fraschini, M., Demuru, M., Puligheddu, M., Floridia, S., Polizzi, L., Maleci, A., et al. (2014).
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