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Chapter 1

Introduction

In the past decade, genetic analyses of complex diseases were carried out

using a systematic evaluation of the genome, known as genome-wide as-

sociation scan (GWAS). This approach consists in an examination of many

(hundreds of thousands) common genetic variants in thousands of indi-

viduals to see if any variant is associated with a trait. The underlying

idea is that common diseases must be driven by common variants, theory

also known as common variant - common disease hypothesis [1]. To date,

GWAS had highlighted thousands of common genetic loci associated with

diseases susceptibility and findings are reproducible across populations.

Despite its success, this approach has also limitations. In the most cases,

GWAS hits fall outside of annotated genes, limiting our understanding on

their molecular function. Furthermore, these associations have often very
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small effects on diseases’risk and account only for a modest portion of

the estimated genetic components of many diseases, leaving a substantial

fraction unknown [2]. Several hypothesis have been made on where the

missing heritability is [2]. One attributes a major role to rare variants, a

category of genetic changes that are present in < 1% of the population,

mostly ignored by GWAS.

Today, the advent of next-generation sequencing (NGS) has revolutionized

the study of genetic variations, as the entire spectrum of genomic variation

can be assessed, including rare variants. Cost to sequence all exons or

genomes has considerably reduced, allowing sequencing of increasingly

large number of samples.

Whole-genome sequencing represents the most complete variant-discovery

strategy, and a common strategy in large scale studies is to incorporate

whole-genome sequencing information into GWAS with inferential meth-

ods known as genotype imputation [3]. Exome sequencing only focuses

on coding regions and thus limits the spectrum of variants tested, but has

been widely applied as a powerful alternative cost-effective approach to

detect rare coding variants, which often have more marked functional con-

sequences [4] [5]. Specifically, exome-sequencing technologies have been

mostly important for the identification of molecular defects in patients with

Mendelian disorder or as a diagnostic tool in case of suspected rare genetic

disorder [6]. This success led researchers to extend it in the case of complex

diseases, in order to identify rare coding variants that are not detected by
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GWAS [7]. Rare variants however are hard to identify in the large scale

population studies used in GWAS: their often occur too infrequently to

allow association testing in a sufficient number of individuals. One strat-

egy is to focus on cohorts that were initially collected for linkage analysis -

i.e., families with multiple affected individuals ; in the assumption that af-

fected individuals drawn from the same family must share the same causal

variant, families are a natural enriched setting for very rare variants, as the

same variant will be carried by multiple chromosomes. The challenge in

such analyses is that even randomly selected individuals in any family

will share substantial fractions of their genomes in common, therefore the

prioritization of individual variants detected trough sequencing involves

additional criteria. For example, a combination of exome sequencing in

key individuals with family-based linkage analysis using classical geno-

typing arrays in the full family may increases power to detect rare genetic

variants with large effect size. In fact, exome sequencing allows detection

of a set of potential candidate rare variants, and linkage analysis will help

to distinguish those that are disease-causing by evaluating co-segregation

with the phenotype within the family. Examples of successful applica-

tions of whole-exome sequencing in family-based designs [8][9], also with

a limited number of cases [10], have been already reported for complex

diseases [8].

In this PhD thesis, I will present an application of a joint exome sequenc-

ing and linkage analysis in a multigenerational family with multiple mem-
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bers affected by Type 1 Diabetes (T1D), a form of diabetes mellitus that re-

sults from the autoimmune destruction of the insulin-producing beta cells

in the pancreas and that is usually diagnosed in children and young adults.

From this family, we recruited 13 members in 3 generations, 9 of which

were affected. All samples were genotyped for about 700, 000 common

variants using the Illumina OmniExpress array, and exome-sequencing

was carried in 3 affected individuals (one per generation) and a healthy

individual (pedigree is showed in Figure 1.1).

Figure 1.1: The patients family tree showing selected individuals in the exome-seq
and linkage analysis.

The thesis is organized as follows:

• Chapter 2 describes the state of the art in current literature on genetics

of Type 1 diabetes.
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• Chapter 3 details methods and analysis protocols, including descrip-

tion of the samples, study design and workflow in whole-exome

sequencing analysis, from the reads alignment, variant calling, in-

cluding reads quality controls to the variant annotations, filtering

and association analysis. I will also present data processing and

quality for the genotyping arrays, which will be integrated with

exome-sequencing in a parametric linkage analysis on the family.

• Chapter 4 will be dedicate to conclusions and future developments

of this project.

1.1 Rare variants in complex diseases

Our understanding on the genetic architecture of complex diseases changed

quite rapidly with the advent of the GWAS approach. In particular, for

most of the diseases it appears that heritability follows a polygenic model,

with tens or even hundreds variants modulating the diseases risk. GWAS

have extensively searched for common variants with large or moderate

effects, and resulting observations show that the total contribution of this

category of variants to the disease does not fully explain the estimated

genetic heritability [12]. In fact, as statistical power in GWAS depends

by a combination of effect size and minor allele frequency, many disease

susceptibility loci with either a very small effect size or highly-penetrant
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rare alleles have been missed by the GWAS approach.

Several population genetic studies suggest that low and rare variants tend

to be recent in origin and support their possible contribute to disease risk,

being enriched for potentially functional mutations [15] [16]. Such vari-

ants are likely to be seen in families with a number of affected individuals

exciding expectations based on the overall population risk. Family-based

studies are thus valuable in the search of rare variants.

1.2 Next generation sequencing to detect rare variants

in complex diseases

Over the past few years, scientific discoveries made through whole genome

and exome sequencing grew exponentially, accelerating genetic studies

on Mendelian and complex diseases and increasing the total number of

known genomic variations. Large international efforts, as the Exome Se-

quencing Project1 (ESP) and 1000 Genomes Project2 (1000G), have sequenced

thousands of individuals from different nationality, with the common goal

to characterize the geographic and functional spectrum of human ge-

netic variation [14]. The 1000 Genomes project includes sequencing of

2535 individuals sampled from 26 populations drawn from the five con-

tinents, analyzed through different levels of resolution. The overall num-

1https://esp.gs.washington.edu/drupal/
2http://www.1000genomes.org/
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ber of variations discovered is 79 million sites, including biallelic single-

nucleotide polymorphisms (SNPs), insertion, deletions (indels), complex

short substitutions and other structural variant classes [14]. The NHLBI

Exome Sequencing Project sequenced the coding region of 15, 585 genes

by whole-exome sequencing in up to 6500 individuals of African and Eu-

ropean ancestry, finding thousands of very rare variants, some of which

are population-specific [16]. Therefore, sequencing of human genomes

and exomes revealed that most low and rare variants showed substantial

geographic differentiation and that the majority of protein-coding varia-

tion predicted functionally important were rare [14] [16]. Characterization

of such variants, likely evolutionarily recent and under a weak selection

pressure [16], will allow a better interpretation of their functional role in

specific studies.

1.2.1 Whole exome sequencing

Whole exome sequencing (WES) is a technique to selectively capture and

sequence protein-coding regions in parallel through high-throughput se-

quencing. Similarly to whole-genome sequencing, the targeted DNA is

sequenced by dividing it in millions of small fragments that are then

sequenced in parallel concurrently. Then all fragments are assembled

back together by aligning the sequenced nucleotides to a known reference

genome or by algorithms for de-novo assembly.
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Experimental workflow consists on preparing genomic DNA libraries and

hybridizing them to capture arrays and then sequencing short targeted

fragments. Each fragment usually is in the range of 300 − 500 bps and

specific adapters are added to their ends in order to allow their attach-

ment and sequencing. Single DNA molecules separated in a solid support,

called Flow Cell, are clonally amplified and in parallel sequenced.

Results of sequencing are generated by reading optical signals during iter-

ative cycles of polymerase-mediated nucleotide extensions or, in one ap-

proach, through successive oligonucleotide ligations [18]. Data produced

by a single run are more than 600 gigabases of nucleotide sequence, called

reads, with a length ranging in 25 − 100 bps. A such parallel sequencing

process allows an overlapping of many random DNA fragments, therefore

each nucleotide, in target region, will be read in many different reads, de-

termining his depth coverage. Depending on the design selected, we can

have sequencing runs targeted to single end or paired end reads. In paired

end runs a fragment is first sequenced from one end to the other end for up

to 25 − 100 bases (depending on what decided by the the researcher), then

another round of reading is performed in the opposite way. The paired

end designs improves mapping quality during the process of alignment as

the corresponding DNA fragment in the reference genome can identified

more confidently.

There are different commercially available exome sequencing platforms

that capture a slightly different set of target regions, being some also fo-



1.2. Next generation sequencing to detect rare variants in complex diseases9

cused on regulatory regions as promoters and exon-intron junction region.

For example, the three sequencing platforms from Agilent, Illumina and

Nimblegen target 51 Mb, 62 Mb and 64 Mb respectively, with 29.45 Mb in

common among all and 4.428 Mb of unique target regions. However, effi-

ciency and overall coverage of strict coding regions has been shown to be

highly concordant [17].

Whatever is the platform utilized, data process and raw data checks have to

follow standard rules to assure quality of data. Specifically, once sequenc-

ing reads have been generated, they are aligned to the reference genome

and assigned a probability for the matching in a specific genomic position.

Base quality scores have to be recalibrated to correct for variation in qual-

ity with machine cycle and sequence context. Reads that are identical to

others (duplicated reads) are marked and removed, as they are likely to

be potential PCR artifacts [21]. At this point is important a careful quality

assessment of sequencing run performance, through summary statistics of

key parameters. More details are given in section 3.2.1. After mapping and

quality process, reads are then analyzed to call genotypes at polymorphic

sites, a process known as variant calling. Details are given in section 3.2.2.

Variants are then filtered with a strategy that will depend on the hypothe-

sized inheritance model, diseases penetrance and expected frequency of the

causative variance, and prioritized according to their biological predicted

function. This process of filtering has been very successfull for monogenic

diseases, where only one, highly penetrant, deleterious variant is expected
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to be the causal mutation. For complex diseases, where multiple variants

can contribute to the clinical outcome, we are often unable to discriminate

real disease-causing genetic variants from the broader background of rare

variants present in all human genomes, which are not pathogenic for the

disease under investigation. In such cases, more extensive genetic analyses

or biological characterization of variants are necessary to pinpoint to the

causative site.

1.2.2 Low-Pass DNA Sequencing of 2120 Sardinians

The huge data resources available from international large scale projects,

such as 1000 Genomes projet, allowed the discovery of a large number of

low and rare novel variants in individuals from a broad set of popula-

tions, including admixed samples [14]. Furthermore, it has emerged that

low-frequency variants show substantial geographic differentiation [14]

and that founder isolated populations are likely to underrepresented in

this large effort. For example, it was shown that, 1000G Consortium iden-

tified 50%, 98% and 99.7% of the SNPs with frequencies of 0.1%, 1.0%

and 5.0% identified after sequencing 2500 samples from UK. By contrast,

only 23.7%, 76.9% and 99.3% of SNPs in the same frequency range iden-

tified after sequencing 2000 Sardinian samples were also detected in the

1000 Genomes project. Therefore, despite this large international efforts,

population-specific whole-genome sequencing studies are thus valuable,
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in particular for the characterization of rare population-specific variants.

Many research groups are undertaking whole-genome sequencing in their

population of interest. In Sardinia, one large effort, carried out by the

IRGB-CNR Institute and led by prof. Francesco Cucca in collaboration

with prof. Goncalo Abecasis of the University of Michigan, is the Sardinia

Medical Sequencing Project. It involves whole-genome sequencing of 2120

Sardinian samples at an average coverage of 4x, whom 1122 are volunteers

of the SardiNIA project [25] and others were enrolled in a Multiple Sclerosis

(MS) and Type 1 Diabetes (T1D) case-control study [24]. The sequencing

effort led to the discovery of 17, 617122 single-nucleotide polymorphisms

(SNPs), of which 21.6% were not identified in any other population (based

on dbSNP 142 and the Exome Aggregation Consortium)3. For the work I

present in this PhD thesis, I was able to use this resource to flag and discard

variants shared among affected family members but that were unlikely to

be associated with the diseases, being rare in elsewhere in Europe but

common in Sardinia, or absent elsewhere by present in other non-affected

Sardinians.

3http://exac.broadinstitute.org/
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Chapter 2

Genetics of Type 1 Diabetes

2.1 Many faces of diabetes

Type 1 diabetes (T1D) is a common, complex and autoimmune disease

where genetic, epigenetic and environmental factors contribute to risk. It

manifests itself through an autoimmune destruction of pancreatic β cells,

resulting in a lack of production of insulin [28]. Data from large epidemi-

ologic studies showed that over the last few decades, there has been an

increase in the worldwide incidence of T1D by 2 − 5% [29], suggesting

the importance of environmental factors in the etiology of disease [34].

On the other hand, genetic predisposition is evident from the significant

familial clustering. In fact, the average prevalence risk in children of an

affected parent ranges from 2 to 8%, in dizygotic twin is about 8%, and in
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monozygotic twins is as high as 50% ( 30% within 10 years of diagnosis of

the first twin), numbers that are considerably higher than the 0.4% risk of

the general population [30][31][33].

Type 1 Diabetes represents the most common type of diabetes in children

and young adults and historically was known as Juvenile Diabetes; the typ-

ical adult form of diabetes is instead known as Type 2 Diabetes (T2D).

Diabetes tends to be divided into these two major categories, but other

minor and monogenic forms exist, highlighting the wide disease’s het-

erogeneity. For example, a common subgroup of T1D and T2D is LADA

(latent autoimmune diabetes), which appears to be an admixture of the two

forms of diabetes, sharing common symptoms and underlying genetic risk

factors [36][39]. LADA is usually diagnosed over 30 − 35 years of age and

for at least the firsts six months is unlikely to need insulin treatment [38].

The diagnosis is mostly based on GAD antibody positivity, a parameter

also used for T1D diagnosis [36], therefore misspecification is not infre-

quent [38][36].

There also exist monogenic forms of diabetes, as MODY (Maturity-Onset-

Diabetes of the Young), a subtype of familial diabetes characterized by early

onset (usually before 25 years old in Caucasians) and specific autosomal

dominant mutations in thirteen genes [36][40]. However, heterogeneity is

present also in this class.

It is likely that many familial forms are clinically misclassified as type 1 or

type 2 diabetes, as often the excess of affect members contrasts with the
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expectations based on population incidence estimates. In depth studies

of such families can help to understand the genetics of these peculiar dis-

ease manifestations, and will provide new insights into the pathogenesis

of more common forms of diabetes.

2.2 From linkage studies to whole-exome sequencing

in Type 1 Diabetes

Multiple linkage studies showed that the HLA locus, on chromosome

6p21.3, represent the major risk factor for T1D, explaining up to 40−50% of

the familial clustering [32]. 1 Non-HLA loci, contributing to T1D, in partic-

ular INS gene, CTLA4,PTPN22 and IL2RA, have been associated through

studies based on gene candidate approach.

Since 2007, several GWAS and meta-analysis have confirmed the role of

such genes and up to date 57 independent T1D susceptibility loci outside

the major HLA are established. Many of these loci contain genes relevant

for the immune response and also expressed in pancreatic beta-cell, rein-

forcing the idea that immune system and beta-cell function are important

for T1D pathogenesis [36][37][41][42]. Overall, the identified genetic fac-

tors explains a large fraction of the heritability (about 80% , of an overall

estimate of 88% [43] )[36].
1This strong association with HLA did not consistently replicate in T2D, confirming

that T1D and T2D are two distinct diseases.
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Although this is an exception compared to other complex human diseases,

many familial T1D cases cannot be explained by their HLA status or higher

genetic burden of risk-alleles at the 57 non-HLA loci. Therefore, genetic

studies are now concentrating on families and applying novel technolo-

gies, as next-generation sequencing, to achieve a deep characterization of

the genetic background. A successful effort has been reported in Biason-

Lauber et al., where authors studied a family with multiple individuals,

of which four were affected by T1D, one by ulcerative colitis and some-

one had an unclear diabetes phenotype. By using a combined approach

of different technologies −− microsatellite genotyping, targeted deep se-

quencing, exome-sequencing and Sanger sequencing of relevant candidate

genes −− , they identified a mutation in the SIRT1 gene carried only by the

members affected by an autoimmune disorder [45], therefore suggesting a

new mutation for a monogenic form of T1D [45].

2.3 Type 1 Diabetes in Sardinia

Epidemiological studies consistently show that Sardinia and Finland rep-

resent the two most high-risk areas for T1D worldwide [46]. Furthermore,

a 5-fold increased prevalence of T1D has been observed in Sardinian MS

patients, in the same individuals and/or in the same families. From the

study of Marrosu et al. has emerged that associations of both T1D and MS

with common variants in the HLA region explain only a small part of the
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co-occurrence of these two autoimmunes diseases [44], suggesting the in-

volvement of one or more damaging Sardinian-specific variants affecting

the immune system.

Investigations in families with more individuals affected by T1D in multi-

ple generations, and/or also in presence of double autoimmune disorders,

could represent a strength point in genetic studies of T1D, particularly

in a genetically isolated population as Sardinia, where T1D (and MS) are

common and there is evidence of powerful founder effects [47].



18 Chapter 2. Genetics of Type 1 Diabetes



Chapter 3

Study design and Methods

3.1 Subjects and study design

The family used in this study was initially enrolled on 1993 by the team led

by Prof. Francesco Cucca. Fresh specimens of already enrolled volunteers

and extension to the newly affected individuals was carried out from 2010.

All members are of Sardinian origin and there is not consanguinity. A

written informed consent was obtained from all participants (14 individ-

uals). Among all volunteers, 10 were diagnosed Type 1 Diabetes trough

autoantibodies (GAD, IA2 and IAA) tests and two also suffered of a second

autoimmune disease (Celiac disease or Multiple Sclerosis). Age at disease

onset is highly variable, from 6 to 62 years (average 18.12 years). The other

volunteers were healthy individuals, although some of them were posi-
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tive for autoantibodies tests. A graphical representation of the pedigree is

showed in Figure 3.1.

The pattern of inheritance among the affected family members was indica-

tive of an autosomal dominant mutation. A linkage analysis was previ-

ously performed with microsatellite genotyping. Here, we used whole

exome sequencing and linkage analysis with the integration of SNPs de-

rived from commercial whole-genome genotyping arrays and from exome

sequencing. Further, a previous linkage analysis with microsatellite geno-

typing has been performed.

We sequenced the exome of four members from this family: three affected

individuals across three different generations and one healthy, as showed

in Figure 3.1. Exome sequencing was performed in a single experimental

run with other 38 individuals (sixteen T1D affected parent-offspring pairs

and 6 individuals affected by Multiple Sclerosis or Type 1 Diabetes from

other Sardinian multigenerational families).

Furthremore, thirteen members of the family were extensively genotyped

through Ilumina OmniExpress beadchips, a genotyping array targeting

about 750K SNPs. The hypothesis of this study is to identify rare (MAF

< 1%) genetic variants with large effect size, therefore a joint linkage anal-

ysis with exome sequencing in this family seems optimal because the same

mutation can be observed in many relatives and cosegregation with T1D

can be tested.
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Figure 3.1: The pedigree of the family enrolled. Affection status of each member
and individuals selected for sequenced are highlighted as described in the legend.

3.2 Whole exome sequencing

Whole exome of 42 individuals was captured by the Illumina TruSeq Ex-

ome Enrichment Kit, followed by sequencing using Illumina HiSeq 2000

sequencer. This Illumina kit provides an high uniform coverage across 62

Mb of exomic sequence, including 5� UTR, 3� UTR, microRNA, and other

non-coding RNA, for a total of 20, 794 genes. The experiment was designed

to sequenced paired-end reads of 100-bp length, and each sample was run

in different lanes to reach the targeted coverage (60x). The 42 samples were

sequenced in 5 runs, with twelve subjects been replicated in two of these

to improve their initial coverage, as showed in figure 3.2.

The reads were aligned to the hs37d5 reference assembly from the 1000
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Figure 3.2: Differences in mean depth for 12 samples in first and in final run (a).
Histograms of mean depth. (b).

Human Genome Project through Burrows-Wheeler Aligner (BWA [48])

version 0.6.2 and alignments for each sample were converted to a binary

format for storing sequence data (BAM format), sorted by reference coor-

dinate and indexed. A BAM file format ( as well as in a SAM format -

similar to bam, but in readable text format ) is subdivided in two sections:

header and alignment. The header section contains general information

about the file, such as BAM file format version and sorting order of the

alignments, which can be sorted by the reference coordinates, by query

names, or unsorted. Other information include the sample identification

code, the read group, the lane or the program used for alignement. The

alignment section provides information for each sequence about mapping

and quality with respect to the reference genome. By a Cigar String for
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each sequence read, it is possible to know the number of bases that match

or mismatch with the reference, how many are deleted or inserted.

At this point information for the same sample derived from different lanes

was merged in an unique BAM file which was then processed with the

dedup option in bamUtil1 to determine duplicates. Then annotated with

MarkDuplicates - an utility from the package Picard-tools 1.812 for marking

PCR duplicates. In fact, duplicates may cause biases and alter variant call-

ing results, because sequencing errors will be propagated in duplicates.

After marking duplicates, the caller will be able to consider only one read

among the duplicates and will more likely work in the right way.

After this step, reads were re-aligned if they map near known polymor-

phisms or insertions and deletions (according to the GATK3 pipeline (ver-

sion 2.7.4), then base qualities were recalibrated after all these processes.

Finally, overlapping read pairs were cropped with the ClipOverlap option

on the bamUtil executable. Each BAM file is then assessed for quality

before being taken forward for the variant calling step, that we carried out

with the tool GATK HaplotypeCaller to call indels and SNPs simultaneously.

A schematic view of the described process is represented in Figure 3.3.

1http://genome.sph.umich.edu/wiki/BamUtil
2 http://picard.sourceforge.net/
3https://www.broadinstitute.org/gatk/
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Figure 3.3: Workflow applied to NGS data processing

3.2.1 Quality Controls of reads

Data quality assessment represents a crucial step in next generation se-

quencing studies and it is much more complex in respect to traditional

array platforms. Therefore, in order to diagnose sequencing run prob-

lems, a series of quality assessments was performed for all samples and
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in all sequencing runs. Data quality is assessed through empirical and re-

ported base quality score by comparing aligned bases to the reference

genome. Empirical base scores are calculated in Phred Score Q, with

Q = −10 · log10(Perr), where Perr = Prob(Error of called base). For example,

Phred Score of 20 indicates that chances that this base is called incorrectly

are 1% and a Pred Score of 30 correspond to an error probability of 0.1%,

or, in other words, a base call accuracy of 99.9%.

In figure 3.4, empirical against reported Phred scores from two differents

kits (SureSelect Target Enrichment System Kit and the newest TruSeq Ex-

ome Enrichment Kit) for five samples is shown. In the left panel, a clear

deviation from the diagonal and overall lower quality is evident, indi-

cating that the run was problematic. These samples (except one) have

been sequenced a second time through the kit chosen for this study, and

the empirical versus reported Phred score, represented in the right panel,

shows that the experiment was now carried out properly. Other quality

controls are showed in figures 3.6 and 3.7. For example, distribution of

insert size shows that mean values range between 230 and 270 bp, which

is close to the expected mean insert size for this Illumina kit (where mean

expected insert size is 230 bp). Another factor that is important to con-

sider in NGS experiments is the GC content, as it interferes with library

amplification [49]. Therefore regions with extreme GC content may be

under-represented, in accord with the figure 3.6, where low and high GC

regions have low coverage, suggesting a higher error rate for these regions.
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Figure 3.4: Empirical Phred score in a run showing deviation from Reported Phred
(a) and in a run with a better trend (b)

Statistics as mean depth, empirical Q20 counts, number of mapped

reads, percentage of duplicates as well as others are then compared among

all samples in order to identify batches effects and other heterogeneities

between samples. In figure 3.8 the number of total, mapped, paired,

duplicated and failed reads for each sample in a specific run are plotted.

These flag statistics have been useful not only to see differences across

samples in the same run, but also in different sequencing runs.

After mapping and quality filters, a total of 112 million of reads have been

mapped on target regions, with a mean depth of 57.19x and 98% with at
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Figure 3.5: Number of samples for each run. Run1 and run2 have twelve subjects
in common.

least a Q-score of 20.

3.2.2 Variant calling and analysis of variants

After quality checks, realignments and recalibration procedure, we started

the process of variant calling. We used HaplotypeCaller of Genome Analysis

Toolkit (GATK), which calls SNPs and short indels simultaneously across all

BAM files. Haplotype Caller employs a local de novo assembly algorithm

that represents an agnostic approach with regards to variant type and di-

vergence from any reference[22]. Furthermore, by jointly analyzing several

samples, it extracts information from the other sequenced chromosomes,
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Figure 3.6: Insert size distribution in a run (a). Mean depth vs GC in a sample (b).

Figure 3.7: Mean depth and empirical Q20 count (a). Base count in milion vs
reported Phred Score in a recalibrated run data (b).
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Figure 3.8: Flag statistics in one of the analyzed runs (a). Average values of
principal flagstats in all runs (b).

resulting in higher variants discovery rates. In addition to Haplotype

Caller, in accord to Best Practices from GATK forum, a quantification of

the goodness of called variants was performed through Variant Quality

score Recalibrator, that assigns accurate confidence scores to each mutation

and by statistical models is able to filter out false positive calls.

Variants are stored by the program in a VCF (Variant Calling Format) file.

This is a text file with a specific format that is widely recognized. It contains

meta-information lines, a header line, and then data lines each containing

information about a position in the genome. The header section includes

information about format file, genome reference file and a key for each
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annotation data. The section of variants has nine principal field:

• chromosome;

• physical position;

• rsID;

• reference allele and alternative allele(s);

• a quality score that depends on the caller;

• a binary filter (PASS or not PASS) if a variant quality score has been

applied;

• an INFO field with some information that can be for example the

number of alternative alleles in genotypes and alternative allele fre-

quency, total number of alleles in called genotypes, total depth in this

region and other annotations useful to define a variant quality score;

• a FORMAT field to define following information about genotypes in

sample fields.

Subsequent columns are those corresponding to each individual genotype,

written as 0/0, 0/1 or 1/1, where 0 represents the reference allele and 1 the

alternative allele. Generally, after the genotypes there are allelic depth and

a genotype likelihood, separated by a colon. A quick analysis of the VCF
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file with vcftool4 allows to have a general idea about the overall number

of variants, divided by SNPs and indels, number of shared and private

variants across all samples and number of transitions and transversions

changes and their ratio. Graphics below show barplots for each of these

numbers in all samples, highlighting similarity in their frequencies, except

in the sample 26, which is the only individual sequenced with a different

kit.

Figure 3.9: Barplots of overall number of SNPs and indels for sample (a).
Transitions-transversions ratio for sample (b).

4http://sourceforge.net/projects/vcftools/
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Figure 3.10: Barplots of shared SNPs across all samples(a). Barplot of private
SNPs for sample (b).

3.2.3 Strategy of analysis

The hypothesis of this study is that one or more very rare mutations can be

responsible for T1D within the family. The strategy is to focus on variants

with a strong functional impact, highly penetrant and very rare in Sar-

dinia and elsewhere. Therefore, we expect this variant(s) to be absent in

the other sequenced individuals. We therefore proceeded by assessing the

biological function of each variant and evaluating the frequency in several

data sets, as described below.

The annotation of variants functionality has been performed with Anno-

var tool5, which not only annotate single nucleotide variants and inser-

5http://www.openbioinformatics.org/annovar/
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tions/deletions, but also reports functionally importance scores, as across-

species convservation score. It also annotates the VCF INFO column if the

variant is already reported in the 1000 Genomes Project, Exome Sequencing

Project and dbSNP [51]. The variants found in the VCF but absent in these

three datasets were considered Sardinian specific or very rare. In addition

to these annotations, I considered also variants identified in the Sardinian

whole-genome sequencing data reported in the Sardinian sequences refer-

ence panel [24]. We discarded all variants that were common in those four

data sets (frequency> 1%), and retained those that were less frequent or for

which frequency in the population was not reported (as per dbSNP). We

then marked the remaining variants to note those that were present in the

other Sardinian sequenced individuals (low-pass or exome-sequencing)

that are not part of the T1D family under study.

The VCF analysis showed that the total number of variants discovered in

the full exome-sequencing effort (42 individuals) is 150, 812, whom 134, 266

are SNPs and 16, 546 are indels. After the Variant Quality Score Recalibra-

tor the total number of variants that passed our quality filters (PASS) is

141, 058 - of those 55, 037 are exonic variants, with different exonic func-

tions, as showed in figure 3.11. Focusing only on the affected members

of the family, the number of total PASS variants is 124, 047 and drops to

about 51, 000 when considering only variants with an annotated minor al-
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Figure 3.11: Counts of exonic variants (a). Barplot of exonic variants (b).

lele less than 1% or with unknown frequency. In Figure 3.12 we show the

subsequent criteria used to prioritize variants, when applied to all variants

detected or focusing only on specific biological types.

Despite the number of variants is drastically reduced following these fil-

terings, it was still difficult to discriminate which were shared only by

means of familial inheritance. We therefore considered linkage analysis as

a useful integration to understand which variants fall in regions that are

co-segregating with the disease.
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Figure 3.12: Counts of variants in whole exome sequencing analysis before and
after frequency filtering, comparing all samples and the three affected individuals
of the family.

3.3 Linkage Analysis

To further characterize exome-sequencing findings we carried out linkage

analysis by incorporating genotypes from the Illumina OmniExpress array

and carried out three parametric multipoint linkage analysis. Genotyping

of the OmniExpress array was performed for all 13 members of the family
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together with genotypes for other 2300 Sardinian individuals. Experiments

were carried out in the Lanusei UOS of the IRGB Institute according to

manufacturers protocols, and genotypes called with the Illumina software

GenomeStudio. We performed standard per sample and per SNP quality

checks considering the full set of OmniExpress arrays. Specifically, we

required all samples to have a call rate > 98%, we removed SNPs with

minor allele frequency < 1%, with genotyping call rate < 98%, with strong

deviation from Hardy-Weinberg equilibrium (p < 10−6), or that showed an

excess of Mendelian inconsistencies. We then selected the 13 member of

the T1D family and incorporated, for the 4 that were also sequenced, the

genotype calls derived from exome-sequencing. The merged genotypes

file was created with the option bmerge of Plink tool6 [52] set in modality

merge-mode 2, in order to use as a reference genotypes those from OE

arrays and overwrite if missing in original. Excluding multiallelic SNPs

and indels, the new merged file includes 794, 575 variants, if which 95, 756

are only from sequences and 112, 019 were detected with both methods; the

concordance rate was 90%. Linkage analysis have been performed with

Merlin7 [53]. According with the pattern of inheritance among affected

members, as showed in the pedigree, we hypothesized for the linkage

analysis a dominant model and set the disease allele frequency to 0.01%.

To define population frequencies for linkage modeling, for each variant

6http://pngu.mgh.harvard.edu/purcell/plink/
7http://csg.sph.umich.edu/abecasis/Merlin/
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given as input we estimated the frequency in the 2300 genotyped samples

if was typed with the Omni array, and in the 42 sequenced samples if was

derived with the exome-sequencing.

Figure 3.13: The patients’family tree showing selected individuals in the exome-
seq and linkage analyses.

Moreover, since the program can only handle a limited number of

family members, we performed three different multipoint linkage analysis,

evaluating carefully the individuals to be included each time. The members

of the first and third generation have always been considered, while there

are differences in the second generation, resulting in the following three

cases:

• case 1: only cases are included, except the individual II-17 (II-3, II-4,

II-5, II-6, II-7);
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• case 2: all cases (II-3, II-4, II-5, II-6, II-7, II-17);

• case 3: 4 cases and 2 controls (II-3, II-4, II-6, II-17, II-9, II-10). In this

case, II-4 and II-6 were chosen because parent of III-15 and individual

with dual pathology respectively, II-10 because sequenced in exome-

sequencing and II-17 given that is the only in the second branch of

the family.

3.3.1 Results

Results of the three parametric linkage analysis are shown in the table 3.1.

All three cases converged on three regions: one on chromosome 2 (2q36.3-

2q37.1), one on chromosome 13 (13q31.2-13q31.3) and one on chromosome

18 (18p11.31). However, only the linkage peak on chromosome 2 contains

one of putatively causing exonic variants (non synonymous SNP in 2q37.1)

detected in exome sequencing analysis.

Furthermore, this suggestive linkage signal had been seen in a previously

genome linkage scan conducted for a part of the family (individuals I-1,

I-2, I-14, II-3, II-4 II-5, II-6, II-7, II-8, II-9, II-10, II-11) using 593 microsatel-

lites markers (398 purchased as commercial kits from Applied Biosystems:

ABI PRISM LINKAGE MAPPING SETS V2.5 and 195 additional markers,

selected in the laboratory). The linkage analysis based on microsatellites

markers, carried out for a dominant model with Merlin, indicates 2q37.1

as the strongest peak along with other suggestive signals on chromosomes
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Chromosome Cytoband LOD Score LOD Score LOD Score

Case 1 Case 2 Case 3

1 p36.12-p36.13 1.8 - -

1 q25.3-q35.1 - - 2.3

2 q36.3-q37.3 1.8 2.4 2.3

3 q26.31-q28 1.8 2.4 -

12 q14.3-q15 1.8 - -

13 q31.2-q31.13 1.8 2.4 1.3

14 q31.3-q32.2 1.8 2.4 -

16 q22.1 - - 2.0

17 q11.2-q21.32 - - 2.3

18 p11.23-p11.31 1.8 2.3 2.3

Table 3.1: Results of parametric multipoint linkage analyses using joint exome-
sequencing and array based genotypes, for case scenarios 1,2 and 3. Positions
refers to the citogenetic location of the peak of LOD scores. LOD scores are
reported if values were > 1.8 in at least one case.

14 (q31.3-q32.2) and 18, as showed in figure 3.14.

Our exome sequencing analyses pointed to variants that fall in one of

the following linkage peaks that are seen in one or two case-scenarios:

on chromosomes 1 (a one-base 3 UTR deletion q32.1), 3 (a 3 UTR SNP in

3q26.33), 12 (a 4-bases 3 UTR deletion in 12q15) and 14 (a 3 UTR SNP in
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Figure 3.14: Results of a parametric multipoint linkage analysis on a part of the
family using microsatellites data.

14q32.12) . Of note, the two SNP variants on chromosome 3 and 14 are

not unique to the family, as they are present in the Sardinian reference

panel with frequency of 0.17% and 0.33% respectively, whereas the 3 UTR

deletions are private variants of this family. We then carried out validation

trough Sanger sequencing of these five variants as well as other seven

resulting only from exome sequencing analyses and that were predicted

to have an high functional impact or that falled in genes with a role in

known autoimmune pathways. The variants were sequenced in all 13

family members. The variants with the most consistent pattern of sharing

between the affected individuals were three:

1. the non synonymous variant on 2q37.1, present in all affected mem-

bers with the sole except of the more distant individual II-17;
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2. the 1-base deletion on chromosome 1 at q32.1, present in all affected

members with the sole exception of II-3;

3. the 4-bases deletion on 12q15 shared among all affected in the family,

except II-11 and II-17.

The variant on 1q32.1 was absent in healthy members, while both

other variants were present also in one healthy individual ( II-8 and II-10

respectively). All other 9 mutations sequenced with Sanger did not show

a pattern of genotypes that was consistent with the hypothesized disease’s

model.

These three variants therefore remain the most candidates and func-

tional assessment of their biological role is now undergoing. The nonsyn-

onymous mutation is not specific to Sardinians but is very rare elsewhere

- it was described in the latest version of 1000 Genomes Project (Phase

3, November 2014) and in the Exome Sequencing Project 6500 with a fre-

quency of 0.020% (1/5008 chromosomes ) and 0.0077% (1/13006 chromo-

somes) respectively. SIFT and Polyphen2 predictions showed a damaging

impact on protein function and a GERP score of 4.96 suggests an high

index of conservation. If we limit to only individuals related to the more

extended branch of the family, this variant shows the best co-segregation

among affected members, although the penetrance is not complete. The

other two deletions have not been previously described in public datasets

and therefore at the moment are private mutations of this family. The
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genes where those three variants fall are all potential candidates. The non-

synonymous SNP falls within a gene that has been already suggested as

a locus of T2D diabetes susceptibility, impaired glucose tolerance and in-

sulin resistance. The other two deletions are located in the 3 UTR of genes

with established roles in other autoimmune diseases like Celiac Disease

and Multiple Sclerosis.



Chapter 4

Concluding Remarks

In this study I presented an application of exome sequencing data com-

bined with a family-based linkage analysis on a family affected by type 1

diabetes.

The family presented here is unique for its number of affected individuals

with T1D in three generations and co-occurrence of autoimmune diseases

in two family members. The sequencing of 4 individuals, of whom 3 were

affected and selected from different generations, produced a large num-

ber of potentially interesting variants that was then reduced to about 2000

variants after the application of several filters. Despite the considerable

reduction of the initial number of variants, the set of candidate variants to

be tested for validation was still too wide. We therefore applied a com-

bined strategy that incorporates exome sequencing with array genotyping
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data for the full family into a linkage analysis to evaluate co-segregation

of these candidate variants with the disease. With this approach, it was

possible to considerably reduce the number of variants to be validated by

Sanger sequencing and consequently narrow the list of candidates to three

mutations that are very rare in the general population (frequency< 0.01%).

The variants fall in genes with a potential involvement in T1D, supporting

that the results are genuine.

None of three mutation show a complete Mendelian co-segregation with

the disease, however heterogeneity is expected in a complex disease such

as T1D and some of the affected individuals can be a sporadic T1D patient.

Moreover, even at the phenotypic level, the family is quite heterogeneous,

not only in the age of onset, but also in the ambiguity concerning the

analysis of autoantibodies, for which some of the healthy individuals were

positive (including the father of the generation I). It is possible that this phe-

notypic diversity can result in heterogeneity at the genetic level. Finally, in

the absence of functional data in support of a biological role in diabetes for

these variants, it cannot be excluded that none of them is causative. Exome

sequencing is indeed not an exhaustive assessment of the genomic varia-

tion therefore other classes of variants not included in this analysis may

be causing the disease. For example, the approach may miss mutations

in exonic regions that were not targeted by the exome-sequencing capture

method utilized. Furthermore, structural exonic or genomic variants, as

copy number variants, were not considered at all. Therefore, further ge-
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netic characterization, including deep sequencing of key members, could

reveal the presence of other variants causing diabetes in this family.
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