
Università degli Studi di Cagliari
Dept. of Mathematics and Informatics

PhD School in Informatics

Doctoral Thesis

A Semantic Deconstruction
of Session Types

Author:

Alceste Scalas

Supervisor:

Massimo Bartoletti

PhD school coordinator:

G. Michele Pinna

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

May 2015

Academic Year 2013–2014

http://www.unica.it
http://informatica.unica.it
http://informatica.unica.it

Declaration of Authorship

I, Alceste Scalas, declare that this thesis titled “A Semantic Deconstruction of Session

Types” and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at

the University of Cagliari.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at the University of Cagliari or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly attrib-

uted.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Date: May 4th, 2015

ii

“It is not the task of the University to

offer what society asks for, but to give

what society needs.”

Edsger W. Dijkstra

Università degli Studi di Cagliari

Dept. of Mathematics and Informatics

PhD School in Informatics

Abstract

Doctoral Thesis

A Semantic Deconstruction of Session Types

by Alceste Scalas

This work investigates the semantic foundations of binary session types, by revisiting

them in the abstract setting of labelled transition systems. The main insights and

contributions are:

• a semantically unified approach to the study of session types and CCS processes

with synchronous and asynchronous semantics — the latter obtained with the

addition of unbounded buffers;

• a semantic approach to safety, based on a syntax-independent characterisation of

deadlock states, orphan messages and unspecified reception configurations;

• an I/O compliance relation between generic behaviours, that we demostrate to be

sound and complete w.r.t. safety in asynchronous session types;

• an I/O simulation relation between generic behaviours, which generalises the usual

syntax-directed notions of typing and subtyping, encompassing synchronous and

asynchronous session types;

• a proof-of-concept syntax-driven type system developed from the semantic setting

through a (partial) axiomatisation of I/O simulation.

This work extends the session types theory to some common programming patterns

which are not typically addressed in the session types literature, and aims at setting the

ground for further improvements.

http://www.unica.it
http://informatica.unica.it
http://informatica.unica.it

Acknowledgements

First and foremost, I wish to thank my PhD supervisor, Massimo Bartoletti, for his

invaluable advice, for the long discussions in front of the whiteboard, and for all the

opportunities he gave me to learn new things. The last 3 years have been intense and

stimulating, and they certainly represent a pivoting point of my life — both professionally

and personally. Massimo’s role and influence is difficult to overstate.

I also wish to thank Roberto Zunino: our looong Skype meetings have been a fundamental

part of my PhD activity, and they have had a huge impact on my work.

I am grateful to Simon Gay and Luca Padovani, for reviewing this thesis and giving

detailed remarks and helpful suggestions.

Thanks to Emilio Tuosto and Nobuko Yoshida for having me as a visiting student at

their respective institutions, and for the insightful discussions and fruitful collaboration.

During such visits, I also had the opportunity to work with Julien Lange: I am glad that

this happened not just once, but twice!

Thanks to my (ex-)colleagues at the University of Cagliari — in particular, Giovanni Casu,

Tiziana Cimoli, Paolo Di Giamberardino, Maurizio Murgia. Thanks to G. Michele Pinna,

for his work as coordinator of the PhD school in Informatics, and for his availability and

helpfulness.

Thanks to all the members of the Mobility Reading Group at Imperial College London:

I learned a lot just by seeing the way they work.

Thanks to my mother and father, who helped and supported me throughout this

endeavour. Thanks to all my friends, who encouraged me to take the PhD challenge, and

bore with me when I suddenly disappeared from social life (especially under deadlines).

Last but not least, I wish to say thanks to Ivana and Emiliano, and to Giacomo, Letizia,

Edoardo and Emanuele: you have been a model and an inspiration.

This thesis is the outcome of a 3-year PhD grant financed by the Italian Ministry of University and

Research (MIUR) — ex D.M. n. 198/2003, “ICT e componentistica elettronica”.

This work has also been partially supported by: Aut. Reg. of Sardinia L.R.7/2007 CRP-17285 (TRICS);

P.I.A. 2010 (“Social Glue”); MIUR PRIN 2010–11 project “Security Horizons”; EU COST Action IC1201

“Behavioural Types for Reliable Large-Scale Software Systems” (BETTY).

v

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

Contents vi

List of Figures xi

List of Tables xiii

List of Code Samples xv

1 Introduction and motivation 1

1.1 Some questions . 3

1.1.1 Can we reason on session-based interactions in a language-inde-
pendent way? . 3

1.1.2 Can we devise new syntactic typing rules as instances of some
general relation? . 3

1.1.3 Can we reason on synchronous and asynchronous interactions in
an uniform semantic setting? . 4

1.1.4 Is there a language-independent notion of “correct” interaction? 5

1.1.5 Towards a general approach . 6

1.2 Contributions and structure of the work 6

1.3 Improvements w.r.t. [BSZ14] . 8

2 Behaviours 9

2.1 Basics . 9

2.1.1 The I/O LTS . 9

2.1.2 Transition relations . 11

2.1.3 Barbs . 11

2.1.4 Observational relations . 12

2.2 Session types . 13

2.3 CCS . 16

3 A motivating use case 19

vii

viii Contents

4 I/O compliance 23

5 On safety 33

5.1 Deadlock states . 33

5.2 Orphan messages . 34

5.3 Unspecified reception . 37

5.4 Safety . 40

6 I/O simulation 45

6.1 Introducing I/O simulation . 45

6.2 Basic properties . 49

6.3 On I/O simulation and I/O compliance 50

6.4 On I/O simulation and asynchrony . 56

7 Session types without types 65

7.1 From semantics to syntax . 65

7.2 An I/O simulation-based type system 72

8 The LTS Workbench 77

8.1 LTSs, processes and asynchrony . 78

8.1.1 From LTSs to processes . 78

8.1.2 CCS processes . 79

8.1.3 From synchronous to asynchronous semantics 80

8.1.4 Adding new process calculi . 82

8.2 Behavioural relations . 82

8.2.1 Experiments with I/O compliance 82

8.2.2 Adding new compliance relations 83

Verifying relations. 84

8.3 Conclusions and future work on LTSwb 85

9 Related work 89

9.1 Session types . 89

9.2 Other “foundational” approaches to session types 89

9.3 Multiple participants and multiple sessions 90

9.4 Subtypes, subcontracts and sub-behaviours 91

9.5 Asynchrony and session types . 93

9.6 Compliance and safety . 94

9.7 Testing . 96

9.8 Abstracting richer calculi . 96

9.9 Timeouts and exceptions . 97

10 Conclusions 99

10.1 Summary of the main results . 99

10.2 Future work . 100

10.2.1 Some conjectures on 4̈ . 100

10.2.2 Extending 4̈ . 102

Contents ix

Bibliography 104

A Behaviours 113

A.1 Session types . 113

B Compliance 117

Proof of Lemma 4.5 on page 26 118

C I/O simulation 125

C.1 Basic properties . 125

Proof of Lemma 6.8 on page 49 126

C.2 On 6̈ as a preorder for U . 126

Proof of Lemma 6.9 on page 49 128

C.3 Properties of predictive sets . 128

Proof of Theorem 6.12 on page 50 129

Proof of Theorem 6.11 on page 50 132

C.4 On I/O simulation and I/O compliance 134

D Session types without types 137

Proof of Lemma 7.5 on page 68 138

D.1 On 4̈ as a precongruence for CCS – . 146

List of Figures

2.1 Three session behaviours. 14

4.1 Four behaviours which are not session behaviours. 26

4.2 A behaviour which does not admit an I/O compliant one. 26

5.1 The behaviour 0 ‖ q is safe, but 0 and q are not I/O compliant. 41

6.1 I/O simulation. Q, R are the predictive sets resp. for p 6̈ q and q 6̈ r. . 48

6.2 Progress is not preserved by I/O simulation (on general behaviours). . . 50

6.3 C̈ is not preserved by I/O simulation (on general behaviours). 54

6.4 Three compliant-admitting behaviours showing that 6̈ (v. 56

8.1 Output of (l1 ||| l2).toDot. 78

8.2 Outputs of ccs2.toDot() (left) and ccs2.toDot() (right). 81

8.3 Output of ccs12.toDot(). 86

8.4 Output of ccs1.toDot() and ccs1a.toDot(maxDepth=Finite(4)). 86

8.5 Output of (ccs1a ||| ccs2a).toDot(filter={case (l,) => l.isTau}). . . 87

C.1 Behaviours showing the difference between ≈ and ≈̈. 133

xi

List of Tables

2.1 Summary of notation. 10

2.2 Summary of transition relations, barbs, and observational relations. 11

4.1 Example of I/O compliance. 29

6.1 Examples of behaviours and I/O simulations (I) 47

6.2 Examples of behaviours and I/O simulations (II) 48

7.1 Some axioms for ≈̈ . 66

7.2 Rules for 6̈ . 67

7.3 Typing derivation for the running example (I). 74

7.4 Typing derivation for the running example (II) 75

xiii

List of Code Samples

8.1 A LTSwb example . 82

8.2 Another LTSwb example . 83

xv

Chapter 1

Introduction and motivation

Session typing is a well-established approach to the problem of correctly designing

distributed applications [HVK98; HYC08; THK94]. In a nutshell, a (dyadic) session

type is the specification of a communication protocol, and describes how a process is

expected to use a bi-directional communication channel with another process. In order

to achieve correct interaction, each endpoint of the channel is associated with a session

type, so that the two endpoint types are dual of each other: this, intuitively, means that

whenever one endpoint is expected to send some data, the other endpoint will be waiting

to receive it — and vice versa. A session type specifies which input/output messages are

allowed in each protocol state, what type of data is carried by each message, and which

protocol state is reached after a message is sent/received: hence, a session type essentially

describes a state transition system. The correspondence between a session type and the

behaviour of a process (usually specified in a dialect of the π-calculus [MPW92; SW01])

is established via static type checking — i.e., by examining the body of the process

through a set of syntax-driven rules. If the type checking succeeds, then the send/receive

actions performed by the process at runtime will not diverge from those described by the

session type: as a consequence, if both processes interacting through a channel respect

their endpoint’s session type, then their interaction will proceed correctly.

Session types are a particular case of behavioural types — and the usual technical tool

used to prove the correctness of a behavioural type system is subject reduction. Say P is

a process that communicates through a channel, and T is a session type it should respect.

Roughly, subject reduction guarantees that, if we have a typing judgement ` P : T ,

1

2 1. Introduction and motivation

then whenever P takes a computation step P
`−→ P ′, also the type can take a similar

step, i.e. there exists some T ′ such that T
`−→ T ′ and ` P ′ : T ′.

This relation between processes and types somehow resembles the simulation relation in

Labelled Transition Tystems (LTSs) [Mil89]: a state T simulates a state P iff, whenever

P
`−→ P ′, then T

`−→ T ′, for some T ′ which still simulates P ′. This seems to suggest that

the judgement ` P : T is rooted in some kind of “process-type simulation”. To elaborate

further on this insight, consider a session type T = !a ⊕ !b, which models an internal

choice between two outputs. We can implement this session type with the process

P
!a T

τ !a

τ
!b

P = !a which just wants to output !a. Intuitively,

the process P respects the type T , because any

client who can handle both choices in T will interact

“correctly” with P . Now, let us consider the transition diagrams of P and T (on the

left): we can observe that P is (weakly) simulated by T , in symbols P w T , because

each move of P is matched by a move of T .

Q

?a

?c

?b

U

?a

?b

Let us now consider the type U = ?a & ?b, which models an

external choice between two inputs, and let Q = ?a + ?b + ?c

(where + is the standard CCS choice operator) which allows

for an additional input ?c. Again, Q respects U : any client

compatible with U will not exploit the additional choice, and will interact “correctly”

with Q. But let us look at the LTSs of Q and U (on the right): differently from the

previous case, now we have that Q is not weakly simulated by U (whereas the converse

U w Q holds). This shows that the weak simulation relation does not faithfully capture

the notion of session typing: indeed, the previous examples suggest that a hypothetical

“process-type simulation” should treat input and output capabilities differently: intuitively,

it should be covariant w.r.t. outputs and contravariant w.r.t. inputs.

A similar kind of co/contra-variance arises when dealing with subtyping. The intuition is

that if a session type T is subtype of U , and we have two processes P ,Q such that ` P : T

and ` Q : U , then P can safely “replace” Q: i.e., each process that interacts “correctly”

with Q will also interact “correctly” with P . Again, the session subtyping relations

(e.g. [GH99; GH05; CHY07; CHY12]) are covariant w.r.t. outputs and contravariant

w.r.t. inputs (or vice versa, depending on their approach to the problem1); moreover, they

1The difference between these approaches, which gives rise to opposite but consistent orderings, will
be outlined in Section 9.4.

1. Introduction and motivation 3

are coinductive. This suggests a link between the subtyping relation and our hypothetical

“process-type simulation”.

1.1 Some questions

The intuition of a behavioural relation underlying typing and subtyping suggests several

questions and research topics, that we will articulate in the next sections.

1.1.1 Can we reason on session-based interactions in a language-inde-

pendent way?

Several papers have studied session typing relations (e.g. [Bet+08; Boc+10; CV10;

Hon93; HVK98; HYC08; MV11]) and subtype preorders (e.g. [BL10; BL14; BZ07b;

BZ08; Car+06; CP09b; GH99; GH05; BH14; BL15]). Despite the variety of aims

and results, all these works share a common assumption: the existence of some specific

language for types and/or processes. Such an assumption manifests itself in different ways:

typing/subtyping definitions are often purely syntax-driven (e.g. in the form of a type

system, or a syntax-based coinductive subtyping relation in [GH99; GH05]); otherwise,

when behavioural definitions are provided for subtyping and/or process-type conformance

(e.g. [BZ08; Car+06; CP09b; Pad12; Pad13; BH14; BL15]), it is still assumed that

the behaviours under study are generated by some given process/type language. This

seems in slight contrast with a common principle in concurrency theory: keeping syntax

separated from semantics. Indeed, behavioural equivalences (e.g. (bi)simulation, testing,

etc.) are typically defined over arbitrary LTSs, and then applied to specific calculi by

providing the latter with LTS semantics [San12]. By following this last principle, can

we find syntax-independent behavioural relations that, once applied to specific process

calculi, correspond to the usual typing/subtyping rules outlined above?

1.1.2 Can we devise new syntactic typing rules as instances of some

general relation?

A drawback of the syntax-driven approaches to session types is that they do not usually

consider some common programming patterns for interactive applications. For example,

let us think about a server waiting for client’s input: typically, the server must handle

4 1.1. Some questions

the case where such inputs do not arrive. This can be achieved via signals/exceptions

handling, or other programming language constructs. In Erlang [Eri15], for instance,

one can write:

receive P1 -> Body1. . .

Pk -> Bodyk

after 10 -> BodyT

?P1 Body1

?Pk Bodyk

τ BodyT

This causes receive to be aborted if no messages matching the patterns P1,. . . ,Pk arrive

within 10 milliseconds; in this case, BodyT is executed — where the program may e.g. do

some internal actions and start receiving again. Such a program blurs the distinction

between internal/external choices: intuitively, its LTS (on the right) has a process state

with external inputs ?P1, . . . , ?Pk and an internal τ -move abstracting the timeout. This

eludes the notion of “structured communication-based programming” at the roots of the

session types approach [Hon93; HVK98]; yet, it is a use case that one would like to

somehow typecheck to ensure “correct” interaction. This pattern cannot be usually

written in standard session calculi, since they do not include a free τ -prefix as part their

grammar: this may be due to the desire for a minimal and manageable theory, or to some

inherent technical difficulty in decoupling the structure of a process from the structure

of the types. Can a more syntax-independent approach handle this case, and possibly

others?

1.1.3 Can we reason on synchronous and asynchronous interactions in

an uniform semantic setting?

Another limitation of syntax-based approaches arises in the handling of asynchrony.

Real-world distributed systems usually adopt FIFO-buffered interactions: in the TCP/IP

protocol, for instance, output messages are sent by each process in a non-blocking fashion,

and are delivered to the recipient after traversing intermediate message queues. Now,

consider a type T = !a.?b, where ?b is fired after !a: the “natural” corresponding process

is P = !a . ?b, which performs the expected actions in the same order. However, in an

asynchronous setting, the sequentiality of the resulting interactions cannot be enforced:

i.e., if P fires !a asynchronously, then it will immediately start waiting for ?b, without

knowing whether !a is still buffered, or was actually received by the other endpoint.

Hence, one might argue that, in the presence of buffers, also P ′ = ?b | !a (where ?b and

!a are executed in parallel) “asynchronously conforms” to T : the intuition would be that,

1. Introduction and motivation 5

in the presence of asynchrony, T does not actually require that a synchronisation on

?b happens strictly after a synchronisation on !a. Several works on session types study

asynchronous semantics (e.g. [NT04; GV07; CDY07; BC08; HYC08; MYH09; Mos09;

CDY14]) and the possibility of relating P with T is standard. However, to the best of

our knowledge, the relation between P ′ and T is not addressed. In Section 1.1.3, we

wondered whether “missing cases” like this one might be due to a desire for minimality,

or technical difficulties related to the structural difference between P ′ and T . But in

order to reason on this issue, we need to address a more fundamental question: how can

we formalise the intuition that both P and P ′ “correctly asynchronously implement” T ,

and thus show that (in the presence of asynchrony) T is an “asynchronous type” for

both P and P ′? Moreover, can we address this problem in the same semantic framework

outlined in Sections 1.1.1 and 1.1.2?

1.1.4 Is there a language-independent notion of “correct” interaction?

In the discussion so far, we relied on the intuition of a “correct” interaction between

processes. This “correctness” can be defined in different ways, depending on the calculus

in use, and what is considered to be an “error”. A typical notion of “correct” interaction

is progress, which intuitively holds when two processes keep interacting until they both

terminate — i.e., we have an error when the interaction stops because one process

exposes transitions on which the other cannot synchronise. This notion is widespread in

concurrency theory, and can also be found in session types literature (e.g. [BL10; BL14]).

Different (but related) notions of error are considered in the setting of Communicating

Finite State Machines (CFSM) [BZ83]. There, the explicit handling of asynchrony (via

FIFO buffers) allows to characterise error conditions which are finer than lack of progress,

such as orphan messages [LTY15; DY13] (i.e., messages that are sent and buffered, but

never received — also studied for session types in [CDY14]) and unspecified reception

configurations [CF05] (which arise when a machine is waiting for some input, but no

matching message is ever sent). Assuming that the treatment of asynchrony outlined in

Section 1.1.3 is achieved, is it possible to semantically characterise a notion of “correct”

interaction (and thus, corresponding notions of erroneous communication) which is

language-independent and fits in the same behavioural framework of our (hypothetical)

typing/subtyping relation?

6 1.2. Contributions and structure of the work

1.1.5 Towards a general approach

Some of the topics in Sections 1.1.1 to 1.1.4 (in particular, those related to process/type

syntax) might be addressed by extending some previous work (e.g., by adding syntactic

constructs and ad hoc typing rules to some existing process/type language, and proving

subject reduction). In this work, however, we tackle them under a more general approach:

we revisit the semantic foundations of session types, in a behavioural framework allowing

the treatment of asynchrony ; we aim for language-independent relations and properties

that can be later applied to specific process calculi and programming languages.

1.2 Contributions and structure of the work

In this work, we study a behavioural theory of session types, aimed at unifying the notions

of typing and subtyping, including both synchronous and asynchronous semantics.

We represent session-based interactions in a simple but general way: we study generic

first-order LTS processes (called behaviours) whose transition labels are either inputs,

outputs, or silent (τ). Intuitively, we look at the input/output capabilities that two

interacting processes expose inside a session, and abstract everything else (e.g. internal

moves or communications on other sessions) as τ -moves. Moreover, in order to better

focus on the underlying behavioural theory, we abstract from transmitted/received values

by letting labels represent data sorts — and in this way, we also neglect the distinction

between choice labels and carried types usually found in session types syntax2. To the

best of our knowledge, this is the first work that approaches the session types theory

(taking several ideas from the related fields of behavioural contracts and Communicating

Finite State Machines) by studying arbitrary behaviours within an LTS, not necessarily

generated by some specific process language.

A crucial technical choice is the asymmetric treatment of input and output labels, that,

albeit dual of each other, are generally not interchangeable in our main developments.

This choice is inspired by the semantics of CFSMs, and is contrary e.g. to the full

symmetry between actions and co-actions typically found in CCS-based literature.

Moreover, again to the best of our knowledge, this work is unique in its treatment of

synchronous and asynchronous behaviours: we handle them within the same unified

2These abstractions will be further discussed later, in Sections 9.3 and 9.8.

1. Introduction and motivation 7

semantic framework, and study and compare them using the same relations. With this

approach, we are able to keep a remarkably simple notation (e.g., we do not require

dedicated labels to signal message buffering and consumption), and obtain several results

about the preservation of relations when passing from synchronous to asynchronous

semantics, where unbounded buffers can turn finite-state processes into infinite-state

ones.

The following list describes the structure of the work and the main technical contributions:

• we start in Chapter 2 by setting our semantic, syntax-independent framework

(Input/Output Labelled Transition Systems) and by introducing two process algebras

that we will use throughout our treatment: session types (Definition 2.14) and CCS

(Definition 2.23). We equip both of them with a synchronous and an asynchronous

semantics — the latter obtained by pairing terms with unbounded FIFO buffers;

• in Chapter 3 we give a running example, that we will reuse throughout our

treatment;

• in Chapter 4 we define the I/O compliance relation .̈/ as a notion of “correct”

interaction between behaviours, stricter than progress, albeit coinciding with it on

synchronous session types (Theorem 4.9). We also show that .̈/ is preserved when

passing from synchronous to asynchronous session behaviours (Proposition 4.12);

• in Chapter 5, we generalise to our semantic setting the classical notion of safety,

intended as the lack of deadlock state (Definition 5.1), orphan message (Defini-

tion 5.5) and unspecified reception configuration (Definition 5.15). We can then

formally justify the “correctness” of I/O compliance claimed in Chapter 4, by

proving that .̈/ is sound w.r.t. safety (Theorem 5.22), and also complete in the

case of asynchronous session behaviours (Theorem 5.24);

• in Chapter 6 we introduce the I/O simulation relation 6̈ between behaviours. We

show that it is an I/O compliance-preserving preorder (Theorems 6.12 and 6.13),

is a subtyping relation [CHY12; GH05] (Theorem 6.16), and is preserved when

passing from synchronous to asynchronous session types semantics (Theorem 6.27);

• in Chapter 7 we show that 6̈ can give the semantic basis to induce a syntax-driven

type systems based on session types, which guarantee safe interactions without the

need of a separate proof of subject reduction (Theorem 7.16);

8 1.3. Improvements w.r.t. [BSZ14]

• in Chapter 8 we present The LTS Workbench (LTSwb), an extensible Scala [Oa04]

toolbox allowing to define LTSs and processes, and compute relations between their

states. LTSwb allows to experiment with our semantic framework, and includes an

implementation of I/O compliance;

• in Chapter 9 we compare our framework and results with other related works and

approaches;

• finally, Chapter 10 contains a summarised view of our work, and proposes some

directions for further work.

To relieve the reader from execessively onerous technicalities, we have opted for moving

some auxiliary results and some proofs to the appendix.

1.3 Improvements w.r.t. [BSZ14]

This work is an improved and extended version of [BSZ14]. We corrected a mistake

appearing in that paper, i.e. the fact that the counterpart of Theorem 6.27 lacked the

�? relation in its hypotheses. Moreover:

• Chapter 5 and the results on safety are completely new;

• the I/O simulation 6̈ is now larger, and thus able to relate more compliance-

preserving behaviours;

• the typing relation in Chapter 7 has been also enlarged, and its definition stream-

lined and simplified, bringing it closer to an algorithm (as discussed in Conjec-

ture 10.1).

Chapter 2

Behaviours

In this chapter we exploit the semantic model of labelled transition systems (LTSs) to

provide a unifying ground for the notions developed in the later chapters. We consider I/O

LTSs where labels are partitioned into internal, input, and output actions (Section 2.1),

and we call behaviours the states of such LTSs. Then, we exploit this model to embed

four calculi for concurrency: binary session types with synchronous or asynchronous

semantics (Section 2.2), and synchronous/asynchronous CCS (Section 2.3).

This chapter lays the ground for tackling the issues discussed in Sections 1.1.1 to 1.1.4.

The asynchronous semantics will give the first hints on a peculiar feature of our framework,

that will emerge more strongly in the next chapters: inputs and outputs are treated

differently (e.g., because only the latter can be buffered for asynchrony), and they are

not always interchangeable duals (contrary e.g. to the the standard CCS actions and

co-actions). Even though in the rest of the work we will sometimes use session types

and CCS to write examples (e.g., in Chapter 3) and to discuss related work, most of the

technical notions and results do apply to the general class of behaviours.

2.1 Basics

2.1.1 The I/O LTS

Our treatment is developed within the I/O LTS
(
U,Aτ ,

{
`τ−→
∣∣∣ `τ ∈ Aτ

})
, where:

• U is the set of all behaviours;

9

10 2.1. Basics

?a, ?b, . . . ∈ A? Input actions
!a, !b, . . . ∈ A! Output actions
A = A? ∪ A! Set of I/O actions
co(·) Involution of I/O actions

`, `′, . . . ∈ A Actions (visible labels)
τ Internal action
Aτ = A ∪ {τ} Set of labels
`τ , `

′
τ , . . . ∈ Aτ Labels

U Set of all behaviours:
UST Sync session behaviours
UaST Async session behaviours
UaCCS Async CCS behaviours

p, q, r, . . . ∈ U Behaviours
T ,U , V . . . ∈ UST Session types (sync)
T [σ], U [ρ], . . . ∈ UaST Session types (async)
P [σ], Q[ρ], . . . ∈ UaCCS Async CCS behaviours

P,Q,R, . . . ⊆ U Sets of behaviours

Table 2.1: Summary of notation.

• Aτ is the set of all labels, partitioned into input actions A? = {?a, ?b, . . .}, output

actions A! = {!a, !b, . . .}, and the internal action τ ;

• `τ−→ ⊆ U× U is the transition relation.

We postulate an involution co(·) such that co(?a) = !a and co(!a) = ?a.

Notation 2.1 (Relations). We write:

• R∗ for the reflexive and transitive closure of a relation R;

• p `τ−→ when ∃p′ . p `τ−→ p′;

• p−→ when ∃`τ . p
`τ−→;

• p !−→ q iff ∃a . p
!a−→ p′.

Notation 2.2. For a set L ⊆ A, we define L? = L ∩ A? and L! = L ∩ A!.

Definition 2.3 (Nil behaviour). 0 is a behaviour without transitions, i.e. 0 6−→.

Definition 2.4 (Parallel composition of behaviours). For all p, q ∈ U, we define the

parallel composition p ‖ q as the behaviour in U whose transitions are given by the rules:

p
`τ−→ p′

p ‖ q `τ−→ p′ ‖ q

q
`τ−→ q′

p ‖ q `τ−→ p ‖ q′
p

`−→ p′ q
co(`)−−−→ q′

p ‖ q τ−→ p′ ‖ q′

Table 2.1 summarises the syntactic categories and some notation.

2. Behaviours 11

`τ−→, −→,
!−→ Labelled/unlabelled/semi-labelled transition relation (Notation 2.1)

=⇒ = (
τ−→)∗ Weak τ transition (Definition 2.5)

`τ=⇒ = =⇒ `τ−→=⇒ Weak transition relation (Definition 2.5)
??a
==⇒,

!!a
=⇒ Weakly persistent inputs/outputs (Definition 2.6)

V Set transition relation (Definition 2.7)

p⇓ =
{
`
∣∣∣ p `

=⇒
}

Weak barbs (Definition 2.8)

p⇓?, p⇓! Weak input/output barbs (Definition 2.8 and notation 2.2)

p⇓??, p⇓!! Weakly persistent input/output barbs (Definition 2.9)

∼= Isomorphism (Definition 2.10)
∼ Strong bisimilarity (Definition 2.11)
≈ Weak bisimilarity (Definition 2.12)
w Weak similarity (Definition 2.12)

Table 2.2: Summary of transition relations, barbs, and observational relations.

2.1.2 Transition relations

We introduce below the main relations which will be used along the treatment. Some of

them, like e.g. weak inputs and outputs, are standard, while some others, like e.g. weakly

persistent inputs and outputs, are not, and they will be used later on in our technical

development. Table 2.2 summarises these relations, providing pointers to where they are

introduced.

Definition 2.5 (Weak transitions). We define the relation =⇒ as the reflexive and

transitive closure of
τ−→. We define

`τ=⇒ as =⇒ `τ−→=⇒. By extension, given a sequence of

actions w = `1, . . . , `n, we write
w
=⇒ for

`1=⇒ · · · `n=⇒. Further, we write
!

=⇒ for =⇒ !−→=⇒, we

write Q `τ=⇒ q whenever ∃p ∈ Q . p
`τ=⇒ q, and similarly for Q =⇒ q.

Definition 2.6 (Weakly persistent inputs/outputs). We write p
??a
=⇒ (resp. p

!!a
=⇒) iff for

all p′, p =⇒ p′ implies p′
?a
=⇒ (resp. p′

!a
=⇒).

The set transition relation V will be used later on in Chapter 6 to define I/O simulation.

Definition 2.7 (Set transition relation). We write q V Q iff ∅ 6= Q ⊆ {q′ | q =⇒ q′}.

We write Q V Q′ iff ∀q′ ∈ Q′ . ∃q ∈ Q . q =⇒ q′.

2.1.3 Barbs

Definition 2.8 (Weak barbs). We define the weak barbs of p as:

p⇓ =
{
`
∣∣∣ p `

=⇒
}

12 2.1. Basics

By extension, we write Q⇓ for
⋃
q∈Q q⇓.

Definition 2.9 (Weakly persistent barbs). We define the sets:

p⇓?? =
{

?a
∣∣∣ p ??a

=⇒
}

p⇓!! =
{

!a
∣∣∣ p !!a

=⇒
}

By extension, we write Q⇓?? for
⋂
q∈Q q⇓

??, and similarly for Q⇓!!.

2.1.4 Observational relations

We recall below some standard observational relations between behaviours [Mil89].

Definition 2.10 (Isomorphism). We write p ∼= q iff the transition diagrams of p and

q are isomorphic, i.e. equal up-to node renaming.

Definition 2.11 (Strong bisimulation). We say that R is a (strong) bisimulation relation

iff, whenever p R q:

(i) p
`τ−→ p′ implies ∃q′ . q `τ−→ q′ ∧ p′ R q′;

(ii) q
`τ−→ q′ implies ∃p′ . p `τ−→ p′ ∧ p′ R q′.

We write ∼ for the largest bisimulation relation. When p ∼ q, we say that p and q are

bisimilar.

Definition 2.12 (Weak simulation). We say that R is a weak simulation relation iff,

whenever p R q:

(i) p
`−→ p′ implies ∃q′ . q `

=⇒ q′ ∧ p′ R q′;

(ii) p
τ−→ p′ implies ∃q′ . q =⇒ q′ ∧ p′ R q′.

We write w for the largest weak simulation relation, and ≈ for the largest symmetric

weak simulation relation. When p w q, we say that p is weakly simulated by q.

Proposition 2.13 below reports a well-known and immediate result.

Proposition 2.13. ∼= (∼ (≈ (w.

2. Behaviours 13

2.2 Session types

A session type is an abstraction of the behaviour of a process interacting with its

environment. Many different forms of session types have been proposed, with the most

notable classes of binary (i.e. involving exactly two agents) and multi-party session types.

We present a simple version of the former, by slightly adapting (and extending to the

asynchronous case) those studied in [BL10].

Formally, a session type is a term of a process algebra featuring internal choice
⊕

i∈I !ai .T i,

external choice
˘

i∈I?ai .T i and guarded recursion. In an internal choice, the process

is declaring that it will choose one of the branches (say, the i-th), fire the output (!ai),

and then proceed with the continuation T i. In an external choice, instead, the branch

is chosen by the context; the process will wait until receiving the input (?ai), and then

continue as T i. We stipulate that empty choices (either internal or external) represent

successful termination.

Definition 2.14 (Session types). Session types are terms with the syntax:

T ::=
˘

i∈I?ai .Ti
∣∣ ⊕

i∈I !ai .Ti
∣∣ recX T

∣∣ X
where (i) the set I is finite, (ii) the actions in internal/external choices are pairwise

distinct, and (iii) recursion is guarded. We write 0 for the empty (internal/external)

choice, and will usually omit its trailing occurrences (e.g., we will write !a.?b instead of

!a.?b.0). Unless otherwise specified, we assume session types to be closed.

We present two semantics for session types: one synchronous (Definition 2.15) and one

asynchronous (Definition 2.16). In both semantics, an internal choice first commits to

one of the branches !a.T , before enabling !a. An external choice enables all its actions.

Definition 2.15 (Synchronous session behaviours). We denote with UST the set of

behaviours of the form T , with transitions given by the rules:

k ∈ I˘
i∈I?ak .Ti

?ak−−→ Tk

(TExt)
k ∈ I |I| > 1⊕

i∈ITi
τ−→ Tk

(TInt)

!a.T
!a−→ T

(TOut)
T [recX T/X]

`τ−→ T ′

recX T
`τ−→ T ′

(TRec)

14 2.2. Session types

T1

τ

!a ?b

τ

!a′ ?b′

T1[]

τ

!a ?b

?b !a

τ

!a′ ?b′

?b′ !a′ T2
∼= T2[]

?a

τ

!b

τ !c

Figure 2.1: Three session behaviours.

For the asynchronous semantics, we consider behaviours of the form T [σ] where σ is a

sequence of output actions, modelling an unbounded buffer. We denote with ε the empty

buffer, and with [!a.σ] a buffer with head !a and tail σ.

Definition 2.16 (Asynchronous session behaviours). We denote with UaST the set of

behaviours of the form T [σ], with transition rules:

k ∈ I(⊕
i∈I !ai .Ti

)
[σ]

τ−→ Tk [σ .!ak]
(TIntA)

T [!a.σ]
!a−→ T [σ]

(TOutA)

k ∈ I(˘
i∈I?ai .Ti

)
[σ]

?ak−−→ Tk [σ]
(CExtA)

T [recX T/X][σ]
`τ−→ T ′[σ′]

recX T [σ]
`τ−→ T ′[σ′]

(TRecA)

Rule (TIntA) adds the selected output to the end of the buffer, with a τ -move. Rule

(TOutA) says that an output !a at the head of the buffer is consumed with a corresponding

!a-transition. The asynchronous rules (TExtA) and (TRecA) are similar to their synchronous

counterparts.

Example 2.17. Let T1 = !a .?b ⊕ !a′ .?b′, and T2 = ?a .(!b⊕ !c). Their sync/async

behaviours are shown in Figure 2.1. Note that the sync/async behaviours of T2 are

isomorphic.

For more examples, see Chapter 3.

Similarly to [CDY14], we adopt an equi-recursive view of session types [Pie02], through

a congruence ≡ which, intuitively, relates session types that are equal up-to unfolding

of their recursive subterms (details in Definition A.1 and Proposition A.2). From the

semantic viewpoint, equivalent terms are strongly bisimilar (both synchronously and

asynchronously), and thus observationally indistinguishable.

Proposition 2.18 below shows that the syntactic form of synchronous session types can

be determined by observing their transitions.

2. Behaviours 15

Proposition 2.18. For all T :

(i) T
?a−→ iff T ≡ ?a.T ′ &

˘
i∈I?bi .Ti;

(ii) T
τ−→ iff T ≡

⊕
i∈I !bi .Ti, with |I| > 1;

(iii) T
!a−→ iff T ≡ !a.T ′.

Proof. See page 114.

The main semantic differences between synchronous and asynchronous session types are

formalised in Proposition 2.19 below: roughly, asynchrony turns sequences of outputs

into sequences of τs, but input transitions and τ -transitions are preserved. For example,

we have:

(i) ?a.0
?a−→ 0 becomes ?a.0[]

?a−→ 0[] (i.e., input transitions are preserved by buffering);

(ii) !a.0⊕ !b.0
τ−→ !a.0 becomes !a.0⊕ !b.0[]

τ−→ 0[!a], and similarly for the !b-branch

(i.e., the τ -transition of a non-deterministic internal choice is preserved in the

asynchronous behaviour — where it signals the buffering of the selected prefix);

(iii) !a . !b .0
!a−→ !b .0

!b−→ 0 becomes !a . !b .0[]
τ−→ !b .0[!a]

τ−→ 0[!a.!b] (i.e., deterministic

output transitions are “replaced” with τs in the asynchronous behaviour).

Proposition 2.19 also states that, by observing the transitions and the buffer of an

asynchronous session behaviour, we can recover information about the corresponding

synchronous behaviour: e.g., from T [σ]
?a−→ T ′[σ] we can infer T

?a−→ T ′ (and therefore,

by item (i) of Proposition 2.18, T is an external choice).

Proposition 2.19. For all T , T ′ and σ,

(i) T
?a−→ T ′ iff T [σ]

?a−→ T ′[σ];

(ii) for all a 6= b, T
τ−→ !a.T ′ and T

τ−→ !b.T ′′ iff T [σ]
τ−→ T ′[σ .!a] ∧ T [σ]

τ−→ T ′′[σ .!b];

(iii) T
!a−→ T ′ iff T [σ]

τ−→ T ′[σ .!a] ∧ 6 ∃b 6= a . T [σ]
τ−→ T ′[σ .!b].

Proof. See page 115.

16 2.3. CCS

Proposition 2.20 below says that, up-to isomorphism, asynchronous session behaviours

are not more general than synchronous ones, and vice versa: e.g., considering the session

types in Example 2.17, we have T1 6∈ UaST (i.e., there is no element of UaST which is

isomorphic to T1), while T 1 [] 6∈ UST.

Proposition 2.20. Up-to isomorphism, UaST 6⊆6⊇ UST.

Proposition 2.21. T [σ]
!a−→ iff ∃σ′ . σ = !a.σ′. If T

!b
=⇒ T ′, then ∃a . T [σ]

τ−→ T ′[σ .!b]
!a−→.

Proof. See page 115.

Proposition 2.22. T [σ]
!!a
=⇒ iff ∃σ′ . σ = !a.σ′, or σ = ε and ∃T ′ . T ≡ !a.T ′

Proof. See page 115.

2.3 CCS

As another class of behaviours, we now present a fragment of CCS [Mil89] without

delimitations and relabelling (Definition 2.23). We will give it two semantics: one

synchronous (Definition 2.24), and one asynchronous (Definition 2.25).

Definition 2.23 (CCS). CCS terms have the following syntax:

P ,Q,R, S ::= 0
∣∣ `τ . P

∣∣ P +Q
∣∣ P |Q

∣∣ X
∣∣ µXP

CCS operators are standard: non-deterministic choice +, parallel composition |, recursion

(assumed to be guarded).

Definition 2.24 (Sync CCS semantics). We denote with UCCS the set of behaviours of

the form P , with transitions given by the following rules (the symmetric ones for | and +

are omitted):

`τ . P
`τ−→ P

P
`τ−→ P ′

P +Q
`τ−→ P ′

P
`τ−→ P ′

P |Q `τ−→ P ′ |Q

P [µXP/X]
`τ−→ P ′

µXP
`τ−→ P ′

2. Behaviours 17

The synchronous CCS semantic rules are standard. Note that the parallel operator |

allows interleaved execution, but not synchronisation (which is provided by the LTS-level

operator ‖).

Like async session behaviours, async CCS semantics use a buffer [σ].

Definition 2.25 (Async CCS semantics). We denote with UaCCS the set of behaviours

of the form P [σ], with transitions given by the following rules (the symmetric ones for +

and | are omitted):

`τ ∈ {τ} ∪ A?

(`τ . P) [σ]
`τ−→ P [σ] (!a . P) [σ]

τ−→ P [σ . !a] P [!a . σ]
!a−→ P [σ]

P [σ]
`τ−→ P ′[σ′]

(P +Q)[σ]
`τ−→ P ′[σ′]

P [σ]
`τ−→ P ′[σ′]

(P |Q)[σ]
`τ−→ (P ′ |Q)[σ′]

P [µXP/X][σ]
`τ−→ P ′[σ′]

µXP [σ]
`τ−→ P ′[σ′]

As in async session behaviours, an output !a is first added at the end of the buffer, and

can only be consumed from its head. Note that a behaviour cannot consume its own

buffer; furthermore, as in the synchronous CCS semantics, | just allows for interleaving.

Synchronization is obtained with P [σ] ‖Q[σ′], i.e. using the parallel composition of LTS

states: this allows P ’s input actions to consume Q’s output buffer, and vice versa.

Example 2.26. The behaviour of the async process !a . τ [] is shown as p1 in Figure 4.1.

We now study some relations among the classes of behaviours introduced so far. Asyn-

chronous session behaviours can be straightforwardly encoded in async CCS.

Definition 2.27. We define an encoding JK of session type terms into CCS terms:

q⊕
i∈I !ai .Ti

y
=
∑

i∈I !ai . JTiK
q˘

i∈I?ai .Ti
y

=
∑

i∈I?ai . JTiK

JrecX T K = µXJT K JXK = X

By Proposition 2.28, an async session type and its encoding in async CCS are isomorphic.

Proposition 2.28. T [] ∼= JT K[].

Proposition 2.29 states that async CCS behaviours strictly include async session beha-

viours, while they do not include synchronous CCS, and synchronous session behaviours.

Note that the encoding of (synchronous) session types in our CCS fragment is akin to

the encoding of τ -less CCS into full CCS [DH87].

18 2.3. CCS

Proposition 2.29. Up-to isomorphism, we have UaST (UaCCS 6⊇ UCCS) UST, and

UaCCS 6⊆6⊇ UST and UCCS 6⊆ UaST.

Example 2.30. The session type !a⊕ !b from UST is encoded in UCCS as the isomorphic

behaviour τ . !a + τ . !b, while ?a & ?b is encoded as ?a + ?b. In the asynchronous case, by

Definition 2.27, we have that the session type !a⊕ !b[σ] from UaST is encoded in UaCCS

as the isomorphic behaviour !a + !b[σ], while ?a & ?b[σ] is encoded as ?a + ?b[σ].

Instead, ?a + !b from UCCS is not isomorphic to any session type in UST (due to the

mixed choice between an input and an output), nor to any behaviour in UaCCS (because

buffered semantics would introduce a τ -transition on the !b-branch). Moreover, ?a + τ

from UCCS and ?a + τ [] from UaCCS are not isomorphic to any asynchronous session type

in UST, nor in UaST (due to the choice between an input and an internal move without

continuation).

Finally, !a.?b from UST is not isomorphic to any behaviour in UaCCS (because the buffered

semantics of the latter do not allow the !a-transition to preempt the ?b-transition).

Chapter 3

A motivating use case

We now introduce a running example, which will be used throughout the thesis. The

following types describe the behaviours of a bartender (B), and of a customer named

Alice (A):

UB = recX (?aCoffee.!coffee.X & ?aBeer.(!beer.X ⊕ !no.X) & ?pay)

TA = !aCoffee.?coffee.!pay ⊕ !aBeer.(?beer.!pay & ?no.!pay)

The bartender presents an external choice &, allowing a customer to order either coffee

or beer, or to eventually pay; in the first case, he will serve the coffee and then recursively

wait for more orders; in the second case, he uses the internal choice ⊕ to decide whether

to serve the beer or not — and then waits for more orders; in the third case, after the

due amount (possibly 0) is paid, the interaction ends.

Alice internally chooses between coffee or beer; in the first case, she waits to get the

coffee and then pays; in the second case, she lets the bartender choose between serving

the beer, or saying no — and in both cases, she will check out.

Intuitively, TA and UB are compliant — i.e., their parallel composition TA ‖ UB (under

Definitions 2.4 and 2.15) gives rise to a “correct” interaction such that:

1. each output of TA is matched by an input of UB (and vice versa), and

2. when they stop synchronising (after pay), they are both “successful” — i.e., they

reach a final configuration 0 ‖ 0 without further enabled transitions.

19

20 3. A motivating use case

Moreover, the following processes type-check — roughly, because the pairs UB, QB and

TA, PA expose the same interaction labels, and have a similar branching structure:

QB = µY (?aCoffee . !coffee . Y + ?aBeer . (!beer . Y + !no . Y) + ?pay)

PA = !aCoffee . ?coffee . !pay + !aBeer . (?beer . !pay + ?no . !pay)

From typing and compliance, we can deduce that PA[] ‖ QB[] synchronise “correctly”

(reflecting the “correct” interaction of TA ‖ UB), and reach the successful configuration

0[] ‖ 0[], where Alice and the bartender agree in stopping their interaction.

Alice may also implement a subtype of T A only asking for coffee: T ′A = !aCoffee.?coffee.!pay,

with a corresponding process P ′A = !aCoffee . ?coffee . !pay: also in this case, we would

have that T ′A and UB are compliant, and thus P ′A[] ‖QB[] also gives rise to a “correct”

interaction.

So far, the structure of A’s and B’s processes have matched the structure of the respective

types. This is a common situation in the session types literature: processes are usually

written using calculi inheriting the structured communication approach pioneered by

Honda et al. [Hon93; HVK98], thus reflecting the internal/external choices of types.

However, in some cases things may be more complex. The bartender might have other

incumbencies, and he may need to stop selling beer after a certain hour:

Q′′B = µY
(

(?aCoffee . !coffee . Y + ?aBeer . (!beer . Y + !no . Y) + ?pay)

+ τ . µZ(?aCoffee . !coffee . Z + ?aBeer . !no . Z + ?pay)
)

This reminds us of the small Erlang code sample given in Section 1.1.1: the τ branch

represents the bartender’s decision to stop waiting for customer orders, perform some

internal duties (e.g. clean up the bar) and then serve again — this time, refusing to sell

beer. Intuitively, we would like Q′′B to still have the type UB, since compliant customer

processes (e.g. Alice’s one) will still be able to interact (either before or after the τ). A

process like Q′′B, however, cannot usually be written (and typed) using classical session

calculi: their grammar does not offer a τ prefix, since it would allow for processes where

the distinction between internal/external choices is blurred (contrary to the expected

program structure).

Let us consider another scenario: Alice is late for work. But she realises that the

bartender-customer system is asynchronous: the counter is a bidirectional buffer where

drinks and money can be placed. Thus, she tries to save time by implementing the

3. A motivating use case 21

following type and process:

T ′′A = !aCoffee.!pay.?coffee P ′′A = !aCoffee . (?coffee | !pay)

i.e., in her type she plans to order a coffee, put her money on the counter while the

bartender prepares her drink, and take it as soon as it is ready; in her process, she orders a

coffee, and tries to grab the coffee with one hand, while putting the money on the counter

with the other. P ′′A represents an optimised program exploiting buffered communication

semantics, thus diverging from the syntactic structure of T ′′A, and reminds us of the issues

discussed in Section 1.1.3. Therefore, is T ′′A a type for P ′′A? Is T ′′A compliant with UB,

and will P ′′A interact smoothly with QB and Q′′B? We shall answer these questions later

on in Chapter 7.

Chapter 4

I/O compliance

We now address the problem of defining a relation between behaviours to guarantee that,

when combined together, they interact in a “correct” manner. Many different notions of

“correct interaction” have been considered to this purpose in the literature, on different

languages and formalisms, both for the binary [Car+06; CGP09; BL10; BL14] and for

the multi-party settings [BZ07b; BZ08; BCZ13; DY13]. As discussed in Section 1.1.4, we

aim for a semantic, language-independent relation that fits in the framework introduced

in Chapter 2.

We start by considering the classical, trace-based notion of compliance of [CGP09; BL10],

where correctness is interpreted as progress of the interaction. In Definition 4.1 we say

that a behaviour p has progress with q (in symbols, p a q) iff, whenever a τ -computation

of the system p ‖ q is stuck, then p has reached the final (success) state 0. Note that

this notion is asymmetric, in the sense that p is allowed to terminate the interaction

without the permission of q. This is intended to model the asymmetry between the role

of a client p and that of a server q, as in [BL10].

Definition 4.1 (Progress). We write p a q iff p ‖ q =⇒ p′ ‖ q′ 6 τ−→ implies p′ ∼= 0.

We write p a` q when p a q and p ` q.

23

24 4. I/O compliance

Example 4.2. We have the following relations:

!a.?b a` ?a.!b recX !a.X a` recY ?a.Y

!a.?b 6a 6` !b.?a (!a.?b)[] a` (!b.?a)[]

!a.!b 6a 6` ?c (!a.!b)[] a 6` ?c []

!a.?b 6a ` ?a (recX ?a.X)[] 6a 6` !b []

recX !a.X 6a ` ?a (recX !a.X)[] a` ?b []

The following proposition is a standard result on synchronous session types [BL10]: given

two session types which enjoy progress, it allows to reason by cases on their structure.

Proposition 4.3 (a/a`-induced shapes of session types). If T a U , then exactly one

of the following cases holds:

a. T = 0;

b. T ≡
˘

i∈I?ai .T i and U ≡
⊕

j∈J !aj .U j, with ∅ 6= J ⊆ I, and ∀j ∈ J . T j a U j;

c. T ≡
⊕

i∈I !ai .T i and U ≡
˘

j∈J?aj .U j, with ∅ 6= I ⊆ J , and ∀i ∈ I . T i a U i.

Instead, if T a` U , we have either:

a. T = U = 0;

b. T ≡
˘

i∈I?ai .T i and U ≡
⊕

j∈J !aj .U j, with ∅ 6= J ⊆ I, and ∀j ∈ J . T j a` U j;

c. T ≡
⊕

i∈I !ai .T i and U ≡
˘

j∈J?aj .U j, with ∅ 6= I ⊆ J , and ∀i ∈ I . T i a` U i.

Proof. See [BL10]: the statement for a derives from the proof of Proposition 2.9 therein,

while the statement for a` derives from Lemma 3.3 in the same work (modulo two minor

differences: in this paper, we postulate that 0 is the success state, and the unfolding of

recX · · · does not emit a τ -transition).

The progress-based notion of correctness in Definition 4.1 also relates behaviours that allow

apparently incorrect interactions. For instance, (recX !a.X)[] a ?b [] holds, because the

interaction of the two behaviours produces an infinite τ -trace, even if no synchronisation

ever happens. Ideally, we would like our notion of correct interaction to be stricter,

avoiding “vacuous” progress where the client p exposes I/O capabilities, but the server

4. I/O compliance 25

q cannot interact, and the composition p ‖ q merely advances via internal τ -transitions

(without synchronisations). We introduce a notion of compliance enjoying such a property

on general behaviours (recall from Chapter 2 that p⇓! = (p⇓)! = p⇓ ∩ A!).

Definition 4.4 (I/O compliance). We say that a relation R between behaviours is an

I/O compliance relation iff, whenever p R q:

a. p⇓! ⊆ co(q⇓?) ∧
(
(p⇓! = ∅ ∧ p⇓? 6= ∅) =⇒ ∅ 6= q⇓! ⊆ co(p⇓?)

)
;

b. p
`−→ p′ ∧ q co(`)−−−→ q′ =⇒ p′ R q′;

c. p
τ−→ p′ =⇒ p′ R q;

d. q
τ−→ q′ =⇒ p R q′.

We write C̈ for the largest I/O compliance relation, and .̈/ for the largest symmetric

I/O compliance relation. When p .̈/ q, then we say that p and q are I/O compliant.

Definition 4.4 can be interpreted with the game-theoretic metaphor. Let p and q be two

players/behaviours. Item a. has two conditions: by the leftmost constraint, if p wants to

do some output (possibly after some τ -moves), then q must match it with its inputs; by

the rightmost constraint, if p is not going to output, but she wants to do some input,

then q must be ready (possibly after some τ -moves) to do some output, and q cannot

have outputs other than those accepted by p. I/O compliance must be preserved if p

and q synchronise or do internal moves (items b., c., d.).

Item a. of Definition 4.4 guarantees that, in each state, the two behaviours will either

stop interacting, or will keep the possibility to synchronise in the future (possibly after

some τ -moves). It captures a basic duality between inputs and outputs: in correct

interactions, each possible output must be matched by a corresponding input, while

the vice versa is not necessary. In the symmetric case, item a. gives the intuition of

underlying constraints similar to the following:

p⇓! ⊆ co(q⇓?) q⇓! ⊆ co(p⇓?)

giving the idea that p C̈ q is covariant w.r.t. p’s outputs and q’s inputs, and contravariant

w.r.t. p’s inputs and q’s outputs. Indeed, both constraints above are explicit in the

symmetric relation .̈/, which forfeits client/server distinctions.

26 4. I/O compliance

τ

!a

τ

τ

!a

p1

?a

τ
?a

?b

p2

?a

!b

?c

p3

!a

τ

!b

p4

Figure 4.1: Four behaviours which are not session behaviours.

p5

p5′

τ

?a

p5′′

τ

?b

p5

Figure 4.2: A behaviour which does not admit an I/O compliant one.

Lemma 4.5 below says that the largest symmetric I/O compliance relation .̈/ coincides

with the intersection of C̈ and its inverse.

Lemma 4.5. .̈/ = B̈ ∩ C̈.

Proof. See page 118.

Example 4.6. Consider the behaviours in Figure 4.1. We have that p1 .̈/ p2, p2 .̈/ p4,

p1 C̈ p3, and p2 C̈ p3, while all the other pairs of behaviours are not compliant.

The following example shows that there exist behaviours which do not admit a (symmetric)

I/O compliant one.

Example 4.7. Consider the behaviour p5 in Figure 4.2. We show that, for all behaviours

q, it must be q 6.̈/ p5. By contradiction, assume that q .̈/ p5, for some q. Since p5
τ−→ p5

′

and p5
τ−→ p5

′′, by applying twice clause d. of Definition 4.4 it follows that q .̈/ p5
′ and

q .̈/ p5
′′. Then, by applying twice the first part of clause a., we have:

q⇓! ⊆ co(p5
′⇓?) ∩ co(p5

′′⇓?) = {?a} ∩ {?b} = ∅

Now, since p5
′ .̈/ q and p5

′⇓! = ∅ 6= p5
′⇓?, by the second part of clause a. we would obtain

∅ 6= q⇓! — contradiction.

We now relate I/O compliance with the notion of progress introduced in Definition 4.1.

Item (a) of Theorem 4.9 below states that, if two behaviours are compliant, then they

enjoy progress. The vice versa is not always true, as shown in Example 4.8.

4. I/O compliance 27

Example 4.8. We have (recX !a.X)[] a ?b [], but (recX !a.X)[] 6C̈ ?b []: in fact, the weak

output barbs of the LHS contain !a, which is not matched by the weak input barbs of the

RHS (that only contain ?b) — thus violating item a. of Definition 4.4. This is coherent

with our desideratum that correct interactions must not progress vacuously.

The fact that a 6⊆ C̈ can also be seen on synchronous CCS. Consider, for instance,

P = !a + !b and Q = ?a: we have P a Q (because the LHS and RHS can synchronise on

a, and then terminate), but P 6C̈ Q (because !b on the LHS is not matched by the inputs

of the RHS).

Still, C̈ and a coincide for synchronous session behaviours, as shown in item (b)) of

Theorem 4.9. The intuition is the following. Take T ,U ∈ UST: by Definition 2.15, they

cannot generate infinite τ -traces, and whenever they output, they always commit to a

single output transition. These properties allow to avoid situations similar to the ones in

Example 4.8; as a consequence, if T ,U enjoy progress, then they are also I/O compliant.

Theorem 4.9. (a) If p C̈ q, then p a q; (b) if p, q ∈ UST and p a q, then p C̈ q.

Proof. We first prove C̈ ⊆ a. Let:

F (X) =

(p, q)

∣∣∣∣∣∣ p ‖ q 6
τ−→ implies p ∼= 0 and

p ‖ q τ−→ p′ ‖ q′ implies (p′, q′) ∈ X


It is easy to check that gfp(F) =a. By the coinduction proof principle, if C̈ ⊆ F (C̈),

then we can deduce that C̈ ⊆ gfp(F) = a. So, we show that C̈ ⊆ F (C̈). Let p C̈ q.

For the first clause of the definition of F , assume p‖q 6 τ−→. We show that p has no outgoing

transitions (i.e., p ∼= 0) by showing the absurdity of the following cases:

• p τ−→. Not possible, because it would contradict the assumption p ‖ q 6 τ−→.

• p !a−→. By item a. of Definition 4.4, we have that p⇓! ⊆ co(q⇓?), hence q
?a
=⇒. Note

that q 6 τ−→, because otherwise we would contradict the assumption p‖ q 6 τ−→. Therefore,

it must be q
?a−→, and so by definition of ‖ we would obtain p ‖ q τ−→ — contradiction.

• p ?a−→ and @b . p
!b−→. Note that p6 τ−→ and q 6 τ−→, because otherwise we would contradict

the assumption p ‖ q 6 τ−→. Since p⇓! = ∅ and p⇓? 6= ∅, by item a. of Definition 4.4 we

have that ∅ 6= q⇓! ⊆ co(p⇓?). Since q 6 τ−→, it must be q
!a−→, and so by definition of ‖

we would obtain p ‖ q τ−→ — contradiction.

28 4. I/O compliance

Thus, since p cannot have outgoing transitions, we conclude that p ∼= 0.

For the second clause of the definition of F , assume that p ‖ q τ−→. We have the following

three cases:

• p τ−→ p′. By definition of ‖, this implies p ‖ q τ−→ p′ ‖ q. By item c. of Definition 4.4,

we conclude that p′ C̈ q.

• q τ−→ q′. Similar to the previous case.

• p `−→ p′ and q
co(`)−−−→ q′, for some label `. By definition of ‖, this implies p‖q τ−→ p′ ‖q′.

By item b. of Definition 4.4, we conclude that p′ C̈ q′.

In all three cases, we have concluded that p′ C̈ q′, thus satisfying the second clause of F .

We now prove that T a U implies T C̈ U , for all session types T ,U . To do that, it

suffices to show that a is an I/O compliance relation. Assume that T a U . We show

that all the clauses of Definition 4.4 are satisfied:

• recall the 3 possible forms of T and U from Proposition 4.3: modulo unfolding,

either T = 0, or T =
⊕

i∈I !ai .T i (with |I| ≥ 1) and U =
˘

j∈J?aj .U j with I ⊆ J ,

or vice versa (i.e., T is an external choice and U is an internal choice). Each of

these three possible forms satisfies item a. in Definition 4.4;

• when the premise of item b. of Definition 4.4 holds, we have T ‖ U τ−→ T ′ ‖ U ′; by

definition of progress, we have T ′ a U ′.

• when T
τ−→ T ′ (premise of item c. of Definition 4.4), by definition of progress, we

have T ′ a U .

• similarly, when U
τ−→ U ′ (premise of item d. of Definition 4.4), by definition of

progress, we have T a U ′.

Note that I/O compliance can relate asynchronous session behaviours which intuitively

interact correctly, but which would not be compliant under the synchronous semantics,

e.g. (!a.?b)[] .̈/ (!b.?a)[].

Example 4.10. Recall the types and processes in Chapter 3. In the sync case, UB a` TA,

UB .̈/ TA, UB a` T ′A and UB .̈/ T
′
A. The same holds for their async versions.

4. I/O compliance 29

U B[] · · ·

U (1)

B

U (2)

B

U (3)

B U (4)

B U (5)

B

· · ·· · ·

?aBeer

?pay
?aCoffee

τ
?pay !coffee

?aBeer?aCoffee

!coffee

T ′′A []

T ′′A
(1) T ′′A

(2) T ′′A
(3)

T ′′A
(4)

T ′′A
(5)

T ′′A
(6)

T ′′A
(7)

T ′′A
(8)

τ

τ

!aCoffee

!pay

?coffee

?coffee

!pay

!aCoffee

τ

Relation

(UB[], T ′′A [])

(UB[], T ′′A
(1))

(UB[], T ′′A
(2))

(U (2)

B , T ′′A
(8))

(U (2)

B , T ′′A
(3))

(U (3)

B , T ′′A
(8))

(U (3)

B , T ′′A
(3))

(U (4)

B , T ′′A
(4))

(U (5)

B , T ′′A
(5))

(UB[], T ′′A
(6))

(U (1)

B , T ′′A
(7))

Note that U B[] has an in-
put (?exAskBeer) which is
not matched by an output
of T ′′A [], and therefore leads
to states not considered in
the relation (and here omit-
ted). The same goes for U (3)

B ,
with two unmatched inputs
(?aBeer and ?aCoffee).
The states in the transition
diagram of T ′′A [] are detailed
in Table 6.1.

Table 4.1: Example of I/O compliance.

When Alice is late for work, for the synchronous types we have UB 6a` T ′′A and UB 6.̈/ T ′′A,

due to the wrong order of Alice’s actions. In the asynchronous case, instead, we have

UB[] a` T ′′A[] and UB[] .̈/ T ′′A[]. The latter relation is detailed in Table 4.1.

The following lemma characterises the form of buffers in asynchronous computations of

synchronously-compliant session behaviours.

Lemma 4.11 (Half-duplex communication in compliant async session behaviours). Let

T ◦U , for some ◦ ∈ {a,`,a`, C̈, B̈, .̈/}, and assume that T []‖U [] =⇒ T ′[σ]‖U ′[ρ]. Then:

(i) σ = ε or ρ = ε.

(ii) if σ = ρ = ε then T ′ ◦ U ′.

Proof. See page 121.

Proposition 4.12 states that for session types, I/O compliance under the synchronous

semantics is preserved when passing to the asynchronous semantics. As we shall see, some

form of preservation when passing from the synchronous to the asynchronous semantics

holds for all the main relations studied in this thesis.

Proposition 4.12. If T C̈ U , then T [] C̈ U [].

30 4. I/O compliance

Proof. Assume that T C̈ U , and let:

R =
{

(T ′[σ], U ′[ρ])
∣∣ T [] ‖ U [] =⇒ T ′[σ] ‖ U ′[ρ]

}

We will prove that R is an I/O compliance relation, i.e. it satisfies all the items of Defini-

tion 4.4. The thesis will then follow by the fact that (T [], U []) ∈ R.

Let (T ′[σ], U ′[ρ]) ∈ R. Note that items b.–d. of Definition 4.4 follow directly by definition

of ‖, so we only need to prove item a.. By Lemma 4.11, we have σ = ε or ρ = ε, and so

we have the following three cases:

• σ 6= ε and ρ = ε. Let σ = !a.σ′. Then:

T ′[σ]⇓! = {!a} (4.1)

By items (ii) and (iii) of Proposition 2.19 we know that each output in σ has been

generated by some T ′′ such that T ′′
σ
=⇒ T ′; let us take such T ′′ so that:

T [] ‖ U [] =⇒ T ′′[] ‖ U ′[] =⇒ T ′[σ] ‖ U ′[]

Since T C̈ U and T [] ‖U [] =⇒ T ′′[] ‖U ′[], from Lemma 4.11 we obtain that T ′′ C̈ U ′.

By items (ii) and (iii) of Proposition 2.18, we know that T ′′ is an internal choice,

hence by Theorem 4.9 and Proposition 4.3 we know that U ′ must be a (larger)

external choice, i.e. T ′′⇓! ⊆ co(U ′⇓?). Hence, from Equation (4.1) we obtain:

{!a} = T ′[σ]⇓! ⊆ T ′′⇓! ⊆ co(U ′⇓?) = co(U ′[]⇓?)

This proves the first part of item a. in Definition 4.4. The second part holds

vacuously, because T ′[σ]⇓! 6= ∅.

• σ = ε and ρ 6= ε. If T ′ = 0, then item a. in Definition 4.4 is trivially satisfied.

Otherwise, the reasoning is similar to the case above, by swapping the role of T ′

and U ′, and considering the queue ρ instead of σ. More in detail, we let ρ = !a.ρ′,

and so we obtain:

U ′[ρ]⇓! = {!a} (4.2)

4. I/O compliance 31

As in the previous item, via Proposition 2.19 we take U ′′ such that U ′′
ρ

=⇒ U ′, from

which we have:

T [] ‖ U [] =⇒ T ′[] ‖ U ′′[] =⇒ T ′[] ‖ U ′[ρ]

Since T C̈ U and T [] ‖U [] =⇒ T ′[] ‖U ′′[], from Lemma 4.11 we obtain that T ′ C̈ U ′′.

By Proposition 2.18 we have that U ′′ is a non-empty internal choice, and by The-

orem 4.9 and Proposition 4.3 we know that T ′ is a (larger) external choice, i.e.

∅ 6= U ′′⇓! ⊆ co(T ′⇓?). Since T ′ is an external choice, then T ′[]⇓! = ∅, which

vacuously satisfies the first part of item a. in Definition 4.4. For the second part of

the item, from Equation (4.2) we have:

∅ 6= {!a} = U ′[ρ]⇓! ⊆ U ′′⇓! ⊆ co(T ′⇓?) = co(T ′[]⇓?)

• σ = ρ = ε. By Lemma 4.11, it follows that T ′ C̈ U ′. Hence, by Theorem 4.9 and

Proposition 4.3, we can proceed by cases on the form of T ′ and U ′:

– T ′ = 0. Then, item a. of Definition 4.4 is trivially satisfied.

– T ′ =
˘

i∈I?ai .Ti and U ′ =
⊕

j∈J !aj .U j , with ∅ 6= J ⊆ I. Then, T ′[]⇓! = ∅,

which satisfies the first part of item a.. Further, ∅ 6= U ′[]⇓! ⊆ co(T ′[]⇓?), thus

satisfying the second part of the item.

– T ′ =
⊕

i∈I !ai .Ti and U ′ =
˘

j∈J?aj .U j , with ∅ 6= I ⊆ J . Then, T ′[]⇓! ⊆

co(U ′[]⇓?), which satisfies the first part of item a.; the second part of the item

is vacuously true, since T ′[]⇓! 6= ∅.

The following theorem extends Proposition 4.12 to all the notions of compliance studied

in this chapter.

Theorem 4.13. If T ◦ U , then T [] ◦ U [], for ◦ ∈ {`,a`,a, B̈, .̈/, C̈}.

Proof. The statement for ◦ = C̈ has already been proved in Proposition 4.12.

For ◦ = a, we have:

T a U T [] a U []

Theorem 4.9(b)

=⇒
=
⇒ Theorem 4.9(a)

T C̈ U
Proposition 4.12

===========⇒ T [] C̈ U []

32 4. I/O compliance

The proofs for ◦ ∈ {`, B̈} follow by symmetry, while the proofs for ◦ ∈ {a`, .̈/} follow

respectively from a` = ` ∩ a (by Definition 4.1) and .̈/ = B̈ ∩ C̈ (by Lemma 4.5).

Chapter 5

On safety

In Chapter 4, we claimed that I/O compliance represents a “correct” notion of interaction,

since it avoids “vacuous” progress (see Example 4.2). In this chapter, we study how

such a notion of “correctness” is related to classical notions of deadlock-freedom and

safety, with a prominent focus on asynchronous session behaviours (as introduced in

Section 2.2).

5.1 Deadlock states

In this section, we introduce a semantic notion of deadlock state.

Definition 5.1 (Deadlock state). p is a deadlock state iff p−→ and p6 τ−→.

Intuitively, p is a deadlock state if it exposes I/O interaction capabilities (i.e., ∃`.p `−→), but

cannot reduce via internal τ transitions: therefore, p requires some external interaction

in order to reduce further. The meaning of such a definition becomes apparent when

applied on parallel compositions of behaviours, as in Corollary 5.2 below.

Corollary 5.2. p ‖ q is a deadlock state iff all the following hold:

(i) p 6∼= 0 or q 6∼= 0;

(ii) p 6 τ−→ and q 6 τ−→;

(iii) ∀` . p `−→ implies q 6 co(`)−−−→.

33

34 5.2. Orphan messages

Proof. For the =⇒ direction, assume that p‖q is a deadlock state: then (by Definition 5.1)

we have p‖ q−→, which implies item (i) above; furthermore, we have p‖ q 6 τ−→, which implies

items (ii)–(iii) (in fact, if one of such items does not hold, we have the contradiction

p ‖ q τ−→).

For the ⇐= direction, note that item (i) implies p ‖ q−→; furthermore, items (ii)–(iii)

imply p ‖ q 6 τ−→.

Armed with Definition 5.1 and Corollary 5.2, we can see that the notion of progress intro-

duced in Definition 4.1 corresponds to the notion of deadlock-freedom in Definition 5.1.

Proposition 5.3 (Progress is deadlock-freedom). p a` q iff, for all r, p‖q =⇒ r implies

that r is not a deadlock state.

Proof. Let p ‖ q =⇒ r = p′ ‖ q′.

For the =⇒ direction, assume p a` q: by Definition 4.1, we have either p′ ‖ q′ τ−→ (which

violates Definition 5.1), or r ∼= 0 6−→.

For the ⇐= direction, assume p ‖ q =⇒ r ∼= p′ ‖ q′, with r 6 τ−→. Since r is not a deadlock

state, then by Definition 5.1 we have r 6−→. Then, p′ ∼= 0 and q′ ∼= 0.

We can now show that I/O compliance does not hold in deadlock states (Lemma 5.4).

Lemma 5.4. If p ‖ q is a deadlock state, then p 6.̈/ q.

Proof. By contradiction, assume p .̈/ q: then, by Theorem 4.9, we have p a` q, which by

Proposition 5.3 implies that p ‖ q is not a deadlock state (contradiction).

5.2 Orphan messages

In this section, we tackle the problem of formalising the notion of orphan message in

our LTS-based setting. Intuitively, orphan messages are outputs that are sent, but

never received. They are typically studied in the setting of Communicating Finite State

Machines (CFSM) [BZ83], especially when applied to the characterisation of (multiparty)

session types, and to the synthesis choreographies (see e.g. [LTY15; DY13]); in the binary

session types setting, orphan messages are also studied in [CDY14].

5. On safety 35

Let us consider a parallel composition of processes p ‖ q. Intuitively, if p, possibly after

some internal moves, will always eventually expose an output transition !a, but q (even

after some internal moves) never exposes a matching input transition ?a, then we can say

that !a is “orphan”, according to Definition 5.5 below. Furthermore, by Proposition 5.6,

we have that such a condition is persistent along the τ -transitions of p and q.

Definition 5.5 (Orphan message configuration). We say that p‖q is an orphan message

configuration iff ∃a . p
!!a
=⇒ and q 6 ?a

=⇒ (or vice versa). In this case, we say that p ‖ q is an

orphan message configuration for p (resp. q), and !a is an orphan message of p (resp. q).

Proposition 5.6. Let p ‖ q be an orphan message configuration, with !a orphan message

of p. If p =⇒ p′ and q =⇒ q′, then p′ ‖ q′ is an orphan message configuration, with !a

orphan message of p′.

Proof. By Definition 5.5, we have p
!!a
=⇒ and q 6 ?a

=⇒. From Definition 2.6, we have p′
!!a
=⇒;

furthermore, q 6 ?a
=⇒ implies q′ 6 ?a

=⇒. Therefore, by Definition 5.5 we conclude that p′ ‖ q′ is

an orphan message configuration, with !a orphan message of p′.

Definition 5.5 generalises the usual notion of orphan message from CFSM literature,

and it is also stricter: differently from [LTY15; DY13], our definition does not require a

processes/machines to be terminated (we will further discuss this issue in Example 5.16).

This fact becomes apparent in the setting of asynchronous session types: by Proposi-

tion 2.22 below, we have that an output at the head of a buffer is persistently enabled,

as required by Definition 2.6. Therefore, if we have a parallel composition T [!a.σ] ‖ U [ρ]

where !a is an orphan message of T [!a.σ] (by Definition 5.5 above), then !a will remain

stuck at the head of the buffer without being consumed; and furthermore, since !a

precedes other outputs in σ, these outputs will remain unconsumed as well: although

the parallel composition may perform more τ -transitions, the buffer can only grow

(Proposition 5.8 below).

Lemma 5.7. T [σ] ‖U [ρ] is an orphan message configuration with !a orphan message of

T [σ] iff both the following conditions hold:

(i) σ = !a.σ′, or σ = ε and T ≡ !a.T ′;

(ii) U [ρ] 6 ?a
=⇒.

Proof. Follows directly from Definition 5.5 and Proposition 2.22.

36 5.2. Orphan messages

Proposition 5.8. If T [σ] ‖ U [ρ] is an orphan message configuration with !a orphan

message of T [σ], then T [σ] ‖ U [ρ] =⇒ T ′[σ′] ‖ U ′[ρ′] implies that T ′[σ′] ‖ U ′[ρ′] is an

orphan message configuration, with !a orphan message of T ′[σ′]. Furthermore, σ′ = σ .σ′′

(for some σ′′).

Proof. By hypothesis and Definition 5.5 we have T [σ]
!!a
=⇒ and U [ρ]6 ?a

=⇒. Moreover, by

Lemma 5.7 we have either σ = !a.σ′′ (for some σ′′), or σ = ε and T = !a.T ′: therefore,

after at most one τ -step (when σ = ε), !a is at the head of T ’s buffer and becomes only

output (weakly) reachable from T [σ] (by Proposition 2.22). At that point, since U [ρ]6 ?a
=⇒,

the two behaviours cannot synchronise on such !a, and thus it cannot be removed from

the head of the buffer. Hence, each τ -move along the trace T [σ] ‖ U [ρ] =⇒ T ′[σ′] ‖ U ′[ρ′]

may be generated in only two ways, by Definition 2.16:

a. T or U add new outputs to their respective buffers;

b. T reaches an external choice which synchronises with the head of U ’s queue,

consuming it.

(Note that case b. prevents us from resorting to Proposition 5.6, since the latter only con-

siders the internal τ -transitions of the behaviours, without synchronisations). Therefore,

σ′ = σ .σ′′ for some σ′′ deriving from case a. above (which proves the “furthermore. . . ”

part of the statement), and U ′[ρ′]6 ?a
=⇒: by Definition 5.5, we conclude that T ′[σ′] ‖ U ′[ρ′]

is still an orphan message configuration, with !a orphan message of T ′[σ′].

Proposition 5.8 highlights a property of asynchronous session behaviours: they preserve

orphan messages even after synchronising (case b. in the proof) — unlike the general

behaviours considered in Proposition 5.6.

Lemma 5.9. If p ‖ q is an orphan message configuration for p, then p 6C̈ q.

Proof. By Definition 5.5, we have p
!!a
=⇒ and q 6 ?a

=⇒: this implies !a ∈ p⇓! 6⊆ q⇓?, which

violates clause a. of Definition 4.4. Therefore, we have p 6C̈ q.

From Lemma 5.9 we can also easily obtain that, if p‖q is an orphan message configuration

for q, then p 6B̈ q.

5. On safety 37

Example 5.10. The inverse implication of Lemma 5.9 does not hold on general be-

haviours. For instance, consider P = !a + τ . 0: we have P 6C̈ 0, because !a ∈ P⇓! 6⊆

co(0⇓?) = ∅ (which violates clause a. of Definition 4.4); however, P ‖ 0 is not an orphan

message configuration, because P 6 !!a=⇒. Similar behaviours will be reprised and further

discussed later, in Example 5.23.

5.3 Unspecified reception

Another typical notion of “unsafe interaction” from CFSM literature is that of “unspecified

reception” [CF05]. Similarly to orphan messages, unspecified reception configurations

are also studied in (multiparty) session types and choreography synthesis literature (see

e.g. [LTY15; DY13]).

Intuitively, in our semantic setting, unspecified reception configurations occur when a

behaviour p can only interact via input transitions, but it is composed in parallel with

some q which is not going to offer any matching output. Before formalising this notion

in Definition 5.15 below, we need an auxiliary definition.

Definition 5.11 (Input behaviour). We say that p is an input behaviour (written p
??
=⇒)

whenever:

p⇓! = ∅ and p =⇒ p′ implies p⇓? 6= ∅

Intuitively, Definition 5.11 says that an input behaviour must not expose outputs

(p⇓! = ∅) and must expose some (weak) input transitions after any τ -move (p′⇓? 6= ∅).

By Proposition 5.12 below, an input behaviour cannot stop interacting after some τ -

moves; furthermore, by Proposition 5.13, an input behaviour can only τ -reduce to an

input behaviour.

Proposition 5.12. If p is an input behaviour, then p =⇒ p′ implies p′ 6w 0.

Proof. From Definition 5.11, we have that ∃p′′, a . p′ =⇒ p′′
?a−→: therefore, p′′ 6w 0, which

in turn implies p′ 6w 0.

Proposition 5.13. If p
??
=⇒ and p =⇒ p′, then p′

??
=⇒.

38 5.3. Unspecified reception

Proof. Follows from Definition 5.11: from p⇓! = ∅ we have p′⇓! = ∅; moreover, since

∀p′′ . p =⇒ p′′ implies p′′⇓? 6= ∅, and p =⇒ p′ (by hypothesis), we have ∀p′′ . p′ =⇒ p′′ implies

p′′⇓? 6= ∅. Hence, by Definition 5.11, we conclude p′
??
=⇒.

An immediate example of input behaviour is the external choice of (synchronous) session

types. Another example is the external choice of asynchronous session types with empty

buffer, according to Proposition 5.13 below.

Proposition 5.14. T [σ]
??
=⇒ iff T ≡

˘
i∈I?ai .T i with I 6= ∅, and σ = ε.

Proof. Straightforward, by Definition 2.16.

We can now formalise the notion of unspecified reception.

Definition 5.15 (Unspecified reception configuration). We say that p‖q is an unspecified

reception configuration iff p
??
=⇒ and 6 ∃a . p

?a
=⇒ ∧ q

!a
=⇒ (or vice versa). In this case, we

say that p ‖ q is an unspecified reception configuration for p (resp. q).

Example 5.16. recX !a.X[] ‖ ?b[] is an unspecified reception configuration for the RHS

behaviour (and also an orphan message configuration for the LHS behaviour, by Defini-

tion 5.5). Note that, in several CFSM papers (e.g. [LTY15; DY13]), such a configuration

is not (and never becomes) an orphan message configuration, since the LHS behaviour is

not final (and never terminates).

0[] ‖ ?b[] is an unspecified reception configuration for the RHS behaviour (and also a

deadlock state, by Definition 5.1).

?a[] ‖ ?b[] is an unspecified reception configuration for both LHS and RHS behaviours

(and also a deadlock state).

Proposition 5.17. Let p ‖ q be an unspecified reception configuration for p. Then,

p ‖ q =⇒ p′ ‖ q′ implies that p′ ‖ q′ is an unspecified reception configuration for p′.

Proof. We first notice that, by Definition 5.15, p and q cannot synchronise, because no

output of q matches p’s inputs, — and p has no weakly reachable outputs. Therefore,

the τ transitions along p ‖ q =⇒ p′ ‖ q′ can only be originated by internal moves.

Now, since p =⇒ p′, by Proposition 5.13 we have p′
??
=⇒; furthermore, since (again by

Definition 5.15) 6 ∃a . p
?a
=⇒ ∧ q

!a
=⇒, considering that p′⇓? ⊆ p⇓? and q′⇓! ⊆ q⇓! (because

5. On safety 39

q =⇒ q′), we obtain 6 ∃a . p′
?a
=⇒ ∧ q′

!a
=⇒. Therefore, by Definition 5.15, we conclude that

p′ ‖ q′ is an unspecified reception configuration for p′.

As for deadlocks and orphan messages, unspecified reception configurations can be

syntactically characterised in the setting of asynchronous session types: intuitively, by

Lemma 5.18, unspecified receptions arise when an external choice is paired either with

outputs (originated by an internal choice) that it cannot handle, or with another (possibly

empty) external choice.

Lemma 5.18. T [σ] ‖ U [ρ] is an unspecified reception configuration for T [σ] iff T ≡
˘

i∈I?ai .T i with I 6= ∅, σ = ε and one of the following holds:

a. ρ = !b.ρ′, for some ρ′ and b such that ∀i ∈ I . ai 6= b;

b. ρ = ε and U ≡
⊕

j∈J !bj .Uj, where ∀i ∈ I, j ∈ J . ai 6= bj;

c. ρ = ε and U ≡
˘

j∈J?bj .Uj.

Proof. The =⇒ direction follows from Proposition 5.14 and Definition 2.16, considering

that, by Definition 5.15:

(i) since T [σ]
??
=⇒, by Proposition 5.14 T can only be equivalent to a non-empty external

choice, and σ = ε;

(ii) U [ρ] does not offer any output matching T ’s inputs: hence, either U is equivalent

to a (possibly empty) external choice and ρ = ε (case c. in the statement), or ρ’s

head exposes an unmatching output — either immediately (case a.) or after a

τ -move (case b.).

The ⇐= direction follows from Definition 2.16: in all cases a.–c. of the statement, we

conclude that T [σ] ‖ U [ρ] is an unspecified reception configuration.

We conclude this section by showing that two behaviours forming an unspecified reception

configuration are not I/O compliant.

Lemma 5.19. If p ‖ q is an unspecified reception configuration for p, then p 6C̈ q.

40 5.4. Safety

Proof. By Definition 5.15 we have p
??
=⇒ and 6 ∃a . p

?a
=⇒ ∧ q

!a
=⇒. Then, by Definition 5.11

we have p⇓! = ∅ and p⇓? 6= ∅. Furthermore, q⇓! ∩ co(p⇓?) = ∅: this violates clause a. of

Definition 4.4. Therefore, we have p 6C̈ q.

From Lemma 5.19 we can also easily obtain that, if p ‖ q is an unspecified reception

configuration for q, then p 6B̈ q.

5.4 Safety

We can now define the safety of a parallel composition of behaviours: as one might

expect from standard definitions (e.g. [LTY15; DY13]), it is the absence of deadlocks,

orphan messages and unspecified reception configurations.

Definition 5.20 (Safety). We say that p ‖ q is safe iff p ‖ q =⇒ p′ ‖ q′ implies that p′ ‖ q′

is not an orphan message configuration, nor an unspecified reception configuration.

Note that Definition 5.20 does not explicitly mention absence of deadlocks: this is

because, under our definitions, such a property is already implied by the absence of

orphan messages and unspecified reception configurations, as shown in Proposition 5.21

(recalling that, by Proposition 5.3, a` coincides with deadlock freedom).

Proposition 5.21. If p ‖ q is safe, then p a` q.

Proof. We prove the contrapositive. Assume that p 6a` q. By Proposition 5.3, there exist

p′ and q′ such that p′ ‖ q′ is a deadlock state, which, by Definition 5.1, means that:

p′ ‖ q′ −→ and p′ ‖ q′ 6 τ−→ (5.1)

Note that, by the rightmost part of (5.1), it follows that:

p′ 6 τ−→ and q′ 6 τ−→ (5.2)

Since, by the leftmost part of (5.1), p′ ‖ q′ −→, at least one of the behaviours p′, q′ must

take a move, which by (5.2) cannot be labelled τ . Without loss of generality, assume

that p′ moves. There are two possible (not mutually exclusive) cases:

5. On safety 41

0 ‖ q

!a

τ

Figure 5.1: The behaviour 0 ‖ q is safe, but 0 and q are not I/O compliant.

• p′ !a−→. Since p′ 6 τ−→, then by Definition 2.6 it must be p
!!a
=⇒. Now, by (5.1) it follows

that q′ 6 ?a−→, otherwise p′ and q′ would synchronise. Since q′ 6 τ−→, this implies that

q′ 6 ?a
=⇒. By Definition 5.5, we obtain that p′ ‖ q′ is an orphan message configuration,

hence by Definition 5.20 we conclude that p ‖ q is not safe.

• p′ ?a−→. Since p′ 6 τ−→, then by Definition 5.11 it must be p′
??
=⇒. Now, by (5.1) it

follows that @b : p′
?b
=⇒ ∧ q′ !b

=⇒, otherwise p′ and q′ would synchronise. By Defin-

ition 5.15, we obtain that p′ ‖ q′ is an unspecified reception configuration, hence

by Definition 5.20 we conclude that p ‖ q is not safe.

In Theorem 5.22, we prove that I/O compliance implies safe interactions: this formalises

the “correctness” claim we made in Chapter 4.

Theorem 5.22. If p .̈/ q, then p ‖ q is safe.

Proof. Let p ‖ q =⇒ p′ ‖ q′. By Proposition B.1 and Proposition B.2, we have p′ .̈/ q′.

Therefore, by Lemma 5.4 we have that p′ ‖ q′ is not a deadlock state. Moreover, by

Lemma 4.5 and Lemma 5.9, we have that p′ ‖ q′ is not an orphan message configuration.

Finally, by Lemma 4.5 and Lemma 5.19, we have that p′ ‖ q′ is not an unspecified

reception configuration. Hence, by Definition 5.20 we conclude that p ‖ q is safe.

The following example shows that the converse of Theorem 5.22 does not hold.

Example 5.23. The behaviour 0 ‖ q in Figure 5.1 is safe. Indeed, we have that:

• neither 0 nor q have persistent outputs, and so by Definition 5.5 it follows that

0 ‖ q has no orphan messages;

• neither 0 nor q is an input state, and so by Definition 5.15 it follows that 0 ‖ q is

not an unspecified reception configuration.

Note that 0 6.̈/ q: indeed, !a ∈ q⇓! 6⊆ co(0⇓?) = ∅, and therefore item a. of Definition 4.4

is false.

42 5.4. Safety

Albeit safety does not imply I/O compliance on general behaviours, Theorem 5.24 below

shows that this implication actually holds when considering asynchronous session types.

Theorem 5.24. If T [σ] ‖ U [ρ] is safe, then T [σ] .̈/ U [ρ].

Proof. We prove the contrapositive. Assume that T [σ] 6.̈/ U [ρ]. By Definition 4.4, this

implies that there exist T ′, U ′, σ′, ρ′ such that T [σ] ‖U [ρ] =⇒ T ′[σ′] ‖U ′[ρ′] and item a. is

false for p = T ′[σ′] and q = U ′[ρ′]. There are the following two cases:

1. p⇓! 6⊆ co(q⇓?). Then, there exists some a such that !a ∈ p⇓! and ?a 6∈ q⇓?. Since

!a ∈ p⇓!, one of the following two cases must hold:

(i) σ′ = !a.σ′′. By Proposition 2.22 it follows that T ′[σ′]
!!a
=⇒. Since ?a 6∈ q⇓?, we

have that U ′[ρ′] 6 ?a
=⇒. Therefore, by Lemma 5.7 we obtain that T ′[σ′] ‖ U ′[ρ′]

is an orphan message configuration. By Definition 5.20, we conclude that

T [σ] ‖ U [ρ] is not safe.

(ii) σ′ = ε and T ′ ≡ !a.T ′′ ⊕ T ′′′. By Definition 2.16 we have the transition:

T ′[ε] ‖ U ′
[
ρ′
] τ−→ T ′′[!a] ‖ U ′

[
ρ′
]

and we fall back to the previous case.

2.
(
(p⇓! = ∅ ∧ p⇓? 6= ∅) 6=⇒ ∅ 6= q⇓! ⊆ co(p⇓?)

)
. Then, p⇓! = ∅ ∧ p⇓? 6= ∅. This

implies that T ′ is equivalent to an external choice, and that σ′ = ε. Furthermore,

one of the following two cases must hold:

• q⇓! = ∅. This implies that ρ′ = ε, and U ′ is equivalent to an external choice

(possibly empty). By item c. of Lemma 5.18, it follows that T ′[σ′] ‖ U ′[ρ′] is

an unspecified reception configuration. By Definition 5.20, we conclude that

T [σ] ‖ U [ρ] is not safe.

• there exists some a such that !a ∈ q⇓! and ?a 6∈ p⇓?. Therefore, either one of

the following subcases applies:

– ρ′ = !a.ρ′′. Then, by item a. of Lemma 5.18, it follows that T ′[σ′] ‖ U ′[ρ′]

is an unspecified reception configuration. By Definition 5.20 we conclude

that T [σ] ‖ U [ρ] is not safe.

5. On safety 43

– ρ′ = ε and U ′ ≡ !a.U ′′ ⊕ U ′′′. By Definition 2.16 we have the transition:

T ′[ε] ‖ U ′[ε] τ−→ T ′[ε] ‖ U ′′[!a]

and we fall back to the previous case.

Therefore, by combining Theorem 5.22 and Theorem 5.24, we obtain that safety and

I/O compliance coincide in the setting of asynchronous session types.

Chapter 6

I/O simulation

In this chapter we address the topics of Section 1.1.1 by introducing 6̈, a simulation

relation between general behaviours, that generalises the usual notions of session typing

and subtyping, with the typical co/contra-variance of outputs and inputs.

6.1 Introducing I/O simulation

We start by adapting to our framework one of the classical notions of sub-behaviour from

the literature on behavioural contracts: the strong subcontract relation of [CGP09]. A

behaviour p is a subcontract of p′ iff, whenever p′ is compliant with some (arbitrary)

behaviour q, then p is compliant with q1. Thus, p can transparently replace p′, in all

contexts.

Definition 6.1 (Subcontract relation). We define the relation v between behaviours as:

p v q iff ∀r ∈ U . q .̈/ r implies p .̈/ r

We write p vR q to restrict r to the set of behaviours R (i.e., ∀r ∈ R . . .).

The main difference between Definition 6.1 and the subcontract relation in [CGP09] lies

in the underlying notion of “correct” interaction: we require (symmetric) I/O compliance

in each context, while [CGP09] only requires progress.

1In this work, the direction of v is opposite w.r.t. the subcontract relation in [CGP09]: this topic will
be further discussed in Section 9.4.

45

46 6.1. Introducing I/O simulation

Despite its elegance and generality, Definition 6.1 cannot be directly exploited to establish

whether two behaviours are related, due to the universal quantification over all contexts.

For session types, alternative characterisations of v have been defined, usually in the

form of a syntax-driven coinductive relation [CGP09; BL10]. This approach amounts

to restricting p, q and r in Definition 6.1 to a process calculus with specific syntax and

transition rules — e.g., p, q, r ∈ UST. In our semantic framework, however, behaviours are

not syntax. We shall extend these characterisations from session behaviours to arbitrary

ones, without resorting to a universal quantification over contexts. To do that, we define

an I/O simulation relation on behaviours, denoted by 6̈. We show that it is a preorder

(Theorem 6.12), and it preserves I/O compliance (Theorem 6.13). 6̈ is equivalent to the

subtype relation on sync session behaviours (Theorem 6.16), albeit stricter on arbitrary

behaviours. Notice that our definition exploits the transition relation V introduced

in Definition 2.7.

Definition 6.2 (I/O simulation). R̈ is an I/O simulation relation iff, whenever p R̈ q,

then ∃Q (called predictive set) such that q V Q, and:

a. p⇓! = ∅ =⇒ Q⇓! = ∅;

b. Q⇓?? ⊆ p⇓? ∧ (Q⇓? = ∅ =⇒ p⇓? = ∅);

c. p
τ−→ p′ =⇒ ∃q′ .Q =⇒ q′ ∧ p′ R̈ q′;

d. p
!a−→ p′ =⇒ ∃q′ .Q !a

=⇒ q′ ∧ p′ R̈ q′;

e. p
?a−→ p′ ∧ Q ??a

=⇒ =⇒ ∃q′ . Q ?a
=⇒ q′ ∧ p′ R̈ q′.

We write 6̈ for the largest I/O simulation, ≈̈ for the largest symmetric I/O simulation,

and =̈ for 6̈ ∩ >̈.

Definition 6.2 can be explained in terms of a sort of simulation game between players

p and q. At the first step, q predicts a suitable choice of its internal moves, via a set

Q of states reachable from q. The outputs of Q must include those of p (item d.), and

the weakly persistent inputs of Q (Definition 2.6) must be included in the inputs of p

(item b.). Moreover, if p has no outputs, then also Q cannot have outputs, and if Q has no

inputs, then also p cannot have inputs (items a.,b.). Intuitively, these constraints reflect

subtyping in session types: inputs (external choices) can be enlarged (if not empty),

6. I/O simulation 47

T T (1) T (2)

T (3)

?a !b

?c

U U (1)

U (2)

U (3)

U (4)

U (5)

?a
τ

τ

!b

!c

Relation Pred. set

(T ,U) {U }

(T (1), U (1)) {U (1)}

(T (1), U (2)) {U (2)}

(T (2), U (4)) {U (4)}

T (1) is in relation with
U (1), U (2): both the latter
match the outputs of the first.
T (3) is not in the relation: it
is reached via an input ?c un-
matched by U . U (3), U (5) are
not in the relation: they are
reached via a τ and an output
!c unmatched by T .

p p(1) p(2)

p(3)
p(4)p(5)

p(6)

?a !b

τ !c?d

!e

q q(1) q(2)

q(3) q(5) q(6)

q(4)

q(7)

q(8) q(9)

?a

τ

τ

τ
!b

?a !c

τ

τ

τ
?d

Relation Pred. set

(p, q) {q}

(p, q(3)) {q(3)}

(p(1), q(1)) {q(1)}

(p(1), q(5)) {q(5)}

(p(2), q(4)) {q(4)}

(p(3), q(2)) {q(2)}

(p(3), q(7)) {q(7)}

(p(4), q(6)) {q(6)}

p is in relation with q, q(3),
matching their ?a. Then, p(1)

can either perform !b, !c, ?d
or quit: this is matched by
q(1), q(5); if p(1) follows its τ -
branch to p(3), the latter is
related with q(2), q(7). Note
that q(2) does not stop, but
performs τ -loop. Also note
that the relation does not in-
clude p(5) since q(1)

?d
=⇒ but{

q(1)
}
6 ??d
==⇒; indeed, it cannot

include p(5), due to its !e (un-
matched in q ’s reductions).

P ′′A [] P ′′A
(1) P ′′A

(2)

P ′′A
(3)

P ′′A
(4)P ′′A

(5)

P ′′A
(6)P ′′A

(7)

P ′′A
(8)P ′′A

(9)

P ′′A
(10) P ′′A

(11)

· · ·

τ

τ
!aCoffee

!pay
?coffee

?coffee!pay

!aCoffee τ

?coffee
τ

!pay

?coffee

T ′′A []

T ′′A
(1) T ′′A

(2) T ′′A
(3)

T ′′A
(4)

T ′′A
(5)

T ′′A
(6)

T ′′A
(7)

T ′′A
(8)

τ

τ

!aCoffee

!pay

?coffee

?coffee

!pay

!aCoffee

τ

Relation Pred. set

(P ′′A [], T ′′A []) {T ′′A(1)}

(P ′′A
(1), T ′′A

(1)) {T ′′A(1)}

(P ′′A
(2), T ′′A

(2)) {T ′′A(2)}

(P ′′A
(3), T ′′A

(3)) {T ′′A(3)}

(P ′′A
(4), T ′′A

(4)) {T ′′A(4)}

(P ′′A
(5), T ′′A

(5)) {T ′′A(5)}

(P ′′A
(6), T ′′A

(6)) {T ′′A(6)}

(P ′′A
(7), T ′′A

(7)) {T ′′A(7)}

(P ′′A
(8), T ′′A

(3)) {T ′′A(3)}

(P ′′A
(9), T ′′A

(6)) {T ′′A(6)}

(P ′′A
(10), T ′′A

(6)) {T ′′A(6)}

(P ′′A
(11), T ′′A

(7)) {T ′′A(7)}

Note that P ′′A
(1) and P ′′A

(2)

have an input branch
(?coffee) unmatched by
T ′′A

(1) and T ′′A
(2), and

thus leading to states not
considered in the rela-
tion (and here omitted).

T ′′A [] = !aCoffee.!pay.?coffee []

T ′′A
(1) = !pay.?coffee [!aCoffee]

T ′′A
(2) = ?coffee [!aCoffee.!pay]

T ′′A
(3) = ?coffee [!pay]

T ′′A
(4) = ?coffee []

T ′′A
(5) = 0 [] = T ′′A

(7)

T ′′A
(6) = 0 [!pay]

T ′′A
(7) = 0 [] = T ′′A

(5)

T ′′A
(8) = !pay.?coffee []

Table 6.1: Examples of I/O simulation. For each pair of behaviours on the left, the
table shows an I/O simulation relation, and the predictive sets supporting each pair of
related states.

while outputs (internal choices) can be narrowed (but not emptied). The requirements

above must be preserved by the moves of p: τ -moves and outputs of p must be (weakly)

simulated by some process in Q (items c.,d.); the same holds for p’s inputs (item e.), but

only moves shared by p and Q, and persistent in the latter, are considered.

48 6.1. Introducing I/O simulation

p p(1) p(2)

p(3) p(4)

?a !x

?b

!y

q q(01) q(1) q(2)

q(02) q(3) q(4)

q(5) q(6)

q(31)

τ ?a !x

?bτ

?b !y

?a

τ

!c

Relation Pred. set

(p, q) {q(01), q(02)}

(p(1), q(1)) {q(1)}

(p(2), q(2)) {q(2)}

(p(3), q(3)) {q(3)}

(p(4), q(4)) {q(4)}

p is related with q , with a pre-
dictive set containing 2 ele-
ments. This is the only pos-
sible predictive set support-
ing the relation: in fact, if the
predictive set included q or
q(5), then p would be forced
to offer some output (by
clause a. of Definition 6.2);
moreover, if the predictive set
did not contain q(01), then the
?a-branch of p would need to
match the ?a-branch of q(02)

(by clause e. of Definition 6.2)
— but in this case we would
need (p(1), q(31)) ∈ 6̈, which
is false. A similar problem
would arise if the predictive
set did not contain q(02).

Table 6.2: Another example of I/O simulation.

Example 6.3. In Table 6.1 we exemplify 6̈. The first pair of behaviours correspond to

the sync session types T = ?a.!b & ?c and U = ?a.(!b⊕ !c), and show how 6̈ is covariant

w.r.t. outputs, and contravariant w.r.t. inputs. The third pair corresponds to Alice’s

asynchronous type T ′′A and her process P ′′A, from Chapter 3: we show that the former I/O

simulates the latter.

Example 6.4. Consider Figure 6.1. To assess p 6̈ q, we choose a predictive set Q that

mandates the inputs of p, and includes its outputs (note that p has an additional input

?c′ not offered by Q). The same happens with the predictive set R, assessing q 6̈ r. Note

that R and the small set inside are also predictive sets for p 6̈ r.

Example 6.5. Table 6.2 shows another example of I/O simulation, where the predictive

set for the pair (p, q) ∈ 6̈ contains more than one element.

p

τ

!a
?b

τ

!b

?c
r

τ

!a
?b

τ

!b

?c

τ

?d

q

τ

!a
?b

τ

!b

?c

?c′
τ

Q

τ

R

6̈ 6̈

τ

Figure 6.1: I/O simulation. Q, R are the predictive sets resp. for p 6̈ q and q 6̈ r.

6. I/O simulation 49

6.2 Basic properties

In this section, we introduce some properties of the subcontract relation v and I/O

simulation 6̈.

The following lemma gives a syntactic characterisation of pairs of synchronous session

behaviours in the subcontract relation.

Lemma 6.6 (vUST
-induced shapes of session types). T vUST

U implies either (up-to

unfolding):

a. T = U = 0;

b. T =
˘

k∈K?ak .T k and U =
˘

i∈I?ai .T i, with ∅ 6= I ⊆ K and ∀i ∈ I . T i vUST
U i;

c. T =
⊕

k∈K !ak .T k and U =
⊕

i∈I !ai .T i, with ∅ 6= K ⊆ I, and ∀k ∈ K.T k vUST
U k.

Proof. See page 125.

The following lemma shows that, to determine if two synchronous session behaviours

are in the subcontract relation (i.e., T v U), we do not need to consider all possible

behaviours r ∈ U such that U .̈/ r: indeed, we can restrict to the case where r is a

synchronous session behaviour itself.

Lemma 6.7. T v U ⇐⇒ T vUST
U .

Proof. See page 132.

We now study some properties of 6̈. Lemma 6.8 ensures that Definition 6.2 is well-formed.

Lemma 6.8. Let R̈ be a set of I/O simulations. Then,
⋃
R̈ is an I/O simulation.

Proof. See page 126.

The following result relates I/O simulation with weak moves. When p 6̈ q, the relation

6̈ is preserved by forward τ -moves of p and backward τ -moves of q.

Lemma 6.9. If p 6̈ q, with p =⇒ p′ and q′ =⇒ q, then p′ 6̈ q′.

Proof. See page 128.

50 6.3. On I/O simulation and I/O compliance

?a

?b ?c

p6 6̈

?a

p7 a

!a

!b

p8

Figure 6.2: Progress is not preserved by I/O simulation (on general behaviours).

A consequence of Lemma 6.9 is that I/O simulation reflects the internal non-determinism

of a behaviour: each τ -move gives a reduct which is “smaller” than its redex, as formalised

in Corollary 6.10.

Corollary 6.10 (6̈ reflects internal non-determinism). If p =⇒ p′, then p′ 6̈ p.

Proof. From Lemma C.1 we have p 6̈ p, and by Lemma C.2 we conclude p′ 6̈ p.

Weak simulation (w) and I/O simulations are unrelated, i.e. 6̈ 6⊆ w 6⊆ 6̈ (see Proposi-

tion C.12). However, weak bisimulation (≈) is strictly stronger than I/O bisimulation.

Theorem 6.11. ≈ (≈̈

Proof. See page 132.

By Theorem 6.12, 6̈ is a preorder, as it is the case for the subtype relation. This is not

quite straightforward, due to the existential quantification on the predictive set Q.

Theorem 6.12. (U, 6̈) is a preorder.

Proof. See page 129.

6.3 On I/O simulation and I/O compliance

Quite surprisingly, on general behaviours progress is not preserved by 6̈: if p 6̈ q a r, then

it is not always the case that p a r. For instance, consider the behaviours in Figure 6.2.

It is easy to check that p6 6̈ p7 and p7 a p8. However, p6 6a p8: indeed, if p8 chooses the

branch !b, then p6 is stuck waiting for ?c.

Theorem 6.13 is one of our main results: it states that 6̈ preserves symmetric I/O

compliance. This is a further motivation for using .̈/ instead of a`, when dealing with

behaviours where these two notions do not coincide. In the example above, p8 is not a

6. I/O simulation 51

sync session behaviour: were all behaviours in Figure 6.2 elements of UST, we would also

have preserved progress (by Theorem 4.9).

Theorem 6.13. p 6̈ q ◦ r =⇒ p ◦ r, for ◦ ∈ {B̈, .̈/}.

Proof. We first prove the statement for ◦ = B̈. Let:

R =
{

(p, r)
∣∣∃q . p 6̈ q ∧ q B̈ r

}
We will show that R is an I/O compliance relation between p and r (in the inverse order).

Let (p, r) ∈ R, via some q such that p 6̈ q and r C̈ q. Now, let Q be the predictive set

supporting the pair (p, q) ∈ 6̈, and let us examine the clauses of Definition 4.4.

item a. From p 6̈ q (item b. of Definition 6.2) we have Q⇓?? ⊆ p⇓?; furthermore, from

r C̈ q (by Proposition B.3) we have r⇓! ⊆ co(q⇓??), and from Proposition C.6 we

obtain:

r⇓! ⊆ co(Q⇓??) (6.1)

Furthermore, since ∀q′ ∈ Q . q =⇒ q′, from r C̈ q and Proposition B.1 we have

∀q′ ∈ Q . r C̈ q′. Hence, by item b. of Definition 6.2:

∀q′ ∈ Q .
(
r⇓! = ∅ ∧ r⇓? 6= ∅ =⇒ ∅ 6= q′⇓! ⊆ co(r⇓?)

)
and therefore:

r⇓! = ∅ ∧ r⇓? 6= ∅ =⇒ ∅ 6= Q⇓! ⊆ co(r⇓?) (6.2)

From p 6̈ q, by Definition 6.2 we have:

• p⇓! = ∅ =⇒ Q⇓! = ∅ (item a. of Definition 6.2), and therefore Q⇓! 6= ∅ =⇒

p⇓! 6= ∅;

• p⇓! ⊆ Q⇓! (item d.)

• Q⇓?? ⊆ p⇓? (item b.).

Summing up:

Q⇓?? ⊆ p⇓? and Q⇓! 6= ∅ =⇒ ∅ 6= p⇓! ⊆ Q⇓! (6.3)

52 6.3. On I/O simulation and I/O compliance

and combining Equation (6.3) with Equations (6.1) and (6.2), we conclude:

(
r⇓! ⊆ co(p⇓?)

)
∧
(
r⇓! = ∅ ∧ r⇓? 6= ∅ =⇒ ∅ 6= p⇓! ⊆ co(r⇓?)

)

item b. We have to show that p
`−→ p′ and r

co(`)−−−→ r′ implies (p′, r′) ∈ R. Assuming

the premise, we have two cases, depending on whether ` is an input or an output

action:

• ` = !a. Then, by item d. of Definition 6.2, ∃q′ .Q !a
=⇒ q′ ∧ p′ 6̈ q′. Now, from

q B̈ r and Proposition B.2 we have q′ B̈ r′: we conclude (p′, r′) ∈ R;

• ` = ?a. Then, r
!a−→ r′; hence, from q B̈ r and Proposition B.3 we have q

??a
=⇒,

and by Proposition C.6 we obtain Q ??a
=⇒. Thus, by item e. of Definition 6.2,

∃q′ .Q ?a
=⇒ q′ ∧ p′ 6̈ q′. Now, from q B̈ r and Proposition B.2 we have q′ B̈ r′:

we conclude (p′, r′) ∈ R;

item c. From p 6̈ q and Lemma C.2, we have that p
τ−→ p′ implies p′ 6̈ q: we conclude

(p′, r) ∈ R;

item d. From q B̈ r, by item d. of Definition 4.4, we know that r
τ−→ r′ implies q B̈ r′:

we conclude (p, r′) ∈ R.

This concludes the proof for ◦ = B̈.

The proof for ◦ = .̈/ follows a similar approach, but this time we let:

R =
{

(p, r)
∣∣ ∃q . p 6̈ q ∧ q .̈/ r

}
(6.4)

Now, we prove that R is a symmetric I/O compliance relation. Since .̈/ = B̈ ∩ C̈ (by

Lemma 4.5), most of the proof is already developed above, when ◦ = B̈. The only

difference is that, in the symmetric version of item a. of Definition 4.4, we have the

following additional clause, introduced by C̈, that needs to be satisfied:

(
p⇓! ⊆ co(r⇓?) ∧

(
p⇓! = ∅ ∧ p⇓? 6= ∅ =⇒ ∅ 6= r⇓! ⊆ co(p⇓?)

))
(6.5)

We proceed by proving such a clause, for each (p, r) ∈ R and corresponding q from

Equation (6.4). From p 6̈ q (item d. of Definition 6.2) we have p⇓! ⊆ Q⇓! ⊆ q⇓!, and

6. I/O simulation 53

from q C̈ r (item a. of Definition 4.4) we have q⇓! ⊆ co(r⇓?); therefore,

p⇓! ⊆ co(r⇓?) (6.6)

Furthermore, from q C̈ r (item a. of Definition 4.4) we have:

q⇓! = ∅ ∧ q⇓? 6= ∅ =⇒ ∅ 6= r⇓! ⊆ co(q⇓?) (6.7)

If the premise holds, from q C̈ r and Proposition B.5, we have r⇓! ⊆ co(q⇓??), and from

Proposition C.6 we have q⇓?? ⊆ Q⇓?? — and therefore r⇓! ⊆ co(Q⇓??). Combining these

observations with Equation (6.7), we obtain:

q⇓! = ∅ ∧ q⇓? 6= ∅ =⇒ ∅ 6= r⇓! ⊆ co(Q⇓??) (6.8)

Since ∀q′ ∈ Q . q =⇒ q′, by Proposition B.1 we have ∀q′ ∈ Q . q′ C̈ r. Then, from

Equation (6.8) we have:

∀q′ ∈ Q . q′⇓! = ∅ ∧ q′⇓? 6= ∅ =⇒ ∅ 6= r⇓! ⊆ co(Q⇓??) (6.9)

and therefore:

Q⇓! = ∅ ∧ Q⇓? 6= ∅ =⇒ ∅ 6= r⇓! ⊆ co(Q⇓??) (6.10)

From p 6̈ q, by Definition 6.2 we have:

• p⇓! = ∅ =⇒ Q⇓! = ∅ (item a.);

• Q⇓?? ⊆ p⇓? (item b.), and therefore co(Q⇓??) ⊆ co(p⇓?);

• Q⇓? = ∅ =⇒ p⇓? = ∅ (item b.), and therefore p⇓? 6= ∅ =⇒ Q⇓? 6= ∅.

Summing up:

p⇓! = ∅ ∧ p⇓? 6= ∅ =⇒ Q⇓! = ∅ ∧ Q⇓? 6= ∅ ∧ co(Q⇓??) ⊆ co(p⇓?) (6.11)

and combining Equation (6.11) with Equations (6.3) and (6.6), we conclude:

(
p⇓! ⊆ co(r⇓?)

)
∧
(
p⇓! = ∅ ∧ p⇓? 6= ∅ =⇒ ∅ 6= r⇓! ⊆ co(p⇓?)

)

54 6.3. On I/O simulation and I/O compliance

!a

?b
?c

!e

p9 6̈

!a

?b

p10 C̈

?a

!c

p11

Figure 6.3: C̈ is not preserved by I/O simulation (on general behaviours).

which corresponds to Equation (6.5).

The proofs for the remaining items b.–d. can be obtained from the ones provided for

◦ = B̈, simply by replacing all occurrences of B̈ with .̈/. We conclude that the statement

also holds for ◦ = .̈/.

Theorem 6.13 above does not generally hold for C̈. Let p 6̈ q C̈ r: intuitively, C̈ does

not guarantee that r’s outputs will be matched by q’s inputs; therefore, if p adds an

input branch which is matched by an output of r, then their synchronisation may reduce

to non-compliant behaviours, as shown in Example 6.14 below.

Example 6.14 (On 6̈ and C̈). Consider the behaviours in Figure 6.3: p10 does not

offer a ?c-branch matching the !c-branch of p11; however, p9 does add such a branch —

but if p9 and p11 synchronise on it, then p9’s continuation enables a !e-transition which

is unmatched by p11’s continuation, thus violating clause a. of Definition 4.4. Therefore,

p9 6C̈ p11.

We stress that the situation described in Example 6.14, does not arise on synchronous

session behaviours: this is formalised in in Proposition 6.15 below, which extends

Theorem 6.13.

Proposition 6.15. T 6̈ U C̈ V implies T C̈ V .

Proof. See page 134. Intuitively, the thesis holds because synchronous session behaviours

do not have states with mixed choices among inputs and outputs, and because their

shape can be determined via Theorem 6.162.

I/O simulation can be seen as a subtyping relation on general behaviours, that is p 6̈ q

allows p to be always used in place of q. For instance, assume that p is an asynchronous

2Note that the proof of Proposition 6.15 depends on Theorem 6.16, but not vice versa: the two results
are introduced in reverse order w.r.t. their proofs for clarity of exposition.

6. I/O simulation 55

CCS process typed with a session type q, which in turn complies with the session type

r. Then, Theorem 6.13 states that I/O compliance is preserved by 6̈, i.e. p is also I/O

compliant with r, notwithstanding with the fact that p and r are specified in different

calculi (actually, our statement is even more general, as it applies to arbitrary behaviours).

Summing up, the process p will interact correctly with any process with type r (this will

be formally established in Theorem 7.16).

Theorem 6.16 below states that I/O simulation is stricter than Definition 6.1. However,

the two notions coincide on synchronous session behaviours. Hence, 6̈ can be interpreted

as a subtyping relation in UST, according to [GH05] (albeit in the inverse direction,

corresponding to that adopted e.g. in [CHY12]).

Theorem 6.16. (a) 6̈ (v. (b) T 6̈ U ⇐⇒ T v U .

Proof. For item (a), if p 6̈ q, then by Theorem 6.13 we have that ∀r . q .̈/ r =⇒ p .̈/ r,

i.e. p v q according to Definition 6.1. To prove that the inclusion is strict, recall the

behaviour p5 from Example 4.7. Since p5 does not admit I/O compliant behaviours,

it vacuously follows that r v p5, for all r. In particular, let r be the behaviour which

loops onto itself via a !a-transition, and assume, by contradiction, that r 6̈ p5, (say, via

predictive set Q). By clause d. of Definition 6.2, there must exist p′ such that Q !a
=⇒ p′ —

contradiction, since Q⇓! ⊆ p5⇓! = ∅.

For item (b), the =⇒ direction has already been proved by item (a). For the ⇐=

direction, let T v U . By Lemma 6.7, we have that T vUST
U , and so by Lemma 6.6

we can reason (up-to unfolding) by cases on the syntax T and U , to verify that (T ,U)

satisfies clauses a.–e. in Definition 6.2, via predictive set Q = {U }.

Remark 6.17 (On the completeness of 6̈). Note that the strict inclusion of Theorem 6.16

is proved with a behaviour which does not admit an I/O compliant one. This is not,

however, a necessary condition — as shown in Figure 6.4: we have p12 v p13 .̈/ p14, but

p12 66̈ p13. This kind of situation seems to only arise when dealing behaviours similar to

p12, which are impossible to obtain from (asynchronous) session types semantics: for this

reason, we conjecture that 6̈ and v coincide not only in UST (as shown in Theorem 6.16),

but also in UaST — and possibly in other suitably chosen classes of behaviours populating

U (this topic will be reprised in Section 9.2).

56 6.4. On I/O simulation and asynchrony

p12

!a

τ ?b

p12

p13

!a

?b

p13

p14

?a

!b

p14

Figure 6.4: Three compliant-admitting behaviours showing that 6̈ (v.

6.4 On I/O simulation and asynchrony

In this section we study the I/O compliance relation between asynchronous session types,

and its interplay with safety (Section 5.4). Our motivating question is: to which extent

reasoning in the synchronous setting provides safety guarantees in the asynchronous

setting?

A first guarantee is already provided by the results in the previous sections. Assume

we have T 6̈ U and U .̈/ V . Using Theorem 6.13 we can deduce T .̈/ V ; then,

from Proposition 4.12 we obtain T [] .̈/ V [], and so by Theorem 5.22, we conclude that

T [] ‖ V [] is safe. These observations prove the following proposition.

Proposition 6.18. If T 6̈ U .̈/ V , then T [] ‖ V [] is safe.

Note that Proposition 6.18 requires knowing that U is compliant with V in the synchron-

ous setting. In the rest of this section, we aim at strengthening this results, by weakening

this assumption and just require that U and V are compliant in the asynchronous setting.

To do that, we focus on the following question:

if T 6̈ U , does T [] 6̈ U [] hold?

Indeed, if the answer is positive, then whenever U [] .̈/ V [], we can replace U [] with T []

and obtain a safe system T [] ‖ V []. This would allow to refine asynchronous session

behaviours by only reasoning on their synchronous semantics (i.e., proving T 6̈ U).

A first result is that the answer to such a question is negative in general, as shown in the

following example.

Example 6.19. Consider the following session types:

T = recX !a.X U = recY !a.X ⊕ !b.?c

6. I/O simulation 57

We have T 6̈ U but T [] 66̈ U [], because clause b. of Definition 6.2 is violated.

We can prove the last statement by contradiction: assume that T [] 6̈ U [], with some

predictive set U. Since U []
??c
=⇒, then by Proposition C.6 we must have U ??c

=⇒. Then, by

the first part of clause b. in Definition 6.2, it must be ?c ∈ T []⇓? — contradiction (since

T []⇓? = ∅).

Example 6.19 above can also be used to provide a negative answer to the following

question:

if T 6̈ U and U [] .̈/ V [], does T [] .̈/ V [] hold?

as shown in the following example.

Example 6.20. Consider T ,U from Example 6.19, and let:

V = !c.recY ?a.Y & ?b

Note that U [] .̈/ V [], albeit U 6.̈/ V . However, T [] 6.̈/ V []: in fact, we have V []
!c
=⇒ but

T []6 ?c
=⇒, thus violating clause a. of Definition 4.4. Moreover, T [] ‖ V [] is not safe: in

fact, according to Definition 5.5, it is an orphan message configuration, with !c orphan

message of V [].

The previous example implies that also the following question has a negative answer:

if T v U , does T [] v U [] hold?

Indeed, by choosing T and U as in Example 6.20, we have that T v U (by item (a)

of Theorem 6.16), but T [] 6v U [] as shown in the example.

Intuitively, the non-preservation of 6̈ and v in the asynchronous setting is due to the fact

that, in the asynchronous semantics, output prefixes are turned into τ -prefixes; therefore,

inputs that are reachable after a sequence of outputs in some session type T become

weakly reachable in T [σ] (this notion will be formalised later, in Proposition 6.25), and

thus relevant for clause a. of Definition 4.4. Moreover, depending on the branching

structure of T , such inputs may also become weakly persistent (as per Definition 2.6),

and thus relevant for clauses b. and e. of Definition 6.2.

58 6.4. On I/O simulation and asynchrony

Following this intuition, we provide in Definition 6.21 below a sufficient condition which

guarantees the preservation of 6̈ when passing from the synchronous to the asynchronous

semantics.

Definition 6.21 (Input-preserving behaviours). p is input-preserving w.r.t. q (in symbols:

p �? q) iff for all w = `1, . . . , `n, p
′, q′, a, whenever

p
w
=⇒ p′ and q

w
=⇒ q′ (6.12a)

and
(
∀q′′ . q′ !

=⇒∗ q′′ implies q′′
!

=⇒∗ ?a−→
)

, (6.12b)

then p′
!

=⇒∗ ?a−→ . (6.12c)

Intuitively, Definition 6.21 says that if p �? q, then whenever p and q reach some states

p′, q′ through the same weak transitions (item 6.12a) and q′ always exposes some input

?a (possibly after some outputs, by item 6.12b), then p′ cannot “forget” ?a, and must be

able to expose it (possibly after some outputs). Or, in other words: if ?a is “persistent”

(albeit through some outputs) on the RHS, then it must also be reachable (possibly after

some outputs) on the LHS. Notice that the direction of �? follows the intuition of the

contravariance of inputs, as in 6̈.

Example 6.22. Consider T and U from Example 6.19: we have T 6�? U . Instead, as

positive examples, we have:

a. !a . !a . !b .?c
(
6̈ ∩ �?

)
U (i.e., the LHS can select the !a-branch of U for a finite

number of times);

b. recX !a.?c′ .X
(
6̈ ∩ �?

)
recY !a.?c′ .Y ⊕ !b.?c (i.e., the LHS can infinitely often

select a recursive branch that always performs an input).

The relation holds vacuously e.g. in !a.?c �? !b.?c′ ⊕ !b′ (but in this case, 6̈ does not

hold).

Definition 6.21 is used in Theorem 6.27 below, which generalises Theorem 4.13 and pro-

position 4.12, extending to I/O simulation the set of properties preserved when passing

from synchronous to asynchronous semantics. This result is based on four key properties:

(i) whenever p 6̈ q, each weak sequence of outputs of p is I/O simulated by q

(Proposition 6.23);

6. I/O simulation 59

(ii) whenever p �? q, and the two behaviours reach p′, q′ through the same weak

transitions, then p′ �? q
′ (Proposition 6.24);

(iii) each weak sequence of ouptuts from a session behaviour T corresponds to a sequence

of τs in its asynchronous version T [σ], for all σ (Proposition 6.25);

(iv) vice versa, each sequence of τs from T [σ] corresponds to a weak sequence of outputs

from T (Proposition 6.26).

Proposition 6.23. Let p 6̈ q. Then, for all w ∈ (A!)∗, p
w
=⇒ p′ implies ∃q′ . q w

=⇒ q′ and

p′ 6̈ q′.

Proof. By induction on w. In the base case (when w is empty) we need to prove that

p =⇒ p′ implies ∃q′ . q =⇒ q′ and p′ 6̈ q′: this follows from Lemma C.2, letting q′ = q.

For the inductive step, let w = w′!a (where w′ is a sequence of outputs). We have p
w′
=⇒ p′′

and q
w′
=⇒ q′′, with p′′ 6̈ q′′ (by the induction hypothesis); we need to show that:

∀p0, p1 . p
′′ =⇒ p0

!a−→ p1 =⇒ p′ implies ∃q′ . q′′ !a
=⇒ q′ and p′ 6̈ q′

Now, by Lemma C.2, we have p0 6̈ q′′; by clause d. of Definition 6.2, we have that

for some predictive set Q, p0
!a−→ p1 implies ∃q′′′ . Q !a

=⇒ q′′′ and p1 6̈ q′′′; since (by

Definition 6.2) q′′ V Q, we have q′′
!a
=⇒ q′′′; finally, by Lemma C.2, we obtain p′ 6̈ q′′′. We

conclude by letting q′ = q′′′, thus obtaining the thesis.

Proposition 6.24. Let p �? q. Then, ∀w . p
w
=⇒ p′ and q

w
=⇒ q′ implies p′ �? q

′.

Proof. We prove the contrapositive. We have that ∃w . p
w
=⇒ p′ and q

w
=⇒ q′ but p′ 6�? q

′.

This means that ∃w′, p′′′, q′′′, a such that:

• p′ w
′

=⇒ p′′′ and q′
w′
=⇒ q′′′ (item 6.12a of Definition 6.21), and

• ∀q′′ . q′′′ !
=⇒∗ q′′ implies q′′

!
=⇒∗ ?a−→ (item 6.12b of Definition 6.21),

and p′′′
!

=⇒∗ ?a−→. is false. Then, under the same existential quantifications, we also have:

• p ww′
==⇒ p′′′ and q

ww′
==⇒ q′′′ (item 6.12a of Definition 6.21), and

• ∀q′′ . q′′′ !
=⇒∗ q′′ implies q′′

!
=⇒∗ ?a−→ (item 6.12b of Definition 6.21),

60 6.4. On I/O simulation and asynchrony

and p′′′
!

=⇒∗ ?a−→. is false. Therefore, we conclude p 6�? q.

Proposition 6.25. For all σ, T , T ′, w ∈ (A!)∗: T
w
=⇒ T ′ implies ∃σ′ . T [σ] =⇒ T ′[σ′].

Proof. We proceed by induction on the length of the sequence of transitions in T
w
=⇒ T ′.

The base case is trivial: since we have no transitions, then T ′ = T and we conclude by

letting σ′ = σ. For the inductive cases, we have:

• T w
=⇒ T ′′

τ−→ T ′. By the induction hypothesis, we have ∃σ′′ . T [σ] =⇒ T ′′[σ′′]. By

item (ii) of Proposition 2.19, ∃b . T ′′[σ′′]
τ−→ T ′[σ′′ .!b]. We conclude by letting

σ′ = σ′′ .!b;

• T w′
=⇒ T ′′

!b−→ T ′. By the induction hypothesis, we have ∃σ′′ . T [σ] =⇒ T ′′[σ′′].

By item (iii) of Proposition 2.19, T ′′[σ′′]
τ−→ T ′[σ′′ .!b]. We conclude by letting

σ′ = σ′′ .!b.

Proposition 6.26. If T [σ] =⇒ T ′[σ′], then ∃w ∈ (A!)∗ . T
w
=⇒ T ′.

Proof. We proceed by induction on the length of the sequence of transitions in T [σ] =⇒

T ′[σ′]. The base case is trivial: since we have no transitions, then T ′ = T and σ′ = σ

— and we conclude by letting w be the empty sequence. For the inductive case, let

T [σ] =⇒ T ′′[σ′′]
τ−→ T ′[σ′]. By the induction hypothesis, there exists a sequence of outputs

w′ such that T
w′
=⇒ T ′′. Now, from T ′′[σ′′]

τ−→ T ′[σ′], by Definition 2.16 we have that T ′′ is

equivalent to a non-empty internal choice with some !b-guarded branch, and σ′ = σ′′ .!b;

moreover, by Proposition 2.19 (items (ii) and (iii)), we have either T ′′
τ−→ !b−→ T ′ or

T
!b−→ T ′ — and therefore, T ′′

!b
=⇒ T ′. Hence, from T

w′
=⇒ T ′′

!b
=⇒ T ′, we conclude by letting

w = w′!b.

Theorem 6.27. If T
(
6̈ ∩ �?

)
U , then T [] 6̈ U [].

Proof. Let us define:

R̈ =
{

(T [σ] , U [σ])
∣∣ T (6̈ ∩ �?) U

}
We show that R̈ is an I/O simulation. For each (T [σ] , U [σ]) ∈ R̈, we define U = {U [σ]}

as predictive set, and verify the clauses of Definition 6.2:

6. I/O simulation 61

item a. assume T [σ]⇓! = ∅. Then, by Definition 2.16 we have σ = ε, and T can only

be a (possibly empty) external choice. Since T 6̈ U , we have that U is also an

external choice (by Theorem 6.16, Lemma 6.7 and Lemma 6.6) — and thus, since

U = {U [σ]}, we conclude U⇓! = ∅;

item b. since T 6̈ U , from Theorem 6.16, Lemma 6.7 and Lemma 6.6 we can determine

that (up-to unfolding) T and U can be either:

• both empty choices, i.e. T = U = 0. Then, since U = {U [σ]}, we have

∅ = U⇓?? ⊆ T [σ]⇓? = ∅ and
(
U⇓? = ∅ =⇒ T [σ]⇓? = ∅

)
;

• both non-empty external choices, with all branches of U included in T . We

notice that, by Proposition 2.19 (item (i)), we have:

– ∀a . T
?a−→ iff T [σ]

?a−→, and

– ∀a . U
?a−→ iff U [σ]

?a−→.

Therefore, ∀a.U [σ]
?a−→ implies T [σ]

?a−→. We also notice that, by Definition 2.16,

we have:

– ∀a . U [σ]
?a−→ iff U [σ]

??a
=⇒ (i.e., all inputs of external choices are persistent);

– ∀a . T [σ]
?a
=⇒ iff T [σ]

?a−→ (i.e., all weakly reachable inputs are also immedi-

ately enabled).

Summing up, ∀a we have:

U [σ]
??a
=⇒ ⇐⇒ U [σ]

?a−→ ⇐⇒ U
?a−→
⇓

T [σ]
?a
=⇒ ⇐⇒ T [σ]

?a−→ ⇐⇒ T
?a−→

and therefore, since U = {U [σ]},

U [σ]⇓?? = U⇓?? ⊆ T [σ]⇓?

Furthermore, we also have that U⇓? = ∅ implies T [σ]⇓? = ∅ (vacuously);

• both non-empty internal choices. We first prove U⇓?? ⊆ T [σ]⇓?. If U⇓?? = ∅,

the thesis is immediate. Otherwise, assume ∃a . U ??a
=⇒; since U = {U [σ]}, this

holds iff U [σ]
??a
=⇒ — and by Definition 2.6, this means:

∀U ′, σ′ . U [σ] =⇒ U ′
[
σ′
]

implies ∃U ′′, σ′′ . U ′
[
σ′
]

=⇒ U ′′
[
σ′′
] ?a−→

62 6.4. On I/O simulation and asynchrony

By Proposition 6.26, each τ -sequence between U [σ] and U ′[σ′] above cor-

responds to some sequence of outputs w such that U
w
=⇒ U ′; similarly, the

τ -sequence between U ′[σ′] and U ′′[σ′′] above corresponds to some sequence of

outputs w′ such that U ′
w′
=⇒ U ′′. Thus,

∀U ′, w = !b1, . . . , !bn . U
w
=⇒ U ′ implies ∃U ′′, w′ = !c1, . . . , !cn′ . U

′ w′=⇒ U ′′
?a−→

and therefore, by Notation 2.1,

∀U ′ . U !
=⇒∗ U ′ implies ∃U ′′ . U ′ !

=⇒∗ U ′′ ?a−→ (6.13)

Now, since T �? U , we have:

– an empty sequence of actions w0 matches item 6.12a of Definition 6.21

for T
w0=⇒ T and U

w0=⇒ U ;

– from Equation (6.13), we have that ?a is “persistent” in U by item 6.12b

of Definition 6.21;

– therefore, by item 6.12c of Definition 6.21, ∃T ′ . T !
=⇒∗ T ′ ?a−→.

Therefore, ∃w′′ = !d1, . . . , !dm such that T
w′′
=⇒ T ′

?a−→; and then, by Proposi-

tion 6.25, we have ∃σ′ . T [σ] =⇒ T ′[σ′]
?a−→. Summing up, we have shown that

∀a, U ??a
=⇒ implies T [σ]

?a
=⇒: we conclude U⇓?? ⊆ T [σ]⇓?.

We are left to prove that U⇓? = ∅ implies T [σ]⇓? = ∅. We first observe that

since U = {U [σ]}, then U⇓? = ∅ implies U [σ]⇓? = ∅, which in turn gives us

∀U ′, σ′′ . U [σ] =⇒ U ′
[
σ′′
]

implies U ′
[
σ′′
]
⇓? = ∅ (6.14)

Let us now examine the possible weak transitions of T [σ]. From Proposi-

tion 6.26 we know that ∀T ′, σ′.T [σ] =⇒ T ′[σ′] implies ∃w = !b1, . . . , !bn.T
w
=⇒ T ′.

Moreover, since T 6̈ U , by Proposition 6.23 we have that for all such w,

∃U ′ . U w
=⇒ U ′ and T ′ 6̈ U ′; and by Proposition 6.25, U

w
=⇒ U ′ implies

∃σ′′ . U [σ] =⇒ U ′[σ′′]. From this, Equation (6.14), gives U ′[σ′′]⇓? = ∅ — i.e.,

by item (i) of Proposition 2.19, U ′⇓? = ∅. But then, T ′ 6̈ U ′ is supported

by some predictive set U′ such that U′⇓? = ∅; and therefore, by item b. of

Definition 6.2, we have T ′⇓? = ∅ — and by item (i) of Proposition 2.19,

T ′[σ′]⇓? = ∅. Thus, we conclude T [σ]⇓? = ∅.

6. I/O simulation 63

item c. assume T [σ]
τ−→ T ′[σ′]. Notice that, by Definition 2.16, T [σ] can only generate a

τ -transition when T is equivalent to an internal choice with some !a-branch, and !a

is appended to σ: hence, σ′ = σ .!a. Then, by Definition 2.15, we have T =⇒ !a−→ T ′.

Since T 6̈ U , by Proposition 6.23 we have ∃U ′′, U ′, U ′′′ . U =⇒ U ′′
!a−→ U ′ =⇒ U ′′′

and T ′ 6̈ U ′′′. By Proposition 2.18, U ′′ is a single-branch internal choice, and by

item (iii) of Proposition 2.19, U [σ]
τ−→ U ′[σ .!a] = U ′[σ′]. Moreover, by Lemma C.3

we have T ′ 6̈ U ′, and by Proposition 6.24 we have T ′ �? U
′. Therefore, from the

definition of U above, we conclude ∃U ′ . U =⇒ U ′[σ′] ∧ T ′[σ′] R̈ U ′[σ′];

item d. assume T [σ]
!a−→ T ′[σ′]. Notice that, by the semantics in Definition 2.16, T [σ]

can only generate a !a-transition when an output is removed from the head of σ,

turning it into σ′, without changing T : so, T ′ = T . The same observation holds

for U [σ]. Since U = {U }, we have ∃U ′ . U !a
=⇒ U ′[σ′] with U ′ = U , from which we

obtain T = T ′ 6̈ U ′; moreover, by Proposition 6.24 we have T ′ �? U
′: we conclude

T ′[σ′] R̈ U ′[σ′];

item e. assume T [σ]
?a−→ T ′[σ′] ∧ U ??a

=⇒. Notice that, by the semantics in Definition 2.16,

T [σ] can only generate a ?a-transition when T is an external choice, and σ is

unchanged by the reduction — i.e., σ′ = σ. Now, since T 6̈ U , by Theorem 6.16,

Lemma 6.7 and Lemma 6.6 we have that U is an external choice, too — and by

Definition 2.15, we can verify that U
?a−→ iff U

??a
=⇒, and since U is an external choice,

by Definition 2.16 we have U [σ]
?a−→ implies U [σ]

??a
=⇒. Moreover, since T 6̈ U ,

again by Theorem 6.16, Lemma 6.7 and Lemma 6.6 we also have ∀U ′ . T ?a−→

T ′ ∧ U
?a−→ U ′ implies T ′ 6̈ U ′. Finally, we observe that by Proposition 6.24,

∀U ′ . T ?a−→ T ′ ∧ U
?a−→ U ′ implies T ′ �? U

′. Therefore, by definition of R, we

conclude ∃U ′ . U ?a
=⇒ U ′[σ′] ∧ T ′[σ′] R̈ U ′[σ′].

Hence, R̈ is an I/O simulation. Thus, ∀σ, T (6̈ ∩ �?) U implies T [σ] R̈ U [σ], and

therefore, T [σ] 6̈ U [σ]. We conclude T [] 6̈ U [].

Indeed, the above theorem together with Proposition 6.18 give us some general criterions

for proving properties of asynchronous session types: it suffices to show them in the

simpler synchronous case (which is finite-state by Definition 2.15, and therefore guarantees

the decidability of all the relations mentioned in Theorem 6.27).

Chapter 7

Session types without types

In this chapter we address the topics discussed in Sections 1.1.1 and 1.1.2: we show how

typical (and not-so-typical) session typing rules can arise by applying I/O compliance

and I/O simulation on specific process and type languages — in our case, sync/async

CCS and session types from Chapter 2.

7.1 From semantics to syntax

Our treatment so far does not depend on a syntactic representation of behaviours in U.

In the resulting unifying view, there are no inherent distinctions between processes and

types: they are just behaviours in an LTS. This allows us to define relations between

objects which morally belong to different realms: e.g. p 6̈ q may relate, say, an async

CCS process with a (synchronous or asynchronous) session type.

The price for this generalisation is (seemingly) the loss of a useful feature: using syntax-

based reasoning to check whether a process has a certain type, without having to deal

with the semantic level. In this chapter, we show how this possibility can be restored in

four steps:

(i) choosing a process language and a type language (with their corresponding se-

mantics);

(ii) encoding types into processes;

(iii) devising a sound set of axioms and rules for 6̈;

65

66 7.1. From semantics to syntax

P ≈̈ P + 0

P +Q ≈̈ Q+ P

P + (Q+R) ≈̈ (P +Q) +R

P ≈̈ P + P

P ≈̈ P | 0
P |Q ≈̈ Q | P

P | (Q |R) ≈̈ (P |Q) |R
P ≈̈ P

Table 7.1: Some axioms for ≈̈ in UCCS and UaCCS (where ≈̈ is the largest symmetric I/O
simulation, by Definition 6.2).

(iv) using these axioms to induce syntax-based typing rules that imply (i.e., safely

approximate) 6̈.

We give a proof-of-concept of this methodology: for step (i) above, we focus on async

CCS (UaCCS) for processes1, and async session behaviours (UaST) as types.

Remark 7.1. To improve readability, hereafter we shall sometimes omit the buffers [σ]

appearing in UaCCS processes. Moreover, we will write P 6̈ Q in UaCCS with the meaning:

∀σ . P [σ] 6̈ Q[σ].

The encoding from types to processes for step (ii) is the one given in Definition 2.27.

Proceeding to step (iii), we now aim at a 6̈-based inductive relation for UaCCS. We start

by introducing a syntax-based equivalence ≡ between UCCS and UaCCS processes2, in

Definition 7.3 below. As expected, ≡ embodies the commutative monoidal laws for +

and | (with 0 as neutral element), the absorption law for +, and reflexivity: here, we

semantically ground ≡ on the I/O bisimilarity of the LHS and RHS, by defining ≡ upon

a set of axioms for ≈̈, listed in Table 7.1.

Proposition 7.2. The relations in Table 7.1 hold for all UaCCS processes.

Proof. We can verify that the transition diagrams of the LHS and RHS of each rela-

tion are isomorphic, both synchronously (by Definition 2.24) and asynchronously (by

Definition 2.25, when a buffer [σ] is added to both processes). Therefore, they are also

(strongly and weakly) bisimilar: we conclude by Theorem 6.11.

1Coherently with the abstractions described in Section 1.2, our processes are not as rich as the variants
of π-calculus usually studied in session types literature: intuitively, we focus on the interactions that a
process performs inside a session, while every other activity is abstracted as a τ -move. These choices
will be further discussed in Sections 9.3 and 9.8.

2Here, we save some notation by overloading the symbol ≡, which was already introduced as a relation
between session types in Definition A.1. Despite the possible ambiguity, the context should always allow
to determine which relation is being used.

7. Session types without types 67

∀i ∈ I . Pi 6̈ Qi∑
i∈I`τ i . Pi 6̈

∑
i∈I`τ i . Qi

(+Ctx)

Q ≡
∑

i∈I !ai . Qi
∀i ∈ I . Pi 6̈ Qi I 6= ∅∑

i∈I !ai . Pi 6̈ Q+ !b . Q′
(+Int)

Q ≡
∑

i∈I?ai . Qi
∀i ∈ I . Pi 6̈ Qi ∅ 6= I ⊆ J

∀k ∈ K . Pk 6̈ Q
∀j ∈ J \ I . aj 6∈ {ai}i∈I∑

j∈J(?aj . Pj) +
∑

k∈Kτ . Pk 6̈ Q
(+Ext)

∀i ∈ I . Pi 6̈ Q∑
i∈Iτ . Pi 6̈ Q

(+τ)
P 6̈ Q R 6̈ S ins(P) = ins(Q) = ∅

P |R 6̈ Q | S
(|LR)

Q ≡
∑

i∈I !ci . Qi
P ′ 6̈ !a P ′′ 6̈ ?b

P ′ | P ′′ 6̈ !a . ?b +Q
(|L)

P 6̈ ?b . Q R ≡
∑

i∈I !ci . Ri

!a . P 6̈ !a +R | ?b . Q
(|R)

Table 7.2: Rules for 6̈ in UaCCS. ins(P) gives the set of inputs appearing in P ’s body.
Note that the rules above the dashed line are also valid for UCCS.

Definition 7.3. ≡ is the least symmetric and transitive relation between UCCS terms,

and between UaCCS terms, satisfying the axioms in Table 7.1 by replacing the occurrences

of ≈̈ with ≡.

Proposition 7.4. ≡ (from Definition 7.3) is an equivalence relation.

Proof. Follows from Definition 7.3: symmetry and transitivity are immediate; reflexivity

holds by the identity rule in Table 7.1.

We will now follow a similar approach to define a syntax-based relation which is se-

mantically grounded on 6̈: we will introduce a set of rules and later use them under and

inductive interpretation.

Such rules are listed in Table 7.2, and they are mostly straightforward:

• (+Ctx) says that each Pi which is I/O simulated by some Qi can replace the latter

in the context of a guarded choice;

• (+Int) and (+Ext) (with K = ∅) correspond to the typical session typing rules for

“pure” internal/external choices (resp. with outputs and inputs), allowing to add

inputs and remove outputs on the LHS, according to 6̈;

68 7.1. From semantics to syntax

• (+Ext) with K 6= ∅ handles an external choice that is interrupted (with τ -moves) and

later reprised: this is a simple case of Erlang-style receive. . . after. . . behaviour,

as seen in Chapter 3;

• (+τ) allows the LHS to internally choose one continuation among Pi, provided that

each one is I/O simulated by Q;

• (|LR) allows the parallel composition of behaviours. The side condition requires that

one of the parallel components does not contain input actions: this ensures that

the two threads cannot interfere badly (i.e., introduce additional non-determinism

by exposing the same inputs) along their reductions;

• (|L) exploits the asynchronous semantics of UaCCS: it allows to represent an output

and an input in parallel, when they are syntactically sequential in the process on

the RHS (which is required to be an output-guarded choice);

• (|R), on the opposite, allows the process on the LHS to be the sequential composition

!a . P when a parallel composition appears on the RHS: the conditions are that P

is I/O simulated by an external choice, and that !a guards a terminating branch of

an internal choice.

Lemma 7.5 establishes the correctness of the rules above.

Lemma 7.5 (Rules for 6̈). For all UaCCS processes, the rules in Table 7.2 hold.

Proof. See page 138.

We can now use the rules in Table 7.2 to construct a typing system with inductive

syntax-based rules. A first suggestion of what we are aiming to is given by Example 7.6

below.

Example 7.6. From Chapter 3, recall Alice’s type T ′′A and process P ′′A when she is late

for work.

T ′′A = !aCoffee.!pay.?coffee P ′′A = !aCoffee . (?coffee | !pay)

We have the following type encoding in CCS:

q
T ′′A

y
= !aCoffee . !pay . ?coffee

7. Session types without types 69

Then, using the rules in Tables 7.1 and 7.2, we have the following derivation (where

(+Ctx) becomes an axiom when I = ∅ in its premises):

0 6̈ J0K
(+Ctx)

!pay 6̈ J!payK
(+Ctx)

0 6̈ J0K
(+Ctx)

?coffee 6̈ J?coffeeK
(+Ctx)

0 ≈̈
∑

i∈∅!ci . Qi

?coffee | !pay ≈̈ !pay | ?coffee 6̈ J!pay.?coffeeK + 0 ≈̈ J!pay.?coffeeK
(|L)

?coffee | !pay 6̈ J!pay.?coffeeK
(≈̈ × 2)

!aCoffee . (?coffee | !pay) 6̈ JT ′′AK
(+Ctx)

This shows that we can inductively determine the I/O compliance relation in the conclusion

by composing the smaller relations from the premises.

The rules and relations introduced so far do not explicitly mention recursion3. In order

to syntactically handle recursive terms and asynchrony, however, some additional care is

needed. We can notice that rules (+Int), (|R) and (|L) allow the removal of branches in

output-guarded choices. Under recursion and asynchrony, this can lead to a problem

similar to the one illustrated in Example 6.19. Consider, for instance, the following

processes4:

P = µY !a . Y Q = µX !a . X + !b . ?c (7.1)

If a syntactic rule similar to (+Int) is applied to the + sub-term under recursion in

Q, such a rule can cause the removal of the !b-guarded branch, thus leading to claim

P [σ] 6̈ Q[σ]; this relation, however, does not hold, because Q[σ]
??c
=⇒ but P [σ] 6 ?c

=⇒.

To address this issue without excessively complicating the exposition, we will focus on a

fragment of sync/async CCS, introduced in Definition 7.7 below.

Definition 7.7 (CCS –). CCS – terms have the following syntax:

P ,Q ::=
∑
i∈I

`τ i . Pi
∣∣ P |Q

∣∣ X
∣∣ µXP

where we stipulate that:

a. if a choice + appears under recursion and some branch contains some input, then

all recursive branches must contain some input;

3Note that the presence of recursive sub-terms does not influence the validity of Proposition 7.2 and
Lemma 7.5, since they are semantically grounded.

4Note that P and Q are respectively the encodings of T and U from Example 6.19, by Definition 2.27.

70 7.1. From semantics to syntax

b. in µXP , P is sequential (i.e., it cannot contain |) and X is guarded (i.e., it can

only appear within some subterm ` . P ′ of P);

c. in P |Q, either P ’s or Q’s body does not contain inputs.

We denote the empty summation with 0, and will often omit its trailing occurrences.

The synchronous and asynchronous semantics of CCS – are based on the rules shown in

Definitions 2.24 and 2.25; they give rise to the behaviours denoted by U−CCS and U−aCCS.

Remark 7.8. In the rest of this chapter, unless otherwise specified, we will use P ,Q,R, S

to denote CCS – terms.

By Definition 7.7, choices in CCS – have prefix-guarded branches. Condition a. addresses

the issue we discussed on page 69, by forbidding processes such as Q = µX !a . X + !b . ?c.

Note, however, that processes like Q′ = µX !a . 0 + !b . ?c . X are allowed: in fact, all

recursive branches of Q′ contain some input, and the only branch without inputs is the

non-recursive one; as a result, Q′[σ] has no persistent inputs that must be preserved

on the LHS of I/O simulation. The restriction on | of condition b. ensures that the

size of CCS – terms does not grow unbondedly along recursions: hence, each process is

finite-state and, in the asynchronous semantics, the only source of infiniteness is the

unbounded buffer. This restriction is quite common (see e.g. [Mil89]), and allows for

simpler reasoning. Note that e.g. µX(?a | ?b) is not valid, but by removing the vacuous

recursion operator we have the valid term ?a |?b. The guardedness condition for recursion

variables comes from our original CCS fragment, and is similar to [Mil89] (§3.2). Finally,

condition c. enforces the premises of (|LR) on all CCS – processes (albeit not necessary for

our main results, this will allow us to aim at Conjecture 10.2 later on, in Section 10.2.2).

Note that, albeit more limited than full CCS, CCS – is still expressive enough to write

our examples from Chapter 3.

The last step towards our inductive system of rules is an induction principle for 6̈ in

U−CCS and U−aCCS, formalised in Lemma 7.9 below.

Lemma 7.9. Let P be a sequential CCS – term, with X guarded. If P [Q/X] 6̈ Q, then

µXP 6̈ Q. Moreover, if ∀σ . P [Q/X][σ] 6̈ Q[σ], then ∀σ . µXP [σ] 6̈ Q[σ].

Proof. See page 140.

7. Session types without types 71

Intuitively, Lemma 7.9 captures the behaviour of P w.r.t. Q when reasoning “at the

limit” of an infinite sequence of substitutions of X. In CCS –, whenever P is sequential

and R 6̈ R′, we have P [R/X] 6̈ P [R′/X]; therefore, we also have:

P 1 = P [Q/X] 6̈ Q (by hypothesis)

P 2 = P [P [Q/X]/X] 6̈ P [Q/X] and thus, P 2 6̈ Q (by transitivity)

P 3 = P
[
P [P [Q/X]/X]/X

]
6̈ P [P [Q/X]/X] and thus, P 3 6̈ Q

...
...

Pn = P
[
P
[
P [···P [Q/X]···/X]/X

]
/X
]
6̈ P

[
P [···P [Q/X]···/X]/X

]
and thus, Pn 6̈ Q

...
...

Informally, in the “limit” behaviour P∞, the execution of Q is “delayed” by an infinite

amount of unfoldings of P : hence, “at the limit”, such a behaviour is semantically indis-

tinguishable from (i.e., bisimilar to) µXP — and this, by Theorem 6.11 and transitivity

of 6̈, leads us to µXP 6̈ Q.

Definition 7.10. Let Γ be a mapping from recursion variables to CCS – terms with all

recursion variables being weakly guarded. We define 4̈Γ as the relation between CCS –

terms inductively defined by the rules obtained by replacing 6̈ with 4̈Γ in Table 7.2, and

by the following additional rules:

0 4̈Γ 0
(S-0)

X 6∈ dom (Γ)

X 4̈Γ X
(S-X)

Γ(X) = Q

X 4̈Γ Q
(S-Var)

P 4̈Γ,X:Q Q

µXP 4̈Γ Q
(S-µL)

P 4̈Γ Q[µXQ/X]

P 4̈Γ µXQ
(S-µR)

Moreover, 4̈Γ is closed under replacement of ≡-related subterms (from Definition 7.3).

We will often write P 4̈ Q instead of P 4̈∅ Q.

The rules in Definition 7.10 are mostly straightforward:

• (S-0) is the axiom relating terminated processes, which is semantically grounded on

the identity relation from Table 7.1. Note that such a rule is not strictly necessary,

because it is just a special case of (+Ctx) or (+τ) when I = ∅: its presence just

emphasizes the base case for rule induction;

72 7.2. An I/O simulation-based type system

• (S-X) relates equal open recursion variables, provided that they do not appear in

the environment. The intuition is that open variables are semantically isomorphic

to 0;

• (S-Var) uses the environment, requiring the hypothesis that X expands into a

behaviour I/O simulated by Q (note that (S-X) and (S-Var) are mutually exclusive);

• (S-µL) consumes such an hypothesis, introducing recursion on the LHS: the intuition

is that, in the rule premise, the LHS is I/O simulated by the RHS when Q replaces

X in P ’s body, similarly to the premise of Lemma 7.9;

• (S-µR) allows to unfold a recursion on the RHS, when going upwards in a derivation.

7.2 An I/O simulation-based type system

We can now show that the syntactic rules for 4̈Γ can be a basis for a type system for

U−aCCS. The correctness of 4̈ w.r.t. 6̈ is formalised in Corollary 7.12 below; this, in turn,

is based on Theorem 7.11, which shows how the environment in each derivation step is

used to construct an intermediate I/O simulation relation.

Theorem 7.11. Let P 4̈Γ Q. Then, ∀σ . PΓ[σ] 6̈ Q[σ].

Proof. See page 144.

Corollary 7.12. Let P 4̈ Q. Then, ∀σ . P [σ] 6̈ Q[σ].

Proof. Follows from Theorem 7.11, when Γ = ∅.

We can now define a syntax-directed typing judgement, relating CCS – terms with session

types. To this purpose, we exploit the encoding in Definition 2.27.

Definition 7.13 (Type system). We write Γ ` P : T iff JT K is a valid CCS – term

and P 4̈Γ JT K.

The condition on JT K in Definition 7.13 is necessary because the encoding of recursive

session types does not always respect condition a. of Definition 7.7: consider, for instance,

U = recY !a.X ⊕ !b.?c (from Example 6.19) and its encoding JU K = µX !a . X + !b . ?c.

7. Session types without types 73

Example 7.14. Recall Alice’s type, process and type encoding from Example 7.6, and

the 6̈-based derivation therein. By Definition 7.10, we have the following corresponding

derivation, where we essentially replace 6̈ with 4̈, ≈̈ with ≡, and the (+Ctx)-based axiom

with (S-0):

0 4̈ J0K
(S-0)

!pay 4̈ J!payK
(+Ctx)

0 4̈ J0K
(S-0)

?coffee 4̈ J?coffeeK
(+Ctx)

0 ≡
∑

i∈∅!ci . Qi

?coffee | !pay ≡ !pay | ?coffee 4̈ J!pay.?coffeeK + 0 ≡ J!pay.?coffeeK
(|L)

?coffee | !pay 4̈ J!pay.?coffeeK
(≡× 2)

!aCoffee . (?coffee | !pay) 4̈ J!aCoffee.!pay.?coffeeK
(+Ctx)

` P ′′A : T ′′A
(Definition 7.13)

Example 7.15. From Chapter 3, recall the bartender’s process Q′′B that stops selling

beer after a certain hour, the bartender type UB, and its encoding in CCS (which is also

a valid CCS – term):

Q′′B = µY
(

(?aCoffee . !coffee . Y + ?aBeer . (!beer . Y + !no . Y) + ?pay)

+ τ . µZ(?aCoffee . !coffee . Z + ?aBeer . !no . Z + ?pay)
)

UB = recX (?aCoffee.!coffee.X & ?aBeer.(!beer.X ⊕ !no.X) & ?pay)

JUBK = µX(?aCoffee . !coffee . X + ?aBeer . (!beer . X + !no . X) + ?pay)

We want to prove ` Q′′B : UB. First of all, for Q′′B we show a typing derivation for the

term under Z-recursion µZ?aCoffee Letting Γ = Z : JUBK, we have the derivation

shown in Table 7.3. Secondly, let D indicate such a derivation, starting from the instance

of rule (S-µL) (i.e., excluding the application of Definition 7.13). We reuse D in the

derivation for the term under Y -recursion in Q′′B, where it provides a premise for applying

rule (+Ext) from Table 7.2. Letting Γ′ = Y : JUBK, we obtain the derivation in Table 7.45.

Theorem 7.16 below states the correctness of our typing discipline. Suppose you have

a process P with type T , and a process Q with type U . If T [] and U [] are I/O

compliant, then P [] and Q[] are I/O compliant, too. Thus, we have that P [] ‖Q[] is safe

(by Theorem 5.22).

Theorem 7.16 (Correctness). If ` P : T and ` Q : U with T [] .̈/ U [], then P [] .̈/ Q[].

5In this derivation, the environment Γ′ is larger than the empty environment at the root of D. However,
D “still works”, and can be simply rewritten with Γ′ at its root, by Proposition D.4.

74
7.2.

A
n

I/O
sim

u
lation

-b
ased

ty
p

e
sy

stem

Γ(Z) = JUBK
Z 4̈Γ JUBK

(S-Var)

!coffee . Z 4̈Γ J!coffee . UBK
(+Ctx)

?aCoffee . !coffee . Z 4̈Γ J?aCoffee.!coffee . UBK
(+Ctx)

Γ(Z) = JUBK
Z 4̈Γ JUBK

(S-Var)

!no . Z 4̈Γ J!no.UBK
(+Ctx)

!no . Z 4̈Γ J!beer.UB ⊕ !no.UBK
(+Int)

?aBeer . !no . Z 4̈Γ J?aBeer.(!beer.UB ⊕ !no.UB)K
(+Ctx)

0 4̈Γ J0K
(S-0)

?pay 4̈Γ J?payK
(+Ctx)

?aBeer . !no . Z + ?pay 4̈Γ J?aBeer.(!beer.UB ⊕ !no.UB) & ?payK
(+Ctx)

?aCoffee . !coffee . Z + ?aBeer . !no . Z + ?pay 4̈Γ J?aCoffee.!coffee . UB & ?aBeer.(!beer.UB ⊕ !no.UB) & ?payK
(+Ext)

?aCoffee . !coffee . Z + ?aBeer . !no . Z + ?pay 4̈Γ JUBK
(S-µR)

µY ?aCoffee . !coffee . Z + ?aBeer . !no . Z + ?pay 4̈ JUBK
(S-µL)

` µZ?aCoffee . !coffee . Z + ?aBeer . !no . Z + ?pay : UB
(Definition 7.13)

Table 7.3: Typing derivation for the running example (I).
.

7
.

S
essio

n
ty

p
es

w
ith

ou
t

ty
p

es
75

Γ′(Y) = JUBK
Y 4̈Γ′ JUBK

(S-Var)

!coffee . Y 4̈Γ′ J!coffee . UBK
(+Ctx)

Γ′(Y) = JUBK
Y 4̈Γ′ JUBK

(S-Var)

!beer . Y 4̈Γ′ J!beer.UBK
(+Ctx)

Γ′(Y) = JUBK
Y 4̈Γ′ JUBK

(S-Var)

!no . Y 4̈Γ′ J!no.UBK
(+Ctx)

!beer . Y + !no . Y 4̈Γ′ J!beer.UB ⊕ !no.UBK
(+Ctx)

?aBeer . (!beer . Y + !no . Y) 4̈Γ′ J?aBeer.(!beer.UB ⊕ !no.UB)K
(+Ctx)

0 4̈Γ′ J0K
(S-0)

?pay 4̈Γ′ J?payK
(+Ctx)

D

?aCoffee . !coffee . Y + ?aBeer . (!beer . Y + !no . Y) + ?pay + τ . µZ?aCoffee . !coffee . Z + ?aBeer . !no . Z + ?pay 4̈Γ′ JUBK
(+Ext, S-µR)

Q′′B 4̈ JUBK
(S-µL)

` Q′′B : UB

(Definition 7.13)

Table 7.4: Typing derivation for the running example (II). D is the derivation starting from (S-µL) in Table 7.3.
.

76 7.2. An I/O simulation-based type system

Proof. From Definition 7.13 we have P 4̈ JT K; by Proposition 2.28, Definition 7.10

and Corollary 7.12 it follows P [] 6̈ T []. Similarly, Q[] 6̈ U []. Since P [] 6̈ T [] .̈/ U [], by

Theorem 6.13 it follows P [] .̈/ U []. Since Q[] 6̈ U [] .̈/ P [], then by Theorem 6.13 we

conclude Q[] .̈/ P [].

We stress that the above result is obtained just by exploiting the properties of I/O

simulation, without explicitly proving subject reduction.

In the synchronous setting, we can deduce T .̈/ U either via model checking (since both

behaviours are finite state), or using syntax-driven techniques (e.g. those in [BL10]); then,

by Proposition 4.12, this result is lifted “for free” to the async case; and if both T and

U can be encoded in CCS –, we can reason on ` P : T and ` Q : U on a syntax-driven

basis, through the rules in Definition 7.10.

Note, however, that Theorem 7.16 does not require compliance between synchronous

session types. Therefore, the result also holds e.g. for T = !a.?b and U = !b.?a — since

in the asynchronous setting we have T [] .̈/ U [] (even though T 6.̈/ U). This aspect is

further discussed in Examples 7.17 and 7.18 below.

Example 7.17. Recall ` P ′′A : T ′′A from Example 7.14, and consider the bartender

processes QB, Q
′′
B and type UB from Chapter 3. We can easily obtain ` QB : UB.

Therefore, since in Example 4.10 we determined UB[] .̈/ T ′′A[], by Theorem 7.16 we have

QB[] .̈/ P ′′A[]; hence, by Theorem 5.22 we have that QB[] ‖ P ′′A[] is safe. Note that this

result exploits asynchrony both via I/O compliance and via typing: in fact, this is based

on UB[] .̈/ T ′′A[], albeit UB 6.̈/ T ′′A (as discussed in Example 4.10); moreover, the typing

judgement ` P ′′A : T ′′A uses rule (|L).

Example 7.18. Recall ` P ′′A : T ′′A from Example 7.14, and consider Example 7.15,

where we show ` Q′′B : UB. By Theorem 7.16 we have Q′′B[] .̈/ P ′′A[], and by Theorem 5.22

we conclude that Q′′B[] ‖ P ′′A[] is safe. Note that this result, as in Example 7.17, is based

on asynchronous semantics, and would not hold in the synchronous setting.

The previous examples (in particular, Example 7.15) show that our syntax-driven rules

allow to type an Erlang-style receive. . . after. . . behaviour, featured in the bartender

process.

Chapter 8

The LTS Workbench

LTSwb (from “LTS WorkBench”) [Sca15; SB15] is a Labelled Transition System (LTS)

toolbox, allowing to define LTSs and processes, and compute relations between their

states. It has been mainly implemented to experiment with the theory presented in this

work, and to ease further investigations on semantic and language-independent relations.

Its main features are:

genericity. LTSwb does not require LTSs and processes to have specific state/label types.

This allows to semantically reason on different process specifications: for example, it

allows to study whether a CCS process [Mil89] is a semantic refinement of a session

type [Hon93] (as in the present work), or whether it can correctly interact with

a service whose specification is a Communicating Finite-State Machine (CFSM)

[BZ83];

laziness. Finite-state and infinite-state LTSs and processes are managed transparently:

states and transitions are only generated upon request. This allows to handle

the state space explosion problems and the infiniteness arising e.g. with recursion,

parallelism, unbounded communication buffers, etc.

LTSwb is a Scala [Oa04] library. The choice of Scala comes from the desire of a functional

programming language with an advanced type system, and the possibility of accessing

the vast landscape of libraries available on the Java VM. LTSwb can also be used on the

interactive Scala console: unless otherwise noted, all the examples on this chapter can

be replicated therein via simple cut&pasting.

77

78 8.1. LTSs, processes and asynchrony

(0,p1)

(1,p1)

+

(0,p2)

!a

(1,p2)

!a

(2,p1)

+

?c

+

(0,p3)

?b

?c

(1,p3)

?b

(2,p2)

+

+

(2,p3)

+

-

!a

(3,p1)

+

-

?c
?b

(3,p2)

+

-

(3,p3)

+

!a

?c

?b

Figure 8.1: Output of (l1 ||| l2).toDot.

8.1 LTSs, processes and asynchrony

In LTSwb, an LTS is a triple (Σ,Λ,R) where Σ is the set of states, Λ is the set of labels,

and R ⊆ (Σ× (Λ× Σ)) is the transition relation. A process is a pair (L, σ) where L is an

LTS and σ is one of its states. The process transition (L, σ)
`−→ (L, σ′) holds iff (σ, (`, σ′))

is in the transition relation of L.

In the following sections, we show several ways in which LTSwb processes can be created

(by extracting them from some LTS) and manipulated.

8.1.1 From LTSs to processes

In LTSwb, a finite LTS can be defined with the LTS constructor, by enumerating the

state-(label-state) triples which compose its transition relation. For example:

val l1 = LTS(List((0, ("+", 1)), (1, ("+", 2)), (2, ("+", 3)), (2, ("-", 1))))

val l2 = LTS(List(("p1", ("!a", "p2")), ("p2", ("?b", "p3")), ("p2", ("?c", "p1"))))

The type of l1 is FiniteLTS[Int,String], while l2 has type and FiniteLTS[String,String]

— i.e., they are finite-state, finite-branching LTSs where states are Integers (resp. Strings),

0 1+ 2
+

- 3+

p1 p2
!a

?c
p3?b

and labels are Strings. The meth-

ods l1.toDot and l2.toDot return

their graphs (shown on the left).

The ||| operator on LTSs returns

8. The LTS Workbench 79

the LTS whose states correspond to the parallel composition of its arguments’ states,

provided that the labels have the same type: Figure 8.1 shows the diagram of (l1 |||

l2).toDot. Such a composition corresponds to Definition 2.4, and it is performed lazily,

thus avoiding (or delaying) state space explosion problems: the actual combinations of

LTS states are generated only upon request.

A process can be simply retrieved from an LTS through one of its states. For example:

val p1 = l2.process("p1")

In this case, we have that p1 has type FiniteProcess[String,String] (i.e., a finite-state,

finite-branching process where states are Strings, and labels are Strings as well). As

one might expect, p1.state has indeed value "p1". Moreover, p1.lts is l2 — i.e., the

LTS inhabited by p1.

A process can be queried for its enabled transitions. In our example, p1.transitions

has type FiniteSet[String], and value Set("!a"). We can now let:

val p1a = p1("!a"); val p2 = p1a.iterator.next

where p1a is the FiniteSet of processes reachable from p1 via transition "!a". In our

example, p1a contains a single element, i.e. the process corresponding to state "p2" of

l2: such a process is retrieved via p1a’s iterator1, and assigned to p2. As expected,

p2.transitions has value Set("?b","?c").

Processes can be composed in parallel, similarly to LTSs (as shown above). Let:

val p01 = l1.process(0) ||| p1

Here, p10 has type FiniteProcess[(Int,String),String] (i.e., each state is a pair of

type (Int,String), while labels remain Strings). The transitions of p01 are those of the

LTS state (0,p1) in Figure 8.1: indeed, the same process could have been extracted from

the (l1 ||| l2) LTS with (l1 ||| l2).process((0,"p1")), and p01.lts is l1 ||| l2.

8.1.2 CCS processes

LTSwb implements CCS, which is the infinite LTS where states are CCSTerms, labels are

CCSPrefixes, and the (infinite) transition relation corresponds to the CCS semantics.

1Note that the same process can also be retrieved via l2.process("p2"), as we did for p1 above.

80 8.1. LTSs, processes and asynchrony

Processes can be extracted from CCS as above, i.e. with CCS.process(s) (where s is a

CCSTerm), or letting LTSwb parse terms from strings:

val ccs1 = CCS.process("rec(X)(!a.(?b + ?c.X))") // Parses the CCSTerm from String

val ccs2 = CCS("?a.(t.!c.?a.!b + t.!b)") // Shorthand. "t" is the internal action

The type of ccs1 and ccs2 is FiniteBranchingProcess[CCSTerm,CCSPrefix] — i.e., they

are finite-branching (but not necessarily finite-state) processes whose states are CCSTerms,

and whose transition labels are CCSPrefixes. Note that ccs1 has, intuitively, the same

transitions of process p1 defined earlier: for example, ccs1.transitions is Set(!a). There

is, however, a difference: CCSPrefixes are distinguished among input, output and internal

actions (respectively: ?a, !a, τ — just as in our I/O LTS from Section 2.1.1), and this

additional information (which is not present in the simple string labels of p1 above)

allows the parallel composition of CCS processes to synchronise. For example, let:

val ccs12 = ccs1 ||| ccs2

Here, ccs12 has type FiniteBranchingProcess[(CCSTerm,CCSTerm),CCSPrefix], and the

value of ccs12.transitions is Set(?a, !a, τ). As expected, the τ -transition is generated

by the synchronisation on a — and indeed, as shown in Figure 8.3, ccs12(τ) returns2:

Set(((?b + (?c.rec(X)(!a.(?b + ?c.X)))) , (t.!c.?a.!b + t.!b)))

8.1.3 From synchronous to asynchronous semantics

If p is an instance of Process (which is the main abstract class common to all LTSwb

processes), then p.async is a new process obtained by pairing p with an empty buffer,

represented as a List. LTSwb performs this transformation in a general, purely semantic

fashion3: each output label of p is appended to the buffer (with an internal transition),

and the head of the buffer enables a corresponding output transition. This change is

transparently reflected in the values returned by p.async.transitions. If p has been

created with the CCS(P) constructor (where P is a CCS term), then the semantics of

p.async corresponds to P [], as per Definition 2.25 — although there is no async-CCS-

specific code for this functionality. For example:

val ccs1a = ccs1.async; val ccs2a = ccs2.async

2Note that ccs12(τ) and its return value have been slightly edited for clarity, and thus are not valid
Scala code.

3Indeed, such an operation is performed at the LTS level: if l is an LTS, then l.async is the LTS
with l’s states paired with a buffer; if s is a state of l, then l.async.process((s, List())) is equal
to l.process(s).async.

8. The LTS Workbench 81

?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))))

(τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))

?a

!c.(?a.(!b.(0)))

τ

!b.(0)

τ

?a.(!b.(0))

!c

?a

0

!b

(?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))),List())

((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))),List())

?a

(!c.(?a.(!b.(0))),List())

τ

(!b.(0),List())

τ(?a.(!b.(0)),List(!c))

τ

(!b.(0),List(!c))

?a

(?a.(!b.(0)),List())

!c

(0,List(!c, !b))

τ !c

(0,List(!b))

!c

(0,List())

!b

τ

?a

Figure 8.2: Outputs of ccs2.toDot() (left) and ccs2.toDot() (right).

ccs1a and ccs2a have type FiniteBranchingProcess[(CCSTerm,Seq[CCSPrefix]),CCSPrefix]

(i.e., each state pairs a CCSTerm with a sequence of prefixes). The difference between

ccs2 and ccs2a is shown in Figure 8.2: it can be seen that, for example, the first !c

transition of ccs2 becomes a τ transition (with buffering) in ccs2a, and the head of the

buffer is later consumed with a !c transition. Note, however, that there is an important

difference between ccs1 and ccs1a: while the former has a finite number of states, the

latter has infinite states, due to the presence of recursion and unbounded buffers (the

difference can be seen in Figure 8.4). This is not a problem per se, because, as shown

above, LTSwb ensures that process transitions are expanded “lazily”. Pairing a finite

processes with an unbounded buffer reminds of Communicating Finite State Machines

(CFSMs) [BZ83] — and indeed, a CFSM-like interaction (modulo the different naming

of labels) can be modeled with the composition ccs1a ||| ccs2a, by filtering the states

reachable via internal moves and synchronisations: the resulting finite transition diagram

is shown in Figure 8.5 (note that the “unfiltered” transition diagram of ccs1a ||| ccs2a

is infinite).

82 8.2. Behavioural relations

val alice = CCS("!aCoffee.?coffee.!pay + !aBeer.(?beer.!pay + ?no.!pay)")

val bartender = CCS("rec(Y)(?aCoffee.!coffee.Y + ?aBeer.(!beer.Y + !no.Y) + ?pay)")

val ab = IOCompliance.build(alice, bartender)

val aba = IOCompliance.build(alice.async, bartender.async)

Listing 8.1: LTSwb example. Alice and bartender CCS processes are from Chapter 3.

8.1.4 Adding new process calculi

LTSwb has no “hardwired” notion of process calculus. A new process calculus with

labelled semantics can be added to the framework in three steps: (a) define (or possibly

reuse) a class L for its labels, (b) define a class T for its terms, and (c) suitably derive

the abstract classes LTS and Process, using T and L respectively as state and label types

(eventually specifying which labels are input/output/internal, and how they synchronise).

This very approach has been followed for implementing CCS under LTSwb4: as a result,

the CCS-specific code is mostly necessary for parsing terms, while all the operations on

CCS processes (e.g.|||, .toDot(), .async,. . .) are implemented generically — and thus,

are reusable for new calculi. Moreover, if two processes (notwithstanding their LTS)

share the same label type, then they can synchronise, and their relations can be studied

as shown in Section 8.2.

8.2 Behavioural relations

One of the goals of LTSwb is implementing and studying semantic relations, without

syntactic limitations. LTSwb currently implements (bi)simulation (Definition 2.11), and

several variants of progress (Definition 4.1) and I/O compliance (Definition 4.4), i.e.

notions of “correct” interaction between processes. We exemplify the latter (the others

are used similarly).

8.2.1 Experiments with I/O compliance

The IOCompliance.build() method takes two FiniteBranchingProcess instances p and

q, and returns an Either object whose Right value is a finite I/O compliance relation

(as per Definition 4.4.) If p, q are not I/O compliant, the returned Left value is

a counterexample, i.e. a pair of non-I/O compliant states. Consider the first call to

4With an additional trick: CCSTerms are also Processes, such that if t is a CCSTerm, then t.lts
is CCS.

8. The LTS Workbench 83

val aliceH = CCS("!aCoffee.(?coffee | !pay)")

val bartenderL = CCS("rec(Y)(?aCoffee.!coffee.Y + ?aBeer.(!beer.Y + !no.Y) + ?pay

+ t . rec(Z)(?aCoffee.!coffee.Z + ?aBeer.!no.Z + ?pay))")

val aHbL = IOCompliance.build(aliceH, bartenderL)

val aHbLa = IOCompliance.build(aliceH.async, bartenderL.async)

Listing 8.2: Another LTSwb example: Alice tries to grab the coffee and pay at the same
time; the bartender, instead, may stop selling beer (from Chapter 3).

IOCompliance.build() in Listing 8.1: since alice and bartender are I/O compliant, ab’s

Right value is an I/O compliance relation containing the pair (alice, bartender); the

same holds for aba, built on the asynchronous versions of the two processes.

Listing 8.2 shows more examples: aliceH corresponds to P ′′A in Chapter 3, while

bartenderL corresponds to Q′′B. The second call to IOCompliance.build() is successful

and returns Right, with an I/O compliance relation containing the asynchronous pro-

cesses. This result is coherent with Example 7.18. The first call to IOCompliance.build(),

instead, is not successful, and aHbL is the Left value below (edited for clarity):

Left((?coffee | !pay),

(!coffee.rec(Y)(?aCoffee.!coffee.Y + ?aBeer.(!beer.Y + !no.Y) + ?pay

+ t.rec(Z)(?aCoffee.!coffee.Z + ?aBeer.!no.Z + ?pay))))

The problem is that, after synchronising on aCoffee, aliceH and bartenderL reach the

states inside Left(· · ·), where the !pay transition of the former is not matched by a

(weak) ?pay of the latter. This violates clause a. of Definition 4.4.

8.2.2 Adding new compliance relations

Both IOCompliance and Progress (and their asymmetric versions) are derivatives of an

abstract, reusable class called Compliance. Intuitively, R is a coinductive compliance

relation iff, whenever (p, q) ∈ R, then:

1. pred(p,q) holds; (where pred is given as a parameter)

2. p
`−→ p′ and q

`′−→ q′ and `, `′ can synchronise implies (p′, q′) ∈ R;

3. p =⇒ p′ and q =⇒ q′ implies (p′, q′) ∈ R. (where =⇒ represents 0 or more internal

moves)

Compliance implements the .build() method according to the definition above: given

(p, q), it ensures that a class-specific predicate pred holds for p, q (as per clause 1.), and

then checks their reducts after synchronisation or internal moves (as per clauses 2. and

84 8.2. Behavioural relations

3.). Compliance.build() terminates when either no more states need to be checked, or

pred is false: in the latter case, it returns a counterexample, as seen in Section 8.2.1.

For example, the IOCompliance-specific predicate matches clause a. of Definition 4.4 (in

the symmetric variant), and .build() ensures that it holds for each pair of states in the

relation. Progress, IOCompliance and their variants are implemented by just changing

pred, and new coinductive compliance relations can be added in the same way: e.g., the

“Correct contract composition” from [BZ07a] (Def. 3) can be added by defining pred(p,q)

as (p ||| q).wbarbs.contains(X) (where .wbarbs is the Set of weak barbs of a process,

and X is a label denoting success).

Note that Compliance.build() only implements a semi -algorithm: hence, the method may

not terminate if one of the processes under analysis is infinite-state — and in particular,

if it can reduce, through internal moves, to an infinite number of distinct states. In such

a situation, LTSwb may need to construct an infinite compliance relation, with an infinite

search for states violating pred. Our Alice/bartender examples are infinite-state, but do

not generate infinite internal moves, and the semi-algorithm terminates.

Verifying relations. LTSwb also implements the method Compliance.check(). Given

an instance r of some Compliance-derived relation, r.check() is true when each pair

of states in r actually respects pred according to clause 1. above, and r contains all

the pairs of states required by clauses 2. and 3.. Consider e.g. Listing 8.1: ab is a

Right value, and ab.right.get.check() is true, because for each pair of states, pred (i.e.,

clause a. of Definition 4.4) is satisfied, and the same holds for their τ -reducts according

to clauses 2. and 3. (which correspond to clauses b.–d. of Definition 4.4). This also holds

for aba, and aHbLa from Listing 8.2. It is important to note that Compliance.build() and

Compliance.check() are implemented separately : the latter is intended as an independent

verification method, also for relations which are defined “by hand” (i.e., directly as finite

sets of pairs of states) without resorting to their own .build() method5. For example,

we can instantiate a Progress relation from an existing relation:

val aHbLaProg = Progress(aHbLa.right.get) // Recall: aHbLa is an IOCompliance rel.

and in this case aHbLaProg.check() holds — i.e., notwithstanding its type, aHbLa is also

a progress relation (as expected by item (a) of Theorem 4.9). Under this framework,

5When debugging is enabled, LTSwb runs .check() on each relation created by
Compliance.build(), to test its code.

8. The LTS Workbench 85

if a new compliance relation is implemented as explained above (i.e., by deriving the

Compliance class and providing a suitable class-specific pred), then synthesis (.build())

and verification (.check()) are obtained “for free”. A similar framework is also in place

for (bi)simulation.

8.3 Conclusions and future work on LTSwb

In the current (early) stage of development, LTSwb offers a flexible and extensible platform

allowing to define generic LTSs and processes, explore their (finite or infinite) state

space and study their (bi)simulation and compliance relations. The most similar tool,

albeit more CCS-centric, is [CPS93], whose development stopped around 1999: hence,

its obsolete dependencies and restrictive licensing terms make it very difficult to use and

improve. Another related tool is LTS Analyser [MK06] — which is limited to finite-state

processes; moreover, its development stopped around 2006, and its source code is not

available.

Future work on LTSwb includes the addition of more relations, with a “reusable” approach

to synthesis and verification similar to the one adopted for Compliance and (bi)simulation.

Moreover, we plan better support for multiparty interactions (currently provided via

the PCCS calculus, not discussed here) and richer process calculi with time and value

passing. We also plan to integrate LTSwb with Gephi [Gep15], thus providing a better

user interface with interactive exploration of large transition diagrams.

86 8.3. Conclusions and future work on LTSwb

(µ(X)(!a.((?b.(0)) + (?c.(X)))),?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))))

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))))

!a

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),(τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))))

τ

(µ(X)(!a.((?b.(0)) + (?c.(X)))),(τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))))

?a

?c

(0,?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))))

?b ?a

(0,(τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))))

?a

(0,!c.(?a.(!b.(0))))

τ

(0,!b.(0))

τ

(0,?a.(!b.(0)))

!c

?a

(0,0)

!b

?b ?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),!c.(?a.(!b.(0))))

τ

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),!b.(0))

τ

!a

(µ(X)(!a.((?b.(0)) + (?c.(X)))),!c.(?a.(!b.(0))))

τ

(µ(X)(!a.((?b.(0)) + (?c.(X)))),!b.(0))

τ

!a

(µ(X)(!a.((?b.(0)) + (?c.(X)))),?a.(!b.(0)))

!c

?b

?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),?a.(!b.(0)))

!c

τ

?b

?c

?a

!a ?a

τ

!a

(µ(X)(!a.((?b.(0)) + (?c.(X)))),0)

!b?b

τ

?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),0)

!b

?b ?c!a

Figure 8.3: Output of ccs12.toDot().

µ(X)(!a.((?b.(0)) + (?c.(X)))) (?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X))))))
!a

?c
0?b

(µ(X)(!a.((?b.(0)) + (?c.(X)))),List())

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a))

τ

(0,List(!a))

?b

(µ(X)(!a.((?b.(0)) + (?c.(X)))),List(!a))

?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List())

!a

(0,List())

!a

!a

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a, !a))

τ

!a

(0,List(!a, !a))

?b

(µ(X)(!a.((?b.(0)) + (?c.(X)))),List(!a, !a))

?c

...

!a

...

τ

...

!a

?c

?b

Figure 8.4: Output of ccs1.toDot() (top) and ccs1a.toDot(maxDepth=Finite(4)) (bot-
tom).

8. The LTS Workbench 87

((µ(X)(!a.((?b.(0)) + (?c.(X)))),List()),(?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))),List()))

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a)),(?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(!c.(?a.(!b.(0))),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(!b.(0),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(?a.(!b.(0)),List(!c)))

τ

((µ(X)(!a.((?b.(0)) + (?c.(X)))),List()),(?a.(!b.(0)),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a)),(?a.(!b.(0)),List()))

τ

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(0,List(!b)))

τ

((0,List()),(0,List()))

τ

Figure 8.5: Output of (ccs1a ||| ccs2a).toDot(filter={case (l,) => l.isTau}).
Note that τ -transitions generated by synchronisations cause the reduction of buffers —
i.e., the output at the head of a buffer is consumed by an input of the other process.

Chapter 9

Related work

This section discusses several related papers, grouping them by topic, and outlining some

possible extensions to our theory.

9.1 Session types

Session types were introduced by Honda et al. in [Hon93; THK94; HVK98], as a type

system for communication channels in a variant of the π-calculus. The resulting concept

of structured communication-based programming has been the cornerstone on which a

thriving research trend has been developed throughout the following decades.

In [MV11], session types are coupled with a “featherweight” Erlang-like language that,

however, omits the problematic receive. . . after. . . construct discussed in Section 1.1.1.

While adapting the type system of [MV11] to cope with such construct should be feasible,

our approach allows the construction of the type system (in our case, the rules for 4̈) to

be driven by an explicit underlying semantic notion (the I/O simulation).

9.2 Other “foundational” approaches to session types

A foundational approach to the theory of session types can be found in [Vas09], where

session types and typing rules are gradually “reconstructed” in linear π-calculus. The

similarity with the present work is mainly “moral”, in the sense that both approaches

start from a minimal setting, and then introduce and justify each element of the theory

89

90 9.3. Multiple participants and multiple sessions

“as needed”, instead postulating everything upfront. The main difference, though, is that

[Vas09] is more syntax-oriented: for instance, it only provides (reduction) semantics for

processes (and not types).

A different foundational approach is taken in [Cas+09], where types and processes have

their specific language (equipped with higher-order LTS semantics) but most definitions

are semantic-based, rather than syntax-oriented, to facilitate their adaptation and reuse

in other calculi. It is possible to find several similarities between [Cas+09] and our work:

the duality and subtyping/subsessioning relations introduced in the former (for which

completeness and decidability results are also provided) are based on “may output” and

“must input” relations, which embody input/output asymmetry — reminding the I/O

asymmetry and the “persistent inputs” which are also found in our I/O compliance and

I/O simulation; moreover, [Cas+09] implements a form of “partial asynchrony”, where

output transitions are non-blocking and “irrevocable” (inspired by [CH98]). The main

differences between our work and [Cas+09], instead, are that we forfeit all dependencies

on any process/type language (by focusing on a first-order I/O LTS populated by both

processes and types), and therefore our definitions must also take into account behaviours

which are not constrained (in particular, in their τ -transitions and output irrevocability)

by an underlying language with given internal/external choice operators. Moreover,

within the same framework, we also embed behaviours with explicit FIFO buffers, thus

obtaining a more extensive treatment of asynchrony. The similarities between the

approaches, however, suggest that by embedding the types and processes of [Cas+09] in

our I/O LTS, and focusing on them, we could be able to specialise (and simplify) several

definitions and achieve similar results. This could allow to recover the completeness of 6̈

w.r.t. v in further classes of behaviours populating U, as discussed in Remark 6.17. In

particular, the (semantic) notion of “viable descriptor” in [Cas+09] (Definition 2.9) and

a semantic counterpart of the “successor descriptor” (Definition 2.4) could be the basis

for a class of “viable behaviours” for which 6̈ could coincide with v.

9.3 Multiple participants and multiple sessions

Some recent works extend the session types discipline to the multiparty case, starting

from [HYC08]. In this setting, the application designer specifies the overall commu-

nication behaviour of multiple participants through a choreography, which enjoys some

9. Related work 91

correctness properties (e.g., safety and progress). The overall application is the result

of the composition of a set of processes, which are distributed over the network and

interact through a multiparty session. To ensure the correctness of this composition, the

choreography is projected into a set of local session types, which abstract the end-point

communication behaviour of processes: if each process is type-checked against its session

type, the composition of services preserves the properties enjoyed by the choreography.

The crucial technical difference w.r.t. dyadic session types is that, in local multiparty ses-

sion types, input/output actions target the specific participant from/to which a message

should be received/sent; correspondingly, a process typechecks only if its input/output

actions target the correct participant(s).

Dyadic session types represent a particular case of multiparty session types with just

two participants: in this case, a choreography is just a pair of types T ,U such that

T a` U (i.e., T .̈/ U , by Theorem 4.9), and the recipient/sender of each input/output

action is always the other endpoint. We expect that our approach can be extended

to this setting, too: some insights come from the streamlined approach of [CDP12],

where the authors “take a step back . . . defining global descriptions whose restrictions

are semantically justified”. The plan is to extend the 6̈ relation to capture the role

of each type/process, and then to produce the syntax-based typing rules via (partial)

axiomatisation for a given calculus.

We also plan to address the orthogonal problem “correct” interactions in the presence of

multiple interleaved sessions — that in the present work have not been addressed, as

explained in Section 1.2. Two starting points are [Bar+13; PVV14], that introduce type

systems for ensuring liveness in this setting.

9.4 Subtypes, subcontracts and sub-behaviours

[GH99; GH05] study subtyping for (dyadic) session types. These works focus on commu-

nication channel replaceability, and yield a relation which, following [PS96], is inverse

w.r.t. 6̈ in its handling of output/input covariance/contravariance. The intuition in

such works is the following: consider a type U and its subtype T , and a program P

interacting through a channel; then, a channel typed with T is “less demanding” for P

w.r.t. a channel typed with U — i.e., if P correctly uses an U -typed channel, then it can

also correctly use a T -typed channel. This holds because T allows P to choose among

92 9.4. Subtypes, subcontracts and sub-behaviours

“more” possible outputs, and mandates “less” inputs to be enabled, w.r.t. U . From the

other endpoint of a session, instead, the intuition is reversed: a subtyped channel allows

a process P to have a “more demanding” behaviour — i.e., since T allows P to perform

“more” outputs and allows for “less” inputs w.r.t. U , there are fewer processes which are

I/O compliant with T w.r.t. U . In the present work, we look at behaviours as external

observers, i.e. as if we were on the other endpoint of a channel; moreover, we want a

subtype to be “less demanding” for the other endpoint, thus being I/O compliant with

more behaviours. Therefore, our 6̈-induced ordering intuitively works in the following

way: we fix a channel type T , and given some program P which interacts according to

T , we look for a “smaller” program P ′ which can replace P , without diverging from T .

Then, we have that P ′ must choose among “less” possible outputs, and expose “more”

inputs w.r.t. to P — i.e., the ordering is reversed.

[CGP09] introduces a subcontract relation whose direction is also opposite w.r.t. 6̈, albeit

for a different reason: given a contract with a set of compliant behaviours, a subcontract

can correctly interact with a subset of such behaviours. The same principle governs the

subtype/subsession relation in [Cas+09]. In these cases, a subcontract/subtype is “more

demanding” than a supercontract/supertype. The intuition behind 6̈, instead, is that

we want a sub-behaviour to be “less demanding” w.r.t. a super-behaviour: i.e., if we fix a

contract r and a super-behaviour p which is I/O compliant with it, then a sub-behaviour

p′ is I/O compliant with r, too (as per Definition 6.1).

A subtyping relation with the same ordering of 6̈ is studied in [CHY07; DH11; CHY12].

There, a process P that uses a channel with subtype T can also use a channel with

supertype U (i.e., the ordering of T and U is opposite w.r.t. [GH99; GH05]); this means

that, if compared with U , the subtype T allows for “less” outputs and requires “more”

inputs to P ; this, in turn, means that from the other endpoint of a session, T is “less

demanding” (i.e., is I/O compliant with more behaviours) than U . This matches the

co/contravariance of outputs/inputs that 6̈ induces on T and U .

The topics in [GH05] are reprised in [BL10; BL14; BL15], where session types are

equipped with (first-order and higher-order) LTS semantics (by encoding them in a

fragment of the contract language of [CGP09]), and studied under different notions of

client-server compliance (e.g., allowing the client to terminate interaction or to skip

messages). We took inspiration from these works, aiming at a framework general enough

to faithfully replicate their notions and results. A similar line of research is also taken

9. Related work 93

in [BH12; BH14], where one of the main results is the full abstraction of the encoding

of types into contracts — which was missing in [BL10] (but later added in the long

version [BL15]). This result is akin the (higher-order) combination of Lemma 6.6 and

Theorem 6.16 (item (b)), that we proved independently. The main difference, however,

is that we chose to focus on first-order behaviours in a completely language-independent

treatment — whereas [BL10; BL14; BL15; BH12; BH14] focus on two specific languages

(i.e., session types and a fragment of the contracts from [CGP09]), investigating the

correspondence of syntactic and semantic definitions of subtyping in the two settings.

The notion of “higher-order contract” adopted in these works, whose LTSs feature labels

modelling input/output of contracts (which in turn have their own LTS semantics), could

be a starting point for an higher-order extension of our I/O LTS.

9.5 Asynchrony and session types

Asynchronous dyadic session types have been addressed in [NT04], where type equivalence

up-to buffering was defined over traces, and then approximated via syntax-based rules.

[MYH09; MY09; Mos09] study subtyping with “safe” partial commutativity allowed by

asynchrony, in the setting of multiparty session types: these works also tackle possible

optimisations allowed by buffering, similarly to our “asynchronous” Alice-Bartender

interaction (Chapter 3).

These works have been recently reprised in [CDY14], where it is noted that the asynchron-

ous subtyping from Mostrous et al. guarantees progress, but does not offer guarantees

about orphan messages: in case of recursive types, a subtype may not expose an input

which is infinitely often exposed in the supertype; thus, a program matching the subtype

may “forget” to read some messages from its queues. We will further discuss this topic

later, in Section 9.6.

In [KYH11] a bisimulation is defined to relate processes communicating via unbounded

buffers.

94 9.6. Compliance and safety

9.6 Compliance and safety

A notion of compliance and refinement for services with asynchronous communication has

been studied in [BZ08] (which extends [BZ07b]). There, service contracts are specified

as processes in a (finite-state) variant of CCS with a special state indicating successful

termination, and the semantics of (multi-party) systems of contracts is given by pairing

such contracts with unbounded buffers. This approach is pretty similar to our pairing

of session types and CCS terms with queues, as per Definitions 2.16 and 2.25 — and

even closer to the “LTS-level asynchrony” we implemented in LTSwb (Section 8.1.3),

where an asynchronous LTS is induced from a synchronous one. The main differences

between the two works are that our I/O compliance and I/O simulation relations

are coinductive (whereas the relations in [BZ08] are trace-based), we do not focus in

terminating behaviours (i.e., we do not require a successful termination state to be always

reachable), and that we embed the presence of buffers within the processes, thus making

such a detail “invisible” for our behavioural relations (whereas [BZ08] adds explicit labels

signalling enqueueing/dequeueing of messages, in the style of Communicating Finite

State Machines).

Also [Pad10] addresses the problem of defining compliance between service contracts.

In their weak compliance relation, finite-state orchestrators can resolve external choices

or rearrange messages in order to guarantee progress. Weak compliance is unrelated

to our I/O compliance: on the one hand, the latter cannot rearrange messages; on the

other hand, I/O compliance has no fixed bound on the size of the buffers. For instance,

let !am be a sequence of m !a; the async behaviours !a . ?b . !a2 . ?b2 · · · !an . ?bn · · · and

!b . ?a . !b2 . ?a2 · · · !bn . ?an · · · are I/O compliant, but they are not weakly compliant, as

orchestrators must have a finite rank.

Compliance and safety are widely studied in the field of Communicating Finite State

Machines (CFSMs) [BZ83]. In our setting, the pairing of a session type (or CCS process)

with an output buffer is quite close to the pairing of a CFSM with its output buffer, albeit

the resulting transition diagram is different: e.g., in our setting, an output is added to a

buffer with a τ -transition, and consumed with a τ -synchronisation; in CFSMs, an output

!a is buffered with a visible !a-transition, and is consumed with a visible ?a-transition.

Despite these differences, we adapted the usual notions of orphan message [LTY15;

DY13] and unspecified reception [CF05; LTY15; DY13] in our setting. In the dyadic

9. Related work 95

setting, our notion of I/O compliance is actually stronger than the notions of compliance

introduced in [LTY15; DY13], essentially because, as discussed in Example 5.16, our

notion of orphan message is stricter. For instance, consider:

T = recX !a U = recY !b

The composition T [] ‖ U [] is deadlock-free and does not reach unspecified reception

configurations; by Definition 5.5, however, it is an orphan message configuration (because

outputs are sent but never received), and therefore not safe. According to the definitions

in [LTY15; DY13], instead, such a configuration is considered safe: in fact, a message is

only considered “orphan” when the machines terminate with non-empty buffers.

A notion of “orphan message” closer to ours is studied in [CDY14]: there, a process

“orphans” a buffered message when it has no possibility to read it in the future — even

though the process itself is not terminated. A relevant difference w.r.t. our approach

is that, in [CDY14], buffers are not introduced at the types level, but at the level of

π-calculus processes — thus making the definition of error conditions more complex.

Another difference is that [CDY14] defines an asynchronous subtyping which, roughly,

allows to swap the order of input/output actions under certain conditions, whereas the

basic duality between endpoint types is computed under the intuition of synchronous

type semantics. In our approach, instead, subtyping (i.e., I/O simulation) is generally

more restrictive in the reordering of input/output actions (even in presence of buffers),

while I/O compliance is more flexible (see Examples 4.10 and 7.17). We conjecture that,

by adapting the definitions of [CDY14] to our framework, it would be possible to find a

strong connection between the combination of duality + asynchronous subtyping, and

the combination of I/O compliance + I/O simulation: this investigation is left as future

work.

The aim of Theorems 4.13 and 6.27 is to provide for a unifying approach to the issues

discussed in Sections 9.5 and 9.6, by studying them in a remarkably simple and abstract

setting, and tranferring properties from the synchronous to the asynchronous semantics.

96 9.7. Testing

9.7 Testing

Several works on contracts and session behaviours, e.g. [BZ07b; BZ08] denote the

successful termination of a behaviour with a specific transition label (e.g. X) and/or

a specific state (e.g. 1 or End). In this work, we consider two behaviours to be I/O

compliant when they synchronise until the client (in the asymmetric case) simply stops

interacting, i.e. reaches a state isomorphic to 0. It is easy to extend our framework

with a success label/state, thus allowing e.g. to study a testing theory [NH84]. For

simplicity, we chose not to address such an extension in the present treatment, and leave

it as future work. We conjecture that such an extension would allow to replicate the

results of [BH13], which studies the difference between compliance preorders (where

“compliance”, in this case, is progress, as in Definition 4.1) and testing preorders, in

several (synchronous and first-order) contract languages; a further natural development

would be comparing such preorders with I/O compliance preorders, and further compare

them with I/O simulation.

9.8 Abstracting richer calculi

As discussed in Section 1.2, this work approaches the session types theory through several

abstractions, allowing us to focus on the fundamental behavioural theory.

Our approach shares some common ground with [CGP09; Car+06]: the inspiration to

[DH87] for the (synchronous) session types semantics, the idea of representing processes

and contracts/types in the same LTS, thus allowing for easy reasoning about their

progress/compliance properties, and the will to overcome the rigid internal/external

choices dichotomy required by session types, emerging both at type and process levels.

In [CGP09], it is assumed that some type system can abstract processes P,Q (expressed in

any calculus) into contracts. This type system must be “consistent” and “informative”, by

preserving some essential properties like e.g. visible actions and internal non-determinism.

A result in [CGP09] is that if the abstractions of P,Q are (strongly) compliant, then

P,Q will be (strongly) compliant as well.

A similar abstraction is at the root of our approach. Our I/O LTS does not explicitly

support value passing and higher-order communication (i.e., transmission of channels or

9. Related work 97

processes), which are common features in most works on session types: this simplifica-

tion, resulting in a remarkably streamlined setting, still allows us to study non-trivial

synchronisation problems between (first-order) input/output capabilities, and to address

asynchronous communication. We believe that enriching the labels of I/O LTSs to also

cater for (higher-order) data transmission is feasible — but, according to our experience,

we also believe that such a change would mostly address problems that are orthogonal

w.r.t. the underlying behavioural theory. Instead, we believe that these issues can be

better addressed by adapting to our framework the notion of consistent/informative

abstractions of [CGP09]: it would allow, for instance, to abstract richer process calculi

into an LTS populated with symbolic I/O sorts (like the one adopted in this work); the

abstraction itself could be built upon the results presented e.g. in [MPS14], which studies

the translation of higher-order LTSs into first-order ones.

Beyond these general ideas, the technical developments of this work are substantially

different from [CGP09]: in the strong subcontract relation of [CGP09] there is no

input/output distinction, and some desirable subtypings do not hold, e.g. ?a & ?b 6v ?a.

These are restored through a “weak” subcontract relation, exploiting filters to suitably

resolve external non-determinism. A challenging task would be that of using filters to

enforce the I/O co/contra-variance typical of session types (and embodied in .̈/ and

6̈), thus allowing to replicate our results in their framework. This appears technically

complex, and is left as future work.

9.9 Timeouts and exceptions

Our running example in Chapter 3 shows a case in which a timeout event (abstracted as

a τ -transition) interrupts an external choice. This can be seen as a particular instance of

exception handling in session-based interactions, which has been addressed in [CGY10;

Hu+13]. These works enrich the session types language with new constructs and messages,

marking where an exceptional event might occur within a protocol, and how it can be

handled at runtime; moreover, they introduce run-time monitoring to ensure proper

coordination of the communicating processes. The present work does not aim at fully

addressing these problems, and we only presented a case that can be addressed “locally”

by a process, i.e. without requiring dedicated communications or runtime mechanisms. It

is worth noticing, however, that our semantic framework allows to handle type languages

98 9.9. Timeouts and exceptions

which are more expressive than (binary) session types — and even the syntactic relation

4̈Γ (Definition 7.10) is defined on a fragment of CCS that, unlike session types, supports

free τ -prefixes. We conjecture that, just as in our running example, several cases of “types

with exceptions” can be modelled through choices among inputs/outputs with additional

τ -branches representing “exceptional” events; therefore, they could be embedded and

studied in our current framework without requiring significant extensions.

Chapter 10

Conclusions

We have revisited the theory of session types from a purely semantic perspective. We

have defined the I/O compliance relation .̈/, showing it to be sound and complete w.r.t.

safety for asynchronous session types; we have defined an I/O simulation relation 6̈

between generic behaviours, showing it to be a compliance-preserving preorder unifying

the notions of typing and subtyping for session types, as well as their synchronous and

asynchronous interpretations.

In this work we mostly focused on behaviours arising from (synchronous and asynchronous)

session types and CCS; however, it seems that our framework can be easily exploited to

analyse the properties of other behaviours populating U — e.g. the LTS semantics of

other process calculi and programming languages.

10.1 Summary of the main results

We have shown that “client-biased” I/O compliance C̈ implies “client-biased” progress

a (and thus, for the symmetric versions, .̈/ implies a`). We have also shown that, for

synchronous session types (UST), the two relations coincide.

Theorem 4.9. (a) If p C̈ q, then p a q; (b) if p, q ∈ UST and p a q, then p C̈ q.

We have shown that, on general behaviours, I/O compliance implies safety, i.e. absence

of deadlocks, orphan messages and unspecified reception configurations (as defined in

Section 5.4). Moreover, the two relations coincide for asynchronous session types (UaST).

The following theorem summarises Theorems 5.22 and 5.24:

99

100 10.2. Future work

Theorem. (a) If p .̈/ q then p ‖ q is safe. (b) If p, q ∈ UaST then p ‖ q safe implies

p .̈/ q.

We have shown that I/O simulation 6̈ is an I/O compliance-preserving (and thus,

safety-preserving) preorder for general behaviours. The following theorem summarises

Theorems 6.12 and 6.13.

Theorem. 6̈ is a preorder, and p 6̈ q ◦ r implies p ◦ r, for ◦ ∈ {B̈, .̈/}.

We have shown that all the main relations presented in this work are preserved when

passing from synchronous to asynchronous semantics of session types. The following

theorem summarises Theorems 4.13 and 6.27:

Theorem. For all session types T ,U :

• If T ◦ U , then T [] ◦ U [], for ◦ ∈ {`,a`,a, B̈, .̈/, C̈}.

• If T
(
6̈ ∩ �?

)
U , then T [] 6̈ U [].

We have introduced a proof-of-concept typing system semantically grounded on 6̈ and .̈/,

allowing to syntactically type our examples from Chapter 3 (which exploit asynchronous

semantics and external choices mixed with τ -transitions).

Theorem 7.16 (Correctness). If ` P : T and ` Q : U with T [] .̈/ U [], then P [] .̈/ Q[].

Finally, in Chapter 8, we have described LTSwb, an LTS manipulation library imple-

menting part of the theory presented in this work, showing that it validates our main

Example 7.18.

10.2 Future work

We now discuss some possible developments based on our semantic framework, thus

integrating the future work already outlined in Chapter 9.

10.2.1 Some conjectures on 4̈

This section discusses some conjectured properties of 4̈. We start with Conjecture 10.1,

which investigates the possibility of implementing our syntactic approximation of 6̈.

10. Conclusions 101

Conjecture 10.1. 4̈ is decidable.

The main insight supporting Conjecture 10.1 is that, whenever P 4̈Γ Q with some

premise P ′ 4̈Γ Q
′, the rules for 4̈ give the following relation:

P ′ is a proper subterm of P or Q = µXQ
′′ and Q′ = Q′′[Q/X]

Such a relation seems to be a well-founded order. In fact, when applying the rules

upwards, either P reduces in size, or Q is a recursive term whose top-level can only

be unfolded for a finite number of times (since terms under recursion are sequential,

recursion variables are guarded, and thus CCS – terms are contractive). Hence, after a

finite number of steps,

• no rule can be applied, or

• P is reduced to a free variable or to 0, and is paired with a derivative of Q which

cannot be unfolded further.

However, the missing piece for turning Conjecture 10.1 into a result is a careful usage of

term substitutions via ≡: in fact, if used freely, ≡ can increase the size of terms (e.g.,

allowing to rewrite P into P | 0), thus breaking the ordering above.

Conjecture 10.2 below states that (U−CCS, 4̈) is a preorder that is preserved by all the

operators of CCS –, that is µ, + and | (whenever subterm substitutions result in valid

CCS – processes).

Conjecture 10.2. 4̈ is a precongruence for CCS –.

Proof. See page 156. The missing piece for this result is a proof for the conjecture:

µXP 4̈Γ Q implies P [µXP/X] 4̈Γ Q.

A non-obvious aspect of Definition 7.10 and Conjecture 10.2 is that, by requiring guarded

choices in CCS –, 4̈ is preserved by + (via rule (+Ctx)). This is not directly matched by

a corresponding property for 6̈ in full CCS without guarded choices: i.e. P 6̈ Q =⇒

P +R 6̈ Q+R. Indeed, the latter implication is false in general, because τ .?a .P 6̈ ?a .P ,

but ?b + τ . ?a . P 66̈ ?b + ?a . P . A similar argument holds for |, when arbitrary terms

with overlapping inputs are put in parallel. This shows that 6̈ is not a precongruence

102 10.2. Future work

for CCS; by focusing on CCS – (where 4̈ is supposedly a precongruence), we can reason

on whether two processes are 4̈-related by exploiting transitivity and substitution of

4̈-related sub-terms — without having to perform full derivations “from scratch”.

10.2.2 Extending 4̈

We conclude this chapter with some comments about the possibility of extending 4̈, and

thus the judgement ` P : T .

The addition of new rules is generally possible and pretty straightforward, under the

approach we followed in Table 7.2: assuming some I/O simulations in the premises, and

constructing a new one in the conclusions (with some additional care when the LHS

“loses” branches w.r.t. the RHS, as in rule (+Int)). As an example, the “τ laws” from

[Mil89] (§3.2) can be readily adopted. The main price for such an extension could be

Conjecture 10.2: the “extended” 4̈ may not be a precongruence, and some adjustments

may be needed if this (conjectured) result is deemed important. If it is not required,

then it is possible, for instance, to drop condition c. in Definition 7.7, and replace rule

(|LR) with the following, less restrictive one:

P 6̈ Q R 6̈ S ins(P) ∩ ins(R) = ins(Q) ∩ ins(S) = ∅
P |R 6̈ Q | S

(|LR2)

i.e., two parallel branches are allowed to contain inputs, but the typing rule still ensures

that they do not overlap.

Another possible extension to 4̈ is an additional (and more flexible) rule for “interruptible”

external choices, such as:

Q ≡
∑

i∈I?ai . Qi

∀j ∈ J, i ∈ I . aj = ai =⇒ Pj 6̈ Qi

K 6= ∅

∀k ∈ K . Pk 6̈ Q∑
j∈J(?aj . Pj) +

∑
k∈Kτ . Pk 6̈ Q

(+Ext2)

The difference between (+Ext) and (+Ext2) is that the latter does not require the “im-

mediate” input transitions of P to be a superset of those of Q — provided that the

continuations of overlapping inputs are within the relation, and also the continuation

after each τ -branch (of which at least one must exist) is within the relation. With such

10. Conclusions 103

rule, the following bartender process has also type UB:

µY
(
?aCoffee . !coffee . Y + τ . µZ(?aCoffee . !coffee . Z + ?aBeer . !beer . Z + ?pay)

)
Here, the bartender does not want to sell beer before noon; however, he neither wants

to upset the customers, which may go to another bar. Therefore, instead of accepting

beer requests and answering !no, he keeps serving coffee and postpone ?beer and ?pay

requests — until he eventually decides (with a τ -transition) to also honour them.

Another topic worth discussing is condition a. of Definition 7.7, i.e. the restriction on

inputs and branching under recursion in CCS –. One of its main drawbacks is that some

session types are not valid CCS – terms (see comment after Definition 7.13). As discussed

on page 69, and earlier in Section 6.4, this restriction arises from the fact that I/O

simulation preserves I/O compliance relations that hold in the asynchronous setting,

but not in the synchronous one. Therefore, 4̈ and the judgement ` P : T do not lead

to safety results by assuming that T will be paired with some U (and some U -typed

process) such that T .̈/ U : such an assumption is typical in session types literature —

but our weaker assumption in Theorem 7.16 is T [] .̈/ U []. Thus, since 6̈ preserves the

“strong” notion of orphan-message-freedom guaranteed by .̈/ (see Section 9.6), we have

to deal with the problematic cases described in Example 6.20.

However, a 6̈-based type system can be developed in different ways, and condition a. of

Definition 7.7 is not always required. We sketch two alternative approaches allowing to

drop such a restriction.

Reducing asynchrony. We can restrict Theorem 7.16 to parallel compositions of

processes whose types are synchronously I/O compliant. This would bring ` P : T

closer to the usual typing judgements from session types literature (except for the

rules under the dashed line in Table 7.2, which are less common). However, this

approach would preclude several results on our Alice/bartender use case — see

discussion in Examples 7.17 and 7.18.

Axiomatising
(
6̈ ∩ �?

)
. Instead of axiomatising 6̈, we could study and axiomatise(

6̈ ∩ �?

)
in CCS, aiming at a result similar to Theorem 6.27. Under this approach,

it should be possible to develop a rule similar to (+Int), but with additional

conditions on the output-guarded branches that the LHS can “lose” w.r.t. the RHS.

104 10.2. Future work

We expect that this would allow to obtain more general results, albeit at the price

of an increased technical complexity.

Bibliography

[Bar+13] Massimo Bartoletti et al. “Honesty by Typing”. In: FORTE. 2013.

[BC08] Eduardo Bonelli and Adriana Compagnoni. “Multipoint Session Types for a

Distributed Calculus”. In: Trustworthy Global Computing. Vol. 4912. Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2008. isbn: 978-3-

540-78662-7. doi: 10.1007/978-3-540-78663-4_17.

[BCZ13] Massimo Bartoletti, Tiziana Cimoli and Roberto Zunino. “A theory of

agreements and protection”. In: POST. 2013. doi: 10.1007/978-3-642-

36830-1_10.

[BDM12] Maria Grazia Buscemi, Rocco De Nicola and Hernán C Melgratti. “Contrac-

tual testing”. In: (2012). Unpublished.

[Bet+08] Lorenzo Bettini et al. “Global Progress in Dynamically Interleaved Multiparty

Sessions”. In: CONCUR. 2008.

[BH12] Giovanni Bernardi and Matthew Hennessy. “Modelling Session Types Using

Contracts”. In: Proceedings of the 27th Annual ACM Symposium on Applied

Computing. SAC ’12. Trento, Italy: ACM, 2012, pp. 1941–1946. isbn: 978-1-

4503-0857-1. doi: 10.1145/2245276.2232097.

[BH13] Giovanni Bernardi and Matthew Hennessy. “Compliance and Testing Pre-

orders Differ”. In: SEFM Workshops. 2013.

[BH14] Giovanni Bernardi and Matthew Hennessy. “Using Higher-Order Contracts

to Model Session Types (Extended Abstract)”. In: CONCUR 2014 - Concur-

rency Theory - 25th International Conference, CONCUR 2014, Rome, Italy,

September 2-5, 2014. Proceedings. 2014, pp. 387–401. doi: 10.1007/978-3-

662-44584-6_27.

105

http://dx.doi.org/10.1007/978-3-540-78663-4_17
http://dx.doi.org/10.1007/978-3-642-36830-1_10
http://dx.doi.org/10.1007/978-3-642-36830-1_10
http://dx.doi.org/10.1145/2245276.2232097
http://dx.doi.org/10.1007/978-3-662-44584-6_27
http://dx.doi.org/10.1007/978-3-662-44584-6_27

106 Bibliography

[BL10] Franco Barbanera and Ugo de’Liguoro. “Two Notions of Sub-behaviour for

Session-based Client/Server Systems”. In: PPDP. ACM SIGPLAN. ACM,

2010.

[BL14] Franco Barbanera and Ugo de’Liguoro. “Loosening the notions of compliance

and sub-behaviour in client/server systems”. In: ICE. 2014.

[BL15] Franco Barbanera and Ugo de’Liguoro. “Sub-behaviour relations for session-

based client/server systems”. In: Mathematical Structures in Computer

Science FirstView (Feb. 2015), pp. 1–43. issn: 1469-8072. doi: 10.1017/

S096012951400005X.

[Boc+10] Laura Bocchi et al. “A theory of design-by-contract for distributed multiparty

interactions”. In: CONCUR. 2010.

[BSZ14] Massimo Bartoletti, Alceste Scalas and Roberto Zunino. “A Semantic Decon-

struction of Session Types”. In: CONCUR 2014 - Concurrency Theory - 25th

International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014.

Proceedings. 2014, pp. 402–418. doi: 10.1007/978-3-662-44584-6_28.

[Bug+10] Michele Bugliesi et al. “Compliance Preorders for Web Services”. In: WS-FM.

2010.

[BZ07a] Mario Bravetti and Gianluigi Zavattaro. “Contract Based Multi-party Service

Composition”. In: International Symposium on Fundamentals of Software

Engineering. 2007. isbn: 978-3-540-75697-2. doi: 10.1007/978- 3- 540-

75698-9_14.

[BZ07b] Mario Bravetti and Gianluigi Zavattaro. “Towards a Unifying Theory for

Choreography Conformance and Contract Compliance”. In: Software Com-

position. 2007.

[BZ08] Mario Bravetti and Gianluigi Zavattaro. “Contract Compliance and Cho-

reography Conformance in the Presence of Message Queues”. In: WS-FM.

2008.

[BZ83] Daniel Brand and Pitro Zafiropulo. “On Communicating Finite-State Ma-

chines”. In: J. ACM 30.2 (Apr. 1983), pp. 323–342. issn: 0004-5411. doi:

10.1145/322374.322380.

[Car+06] Samuele Carpineti et al. “A formal account of contracts for Web Services”.

In: WS-FM. 2006.

http://dx.doi.org/10.1017/S096012951400005X
http://dx.doi.org/10.1017/S096012951400005X
http://dx.doi.org/10.1007/978-3-662-44584-6_28
http://dx.doi.org/10.1007/978-3-540-75698-9_14
http://dx.doi.org/10.1007/978-3-540-75698-9_14
http://dx.doi.org/10.1145/322374.322380

Bibliography 107

[Cas+09] Giuseppe Castagna et al. “Foundations of Session Types”. In: Proceedings of

the 11th ACM SIGPLAN Conference on Principles and Practice of Declarat-

ive Programming. PPDP ’09. Coimbra, Portugal: ACM, 2009, pp. 219–230.

isbn: 978-1-60558-568-0. doi: 10.1145/1599410.1599437.

[CDP12] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini and Luca Padovani. “On

Global Types and Multi-Party Session”. In: Logical Methods in Computer

Science 8.1 (2012).

[CDY07] Mario Coppo, Mariangiola Dezani-Ciancaglini and Nobuko Yoshida. “Asyn-

chronous Session Types and Progress for Object Oriented Languages”. In:

Formal Methods for Open Object-Based Distributed Systems (FMOODS).

Vol. 4468. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2007. isbn: 978-3-540-72919-8. doi: 10.1007/978-3-540-72952-5_1.

[CDY14] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini and Nobuko Yoshida. “On

the Preciseness of Subtyping in Session Types”. In: 16th International Sym-

posium on Principles and Practice of Declarative Programming. ACM Press,

2014, pp. 146–135.

[CF05] Gérard Cécé and Alain Finkel. “Verification of programs with half-duplex

communication”. In: Inf. Comput. 202.2 (2005), pp. 166–190. doi: 10.1016/

j.ic.2005.05.006.

[CGP09] Giuseppe Castagna, Nils Gesbert and Luca Padovani. “A theory of contracts

for Web services”. In: ACM TOPLAS 31.5 (2009).

[CGY10] Sara Capecchi, Elena Giachino and Nobuko Yoshida. “Global Escape in

Multiparty Sessions”. In: IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS 2010).

Ed. by Kamal Lodaya and Meena Mahajan. Vol. 8. Leibniz International

Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2010, pp. 338–351. isbn: 978-3-939897-23-1.

doi: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.338.

[CH98] Ilaria Castellani and Matthew Hennessy. “Testing Theories for Asynchronous

Languages”. English. In: Foundations of Software Technology and Theoret-

ical Computer Science. Ed. by Vikraman Arvind and Sundar Ramanujam.

Vol. 1530. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

http://dx.doi.org/10.1145/1599410.1599437
http://dx.doi.org/10.1007/978-3-540-72952-5_1
http://dx.doi.org/10.1016/j.ic.2005.05.006
http://dx.doi.org/10.1016/j.ic.2005.05.006
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.338

108 Bibliography

1998, pp. 90–101. isbn: 978-3-540-65384-4. doi: 10.1007/978-3-540-49382-

2_9.

[CHY07] Marco Carbone, Kohei Honda and Nobuko Yoshida. “Structured Communication-

Centred Programming for Web Services”. In: Programming Languages and

Systems, 16th European Symposium on Programming, ESOP 2007, Held as

Part of the Joint European Conferences on Theory and Practics of Software,

ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings. 2007,

pp. 2–17. doi: 10.1007/978-3-540-71316-6_2.

[CHY12] Marco Carbone, Kohei Honda and Nobuko Yoshida. “Structured Communication-

Centered Programming for Web Services”. In: ACM Trans. Program. Lang.

Syst. 34.2 (June 2012), 8:1–8:78. issn: 0164-0925. doi: 10.1145/2220365.

2220367.

[CP09a] Giuseppe Castagna and Luca Padovani. “A Preliminary Proposal of Decidable

Testing Relations for Infinitary Asynchronous CCS”. In: (2009). Unpublished

draft, presented at INFINITY’09.

[CP09b] Giuseppe Castagna and Luca Padovani. “Contracts for Mobile Processes”.

In: CONCUR. 2009.

[CP10] Lúıs Caires and Frank Pfenning. “Session Types as Intuitionistic Linear

Propositions”. In: CONCUR. 2010.

[CPS93] Rance Cleaveland, Joachim Parrow and Bernhard Steffen. “The Concur-

rency Workbench: A Semantics-based Tool for the Verification of Concurrent

Systems”. In: ACM Trans. Program. Lang. Syst. 15.1 (Jan. 1993). issn:

0164-0925. doi: 10.1145/151646.151648.

[CV10] Lúıs Caires and Hugo Torres Vieira. “Conversation types”. In: Theor. Comput.

Sci. 411.51-52 (2010).

[DH11] Romain Demangeon and Kohei Honda. “Full Abstraction in a Subtyped

pi-Calculus with Linear Types”. In: CONCUR 2011 - Concurrency Theory -

22nd International Conference, CONCUR 2011, Aachen, Germany, Septem-

ber 6-9, 2011. Proceedings. 2011, pp. 280–296. doi: 10.1007/978-3-642-

23217-6_19.

[DH87] Rocco De Nicola and Matthew Hennessy. “CCS without tau’s”. In: TAPSOFT,

Vol.1. 1987.

http://dx.doi.org/10.1007/978-3-540-49382-2_9
http://dx.doi.org/10.1007/978-3-540-49382-2_9
http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1145/2220365.2220367
http://dx.doi.org/10.1145/2220365.2220367
http://dx.doi.org/10.1145/151646.151648
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/978-3-642-23217-6_19

Bibliography 109

[DY13] Pierre-Malo Deniélou and Nobuko Yoshida. “Multiparty Compatibility in

Communicating Automata: Characterisation and Synthesis of Global Session

Types”. In: ICALP. 2013.

[Eri15] Ericsson Computer Science Laboratory. The Erlang programming language.

http://erlang.org/. 2015.

[Gep15] Gephi developers community. Gephi, the Open Graph Viz Platform. 2015.

url: http://gephi.github.io/.

[GH05] Simon Gay and Malcolm Hole. “Subtyping for Session Types in the Pi

Calculus”. In: Acta Inf. 42.2 (2005). issn: 0001-5903. doi: 10.1007/s00236-

005-0177-z.

[GH99] Simon J. Gay and Malcolm Hole. “Types and Subtypes for Client-Server

Interactions”. In: Programming Languages and Systems, 8th European Sym-

posium on Programming, ESOP’99, Held as Part of the European Joint

Conferences on the Theory and Practice of Software, ETAPS’99, Amsterdam,

The Netherlands, 22-28 March, 1999, Proceedings. 1999, pp. 74–90. doi:

10.1007/3-540-49099-X_6.

[GV07] Simon Gay and Vasco T. Vasconcelos. Asynchronous functional session types.

Tech. rep. 2007–251. University of Glasgow, May 2007.

[Hon93] Kohei Honda. “Types for Dyadic Interaction”. In: CONCUR. 1993.

[Hu+13] Raymond Hu et al. “Practical Interruptible Conversations - Distributed Dy-

namic Verification with Session Types and Python”. In: Runtime Verification

- 4th International Conference, RV 2013, Rennes, France, September 24-27,

2013. Proceedings. 2013, pp. 130–148. doi: 10.1007/978-3-642-40787-1_8.

url: http://dx.doi.org/10.1007/978-3-642-40787-1_8.

[HVK98] Kohei Honda, Vasco Thudichum Vasconcelos and Makoto Kubo. “Language

Primitives and Type Discipline for Structured Communication-Based Pro-

gramming”. In: ESOP. 1998.

[HYC08] Kohei Honda, Nobuko Yoshida and Marco Carbone. “Multiparty asynchron-

ous session types”. In: POPL. 2008. doi: 10.1145/1328438.1328472.

[KYH11] Dimitrios Kouzapas, Nobuko Yoshida and Kohei Honda. “On Asynchronous

Session Semantics”. In: FMOODS/FORTE. 2011.

http://erlang.org/
http://gephi.github.io/
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/978-3-642-40787-1_8
http://dx.doi.org/10.1007/978-3-642-40787-1_8
http://dx.doi.org/10.1145/1328438.1328472

110 Bibliography

[LTY15] Julien Lange, Emilio Tuosto and Nobuko Yoshida. “From communicating

machines to graphical choreographies”. In: POPL 2015. ACM, 2015, pp. 221–

232.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[MK06] J Magee and J Kramer. Concurrency - state models and Java programs (2.

ed.). LTS Analyser available at http://www.doc.ic.ac.uk/ltsa/. Wiley,

2006.

[Mos09] Dimitris Mostrous. “Session Types in Concurrent Calculi: Higher-Order

Processes and Objects”. PhD thesis. Imperial College London, Nov. 2009.

[MPS14] Jean-Marie Madiot, Damien Pous and Davide Sangiorgi. “Bisimulations

Up-to: Beyond First-Order Transition Systems”. English. In: CONCUR 2014

– Concurrency Theory. Ed. by Paolo Baldan and Daniele Gorla. Vol. 8704.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 93–

108. isbn: 978-3-662-44583-9. doi: 10.1007/978-3-662-44584-6_8.

[MPW92] Robin Milner, Joachim Parrow and David Walker. “A Calculus of Mobile

Processes, I and II”. In: Information and Computation 100.1 (1992).

[MV11] Dimitris Mostrous and Vasco Thudichum Vasconcelos. “Session Typing for a

Featherweight Erlang”. In: COORDINATION. 2011.

[MY09] Dimitris Mostrous and Nobuko Yoshida. “Session-Based Communication

Optimisation for Higher-Order Mobile Processes”. In: Proc. 9th International

Conference on Typed Lambda Calculi and Applications (TLCA). 2009, pp. 203–

218. doi: 10.1007/978-3-642-02273-9_16.

[MYH09] Dimitris Mostrous, Nobuko Yoshida and Kohei Honda. “Global Principal

Typing in Partially Commutative Asynchronous Sessions”. In: Proc. 18th

European Symposium on Programming (ESOP). 2009, pp. 316–332. doi:

10.1007/978-3-642-00590-9_23.

[NH84] Rocco De Nicola and Matthew Hennessy. “Testing equivalences for processes”.

In: Theoretical Computer Science 34.1–2 (1984), pp. 83–133. issn: 0304-3975.

doi: http://dx.doi.org/10.1016/0304-3975(84)90113-0.

[NT04] Matthias Neubauer and Peter Thiemann. “Session types for asynchronous

communication”. In: Universität Freiburg (2004).

http://www.doc.ic.ac.uk/ltsa/
http://dx.doi.org/10.1007/978-3-662-44584-6_8
http://dx.doi.org/10.1007/978-3-642-02273-9_16
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(84)90113-0

Bibliography 111

[Oa04] Martin Odersky and al. An Overview of the Scala Programming Language.

Tech. rep. IC/2004/64. Lausanne, Switzerland: EPFL, 2004. url: http:

//scala-lang.org/.

[Pad10] Luca Padovani. “Contract-based discovery of Web services modulo simple

orchestrators”. In: Theor. Comput. Sci. 411.37 (2010).

[Pad12] Luca Padovani. “On Projecting Processes into Session Types”. In: Math-

ematical Structures in Computer Science 22 (2 2012), pp. 237–289. issn:

0960-1295. doi: 10.1017/S0960129511000405.

[Pad13] Luca Padovani. “Fair Subtyping for Open Session Types”. English. In: Auto-

mata, Languages, and Programming. Ed. by FedorV. Fomin et al. Vol. 7966.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 373–

384. isbn: 978-3-642-39211-5. doi: 10.1007/978-3-642-39212-2_34.

[Pie02] Benjamin Pierce. Types and programming languages. Cambridge, Mass: MIT

Press, 2002. isbn: 0262162091.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. “Typing and Subtyping for Mobile

Processes”. In: Mathematical Structures in Computer Science 6.5 (1996),

pp. 409–453.

[PVV14] Luca Padovani, Vasco Thudichum Vasconcelos and Hugo Torres Vieira. “Typ-

ing Liveness in Multiparty Communicating Systems”. In: COORDINATION.

2014.

[San12] Davide Sangiorgi. An introduction to bisimulation and coinduction. Cam-

bridge, UK New York: Cambridge University Press, 2012. isbn: 1107003636.

[SB15] Alceste Scalas and Massimo Bartoletti. “The LTS WorkBench”. In: Proc. ICE.

To appear. 2015.

[Sca15] Alceste Scalas. The LTS WorkBench (download page). 2015. url: http:

//tcs.unica.it/software/ltswb.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile

Processes. Cambridge University Press, 2001.

[THK94] Kaku Takeuchi, Kohei Honda and Makoto Kubo. “An Interaction-based

Language and its Typing System”. In: PARLE. 1994.

http://scala-lang.org/
http://scala-lang.org/
http://dx.doi.org/10.1017/S0960129511000405
http://dx.doi.org/10.1007/978-3-642-39212-2_34
http://tcs.unica.it/software/ltswb
http://tcs.unica.it/software/ltswb

112 Bibliography

[Vas09] VascoT. Vasconcelos. “Fundamentals of Session Types”. English. In: Formal

Methods for Web Services. Ed. by Marco Bernardo, Luca Padovani and

Gianluigi Zavattaro. Vol. 5569. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2009, pp. 158–186. isbn: 978-3-642-01917-3. doi: 10.1007/

978-3-642-01918-0_4.

[VVR06] Antonio Vallecillo, Vasco T. Vasconcelos and António Ravara. “Typing the

Behavior of Software Components Using Session Types”. In: Fundam. Inf.

73.4 (Sept. 2006). issn: 0169-2968.

[Wad12] Philip Wadler. “Propositions as sessions”. In: ICFP. 2012.

http://dx.doi.org/10.1007/978-3-642-01918-0_4
http://dx.doi.org/10.1007/978-3-642-01918-0_4

Appendix A

Behaviours

A.1 Session types

Definition A.1 (Session types equivalence). ≡ is the relation between session types

inductively defined by the rules:

0 ≡ 0 (Eq-0) X ≡ X (Eq-Var)

recX T ≡ T [recX T/X] (Eq-UnfoldR) T [recX T/X] ≡ recX T (Eq-UnfoldL)

∀i ∈ I . Ti ≡ T ′i˘
i∈I?ai .Ti ≡

˘
i∈I?ai .T

′
i

(Eq-Ctx&)
∀i ∈ I . Ti ≡ T ′i⊕

i∈I !ai .Ti ≡
⊕

i∈I !ai .T
′
i

(Eq-Ctx⊕)

T ≡ T ′

recX T ≡ recX T
′ (Eq-CtxRec)

T ≡ U U ≡ V
T ≡ V

(Eq-Trans)

Proposition A.2. ≡ is a congruence relation for session types.

Proof. Symmetry of ≡ follows from the symmetry of the rules in Definition A.1. Transit-

ivity holds by (Eq-Trans). Reflexivity is proved by structural induction on T , showing that

a derivation for T ≡ T can be obtained via rules (Eq-0), (Eq-Var), (Eq-Ctx&), (Eq-Ctx⊕)

or (Eq-CtxRec). Congruence for &, ⊕ and rec follows respectively from rules (Eq-Ctx&),

(Eq-Ctx⊕) and (Eq-CtxRec).

Proposition 2.18. For all T :

(i) T
?a−→ iff T ≡ ?a.T ′ &

˘
i∈I?bi .Ti;

113

114 A.1. Session types

(ii) T
τ−→ iff T ≡

⊕
i∈I !bi .Ti, with |I| > 1;

(iii) T
!a−→ iff T ≡ !a.T ′.

Proof. For all items (i)–(iii), the ⇐= direction follows from Definition 2.15.

For the =⇒ direction, we proceed by induction on the rules in Definition 2.15 generating

the transitions:

• item (i). The ?a-transition of T can be generated in two ways:

a. by rule (TExt) (base case). Then, T = ?a.T ′ &
˘

i∈I?bi .Ti. We conclude by

reflexivity of ≡ (Proposition A.2);

b. by rule (TRec) (inductive case). Then, T = recX T
′′, with premise T ′′[recX T ′′/X]

?a−→.

By the induction hypothesis, we have T ′′[recX T ′′/X] ≡ ?a.T ′ &
˘

i∈I?bi .Ti; by

(Eq-UnfoldR), we have T ≡ T ′′[recX T ′′/X] — and we conclude by transitivity of

≡ (Proposition A.2);

• item (ii). The τ -transition of T can be generated in two ways:

a. by rule (TInt) (base case). Then, T =
⊕

i∈I !bi .Ti, with |I| > 1. We conclude

by reflexivity of ≡ (Proposition A.2);

b. by rule (TRec) (inductive case). Then, T = recX T
′′, with premise T ′′[recX T ′′/X]

τ−→.

By the induction hypothesis, we have T ′′[recX T ′′/X] ≡
⊕

i∈I !bi .Ti, with |I| > 1;

by (Eq-UnfoldR), we have T ≡ T ′′[recX T ′′/X] — and we conclude by transitivity

of ≡ (Proposition A.2);

• item (iii). The !a-transition of T can be generated in two ways:

a. by rule (TOut) (base case). Then, T = !a.T ′. We conclude by reflexivity of ≡

(Proposition A.2);

b. by rule (TRec) (inductive case). Then, T = recX T
′′, with premise T ′′[recX T ′′/X]

!a−→.

By the induction hypothesis, we have T ′′[recX T ′′/X] ≡ !a.T ′; by (Eq-UnfoldR),

we have T ≡ T ′′[recX T ′′/X] — and we conclude by transitivity of ≡ (Proposi-

tion A.2).

Proposition 2.19. For all T , T ′ and σ,

A. Behaviours 115

(i) T
?a−→ T ′ iff T [σ]

?a−→ T ′[σ];

(ii) for all a 6= b, T
τ−→ !a.T ′ and T

τ−→ !b.T ′′ iff T [σ]
τ−→ T ′[σ .!a] ∧ T [σ]

τ−→ T ′′[σ .!b];

(iii) T
!a−→ T ′ iff T [σ]

τ−→ T ′[σ .!a] ∧ 6 ∃b 6= a . T [σ]
τ−→ T ′[σ .!b].

Proof. =⇒ direction:

• item (i): by Proposition 2.18 (item (i)), T is equivalent to a (possibly recursive)

external choice with a ?a-branch. From such T , by rules (ruleCExtA) and (TRecA),

we obtain the thesis;

• item (ii): by Proposition 2.18 (item (ii)), T is equivalent to a (possibly recursive)

internal choice with 2 or more branches. From such T , by rules (ruleCIntA) and

(TRecA), we obtain the thesis, with !a, !b being the distinct guards of two of the

branches of T ;

• item (iii): by Proposition 2.18 (item (iii)), T is equivalent to a (possibly recursive)

single-branch internal choice !a.T ′′. From such T , by rules (ruleCIntA) and (TRecA),

we obtain the thesis.

For the ⇐= direction, we proceed by induction on the rules in Definition 2.16 generating

the transitions. The development is similar to the =⇒ direction in the proof of

Proposition 2.18: we determine the possible syntactic form of T , which may be (up-

to recursion) an external choice for item (i), or an internal choice for items (ii)–(iii)

(resp. with multiple branches including !a and !b, or with just one !a-branch). Then, we

conclude by the rules in Definition 2.15 (i.e., (TExt) for item (i), (TInt) for item (ii), and

(TOut) for item (iii)).

Proposition 2.21. T [σ]
!a−→ iff ∃σ′ . σ = !a.σ′. If T

!b
=⇒ T ′, then ∃a . T [σ]

τ−→ T ′[σ .!b]
!a−→.

Proof. The first part of the statement follows by Definition 2.16. For the second part,

since T
!b
=⇒ T ′, then by Definition 2.15 it must be T ≡ !b . T ′ ⊕

⊕
i∈I !ci .Ti (and in

particular, I = ∅ iff T
!b−→ T ′). We then conclude by Definition 2.16.

Proposition 2.22. T [σ]
!!a
=⇒ iff ∃σ′ . σ = !a.σ′, or σ = ε and ∃T ′ . T ≡ !a.T ′

Proof. For the ⇐= direction, there are the following two cases:

116 A.1. Session types

• σ = !a.σ′. By Proposition 2.21, whenever T [!a.σ′] =⇒ T ′[σ′′], each τ -transition

corresponds to an output of T being enqueued to the buffer. Therefore, σ′′ =

!a.σ′ .σ′′′ (for some σ′′′), and we have T ′[σ′′]
!a−→, from which the thesis follows.

• σ = ε and T ≡ !a.T ′. The thesis follows from Definition 2.16.

For the =⇒ direction, we proceed by cases on the structure of σ:

• σ = !a.σ′. The thesis follows trivially;

• σ = !b.σ′ (with b 6= a). In this case, by Definition 2.16 we have T [σ]6 !a=⇒ — and

therefore, T [σ]6 !!a=⇒ (contradiction);

• σ = ε. Then either:

– T ≡
˘

i∈I?bi .T i. Then, by Definition 2.16, ∀c . T [σ]6 !c=⇒ — and therefore,

T [σ]6 !!a=⇒ (contradiction);

– T ≡
⊕

i∈I !bi .T i. If |I| 6= 1, we have either:

∗ |I| = 0. Then, T = 0 (since I = ∅), and therefore T [ε] 6 !!a=⇒ (contradic-

tion);

∗ |I| > 1. Then, since the guards of ⊕ are pairwise distinct, ∃i ∈ I . bi 6=

a. Hence, T [ε]
τ−→ Ti[!bi]6

!a
=⇒ (by Definition 2.16), and therefore T [σ] 6 !!a=⇒

(contradiction).

We are left to examine the case |I| = 1: we have T [ε] ≡ !b.T ′[ε]
τ−→ T ′[!b] for

some b ∈ I = {b} and T ′. If b 6= a, by Definition 2.16 we have T ′[!b]6 !a=⇒, and

thus T [σ]6 !!a=⇒ (contradiction). Therefore, we conclude that T ≡ !a.T ′ (for some

T ′).

Appendix B

Compliance

Proposition B.1. Let p ◦ q, with ◦ ∈ {C̈, B̈, .̈/}. Then, p =⇒ p′ implies p′ ◦ q.

Proof. We first prove the statement for ◦ = C̈. We proceed by induction on the length

of the sequence of τ -transitions in p =⇒ p′. The base case (n = 0) follows from the

hypothesis. For the inductive case, let p =⇒ p∗
τ−→ p′: by the induction hypothesis, we

have p∗ C̈ q — and we conclude by item c. of Definition 4.4.

The proof for ◦ = B̈ is similar, except that we conclude by item d. of Definition 4.4.

Finally, the thesis for ◦ = .̈/ follows from Lemma 4.5.

Proposition B.2. Let p ◦ q, with ◦ ∈ {C̈, B̈, .̈/}. Then, p
!a
=⇒ p′ ∧ q ?a

=⇒ q′ implies p′ ◦ q′.

Proof. Let:

p =⇒ p0
!a−→ p′0 =⇒ p′

q =⇒ q0
?a−→ q′0 =⇒ q′

We first prove the statement for ◦ = C̈. By applying Proposition B.1 on p =⇒ p0, we

have p0 C̈ q; then, by applying Proposition B.1 on q =⇒ q0, we have p0 C̈ q0. Now, by

item b. of Definition 4.4), we obtain p′0 C̈ q′0; finally, again by applying Proposition B.1

on p′0 =⇒ p′ and then on q′0 =⇒ q′, we conclude p′ C̈ q′.

The proof for ◦ = B̈ is similar.

Finally, the thesis for ◦ = .̈/ follows from Lemma 4.5.

Proposition B.3. Let p C̈ q and p
!a
=⇒. Then, q

??a
=⇒.

117

118 B. Compliance

Proof. Let q′ be such that q =⇒ q′. By Proposition B.1 we have that p C̈ q′; thus, by

item a. of Definition 4.4, it follows that p⇓! ⊆ co(q′⇓?). Therefore, q′
?a
=⇒ — from which

we conclude that q
??a
=⇒.

Corollary B.4. Let w ∈ (A!)∗, and let p
w
=⇒. Then, p C̈ q implies q

co(w)
===⇒. Moreover,

∀p′, q′ . p w
=⇒ p′ ∧ q co(w)

===⇒ q′ implies p′ C̈ q′.

Proof. The first part of the statemen is proved by induction on w, and follows from

Proposition B.1, Proposition B.3 and Proposition B.2.

The “moreover. . . ” part, again by induction on w, follows from Proposition B.3.

Proposition B.5. Let p C̈ q, with p⇓! = ∅, p⇓? 6= ∅ and q
!a
=⇒: then, p

??a
=⇒.

Proof. ∀p′ . p =⇒ p′, by Proposition B.1 we have p⇓! = ∅ and p′ C̈ q; hence, by item a. of

Definition 4.4), we have ∀p′ . p =⇒ p′ implies q⇓! ⊆ co(p′⇓?), i.e. p′
?a
=⇒. We conclude that

p
??a
=⇒.

Proof of Lemma 4.5 on page 26

Proof. By Definition 4.4, we have .̈/ ⊆ (B̈ ∩ C̈). To prove the inverse inclusion, let

R = (B̈ ∩ C̈). Whenever (p, q) ∈ R, we have p B̈ q and q C̈ p, and:

a.
(
p⇓! ⊆ co(q⇓?) ∧

(
p⇓! = ∅ ∧ p⇓? 6= ∅ =⇒ ∅ 6= q⇓! ⊆ co(p⇓?)

))
and(

q⇓! ⊆ co(p⇓?) ∧
(
q⇓! = ∅ ∧ q⇓? 6= ∅ =⇒ ∅ 6= p⇓! ⊆ co(q⇓?)

))
;

b. p
`−→ p′ ∧ q co(`)−−−→ q′ =⇒ p′ B̈ q′ and q

`′−→ q′ ∧ p co(`′)−−−→ p′ =⇒ q′ C̈ p′;

c. p
τ−→ p′ =⇒ p′ B̈ q and q

τ−→ q′ =⇒ q′ C̈ p;

d. q
τ−→ q′ =⇒ p B̈ q′ and p

τ−→ p′ =⇒ q C̈ p′.

With some simplifications and rearrangements, for all (p, q) ∈ R, we have:

a. p⇓! ⊆ co(q⇓?) and q⇓! ⊆ co(p⇓?)

and
(
p⇓! = ∅ ∧ p⇓? 6= ∅ =⇒ ∅ 6= q⇓! ⊆ co(p⇓?)

)
and

(
q⇓! = ∅ ∧ p⇓? 6= ∅ =⇒ ∅ 6= p⇓! ⊆ co(q⇓?)

)
;

b. p
`−→ p′ ∧ q co(`)−−−→ q′ =⇒ p′ B̈ q′ ∧ q′ C̈ p′, i.e. p′ R q′;

B. Compliance 119

c. p
τ−→ p′ =⇒ p′ B̈ q ∧ q C̈ p′, i.e. p′ R q;

d. q
τ−→ q′ =⇒ p B̈ q′ ∧ q′ C̈ p, i.e. p R q′.

Therefore, each (p, q) ∈ R satisfies items a.–d. of Definition 4.4 — hence, R is an I/O

compliance relation. Furthermore, R is symmetric. Thus, R = (B̈ ∩ C̈) ⊆ .̈/.

Notation B.6. We write σ .T ′ for the session type obtained by prefixing T ′ with the

sequence of outputs σ.

Lemma B.7 (Sync session behaviours and async I/O compliance (I)). Let T ◦ U , for

some ◦ ∈ {`,a,a`, B̈, C̈, .̈/}. Then, T [] =⇒ T ′[σ] implies σ .T ′ ◦ U .

Proof. We first prove the statement for ◦ = a, and therefore we show that:

T a U ∧ T [] =⇒ T ′[σ] implies σ .T ′ a U (B.1)

If T is equivalent to a (possibly empty) external choice, we have T []6 τ−→, and hence T ′ = T

and σ = ε: therefore, the thesis coincides with the hypothesis.

Otherwise, if T is a non-empty internal choice, we proceed by induction on the length of

σ, which (by the semantics in Definition 2.16) corresponds to the number of τ -transitions

along T [] =⇒ T ′[σ]:

• base case: σ = ε. Then, T ′ = T and σ = ε, and therefore the thesis coincides with

the hypothesis;

• inductive case: σ = σ′ .!a, with σ′ = !b1 !bn. In this case, we have T [] =⇒

T ′′[σ′]
τ−→ T ′[σ′ .!a], and by applying the induction hypothesis, σ′.T ′′ a U . Therefore,

by applying Proposition 4.3 for n times along the synchronisations of σ′.T ′′ and U ,

we have:

!b1 .!b2!bn .T
′′ a U = U1 = ?b1 .U2 &

˘
i∈I1?bi .U i

!b2!bn .T
′′ a U2 = ?b2 .U3 &

˘
i∈I2?bi .U i

· · ·

!bn .T
′′ a Un = ?bn .Un+1 &

˘
i∈In?bi .U i

T ′′ a Un+1

120 B. Compliance

At this point, since T ′′[σ′]
τ−→ T ′[σ′ .!a] (i.e., T ′′ enqueues an output in its buffer),

by the semantics in Definition 2.16 we have:

T ′′
[
σ′
]

=

(
!a.T ′ ⊕

⊕
i∈I

!ai .T i

)[
σ′
] τ−→ T ′

[
σ′ .!a

]
i.e., T ′′ must be a non-empty internal choice with a !a-guarded branch; correspond-

ingly, from T ′′ a Un+1 and Proposition 4.3, we have:

Un+1 = ?a.U ′ &
¯
k∈K

?ak .U
′
k with I ⊆ K and T ′ a U ′

But then, σ′ .!a.T ′ = σ .T ′ a U . This concludes the proof of Equation (B.1).

With the proof above, the other possible values of ◦ can be verified in a straightforward

way:

• case ◦ = ` can be proved in a similar way, noticing that in the inductive case,

U may also become 0, i.e. it may terminate at any point without consuming T ’s

output with an external choice;

• case ◦ = a` holds because (by Definition 4.1) a` = ` ∩ a;

• case ◦ = C̈ follows by Equation (B.1) and Theorem 4.9; case ◦ = B̈ is similar;

• finally, case ◦ = .̈/ follows by the previous item, because (by Lemma 4.5) .̈/ = B̈∩C̈.

Notation B.8. Given a sequence of outputs σ = !a1.. . ..!an, we write
σ
=⇒ for

!a1=⇒ · · · !an=⇒.

Lemma B.9 (Diamond lemma for asynchronous session types). Let:

T 0[] ‖ U0[] (
τ−→)n Tn[σn] ‖ Un[ρn]

with σn 6= ε, ρn = ε, and ∀i ≤ n : (σi = ε or ρi = ε). Let m be the length of σn. Then,

there exists some k ≤ n such that:

1. σk = ε and ∀i > k : σi 6= ε

2. ∀i ≥ k : ρi = ε

B. Compliance 121

3. there exist T ′j, U
′
j (for all j ∈ k..n) such that:

T k[σk] ‖ Uk[ρk] = T ′k[] ‖ U ′k[] (
τ−→)n−k−m T ′n−m[] ‖ U ′n−m[]

(
τ−→)m T ′n[σn] ‖ U ′n[] = Tn[σn] ‖ Un[]

where ∀i ∈ 0..m : U ′(n−m)+i = Un

4. T ′n−m
σn=⇒ Tn

Proof. (sketch) Let k be the greatest index such that both queues σk and ρk are empty.

Since σn is not empty, then Items 1 and 2 follow. For Item 3, we observe that T k

performs some outputs (and no inputs, since the queues ρi are persistently empty for

i ≥ k). These outputs can be split in two parts: in the first one (called σ̃) the inputs are

read later on by Uk, while in the second part (called σ̃′) the inputs remain enqueued

(and so, σ̃′ = σn). It is possible to reorder the moves without altering the length of the

computation, and so that: (i) at the beginning, σ̃ is enqueued and read by U ; (ii) then,

the second part is enqueued, and never read. The terms T ′j , U
′
j (for all j ∈ k..n) are

defined according to this reordering. After the steps (i), both queues are empty, and the

component U no longer moves, hence it is equal to Un until the end of the computation.

Item 4 is a direct consequence of Item 3.

Lemma 4.11 (Half-duplex communication in compliant async session behaviours). Let

T ◦U , for some ◦ ∈ {a,`,a`, C̈, B̈, .̈/}, and assume that T []‖U [] =⇒ T ′[σ]‖U ′[ρ]. Then:

(i) σ = ε or ρ = ε.

(ii) if σ = ρ = ε then T ′ ◦ U ′.

Proof. We first prove the statement for ◦ = a, by showing that:

T a U ∧ T [] ‖ U [] =⇒ T ′[σ] ‖ U ′[ρ] implies σ = ε or ρ = ε (B.2)

the premise above and σ = ρ = ε implies T ′ a U ′ (B.3)

We proceed by induction on the length of the sequence of τ -transitions in T [] ‖ U [] =⇒

T ′[σ] ‖ U ′[ρ]. In the base case (i.e., when there are no transitions) the thesis coincides

with the hypothesis, and both Equations (B.2) and (B.3) trivially hold.

122 B. Compliance

In the inductive case, let:

T [] ‖ U [] =⇒ T ′′
[
σ′′
]
‖ U ′′

[
ρ′′
] τ−→ T ′

[
σ′
]
‖ U ′

[
ρ′
]

(B.4)

and by the induction hypothesis,

(
σ′′ = ε or ρ′′ = ε

)
and

(
σ′′ = ρ′′ = ε implies T ′′ a U ′′

)
(B.5)

We have the following cases:

• σ′′ 6= ε and ρ′′ = ε. By Lemma B.9, the computation T [] ‖U [] =⇒ T ′′[σ′′] ‖U ′′[ρ′′]

can be rearranged as follows (while maintaining the original length):

T [] ‖ U [] =⇒ T ′′′[] ‖ U ′′[] =⇒ T ′′
[
σ′′
]
‖ U ′′[]

where T ′′′
σ′′
=⇒ T ′′ (by item 4 of Lemma B.9). Since the length of the computation

T [] ‖ U [] =⇒ T ′′′[] ‖ U ′′[]

is shorter than the the length of the original computation, by the induction

hypothesis we have T ′′′ a U ′′. Let σ′′ = !a.σ′′′. Then, by Proposition 4.3, U ′′ must

be (up-to unfolding) an external choice with a ?a-branch. Hence, the rightmost

τ -transition in Equation (B.4) can only be generated in two ways:

– via synchronisation, i.e.:

T ′′
[
!a.σ′′′

]
‖ U ′′[] τ−→ T ′

[
σ′′′
]
‖ U ′[] (with σ′′′ = σ′)

where T ′ = T ′′. We can notice that item (i) of the thesis is already satisfied.

For item (ii), assume that σ′′′ = ε. Then, !a is the only output transition

from T ′′′ to T ′′ — i.e., T ′′′
!a
=⇒ T ′′ = T ′; and since U ′′

?a−→ U ′, from T ′′′ a U ′′,

we deduce T ′ a U ′.

– via buffering, i.e., for some b:

T ′′
[
!a.σ′′′

]
‖ U ′′[] τ−→ T ′

[
!a.σ′′′ .!b

]
‖ U ′[] (where U ′ = U ′′)

Then, we satisfy item (i) and (vacuously) item (ii) of the thesis;

B. Compliance 123

• σ′′ = ε and ρ′′ 6= ε. The proof is similar to the previous case, by swapping the

roles of T ′′ and U ′′, and the roles of σ and ρ.

• σ′′ = ρ′′ = ε. Item (i) holds because in a single τ move, at most one of the two

queues can become non-empty. Item (ii) holds vacuously, because the only way

of reaching σ′ = ρ′ = ε would be through a synchronisation, which is not possible

because σ′′ = ρ′′ = ε.

This concludes the proof of Equations (B.2) and (B.3), in case ◦ = a. The other possible

values of ◦ can be verified as follows:

• ◦ = C̈ follows by Equation (B.2) and a = C̈ (Theorem 4.9);

• ◦ ∈ {`, B̈} follow by symmetry;

• ◦ = a` holds because (by Definition 4.1) a` = ` ∩ a;

• finally, ◦ = .̈/ holds because .̈/ = B̈ ∩ C̈ (by Lemma 4.5).

Appendix C

I/O simulation

C.1 Basic properties

Lemma 6.6 (vUST
-induced shapes of session types). T vUST

U implies either (up-to

unfolding):

a. T = U = 0;

b. T =
˘

k∈K?ak .T k and U =
˘

i∈I?ai .T i, with ∅ 6= I ⊆ K and ∀i ∈ I . T i vUST
U i;

c. T =
⊕

k∈K !ak .T k and U =
⊕

i∈I !ai .T i, with ∅ 6= K ⊆ I, and ∀k ∈ K.T k vUST
U k.

Proof. In the following, when no ambiguity arises, we will write v instead of vUST
.

When T v U , by Definition 6.1 we know that ∀V .U .̈/ V =⇒ T .̈/ V . By Theorem 4.9,

this is equivalent to saying that ∀V . U a` V =⇒ T a` V . Hence, the possible forms

of the pairs U , V and T , V (up-to unfolding) are given by Proposition 4.3 (case for a`).

Therefore, by cases on U , we have:

U = 0. Then, we have V = 0, and T = 0.

U =
˘

i∈I?ai .U i, with I 6= ∅. Then, we have V =
⊕

j∈J !aj .V j , with ∅ 6= J ⊆ I, and

∀j ∈ J . U j a` V j (i.e., U j .̈/ V j). Since T a` V , we also have T =
˘

k∈K?ak .T k,

with ∅ 6= J ⊆ K, and ∀j ∈ J . T j a` V j (i.e., T j .̈/ V j). Furthermore, we have

I ⊆ K: otherwise, ∃i ∈ I . i 6∈ K, and if we take a V such that J = I, we would

have the contradiction J 6⊆ K. Finally, since (as seen above) ∀j ∈ J we have

U j .̈/ V j and T j .̈/ V j , we conclude ∀j ∈ J . T j v U j ;

125

126 C.2. On 6̈ as a preorder for U

U =
⊕

i∈I?ai .U i, with I 6= ∅. Then, we have V =
˘

j∈J !aj .V j , with I ⊆ J , and

∀i ∈ I . U i a` V i (i.e., U i .̈/ V i). Since T a` V , we also have T =
⊕

k∈K?ak .T k,

with ∅ 6= K ⊆ J , and ∀k ∈ K . T k a` V k (i.e., T k .̈/ V k). Furthermore, we have

K ⊆ I: otherwise, ∃k ∈ K . k 6∈ I, and if we take a V such that J = I, we would

have the contradiction K 6⊆ J . Finally, since (as seen above) ∀k ∈ K we have

U k .̈/ V k and T k .̈/ V k, we conclude ∀k ∈ K . T k v U k.

Proof of Lemma 6.8 on page 49

Proof. We show that ∀(p, q) ∈ (
⋃
R̈), all conditions in Definition 6.2 hold. We simply

notice that when p (
⋃
R̈) q, then there exists an I/O simulation R̈ ⊆ (

⋃
R̈) such that

p R̈ q, for some predictive set Q; using such a predictive set, clauses a.–b. of Definition 6.2

hold — and moreover, the pairs of reducts (p′, q′) ∈ R̈ from clauses c.–e. also belong to

(
⋃

R̈).

C.2 On 6̈ as a preorder for U

Lemma C.1. 6̈ is reflexive.

Proof. Consider the identity relation: R̈ = {(p, p) | p ∈ U}. We can easily verify that

that R̈ is an I/O simulation, with {p} being the predictive supporting each pair p R̈ p.

Lemma C.2 (6̈ and τ -moves (I)). Let p 6̈ q, with predictive set Q. Then, p =⇒ p′

implies p′ 6̈ q, with predictive set Q′ such that Q V Q′.

Proof. We proceed by induction on the length of the sequence of τ -transitions in p =⇒ p′.

The base case (n = 0) is trivial. For the inductive case, let p =⇒ p∗
τ−→ p′. By the

induction hypothesis, we have p∗ 6̈ q with predictive set Q∗ such that Q V Q∗. To

show that p′ 6̈ q, we observe that, (by item c. of Definition 6.2) p∗
τ−→ p′ implies that

∃q′ .Q∗ =⇒ q′ ∧ p′ 6̈ q′; furthermore, p′ 6̈ q′ is supported by some predictive set Q′ such

that q′ V Q′. Let now R̈ = 6̈ ∪ {(p′, q)}: we show that R̈ is an I/O simulation. This

claim trivially holds for the subset 6̈ ⊆ R̈, and thus we only need to check whether the

C. I/O simulation 127

clauses of Definition 6.2 hold for the additional pair (p′, q). Since q =⇒ q′ and q′ V Q′,

we have q V Q′. Then, using Q′ as a predictive set for (p′, q), we have:

item a.: p′⇓! = ∅ =⇒ Q′⇓! = ∅ (since Q′ is a predictive set for p′ 6̈ q′);

item b.: Q′⇓?? ⊆ p′⇓? and Q′⇓? = ∅ =⇒ p′⇓? = ∅ (since Q′ is a predictive set for

p′ 6̈ q′);

item c. let p′
τ−→ p′′. Since p′ 6̈ q′, we have that ∃q′′ .Q′ =⇒ q′′ ∧ p′′ 6̈ q′′, which is the

thesis;

item d. let p′
!a−→ p′′. Since p′ 6̈ q′, we have that ∃q′′ .Q′ !a

=⇒ q′′ ∧ p′′ 6̈ q′′, which is the

thesis;

item e. let p′
?a−→ p′′ ∧ Q′ ??a

=⇒. Since p′ 6̈ q′, we have that ∃q′′ . Q′ ?a
=⇒ q′′ ∧ p′′ 6̈ q′′,

which is the thesis.

Therefore, R̈ is an I/O simulation, and (p′, q) ∈ R̈.

We conclude by observing that, from Q V Q∗, Q∗ =⇒ q′ and q′ V Q′, we have Q V Q′.

Lemma C.3 (6̈ and τ -moves (II)). Let p 6̈ q, with predictive set Q. Then, q′ =⇒ q

implies p 6̈ q′, again with predictive set Q.

Proof. We proceed by induction on the length of the sequence of τ -transitions in q′ =⇒ q.

The base case (n = 0) is trivial. For the inductive case, let q′
τ−→ q∗ =⇒ q. By the induction

hypothesis, we have p 6̈ q∗, with predictive set Q. Let now R̈ = 6̈ ∪ {(p, q′)}: we show

that R̈ is an I/O simulation. This claim trivially holds for the subset 6̈ ⊆ R̈, and thus

we only need to check whether the clauses of Definition 6.2 hold for the additional pair

(p, q′). Since q′
τ−→ q∗ and q∗ V Q, we have q′ V Q. Then, using Q as a predictive set for

(p, q′), we have:

item a.: p⇓! = ∅ =⇒ Q⇓! = ∅ (since Q is a predictive set for p 6̈ q∗);

item b.: Q⇓?? ⊆ p⇓? and Q⇓? = ∅ =⇒ p⇓? = ∅ (since Q is a predictive set for

p 6̈ q∗);

item c. let p
τ−→ p′. Since p 6̈ q∗, we have that ∃q′′ . Q =⇒ q′′ ∧ p′ 6̈ q′′, which is the

thesis;

128 C.3. Properties of predictive sets

item d. let p
!a−→ p′. Since p 6̈ q∗, we have that ∃q′′ . Q !a

=⇒ q′′ ∧ p′ 6̈ q′′, which is the

thesis;

item e. let p
?a−→ p′ ∧ Q ??a

=⇒. Since p 6̈ q∗, we have that ∃q′′ . Q ?a
=⇒ q′′ ∧ p′ 6̈ q′′, which

is the thesis.

Therefore, R̈ is an I/O simulation; we conclude by observing that (p, q′) ∈ R̈.

Proof of Lemma 6.9 on page 49

Proof. By Lemma C.2 we have that, whenever p 6̈ q holds, then p =⇒ p′ implies p′ 6̈ q;

therefore, by Lemma C.3, q′ =⇒ q implies p′ 6̈ q′.

C.3 Properties of predictive sets

Proposition C.4. Given a set of behaviours Q, ?a ∈ Q⇓?? implies:

(i) ∀q ∈ Q . q
??a
=⇒

(ii) ∀q′ . Q =⇒ q′ implies q′
??a
=⇒.

Proof. Direct consequences of Definition 2.6.

Proposition C.5. Let p 6̈ q with predictive set Q. Then, Q⇓?? ⊆ p⇓??.

Proof. Assume Q ??a
=⇒, and let p′ such that p =⇒ p′. By Lemma C.2, we have p′ 6̈ q, with

a predictive set Q′ such that Q V Q′. This, by Proposition C.4, means Q′ ??a
=⇒, and

therefore (by item b. of Definition 6.2), p′
?a
=⇒. Hence, by Definition 2.6, we conclude

p
??a
=⇒.

Proposition C.6. Let p 6̈ q with predictive set Q. Then, q
??a
=⇒ implies Q ??a

=⇒.

Proof. By Definition 6.2, ∀q′ ∈ Q . q =⇒ q′. Therefore, by Definition 2.6, we have q′
??a
=⇒,

and we conclude Q ??a
=⇒.

Corollary C.7. Let p 6̈ q. Then, q
??a
=⇒ implies:

C. I/O simulation 129

1. p
??a
=⇒;

2. p
?a
=⇒ p′ implies ∃q′ . q ?a

=⇒ q′ and p′ 6̈ q′.

Proof. Item 1. follows from Proposition C.6 and Proposition C.5.

For item 2., let p =⇒ p0
?a−→ p′0 =⇒ p′. By Lemma C.2, p0 6̈ q, with a predictive set Q

such that Q ??a
=⇒ (by Proposition C.5); now, by item e. of Definition 6.2, p0

?a−→ p′0 implies

∃q′ .Q ?a
=⇒ q′ and p′0 6̈ q′. Finally, again by Lemma C.2, we conclude p′ 6̈ q′.

Lemma C.8 (“Neutral elements” in a predictive set). Let p 6̈ q, for some predictive

set Q. Then, for all q0 such that q =⇒ q0 and q0⇓! ⊆ Q⇓!, we have that Q1 = Q ∪ {q0} is

still a predictive set for p 6̈ q.

Proof. Immediate, by noticing that for all weak barbs of q0 allowed by the hypotheses,

we have:

• Q⇓! = Q1⇓!, and therefore p⇓! = ∅ =⇒ Q1⇓! = ∅, thus satisfying clause a. of

Definition 6.2.

• Q1⇓?? ⊆ Q⇓?? — and therefore, Q1 does not require more inputs to p w.r.t. Q,

thus satisfying the first part of clause b. of Definition 6.2. For the second part, we

notice that Q1⇓? = ∅ implies Q⇓? = ∅, which in turn implies p⇓? = ∅;

• all states reachable from Q are still reachable from Q1 with the same transitions,

thus satisfying clauses c.–d. of Definition 6.2;

• when Q⇓?? 3 ?a 6∈ Q1⇓??, then the premise of clause e. of Definition 6.2 becomes

false; otherwise, when ?a ∈ Q1⇓?? ∩Q⇓??, we notice (as in the previous point) that

all states reachable from Q are still reachable from Q1 with the same transitions.

Therefore, in both cases, clause e. of Definition 6.2 is satisfied.

Proof of Theorem 6.12 on page 50

Proof. Reflexivity follows from Lemma C.1.

130 C.3. Properties of predictive sets

In order to prove transitivity, let:

R̈ =
{

(p, r)
∣∣∃q . p 6̈ q ∧ q 6̈ r

}
We show that R̈ is an I/O simulation. Let (p, r) ∈ R̈, and let q be such that p 6̈ q and

q 6̈ r. Then, let:

(i) R̈1 be an I/O simulation such that p R̈1 q, with Q as predictive set. So, we have

q V Q, and:

a. p⇓! = ∅ =⇒ Q⇓! = ∅;

b. Q⇓?? ⊆ p⇓? ∧ Q⇓? = ∅ =⇒ p⇓? = ∅;

c. p
τ−→ p′ =⇒ ∃q′ .Q =⇒ q′ ∧ p′ R̈1 q

′;

d. p
!a−→ p′ =⇒ ∃q′ .Q !a

=⇒ q′ ∧ p′ R̈1 q
′;

e. p
?a−→ p′ ∧ Q ??a

=⇒ =⇒ ∃q′ . Q ?a
=⇒ q′ ∧ p′ R̈1 q

′;

(ii) R̈2 be an I/O simulation such that q R̈2 r.

In the following, let I index the elements of Q — i.e., Q = {qi}i∈I .

Before proceeding, we highlight some results and definitions that we will reuse throughout

this proof.

Proposition C.9. ∀i ∈ I, we have qi 6̈ r.

Proof. Since ∀i ∈ I .q =⇒ qi, the statement follows from Lemma C.2.

Definition C.10. ∀i ∈ I, we fix Ri as a predictive set supporting

qi 6̈ r. Furthermore, we define:

R =
⋃
i∈I

Ri

Corollary C.11. R⇓?? ⊆ Q⇓??.

Proof. Let ?a ∈ R⇓??. Then, ?a ∈ r̃⇓??, for all r̃ ∈ R, and so ?a ∈ Ri⇓??.

Since qi 6̈ r (by Proposition C.9) with predictive set Ri (by Defini-

tion C.10), then by Proposition C.5 it follows that ?a ∈ qi⇓??. Since

the above holds for all i ∈ I, we conclude that ?a ∈ Q⇓??.

We now show that R is a predictive set for the pair (p, r) ∈ R̈, according to Definition 6.2:

C. I/O simulation 131

item a.: assume that p⇓! = ∅. Then, by item (i)a., we have Q⇓! = ∅ — and therefore,

qi⇓! = ∅ for all i ∈ I. Since qi 6̈ r, by item a. of Definition 6.2, this implies that

Ri⇓! = ∅, for all i ∈ I. Therefore R⇓! = ∅.

item b.: for the first part of the item, from Corollary C.11, we have R⇓?? ⊆ Q⇓??.

Furthermore, by item (i)b., we have Q⇓?? ⊆ p⇓?. So, we conclude R⇓?? ⊆ p⇓?.

For the second part of item b., assume R⇓? = ∅: for all i ∈ I, this implies Ri⇓? = ∅;

by item b. of Definition 6.2, we have ∀i ∈ I . qi⇓? = ∅, which in turn implies

Q⇓? = ∅; and from item (i)b., we have p⇓? = ∅. Therefore, we conclude p⇓? = ∅.

item c.: we have to show that, whenever p
τ−→ p′, then ∃r′ . R =⇒ r′ ∧ (p′, r′) ∈ R̈.

From item (i)c. we know that whenever p
τ−→ p′, ∃q′ . Q =⇒ q′ ∧ (p′, q′) ∈ R̈1;

therefore, for some i ∈ I, qi =⇒ q′. Now, from Lemma C.3, we have p′ 6̈ qi. Since

(by Proposition C.9) we also have qi 6̈ r, we choose r′ = r, and we conclude

(p′, r′) ∈ R̈.

item d.: we have to show that, whenever p
!a−→ p′, then ∃r′ . R !a

=⇒ r′ and (p′, r′) ∈ R̈.

By item (i)d. above, we know that whenever p
!a−→ p′, then ∃i ∈ I, q∗, q′∗, q′ such

that Q 3 qi =⇒ q∗
!a−→ q′∗ =⇒ q′ and p′ R̈1 q′. Since p′ 6̈ q′ and q′∗ =⇒ q′, then

by Lemma C.3 it follows that p′ 6̈ q′∗. By Proposition C.9 and Definition C.10, we

have qi 6̈ r with some predictive set Ri ⊆ R; and by Lemma C.2, we also have

q∗ 6̈ r with some predictive set R∗ such that Ri V R∗ — and therefore (by item d.

of Definition 6.2):

∃r′′ . Ri V R∗
!a
=⇒ r′′ ∧ q′∗ 6̈ r′′ (C.1)

Combining R V Ri and Equation (C.1) above, we obtain:

∃r′′ . R !a
=⇒ r′′ ∧ q′∗ 6̈ r′′

Let r′ = r′′. Since p′ 6̈ q′∗ and q′∗ 6̈ r′, we conclude that (p′, r′) ∈ R̈.

item e.: we have to show that, whenever p
?a−→ p′ and R ??a

=⇒, then ∃r′ . R ?a
=⇒ r′ and

(p′, r′) ∈ R̈. Assume that p
?a−→ p′ and R ??a

=⇒. By Corollary C.11, we have Q ??a
=⇒.

Therefore, by item (i)e. above, ∃i ∈ I, q∗, q′∗, q′ such that Q 3 qi =⇒ q∗
?a−→ q′∗ =⇒ q′

and p′ R̈1 q
′. By Proposition C.9 and Definition C.10, we have qi 6̈ r with some

predictive set Ri ⊆ R; and by Lemma C.2, we also have q∗ 6̈ r with some predictive

132 C.3. Properties of predictive sets

set R∗ such that Ri V R∗. Therefore, by item e. of Definition 6.2:

R∗
??a
=⇒ implies ∃r′′ . Ri V R∗

?a
=⇒ r′′ ∧ q′∗ 6̈ r′′ (C.2)

Finally, we notice that since R ??a
=⇒ implies Ri

??a
=⇒, we have R∗

??a
=⇒; this, combined

with R V Ri and Equation (C.2) above, gives us:

∃r′′ . R ?a
=⇒ r′′ ∧ q′∗ 6̈ r′′

By Lemma C.2, we have q′ 6̈ r′′. Let r′ = r′′. Since p′ 6̈ q′ and q′ 6̈ r′, we

conclude that (p′, r′) ∈ R̈.

Proposition C.12 (6̈ vs. w). 6̈ 6⊆ w 6⊆ 6̈.

Proof. Consider the following CCS processes, where a 6= b:

• let P = ?a + ?b and Q = ?a. We have P 6̈ Q and P 6w Q;

• let P = τ . ?a + τ . ?b and Q = ?a + ?b. We have P w Q and P 66̈ Q.

Proof of Theorem 6.11 on page 50

Proof. To show that ≈ 6= ≈̈, consider Figure C.1: we have that p13 ≈̈ p14, but p13 6≈ p14.

To show that ≈ ⊂ ≈̈, since the weak bisimulation relation is symmetric, it is enough

to prove that it is an I/O simulation. Let p ≈ q. We have that p
`−→ p′ implies

∃q′ . q `
=⇒ q′ ∧ p′ ≈ q′, and the converse holds for the `-transitions emanating from q.

From this, it is immediate to see that p⇓? = q⇓? and p⇓! = q⇓!, and using this in an

inductive argument we also obtain p⇓?? = q⇓??. Hence, for all (p, q) ∈ ≈, we can satisfy

clauses a.–e. in Definition 6.2 by taking as predictive set Q = {q}.

Lemma 6.7. T v U ⇐⇒ T vUST
U .

Proof. (=⇒). Straightforward by Definition 6.1, since UST ⊆ U.

C. I/O simulation 133

?a

τ

?b

p13

?a′

τ

?b

p14

Figure C.1: Behaviours showing the difference between ≈ and ≈̈.

(⇐=). Let:

R = {(T , r) | ∃U . T vUST
U ∧ U .̈/ r} ∪ symmetric

We show that R is a symmetric I/O compliance relation. For each (T , r) ∈ R, there

exists U such that T vUST
U and U .̈/ r. For all such U , we have (from the proof of

Lemma 4.5):

a. U⇓! ⊆ co(r⇓?) and r⇓! ⊆ co(U⇓?)

and
(
U⇓! = ∅ ∧ U⇓? 6= ∅ =⇒ r⇓! 6= ∅

)
and

(
r⇓! = ∅ ∧ r⇓? 6= ∅ =⇒ U⇓! 6= ∅

)
;

b. U
`−→ U ′ ∧ r co(`)−−−→ r′ =⇒ U ′ .̈/ r′;

c. U
τ−→ U ′ =⇒ U ′ .̈/ r;

d. r
τ−→ r′ =⇒ U .̈/ r′.

Before proceeding, we also observe that, since T vUST
U by hypothesis, by Lemma 6.6

and U .̈/ r we have the following possibilities (up-to unfolding):

1. U = T = 0. Therefore, in this case, r⇓ = r⇓? = r⇓! = ∅;

2. U =
˘

i∈I?ai .T i and T =
˘

k∈K?ak .T k, with ∅ 6= I ⊆ K and ∀i ∈ I . (T i, U i) ∈

vUST
. Therefore, in this case, ∅ 6= r⇓! ⊆ co(U⇓?) ⊆ co(T ⇓?). Furthermore,

∀i ∈ I .T ?ai−−→ T i and r
!ai=⇒ r′ implies U i .̈/ r

′ (from U
?ai=⇒ U i and Proposition B.2),

while ∀j ∈ K \ I . r 6
!aj
=⇒ (from U .̈/ r and Proposition B.3);

3. U =
⊕

i∈I !ai .T i and T =
⊕

k∈K !ak .T k, with ∅ 6= K ⊆ I, and ∀k ∈ K . (T k, U k) ∈

vUST
. Therefore, in this case, T ⇓! ⊆ U⇓! ⊆ co(r⇓?) 6= ∅. Furthermore, ∀k ∈

K . T
!ak=⇒ T k implies r

?a
=⇒ (from U

!ak=⇒ U k and Proposition B.3) and ∀r′ . r ?ak==⇒ r′

implies U k .̈/ r
′ (from U .̈/ r and Proposition B.2). Finally, by Proposition B.3,

we have r⇓! = ∅.

134 C.4. On I/O simulation and I/O compliance

We can now prove that R is a I/O compliance relation, examining the clauses of Defini-

tion 4.4:

a.: we need to show that T ⇓! ⊆ co(r⇓?) and r⇓! ⊆ co(T ⇓?)

and
(
T ⇓! = ∅ ∧ T ⇓? 6= ∅ =⇒ r⇓! 6= ∅

)
and

(
r⇓! = ∅ ∧ r⇓? 6= ∅ =⇒ T ⇓! 6= ∅

)
: these requirements are satisfied in all

cases 1.–3. above;

b.: assume that T
`−→ T ′ and r

co(`)−−−→ r′. From cases 2. and 3. above, it follows that

∃U ′ . U `
=⇒ U ′ and T ′ vUST

U ′ .̈/ r′. Therefore, we conclude (T ′, r′) ∈ R and, by

symmetry of R, (r′, T ′) ∈ R;

c.: assume that T
τ−→ T ′. By the semantics in Definition 2.15 we are in case 3. above (i.e.,

both T and U are internal choices with multiple branches). Hence, ∃U ′ . U τ−→ U ′

and T ′ vUST
U ′ .̈/ r (by Proposition B.1). Therefore, we conclude (T ′, r) ∈ R and,

by symmetry of R, (r, T ′) ∈ R;

d.: assume that r
τ−→ r′. By Proposition B.1 we have T vUST

U .̈/ r′. Therefore, we

conclude (T , r′) ∈ R and, by symmetry of R, (r′, T) ∈ R;

Hence, R is a symmetric I/O compliance relation. Now, we observe that for all T , U and

r ∈ U, T vUST
U and U .̈/ r imply (T , r) ∈ R 3 (r, T), and so T .̈/ r. By Definition 6.1,

we conclude T v U .

C.4 On I/O simulation and I/O compliance

Proposition 6.15. T 6̈ U C̈ V implies T C̈ V .

Proof. We adapt the proof of Theorem 6.13 as follows:

• for clause a. of Definition 4.4, it suffices to proceed as in the proof of Equation (6.5)

on page 52, which only relies on C̈;

• for clause b., the proof of Equation (6.5) for the sub-case ` = ?a (page 52) does not

hold for C̈, because Proposition B.3 cannot be applied. We then deal with such

case as follows:

C. I/O simulation 135

– Since V
!a−→ V ′, by Proposition 2.18 (item (iii)) then V is equivalent to

an internal choice. Then, by Theorem 4.9, U C̈ V implies U a V , and

so Proposition 4.3 we have that U is a (possibly empty) external choice. By

Theorem 6.16 and Lemma 6.7, T 6̈ U implies T vUST
U , and so by Lemma 6.6

we have that T is a larger (possibly empty) external choice. Since T
?a−→, such

choice is not empty, and so by Lemma 6.6 we have that also U is not empty.

Since V
!a−→, then by the second part of clause a. of Definition 4.4 it follows

that U
?a−→. From Definition 2.15, this implies U

??a
=⇒ — which in turn implies

Q ??a
=⇒. Thus, by item e. of Definition 6.2, ∃U ′ .Q ?a

=⇒ U ′ ∧ T ′ 6̈ U ′. Now, from

U C̈ V and Proposition B.2 we have U ′ C̈ V ′: we conclude (T ′, V ′) ∈ R.

• the proofs of clauses c. and d. are unmodified.

Appendix D

Session types without types

Remark D.1. In the following, we will only consider I/O simulations such that, for

each pair of elements (P [σ], Q[ρ]), we have σ = ρ. This property is assumed for the I/O

simulations given by hypothesis, and guaranteed when new I/O simulations are produced

as part of a thesis.

Notation D.2. We write {P [σ], Q[σ]}∀σ for
⋃
σ∈(A!)∗ {P [σ], Q[σ]}.

Lemma D.3. For all σ, let P [σ] 6̈ Q[σ] and R[σ] 6̈ S[σ], with (ins(P) ∩ ins(R)) =

(ins(Q) ∩ ins(S)) = ∅. Then, P |R[σ] 6̈ Q | S[σ].

Proof. From the hypothesis, let R̈1, R̈2 be I/O simulations such that for all σ, P [σ] R̈1

Q[σ] and R[σ] R̈2 S[σ]. We define the following relation:

R̈ =
{(
P ′ |R′[ρ] , Q′ | S′[ρ]

) ∣∣∣ (P ′[ρ′], Q′[ρ′]) ∈ R̈1 ∧
(
R′
[
ρ′′
]
, S′
[
ρ′′
])
∈ R̈2

}
∀ρ

R̈ is an I/O simulation, with the predictive set for each pair (P ′ |R′[ρ] , Q′ | S′[ρ]) being:

{
Q′′ | S′′[ρ]

∣∣ Q′′[ρ] ∈ Q ∧ S′′[ρ] ∈ S
}

where Q,S are respectively the predictive sets supporting P ′[ρ′] R̈1 Q
′[ρ′] and R′[ρ′] R̈2

S′[ρ′]. The key observation is that by Proposition 6.23, P ′’s (resp. R′’s) τ and output

moves are matched by Q′ (resp. S′) — and the corresponding pairs of reducts, being

contained in R̈1 (resp. R̈2), are also contained in R̈. The same matching also holds for

input moves shared by P ′, Q′ (resp. R′, S′) under clause e. of Definition 6.2. The only

problematic situation is the following:

137

138 D. Session types without types

• P ′[ρ]
?a−→ and Q′[ρ] 6 ?a

=⇒;

• R′[ρ]
?a
=⇒ and S′[ρ]

??a
=⇒;

• hence, P ′ |R′[ρ]
?a−→;

• Q′ | S′[ρ]
??a
=⇒.

In this case, by clause e. of Definition 6.2, the ?a-reduction of P ′ | R′[ρ] (arising from

P ′) would need to be I/O simulated by some weak ?a-reduction of Q′ | S′[ρ] (arising

from S′) — albeit the ?a-reduction of P ′[σ] was not I/O simulated by Q′[σ]! However,

by hypothesis, we have that the inputs of P ′, R′ and Q′, S′ cannot overlap; therefore, a

persistent input of S′ (resp. Q′), which is weakly reachable in R′ (resp. P ′), cannot be

enabled in P ′ (resp. R′), and the scenario above is avoided.

Proof of Lemma 7.5 on page 68

Proof. We recall from Remark 7.1 that all related behaviours in the statement are paired

with a generic buffer [σ] (sometimes omitted for readability), and that P 6̈ Q in UaCCS

means: ∀σ . P [σ] 6̈ Q[σ]

For rule (+Ctx), we first prove that, when P [σ] 6̈ Q[σ] (for all σ), then `τ .P [σ] 6̈ `τ .Q[σ]

(for all σ). We have to consider three cases:

• `τ = τ . Let σ ∈ (A!)∗. Then, `τ . P [σ] 6̈ `τ .Q[σ] is proved by the I/O simulation

{(`τ . P [σ], `τ . Q[σ])} ∪ R̈, with R̈ being an I/O simulation such that P [ρ] R̈ Q[ρ]

(for all ρ), and {`τ . Q[σ]} being the predictive set for the additional pair;

• `τ = ?a. The proof is similar to the previous case;

• `τ = !a. Let σ ∈ (A!)∗. Then, `τ . P [σ] 6̈ `τ . Q[σ] is proved by the I/O

simulation {(`τ . P [σ], `τ . Q[σ])} ∪ R̈, with R̈ being an I/O simulation such that

P [ρ . !a] R̈ Q[ρ . !a] (for all ρ), and {`τ . Q[σ]} being the predictive set for the

additional pair.

Therefore, when for all σ we have ∀i ∈ I . Pi[σ] 6̈ Qi[σ] for some I/O simulation R̈i

(by the premise of rule (+Ctx)), we have that
∑

i∈I`τ i . Pi[σ] 6̈
∑

i∈I`τ i . Qi[σ] (in the

D. Session types without types 139

conclusion of rule (+Ctx)) holds by the following I/O simulation:

{(∑
i∈I

`τ i . Pi[σ],
∑
i∈I

`τ i . Qi[σ]

)}
∀σ

∪
⋃
i∈I

R̈i

where each additional pair is supported by the predictive set
{∑

i∈I`τ i . Qi[σ]
}

.

To prove rule (+τ), we simply observe that, for all σ, when the premise holds, {Q[σ]} is a

predictive set supporting the conclusion.

For rule (|L), by hypothesis we have Q ≡
∑

i∈I !ci . Qi, we have two I/O simulations R̈1, R̈2

such that ∀σ′ . P ′[σ′] R̈1 !a[σ′] and ∀σ′ . P ′′[σ′] R̈2 ?b[σ′]. Then, for all σ, we have that

P ′ | P ′′[σ] 6̈ !a . ?b +Q[σ] is proved by the following I/O simulation:

{
(P ′′′[σ], !a . ?b +Q[σ])

}
P ′′′∈{P1|P2 | P ′=⇒P1=⇒!a+··· ∧ P ′′=⇒P2=⇒?b+···} ∪ R̈1 ∪ R̈2

Intuitively, P ′′′ ranges over all the intermediate CCS – terms that P ′ | P ′′[σ] may reach

via τ transitions, before reaching respectively an !a-summation and ?b-summation (which

must exist — otherwise, one of the two relations in the hypotheses would be false); then,

all such intermediate terms are paired with the RHS of the relation we are proving —

and the predictive set for all these additional pairs is {?b[σ . !a]}.

For rule (|R), when P [σ] 6̈ Q[σ] (for all σ) and R ≡
∑

i∈I !ci . Ri, then we have that

!a . ?b . P [σ] 6̈ !a +R | ?b . Q[σ] is proved by the following I/O simulation:

{
(!a . ?b . P [σ], !a +R | ?b . Q[σ])

}
∀σ ∪ R̈

with R̈ being an I/O simulation such that ?b . P [σ . !a] R̈ ?b . Q[σ . !a] (which exists by

rule (+Ctx) — see above). The predictive set for each additional pair is {!a | ?b . Q[σ]}.

For rule (|LR), when P 6̈ Q and R 6̈ S with ins(P)∪ ins(Q) = ∅, then P |R[σ] 6̈ Q |S[σ]

holds by Lemma D.3.

For rule (+Int), where Q is an output-guarded choice, let us define:

R̈ =
⋃
i∈I

R̈i Q =
⋃
i∈I

Qi

140 D. Session types without types

where R̈i is an I/O simulation such that !ai .P i[σ] 6̈ !ai .Qi[σ] (which exists by rule (+Ctx)

— see above), and Qi is the predictive set supporting the relation !ai . P i[σ] R̈i !ai . Qi[σ]

(note that, by the proof of (+Ctx), we have Qi = {Qi[σ . !ai]}). Then, the relation in the

conclusion is proved by the following I/O simulation, where P =
∑

i∈I !ai . Pi:

{
(P [σ], Q+ !b . Q′[σ])

}
∀σ ∪ R̈

with Q being the predictive set for the additional pair (i.e., the predictive set ignores the

new branch !b . Q′).

For rule (+Ext), Q is an input-guarded choice. Note that whenever j = i, since (by

premises) there exists an I/O simulation such that P j [σ] 6̈ Qi[σ], by rule (+Ctx) there is

also an I/O simulation such that ?aj . P j [σ] 6̈ ?ai . Qi[σ]: therefore, let R̈1 be the union

of all such I/O simulations. Finally, let us consider, for each k ∈ K, an I/O simulation

such that Pk 6̈ Q, and let R̈2 be the union of these I/O simulations. Then, the relation

in the conclusion is proved by the following I/O simulation:

R̈ =


∑
j∈J

(?aj . Pj) +
∑
k∈K

τ . Pk[σ], Q[σ]


∀σ

∪ R̈1 ∪ R̈2

where the predictive set for each additional pair is {Q[σ]}.

Lemma 7.9. Let P be a sequential CCS – term, with X guarded. If P [Q/X] 6̈ Q, then

µXP 6̈ Q. Moreover, if ∀σ . P [Q/X][σ] 6̈ Q[σ], then ∀σ . µXP [σ] 6̈ Q[σ].

Proof. We first prove the statement for the asynchronous semantics of CCS – (i.e., the

“moreover. . . ” part).

If X 6∈ fv(P), the thesis trivially holds. Otherwise, when X ∈ fv(P), we need to produce

an I/O simulation containing the pairs {(µXP [σ], Q[σ])}∀σ. Before proceeding, we

introduce some technical machinery:

1. we write Q (i.e., Q underlined) to “tag” the occurrences of term Q which arise in

P [Q/X] due to variable substitution: e.g., if P = ?a + !b . X and Q = ?a, we have

P [Q/X] = ?a + !b . ?a.

D. Session types without types 141

2. P
[
R/Q
]

is the term substitution which replaces each occurrence of Q in P with the

tagged term R: e.g., if P = ?a + !b . ?a we have P [R/?a] = ?a + !b . R (notice that

the first, untagged occurrence of ?a is unchanged);

3. we naturally extend the semantics of async CCS so that such syntactic tags are

preserved along transitions, without altering the labels. For instance, considering

P and Q from item 1. above, we have P [Q/X][]
τ−→ ?a[!b]

?a−→ 0[!b] (notice that the

tag is discarded when the occurrence of Q = ?a . 0 is reduced).

Now, let R̈µ = 6̈ ∪ R̈
′
µ, where:

R̈
′
µ =

{(
P ′
[
µXP/Q

][
σ′
]
, Q′

[
σ′
]) ∣∣ ∃σ0, σ

′ . P [Q/X][σ0] −→∗ P ′
[
σ′
]
∧ P ′

[
σ′
]
6̈ Q′

[
σ′
]}

Intuitively, R̈µ contains:

• from 6̈: all R[σ], S[σ] ∈ U−aCCS such that R[σ] 6̈ S[σ];

• from R̈
′
µ: for all σ′, all pairs (P ′[σ′], Q′[σ′]), given by the following procedure:

1. take P ′′[σ′], Q′[σ′] such that P [Q/X][σ] −→∗ P ′′[σ′] and P ′′[σ′] 6̈ Q′[σ′] (note

that since ∀σ0 . (P [Q/X][σ0], Q[σ0]) is in 6̈ by hypothesis, we can find at least

one of such Q′ as Q[σ0] −→∗ Q′[σ′]);

2. obtain P ′ by replacing all occurrences of Q in P ′′ with µXP (note that Q′ is

taken as-is).

We prove that R̈µ is an I/O simulation Let:

F (X) =



(P ′′[σ], Q′′[σ])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃Q′′ . Q′′[σ] V Q′′ and



a.. P ′′[σ]⇓! = ∅ =⇒ Q′′⇓! = ∅;

b.. Q′′⇓?? ⊆ P ′′[σ]⇓? ∧ (Q′′⇓? = ∅ =⇒

P ′′[σ]⇓? = ∅);

c.. P ′′[σ]
τ−→ P ′′′[σ] =⇒ ∃Q′′′[σ] . Q′′ =⇒

Q′′′[σ] ∧ (P ′′′[σ], Q′′′[σ]) ∈ X;

d.. P ′′[σ]
!a−→ P ′′′[σ′] =⇒ ∃Q′′′[σ′] .Q′′ !a

=⇒

Q′′′[σ′] ∧ (P ′′′[σ′], Q′′′[σ′]) ∈ X;

e.. P ′′[σ]
?a−→ P ′′′[σ] ∧ Q′′ ??a

==⇒ =⇒

∃Q′′′[σ] . Q′′ ?a
=⇒ Q′′′[σ] ∧

(P ′′′[σ], Q′′′[σ]) ∈ X.



142 D. Session types without types

By the coinduction proof principle, we have to show that R̈µ ⊆ F (R̈µ). When (P ′′[σ], Q′′[σ]) ∈

R̈µ, we have the following cases:

a. if P ′′[σ] 6̈ Q′′[σ], the thesis is obvious: there exists a predictive set Q′′ which satisfies

clauses a.–e. of F ; and in particular, there exist pairs of reducts (P ′′′[σ′], Q′′′[σ′]) ∈

6̈ ⊆ R̈µ, as per clauses c.–e.. Therefore, we conclude (P ′′[σ], Q′′[σ]) ∈ F (R̈µ);

b. if (P ′′[σ], Q′′[σ]) ∈ R̈
′
µ, then P ′′ = P ′

[
µXP/Q

]
, for some σ0, P

′[σ] such that

P [Q/X][σ0] −→∗ P ′[σ] 6̈ Q′′[σ]. Regarding such P ′, we have two possibilities:

(i) P ′ 6= Q. By hypothesis, we have that P is sequential and X is guarded.

Therefore, all occurrences of Q in P ′ are prefixed (since they are originated

from some occurrence of X), and the same holds for all occurrences of µXP in

P ′
[
µXP/Q

]
= P ′′. Now, let Q′′ be a predictive set supporting P ′[σ] 6̈ Q′′[σ]:

under the prefixing considerations above, we can easily verify that Q′′ is also

a predictive set for the pair (P ′
[
µXP/Q

]
[σ], Q′′[σ]) = (P ′′[σ], Q′′[σ]). In fact,

such Q′′ trivially satisfies clauses a. and b. of F , because the (weak) inputs

and outputs of P ′[σ] and P ′′[σ] coincide; regarding clauses c.–e., we notice

that for all P ′′′[σ′], Q′′′[σ′] such that:

P ′[σ]
`τ−→ P ′′′

[
σ′
]

and Q′′[σ] V Q′′ `τ=⇒ Q′′′
[
σ′
]

and P ′′′
[
σ′
]
6̈ Q′′′

[
σ′
]

we have that, since ∃σ0 . P [Q/X][σ0] −→∗ P ′[σ]
`τ−→ P ′′′[σ′] and P ′′′[σ′] 6̈ Q′′′[σ′],

R̈
′
µ yields a pair (P ′′′

[
µXP/Q

]
[σ′], Q′′′[σ′]), and therefore:

P ′′[σ] = P ′
[
µXP/Q

]
[σ]

`τ−→ P ′′′
[
µXP/Q

][
σ′
]

and (P ′′′
[
µXP/Q

][
σ′
]
, Q′′′

[
σ′
]
) ∈ R̈

′
µ ⊆ R̈µ

Such pairs (P ′′′
[
µXP/Q

]
[σ′], Q′′′[σ′]) satisfy the existentials in clauses c.–e. of

F . Therefore, we conclude (P ′′[σ], Q′′[σ]) ∈ F (R̈µ);

(ii) P ′ = Q. Then, we have P ′′ = µXP and P ′[σ] = Q[σ] 6̈ Q′′[σ]. We make

some observations:

1. from the pair (P [Q/X][σ], Q[σ]) ∈ 6̈, the set R̈
′
µ yields the pair:

(
P [Q/X]

[
µXP/Q

]
[σ], Q[σ]

)
= (P [µXP/X][σ], Q[σ]) ∈ R̈

′
µ ⊆ R̈µ

2. since recursion in U−aCCS is guarded, we have P 6= X — and therefore,

from case (i) above, (P [µXP/X][σ], Q[σ]) ∈ F (R̈µ);

D. Session types without types 143

3. by applying the coinduction hypothesis, we have (P [µXP/X][σ], Q[σ]) ∈

gfp(F), i.e. P [µXP/X][σ] 6̈ Q[σ];

4. since the transition diagrams of P ′′[σ] and P [µXP/X][σ] are bisimilar, by

Theorem 6.11 we have P ′′[σ] 6̈ P [µXP/X][σ].

Summing up:

P ′′[σ] = µXP [σ] 6̈ P [µXP/X][σ] 6̈ Q[σ] 6̈ Q′′[σ]

and by Theorem 6.12 (transitivity), we conclude P ′′[σ] 6̈ Q′′[σ], thus falling

back on case a. above — which tells us that (P ′′[σ], Q′′[σ]) ∈ F (R̈µ).

Therefore, R̈µ is an I/O simulation; moreover, since 6̈ ⊆ R̈µ (by definition of R̈µ) and

R̈µ ⊆ 6̈ (by Definition 6.2), we have R̈µ = 6̈.

Finally, we are left to prove that ∀σ . (µXP [σ], Q[σ]) ∈ R̈µ: we simply observe that

∀σ . (µXP [σ], Q[σ]) ∈ R̈
′
µ ⊆ R̈µ.

This concludes the proof for the asynchronous semantics of CCS –. The proof for the

synchronous semantics of CCS – is similar: the development above can be simplified by

removing buffers and universal quantifications over σ.

Proposition D.4 (4̈ and large environments (I)). For all Γ, X 6∈ fv(P) implies(
P 4̈Γ Q =⇒ P 4̈Γ,X:R Q

)
.

Proof. By induction on the derivation of P 4̈Γ Q, the result is immediate on all rules.

We only mention that in the case of rule (S-µL) with recursion over X, the value of both

Γ(X) and Γ′(X) (if defined) is “shadowed” in the new environment appearing in the

premise of the rule.

Proposition D.5 (4̈ and large environments (II)). P 4̈Γ,X:R Q ∧ X 6∈ fv(P) =⇒

P 4̈Γ Q.

Proof. By induction on the derivation of P 4̈Γ Q, the result is immediate on all rules.

Definition D.6 (Term/environment substitution). For all P and Γ, we define:

PΓ =


P if Γ = ∅

P [R/X]Γ′ if Γ = Γ′, X : R

144 D. Session types without types

Theorem 7.11. Let P 4̈Γ Q. Then, ∀σ . PΓ[σ] 6̈ Q[σ].

Proof. The statement can be proved by rule induction on Definition 7.10.

We start by examining the rules introduced in Definition 7.10:

• base case (S-0). We have P [σ] = Q[σ] = 0[σ], and the thesis holds by Theorem 6.12

(reflexivity);

• base case (S-Var). We have P = X and, on the rule premise, Γ(X) = Q. Hence,

PΓ[σ] = Q[σ], and therefore PΓ[σ] 6̈ Q[σ] holds by Theorem 6.12 (reflexivity);

• base case (S-X). We have P = X, Q = X and, from the rule premise, X 6∈

dom (Γ). We notice that, for all σ, PΓ[σ] = X[σ] and Q[σ] have no transitions (by

Definition 2.24): hence, we have PΓ[σ] ∼ Q[σ], and we conclude by Theorem 6.11;

• inductive case (S-µL). We have P = µXP
′ and, in the rule premise, P ′ 4̈Γ′ Q,

with Γ′ = Γ, X : Q. Without loss of generality, by Propositions D.4 and D.5 let us

assume X 6∈ dom (Γ). We observe:

PΓ = (µXP
′)Γ = µX(P ′Γ)

By the induction hypothesis, we also have:

P ′Γ′ = P ′[Q/X]Γ = P ′Γ[Q/X] 6̈ Q

Therefore, by Lemma 7.9, we conclude µX(P ′Γ)[σ] = PΓ[σ] 6̈ Q[σ];

• inductive case (S-µR). We have Q = µXQ
′ and, on the rule premise, P 4̈Γ

Q′[µXQ′/X]. By the induction hypothesis, we have ∀σ . PΓ 6̈ Q′[µXQ′/X]. Now, by

Definition 2.24 we can verify that Q′[µXQ′/X] ∼ Q; moreover, by Definition 2.25,

we can verify ∀σ . Q′[µXQ′/X][σ] ∼ Q[σ]. Therefore, by Theorem 6.11, we have

∀σ . Q′[µXQ′/X][σ] 6̈ Q[σ]; hence, by Theorem 6.12 (transitivity), we conclude

∀σ . PΓ[σ] 6̈ Q[σ].

We are left to examine the cases where P 4̈Γ Q holds by some inductive rule from

Table 7.2. We can observe that each one of them corresponds to an I/O simulation

construction, as illustrated in the proof of Lemma 7.5: when a construction depends on

D. Session types without types 145

the existence of some I/O simulation in the rule premises, the latter can be obtained by

applying the induction hypothesis.

The only delicate cases are rules (+Int), (|R) and (|L), as discussed on page 69: while their

application in derivations of non-recursive terms is always safe, we need to also examine

the case that such rules are applied within recursion.

Let us now assume the critical scenario, i.e. that the rules are applied when P and Q are

under recursion, and Q[σ]
??a
=⇒: we need to ensure PΓ[σ]

?a
=⇒. We can immediately notice

that due to condition b. in Definition 7.7, rule (|L) cannot be applied under recursion;

instead, (|R) selects a non-recursive output branch of Q[σ] that performs no inputs: this

contradicts our assumption — and therefore, (|R) cannot be applied in this scenario.

In the case of rule (+Int), suppose that we are applying (+Int) to P and Q, within a

derivation relating the terms µXP
′ and Q′, where Q′ contains some subterm that, after

unfolding via rule (S-µR), gives Q. We can verify that Q is sequential (by condition b. of

Definition 7.7), and ?a must precede each recursive unfolding — otherwise, we would

either violate condition a. of Definition 7.7, or have the contradiction Q[σ] 6 ??a
=⇒. Therefore,

we have ∀i ∈ I .Qi[σ . !ai]
??a
=⇒. By the induction hypothesis, we have ∀i ∈ I . PiΓ[σ . !ai] 6̈

Qi[σ . !ai]: this implies ∀i ∈ I . ?a ∈ (PiΓ[σ . !ai])⇓?.

Due to recursion, P ′ is sequential (condition b. of Definition 7.7), and therefore ∀ ∈ I . Pi

is sequential, and (by condition a. of Definition 7.7) either all its recursive branches

contain inputs, or no branch contains inputs. Then, either:

1. for all i ∈ I, ?a appears in Pi; or

2. for all i ∈ I, Pi only contains outputs or τs. Hence, ∀i ∈ I . PiΓ[σ . !ai]
?a
=⇒ holds

due to some Γ-induced substitution.

Case 1. directly ensures PΓ[σ]
?a
=⇒, and thus the application of (+Int) is safe. Case 2.,

instead, is absurd. In fact, it can only hold within a derivation similar to the following:

P =

8 Γ(X) = Q′ 6= ?a . Q′

X 4̈X:Q′ ?a . Q′
(S-Var)

!b . X 4̈X:Q′ !b . ?a . Q′
(+Int)

= Q

!b . X 4̈X:Q′ Q
′

(S-µR)

µX !b . X 4̈ µY !b . ?a . Y
(S-µL)

= Q′

146 D.1. On 4̈ as a precongruence for CCS –

which fails because, going upwards in the derivation, ∀i ∈ I . Pi reaches the recursion

variable without a syntactic occurrence of ?a — that instead appears in each branch

of Q; this contradicts the (+Int) rule premise ∀i ∈ I . Pi 4̈Γ Qi, and thus we have the

contradiction that P 4̈Γ Q does not follow by rule (+Int).

D.1 On 4̈ as a precongruence for CCS –

Lemma D.7. Let dom (Γ) ∩ dom (Γ′) = ∅. Then, PΓ 4̈Γ′ Q ⇐⇒ P 4̈Γ′Γ Q.

Proof. =⇒ direction: by induction on Γ. In the base case Γ = ∅, the thesis follows

immediately from the hypothesis. In the inductive case Γ = Γ′′, X : R (with R closed,

as per Definition 7.10), by the induction hypothesis we have that P [R/X]Γ′′ 4̈Γ′ Q

implies P [R/X] 4̈Γ′,Γ′′ Q, and we need to prove P 4̈Γ′,Γ′′,X:R Q. Therefore, assuming

P [R/X]Γ′′ 4̈Γ′ Q, and letting Γ′′′ = (Γ′,Γ′′), we have P [R/X] 4̈Γ′′′ Q and we need to prove

P 4̈Γ′′′,X:R Q. We proceed by induction on the rules for P [R/X] 4̈Γ′′′ Q:

• base case (S-0). We have P [R/X] = Q = 0. This implies either:

– P = 0. Then, by rule (S-0), we conclude P = 0 4̈Γ′′′,X:R 0 = Q;

– P = X and R = 0. Then, by rule (S-Var), we conclude P = X 4̈Γ′′′,X:R 0 = Q

(since we satisfy the rule premise (Γ′′′, X : R)(X) = R = 0 = Q);

• base case (S-X). We have P [R/X] = Q = Y , and from the rule premise, Y 6∈

dom (Γ′′′). We have two cases:

– X 6= Y . Then, P = Y , and by rule (S-Var) we conclude P = Y 4̈Γ′′′,X:R Y = Q;

– X = Y , and therefore R = X. This case is ruled out because R cannot be an

unguarded recursion variable;

• base case (S-Var). We have P [R/X] = Y , and from the rule premise, Γ′′′(Y) = Q.

This implies either:

– P = Y . Then, by rule (S-Var), we conclude P = Y 4̈Γ′′′,X:R Q;

– P = X and R = Y . This case is ruled out because R cannot be an unguarded

recursion variable;

D. Session types without types 147

• inductive case (S-µL). We have P [R/X] = µY · · ·. When X = Y , the substitution

[R/X] is vacuous and we conclude by Proposition D.5. Otherwise, when Y 6= X,

we have P [R/X] = µY (P ′[R/X]), and from the rule premise, P ′[R/X] 4̈Γ′′′,Y :Q Q. By

the rule induction hypothesis, we have P ′ 4̈Γ′′′,Y :Q,X:R Q — and again by rule

(S-µL), we conclude µY P
′ 4̈Γ′′′,X:R Q;

• inductive case (S-µR). We have Q = µYQ
′, and from the rule premise, P [R/X] 4̈Γ′′′

Q′[Q/Y]. By the rule induction hypothesis, we have P 4̈Γ′′′,X:R Q′[Q/Y] — and

again by rule (S-µR), we conclude P 4̈Γ′′′,X:R Q;

• inductive cases from Table 7.2. The thesis follows by the rule induction hypothesis.

⇐= direction: by induction on Γ. In the base case Γ = ∅, the thesis follows immediately

from the hypothesis. In the inductive case Γ = X : R,Γ′′ (where R cannot be an

unguarded recursion variable, as per Definition 7.10), by the induction hypothesis we

have that P 4̈Γ′,X:R,Γ′′ Q implies PΓ′′ 4̈Γ′,X:R Q, and we need to prove PΓ′′[R/X] 4̈Γ′

Q. Therefore, assuming P 4̈Γ′,X:R,Γ′′ Q, we proceed by induction on the rules for

PΓ′′ 4̈Γ′,X:R Q:

• base case (S-0). We have PΓ′′ = Q = 0. This implies either:

– P = 0. Then, by rule (S-0), we conclude PΓ′′[R/X] = 0 4̈Γ′′ 0 = Q;

– P = Z and Γ′′(Z) = 0. Then, by rule (S-0), we conclude PΓ′′[R/X] = 0 4̈Γ′

0 = Q;

• base case (S-X). We have PΓ′′ = Q = Y , and from the rule premise, Y 6∈

dom (Γ′, X : R). We have two cases:

– Y 6∈ dom (Γ′′). Then, by rule (S-X), we conclude PΓ′′[R/X] = Y 4̈Γ′ Y = Q;

– Y ∈ dom (Γ′′), and therefore Γ′′(Y) = Y . This case is ruled out because Γ′′

cannot associate recursion variables to unguarded recursion variables (as per

Definition 7.10);

• base case (S-Var). We have PΓ′′ = Y , and from the rule premise, (Γ′, X : R)(Y) =

Q. This implies either:

– P = Y and Y 6∈ dom (Γ′′). We have two cases:

∗ X 6= Y . Then, by rule (S-Var), we conclude PΓ′′[R/X] = Y 4̈Γ′ Q;

148 D.1. On 4̈ as a precongruence for CCS –

∗ X = Y . Then, we have R = Q — and since Q is closed, by Lemma D.9,

we conclude PΓ′′[R/X] = Q 4̈Γ′ Q;

– P = Z, and therefore Γ′′(Z) = Y . This case is ruled out because Γ′′ can-

not associate recursion variables to unguarded recursion variables (as per

Definition 7.10);

• inductive case (S-µL). We have PΓ′′ = µY P
′. Without loss of generality, by

Propositions D.4 and D.5 let us assume X 6= Y 6∈ dom (Γ′) ∪ dom (Γ′′). We have

µY (P ′Γ′′) 4̈Γ′,X:R Q, and from the rule premise, P ′Γ′′ 4̈Γ′,X:R,Y :Q Q. By the rule

induction hypothesis, we have P ′Γ′′[R/X] 4̈Γ′,Y :Q Q; then, again by rule (S-µL), we

conclude PΓ′′[R/X] 4̈Γ′ Q;

• inductive case (S-µR). We have Q = µYQ
′, and from the rule premise, PΓ′′ 4̈Γ′,X:R

Q′[Q/Y]. By the rule induction hypothesis, we have PΓ′′[R/X] 4̈Γ′ Q
′[Q/Y] — and

again by rule (S-µR), we conclude PΓ′′[R/X] 4̈Γ′ Q;

• inductive cases from Table 7.2. The thesis follows by the rule induction hypothesis.

Lemma D.8. For all P ,Γ0,Γ such that

(i) fv(P) ∩ dom (Γ0) = ∅, and

(ii) bv(P) ∩ dom (Γ) = ∅, and

(iii) PΓ is a valid CCS – term,

we have P 4̈Γ0,Γ PΓ.

Proof. By structural induction on P :

• base case P = 0. Trivial, by rule (S-0);

• base case P = X. We have two possibilities:

– Γ(X) = Q. Then, PΓ = Q; since we also have (Γ0,Γ)(X) = Q, we conclude

by rule (S-Var);

– X 6∈ dom (Γ). Then, PΓ = X; since we also have X 6∈ dom (Γ0,Γ), we

conclude by rule (S-X);

D. Session types without types 149

– inductive case P =
∑

i∈I`τ i . Pi. Straightforward, by applying the the induc-

tion hypothesis, and concluding via rule (+Ctx);

– inductive case P = P ′ | P ′′. Without loss of generality, by condition c. of

Definition 7.7, let us assume ins(P ′) = ∅. Since (P ′ | P ′′)Γ = P ′Γ | P ′′Γ is a

valid CCS – term, again by condition c. of Definition 7.7, either ins(P ′Γ) = ∅

or ins(P ′′Γ) = ∅: from the previous assumption, without loss of generality, let

ins(P ′Γ) = ∅ (otherwise, we must have ins(P ′′Γ) = ∅, and thus ins(P ′′) = ∅,

and we can perform the proof by reasoning on P ′′ instead of P ′). By the

induction hypothesis, we have:

P ′ 4̈Γ0,Γ P
′Γ and P ′′ 4̈Γ0,Γ P

′′Γ

Therefore, we conclude:

P =

P ′ 4̈Γ0,Γ P
′Γ P ′′ 4̈Γ0,Γ P

′′Γ ins(P ′) = ins(P ′Γ) = ∅
P ′ | P ′′ 4̈Γ0,Γ P ′Γ | P ′′Γ

(|LR)
= PΓ

– inductive case P = µXP
′. We have to prove:

µXP
′ 4̈Γ0,Γ (µXP

′)Γ (D.1)

Since X 6∈ dom (Γ), we can equivalently prove:

µXP
′ 4̈Γ0,Γ µX(P ′Γ) (D.2)

Without loss of generality, by Propositions D.4 and D.5 let us assume X 6∈

dom (Γ0,Γ) — and therefore, X 6∈ dom (Γ0). By the induction hypothesis,

∀Γ′0,Γ′ such that fv(P ′) ∩ dom (Γ′0) = ∅ and bv(P ′) ∩ dom (Γ′) = ∅, we have

P ′ 4̈Γ′0,Γ
′ P ′Γ′ (D.3)

If we let Γ′0 = Γ0 and Γ′ = (X : µXP
′,Γ), we have:

P ′ 4̈Γ0,X:µXP
′,Γ P ′[µXP ′/X]Γ (D.4)

150 D.1. On 4̈ as a precongruence for CCS –

Since X 6∈ dom (Γ), we can also write:

P ′ 4̈Γ0,Γ,X:µXP
′ P ′Γ[µXP ′Γ/X] (D.5)

and therefore:
P ′ 4̈Γ0,Γ,X:µXP

′ P ′Γ[µXP ′Γ/X]

P ′ 4̈Γ0,Γ,X:µXP
′ µX(P ′Γ)

(S-µR)

µXP
′ 4̈Γ0,Γ µX(P ′Γ)

(S-µL)
(D.6)

i.e., we proved Equation (D.2), and thus Equation (D.1) (our thesis);

Lemma D.9. For all P ,Γ, (fv(P) ∩ dom (Γ)) = ∅ implies P 4̈Γ P .

Proof. We proceed by structural induction on P :

• base case P = 0. The thesis follows by rule (S-0);

• base case P = X. Since by hypothesis we have X 6∈ dom (Γ), the thesis follows

by rule (S-X);

• inductive case P =
∑

i∈I`τ i . Pi. By the induction hypothesis, we have ∀i ∈

I . Pi 4̈Γ Pi: then, the thesis follows by rule (+Ctx);

• inductive case P = P ′ | P ′′. By the induction hypothesis, we have P ′ 4̈Γ P
′ and

P ′′ 4̈Γ P ′′. Without loss of generality, by condition c. of Definition 7.7, let us

assume that P ′ does not contain inputs: then, the thesis follows by rule (|LR);

• inductive case P = µXP
′. We have:

P =

P ′ 4̈Γ,X:µXP
′ P ′[µXP ′/X] (by Lemma D.8)

P ′ 4̈Γ,X:µXP
′ µXP

′
(S-µR)

µXP
′ 4̈Γ µXP

′
(S-µL)

= P

D. Session types without types 151

Definition D.10 (Environment codomain substitution). We define Γ[Q/P] as the envir-

onment such that, for all X:

Γ[R/Q](X) =


R if Γ(X) is Q or a folding/unfolding of Q

Γ(X) otherwise

Lemma D.11. For all P ,Q,R,X,Γ such that:

(i) fv(R) ∩ dom (Γ) = ∅, and

(ii) bv(P) 63 X 6∈ bv(Q), and

(iii) X 6∈ dom (Γ),

P 4̈Γ Q implies P [R/X] 4̈Γ[Q[R/X]/Q] Q[R/X].

Proof. By rule induction on P 4̈Γ Q:

• base case (S-0). We have P = Q = 0 = P [R/X] = Q[R/X], and the thesis follows

again by (S-0);

• base case (S-X). We have P = Y = Q, and from the rule premise, Y 6∈ dom (Γ).

We need to examine two possibilities:

– Y = X. Then, we need to prove P [R/X] = R 4̈Γ[Q[R/X]/Q] R = Q[R/X]. Since

fv(R) ∩ dom (Γ) = ∅ (by hypothesis (i)), we conclude by Lemma D.9;

– Y 6= X. Then, we need to prove P [R/X] = Y 4̈Γ[Q[R/X]/Q] Y = Q[R/X]: we

conclude again by rule (S-X);

• base case (S-Var). We have P = Y 4̈Γ Q, and from the rule premise, Γ(Y) = Q.

We need to examine two possibilities:

– Y = X. This case is absurd, because it contradicts hypothesis (iii);

– Y 6= X. Then, we need to prove P [R/X] = Y 4̈Γ[Q[R/X]/Q] Q[R/X]. Since

(Γ[Q[R/X]/Q])(Y) = Q[R/X], we conclude again by rule (S-Var);

• inductive cases from Table 7.2. Straightforward: for each rule, we apply the

induction hypothesis on the premises, and conclude via the same rule;

152 D.1. On 4̈ as a precongruence for CCS –

• inductive case (S-µL). We have P = µY P
′ and, from the rule premise, P ′ 4̈Γ,Y :Q Q.

By hypothesis (ii), P [R/X] = µY (P ′[R/X]), and thus we need to prove

µY (P ′[R/X]) 4̈Γ[Q[R/X]/Q] Q[R/X] (D.7)

By the induction hypothesis, we have:

P ′[R/X] 4̈(Γ,Y :Q)[Q[R/X]/Q] Q[R/X] (D.8)

and thus, by Definition D.10,

P ′[R/X] 4̈Γ[Q[R/X]/Q],Y :Q[R/X] Q[R/X] (D.9)

Therefore, again by (S-µL), we obtain Equation (D.7), which is our thesis;

• inductive case (S-µR). We have Q = µXQ
′ and, from the rule premise, P 4̈Γ

Q′[µY Q′/Y]. By hypothesis (ii), Q[R/X] = µY (Q′[R/X]), and thus we need to prove

P [R/X] 4̈Γ[Q[R/X]/Q] µY (Q′[R/X]) (D.10)

By the induction hypothesis, we have:

P [R/X] 4̈Γ[Q[R/X]/Q] Q
′[µY Q′/Y][R/X] = Q′[R/X][µY Q′[R/X]/Y] (D.11)

Therefore, again by (S-µR), we obtain Equation (D.10), which is our thesis.

Lemma D.12. ∀P ,Q,X s.t. bv(P) 63 X 6∈ bv(Q), P 4̈ Q implies µXP 4̈ µXQ.

Proof. From P 4̈ Q, by Lemma D.11 we have:

P [µXQ/X] 4̈ Q[µXQ/X] (D.12)

By Lemma D.7 (=⇒ direction), we obtain:

P 4̈X:µXQ
Q[µXQ/X] (D.13)

D. Session types without types 153

Therefore,
P 4̈X:µXQ

Q[µXQ/X] (from D.13)

P 4̈X:µXQ
µXQ

(S-µR)

µXP 4̈ µXQ
(S-µL)

Proposition D.13. Let P 4̈Γ Q and R =
∑

i∈I`τ i . Ri. Then, R[P/X] 4̈Γ R[Q/X].

Proof. By structural induction on R. By the induction hypothesis, we have ∀i ∈

I . Ri[P/X] 4̈Γ Ri[Q/X] — and we conclude by rule (+Ctx).

Lemma D.14. Let P 4̈Γ Q and R = R′ | R′′. Then, if R[P/X] and R[Q/X] are valid

CCS – terms, R[P/X] 4̈Γ R[Q/X].

Proof. By structural induction on R. By the induction hypothesis, we have R′[P/X] 4̈Γ

R′[Q/X] and R′′[P/X] 4̈Γ R′′[Q/X]. By the restrictions on U−aCCS terms, we have that

either R′ or R′′ must not contain inputs, and the context application is only valid if

such a property is preserved in the resulting term after substitution. Without loss of

generality, let us assume that R′ does not contain inputs:

• if X 6∈ fv(R′), then ins(R′[P/X]) ∪ ins(R′[Q/X]) = ∅;

• otherwise, if X ∈ fv(R′), we have two possibilities:

– P ,Q do not contain inputs. Then, we have ins(R′[P/X]) ∪ ins(R′[Q/X]) = ∅;

– otherwise, if either P or Q contains inputs, it must be the case that R′′ does

not contain free occurrences of X nor inputs — otherwise, one between R[P/X]

or R[Q/X] would not be a valid CCS – term. Hence, we have ins(R′′[P/X]) ∪

ins(R′′[Q/X]) = ∅.

Therefore, in all cases, we are able to satisfy the premises and side condition on inputs

of rule (|LR) in Table 7.2; thus, we can conclude R′[P/X] |R′′[P/X] 4̈Γ R
′[Q/X] |R′′[Q/X],

and hence R[P/X] 4̈Γ R[Q/X].

Conjecture D.15. µXP 4̈Γ Q implies P [P/X] 4̈Γ Q.

Proof. TBD.

154 D.1. On 4̈ as a precongruence for CCS –

Conjecture D.16. For all P ,Q,R,Γ,Γ′:

P 4̈Γ Q ∧ Q 4̈Γ′ R =⇒ P 4̈Γ′,Γ[R/Q] R

Proof. We proceed by rule induction on P 4̈Γ Q.

• base case (S-0). We have P = Q = 0, and Q 4̈Γ′ R can only hold if R = 0. Then,

again by (S-0), we conclude P 4̈Γ′,Γ[R/Q] R;

• base case (S-Var). We have X = P 4̈Γ Q, and from the rule premise, Γ(X) = Q.

Since (Γ′,Γ[R/Q])(X) = R, again by (S-Var), we conclude P 4̈Γ′,Γ[R/Q] R;

• base case (S-X). We have P = X 4̈Γ X = Q, and from the rule premise, X 6∈

dom (Γ). Q 4̈Γ′ R can hold via rules:

– (S-X). Then, R = X and X 6∈ dom (Γ′). Then, again by (S-X), we conclude

P = X 4̈Γ′,Γ[R/Q] X = R;

– (S-Var). Then, Γ′(X) = R, and from X 6∈ dom (Γ), we have (Γ′,Γ[R/Q])(X) =

R: by (S-Var), we conclude P 4̈Γ′,Γ[R/Q] R;

• inductive case (S-µL). We have P = µXP
′ 4̈Γ Q, and from the rule premise,

P ′ 4̈Γ,X:Q Q. By the induction hypothesis, we have P ′ 4̈Γ′,Γ[R/Q],X:R R, and again

by rule (S-µL) we conclude P 4̈Γ′,Γ[R/Q] R;

• inductive case (S-µR). We have P 4̈Γ Q = µXQ
′, and from the rule premise,

P 4̈Γ Q
′[µXQ′/X]. Now, since Q = µXQ

′ 4̈Γ′ R, by Conjecture D.15 we also have

Q′[µXQ′/X] 4̈Γ′ R; then, by the induction hypothesis, we have

P 4̈Γ′,Γ[R/Q′[µXQ′/X]] R

Since Q = µXQ
′ is the folding of Q′[µXQ′/X], by Definition D.10 we have:

Γ′,Γ
[
R/Q′[µXQ′/X]

]
= Γ′,Γ[R/Q]

Therefore, we conclude P 4̈Γ′,Γ[R/Q] R;

• inductive case (|L). We have P ′ | P ′′ = P 4̈Γ Q = !a . ?b +
∑

i∈I !ci . Qi, with

P ′ 4̈Γ !a and P ′′ 4̈Γ ?b. Then, Q 4̈Γ′ R may hold because of rules:

D. Session types without types 155

– (|R), which implies I = ∅ and R = R′ | R′′, with R′ = !a +
∑

i∈I !ci . Ri and

R′′ = ?b. By the restrictions of U−aCCS terms, R′ cannot contain inputs, and

the same is also true for P ′; furthermore, we have !a 4̈Γ′ R
′ (by rule (+Int))

and ?b 4̈Γ′ R
′′ (by rule (+Ext)) — and applying the induction hypothesis, we

also have P ′ 4̈Γ′,Γ[R/Q] R
′ and P ′′ 4̈Γ′,Γ[R/Q] R

′′: hence, we satisfy the premises

of rule (|LR), and we obtain P 4̈Γ′,Γ[R/Q] R;

– (+Ctx). Then, R = !a . R′′ +
∑

i∈I !ci . Ri, with R′′ 4̈Γ′ ?b and ∀i ∈ I . Ri 4̈Γ′

Qi. By applying the induction hypothesis, we have P ′ 4̈Γ′,Γ[R/Q] !b and

P ′′ 4̈Γ′,Γ[R/Q] ?b. Thus, by rule (|L), we conclude P 4̈Γ′,Γ[R/Q] R;

– (+Int): similar to case (+Ctx) above.

• inductive case (|R). We have !a . P ′ = P 4̈Γ Q = !a +
∑

i∈I !ci . Qi | ?b . Q′, with

premise P ′ 4̈Γ ?b . Q′. Then, Q 4̈Γ′ R may hold because of rules:

– (|LR). Then, we have R = R′ |R′′, with premises !a+
∑

i∈I !ci . Qi 4̈Γ′ R
′ (which

may only be due to equality, or rules (+Ctx) or (+Int)) and ?b . Q′ 4̈Γ′ R
′′. By

applying the induction hypothesis, we have P ′ 4̈Γ′,Γ[R/Q] R
′′, and by rule (|R),

we conclude P 4̈Γ′,Γ[R/Q] R;

– (|L). Then, R = !a.?b+
∑

j∈J !dj . Rj . Furthermore, we have !a+
∑

i∈I !ci . Qi 4̈Γ′

!a and P ′ 4̈Γ ?b . Q′ 4̈Γ′ ?b, which imply ∀i ∈ I . ci = a ∧ Qi 4̈Γ′ 0. Hence,

by applying the induction hypothesis, we have P ′ 4̈Γ′,Γ[R/Q] ?b. By rule (+Int),

we conclude P 4̈Γ′,Γ[R/Q] R.

• inductive case (+Ctx). We have
∑

i∈I`τ i . Pi = P 4̈Γ Q =
∑

i∈I`τ i . Qi, with

Pi 4̈Γ Qi for all i ∈ I. We have two cases:

– when Q 4̈Γ′ R is due to (+Ctx) or (+Int) or (+Ext), by applying the induction

hypothesis we obtain P 4̈Γ′,Γ[R/Q] R by the same rule;

– when the top-level choice of P and Q has a single branch with `τ = !a, we

have P = !a . P ′ and Q = !a . Q′, with P ′ 4̈Γ Q′. In this case, Q 4̈Γ′ R

may also be due to rule (|R). Then, we have R = !a +
∑

j∈j !cj . Rj | R′,

with Q′ 4̈Γ′ R
′ = ?b . R′′. By applying the induction hypothesis, we have

P ′ 4̈Γ′,Γ[R/Q] R
′, and then P 4̈Γ′,Γ[R/Q] R, again by rule (|R).

• inductive case (+Int). We have two cases:

– when Q 4̈Γ′ R is due to (+Ctx) or (+Int), by applying the induction hypothesis

we obtain P 4̈Γ′,Γ[R/Q] R by the same rule;

156 D.1. On 4̈ as a precongruence for CCS –

– when the top-level choice of P and Q has a single branch, Q 4̈Γ′ R may also be

due to rule (|R). This is handled similarly to case (+Ctx) above, when Q 4̈Γ′ R

holds by rule (|R): also in this case, by applying the induction hypothesis, we

have P 4̈Γ′,Γ[R/Q] R by rule (|R).

• inductive case (+Ext). Q 4̈Γ′ R may be due to (+Ctx) or (+Ext); by the induction

hypothesis, we obtain P 4̈Γ′,Γ[R/Q] R from the same rule.

• inductive case (|LR). We have P = P ′ | P ′′ 4̈Γ Q′ | Q′′ = Q, with P ′ 4̈Γ Q′,

P ′′ 4̈Γ Q
′′, and ins(P ′) ∪ ins(Q′) = ∅. When Q 4̈Γ′ R holds, we have the following

cases:

– if it holds by rule (|LR), we have R = R′ | R′′ with Q′ 4̈Γ′ R
′, Q′′ 4̈Γ′ R

′′,

and ins(Q′) ∪ ins(R′) = ∅. By applying the induction hypothesis, we have

P 4̈Γ′,Γ[R/Q] R (again by rule (|LR));

– if it holds by rule (|L), we have Q′ 4̈Γ′ !a, Q′′ 4̈Γ′ ?b and R = !a . ?b + R′′.

Hence, from P ′ 4̈Γ Q
′ and P ′′ 4̈Γ Q

′′, by applying the induction hypothesis

we have P ′ 4̈Γ′,Γ[R/Q] !a and P ′′ 4̈Γ′,Γ[R/Q] ?b. Therefore, we can use these

premises to apply rule (|L) and obtain P 4̈Γ′,Γ[R/Q] R.

• inductive case (+τ). We have P =
∑

i∈Iτ . Pi 4̈Γ Q, with ∀i ∈ I . Pi 4̈Γ Q. When

Q 4̈Γ′ R, By applying the induction hypothesis we have ∀i ∈ I . Pi 4̈Γ′,Γ[R/Q] R.

Then, P 4̈Γ′,Γ[R/Q] R, again by rule (+τ).

Conjecture D.17. 4̈ is a preorder for U−aCCS terms.

Proof. Reflexivity holds by Lemma D.9; transitivity holds by Conjecture D.16.

Conjecture 10.2. 4̈ is a precongruence for CCS –.

Proof. From Conjecture D.17, we have that 4̈ is a preorder for U−aCCS terms; from

Lemma D.12, Proposition D.13 and Lemma D.14 we have that 4̈ is preserved by all

operators of U−aCCS. We conclude that 4̈ is a precongruence for U−aCCS terms.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Code Samples
	1 Introduction and motivation
	1.1 Some questions
	1.1.1 Can we reason on session-based interactions in a language-independent way?
	1.1.2 Can we devise new syntactic typing rules as instances of some general relation?
	1.1.3 Can we reason on synchronous and asynchronous interactions in an uniform semantic setting?
	1.1.4 Is there a language-independent notion of ``correct'' interaction?
	1.1.5 Towards a general approach

	1.2 Contributions and structure of the work
	1.3 Improvements w.r.t.BartolettiSZ14Concur

	2 Behaviours
	2.1 Basics
	2.1.1 The I/O LTS
	2.1.2 Transition relations
	2.1.3 Barbs
	2.1.4 Observational relations

	2.2 Session types
	2.3 CCS

	3 A motivating use case
	4 I/O compliance
	5 On safety
	5.1 Deadlock states
	5.2 Orphan messages
	5.3 Unspecified reception
	5.4 Safety

	6 I/O simulation
	6.1 Introducing I/O simulation
	6.2 Basic properties
	6.3 On I/O simulation and I/O compliance
	6.4 On I/O simulation and asynchrony

	7 Session types without types
	7.1 From semantics to syntax
	7.2 An I/O simulation-based type system

	8 The LTS Workbench
	8.1 LTSs, processes and asynchrony
	8.1.1 From LTSs to processes
	8.1.2 CCS processes
	8.1.3 From synchronous to asynchronous semantics
	8.1.4 Adding new process calculi

	8.2 Behavioural relations
	8.2.1 Experiments with I/O compliance
	8.2.2 Adding new compliance relations
	Verifying relations.

	8.3 Conclusions and future work on LTSwb

	9 Related work
	9.1 Session types
	9.2 Other ``foundational'' approaches to session types
	9.3 Multiple participants and multiple sessions
	9.4 Subtypes, subcontracts and sub-behaviours
	9.5 Asynchrony and session types
	9.6 Compliance and safety
	9.7 Testing
	9.8 Abstracting richer calculi
	9.9 Timeouts and exceptions

	10 Conclusions
	10.1 Summary of the main results
	10.2 Future work
	10.2.1 Some conjectures on
	10.2.2 Extending

	Bibliography
	A Behaviours
	A.1 Session types

	B Compliance
	Proof of lem:compliance-as-intersection on lem:compliance-as-intersection

	C I/O simulation
	C.1 Basic properties
	Proof of lem:union-uber-sim on lem:union-uber-sim

	C.2 On as a preorder for U
	Proof of lem:uber-sim-tau on lem:uber-sim-tau

	C.3 Properties of predictive sets
	Proof of thm:uble-preorder on thm:uble-preorder
	Proof of lem:uber-bisim-vs-weak-bisim on lem:uber-bisim-vs-weak-bisim

	C.4 On I/O simulation and I/O compliance

	D Session types without types
	Proof of thm:accs-uble-axioms on thm:accs-uble-axioms
	D.1 On as a precongruence for CCS–

