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Abstract  

Cervical cancer is the fourth most common cancer in women and the cytological 

screening represents the most diffuse method of prevention. Human papillomavirus (HPV) is 

an established essential etiological factor for this cancer. Persistence of HPV infection, 

particularly by those belonging to the high-risk types (HR-HPV), is associated with an 

increased risk for cervical cancer development. Low-risk HPV (LR-HPV) types are more 

often associated with benign warts. Most invasive carcinomas are caused by two HR-HPV 

types: HPV16 and 18. Recently, HPV tests are used as an adjunct test to decrease the false-

negative rate of cytological screening with Papanicolaou test (PAP Test), especially HR-HPV 

DNA detection tests are useful for primary screening of cervical cancer and for triage of 

patients with equivocal cytological findings. However, the roles and contributions of other 

uncommon and rare genotypes remain uncertain, especially in specific geographic areas or 

populations. Recently, microarray biochip technology has been introduced into the clinical 

laboratory for HPV detection. One such test is the ProDect® CHIP HPV TYPING KIT (bcs 

Biotech Srl, Italy), which has the ability to identify 19 HPV types (all HR-HPV and most 

common LR-HPV types) and detect the generic presence of E6/E7 HR-HPV sequences. The 

aim of this pilot study was design a new biochip (CHIP PLUS) for the cervical cancer 

screening able to detect a large number of HPV anogenital types (HR- and LR-HPV) using 

two regions of the viral genome (L1 and E6/E7 sequences) as targets. This report also 

presents the results of a preliminary validation study in preparation for an extended clinical 

validation of the medical diagnostic ProDect® CHIP HPV TYPING PLUS employing the 

above CHIP PLUS designed both for the simultaneous detection of 31 HPV types (both 

common and uncommon HPV types) and for the characterization of three E6/E7 consensus 

sequences belonging to the principal groups of HR-HPV. The preliminary results of the 

ProDect® CHIP HPV TYPING PLUS KIT validation had higher concordance and/or greater 

compatibility with those of the reference tests, underlining the importance of searching for 

uncommon HPV types, enabling good prevention of cervical cancer using HPV DNA as test 

screening. 
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Preface 
 

This thesis is subdivided in two chapters on the different research activities I have 

conducted and about the research programs in which they were entered. All activities 

described were carried out at the University of Cagliari laboratories and bcs Biotech Srl 

Research and Development laboratories, a company specialized in the development and 

production of in Vitro Diagnostic Devices (IVD) and biotech platforms, certified UNI EN 

ISO 9001: 2008 and UNI CEI EN ISO 13485: 2012, http://www.biocs.it.  

 

The first chapter (Chapter 1), which is also the main topic of discussion for this thesis, 

with regards to the development and validation of a biochips Nucleic Acid Test (NAT) to be 

applied to the screening of cervical cancer and to the diagnosis of infection by Human 

Papillomavirus (HPV). This research commenced using a bcs Biotech biochip kit that can 

detect 19 HPV genotypes in anogenital tropism, including 14 HPV genotypes considered at 

high-risk oncogenic and clinically validated as CE IVD. These kits have been used in an 

International cooperation program funded by the Region of Sardinia (L.R. 1996 ART.19) 

entitled Screening of the human papilloma virus (HPV), and prevention of cervical cancer in 

women of the city of Cotonou and Benin coordinated by the Cytomorphology Department of 

the University of Cagliari in which bcs Biotech Srl attended as a partner and the scientific 

coordinator was Prof. Paola Sirigu. At the end of my study this biochip was implemented with 

further 12 genotypes, for a total of 31 detectable HPV genotypes, including many medium 

risk oncogenic genotypes that were not sufficiently investigated by an epidemiological point 

of view for their transforming power. This new test also allows, on the basis of additional 

probes, to detect and discriminate the three main groups of Early sequences (E6/E7) HPV, 

that are related only to these and other common genotypes with high-medium oncogenic risk. 

In fact, the proteins encoded by these sequences in the HPV genotypes with high oncogenic 

risk factors would be necessary, although not sufficient, for the neoplastic transformation of 

the mucosa. The study was suitable for the publication of an article on the first chip F.Piras, 

M.Piga, A. De Montis, R.F.Zannou Ahissou et.al. Prevalence of human papillomavirus 

infection in women in Benin, West Africa. Virology Journal 2011, 8:514   

http://www.ncbi.nlm.nih.gov/pubmed/22074103 and obtained a European Patent, also 

including the design of the new chip,  Perseu S., De Montis A., Lauterio C., Manca I. European 

Patent EP 1818416B1 

http://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=2012122
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6&DB=&locale=en_EP&CC=EP&NR=1818416B1&KC=B1&ND=1. The new prototype kit 

clinical validations on chip are ongoing. In this thesis are only show some preliminary 

verification data obtained on pre-production batches, before the start of the clinical trials. 
 

The second chapter (Chapter 2) concerns a study in which I have participated at the end 

of the program POR 3.13 "Creating a center of excellence for bio-informatic technologies 

applied to personalized medicine" managed by Sardegna Ricerche. In fact, thanks to two 

different projects funded between 2006 and 2009 under this program entitled respectively 

“Development of new bioinformatics methods for the detection of environmental and genetic 

causes of multifactorial diseases in Ogliastra” and “Detection of the genes responsible for 

autoimmune Hypothyroidism and for Hashimoto Disease in Ogliastra”, at the BCS 

BIOTECH R & D laboratories was created a bio-bank including DNA from control subjects, 

verified by anamnestic and instrumental evaluation, as unaffected by the 20 most common 

multifactorial diseases in Sardinia (including Diabetes I and II, Multiple Sclerosis, 

Hypothyroidism and Hashimoto's disease, Lupus, Rheumatoid Arthritis etc.) and conversely 

subjects affected by these diseases. The samples collected in the BCS BIOTECH Bank, 

include sick individuals as well as healthy ones, carefully selected with a series of 

fundamental criteria: not related (based on their family tree up to 4th – 5th generation), 

coming from the same Mendelian Unit Cross (UMI) or geographic area. Starting from this 

assumption I proceeded to analyze control samples from the bcs Biotech bio-bank selected in 

the Ogliastra geographical area (central-eastern region of Sardinia) by the Affymetrix 

Genome-Wide Human SNP Array 6.0 platform localized at the Laboratory of Genomic in the 

Technology Park of Sardinia (Pula, Cagliari). At the same time, other colleagues from the 

Department of Experimental Biology, University of Cagliari, coordinated by Prof. Vona, were 

analyzing DNA of subjects collected in South Sardinia. This type of platform is able to 

simultaneously determine the genotype of a subject for about 1,000,000 Single Nucletides 

Polimorphic site (SNPs) and about a million genetic polymorphisms linked to the variation of 

the number of sequences (Copy Number Variation, CNV) data analysis was performed by 

using a dedicated software: the Genotyping Console™ software 4.0. The study and the 

merging of data from the samples collected both in bcs Biotech and from the University of 

Cagliari has been the subject of the following publication Piras I., De Montis A., Calò CM., 

Marini M., Atzori M., Corrias L., Sazzini M., Boattini A., Vona G., Contu L. Genome wide 

scan with nearly 700.000 SNPs in two sardinian subpopulations suggest some regions as 
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candidate targets for positive selection. European Journal of Human Genetics (EJHG) 2012, 

03:1-7 

http://www.ncbi.nlm.nih.gov/pubmed/22535185. The article highlights a sub structure 

of the Sardinian population, particularly in the area of Ogliastra presenting greater genetic 

homogeneity compared to a higher genetic variability in the samples from the south of the 

island. Following this publication I have been involved in an international study regarding the 

validation of an algorithm structure of geographical population (GPS) that exploits the data 

using as a reference SNPs 40000-130000, and on this assumption is able to determine the 

location geographic or genetic origin of any individual. Several research groups around the 

world have offered their dataset to allow the validation of the new algorithm model. 

Following the data this new genetic GPS placed 83% of the individuals studied in their 

country of origin. When applied to the Sardinian samples studied by myself, the GPS placed a 

quarter of them in their villages, and a majority of others within 50 km of their originating 

villages. http://www.ncbi.nlm.nih.gov/pubmed/24781250, Elhaik E, Tatarinova T, Chebotarev 

D, Piras IS, Maria Calò C, De Montis A, Atzori M, Marini M, Tofanelli S, Francalacci P, 

Pagani L, Tyler-Smith C, Xue Y, Cucca F, Schurr TG, Gaieski JB, Melendez C, Vilar MG, 

Owings AC, Gómez R, Fujita R, Santos FR, Comas D, Balanovsky O, Balanovska E, Zalloua 

P, Soodyall H, Pitchappan R, Ganeshprasad A, Hammer M, Matisoo-Smith L, Wells RS; 

Genographic Consortium. Geographic population structure analysis of worldwide human 

populations infers their biogeographical origins. Nature Communications. 2014 Apr 

29;5:3513.  
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CHAPTER 1 - DEVELOPMENT AND VALIDATION OF A NUCLEIC ACID TEST 

(NAT) MULTI-TARGET OF BIOCHIPS TO SCREEN UTERINE CERVIX CANCER 

 

1. Introduction 

The discovery of some genotypes of the human papillomavirus (HPV), defined as high-

risk oncogenic (HR), at the base of the etiopathogenesis cervical carcinomas[1] laid the 

foundation for the approach prior to the illness today, to the development of two prophylactic 

vaccines[2-10]: Gardasil® (Merck & Co.) and Cervarix (GlaxoSmithKline). Randomized 

controlled trials have demonstrated the efficacy for at least eight years[11] using the first 

vaccine Gardasil, also known as quadrivalent vaccine, in preventing infection by HPV-16 and 

HPV-18, together responsible for over 70% of carcinomas, and types HPV-6 and HPV-11, 

etiologic agents of 90% of anogenital warts, while Cervarix, also called bivalent, was 

protective about the development of forms precancerous and cancer caused by HPV-16 and 

HPV-18. Unfortunately, these vaccines do not prove, however, any therapeutic efficacy. 

 

The enhancement of diagnostic techniques, especially on the molecular sector, led till 

now the discovery of about forty HPV with high tropism towards the anogenital mucosa, 

including at least a dozen types, with regards to HPV-16 and HPV-18, with an elevated 

oncogenic propensity. 

 

The importance of these molecular studies in primary screening of cervical cancer is 

now irreplaceable, often resulting comparable[12-16], when not superior, to the Papanicolaou 

cytology Test (PAP test), that entrust pathologist to the lesions detection in mucosal according 

to a scale based on the parameters defined. This test still suffers from the suitability of the 

sampling and the subjectivity of interpretation, despite having been recently introduced some 

automation. 

 

In particular, several controlled studies demonstrate the high predictive value of HPV 

negative DNA, compared to the PAP test, indicating that, if confirmed, would allow the 

lengthening of the organized screening (3 to 5 years)[17-21] with a relative rationalization of 

health spending without reduction against the surveillance capabilities of this type of tumor. 
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The negative predictive value (NPV) of the molecular test takes on great importance because 

if the cervical cancer recognized as the main cause of persistent infection (ie for several years) 

by HPV genotypes with high oncogenic power, the probability that a woman developments, 

relatively quickly (within 5 years), preneoplastic or neoplastic lesions is statistically unlikely 

if the woman is HPV negative, then is free of any infection. 

 

As an example below there is one of the many screening algorithms proposed[18] which 

provides as the primary test, the only molecular test, and proposes the PAP test, so the 

evaluation of cytological abnormalities, only to those women positive for HPV sequences 

(Fig.1). 

 

WOMEN AGED 25 - 64 YEARS
HPV TEST

Negative Positive

Normal or
Borderline 

Mild or Positive 

Cytology Negative
HPV Negative    Cytology Mild or Positive

HPV Positive 
Cytology  Negative 

CYTOLOGY

COLPOSCOPYHPV & CYTOLOGY
at 6 – 12 months

COLPOSCOPY
NORMAL 

5 YEAR RECALL

HPV & CYTOLOGY
at 6 – 12 months

NORMAL 
5 YEAR RECALL

HPV Negative 
Cytology Borderline

Fig. 1[18] - An example of the proposed algorithm to screen for cervical cancer suggests that HPV DNA testing 

women as the primary test and cytological analysis of women HPV-positive as triage test. (Edited by Cuzick et 

al, 2008). 

 

However, the high predictive value of a negative HPV DNA test implies that the test 

used to perform molecular diagnosis can be attributed reliably negative for HPV DNA. 
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Unfortunately, little is still known about the natural history of HPV in relation to the 

development of cancer and in many ways very complex, influenced by 1) the ability of the 

virus to persist in episomal form or integrate into the genome of the host cell, 2) from high 

number of viral genotypes with variable oncogenic power, 3) from their interaction in the case 

of co-infection and 4) interaction with various genetic and molecular aspects of the host who 

would control the course of the disease. This means that many negative molecular diagnosis 

for HPV infection are not really reliable, (false negatives), but affected, as well as unsuitable 

withdrawals, by low power of the diagnostic tests on the market, especially to those more 

insidious viral forms, due to integration, co-infection or not widespread, but still equipped 

with a tumorigenic influences, at the base of recurrence or lesions of uncertain cytology 

classification (ASCUS), which can already show frank precancerous lesions through focused 

colposcopic analysis. 

 

The present research project can be included in this context since its general objectives 

the design, development and validation of a multi-target Nucleic Acid Test (NAT) that 

complies with CE standards for In Vitro Diagnostics Devices (IVDs), has a high negative 

predictive value applied to cervical cancer screening with the most modern diagnostic 

algorithms. 

 

1.1 Epidemiology of cervical cancer 

One of the most important achievements in the medical oncology field in the last fifty 

years, is the huge progress made in reducing mortality and cervical cancer incidents, at least 

in the countries that have adopted health policies for primary screenings. Slow progressive 

malignant tumors, specifically invasive that develops in the cervix. This neoplasia until a few 

decades ago was the most common cancer and the most lethal in the female population and 

constituted the second tumor, in order of incidents of mortality in general population, second 

only to lung cancer. The data published by the World Health Organization (WHO)[22] in 

2014 showed that it is now the third tumor incidence and the fourth leading cause death from 

cancer among women.  

 

The basis of this success, on one hand, studies of Professor Georgios Papanicolaou on 

cervical-vaginal cytological diagnostic during the Second World War that led to the rapid 

spread from 1960 a budget and poorly invasive screening test, called in his honor PAP test, on 
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the other hand, the recognition of the fundamental role of the human papillomavirus (HPV) 

on the neoplastic transformation of cervical mucus cells, hypothesized for the first time by 

Professor Harald zur Hausen in 1975. 

 

These two factors, together with the progress of the methodologies and the refinement 

of diagnostic capabilities of uterine cervix pre-neoplastic lesions, as well as the use of large- 

mass scale screening, have led to a strong reduction in the incidences and mortality of this 

type of tumor. However, data of the report of the WHO[22] of 2014 referring to 2012, still 

recorded over half a million new cases, more than 270,000 deaths, with over 85% of cases 

and deaths in developing countries[22], where it is the leading cause of death in women aged 

between 15 and 44 years. 

 

1.2 HPV infection and the natural history of cervical cancer 

The neoplastic transformation requires a series of complex mechanisms interacting with 

each other, both endogenous and exogenous types, which act by determining on one hand, a 

persistent alteration of the viral DNA and cell metabolism and on the other hand, a kind of 

tolerance by the immune system of the host organism[23-24]. The model currently recognized 

as the most descriptive HPV infection in course in relation to the development of cervical 

carcinoma represented in Fig. 2. The woman acquires the infection through sexual contact 

from an infected partner, with greater prevalence at a younger age due to first sexual 

encounters or when frequent exposure combined with a lack of prior immunity. The incidence 

of HPV-infected women is thus particularly high during adolescence and early adulthood and 

decrease with the progress of age (incidence). The contracted infection, however, is confined 

and of course eliminated (clearance) within an average of 2 years. In 90% of cases[25-27] 

and about 60% of these infections determines a serum conversion, or specific antibody 

production of the infecting HPV genotype. 
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Normal 
cervix

Precancerous lesion

HPV  detection

Cancer
Mild cytologic
abnormalities

HPV infection Viral persistence 

HPV  seropositive

incidence

clearance

invasionprogression

regression

progression

Time‐ years

Latent infection

T= 0

Fig. 2[23] Natural history of cervical carcinogenesis, (Amended by Schiffman M, et al. 2011) 

 

Using a cytology PAP Test (Tab. 1), these women showed cervical dysplasia classified 

as low or moderate, such as the American classification established in 2001 in Bethesda, Low-

grade Squamous Intraepithelial Lesion (LSIL) or in the European classification, given by the 

Norwegian Ralph Richart in 1967, Cervical Intraepithelial Neoplasm (CIN I). Only infections 

that persist have a certain probability to progress to real precancerous lesions, identified as 

type HSIL or CIN 2-3. Between them only a small proportion, if left untreated, progresses to 

carcinoma after several years [28]. Among the risk factors that may further predispose more 

rapidly to cancer (varying between 3 to 20 years is observed) have been highlighted smoking 

[29-31], prolonged use of oral contraceptives[32] and the number of natural births[33]. It is 

estimated that approximately 60%, 40% and 33% of CIN1, CIN2 and CIN3 respectively 

regress spontaneously, a variable amount closed to 20-30% persists without development to 

more serious lesions, 10-20% progress from CIN1 to CIN3 and from CIN2 to CIN3; and a 

smaller portion (1% of CIN1, 5% of CIN2, and 12% of CIN3) can, if untreated, evolve to 

invasive carcinoma[34]. 
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Dysplasia  Bethesda Classificazion2001 

(used in cytology) 

Cervical intraepithelial 
neoplasia CIN and CGIN 
classification 

atypical squamous cells, 

not classifiable 

 

atypical squamous cells, 

not excluding high-grade 

lesions 

ASC-US  

 

 

ASC-H  

--- 

 

 

--- 

low grade, mild LSIL  CIN1 

CIN2  high grade, moderate to 

severe 
HSIL  

CIN3 

dysplasia endocervicale 

with atypical glandular 

cells 

  

Adenocarcinoma in situ 

AGC differentiated in: 

AGC-NOS not otherwise specified

AGC favor neoplastic 

 

AIS  

CGIN 

(low-grade) 

(high-grade) 

 

CGIN(high-grade) 

Tab. 1[34,35] Comparison of the principal terminology used to classify preinvasive intraepithelial lesions 

 

1.3 Phylogenetic and epidemiologic HPV classification  

The Papillomavirus derive their name from the Latin "papilla" or pustule and from 

Greek "oma" which means cancer, in fact discovered only in the twentieth century, the lesions 

caused by them in humans, as in animals, has been known since ancient times.  

 

Classified in the family of Papillomaviridae[36] divided into 16 genera, we find the 

human papillomavirus, phylogenetically distributed in five genus (Alpha, Beta, Gamma, Mu 

and Nu), which currently includes around hundred genotypes[37]. Genotypes are 

distinguished by gene sequence basis of the HPV L1 region, that are dissimilar from each 

other by more than 10% of the sequence basis, and are identified by a number (HPV16, 

HPV18, HPV6, etc). 

 

These are viruses that induce hyperproliferative lesions in multilayered epithelia 

squamous of the skin and mucous membranes resulting in the major cause of elementary 
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lesions, such as warts and complex pre-cancerous and cancerous lesions[38]. Those with 

cutaneous tropism are identified as epidermotropic and infect primarily the skin of the hands 

and feet. The target cells of HPV called mucosals are mainly located at labial mucosa, 

respiratory tract and anogenital area. The restricted replication to these two types of cells is 

influenced by the differentiation stage of these cells. 

 

There are about forty HPV genotypes that infect the mucosal and the anogenital area 

epithelia. Based on the frequency with which they were isolated in anogenital cancerous or 

precancerous lesions, they are divided into two groups[39-42]: 

 

 The HPV Low Risk (LR) with oncogenic low-risk, until now, were only isolated from 

benign lesions: HPV-6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, CP6108. 

 

 The HPV High Risk (HR) with high-medium oncogenic risk, are frequently associated 

to the appearance of malignant lesions: HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 

59, 66, 68, 73, 82. Sequences of HPV16 and HPV18 were found in approximately 50-

70% and 10-20% of cervical carcinomas respectively [42]. 

 

1.4 Virus structure 

Observed under a transmission electron microscope (TEM) the HPV is a small, naked 

virus, whose capsid is formed by 72 capsomers arranged as a symmetrical icosahedron, 

encompassing a circular double helix DNA genome, circa 8 kilobases[42] (Fig. 3). Each 

capsomer is composed of two proteins: 80% from the L1 protein of 57 kD and the remaining 

20% from the L2 protein of 43-53 kD. The genome is characterized by an 8-10 coding ORF 

sequence (Open Reading Frames) and by a non-coding region called LCR (Long Control 

Region) or URR (Upstream Regulatory Region) regulator of the viral replication and 

transcription, ranging in size between various genotypes of HPV[44]. The HPV ORF are 

divided into early regions (E "Early, E1-E8")[45] and late (L "Late" L1-L2)[46] encoding 

proteins. The L proteins are the viral capsid L1 and L2 proteins, only expressed in infected 

cells in the final stages of the viral replication cycle in a productive way, while the E proteins 

are regulators of the duplication process of the viral genome and work directly and indirectly 

on macromolecular synthesis of the host cell. Among them, the E6 and E7 proteins are critical 

in inducing the transformation, in the tumor sense of the cell[47-49]. These proteins interact 
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with several transcription factors, acting cellular proteins; on the one hand the inhibition of 

mutation repair in the genomic cell DNA reducing the levels of cellular p53 levels[50-51], 

therefore altering the control and shelter mechanisms that the cell enacts towards any damage 

to its genetic heritage. On the other hand, inducing cell multiplication through interaction with 

cellular co-factors (in particular the pRb)[52-54] normally down-regulated if not needed (Fig. 

4). The other interactions with various factors for regulation, expression and cell replication 

always lead to target inactivation/degradation or they involve directly or indirectly 

stimulation/activation. However, because of viruses are difficult to propagate in vitro, many 

targets or interactions are still unclear. 

 

 

Fig. 3[42] DNA HPV-16 (Modified from Muñoz et.al, 2006) 
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E6

E7

E6BP

MCM7

PDZ domain 
proteins

hADA3

E6AP

cMyc

P3000/CBP

E6TP1

hTert

NFX1-91

p53

P300/CBP
pCAF

HDACs

p105

p130

pRb

p21

p27

Cyclin 
A,E

p600

ATM

E2F6

Fig. 4[54] Some target cells for proteins E6 and E7 oncogene (Modified from Bodily et al., 2011) 

1.5 Virus replication cycle  

From a molecular point of view the replication of HPV arises from sequences placed in 

the viral genome region Upstream Regulatory Region (URR) (Fig. 5). Two polyadenylation 

signals define 3 groups of viral sequences, whose expression is regulated by cellular factors 

during the host cell differentiation specifically: the group of genes E1, E2, E4, E5, and E8 

involved in viral DNA replication and in transcriptional control; the group formed by the 

genes E6 and E7 that maintain and stimulate replication; and lastly the group of L sequences 

encoding the L1 and L2 capsid structural proteins. 
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E6

E7

E4 E5

E8

E1

E2

L2

L1

Enhancer
Ori

URR
Late poly-AEarly poly-A

E7

E1

E2

E4^5L2

L1

URR
E6

Fig. 5[54] Linearized genome of HPV (Modified from Bodily, 2011) 

The replicative cycle of the virus can be subdivided in a nonproductive stage called 

Early in which E sequences are transcribed and that lead to the functional synthesis factors, 

and then there is a productive stage called Late where the L regions transcription coding for 

the capsid structural factors. 

 

The non-productive stage is characterized by the stabilization of the viral genome as an 

episome at the basal layer level of the epithelium in which are localized cells in continuous 

division. In the cervix most infections are established at the level of the Transformation Zone 

(TZ) basal layer, the transition zone between the ectocervical stratified epithelium and of the 

endocervical columnar[54] (Fig. 6). Due to the effect of micro-trauma and to interaction with 

particular molecules[55], the HR or LR HPV reach the basal layer cells that are essentially of 

two types[56]: Transit Amplifying cells (TA), and proliferating cells capable of differentiating 

in a vertical direction moving to the mucosa suprabasal layers, and then the Stem cells (ST) 

who have a limited ability to proliferation, with the function of supply type TA cellular pool. 

Indeed, they represent the epithelium long-term reserve as only one of the two daughter cells 

derived from their division will become a TA cell while the other will remain ST; the 

mechanisms underlying this process are still unclear and very controversial. The virus would 
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infect electively the TA cells[57] replicating at the cell nucleus level its genome up to 50-200 

copies depending on the infecting genotype.  

 

The conservation of the episomal forms[58], essential for persistence phenomena 

establishment, it would be controlled by the sequences E6, E7, E1 and E2[59-62]. In fact, the 

E1 and E2 proteins cooperate with cellular factors to trigger viral genomes replication and E6 

and E7 proteins modulate the same factors so cell remains in active propagation as long as 

possible[63-64]. At this stage, the viral proteins are expressed at low levels and this 

contributes to evade the immune response by promoting the persistence. The newly formed 

viral genomes segregate in an equivalent manner between the two daughter cells at the time of 

mitotic division as cellular chromosomes[65] under E2 protein control. This protein also 

coordinates genomes number, which under physiological conditions must not exceed a certain 

threshold in order not to be lost during mitosis[66]. In this regard, E2 protein has functions of 

positive and negative control on E6, E7, E1 genes. When TA cell, under the effect of various 

factors, mainly of hormonal nature, is preparing to leave the basal layer to continue the 

differentiation, it has as a side effect a raising of transcription of ORFs. 

 

At the spinous layer level[67-69] is observed an impressive increase in E1, E2, E1 ^ E4 

and E5 transcripts[70-72] and viral genomic copies from 50-200 copies/cell reach up to about 

104-105 copies per cell[73]. Excess of E1 ^ E4 and E5 protein contributes, however, to the 

activation of L1 and L2 Late protein synthesis[74-76]. It follows that the capsid proteins, 

strongly immunogenic, are produced only in the more differentiated epithelial layer[77], that 

is the one that faces the organ lumen. 

 

The process of virus maturation from the deep layers to the release into the lumen 

requires long time, in the order of 4-6 months from the moment of infection contraction. 

 

Also the clearance of the virus, which occurs in the majority of infections, it would be a 

fairly slow process which involves cellular mediated immunity[78] although at present the 

mechanisms are known only in part[79]. HPV reduces the innate and acquired immune 

response through different strategies: for example, E6 and E7 cells expressing of HR HPV, 

repress transcription of many interferons target genes[80-83], while the HPV infected cells 

produce low levels of cytokines[84] such as IL-1, IL-6, TNF-α and TGF-β and high levels of 

anti-inflammatory IL-10 reducing the ability of immune cells to infiltrate the infected 



12 

tissue[85]. However in a certain proportion of HPV HR infections, viral genome tends to be 

integrated into the cellular DNA causing a reduced production of viral complete progeny. 

This integration is at the initialization of the transformation and cellular immortalization 

mechanisms, usually occurring at the E2 ORF level, resulting in loss of the repressive action 

on viral E2 factor on the E6 and E7 sequences transcription and consequently the production 

of relative proteins, fundamental in the mechanisms of carcinogenesis, and therefore 

considered viral oncoproteins[86-90] (Fig. 7). The interruption of the ORF at E2 and the 

subsequent integration of the HPV HR genome in the cell, leads to a consequent over-

expression of the E1, E6 and E7 proteins and amplification of their effects on the cell; 

stimulation of proliferation and the inhibition of p53-mediated control/repair mechanisms[89]. 

Studies conducted on HPV16 have shown that the viral DNA breaking points at the time of 

integration into the cellular genome can affect most of the virus genome[90]: only the L1-L2 

ORF have been with 59 breakpoints characterized and 39 breakpoints in E1-E2-E5 regions. It 

follows that the smallest region of the viral DNA, which, up to now a loss of sequence has not 

been observed, but that is fully detectable, both in episomal form and in integrated virus 

cellular genome, corresponds precisely to the regions URR, E6 and E7. 
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Fig. 7[87,90] Example of the HPV16 integration in the cellular genome with the interruption of the E2 sequence 

in HPV. Further potential breakpoints areas on the viral genome emphasized in the red region URR-E6 / E7 are 

apparently not subject to this phenomenon (modified from zur Hausen 2002 and Bo Xu, 2013). 

 

 

Considering what has been presented, HPV is a complex target from a diagnostic point 

of view. In fact, the infection may be observed in different stages: 

 

 productive with an elevated number of complete viral genomes 

 latent or persistent with controlled production of complete viral genomes  

 abortive with integrated and incomplete genomes  

 

Epidemiological data shows that majority of HPV infection heal due to host cell-

mediated immune response[91] and only 10% often persist and can potentially cause 

intraepithelial neoplasia to a various degree, which at a lower percentage may progress further 

to an invasive carcinoma[92-94]. This progression is due to many factors, among which 

significantly emerges the state of HPV HR virus integration[95-97] in the cellular genome. 

However it is not yet clear the influence of this integration in the progression of neoplastic 
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cell as it would seem a necessary element but not sufficient. In fact, several studies clarify the 

integrated forms pervasiveness in more advanced lesions[86,98-99], others report the 

concomitant presence of integrated and episomal forms already in CIN1[100-101], however 

with an increase of transcripts integrated forms higher in carcinomas than in CIN1[96] and of 

a certain intensity for high-risk oncogenic genotypes than others (Tab. 2)[97]. Furthermore, it 

is still controversial with regards to the diagnostic and prognostic role of high level E6/E7 

transcripts from integrated and episomal forms, given the increase has also been studied in 

women with integrated forms of HPV16, HPV18, HPV52 and HPV58, even in the absence of 

a pathological or normal cervix[102]. 

 
 

 Normal CIN1 CIN2 CIN3 Carcinoma 

HPV16 0 0 6% 19% 55% 

HPV18 0 0 0 0 92% 

HPV31 0 0 0 10% 14% 

HPV33 0 0 0 0 37% 

HPV45 0 0 3% 60% 83% 

Tab. 2[97] Prevalence transcribed E6 / E7 from HPV integrated forms (modified from Vinokurova 2008) 

 

 

It is obvious that a diagnostic system in line with the state of the art should be able to 

detect the virus even when the genomes are relatively few and especially not complete and the 

poor viral progeny or non-existent as in the case of abortive infections, since this is a 

condition that can meet these incurred infection with HPV HR clearance not naturally 

resolved by human host . 

 

1.6 Molecular diagnosis of HPV infection 

The release into the American/Asian market, rather than European of the In Vitro 

Diagnostic Medical Devices (IVDs) for the molecular diagnosis of HPV infections, is 

regulated by precise rules established through Control Authorities and sanctioned by a 

declaration of compliance with these standards, that is present in the documents 

accompanying the kit/product using two wording: Food and Drug Administration approval 

(FDA approval) and Conformité Européenne (CE). 
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The IVD applied to diagnostics of cervical cancer can be divided into 4 groups on the 

basis of the researched molecular marker, infection index, and molecular biology techniques 

used (Tab. 3)[23]. The first two groups include direct tests to highlight whether the viral 

nucleic acids, genomic DNA or virus transcripts (mRNA), while the other two groups 

comprise of indirect tests that detect the presence of HR virus for the effects it has on some 

metabolic cellular pathways related to the progression of CIN to carcinoma. 

 

The GROUP 1 tests have a target specific viral genome sequence that are captured 

through two general methods: direct hybridization with probes or by target gene amplification 

(PCR) using appropriate complementary sequences called primers; GROUP 2 tests highlight 

E6/E7 transcript genes using labeled probes after reverse transcription of messenger RNA 

(mRNA) into the complementary DNA (cDNA) and their cyclic amplification (TMA, 

NASBA); GROUP 3 reveal some cellular antigens by immunohistochemistry and GROUP 4 

some gene repeated sequences indicated by various studies as predictive markers of neoplastic 

transformation and progression by in situ hybridization (FISH). 

 

Each group of IVDs has their advantages but also the critical issues that limit its use at 

different diagnostic levels: in cervical cancer screening, in ASCUS triage, in the follow up of 

patients treated etc. 

 

GROUP 1 tests contemplate direct hybridization in liquid phase between a pool of full 

length complementary RNA probes to viral DNA. They are cheap, easy to use and 

theoretically detect the virus even in the case of incomplete genomes but actually do not 

typify the genotype, however they are not able to discriminate between single and multiple 

infections, nor estimate reliably the viral load that is calculated in a semiquantitative way by a 

chemiluminescence intensity gradient uncorrelated with the increase in the lesions severity.  

 

The other GROUP 1 tests instead amplify the viral DNA using primers more or less 

consensus depending on the PCR protocols, they are generally more expensive than direct 

hybridization, require dedicated areas for the dangerous environmental contamination and in 

general are directed on individual regions of the HPV genome, especially on L1 region. This 

has the advantage of being a highly conserved sequence of the HPV genome, on this base it is 

possible to assign the genotype. So normally they are test capable of highlighting multiple 

infections by different types. However, much like the other areas of the HPV genome, the 
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region L1 may be lost due to integration[90]. It follows, on average, a high specificity test 

which can detect from 13 HR HPV to 37 HPV (or almost all types in anogenital tropism) in 

front of a certain proportion of theoretical false negatives due to the integrated genomes 

potentially undetectable for types HR persistent. 

 

GROUP 2 instead belong to those kits that employ methodologies in Real Time, so in a 

semiquantitative way, amplify and detect using fluorophores marked probes and post reverse 

transcription in cDNA, mRNA from the E6/E7 viral oncogenes, whose levels are considered 

high prognostic index whether arising from integrated forms[97-102]. Although it is an 

expensive test that has the advantage of being in total automation even if in many cases do 

not define the infecting genotype but only positivity for HR HPV transcripts and are usually 

used as a second level test, namely in patients with a prior diagnosis and/or in follow-up post 

treatment. 

 

GROUP 3 includes tests can immunoquantify some cellular antigens on histological 

samples using specific antibody indirect markers of cellular proliferation. They are the tests 

that show concomitant presence of p16INK4a pathological cell protein overexpressed under the 

effect of the E7 HPV protein in samples containing only integrated forms of virus[103-104] 

and Ki-67 nuclear protein, only observable in cells in active proliferation[105-106].  
 

In fact, under normal conditions there is a concomitant expression of p16INK4a and Ki 67 

within a single cell; the contemporary expression of the two markers is indicative of the 

deregulation of cell cycle control and resulting state of cellular transformation[107]. 

 

Lastly GROUP 4 belong to the tests which thanks to the Fluorescence In Situ 

Hybridization (FISH) technique, are able to identify region amplification mapping the human 

telomerase gene in locus 26 of the long arm in chromosome 3 (3q26) present only in 

transformed cells and not in normal tissue[108-109]. The physiological role of the telomerase 

is to repair chromosome ends that with cellular aging tend to shorten, it follows that a number 

of copies equal to or greater than 5 (trisomies are para-physiological exhibits and 

quadrisomies could be due to the cell replication phase) represents a significant marker of 

CIN progression to carcinoma. Indeed telomerase hyperactivity that causes duplication tends 

to immortalize the infected cell, with an elevated progression from CIN to cancer and with 

reduced possibility of lesion spontaneous regression.[110-112] 
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 Marker Target Technology Test HPV Typing 

Full 

genome 

Signal  

amplification  

Assay 

digene HC2 HPV DNA Test 

 

Cervista®HPV HR 

NO 

 

NO 

 

GROUP 1 HPV DNA 

 

 

L1 

 

 

 

 

 

 

 

 

E1 

 

 

L1+E6/E7 

 

Target  

amplification 

 assay 

AMPLICOR®HPV 

 

Cobas4800®HPV 

 

Abbott RealTime High-Risk HPV 

 

LINEAR ARRAY® HPV 

 

CLART®HPV2 

 

 

Papillocheck® 

 

 

ProDect® CHIP HPV TYPING 

NO 

 

partial (HPV16 & HPV18) 

 

partial (HPV16 & HPV18) 

 

YES 

 

YES 

 

 

YES 

 

 

YES 

GROUP 2 HPV RNA E6/E7 

Target 

amplification 

assay 

Aptima ®HPV Assay 

 

PreTect HPV-Proofer 

NO 

 

YES 

GROUP 3 Protein p16/Ki-67 
   Immunostain CINtec® Plus - 

GROUP 4 
chromosomal 

aneuploidies 
3q26 

       (FISH) oncoFISCH® - 

Tab. 3[23] Some of the IVD for screening cervical cancer and the diagnosis of HPV infection (partly taken from 

Schiffman 2011) 
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2. Scope of the research 

The overall objective of the research was to investigate the possibility of improving an 

IVD, the ProDect® Chip HPV Typing[113], once the diagnosis of Human Papillomavirus 

infection, expanding, the number of genotypes potentially detectable and updating it, 

comparing them to the latest knowledge about the molecular biology and persistence 

mechanisms due to some high-risk oncogenic genotypes. Both aspects are in fact substantial 

for a kit that will present itself as a screening test for cervical cancer in the near future with 

regards to the prophylactic strategies towards some genotypes carried out worldwide through 

systemic vaccination programs, and the need to verify the real oncological risk of some HPV 

types, so far, defined as medium or low risk, but within particular geographical, social or 

health conditions may express a higher oncogenicity. 

 

The molecular platform in question involves three phases: 1) total nucleic acid (DNA) 

extraction from the cervical-vaginal sample, 2) gene amplification by Multiplex polymerase 

chain reaction (PCR) with three pairs of biotinylated primers sequences directed on human β-

globin gene, L1 region and the HPV E6/E7 region, respectively [114], 3) detection of 

amplicons obtained, labeled with biotin, through reverse hybridization with specific probes. In 

fact in the appropriate conditions the amplifications are denaturing and hybridized with 

complementary probes adhering to a plastic support said biochip or simply chip; follows a 

colorimetric reaction, streptavidin-mediated, which leads to the formation of a brown 

precipitate at the reactive probe. Each positivity creates different designs on the biochip 

(patterns) that are captured by a reader, the ProDect® BCS Biochip Reader, analyzed and 

interpreted by a dedicated software that explicit the diagnostic implications related to the 

different results obtained, in a report [115-117]. 

 

Assuming that the bcs Biotech Srl (www.biocs.it) platform IVD ProDect® CHIP HPV 

TYPING[113] employs a biochip type 5x5, or with 25 positions available for the same 

number of probes, the aim of the research was to design, develop and validate a biochip type 

6x6, with 36 positions available for additional gene targets, hereinafter referred to as HPV 

CHIP PLUS, all details will be described in the results section. 

 

For this project it was necessary to deepen the basic knowledge of HPV molecular diagnostics 

and implement a series of technological innovations and procedures for the new biochip 
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preparation. An increased number of genotypes detected, genomic regions characterizable 

with equal genotypes at high oncogenic risk, and the cross reactions between similar gene 

target have been disposed of, minimizing the nonspecific, without reducing the new platform 

sensitivity. Sensitivity and specificity are, in fact, two reverse concepts and in a multi target 

system must strike a point of compromise, especially if the platform must have a high 

negative predictive value (NPV), which must be attributed, in a sample, with reasonable 

certainty negativity for HPV infection. 

 

The research was conducted in accordance to the: Directive 98/79/CE that indicates the 

criteria of the Conformité Européenne (CE Mark) for in Vitro Diagnostic Medical Devices 

(IVD)[118], UNI EN ISO 9001:2008 relating to quality management systems, UNI CEI EN 

ISO 13485:2012 relating to research and development of medical devices and UNI EN ISO 

14971: 2012, concerning the application of management risk to medical devices. 

 

The research validation step was designed, even though with reduced numbers, inspired 

by the European Commission Decision of 27 November 2009 amending Decision 

2002/364/CE on Common Technical Specifications (CTS) for in vitro diagnostic medical 

devices in which establishes the need to test, in parallel with the test already CE Mark, any 

new kit contemplating a number of negative samples, positive for the sought target and/or 

potential interfering with it, such as the commensal flora or other pathogens due to infection. 

 

The study was divided into three main phases in order to achieve the specific objectives 

and results reported below more extensively (Tab. 4). 
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Phase Specific Objective Activity Result 

I 

Ideation 6x6 chip 

with 36 positions 

available for the 

deposition of as 

many informative 

probes 

complementary to 

HPV sequences and 

human 

 

Design/verify HPV sequence  

 

System calibration for the 

spotting chip and acquisition 

patterns 

 

Probe calibration [ ] / Positive 

synthetic controls (PC) 

 

Verify and test chip 6x6 batches  

 

Check complete platform of cell 

lines 

 

Biochip 6x6 prototype, 36 dots  

 

Define standard spotting conditions 

/ reading software for 6X6 

 

 

Chip performance with PC 

 

 

Pre-tested batches to run search 

 

Performance platform complete 

with cell lines 

 

II 

Cloning HPV 

genomic sequences 

from clinical isolates 

(L1 - E6 / E7), 

acquisition WHO 

Standard 

 

Selection clinical samples HPV+ 

Cloning target sequences 

Check inserts 

 

Performance verification testing 

assays of cloned products from 

scratch and WHO standard 

 

18 cloned HPV: 

13 cloned HPV L1 with E6 / E7 

 5 cloned HPV L1 

 

Performance platform complete in 

detecting multiple sequences of 

cloned HPV and WHO standard 

 

III 

 

Preliminary 

validation of the 

diagnostic 

capabilities Test 

 

 

171 samples from Benin (Africa) 

 

Preliminary data regarding the 

Diagnostic Performance 

Tab. 4 - Articulation schematic research stages, objectives, activities and results 
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3. Materials and Methods 

3.1 Biochip preparation 

On a white polystyrene support, appropriately chemically modified (biochip), width the 

dimensions of a 96 well microplate, filed with aqueous oligonucleotide sequence solutions 

between 30-40 nucleotides (probes) in length, according to a precise pattern. Microdrops of 

these solutions, with sized and calibrated volumes, were deposited by means of a spotting 

machine (SCIENION AG Volmerstraße 7b D-12489 Berlin, Germany) equipped with a 

piezoelectric system[119], or an upright micro needle immersed in an electromagnetic field 

which reduces the phenomena of surface tension limiting the diffusion of each drop outside of 

the squares contours, constituting an ideal grid deposition, bounded in red (Fig. 10A-B), in 

which the black dots represent download areas, 36 in the present project. 

 

 
Fig. 8A Droplet from the needle 

 
Fig. 8B Grid positions on the chip probes 

                          

        

All HPV probes, covalently bound to the well, are designed to be complementary to 

specific L1 region sequences of the most prevalent high, medium and low HPV oncogenic 

risk for a total of 31 genotypes characterizable, and E6/E7 region sequences of the 3 major 

high and medium HPV oncogenic risk groups. On the two opposite grid corners, a probe 

placed in duplicate, reveals an internal sequence of the human β-globin gene, which acts as a 

process control region for the total DNA extraction of the original sample represented by the 

cervical-vaginal spatula. At the other two opposite corners, another probe called 

Hybridization Control, was designed to have no homology with human origin or viral 

infection sequences, and serves as a control for the physical-chemical conditions of the chip 

colorimetric assay detection. 
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3.2 Essay detection biochip 

The optimal concentration [ ] for each probe has been defined on the basis of the 

specific signal obtained by hybridizing, under appropriate stringency conditions, scalar 

concentrations of complementary nucleotide sequences to the various probes having a biotin 

molecule in the 5th position, referred to as the Positive Controls (PC), so as to detect the 

hybrid Probe: PC using traditional colorimetric methods, as shown schematically in Fig. 9. 

 

Briefly, 20 µl of a Tris EDTA solution at pH8 (TE pH8) of PC and 100µl of 

hybridization buffer are incubated for 1 hour at controlled temperature and shaking on the 

chip. After washing, followed by the addition of a Streptavidin Alkaline Phosphatase 

conjugated (AP) solution (30 'incubation at room temperature), which, after further washing,  

facilitation of the colorimetric reaction required for detection due to the addition of 5-bromo, 

4-chloro, 3-indolylphosphate (BCIP)/Nitro-Blue Tetrazolium (NBT) enzyme substrate for 15 

minutes at room temperature and obscured from light. The complementary sequence presence 

to the probe (PC) or the target in the original sample prior target amplification by Multiplex  

PCR is shown by the formation of a brown color precipitate (dot) corresponding to the  

relative specific probe. 

 

 

Fig. 9. Colormetric revelation, pattern analysis via ProDect® BCS Biochip Reader 

Hybridization 
PC

Colorimetric
revelation

Data analysis

Specific probes 
for the different 
targets

Chip preparation 
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3.3 Synthesis of oligonucleotides 

All oligonucleotide sequences used were designed based on the sequences deposited at 

the National Institute of Health (NIH Nucleotide GeneBank: 

http://www.ncbi.nlm.nih.gov/entrez/). Sequences with a > 90% homology degree, compared 

to all sequences reported for that region and in particularly for that HPV genotype in the 

database, have been synthesized by AB Applied Biosystems 3400 DNA Synthesizer 

multichannel system on columns to 1µM, desalted overnight in a 30% ammonium solution, 

and then purified by HPLC (Gilson 360) obtaining solutions with purity degrees of OD 

260:280 = 1.8-2.0 and an early one [ ] of 100 ng/µl. For the PC sequences were employed 

similar synthesis procedures, taking care to place them in 5th position, as a modified base, a 

biotin molecule. Starting from the stock to 100 ng/µl for Positive Controls were prepared 

scalar solutions of each one (2.5 ng/µl, 0.5 ng/µl, 0.125 ng/µl, 0.05 ng/µl, 0.0115 ng/µl, 

0.00125 ng/µl, 0.000125 ng/µl) which then were evaluated individually on all probes adhering 

to the biochip in order to verify the specificity and sensitivity of each probe and the set of 

probes deposited on the chip. After colorimetric detection on each chip was evident the 

specific signal expected and have been shown any signs of cross-hybridization with additional 

probes on the chip. For each probe was defined both the PC minimum detectable 

concentration and the PC maximum concentration which does not determine the occurrence 

of non-specific signals. 

 

3.4 Biochip reading system 

For the acquisition and analysis of the results or patterns that are formed on the chip as a 

result of the precipitation of the dye in correspondence to the reactive probes was an 

integrated platform ProDect® BCS Biochip Reader (bcs Biotech Srl). It is formed by a sliding 

carriage and two optical modules that moves on Cartesian axes XY, formed by reflecting lens 

and focusing, matched to the same number of the linear Charge Couple Device (CCD), that 

are independent and symmetrical. Through a process of controlled scanning by a Central 

Processing Unit (CPU), acquires the images in parallel and high resolution[116]. These are 

transmitted from an interface such as a USB port to a computer, where a software will 

reassemble them into a single image which is processed and analyzed with respect to 

predefined patterns of interpretation. 
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3.5 Molecular diagnosis 

3.5.1 Samples 

Amplified DNA extracted from cervical-vaginal spatulas were tested on the prototype 

biochip developed. All samples were exposed to previous molecular screenings for the 

detection of HPV with various CE Marked tests and/or sequencing for confirmation of the 

genotype, as well as cytological screening by PAP TEST. The degree of dysplasia was 

attributed according to the Bethesda classification 2001[120], namely: “atypical squamous 

cells” (ASC) subdivided in 1) ASC of “undetermined significance” (ASC-US), e 2) “cannot 

exclude high-grade squamous intraepithelial lesion” (ASC-H); “low-grade squamous 

intraepithelial lesion” (LSIL); “high-grade squamous intraepithelial lesion” (HSIL); 

“squamous cell carcinoma” (SCC); adenocarcinoma in situ (AIS); “atypical glandular cells” 

(AGC), the latter further classified into atypical "not otherwise specified" (AGC-NOS AGC-

NOS source endocervical, endometrial, or glandular) or probably neoplastic (AGC favor 

neoplastic origin endocervical or glandular). The amplifications were acquired by PCR 

multiplex with the ProDect® Chip HPV Typing kit (bcs Biotech Srl). In short, each reaction 

was performed in duplicate on a volume of 50 μl: 5 μl of the DNA extracted with the 

ProDect® HPV Extraction kit and 45 µl mixture containing KCl, Tris-HCl, MgCl2, Taq DNA 

polymerase, dNTPs, and three pairs of biotinylated primers. GP5+/GP6+ pair of primers  

amplified fragments of the 143 bp from the L1 region of HPV, the 1M/2R pairs of the E5/E7 

region from the HPV HR (whose target depending on the genotype vary from 233-268 bp) 

and the third pair of primers amplifying a sequence of 178 bp of the gene of the human β-

globin. PCR applied protocol, reagents and amplified storage conditions follow kit 

recommendations. Only one aliquot, after PCR, was used for the diagnosis on the 5x5 chip 

contained in the ProDect® Chip HPV Typing kit, the other one was stored at a -20°C 

controlled temperature to reduce degradation/fragmentation risk and it was used subsequently 

for the preliminary validation of 6x6 biochip in development, hereinafter referred to CHIP 

PLUS. This new platform used to reanalyzed 171 amplified obtained from African origin 

samples, already collected and studied in an International cooperation project funded by the 

Autonomous Region of Sardinia. The project was entitled Screening of human papilloma 

virus (HPV), and prevention of cervical cancer in women from city of Cotonou and Benin 

coordinated by the Department of Cytomorphology at the University of Cagliari in which bcs 

Biotech Srl participated as a partner [113]. All histological, cytological and molecular 

preliminary samples data, used in this research were received and processed by the 
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Cytomorphology Department of the University of Cagliari. The study protocol was approved 

by the local ethics committee of Benin and informed consent has been given to all parties in 

accordance with the World Medical Association, Declaration of Helsinki.  

 

In order to confirm, when possible, the results obtained with the ProDect® Chip HPV 

Typing [113], amplification products were also sequenced using the Big Dye Terminator 3.1 

kit (Applied Biosystems). The sequences were read on the ABI PRISM 3100-Avant 

sequencer (Applied Biosystems). 

 

 

3.5.2 ProDect® Chip HPV Typing (bcs Biotech S.r.l.) 

The data obtained by the new biochip were compared with those obtained using the 

ProDect® Chip HPV Typing Kit[113], IVD analogous method, which detects, besides the 

human β-globin gene as a control, 19 genotypes on the basis of the sequence of HPV L1 

(HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, 6/11, 42, 43, 44) and some HPV at 

high-medium oncogenic risk[23] on the E6/E7 region, through a probes pool laid in a single 

dot. The different targets are amplified by Multiplex PCR. 5μl of total DNA extracted from 

biological samples are added to 45 μl of ready to use mix (1X PCR buffer set, 0.2 mM 

dNTP's, 2 mM MgCl2, and 2.5 U of Taq polymerase) also containing three pairs of primers: 

one complementary to the L1 region, one to E6/E7 region of high-medium oncogenic risk 

types and the last one to a human β-globin gene. Each amplification was also assessed by 

electrophoresis (80V - 48mA) on 2% agarose gel (Agarose, MP Biomedicals, Inc.) obtaining 

for each PCR reaction three different amplicons: 143 bp for the L1 region, 178 bp for the β-

globin and between 233-268 bp for the high-medium oncogenic risk types of E6/E7 region. 

At the end of the PCR, 20 μl of the amplified denatured are then dispensed in each well 

containing 100 μl of a Hybridization Buffer (80 μl) and Hybridization Control (20 μl)  

solution. Followed by 1 hour at 45°C in a shaking controlled incubation, then 3 biochip 

washes with 100 μl of Wash Buffer, at the end of which a solution is dispensed consisting of 

100 μl of Blocking Buffer 1X and 0.25 ml of streptavidin conjugated with an alkaline 

phosphatase (Strep-AP) for 30 minutes at room temperature. After another 3 washes 

proceeded with the addition of 100 μl of Revelation Buffer comprising chromogenic substrate 

(BCIP/NBT). Once an incubation for 15 minute at room temperature and protected from light, 

and a final wash, the test result is displayed on the well bottom which constitutes the biochip. 
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Indeed, the presence of any target sequence of the three primers pairs in the starting sample, is 

shown by the formation of a brown color dot in relation with the probe which has hybridized 

the complementary sequence to one or more amplicons between the three, which possibly 

formed during Multiplex PCR from each DNA. 

 

3.5.3 Digene® HC2 HPV DNA Test (Qiagen) 

The samples included in this study were also evaluated using Digene® HC2 HPV Test 

(Qiagen)[121-124] as the reference test, considered the gold standard for HPV infection 

primary screening. It is a signal amplification method in a liquid phase which starts to release 

total DNA contained in the biological sample by alkaline lysis and makes it suitable for 

hybridization with RNA complementary pool probes of 13 HR HPV types [pool HR: 16, 18, 

31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68] and 5 LR HPV types (LR pool: 6, 11, 42, 43 and 

44). RNA/DNA hybrid resulting are captured on the wells surface of a microtiter plate coated 

with specific hybrids antibodies. Follows disclosure with the same antibodies conjugated with 

alkaline phosphatase. Each antibody binds various molecules of alkaline phosphatase and 

more conjugated antibodies bind to each captured hybrid. The enzyme substrate addition 

mediate a chemiluminescent reaction; radiation is quantified in Relative Light Units (RLU). 

The emitted radiation intensity indicates DNA target presence or absence in the sample 

compared to a threshold value (cut off) related to suitable calibrators supplied with the test: to 

cut off  ≤1 sample is negative, to cut off >1 is positive for HPV DNA sequences. The test, 

however, lacks a compliance audit of sampling thus only owns calibrators feature test based 

to HPV positive controls with respect to which is assigned positivity/negativity signal, while 

no calibrator investigates the proper specimen collection in terms of quality and quantity. It is 

an analysis with high reproducibility even if the signal intensity that is obtained cannot be 

correlated with the viral load or the cytological lesion severity. The test is also not 

distinguishing between the different HPV genotypes, except between groups of oncogenic 

risk, cannot establish any co-infections between different types within the same group. 

 

3.6 Cell Lines  

Three cell lines[125-129] were purchased from ATCC/LGC catalog to verify the 

diagnostic capabilities of the complete platform, rather from the extraction phase: C-33 A 

(ATCC® CRM-HTB-31™), HeLa (ATCC® CRM-CCL-2™), Ca Ski (ATCC® CRL-1550™). Each line 

was propagated following the indication in the accompanying form provided. Scalar dilutions 
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with a 1:10 ratio of the various lines were prepared in a cytological transport medium (as 

ThinPrep®) in order to obtain, in principle, 106, 105, 104, 103, 102 and 10-1 cells/ml. From each 

dilution, and for each line, were extracted total DNAs, according to the ProDect® HPV 

Extraction kit (bcs Biotech Srl) protocol that exploits the osmotic cells lysis, protein digestion 

with Proteinase K and total DNA alcoholic precipitation, or according to the purification and 

elution column Qiamp DNA Mini Kit (QIAGEN) protocol. The extracted DNA was 

submitted to the diagnostic procedure listed in the ProDect® CHIP HPV TYPING (bcs 

Biotech Srl) kit protocol. All these lines were derived from uterine cervix carcinomas, 

however C33A cells are a line obtained and stabilized from a uterine cervix carcinoma 

negative for HPV DNA/RNA, Ca Ski contains about 600 copies of HPV-16 genomes per cell 

and Hela about 50 copies of HPV-18 genomes per cell. Using these numbers, conventionally, 

50 ng of DNA (about 1.5104 cell) extracted from Ca Ski and Hela cells contain circa 9 x 106 

copies of HPV16 and 7.5 x 105 copies of HPV18, respectively. It shows that the dilutions 

tested theoretically contains from 6108 to 600 total copies of HPV16 and from 7.5105 to 50 

total copies of HPV18, respectively. 

 

3.7 Cloning DNA HPV types with high and low oncogenic risk 

All clones, nominated BCS clones, were prepared in the bcs Biotech Srl confined area, 

authorized by the Ministry of Health for the production of Genetically Modified 

Microrganism (MOGM). Particularly in the context of this research, plasmid vectors were 

inserted into bacterial cultures of E.coli, containing a viral DNA amplified insert[130]. 5 μl of 

extracted DNA from positive samples for individual infections by ProDect® CHIP HPV 

TYPING kit were amplified with primers of the specific infected genotype. Primer pairs were 

designed with reference to the genotype sequences deposited at the National Institute of 

Health (NIH Nucleotide GeneBank: http://www.ncbi.nlm.nih.gov/entrez/), in order to obtain 

amplification products, and then inserts, where possible, > 3.0 KB for high-medium risk types 

which, clockwise, included from ORF L to ORF E6/E7 or for some low-risk types a > 300 bp 

region internal to the L1 sequence. Each amplification reaction contained: 0.5 μM of each 

primer, 1X PCR buffer set, 0.2 mM of dNTPs, 2 mM of MgCl2, and 2.5 U of Taq 

polymerase. Each amplified was assessed by electrophoresis (80 V-48 mA) on 2% agarose gel 

(Agarose, MP Biomedicals, Inc.). 1 μl of the amplification product was then cloned into a 

pCR2.1 plasmid vector of E.coli by TA Cloning® kit (Invitrogen Life Technologies). The 

Invitrogen technology relies on the ability of T4 DNA Ligase to mediate ligation between an 
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amplification product with cohesive ends (blunt end) and a pCR2.1 vector, with 

complementary and cohesive sites creating a larger insertable plasmid in competent E.coli 

cells. Following seeding in agar plates containing a selective differential medium, then 

bacterial colonies containing the plasmid with the desired insert, may be isolated and appear 

in translucent white compared to those containing only the vector without the amplified insert 

(Fig. 10). This screening method is called white/blue screening. The color difference is due to 

the gene LacZα in the recombinant colonies, present in the pCR2.1 vector, the interruption 

due to the amplified sequence insertion are no longer able to metabolize the galactose analog 

of X-Gal. 

 

 

 

 

 

 

 

 

 

Fig. 10. Colonies including or excluding the plasmid with the insert according to the white / blue screening 

method 

 

For the plasmid DNA purification was used the GenEluteTM HP Plasmid Miniprep Kit 

(Sigma-Aldrich). Each clone was quantified by spectrophotometer (Thermo Electron 

Corporation - Biomate3) after dilution 1: 400 (2.5 μl extract plasmid + 997.5 μl of TE). No. of 

copies/ µl of plasmid preparations has been calculated as follows: 

 

 

 

where PMi = is the number of bp in the insert 

     PMp = is the number of plasmide bp (pCR2.1 è di 3912 bp) 
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This formula was derived by mathematical treatment by the following formula: 

 

 

 

where: 

g/µl of extracted DNA = OD x f.d. x 50 x 10-9 

PM = (PMi + PMp)x2x330*  

NA° = 6 x 1023  

*weight takes into account that DNA is double-stranded and assumes the weight of a nucleotide equal to 330 

daltons 

° Avogadro's number = number of molecules contained in a mole 

 

The equivalent copies are calculable by multiplying the number of copies/μl *ml  

(1000) but in the case the clones, with the exception of the WHO clones, it was preferred to 

express the concentration [ ] in copies/μl. The isolated clones were evaluated by Restriction 

Endonuclease EcoRI and PstI (Roche Diagnostics) on 2% agarose gels and gene sequencing. 

For each clone a restriction map were designed using the reference sequences and Webcutter 

2.0 software. Once the expected sequence accuracy confirmed, a maxiprep or bacterial culture 

expansion and plasmid DNA extraction and purification containing at least 1010 copies/μl of 

target sequence for each clone was prepared. Besides the prepared clone by bcs Biotech, the 

HPV CHIP PLUS developed, was also evaluated using the Standard cloned HPV16 and 

HPV18 of the World Health Organization (WHO) prepared according to the guidelines given 

in the WHO Human Papillomavirus laboratory manual ed. 2009, arranged and distributed by 

the National Institute for Biological Standards and Control (NCBI) http://www.nibsc.org/. 

These standards, called henceforth WHO16 and WHO18 were diluted and manipulated as 

described in the accompanying form[131-132]. The ProDect® CHIP HPV TYPING amplified, 

under the External Quality Audits (EQA) of WHO HPV LabNet Global Reference Laboratory 

in 2011 distributed by Equalis AB[133] program were evaluated on CHIP HPV PLUS[134]. 
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4. Results 

Over three years, this research led to the development of a diagnostic system for 

innovative research for broad spectrum and molecular characterization of the main Human 

Papillomavirus infecting the anogenital area, potential etiologic agents alone, or in co-

infection among them, of preneoplastic and neoplastic lesions. In summary, the path in 

several stages brought: 

 

 design of the new chip, hereinafter referred to HPV CHIP PLUS, to be used in 

combination with the amplification mix of the ProDect® CHIP HPV TYPING[113], 

kit already CE marked, and promoted by bcs Biotech Srl for cervical cancer screening. 

This system currently types only 19 HPV genotypes and generally reveals the 

presence of E6/E7 sequences related to the virus at high-medium oncogenic risk (HR) 

represented by a single dot on the chip for this region. 

 

 the creation of a pre-series batches HPV CHIP PLUS prototype 

 

 verification of diagnostic capabilities using synthetic DNA targets (PC), cloned DNA, 

DNA extracted from immortalized cell lines and DNA amplification by cytology 

samples from women with different grading of cervical dysplasia, infected or not by 

HPV. 

 

Below description of the individual results and the evidence to support them. 

 

4.1 New HPV CHIP PLUS  

Specific genotype probes with HPV high anogenital tropism and for the major subtypes 

have been designed in order to realize a new prototype chip capable to typify on the basis of 

the L1 region sequence no.21 in high-medium oncogenic risk genotypes and no.10 low-risk 

types, alone or in co-infection between them, (HPV 6, HPV 11, HPV 16, HPV 18, HPV 26, 

HPV 30/40, HPV 31, HPV 33, HPV 35, HPV 39, HPV 42, HPV 43, HPV 44, HPV 45, HPV 

51, HPV 52, HPV 53, HPV 56, HPV 58, HPV 59, HPV 66, HPV 67, HPV 68, HPV 70/72, 

HPV 73, HPV 81, HPV 82, HPV61/CP6108) and at the same time to monitor the presence of 

sequences in the HPV E6/E7 region (always preserved even in the case of viral integration) of 

high-medium oncogenic risk types being able to discriminate them in three main groups: 
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E6/E7-HPV18/45, E6/E7- HPV33/52/58/56/66/67/82/59, E6/E7-HPV16/35/31. Three dots on 

the chip, in fact, represents a consensus of probes with different mixtures and/or 

specifications capable of reacting with the amplified E6/E7 region of the main HPV high-

medium oncogenic risk types involved in cervical carcinoma. The presence of a positivity in 

the chip for one or more of these dots, in the absence of a specific typing with direct probes 

on the L1 virus region highlight, anyway, the positivity of the sample for high-medium risk 

HPV and allows increased levels of attention on cytologic evaluation or patient follow-up. 

 

The complete prototype test, named ProDect® CHIP HPV TYPING PLUS, includes the 

necessary reagents to amplify and reveal via reverse hybridization for each sample: 

 

1. L1 region of 31 DNA HPV (typing region), 

 

2. E6/E7 region main high-medium oncogenic risk types (which highlights the presence 

even in the absence of a L1 region signal, guiding the user to one or more different risk 

groups) 

 

3. Human β-globin, essential in order to have complete control of the entire process 

(monitoring of any extractions performed in a non-suitable or substances inhibiting PCR). 

It is calibrated to obtain evident signals only in the case of clinical samples (levy) whit 

sufficient DNA for the virus detection (productive, latent or abortive infection). The 

amplification threshold/detection of human DNA corresponding to at least 105-106 

GenEqu/ml. 

 

The interpretation of the chip can be performed by naked eye (the dot are colored and 

their position is clear) or with by ProDect®BCS Biochip Reader whose software has been 

suitably adapted in the context of the present research to read a 6x6 pattern. The system is 

designed to establish, automatically and objectively, if the result that appears on the chip is 

valid or invalid based on the probes or pool positions as they were placed in the ideal 6x6 grid 

(Fig. 11). 
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Fig. 11 – The new CHIP HPV PLUS scheme: Probe positions with respects to their genetic targets 

 

A “VALID RESULT " can be due to different situations: 

 

1. Negative sample in the presence of a withdrawal/DNA conforms to the analysis, the 

chip has only 4 signals (dot) at the four corners: N° 2 dot for -globin gene, which acts 

as a control sequence for the monitoring of extraction/amplification and N° 2 dot 

relating to the hybridization control for the detection step monitoring (Fig. 12A). 

 

 

 

 

 

Fig. 12A – Negative sample 

 

2. Positive Sample when, in the presence of a levy/compliant DNA, on the chip another 

dot appears, over 4 concerning levy/DNA compliance, which indicate the presence of 

HPV DNA in the starting sample, be characterized on the basis of the L1 and/or E6/E7 

sequences. These dot can be single or multiple depending on the type of infection and 

from the different viral genotypes which support it (Fig. 12B). 
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Fig. 12B – Positive sample 

3. Positive Sample when, in the presence of a not conform specimen/DNA, chip presents 

2 hybridization control dot, one or more signals relating to sequences/HPV types, but 

not any dot related to the -globin (Fig. 12C). In this case the sample is positive even 

if the sample is incongruous (<105 GenEqu/ml), having evidently very high viral load. 

 

 

 

 

Fig. 12C - Positive sample 

In conditions of a valid result and sample positivity for HPV are expected similar 

pattern to those reported below, which schematize possible single or multiple infections, Fig. 

13. 

 

Note that the developed prototype chip, due to the probes mixture designed and placed 

in 3 chip different positions having as target the HR HPV E6/E7 region, is able to detect these 

genotypes presence in different conditions, or when: 

 

1) the ratio between HR HPV L1: E6/E7 copies number is much greater than 1, only L1 

region, with its virus typing, can be amplified and detected. 

 

2) is close to 1, it is possible to amplify and detect of both L1 region and E6/E7 region of 

the same virus or of different genotypes. 

 

3) the ratio between HR HPV L1: E6/E7 copies number is much less than 1, it has 

amplification and detection of the single E6/E7 region with the corresponding 

classification of risk group (Group HPV18/45, Group 16/35/31, Group 

HPV33/52/58/56/66/67/81/59) on which basis three E6/E7 probe groups react, 
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4) in the case of co-infection between LR HPV, which generally show productive benign 

infection always typable on the L1 region as HPV6 or HPV11, and HR HPV persistent 

or in already integrated form viruses (see examples in Fig. 13). 

 

The "INVALID result" can occur in different situations listed below. 

Lack of one or more controls. If the software is not able to detect the dots of the four 

corner related to the controls (2 Hybridization Control + 2 for -globin) it considers the 

outcome and the diagnostic test as "invalid". Positivity for only one point of each control 

affects the compliance of the test. The only exception might be made if the test presents 2 

hybridization control signals, but not the -globin ones, and one or more signals relating to 

sequences/HPV types. In this case the sample is certainly positive even if it is incongruous 

(<105GenEqu/ml) as the viral load is obviously high elevated (see example Fig. 12C). 

 

Negative Control Signal. A precipitate at the relative negative control dot shows an 

incorrect hybridization. It follows that a signal in this position must not be present in any type 

of result. If operator or reader displays its presence, result will be "invalid". The test is 

considered INVALID even in the case of positivity for HPV sequences (Fig. 12D). 

 

Signal attributable to identical HPV in all analyzed chips. The test is to be considered 

INVALID even in the case of the same attributable signal as the HPV probe is obvious in all 

samples, processed in parallel, in the same run. In this case the carry-over possibility exists or 

the dragging of the amplified HPV from one chip to another by the operator during the test 

execution. In this case the process needs to be restarted from the extract DNAs and repeat the 

session. 

 

 

 

 

Fig. 12D – Example of an invalid sample 
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HPV6 HPV11 HPV16 HPV 18

HPV26 HPV30+
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HPV31 HPV 33

HPV35 HPV39 HPV42 HPV 43

HPV44 HPV45 HPV51 HPV 52

HPV 53 HPV 56 HPV58 HPV59

HPV 66 HPV 67 HPV68
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HPV 73 HPV 81 HPV82
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HPV73+
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Fig. 13 - Examples of positive patterns on the CHIP HPV PLUS 
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4.2 CHIP HPV PLUS Sensitivity and Specificity  

Eight preproduction batches of the new prototype CHIP HPV PLUS were prepared. 

Each one has been identified by a code and it has been evaluated separately from the other to 

verify the new chip performance and the variability between manufactured products at 

different times and with different probe batches in order to establish the method robustness 

also in relation to reliability requirements of the individual components, as required by the 

standard 98/79/CE for IVD.  

 

4.2.1 Synthetic DNA  

Evaluating chip sensitivity and specificity in detecting scalar concentrations of the 

Positive Controls (PC), synthetic complementary DNA to the probes immobilized on it, were 

highlighted by the following characteristics (Tab. 5): 

 

 an analytical sensitivity equal to 0.0115 ng/µl for each probe, meaning the minimum 

detectable amount of each PC for all deposited probes is <11.5 pg/µl, this is due to 

some probes being able to detect up to 0.00115 ng/µl (~1 pg ). 

 

 an analytical specificity equal to 97.53%, with a standard deviation equal to ± 0.37 and 

0.38% Variation Coefficient 

 

This specificity arises from a medium of all specific information obtained by the 

informative probes in the panel, testing PCs at an elevated concentration, equal to 2.5 ng/µl. 

Note that in the detection assay a further 20 µl of PC was added to the concentration of 2.5 

ng/µl, corresponding to ~50 ng total synthetic DNA single strand place to hybridize on each 

chip. This concentration was chosen in order to imitate an amount of HPV DNA target 

potentially high, comparable to that defined in the literature, to be contained in 50 ng of total 

DNA extracted from 1.5104 Ca Ski and HeLa cells, or 9 x 106 HPV 16 copies and 7.5 105 

HPV 18 copies, respectively. This assay condition was developed and put in to place to detect 

possible cross-reaction between probes and not complementary genotypic sequences. Indeed,  

in the case of high viral loads, an example referring to a single HPV type, any cross-reaction 

between probes would lead to an incorrect diagnosis of the sample, attributed to the presence 

of multiple signals, in multiple infections to a woman with an individual infection. Specificity 
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increases, 99.65%, for PC concentrations equal to 0.5 ng/µl, theoretically corresponding to 

containing ~10 ng of total DNA, if derived from Ca Ski ~1.8 x 106 copies of HPV 16 and 1.5 

x 105 copies of HPV 18 if derived from HeLa cells, respectively. 

 

Batch CHIP HPV PLUS Analytical Sensibility 
Analytical Specificity 

PC 2.5 ng/ µl 
Analytical Specificity 

PC 0.5 ng/ µl 

12132 0.0115 ng/ µl 97,44 99,8 

11234 0.0115 ng/ µl 98,32 100 

12136 0.0115 ng/ µl 97,22 99,2 

12137 0.0115 ng/ µl 97,22 99,2 

12138 0.0115 ng/ µl 97,29 99,5 

12144 0.0115 ng/ µl 97,36 99,5 

12145 0.0115 ng/ µl 97,73 100 

12146 0.0115 ng/ µl 97,66 100 

Media 0.0115 ng/ µl 97.53 99.65 

DS - 0.37 0.32 

C.V. - 0.38% 0.32% 

  Tab. 5 Analytical performance from different CHIP HPV PLUS lots using PC 

 

4.2.2 DNA extracted from cell lines 

The complete diagnostic platform, denominated ProDect® CHIP HPV TYPING PLUS, 

has been verified on cell lines using 8 pre-series batches of CHIP HPV PLUS product in 

combination with as many number of primer mix as batches. As shown in Tab. 6, C33A cells, 

HPV-uninfected, for dilutions with low cellularity <104 cells/ml (103-102-10 cells/ml) result 

as "invalid" samples, i.e. for all 8 batch chips, the DNA extracted, amplified and detected on 

the C33A chip, did not show a corresponding dot to the human β-globin. This conditional test 

is designed and implemented to alert the user when the test is not running a significant and 

sufficient amount of total DNA. This limit of the minimum necessary cells to assign a levy 

compliance takes into account different forms of HPV infection (productive, latent, abortive). 

Indeed samples with a fair amount of cells, i.e. ~105-106 cells/ml, are more representative of 

the cytological situation but especially allow greater statistical probability of virus detection 

in its more subtle forms (latent and integrated). When the same dilutions of C33A cells (103-
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102-10 cells/ml) were evaluated on Hybrid Capture® 2 (HC2) HPV Test platform they were 

defined as negative. Note, however, that in this type of test there is no levy compliance check, 

or minimum start sample cellularity; the negativity diagnosis are attributable to the HPV 

sequences absence and not to the fair amount of collected and subjected to lysis material. 

ProDect® CHIP HPV TYPING PLUS platform, when tested using the HPV infected cell 

lines, detected viral sequences with the same diagnostic sensitivity and specificity with 

regards to the Hybrid Capture® 2 (HC2) HPV Test. No cross reaction (non-specific) 

occurrence was also detected with the extract containing 106 cells/ml both in the Ca Ski cells 

than on HeLa, while HPV sequences (both the L1 region of HPV-16, as well as the 

E6/E7region) were detectable in extracted DNA, theoretically from a dilution with a single Ca 

Ski cell with 10-100 HeLa cells (assumed that one Ca Ski cell contains 600 genomes of 

HPV16 and 1 HeLa cell 50 genomes of HPV18). When cells same dilutions were evaluated 

on Hybrid Capture® 2 (HC2) HPV test platform, reproducible positive signals were obtained 

with DNA extracted from at least 10 Ca Ski cells or 10 HeLa cells. The diagnostic sensitivity 

of this platform was then 6000 and 500 supposed genomes of HPV-16 and HPV-18, 

respectively. Some examples of biochips detection of DNA extracted from these cell lines 

(Fig. 14). 

 

ProDect®CHIP HPV TYPING PLUS 

Line  Sensitivity cells/ml Result Copies/ µl  

C33A <104 Not Valid 0 

C33A >104 Negative 0 

Ca Ski 1 Positive HPV16 600 

HeLa 10 Positive HPV18  500 

Hybrid Capture ® 2 (HC2) HPV Test 

Line  Sensitivity cells/ml Result  Copies/ µl  

C33A <104 Negative 0 

C33A >104 Negative 0 

Ca Ski 10 Positive HPV HR 6000 

HeLa 10 Positive HPV HR   500 

Tab. 6 The analytical performance of the different CHIP PLUS HPV lots using lines C33A, CaSki, Hela 
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Fig. 14. In the biochip C33A cells superior (105/ml) HPV result negative, note the only points of conformity of 

the samples and the test. 

In the biochip Ca Ski cells inferior (105 cells/ml) HPV16 result positive, note the positivity for the region 

corresponding to the type HPV16 L1 and for the region E6/E7 corresponding to the high-risk group E6/E7-

HPV16/35/31 

 

4.2.3 HPV cloned DNA at high and low oncogenic risk 

In this research context 18 plasmids containing viral DNA sequences of variable size 

were prepared, formed by as many clinical specimens HPV types (Tab. 7). 13 of 18 

genotypes, including 11 HR-HPV, inserts above 3Kb comprising regions L1, URR, E6 and 

E7 were obtained. At the basis of this activity is the need to have available unlimited 

quantities of double-stranded DNA of high molecular weight similar to viral genomes found 

in real samples, these are to be used as additional controls for calibration of the amplification 

conditions  and detection of multiple different gene targets test: L1 and E6/E7 regions of HPV 

and human β-globin. After checking the accuracy of each insert sequence, DNA clone 

dilutions in TE were tested undiluted or with the addition of ThinPrep®Cytolyt Solution 

(Hologic) preservatives solutions containing a [ ] of C33A cells equal to 105-106 cells/ml, in 

order to check sensitivity and specificity of similar calibrators of the diagnostic system for the 

quantity and quality of the biological samples. The assays were performed in parallel using 

the HPV-16 and HPV-18 WHO standards, whereby [ ] is expressed in International Units (IU) 

or Equivalents Genomes (GenEqu). As analytical sensitivity was shown detection limit of 

each control corresponding to its minimum concentration on the specific probe (Tab. 8). In 

many cases, the detection threshold was expressed as interval and not as absolute number 

considered that cloned title, or No. copies/µl was measured by spectrophotometric reading 

(which is then considered margin of error). Reported sensitivity refer to both L1 and E6/E7 
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genetic targets and represent the minimum amount of copies/µl or IU/ML of cloned detected 

in 100% of the 24 tests carried out for each scale (Fig. 15). Some cloned scales were also 

tested on the Hybrid Capture® 2 (HC2) HPV reference method, which does not employ gene 

target amplification (Tab. 9). As expected, a greater amount of HPV DNA target is needed  

for a positive signal by Hybrid Capture® 2 (HC2) HPV Test compared to the ProDect® CHIP 

HPV TYPING PLUS. Note that ProDect® CHIP HPV TYPING PLUS, reveals two gene 

sequences of HPV genome for all HR clones tested, confirming both HPV genotype and the 

belonging group with respect to the E6/E7sequence, while Hybrid Capture® 2 (HC2) HPV 

Test defines only positivity for HPV HR cutoff > 1. 

 

The analytical specificity was calculated using samples obtained by mixing high titer 

clones with one or more low titer clones with 106 GenEqu/mL of C33A cells, referring to the 

threshold analytical sensitivity of each genotype, in order to evaluate at the gene amplification 

level and detection on the chip, inhibitions or higher affinity of the platform for some 

genotypes than others in the case of co-infection. In fact, a Multiplex PCR can arise 

interference phenomena between one or more genotypes[132]. As demonstrated by some 

examples below (Fig. 16) all HPV expected sequences, regardless of the clones mixed 

between them, if they were above the test detection limit, they were found on the new chip; 

different genotypes were correctly classified on the basis of L1 region direct probes. No 

cross-reaction was highlighted with genome sequences belonging to viruses, bacteria, fungi or 

protozoa often present in the female genital tract. (Tab. 10). 
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Tab. 7 HPV sequences cloned list and insert size achievable with specific HPV type primers 

HPV type ORFs Genebank Accession Number PCR product 

6 L1 AF092932.1 426 bp 

11 L1 M14119.1 448 bp 

16 L1- E6/E7 K02718.1 3532 bp 

18 L1- E6/E7 X05015.1 3647 bp 

30 L1- E6/E7 X74474.1 3641 bp 

31 L1- E6/E7 J04353.1 3523 bp 

35 L1- E6/E7 M74117.1 3427 bp 

42 L1- E6/E7 M73236.1 3394 bp 

45 L1- E6/E7 X74479.1 3500 bp 

51 L1- E6/E7 M62877.1 3535 bp 

52 L1- E6/E7 X74481.1 3064 bp 

56 L1- E6/E7 X74483.1 3554 bp 

58 L1- E6/E7 D90400.1 3585 bp 

59 L1- E6/E7 X77858.1 3544 bp 

66 L1 U31794.1 448 bp 

70 L1 U21941.1 454 bp 

73 L1- E6/E7 X94165.1 3474 bp 

81 L1 AJ620209.1 450 bp 
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ProDect® CHIP HPV TYPING PLUS 

Sensitivity copies/μl 
 

Clone#lot 
 

Stock copies/μl 
reg.L1 reg.E6/E7 

HPV16#01A 6.91010 69-690 69-690 

HPV18#03A 2.81010 28-280 2800 

HPV45#05 2.0 1010 2000 200000 

HPV6#02 1.0 1011 100-1000 ND 

HPV11#01 1.3 1011 130-1300 ND 

HPV35#19A 4.7 1010 5-10 500-1000 

HPV31#09A 2.4 1010 1-5104 240 

HPV73#02A 3.3 1010 33-330 ND 

HPV51#08 4.6 1010 4800 10000 

HPV56#01A 5.0 1010 5-50 50000 

HPV59#11Al 1.0 1010 10000 100000 

HPV52#09 6.9 1010 6900- 69000 6.9-69 

HPV58#11 9.61010 9600- 96000 9.6- 960 

HPV66#02 1.3 1011 10000 ND 

HPV81#03 7.7 1010 100-770 ND 

HPV70#03 1.0 1011 100-1000 ND 

Clone#lot Stock UI/ML Sensitivity UI/ML 

WHO HPV16 107 102 5103 

WHO HPV18 107 103 104 

Tab. 8 Test sensitivity of new kit with the bcs Biotech S.r.l cloned and WHO standards 
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Hybrid Capture ® 2 (HC2) HPV 

Clone#lot Stock copie/μl Sensitivity copies/μl 

HPV16#01A 6.91010 1-3.5 104 

HPV18#03A 2.81010 2.8-7 104 

HPV35#19A 4.7 1010 4.7 104-105 

Clone#lot Stock UI/ML Sensitivity UI/ML 

WHO HPV16 107 1.5104 

WHO HPV18 107 3104 

 Tab. 9 Sensitivity of the reference test with some cloned bcs Biotech S.r.l and WHO standards 
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Fig. 15 Example of analytical sensitivity batch n° HPV CHIP PLUS 12144 assessed scale cloned HPV16 BCS 

6.9 106 copies/μl 

 

 

6.9 105 copies/μl 

 

 

 

6.9 104 copies/μl 

 

 

 

6.9 103 copies/μl 

 

 

 

6.9 102 copies/μl 

 

 

69 copies/μl
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Organism 

Acinetobacter  Neisseria gonorrhoeae Chlamydia tracomatis 

Klebsiella pneumoniae Gardnella vaginalis Candida albicans 

Bacteroides fragilis Mobilincus curtisii Tricomonas vaginalis 

Bacteroides ureolyticus Enterococcus faecalis Herpes simplex virus 1 

Bifidobacterium spp Escherichia coli Herpes simplex virus 2 

Lactobacillus spp Staphylococcus aureus Cytomegalovirus 

Mycoplasma hominis Streptococcus agalactiae Adenovirus 

Mycoplasma genitalium Corynebacterium spp Staphilococcus epidermidis 

Tab. 10 List of microorganisms that potentially could interfere 
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Clones: copies/μl Clones: copies/μl Observation 

HPV59: 108          + HPV16: 103 

 

HPV59: 108          + HPV18: 104 

 

HPV59: 108          + HPV35: 104 , HPV45: 104, HPV56: 104 

 

HPV18: 108                + HPV11:                                             

 1.3 108          

 

 

                           1.3 106          

 

 

                           1.3 104          

 

 

                           1.3 102          

 

HPV16: 108          + HPV59:  

                             108          

 

 

                             106               

 

 

                             104          

 

 

                             102               

 

Fig. 16. Examples of cloned mixtures to mimic co-infections between the various HPV types with a high number 

of copies close to the detection threshold of the test 
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4.2.4 Extracted DNA from cytological samples  

A preliminary assessment of the platform diagnostic performance was made on a total  

number of 171 amplified cytology specimens (Appendix - List 1) collected in Benin, Africa 

between 2009-2012 under the cooperation International project funded by the Autonomous 

Region of Sardinia, directed by Prof. Paola Sirigu, with the cooperation of  bcs Biotech as a 

partner. Analyzed samples of PAP TESTs undertaken resulted with a normal cytological 

status of 68.4% (117), while 31.5% (54) had morphological alterations with variable 

gradation (Tab. 10), with a prevalence of high grade dysplasia among women aged between 

30 and 50 years (Fig. 17). 

Cytology  Age range Total 

  15-25 25-35 35-45 45-55 55-65   

Normal 14 29 33 28 13 117 

LSIL 1 1 0 0 0 2 

ASCUS  5 14 9 4 1 33 

ASC-H 0 3 1 2 0 6 

HSIL 0 1 4 1 0 6 

AGC 0 0 4 2 0 6 

SSC 0 1 0 0 0 1 

Total  20 49 51 37 14 171 

Tab. 11 Distribution of samples with respect to age and cytology 

 

 
Fig. 17 Prevalence of dysplasia by age in the population sample analyzed 
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All samples were screened for HPV sequences using IVD ProDect® CHIP HPV 

TYPING kit, Hybrid Capture® 2 (HC2) HPV Test as a reference method and the ProDect® 

CHIP HPV TYPING PLUS platform under development. 

 

The following data refer to the infection detection ability by the three kits with two 

different approaches: 

 

 limit HPV types common to all three tests (Tab. 12A, 13A, 14A) 

 

 with reference to the ability to attribute sample negativity/positivity for HPV 

infection, compared to HPV circulating globally in the analyzed population 

(Tab. 12B, 13B, 14B). 

 

Limiting performance evaluation test only to common HPV types (18 genotypes 

detected by the probes pool of Hybrid Capture® 2 (HC2) HPV Test, and only to the positively 

infected samples by HPV HR: 16, 18, 31 , 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68, and LR 

HPV 6, 11, 42, 43 and 44) test on chip showed high indices of correlation with the reference 

test, Hybrid Capture® 2 (HC2) HPV Test, demonstrating comparable performance. 

 

ProDect® CHIP HPV TYPING presents a Concordance Index (CI) by the reference 

standard method for sharing HPV types of 97.6% (167/171), a diagnostic sensitivity of 100% 

(64/64 agree) and a specificity of 96.2% (Tab. 12A). 

 

ProDect® CHIP HPV TYPING PLUS prototype showed a Concordance Index (CI) by 

the reference standard method for sharing types of 98.8% (169/171), a diagnostic sensitivity 

of 100% (64/64 agree) and a specificity of 98.1% (Tab. 13A). 

 

Obviously the correlation between the tests on CHIP, ProDect® CHIP HPV TYPING 

and ProDect® CHIP HPV TYPING PLUS is even higher,  with reference to the common HPV 

sequences (19 genotypes detectable HPV HR: 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 

68, 73 - LR HPV: 6, 11, 42, 43 and 44, and HPV E6/E7) equal to CI = 73 + 97/171x100 = 

99.4%, (Tab. 14A). 
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 Hybrid Capture® 2 (HC2) HPV Test Total

ProDect® CHIP HPV TYPING + -  

+ 64 4 68 

- 0 103 103 

Total 64 107 171 

Tab. 12A. Screening samples for 18 common types of HPV, ProDect®CHIP HPV TYPING vs Hybrid Capture ® 

2 (HC2) HPV Test 

 

 Hybrid Capture® 2 (HC2) HPV Test Total

ProDect® CHIP HPV TYPING PLUS + -  

+ 64 2 66 

- 0 105 105 

Total 64 107 171 

Tab. 13A Screening samples for 18 common types of HPV, HPV ProDect® CHIP TYPING PLUS vs Hybrid 

Capture 2 (HC2) HPV Test 

 

 ProDect® CHIP HPV TYPING PLUS Total

ProDect® CHIP HPV TYPING + -  

+ 73 1 74 

- 0 97 97 

Total 73 98 171 

Tab. 14A Screening samples for 19 common types of HPV and region E6 / E7, ProDect® CHIP HPV TYPING 

PLUS vs ProDect® CHIP HPV TYPING 

 

For all three tests parting from data contingency table, the Cohen's Kappa was 

calculated, using as a reference the interpretation guidelines that define each K value a 

different concordance grading between tests (K <0.2 = poor concordance; 0.21<K<0.40 = 

modest concordance, 0.41<K<0.60 = moderate; 0.61<K<0.80 = good; K> 0.81 = excellent). 

 

All comparison between tests showed an excellent correlation (0.95 < Cohen's Kappa < 

0.97). However, analyzing the sample on the basis of all positivity detected, and then expands 

the number of genotypes to be considered as actually circulating in the population, a number 
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of negative samples highlighted with the reference methods, are, instead, positive for HPV 

infection with the new prototype ProDect® CHIP HPV TYPING PLUS, even if the correlation 

between the various tests is still good or excellent (0.79 < Cohen's Kappa <0.89). 

 

In light of such evidence, re-evaluating the ability of the different tests to diagnose HPV 

infection in the analyzed population, independently of its genotype, shows that:  

 

 ProDect®  CHIP HPV  TYPING presents a concordance index (CI) compared to the 

standard reference molecular method Hybrid Capture® 2 (HC2) HPV Test of 94%, CI 

(161/171), a diagnostic specificity of 90.6% (97/107 coincident negative) and a diagnostic 

sensitivity of 100% (64/64 coincident positive). In particular, the IVD chip, employing the 

pattern 5x5, revealed 10 further positive samples classified as negative by Hybrid 

Capture® 2 (HC2) HPV Test, including 3 with positive PAP TEST (3 ASCUS) and 7 with 

apparently normal cytology , (Tab. 12B). Cohen's Kappa is equal to 0.875. 

 

 Hybrid Capture® 2 (HC2) HPV Test Total

ProDect® CHIP HPV TYPING + -  

+ 64 10 74 

- 0 97 97 

Total 64 107 171 

Tab. 12B. Screening infection: ProDect®CHIP HPV TYPING vs Hybrid Capture ® 2 (HC2) HPV Test 

 

 Concordance Index between ProDect® CHIP HPV TYPING PLUS and the reference 

standard method Hybrid Capture® 2 (HC2) HPV Test was equal to 90% (154/171 

concordant). In fact, 17 samples were classified as positive by the prototype; of these, 

4/17 had a positive PAP TEST (1 HSIL-carcinoma and 3 ASCUS) and 8/17 showed 

positivity related to HPV genotypes cannot be classified by the Hybrid Capture® 2 (HC2) 

HPV Test without  the specific probes, (Tab. 13B). Cohen's Kappa is equal to 0.79. 
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 Hybrid Capture ® 2 (HC2) HPV Test Total

ProDect®CHIP HPV TYPING PLUS + -  

+ 64 17 81 

- 0 90 90 

Total 64 107 171 

Tab. 13B Screening infection: ProDect® CHIP HPV TYPING PLUS vs Hybrid Capture ® 2 (HC2) HPV Test 

 

 Concordance Index between ProDect® CHIP HPV TYPING and ProDect®CHIP HPV 

TYPING PLUS in development was 95% (162/171 concordant). Also in this case 8/8 

samples assigned as positive from the prototype showed HPV types undetectable by the 

IVD test without the specific probes (Tab. 14B). Cohen's Kappa is equal to 0.89. 

 

 ProDect®CHIP HPV TYPING PLUS Total

ProDect®CHIP HPV TYPING + -  

+ 73 1 74 

- 8 89 97 

Total 81 90 171 

Tab. 14B Screening infection: ProDect® CHIP HPV TYPING PLUS vs ProDect®CHIP HPV TYPING 

 

Given the reduced sample size of the population, and being impossible to attribute 

sample positivity with the certainty on the basis of the full-blown disease, from the moment 

that an infection can occur, even in the presence of a normal cytologic condition, and could 

not rule out other HPVs circulating in the population that were not included among the 31 

types detected by the prototype, individual platform performances, comparisons between tests 

were calculated at a confidence interval of 95%, according to the below exemplified formula 

and considering healthy negative and some infected samples resulting with at least two of the 

three methodologies used. We proceeded to consider a total of 89 samples as negative, 

including 76 normal, 13 seemingly pathological (1 HSIL, 1AGC, 2 ASCH, 9 ASCUS) by 

PAP TEST  and 82 samples as positive of which 41 apparently with a normal PAP TEST. All 

positives were confirmed by gene primers specific amplification followed by reverse 
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hybridization with specific probes and/or sequencing. For each kit were calculated the 

diagnostic performance (Tab. 15,16,17). 

 

 

 

 

 

 
 

 

Formula for calculating Confidence Interval of 95% 

 

 

   Infected     Healthy

Positive  a: 64  b: 0 

  Negative  c: 18  d: 89 

True Positive  64 a   

False Positive  0 b   

True Negative  89 d   

False Negative  18 c   

Total Samples  171a+b+c+d  

Sensitivity (SE) + 0.064 (IC95)   0,7805a/(a+c)  

Specificity (SP)   1,0000d/(b+d)  

Prev. POS. Values (VPP) 1,0000a/(a+b)  

Prev. NEG. Values (VPN) 0,8318d/(c+d)  

Tab. 15 Hybrid Capture ® 2 (HC2) HPV Test performance 

 

Sensibility 
Standard 
error 

Sample 
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   Infected     Healthy

  Positive a: 74   b: 0 

Negative c: 8   d: 89 

True Positive  74 a   

False Positive  0 b   

True Negative  89 d   

False Negative  8 c   

Total Samples  171 a+b+c+d  

Sensitivity (SE) + 0.064 (IC95)   0,9024a/(a+c)  

Specificity (SP)   1,0000d/(b+d)  

Prev. POS. Values (VPP) 1,0000a/(a+b)  

Prev. NEG. Values (VPN) 0,9175d/(c+d)  

Tab. 16 ProDect®CHIP HPV TYPING performance 

 
 

 

   Infected     Healthy

  Positive a: 81  b: 0 

  Negative c: 1  d: 89 

True Positive   81 a   

False Positive  0 b   

True Negative  89 d   

False Negative  1 c   

Total Samples  171 a+b+c+d  

Sensitivity (SE) + 0.033 (IC95)   0,9878a/(a+c)  

Specificity (SP)   1,0000d/(b+d)  

Prev. POS. Values (VPP) 1,0000a/(a+b)  

Prev. NEG. Values (VPN) 0,9889d/(c+d)  

Tab. 17 ProDect® CHIP HPV TYPING PLUS performance 
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Performance calculated in this way means, therefore, the capacity of the individual tests 

to evaluate the actual biological sample negativity for HPV sequences (Tab. 18) refer to 31 

genotypes classified by the prototype HPV ProDect® CHIP HPV TYPING PLUS, able to 

detect a further 14 and 13 genotypes respectively, with regards to those identified by the 

Hybrid Capture® 2 (HC2) HPV Test and with ProDect® CHIP HPV TYPING.  

 

Note that in the analyzed population, there is a strong prevalence of HPV that 

fluctuates, depending on the test used for screening, between 25% for the Hybrid Capture® 2 

(HC2) HPV Test and 47% for the ProDect® CHIP HPV TYPING PLUS in development (Fig. 

18A, B, C). In a sample like this, given the high probability of finding HPV sequences, high 

prevalence of infection enhance the positive predictive value of all tests. 

 

Performance of 31 HPV types 
Diagnostic 
Sensitivity 

IC95 

Diagnostic 
Specificity 

IC95 
K PPV NPV 

Hybrid Capture ® 2 (HC2) HPV Test 78.0% 100% 0.78 100% 83.0% 

ProDect® CHIP HPV TYPING 90.2% 100% 0.90 100% 91.7% 

ProDect® CHIP HPV TYPING PLUS 98.7% 100% 0.98 100% 98.8% 

Tab. 18 Summary of the performance tests used for screening the same population 

 

A.  

Hybrid Capture II (HC2) 

DNA TEST 

B. ProDect CHIP HPV TYPING 

PLUS 

C. ProDect CHIP HPV TYPING 

Negat i ve

75%

Posi t i ve

25%

Negat i ve

53%

Posi t i ve

47% Negat i ve

57%

Posi t i ve

43%

Fig. 18A,B,C Prevalence of apparent HPV infection in the population as a part of the screening test  

 

Sample analysis by screening Hybrid Capture® 2 (HC2) HPV Test , widely used in all 

world for its practicality, in this study divides the population of HPV-infected samples into 

three subgroups: those infected with HR HPV, those with LR HPV, and those with an 

apparently sustained HPV infection at high and low risk, HR + LR (Fig. 19).  
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It should be noted that this test does not perform the individual genotypes 

characterization, but attributes sample positivity compared to the two major risk groups: a HR 

positivity indicates sample positivity for one or more high-risk HPV oncogenic types between 

13 HR whose probes are contained in the test (HPV16, 18, 31, 33, 35 ,39 ,45, 51, 52, 56, 58, 

59, 68), while LR positive is an infection index  for one or more low risk types that  can be 

detect by the test (HPV6, 11, 42, 43, 44). 

 

It follows that the only detectable multiple infections are potentially the result of co-

infections between HR HPV and LR HPV. For infections caused by HR or LR cannot be 

established without further testing, whether it is a single or multiple infections. 

 

 
Fig. 19 Analysis of positive samples by type of infection with Hybrid Capture ® 2 (HC2) HPV Test 

 

The population samples analyzed utilizes the chip, and therefore typifies contextually 

the genotypes in different ways, these may be divided into two subgroups (Fig. 20), i.e. 

samples with single infections and those with multiple infections, involved in most cases 2 or 

3 viral types but, in some cases, also 5 different types (Fig. 21A & 21B). 

 

The amount of co-infections detected increases if the analysis is performed by ProDect® 

CHIP HPV TYPING PLUS kit in development due to the greater number of genotypes 
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characterized by the test and not due to cross-reaction occurrences between probes, excluded 

in the earlier stages of calibration test . 

 

Fig. 20 Analysis of positive samples by infection type with HPV ProDect® CHIP TYPING (CHIP) and the 

ProDect® CHIP HPV TYPING PLUS (CHIP PLUS) 

 

A B  
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Fig. 21 Single and multiple infections detected with ProDect® CHIP HPV TYPING (A) and with ProDect® 

CHIP HPV TYPING PLUS (B) 

 

Employing the ProDect® CHIP HPV TYPING  the predominance of high-risk types 

compared to low risk was 70% when calculated on observed positivity (Figure 22); the most 

frequent in absolute value (type/total positivity) and in decreasing order are types: HPV-16 

(15/103), HPV59 (14/103), HPV18 (10/103), HPV35 (8/103) and HPV58 (8/103). Some viral 

types, such as HPV-16, support in equal measure both single and multiple infections, however 

other genotypes are found almost exclusively in single infections, as HPV56 and HPV31, or 

vice versa prevail only in co-infection with others, such as HPV33 and HPV45. 

 

In 19% of infections it was observed that individual E6/E7 sequences attributable to 

non-typable virus and that by sequencing and the new HPV CHIP PLUS developed were 

connected to the genotypes HPV16 (5 of 11 cases), HPV52 (3/11) and HPV35 (3/11). The 

positivity for the E6/E7 region in absolute values for the HR HPV constitutes 10% (11/103) 

of the positive signals and refer to sequences of high HPV oncogenic risk evidently not 

typable easily by the different tests. It is worth noting that, Hybrid Capture® 2 (HC2) HPV 

Test did not detect 6 of the 11 HPV positivities of these samples and 5 of the 11 cases were  

in agreement to the presence of HR HPV. 

 

In multiple infections, instead, prevalent genotype is HPV35 followed by HPV16, 

HPV59 and HPV45 (Fig. 23). 
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Fig. 22 HPV genotypes detected with ProDect®CHIP HPV TYPING  
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Fig. 23 Prevalence of HPV types detected with ProDect® CHIP HPV TYPING - single and multiple infections 

 

The same population analyzed with ProDect®CHIP HPV TYPING PLUS substantially 

confirms the positivity observed even with the ProDect® CHIP HPV TYPING, but having a 

greater number of probes, features a number of types and viral sequences not discriminable 

with the other test , shown as a row columns in Fig. 24A-B. 

 



60 

 

Fig. 24A All HPV genotypes detected with ProDect® CHIP HPV TYPING PLUS in the population 

 

 

Fig. 24B Particular genotypes / HPV sequences not characterized by ProDect® CHIP HPV TYPING 

  

Among these, the numerically relevant are positive for the HPV81 type and the pool  of 

probes that detect HPV30 and HPV40 were however, not able to distinguish them. At the 

moment it is considered low-risk oncogenic genotypes. 

 

Significantly, from the point of view of a diagnostic and prognostic value of test, even 

the data obtained from a single DNA sample analyzed resulted as a carcinoma (SCC-HSIL) 
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by PAP Test, belonging to a woman of 27 years (ID004TG), negative with others tests 

employed, result, instead, positive for HPV82 and HPV66 by ProDect® CHIP HPV TYPING 

PLUS analysis, where, above all the type 82 is now considered a high oncogenic risk while 66 

types as medium risk. 

 

It should be highlighted that the probes in the ProDect® CHIP HPV TYPING PLUS for 

HPV6 and HPV11 occupy distinct positions on the chip and has allowed the positivity 

allocation and more specifically for the two genotypes. 

 

In particular, the four patients presenting prior positivity to infection with HPV6/11 

with ProDect® CHIP HPV TYPING, and treated by warts cauterization, to 2012 follow-up  

showed altered cytologic state  (Tab. 19) and still positive for HPV6 (3/4) and HPV11 (1/4). 

 

Sample ID Age PAP Test HPV 

48 HO 24 LSIL HPV6 

26 PN 37 ASCUS HPV6 

2012.001LK 42 HSIL HPV6 

2012.155SL 26 ASCUS HPV11 

Tab. 19 Follow up of some cases treated for condyloma 

 

From the above explanation it is evident that the HPV epidemiology is strongly 

conditioned by the screening test used. In fact, with the ProDect® CHIP HPV TYPING PLUS 

the number of infections caused by a single genotype is drastically reduced compared to 

ProDect® CHIP HPV TYPING (31 versus 54). In this type of infection, the prevalent 

genotype is HPV52, followed by HPV6, while 19% of positivity is attributable to individual 

E6/E7 sequences belonging to the probes pool for HPV16/35/31 types (Fig. 25). 
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Fig. 25 Prevalence of HPV types detected with ProDect® CHIP HPV TYPING PLUS - single infection 

 

As already reported multiple infections are more frequent if you run screening by 

ProDect® CHIP HPV TYPING PLUS (Figure 23B) and a certain amount of samples has 

actually often 3, 4 and more genotypes involved in the infection. 

 

Example from this point of view, the subpopulation of women who are HIV positive 

(11/171) that analyzed by ProDect® CHIP HPV TYPING  were 3 negative and 8 were 

positive for HPV, and between the 8 positive, 5 were infected by a single HPV type. 

Analyzed by ProDect® CHIP HPV TYPING PLUS in development only 1/8 showed a single 

infection (Figure 26 A,B) supported by a HPV35 while all the others showed multiple 

infections where in 4 out of 8 cases was involved HPV16 genotype. 
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A  

ProDect CHIP HPV TYPING 

 

B  

ProDect CHIP HPV TYPING PLUS 

 

Fig. 26A-B Single and multiple infections detected with ProDect® CHIP HPV TYPING (A) and with ProDect® 

CHIP HPV TYPING PLUS (B) in the sub-sample of HIV-infected women 

 

 

Stratifying sampled HPV positive population with respect to the PAP test, it is observed 

a classic pyramid distribution (Fig. 27), with a very small proportion of high-grade lesions 

compared with a higher incidence of infection. It reveals a wide variety of genotypes in 

women who have undergone a normal PAP TEST (Fig. 28), which, however, is substantially 

reduced with the progression of the cytologic severity as expected on the basis of 

epidemiological data reported in the literature. However, at least in this population, when 

searched, are highlighted in the ASC-H, HSIL, AGC and SSC condition, uncommon 

genotypes or considered low oncogenic risk (HPV 52,59,81,82,66,67,6,30/40), in co-infection 

with another one or with the most frequent HR HPV types (HPV16, 18, 45), Fig. 29. 



64 

  
Fig. 27 HPV infected samples with respects to cytological PAP Test 

 

 

 
Fig. 28 HPV types present in the infected samples with respects to cytological PAP Tests 
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Fig. 29 Prevalence of HPV types in cytological high-grade dysplasia  
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5. Discussion 

Up to the last decade, cervical cancer had been second most common cancer in women 

for incidence and mortality after breast cancer. At the base of the neoplastic process the 

establishment of a persistent infection by certain genotypes of the human Papillomavirus 

(HPV). Organized screening programs for cytological and molecular testing, at least in most 

developed countries, have, however, contributed significantly to the reduction of the cases in 

terms of both incidence and mortality. Currently it is the 4th leading cause of death from 

cancer among women worldwide. 

 

To complicate the tasks of screening and prevention, there are some significant issues: 

 

From a cytological point of view, the presence of so-called cadres "ASC-US" addressed 

subsequently in colposcopies are often already CIN2 or more severe. In Italy the National 

Observatory Screening records last report in 2014 that, based on the data reported by the 

regional centers for screening, the national average, with probability of having a CIN2 

histological lesion or more severe among women who have undergone a ASCUS cytology is 

15.8%, the national average, with an appreciable variability as a result of geographic areas 

(16.8% in the North, 21.2% in the Centre and 10% in the South and the Islands)[135] 

 

From a molecular point of view, there is an incomplete knowledge of the HPV-host 

mechanisms interaction at the base of the infection, its course and its possible persistence. In 

fact there is great heterogeneity of circulating HPV genotypes, of which more than thirty are 

high tropism anogenital, classified on the epidemiological database for  high-medium or low 

oncogenic risk types, capable of multiplying only in multi-layered epithelia (therefore, 

difficult to grow in vitro) and where establish infections characterized by productive and 

latent stages, and where the genomes can be in the episomal and/or integrated form. 

 

The development and spread of prophylactic vaccines against HPV16, HPV18, 

recognized at the moment as etiological agents, for about 70% of cervical cancers, hopefully 

in the near future could lead to a further substantial reduction of CIN2 and CIN3 cases due to 

these genotypes, but proposes a substantial problem today, to make a careful assessment of 

the virological condition of the woman at the time of vaccination, and to start, in the most 

general sense, to closely monitor circulating types. In fact, with the vaccination expansion  
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other genotypes at high oncogenic risk, which current vaccines have little or no effect, might 

tend to spread. To confirm what has been said, surveillance needs to be increasingly precise 

and especially the improved of techniques in molecular biology are leading to a continuous 

re-classification of the medium and low risk types to higher levels of oncogenic risk, 

especially if detected in particular population categories. In fact, the persistent infection of 

some HPV is necessary, but clearly not sufficient for tumor development, and other genetic 

factors and host immune systems, as well as environmental, contribute to the disease onset 

and progression, or vice versa, contribute to its spontaneous resolution both in terms of 

infection and precancerous lesion. 

 

Important changes are therefore in progress in the cervical cancer screening approach, 

and many other HPV related cancers, so that different nations and also Italian regions[136] 

have already defined the HPV test as the primary test and the PAP test as a triage, to be 

applied only to HPV positive women, in order to distinguish those which have obvious 

cytologic atypia and thus a greater risk of disease progression, from those that can, with time, 

resolve the infection spontaneously in the absence of atypia or moderate dysplasia[137]. This 

non secondary aspect will allow a greater period of time for monitoring woman, much more 

extended in the presence of a negative HPV test. In this regard WHO[138] defining new 

criteria for organized screening that: 

 

• the interval between controls (frequency of screening) should not be less than five 

years, when using HPV testing as a primary test, 

 

• women less than 30 years old are not screened if not HIV infected or from geographic 

areas with a high HIV prevalence  

 

• at national level programs, as a minimum, screening should involve women aged 

between 30-49 years 

 

An in vitro diagnostic device that is proposed as a molecular test to be used in the 

cervical cancer screening, so for next 15-20 years, must obviously taking into account all 

these aspects. It must support clinical, and health organization upstream in the development of 

algorithms that address the specific problems of various subpopulations in a risk women 
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sample, or potentially all women aged >15 years (about 3.45 billion of women in the world) 

that actually include various subpopulations. In light of the foregoing, the HPV test should 

ideally be able to: 

 

1. diagnose the state  or at least the infection of the woman or even if the virus was 

integrated or at least in a latent form, 

 

2. discriminate individual from multiple infections 

 

3. characterize largest number of genotypes with anogenital tropism in order to: 

a. diagnose infections with other HR HPV not covered by the vaccine in women 

vaccinated a while before, 

 

b. monitor course of women already infected with HPV to which current vaccines 

are not therapeutic, 

 

c. assesses the real absence of HPV sequences in women undergoing on treatment. 

In fact, it is still significant relapse rate[139-143]: around 20% at 5 years in the 

absence of lymph node localization to the first treatment, and up to 70% within 

10 years in case of lymph node metastases, 

 

d. also characterize HPV rare or defined as low-risk types that in certain population 

such as immunosuppressed women for several factors (HIV+, therapies, genetic 

conditions etc. etc.) could alone or in co-infection with other types and/or 

pathogens enhance speeding and severity of neoplastic disease progression. 

 

In this context the realization of this research project was born and founded, aimed to 

design a diagnostic kit that would by the first to meet the substantial prerequisites for a 

molecular test to be used in primary screening programs with frequency no less than five 

years, or to discriminate, with reasonable certainty, women non HPV infected from those 

infected, being able to recall not infected after five years after a subsequent control, and to 

start with the infected by cytological triage to characterize and/or monitor any lesions. 

 

The developed prototype, ProDect® CHIP HPV TYPING PLUS provides amplification 

starting from an extract nucleic acid of three genetic substantial targets for the proper 



69 

management of a woman included in a screening organized program: the human β-globin 

gene, as a marker of the DNA appropriate amount and then of the sample collected cellularity, 

the L1 region for the typing of more than 30 HPV types with high anogenital tropism and the 

E6/E7 region for targeted monitoring and further genotypes with high and medium oncogenic 

risk that could escape to a possible detection on the L1 region for low viral load, reduced 

number of copies or loss of viral genomic sequences as a result of virus integration into the 

cellular genome. 

 

A preliminary assessment of the diagnostic test performance, once individual 

components concentrations were calibrated and  8 pre series batches  prepared,  the 

assessment was performed on the clones, cell lines and clinical samples. The tests were 

conducted in parallel using two kits already on the market, ProDect® CHIP HPV TYPING 

and Hybrid Capture® 2 (HC2) HPV Test, in order to evaluate the actual contribution of this 

new test to a more accurate HPV infection diagnosis. For the prototype preliminary validation 

a female population at particular risk of disease from a geographic area with high prevalence 

of HPV but also HIV was chosen, Benin, with reduced economic resources devoted to the 

screening programs organization and therefore in need of accurate and decisive test with high 

negative predictive values.  In fact, in these socio-health, given the reduced instrumental and 

logistics means, it is of utmost importance to identify with reasonable certainty HPV negative 

women, compared to those HPV positive, in order to rationalize spending in full health 

protection for women. 

 

This study found that in terms of sensitivity for HPV common types, the ProDect® 

CHIP HPV TYPING PLUS shows comparable performance to the reference tests used: 

ProDect®CHIP HPV TYPING and Hybrid Capture® 2 (HC2) HPV Test . Compared to the 

Hybrid Capture® 2 (HC2) HPV Test results to be 10-100 times more sensible in detecting bcs 

Biotech cloned containing L1-E6/E7 regions in the same insert. There is no evidence of 

nonspecific signs to the highest tested cloned concentrations (106-107 copies/µl) in any of the 

three tests.  However, calculating  the diagnostic capabilities compared to the virus presence 

in the population can be seen, as a certain sample proportions, the infection has been 

underestimated. In fact, subject to the reference tests used from 10% to 20% of the samples 

resulting as negative (false negatives) and many infections are incurred by individual 

genotypes, indeed several are co-infections genotypes. So, even though all are excellent 

screening tests (in practice are considered good screening test those who have >80% 
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sensitivity and specificity) the new prototype in this preliminary study demonstrates a higher 

VPN (ProDect® CHIP HPV TYPING PLUS VPN = 98.8%). It was exhibited a very high VPP 

(100%), with a strong HPV prevalence the analyzed population, supported in part by 

genotypes undetectable with other tests utilized(which in fact are therefore less sensitive than 

expected, not covering these viral types). This aspect is relevant from an epidemiological 

point of view: in fact in some contexts such as African or in particular portions of the 

population at high risk/prevalence of infection, using tests that do not cover a large types, 

underestimated numbers in the total infections and the role of some oncogenic genotypes that 

in specific socio-environmental-health have low oncogenic potential, but in different contexts, 

and in co-infections with other pathogens or specific HPV types, may be contrarily highly 

oncogenic. The data, although preliminary, opens up further general discussions of the 

desirability in adopting as the primary cervical cancer screening, being the only test revealing, 

often without genotyping, high oncogenic risk HPV. It appears intuitive that even if such an 

approach involves a certain reduction in costs related to screening, moreover to prove, a test 

that also genotype all anogenital genotypes and maybe not in manual procedure may also be 

provided at lower cost, with time and natural epidemiological changes to all infections caused 

by viral genotypes undergo, it may not be sufficient, with savings in the short term but an 

increase in health care costs in the medium to long term. In the near future prophylaxis, in 

industrialized countries, and with well-organized health organizations, will further reduce the 

disease incidence and the prevalence of the major HR HPV, in primis HPV16 and HPV18, 

while the use of only HR screening tests in populations or segments of the population with 

high prevalence of HPV infection in the presence of concomitant infections (e.g. HIV, HCV, 

Chlamydia etc.), immune depression or other pathologies can lead to a significant 

underestimation of types circulating and their oncogenic potential, given that many HPV 

medium risk types or types being not well classified, as little or no research in a certain 

contexts may have greater significance instead. If what emerged, was shown that the reduced 

sample size reflected that of wider studies, it would be advised not to limit the possibility of 

molecular testing as an organized screening program for HR genotypes only, but vice versa, 

trying to cover the prevalence of the infection, types actually circulating in the population 

sample, in order to establish effective vaccination plans especially in developing or developed 

countries, but not yet well organized for capillary primary screening, as some Eastern 

European State members, where unfortunately incidence and mortality due to cervical cancer 

data are still very high, with a high infection and genotypes prevalence of no clear 

classification. The study also highlights how sample conformity is a concept for a substantial 
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molecular screening test aimed at cervical cancer diagnosis. In fact, from the anatomo-

pathological point of view characteristics have been established to define a suitably PAP test 

in terms of representativeness of the different layers of the endocervical mucosa and epithelial 

transition, it should not be sufficient for a molecular test to establish the conformity based on 

the amplificability of a DNA control, both viral or human sequence. It would substantial to 

determine and identify a cellularity cutoff and consequently nucleic acid obtained from the 

biological sample taken with reasonable certainty, and with any molecular method used, and 

would guarantee the clinician a probable negativity of the sample for HPV sequences. Indeed, 

the probability of highlighting the virus in not-replicative phase or integrated and/or with 

incomplete genomes has as a prerequisite that a reasonable amount of cells (> 105) extracted 

with a fair and qualitatively good amount of total nucleic acid, in order to reveal even a few 

viral copies (10-100 copies), without ever dropping below sensitivity threshold in the method 

used (theoretical 10 copies for PCR), in order to avoid an incorrect negativity sample 

diagnosis for HPV sequences, obviously less represented with respects to the human gene or 

internal control considered by most diagnostic tests on the market. Even this is also not a 

negligible aspect if you look at the cases of women who have a negative molecular test result 

(not on the basis of cellularity but often by the absence of HPV sequences) and a positive 

PAP test, show obvious lesions by colposcopy or following up after a first molecular negative 

test have recurrent disease often incurred by the  same HR genotypes, or from different types 

usually underestimated in primary screening considered at low-medium risk and are often in 

co-infection with HR types. A molecular test characterized by an accurate monitoring of levy 

adequacy would probably be able to further reduce the number of false negatives due to 

withdrawals of inadequate diagnostic sampling and the type of virus being searched for. 
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6. Conclusion 

The multi-target approach is the new frontier of molecular diagnostics since the 

acquisition of more and more in-depth knowledge about the etiology of cervical cancer 

compels manufacturers of medical devices to focus on the prevention, diagnosis and treatment 

of this disease and keep up to date in state of the art and continuously innovate their 

platforms. 

In this context, the applied research conducted in these three years has led to the 

design, development and production of a new test prototype multi-target, able to diagnose 

HPV infection in cervical-vaginal spatula samples having two genomic target sequences of 

the virus: the L1 region essential for the genotyping of the virus and the E6 / E7 region to 

detect the presence of higher risk oncogenic HPV, even in cases with the loss of more or less 

extensive portions of the genome as in the case of the integrated viral forms. 

 

The prototype attributes the negativity or positivity of each sample based on a quantity/quality 

of DNA extracted from cells harvested at the time of sample collection (at least 105 cells/ml) 

so that we can define compliance for sampling and guarantees a cell representation that will 

allow us statistically, using gene amplification techniques, amplify of a few copies of the 

HPV target sequences, if the infection is latent or abortive, to whether or not the virus has 

integrated into the cellular genome. 

 

The first tests on the complete diagnostic platform (extraction, amplification and 

detection) show that the system has a specificity and diagnostic sensitivity similar to those of 

the reference test, the Hybrid Capture® 2 (HC2) HPV Test, currently the most utilized in 

screening programs worldwide, presents, in addition, the advantage of a procurement 

compliance control as a function of cellular sampling and not the sole function of testing for 

the presence/absence of the virus. It also allows with respect to the reference test an 

immediate classification of the viral genotype over two sequences of genotype in question, at 

least for the HPV-HR (reg.L1 and reg.E6/E7), moreover being able to characterize up to 31 

HPV types, against 13 HPV-HR of the reference test in a single session per sample.  

 

The ProDect® CHIP HPV TYPING PLUS is a natural and necessary evolution of ProDect® 

CHIP HPV TYPING, diagnostic kit already CE marked, additionally presents, the ability to 

characterize on a chip a higher density of probes, more anogenital genotypes over 19 already 
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typable with the kits currently on the market, and to characterize the region of E6/E7 of HPV-

HR defining the homology with three pool of probes which react to the same number of 

groups of high-risk HPV (group 1: E6 / E7HPV16,31,35 , 2nd group E6 / E7HPV18,45, 3rd 

group E6 / E7HPV33 / 52/58/56/66/67/82/59). 

 

Preliminary data show that the inclusion of new probes on the chip did not have an 

increase in cross reaction nor the difficulties of acquisition and analysis by the reading system 

chip, whose software was simply implemented with the new pattern of interpretation results. 

 

In conclusion, the main objective has been reached, that is, to produce a test with high 

specificity (comparable to that of the two reference tests) but at the same time with a higher 

Negative Predictive Value. The validation of 171 cervical spatulas samples made it possible 

to recover a significant amount of negative data samples with regards to the reference tests 

employed (22% with respects to Hybrid Capture®2 (HC2) HPV Test and 10% compared to 

ProDect® CHIP TYPING HPV), which conversely analyzed with the new prototype resulted 

in positive for the sequences for medium and low risk types of HPV. 

 

These encouraging results, as well as the grant for the patent EP1818416 B1 "Methods 

and Kits for the detection of HPV" dated 26.12.2012 (EPO Bulletin 2012/52) and its 

nationalization of the same in different countries as of 2013, laid the foundations for the 

opening of independent clinical trials and multi-centers, as required by rule concerning the 

risk assessment and management for in Vitro Diagnostic Devices, before the CE markings on 

the kit and entering in to the commercial market, which are the subject of a proposal from the 

bcs Biotech Srl currently under evaluation by the EU Commission, as part of the invitation 

HORIZON2020, SMEInst-2014/15: Clinical research for the validation of biomarkers and / or 

diagnostic medical devices. 
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8. Apendix – Raw data of samples tested 

SUBJECT AGE PAP TEST 
ProDect®CHIP HPV 

TYPING 
ProDect®CHIP HPV 

TYPING PLUS 
HC2 SEQ 

FINAL 
DIAGNOSIS 

015 BIS 21 ASCUS HPV 18, E6/E7 HPV18,81 HR HPV18,81 HPV18,81 

019 BIS 25 Negative HPV 16 HPV81, 11, E6/E716/35/31 HR+LR HPV16 HPV16,81,11 

001SL 38 Negative HPV31 E6/E7 HPVE6/E716/35/31 HR+LR HPV31 HPV31 

004SL 18 Negative Negative Negative Negative neg Negative 

008SL 44 Negative Negative Negative Negative neg Negative 

017SL 28 ASCUS HPV16, 45 HPV 31,16 HR+LR HPV16 HPV16,45,31 

042SL 27 Negative Negative Negative Negative neg Negative 

048SL 29 H-SIL HPVE6/E7 HPVE6/E716/35/31 HR HPV16 HPVE6/E716/35/31 

049SL 44 Negative Negative Negative Negative neg Negative 

065SL 50 ASC-H HPV18,45,E6/E7 HPV18,40 HR+LR HPV18 HPV18,45,40 

067SL 36 ASCUS HPV18,35 HPV40,E6/E7 HR HPV18,35 HPV18,35,40 

113SL  40 ASCUS HPV73 HPV81,70 HR+LR HPV73 HPV 73, 81,70 

008 PK 42 Negative HPV59 HPV81,35,E6/E7 HR HPV59,35 HPV59,35,81 

019PK 29 Negative HPV35,E6/E7 HPV35,40,E6/E716/35/31 HR HPV35 HPV35,40 

021PK 35 ASCUS HPV59 HPV16,40,E6/E7 HR HPV16,59 HPV59,40,16 

030PK 28 Negative HPV59 HPV81,16, E6/E7 HR HPV16,59 HPV81,16,59 

033PK 38 AGC HPV59 HPV16,40,67,70,81,E6/E7 HR+LR HPV16,59,67 HPV59,16,40,67,70,81 

041PK 50 Negative HPV 6/11,E6/E7 HPV 35, 58, E6/E7 HR+LR HPV35 HPV35, 58, 6/11 

14HO 27 Negative HPV35,51,58,59,E6/E7 HPV35, E6/E716/31/35 HR+LR HPV35 HPV35,51,58,59 

15HO 46 Negative HPV16,35,59,45,E6/E7 HPV35,16,59,E6/E7 HR HPV16,35 HPV16,35,59,45 

18HO 34 Negative HPV35,59,18 HPVE6/E7 Negative HPV35 HPV35,59,18 

19HO 29 Negative HPV35,58,42,59  HPVE6/E716/31/35 HR HPV35 HPV35,58,42,59 

20HO 25 Negative HPV58  HPVE6/E733/58 HR HPV58 HPV58 

21HO 58 Negative HPV73,59 HPV 40 HR+LR HPV73 HPV73,59,40 

23HO 35 ASCUS HPVE6/E7 HPVE6/E716/35/31 Negative HPV31 HPVE6/E716/35/31 

24HO 52 Negative Negative HPV81, E6/E733/58 Negative HPV81 HPV81,E6/E733/58 

25HO 49 Negative HPVE6/E7  HPVE6/E716/35/31, 33/58/52 Negative HPV16 6/E716/35/31,E6/E733/58 

1LK 26 ASCUS HPV16 E6/E7 HPV16, 33, 40, E6/E7 HR HPV16,33 HPV16, 33, 40 

2LK 38 Negative Negative Negative Negative neg Negative 

5LK 28 ASC-H Negative Negative Negative neg Negative 

7LK 57 Negative HPV42 HPV42 HR+LR HPV42 HPV42 

11LK 31 Negative HPV42, 52 HPV42,52,70 LR HPV42,52 HPV42,52,70 

27LK 20 ASCUS HPV58 HPV58,81,E6/E7 33/58/52 HR HPV58 HPV58,81 

39LK 40 Negative HPV33,16,E6/E7 HPV16,33,67,81,E6/E7 HR HPV16,33 HPV16,33,67,81 

40LK 33  ASCUS HPV59 HPV 59,16,E6/E7  HR HPV59,16 HPV 59,16 

41LK 44 Negative HPVE6/E7 HPVE6/E716/35/31 Negative HPV35 HPVE6/E716/35/31 

42LK 32 AGC HPV18,E6/E7 HPV18,31, E6/E7 HR+LR HPV18 HPV18,31 

43LK 54 Negative HPV58,59,18 HPVE6/E733/58 HR HPV58 HPV58,59,18 

44LK 33 AGC HPV16,E6/E7 HPV16,81,E6/E716/35/31  HR HPV16 HPV16,81 

45LK 33 ASC-H Negative Negative Negative neg Negative 

47LK 37 H-SIL HPV52, E6/E7 HPV40,81,16,E6/E7  HR HPV52,16 HPV52,16,40,81 

49LK 35 Negative Negative Negative Negative neg Negative 

50LK 30 ASCUS HPV59 HPV59,35,40,E6/E7 HR HPV59 HPV59,35,40 



88 

51LK 47 ASC-H HPV59 HPV81,E6/E7 33/58/52 HR HPV59 HPV59,81 

52LK 43 ASCUS Negative Negative Negative neg Negative 

001TG 47 ASCUS Negative Negative Negative neg Negative 

002TG 50 Negative HPV16,E6/E7 HPVE6/E716/35/31 HR HPV16 HPV16 

003TG 26 Negative HPV35, 42 HPV35, 42 HR+LR HPV35,42 HPV35, 42 

004TG 27 H-SIL SCC Negative HPV66,82,E6/E7 Negative HPV66,82 HPV66,82 

005TG 24 Negative HPVE6/E7 HPV31, E6/E733/58 Negative HPV31 HPV31, E6/E733/58 

016TG 38 ASCUS Negative Negative Negative neg Negative 

019TG 33 ASCUS Negative Negative Negative neg Negative 

020TG 35 ASCUS HPV16, 6/11 HPV11,81,40,16,E6/E7 LR HPV16,11 HPV16,11,81,40 

031TG 39 Negative HPV 16,35,E6/E7 HPV16,35,E6/E7 HR HPV16,35 HPV16,35 

034TG 31 Negative Negative Negative Negative neg Negative 

036TG 36 Negative Negative Negative Negative neg Negative 

041TG 39 Negative Negative HPV40 Negative HPV40 HPV40 

012AB 50 H-SIL HPV16,45, E6/E7 HPV16, 45,E6/E716/35/31 HR HPV16,45 HPV16,45 

049AB 44 H-SIL HPV58 HPV81,E6/E7 33/58 HR HPV58,81 HPV58,81 

03PN 55 Negative Negative Negative Negative neg Negative 

05PN 63 Negative Negative Negative Negative neg Negative 

06PN 59 Negative Negative HPV81 Negative HPV81 HPV81 

07PN 28 Negative HPV 16 HPVE6/E716/35/31 Negative HPV16 HPV16 

08PN 45 Negative Negative Negative Negative neg Negative 

10PN 23 Negative HPVE6/E7 HPVE6/E716/35/31, E6/E733/58 Negative HPV16 6/E716/35/31,E6/E733/58 

11PN 54 Negative Negative Negative Negative neg Negative 

12PN 39 Negative HPV 16 HPVE6/E716/35/31 HR HPV16 HPV16 

13PN 15 ASCUS HPV 56 Negative Negative HPV56 HPV56 

14PN 31 ASCUS HPV 16, E6/E7 HPVE6/E716/35/31 HR HPV16 HPV16 

15PN 44 Negative Negative Negative Negative neg Negative 

17PN 35 Negative Negative Negative Negative neg Negative 

18PN 39 ASC-H HPV 52 
HPV35,E6/E716/35/31, 
33/58/52 

HR+LR HPV52,35 HPV52,35 

20PN 58 Negative Negative Negative Negative neg Negative 

21PN 20 Negative Negative Negative Negative neg Negative 

22PN 40 Negative Negative Negative Negative neg Negative 

24PN 25 Negative Negative Negative Negative neg Negative 

26PN 37 ASCUS HPV6/11 HPV6 LR HPV6 HPV6 

27PN 49 Negative HPVE6/E7 HPVE6/E733/58 Negative HPV52 HPVE6/E733/58 

28PN 55 Negative Negative Negative Negative neg Negative 

29PN 39 Negative Negative HPV67 Negative HPV67 HPV67 

31PN 46 Negative Negative Negative Negative neg Negative 

33PN 22 ASCUS HPV56 HPV56,40, E6/E7 Negative HPV56 HPV56,40 

37PN 54 Negative Negative Negative Negative neg Negative 

39PN 34 Negative Negative Negative Negative neg Negative 

40PN 30 ASCUS Negative Negative Negative neg Negative 

43PN 49 Negative Negative Negative Negative neg Negative 

44PN 50 AGC HPVE6/E7 HPVE6/E716/35/31 HR HPV35 HPVE6/E7 16/35/31 

50PN 26 Negative Negative Negative Negative neg Negative 

01 DJ 39 Negative Negative Negative Negative neg Negative 
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02 DJ 20 Negative Negative Negative Negative neg Negative 

03 DJ 22 Negative Negative Negative Negative neg Negative 

04 DJ 24 Negative Negative Negative Negative neg Negative 

05 DJ 21 Negative Negative Negative Negative neg Negative 

06 DJ 27 Negative Negative Negative Negative neg Negative 

07 DJ 20 Negative Negative HPV67 Negative HPV67 HPV67 

08 DJ 42 Negative Negative Negative Negative neg Negative 

09 DJ 28 Negative Negative Negative Negative neg Negative 

10DJ 35 Negative Negative Negative Negative neg Negative 

13 DJ 27 Negative HPV56 HPVE6/E733/56/58 HR HPV56 HPV56 

15 DJ 25 ASCUS Negative HPV40 Negative HPV40 HPV40 

4 AT 28 LSIL HPV16,E6//E7 HPV16,58,E6/E716/35/31,33/58 HR HPV16 HPV16,58 

7 AT 21 Negative HPVE6/E7 HPVE6/E716/35/31 HR HPV35 HPVE6/E716/35/31 

33 AT 41 ASCUS HPV 42, 33 HPVE6/E733/58 HR+LR HPV33,42 HPV42,E6/E733/58 

35 AT 31 ASCUS HPV 58, 45 HPVE6/E733/58 HR HPV58 HPV58,45 

27 HO 36 Negative Negative Negative Negative neg Negative 

29 HO 47 Negative Negative Negative Negative neg Negative 

30 HO 43 Negative Negative Negative Negative neg Negative 

31 HO 30 Negative Negative Negative Negative neg Negative 

32 HO 47 AGC Negative Negative Negative neg Negative 

33 HO 45 Negative Negative Negative Negative neg Negative 

34 HO 34 ASCUS Negative Negative Negative neg Negative 

38 HO 62 Negative Negative Negative Negative neg Negative 

39 HO 33 Negative Negative Negative Negative neg Negative 

40 HO 54 Negative Negative Negative Negative neg Negative 

41 HO 59 Negative Negative Negative Negative neg Negative 

46 HO 51 Negative Negative Negative Negative neg Negative 

48 HO 24 LSIL HPV 6/11 HPV6 LR HPV6 HPV6/11 

50 HO 33 Negative Negative Negative Negative neg Negative 

53 PN 58 Negative Negative Negative Negative neg Negative 

56 PN 62 Negative Negative Negative Negative neg Negative 

57 PN 57 Negative Negative Negative Negative neg Negative 

58 PN 55 Negative Negative Negative Negative neg Negative 

62 PN 54 Negative Negative Negative Negative neg Negative 

63 PN 55 Negative Negative Negative Negative neg Negative 

64 PN 53 Negative Negative Negative Negative neg Negative 

69 PN 35 Negative Negative Negative Negative neg Negative 

70 PN 53 Negative Negative Negative Negative neg Negative 

71 PN 52 Negative Negative Negative Negative neg Negative 

72 PN 39 Negative Negative Negative Negative neg Negative 

75 PN 54 Negative Negative Negative Negative neg Negative 

76 PN 38 Negative Negative Negative Negative neg Negative 

78 PN 31 ASCUS Negative Negative Negative neg Negative 

80 PN 36 Negative Negative Negative Negative neg Negative 

81 PN 44 Negative Negative Negative Negative neg Negative 

84 PN 31 Negative Negative Negative Negative neg Negative 
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85 PN 57 Negative Negative Negative Negative neg Negative 

86 PN 42 Negative Negative Negative Negative neg Negative 

87 PN 36 ASCUS Negative Negative Negative neg Negative 

88 PN 38 Negative Negative Negative Negative neg Negative 

89 PN 55 Negative Negative HPV81 Negative HPV81 HPV81 

90 PN 59 ASCUS Negative Negative Negative neg Negative 

93 PN 47 ASCUS HPV 33,45,43 HPVE6/E733/58 HR HPV45,33 HPV 33,45,43 

96 PN 43 Negative Negative Negative Negative neg Negative 

97 PN 40 Negative Negative Negative Negative neg Negative 

2012.137SL 52 ASCUS HPV18,E6/E7 HPV18,30/40,E6/E718/45, 16/35 HR HPV18 HPV18, 30/40 

2012.139SL 50 Negative Negative Negative Negative neg Negative 

2012.140SL 46 Negative HPV18,E6/E7 HPV18,E6/E718/45 HR HPV18 HPV18 

2012.146SL 34 Negative Negative Negative Negative neg Negative 

2012.151SL 26 Negative Negative Negative Negative neg Negative 

2012.152SL 25 Negative Negative Negative Negative neg Negative 

2012.155SL 26 ASCUS HPV6/11 HPV11 LR HPV11 HPV11 

2012.156SL 28 Negative Negative Negative Negative neg Negative 

2012.158SL 40 ASCUS HPV59, E6/E7 HPV59  HR HPV59 HPV59 

2012.161SL 31 Negative HPV58, E6/E7 
HPV58, 
E6/E733/52/58/56/66/59 

HR HPV58 HPV58 

2012.162SL 41 AGC HPV52 HPVE6/E733/52/58/56/66/59 HR HPV52 HPV52 

2012.163SL 43 ASCUS HPV51 HPV51 HR+LR HPV51 HPV51 

2012.164SL 46 ASCUS HPV39, HPV51, E6/E7 HPVE6/E716/35/31 HR HPV39,51 HPV39, HPV51 

2012.165SL 38 Negative Negative Negative Negative neg Negative 

2012.166SL 57 Negative HPV52 HPVE6/E733/52/58/56/66/59 HR HPV52 HPV52 

2012.026BIS 28 ASC-H HPV16,E6/E7 HPV16,81,E6/E716/35/31  HR HPV16,81 HPV16,81 

2012.032BIS 32 Negative Negative Negative Negative neg Negative 

2012.071BIS 62 Negative Negative Negative Negative neg Negative 

2012.001LK 42 H-SIL HPV6/11 HPV6 LR HPV6 HPV6 

2012.002LK 40 Negative Negative Negative Negative neg Negative 

2012.003LK 40 H-SIL Negative Negative Negative neg Negative 

2012.004LK 43 Negative Negative Negative Negative neg Negative 

2012.005LK 47 Negative Negative Negative Negative neg Negative 

2012.006LK 36 Negative HPV31, E6/E7 HPV31,45,70/72, E6/E716/35/31 HR HPV31,45 HPV31,HPV45,HPV70/72 

2012.008AB 30 Negative HPV18,E6/E7 HPV18, E6/E718/45 HR HPV18 HPV18 

2012.009AB 48 Negative HPVE6/E7 HPVE6/E716/35/31 HR HPV16 HPVE6/E716/35/31 

2012.010AB 45 Negative HPV18,E6/E7 HPV18, E6/E718/45, 16/35/31 HR+LR HPV18 HPV18, E6/E716/35/31 
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CHAPTER 2 - THE STUDY OF GENOMES IN SARDINIAN INDIVIDUALS AFFECTED 

AND NON-AFFECTED FROM MULTIFACTORIAL DISEASES 

1. Background 

This work was aimed at searching for genetic factors responsible for common 

multifactorial diseases. The strategy used was an indirect association using a case-control 

method. An essential requisite for this type of study is that the controls and patients pertain to 

the same population. Moreover, this population must be homogeneous and without ethnic 

stratifications to ensure that associations among causal disease variants and the genetic 

markers in the vicinity are due to linkage disequilibrium and not to other factors. 

 

The Sardinian population is one of the most homogeneous populations in Europe with a 

millenary history of scarce and lowly significant external gene influx. The island distribution 

of the population has long been influenced by historical (invasions and wars) and climatic-

environmental factors (malaria) but above all by the particular orographical structure of the 

territory. This gave rise to numerous and more or less vast and populated genetic isolates that 

were necessarily faced with phenomena of casual genetic drift and selection (ß°39 

thalassemia, G-6-PD deficiency), all of which led to a certain degree of heterogeneity of the 

population in different geographical areas. 

 

Based on studies of numerous genetic polymorphisms, including microsatellites and the 

HLA loci, the genetist[1-8] divided the Island of Sardinia into 32 geographical areas 

characterized by high internal genetic homogeneity and microheterogeneity among areas 

(FST= 0,0068 ± 0,0015). Only for the mutations ßth and G6PD¯(adaptive), heterogeneity 

(FST= 0,0430) clearly existed between the populations of the highlands (not exposed to 

malaria) and those of the lowlands (exposed to malaria). 

 

1.1. Choice of the geographical areas 

In order to reduce to a minimum the possibility of bias due to dyshomogeneity or 

stratification within the population groups to be selected for the study of association, we made 

a major effort to establish if and which populations residing in the previously individuated 32 

geographical areas were substantially mendelian breeding units (MBU). In each geographical 

area we chose 2-4 villages representative of the geographical population and number of 
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inhabitants, for a total of 94 villages. In each village, we analyzed all the matrimonies 

celebrated over the past 150 years, distinguishing between the place of origin of the married 

couples (from the same village, other villages of the same area, villages of other areas). We 

then evaluated the mean endogamy index for each village and each area. We also evaluated 

the relative migration rates. 

 

For the study, we selected villages or geographical areas with a mean endogamy index 

of ≥0,50 and a mean immigration rate of ≤0,085, which we considered as MBU. The number 

of inhabitants of the MBUs selected for the study ranged from ≥15.000 to ≤ 65.000. 

 

1.2. Selection of the Controls 

A preliminary choice of the controls in each MBU was made through the local 

community anagraphical registrars with a primary selection of residents aged ≥ 35 year 

pertaining to different family nuclei and born to parents of the same MBU. After obtaining 

informed consent for participation to the study, we constructed family trees up to the 4° – 5°  

generation, including, for each participant, name and surname, date and place of birth, 

eventual cause of death and the presence or absence of common multifactorial diseases. All of 

the family trees of a given MBU lacking the presence of multifactorial diseases underwent 

analyses with a special program specifically designed to identify and exclude: 1) trees with 

ancestors originating from different MBUs and 2) trees with one or more members related to 

members of other trees. In this way, the individuals selected as controls in each MBU were: 1) 

descendents of ancestors all originating from the same MBU up to the 4° – 5° generation, 2) 

not related among each other, and 3) presumably not affected by common multifactorial 

diseases. 

 

1.3. Selection of affected probands 

A preliminary choice of probands affected by common multifactorial diseases in the 

selected MBUs was made with the assistance of general practitioners and specialist services 

such as the Antidiabetes Centers and Services of Rheumatology, Dermatology, Neurology 

and Endocrinology etc. After obtaining informed consent for participation to the study, we 

completed the family trees for each proband up to the 4°-5° generation and then proceeded 

with the final selection of the affected probands in each MBU taking care, as for the controls, 
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that the selected probands were not related with other probands and that their ancestors all 

originated from the same MBU up to the 4°-5° generation. 

The number of controls and affected subjects is given in Tab. 1 below.  

 

Biobank DNAs were collected as part of various projects, of which the last two funded 

by Sardegna Ricerche via BCS BIOTECH between 2006 and 2009 years entitled respectively, 

“Development of new bioinformatics methods for the detection of environmental and genetic 

causes of multifactorial diseases in Ogliastra” and  “Detection of the genes responsible for 

autoimmune Hypothyroidism and for Hashimoto Disease in Ogliastra”, Prof.L.Contu was the 

Scientific Head for both projects. 

 

 

 Samples** 

*DNA from → 

 

528            Controls 

201            Type 1 Diabetes 

93              Hashimoto Disease 

96              Multinodular Goiter 

24              Schizophrenia 

143            Longevity 

81              Myopia 

573            Other Diseases 

 

Tab. 1. Samples of controls and probands affected by multifactorial diseases that are currently stored 

in BCS BIOTECH Biobank. *Many patients have 2 or much more diseases. 

** The samples were collected in different areas of the south, center and north of Sardinia, as well as 

in Ogliastra. 
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2. Introduction 

The first project goal, still in progress, is to create a dataset of genetic data related to  

molecular characterization of the whole genome in a population formed by a sufficiently large 

enough sample of healthy subjects, or rather have not been affected by common and 

multifactorial pathologies, and are of a known Sardinian origin to be used in association 

studies. In fact, large number of studies have demonstrated the monophyletic genetic origin 

and Sardinian peculiarities[1-9] as well as their substantial genetic homogeneity, despite 

microheterogeneity between different regions[10-11a] due to the combined effects of random 

genetic drift and migration between villages. The population is large enough and there have 

been 32 homogeneous sub regions identified with a total population of about a million 

inhabitants. The analysis of the genetic variation of the Sardinian population, considered a 

founder population, is particularly useful for association studies on complex diseases, 

especially autoimmune diseases, such as Type I diabetes and multiple sclerosis, which are 

highly represented in the island[12-14]. Therefore, having at the disposal a dataset of genetic 

healthy controls of a Sardinian population represents a fundamental tool for the study of the 

most common diseases, not only in Sardinia but in the world, and offers the possibility of an 

estimate of what could be the differences created by geographical location of subjects/patients 

groups being analyzed. 



95 

 
3. Material and methods 

3.1. Samples 

Biobank kept at the R&D laboratories of bcs Biotech, from which my research started, 

containing 528 healthy controls and 900 patient DNAs with one or more complex diseases, all 

of certain Sardinian origin, selected in different geographical Sardinia subareas and in 

particular 6 Ogliastra municipalities. For each subject the reconstruction of the genealogical 

trees up to 4°-5° generation was performed, and steps taken to exclude all the other probands 

relatives (sick and controls). All samples were managed in an anonymous way, they were 

genotyped for loci: HLA A-B-C-DQB1-DRB1, SNP-137; SNP-397; SNP-351; Haplotype -

397/-351; NALP1; HLA G; FTO (data not shown) and 234 controls were analyzed by 

Affymetrix platform. Currently being undertaken is the genotyping of patients distributed by 

disease, Tab. 1. 

 

3.2. Genotyping and quality control 

The DNA of 234 control subjects exclusively originating from Ogliastra was genotyped by 

Affymetrix Genome-Wide Human SNP 6.0 Array (Affymetrix, Inc., Santa Clara, CA, USA), 

which includes more than 906,000 SNPs and more than 946,000 probes for the Copy Number 

Variation determination[15]. 

  

The experiments were performed in the genotyping laboratory within the “Cluster” 

project, organized by Sardegna Ricerche within the scientific and technological park in Pula 

addressed at public and private research laboratories participants at the "Creating a centre of 

excellence in bio-informatic technologies applied to personalised medicine technologies" 

program funded by the Region of Sardinia following the recommended protocol as described 

in the Affymetrix manual. Briefly, total genomic DNA (500 ng) was digested with restriction 

enzymes Nsp I and Sty I, linked to the adaptors and amplified using a primer sequences that 

recognizes adaptors. Amplified DNA was fragmented, labeled and hybridized to 

oligonucleotide probes bound to the surface of the array in the GeneChip Hybridization Oven 

640 (Affymetrix, Inc., Santa Clara, CA, USA), followed by washing and staining procedures 

performed in the GeneChip Fluidics Station 450 (Affymetrix, Inc., Santa Clara, CA, USA). 

Arrays were then scanned by GeneChip Scanner 3000 7G (Affymetrix, Inc., Santa Clara, CA, 

USA). Samples intensity files were analyzed with programs included in Affymetrix Power 
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Tools (APT version 1.12.0). Quality control was performed by Constrast QC (CQC) 

algorithm, which quantifies the separation of the intensity signals for each allele in three 

different clusters in a contrast space, defined as the two-dimensional space projection of the 

allele intensity in a single informative dimension. Analyses were performed using APT-

GENO-QC executable, set with default parameters. 

 

3.3. Genotype calling and dataset filtering 

The genotypes used for the following analysis were determined by the Birdseed v2 algorithm, 

implemented in the APT-PROBESET-GENOTYPE program, using a score confidence 

threshold equal to 0.1. Analysis by Birdseed algorithm was conducted with all samples that 

had passed the quality control, as Affymetrix recommended the execution of the algorithm 

with at least 44 samples to get a more accurate genotypes determination. 
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4. Results 

The data derived from the analysis of 234 control subjects was provided for two studies in 

collaboration. 

 

4.1. Study No. 1,  

In collaboration with researchers from the following public and private Italian 

institutions: Shardna Life Sciences, University of  Cagliari – Department of Experimental 

Biology, University of Bologna – Laboratory of Molecular Anthropology, Department of 

Experimental Evolutionary Biology and that ended in to the following publication Piras I., De 

Montis A., Calò CM., Marini M., Atzori M., Corrias L., Sazzini M., Boattini A., Vona G., 

Contu L. Genome wide scan with nearly 700.000 SNPs in two sardinian subpopulations 

suggest some regions as candidate targets for positive selection. European Journal of Human 

Genetics (EJHG) 2012, 03:1-7 http://www.ncbi.nlm.nih.gov/pubmed/22535185 

 

In short, to increase genomic information on the Sardinian population, the analysis of 

both the genetic structure at the sub-regional level and the consequences of natural selection 

in two distinct Sardinia subpopulations. We analyzed 321 healthy individuals from two 

different Sardinian regions. In particular, sample datasets from Ogliastra preserved in BCS 

BIOTECH biobank have been compared to 125 Southern Sardinian sample datasets, 

conserved in the Department of Experimental Biology biobank, University of Cagliari, these 

samples were from 20 different villages distributed in three historic-neighboring geographical 

regions in central and southern Sardinia (Sulcis, Campidano and Trexenta). The information 

from nearly 700,000 informative autosomal SNPs genotyped by Affymetrix platform 6.0, 

were analyzed with several statistical approaches to determine the genomic differences at 

individual SNPs. The more differentiated regions were further analyzed using a test based on 

Extending Haplotype Homozygosity (EHH)16, which is able to detect the occurrence of 

potential "selective sweeps" in the populations genomes examined. 

 

The principal component analysis (PCA) and admixture analysis suggested a 

differentiation between the two subpopulations, as confirmed by AMOVA (Fst = 0.011; P = 

0.001). In addition, we have identified 40 genomic regions with significant differences, 

particularly in the chromosomes 1, 9, 12 and 13. These 40 regions were further analyzed with 
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the Long Range Haplotype test, which showed statistically significant values of REHH for 

rs11070188 and rs11070192 SNPs in the Ogliastra population. These markers are located on 

chromosome 15 (15q15), located less than +5 kb from the rs7181250 SNP peak, and show 

higher values of Fst. In light of SNPs analyzed, characteristics and correlation between the 

different methods used, the region characterized by these SNPs can be considered an 

important candidate that have been subjected to a population specific selective event. This 

region is defined by C15orf54 (-81 kb) and THBS1 (+244 kb) genes. In particular, the gene 

coding for the THBS1 Thrombospondin I, is a multimodular secreted protein that is linked to 

the extracellular matrix and exerts a variety of biological functions, such as platelet 

aggregation, angiogenesis, and tumorigenesis. One of these functions is also represented by 

the capacity to act as a receptor for red blood cells infected by Plasmodium falciparum, 

adhesion of which to the capillaries increases the parasite virulence. Moreover, the region 

characterized by these genes has been previously identified as a selective pressure target in 

two distinct papers[17-18]. Because of the SNPs location, in particular for the THBS1 gene 

presence, it is possible to speculate on a potential selective action by malarial infection, which 

has characterized Sardinia up to its complete eradication, which was held in the mid of last 

century[19]. Referring to the data on malaria morbidity for each village[20-21], morbidity 

average, calculated with a weighted average based on the number of samples from each 

village, would be 57.95% for Ogliastra compared to 28.56% of South Sardinia. These data 

suggest a significant presence of malaria in Ogliastra, supporting, as a working hypothesis, a 

selective event associated to malarial infection, which still needs further verification. 

 

4.1.1. Conclusion 

The published results emphasize a presence of internal differentiation within the Sardinian 

population, and support the identification of a selective sweep at a micro-geographic level that 

pertain to the Ogliastra population, such as discovery of other highly differentiated regions in 

addition to be potential candidates for selective pressure event, may represent substantial 

functional differences. Though many other studies have been performed such as genome-wide 

for the detection of regions subject to natural selection, the population utilized have always 

shown high levels of divergence, while at a micro-geographic level analysis, are quite rare. In 

this paper we report a rather plausible evidence of selective pressure right at micro-geographic 

level. Finally, it is possible to speculate that these high differences in genome specific regions 

between the two samples tested could play a role in susceptibility to complex disease[22]. 
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These results could have a predictive role for future association studies of complex diseases in 

the same subpopulations.  
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4.2. Study No. 2, 

In collaboration with researchers from the following international institutions: 

Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, 

S10 2TN, UK - Department of Mental Health, Johns Hopkins University Bloomberg School 

of Public Health, Baltimore, Maryland 21205, USA -  Department of Pediatrics, Keck School 

of Medicine and Children’s Hospital Los Angeles, University of Southern California, Los 

Angeles, California 90027, USA - T.T. Chang Genetic Resources Center, International Rice 

Research Institute, Los Ban˜os, Laguna , Philippines. - Department of Sciences of Life and 

Environment, University of Cagliari Italy, - Department of Biology, University of Pisa, Italy, 

- Department of Science of Nature and Territory, University of Sassari, Italy, - The Wellcome 

Trust Sanger Institute, Hinxton CB10 1SA, UK, - Department of Anthropology, University of 

Pennsylvania, Philadelphia, Pennsylvania, 19104, USA, - Departamento de Toxicologı ´a, 

Cinvestav, San Pedro Zacatenco, CP 07360, Mexico. 12 Instituto de Gene´tica y Biologı ´a 

Molecular, University of San Martin de Porres, Lima, Peru, - Departamento de Biologia 

Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, - Institut de Biologia 

Evolutiva (CSIC-UPF), Departament de Ciences de la Salut i de la Vida, Universitat Pompeu 

Fabra, 08003 Barcelona, Spain, - Vavilov Institute for General Genetics: Moscow, Russia, - 

Research Centre for Medical Genetics, Moscow, Russia, - The Lebanese American 

University, Chouran, Beirut, Lebanon, National Health Laboratory Service, Johannesburg, 

South Africa, - The Genographic Laboratory, School of Biological Sciences, Madurai 

Kamaraj University, Madurai, India, Department of ecology and evolutionary biology, 

University of Arizona, Tucson, Arizona 85721, USA, - Department of Anatomy, University 

of Otago, Dunedin 9054, New Zealand, - National Geographic Society,Washington, District 

of Columbia 20036, USA, that ended with the article 

http://www.ncbi.nlm.nih.gov/pubmed/24781250, Elhaik E, Tatarinova T, Chebotarev D, Piras 

IS, Maria Calò C, De Montis A, Atzori M, Marini M, Tofanelli S, Francalacci P, Pagani L, 

Tyler-Smith C, Xue Y, Cucca F, Schurr TG, Gaieski JB, Melendez C, Vilar MG, Owings AC, 

Gómez R, Fujita R, Santos FR, Comas D, Balanovsky O, Balanovska E, Zalloua P, Soodyall 

H, Pitchappan R, Ganeshprasad A, Hammer M, Matisoo-Smith L, Wells RS; Genographic 

Consortium. Geographic population structure analysis of worldwide human populations 

infers their biogeographical origins. Nature Communications. 2014 Apr 29;5:3513. 
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The paper proposes an algorithm to identify the geographical origin of the individuals 

using their biological data, and thus trying to overcome one of the most complex issues of 

population genetics and anthropology. In fact the nature of biological diversity, makes it hard 

to tell where one stops and the other population starts watching the simple spatial distribution 

of a feature fenotipica[1-4] but at the same time important studies[5-6] have established a 

strong relationship between the genetic characteristics of different populations and 

geographical distances separating them. These observations, has stimulated the development 

of biogeographic methods. The different biogeographical applications currently in place are 

not very precise and therefore the percentage of individuals correctly assigned to their country 

of origin, is relatively low for Europeans and very low for non Europeans[7]. The work was 

then hypothesized and a new analysis model that is based on the fundamental approach of 

mixing and genetic analysis including 100,000 ancestral informative markers (AIMs), 

reported on platforms GenChip. 

 

This analysis tool identifies the smallest number of markers sufficient to adequately 

differentiate two genetically distinct populations. It was applied to the set of public and 

private data relating to the sampled populations in various parts of the world, in order to 

validate the potential application. About 600 individuals collected in Genographic Project and 

circa 1000 DNA collected at different Genomes Project in several geographical areas around 

the world, including very heterogeneous populations such as rural populations of Kuwait[8], 

Puerto Rico and Bermuda[9], as well as the community of the same country and therefore 

theoretically closer: such as Peruvians from Lima and highland indigenous Peruvians. When 

applied to 200 Sardinians[10], the GPS Placed a quarter of them in their villages and most of 

the rest within 50km of their villages. 

 

4.2.1. Conclusion 

The work for which we have made available a part of the data set of genetic data 

concerning the Ogliastra population samples analyzed by us, describes a method of 

geographical  population structure (GPS) based on mixing which aims to predict the 

biogeographical origin of individuals worldwide from local residents. The validation 

performed on our sample and those of many other international groups valid the new 

algorithm Geographic Population Structure (GPS) by placing approximately 83% of 

worldwide individuals in their country of origin. The analysis led to the formation of clusters 
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for those subjects from the same geographic area and allowed the distinction of populations 

from different geographical areas. For each individual was possible to assign with relative 

accuracy the geographical coordinates and the distance of the supposed place of origin. 
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5. General conclusions and perspectives 

The data obtained in the second phase of my research analyzing the Biobank created in  

Ogliastra have highlighted already important characteristics of this population, useful for 

anthropological studies and validation of new tools / algorithms to be applied to the study of 

population genetics. However, the goal remains,  start a genotyping population control, 

healthy, for the study of the genes responsible for many common multifactorial diseases. The 

homogeneity of the Ogliastra population, all selected subjects (healthy controls and patients) 

strictly belonging to a single population without ethnic stratification, with the absence of 

consanguinity between until 4th or 5th generation, the absence among the controls, of family 

members with common complex diseases, and the minimum risk that some subject included 

among the controls have a latent predisposition to one or more complex diseases, along with 

the number of subjects that make sampling of controls and that among some of the most 

important complex diseases, and the complete anonymity of the subjects included in the 

Biobank, suggest that this is an ideal sample for the research of genes and gene combinations 

involved in complex diseases, through case-control association studies. 

 

The dataset of DNA samples of all feature controls will be the reference for the study of 

the most common multifactorial diseases in Ogliastra and the world. In fact they are stored in 

the same way the DNA samples of patients with multifactorial diseases, which is currently in 

progress along the whole genome genotyping and analysis of related datasets. 

 

Using combinations of genotypic susceptibility and/or protection it emerged that, you 

can identify allelic combinations or haplotype high predictive values for the detection of both 

individuals at risk or protected of disease. For example it is well known that children of 

parents with diabetes have a very high risk of developing the disease during the first decades 

of life. It would be very important to recognize early in families at risk as children have 

genetic conditions of high risk T1D, and those who have a genetic conditions of non-risk or 

protection. The prospects for effective preventive interventions in individuals at risk for T1D 

become thanks to this research increasingly concrete. 

 
 


