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Chapter 1

Introduction

Bacteria are microscopic single-cell organisms that populate every conceivable envi-

ronment all over the world. With a million-years old evolution bacteria developed

an high propensity to adapt themselves to external conditions. In fact, they have

been reported to live in soil, deep within the earth’s crust or the sea [1] and dormant

in the poles [2], they survive in radioactive waste [3] and in the extreme conditions

of the space flights [4]. Some of them became symbiont with other organisms from

which they benefit nutrients and relatively safe environments. An example of such

cooperation is the human body, which contains 10

14 microbes [5–7] in skin, mouth

or the intestine. They are part of the so-called bacterial flora and their presence is

generally of benefit for human since they contribute, as example, to the food diges-

tion process. However, they can also act as opportunistic pathogens if they access

other parts of human body that are typically sterile or in presence of a compromised

immune system [5].

Since the discovery of the first antibiotic molecule in 1940s, the treatment of

bacterial infections was based on the idea that antibiotic therapies could cure any
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Figure 1.0.1: Scheme of the major defense mechanisms developed by bacteria to sur-
vive to external threats: (1) low membrane permeability that regulate the entrance
of molecules, (2) mutation in the antibiotic target site, (3) enzymes can inactive or
disrupt the antibiotic molecule, (4) efflux pumps can extrude toxic compounds from
the inside to the outside.

infectious disease. However, the adaptation ability of bacteria made them resistant

to most of the common antimicrobial agents [8–11]. In fact, while the number of

antibiotics molecules developed each year is continuously decreasing we observe an

increase of the bacterial resistance to the common drugs with the risk to reach the

point where bacteria will be resistant to all the known antimicrobial agents [12–14].

Several mechanisms have been developed by bacteria to resist the action of antibi-

otics. These include the possibility to prevent the antibiotic molecules from entering

the bacterial cell by lowering the membrane permeability, to induce mutation in an-

tibiotics target, to produce enzymes that could inactivate the antibiotic molecules, or

to actively export them through the so-called efflux pumps [8,9,15–17], as described
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in Figure 1.0.1. In the following a more accurate description of the extrusion process

and the efflux pumps machineries will be provided, with particular attention to the

Escherichia coli, Salmonella typhimurium and Psaeudomonas aeruginosa case.

1.1 Multi-drug resistance

Efflux pumps are continuously expressed in bacteria to fulfill physiological functions,

like bile extrusion [18] or calcium transport [19]. However, their over-expression

in case of external attack has been proved to be one of the main defense system

that confers bacteria the so-called multi-drug resistance (MDR) through an active

extrusion of toxic molecules [20–25]. These molecular machineries that act as pumps

can be specific for one substrate or can transport several unrelated compounds.

This makes them particularly interesting as an understanding of their functionality

and the mechanisms involved in the extrusion process might improve the therapeutic

strategies. An example of such improvements is the design of a new class of inhibitors

to reduce the effect of the efflux pumps in the extrusion of antibiotics [25–31].

A large number of proteins are involved in the efflux pumps assembly and they

can divided into five families on the basis of the number of components, the energy

source and the type of substrates that the pumps export [9,15,32]: the ATP-binding

cassette (ABC) superfamily, the major facilitator superfamily (MFS), the multi-

drug and toxic-compound extrusion (MATE) family, the small multidrug resistant

(SMR) family and the resistance nodulation division (RND) family. As described

in Figure 1.1.1 the members of these families are located in the inner membrane of

Gram-negative (or in the single membrane of Gram-positive) bacteria or can span

the whole periplasm, connecting the two membranes. To accomplish their role, efflux

pumps that belong to different families can cooperate in synergistic ways to extrude
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the compounds out of the cell, from the cytoplasm or the periplasm [33], as described

in Figure 1.1.2.

Figure 1.1.1: Efflux pumps that confer multi-drug resistance, divided into five fam-
ilies.the ATP-binding cassette (ABC) superfamily, the major facilitator superfamily
(MFS), the multi-drug and toxic-compound extrusion (MATE) family, the small mul-
tidrug resistant (SMR) family and the resistance nodulation division (RND) family.
In the picture on the left is reported an example of efflux pumps expresses both in
Gram-positive and Gram-negative bacteria; on the right an example of efflux pumps
expressed only in Gram-negative. In this last case, the machineries can span the
whole periplasm connecting the two membranes. Image adapted from [15].

The proteins studied in this thesis belong to the RND family, whose members

play the major role in the intrinsic and acquired MDR in Gram-negative bacteria

[15, 34, 35]. The efflux pumps related to the protein studied in this thesis will be

described in the following paragraphs.
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Figure 1.1.2: Example of functional interaction among EmrE (SMR), MdfA (MFS)
and AcrAB-TolC (RND) in E. coli : EmrE and MdfA remove drug from the cytoplasm
into the periplasm, where AcrAB-TolC captures it and extrudes to the outside. Image
adapted from [33].

1.2 AcrAB-TolC efflux pump

The RND complex AcrAB-TolC is one of the most studied and most important efflux

pumps expressed in Escherichia coli and Salmonella enterica [33, 36–38].

E. coli is a Gram-negative bacterium that lives in symbiosis with several animals,

included humans. It is part of the intestinal flora and it is generally of benefit for

the hosts since it assists the digestion process and can prevent other pathogens to

establish [39]. However, it can be also a pathogen for the human body causing several

infections in the urinary tract, neonatal meningitis, acute diarrhea and gastroenteri-
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tis [40–43]. S. enterica is another Gram-negative bacterium and pathogen of humans

and animals. Some serovars are more prevalent in certain hosts, like Typhi in hu-

mans, while others are promiscuous, like S. typhimurium [38] which is the serovar

studied in this thesis. Depending of the host and the serovar, it can mediate either

a gastrointestinal disease or systemic disease, can infect macrophages and promote

mucosal inflammation. Both E. coli and S. enterica are considered as extremely

dangerous for humans, and classified respectively as urgent and serious threat by

CDC [44].

As members of Gram-negative bacteria, E. coli and S. enterica have two mem-

branes with a peptidoglycan layer in the periplasmic space. Their intrinsic resistance

has long been attributed to the outer membrane, for which the limited permeability

could be a barrier against drugs [45]. However, it was soon shown that E. coli mu-

tants with no acrAB genes loose part of their multi-drug resistance [46], suggesting a

more important role for the efflux pumps than other mechanisms [22], at least during

the first steps of antibiotic therapies.

Further studies showed that the AcrAB-TolC efflux pump is one of the major

responsible of the multi-drug resistance in E. coli and S. enterica [31, 36,37,47–52].

The pump spans from the inner to the outer membrane allowing a direct efflux of

substrates [47,53–56], as described in Figure 1.1.2. In the following, a more detailed

description of the pump component is provided.

1.2.1 AcrB

The acriflavin resistance protein B (AcrB) is the RND transporter of the AcrAB-TolC

efflux pump partially embedded in the inner membrane of E. coli and S. enterica [57].

The protein has been resolved as an asymmetric homotrimer. Each monomer has
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Figure 1.2.1: Crystal structure of AcrB structure (PDB code: 4DX5) divided into
its three subunits: monomer 1 in the L state [Blue], monomer 2 in the T [Green]
and monomer 3 in the O state [Red]. The three AcrB domains are located in the
upper part (docking domain), middle part (porter domain) and lower part (trans-
membrane domain). In the TM domain the three monomers form a lipid-filled central
cavity connected to the periplasm through three vestibules. The central tunnel in
the docking domain is the exit from which drugs are supposed to pass from AcrB to
TolC.

a conformation representative of the different extrusion process steps [53, 58–60], as

described below in more detail.

Further divisions of each monomer identify three main domains: a) the transmem-

brane domain (TMD) b) the porter domain (PD) and c) the TolC-docking domain

(DD) , as shown in Figure 1.2.1, which are respectively involved in the energy trans-

fer, drug capture and drug extrusion. In addition, AcrB monomers form a central

transmembrane cavity which has been suggested to be filled by lipids. Further divi-

sions in each monomer identify other subdomains, named PN1, PN2 and DN, which

correspond to the amino-terminal part in the PD and DD domain. Other subdo-
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mains are PC1, PC2 and DC, located in the carboxyl-terminal part among the same

domains of the amino-terminal subdomains, as shown in Figure 1.2.2.

AcrB and its homologues are the major multi-drug efflux transporters in Gram-

negative bacteria and confer intrinsic drug tolerance and multi-drug resistance when

overproduced [8, 11, 20, 35, 53, 61–63]. The overproduction process can be induced

through mutations of the local repressor or global regulatory gene, mutation of the

promoter region of the efflux pump gene or elements insertions upstream of the trans-

porter gene [48,51,64–68]. As well as its homologues MexB, AcrB is known to export

a wide variety of antibiotics, �-lactams, antiseptics and toxic compounds including

anionic, cationic, zwitterionic and neutral compounds [50, 52, 69–76] directly out of

the cells. As part of the RND transporters, AcrB acts as the engine of the efflux

pump and the activating energy is provided by a proton transfer from the periplasm

to the cytoplasm [53,59,63,70]. The proton flux has been predicted to induce confor-

mational changes in the monomers structure, which have been proposed to follow a

functional rotation in three states, designed as loose (access), tight (bind) and open

(extrusion) [63]. In this scheme, the drug molecules enters the protein in the L (loose)

monomer between the PC1 and PC2 subdomains. Subsequently, the L state change

into T (tight) state as consequence of the binding process between the protein and

the molecule. In the final step of the functional rotation, the T monomer change

its state in O (open), in which the molecule is pushed to the central channel in the

TolC-docking domain. During this steps the other monomers, change their states

in the same way so that the extrusion of toxic compounds is a continuos process,

as described in Figure 1.2.3. Several computational studies a been produced con-

cerning the different steps, from the binding of substrates to their exit [73,75,77–81]

supporting the experimental results.

The study of AcrB is described in Chapter 3, in which AcrB mutant expressed
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Figure 1.2.2: AcrB division in subdomains: PN1 [light Red] and PN2 [Green] in the
amino-terminal part of the pore domain; PC1 [Violet] and PC2 [light Blue] of the
carboxyl-terminal part of the pore domain; DN [Yellow] and DC [Ice Blue] in the
amino- and carboxyl-terminal part of the docking domain.

in Salmonella Typhimurium was shown to increase the resistance to ciprofloxacin by

changing the drug binding affinity in the distal binding pocket.

1.2.2 AcrA

The AcrA protein belongs to the membrane fusion protein family (MFP) [82,83] and

it is co-expressed with the inner membrane RND transporter AcrB [84]. It is the

periplasmic part of the AcrAB-TolC efflux pump and has been proposed to be the

adaptor between the RND transporter AcrB and the outer membrane (OM) protein

TolC [47, 85]. However, its role in the assembly is nowadays reconsidered as more

active in the assembly building and in the functionality of the pump [86–89].

AcrA, as most of the MFPs, is an elongated protein that extends from the outer

leaflet of the inner membrane deep into the periplasm to meet the OMF TolC [90].

The structure could be divided into four domains (see Figure 1.2.4): the membrane-
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Figure 1.2.3: Scheme of the functional rotation of AcrB monomer. First, the
drug molecule enters Monomer 1, which is in the loose state [Blue]. Subsequently,
Monomer 1 changes its conformation into tight state [Green], in which the drug
molecules binds the interior of the protein. Finally, Monomer 1 changes into the
open [Red] conformation, in which the drug is pushed out through the central tun-
nel. The other monomers (Monomer 2 and Monomer 3) follow the same functional
rotation so that the drug extrusion is a continuos process.

proximal (MP) domain, also known as the carboxyl-terminal domain and lacking in

the crystal structure [91]; the �-barrel domain, which consists of six antiparallel �

strands and small ↵-helix and is predicted to be involved in the AcrA-AcrB binding;

the lipoyl domain, composed by four � strands and which has been recently proposed

to be involved in AcrA dimerization [86, 88, 92] and the ↵-haripin domain which

interacts with TolC [93–95]. These domains are connected by mostly unstructured

regions which give the protein the flexibility that is believed to be important for

functional interactions with the transporter and the OMF.
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Figure 1.2.4: AcrA structure based on the crystal structure that lacks the MP domain
(PDB code: 2F1M). The ↵-hairpin domain is involved in AcrA-TolC interaction while
the �-barrel domain is supposed to be involved in AcrA-AcrB interaction. The lipoyl
domain has been recently proposed to be involved in the possible AcrA dimerization.

1.2.3 TolC

The outer membrane channel TolC is the exit duct for the AcrAB-TolC efflux pump

although it is able to form functional complexes with inner membrane components

that belong to other families like, as example, embark of the MFS superfamily [96]

and HlyBD of the ABC family [97]. The first three-dimensional structure of TolC

was resolved in 2000 [98]. The structure showed a global cylindrical shape composed

by three identical chains of ⇡14 nm in length. The upper part of the protein is

composed by 12 �-strands, arranged in a 3 nm wide �-barrel, which is fully inserted

in the outer membrane. The protein extends into the periplasm with an ↵-barrel

structure of 14 nm in length. The periplasmic side of TolC is composed by 12 ↵-

helices that share similar sequence and inter-helical interactions. In the middle of

the↵-barrel a belt of ↵- and �-barrel forms the equatorial domain as shown in Figure
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Figure 1.2.5: TolC structure based on the crystal structure (PDB code: 1TQQ). The
colors [Blue, Red and Green] identify each monomer. The �-barrel is inserted in
the outer membrane while the ↵-barrel extends into the periplasm. In the middle of
the periplasmic side, ↵- and �-barrel forms the equatorial domain equatorial. Image
adapted from [99].

1.2.5.

From the crystal structure analysis the TolC periplasmic side appear to be nor-

mally closed by the presence of conserved salt bridges and hydrogen bonds [98,100–

106] but must open in the presence of the other components of the efflux pump.

Therefore, it has been suggested that these ionic bridges should disrupt as conse-

quence of the interaction with AcrB [104,107–109].
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1.2.4 Assembly

Although the three-dimensional structure for each component of the pump is avail-

able [60,85,98,110], a detailed description of the AcrAB-TolC assembly is still to be

reached. In vivo mutageneis studies on the proteins involved in the assembly provided

several hints about the possible final structure of the pump. The MFP component

AcrA has been proved to interact with the ↵-barrel of TolC in cross-linking and mu-

tagenesis studies [93, 94, 111] and with AcrB [53, 55, 112, 113]. At the same a direct

interaction between AcrB and TolC has been proposed based on the crystal struc-

ture [110], and then confirmed by several other experiments [103,109,114]. Because

of these experimental results and because of the symmetry of the RND transporter

AcrB and the OM protein TolC, a model with a 3:3:3 stoichiometry was first pro-

posed [60,103,115], in which three AcrA proteins were recruited by AcrB and TolC.

However, other experiments suggests a possible 3:6:3 stoichiometry, where 6 mem-

brane fusion proteins participate in the assembly building with a more active role in

the extrusion process [86–89,114], as described in Figure 1.2.6. In particular, for the

3:6:3 stoichiometry model, an AcrA hexameric-funnel like structure has been pro-

posed to be inserted between the RND transporter and the OM channel, supported

by a comparison with the structure of the MFP CusB, co-crystalized as hexamer

with the inner membrane transporter CusA [116].
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Figure 1.2.6: Most probable stoichiometries for the assembly as suggested by several
experiments. In the model with 3:3:3 stoichiometry three MFP components dock the
OM protein in the equatorial domain and the OM protein and the RND transporter
are directly connected. In the model with 3:6:3 stoichiometry a funnel-like structure
is inserted between the RND transporter and the OM protein. The figures are
extracted from [115] and [86]

1.3 MexAB-OprM

Psaeudomonas aeruginosa is an opportunistic human pathogen that causes infec-

tions with a high mortality rate [35,117–121]. Treatments of P.aeruginosa infections

of are particularly difficult [122–125] because of its ability to resist a wide variety of

unrelated compounds [50,52,69–71,76,126,127]. As part of Gram-negative bacteria,

the defense mechanisms of P.aeruginosa are similar to E.coli with few but crucial

differences. As examples, P.aeruginosa has an outer membrane with much lower per-

meability than E. coli [128,129]. In addition, to resist to carbapenems, the most com-
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mon mechanism is an alteration of the outer membrane porin protein OprD [130–132].

Furthermore, it has been proved to be particularly resistant to fluoroquinolones, i.e.

ciprofloxacin, that are regularly used in therapies against P.aeruginosa infections. In

this case, P.aeruginosa can mutate the target sites of fluoroquinolones, by alterations

in the enzymes DNA gyrase and topoisomerase IV [133–136]. A number of amino-

glycosides are also used in the treatment of P.aeruginosa infections but their use is

usually associated to resistance development [137]. However, the active extrusion of

toxic compounds remains one of the most important process that confers P. aerugi-

nosa multi-drug resistance [8,138]. The major efflux pump expressed in P.aeruginosa

is MexAB-OprM, which can extrude the largest range of �-lactams and thus is most

frequently linked to �-lactam resistance in clinical isolates [60,98,110,139–141]. Al-

though MexAB-OprM complex shares large similarities with the AcrAB-TolC efflux

pump, whose components have been described in the previous paragraphs, a more

detailed description of its components is needed to point out the differences and the

peculiarity of such pump.

1.3.1 MexB

The RND transporter MexB, similarly to its homologue AcrB in E.coli, has been

crystallized as an asymmetric homotrimer where each subunit adopts a different

conformation representing three states of the transport cycle [141]. It shares high

structural similarities (See Figure 1.3.1a) with AcrB, with an overall C↵-RMSD

of only 1.4 Å, and a very high closeness in sequence (69.8% identity and 83.2%

similarity in a sequence of 1046 amino acid residues). Despite the high similarity,

the crystalized L state of MexB appeared to have a more constricted entrance in the

PCs subdomains if compared with AcrB (See Figure 1.3.1b and 1.3.1c), presumably
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Figure 1.3.1: a) Structure of MexB (PDB code: 2V50) in which the different colors
[Blue, Green and Red] identify the different conformational state of each monomer.
b) Comparison of MexB [Blue] and AcrB [Mauve] (PDB code: 2J8S) structures. c)

Zoom of the structural differences between MexB and AcrB in PC1/PC2 domains

due to a different re-arrangement of the helices in the transmembrane domain [141].

In addition, it was shown that when expressed in E.coli the contribution of

MexAB-OprM efflux pump differs remarkably from AcrAB-TolC [142] and it is not

possible to interchange the two proteins to form hybrid complexes, AcrA-MexB-TolC

as example [142,143].

1.3.2 MexA

The MFP component of the MexAB-OprM efflux pump MexA, like its homologue

AcrA has been crystalized as an elongated asymmetric protein [144] in which, it was

shown a well-organized membrane proximal domain [55], with two possible orienta-

tions with respect to the �-barrel domain. In the so-called unrotated state, which

was the most frequent among the different chains in the crystal structure, the MP
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domain is connected to the �-barrel domain through an ordered �-ribbon linker.

The state that was designated as rotated showed a conformation where the MP

domain is globally unaltered but twisted through ⇡ 85 clockwise with a different

conformation in the � linker [55] as shown in Figure 1.3.2a and Figure 1.3.2b. This

state was then proposed to be a possible experimental artifact, as the conformational

changes in the linker might have been induced by close crystal contacts [55]. The

unrotated state was then proposed to be representative of the functional state of

the protein [15, 55]. However, the rotated state was not ignored in literature and it

was used to model the possible rotated state of the MP domain in AcrA [145] and

proposed to be involved in the MexA dimerization [86,87] to form the three subunits

of the hexameric structure. The building of the homology model for the AcrA MP

domain with MexA as template in previous work [145], was justified by the high

similarities between MexA and AcrA proteins both in structure and in sequence, as

they share 62% and 73% of sequence identity and similarities respectively. However,

MexA contains seven residues less than AcrA resulting in length of 89 Å versus

105 Å of AcrA as shown in Figure 1.3.2c. As its homologue AcrA, MexA protein

has been proved to interact with the RND transporter MexB through the �-barrel

domain [146, 147] and with the OM protein OprM through the ↵-hairpin domain

[92, 147] in which computational studies revealed an high flexibility of the protein

[148]. Furthermore, it was shown through mutagenesis studies that the MexA lipoyl

domain might be involved in the possible MexA dimerization [92] as shown in Figure

4.0.1.
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Figure 1.3.2: a) MexA re-refined structure (PDB code: 2V4D) with the presence of
the MP domain in the unrotated [Blue] and rotated [Red] state. b) Focus on the
MP domain in the unrotated [Blue] and rotated [Red] state. c) Comparison between
MexA re-refined structure (PDB code: 2V4D) without the MP domain [Blue] and
the AcrA crystal structure (PDB code: 2F1M) in [Red] .

In particular, this result is the starting point for the study of this thesis described
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in Chapter 4. Further mutagenesis studies showed also that mutations in the MexB

porter domain inhibit the functionality of the pumps but their effects can be partially

neutralized by other mutations in the �-barrel and MP domains of MexA [146,147].

These results confirm the interactions between MexA and MexB that might guide

the assembly building.

1.3.3 OprM

The OprM protein is the outer membrane component of the MexAB-OprM efflux

pump, in which it is assumed to serve as a drug discharge duct [139]. It shares

with its homologue TolC in E.coli, a relatively low values of similarity (40%) and

identity (21%) in sequence, but a very high structural similarity, with a C↵-RMSD

of 1.6 Å. The OprM overall trimeric structure exhibits three main domains: the

membrane-anchoring �-barrel, the periplasmic cavity-forming a-barrel and the equa-

torial domain, as described in Figure 1.3.3. The �-barrel structure is inserted in the

outer membrane and has a diameter, in the crystal structure, of 6-8 Å, which is not

enough for the antibiotic exit [139]. .
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Figure 1.3.3: a) OprM crystal structure (PDB code 1WP1), in which different colors
refer to different monomers. As it homologue TolC in E.coli, the�-barrel is inserted
in the outer membrane while an ↵-barrel extends into the periplasm. In the middle
of the periplasmic side, ↵- and �-barrel forms the equatorial domain equatorial. b)

Comparison of OprM [Blue] and TolC [Mauve] (PDB code 1TQQ) monomer. Despite
the low similarity in sequence, the two structures show high structural similarities.
c) Comparison of upper and bottom parts of OprM and TolC.

1.3.4 Assembly

Because of many similarities with AcrAB-TolC both the assemblies have been pre-

dicted to have the same stoichiometry. However, which stoichiometry may represent

the real structure of these efflux pumps is still on debate. Although different experi-

ments suggest a 3:3:3 stoichiometry [60,115,143], many others suggest a stoichiometry

in which six MexA proteins participate in the assembly [86–88,92,114]. In the latter

case, a prior dimerization of the membrane fusion protein seems a pre-requisite to



1.4. THESIS OUTLINE 23

form the MFP hexameric structure that might be inserted between the RND trans-

porter MexB (and AcrB) and the OM protein OprM (and TolC) [86,88,99] as shown

in Figure 1.2.6. The effectiveness of the dimerization process is described in Chapter

4 of this thesis.

1.4 Thesis outline

This thesis aims to investigate the structural properties of the membrane fusion

protein MexA in the MexAB-OprM efflux pump and to gain insight into the RND

transporter AcrB inhibition process.

The study described in the first part of the thesis concerns the first case in which

a mutation on RND efflux pump is related to an increased multi-drug resistance in

clinical settings. The work is a result of experimental and computational study, in

which the effects of the mutation in the binding and recognition of different substrates

are investigated.

In the second part of the thesis, we investigated the role and the possible stoi-

chiometry of MexA proteins in the MexAB-OprM assembly. In particular, we stud-

ied the effect of a mutation that is known to impair the functionality of the pump,

presumably by affecting MexA multimerization. Following different strategies, we

showed the propensity for MexA (wt only) to form stable dimeric units. This re-

sult, could help to gain insights on MFP stoichiometry and, thus, role in the whole

assembly.





Chapter 2

Computational Methods

The constant development of computer technology in the last decades increased

considerably the accuracy of the computational description of biological world [149–

160]. In fact, it is nowadays common to refer to computer simulations as in silico

experiment as they allow scientists to monitor chemical reactions, conformational

changes and other thermodynamics quantities of the systems under study. Statistical

mechanics provides the theoretical framework that connects real-world experiments

and computer simulations through a relation between ensemble averages, over the

microscopic configurations explored by the system, and macroscopic observables.

The work of this thesis is based on computer simulations and has the aim to

describe, at atomistic level, the mechanisms involved in efflux pumps inhibitions and

in efflux pumps building. Therefore, in this chapter will be presented an overview of

the computational methods used in these studies such as Molecular Dynamics (MD)

simulations, homology modeling and protein-protein docking, and the theoretical

background that support them.
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2.1 Molecular Dynamics

MD simulation is one of the principal tools to study biological molecules. In fact,

the MD technique aims to mimic real experiments, by following the same approach

to study the samples which, in this case, consist on N interacting particles. As well

as in real experiments the samples are equilibrated, by solving the equations that

describe the motion of each particle of the systems. After the equilibration, the

actual measurements are performed.

From the very first algorithm, developed in the late 1950s to investigate collisions

of hard spheres [161,162], MD simulations progress led to the first description of liquid

water [163,164] and proteins [165]. Nowadays, several MD simulations programs [154,

166–169] are routinely used with constantly improved hardwares [150, 152, 153, 155–

157,159,170] to study solvated [145,148,171] and membrane proteins [?, 73,77,172],

or to validate homology models for proteins whose three-dimensional structure is still

missing.

2.1.1 Theoretical framework

The theoretical basis of MD simulations to describe biological world lies in statis-

tical mechanics, which provides mathematical expressions that relate microscopic

properties such as atomic positions and velocities, computed in the simulations, to

macroscopic observables such as pressure, energy, etc. In order to describe how sta-

tistical mechanics connects the macroscopic world to its microscopic components,

few definitions should be first recalled.

The thermodynamic state of a system is defined by the set of its macroscopic

parameters, like temperature T, pressure P and number of particles N, while the

microscopic state is defined by the positions, r, and momenta, p of all the particles
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of the system. The collection of these phase space points that belong to a particular

thermodynamic state is called ensemble and corresponds to the possible conforma-

tions of the system. The macroscopical observables are then defined as ensemble

averages as described in equation 2.1.1.

hAi
ensemble

=

ˆ ˆ
dpNdrNA

�
pN , rN

�
⇢
�
pN , rN

�
, (2.1.1)

where A
�
pN , rN

�
is a function of the position r and momenta p and represents

the observable of interest, re-weighted by the probability density

⇢
�
pN , rN

�
=

1

Q
exp

h
�H
(

pN,rN
)

/KBT

i

, (2.1.2)

where H is the hamiltonian of the system, T the temperature, k
B

the Boltzmann

constant and Q is the partition function

Q =

ˆ ˆ
dpNdrN exp

h
�H
(

pN,rN
)

/KBT

i

. (2.1.3)

As the integral over the phase space is extremely difficult to solve, MD simula-

tions calculate each point of the phase space step by step. Therefore, to calculate

the ensemble average properly the simulations must explore all the possible states

accessible by the system. This means that, in principle, the trajectories need to be

long enough to explore the whole phase space. However, such condition is not always

guaranteed, even with multiple MD simulation [173].

The way MD simulations determine the observable values is, however, trough a

time average of A as described in the following equation
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hAi
time

= lim
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ˆ
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⌧=0

A
�
pN (t) , rN (t)

�
dt ⇡ 1

M

MX
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A
�
pN , rN

�
, (2.1.4)

where M is the number of time step in the simulation, t is the simulation time

and A
�
pN , rN

�
is the value of A at each step. To relate the time averages provided by

MD simulations and the ensemble averages that define the experimental observables

a strong hypothesis is to be made, the ergodic hypothesis which can be resumed by

the equation 2.1.5.

hAi
ensemble

= hAi
time

. (2.1.5)

The idea that support the ergodic hypothesis is that, if the system is free to

evolve indefinitely in time it will pass through all the accessible states. To preserve

the validity of such hypothesis is thus necessary that MD simulations generate enough

conformations that might be representatives of all the states of the system.

As the macroscopic experiments might be performed in different conditions so do

MD simulations, and the choice of the ensemble does make a difference when comput-

ing the observables averages [174]. However, techniques exist to relate fluctuations

in different ensembles [175] allowing a comparison of the results of MD simulations

performed in different conditions. Several algorithms have been developed to mimic

the different ensembles properties, such as the Andersen, Nosé-Hoover, Berendsen

and Langevin dynamics algorithms [176–180]. With this methods is thus possible to

perform MD simulations in: NVE (micro-canonical) ensemble, in which the num-

ber of particles N, the volume V and the total energy E are constant; NVT , one of

the main ensembles used in MD simulations, with conserved number of particles N,
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volume V and temperature T ; NPT with constant number of N particles, pressure

P and temperature T.

2.1.2 Classical Mechanics

In the previous paragraph it was introduced the theoretical basis of the MD sim-

ulations method. The aim of this paragraph is to describe how the instantaneous

value of A
�
pN , rN

�
are computed through the evaluation of the forces that act on

each particle of the system. To efficiently compute the observables values, it is

necessary a first approximation to neglect the subnuclear and nuclear interactions

among the particles, which can be separated from the electronic interactions in the

so-called Born-Oppenheimer approximation. Since the energy scale for sub- and

nuclear interactions is way beyond the biological interactions energy scale, in most

of the circumstances the quantum nature of the nuclei can be safely neglected and

they can be considered as classical particles that move in an effective potential. In

this approximation, the effective potential is due only to the quantum nature of the

electrons in the so-called Ehrenfest dynamics scheme. Therefore the major task of

quantum mechanics is, in the Born-Oppenheimer approximation, to find the solution

of the Scrödinger equation for the electrons. However, the solution of such equation

is computationally demanding and, as additional limitation, only relatively small

system can be simulated. This led to a more heuristic way to study macromolecules

systems, and the developments of semi-empirical effective potentials, which are much

faster to integrate. These potentials will be described later in this Chapter.

In this classical approximation the particles follow the Newton’s equation of mo-

tion 2.1.6, which relates the sum of the forces that act on a particle i with mass m

and its acceleration @

2ri(t)/@t2.
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X

j

F
ij
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i

@2r
i

(t)

@t2
(2.1.6)

However, if the classical approximation considerably simplifies the physical descrip-

tion of the system, it makes theoretically impossible to find an analytical solution for

equation 2.1.6. In fact, such solution for a system of N interacting particles is pos-

sible only for N = 2. The first step to move around this limit is to assume that the

force F
i

(t) that acts on particle i at the time t is constant for a �t time interval, so

that the new particle position r
i

(t+�t) and velocity v
i

(t+�t) can be computed.

Several algorithm based on Taylor series have been developed to integrate the equa-

tion of motion [181–185]. An example is reported in equation 2.1.8 that describes

the verlet leap frog algorithm, that evaluates the positions at time t+ 1
2�t by using

the velocities at time t� 1
2�t.

F
i

= -rU
i

, i = 1 . . . N (2.1.7)
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The second step to move around the limitations of the N -particles system is to

parametrize the resultant force F
i

in equation 2.1.6 with the so-called force field,

where the potential energy of the system (derived from equation 2.1.7) is described

as sum of semi-empirical terms that describe all the interactions between the particle

i and the the other particles j of the system, as shown in equation 2.1.10.



2.1. MOLECULAR DYNAMICS 30

U
i

=

X

j

U bonds

i,j

+

X

j

Uangels

i,j

+

X

j

Udihedrals

i,j

+ (2.1.10)

+

X

j

U electrostatic

i,j

+

X

j

UV dW

i,j

The terms in equation 2.1.10 that contribute to the total energy of the system

can be further divided into bonded and non � bonded interactions, described in the

next paragraphs with more details.

Bonded Interactions This class includes the contributions of the bond, angles

and dihedral interactions and each term has the following functional form [186]:

U bonded

= U bonds

+ Uangels

+ Udihedrals (2.1.11)

U bonds
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bonds

k
r

(r � r
eq

)
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Uangles

=

X

angles

k
✓

(✓ � ✓
eq

)

2 (2.1.13)

Udihedrals

=

X

dihedrals

V

2

(1 + cos (n�� �)) (2.1.14)

While a more realistic description for the bonds interaction is provided by the

Morse-potential, for small deviations from the equilibrium distance r
eq

, it can be

approximated to the harmonic interaction in equation 2.1.12, as described in Figure

2.1.1 and Figure 2.1.2a. In this approximation the interacting particles are described

as rigid bodies, connected by a spring with an empirical k
r

constant. Analogue

to bonds, angle ✓ between two particles also fluctuates around a reference value as
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shown in Figure 2.1.2b.

Figure 2.1.1: a) The approximation of the Morse potential [Blue] with the harmonic
potential [Red] for small deviations from the average distance b0; b) The harmonic
interaction between particle A and particle B with a spring with a k

AB

constant.

The potential energy associated with this motion is an harmonic function, with

k
✓

as spring constant. The torsional motion along a covalent bond is taken into

account in the dihedral potential function, where � (see Figure 2.1.2c) is the angle

between the ijk and jkl planes, n is the number of the minima and � is a phase

angle. In addition to the last term of the bonded interactions, eq 2.1.15, describes

the improper dihedral contribution, where the angle ⇠ is chosen to keep planarity in

a molecular structure.

U Improper dihedrals

=

X

dihedrals

1

2

k
⇠
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eq

)

2 (2.1.15)

Non-bonded Interactions Non-bonded interactions are described by the elec-

trostatics and Van der Waals (VdW) interactions. The Coulomb potential describes
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Figure 2.1.2: a-c) Bonded interactions for the bonds, angle and proper dihedral
terms. d) Bonded interaction for improper dihedral contributions. e-f) Non-bonded
interactions terms described by the Coulomb and the Lennard-Jones potentials

the attractive and repulsive interactions between charged atoms at distance r
ij

(see

Figure 2.1.2e) as described in equation 2.1.16, where the ✏0 is the vacuum dielectric

constant. Electrostatic interactions are, however, possible also between uncharged

atoms, whose asymmetric charge distribution may form transient dipoles as shown

in Figure 2.1.2f. The dipoles interacts thought the so-called Van der Waals poten-

tial, parametrized in the Lennard-Jones potential in the equation 2.1.17, where the
⇣

�ij

rij

⌘12

is the repulsive long-range term and
⇣

�ij

rij

⌘6

is the attractive short-range term,

✏ is the depth of the potential well and �
ij

is zero-potential distance between particle

i and j.
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Force Fields Several force fields have been designed to efficiently compute the

potential energy terms described above such as the force fields in the AMBER package

[187,188], used for the simulations in this thesis [186,189,190], the force fields in the

CHARMM package [169, 191, 192], GROMOS [193–195] and MARTINI, developed

as coarse-grained force field [196]

2.1.3 Periodic Boundary Conditions (PBC)

Even in the best laboratory conditions, real experiments are always influenced by the

surrounding boundaries. In most cases such influences can be neglected or taken into

account as systematic errors. In the computational world the simulated experiments

are limited by the simulation box that contains the system. Since the box is not

infinite, the edge effect will influence the evolution of the simulation. To avoid this

limitation, the so-called Period Boundary Conditions (PBS) have been developed.

The idea is to simulate an infinite system, composed by the copies of the finite initial

box. The result is a three-dimensional system where identical images are arranged

in a periodic array. In this extended box the atoms can leave the original simulation

box on one side and enter the simulation box as periodic image on the opposite side

as described in Figure 2.1.3. As consequence, the total number of particles in the

system is conserved. One drawback of the PBC method is the possible interaction,

e.g. electrostatic, between the system under study and its periodic images [197]. In

order to avoid such interactions a proper chose of the simulation box is needed.
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Figure 2.1.3: a) Two dimensional representation of periodic boundary conditions
(PBC). Atoms that leave a simulation system a side enter the original system on
the opposite side. b) Truncated octahedral cell box for MexA protein. The water
molecules close to the protein have been removed to highlight the protein. c) Section
of periodic images (in gray) of the initial octahedral cell box. The truncated octahe-
dron cell has been chosen to reduce the number of water molecules to be simulated,
maximizing at the same time the distance between the protein images.

However, if a very large box would be potentially the best choice it is necessary to
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consider that the higher the number of the atoms the slower the simulation is. An-

other point that should be taken into account in the PBC context is how long-range

interactions can be computed during the simulation of an infinite three-dimensional

periodic system.

As example, the Coulomb potential in equation 2.1.16 might include interactions

between images that should be avoided. Since a simple truncation of the potential

is not allowed [174, 198] it became essential to find a way to efficiently compute

long-range interactions in the PBC context. A way to take into account the long-

range interaction is through Ewald summation and the Particle Mesh Ewald (PME)

methods [199–202]. In a system of N charged particles located in a cube of volume

L3, under PBC, the Coulomb potential in equation 2.1.18 can be written as

U electrostatic

=

1

2

X

n

NX

i,j

q
i

q
j

4⇡✏0 |rij + nL| (2.1.18)

where the sum is over all periodic images n and over all the particles (it is as-

sumed that particle i interacts with all its periodic images). The equation 2.1.18

however, has been proved to converge very slowly and thus cannot be used to effi-

ciently compute electrostatic interactions. The idea behind the PME method is to

split the Coulomb potential into two parts by using the identity

1

r
=

f (r)

r
+

1� f (r)

r
(2.1.19)

where f (r) is a generic function of the distance r between the particles. The

choice of the function f (r) has been proved to be crucial for the efficiency of the
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method, although different choices yield to comparable results [203]. The iden-

tity 2.1.19 is introduced to separately consider the two main complications of the

Coulomb potential, i.e. the large variation at small r and the slow decay for large r.

Therefore, the first term of the identity 2.1.19 should be negligible beyond a cutoff

r
max

in order to avoid the divergec when r ! 0. At the same time, the second term

should vary slowly for all r so that its Fourier transform could be represented by

limited number of reciprocal vectors. An example of one traditional function [204]

that fits these requirements is the function 2⇡�1/2
´1
r

dt exp (�t2).

2.2 Homology Modeling

To efficiently use MD simulations in the study of bimolecular systems it necessary

a proper initial description of the system under study. As example, since proteins

functionality is strongly related to their three-dimensional structure [205–207], a bad

initial model description may lead to largely different results [208]. Therefore several

experimental techniques have been developed to determine the structure of proteins,

such as X-ray crystallography [209,210], Nuclear Magnetic Resonance (NMR) spec-

troscopy [211–213] or Electron Microscopy (EM) [214–217]. However an experimental

description of the three-dimensional structure for all the proteins in nature is very far

to be reached, since only a small fraction of them has been structurally determined

to date [218–220]. To fill this gap in the proteins structure knowledge computational

methods have been developed in recent years.

One of the main computations approaches is the so-called homology (or compar-

ative) modeling that predicts three-dimensional structure of proteins. To accomplish

this role the modeling procedure requires at least one reference structure that have

been previously obtained with experiments [220–224]. To predict a realistic structure
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the target and the template proteins should have a significant amino acid sequence

similarity [225, 226], where the term significant refers to the definitions [226] of the

(i) easily detected relationship (>30% sequence identity), (ii) the twilight zone [227]

with statistically significant sequence similarity (10%-30% sequence similarity) and

(iii) the “midnight zone” [227] of statistically insignificant sequence similarity. Inde-

pendently of the method used to align sequences, searching in the midnight zones

of the sequence-structure relationship often results in false negatives, false positives,

or alignments that contain an increasingly large number of gaps and alignment er-

rors [226]. Among different programs that have been developed, the MODELLER

package [221,223,228] was used to build the proteins structures studied in this thesis.

After the sequence alignment, the MODELLER first step of model building is to

compute distance and dihedral angle restraints for the target sequence, derived from

the template three-dimensional structure using a database of alignments [229]. Rela-

tionships such as the correlations between two equivalent Ca-Ca distances from two

related proteins are evaluated and expressed through probability density functions

(pdf) and are used as spatial restraints. Then, stereochemical restraints, like bond

length and bond angle preferences are extracted from the Charmm22 force field [230]

or from the so-called homology-derived restraints analysis, in which restraints are cal-

culated from template protein structures (see Figure 2.2.1 for a schematic description

of the modeling process).
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Figure 2.2.1: Main steps in the modeling process with MODELLER. First, the target
and the template sequences are aligned. Second, spatial restraints such as Ca–Ca
distances, hydrogen bonds, dihedral angles, etc. are transferred from the templates
to the target. Finally, the three-dimensional model is obtained by satisfying all the
restraints as well as possible

The result of this procedure is a three-dimensional structure for the target protein.

If multiple structures are obtained from the homology modeling, the best model

can be selected with the lowest value of discrete optimized protein energy (DOPE)

scoring function [231]. However, the DOPE score index is not an absolute measure

that validates the model but can be used only to rank the models obtained from the

same alignment.

2.3 Protein-protein docking

Many biological processes are mediated by protein–protein interactions that lead

to a macromolecular assemblies [232–234]. Thus, an understanding of such inter-

actions could deepen the knowledge of the assemblies building process and their
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functionality. However, experimental determination of protein-protein complexes

is generally more difficult than the determination of each component. In the last

decades, the developments in the computational biology led to several methods to

predict possible assemblies structures, coded in computational programs like, as ex-

ample, AUTODOCK, DOCK, GOLD, SwissDock and ATTRACT [235–241]. With

the large number programs available it is possible to simulate protein-protein dock-

ing with high accuracy [242] using a wide range of options like, rigid-body docking,

flexible docking with normal mode computations or ensemble of conformations, etc.

For this thesis, the program used to study protein-protein docking was ATTRACT

and its description is in the following paragraph.

ATTRACT The protein-protein docking program, ATTRACT has been devel-

oped in 2003 by M. Zacharias [240] and continuously updated [241, 243–246]. The

ATTRACT approach is based on energy minimization in rotational and translational

degrees of freedom of two or more protein partners. In case of two proteins-docking

a starting point grid for the ligand is generated around the receptor as described

in Figure 2.3.1. For each starting point, various orientations of the ligand are then

generated. The docking from each starting position is based on energy minimizations

of the ligand protein with respect to the receptor during their approach. During the

docking process, ATTRACT includes the flexibility of the proteins by including the

normal modes analysis or an ensemble of different conformations. Recently, new ap-

proaching methods have been introduced (like “fixed receptor and free ligand, with

gravitational attraction to the receptor” or “free receptor and ligand with a common

gravitational center”) and the starting point grid can be replaced with a grid repre-

sentation of both the ligand and the receptor. Together with the parallelization of the

code and the possibility to drive the docking with Cryo-EM maps, these innovations



2.3. PROTEIN-PROTEIN DOCKING 40

remarkably increased the velocity of the docking analysis.

Figure 2.3.1: Section of the starting point grid [Red] for the protein-protein docking
with ATTRACT for the Membrane Fusion Protein MexA. The distance between the
points is larger than the maximum distance from the receptor atoms and the ligand
center.

Reduced protein model The ATTRACT package employs a reduced model

for the proteins, between the full atomic and the residue-based representation. The

largest residues are represented by four pseudo atoms, two for the backbone and two

for the side-chain, while the side-chains of small residues are identified by on pseudo

atom, in the side-chain geometric center. The potential energy is described by a soft

Lennard-Jones function and an electrostatic interaction as shown in Figure 2.3.2
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Figure 2.3.2: Soft Lennard-Jones potential in ATTRACT. In case of an attractive
pair [Black] an r�8/r�6 Lennard-Jones-type potential is used. For a repulsive pair
[Red] the energy minimum is replaced by a saddle point.

2.4 Analysis methods

MD simulations produce as result trajectories of atomic positions (and optionally

velocities and energies) as a function of time. Several methods are available to

extract meaningful information from the MD trajectories. In this paragraph will be

described the main analysis performed for the work of this thesis.

RMSD analysis

The evaluation of the Root Mean Square Deviation (RMSD) is in most cases the

first analysis that gives an overview of the global behavior of the system during

the MD simulation. Although it cannot be used to estimate the convergence it

is useful to check wether the simulation has not reached the convergence [247]. To

evaluate the RMSD between two structures, the first structure is superimposed to the

reference and the RMSD value is computed as described in equation 2.4.1. Generally

C↵ atoms, backbone atoms or heavy atoms are applied as reference atoms in this
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analysis.
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A more accurate description of the global behavior of the system is provided by

the RMSD-matrix, where each element (i, j) of the matrix consists of the RMSD

value between the structure of the protein at time i and j: the lower the value the

highest the similarity of the structures (special case for diagonal elements (i, i) with

zero value of the RMSD).

Protein compactness

This analysis is mainly based on the Radius of Gyration (RoG) analysis of the struc-

tures during the MD simulations. It is defined as the RMS distance between the

center of the protein and its ends as described in equation 2.4.2, where r
cm

is the

position of the center of mass of the system and r
i

the coordinates of the i -th atom.

It is a useful index of the compactness of the protein structure [248]. Other analysis

were performed to support the RoG results, such as the inter-domain distance of the

protein structure and the distribution of the Center of Mass (CoM) of each domain.

These analysis were performed with both CPPTRAJ and home made scripts and

were performed in order to gain more information about the relative motion of each

domain with respect to the others.
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Cluster analysis

An useful way to study the MD simulation trajectory is to group molecular configura-

tions into subsets based on the similarity of their conformations [249,250]. Clustering

algorithms collect data elements (points) in sets called clusters using a function that

measures the distance between pairs of points. The points among in each cluster are

more similar to each other than to points of other clusters and thus, the size of each

cluster are likely to be different as higher energy substates will be less populated

than lower energy substates. Several algorithms have been developed to perform

cluster analysis such as hierarchical, centripetal, complete-linkage, centroid-linkage,

average-linkage, means, Bayesian and COBWEB. Among this variety of methods in

this thesis was used the average-linkage algorithm in the CPPTRAJ package [251],

in which the distance between two clusters is defined as the average distance between

each point in one cluster and every point in the other clusters. The average-linkage

algorithm was selected among the others as it was proved to be one of the most

useful algorithms for such analysis [250].

Secondary structure analysis

The protein structures studied in this thesis are the products of homology modeling

using crystal structures as templates and the analysis of the secondary structure

during the MD simulation allows the identification of possible sites of instabilities.

Furthermore, as the MD simulations for the systems aimed to point out the effects

of specific mutations, the secondary structure analysis provide a powerful tool to

identify changes in the protein structures. The analysis of the secondary structure

in this thesis were performed with the CPPTRAJ analysis tool.
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Bonds analysis

During the MD simulation the residues of the proteins can interacts to form or break

new bonds that can confer stability or flexibility to the system. The analysis of the

bonds evolution focused on the H-bonds and Salt bridges. The first family describes

the bond between two residues that share an hydrogen atom. The analysis was

performed with CCPTRAJ [251] with a distance cut-off of 3.0 Å and an angle cut-off

of 135 degrees. The second family describes the bonds between any oxygen atom of

acidic residues and the nitrogen atoms of basic residues and, in this case, VMD [252]

was used to analyze possible inter-domain Salt bridges with a distance cut-off of 3.2

Å.

Radial Distribution Function

Water plays a crucial role in the structure, dynamics and function of a protein.

Depending of the interactions between water molecules and protein, water can be

broadly classified into three categories: bulk water, around the protein molecules at

greater distance than the van der Waals range; bound water, which forms hydro-

gen bonds with charged or polar protein atoms inside the protein; hydration water,

which interacts with the protein surface. The hydration water contributes to many

properties of the protein such as solubility, drug docking and protein folding. Thus,

the study of possible changes in the hydration of protein interior is important to

understand experimental differences, which have been observed in the drugs efflux

as described in Chapter 3. The radial distribution function (RDF) provides a way

to study the hydration of a cavity, since it describes variations of matter density

around a reference point. First, the reference particle is surrounded by a sphere with

radius r. Then, the number of particles within a distance r and r + �r is evaluated
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as described in Figure 2.4.1. In Chapter 3, the RDF is computed to study the effect

of a mutation in the hydration of a cavity, i.e. the distal binding pocket of AcrB.

Figure 2.4.1: Scheme of the RDF computation procedure: the reference particle [Red]
is first surrounded by a sphere of radius r. Then, the RDF computes the probability
of finding a particle in a sphere shell within r and r + �r [Blue spheres].





Chapter 3

AcrB

Increased resistance in clinical settings

Adapted from AcrB drug-binding pocket substitution confers clinically relevant resis-

tance and altered substrate specificity. Proc Natl Acad Sci (2015): 201419939.

In this Chapter is described the first case of increased drug resistance due to a

mutation within an efflux pump, in clinical settings. The study focused on elucidat-

ing the mechanism of resistance in a unique set of clinical isolates collected over the

course of a complex Salmonella infection [253,254]. The isolates were obtained from a

52-years-old male patient admitted for repair of a leaking abdominal aortic aneurysm

graft. The S.typhimurium serovar was isolated (strain L3) before the treatment with

ciprofloxacin, and was susceptible to ampicillin, sulphonamide, trimethoprim, ce-

furoxime, chloramphenicol, gentamicin, and ciprofloxacin. During the therapy the

patient received i.v. ciprofloxacin, oral ciprofloxacin, i.v. ceftazidime, and i.v. aztre-

onam. Isolates were taken over the course of the treatments and MDR strains were

isolated. The last strain, L18, was isolated after a post antibiotic-free period of two
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weeks. A comparison between the pre- and post-therapy isolates showed a less sus-

ceptibility to numerous agents, including ciprofloxacin and �-lactams [254], as shown

in Table 3.0.1. The genome sequencing revealed a new mechanisms of clinically sig-

nificant MDR selected during therapy: substitution in a transporter protein, which

altered the specificity of the efflux pump for antibacterial drugs. The structural im-

pact of the substitution was investigated by molecular dynamics (MD) simulations

and the results will be described in the following paragraphs.

Weeks MIC, µg/mL
Strain post-therapy Cip Nal Chl Tet Atm AcrB residue 288

L3 0 0.015 2 1 0.16 0.12 G
L10 1 0.06 8 2 0.12 0.5 G
L11 3 0.03 8 2 0.25 0.25 G
L12 3 0.5 32 8 0.5 1 D
L13 3 0.5 16 8 0.5 0.5 D
L6 5 0.5 32 8 0.5 0.5 D
L16 17 0.5 32 8 0.5 1 D
L18 19 0.5 32 8 0.5 2 D

Table 3.0.1: Antimicrobial susceptibility of isolates and substitution in AcrB. MIC
data presented areare the mode values. MIC values shown in bold are two or more
dilutions higher than for the pretherapy isolate, L3. Isolates in bold are those with
G288D substitution. Atm, aztreonam; Caz, ceftazidime; Chl, chloramphenicol; Cip,
ciprofloxacin; Nal, nalidixic acid; Tet, tetracycline.

3.1 G288D Substitution

Antibiotic resistance, particularly to ciprofloxacin occurred and increased in the iso-

lates along the time course of infection and was first attributed to increased expression

of the acrB transcript [255]. Indeed, measurement of acrB expression using an acrAB

promoter–GFP fusion confirmed increased acrB expression in all strains isolated af-

ter the onset of therapy but the expression level did not correlate with the MDR
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phenotype. For example, acrB expression in L10 was not significantly different from

that of L18, but L18 was more resistant. However, the level of MDR did correlate

with which residue was present at position 288 of AcrB; the isolates with the highest

level of MDR all carried the G288D substitution in AcrB. Isolates with an aspartic

acid at residue 288 were two- to fourfold less susceptible to antibiotics compared with

those with glycine at the same residue. The changes in susceptibility were sufficient

to confer clinically relevant resistance to the drugs used to treat the patient. To

confirm the importance of AcrB to the phenotype, acrB was inactivated in the MDR

isolate, L18, to give strain L1299 and susceptibility to known substrates of AcrB was

determined. Decreased MICs of ciprofloxacin, nalidixic acid, chloramphenicol, and

tetracycline, to within one dilution of for the pre-therapy isolate L3, were obtained.

In Table 3.1.1 are reported the effect of acrB inactivation and G288D mutation on

antimicrobial susceptibility.

MIC, µg/mL
Strain Genotype Cip Nal Chl Tet Dxr Min

L3 Pre-therapy isolate 0.015 2 1 0.16 0.12 1
L18 Post-therapy isolate 0.5 32 8 4 >256 4

L1299 L18 acrB::aph 0.015 1 1 0.5 4 0.5
L1351 L1299 + pacrB -WT 0.06 4 1 1 16 1
L1315 L1299 + pG288DacrB 0.25 16 4 2 4 0.25

Table 3.1.1: Antimicrobial susceptibility of isolates and substitution in AcrB. Ex-
periments were carried out on at least three separate occasions and the mode value
is presented. MIC values indicated in italic are two or more dilutions lower than
for L18. MIC values indicated in bold indicate a difference between the MIC for
L18 in which acrB has been inactivated and replaced with mutant (G288D) AcrB or
wild-type (WT) AcrB. Chl, chloramphenicol; Cip, ciprofloxacin; Dxr, doxorubicin;
Min, minocycline; Nal, nalidixic acid; Tet, tetracycline.

To further investigate the effect of the G288D substitution, the wild-type and mu-

tant acrB sequences were cloned into pWKS30 and transformed into the multidrug-
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susceptible L1299. Similar levels of wild-type (L1351) and mutant (L1315) acrB/AcrB

were expressed. Apart from ciprofloxacin, where only a modest decrease in suscepti-

bility was seen (due to the mutation in gyrB) [256], L18 DacrB with wild-type AcrB

(L1351) had susceptibility to antibiotics similar to the pre-therapy isolate L3. How-

ever, L18 DacrB with mutant G288D AcrB (L1315) was MDR and the MIC values

were within one dilution of those for L18 for ciprofloxacin, nalidixic acid, chloram-

phenicol, and tetracycline. Interestingly, L1315 was more susceptible to minocycline

and doxorubicin than L1351, which had wild-type AcrB. This was not seen in L18.

This may be due to the level of AcrB being greater in L18 or due to one of the SNPs

in another gene confounding the effect of the G288D substitution.

As described in Chapter 1, drug binding within AcrB is complex and is proposed

to include several possible sites before extrusion including a vestibule and proxi-

mal and distal binding pocket [75, 115]. It has been suggested that low-molecular-

mass compounds could bind directly to the phenylalanine-rich distal binding pocket

[?, 257, 258], bypassing the proximal binding pocket and vestibule, which is impli-

cated in the recognition of larger compounds [259] such as erythromycin [257, 260].

Structural alignment of the S.typhimurium AcrB with the corresponding E. coli se-

quence shows high conservation of the distal pocket residues, suggesting a conserved

mechanism of drug binding, and justifying the use of the E. coli structure as a guide

for rationalization of the effect of the G288D substitution in L18 AcrB. Residue 288

is also highly conserved in AcrB of other Enterobacteriaceae, suggesting an impor-

tant structural role. In the available crystal structures of AcrB in its apo- (PDB ID

code 2J8S) [140] and in doxorubicin- (PDB ID code 4DX7) and minocycline-bound

forms (PDB ID code 4DX5) [258], G288 is located in the middle of a �-strand, with

the neighboring side chains pointing away from the pocket, suggesting that the sub-

stituted side-chain will protrude into the pocket cavity, as shown in Figure 3.1.1.
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Figure 3.1.1: Mutation G288D in the middle of a �-strand in PN2 domain, suggesting
that the substituted side-chain will protrude into the pocket cavity.

The substitution of glycine with this bulky and charged aspartate residue will

have a drastic impact on structure and dynamics of this primarily hydrophobic pocket

(see Figure (3.1.2) for the example of doxorubicin binding), not only by changing the

electrostatic profile and polar environment of the cavity but also by causing steric

clashes with several key residues involved in the hydrophobic stacking interactions

with the substrate (see Figure (3.1.3)).

Indeed, previous studies have shown that several drug recognition determinants

are deeply perturbed by a single substitution in a key region of the transporter

[73,261].
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Figure 3.1.2: Binding of doxorubicin to the AcrB monomer. Overall view of the AcrB
monomer bound to doxorubicin (shown in space fill) as per PDB ID code 4DX7

3.2 Computational study

In this paragraph are reported the computational methods used to study the effect

of G288D mutation in the distal binding pocket and the results of such study.

3.2.1 Homology modeling and MD simulation

To analyze possible changes in the distal binding pocket as a result of the mutation

homology models of wild-type and G288D variant of S.typhimurium AcrB were built

with the Modeler package [221] and using the crystal structure of wild-type E. coli

AcrB (PDB ID code 2J8S [140]) as a template. For each system 20 different models

were generated, which were then sorted by their discrete optimized protein energy

score [231]. The best structures according to this criterion were selected for further
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Figure 3.1.3: Different view of doxorubicin binding to AcrB monomer. In purple is reported
the mutation site, in yellow the residues involved in drug recognition.

MD simulations. These latter were performed in a 0.1 M KCl water solution, using

the NAMD 2.9 simulation package [168] and the ff14SB force field [262]. A reduced

model containing only the periplasmic domains (see Figure (3.2.1)) was used as

in previous computational studies on E. coli AcrB [75, 76, 263]. After structural

optimization, the system was equilibrated by linearly increasing the temperature

from 0 to 310 K in 1 ns of NPT MD simulation and equilibrated further for additional

5 ns. Then, multi-copy simulations (three for each system: one of 400 ns and two

of 200 ns for the wild type and three of 400 ns for the G288D system) in the NPT

ensemble were performed both on the wild-type and on the G288D systems.
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Figure 3.2.1: Reduced AcrB model. The trans-membrane domains were cut and only the
periplasmic part of the structure was used in the MD simulations.

3.2.2 Results

Comparison of representative structures (i.e., the conformations with the lowest

RMSD from the averages) of the wild-type and mutant proteins revealed that the

introduction of the aspartate induces local structural changes in the distal binding

pocket (RMSD 3.1 Å). In particular, residues F178 and Q176 assume alternative

conformation to avoid steric clashes with the aspartate and F136 shows a large dis-

placement (See Figure (3.2.2)a). As a result, the radius of gyration calculated for

the residues lining the distal pocket increased by ⇠1Å in the G288D variant (from

⇠10.5 Å in wild type to ⇠11.5 Å, Figure (3.2.2)b). The radius of gyration is indica-

tive of the level of compaction in the pocket and the measured variation indicates

an increased size. However, these changes have only limited effect on the secondary

structure of the distal binding pocket as shown in Figure (3.2.3).

In addition to these local structural changes in the distal binding pocket, pos-

sible changes in the access regulation were investigated. In particular, since the

switch-loop (see Figure 3.2.4) has been already proved to be crucial in the drug ac-

cess regulation [258, 264], any change in its flexibility might suggest different access
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Figure 3.2.2: Effects of the G288D mutation in the distal binding pocket. a) Close view of
the binding site where important residues are shown (blue, wild type; red, mutant). Owing
to the presence of the side chain of the aspartate residue in the G288D mutant, the side
chain of F178 tilts away in the G288D mutant compared with its orientation in the wild
type protein (denoted by the arrow and labeled as 1). In turn, the side chain orientation of
the residue Q176 is also altered in the mutated protein (denoted by 2) with respect to the
wild-type form. Finally, the side chain of F136 also changes orientation (denoted by 3) b)
Evolution of the distal pocket’s radius of gyration along the 400 ns long MD simulations of
the wild type (dotted black line) and G288D (dotted red line) variant of AcrB.

mechanisms. Thus, a comparison between the flexibility, in terms of RMSF, of the

switch-loop in the wild type and the mutant was performed. In Figure 3.2.5 is re-

ported the difference between the RMSF of the G288D and the wild type in two

functional states, i.e. tight and access. The differences induced by the mutation in

both the tight and access states suggest the possibility of new binding mechanisms

because of the higher flexibility in the tight state and different access regulation due

to the decreased flexibility in the access state.
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Figure 3.2.3: Schematic diagrams of the secondary structure of the distal drug binding
pocket (calculated on the closest-to-average structure extracted from MD simulations) in
wild-type (upper diagram) and G288D mutant (lower diagram) of AcrB. Secondary struc-
ture elements are numbered according to Murakami et al.

Figure 3.2.4: Switch-loop (Blue) that regulate the access of small drugs in the distal
binding pocket (PN2, in Red, and PC1, in Green).

Figure 3.2.5: The difference between the RMSFs of the switch loop in G288D mutant and
wild type AcrB for monomers in the access (A, black curve) and binding (B, red curve)
configurations. A and B 3 refer to the configurations that the monomers are supposed to
assume during the proposed functional rotation.
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Furthermore, the introduction of the aspartate increases the polarity of the oth-

erwise highly hydrophobic distal binding pocket (see Figure (3.1.3)) and hence may

affect its hydration. To test this, radial distribution function (RDF) profiles, which

show the probability of finding water molecules at a certain distance from the G288

/ D288 residues, were calculated. Water residence times and average numbers of

water molecules were calculated as previously described [265,266] with the following

alterations. First, it was defined fast-, medium-, and long-time waters as those hav-

ing survival probabilities t of less than 100 ps, between 100 ps and 1 ns, and higher

than 1 ns, respectively. Second, because the trajectory was saved every 10 ps, there

was no need to use a stretched exponential to fit survival.

As anticipated in the mutant protein the D288 residue was found to have a

higher probability of being surrounded by water molecules during the course of the

simulation (Figure (3.2.6), solid lines). The sharp peak at around 2.5 Å from D288 is

due to the presence of the first hydration shell. To the contrary, water molecules are

on average absent in the close vicinity of G288, consistent with the more hydrophobic

environment in the wild-type protein (Fig. 2, dashed lines). In addition, the mutant

exhibits a notable change in residence time for water molecules within the distal

pocket as described in Table 3.2.1.
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Figure 3.2.6: RDF profiles indicating the distribution of water molecules near the D288
residue in the mutant (solid lines) protein and near the G288 residue in the wild-type
protein (dashed lines). Differently colored lines (solid or dashed) represent the RDF profiles
calculated from two different simulations and for each of the monomers of the AcrB protein.
RDF profiles are calculated based on the distance between the water oxygen to center of
mass of G288/D288 residue’s side chain. (Inset) A representative snapshot of the presence
of water molecules in the binding pocket of the G288D mutant protein. Water molecules
at the corresponding positions are absent in the wild-type protein.

Model n
s

⌧
s

n
m

⌧
m

n1 ⌧1
WT 26.7 72.8 7.3 392 1.1 4278

G288D 30.9 92.4 14.9 469 3.9 2546

Table 3.2.1: Number and average residence times (in ps) of short (n
s

, ⌧
s

), medium
(n

m

, ⌧
m

) and long (n1, ⌧1) residence time waters within the distal pocket of monomer
B. The values are computed by fitting the reduced survival probability DNw(t) with
three exponentials.

Then the effect of the G288D substitution on doxorubicin, minocycline, and

ciprofloxacin efflux was analyzed. Doxorubicin and minocycline, although not clini-

cally relevant, have been co-crystallized with E. coli AcrB, making phenotypic and
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structural data easier to correlate and interpret. A comparison between these co-

crystal structures and the results from the MD runs of the G288D variant was then

performed. Consistent with MIC and drug accumulation data below, and based on

the assumption that the binding of tetra-ring structures follows that in the co-crystal

structures, the G288D substitution would result in pronounced steric clashes with

both doxorubicin and minocycline, due also to displacement of amino acid F178 dis-

cussed above. Although an experimental structure of the ciprofloxacin–AcrB complex

is lacking, a recent computational study [75] suggested that it binds to the bottom

of the distal pocket, in a different position than doxorubicin (See Figure 3.2.7).

Figure 3.2.7: Predicted effects of the mutation on the binding of the doxorubicin (DOXO)
and ciprofloxacin (CIP) in the distal binding pocket. DOXO and CIP are rendered with
transparent and solid thick sticks, respectively, colored by atom type. The Ca atom of
G288 is rendered in green and the side chain of D288 with yellow sticks. Side chains of
other most relevant residues are shown with thinner sticks, colored by residue type and
red in wild type and G288D, respectively. The orientation of CIP is derived from the MD
simulations (27), and that of DOXO is based on the experimental X-ray structure as from
PDB ID code 4DX7.

In contrast to doxorubicin and minocycline, the G288D substitution should not
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impair the binding of ciprofloxacin; instead, the additional hydroxyl groups present

in this compound may form hydrogen bonds with the introduced aspartate and resi-

dent waters, improving its recognition. In agreement with these hypotheses, G288D

in L1315 (L18 DacrB pG288DacrB) not only led to increased susceptibility to dox-

orubicin and minocycline, likely due to decreased efflux, but also conferred increased

efflux of, and decreased susceptibility to, ciprofloxacin and other fluoroquinolones.

Although the differential effect of the mutation on the different classes of antibac-

terial drugs is not immediately obvious, it is notable that the efflux of more hy-

drophobic substrates such as doxorubicin and minocycline is correlated with the

observed changes in the hydrophobicity of the distal binding pocket. Accordingly,

minocycline and tetracycline seem differentially affected, consistent with the former

being 10-fold more lipophilic than the latter. The computational results suggest

a decrease in ciprofloxacin susceptibility for AcrB G288D strains owing to an in-

crease efficiency of the its efflux. Subsequently, these prediction has been confirmed

by experimental tests in which the mutant AcrB protein was expressed in two well-

recognized standard antibiotic-susceptible reference strains, S. Typhimurium SL1344

and E. coli MG1655. In this way, unlike in L18, there were no other mutations that

could affect antibacterial drug susceptibility and drug efflux. This allowed study of

the G288D substitution in the absence of other mutations that could confound the

phenotype. To explore whether efflux activity was altered due to the AcrB G288D

substitution alone, the accumulation of ciprofloxacin, doxorubicin, and minocycline

was measured. In both Salmonella and E. coli the strain expressing mutant AcrB

(L1352 and I972, respectively) accumulated less ciprofloxacin than the strain express-

ing wild-type AcrB (L1365 and I971, respectively), suggesting more efficient efflux

of ciprofloxacin by the mutated protein (see Figure 3.2.8).
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Figure 3.2.8: The effect of the G288D mutation on the accumulation of ciprofloxacin (Cip),
doxorubicin (Dxr), and minocycline (Min) and on the efflux of doxorubicin in Salmonella
(a and b) and E. coli (c and d). a) and c) show accumulation of Cip, Dxr, and Min in
Salmonella and E. coli, respectively. Black bars show Cip accumulation, gray bars show
Dxr accumulation, and white bars show Min accumulation. Data presented are the mean
of the steady-state values for three biological replicates ± SD. Asterisk denotes values
that are significantly different from the corresponding wild-type parental strain (SL1344
or MG1655). Lines denote values, for strains carrying the G288D mutation, which are
significantly different to the strain carrying the wild-type AcrB. b) and c) and d) show the
efflux of Dxr by Salmonella SL1344 and MG1655, respectively. In each case diamonds denote
the wild type, squares denote DacrB, triangles denote the acrB mutant complemented with
wild-type acrB, and crosses denote the acrB mutant complemented with G288D acrB.

Conversely, strains of both species expressing mutant AcrB accumulated more
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doxorubicin and minocycline, indicating reduced efflux of these compounds (Fig-

ure 3.2.8a and c). In addition, Salmonella and E. coli with G288D AcrB extruded

doxorubicin less than strains with wild-type AcrB (Figure 3.2.8b and d). These

data support the hypothesis that the G288D mutation in AcrB improves efflux of

ciprofloxacin and so confers resistance to ciprofloxacin (and other fluoroquinolones)

while perturbing doxorubicin and minocycline binding and reducing efflux, so in-

creasing susceptibility to these agents. Furthermore, experiments examined whether

the G288D substitution affected any other Salmonella attributes that could have

contributed to the disseminated salmonellosis and the failure to effectively treat the

patient. As result, the G288D mutation did not alter fitness when grown in com-

petition with a strain with wild-type AcrB and did not affect invasion in the tissue

culture model of infection.

3.3 Discussion

In this study an interdisciplinary collaboration investigated the increased resistance

to ciprofloxacin in S.typhimurium, acquired during clinical treatments. During the

course of the therapy isolates were taken and the increased resistance appeared to-

gether with a substitution of one glycine reside with a negatively charged aspartic

acid, in the distal binding pocket of AcrB. Thus, a single nucleotide change caused

MDR by alteration of the substrate specificity of an MDR efflux pump. X-ray crys-

tallography of RND transporter proteins with substrates has proven very challeng-

ing, giving information only for three antibiotics, erythromycin, minocycline, and

rifampicin [58, 257, 258] and one inhibitor [267]. In the absence of X-ray crystallog-

raphy data for AcrB co-crystallized with a fluoroquinolone antibiotic, computational

structural analysis of AcrB with the G288D substitution was used to predict any
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effect upon ciprofloxacin binding.

The simulations were performed only on the apo form of the transporter. Thus, in

rationalizing experimental data, it was implicitly assumed that also in AcrB G288D

variant the key interactions with substrates occur in the same distal binding pocket

identified in the wild-type protein. Clearly, this must be proven; nonetheless, the

structural modeling that we carried out demonstrated that G288D would substan-

tially change the environment of the distal binding pocket because a bulky and

charged residue would perturb the primarily hydrophobic region and in particular

the conserved phenylalanine cluster of the pocket. Because this site has been shown

to be extremely adaptable to many substrates [75], it cannot be ruled out that de-

spite the large effect due to G288D substitution the pocket would still be able to

accommodate most compounds but with altered affinities. In agreement with such

an interpretation, it was observed that the G288D substitution caused an increase

in intracellular accumulation of doxorubicin and minocycline, which have been re-

ported to bind to the phenylalanine cluster in the distal binding pocket [58], and

concomitant increased susceptibility. In contrast, it was detected decreased intra-

cellular accumulation of, and resistance to, ciprofloxacin and other more hydrophilic

drugs including tetracycline. In addition, the study showed that this phenotype

could be recreated in well-characterized standard strains of Salmonella and E. coli,

confirming that the G288D mutation, and not any of the other SNPs detected in

the clinical isolate, L18, was responsible for MDR. Thus, the modeling provided a

plausible mechanistic explanation for the effect of the mutation G288D. A recent

study using MD simulations has highlighted an unexpectedly complex pathway of

drug expulsion, with several possible routes of export through AcrB [259]. Full in-

vestigation of the interaction between drugs and the mutated protein clearly merits

a systematic, stand-alone full MD simulation and/or a crystallographic solution.
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MDR in clinically relevant infections has previously been associated with over-

expression of RND efflux pumps owing to mutations in regulatory genes [11]. The

same association was previously made for L18 [255]; indeed, increased expression of

acrB has been confirmed in this study. However, based upon our recent data showing

that the bacterial cell responds to lack of efflux (irrespective of mechanism) [268],

we now postulate that increased transcription of acrB relative to L3 is in response

to altered efflux owing to the G288D substitution.

The literature contains many examples of engineered mutations in RND efflux

pumps but very few naturally occurring mutations have been described. Before this

study there was no indication that substitutions in AcrB would confer antibiotic

resistance; the accepted dogma was that AcrB-mediated resistance was caused by

overproduction of the protein. Furthermore, in this study the G288D substitution

arose during the course of clinically appropriate antimicrobial treatment and the im-

pact was profound; the infecting organism became resistant to agents with which the

patient was treated, therapy failed, and the patient died due to bacteraemia. The

computational study showed that the mutation subtly affects several possible deter-

minants responsible for the recognition and selectivity of the transporter, including

orientation of side chains, polarity, electrostatic potentials, and steric properties.





Chapter 4

Membrane Fusion Protein: MexA

The role of the MFP component in the MexAB-OprM efflux pump, expressed in

Psaeudomonas aeruginosa, has been largely studied with direct in vitro experiments

and through the study of its homologues in other bacteria, like E. coli [8, 32, 55, 60,

90,92,114,144,146,147,269–275]. As result, different models about the MexA contri-

bution in the assembly stoichiometry, and its role in the efflux process has been pro-

posed [55,86–88,114,273]. As consequence of the different number of MexA proteins

that are supposed to participate in the assembly, different interacting mechanisms

between the other two components of the pump have been suggested. One of the first

models proposed predicts the participation of three MexA monomers [55, 103, 273]

with a direct connection between the RND transporter MexB and the outer chan-

nel OprM. However, recent structural studies support the 3:6:3 stoichiometry model

as described in Figure 1.2.6. As example, the MFP MacA protein was shown to

form an hexamer, which is required for the interaction with the ABC-type trans-

porter MacB [276, 277]. Furthermore, structural studies of a CusAB complex have

revealed an hexamer of the MFP CusB bounded to the inner membrane protein
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CusA [278], providing an indirect support to the 3:6:3 model for the MexAB-OprM

efflux pump. More direct support is provided by studies on chimeric proteins AcrA-

MacA and MexA-MacA [86, 87]. The results of these studies suggest that the two

MFP components could form a funnel-like hexameric structure, in agreement with

other experiments [88]. One of the main differences introduced in the 3:6:3 stoi-

chiometry model is the not-direct connection between the RND transporter MexB

and the outer channel OprM, indicating a new active role of the MFP in controlling

the conformational changes that lead to the channel opening [88, 114]. In this con-

text of uncertainty about the number of membrane fusion proteins involved in the

MexAB-OprM efflux pump, the studies described in this chapter aim to provide a

better understanding about the effectiveness of the 3:6:3 stoichiometry model and

to enrich the relatively few MFP computational studies [145, 148]. In particular,

the study focused on the possibility for MexA proteins to form stable dimers, which

seems to be the pre-condition required to form the MexA hexameric structure pro-

posed [86,99]. In order to understand if such dimerization process might be possible,

wild type monomers and dimers were studied multiple 2µs MD simulations. In addi-

tion, an homology model for the G72S variant was built. The mutation is located in

the lipoyl domain (see Figure 4.0.1 for more details ) and it is known to inhibit the

MexAB-OprM efflux pump, presumably by affecting the MFPs dimerization [92]. To

study the dimerization process a protein-protein docking program was used [240,241]

and the results assessed with multiple 500ns MD simulations and with a comparison

with structures from the MD simulation for the dimeric homology model.
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Figure 4.0.1: MexA monomer structure divided into four domains: a–hairpin [Red], in-
volved in MexA-OprM binding; lipoyl [Green], supposed to be involved in MexA dimer-
ization; b–barrel [Blue] and the Membrane Proximal [Mauve] domain, both involved in
MexA-MexB binding. The black sphere in the lipoyl domain identifies the mutation site.

4.1 System and Methods

In this section will be described the details about the study on MexA, from the

homology modeling of the monomeric and dimeric units to the MD simulation and

docking details.

4.1.1 MexA monomeric unit

MexA monomers in the re-refined crystal structure are in two main state, the so-

called rotate and unrotated state [55], with the latter state conventionally considered

as the representative of the functional state [31,55]. The rotated state, however, has

not been completely ignored as it was used in in silico studies to model different

states of AcrA [145] and to predict the hexameric funnel-like structure of MexA and
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Figure 4.1.1: Comparison between the reference (chain L, PDB code 2V4D) structure
[Green], G72S-1 [Red] and G72S-2 [Black] in the new-cartoon (a) and the trace (b) repre-
sentation.

AcrA [86].

To model the mutated monomeric unit, the MODELLER package [221] was used

with the unrotated state of the crystal structure (PDB code 2V4D [55]), as template.

The mutation was introduced in the FASTA sequence by replacing the glycine residue

in the lipoyl domain, G72, with a serine residue (see Figure 4.0.1 for more details).

As reference, chain L was selected following previous works [86, 87] although other

chains in the same unrotated state were available. During the modeling process two

independent runs were performed. For each run, 50 structures have been generated

and the DOPE score criteria [231] was used to select the best models, named G72S-

1 and G72S-2 (see Figure 4.1.1 for more details). The Ca-RMSD between models

G72S-1/2 and the chains in the unrotated state was comparable with the Ca-RMSD

between the chain L and the other chains. Subsequently, a Then, the modeling of

the mutant was performed with the same criteria of the wild type case.
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4.1.2 MexA dimeric unit

The MexA hexameric funnel-like structure proposed in previous works was either

based on three dimeric subunits [86] or six independent monomer [88]. The first

model, is also supported by mutagenesis study that suggest MexA-MexA dimeriza-

tion [92] and in vitro experiments [274]. To assess the possibility of the formation

of a stable MexA dimer, an homology dimeric model was built following the same

procedures described for the monomeric units. The reference structure for the dimer

modeling was suggested by previous works [86] to be a combination of MexA unro-

tated and rotated state, namely chains L and M.

Thus, the study of the possible MexA dimerization was divided into two main

fronts:

1. Building of dimeric homology model based on chain L and chain M (see Figure

4.1.2). This front was chosen to validate the hexameric funnel-like structure

and to understand wether the rotated state could be representative of the

functional state of the protein.

2. Docking runs for the MexA monomers based on chain L. Starting from the

definition of the unrotated state as potentially functional, monomers extracted

from the MD simulations were selected to study the dimerization process.

4.1.3 MD simulation

The size of the monomeric units was ⇠5K atoms for both the wild type and the mu-

tant, while the dimeric unit contained ⇠10K atoms. The systems were prepared for

the simulations by solvation with a truncated octahedron water cells and by adding

the counter-ions to neutralize the net charge. The size of the final structures was
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Figure 4.1.2: a) Comparison between the crystal structure [White] and the homology
model in chain L [Blue] and M [Red]. b) Homology dimeric model in surface representation.
b) Focus on the lipoyl domains that are supposed to be involved in the MexA-MexA
dimerization.

⇠200K atoms. After the solvation, each system was was first structurally relaxed

for 1,000 steps (500 with the steepest descent algorithm, followed by 500 steps of

relaxation with the conjugate gradient method) in presence of soft restraints (force

constant of 10.0 kcal/mol · ˚A2) on all non-hydrogen atoms of the protein. The re-

straints were then removed and the system was further optimized for 10,000 steps.

Then, heating to 310K was performed in 1 ns under NVT conditions, using the

Langevin thermostat followed by 2 ns-long equilibration under NPT ensemble (us-

ing the Berendsen barostat). Then, the MD simulations were run up to 2 ms with

AMBER12 [279].
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System WT1 WT2 G72S-1 G72S-2 Dimer
Number of atoms 200K 200K 200K 200K 240K

Simulated Time (ms) 2 2 2 2 2

Table 4.1.1: Resume of the MD simulations run to study MexA dimerization: two wild
type system to investigate monomeric stability and dimerization process; G72S mutant
that inhibits the pump functionality by affecting MexA dimerization; homology dimer to
investigate the stability of the possible dimeric units.

4.1.4 MexA-MexA dimerization

As described in Chapter 2 the docking runs were performed with a protein-protein

docking program ATTRACT to study the possible dimerization of the wild type

monomers and the mutants as well. The flexibility of the proteins was taken into

account by including the ensembles of different conformations of each system. The en-

sembles contained the representatives of the most populated cluster for the monomers

during the simulations. During the docking a soft harmonic restraint, k = 2 kcal/mol·
˚A2 for the maximum distance between specific regions in the MexA monomers, was

introduced to prevent the outcome of unphysical results, i.e. proteins oriented in

opposite direction as described in Figure 4.1.3b. The atoms selected to be restrained

were the closest to the center of mass of the ↵-hairpin and the MP domain as shown

in Figure 4.1.3a.

The selection of the best structure was based on the Ca-RMSD between the

dimeric homology model and all the possible configurations from the docking runs.

The best structures were then prepared for new MD simulations in order to study

the stability of such possible dimers. The systems preparation for the MD simulation

followed the procedures described in the previous paragraph.
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Figure 4.1.3: Scheme of the maximum distance harmonics restrained for the MexA-MexA
docking (a). The atoms selected, in yellow, were in the center of mass of the a–hairpin and
the MP domain. The restraints were applied to prevent unphysical structures, such as two
monomers in opposite direction (b). The maximum distance has been chosen as 50 Å to
guarantee enough flexibility for the possible structures.

4.2 Results

In this section the results of the MD simulations for the MexA monomers, wild type

and G72S mutant, and for the MexA homology dimeric model will be presented. The

simulations were run up to 2 µs for all the systems with 250 ns extra MD simulations

for the two mutant monomers. The extra simulations were needed because, although

both the mutants showed large structural changes, they occurred in different time.

The analysis of 250 ns after the 2 µs MD simulations, revealed a convergence of the

mutants to a common deformed structure, with respect to the wild type case.
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4.2.1 MexA monomeric unit

The analysis of the global fluctuations for the MexA MD simulations revealed large

RMSD values for both the wild type and the mutant with respect to their initial con-

figurations. In the wild type case, however, the RMSD, despite the high values from

the initial configuration, can be considered relatively stable especially if compared

with the G72S mutant behavior. In particular, the WT1 system revealed an oscil-

lating behavior while WT2 resulted to be more stable. The differences between the

two models will be discussed in more details later in this paragraph. The mutant, on

the other hand, in both the simulations showed a large drift suggesting larger global

changes in the protein structure, shown in Figure 4.2.1a. However, these changes

occur in different time and because of that the two mutant MD simulations were

extended for extra 250 ns. The resulting RMSD analysis confirmed a stabilization

of the RMSD (Figure 4.2.1a ), providing a first index for a common deformed con-

formation. The analysis of the Ca-RMSD matrix confirmed the different behaviors

between the wild type monomers and the mutant. The two wild type structures

appear, once again, to be more stable during the simulation although WT1 showed

a global oscillating evolution. On the other hand the mutant structures appear to

change dramatically during the simulation respect to their initial structure, as shown

in Figure 4.2.1b.A visual inspection of the trajectories showed a global rearrange-

ments in the b–barrel and MP domain of the two mutant monomers, followed by a

bending of the a-hairpin in the b–barrel domain direction, as shown in Figure 4.2.4.
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Figure 4.2.1: a) Ca-RMSD for WT1 [Red], WT2 [Black], G72S-1 [Green] and G72S-2
[Blue]. The extra simulated time refers to the MD simulation for G72S-1 and G72S-2. b)
Ca-RMSD matrix for the MexA monomer simulations: WT1 (top left), WT2 (top right),
G72S-1 (bottom left) and G72S-2 (bottom right). Each element (i, j) of the matrix consists
of the RMSD (Å) value between the structure of the protein at time i and j: the lower
the value the higher the similarity of the structures (special case for diagonal elements (i, i)
with zero value of the RMSD).
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While the C↵-RMSD analysis revealed large global changes between the wild type

and the mutant, Ca-RMSF is a way to evaluate local differences as it describes atomic

deviations with respect to a reference configuration. The analysis showed that, while

the two wild type monomers have almost the same behavior the mutation appears

to reduce the internal flexibility of the domains as shown in Figure 4.2.2b. The

largest differences are located in the a–hairpin domain, which is known to have large

flexibility [145, 148], presumably to adapt to OprM surface (see figure 4.2.2a for the

interaction scheme). The loss of flexibility in this region suggests a reduced ability

for MexA to interact efficiently with OprM. Although the largest differences appear

to be located in the a–hairpin domain, also the b–barrel (MexA-MexB interaction)

and lipoyl (presumably MexA-MexA interaction) domain are affected by the G72S

mutation.

Figure 4.2.2: a) MexA interacting and domain schemes. Ca-RMSF for MexA monomers.
b) average Ca-atoms fluctuation for WT [Black] and G72S [Green]. The mutation site is
identified by the Magenta dot. The Secondary Structure was obtained with POLYVIEW-
2D [280]

While the C↵-RMSD and C↵-RMSF analysis pointed out global and local differ-
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ences between the wild type and the mutant, a visual inspection of the trajectories

revealed large inter-domain rearrangements with the bending of the a–hairpin and

MP domains in the mutant. To confirm this behavior, the analysis of the Radius of

Gyration (RoG) was performed, showing a trend for the mutant structures to evolve

into a more compact conformation while the wild type remains globally stable, with

few fluctuations as described in Figure 4.2.3. Despite the same behavior for the two

mutant structures to reach a more compact conformation, only with the analysis of

the RoG of the extra MD simulations they showed the same final compactness, as

shown in the extra simulated time in Figure 4.2.3.

Figure 4.2.3: RoG for WT1 [Red], WT2 [Black], G72S-1 [Green] and G72S-2 [Blue].

The RoG, however, describes only of the global changes in the structure during

the MD simulations of the mutant. To identify the domains responsible for such

changes, the evolution of the distance between the center of mass of each domain

was studied. In the wild type case the domains oscillate around an equilibrium
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distance while the mutant showed largely different behavior, as shown in Figure

4.2.5. The analysis of the extra simulations for the MexA mutant, in Figure 4.2.5,

revealed a convergence in the domains distance, suggesting a common final structure.

An example of conformational changes induced by the mutation are shown in Figure

4.2.4.

Figure 4.2.4: a) Initial conformation for the G72S-1 mutant b) Final conformation for
the G72S-1 mutant with the ↵-hairpin domain [Red] that approaches the �-barrel domain
[Blue] as well as the MP domain [Mauve] c) MexA domain scheme and mutation site
[Black].
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Figure 4.2.5: Domain distance evolution for WT1 [Red], WT2 [Black], G72S-1 [Green] and
G72S-2 [Blue] and extended simulation for G72S-1 [Green] and G72S-2 [Blue].

Interestingly, the visual inspection of the trajectory and the previous analysis

suggest that the final conformation of the G72S variant is stable. To confirm this

hypothesis, further investigations are needed. A quantitative description of the sta-

bility of this new conformation is provided by the analysis of bonds that may be

established or broken during the dynamics. The analysis focused on the last 1 µs of

the simulations, where the new configurations are more persistent and the systems

reached an equilibrium conformation. As shown in Figure 4.2.4 the mutant showed a

bending of the MP and the ↵-hairpin domain in the b–barrel direction. The close po-

sition between the MP and the b–barrel domain is stabilized by several new H-bonds,

established during the MD simulation, as shown in Figure 4.2.7a, where the thickness

of the residues indicates the strength of the bonds (for a quantitative description of

the H-bonds persistency see Table 4.2.1).
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The H-bonds analysis also revealed that only for the G72S-1 mutant new H-

bonds between the ↵-hairpin and the b–barrel domain are established, as shown in

Figure 4.2.7b and 4.2.7c. In fact, the ↵-hairpin of G72S-2 does not establish any H-

bonds with the other domains. Thus, the analysis of salt bridges among the domains

was performed in order to investigate other stabilizing mechanisms that might be

involved.

Residue Occupancy (%)
R326-E53 80.8
R326-N51 69.3
K232-G329 14.9
K232-D301 12.8

(a)

Residues Occupancy (%)
K232-D325 89.5
D235-K303 77.7
R326-E242 48.1
K287-E213 40.74
Q281-D325 39.8
V327-Q238 33.1
D235-Q305 30.5
R326-Q283 29.3

(b)

Table 4.2.1: Occurrence frequency of the new H-bonds established between the MP
and the b–barrel domain during the MD simulations for a) G72S-1 and b) G72S-2
mutated systems.

The analysis revealed that salt bridges involving different domains were estab-

lished in the last part of the two simulations. In particular, for G72S-1 the ↵-hairpin

and the b–barrel domain are bounded by three salt bridges, which increase the sta-

bility conferred by the H-bonds. In G72S-2, the analysis showed that the ↵-hairpin

established one salt bridge with the lipoyl domain as shown in Figure 4.2.6. Interest-

ingly, in both the systems the same residue in the ↵-hairpin, D136, is involved in salt

bridges, although with different domains: in G72S-1 the aspartic acid is bounded to

two arginine residues in the b–barrel domain, while in G72S-2 it is bounded to an

arginine residue in the lipoyl domain. These results suggest that, during the simu-
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lation, G72S-2 have not reached a conformation as stable as G72S-1. The previous

analysis showed that the structure of the MexA mutant reached a largely different

conformation respect to the wild type. Moreover, such conformation is stabilized

by several bonds established among the different domains during the simulations.

Further analysis showed that these structural changes are coupled to remarkable

losses of secondary structure as shown in Figure 4.2.8a. The analysis was performed

using the average-close structure from the a) two most populated clusters for the

wild type case and b) five most populated clusters for the mutant. The residues

involved in the mutant secondary structure loss are mainly located in the a–hairpin

and in the b–barrel domains (see Figure 4.2.8b) which are involved in MexA-OprM

and MexA-MexB interaction respectively.

Figure 4.2.6: Salt bridges established during the MD simulations between a) b-barrel [light
Mauve] and ↵-hairpin domains for G72S-1; b) ↵-hairpin and lipoyl domains for G72S-2.
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Figure 4.2.7: New H-bonds established during the MD simulations. The size of the residues
involved in the H-bonds is proportional to the persistence of the bonds while the color refers
to their correspondent domains. a) H-bonds between the MP [light Blue] and the b-barrel
[light Mauve] domain. The G72S-1 showed less H-bonds between the two domain respect to
G72S-2 but their occurrence frequency is high enough to stabilize the domains in this new
conformation. b) H-bonds between the ↵-hairpin [light Red] and the b-barrel [light Blue]
domain for G72S-1. The dimension of the residues involved in the H-bonds is proportional
to the persistence of the bonds while the color refers to their correspondent domains. The
mutation is identified with an orange sphere. c) The number of H-bonds between the
↵-hairpin and the b-barrel domain for G72S-1 [Green] and G72S-2 [Blue].
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Figure 4.2.8: a) Secondary structure differences between the average-close structure of
the cluster representatives for WT and G72S. b) Residues involved in the secondary loss,
which is mainly located in the a–hairpin [Red], b–barrel [Green] and MP domain [Blue].
The mutation site is identified by a black sphere. The Secondary Structure was obtained
with POLYVIEW-2D [280]

4.2.2 MexA dimeric unit

The analysis of the global behavior of the homology dimeric unit revealed a very

stable structure during the the simulation, with very low values of the Ca-RMSD,

as shown in Figure 4.2.9. In fact, a comparison with the relative high Ca-RMSD

values for the wild type monomers suggests a flexibility loss in the dimeric unit.

This is also confirmed by the Ca-RMSF analysis that suggest a more rigid structure

for the dimer, since the atomic fluctuations are much less than in the wild type

monomeric case (see Figure 4.2.10 for more details). In order to test the dimerization

process, a structure of possible MexA dimer is needed as reference. Thus, the cluster

analysis was performed to extract a representative structure of the MD simulation
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for the homology dimer. The cluster analysis confirmed the stability of the system by

identifying one main cluster for the dimeric unit that contains more than 90% of the

whole population. The representative structure of this cluster was used as reference

to validate the results of the docking analysis, as described in the next paragraphs.

Figure 4.2.9: a) Ca-RMSD of the dimeric homology model and b) Ca-RMSD matrix.

Figure 4.2.10: a) Ca-RMSF of the dimeric homology model for chain A [Blue] and chain
B [Red]. b) Structure of the homology dimer compared with the crystal structure [White].
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Figure 4.2.11: Cluster population for the dimeric homology model and comparison between
the initial structure [White] and the representative of the cluster 0 [Green].

4.2.3 MexA dimerization

The analysis of the MD simulations for MexA monomers confirmed a more compact

structure for the mutant with a flexibility loss in the domains involved in MexA-

OprM and MexA-MexB interaction. Furthermore, the final configuration of the

mutant is stabilized by several H-bonds and Salt bridges. These results suggest large

differences also in the multimerization process. Thus, before running the docking

simulations it is necessary to select MexA structures that can be representatives of

the main conformations of the protein. The cluster analysis provides a way to select

representative structures of the dynamics by collecting common structures together.

For this analysis, the average-linkage algorithm [281] was used with a 4Å cutoff. The

results confirmed, as expected, differences between the wild type and the mutant

(see Figure 4.2.12). The two simulations of the wild type have a peaked distribution

with the first two clusters that account for more than 50% of the population, while

wider distributions were found for the mutant.
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Figure 4.2.12: Distribution of the cluster population for the four MD simulations. The
two wild type simulations, WT1 [Black] and WT2 [Red], show a peaked distribution of the
cluster population while the simulations of the mutant, G72S-1 [Green] and G72S-2 [Blue],
showed wider distributions, in particular for G72S-2 system.

Thus, for the wild type the docking runs were performed with the top five clusters

representatives in order to take into account more than 90% of the population. To

reach the same population percentage for the mutant, it was necessary to consider

the top 50 clusters for the docking runs. An example of the differences among the

representative structures of the wt and the G72S variant is shown in Figure 4.2.13

while in Table 4.2.2 is reported a quantitative description, in terms of C↵-RMSD.
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Clus WT1 WT2 G72S-1 G72S-2
0 9.1 3.6 18.8 15.5
1 4.5 5.5 18.6 20.1
2 5.5 5.8 16.9 19.1
3 3.3 6.1 12.8 14.5
4 8.7 4.3 16.8 14.1

(a)

Clus WT1 WT2 G72S-1 G72S-2
0 - 8.3 18.2 15.5
1 7.8 8.8 18.4 18.4
2 5.2 10.7 16.6 14.5
3 7.2 6.9 10.8 15.7
4 5.3 10.1 16.8 13.3

(b)

Clus WT1 WT2 G72S-1 G72S-2
0 8.3 - 19.9 14.7
1 2.4 2.2 19.7 20.5
2 3.7 4.6 18.1 18.4
3 2.8 3.7 11.7 14.0
4 6.7 4.9 18.0 13.1

(c)

Clus WT1 WT2 G72S-1 G72S-2
0 18.2 19.9 - 16.6
1 19.7 20.1 3.9 9.9
2 19.3 19.4 5.2 17.6
3 19.0 19.2 15.7 15.8
4 19.3 20.1 4.9 17.2

(d)

Table 4.2.2: C↵-RMSD between the representatives of the top five clusters and a)

chain L in the crystal structure (PDB code 2V4D.pdb; b) representative of cluster 0
for the WT1 ; c) representative of cluster 0 for the WT2; d) representative of cluster
0 for the G72S-1. The C↵-RMSD with the representative of G72S-2 as reference
is not shown as the wider distribution of this system prevents the choice of a good
reference structure.

After the selection of the structures, the docking was performed with soft har-

monic restraints in order prevent unphysical results as described in paragraph 4.1.4.

The selection criteria of the resulting structures was based on the Ca-RMSD between

the homology model for the dimer and the structures extracted from the docking.

The Ca-RMSD cut-off value was set to 10 Å in order to consider the possible dis-

tortions induced by the docking process. Among all the possible dimers produced

during the docking, for the wild type twelve structures were selected using the dimeric

homology model as reference. The docking runs for the mutant produced, in fact,

largely different conformations although in few cases the results were comparable
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to the wild type case. However, a deeper analysis of these cases showed that they

correspond to conformations that MexA maintained for a very short time, before

the inter-domain rearrangements. This suggests that these structures might be not

suitable to be representatives of the dynamics. In addition, according to the cluster

analysis they accounted only for very few percentage of the population.

Figure 4.2.13: a) Representatives of the two most populated clusters for WT1 and WT2.
The two simulations led to similar structures, although the WT1 showed higher flexibility
in the a–hairpin and b–barrel domains. b) Representatives of the same clusters for G72S-1
and G72S-2. In both cases the color sequence red � green � blue � mauve identifies the
representative of cluster 0 while the orange � green2 � cyan � deep�blue refers to the
representative of cluster 1. The simulations for the mutant led to different representatives
structures with respect to the wild type case. In G72S-1 case both the representatives
showed the bending of the a–hairpin and MP domains in the b–barrel direction. The
G72S-2 showed a new position of the MP domains in the b–barrel direction for the cluster
0 while the bending of the a–hairpin is only in cluster 1.

Thus, only the wild type structures were used for further analysis. To study the

stability of such dimers, they were first optimized and then new MD simulations

were run for the dimeric candidates with the same procedures described in para-
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graph 4.1.3. During the first steps of the MD simulations the structures reached a

more stable conformation with respect to their initial structure with the exception

of the systems identified with names dock4 and dock10, as shown in Figure 4.2.14b.

However the Ca-RMSD evolution, using the homology dimer as reference, showed a

stable behavior for all the systems, with relatively small Ca-RMSD values (see Figure

4.2.14a). A new cluster analysis, based on the same criteria used for the monomers,

led to representative structures relatively close to the homology model as shown in

Table 4.2.3.

dock number 1 2 3 4 5 6 7 8 9 10 11 12
RMSD [Å] 6.7 6.5 7.9 6.4 6.7 6.7 6.0 4.6 8.8 6.9 5.9 6.1

(a)

dock number 1 2 3 4 5 6 7 8 9 10 11 12
RMSD [Å] 3.1 6.6 8.2 6.0 6.8 7.1 5.8 5.8 6.3 5.1 5.5 5.7

(b)

dock number 1 2 3 4 5 6 7 8 9 10 11 12
RMSD [Å] 3.4 4.9 4.3 5.0 4.6 3.1 4.2 5.1 4.4 2.9 4.6 4.6

(c)

dock number 1 2 3 4 5 6 7 8 9 10 11 12
RMSD [Å] 4.6 6.0 4.8 5.6 5.4 2.8 5.3 3.5 7.1 5.5 5.7 5.4

(d)

dock number 1 2 3 4 5 6 7 8 9 10 11 12
RMSD [Å] 11.0 7.8 11.9 8.3 8.9 10.5 7.8 4.3 11.9 10.5 5.1 5.5

(e)

Table 4.2.3: Ca-RMSD between the homology model, used as reference, and the
representatives of the most populated cluster of the dimer candidates after a global
alignment, for a) whole system, b) ↵-hairpin domain, c) lipoyl domain, d) �-barrel
domain, e) MP domain.
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The main differences among the systems are located in the a–hairpin, �–barrel

and the MP domains (see Table 4.2.3b,d,e) while the lipoyl domain of all the systems

is closer to the homology dimeric model, in terms of Ca-RMSD. The lipoyl domain

has been predicted to be the responsible of the MexA-MexA dimerization [92] and

this result might suggest that the two MexA lipoyl domains, in case of dimerization,

bind always in the same way. On the other hand, the differences in the domains that

are known to be involved in MexA-MexB and MexA-OprM interactions [60, 86, 88,

114, 146–148] suggest an high flexibility of the dimer to adapt to the surface of the

other components of the assembly (see Figure 4.2.15 and 4.2.16a,b).

The analysis of the surface exposed to the solvent of the dimeric model revealed

a common behavior of both the homology dimer and the dimers candidates from

the docking analysis. The comparison with the docking results was possible only for

the first 500 ns of the MD simulation of the dimeric homology model. However, the

SASA analysis for the whole trajectory of the dimer alone revealed not large changes

in the surface exposed to the solvent. Combining the Ca-RMSD results and the

SASA analysis for the first 500 ns of the simulation it is plausible to deduce a similar

behavior for the structures resulting from the docking analysis with a stabilization

of the hydrophobic residues of the dimeric candidates.
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Figure 4.2.14: Ca-RMSD evolution of the twelve dimeric candidates selected after the
docking analysis with respect a) the homology dimeric model and b) their own initial
structure.

Figure 4.2.15: Differences in the a–hairpin domain between the representatives of the
most populated cluster of each dimeric candidate. The color range (TimeStep color with
VMD) identifies the structures from the homology model [dark Blue] to dock12 system
[dark Red].
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(a)

(b)

Figure 4.2.16: Differences between the representatives of the most populated cluster of
each dimeric candidate in the a)�–barrel domain and a) MP domain. The color range
(TimeStep color with VMD) identifies the structures from the homology model [dark Blue]
to dock12 system [dark Red].
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Figure 4.2.17: SASA comparison between the representative structure of the homol-
ogy dimeric unit and the structures produced during the docking analysis.

4.3 Discussion

The Membrane Fusion Protein MexA is known to be fundamental in the MexAB-

OprM functionality, as its participation is needed to either help the OprM opening

[86, 114, 282] and to confer stability to the complex. However the number of MexA

proteins that participate in the assembly is still under debate as well as the exact

role in the extrusion process [55, 86–88, 114, 273]. Despite the different models that

describe the possible stoichiometry of the assembly, several experiments suggest the

possibility for MexA, and for MFPs in general, to form dimeric units [86, 88, 92,

99, 274, 276–278, 282]. In order to investigate such possibility, in this chapter was

studied the stability of monomeric MexA units in both wild type and mutant version.

The mutation was chosen among many others as it has been postulated [92] to

impair the MexA dimerization, leading to a not-functional assembly. The monomeric

structures, studied with extended MD simulations, showed an high flexibility but only
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for the wild type case the structure remained stable as the flexibility of the mutant

led to large structural changes. These changes in the mutated monomer showed a

bending of the ↵-hairpin and the MP domain in the �-barrel domain direction and

arose together with secondary structure loss in domains that are involved in both

MexA-OprM and MexA-MexB interactions. Despite the large differences between

the wild type and the mutant, the dimerization was studied for both the systems

with a protein-protein docking program. To validate the docking results, a dimeric

homology model was produced and studied with a new extended MD simulation.

A comparison between the homology model for the dimer and the docking results

showed that only for the wild type good dimeric candidates were produced. As

expected, the large structural changes in the mutant impaired the possibility to

produce a reasonable dimeric structure.

The dimeric candidates, however, showed large differences in the ↵-hairpin and

the MP domains. To validate such models and to investigate the possibility of a

convergence to a common structure, new MD simulations were run for each candidate.

The results showed that the dimeric candidates reached an equilibrium structure

that is close to the representative structure of the dimeric homology model. All

these results suggest that the MexA wild type monomer is able to form dimers and

that, despite the initial differences in the possible dimers, they reached a stable

conformation. It is worthwhile to point out that the main differences, after the

equilibrium, are located in domains involved in the binding with the asymmetric

structures of MexB and OprM. This suggests that the dimers, although less flexible

than the monomers, still maintain the flexibility to adapt to the OprM and MexB

surfaces.





Chapter 5

Conclusions and perspectives

In the context of multi-drug resistance in Gram-negative bacteria, this thesis focused

on two main key-points a) a better understanding of the inhibition mechanisms of the

RND transporter AcrB and b) a study of the possible dimerization of the membrane

fusion protein MexA.

The first part of this thesis, described in Chapter 3, addressed the study of

the RND transporter AcrB expressed in S. enterica. This study concerns the first

case in which MDR was directly connected to a mutation in RND efflux pumps in

clinical settings. In particular, during the treatments of S.typhimurium infection,

this serovar developed resistance to the ciprofloxacin antibiotic. The analysis of the

genome sequence of the isolates revealed that S. typhimurium, as consequence of the

therapy, mutated the AcrB distal binding pocket by replacing a glycine residue with

an aspartic acid. To study the effects of the G288D mutation, homology models for

the mutant and wild type were built using the AcrB crystal structure for E. coli [140]

as template. Subsequently, multiple MD simulations were performed for each system

revealing local structural changes in the distal pocket. The presence of an aspartate,
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also increased the polarity of the region, affecting its hydration, as confirmed with the

analysis of the radial distribution function profiles. Furthermore, the possible effect

of the mutation on ciprofloxacin, doxorubicin and minocycline efflux was studied.

The comparison of the results revealed possible steric clashes with both doxorubicin

and minocycline. On the other hand, the mutation should not impair the binding

of ciprofloxacin, which may form H-bonds between its hydroxyl group, the aspartate

residue and the resident waters around it. This possibility was suggested to explain

its recognition with a consequent increased efflux of, and decreased susceptibility to,

ciprofloxacin and other fluoroquinolones.

The second part of the work of this thesis, described in Chapter 4, focused on

the role of the MFP component of the MexAB-OprM efflux pump in the assembly

stoichiometry. The uncertainties in the composition of the assembly concern mainly

the number of the membrane fusion proteins involved. The two main stoichiometry

models predict the presence of three [55, 103, 273] or six [86, 88, 274, 283] MexA pro-

teins, suggesting different roles for the periplasmic component of the pump in the

extrusion mechanism. In fact, in the first model a direct connection between the

RND transporter MexB and the outer membrane channel OprM is predicted with

three MexA proteins that participate in the OprM opening and confer stability to

the assembly. On the other hand, the second model predicts the participation of

six MexA proteins with a more active role in the efflux mechanism, since the di-

rect connection between MexB and OprM should not be established anymore. An

hexameric funnel-like structure of MexA is in fact predicted to be inserted between

the other two components of the pump [86, 88]. In order to gain insights in the

assembly stoichiometry, the study focused on the (supposed) very first step of the

MexA hexamer building, i.e. the dimerization, following two main strategies. The

first, concerns the MexA monomeric structure for which the wild type and a mu-
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tated MexA were studied. The mutation selected for this study is known to impair

the MexAB-OprM efflux pump, presumably by affecting the MexA dimerization [92].

Representatives structures from MD simulations were used to study the dimerization

process with a protein-protein docking program. The second strategy was to build

an homology model for the MexA dimer and study its stability with an extended

MD simulation. A comparison between the results of MexA-MexA docking and the

homology dimer was then performed, confirming that only for the wild type case

acceptable dimers could be obtained. Further MD simulations for the docked struc-

tures confirm a reasonable convergence to the homology model. In particular the

lipoyl domain, supposed to be involved in the MexA-MexA multimerization, showed

always the same structure with very low differences between the docked structures

and the dimeric homology model in term of RMSD. The other domains, involved

in MexA-OprM and MexA-MexB binding, showed almost the same structure, but

with higher differences with respect the the dimeric homology model. These results

suggest that the MexA dimerization seems to be possible and the resulting structures

are very similar, with differences mainly located in domains that have already been

proved to be very flexible [145, 148] in order to adapt to the asymmetric structures

of the other components of the pump.

Thus, this study confirms the possibility of MexA dimerization but other aspects

of the 3:6:3 model remain unclear like, as example, how three dimers could interact

to form the hexameric funnel-like structure or how this structure could be involved

in the OprM opening. Further investigations are, thus, necessary to deepen the

knowledge about the assembly building and stability of the MexAB-OprM efflux

pump as well as its homologues like, as example, AcrAB-TolC.
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