


Introduction

In the last decade, the study of big networked systems has received a great

deal of attention thanks to the increased availability of large datasets and the

technology to analyze them. At the present day, complex networks have made

their official debut in many fields: brain is made of millions of interconnected

neurons; ecosystems consists of several species whose interdependencies can

be mapped onto a network; social systems can be well represented by graphs

whose edges describe the interactions between individuals and so on.

The dynamic nature and the big sizes of complex networks have attracted

the attention of the physicists, who are currently contributing to the modeling

of ’complex systems’ by using tools and methodologies developed in statistical

mechanics and theoretical physics.

During the past 30 years, physicists have achieved important results in

the field of phase transitions, statistical mechanics, nonlinear dynamics, and

disordered systems. In these fields, power laws, scaling, and unpredictable

(stochastic or deterministic) time series are present and the current interpre-

tation of the underlying physics is often obtained using these concepts.

Statistical mechanics has long studied how the interactions happening on

a microscopical scale can affect a system’s macroscopical behaviour. The re-
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cent discovery of the importance of network representation has given a boost

to the study of models whose most relevant aspect lies in the “universality“

of the critical exponents: indeed, many phenomena, despite the difference

regarding the nature of the single components, share a common set of crit-

ical exponents. Scale invariance allows to explain how, near the transition,

the macroscopical behaviour of a system does not depend on the form of the

microscopical interaction but just on the dimensionality of the system itself

and order parameters’ simmetries.

In particular, many complex systems are organized as networks into space.

Transports, Internet, telecommunications and social networks are all exam-

ples of networks where space plays a relevant role and topology alone cannot

convey all the information. Thus, it is easy to see how understanding and

charachterizing the structure of such networks is crucial in many areas, rang-

ing from urban studies to epidemiology. An important consequence of spatial

dependency in networks is, for instance, the cost (in terms of money or other)

associated to the length of the connections, heavily affecting network topol-

ogy itself.

Thank to the sophisticated techniques of geo-localization we are now able

to trace people and goods movements but, to extract meaningful information

from this enormous quantity of data on mobility, we need appropriate tools.

In this context, the study of the effect of space in networks has undertaken the

important role to unravel regularities and behaviours from data and supply

suitable models.

This holds true especially for community detection. Finding meaningful

communities in a networks is still a difficult task but essential to unveil
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functional relations between the parts. In spatial networks this is even more

tricky since communities can be affected by spatial propinquity or other

geographical factors.

Standard community detection suffers from various drawbacks, one of

them being the community definition that does not provide any information

about the importance of a node inside its own community. Nodes of a com-

munity do not have all the same importance for the community stability: the

removal of a node in the “core” of a network affects the partition much more

than the deletion of a node in the periphery.

This work intends to study community detection and develop new meth-

ods and algorithms to be applied to the study of the global market and

its functioning, in order to understand the causes of critical events, like the

recent global financial crisis.

Economics systems, indeed, exhibit several of the properties that char-

acterize complex systems and seem to be an ideal testing ground. They are

open systems in which many sub-units interact nonlinearly in the presence

of feedback. In these systems, the governing rules are rather stable and the

time evolution of the system is continuously monitored. It is now possible to

develop models and to test their accuracy and predictive power using avail-

able data, since large databases exist even for high-frequency data. Even if

the correlation may not be blatant, space is not to be looked over in economy,

too. It has been proved, indeed, that trade and economic exchanges between

countries are necessarily driven by geographical proximity or impeded by

natural barriers. Also, space provides the framework for all data collections,

samples and surveys. One could say that geography provides context to sta-
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tistical data.

Recently, a growing number of physicists have attempted to analyze and

model financial markets and, more generally, economic systems. The interest

of this community in economic systems has roots that date back to 1936,

when Majorana wrote a pioneering paper on the essential analogy between

statistical laws in physics and in the social sciences (translation from the

original italian paper in Majorana and Mantegna (2006)).

This unorthodox point of view was considered of marginal interest until

recently. Since 1990, the physics research activity in this field has become

less episodic and a research community has begun to emerge. The research

activity of this group of physicists is complementary to the most traditional

approaches of economy and mathematical finance. One characteristic differ-

ence is the emphasis that physicists put on the empirical analysis of economic

data. Another is the background of theory and method in the field of sta-

tistical physics developed over the past 30 years that physicists bring to the

subject. The concepts of scaling, universality, disordered frustrated systems,

and self-organized systems might be helpful in the analysis and modeling of

economic systems (Mantegna et al. (2000)).

Before discussing the main part of the work, some brief digressions are

needed: Chapter 1 will provide an introduction to graph theory and some

basic definitions; Chapter 2 will give a rapid overview on community de-

tection and, in particular, modularity based methods while Chapter 3 will

describe at length the data used in our work. In Chapter 4 we will thor-

oughly show results and applications and, finally, in Chapter 5 we will

discuss results, draw conclusions and set the future work.
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Chapter 1

Introduction to graphs

In general terms, a network is defined as any system that can be represented

as a mathemathical abstract object called graph, whose vertices (or nodes)

are the elements of the system and its edges (or links) identify the relations

between them.

It’s clear to see how such a definition applies to a variety of cases and,

in that sense, networks are a valid and convenient method for representing

relations in complex systems, where the interactions occur among a great

number of players.

Graph teory dates back to Euler’s solution of the puzzle of Könings-

berg’s bridges in 1736. Since then a lot has been learned about graphs and

their mathematical properties. In the 20th century they have also become ex-

tremely useful as representation of a wide variety of systems in different areas.

Biological, social, technological, and information networks can be studied as

graphs, and graph analysis has become crucial to understand the features

of these systems (Fortunato (2010)). Even if graph theory has been used in
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different areas, it comes with a set of basic common definitions. The follow-

ing sections will provide the basic notions allowing to study and describe

networks.

1.1 Basic definitions

1.1.1 Graphs

A graph G is defined giving a set of vertices and connections between them.

Mathematically, G = G(N,M) where N is the total number of vertices and

M the total number of edges. Edge (i, j) connects vertices i and j that are

called adjacent (or neighbors).

Edges may have arrows or not, that is they can be traversed in one di-

rection only. In this case the graph is an oriented graph. A further gener-

alization is also possible: one can imagine that a value is assigned to every

edge. In the case of transportation networks (a system of pipelines or the

Internet cables) this could represent for example the maximum load allowed.

Whenever this extra information is provided we deal with a weighted graph.

The number of nodes N and the number of edges M are not independent

of each other. If we assume to have only one edge between two vertices there

is a maximum number of edges we can draw. Consider that each vertex

can establish an edge only with (N − 1) different vertices (and not with

itself). This holds for every one of the n vertices. This give a total number

of N(N − 1) possibilities counting every edge twice. The maximum number

of edges is exactly one half of that Mmax = N(N − 1)/2. If the starting and

ending vertices make a difference (as in the case of oriented graph) then we
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do not have to divide by two the above quantity. In this case the maximum

number of edges is given simply by N(N − 1).

Two immediate limits are present. If no edge is drawn then the graph is

empty and it is indicated by EN . If all the edges are drawn, the graph is

complete and it is indicated by KN .

1.1.2 Adjacency matrix

The structure of the graph G(N,M) can be represented by means of a matrix.

In the case of graphs we introduce the Adjacency Matrix A(N,N) whose

entries Aij are 0 if vertices i, j are not connected and 1 otherwise.

.

Figure 1.1: Two simple graphs and their adjacency matrices. Note that for oriented

graph (right) the matrix is not symmetric (Caldarelli (2007))

The diagonal elements represent the presence of an edge between a vertex
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and itself (self-link). Unless specified otherwise, we consider those entries

equal to 0. If edges with itself are allowed (diagonal elements different from

0) then we have N more allowed edges. Therefore the maximum number of

edges becomes Mmax = N(N − 1)/2 +N = N(N + 1)/2.

Note that this matrix is symmetric (meaning Aij = Aji ) only in the

case of non-oriented graphs. For oriented graphs instead the elements Aij are

generally different from the elements Aji. This representation well extends

to the case of the weighted graphs: instead of giving only 1 and 0, we assign

a real number (the weight) to the entry Aij. We obtain then an adjacency

matrix composed by real numbers for the edges present and 0 otherwise. In

the following we refer to this matrix with the symbolAW (N,N). Its elements

will be then indicated by awij.

1.1.3 Basic quantities

Order and size. The order of a graph is the number of vertices N while

its size is defined as the number of edges M .

Degree. The degree k of a vertex is the number of its edges. As mentioned

before, the sum of all the degrees in the graph is twice the number of the

edges in the graph. This happens because any edge contributes to the degree

of the vertex origin and to the degree of vertex destination.

A compact way to compute the degree consists in running on the different

columns of a fixed row in the adjacency matrix A(N,N) looking for all the
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1’s present. This means that the degree ki of a vertex i can be computed as:

ki =
N
∑

j=1

Aij (1.1)

In oriented graphs this quantity splits in in-degree kin
i and out-degree

kout
i for edges pointing in and out respectively. Since in the adjacency matrix

the Aij’s are different from the Aji ’s we have that Aij = 1 if and only if an

edge goes from i to j. This means that:

kin
i =

N
∑

j=1

Aji (1.2)

kout
i =

N
∑

j=1

Aij (1.3)

For weighted graphs an extension of the degree is made by summing the

weights of the edges rather than their number. In this case the degree it is

called strength.

kw
i =

N
∑

j=1

Aw
ij (1.4)

Distance. The distance dij between two vertices i, j is the shortest num-

ber of edges one needs to travel to get from i to j. Therefore the neighbours

of a vertex are all the vertices which are connected to that vertex by a single

edge.

Using again the adjacency matrix properties, one can define distance as:

dij = min{
∑

k,l∈Pij

akl} (1.5)
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where Pij is a path connecting i to j.

If the graph is oriented one has to follow the direction of the edges. There-

fore the distances are generally larger than in the homologous non-oriented

graphs. In the case of weighted graphs, instead of summing for every step a

distance of 1 we can assume that the distance is related to the values of the

weight.

Related to the distance is the diameter D of a graph that can be defined

as the largest distance you can find between two vertices in the graph (Cal-

darelli (2007)). Some other definition (as the average distance) are possible.

1.1.4 Centrality measures

The importance of a node is usually defined as its centrality. There exist

several measures to characterize the centrality of a node but the most used

are the following:

Degree centrality. It’s probably the most intuitive and immediate central-

ity measure. It is based on node degree and it says how well a node is

connected to the others elements of the graph.

Closeness Centrality. In a graph, the farness of a node is defined as the

sum of its distances to all other nodes, and its closeness is defined as

the reciprocal of the farness as follows:

gi =
1

∑

j 6=i dij
(1.6)

According to this measure, nodes having a smaller gi have a higher

centrality value.
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Betweenness centrality. While degree and closeness centrality take into

account only the topological role the node plays in the graph, com-

pletely ignoring eventually crucial nodes that could be acting as bridges

between different parts of the netwrk, betweenness centrality quantifies

the number of times a node acts as a bridge along the shortest path

between two other nodes. If σhj is the number of shortest paths from h

to j and σhj(i) is the fraction of these shortes paths that pass through

vertex i, the the betweenness centrality is defined as:

bi =
∑

h 6=j 6=i

σhj(i)

σhj

(1.7)

Betweenness centrality is often used in trasportation networks in order

to extimate the traffic load each node can withstand and determine the

most central ones. The nodes with the highest centrality are also the

most important in the graph because they keep the graph connected.

Eigenvector centrality. It is a measure of the influence of a node in a

network. It assigns relative scores to all nodes in the network based on

the concept that connections to high-scoring nodes contribute more to

the score of the node in question than equal connections to low-scoring

nodes. The centrality score of vertex i in graph G is:

xi =
1

λ

∑

j∈G

Aijxj (1.8)

where λ is a constant and Aij is the adjacency matrix entry.



CHAPTER 1. INTRODUCTION TO GRAPHS 8

Pagerank. It is an algorithm used by Google Search to rank websites in

their search engine results but it is now one of the most successful

and widely used. The idea is that in directed graphs the nodes are

considered important if they are pointed by other important nodes.

PageRank algorithm outputs a probability distribution used to repre-

sent the likelihood that a person randomly clicking on links will arrive

at any particular page. To do so it requires to be computed iteratively:

At t = 0, an initial probability distribution is assumed, usually PR(i; 0) = 1
N

where N is the total number of nodes;

At each time step, the PageRank of node i is computed as:

PR(i, t+ 1) =
1− d

N
+ d

∑

j∈M(i)

PR(j, t)

L(j)
(1.9)

where M(i) are the in-neighbors of node i and L(j) is the number of

ougoing links from node j. Damping factor d, usually set to 0.85, en-

sures that the random walker doesn’t get stuck in one node indefinitely.

1.1.5 Clustering coefficient

Even the neighbourhood of a node can determine its properties. That is the

case of clustering coefficient Ci which takes into acccount the number of

edges near a vertex i. Ci is given by the average fraction of pairs of neighbours

(of the same vertex) that are also neighbours of each other (see figure 1.2).

The maximum value of Ci = 1 for every vertex i is obtained for the com-

pletely connected clique. In general we may write the clustering coefficient

as the fraction of actual edges over the possible ones between the vertices i,
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Figure 1.2: In this simple example the central vertex has 3 neighbors. These nodes can

be connected in three different ways but, since only one of them is actually realized, the

clustering coefficient of the central node is Ci = 1/3 (Caldarelli (2007)).

j, k. Using, again, the adjacency matrix formalism, clustering coefficient can

be written as:

Ci =
1

ki(ki − 1)/2

∑

j,k

aijaikajk (1.10)

The average clustering coefficient C is defined as the average of the Ci’s

over the vertices i of the graph.

If the graph is oriented, the generalization of the clustering coefficient is

not trivial. The more natural solution could be to separate in- and out-degree

contributes but then the problem would be to decide which direction has to

be considered. In general one tends to join the two possible direction such
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that the clustering coefficient takes the form:

C in
i =

1

kin
i (kin

i − 1)/2

∑

j,k

ajiaki
(ajk + akj)

2
(1.11)

Cout
i =

1

kout
i (kout

i − 1)/2

∑

j,k

ajiaki
(ajk + akj)

2
(1.12)

The weighted case is even less straightforward. Indeed, if it is relatively

easy to convert the numerator in these expressions, it is not equally simple to

do it with the denominator. In the oriented case one only needs to add one

edge but in the weighted case one should also assign a weight to the added

edge.

Several solutions have been proposed. One definition is the following:

Cw
i =

1

< aw >3 ki(ki − 1)/2

∑

j,k

awija
w
ika

w
jk (1.13)

where < aw >= 1
n

∑

ij a
w
ij is the average weight of an edge in the graph.

Another possible solution, useful in real situations where fluctuactions in

edge weights are crucial, is:

Cw
i =

1

kw
i (ki − 1)/2

∑

j,k

aij + aik
2

θ(awij)θ(a
w
ik)θ(a

w
jk) (1.14)

Cw
i =

1

kw
i (ki − 1)/2

∑

j,k

aij + aik
2

θ(awij)θ(a
w
ik)θ(a

w
jk) (1.15)

where θ(x) is the step function equal to 1 when the argument is larger

than 0 (Barrat, Barthèlemy, Pastor-Satorras and Vespignani, 2004a; Barrat,

Barthèlemy, Pastor-Satorras and Vespignani, 2004b).
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According to the situation, one definition or another can be more suitable

(Caldarelli (2007)).

1.2 Trees

There is one general case in which the networks have a particular charac-

teristic shape. In the case of a distribution network (as for example water

supply, but in principle anything), the good is delivered to all clients trying

to avoid to pass on the same vertex twice. The class of graphs for which this

holds are called trees.

A tree is then a graph without cycles, where a cycle is defined as a closed

path that visit each vertex only once. A set of disconnected trees is called a

forest.

For the oriented trees the vertices with (out-)in-degree equal to one (the

peripheral vertices of the tree) are called leaves. Sometimes it is useful to

define a special vertex that is called root.

On a tree we can still use the quantities defined for graphs. Vertices have

still a degree and we can measure also the distances. In a non-oriented tree

there is always a path between any pair of vertices. For oriented trees instead,

it is possible that some of the vertices are isolated from the others because

the direction of the edges does not allow to join them. Therefore distances

are generally larger in oriented graphs. The only exception is the clustering

coefficient that is zero by construction.
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Figure 1.3: Two examples of special vertices in a tree. On the left (as in a real tree)

nutrients flow from the root (dark) to reach the leaves (light). Root and leaves are defined

through their in-degree (Caldarelli (2007)).

1.2.1 Classification of trees

Despite being so simple, trees can be very useful in describing complex ob-

jects. Trees can be real, i.e. the acyclical structure is intrinsic to the physical

phenomenon (e.g. rivers network), or can be derived from a graph as spanning

trees. Suppose that from a vertex in the graph you want to reach rapidly all

the other vertices. Then, from a starting point (i.e. vertex i) one finds all the

first neighbours and write them in a list; all of them are at a distance one

from i. For every of these vertices one computes a second list made of their

neighbours provided they are not already in the first list and they are not

i. all the vertices in the second list are at distance two from i. Iterating the

procedure one finds different shells of vertices around i, until all the vertices
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1.3 Statistical characterization of the network

When dealing with very large networks (large in some case means millions of

vertices and many more edges.) it is not possible to study their elements or

properties locally but it is necessary to adopt statical methods to be able to

take into account their global behaviour. Some quantities play a crucial role in

that sense: degree distribution, distance distribution e assortativity.

1.3.1 Degree distribution P (k)

Whichever the interest area, be it biology, technology, social sciences or

physics, all these structures show the same statistical property: the Prob-

ability Distribution for the degree decays as a power law.

P (k) ∝ x−γ (1.16)

This result indicates that large networks self-organize into a scale-free

state, a feature unexpected by all existing random network models. This

feature is found to be a consequence of the two generic mechanisms that net-

works expand continuously by the addition of new vertices (growth), and

new vertices attach preferentially to already well connected sites (preferential

attachment) (Barabasi and Albert (1999)).

This sort of “universality” means that the form of the distribution is

similar in all these cases and that the system appears the same regardless

the level at which one looks at it. This has profound implications, being the

most important the Scale invariance (Barabasi and Albert (1999)).
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1.3.2 Distance distribution P (d)

In most cases, even the distance distribution is the same, In particular its

peak is around small values of d. This average value of the vertex-vertex dis-

tance is supposed to depend logarithmically on the number n of vertices in

the network. This effect is known as Small World effect since in the social

graphs where vertices represent individuals, a little number of relationships

(edges) can connect two parts of the graph.

1.3.3 The Correlation between degrees: Assortativity

Another typical feature of the scale-free network is the tendency of vertices

of a certain degrees to be connected with other vertices with similar (assor-

tative) or dissimilar (disassortative) degree. Assortativity is often viewed as

a correlation between two nodes.

The assortativity coefficient r is the Pearson correlation coefficient

of the degree between pairs of linked nodes. Positive values of r indicate a

correlation between nodes of similar degree, while negative values indicate

relationships between nodes of different degree. In general, r lies between -1

and 1. When r = 1, the network is said to have perfect assortative mixing

patterns, when r = 0 the network is non-assortative, while at r = -1 the

network is completely disassortative.

The assortativity coefficient is given by:

r =

∑

k1k2
k1k2(P (k1, k2)− P (k1)P (k2))

σ2
(1.17)

where P (k1) and P (k2) are the degree distributions of nodes k1 and kj,
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P (k1, k2) is the joint probability distribution of the remaining degrees of the

two vertices and σ2 is the variance of the P (k).



Chapter 2

Community Detection

In this chapter, we consider another property, which, as we will show, appears

to be common to many networks, the property of community structure.

It is a matter of common experience that some networks seem to have

subsets of vertices within which vertex-vertex connections are dense, but with

few connections among these subsets (Girvan and Newman (2002)). Such

different structures seem to suggest a natural subdivision of the network in

communities or modules(2.1) 1.

Therefore communities are group of nodes sharing some common prop-

erties and/or play similar roles within the graph (Fortunato (2010)). Com-

1Communities are sometimes called clusters but they have a slightly different meaning:

a cluster is a part of the graph where there are more internal links than external ones while

a community is a set of vertices sharing the same topological properties. Nonetheless, if a

set of vertices has common edges, it is not only a cluster but also a community since even

edges can be cosidered a network property. In summary, a cluster is always associated

with a community of some kind. Communities usually correspond to clustered subgraphs

(Caldarelli (2007)). Therefore, in the following the two definitions will be considered equal.

17
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Figure 2.1: A schematic representation of a network with community structure. In this

network there are three communities of densely connected vertices (circles with solid lines),

with a much lower density of connections (gray lines) between them. (Girvan and Newman

(2002)).

munities in a social network might represent real social groupings, perhaps

by interest or background; communities in a citation network might repre-

sent related papers on a single topic; communities in a metabolic network

might represent cycles and other functional groupings; communities on the

web might represent pages on related topics.

Identifying modules and their boundaries allows for a classification of

vertices, according to their structural position in the modules. So, vertices
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with a central position in their clusters, i. e. sharing a large number of edges

with the other group partners, may have an important function of control and

stability within the group; vertices lying at the boundaries between modules

play an important role of mediation and lead the relationships and exchanges

between different communities. This is particularly true in metabolic (Lewis

et al. (2010)) and social (Porter et al. (2009)) networks

Being able to identify these communities could help us to understand and

exploit these networks more effectively (Girvan and Newman (2002)).

The aim of community detection in graphs is to identify the modules

and, possibly, their hierarchical organization, by only using the information

encoded in the graph topology.

2.1 Communities in real-world networks

Relations between nodes in real networks are not necessarily mutual; in most

cases edges have a precise orientation and the networks are said to be di-

rected. World Wide Web, for example, can be seen as a graph whose nodes

are web pages and hyperlinks make the users surf form a page to another.

Links are directed: usually, if a link from A to B exists, doesn’t exist a link

that gets back to A from B. Less than 10% of links are reciprocal.

Links direction obviously provides precious informations on the system;

that is why taking it into account significantly improves the quality of the

partitioning. Nonetheless, to develop community detection methods for di-

rected neworks is quite difficult because not all the methods that are currently

used can be extended to the directed case.
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Real networks can also have other features that add difficulty to the pic-

ture. In many networks, in fact, some nodes don’t belong exclusively to one

community but can be shared with more than one. In such cases as these we

talk about overlapping communities. Traditional community detection algo-

rithms assign each node to a single community, but by doing so they neglect

part of information since shared nodes are the ones that most probably act

as the intermediary between the different compartments of the graph.

Community structure can be also hyerarchical. It happens when commu-

nities include other communities or are included by them. A hyerarchical

behaviour is pretty common in both human and aniaml societies and are

crucial for an efficient management of large organizations. In this case as

well , traditional community detection algortihms tipically don’t search for

an inner hyerarchical organization but just for the better partition.

2.2 Elements of community-detection

The problem of graph clustering, intuitive at first sight, is actually not well

defined. The main elements of the problem themselves, i. e. the concepts of

community and partition, are not rigorously defined, and require some degree

of arbitrariness and/or common sense.

2.2.1 Communities

Providing a quantitative definition of what a community is quite difficult

since this definition often depends on the particular system considered. In

most cases, also, communities are defined by the algorithm used and not a
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priori (Fortunato (2010)).

Be C a subgraph of graph G with |C| = nC and |G| = n vertices, respec-

tively. Let’s define the internal degree kint
v and the external degree kext

v of

vertex v ∈ C as the number of edges connecting v to the other vertices of C
or to the rest of the graph, respectively.

If kext
v = 0, it means that the vertex has neighbours only within C which

results then as a good cluster for v ; on the other hand, if kint
v = 0, it means

that the vertex is completely untied from C and it probably belogs to another

cluster.

For C to be a community, it has to be connected, i.e there must be a path

between each pair of nodes in the community that passes only by nodes of

C.
With this basic knowledge, one can introduce various community defini-

tions but we will stick to a global definition that sees the graph as a whole

and a community as an essential part of it that cannot be taken apart without

seriously affecting the funtioning of the graph itself.

Such a definition sits on the assumption that on the idea that a graph

has community structure if it is different from a random graph.

A random graph is not expected to have community structure, as any

two vertices have the same probability to be adjacent, so there should be no

preferential linking involving special groups of vertices.

Therefore, one can define a null model, i. e. a graph which matches the

original in some of its structural features, but which is otherwise a random

graph. The null model is used as a term of comparison, to verify whether the

graph at study displays community structure or not. The most popular null
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model is that proposed by Newman and Girvan and consists of a randomized

version of the original graph, where edges are rewired at random, under the

constraint that the expected degree of each vertex matches the degree of the

vertex in the original graph (Newman and Girvan (2004a)).

This null model is the basic concept behind the definition of modularity, a

function which evaluates the goodness of partitions of a graph into clusters.

Modularity will be discussed thoroughly in this chapter and widely used

in the following, because it has the unique privilege of being at the same

time a global criterion to define a community, a quality function and the

key ingredient of the most popular method of graph clustering (Fortunato

(2010)).

2.2.2 Quality functions: modularity

Reliable algorithms are supposed to identify good partitions, where a parti-

tion is a division of a graph in clusters, such that each vertex belongs to one

cluster.

Many algorithms are able to identify a subset of meaningful partitions,

ideally one or just a few, whereas some others, deliver a large number of

partitions. That does not mean that the partitions found are equally good.

Therefore we need to have a quantitative criterion to assess the goodness

of a graph partition. A quality function is a function that assigns a number to

each partition of a graph. In this way one can rank partitions based on their

score given by the quality function. Partitions with high scores are “good”,

so the one with the largest score is by definition the best (Fortunato (2010)).

The most popular quality function is the modularity of Newman and
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Girvan (Newman and Girvan (2004a)). As previously said, it is based on the

idea that a random graph is not expected to have a cluster structure, so

the possible existence of clusters is revealed by the comparison between the

actual density of edges in a subgraph and the density one would expect to

have in the subgraph if the vertices of the graph were attached regardless

of community structure. This expected edge density depends on the chosen

null model, i. e. a copy of the original graph keeping some of its structural

properties but without community structure.

The modularity function can be written as Newman and Girvan (2004a):

Q =
1

2m

∑

ij

(Aij − Pij)δ(Ci, Cj) (2.1)

where the sum runs over all the node pairs, A is the adjacency matrix,

m is the total number of edges and is the expected number of edges between

the vertices i e j for a given null model. The δ function will result in a null

contribution for couples of vertices not belonging to the same community

(Ci 6= Cj).

Even if the choice of the null model is, in principle, arbitrary, the most

suitable choice to make would be to keep the degree sequence of the original

graph, due to the important implications that broad degree distributions

have for the structure and function of real networks (Albert et al. (2000)).

This choice is stricter than just requiring the matching of the degree

distributions and is essentially equivalent to the configuration model (Molloy

and Reed (1995)).

In this null model, a vertex could be attached to any other vertex of the

graph and the probability that vertices i and j, with degrees ki and kj , are
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connected,can be calculated without problems.

In fact, in order to form an edge between i and j one needs to join two

stubs (i. e. half-edges), incident with i and j. The probability pi to pick at

random a stub incident with i is ki/2m, as there are ki stubs incident with

i out of a total of 2m. The probability of a connection between i and j is

then given by the product pipj , since edges are placed independently of each

other.

The result is kikj/4m
2 , which yields an expected number Pij = 2mpipj =

kikj/2m of edges between i and j. So, the final expression of modularity is:

Q =
1

2m

∑

ij

(

Aij −
kikj
2m

)

δ(Ci, Cj) (2.2)

Since the only contributions to the sum come from vertex pairs belonging

to the same cluster, we can group these contributions together and rewrite

the sum over the vertex pairs as a sum over the clusters:

Q =
nc
∑

c=1

[

lc
m

−
(

dc
2m

)2
]

(2.3)

where nc is the number of clusters, lc the total number of edges joining

vertices of module c and dc the sum of the degrees of the vertices of c.

In other words, in eq. 2.3 the first term of each summand is the fraction of

edges of the graph inside the module, whereas the second term represents the

expected fraction of edges that would be there if the graph were a random

graph with the same expected degree for each vertex.

Eq. 2.3 also suggests that a subgraph is a community only if it posi-

tively contributes to modularity. So, the more the number of internal edges
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of the cluster exceeds the expected number, the better defined the commu-

nity. Higher values of modularity indicates good partitions. Modularity grows

up as the number of cluster or the size of the graph increases so it shouldn’t

be used to compare the quality of the community structure of graphs which

are very different in size.

The modularity of the whole graph, taken as a single community, is zero,

as the two terms of the only summand in this case are equal and oppo-

site. Modularity is always smaller than one, and can be negative as well. If

there are no partitions with positive modularity, the graph has no community

structure.

Modularity function naturally extend to the weighted case: the adjacency

matrix Aij will be replaced by the weighted adjacency matrixWij (see chapter

1) and instead of degrees ki and kj we will have strengths si and sj.

Many algorithms use modularity as quality function and modularity op-

timization method itself is a popular method of community detection.

2.3 Modularity-based methods

By assumption, high values of modularity indicate good partitions. So, the

partition corresponding to its maximum value on a given graph should be

the best, or at least a very good one. This is the main motivation for mod-

ularity maximization, by far the most popular class of methods to detect

communities in graphs. An exhaustive optimization of Q is impossible, due

to the huge number of ways in which it is possible to partition a graph, even

when the latter is small. Thus, it is probably impossible to find the solution
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in a time growing polynomially with the size of the graph. However, there

are currently several algorithms able to find fairly good approximations of

the modularity maximum in a reasonable time (Fortunato (2010)).

2.3.1 Louvain method

A new approach has been introduced by Blondel et al. (2008), for the general

case of weighted graphs. This method, known as “Louvain”2, is today one

of the most widely used algorithms for community detection since it is very

simple to implement but very powerful in identifying modules, even in very

large graphs (for sizes up to 100 million nodes and billions of edges), in a

reasonable time.

The method consists of two steps, repeated iteratively until convergence:

Step 1: Let’s consider a weighted network of size N. Initially, all vertices of

the graph are put in different communities, so there will be as many

communities as the nodes of the network. Then, a sequential sweep is

performed over all vertices. Given a vertex i, one computes the gain

in weighted modularity coming from putting i in the community of its

neighbor j and picks the community of the neighbor that yields the

largest increase of Q, as long as it is positive. If a positive gain is not

possible, the node stays in its own community. Modularity gain ∆Q,

2It is called like that because, even though the co-authors now hold positions in other

places, the method was devised when they all were at the Universitè catholique de Louvain.
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obtained moving node i in a community C can be calculated as follows:

∆Q =

[

∑

in +ki,in
2m

−
(∑

tot +ki
2m

)2
]

−
[

∑

in

2m
−

(∑

tot

2m

)2

−
(

ki
2m

)2
]

(2.4)

where
∑

in is the sum of the weights of the edges internal to C,
∑

tot is

the sum of the weights of the edges incident in C , ki is the sum of the

weights of the edges incident to node i, ki,in is the sum of the weights

of the edges from i to nodes in C and m is the sum of the weights of all

the edges in the network. A similar espression can be used to compute

the change in Q when removing a node from its community.

Step 2: Communities are replaced by superver- tices, and two supervertices

are connected if there is at least an edge between vertices of the corre-

sponding com- munities. In this case, the weight of the edge between

the supervertices is the sum of the weights of the edges between the

represented communities at the lower level. Edges between nodes of

the same community lead to self-loops for this community in the new

network.

Once second phase is completed, the two steps are repeated, yielding new

hierarchical levels and supergraphs (figure 2.2).

2.4 Limits of modularity

Modularity suffers from some known drawbacks, which are crucial to identify

the domain of its applicability and the reliability of its measures.
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Figure 2.2: Visualization of the steps of Louvain algorithm. Each pass is made of two

phases: one where modularity is optimized by allowing only local changes of communities;

one where the found communities are aggregated in order to build a new network of

communities. The passes are repeated iteratively until no increase of modularity is possible

(Blondel et al. (2008)).

We said that a high value of modularity means that the given partition

is a good one. However, a large value for the modularity maximum does not

necessarily mean that a graph has community structure. Random graphs are

supposed to have no community structure, as the linking probability between

vertices is either constant or a function of the vertex degrees, so there is no

bias a priori towards special groups of vertices. Still, random graphs may

have partitions with large modularity values (Fortunato (2010)). This is due

to fluctuations in the distribution of edges in the graph, in some cases they

can concentrate in subsets of the network that can appear as communities.

A more fundamental issue, raised by Fortunato and Barthelemy (2007),

is the so-called resolution limit and concerns the capability of modularity to

detect communities which are comparatively small with respect to the graph
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as a whole, even when they are well defined. So, if the partition with maxi-

mum modularity includes communities with total degree of the order of
√
m

or smaller, one cannot know a priori whether they are single communities or

combinations of smaller weakly interconnected communities.

The resolution limit comes from the very definition of modularity, in

particular from its null model. The weak point of the null model is the implicit

assumption that each vertex can interact with every other vertex, which

implies that each part of the graph knows about every- thing else (Fortunato

(2010)).

The resolution limit problem seems to be circumvented in Blondel et al.

(2008) thanks to the intrinsic multi-level nature of the algorithm. Since the

first phase of the method involves the displacement of single nodes from one

community to another, the probability that two distinct communities can be

merged by moving nodes one by one is very low. These communities may

possibly be merged in the following steps, after blocks of nodes have been

aggregated. However, the algorithm provides a decomposition of the network

into communities for different levels of organization so that one can observe

its structure with the desired resolution.
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Data

Since 1973, when currencies began to be traded in financial markets and their

values determined by the foreign exchange market, the volume of foreign

exchange trading has been growing at an impressive rate. The transaction

volume in 1995 was 80 times what it was in 1973. In the 1980s electronic

trading, already a part of the environment of the major stock exchanges, was

adapted to the foreign exchange market.

Physicists have generally investigated economic systems and problems

only occasionally. Recently, however, a growing number of physicists is be-

coming involved in the analysis of economic systems.

Financial markets are, indeed, remarkably well-defined complex systems,

which are continuously monitored - down to time scales of seconds. Further,

virtually every economic transaction is recorded, and an increasing fraction

of the total number of recorded economic data is becoming accessible to

interested researchers, making financial markets extremely attractive for re-

searchers interested in developing a deeper understanding of modeling of

30
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complex systems (Mantegna et al. (2000)).

Also space is central to the work of economic institutions, providing the

framework for survey design, sample selection, data collection, tabulation,

and dissemination. Geography provides meaning and context to statistical

data.

Given the diversity of population, economic activities, and geographic

areas considered when dealing with economic or financial datasets, a spa-

tial framework is then critical to provide real insight on data. Therefore,

geographic area concepts, information, and statistical data must keep pace

with the needs of the researchers and analysts who work to understand the

changing distribution and characteristics of people, places and economy.

Given that, the following sections will describe in detail the data used in

the papers reviewed in this thesis.

3.1 Sardinian Inter-municipal Commuting Net-

work (SMCN)

Sardinia is the second largest Mediterranean island with an area of approxi-

mately 24.000 square kilometers and 1.600,000 inhabitants. In 1991, when the

census was carried out, the island was partitioned in 375 municipalities, the

second simplest body in the Italian public administration, each one of those

generally corresponding to a major urban centre (in Figure 3.1 we report the

geographical distribution of the municipalities).

For the whole set of municipalities the Italian National Institute of Statis-

tics IST (1991) has issued the origin-destination table (OD) corresponding
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Figure 3.1: Geographical representation of the the Sardinian inter-municipal commuting

network (SMCN).

to the commuting traffic at the inter-city level. The OD is constructed on the

output of a survey about commuting behaviors of Sardinian citizens. This

survey refers to the daily movement from the habitual residence (the ori-

gin) to the most frequent place of employment (the destination): the data

comprise both the transportation means used and the time usually spent for

displacement. Hence, OD data give access to the flows of people regularly

commuting among the Sardinian municipalities.

3.2 Atlanta Regional Commission (ARC)

The Atlanta Regional Commission maintains a network model for land use

purposes of the metropolitan area of the city of Atlanta, in the State of

Georgia, USA. The ARC travel demand model is designed to represent the
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state of the practice in travel demand modeling and to meet all modeling

requirements in the US EPA Transportation Conformity Rule.

The main data source for the calibration of the travel demand models

was a household travel survey of eight thousand households conducted for

the ARC from April 2001 through April 2002. The household survey data was

the main source of data for developing the trip generation and distribution

model. The trip generation model is a fairly unique trip based model in that

it estimated the frequency a person will make trips, by the purpose of the

trip, and then applies this frequency to individual persons to determine the

total amount of travel made by the residents of the territorial unit (TAZ).

Therefore, just like in the case of the SMCN network, the trips reported in

the ARC model are produced by a trip generation model, which is calibrated

according to the result of a survey (further details are available in ARC

(2008)). The calibration is achieved by matching the trip length, frequency

and by evaluating geographic area biases (e.g., natural features, political or

service delivery boundaries, etc).

3.3 Patent data

The OECD Patent Database was set up to develop patent indicators that are

suitable for statistical analysis and that can help address S& T policy issues.

The Patent Database covers data on patent applications to the European

Patent Office (EPO), the US Patent and Trademark Office (USPTO), patent

applications filed under the Patent Co-operation Treaty (PCT) that desig-

nate the EPO, as well as Triadic patent families. Data mainly derives from
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the latest version of the EPO’s Worldwide Patent Statistical Database (PAT-

STAT) (http://www.oecd.org/science/inno/oecdpatentdatabases.htm).

The OECD REGPAT database used here presents patent data that have

been linked to regions according to the addresses of the applicants and in-

ventors. The data have been regionalised at a very detailed level so that

more than 2000 regions are covered across OECD countries. REGPAT allows

patent data to be used in connection with other regional data such as GDP

or labour force statistics, and other patent-based information such as cita-

tions, technical fields and patent holders characteristics (industry, university,

etc.), thus providing researchers with the means to develop a rich set of new

indicators and undertake a broad range of analyses to address issues relating

to the regional dimension of innovation (Maraut et al. (2008),Webb et al.

(2005)).

3.3.1 The OECD Regional Database

The OECD Regional Database (RDB) provides quantitative information on

socio-economic issues in 2014 regions within 30 OECD member countries.

The database includes regional statistics on four major topics (demographics,

regional accounts, labour market, and social issues). The database contains

annual data from 1990 to the present.

The RDB has been established to provide an internationally comparable

database for the analysis of economic, institutional and environmental issues

at the sub-national level. In any analytical study conducted at sub-national

levels, the choice of the territorial unit is of prime importance.

To address this issue, regions within each member country have been clas-
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sified in two territorial levels (TLs). The higher, more aggregate, Territorial

Level 2 (TL2) consists of about 335 macro-regions while the lower, more de-

tailed Territorial Level 3 (TL3) is composed of 1679 micro-regions. (Maraut

et al. (2008))

While for European countries, this classification is largely consistent with

the Eurostat classification (http://epp.eurostat.ec.europa.eu/portal/

page/portal/nuts_nomenclature/introduction) in NUTS levels 2 and 3,

Canada and Australia are not part of the OECD official territorial grids so,

for the sake of simplicity, they are labelled as Non Official Grids (3.2).

3.4 BACI data

BACI is the World trade database developed by the CEPII, providing bilat-

eral values and quantities of exports of goods and services at the HS 6-digit

product disaggregation, for more than 200 countries since 1995. It is updated

every year (http://www.cepii.fr/CEPII/en/bdd_modele/presentation.

asp?id=1)..

Original data are provided by the United Nations Statistical Division

(COMTRADE database). BACI is constructed using an original procedure

that reconciles the declarations of the exporter and the importer. This har-

monization procedure enables to extend considerably the number of countries

for which trade data are available, as compared to the original dataset.

The dataset gives information about the value of trade (v, in thousands of

US dollars) and the quantity (q, in tons). Individual trade flows are identified

by the exporter (i), the importer (j), the product category (hs6) and the year
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3.4.1 Harmonized Commodity Description and Cod-

ing Systems (HS)

The Harmonized System is an international nomenclature for the classifica-

tion of products. It allows participating countries to classify traded goods on

a common basis for customs purposes. At the international level, the Har-

monized System (HS) for classifying goods is a six-digit code system.

The HS comprises approximately 5300 article/product descriptions that

appear as headings and subheadings, arranged in 99 chapters, grouped in 21

sections. The six digits can be broken down into three parts. The first two

digits (HS-2) identify the chapter the goods are classified in, e.g. 09 = Coffee,

Tea, Maté and Spices. The next two digits (HS-4) identify groupings within

that chapter, e.g. 09.02 = Tea, whether or not flavoured. The next two digits

(HS-6) are even more specific, e.g. 09.02.10 Green tea (not fermented)... Up

to the HS-6 digit level, all countries classify products in the same way (a few

exceptions exist where some countries apply old versions of the HS).

The Harmonized System was introduced in 1988 and has been adopted

by most of the countries worldwide. It has undergone several changes in the

classification of products. These changes are called revisions and happened

in 1996, 2002 and 2007.

3.5 World Input-Output Database

The World Input-Output Database has been developed to analyse the ef-

fects of globalization on trade patterns, environmental pressures and socio-

economic development across a wide set of countries. At the time of writ-
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ing, the WIOD input-output tables cover 35 industries for each of the 40

economies (27 EU countries and 13 major economies in other regions) plus

the rest of the world (RoW) and the years from 1995 to 2011 (Timmer et al.

(2012)). It is downloadable at http://www.wiod.org/database/index.htm.

Tables 3.1 and 3.2 have the lists of countries and industries covered in

the WIOD. For each year, there is a harmonized global level input-output

table recording the input-output relationships between any pair of industries

in any pair of economies 1. The numbers in the WIOD are in current basic

(producers’) prices and are expressed in millions of US dollars.

1The relationship can also be an industry to itself and within the same economy.
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Euro-Zone Non-Euro EU NAFTA East Asia BRIIAT

Economy 3L Code Economy 3L Code Economy 3L Code Economy 3L Code Economy 3L Code

Austria AUT Bulgaria BGR Canada CAN China CHN Australia AUS

Belgium BEL Czech Rep. CZE Mexico MEX Japan JPN Brazil BRA

Cyprus CYP Denmark DNK USA USA South Korea KOR India IND

Estonia EST Hungary HUN Taiwan TWN Indonesia IDN

Finland FIN Latvia LVA Russia RUS

France FRA Lithuania LTU Turkey TUR

Germany DEU Poland POL

Greece GRC Romania ROM

Ireland IRL Sweden SWE

Italy ITA UK GBR

Luxembourg LUX

Malta MLT

Netherlands NLD

Portugal PRT

Slovakia SVK

Slovenia SVN

Spain ESP

Table 3.1: List of WIOD Economies.

3.5.1 Concept of a world input-output table (WIOT)

To outline the basic concept of a world input-output tables (WIOT), let’s

start discussing a national input-output table (IOT). Figure 3.3 shows the

schematic outline for a traditional industry by industry IOT.

As in Timmer et al. (2012), we assume that each industry produces only

one (unique) product. The rows in the upper parts indicate the use of prod-

ucts, being for intermediate or final use. Each product can be an intermediate
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Full Name ISIC Rev. 3 Code WIOD Code 3-Letter Code

Agriculture, Hunting, Forestry and Fishing AtB c1 Agr

Mining and Quarrying C c2 Min

Food, Beverages and Tobacco 15t16 c3 Fod

Textiles and Textile Products 17t18 c4 Tex

Leather, Leather and Footwear 19 c5 Lth

Wood and Products of Wood and Cork 20 c6 Wod

Pulp, Paper, Paper , Printing and Publishing 21t22 c7 Pup

Coke, Refined Petroleum and Nuclear Fuel 23 c8 Cok

Chemicals and Chemical Products 24 c9 Chm

Rubber and Plastics 25 c10 Rub

Other Non-Metallic Mineral 26 c11 Omn

Basic Metals and Fabricated Metal 27t28 c12 Met

Machinery, Nec 29 c13 Mch

Electrical and Optical Equipment 30t33 c14 Elc

Transport Equipment 34t35 c15 Tpt

Manufacturing, Nec; Recycling 36t37 c16 Mnf

Electricity, Gas and Water Supply E c17 Ele

Construction F c18 Cst

Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 50 c19 Sal

Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 51 c20 Whl

Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 52 c21 Rtl

Hotels and Restaurants H c22 Htl

Inland Transport 60 c23 Ldt

Water Transport 61 c24 Wtt

Air Transport 62 c25 Ait

Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies 63 c26 Otr

Post and Telecommunications 64 c27 Pst

Financial Intermediation J c28 Fin

Real Estate Activities 70 c29 Est

Renting of M&Eq and Other Business Activities 71t74 c30 Obs

Public Admin and Defence; Compulsory Social Security L c31 Pub

Education M c32 Edu

Health and Social Work N c33 Hth

Other Community, Social and Personal Services O c34 Ocm

Private Households with Employed Persons P c35 Pvt

Table 3.2: List of WIOD Industries.







Chapter 4

Applications

The research presented here has been carried out focusing on community

detection; in particular were considered cases where the spatial component

was relevant or intrinsic. It is indeed true that, nowadays, many systems,

represented as complex networks, are affected, more or less naturally, by the

geographical distance, location and organization.

This holds true even for economic events: it has been proved that trade

and exchanges between countries are necessarily suffocated by the geographi-

cal proximity or impeded by natural obstacles. We all saw how the 2007-2008

financial crisis spread following preferential routes that could be ascribed to

the relational patterns between states. Relations that are influenced, among

the other things, by geographical distance.

Thus, if we want to efficiently study phenomena happening in the physical

world, space cannot be overlooked.

According to this view we developed a way to enforce standard community

detection methodology with a set of space-oriented tools, such as spatial

43
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modularity, outreach index and geo-localization methods, and representation.

Nonetheless, community detection alone is not sufficient to describe the

whole picture, since it gives no information about the internal structure of

a community. Therefore we developed the novel core detection method, nat-

ural counterpart of the community detection algorithm and meant to be

performed alongside it, which is, at the same time, simple and powerful.

Thanks to both community and core detection we are now able to have a

deeper insight on the inner workings of community formation, we can iden-

tify the leading members in a group and reveal influence basins, unknown

otherwise .

In sections 4.1 and 4.2 we will explain the spatial modularity and core

detection methods and in sections 4.3, 4.4, 4.5 thoroughly show results and

applications (each section is titled as the relative published - or still submitted

- work).

4.1 Spatial Correlations in Attribute Com-

munities (Cerina et al. (2012))

In spatial networks, each node is described by its coordinates (usually in a

2d space) but has in general other attributes. For individuals, it can be any

cultural or socio-economical parameter. For infrastructure networks such as

power grids, it can be the voltage at the electric substations. In general,

this attribute depends on space and the resulting network displays entangled

layers of parameters. An important goal in the analysis of these networks is to

disentangle these different levels and to extract some mesoscopic information
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from the spatial network structure. If one is interested in studying effects

beyond space (Expert et al., 2011), one should have a straightforward way

to ’subtract’ it from the network, or in other words, to disentangle space and

the other attributes.

A natural tool for such a task is community detection which was used

for the characterization at a mesoscopic scale of the properties of complex

networks. Community detection can have several purposes in spatial networks

Guimerà et al. (2005), Kaluza et al. (2010), Hu et al. (2011b), Gregory (2011),

but probably the main one is to disentangle these various aspects, including

spatial correlations of any type. In most cases Guimerà et al. (2005), Kaluza

et al. (2010) communities are determined by the geography only, which results

from the simple fact that the most important flows are among nodes in

the same geographical regions. In this sense, community detection in spatial

networks offers a visual representation of large exchange zones. This even

suggests that community detection might be an important tool in geography

and in the determination of new administrative or economical boundaries

De Montis et al. (2011).

In the general case, for a given network we don’t know to what extent the

existence of a link between a pair of nodes is due to a specific factor or to

space only. The link could exist because of a strong attribute affinity between

the nodes, or in the other extreme case, because they are close neighbors. In

general, one could expect a combination of these two effects. If we are inter-

ested in recovering communities defined by an attribute (such as language

for example) from the network structure, we then have to consider various

assumptions such as the correlation between link formation, attribute values
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and space. In order to understand the effect of the underlying correlations,

we can consider two extreme cases. When the links are purely spatial and

independent from the attributes, if we remove the spatial component, we

will observe random communities (obtained for a random graph) which con-

tain a random number of nodes with random attributes. In this situation,

community detection is unapplicable and there is no way to recover attribute

communities from the network structure. The other extreme case is when the

formation of a link depends on the attributes only. In this case, space is ir-

relevant and any standard community detection method should give sensible

results, ie. communities made of nodes with the same attribute.

The important problem we wanted to focus on here is thus the intermedi-

ate case when the probability to have a link depends both on attributes and

on space. In this case we have to eliminate spatial effects in order to recover

the attribute structure. An important point in the discussion is then the

existence of correlation between space and attributes. The nature and exis-

tence of these correlations will govern the way we will have to do community

detection.

In this work, we constructed a simple artificial network model allowing us

to investigate the effect of these correlations on the results of the community

detection procedure and test various methods on it.

4.1.1 A benchmark for spatial networks with attributes

In order to test these ideas and how community detection acts on spatial

networks, we define a simple model of spatial networks where nodes and

their attributes are randomly distributed in space. The attributes could be
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anything and we will restrict - without loss of generality - to the simple

binary case where the attributes can have two possible values at each node.

In general, according to the various parameters of the model, the attributes

can be delocalized in space or, on the contrary, be localized in some well-

defined region. In some cases, some attribute community could emerge in

space, but our target community structure will always be the partition of the

network in the two subgraphs composed of nodes with the same attribute

and we will test how various methods can recover these two communities. In

this respect the main focus of our work will be the disentanglement of the

sole attribute network features beyond the spatial node arrangements.

We construct the test (benchmark) network defining the vertex and edge

properties in the following way.

Vertex properties:

1. We generate points/nodes in the 2d space (x − z) in two spatial com-

munities, say the North and the South, around the two centers (x, z) =

(0,+L) and (x, z) = (0,−L) (see Fig. 4.1). A simple way to do that is

to generate points i around the two centers according to the probability

p(xi, zi) ∝ e−dci/ℓ (4.1)

where dci is the euclidean distance between one of the centers c and the

node i of coordinates (xi, zi).



CHAPTER 4. APPLICATIONS 48

Figure 4.1: The two spatial communities North and South are well separated having

their average size ℓ = L. In the A panel we present the case ǫ = 0 where there is a perfect

correlation between the space and the attributes (green and red colors). In the B panel, the

uncorrelated case ǫ = 0.5 is presented where the attribute colors are randomly distributed

between the two segregated spatial communities (for the sake of clarity, only 40 out of the

100 nodes used in our simulations are shown here, and β = 1.0).

2. We assign an attribute Si to each node i. In the following we will focus

on the simplest case where this attribute can take only two values

Si = ±1 (which in this work are the red and green colors). A simple

way to control correlations between attribute and space is to choose

Si = +1 with probability q for z > 0 and Si = −1 with probability 1−q.

In order to tune the various cases we introduce the parameter ǫ, with

q = 1 − ǫ, that determines the mixing between space and attributes,

ranging from 0.0 to 0.5. In the case ǫ = 0.0 space and attributes are

strongly correlated, while for ǫ = 0.5 space and attribute are totally

uncorrelated.

So the relevant parameters for the generation of network nodes are ℓ
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and ǫ.

Edge properties:

3. We then construct the network: for each pair of nodes, we create a

link between nodes i and j with probability plink(i, j) ∝ eβSiSj−dij/ℓ0

where ℓ0 plays the role of the typical size of the spatial community

(and where dij is the euclidian distance between i and j). It is worth

observing that the parameter l0 is the typical length of links when

space dominates while ℓ is the typical spatial size of the northern and

southern communities. Here the relevant edge parameters are β and

ℓ0, but in order to simplify the model and to focus on the efficiency of

community detection methods, we choose ℓ = ℓ0. This choice implies

that when space dominates the link formation, the links cannot be

much larger than the community size. In this case, the only spatial

relevant parameter will be ℓ/L and we can fix L to be equal to 1.0 so

that the spatial variability will be governed by ℓ. We can rewrite the

probability plink(i, j) as

plink(i, j) =
1

N eβ(SiSj−dij/ℓβ) (4.2)

where N =
∑

i<j exp (βSiSj − dij/ℓ) is the normalization constant. As

in the Erdos-Renyi random graph, the number of edges is a random

variable with small fluctuations around its average. The number of

nodes is thus fixed in each network but not the number of edges or

the average degree, and this implies that we will have to average our

observables over different realizations of the network.
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When βℓ is large, links are essentially between nodes with the same

attribute (irrespective of their distance) and if βℓ is small then space

is the governing factor and links are essentially between neighboring

nodes.

In this way the probability associated to a link depends on both space and

attribute, and the correlation between attributed and space can be controlled.

If the attribute is the same between two nodes the probability to have a

link will be reinforced, otherwise it will be weakened, the interplay being

controlled by the parameter β . Concerning the spatial factor, the closer the

nodes and the larger the probability associated to this link.

The generation of attributes is an important point. We have two values

of the attribute only so that we need to generate attributes for only half

(N/2) of the nodes. So in the following we will study the specific case of an

attribute community structure of equal size communities: half of the nodes

has attribute Si = +1 and the other half has Si = −1. We will investigate

here two extreme situations:

• Attributes and space uncorrelated: this case is recovered by choosing

ǫ = 1/2.

• Attributes and space are strongly correlated. For this, we choose ǫ small.

In this case, the spatial communities are also attribute communities.

Furthermore we can distinguish two different spatial arrangements for the

northern and southern communities. The first case corresponds to a situation

where the two communities are well separated with their average size ℓ ≤ L

and the spatial effects dominate the community structure (see Fig. 4.1). The
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second situation corresponds to a larger value of the average community size

ℓ where the two communities start mixing up while ℓ approaches L (see

Fig. 4.2).

Figure 4.2: The two communities North and South are mixing up each other with their

average size ℓ approaching the value of L (in this case ℓ = 2L). In the A panel, we

display the case ǫ = 0.0. Even if the spatial correlation is fading away the space-attribute

correlation is still strong enough to display an attribute community. In the B panel, we

show the extreme case ǫ = 0.5 where the attributes are not correlated with space. In this

case spatial mixing destroys the attribute community structure (for the sake of clarity,

only 40 out of the 100 nodes used in our simulations are shown here, and β = 1.0).

There are many proposal in the literature for networks benchmarking

(see for example Lancichinetti and Fortunato (2009)), but this is -up to our

knowledge- the first one which takes into account the correlation between

space and node attributes.
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4.1.2 Methods

The interplay between space and attributes can lead to various situations

that need to be understood within the framework of community detection.

Indeed we have two main regimes βℓ ≫ 1 and βℓ ≪ 1 (see also Figure 4.3):

Figure 4.3: The table gives an account of the behaviour of the model in the regimes

βℓ ≪ 1 and βℓ ≪ 1 both in the correlated (ǫ = 0.0) and uncorrelated (ǫ = 0.5) case.

βℓ ≫ 1 . In this case, the spatial component of the links becomes irrelevant

(see Eq. 4.2) and for a given value of β the community structure due

to the node attributes will emerge, independently from the correlation

between space and attributes. In this regime any community detection

method should work.

βℓ ≪ 1 . Here we have two subcases depending con the correlation between

space and attributes:

• (ǫ = 0.0) Space and attributes are correlated: any regular commu-

nity detection will work and moreover if you carefully remove the

spatial effect the attribute community structure will be recovered.

• (ǫ = 0.5) Space and attributes are uncorrelated: in this case the

links are between neighboring nodes but the attributes are any-

where in space. Standard community detection methods won’t
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work and it is then necessary to ’remove’ space in order to un-

cover the attribute communities.

The general assumption of our model is to what extent it is possible to

detect communities even if there is a spatial influence. Without space the

initial situation is clear: we have two communities by construction and the

probability of two nodes to be connected is related to the attribute similar-

ities. Nodes with S=+1 tend mainly to connect to each other and the same

for the S=-1 nodes. If we then put nodes in space and enhance the connec-

tion probability due to the proximity of nodes, it is not clear if a regular

community detection method is able to detect the original two communities

structure. We thus see that correlations between space and attributes can be

misleading and any community detection method for spatial networks should

take into account this problem. There are now many community detection

methods Fortunato (2010) and in the following we will use modularity opti-

mization introduced by Newman and Girvan Newman and Girvan (2004a).

This method suffers from various problems, the most important being the

existence of a resolution limit Fortunato and Barthelemy (2007) which pre-

vent it to detect smaller modules, but it is simple enough to implement. In

addition, our point here is to understand the effect of space-attributes cor-

relations on community detection and not to compare various methods. In

the following we will thus essentially probe the Newman-Girvan method and

variants proposed here and in Expert et al. (2011) for cases where the space

and attribute have different degrees of correlation.

The modularity function which needs to be optimized is Newman and

Girvan’s modularity, as defined in section 2.2.2. In order to introduce ex-
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plicitly space, the idea is to change the null model defined by Pij and to

compare the actual network with this null model. Recently, such a proposal

was made in Expert et al. (2011) where the quantity Pij is directly obtained

from the data describing the network. More precisely, Expert et al. Expert

et al. (2011) used the following form

PData
ij = NiNjf(dij) (4.3)

whereNi is related to the importance of the node i (such as the population for

example). This form is reminiscent of the gravitional model for traffic flows

(see for example Erlander and Stewart (1990)) where flows are proportional

to the product of populations and decrease with distance. In Expert et al.

(2011), the authors proposed to estimate the unknown function f directly

from the empirical data by

f(d) =

∑

i,j|dij=d Aij
∑

i,j|dij=d NiNj

(4.4)

which can be seen as the probability to have two nodes connected at a dis-

tance d. Note that there is a binning procedure hidden in Eq. (4.4). The

usual way to proceed in these cases consists in introducing a discretization

of the space in bins that capture classes of distances. Following Expert et al.

(2011), we performed a binning of distances selecting the best value for the

number of bins after a detailed stability study of the distributions obtained

from the data.

Expert et al. Expert et al. (2011) applied this method to the specific case

of the phone network in Belgium, and try to reconstruct linguistic commu-

nities (Flemish and French) beyond individuals spatial location. This choice

is probably the best one if there are no correlations between the attribute
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under study (in their case the linguistic membership of the people calling

each other) and space. In this specific case, extracting the node spatial de-

pendencies from the actual link distribution present in the network data is

the most effective way to subtract the spatial component. Otherwise if there

are any correlations between space and node attributes, the data contain in

an unknown proportion the two informations (space and attribute) and their

method needs to be reformulated. One possible way to do this is to explicitly

guess a spatial dependency of the link distribution and to put it as an in-

dependent factor in the optimization function definition. In order to be able

to deal with the correlated case and to remove spatial effect only, we thus

propose the following explicit function of space for Pij

P Spatial
ij =

1

Z
kikjg(dij) (4.5)

where Z is the normalization constant, ki the degree of the node i, dij the

euclidean distance between node i and node j. The function g(d) is a de-

creasing function of distance and its role is to remove the spatial effect. A

simple choice is

g(d) = e−d/ℓ (4.6)

where ℓ is the average distance between nodes in the network. Of course ℓ is a

rough approximation of the real ℓ value, but we will see in the following that

it is enough to capture the essence of the spatial signature of the network.

We now need a method to compare the community structure obtained

with the modularity optimization and the expected one for the attribute

membership. Many proposals have been introduced Danon et al. (2005),

Campello (2007), Karrer et al. (2007), and we decided to use here the Jac-

card Index Jain and Dubes (1988), Halkidi et al. (2001). This index is an
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extension of the Rand index Rand (1971), and is considered to be one of

the most robust measure for the clustering and classification assessment of

graphs Denoeud et al. (2006). If C is the partition to be evaluated and C ′

the reference one the definition is as follows

JI =
a

a+ b+ c
(4.7)

where a is the number of vertices pairs that are in the same community for

both C and C ′, b is the number of pairs that are in different communities in C

but in the same one in C ′ and finally c is the number of vertices pairs that are

in the same community in C but not in C ′ (or conversely). This quantity

JI is in the interval [0, 1] and the closer to one, the better the agreement

between the two partitions. For JI = 1 there is a perfect match between

the two community structures. In our case, it would mean that the attribute

communities are exactly detected. For values of JI less than 1 the discrepancy

can depend both on the size of the partitions in the community structure

and/or the number of them and in this respect the Jaccard Index is a good

method to compare a very heterogeneous range of community structures.

In order to get a more intuitive picture of the Jaccard index, we show

three different cases in Fig. 4.4 for the same value βℓ = 0.2 (and in the case

ǫ = 0.0, ℓ = 1.0 and L = 1.0) but with different values of JI . The first case

corresponds to a relatively small value JI = 0.232 (obtained with the ’Data’

method of Expert et al. (2011), where the binning is done as in their work,

which shows a partition in four communities (instead of the two associated

with the attributes in red and green colors). For intermediate values such as

JI = 0.579 (obtained with our ’Spatial’ method) the communities reduce to

three with a prevalence of circles in the nothern part and triangles in the
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southern (see B panel in Fig. 4.4). The last case (obtained with the original

Newman-Girvan formulation) corresponds to a value JI = 0.903, that almost

recovers the attribute community structure.

Figure 4.4: Three spatial network configurations are presented for the constant value

βℓ = 0.2 and the correlated case ǫ = 0.0 with ℓ = 1.0 and L = 1.0. The color (red and

green) are the attributes, while the geometrical shapes represent the community mem-

berships found with the various community detection procedure discussed in this section.

In the A panel, we present the case JI = 0.232, obtained with the Data method. Due

to the low JI value four communities are present (instead of the two associated with the

attributes in red and green colors) and they are also mixed up between the south and the

north spatial regions. In the B panel we show the JI = 0.579 case obtained with the Spa-

tial method. Three communities are present and in the northern part there is a prevalence

of circles while in the southern of triangles. The C panel displays the case JI = 0.903

obtained with the Newman-Girvan formulation and the attribute community structure is

almost completely recovered.

Finally, in order to have a baseline value we also computed the average

Jaccard for a completely random partition for N = 100 nodes and we obtain

the value JI = 0.08± 0.05.
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4.1.3 Results

The goal of this spatial community detection is to substract the spatial

component and to recover the (two) attribute communities. We thus have

three community detection methods: the original Newman-Girvan method,

the ‘Data’ method proposed in Expert et al. (2011), and our ‘Spatial’ method

defined by the null model of Eq. (4.5) and, in order to understand their limits

, we will test them against the benchmark network introduced above.

We will now see how these three different methods perform in the two

extreme cases of attribute correlated (ǫ = 0) and uncorrelated (ǫ = 0.5) with

space, both varying the size of the spatial communities ℓ and the attribute

linkage strength β. The size of the test network is N = 100 nodes and the

number of links depends on the probability previously defined (Eq. 4.2).

We generated 100 network realizations for each set of parameters (β, ℓ, ǫ and

L = 1). For each point of the simulation curve the error bars are the standard

deviation for 100 modularity measures. To optimize the modularity we used

the Louvain method Blondel et al. (2008).

The behavior of the model depends on both parameters β and ℓ and we

will first show the case with fixed attribute strength β. We show on the A

panel of figure 4.5 the correlated case (ǫ = 0) with a fixed β = 1.0.
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Figure 4.5: The community structure obtained for various values of ℓ with fixed β = 1.0.

Each point represents the average Jaccard index for 100 network community detection and

the error bar is its standard deviation. The correlated case ǫ = 0 is shown on the A panel,

and on the B panel we show the uncorrelated case ǫ = 0.5. In A for the regime βℓ ≪ 1

both the Newman-Girvan and the ’Spatial’ method formulations give the right attribute

community structure corresponding to the Jaccard index JI = 1.0. For the regime βℓ ≫ 1

all the three formulations work well since the links due to the attribute similarity are strong

enough to preserve the community structure irrespectively from the node’s location. In the

uncorrelated case (B panel), the Data based formulation performs better respect to the

Spatial formulation, since it extracts correctly the spatial information, directly from the

data. In any case both spatial methods reach the right attribute community structure at

almost the same value for ℓ ≃ 1.0. The Newman-Girvan standard formulation instead fails

to detect the correct result up to values of ℓ ≃ 1.8. Note that in the x-axis we considered

only values equal or above 0.3 since we verified that below this value the model generates

disconnected networks.
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In this case, for βℓ ≫ 1, all the three methods work well, as expected

and we obtain a perfect match (JI = 1) between the community structure

resulting from the modularity optimization and the attribute communities.

Space is not relevant in this regime and links exist essentially among nodes

with the same attribute. For βℓ ≪ 1 both the Newman-Girvan modularity

and the ’Spatial’ method give the correct result. The latter actually subtract

only the spatial dependency while the the ’Data’ method mixes the space

effect with the correlated attribute feature, resulting in a wrong community

detection. The ’Data’ method, for a sufficiently large value of ℓ will approach

anyway the correct JI = 1.0 value.

In the uncorrelated case (Fig. 4.5, B panel) and for a low values of βℓ, the

Newman-Girvan modularity is not able to detect the right attribute commu-

nities, since the attribute correlation is not strong enough to group together

the nodes of similar type. Instead the other two methods perform better in

getting the attribute communities since they are able to correctly eliminate

the effect of space and recover the attribute community structure, even for

a small attribute correlation. The formulation based on Data performs even

better since it eliminates the effect of space almost pointwise, but in any case

the correct result of JI = 1 is reached almost at the same value ℓ ≃ 1.0 for

both spatial methods.

In Figure 4.6 we show the results for the case of a fixed community size

(ℓ = 1.0) but where we vary the attribute strength β. In the A panel the

correlated case is presented (ǫ = 0). As expected the ‘Data’ method for low

values of β has problems in detecting the attribute community structure and

only for high attribute strengths (β) it starts to correctly detect the target



CHAPTER 4. APPLICATIONS 61

communities. In the uncorrelated case, where the space is irrelevant, the

standard Newman-Girvan formulation fails, while the two spatial methods

performs similarly better (Fig. 4.6).

Figure 4.6: The community structure obtained for various values of β with fixed com-

munity size ℓ = 1.0. Each point represents the average Jaccard index for 100 network

community detection and the error bar is its standard deviation. The correlated case

ǫ = 0 is shown on the A panel, and on the B panel we show the uncorrelated case ǫ = 0.5.

In the uncorrelated case the ’Data’ method fails in detecting the attribute community

structure for all the βℓ regimes present in the figure, while the other two methods start

working at β = 0.8. In the uncorrelated case the Newman-Girvan method is not able to

detect the attribute community structure, while the spatial methods perform similarly

better approaching the correct JI = 1.0 value around β = 0.8.

In order to summarize these results we show in Table 4.1 the only relevant

regime (b) previously defined, βℓ ≪ 1 (the (a) regime βℓ ≫ 1 is trivial as we
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can verify in Figs 4.5 and 4.6) for all the parameters of interest (ǫ, ℓ and β)

and for the three community detection methods. From this Table, it clearly

emerges that the Spatial method is a very good interplay in all situations,

while to get the best performances one has to choose the suitable method for

any specific case.

Spatial correlation ǫ Newman-Girvan Data Spatial

0.0 (correlated)
ℓ VG B VG

β VG B G

0.5 (uncorrelated)
ℓ B VG G

β B G G

Table 4.1: The table summarizes the performances, as can be extracted from Figs 4.5

and 4.6, of the three methods (Newman-Girvan, Data and Spatial) in the only non trivial

regime βℓ ≪ 1, both in the correlated (ǫ = 0.0) and uncorrelated (ǫ = 0.5) case. Since in

the plots we vary both ℓ and β, we distinguish here these two cases. In order to be able to

compare this results we classified them according to the following criteria: B, G and VG

that stand for Bad, Good and Very Good. We assign VG when there is a very good

agreement with the target attribute community structure (JI very close to 1), G when

the behavior is rapidly approaching the correct result even for low/medium values of the

parameters ℓ and β, and finally B when it completely fails to recover the right community

structure.

We note that the behavior of the error bar sizes in these figures 4.5, is
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interesting. For βℓ ≪ 1 and βℓ ≫ 1, the error in the modularity estimate is

relatively small. The error bar -or equivalently the fluctuations of the Jaccard

index- are the largest for βℓ ≃ 1. In this region, the community detection

methods are thus more sensitive to small fluctuations of the network which

implies a peak in the ‘susceptibility’ of the system. This behavior is remi-

niscent of the phase transition between detectability and non-detectability

presented in Hu et al. (2011a), Decelle et al. (2011). Indeed, in figure 4.7 we

show the limiting case of l ≫ L (here we choose numerically l = 4 and L = 1)

for which the effect of space is irrelevant. In this limit, our model becomes

equivalent to the stochastic block model of Decelle et al. (2011) with q = 2

possible values of the attribute. In our case the control parameter (cout/cin in

Decelle et al. (2011)) is exp(−2β), while the order parameter is the Jaccard

index. It is clear from Fig. 4.7 that the same effect is present (see figure 2

in Decelle et al. (2011)) even if the critical point is shifted due to a different

community detection method and another definition of the order parameter.

Moreover, respect to the result in Decelle et al. (2011), in the undetactable

regime (β = 0), the value of the order parameter is not zero. As mentioned

above, for a completely random partition the JI is JI = 0.08± 0.05. We ob-

serve that in our case we are a little bit above because it is known that even

for a random network the modularity can be positive Guimerà et al. (2004)

and in this way the maximization of the modularity extracts a subset of the

ensemble of all the possible partitions that increases the average modularity

and consequently the average Jaccard index.
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Figure 4.7: Transition obtained in the case ℓ ≫ L from the detectable to the undetectable

community structure regions. This transition was described in Decelle et al. (2011) for

the stochastic block model which corresponds to our model with q = 2 attributes when

the effect of space is absent, i.e. ℓ large (ℓ = 4.0 in the actual simulation). The control

parameter is then exp(−2β) and the Jaccard index is our order parameter. All the three

community detection methods discussed in this work display the same behavior adding

evidence to the universality of the transition presented in Decelle et al. (2011).

We thus recover the results of Decelle et al. (2011) and in addition our

result seems to point to the existence of a spatial phase transition actually

independent of the community detection method used.

Finally, we checked the performances of the Data and Spatial formulations

looking at the JI values when varying the ǫ parameter for a fixed βℓ value (see

Fig. 4.8). For each value of ǫ an higher JI value signals a better behavior since

it is closer to the maximum value JI = 1. We choose first the value βℓ = 0.8

(we also tested βℓ = 1.0 which gives similar results). There is a crossover

in the performances around ǫ ≃ 0.25. Below this value, the Spatial method

performs better while above that point the Data method does slightly better.

This result thus shows that there can be a non-negligible range of correlations
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(measured here by ǫ) for which the spatial community detection results can

be incorrect.

Figure 4.8: Performances of the Spatial and Data modularity formulations. We show

here the case βℓ = 0.8 where there is a crossover in the performances around ǫ ≃ 0.25.

Below this value ǫ = 0.25 the Spatial method performs better and above the Data method

is slightly better.

We have shown here that community detection in spatial networks should

be taken with great care because it could lead to incorrect results, depending

on the correlations between space and attributes.

4.2 Community core detection in transporta-

tion networks (De Leo et al. (2013))

Still, spatial community detection methodology, just like the traditional one,

does not provide any information about the importance of nodes in their

own community. As was pointed out by the authors of Fortunato (2010),

communities are algorithmically defined, i.e., they are the final product of
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the algorithm, without a precise a priori definition.

In this work we aim to understand the nature of these communities and

find ways to determine the importance of the vertices inside each community,

revealing its inner hierarchy by means of a novel method for core detection

(De Leo et al. (2013)).

We used two different structures, Sardinian Inter-Municipal and Atlanta

metropolitan area commuters data, as testing ground for this new method.

The field of transportation is a natural choice for the definition of a com-

munity structure, though the field itself has some inherent limitations. On a

practical matter, the measurement of important traffic variables is lengthy

and expensive. For one, different methods to count traffic volumes return

different answers, especially in the identification of commercial vehicles fhw.

Additionally, the development of a region-wide origin-destination (OD) ma-

trix at the zone level is a long and costly procedure; in particular, the matrix

of the metropolitan area used in this study has been derived after a year-

long survey process, and the final OD matrix was assembled by weighting a

matrix of survey responses according to the population of the areas where

the participants lived. A second calibration stage is generally done to test

whether the OD matrix obtained assigns traffic compatibly with the traffic

on the major highways of the study area; as a result of this process, the trip

distribution and assignment may work well globally, but larger discrepancies

may persist locally. Finally, during the time occurred to carry out this pro-

cess, conditions on the ground may have already changed, since the land-use

of an area is constantly changing, therefore creating discrepancies in the final

OD matrix.
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Notwithstanding these inherent difficulties, the identification of commu-

nities within a metropolitan area network still holds great importance. First,

the formation of communities in a network is a byproduct of land-use de-

velopment. Land-use development occurs for a number of reasons (service

maximization, profit, etc), and the location for development is chosen ac-

cording to the optimization in terms of different variables, like the price of

land, proximity to transit, and regulation, which are, however, variables re-

lated to each zone or vertex of the system. For example, the demand for

transport between two vertices may lead to the opening of a new edge (e.g.,

a new bus route, a new road), which in turn may lead to more demand

for transport (in the form of “induced demand”, Mishan (1972), Pashigian

(1995)). The community structure is not solely a function of the attributes

of each zone or vertex, but also of the network arrangement; hence it forms

a more comprehensive measure of the importance of a group of zones as a

subsection of the zone system.

It is important to know which vertices are the most relevant from the

point of view of the internal stability of a community and the overall partition

structure. We will see in this section that this idea is at the cornerstone of the

community stability. In other fields the problem has been studied in terms

of network breakdown, which has found applications in the accessibility of a

transportation network for flood damage. Knowledge of community structure

can serve planners in the situation of natural disasters to predict the onset

of network breakdown, as was studied by the authors of Sohn (2006). In

other fields, it has been applied to the identification of crucial edges in a

web network under cybernetic attack Albert et al. (2000), Solé et al. (2008),
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Schneider et al. (2011).

This work analyses methods for the identification and the stability of a

community structure using two networks from the field of transportation.

The first network is a regionwide network of commuting trips in the insular

region of Sardinia, in Italy, the Sardinian Inter-municipal Commuting Net-

work (SMCN). The second network is a network of daily commuting trips

in the metropolitan area of Atlanta, GA, USA, part of the Atlanta Regional

Commission (ARC) model. In both cases, we have studied the distribution of

commuting trips, i.e., home-to-work trips and viceversa (see section 3.1 and

section 3.2). The choice was determined by the fact that trips of these types

are clearly defined to planners, because their correlation to the land-use is

well understood, necessarily tied to the population of the origin zone and the

employment of the destination zone.

4.2.1 dQ analysis for cores detection in a partition

The starting point of this method is the modularity optimization introduced

by Newman and Girvan Newman and Girvan (2004b). By definition, if the

modularity associated to a network has been optimized, every perturbation

in the partition leads to a negative variation in the modularity (dQ).

As shown in Fig. 4.9, if we move a node from its community we have

M − 1 possible choices (with M the number of communities) as possible

targets for the new host community of this node. We decided to define the

dQ associated to each node as the smallest variation in absolute value (or

the closest to 0 since dQ is always a negative number) for all the possible

choices and this is in our view a measure of how that node is internal in its
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Figure 4.9: This picture (A) describes the situation in which the modularity of a network

has been maximized. Starting from this state it is possible to determine the list of negative

dQ values associated to each node assuming to move it in every other community. As a

matter of fact, if a node (in this picture we consider as example the node “a”) would

change its belonging to the community in which has been placed during the modularity

optimization, the modularity of the network would obviously decrease, as shown in (B)

and (C). This negative variation is related to the fact that, for each change in the partition,

like the ones depicted in (B) and (C), the total number of links internal to the communities

is always smaller with respect to the one associated to (A).

community.

Fig. 4.10 shows the typical dQ frequency distribution of nodes inside a

community; the data points were fitted using a decaying exponential form

exp(−x/ℓ) with typical length ℓ. The typical lenght ℓ and defines a starting

point to discriminate the core nodes. For practical purposes, the threshold

value dthr = 2ℓ is an appropriate boundary value to differentiate between core

nodes (the ones below the threshold) and the border nodes (the peripheral

nodes). With this choice we found that, for what it concerns the networks

described in this work, the percentage of core nodes is, for every community

of every network, always equal to the 8% of the total amount of nodes in

that particular community.
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Figure 4.10: dQ frequency plots relative to four communities detected for the city of

Atlanta, GA. The correlation coefficients of the exponential fits are (from top right to

bottom left, respectively) 0.956, 0.946, 0.937 and 0.933. In general, these distributions

are the typical dQ frequency distribution inside a community (provided there are enough

nodes to perform an exponential fit).

Figure 4.11 shows the cores detected for the city of Atlanta, GA, using

the method described above. The nodes of the network correspond to the

Traffic Analysis Zone (TAZ) of the city and the links’ weight have been

computed summing, for each couple of TAZ, the corresponding traffic flow

in both directions, as described in more detail later.

4.2.2 Sardinian Inter-municipal Commuting Network

To test this new methodology we focused on the flows of individuals (work-

ers and students) commuting throughout the set of Sardinian municipalities

by all means of transportation, described in section 3.1. This data source
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Figure 4.11: Cores detected for the city of Atlanta, GA, using a threshold equal to double

the typical length of the exponential distribution of the dQ frequencies.

allows the construction of the SMCN in which each node corresponds to a

given municipality and the links represent the presence of a non-zero flow of

commuters among the corresponding municipalities.

We are able then to construct a symmetric weighted adjacency matrix

W in which the elements wij are computed as the sum of the i → j and

j → i flows between the corresponding municipalities (per day). The elements

wij are null in the case of municipalities i and j which do not exchange

commuting traffic and by definition the diagonal elements are set to zero .

According to the assumption of regular bi-directional movements along the

links, the weight matrix is symmetric and the network is described as an

undirected weighted graph. The weighted graph provides a richer description

since it considers the topology along with the quantitative information on
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Figure 4.12: Geographical versus topologic representation of the the Sardinian inter-

municipal commuting network (SMCN): the nodes (red points) correspond to the towns,

while the links to a flow value larger than 50 commuters between two towns.

the dynamics occurring in the whole network.

4.2.3 ARC Network

The present work is centered on the activity of commuters, shown as blue lines

in Figure 4.13, which in the ARC model are described as “Home Based Work”

(HBW) trips (see section 3.2. It is commonplace to describe such trips as trips

made for the purpose of work and which either begin or end at the traveler’s

home. This is a typical trip purpose that is related to the employment at

the destination zone and population and household income of the traveler or
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the household at the origin zone. The nature of the relationship between the

demand for travel and land use are further explored in the modeling review

works by Wilson (1998) and Batty (1976).

Figure 4.13: Extension of the zone system in the ARC model. Only the links with a

weight greater than 250 have been shown. Each point is a centroid of a TAZ.

A number of socioeconomic variables are recorded in the ARC model,

which are of importance for planning purposes and as inputs to the trip

generation and demand growth algorithms. The figures below show, in order,

the gradient plots of population and employment per zone, as recorded in

the nationwide Census 2010. Darker zones indicate a higher value for the

corresponding variable.

Figure 4.14 shows the gradient plot of the zone population. Population is

seen in this figure as being scattered around the center that forms the core

of the downtown area.

Figure 4.15 shows the gradient plot for the zone employment, measured

as the number of jobs located in the zone the variable refers to. Employment
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Figure 4.14: Gradient plot for population in the ARC model.

Figure 4.15: Gradient plot for employment in the ARC model.

is seen in this figure as primarily located in the downtown zones (which are

quite small in size) plus other job centers in the suburban metropolitan areas.

4.2.4 Results

The sequence of charts that follow describes the correlation of the quantity

dQ and the various socioeconomic variables that are available for analysis.
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Network In-strength Employment

SMCN 0.984 0.984

ARC 0.782 0.520

Table 4.2: Results of correlation analysis between dQ and the in-strength and employ-

ment.

The table below shows the result of the correlation analysis between the

computed dQ and the in-strength of the various zones in the SMCN network.

For the sake of clarity, the Sardinian and ARC networks are directed, as pre-

viously described, and the in-strength has been computed starting from these

original networks. However, the community detection has been performed us-

ing undirected networks obtained from the directed ones by summing up the

weights of incoming and outgoing links. The correlation results shown in Ta-

ble 4.2 only give an overall picture of the quality of correlation between the

traffic and community structure. Figures 4.16 and 4.17 show the geographic

distribution of the gradients of dQ values across the zone system. Figure

4.16 shows the values of dQ arranged by color (darker color indicates higher

value). Higher dQ indicates that the zone under investigation is more to the

center of a community than the zones with lighter color. The data in Figure

4.16 shows that the two likeliest centers of a community (the two darkest

zones in the figure) are not both centers of population and/or employment,

nor are all large centers of population and/or employment necessarily key

zones to the definition (and for its definition, stability) of a community. In

other words, community and socioeconomic activity are not on a one-to-one
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relationship, and it is not always possible to imply a ranking of one of these

quantities with respect to the other and viceversa.

Figure 4.16: dQ plot for the network related to employment in the SMCN network.

Figure 4.17 (right) below shows what the communities identified look

like with respect to the political subdivisions of the island of Sardinia, the

provinces that corresponds to the NUT3 regions in the international clas-

sifications (left). To put this result in context, it is important to note that

the present political subdivision in eight provinces took effect in 2005 after a

law passed in 2001 raised the number of provinces from the original number

of four. Therefore, at the time the ISTAT data was collected (2001), Sar-
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dinia was subdivided politically in four provinces, hence the results of the

modularity analysis showed that at least seven communities existed, sub-

divided geographically roughly along the lines of the boundary of the new

(and present time) provinces. The two subdivisions, “topological” the first,

political the second, are remarkably alike, suggesting that either the political

subdivision was designed to accommodate the arrangement of commuting

movements, or the topological subdivision is a result of ease of movement

within a (not yet established) political subdivision.

Figure 4.17: A comparison between the current provincial division (CA = Cagliari, CI

= Carbonia-Iglesias, VS = Medio Campidano, OR = Oristano, OG = Ogliastra, NU =

Nuoro, SS = Sassari and OT = Olbia-Tempio) of the Sardinia region, Italy, and the result

of the community detection.

Finally, it is worth noting that, according to the results of a regional

referendum in May 2012, the four new provinces established in according to
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the 2001 law were abolished in March 2013.

Table 4.2 shows also the result of the correlation between in-strength, dQ,

and employment for the ARC network. The correlation with employment

is poorer, while as in the case of the SMCN network, the correlation with

the in-strength is quite good. It is instructive then to see the geographic

arrangement of the communities and other features of the network. Figure

4.18 shows the dQ distribution for the ARC network. Darker zones indicate

zones with higher dQ, and the darkest zones can be considered as the center

of a community. Figure 4.19 show (color-coded) the community boundaries.

The correlation between dQ and in-strength is explored by means of Fig.

Figure 4.18: dQ plot for the ARC network.

4.20, which shows a correlation of almost 0.8.

The novel core detection method has here been applied to a territorial

network but its definition is quite general and can be naturally extended to

other networked systems.

The following sections will show three different applications. in section 4.3
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Figure 4.19: dQ and community boundary plot for the ARC network.

Figure 4.20: The correlation between dQ and in-strength is equal to 0.78.

core detection is used as a criterion to select the center of a community in

order to calculate the novel outreach index; in section 4.4 it helps reveal

a leadership change within the same community, impossible to detect with
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community detection alone; in section 4.5 it is used as an alternative method

to assess the most important industries in a country.

4.3 Network communities within and across

borders (Cerina et al. (2014))

Over recent decades, political changes and new transportation and infor-

mation technologies have enhanced international openness and cross-border

integration. Globalization has made social networks more international and

human communities more integrated across cultural and political borders.

This is witnessed by the increasing number of long-range connections in

multiple networks, such as trade, human mobility, communications, finan-

cial investments and scientific collaborations Arunachalam and Doss (2000),

Scherngell and Lata (2012), Hoekman et al. (2013), Thiemann et al. (2010).

Enabled by modern technology, people from all over the world are offered

a myriad of opportunities for social interactions and group assembly with

increasingly larger geographic ranges Onnela et al. (2011). Nonetheless, this

does not mean that networks can stretch across a borderless world indefi-

nitely: as for climate networks one can detect geographical regions with the

same climate variability Tsonis and Roebber (2004), Daqing et al. (2011),

Berezin et al. (2012). As individual nodes in socio-economic networks occupy

a given region in space, it is reasonable to assume that geographical proximity

also plays a crucial role in social link formation Watts and Strogatz (1998).

Indeed, a power-law decay in link probability with distance acting as a spatial

constraint has been observed Onnela et al. (2011), Daqing et al. (2011), Lam-
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biotte et al. (2008), Goldenberg and Levy (2009). In a recent meta-analysis

estimating the role of distance in international trade, it has been shown that

t ∝ d−γ, where t is trade, d is the distance and γ ≈ 1 over more than a

century of data Disdier and Head (2008). Arguably, distance is not the only

spatial constraint on link formation, since natural and artificial borders also

have the power to hamper connectivity. Communication and transportation

routes, on the contrary, facilitate long-distance interactions Brockmann and

Helbing (2013). Geographical and institutional borders are relevant in all

networks where distance matters, such as power grid networks, transporta-

tion and communication networks as well as collaboration networks. Natural,

artificial and administrative borders can substantially reduce the probability

of link formation by introducing a major physical constraint in terms of cost,

service, capacity and reliability of global networks. Two of the most widely

accepted results in international economics are that trade is impeded by dis-

tance and that the crossing of national borders also sharply reduces trade. It

has been shown, for instance, that national borders are responsible for a five-

fold decrease in world trade when compared to a borderless world Eaton and

Kortum (2004). Well-known global networks are transportation and commu-

nication networks, such as the airline network and the World Wide Web,

for which the role of borders has been recently documented Halavais (2000),

Guimerà et al. (2005).

Traditionally, international openness has been proxied by the share of

cross-border links over the total number of connections. More recently, vari-

ous network-based measures of cross-border integration have been introduced

Kali and Reyes (2007), Arribas et al. (2009), Duernecker et al. (2012). Sim-
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ilarly, a multinational corporation consists in a group of geographically dis-

persed organizations that include its headquarters and the various national

subsidiaries. Such an entity can be conceptualized as an international spa-

tially embedded network to develop network measures of firm international-

ization Ghoshal and Bartlett (1990), Rauch (2001). Network-based measures

take “who connects with whom” into consideration, rather than just looking

at the degree of openness. On a different level, the effective borders between

spatially embedded networks only partially overlap with existing adminis-

trative borders Thiemann et al. (2010). To properly measure the extent of

the international span of networks and cross-national communities it is of

paramount importance to assess the effectiveness of policies devoted to in-

ternational collaboration, such as the ones implemented by the European

Union to favor the free movement of people, goods, investments and ideas

across European borders. As part of this effort, the European Research Area

has been recently deemed equivalent in terms of research and innovation with

respect to the European common market for goods and services. In this work

(Cerina et al. (2014)) we explore the effect of borders on the European and

US co-inventorship networks as a way to assess the progress toward the ef-

fective cross country integration of scientific and technological communities

Chessa et al. (2013).

4.3.1 Data

The data analyzed in this study are drawn from the June 2012 release of

the OECD REGPAT database Webb et al. (2005), Maraut et al. (2008),

described in section 3.3.1, which contains 2.4× 106 patent applications filed
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with the European Patent Office (EPO) from 1960 to the present. In this

database the geographical location of each patent inventor and applicant has

been matched to one of the appropriate 5,552 regions in one of the 50 OECD

or OECD-partner countries. This allows us to construct the geographical

networks of patent co-inventorship. (More details in chapter section 3.3).

Starting from these data we define wij as the number of links between

regions i and j. In our network wij will be equal to the number of patents

jointly invented by the two regions. We use a full-counting approach so that

a patent with N(> 1) inventors accounts for
∑N−1

i=1 (N − i) regional links

(hence, patents with only one inventor do not appear in this network by con-

struction). Therefore, we analyze a weighted undirected network of scientific

and technological collaborations across regions. In the co-inventor network

the intensity of a link between two regions is equal to the number of patents

jointly invented by inventors located in those regions.

Patent data has long been analyzed to measure innovation outcome, just

as patent co-inventorship has been used to study the network of innovators

within and across national borders. Recently, it has been found that scientific

collaborations in Europe are much more constrained by spatial interaction

than in the US Crescenzi et al. (2007), Andersson and Gr̊asjö (2009), Chessa

et al. (2013). The European Union clearly represents a real case of transna-

tional network since borders in this case are not only geographical but also

political, administrative and cultural (states in the European Union differ by

government, legislation, language and even religion). Conversely, state bor-

ders in the United States are of a different nature: despite being under the

federal system the United States still share the same central government, the
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same language and more or less the same culture. Thus we use the US inno-

vation system as a benchmark to estimate the impact of national borders on

European network formation.

In order to unveil these differences we compare the European and US co-

inventorship networks. Nodes are the NUT3 regions for Europe and the FIPS

(Federal Information Processing Standard) geographical units for the USA,

which corresponds to counties. (The Nomenclature of Units for Territorial

Statistics (NUTS) is a geo-code standard for referencing the subdivisions of

countries for statistical purposes. The nomenclature has been introduced by

the European Union, for its member states. The OECD provides an extended

version of NUTS3 for its non-EU member and partner states). Since we are

interested in long-range connectivity across borders, only interactions that

took place between different NUTS3 (or FIPS) are taken into consideration.

That is to say, we do not consider self-loops in the following analysis. Never-

theless, our approach still naturally extended to the case of directed weighted

networks with self-loops.

4.3.2 Community detection and core regions

Beyond the local topological features, many networks have groups of nodes

marked by the high density of their internal links with respect to the outgoing

links that connect the groups with each other. This is especially true if the

nodes are embedded in space and subject to geographical constraints that

tend to segregate them into spatial communities. This kind of segregation

can be even more pronounced if administrative and political boundaries are

present; a proper method for detecting possible communities in the network
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could be a way to assess the role of external geographical constraints.

Indeed, if geography has such a strong role in link formation, after per-

forming a community detection analysis we would expect to find well-defined

communities of spatially connected nodes. However, it has been already

shown that geographical clusters and network communities do not perfectly

overlap Thiemann et al. (2010). In the following passage we will use modu-

larity optimization introduced by Newman and Girvan Newman and Girvan

(2004a) through the “Louvain” algorithm Blondel et al. (2008) and core de-

tection as in De Leo et al. (2013).

Geographical span and community outreach

The geographical dispersion of a community s, or geographical span Ds, can

be measured as Onnela et al. (2011):

Ds =
1

ns

∑

i∈Cs

√

(Xs − xi)2 + (Ys − yi)2 (4.8)

where ns is the number of nodes in the community Cs and (Xs, Ys) are

the coordinates of the geographical center of the community, with Xs =

(1/ns)
∑

i∈Cs
xi and Ys = (1/ns)

∑

i∈Cs
yi.

The geographical dispersion is a pure spatial index and does not contain

any information about the network structure of the possible links connecting

the nodes embedded in space. Since this index is neither normalized nor

weighted, it is inadequate for the comparison of different structures, like

Europe and the US, where the distances are considerably different. Moreover,

the geographic span does not measure how communities reach out. To do this,
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we introduce a new index, the outreach index, defined as follows:

Os(Ns) = 1−
∑

i,j∈Ns
dijwij

∑

i,j∈Cs
dijwij

, Os(Ns) ∈ [0, 1] (4.9)

where Ns is the home base of the community s , dij and wij are the distance

and the weight of the link between nodes i and j and Cs is the community

s as before. The outreach index is defined as the ratio of all the weighted

links except for the ones between the nodes i and j which are internal to Ns,

but still belonging to Cs, with respect to the same quantity calculated for

all pairs of nodes i and j belonging to Cs. Figure 4.21 provides a schematic

representation of the way in which the outreach index is obtained.
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Figure 4.21: Outreach index. The outreach index Os(Ns) of a cross-border commu-

nity measures the fraction of cross border and external ties (dashed lines in the plot),

weighted by distance and relational intensity. The home base of the community is defined

according to three criteria: : simple |dQ|, |dQ| ∗ S, where S is the node strengh, and in-

ternal link density Wint. When boundaries constrain the span of network communities –

as for European R&D collaborations – the outreach index lean towards zero. Conversely,

if borders do not affect the shape of network communities – like in the US – Os(Ns) ≈ 1,

the topology of the network is conditioned by the presence of borders, which significantly

reduces the probability of cross-border connectivity.

Multiple criteria can be used to select the home base Ns:

1. the home base is located in the region with the highest |dQ|. The regions
with the highest |dQ| can be defined as the core of the community, based

on the intensity of intra-community ties.

2. the center of the community can be chosen as the one with the highest

|dQ|∗S, where S is the sum of the weights of all outgoing and incoming

links of a node. This index accounts for both the role the node plays

in the intra-community connectivity (|dQ|) and the overall centrality

of the region, as measured by the node strength (S).
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3. the area that scores the highest internal link density is selected as

the home base. Intuitively, this criterion identifies the region with the

highest share of inner linkages in the community. In such a case the

selected regions will be the biggest ones, regardless of where the core

region is located.

In our analysis we find that the above listed criteria tend to provide

similar results. Therefore the choice between them depends on the selected

community detection method and data availability.

Results

Table 4.4 reports the value of the geographical span on our data. Larger values

of D means that the members of the community are geographically spread

out; at first glance one could conclude that US community members are more

spread out than the European ones on average.

Distance distribution

It is well known that social interactions negatively depend on distance. More

precisely, it has been shown that the probability of a tie between any pair of

nodes decays with distance as a power-law ∼ d−α where 1 ≤ α ≤ 2 Onnela

et al. (2011), Lambiotte et al. (2008). Figure 4.22 compares the distance

distribution of links in the European and US networks from 1986 to 2009.

The two distributions clearly depict different behaviors: the US distribution

is well approximated by a power-law as reported in the literature with an

exponent α ≈ 1, whereas the European one shows an exponential behavior.
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Figure 4.22: Figure shows the distance distribution of the links both for Europe (blue

dots) and USA (red dots) in log-log scale and their best fits: a power law y = βd−α

for the US (black), and exponential distribution m exp(−nx) for Europe (green), with

β = 426.583± 29.474, eps α = 0.960± 0.017, m = 65030± 570.5, n = 33.7± .35.

Figure 4.23 shows the results of the analysis performed using the mod-

ularity method. For the sake of clarity, every node that corresponds to a

geographical region, which is geo-referenced and displayed on a map, is given

the same color as the community it belongs to. This results in nodes in dif-

ferent communities having different colors as well. Figure 4.23 also shows

the results of the core analysis performed on the partition obtained using the

Newman-Girvan Modularity. In this representation each community has been

given a different color. In the European case, the community structure al-

most perfectly matches the national boundaries of the Member States of the

European Union. The only significant difference seems to be Germany, which
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is sectioned off into multiple communities with an average size in the order of

a Land Region (NUTS2 level). The US community structure reveals, on the

other hand, a practically opposite behavior: communities are stretched out

over more than one state, at great distances from the alleged geographical

core. For each community, colors are graduated according to the dQ of the

node: darker colored nodes have a higher |dQ| and are therefore “more cen-

tral” while lighter colored ones are less central since they have a lower |dQ|.
We chose to define the nodes with the highest |dQ| as the community core

regions. Combined with our previous results regarding the different decay of

connectivity at a distance (power-law in the US, exponential in Europe), we

clearly show that the presence of national borders in Europe has a strong

role in shaping the topology of the network, both reducing connectivity at a

distance and constraining networks community in space.
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Figure 4.23: Figure shows the results obtained performing a community detection anal-

ysis both on the a) European and the b) US networks using the Newman-Girvan method.

In this representation each community has been given a different color. It can be seen

that, in the European case, the community structure almost perfectly matches the na-

tional boundaries of the 15 member states of the European Union. The only significant

difference seems to be Germany, which is sectioned off into more than one community. The

US community structure reveals almost an opposite behavior: communities are stretched

out over more than one state and at great distances. Each community color is graduated

according to the dQ of the node: darker colored nodes have a higher |dQ| so they are

“more central”, while lighter colored ones are less central since they have a lower |dQ|.
The nodes with the highest |dQ| are considered community core regions. We use the same

community color coding for networks (top) and maps (bottom). Maps and networks were

generated using the open source software Gephi and QGIS, respectively.
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As previously said, Europe is a genuine transnational network whereas

the US system is not. Accordingly, their different behaviors do not come as a

surprise. On the one hand, since the US innovation system is rather homoge-

neous, the probability for coast-to-coast interaction (up to a cut off distance

of ∼ 103 kilometers) is high. On the other hand, Europe is a collection of al-

most independent national systems of innovation (see Figure 4.22). Namely,

in the European case there is a cut off in the distribution due to strong coun-

try border effects, that eventually results in the exponential decay behavior

with a characteristic length that is roughly of the size of the average country

diameter (about 363 Kilometers). The European network thus differs sharply

from the US case, where the state border effect is almost negligible. In the

US, scientific and technological communities span throughout the country

without any characteristic scale. Moreover we find a power law decay of con-

nectivity at a distance; even when we focus on a single European nation

such as Germany, we still note some interesting differences with borders that

play a stronger role in reducing connectivity between German Länders when

compared to their US counterparts.

Next we proceed to consider the outreach index of the communities. Be-

fore doing that, we must determine which one of the three criteria reported in

the previous section is the most appropriate. In Table 4.3 we report the home

base country of the communities we identify. As one can see, the outcome is

the same in all the cases except for the ninth European community, for which

we obtained Denmark as the home base according to the first criterion, and

Finland for the other two. All in all, it turns out that the final result does not

crucially depend on the method we use to identify the home country. There-
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fore, the outreach index has an high degree of universality. In the following

analysis we will opt for the sensible solution of using a balanced method

which takes both the topological centrality inside the community (|dQ|) and
the total weight (S) attached to that node (second criterion) into account. In

the cases in which the community detection does not come from a modularity

optimization and the |dQ| value is not available, the third criterion can also

be considered as a viable alternative.

Table 4.4 reports the value of the outreach index by choosing the home

base according to the second criterion. Given that the outreach index always

lies between 0 and 1, we are allowed to compare the outreach of European

communities with US counterparts (see Table 4.4). As expected, the out-

reach value is about 0 for almost every community in Europe, while this

value is always close to 1 in the US. This means that the communities in

the United States undertake more outreach than in Europe. However, we

should remember that the United States are not a truly transnational net-

work, and accordingly it makes sense to compare the US with Germany as

we did before. Indeed, community detection showed that Germany behaves

differently and splits into several sub clusters. Then, if we take the NUTS2

level Länd (the German equivalent of a US state) as the reference nation Ns

instead of Germany as a whole (which is NUTS1), the outreach values are

sensibly different. They become comparable to the US values ranging from

.49 for the region centered around Munich (Oberbayern) to .95 for the region

of Mannheim (Karlsruhe).
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Europe United States

Community Ns(dQ) Ns(dQ ∗ S) Ns(Wint) Community Ns(dQ) Ns(dQ ∗ S) Ns(Wint)

I DE DE DE I CA CA CA

II DE DE DE II NJ NJ NJ

III FR FR FR III MA MA MA

IV DE DE DE IV OH OH OH

V DE DE DE V PE PE PE

VI NL NL NL VI MN MN MN

VII DE DE DE VII IL IL IL

VIII UK UK UK VIII CA CA CA

IX DK FI FI IX TX TX TX

X DE DE DE X OH OH OH

XI IT IT IT XI NC NC NC

XII AT AT AT XII CT CT CT

XIII ES ES ES XIII NY NY NY

XIV DE DE DE XIV GA GA GA

Table 4.3: The table compares the home base of countries found for each community

using three different criteria: simple |dQ|, |dQ| ∗ S, where S is the node strengh, and

internal link density Wint. Results do not vary significantly with the only exception of

the Nordic cluster that, when we use |dQ|, has its center in Denmark instead of Finland

(|dQ| ∗ S and Wint).
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Europe United States

Community Core Country Ds Os(Ns) Community Core State Ds Os(Ns)

I Mannheim DE 1.9090 0.0509 I San Jose CA 13.8236 0.8775

II Düsseldorf DE 1.1016 0.0038 II New Brunswick NJ 7.8733 0.9379

III Paris FR 6.0087 0.0181 III Cambridge MA 11.2038 0.8911

IV Berlin DE 2.2098 0.0477 IV Cincinnati OH 3.9768 0.7525

V Stuttgart DE 1.4729 0.0087 V Philadelphia PE 9.6278 0.9792

VI Eindhoven NL 1.5392 0.5440 VI Minneapolis MN 7.9104 0.9803

VII Munich DE 1.1793 0.0000 VII Chicago IL 7.9630 0.9909

VIII Cambridge UK 2.5560 0.1335 VIII San Diego CA 17.8420 0.9288

IX Helsinki FI 6.3203 0.6942 IX Houston TX 6.9423 0.9803

X Nuremberg DE 1.5577 0.0223 X Cleveland OH 6.7129 0.9734

XI Milan IT 3.4392 0.0309 XI Raleigh NC 6.4801 0.9876

XII Wien AT 1.9614 0.0537 XII New Haven CT 11.3220 0.9641

XIII Barcelona ES 5.2386 0.5065 XIII Schenectady NY 6.7066 0.9718

XIV Lörrach DE 0.2957 0.6356 XIV Atlanta GA 5.7034 0.9364

Average Europe 2.6278 0.1964 Average US 8.8634 0.9394

Table 4.4: The table compares cross-border communities in the US and Europe. Com-

munities are identified based on the main city of the NUTS3 region with the highest |dQ|
(core). We report the values of geographical span Ds and the outreach index Os(Ns) with

respect to home country for European regions and states in the US. Home country has

been selected base on the maximum |dQ| ∗ S.
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Simulations

The inspection of the outreach index for the US and Europe reveals the ex-

istence of four main community types: the French case, which exemplifies

European national communities, the Benelux and Nordic clusters, which are

two cases of regional integration, and the California case, which is represen-

tative of the general behavior of long-range out reaching communities in the

United States. In order to uncover the internal mechanics involved in the cre-

ation of these cases we reproduced the relevant patterns that emerged from

real data by simulating the internal structure of each community.

The artificial model is defined as follows. Out of a total number N of

nodes we decide what fraction of them, say Ni, to place into the central/home

region and what fraction Ne to place into the the external one(s). For the

sake of simplicity we choose to shape the regions as circles whose radii are

proportional to the number of nodes, so that the more the nodes the bigger

the region.

As the regions belonging to the same community can either be adjacent

to each other or not, so we introduce the parameter d to regulate the spatial

separation between them.

Once the nodes have been placed into communities, we randomly place

links between them until the maximum number of links is reached. In general,

if M is the total number of possible links M = N(N−1)/2 for an undirected

network, we determine the density of the network, γ, as a number between

0 and 1, so that the total number of links will be P = γM .

We fine tuned different network densities according to the number of

regions that belong to the community and the number of nodes that each
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Outreach index, simulated Parameters

Ns d = 0 d = 101 d = 102 d = 103 d = 104 γin γout γacross

FR 0.019 ± .002 0.022 ± .003 0.034 ± .005 0.121 ± .007 0.285 ± .019 1 0 0.08

NL 0.533 ± .021 0.542 ± .021 0.538 ± .025 0.544 ± .022 0.534 ± .017 1 0.1 0.10

FI 0.711 ± .018 0.721 ± .015 0.722 ± .018 0.721 ± .025 0.725 ± .011 1 0.5 0.20

CA 0.887 ± .011 0.889 ± .009 0.884 ± .009 0.889 ± .008 0.886 ± .008 1 0.1 0.20

Table 4.5: The table reports the values of the simulated outreach index O obtained for

the 4 cases FR, NL, FI, CA and for different values of the separating distance d. We use

here different values of γ to differentiate the four cases of the simulation: γin is the network

density within borders, γout is the network density outside borders and γacross regulates

cross-border links between the inner and the outer part of the community.

one of them contains. Thus we have different P ’s regulating internal links in

the central and the external regions, cross-border links between the external

regions and the central one and, finally, links between external regions (if

more than one).

We then calculated the outreach index for different values of d (see Table

4.5) for these networks. Even when d = 0, the case for which there is no

separation among the regions (see Figure 4.24), in addition to a set of pa-

rameters extracted from the data, the model closely reproduces the spatial

organization of the four real cases. As we can also observe in Table 4.5, the

simulated outreach indexes are similar to the empirically observed values.



CHAPTER 4. APPLICATIONS 98

Figure 4.24: Figure shows the simulations reproducing the 4 different cases that we

identified as France (FR), the Netherlands (NL), Finland (FI) and California (CA). In the

FR case there is a main community, which is very well connected in the inside (γ ∼ 1), with

few links that reach out to external regions. The NL and FI cases are intermediate with

well-structured external regions that still interact with the central one. In the last case,

CA, there is a strong central region with many, and progressively distant, small regions.

The FI and CA cases present similar outreach indices due to the fact that, by definition,

a huge mass of links in the immediately external regions is equivalent to having just a few

interconnected nodes at great distance.

4.4 The Rise of China in the International

Trade Network:

A Community Core Detection Approach

(Zhu et al. (2014))

A fast-growing literature has been built in recent years by viewing the inter-

national trade system as an interdependent complex network, where countries
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are represented by nodes and trade relationships are represented by edges

(Serrano and Boguná (2003),Garlaschelli and Loffredo (2005),Fagiolo et al.

(2009),De Benedictis and Tajoli (2011),Riccaboni and Schiavo (2010),Ric-

caboni et al. (2013),Riccaboni M (2014)). As a result, many topics in inter-

national economics have been re-investigated through the lens of networks,

and globalization and regionalization are certainly no exception. However,

even with the networks approach, the question of whether we have a more

globalized or regionalized world is still answered with mixed results (Kim

and Shin (2002),Tzekina et al. (2008),Piccardi and Tajoli (2012),Reyes et al.

(2014)). Moreover, the contribution of network analysis to our understanding

of international trade has been questioned, since there is still little evidence

about the importance of indirect or network effects on the performances of

individual countries (nodes) and trade relationships (edges).

In this work (Zhu et al. (2014)), we re-examine the relationship between

globalization and regionalization from a different angle. Instead of assuming

that the two are contradictory to each other and attempting to figure out

which is dominating the other, we take into account the dynamics in the

ITN at both regional level and global level and investigate the interaction

between the two. Besides that, we will take advantage of a unique “natural

experiment” that is the opening of China to the world trade and the entry of

China in the World Trade Organization in 2001, to analyze the reverberations

of a huge country-specific shock on the structure of the ITN.

We make use of the CEPII BACI Database (Gaulier and Zignago (2010))

from 1995 to 2011 to build up the ITN: we set countries as nodes and the

total bilateral trade flow between countries i and j as the edge weight Aij
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(see chapter 3 for further information).

We use the modularity optimization method (Newman and Girvan (2004a))

to detect both communities and community cores (De Leo et al. (2013)) in

the ITN during the years 1995-2011. The global dynamics are defined as the

disappearance or emergence of the communities over time and the regional

dynamics are defined as the leadership (community core) change between

community members.

We find that the Asia-Oceania community displayed an interesting inter-

action between the two, which can be roughly summarized in the following

three stages:

1. During 1995-2001, the Asia-Oceania community was present (Only

with a brief interruption in 1998, when the Asia-Oceania community was

integrated with the America community. Also, during 1999-2001, while China

was always a member of the Asia-Oceania community, Japan, Oceania, part

of the Southeast Asia, and some other Asian economies were integrated with

the America community) in the ITN and was led by Japan (During 1999-

2001, when Japan was integrated with America, the Asia-Oceania community

was led by Hong Kong instead.);

2. During 2002-2004, the Asia-Oceania community disappeared and was

integrated with the American community, which was led by the United

States;

3. During 2005-2011, the Asia-Oceania community reemerged and was led

by China.

Our simulation results show that the disappearance and reemergence of

the communities can be generated by a dynamic-edge-weight mechanism for
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both inter- and intra-communities. In a network with a fixed number of nodes

and a preset initial community structure, each period a node will be selected

and by chance it may increase its edge weight with an inter-community node

(if the edge already exists; otherwise a new edge will be established). It

will then increase its edge weight with an intra-community neighbor. Those

neighbors with more inter-community strength will be preferred. In light of

the dynamic-edge-weight mechanism, the rise of China in the Asia-Oceania

community can be explained by its dramatic increase of inter-community

trade since 2002. The intuition is that, the Asia-Oceania community collapsed

after China entered the WTO and built strong trade relationships with other

communities, especially with the external cores, i.e., the United States and

Germany. China then became regionally attractive and restored the Asia-

Oceania community as the community leader after it gained a significant

portion of trade globally.

Our contribution to the analysis of the ITN is twofold. First, we provide

some evidence of a deviation from the Barabási-Albert preferential attach-

ment rule (Albert and Barabási (2002)), (Barabasi and Albert (1999)) and

the law of gravity (Bergstrand (1985),Baldwin and Taglioni (2006),Carrere

(2006)) in the world trade. Second, we identify a mechanism that can account

for this deviation and validate it via simulations and empirical analysis. We

show that by increasing its global export China is also increasing the chance

to import more goods from regional trading partners. In other words, part of

the Chinese export growth shock gets transmitted to other economies in the

same region by means of a corresponding increase in Chinese imports of in-

termediate goods and partial delocalization of production. The transmission
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mechanism we identify provides further support for a network approach to

the analysis of world trade, since we show how local changes in the intensity

of trade diffuse to other nodes in the network. We argue that a reduction-

ist approach, which relies exclusively on node and link specific information,

misses some important network effects in the world trade structure.

4.4.1 Global Dynamics versus Regional Dynamics

During the years 1995-2011 we have examined, the ITN was mainly character-

ized by three communities, namely, the America community, the Europe com-

munity, and the Asia-Oceania community. According to the United Nations

definitions of macro geographical regions (See the website of the United Na-

tions Statistics Division https://unstats.un.org/unsd/methods/m49/m49regin.htm),

the America community is more or less comprised of Americas. The Europe

community is more or less comprised of Europe and Central Asia. The Asia-

Oceania community is more or less comprised of Eastern Asia, Southern

Asia, South-Eastern Asia, and Oceania. (Countries in Africa and Western

Asia don’t have consistent community memberships over time. Therefore,

they are not classified in any of the three communities.)

However, among the three main communities, the America community

and the Europe community were more stable than the Asia-Oceania commu-

nity. First, over the 17 years, the America community and the Europe com-

munity were always present while the Asia-Oceania community experienced

disappearance and reemergence. Second, the intra-community structure was

more stable in the America community and the Europe community in a sense

that the community leaders (cores) over time were always the United States
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and Germany, respectively. The Asia-Oceania community on the other hand

experienced a leadership change from Japan to China.

Since the Asia-Oceania community has shown rich dynamics both inter-

nally and externally, we will focus our attention on it.

4.4.2 The Asia-Oceania Community

The dynamics of the Asia-Oceania community can be roughly divided into

three stages, namely, its presence with Japan’s leadership during 1995-2001,

its disappearance and integration with the America community during 2002-

2004, and finally its reemergence with China’s leadership during 2005-2011.

The same pattern is shown in Figure 4.25, where three years, 1995, 2002,

and 2011, are selected to represent the three stages respectively. (See Fig-

ure 4.26 for the community detection results for all years and Figure 4.27

for the community core detection results for all years.) The first row shows

the community maps in the three years. The America community is colored

yellow, the Europe community is colored red, and the Asia-Oceania commu-

nity is colored blue. Notice that in 2002 the blue community was by and

large merged with the yellow community. (Another interesting change in the

world trade community structure is the emergence of the Arab community

after 2001. This interesting phenomenon deserves further scrutiny in future

research.) The second row shows the community core detection results for

the three years. The redder the more important the country is in reserving

its community. Equivalently, the yellower the less important the country is

in reserving its community. This can be used to identify the leaders in the

communities. Notice that in 1995 the reddest country in the Asia-Oceania
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community was Japan while China became in 2011. Finally, the third row

provides a topological view of the community structure in the three years.

Again, Japan was central in the Asia-Oceania community in 1995 and it was

replaced by China in 2011.

Figure 4.25: From left to right, the three columns are corresponding to the years 1995,

2002, and 2011, respectively. The first row shows the Newman-Girvan community detec-

tion results. The America community is colored yellow, the Europe community is colored

red, and the Asia-Oceania community is colored blue. Asia-Oceania and America were

separated from each other in 1995 and 2011 but was integrated in 2002. The second row

shows the community core detection results by normalizing |dQ| ∗ s for each community.

The redness of each country is proportional to its relative magnitude of |dQ| ∗ s within its

community (CS). The reddest country in the Asia-Oceania community was Japan back in

1995 but became China in 2011. Finally, the third row provides a topological view of the

community structure in the three years. Only the edges with no less than 10 million US

dollars are shown. Again, Japan was central in the Asia-Oceania community in 1995 and

it was replaced by China in 2011.
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Oceania community.

The dynamics observed in the Asia-Oceania community also differ from

the prediction of the Barabási-Albert preferential attachment model ((Albert

et al., 2000),(Barabasi and Albert, 1999)). According to the preferential at-

tachment mechanism, when choosing another community member with whom

the edge weight is to be increased, the given node will prefer the candidates

with higher strength. If this is the case, the leadership of Japan in the Asia-

Oceania community should be reinforced given that its strength was well

ahead of China before 2000. However, Japan was later replaced by China as

the community leader. Therefore, we conjecture that not only the magnitude

of strength matters but the attributes of nodes such as size and distance also

matter in the process of network growth. Moreover, instead of mechanically

following an attachment rule, any economic agent plays strategically in choos-

ing its partner to interact with (Riccaboni M (2009),Grossman and Helpman

(1997)). Finally, unlike the assumption of the preferential attachment model,

countries often have limited resources and competences and cannot freely

choose trading partners.

To account for the linkage between the global dynamics and the regional

dynamics, we propose a simple dynamic-edge-weight mechanism for both

inter- and intra-communities.

A Simple Mechanism for Both Inter- and Intra-Communities

Since the number of countries in the ITN is constant over time and the evo-

lution of the ITN is only concerned with the trade flows between countries,

our model is therefore based on a fixed number of nodes and a dynamic-edge-
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weight mechanism for both inter- and intra-communities. (There exists some

related literature to our model. For example, (Barrat et al., 2004) and Ric-

caboni M (2014) examine the network evolution with dynamic edge weights.

Li and Maini (2005) investigate the network properties with a preferential at-

tachment mechanism for both inter- and intra-communities. However, to the

best of our knowledge, our model is the first attempt to bring the dynamics

both inter- and intra-communities to the context of a weighted network with

a fixed number of nodes.) Additionally, our model is based on an undirected

network because the ITN is constructed by total bilateral trade flows.

The initial status of the network is characterized by M arbitrarily im-

posed local communities. (In the context of ITN, the communities can be

formed, for instance, by continents.) For simplicity, each community has the

same number of nodes, m0. As a subgraph, each community is completely

connected with a equal edge weight, i.e., every node is connected with every

node by the same edge weight in the community. Between any two com-

munities, there is only one edge connecting two randomly selected nodes in

the two communities respectively. Again for simplicity, the inter-community

edge weight is set to equal the initial intra-community edge weight. After the

initial set-up, each period the dynamic-edge-weight mechanism is comprised

of the following steps:

1. One node, i, is randomly selected based on a uniform distribution across

all the nodes in the network;

2. Suppose that i belongs to community j, by chance, i can increase its

edge weight with a node outside community j. And the reach-out prob-

ability is 1
α
, where α ≥ 1 and a big α (In the context of the ITN, a
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high value of α can be interpreted as trade barriers such as tariffs,

transportation costs, and language difference.) means that any node

will have low probability to reach out to other communities;

3. There are (M − 1)m0 nodes outside community j. They are equally

likely to be chosen by i to increase the mutual edge weight. After the

inter-community node is identified, the mutual edge weight will be in-

creased by βinter;

4. The next step for i is to choose a neighbor in the same community j

to increase the edge weight. The neighbor is selected by the following

probability mass function:

P intra
−i,j =

(1− γ)sintra−i,j + γ
∑

−j s
inter
−i,−j

(1− γ)
∑

−i s
intra
−i,j + γ

∑

−j

∑

−i s
inter
−i,−j

(4.10)

where −i is a neighbor to i in the community j and −j is a community

other than community j. 0 ≤ γ ≥ 1 and when gets close to 1, although

i prefers to increase the edge weight with the neighbors with more

intra-community strength, it prefers even more the ones with more

inter-community strength. After the neighbor is identified, the mutual

edge weight will be increased by βintra;

5. Finally, the modularity optimization method is used to detect the com-

munity structure, which may deviate from the original set-up.

Simulation Results

The initial status of our simulation is a network with 3 preset communities.

Each community has 5 nodes and, as mentioned above, each community is
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completely connected and there is a single edge between any two commu-

nities. Other model parameters are α = 40, βintra = 0.05, and βinter = 2,

respectively. Setting α to 40 and having a relatively big βinter compared to

βintra are to make it difficult for a node to reach out to other communities

so that the preset community structure can be restored over time. However,

when a node does reach out, it is enough to introduce a perturbation to the

community structure. Finally, we vary the value of γ from 0.1 to 0.9 with the

step size of 0.05.

We define a trial of simulation as running the above dynamic-edge-weight

mechanism for 5000 periods. We also calculate the percentage of the number

of the periods with exactly the same community structure as the initial status

out of the 5000 periods as an indicator of the community structure stability

of the network. For each value of , we collect a sample size of 100 trials to

compute the 95% confidence interval of the estimated original community

structure percentage. The result is reported in Figure 4.28. As expected,

putting more weight on the neighbors with more inter-community strength

(i.e., bigger ) tends to make the community structure more stable (i.e., bigger

original community percentage). The intuition is that the reaching-out nodes

will be dragged back to their original communities by the preference for their

growing inter-community strength.
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Figure 4.28: The 95% confidence interval is calculated for each value of from 0.1 to 0.9

with the step size of 0.05 (the x-axis). The simulation is based on a dynamic-edge-weight

mechanism for both inter- and intra-communities. Other model parameters are α = 40,

βintra = 0.05, and βinter = 2, respectively. We define a trial of simulation as running

the dynamic-edge-weight mechanism for 5000 periods. As an indicator of the community

structure stability of the network, the y-axis is the percentage of the number of the periods

with exactly the same community structure as the initial status out of the 5000 periods.

Finally, for each value of , we estimate the confidence interval of the original community

structure percentage by collecting a 100-trial sample.

As a detailed example of the simulation, Figure 4.29 selects 4 periods of

a single trial. The 3 preset communities are X1-X5, X6-X10, and X11-X15,

respectively. Different colors represent different communities detected by the

modularity optimization method. The red edges are inter-community ones

while the black ones are intra-community. Like what we observe from the

ITN, the disappearance and reemergence of the communities can be gen-

erated by the dynamic-edge-weight mechanism for both inter- and intra-

communities.
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Figure 4.29: The figure is based on a single trial of simulation. Different colors repre-

sent different communities detected by the Newman-Girvan method. The inter-community

edges are colored red while the intra-community ones are colored black. Although the com-

munity detection takes into account the edge weights, all the edges in the figure have the

same width. In period 1, three predetermined communities, X1-X5, X6-X10, and X11-X15,

are imposed in the network. The number of communities detected in this 15-node network

bounces back and forth between 3 and 2 during the simulated periods. That is, like what

we observe from the ITN, the disappearance and reemergence of the communities can be

generated by the dynamic-edge-weight mechanism for both inter- and intra-communities.

Empirical Evidence

We now turn back to the ITN and present some empirical evidence for the

dynamic-edge-weight mechanism for both inter- and intra-communities.

First, for the inter-community dynamics, we calculate the ratio of the

inter-community trade to the intra-community trade between the Asia-Oceania

community and the America community. As shown in Figure 4.30, the ra-

tio first went up and then went down and formed a hump shape over time.
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This finding coincides with the disappearance and reemergence of the Asia-

Oceania community observed in Figure 4.25. In 1995, when the Asia-Oceania

community was present, the inter-community trade between Asia-Oceania

and America was about 44% of the intra-community trade within the two

communities. In 2002, when the Asia-Oceania community disappeared, the

ratio went up to about 51%. Finally, the ratio went back to about 43% in

2011, when the Asia-Oceania community was present again.

Figure 4.30: We calculate the ratio of the inter-community trade to the intra-community

trade between the Asia-Oceania community and the America community. The ratio first

went up and then went down and formed a hump shape over time. This finding coin-

cides with the disappearance and reemergence of the Asia-Oceania community observed

in Figure 4.25.

Second, for the intra-community dynamics, we compare the intra-community

strength and the inter-community strength between Japan and China. As

shown in Figure 4.31, before 2003, Japan always had more inter-community

trade than China and had more intra-community trade in the beginning and

slightly less later. After 2003, China surpassed Japan in terms of both inter-
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and intra-community trade. This finding coincides with the leadership change

from Japan to China observed in Figure 4.25. Also notice that, for both coun-

tries, the intra-community trade follows closely to the inter-community trade,

which can be considered as evidence of the intra-community dynamic-edge-

weight mechanism.

Figure 4.31: We calculate both the inter- and intra-community trade volumes for Japan

and China. Japan had more inter-community trade than China before 2003. However,

after 2003, China surpassed Japan in terms of both inter- and intra-community trade.

This finding coincides with the leadership change from Japan to China observed in Figure

4.25. Furthermore, for both countries, the intra-community trade follows closely to the

inter-community trade, which can be viewed as evidence of the intra-community dynamic-

edge-weight mechanism.

We also check the regional trade agreements (RTAs) for the intra-community

dynamics. Table 4.32 summarizes the effective RTAs signed with China dur-

ing 1995-2011. Only after its accession to WTO in the end of 2001, China

started to form RTAs in 2003 and with countries almost exclusively in the

Asia-Oceania community.
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Figure 4.32: China’s Effective RTAs.

Last but not least, it is a well observed fact that the Asia-Oceania com-

munity is an active participant of the global production chain (or global

value chain) (Athukorala (2005),Athukorala and Yamashita (2006),Baldwin

(2008)). Therefore, the intra-community preference over the nodes with more

inter-community strength can be understood as the incentive to have better

market access through the regional big player in the global production chains.

4.5 World Input-Output Network (Cerina et al.)

As the global economy becomes increasingly integrated, an isolated view

based on the national input-output table is no longer sufficient to assess an

individual economy’s strength and weakness, not to mention finding solutions

to global challenges such as climate change and financial crises. Hence, a

multi-regional input-output (MRIO) framework is needed to draw a high-
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resolution representation of the global economy (Wiedmann et al. (2011)).

In practice, however, due to the expensive process of collecting data

and the variety of classifications used by different agencies, for a long time,

the input-output tables have only been available for a limited number of

countries and for discontinuous years. Fortunately, the fully-fledged MRIO

databases started to become available in recent years (Tukker and Dietzen-

bacher (2013)). Unlike the national input-output table where exports and

imports are aggregated and appended to final demand and country-specific

value added respectively, for each individual economy, the MRIO table splits

its exports into intermediate use and final use in every foreign economy and

also traces its imports back to the industry origins in every foreign economy.

As a result, the inter-industrial relationships in the MRIO table are recorded

not only within the same economy but also across economies.

In this work we move forward by considering the global MRIO system

as a world input-output complex network (WION), where the nodes are the

individual industries in different economies and the edges are the monetary

goods flows 3 between industries, similarly to what have been done recently

by Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi for the US economy

only (Acemoglu et al. (2012)). However, to the best of our knowledge, our

work is the first attempt to explore the MRIO tables from a networks per-

spective, even though there have been some networks studies of the input-

output tables at the national level and for selected countries (Blöchl et al.

(2011),McNerney et al. (2013),Contreras and Fagiolo (2014)).

Different from many network systems observed in reality, the WION has

the following features: 1) It is directed and weighted, i.e., an industry can act
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as both a seller and a buyer at the same time and the monetary goods flows

between industries vary a lot; 2) It is much denser within the same economy

than across economies, i.e., despite the continuously integrated global econ-

omy, most economic transactions still happen within the country border; 3)

It is with strong self-loops, i.e., an industry can acquire a significant amount

of inputs from itself. Taking into account the features above, we explore the

WION by quantifying not only some global network properties such as assor-

tativity but also some local network properties such as PageRank centrality.

Furthermore, we apply community detection and community core detection

techniques to examine the structure of the WION over time.

This work makes some significant contributions to the literature of input-

output economics. First, it is the first attempt to quantify the network prop-

erties of the WION by taking into account its edge weights and directedness.

By doing that, we detect a marked increase in cross-country connectivity,

apart from a sharp drop in 2009 due to the financial crisis. Second, the com-

munity detection results reveal growing input-output international communi-

ties. Among them, we notice in particular the emergence of a large European

community led by Germany. Third, we use the network-based PageRank cen-

trality and community coreness measure to identify the key industries and

economies in the WION and the results are different from the one obtained

by the traditional final-demand-weighted backward linkage measure.

In the following we will quantify some global network properties of the

WION and its subgraph structure and dynamics by using community de-

tection techniques. Moreover, we use the network-based PageRank centrality

and community coreness measure to identify the key industries in the WION.
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4.5.1 From WIOD to WION

We use the World Input-Output Database (WIOD) Timmer et al. (2012) to

map out the WION (see section 4.5 for the lists of countries and industries

covered in the WIOD) from 1995 to 2011. For each year, there is a harmo-

nized global level input-output table recording the input-output relationships

between any pair of industries in any pair of economies. Table 4.6 shows an

example of a MRIO table with two economies and two industries. The 4× 4

inter-industry table is called the transactions matrix and is often denoted by

Z. The rows of Z record the distributions of the industry outputs throughout

the two economies while the columns of Z record the composition of inputs

required by each industry. Notice that in this example all the industries buy

inputs from themselves, which is often observed in real data. Besides inter-

mediate industry use, the remaining outputs are absorbed by the additional

columns of final demand, which includes household consumption, government

expenditure, and so forth 1. Similarly, production necessitates not only inter-

industry transactions but also labor, management, depreciation of capital,

and taxes, which are summarized as the additional row of value added. The

final demand matrix is often denoted by F and the value added vector is

often denoted by v. Finally, the last row and the last column record the total

industry outputs and its vector is denoted by x.

Aa complex networks approach has been widely used in economics and

finance in recent years Kitsak et al. (2010), Pammolli and Riccaboni (2002),

Riccaboni and Schiavo (2010), Riccaboni et al. (2013), Chessa et al. (2013),

Caldarelli et al. (2013). Designed to keep track of the inter-industrial rela-

1Here we only show the aggregated final demand for the two economies
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Buyer Industry

Economy 1 Economy 2 Final Demand

Seller Industry Industry 1 Industry 2 Industry 1 Industry 2 Economy 1 Economy 2 Total Output

Economy 1
Industry 1 5 10 20 10 45 10 100

Industry 2 10 5 10 20 50 5 100

Economy 2
Industry 1 30 15 800 500 5 8650 10000

Industry 2 35 30 1000 1000 25 7910 10000

Value Added 20 40 8170 8470

Total Output 100 100 10000 10000

Table 4.6: Table shows a hypothetical two-economy-two-industry MRIO table. The 4×4

inter-industry transactions matrix records outputs selling in its rows and inputs buying in

its columns. The additional columns are the final demand and the additional row is the

value added. Finally, the last column and the last row record the total industry outputs.

The numbers are made up in such a way that Economy 2 is a lot larger than Economy 1

in terms of industry outputs. However, as shown below, an unweighted backward linkage

measure will consider industries in Economy 1 more important than the ones in Economy

2. Hence, we adopt a final-demand-weighted backward linkage measure to identify the key

industries in the WIOD.
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tionships, the input-output system is an ideal test bed for network science.

Particularly the MRIO system can be viewed as an interdependent complex

network, i.e., the WION, where the nodes are the individual industries in

different economies and the edges are the monetary goods flows between

industries.

Figure 4.33 provides a topological view of Table 4.6. The blue nodes are

the individual industries. The red nodes are the value added sources from the

two economies, whereas the green nodes are the final demand destinations

in the two economies. The edges are with arrows indicating the directions of

the monetary goods flows and with varying widths indicating the magnitudes

of the flows. The color of the edge is set the same as the source node’s.

Finally, because we are only concerned with the inter-industrial input-output

relationships, when formulating the WION, we focus our attention on the

network among the blue nodes.
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Figure 4.33: A hypothetical two-economy-two-industry WION. This is a topological

view of Table 4.6. The blue nodes are the individual industries. The label “ExIy” should

read “Industry y in Econoomy x”. The red nodes are the value added sources from the

two economies, whereas the green nodes are the final demand destinations in the two

economies. The label “Vx” should read “Value Added from Economy x”, whereas the label

“Fx” should read “Final Demand in Economy x”. The edges are with arrows indicating the

directions of the monetary goods flows and with varying widths indicating the magnitudes

of the flows. The color of the edge is set the same as the source node’s. Finally, because we

are only concerned with the inter-industrial input-output relationships, when formulating

the WION, we focus our attention on the network among the blue nodes.

The visualization of the WION in 1995 and in 2011 are shown in Figure

4.34. Each node represents a certain industry in a certain economy. The size

of the node is proportional to its total degree. The edges are directed and only
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those with strength greater than one billion US dollars are present. Finally,

different colors represent different economies. Clearly the WION has become

denser over time and some countries like China have moved to the core of

the network, thus confirming the results in Table 4.7.

(a) 1995 (b) 2011

Figure 4.34: Figure shows the WION in 1995 and in 2011. Each node represents a

certain industry in a certain economy. The size of the node is proportional to its total

degree (number of edges). The edges are directed and only those with strength greater

than 1000 millions of US dollars are present. Finally, different colors represent different

economies.

Table 4.7 has identified the top 20 industries for the years 1995, 2003, and

2011, respectively. The first column of each year is produced by the final-

demand-weighted backward linkage measure (see appendix A), i.e., w. For

the selected years, only four large economies, China, Germany, Japan, and

USA, ever qualified for the top 20. Another noticeable change over time is the

rise of China, which topped the list in 2011 with its industry of construction.
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1995 2003 2011

Rank w PR |dQ| w PR |dQ| w PR |dQ|

1 USA-Pub USA-Pub USA-Pub USA-Pub USA-Hth USA-Obs CHN-Cst GBR-Hth CHN-Cst

2 JPN-Cst USA-Tpt JPN-Cst USA-Hth DEU-Tpt USA-Est USA-Pub DEU-Tpt USA-Obs

3 USA-Cst DEU-Tpt USA-Obs USA-Cst USA-Pub USA-Fin USA-Hth USA-Pub CHN-Met

4 USA-Hth USA-Hth USA-Cst USA-Est USA-Tpt USA-Pub USA-Est CHN-Elc USA-Pub

5 USA-Est DEU-Cst USA-Est USA-Rtl GBR-Hth USA-Hth CHN-Elc USA-Hth USA-Est

6 USA-Rtl RUS-Hth USA-Hth CHN-Cst ESP-Cst CHN-Cst USA-Rtl CHN-Cst CHN-Agr

7 USA-Fod DEU-Fod JPN-Htl JPN-Cst DEU-Hth JPN-Cst USA-Cst CHN-Met CHN-Fod

8 JPN-Pub GBR-Cst JPN-Met USA-Fin GBR-Cst USA-Ocm USA-Fin USA-Tpt USA-Fin

9 USA-Tpt USA-Cst USA-Met USA-Tpt USA-Cst CHN-Met CHN-Fod ESP-Cst CHN-Min

10 JPN-Est FRA-Tpt JPN-Obs USA-Fod USA-Obs USA-Met CHN-Mch AUS-Cst USA-Cok

11 JPN-Hth USA-Fod DEU-Cst USA-Htl FRA-Tpt JPN-Obs JPN-Cst ITA-Hth CHN-Elc

12 USA-Fin GBR-Hth JPN-Pub USA-Ocm TUR-Tex JPN-Htl USA-Fod DEU-Hth USA-Hth

13 USA-Htl USA-Obs JPN-Hth JPN-Pub USA-Est CHN-Agr USA-Htl USA-Obs CHN-Omn

14 JPN-Fod JPN-Cst JPN-Ocm USA-Obs AUS-Cst USA-Cst CHN-Tpt RUS-Hth CHN-Cok

15 JPN-Rtl DEU-Mch JPN-Fod JPN-Est USA-Fod JPN-Pub JPN-Pub CHN-Tpt CHN-Mch

16 DEU-Cst ESP-Cst JPN-Fin JPN-Hth ITA-Hth USA-Agr USA-Tpt DEU-Mch USA-Cst

17 JPN-Elc JPN-Tpt USA-Agr USA-Whl DEU-Cst USA-Tpt USA-Ocm FRA-Cst CHN-Chm

18 JPN-Whl DEU-Met USA-Fod JPN-Tpt DEU-Fod JPN-Met CHN-Pub CHN-Tex JPN-Obs

19 JPN-Tpt USA-Elc JPN-Whl CHN-Elc DEU-Mch JPN-Hth USA-Obs GBR-Cst USA-Ocm

20 JPN-Mch USA-Est USA-Pup DEU-Tpt CHN-Elc CHN-Elc USA-Whl DEU-Met JPN-Cst

Table 4.7: Top 20 Industries Identified by the Three Methods for Selected

Years. The first method is the final-demand-weighted backward linkage measure (see

appendix A), w. The second is the PageRank centrality, PR. The third is the community

coreness measure |dQ|.
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4.5.2 Global Network Properties of the WION

Because the WION is directed, we can calculate the assortativity coefficient

in three ways, namely, in-degree assortativity, out-degree assortativity, and

total-degree assortativity. As shown in Figure 4.35, they all behave similarly

over time.

Figure 4.35: From top to bottom, we show the over time out-degree assortativity, in-

degree assortativity, and total-degree assortativity of the WION, respectively.

First, they have all been negative throughout the whole period. Since

assortativity measures the tendencies of nodes to connect with other nodes

that have similar (or dissimilar) degrees as themselves, a negative coefficient

means that dissimilar nodes are (slightly) more likely to be connected. One

possible explanation of the negativity is that high-degree industries such as

construction often take inputs (or supply outputs) from (or to) low-degree

industries such as transport services. Moreover, the spatial constraints (each

node has only few neighboring nodes in the same country) introduce degree-
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degree anticorrelations (disassortativity) since high degree sectors are in dif-

ferent countries and the probability to connect decays with distance (Em-

merich et al. (2014)). Second, all the coefficients show an increasing trend

before 2007 and a significant decline after 2007. The behavior of the assor-

tativity measures seems to be correlated with the trend of the foreign share

in the inter-industrial transactions over time (Figure 4.36). That is, we can

calculate a globalization indicator as the percentage of inputs from foreign

origins (or equivalently, the percentage of outputs to foreign destinations) of

the transactions matrix Z of the 40 WIOD economies. Same as observed in

assortativity, the foreign share of Z had a steady growth (from 9.9% in 1995

to 12.8% in 2007) before 2007 and a sharp decrease after 2007. 2

2While the most severely depressed domestic edges during 2008-2009 in terms of the

magnitude of the reduced flows are mostly within USA, the top 3 most impacted foreign

edges are all from the mining industry to the coke and fuel industry and are from Canada

to USA, from Netherlands to Belgium, and from Mexico to USA, respectively.
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(b) Selected regions

Figure 4.36: Panel (a) shows the foreign share of the transactions matrix Z over time. We

calculate the percentage of inputs from foreign origins (or equivalently, the percentage of

outputs to foreign destinations) of the transactions matrix Z of the 40 WIOD economies. It

can be viewed as a globalization indicator becasue it measures how much inter-industrial

transactions are made through international trade. Panel (b) considers the intra-region

foreign share out of the total foreign share for some regions classified in Table 3.1 in

chapter 3. For the three regions, Euro Zone relies on the intra-region foreign trade the

most and East Asia the least. Moreover, while the intra-region share in the other two

regions fluctuates over time, it almost always declines in Euro Zone. Finally, all the three

regions became less dependent on the intra-region foreign trade before the 2008 crisis.

After the crisis, East Asia increased the intra-region foreign trade immediately, which is

followed by NAFTA, and then by Euro Zone.

The increase in the foreign share implies more interactions across economies

and hence tends to make the WION less dissortative. The opposite happens

when the foreign share goes down as a result of the global financial crisis.

Third, we notice that the in-degree assortativity tends to be lower than the

out-degree assortativity, but there is a tendency to close the gap between the

two measures. We interpret this evidence as a clear signal of the globalization

of production chains, that is to say, both global buying and selling hubs have
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now a higher chance to be connected across borders.

The hump-shaped behavior is also observed in the clustering coefficient.

Figure 4.37 shows that the average weighted clustering coefficient of the

WION has been steadily increasing but was followed by a decline since 2007.

Again, a possible explanation is that the booming economy before 2007 in-

troduced more interactions between industries, hence higher clustering coef-

ficient, and the financial crisis after 2007 stifled the excess relationships.
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Figure 4.37: Panel (a) shows the average weighted clustering coefficient of the WION

over time. Panel (b) further decomposes the clustering coefficient into domestic clustering

coefficient and foreign clustering coefficient. Clearly the behavior in Panel (a) is more

explained by the foreign clustering coefficient.

We can also examine the global network properties of the WION by plot-

ting its degree and strength distributions. As shown in Figure 4.38, unlike

other network systems such as the internet, where the degree distributions

follow the power law, the WION is characterized by the highly left-skewed

degree distributions. Most nodes enjoy high-degree connections in the WION

because the industries are highly aggregated. That is, it is hard to find two
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completely disconnected industries given the high level of aggregation. Fur-

thermore, the WION is almost complete, i.e., every node is connected with

almost every node, if represented by unweighted edges.3
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Figure 4.38: Figure shows the histogram of in-degree, out-degree, and total-degree dis-

tributions for selected years. For the selected years 1995, 2003, and 2011, the first row has

the in-degree distributions while the second row and the third row have the out-degree

and total-degree distributions respectively. The WION is characterized by the highly left-

skewed degree distributions. Most nodes enjoy high-degree connections in the WION due

to the aggregated industry classification.

We can also take into account the edge weights and examine the strength

distributions of the WION. Figure 4.39 shows the in-strength, out-strength,

and total-strength distributions for the years 1995, 2003, and 2011. Like the

3The same feature is also found in the input-output networks at the national level

(McNerney et al. (2013)). Using a single-year (2006) data of the WIOD, Carvalho (2013)

also reports the heavy-tailed but non-power-law degree distributions.
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previous studies at the national level (McNerney et al. (2013)), the strength

distributions can be well approximated by the log-normal distributions. As

reasoned by Acemoglu et al. (2012), this asymmetric and heavy-tailed distri-

bution of strength in the WION may serve as the origin of economic fluctu-

ations.
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Figure 4.39: Figure shows the empirical counter-cumulative distribution functions of in-

strength, out-strength, and total-strength for selected years. For the selected years 1995,

2003, and 2011, the first row has the in-strength distributions while the second row and the

third row have the out-strength and total-strength distributions respectively. The observed

data are in black circles while the green curve is the fitted log-normal distribution.

4.5.3 The Community Detection in the WION

Figures 4.40, 4.41, and 4.42 report the community detection results, obtained

with Newman-Girvan modularity optimization, for the selected years 1995,

2003, and 2011, respec- tively. The 40 countries in the WIOD are arranged
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by rows while the 35 industries are arranged by columns. Different colors

indicate different communities detected. There are two interesting findings

in our results. First, most communities were based on a single economy,

i.e., the same color often goes through a single row. This echoes one of the

features of the WION mentioned previously, i.e., most of the inter-industrial

activities are still restricted in the country border. Second, for all the three

years selected, we always color the community involving Germany in red and

put it on the top. As a result, our algorithm captures a growing Germany-

centered 4 input-output community.

Since the WIOD monetary goods flows are based on undeflated current

prices, one possible reason for the emergence of the German community is

that the community members may have experienced significantly more infla-

tion and/or exchange rate volatility than other regions in the world. Refer-

ring to the World Bank inflation data and the exchange rate data used in

the WIOD, we show that this is hardly the case.

4It is centered on Germany because the community core detection results below show

that the cores of this red community are all within Germany.
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and more developed economies, the primary industries (1-3) have become

less central in the developed economies and have only remained as the cores

in a few emerging economies, which is consistent with the Kuznets facts

(Kuznets (1957),Kuznets (1973)). Furthermore, for the growing community

centered on Germany, the cores are always identified in Germany (that is

why we simply call it the German community) for the three selected years. It

is also worth noting that, the German industry of transport equipment (15)

is identified as a core in 2011 and the car industry is the most integrated in

the German community, which spans over 17 economies.

4.5.4 The Network-Based Methods of Identifying the

Key Industries

Since on a global scale the traditional assumption of stable input-output

technical coefficients is violated due to the dynamics of international trade,

the traditional final-demand-weighted backward linkage measure alone is in-

sufficient to evaluate the importance of any given industry on the global

economy. However, the networks approach provides us a holistic view of the

global production system and we can compute various centrality measures

to compare the nodes in the network. Here we focus on two network-based

methods of identifying the key industries in the WION, PageRank centrality

and community coreness measure. We choose PageRank over other centrality

measures such as closeness and betweenness because the former systemati-

cally measures the influence of a given node and has been widely used in the

previous literature to identify the key nodes (Acemoglu et al. (2012),Carvalho

(2013)).
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Pagerank Centrality Given a network, it is a problem of capital impor-

tance to bring order to its structure by ranking nodes according to their

relevance. Among the many proposed, a successful and widely used central-

ity measure is PageRank ((Page et al., 1999), see chapter section 1.1.4).

Since the WION is weighted, we use here a weighted version of PageRank,

which is computed iteratively as follows:

1. At t = 0, an initial probability distribution is assumed, usually PR(i; 0) =

1
N

where N is the total number of nodes;

2. At each time step, the PageRank of node i is computed as:

PR(i, t+ 1) =
1− d

N
+ d

∑

j∈M(i)

PR(j, t)wij

S(j)
(4.11)

where M(i) are the in-neighbors of i, wij is the weight of the link

between the nodes i and j, S is the sum of the weights of the outgoing

edges from j, and the damping factor d is set to its default value, 0.85.

In Table 4.7, the second column of each year is produced by the PageR-

ank centrality, which is denoted by PR. Unlike the final-demand-weighted

backward linkage measure, where only 4 economies are among the top 20,

the PageRank centrality recognizes 10 economies in the top 20 list for the

three selected years.

Community coreness measure The other network-based method of iden-

tifying the key industries is the community coreness measure.

In the WION, once we have the |dQ| for each industry, we can consider

the one with the biggest |dQ| the most important. We can also normalize
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the |dQ| to identify the most important nodes within each community. The

results are shown in Figures 4.40, 4.41, and 4.42, where the first place in

each community is with thick and solid border, the second place is with thick

dashed border, and the third place is with both border and texture. In Table

4.7, the third column of each year is produced by the community coreness

measure, which is denoted again by |dQ|. Interestingly, like the final-demand-

weighted backward linkage measure, the community coreness measure also

only includes China, Germany, Japan, and USA in the top 20 list for the

selected years.

Now we have totally three methods to identify the key industries in the

WION, the traditional final-demand- weighted backward linkage measure,

the PageRank centrality measure, and the community coreness measure.

They have different results from each other. For instance, the industry of

transport equipment in Germany is captured by the PageRank but not by

the other two while the industry of other business activities in USA is more

important by |dQ| than by the other two (see Table 4.7). Table 4.8 reports

the correlation coefficient matrix among the three methods for the selected

years 1995, 2003, and 2011. We find that all the three methods are posi-

tively correlated, while w and |dQ| are correlated even more. Therefore, the

network-based |dQ| and especially PR can be used to complement, if not to

substitute, w to identify the key industries in the WION.
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1995 2003 2011

w PR |dQ| w PR |dQ| w PR |dQ|

w 1 0.664224 0.819625 w 1 0.688819 0.724121 w 1 0.64281 0.754442

PR 0.664224 1 0.650459 PR 0.688819 1 0.596233 PR 0.64281 1 0.592057

|dQ| 0.819625 0.650459 1 |dQ| 0.724121 0.596233 1 |dQ| 0.754442 0.592057 1

Table 4.8: Correlation coefficient matrix among the three key-industry-identification

methods for selected years. The first method is the final-demand-weighted backward link-

age measure, w. The second is the PageRank centrality, PR. The third is the community

coreness measure |dQ|.



Chapter 5

Discussion

The aim of this work has been to use community detection methodology

and develop methods and algorithm to be applied to the study of the global

market and its functioning, in order to understand the origin of economic

turmoils and critical events. In the first two works reviewed in this thesis

(Cerina et al. (2012), De Leo et al. (2013) - see chapter 4 for further reference)

we developed the theoretical tools that have been then applied to real world

data.

Since in many cases space affects link formation by mixing in with some

other attribute or masking it at all, there is the need to separate those differ-

ent contributions. In section 4.1 we propose a simple model which allowed us

to test community detection on spatial networks. Our model generates sim-

ple graphs that mix both geographical properties and attributes. In literature

many other spatial network models have been introduced for which nodes are

connected each other through a certain spatial rule. Examples range from the

growth of street networks to the evolution of the territorial infrastructural

137
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networks (see (Barthelemy, 2011) for an extensive list of this kind of mod-

els). Moreover a whole class of models that study node properties and their

aggregation has recently been introduced and one of the most important of

them is the stochastic block model in which a combination of various kind of

node attributes are present. The novelty of our approach is to study at the

same time these various aspects (geography and attributes), and, up to our

knowledge, our model is the first one that considers simultaneously the two

factors, space and attributes, in the context of community detection (Cerina

et al. (2012)).

In particular, we explicitly show that the existence of correlations be-

tween attributes and space drastically affects the result of community detec-

tion. The results presented in this study show that community detection in

spatial networks should be taken with great care, and that including space in

community detection methods could lead to results difficult to interpret. We

show that for weak correlations, most community detection methods work,

while for stronger correlation community detection methods which remove

the spatial component of the network can lead to incorrect results. It is

thus important to have some information on the correlations between space

and attributes in order to assess the validity of the results of community

detection methods. In practical applications however, these attributes-space

correlations are generally not known and this calls for the need of new ap-

proaches, such as community detection methods including in some tunable

form the existence of such correlations.

Still, the main problems of all algorithms for community detection is the

fact that the community definition does not provide any information about
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the importance of a node inside its own community. Nodes of a community

do not have all the same importance for the community stability: the removal

of a node in the “core” of a network affects the partition much more than

the deletion of a node that stays on the edge of the community (i.e. a node

connected in the same way with nodes internal and external to its commu-

nity). For this purpose, in section 4.2 we developed a novel way for detecting

cores inside communities by using the properties the of modularity function

(De Leo et al. (2013)).

Our application to transportation networks has been a kind of territorial

benchmark for this novel approach, but the proposed method for detecting

cores in communities through the optimization of the modularity function is

very simple and quite general but indeed very powerful and has a variety of

potential applications to other networked systems.

We applied community detection and the new “core detection” technique

to three different cases with very interesting results:

Network communities within and across borders In section 4.3 we

adopt a complex network approach to the study of the international realtion-

ships and use core detection to define an outreach index able to measure the

international openness of countries and their “internationalization” (Cerina

et al. (2012)).

As already mentioned in chapter 4, the role of distance in spatially embed-

ded complex networks has been recently investigated. Empirically speaking,

it has been found that connectivity tends to decay with distance according

to a power- law relationship (Onnela et al. (2011)) . This is in line with pre-
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vious results in the economic literature, where an inverse power relationship

has been repeatedly observed in gravity-like models of international trade,

human migra- tion and foreign investment (Disdier and Head (2008)).

Despite this growing body of evidence regarding complex networks in

space, still little is known about the role of national borders in the forma-

tion of cross-national networks. In this paper we aim at understanding more

about this role by analyzing the structure of network communities within

and across borders. We show that, while the connectivity of US scientific

communities decays as a power of distance, European scientific communities

tend to be confined within national borders. We introduce a new measure for

the outreach of network communities across borders and confirm our results

via simulations. All in all, our findings reveal that Europe is still a collection

of national systems of innovation and the European Research Area is still far

from becoming reality (Chessa et al. (2013)) . Our methodological approach

can be used to keep track of the progress toward the integration of the Euro-

pean Research Area. More in general, the outreach index we discuss in this

paper is worth using to detect the impact of borders on the formation and

dynamic evolution of spatially embedded networks.

The rise of China in the International Trade Network: A Com-

munity Core Detection Approach By viewing the international trade

system as an interdependent complex network and China’s opening to world

trade as a natural experiment, in section 4.4 we use community detection

and community core detection techniques to examine both the global dy-

namics, i.e., communities disappear or reemerge, and the regional dynamics,
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i.e., community core changes between community members, in the ITN over

the period from 1995 to 2011. We find that the Asia-Oceania community has

displayed rich dynamics both internally and externally. That is, the Asia-

Oceania community was present during 1995-2001 and was led by Japan,

and then it disappeared and was integrated with the America community

during 2002-2004, and finally it reemerged during 2005-2011 and was led by

China (Zhu et al. (2014)).

With a model of a dynamic-edge-weight mechanism for both inter- and

intra-communities, we are able to explain the dynamics observed in the Asia-

Oceania community. In a network with a fixed number of nodes and a preset

initial community structure, each period a node will be selected and by chance

it may increase its edge weight with an inter-community node (if the edge

already exists; otherwise a new edge will be established). It will then increase

its edge weight with an intra-community neighbor. Those neighbors with

more inter-community strength will be preferred. Our simulation results show

that the global dynamics, i.e., communities disappear or reemerge can be

generated by this model setting.

In light of this simple mechanism, the interpretation of the dynamics

in the Asia-Oceania community can be that, the community collapsed af-

ter China entered the WTO and built strong trade relationships with other

communities, especially with the external cores, i.e., the United States and

Germany, and China became regionally attractive due to the preference of ex-

ternal strength and restored the Asia-Oceania community as the community

leader. We find some supporting evidence in the trade data. In particular, the

behavior of the ratio of the inter-community trade to the intra-community
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trade between the Asia-Oceania community and the America community

coincides with the disappearance and reemergence of the Asia-Oceania com-

munity. Within the community, China surpassed Japan after 2003 in terms

of both inter- and intra-community trade. In our simulation, the external

strength can only be increased by chance. In reality, however, it can be

achieved by a series of strategic moves in trade policy. This is evidenced

by the surging number of RTAs that China formed since 2003. Moreover, the

intra-community preference of the nodes with more inter-community strength

can be understood as the incentive to have better market access through the

regional big player in the global production chains.

World Input-Output Network In section 4.5 we investigate a MRIO

system characterized by the recently available WIOD database. By view-

ing the world input-output system as an interdependent network where the

nodes are the individual industries in different economies and the edges are

the monetary goods ows between industries, we study the network prop-

erties of the so-called world input-output network (WION) and document

its evolution over time. We are able to quantify not only some global net-

work properties such as assortativity, clustering coefficient, and degree and

strength distributions, but also its subgraph structure and dynamics by using

community detection techniques. Over time, we trace the effects of globaliza-

tion and the 2008-2009 financial crisis. We notice that national economies are

increasingly interconnected in global production chains. Moreover, we detect

the emergence of regional input-output community. In particular we see the

formation of a large European community led by Germany. Finally, because
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on a global scale the traditional assumption of stable input-output technical

coefficients is violated due to the dynamics of international trade, we also use

the network-based PageRank centrality and community coreness measure to

identify the key industries in the WION and the results are different from

the one obtained by the traditional final-demand-weighted backward linkage

measure (Cerina et al. (2014)).

As mentioned elsewhere, due to the limited coverage of the WIOD, we

cannot argue if the input-output integration is also observed in other conti-

nents. Therefore, in our future work, we will utilize a database having a wider

coverage. Moreover, since each of the three methods of identifying the key

industries captures a different aspect of the importance of any given indus-

try, future work is also needed to compare the methods so as to identify the

systematically important industries for the global economy with attention to

the territorial aspects.



Appendix A

The Leontief-Inverse-Based

Method of Identifying the Key

Industries

The intuition behind the Leontief inverse is that an increase in the final de-

mand of an industry’s output will induce not only more production from the

industry itself but also more from other related industries because more in-

puts are required. Therefore, the Leontief inverse takes into account both the

direct and indirect effects of a demand increase. For instance, Lij measures

the total output produced in Industry i given a one-unit increase in Industry

j’s final demand 1. As a result, i′L sums up each column of L and each sum

1The Leontief inverse is demand-driven, i.e., a repercussion effect triggered by an in-

crease in final demand. Another strand of the input-output economics literature is based

on the supply-driven model, where a repercussion effect is triggered by an increase in value

added (primary inputs) Ghosh (1958), Miller and Blair (2009).

144



APPENDIX A. LEONTIEF-INVERSE-BASED METHOD 145

measures the total output of all the industries given a one-unit increase in the

corresponding industry’s final demand. The vector i′L is called the backward

linkage measure 2 and can be used to rank the industries and identify the

key ones in the economy Yotopoulos and Nugent (1973). However, as pointed

out by Laumas (1976), the key assumption embedded in the backward link-

age measure is that every industry is assigned with the same weight (or

unweighted), which is far from the reality. The problem with the unweighted

backward linkage measure can be demonstrated by using the hypothetical

data from Table 4.6. The calculated i′L is

[

2.0688 1.8377 1.2223 1.1854

]

,

which considers the industries in Economy 1 more important than the ones

in Economy 2, despite the fact that Economy 2 is a lot larger than Economy

1 in terms of total outputs.

The industries of the 40 economies covered in the WIOD are very het-

erogeneous in terms of both total outputs and technical structure, which

certainly makes the unweighted backward linkage measure invalid. In order

to identify the key industries in the WIOD, we hence follow Laumas (1976)

and use the final-demand-weighted backward linkage measure, which is de-

noted by w and is defined here as the Hadamard (element-wise) product of

the vector of the unweighted backward linkage measure and the vector of the

percentage shares of the total final demand across industries, i.e.,

w = i′L ◦ f ′

i′f
(A.1)

where ◦ is the element-wise multiplication operator.

2It is backward because the linkage is identified by tracing back to the upstream in-

dustries.
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Table A.1: Top 20 Industries Identified by the Three Methods for

Selected Years. The first method is the final-demand-weighted backward

linkage measure, w. The second is the PageRank centrality, PR. The third

is the community coreness measure |dQ|.
1995 2003 2011

Rank w PR |dQ| w PR |dQ| w PR |dQ|

1 USA-Pub USA-Pub USA-Pub USA-Pub USA-Hth USA-Obs CHN-Cst GBR-Hth CHN-Cst

2 JPN-Cst USA-Tpt JPN-Cst USA-Hth DEU-Tpt USA-Est USA-Pub DEU-Tpt USA-Obs

3 USA-Cst DEU-Tpt USA-Obs USA-Cst USA-Pub USA-Fin USA-Hth USA-Pub CHN-Met

4 USA-Hth USA-Hth USA-Cst USA-Est USA-Tpt USA-Pub USA-Est CHN-Elc USA-Pub

5 USA-Est DEU-Cst USA-Est USA-Rtl GBR-Hth USA-Hth CHN-Elc USA-Hth USA-Est

6 USA-Rtl RUS-Hth USA-Hth CHN-Cst ESP-Cst CHN-Cst USA-Rtl CHN-Cst CHN-Agr

7 USA-Fod DEU-Fod JPN-Htl JPN-Cst DEU-Hth JPN-Cst USA-Cst CHN-Met CHN-Fod

8 JPN-Pub GBR-Cst JPN-Met USA-Fin GBR-Cst USA-Ocm USA-Fin USA-Tpt USA-Fin

9 USA-Tpt USA-Cst USA-Met USA-Tpt USA-Cst CHN-Met CHN-Fod ESP-Cst CHN-Min

10 JPN-Est FRA-Tpt JPN-Obs USA-Fod USA-Obs USA-Met CHN-Mch AUS-Cst USA-Cok

11 JPN-Hth USA-Fod DEU-Cst USA-Htl FRA-Tpt JPN-Obs JPN-Cst ITA-Hth CHN-Elc

12 USA-Fin GBR-Hth JPN-Pub USA-Ocm TUR-Tex JPN-Htl USA-Fod DEU-Hth USA-Hth

13 USA-Htl USA-Obs JPN-Hth JPN-Pub USA-Est CHN-Agr USA-Htl USA-Obs CHN-Omn

14 JPN-Fod JPN-Cst JPN-Ocm USA-Obs AUS-Cst USA-Cst CHN-Tpt RUS-Hth CHN-Cok

15 JPN-Rtl DEU-Mch JPN-Fod JPN-Est USA-Fod JPN-Pub JPN-Pub CHN-Tpt CHN-Mch

16 DEU-Cst ESP-Cst JPN-Fin JPN-Hth ITA-Hth USA-Agr USA-Tpt DEU-Mch USA-Cst

17 JPN-Elc JPN-Tpt USA-Agr USA-Whl DEU-Cst USA-Tpt USA-Ocm FRA-Cst CHN-Chm

18 JPN-Whl DEU-Met USA-Fod JPN-Tpt DEU-Fod JPN-Met CHN-Pub CHN-Tex JPN-Obs

19 JPN-Tpt USA-Elc JPN-Whl CHN-Elc DEU-Mch JPN-Hth USA-Obs GBR-Cst USA-Ocm

20 JPN-Mch USA-Est USA-Pup DEU-Tpt CHN-Elc CHN-Elc USA-Whl DEU-Met JPN-Cst
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Tables A.2 and A.3 provide an alternative way of viewing the key in-

dustries and economies over time. In particular, Table A.2 lists the most

important economies by industry while Table A.3 lists the most important

industries by economy.
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Table A.2: The Most Important Economies by Industry Over Time:

Using the Final-Demand-Weighted Backward Linkage Measure.
Industry/Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Agr CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN

Min USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Fod USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA CHN

Tex USA CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN

Lth CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN

Wod JPN USA USA USA USA USA USA USA USA USA USA USA USA CHN CHN CHN CHN

Pup USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Cok USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Chm USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Rub USA USA USA USA USA USA USA USA USA USA USA USA CHN CHN CHN CHN CHN

Omn CHN CHN CHN CHN CHN CHN CHN CHN CHN CHN USA USA DEU CHN CHN CHN CHN

Met JPN JPN JPN JPN JPN JPN JPN JPN JPN JPN JPN JPN JPN JPN CHN CHN CHN

Mch JPN JPN USA USA USA USA USA USA USA USA CHN CHN CHN CHN CHN CHN CHN

Elc JPN USA USA USA USA USA USA USA CHN CHN CHN CHN CHN CHN CHN CHN CHN

Tpt USA USA USA USA USA USA USA USA USA USA USA USA USA USA CHN CHN CHN

Mnf USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Ele USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Cst JPN JPN USA USA USA USA USA USA USA USA USA USA CHN CHN CHN CHN CHN

Sal USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Whl JPN JPN USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Rtl USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Htl USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Ldt JPN JPN JPN USA USA USA USA USA USA USA USA USA USA USA USA USA IND

Wtt USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Ait USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Otr DEU DEU DEU DEU DEU USA USA ITA ITA ITA ITA ITA ITA ITA ITA CHN CHN

Pst USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Fin USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Est USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Obs USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Pub USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Edu JPN JPN JPN JPN JPN JPN JPN JPN JPN JPN JPN USA CHN CHN CHN CHN CHN

Hth USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Ocm USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA USA

Pvt ITA ITA ITA USA USA USA USA USA ITA ITA ITA ITA ITA ITA ITA ITA ITA
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Table A.3: The Most Important Industries by Economy Over Time:

Using the Final-Demand-Weighted Backward Linkage Measure.
Economy/Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

AUS Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

AUT Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

BEL Fod Fod Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

BGR Fod Fod Fod Fod Agr Agr Fod Fod Fod Fod Cst Cst Cst Cst Cst Cst Cst

BRA Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub

CAN Pub Pub Cst Pub Tpt Tpt Pub Pub Cst Cst Cst Cst Cst Cst Cst Cst Cst

CHN Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

CYP Htl Cst Htl Htl Htl Htl Htl Pub Pub Cst Cst Cst Cst Cst Cst Cst Cst

CZE Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Tpt Tpt

DEU Cst Cst Cst Cst Cst Cst Tpt Tpt Tpt Tpt Tpt Tpt Tpt Tpt Tpt Tpt Tpt

DNK Fod Fod Cst Cst Cst Cst Cst Hth Hth Hth Cst Cst Cst Hth Hth Hth Hth

ESP Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

EST Fod Fod Fod Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

FIN Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

FRA Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

GBR Pub Cst Cst Cst Cst Cst Cst Cst Cst Cst Hth Hth Hth Hth Hth Hth Hth

GRC Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Pub Pub Pub

HUN Fod Fod Fod Fod Elc Elc Elc Elc Elc Elc Elc Elc Elc Elc Elc Elc Elc

IDN Cst Cst Cst Cst Fod Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

IND Agr Agr Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

IRL Fod Fod Fod Elc Elc Elc Elc Elc Cst Cst Cst Cst Cst Cst Cst Chm Chm

ITA Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

JPN Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

KOR Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

LTU Fod Fod Pub Cst Cst Fod Fod Cst Cst Cst Cst Cst Cst Cst Fod Fod Fod

LUX Cst Fin Fin Fin Fin Fin Fin Fin Fin Fin Fin Fin Fin Fin Fin Fin Fin

LVA Fod Fod Fod Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

MEX Fod Fod Fod Fod Fod Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

MLT Elc Elc Elc Elc Elc Elc Elc Cst Cst Elc Cst Ocm Ocm Ocm Ocm Ocm Ocm

NLD Fod Fod Fod Fod Cst Cst Cst Cst Pub Pub Pub Pub Cst Cst Pub Pub Pub

POL Fod Fod Fod Cst Cst Cst Cst Fod Fod Fod Fod Fod Cst Cst Cst Cst Cst

PRT Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

ROM Fod Fod Fod Fod Fod Fod Fod Fod Fod Fod Cst Cst Cst Cst Cst Cst Cst

RUS Fod Cst Cst Cst Fod Fod Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

SVK Cst Cst Cst Cst Cst Cst Tpt Tpt Tpt Tpt Cst Tpt Tpt Tpt Cst Cst Cst

SVN Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst

SWE Est Est Est Est Est Hth Hth Hth Hth Hth Hth Hth Hth Hth Hth Hth Hth

TUR Cst Cst Cst Cst Fod Fod Fod Tex Tex Tex Fod Fod Tex Fod Fod Fod Fod

TWN Cst Cst Pub Pub Elc Elc Elc Elc Elc Cst Cst Cst Cst Cst Cst Cst Cst

USA Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub Pub
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Physical Review E, 68(1):015101, 2003.

Jungyul Sohn. Evaluating the significance of highway network links under

the flood damage: An accessibility approach. Transportation Research Part

A: Policy and Practice, 40(6):491–506, 2006. URL http://EconPapers.

repec.org/RePEc:eee:transa:v:40:y:2006:i:6:p:491-506.
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