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Abstract 

Among nanostructured magnetic materials, nanoparticles (NPs) are unique complex 

physical objects: in these systems a multidomain organization is energetically 

unfavorable and single-magnetic-domain particles are formed, each one with a huge 

magnetic moment with comparison to that of single atoms, thus they are often named 

“supermoment”. The attractive performance of magnetic NPs based materials are 

appealing for several technological fields ranging from nanomedicine to high-density 

magneto recording. Thus, understanding the physics of magnetic nanoparticles and 

controlling their magnetic properties represent hot topics not only for fundamental 

studies but also for technological applications. The magnetic behavior of such entities 

is related to the reversal of their magnetization; this can be a thermal or a field 

activated transition, which is characterized by an energy barrier defined as a magnetic 

anisotropy energy (MAE), which is influenced by several parameters. Thus, the tuning 

of the magnetic properties of nanoparticles means control of the MAE. 

In this work it will be discussed how to tune the MAE at the nanoscale showing the 

main parameters that can influence the anisotropy itself. It will be investigated the role 

of particle volume in the effective anisotropy, and its correlation with the surface 

contribution, exploring its strong effect with particle size below 10 nm. In this 

framework it will be investigated the role of organic coating, underlining its ability to 

reduce the magnetic disorder arising from the broken symmetry at particles surface. In 

addition, in nanoparticle ensemble, the MAE may differ from one particle to another 

due to particles size and shape distributions. Thus it will be defined a detailed statistical 

analysis of particles’ morphology, leading to the development of a new instrument to 

analyze particles morphology, called “aspect maps”. 

The relation between the physical chemical structures of nanoparticles will be 

investigated on nickel doped cobalt ferrite samples, demonstrating how to tune the 

MAE by chemical composition, i.e., controlling magnetocrystalline anisotropy. 

Furthermore it will be analyzed the evolution of interparticles interactions with respect 

single particle magnetic anisotropy by means of a modified random anisotropy model. 

The last part of this work will deal with the design of novel nanostructured composites. 

La0.67Ca0.33MnO3 and CoFe2O4 will be combined using two different structures, which 

can be easily extent to other materials, to improve their magnetic interactions in order 

to obtain tunable magnetotrasport proprieties of the final composites. 
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List of symbols and acronyms 

μ = Magnetic permeability [T m A-1] 

μ0 = Vacuum magnetic permeability (4π∙10-7 T m A-1) 

μR = Relative magnetic permeability [T m A-1] 

μB = Bohr magneton (9,274 ∙ 10-24 J T-1) 

ρ = Resistivity [Ω m] 

χ = Magnetic susceptibility (unit less) 

χd = Magnetic susceptibility of high anisotropy component (unit less) 

B = Magnetic flux density [T] 

DCD = DC Direct demagnetization remanence curve  

Ea = Anisotropy energy 

FC = Field Cooling 

FiM = Ferrimagnetism 

FM = Ferromagnetism 

FT-IR = Fourier Transform Infrared Spectroscopy 

H = Magnetic field strength [A m-1] 

h= Planck costant (6.626∙1034 J s). 

ℏ = Reduced Plank constant (1.0546∙1034 J s). 

μ0HC = Coercive field [T] 

μ0HK = Anisotropy field [T] 

μ0HSAT = Saturation field [T] 

IRM = Isothermal Remanence Magnetization 

KA = Magnetic anisotropy constant 

kB = Boltzmann constant(1.381∙10-23 J K-1). 
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l = Orbital angular momentum 

m = Magnetic moment [A m2] 

M = magnetization (magnetic moment per unit of volume [A m-1] or per unit of mass [A 

m2 kg-1]) 

me = electron mass (9.109∙10-31 kg) 

MR = Remanent magnetization [A m-1or A m2 kg-1]  

MRed = Reduced remanent magnetization 

MS = Saturation magnetization [A m-1 or A m2 kg-1] 

s = Spin angular moment 

SDTA = Simulaneous Differential Thermal Analysis 

SFM = Super-Ferromagnetism 

SPM = Super-Paramagnetism 

SQUID = Superconducting Quantum Interference Device 

SSG= Super-Spin-Glass 

TB = Superparamagnetic blocking temperature 

TC = Curie temperature 

Tg = Spin glass transition temperature 

Tirr = Irreversibility temperature between ZFC and FC curves 

Tmax = Temperature corresponding to the maximum in ZFC curve 

TN = Néel temperature 

TV = Verwey transition temperature (≈ 120 K). 

TEM = Transmission Electron Microscopy 

TGA = Thermo-gravimetric analysis 

VSM = Vibrating Sample Magnetometer 

XRD = X-ray diffraction 

ZFC = Zero Field Cooling 



26 

 

 

Introduction 

Magnetic materials have been fascinating human beings for over 4000 years. Since an 

ancient Greek shepherd noticed in Magnesia that the iron nails in his shoe and the iron 

tip of his staff stuck to certain rocks (Lodestone) [1], the magnetic phenomena have 

been object of careful study and it is still common opinion that “few subjects in science 

are more difficult than magnetism” [2]. Nowadays, the magnetic materials have found 

their way into almost every part of our civilization. In our modern society, we use 

magnetic materials daily, such as computer hard disk, credit and ID cards, loud 

speakers, refrigerator door seals and a host of other conveniences. The development 

of new materials on smaller and smaller length scale has been at the root of progress 

in material science in the last 40 years. This is particularly true in the development of 

new magnetic materials: the discovery of giant magnetoresistance (GMR) in magnetic 

thin films [3,4] and subsequently the observation of GMR in small granular systems of 

Fe, Co, and Ni and their various alloys in Cu, Ag or Au matrices [5] are examples of such 

development. 

Broadly speaking, the physical properties of a material are size dependent, being the 

results of phenomena which occur only at a specific size-scale [6,7]. On entering the 

nanometer-scale regime the magnetic properties of condensed matter show 

substantial differences with respect to the bulk state, leading to new physics [8–10] and 

applications [7,11]. In magnetism, several phenomena are related to nanoscale, such 

as the dimensions of magnetic domains or the length of exchange coupling interactions. 

For this reason, since a few decades ago, nanostructured magnetic materials are object 

of a great attention, with the aim to control systems constituents in the range 1 - 100 

nm to design their magnetic properties. Among nanostructured magnetic materials, 

nanoparticles (NPs) are unique complex physical objects: in these systems a 

multidomain organization is energetically unfavorable and single-magnetic-domain 

particles are formed, each one with a huge magnetic moment with comparison to that 

of single atoms, thus they are often named “supermoment” [6]. In addition, the 

attractive performance of magnetic NPs based materials are appealing  for several 

technological field as nanomedicine [12] (e.g., magnetic sensors [13], bio-imaging 

[14,15], drug delivery [16,17] therapeutic hyperthermia [18–20] ), ferrofluid technology 

[21], catalysts [22,23], color imaging [24], and high density magneto recording [25,26]. 



27 

 

Furthermore, iron oxide nanoparticles (Fe3O4, -Fe2O3) play an important role in nature; 

indeed, they are commonly found in soils and rocks and they are also important in 

several ways for the functioning of living organisms [8,27].  

In this framework, understanding the physics of magnetic nanoparticles and controlling 

their magnetic properties represent hot topics for both fundamental studies and 

technological applications. Generally speaking, the energy of a magnetic particle can 

be considered dependent on the magnetic anisotropy energy (MAE). According to the 

Néel−Brown theory, above a certain temperature (the blocking temperature TB) and on 

a certain time scale, the particle magnetic moment can produce a thermally activated 

transition. This behavior is analogous to paramagnetism, but with different time and 

magnetization scale, for this reason, it is called “superparamagnetism” (SPM). For a 

given experimental measuring time τm, a corresponding TB is defined, below which the 

particle’s moment rotate over the barrier in a time longer than τm, thus it appears as 

blocked. In addition, the behavior of a random ensemble of nanoparticles depends on 

the type and strength of interparticle interactions, evolving from paramagnetic (PM)-

like to ferromagnetic (FM)-like, including a spin-glass (SG)-like behavior. Due to the 

enhanced time and magnetization scale with respect to atomic systems, the magnetism 

of nanoparticle ensembles has been often called supermagnetism [6,28]. 

Beyond the effect of particle volume and the influence of magnetic interactions, the 

tuning of the magnetic properties of nanoparticles means control of the magnetic 

anisotropy energy.  For bulk materials, the MAE depends mainly on structure and 

chemical composition (i.e., magnetocrystalline anisotropy); for nanoparticles other 

factors, such as particle shape (i.e., shape anisotropy) and surface to volume ratio (i.e., 

surface anisotropy) have to be taken into consideration as well. Furthermore, in 

nanoparticle ensemble, the MAE may differ from one particle to another, due to the 

presence of physical and/or chemical inhomogeneity; therefore, the macroscopic 

measured anisotropy will be a type of weighted average of the single particles 

anisotropy. Thus, in order to design magnetic nanostructured materials suitable for 

several applications, it will be essential to control the distribution of MAE, that is, 

particle shape, size, and size distribution and chemical homogeneity [6,7]. 

The anisotropy arising from the coupling of two magnetic phase, i.e., the exchange 

anisotropy [29,30], becomes a new tool in order to tailor the magnetic properties at 

the nanoscale. Such exchange coupling (EC) is already at the bases of new multiphase 

compounds, which find applications in several fields, from permanent magnets, to 

magneto-recording, microwave adsorption or biomedical applications [31]. 

The aim of this PhD project was to investigate and tune particle MAE modulating 

magnetic properties of NPS ensembles. This study has been mainly performed on spinel 
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iron oxide nanoparticles: these materials are good models systems for studies of the 

relationship between magnetic behavior and magnetic structure at atomic level, 

owning structural properties and a rich crystal chemistry, which offer excellent 

opportunities for fine tuning and understanding their magnetic properties [32–34]. 

A detailed description of the experimental work and of the data rationalization will be 

given on this thesis by chapters organizations. 

Chapter 1 will briefly introduce the magnetism of nanoparticles, in order to highlight 

the key elements to understand the role of the MAE in the physics of these systems. 

Furthermore, it will discuss how to tune the MAE at the nanoscale showing the main 

parameters that can influence the anisotropy itself, defining the framework within the 

synthetic strategies used in this work have been developed. 

The surface component of MAE is strictly dependent on particles volume (i.e., 

surface/volume ratio). In this view, Chapter 2 will discuss the influence of the particles 

size on a scale of few nm (5-10 mm), with the analysis of four ensembles of maghemite 

(-Fe2O3) nanoparticles. It will be demonstrated that on such size scale the influence of 

the surface anisotropy plays a fundamental role in characterizing the magnetic 

behavior. Particular attention will be devoted to understand the contribution of the 

local surface anisotropy and its origin in terms of non-collinear spin structure. Finally, 

some insights about the use of suitable molecular coating to tune single particle MAE 

will be discussed. 

Within this analysis, it emerges the fundamental role of particles morphology (i.e., size 

and shape) and its distribution to tune the MAE. Indeed, for applications ranging from 

electronics to biomedicine, one of the key points to improve the system efficiency is to 

have narrow distribution of size and shape, in order to minimize the different magnetic 

anisotropy among nanoparticles. Chapter 3 will introduce a semiautomatic procedure 

for a very detailed statistical analysis leading to the development of a new tool to 

investigate particles morphology, called “aspect maps”. This new instrument allows 

analyzing morphology of NPs assemblies with an higher resolution with compared to 

usual statistical procedures reported in literature. Its potentialities have been used to 

improve the high temperature thermal decomposition process of metalorganic 

precursor. Cobalt ferrite nanoparticles have been chosen as model system to prepare 

high quality colloidal magnetic nanoparticles with controlled morphology. As a main 

result of such study, it will be shown how a narrow particle size distribution reflects a 

more homogenous magnetic response of the nanoparticles. 

One of the most intriguing way to tune the magnetic anisotropy of a material is to 

control its physical-chemical structure. Chapter 4 will face the role of the chemical 
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composition in determining the magnetocrystalline anisotropy in nickel-doped cobalt 

ferrite nanoparticles; it will be analyzed its influence on the effective MAE and the 

magnetic structure of NPs.  

The interparticle interactions can own a strong influence on NPs superparamagnetic 

relaxation process, up to induce collective magnetic behaviors, i.e., superspinglass 

(SSG) and superferromagnetism (SFM). Chapter 5 will introduce the analysis of the 

interparticles interactions on ensembles of spinel iron oxides with the same 

morphological structure but different MAE due to the different chemical composition. 

The process of magnetization reversal will be studied in both the low and high field 

regime, analyzing the competitive role of interparticles interactions and single particle 

MAE employing a modified random anisotropy model (RAM). 

Nowadays, one of the most appealing field in magnetic material development is to 

design nanostructured composites. They allow combining the properties of two or 

more materials to improve it or to introduce entirely new ones. Chapter 6 will present 

novel approaches to create nanocomposites in order to design structures in which 

improve magnetic interactions among their constituents. In addition it will be studied 

the effect of such structures on the magneto-transport properties of manganese 

oxides. Different nanocomposites structures will be obtained mixing cobalt ferrite 

nanoparticles with calcium doped lanthanum manganese oxides. This compound 

represent a typical strongly correlated transition metal oxide well studied for its 

magnetoresistance properties for several technological application, e.g., the tunnel 

magnetoresistance effects. Both materials can be considered an optimum starting 

point for the development of nanostructures, which later can be extent to other 

materials. 

In appendix to this thesis, it will be reported a detailed description of manganites with 

an in-depth analysis of magnetic and magnetoelectric protocols of measurements 

employed for these studies.   
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Chapter 1  

Nanomagnetism 

The breakthrough point for magnetic materials occurs when their constituents undergo 

a critical radius. In such case, their configuration of minimal energy is the one with all 

atomic moments aligned in the same direction. Such critical radius rC is typical for each 

material and in the range of nanometers: 

 

𝑟𝑐 ≈ 9
(𝐴𝐾𝑢)

1
2

𝜇0𝑀𝑆
2      (1.1) 

 

where A is the exchange constant, Ku the constant for magnetic uniaxial anisotropy and 

μ0 the vacuum magnetic permeability. Typical values of rC are 15 nm for Fe, 35 nm for  

Co, 30 nm for γ-Fe2O3 , 55 nm for Ni, and 750 nm per SmCo5 [28]. Such particles act as 

single magnetic domains with a compressive magnetic moment in the range 103-105 μB. 

They are similar to atomic moments in paramagnetic materials, but with a much larger 

magnetization magnitude and a specific time scale for magnetization reversal; for this 

reason they are often defined as superspins, and their magnetic behavior can be 

described as supermagnetism [28]. 

 

 

Figure 1.1: Magnetic Domain configuration with respect particles size. 
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 Magnetic anisotropy energy 

In order to align the magnetization of a superspin, it is necessary to overcome a 

magnetic anisotropy energy barrier. This anisotropy describes the dependence of the 

internal energy to the direction of magnetization orientation, introducing the concept 

of easy and hard directions of magnetizations. There are several sources of anisotropy, 

and its effective value determinates in large part the magnetic behavior of a material. 

On nanoscale, the two most important contribution are the magnetocristalline and the 

surface ones. In particular, on a very low size scale (i.e., under 10 nm), due to the 

increasing surface to volume ratio, the surface contribution acquires a primary role, 

sometimes overcoming the magnetocrystalline one. 

 Magneto-crystalline anisotropy 

This anisotropy is deeply related to the crystalline structure and its symmetry, and it is 

an intrinsic property of a material [35]. The simplest conditions is represented by a 

spherical particle with uniaxial anisotropy, i.e., a single direction (easy axis) in which 

the alignment of the magnetization is favored.  

 

 

 

Figure 1.2: Examples of magnetization curves measured with the magnetic field applied parallel to an easy 

and a hard axis. 
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To switch the magnetization between the parallel to the antiparallel orientation is 

necessary to overcome the magneto-crystalline anisotropy energy defined as: 

 

𝐸𝑎
𝑢𝑛𝑖 = 𝐾1𝑉 sin2 𝜃 + 𝐾2𝑉 sin4 𝜃 + …  ≈  𝐾𝑉 sin2 𝜃           (1.2) 

  

where the anisotropy constant K can be approximated to K1, being K1 >> K2, K3 , … , V is 

the particle volume and ϑ represents the angle between the easy axis and the 

magnetization. 

The first source of magnetocrystalline anisotropy is the single ion contribution. For a 

specific atomic site, the crystal field tends to stabilize a specific orbital. Due to the spin-

orbit coupling this effect translates in a specific orientation of spins long a given 

crystallographic orientation [36]. A second contribution arises from the dipolar 

coupling among moments, which tend to align head to tail, owing such configuration 

the minimal energy. The dipole sum has to be extended to the whole lattice, and for 

certain lattices (e.g., all cubic ones) it can vanish [35,37]. 

 Shape anisotropy 

For a sample with magnetization Mi along a specific axis i, a corresponding internal 

magnetization field Hd
i can be defined: 

 

𝐻𝑖
𝑑 = −𝑁𝑖𝑀𝑖       (1.3) 

 

where Ni is the demagnetizing factor along that axis. For a sphere, the N factors are  

equal to 1/3 in all x-y-z axis, resulting in a isotropic 

demagnetization field, thus, no shape anisotropy 

appears. 

For particles with elongated shape, a smaller 

demagnetizing field emerges for the long axis, due to 

the larger distance of the two magnetic poles, induced 

at particles surface. Thus, for a general uniform 

magnetized ellipsoid of revolution around the z axis Figure 1.3: Ellipsoid with 

revolution z axis 
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(figure 1.3), the difference in energy when the ellipsoid is magnetized along its hard 

and easy directions represents the shape anisotropy Ea
shape: 

 

𝐸𝑎
𝑠ℎ𝑎𝑝𝑒

=
1

2
𝜇0𝑉𝑀𝑆

2(𝑁𝑧 cos2 𝜗 +𝑁𝑥 sin2 𝜗)       (1.4) 

 

where the Nx = Ny, and Nz  represent the demagnetization factors and MS the saturation 

magnetization. 

 Strain anisotropy 

A further anisotropy energy can come from a stress applied to a material that can 

modify its magnetic structure. Similarly, an external applied field can induce a distortion 

in the crystalline structure, modifying the shape of the crystal. Such anisotropy energy 

can be defined as: 

𝐸𝑎
𝑠𝑡𝑟𝑎𝑖𝑛  = −

3

2
𝜆𝑆 𝜎 𝑆 cos2 𝜃′        (1.5) 

 

where λS is the saturation magnetostriction, σ the strain value by surface unit, S the 

particle surface and ϑ’ the angle between the magnetization and the strain tensor axis.  

 Surface anisotropy 

The breaking of the symmetry at particles surface reduces the nearest neighbors’ 

coordination leading to a different local magnetocrystalline anisotropy. Reducing 

particles size, the surface on volume ratio increases, thus smaller particles manifest 

larger effect of surface anisotropy. For the simple case of small spherical particles with 

diameter d, the effective anisotropy constant can be 

defined as: 

𝐾𝑒𝑓𝑓 = 𝐾 +
6

𝑑
𝐾𝑆        (1.6) 

 

where K represents the magnetocrystalline 

anisotropy constant and KS its local surface value 

measured in J m-2. 

Figure 1.4: Graphical sketch of 

surface disorder of magnetic 

moments. 
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 Superparamagnetism 

An effective anisotropy energy can be defined in case of uniaxial anisotropy as: 

 

𝐸𝑎
𝑒𝑓𝑓

= 𝐾𝑒𝑓𝑓𝑉 sin2 𝜃         (1.7) 

 

Its value reaches a minimum for the parallel and the antiparallel orientation of the 

magnetization with respect the easy axis, and the maximum when it is perpendicular 

to it (parallel to the hard axis). Such energy is related to the effective anisotropy 

constant of the material and grows with respect particles volume (figure 1.5). 

 

 

 

 

 

 

For a system of single domain particles with uniaxial anisotropy, at relative high 

temperature, such as the thermal energy kBT>>KeffV, the superspins can freely rotate 

and the magnetization process can be treated with the Langevin model for atomic 

paramagnetism. For a nanoparticle with total dipolar moment m under the influence 

of a magnetic field µ0H, its magnetization M can be described as M = MS L(x), where MS 

is the saturation magnetization, L(x) = coth(x) − 1/x is the Langevin function, and x = 

µ0mH/kBT . Thus, for analogy, such thermal equilibrium behavior is called 

superparamagnetism. 

When the thermal energy is lager but comparable to the anisotropy energy, the 

magnetization process significantly differs from the Langevin model [38], due to the 

Figure 1.5: Dependence of magnetic anisotropy 

energy from the angle between the particle 

magnetization and the anisotropy easy axis. 

Furthermore, the dependence from particles volume 

is considered. 
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measurable effect of the anisotropy energy barrier (figure 1.5). The magnetostatic 

energy of a particle with superspin moment m can be defined as: 

 

𝐸𝑚 = −(𝐾𝑒𝑓𝑓𝑉) cos2 𝜃 − 𝜇0�⃗⃗� ∙ �⃗⃗�         (1.8) 

 

The switching between the two energy minima happens with a given frequency (f) 

which correspond to a relaxation time (τ = 1 / (2 π f) ) described by the Néel-Brown 

relation [39,40]: 

𝜏 = 𝜏0 exp [
𝐾𝑒𝑓𝑓𝑉

𝑘𝐵𝑇
]     (1.9) 

 

where kB is the Boltzmann constant and τ0 represents the inverse attempt frequency. 

The system appears static when the superparamagnetic (SPM) relaxation time τ 

becomes much longer than the experimental measuring time τm. For a give 

experimental technique this two quantities becomes comparable only at a specific 

temperature, at which the systems appears as “blocked”.  The corresponding blocking 

temperature can be defined as: 

 

𝑇𝐵 =
𝐾𝑒𝑓𝑓𝑉

𝑘𝐵 𝑙𝑛(𝜏𝑚/𝜏0)
     (1.10) 

 

At a temperature low enough such as kBT < KeffV , the magnetization reversal of a single 

domain particle is described by the Wohlfarth and Stoner model (WS) [41]. According 

to that, the free energy of the particles is related to the applied field µ0H and to the 

angles φ and ϑ, which the field and the particle moment m form with respect the easy 

axis, respectively (figure 1.6): 

 

𝐸 = 𝐾𝑒𝑓𝑓𝑉 sin2 𝜃 − 𝑚𝜇0𝐻 cos(𝜑 − 𝜃)            (1.11) 
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In order to reverse the magnetization from one minima to the other it is necessary to 

overcame an energy barrier ΔEB . The application of an external field reduces such 

barrier allowing for a parallel orientation between the magnetization and the applied 

field. Such energy barrier is field dependent and can be defined as ΔEB = KV (1- 

µ0H/µ0HK) [42]. 

 
  

 

Figure 1.6: (a) Sketch of the magnetization reversal for a monodomain particle with uniaxial anisotropy 

with an applied field H. (b) The dependence of the free energy from the angle between the easy axis and 

the magnetization is reported for different applied fields.  

 

 

According to the WS model the M(H) curve can show hysteresis and the reversal of the 

magnetization at a coercive field µ0HC. No hysteresis occurs for φ = 90° , while the curve 

shows squared shape for a field applied parallel (φ = 0°) or antiparallel (φ = 180°) to the 

easy axis. In this condition, the coercive field reaches its maximum value defined as the 

anisotropy field µ0HK = 2K/MS . For an ensemble of particles with randomly distributed 

orientation of easy anisotropy axis, M(H) curves show hysteresis with a ratio between 

the remanent magnetization MR (at H = 0) and the saturation magnetization MS equal 

to Mred = MR/MS = 0.5 . Furthermore, it is possible to identify a coercive field HC = 0.48 

µ0HK as the field necessary to reduce to zero the magnetization. 
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 Magnetic interactions at the nanoscale  

Interparticle interactions own a deep influence on the magnetic behavior of an 

ensemble of superspins. Such interactions can be assimilated to atomic spin 

interactions, replacing them with the giant moment of superspins and considering the 

distance among nanoparticles. Here, a brief qualitative discussion of magnetic 

interaction will be given, with particular attention being paid to the most important 

interactions at the nanoscale. A complete description of magnetic interactions in bulk 

and nanostructured systems can be found elsewhere [8,28,43]. 

For an ensemble of spins of average moment µ and average distance d, the average 

energy of dipolar interactions can be evaluated as:  

 

𝐸𝑑𝑖𝑝 ≈
𝜇0

4𝜋

𝜇2

𝑑3
            (1.12) 

 

In case of atoms such energy owns almost negligible values of 10-23 J ≈ 1 K, due to the 

low magnitude of the atomics moments (few µB), and their distance (0.1-1 nm) in the 

crystalline lattice. Replacing atoms with the moments of superspins (103 – 105 µB), and 

considering interparticles distances of few nm, the energy involved rises up to tens of 

K [43], with a deep influence on their SPM blocking temperature. A critical temperature 

at which a ordering can appear among nanoparticles can be estimated as: 

 

𝑇0 ≈
𝐸𝑑𝑖𝑝

𝑘𝐵
         (1.13) 

 

The influence of dipolar interaction can produce an increment in the effective 

anisotropy, increasing the blocking temperature of nanoparticles, inducing a kind of 

modified SPM behavior [28,44]. Increasing particles concentration or particle’s 

moment, dipolar interactions increase their magnitude and a collective behavior 

emerges, which, due to the intrinsically anisotropic character of the dipolar 

interactions, leads to frustrated order (figure 1.7) like in a spin-glass like or superspin 

glass (SSG) behavior [43,45].  
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Figure 1.7: Typical example of frustration arising from a triangular arrangement of spins. 

 

In case of particles in close contact, exchange coupling can occurs for surface atomic 

spins trough the overlapping of magnetic orbitals (direct exchange). Such effect has 

been observed as the origin of increment of anisotropy energy in close packed hematite 

nanoparticles, when the small uncompensated moment due to the AFM order cannot 

produce a dipolar coupling strong enough to explain such effect [46]. An exchange 

coupling effect can be responsible of an enhanced anisotropy in nanostructures, like 

AFM-FM core-shell structures or core-matrix, where this new source of anisotropy can 

strongly increase the blocking temperature [47]. Interparticle exchange interactions 

can be described by using the Heisenberg spin Hamiltonian [35,36]: 

 

Η𝑒𝑥𝑐 = 2∑𝐽𝑖,𝑗 𝑆𝑖
⃗⃗⃗   𝑆𝑗⃗⃗⃗  

𝑖,𝑗

         (1.14) 

 

where Ji,j is the exchange integral describing the magnitude of coupling between the 

spins 𝑆𝑖
⃗⃗⃗    and 𝑆𝑗⃗⃗⃗  . Such interactions are responsible for range magnetic order, in particular, 

superferromagnetic (SFM) behavior is expected for an assembly of strong exchange 

coupled superspins [28,48]. 

In case of particles embedded in an insulating matrix, intermediate atoms or ions (e.g., 

oxygen) can act like bridge for indirect superexchange interactions among magnetic 

atoms [35]. On the other hand, for metallic particles in a metallic matrix, RKKY 

(Ruderman–Kittel–Kasuya–Yosida) interactions can occurs among electrons of inner d 
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or f shells trough conduction electrons [49–51].  Indirect exchange interactions can 

manifest also by tunnel effect, but only in case of few tenths of nm among particles 

surface [52,53]. 

 Interface Interactions 

The magnetic interaction between two different phases at nanoscale represents an 

additional source of anisotropy, which can be exploited to modify and improve the 

magnetic properties, designing new composite materials. In 1956 Meiklejohn and Bean 

reported a new source of anisotropy arising from the interface exchange coupling 

between an AFM and a FM material [29]. They studied an FM/AFM core/shell structure 

of Co/CoO. When such system was cooled from TN < T < TC to a temperature T < TN 

under an applied  magnetic field, AFM spins were aligned parallel to FM spins at 

interface. Measuring the M(H) loop at that temperature, the exchange coupling  make 

easier for the FM component to align parallel to the surface spins of AFM phase, 

requiring an higher opposite field to reverse the magnetization, and producing a loop 

shifted toward negative fields (figure 1.8). 

 

 

 

Figure 1.8: Sketch of an M(H) curve showing exchange bias after field cooling. 
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The field corresponding to the shifting of the loop is defined as exchange bias field (Eex), 

which is evaluated with the relation: 

 

𝐸𝑒𝑥 =
𝜇0𝐻𝐶

𝑙𝑒𝑓𝑡
+ 𝜇0𝐻𝐶

𝑟𝑖𝑔ℎ𝑡

2
              (1.15) 

 

where μ0HC
left and μ0HC

right are the coercive field measured in the negative and positive 

part of the field axis, respectively (figure 1.11). This effect have been reported to 

increase the anisotropy energy of a Co/CoO system embedded in a CoO matrix, up to 2 

orders of magnitude [47]. Nowadays, the exchange coupled bi-magnetic hard/soft and 

soft/hard magnetic core/shell nanoparticles represent a strong field of interest to 

develop new materials. They allow to combine and improve the magnetic properties of 

the original materials creating new multiphase compounds which find applications in 

several fields, from permanent magnets, to magneto-recording, microwave adsorption 

or biomedical applications [31]. 

 Tuning the magnetic anisotropy at the nanoscale 

The knowledge of the nanoscale phenomena represents a bridge into the future of 

technological application, not only in order to improve the properties of materials but 

also to modulate the matter on a low level to design new ones. In this sense, tuning the 

anisotropy energy represents a perfect way to control the properties of a magnetic 

material. 

 

Figure 1.9: Size dependence of blocking temperature under a 

0.01 T field for CoCrFeO4 nanoparticles prepared by the 

normal and reverse micelle procedures. Reprinted with 

permission from C. Vestal, Z. Zhang, Synthesis of CoCrFeO4 

nanoparticles using microemulsion methods and size-

dependent studies of their magnetic properties, Chem. 

Mater. (2002) 3817–3822. 

http://pubs.acs.org/doi/abs/10.1021/cm020112k. Copyright 

© 2002 American Chemical Society. 

 

 

http://pubs.acs.org/doi/abs/10.1021/cm020112k
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According to the relation (1.7), particles volume owns a fundamental effect on the 

anisotropy energy. A wide range of wet chemistry synthesis processes have been 

developed to produce magnetic nanoparticles with controllable size; among them 

some of the most diffuse are sol−gel [54,55], micellar [56,57], hydrothermal processing 

[58], surfactant-assisted high-temperature decomposition techniques [59–61], and 

polyol process [62–64]. 

Often, to optimize NPs based application specific values of particles size are demanded, 

e.g., to optimize the hysteresis losses in magnetic hyperthermia treatments [65]. In this 

framework a perfect example comes from the research on materials for ultrahigh-

density digital data storage [66]. In order to increase the storage density above 0.5 – 1 

Tbit/in2, monodomain nanoparticles as small as 2-3 nm are necessary. Furthermore, 

another fundamental aspect is to strictly control the particle size distribution; indeed 

to improve the signal to noise ratio (SNR) the magnetic and structural distributions 

must have standard deviation under 5 % [67]. Thus, the distribution of switching fields 

represents a crucial aspect in the synthesis of magnetic nanoparticles and more 

generally an accurate morphology description of magnetic nanoparticle is necessary 

especially for the rising interest of biomedical applications such as drug delivery [68].  

All the attempts of nanotechnology devoted to device miniaturization face strong 

finite-size effects when reducing particle size to a few nanometer scale. On this very 

low size-scale, a usual increment in the effective anisotropy is observed. It is related to 

the surface to volume ratio, which becomes so high that the influence of the surface 

anisotropy can overcome the magnetocristalline component, strongly affecting the 

overall magnetic behavior of nanoparticles. Such anisotropic component is related to 

the non-collinear surface spins [69], thus, within such 

context, the role of organic molecules bonded on 

particles surface can be very important. Colloidal 

magnetic nanoparticles are prepared with the help of 

organic surfactants, which allow to produce particles 

with controllable size and shape [59–64]. Furthermore, 

they make them dispersible in a medium avoiding 

particles direct contact. 

Anyway the role of surfactant is not limited to the 

synthesis process, indeed it can affect also the 

magnetic properties of particles, as in case of the oleic 

Figure 1.10: Sketch of a 

surfactant coated nanoparticle 

(e.g., oleic acid). 
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acid, one of the most employed. It bonds at particles surface (figure 1.10) through the 

carboxylic group, restoring the local coordination of surface cations and providing a 

crystal field splitting energy that reduces the spin-orbit coupling and so the local surface 

anisotropy [70]. Such effect can be large enough to modify the whole particle 

anisotropy [71], furthermore it can also induce a larger saturation magnetization 

[72,73].  

Among nanoparticles synthesis processes the high thermal decomposition of 

metalorganic precursors is widely diffused. It is employed to produce high crystalline 

particles in a wide range of size, with a narrow size distribution, furthermore controlling 

particles shape [74–76], which can get a fundamental role in magnetic properties of 

nanoparticles. Cubic and spherical particles own isotropic demagnetizing factors in the 

three dimensions, so there is no source of shape anisotropy, anyway the breaking of 

the crystalline symmetry induces surface defects in the magnetic structure at a 

different degree for the two shapes, leading to a greater magnitude of surface 

anisotropy for spherical particles [76–78] (figure 1.11). As result, a larger effective 

anisotropy is exhibited by spherical particles compared to cubic ones, considering  

particles with the same volume [78]. 

 

 

 

Figure 1.11: Simulated magnetic spin states of cube (left) and sphere (right) by using OOMMF program. 

The color map indicates the degree of spin canting with respect the external magnetic field B0. Cube and 

sphere exhibits a canted spin rate of 4% and 8%, respectively. Reprinted with permission from S.-H. Noh, 

W. Na, J.-T. Jang, J.-H. Lee, E.J. Lee, S.H. Moon, et al., Nanoscale magnetism control via surface and 

exchange anisotropy for optimized ferrimagnetic hysteresis, Nano Lett. 12 (2012) 3716–21. 

doi:10.1021/nl301499u. Copyright © 2012 American Chemical Society. 
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Several experimental and theoretical studies have demonstrated that interparticle 

interactions own a strong influence on nanoparticles SPM relaxation process [79–81]. 

The progress in nanotechnology pass through the continuous miniaturization of 

devices, producing highly concentrate systems in which interparticles interactions are 

enhanced. Within this framework, an increasing interest is devoted in understanding 

the physics of interacting ensembles of magnetic particles in terms of interplay 

between the single particle anisotropy and the interparticle interctions energy [45], in 

order to design optimal systems for specific applications. 

In most of the applications of magnetic nanoparticle-based materials (e.g., magnetic 

recording, energy transformation), the most important requirement is that the 

nanoparticles maintain their magnetization stable with time and temperature. 

However, with decreasing particle size, the magnetic anisotropy energy becomes 

comparable to the thermal energy, and superparamagnetic relaxation occurs. In this 

regard, beating the superparamagnetic limit [47] becomes fundamental to design 

material for specific applications, e.g., to design materials for high-density magneto-

recording. The increase in areal bit density implies a concomitant reduction of the bit 

size maintaining at the same time a sufficient signal-to-noise ratio (SNR). This means to 

produce the individual grains that constitute a given bit approaching the 

superparamagnetic limit. To obtain a high thermal stability, a high uniaxial anisotropy 

is desired, but it is limited by the resulting magnetic fields required for switching the bit 

magnetization, which cannot exceed the capabilities of current write heads. As 

described in 1.3.1, the exchange interactions between different magnetic phases (FM-

FiM/AFM), induce a further term of anisotropy, which can be employed to tune the 

magnetic behavior. Indeed, to face the high density magnetorecoding problem, new 

exchange-coupled composites have been proposed [82]. In particular, coupling 

soft/hard material, can represent a useful approach to reduce the coercive field while 

preserving the thermal stability of the magnetization, as recently proposed by 

micromagnetic simulations [83]. 
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Chapter 2  

The volume and surface effects on 

magnetic nanoparticles 

For the simplest case of spherical particles with uniaxial anisotropy, the MAE can be 

defined by the relation: 

 

𝐸𝑎
𝑒𝑓𝑓

= 𝐾𝑒𝑓𝑓𝑉 sin2 𝜃         (1.7) 

 

Several authors have shown the dependence of the anisotropy energy by the average 

particles size [84], anyway, a careful analysis is necessary when particles size are 

reduced to few nanometers (diameter < 10 nm) and the surface to volume ratio has a 

great increment (figure 2.1). In particular, below the 5 nm limit, the surface 

contribution can overcome the bulk magnetocrystalline one resulting the main agent 

in characterizing the particles anisotropy.  
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Figure 2.1: Assuming nanoparticles with spherical shape, their surface (S) and volume (V) are calculated 

and plotted as function of the particle diameter. 
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When particles surface becomes so influent, the surfactant acts a main role on  

magnetic behavior. It can be effective in protecting particles from oxidation, solubilize 

particle in specific solvent, or to functionalize them for specific porpoises, but 

furthermore it can be able to reduce the magnetic disorder arising at particle surface 

due to the incomplete coordination of cations [70,85,86]. 

 Evolution of magnetic anisotropy with respect particles size 

To analyze the effect of particles size on the magnetic behavior of nanoparticles 

ensembles, 3 spinel iron oxides samples have been prepared by high temperature 

thermal decomposition (HTD) of acetylacetonate precursors [87–89]. These samples 

have been synthetized with average particles size in the range 4 - 8 nm (table 2.1), 

where the surface/volume ratio owns a strong increment. In order to study the effect 

of a molecular shell on magnetic properties, the samples have been synthetized using 

an oleic acid coating. In addition, a sample with bigger particles (≈ 13 nm) was prepared 

without this coating, to observe both the effects of bigger size and the absence of 

surfactant. 

 Synthesis 

To prepare 5 nm Fe3O4 nanoparticles iron(III) acetylacetonate (Janssen Chimica 99%, 2 

mmol), 1,2-exadecanediol (Aldrich 97%, 10 mmol), oleic acid (Aldrich 90%, 6 mmol), 

oleylamine (Aldrich <70%, 6 mmol), and phenyl ether (Aldrich 99%, 20 ml) were mixed 

into a three-neck, round bottom flask and magnetically stirred. The mixture was heated 

gradually to 200 °C and kept at this temperature for 30 min. Then, the temperature was 

increased rapidly up to 300 °C, and the mixture kept for 30 min at this temperature 

under reflux. The starting solution changed color from orange-red to dark black, 

indicating the formation of the magnetite nanoparticles. The mixture was cooled to 

room temperature by removing the heat source. Ethanol (40 ml) was then added to 

destabilize the mixture, and the black product separated via centrifugation. After 

several washing cycles with ethanol, the powder was finally dispersed in hexane. Before 

magnetic measurements, the dispersion was destabilized once again with ethanol, 

recovered by centrifugation, and dried at 40 °C overnight to evaporate residual alcohol. 

With the same method were prepared 7 nm Fe3O4 nanoparticles (MAG2), but using 

benzyl ether (20 ml) instead of phenyl ether. For this sample, the reflux time was 2 h at 

200 °C and 1 h at 300 °C.  
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For 8 nm Fe3O4 nanoparticles (MAG3) the iron(III) acetylacetonate (2 mmol)  was added 

to 84 mg of MAG2 (dispersed in hexane), to obtain a seed-mediated growth. The 

synthesis procedure was the same of MAG2. 

For 13 nm Fe3O4 nanoparticles (MAG4) were used iron(III) acetylacetonate (3 mmol), 

oleylamine (45 mmol) and  benzyl ether (15 ml). The reflux time was 1 h at 110°C and 

1 h at 300 °C. 

 Structural characterization 

All samples exhibit a crystalline structure compatible with iron spinel oxide (figure 2.2). 

The analysis of TEM images (figure 2.3) has allowed evaluating particle size distribution. 

In addition, MAG1, MAG2, and MAG3 samples show almost spherical particles, while 

MAG4 owns particles with irregular shapes. This suggest that the control on particle 

shape is lost without the use of surfactant. 
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Figure 2.2: XRD pattern of the iron oxides samples prepared by HTD process. 
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Figure 2.3: TEM images of the samples. The irregular morphology of MAG4 particles is evident. The 

corresponding particles size distributions are reported in inset. 

 

 

Sample <DTEM> (nm) PD (nm-1) 

MAG1 5.4(1) 3.2(1) 

MAG2 6.8(4) 1.8(1) 

MAG3 7.9(1) 2.2(1) 

MAG4 13.2(2) 2.1(1) 

 

Table 2.1: Average particles diameter <DTEM> and the relative polidispersity PD evaluated from TEM images. 
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The presence of the oleic acid (OA) in MAG1, MAG2 and MAG3 has been confirmed by 

FT-IR spectroscopy (figure 2.4). Such organic coating is reported to be attached on 

particles surface by a bidentate bonding trough the carboxyl groups [60]. 
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Figure 2.4: FT-IR spectra of samples MAG1, MAG2 and MAG3 confirms the presence of oleic acid coating. 

 

 Magnetic properties 

The zero field cooled (ZFC) and field cooled (FC) curves (appendix 8.2.1), measured with 

an applied field of 2.5 mT, exhibit the effect of the volume on anisotropy energy (figure 

2.5).  As particles size increase from ≈ 5 to ≈ 13 nm, the temperature corresponding to 

the maximum of ZFC curve (Tmax) increases. Tmax is related to the average blocking 

temperature (TB) : 

 

𝑇𝑚𝑎𝑥 = 𝛽𝑇𝐵             (2.1) 
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where β is a proportionality constant, depending on the type of size distribution. For a 

lognormal distribution, the value of β is typically in the range 1.5-2.5 [90,91]. At the 

same time, the irreversible temperature between ZFC and FC curves (Tirr), which is 

associated with the blocking of the biggest particles, increases almost proportionally. 

We have taken Tirr as the temperature where the difference between MFC and MZFC, 

normalized to its maximum value at the minimum temperature (5 K), becomes smaller 

than 3%. Due to its larger particles size, MAG4 Tmax is evidently above the room 

temperature (maximum temperature used for these measurements). 
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Figure 2.5: ZFC (empty circles) and FC (full circles) curves for sample MAG1 (a), MAG2 (b), MAG3 (c), and 

MAG4 (d), measured with an applied field of 2.5 mT. 

 

 

The M Vs H curves measured at 5 K (figure 2.6), offer a better picture of the particles 

volume effect. Each particle owns an anisotropy energy produced by its volume and 

relative orientation of the magnetization (equation 1.7), thus for the whole ensemble 

it is possible to identify an average anisotropy energy. This is proportional to the 



50 

 

coercive field µ0HC , which corresponds to the field necessary to average out the 

magnetization of the sample.  
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Figure 2.6: M Vs H curves measured at 5K for sample MAG1 (a), MAG2 (b), MAG3 (c), and MAG4 (d). The 

respective insets show a magnification at low field. 

 

 

The point of irreversibility of M Vs H curves (measured as the point in which the 

difference between the branches is under the 1% of their maximum value) can be taken 

as the saturation field µ0HSAT, which can be considered as the maximum field that is 

necessary to apply to reverse even the moments with the highest anisotropy energy. 

For both the coercive and the saturation field their dependence on particles size is 

shown in figures 2.7a and 2.7b, respectively. It is evident that the average effective 

anisotropy is mainly determined by the magnetocrystalline contribution, which 

increases according with the increment of average size (figure 2.7a), as observed by 

Roca et al. [92]. On the other hand, from the analysis of µ0HSAT a different trend appears, 

with a value higher than expected for MAG1 (figure 2.7b). The big difference between 
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µ0HSAT and µ0HC values for MAG1 suggests that it owns an additional irreversible 

component of magnetic anisotropy.    
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Figure 2.7: Particle size dependence for the coercive field (µ0HC), the saturation field (µ0Hsat) and the 

susceptibility at high field evaluated by the derivative at 5 T (dM/dµ0H) is reported in panel (a), (b) and (c) 

respectively. 

 

 

For better understand the origin of such component, the dM/dµ0H measured at 5 T has 

been analyzed (figure 2.7c). Its value can be directly related to the surface anisotropy 

[93] and it reproduces quite well the saturation field trend. This induces to believe that 
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the high magnetic anisotropy component of the samples MAG1 and MAG4, can be due 

to the surface anisotropy. It is known that the oleic acid bonds at particles surface 

through the carboxylic group and it restores the local coordination of surface cations. 

Furthermore, due to its nature of π-acceptor, it increases the crystal field splitting 

energy, thus reducing the spin-orbit coupling and so the local surface anisotropy [70]. 

This can explain the larger value of surface susceptibility of MAG4 with respect MAG2 

and MAG3 samples, being the first synthetized only with oleylamine, which owns a 

donor nature with an opposite effect with respect OA [94,95]. Anyway, MAG1 is coated 

by OA but it evidences the largest values. In order to analize the origin of such 

difference, the magnetic structure has been investigated by means of Mössbauer 

spectroscopy. 

 The origin of surface anisotropy: Mössbauer spectroscopy to analyze 

surface magnetic disorder 

The magnetic properties are particularly sensitive to the particle size and, on low size 

scale, further contributions come from finite size effects and surface effects. Magnetic 

atoms at the surface experiment a breaking of symmetry originating from broken 

exchange bonds. The symmetry breaking induces changes in the topology of the 

superficial magnetic moments and consequently in exchange integrals (through 

superexchange angles and/or distances between moments) thus leading to a specific 

surface anisotropy [48,96]. 

Mössbauer spectroscopy [97,98] represents a powerful tool to analyze the magnetic 

structure of iron, in addition, the application of an intense magnetic field during the 

experiments allows a reliable distinction between Td and Oh Fe site components in the 

case of ferrimagnets [91,99,100]. The applied field is usually added to the Td-site 

hyperfine field and subtracted from the Oh-site one, being negative the dominant Fermi 

contact term. Furthermore, in presence of an external magnetic field parallel to the γ-

ray direction, the relative areas of the intermediate lines (2,5) give relevant information 

about the degree of alignment of the atomic Fe magnetic moment with the applied 

field. 

The spectra have been recorded at 10 K, with a magnetic field of 8 T applied parallel to 

the gamma ray direction (figure 2.8). 
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Figure 2.8: Mössbauer spectra measured at 10 K under an applied field of 8 T is reported for sample MAG1 

(a), MAG2 (b), MAG3 (c), and MAG4 (d).The experimental data (circles) have been fitted with a sextet for 

both tetrahedral (dashed line) and octahedral (thin line) components. A bold line describes the total fit. 

 

 

Under these conditions, the temperature is low enough to suppress the thermal 

activated magnetization switching and the spectra appear as a magnetically blocked 

sextet. From the modelling of the in-field Mössbauer spectra a direct estimation of both 

the effective field Beff and the angle θ (angle defined by the direction of the effective 

field and the γ-beam direction) have been obtained for both tetrahedral and octahedral 

iron components, with their respective hyperfine field Bhf . The angle θ is calculated 

from the ratio of areas of second and fifth lines (I2,5) on those of first and sixth lines 

(I1,6). When the second and fifth lines have a non-zero intensity, they evidence a canted 

structure for Fe3+ magnetic moments with respect to the applied field (non-collinear 

magnetic structure) [100,101] (see notes 2.3 at the end of the chapter for 

supplementary information). The lines 2 and 5 have non-zero intensity; this suggests 

that some of the spins is not aligned parallel or antiparallel to the external magnetic 
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field. Thus, being known the splitting of each component, it is possible to evaluate the 

average canting angle. 

 

Sample Site  (mm s-1) 2 (mm s-1) Beff (T)  (°) ±10° Bhf (T) % 

MAG1 
A 0.41 -0.08 56.8 36 50.5 39 

B 0.49 -0.01 44.8 40 51.2 61 

MAG2 
A 0.36 -0.03 60.1 19 52.6 39 

B 0.49 -0.03 45.3 19 52.9 61 

MAG3 
A 0.32 0.00 60.5 17 52.9 38 

B 0.48 0.00 46.2 25 53.6 62 

MAG4 
A 0.33 -0.04 60.0 27 53.0 38 

B 0.49 -0.05 46.0 28 53.2 62 

 

Table 2.2: From the fitting of Mössbauer spectra the isomer shift (), the quadrupole shift (2) the effective 

field (Beff) the average canting angle (), the hyperfine field (Bhf) and the % area of each component are 

evaluated. 

 

 

As reported in table 2.2, the hyperfine fields have values typical of maghemite for all 

the samples. All iron is oxidized to Fe3+, and vacancies are distributed in both Td and Oh 

sites in place of Fe2+. All samples show some spin canting: samples MAG2 and MAG3 

present similar value of canting angles, while MAG4, which is not coated by oleic acid, 

shows clearly larger values. Furthermore, an even larger mean angle is measured for 

MAG1; this explains the strong surface anisotropy of the sample. 

This investigation has confirmed that the larger surface anisotropy component 

perfectly match with larger values of canting angles, explaining the surface anisotropy 

as a surface magnetic disorder effect. Furthermore, the oleic acid reduces the spin 

disorder in MAG2 and MAG3 with respect MAG4, but it seems to not be able to reduce 

the largest values of canting exhibited by MAG1, suggesting that the magnetic behavior 

of particles under 5 nm is dominated by the surface defects, which the oleic acid cannot 

completely reduce. 
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 Case study: Using an organic coating to tune magnetic 

properties of CoFe2O4 nanoparticles 

Nowadays the growth of technological applications asks for the device miniaturization 

at a scale of few nanometers. For nanoparticles with very small size (≤ 5 nm), the 

surface component of magnetic anisotropy becomes influent as bulk 

magnetocrystalline one, deeply affecting the whole behavior of a system. 

Nanoparticles on such scale are usually prepared trough colloidal synthesis, which 

make use of surfactants to obtain narrow size and shape distribution [102], to protect 

particles from oxidation, disperse them in specific solvents [103] or functionalize them 

for specific applications, as for biomedical ones (MRI, drug delivery, hyperthermia 

[104,105]). In addition, several authors have shown that the action of the surfactant 

extends also on the magnetic properties of NPs, and they have analyzed the influence 

of different ligands on magnetic parameters such as the coercive field [95] and the 

saturation magnetization [73]. 

Within this framework, tuning the organic coating of NPs becomes an interesting 

approach to manipulate the surface properties, even after the synthesis, in an 

exchange ligand process. Small cobalt ferrite nanoparticles has been synthetized by 

polyol process [6–8], in order to prepare high crystalline 5 nm particles, thus small 

enough to enhance the surface effects contribution. Such particles have been treated 

to exchange DEG with oleic acid, analyzing the different magnetic behavior produced 

by the two surfactants. 

 Exchange ligand process 

Cobalt ferrite nanoparticles coated by diethylene glycol (DEG) were prepared by polyol 

process (a description of typical synthesis is reported in 4.5.1 synthesis, where DEG is 

substituted by triethylene glycol, TEG). The sample was labelled as CFO-DEG.  

For the exchange ligand process half of the original after-synthesis solution was taken 

apart in a 100 ml becker, and an equal volume of 0.2 M of oleic acid (OA) in cyclohexane 

was added. The two solutions were immiscible and initially the transparent oleic acid 

solution remained on top while the polyol with black nanoparticles formed a dark 

solution at the bottom (figure 2.9a). The solution was mechanically stirred for 24 h. 

After this process, the top cyclohexane solution contained the nanoparticles now 

coated by oleic acid and soluble in the organic solvent, while the yellow residual polyol 

remained at the bottom of the becker (figure 2.9b) (the yellow color is an effect of DEG 
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thermal degradation after synthesis). The dark solution with NPs was separated, 

washed with acetone and ethanol and centrifuged to collect NPs, which were finally 

dried overnight in oven at 60°C. These particles were labelled as CFO-OA. 

 

 

 

 

Figure 2.9: The pictures describes the 

the solution before (a) and after (b) 

the exchange ligand process. 

 

 

 

The polyol is linked to the metal cations at NPs surface trough electrostatic interactions 

of the oxygen [106,107], on the other hand it is reported that oleic acid owns a stronger 

covalent bonding [60], this explains the preferential attachment of OA with respect 

DEG. 

The TGA-SDTA analysis (figure 2.10) confirms the difference in the organic coating with 

a shift toward higher temperatures of the exothermic decomposition peak produced 

by the oleic acid compared to DEG. 
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Figure 2.10: TGA (a) and simultaneous DTA (b) curves of CFO-DEG and CFO-OA samples. 
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FT-IR analysis supports the same picture (figure 2.11). The presence of spinel ferrite 

structure is confirmed by the signals around 590 cm-1, referred to the stretching 

vibration of the metal in tetrahedral site and the oxygen, while the signal around 400 

cm-1 is the analogous for the octahedral site [56,108]. The symmetrical and 

asymmetrical stretching of C-H (signals between 2922 and 2850 cm-1) are typical of both 

surfactants but their intensity increase with the longer chain of OA. The C-O stretching 

(around 1100 cm-1) confirms the polyol presence [63]. In particular, the interaction 

between polyol oxygen and metal cations at particles surface finds evidence both in the 

small shift to lower frequencies of the C-O signals with respect to the pure polyol [107], 

and in their different intensity profile [106,109], with two signals in place of the small 

three of the pure DEG. The signals around 3377 and at 1616 cm1 are referred to the 

stretching and bending modes of O-H of polyol and adsorbed water [63]. Finally, the 

complex profile between 1500 and 1400 cm-1, shows the emerging of COO- stretching 

signals after the substitution with OA. 
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Figure 2.11: FT-IR spectra of CFO-DEG and CFO-OA. 
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 Influence of molecular coating on magnetic properties 

The M Vs H curves of both samples are compared in figure 2.12. The curves, measured 

at 5 K, show a hysteretic behavior, but with a strongly higher saturation magnetization 

for CFO-DEG. This suggests that the DEG coating owns a better effect in reordering 

magnetic spins at particle surface with respect oleic acid. 
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Figure 2.12: M Vs H curves measured at 5 K for CFO-DEG (circles) and CFO-OA (triangles). 

 

 

This is confirmed by the lower coercive field, and in the even more pronounced 

reduction of saturation field of CFO-DEG (table 2.3).  

 

Sample MS µ0HC (T) µ0HSAT (T) 
dM/dµ0H 

(A m2 kg-1 T-1) 

CFO-DEG 120(10) 0.77(1) 3.44(2) 1.3(1) 

CFO-OA 84(5) 1.11(1) 3.93(2) 1.9(1) 

 

Table 2.3: The saturation magnetization MS, the coercive field (µ0HC), the saturation field (µ0HSAT) and the 

susceptibility at 5 T (dM/dµ0H) for the two samples are compared. 
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Such reduction of the high anisotropy component can be related to particles surface, 

considering that is coupled with a corresponding lower value of susceptibility at high 

field. 

The differentiated remanence curve of MDCD (see appendix 8.2.3) with respect to 

μ0Hreverse (χirr = dMDCD/dμ0H), represents the irreversible component of the 

susceptibility. This quantity can be considered as a measure of the energy barrier 

distribution which, in a nanoparticles system, is associated with a distribution of 

particles coercivities and it is generally called the switching field distribution (SFD) 

[11,70,110]. It is worth to mention that the SFD (figure 2.13) evaluated for both 

samples, are perfectly comparable once normalized for the saturation magnetization. 
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Figure 2.13: The switching field distributions of CFO-DEG (circles) and CFO-OA (triangles). 

 

 

This evidences that the difference produced by the exchanged ligand is only related to 

an irreversible part of the magnetization, such type of contribution that is usually 

related to surface spins. 

The effect of the surfactant is usually explained in terms of restoring the coordination 

at particles surface. The crystal field splitting energy (CFSE) is enlarged by the metal-

surfactant bond, thus reducing the spin-orbit coupling, responsible of single ion 

anisotropy [95] (figure 2.14). As results, increasing the CFSE, the surface anisotropy is 

reduced explaining the reduced coercive field measured for coated Vs bare particles 

[70]. This restored coordination has been analyzed with density functional calculations, 

evidencing as the oleic acid coated particles exhibits a condition closer to the bulk with 
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respect bare particles, since the coating reproduces in part the bulk crystalline 

coordination. This induces similar electronic bands occupation, which translates in a 

magnetization closer to the bulk value [72]. The donor/acceptor nature of the 

surfactant is linked to the effect on the CFSE. The π-acceptor behavior has a stronger 

splitting effect, thus it reduces the anisotropy energy, leading to a lower coercive field 

with comparison to π-donor coated particles. Furthermore, for a given head-group, 

increasing the length of the surfactant chain induces higher surface anisotropy [71]. 

 

 

Figure 2.14: Graphical sketch of the correlation between the crystal field splitting energy and the donor-

acceptor nature of surfactants, and how it reflects on spin-orbit coupling and magnetic anisotropy. 

 

 

Thanks to the exchange ligand process, it is possible to modulate the interparticles 

distance selecting surfactants according to their chain length. Relation (1.12) roughly 

describes the influence of particles distance on the dipolar interactions energy: 

 

𝐸𝑑𝑖𝑝 ≈
𝜇0

4𝜋

𝜇2

𝑑3
            (1.12) 

 

According to that, a clear difference is expected between samples. Indeed, the oleic 

acid owns a chain length of ≈ 2 nm [70] and attaches perpendicular to particles surface. 

On the other hand, DEG attaches parallel to particles surface [107], producing a coating 

estimated in ≈ 0.5 nm. The analysis of ΔM-plot (figure 2.15) provides useful information 
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on the interacting regime among particles (see appendix 8.2.3 for further details on 

such protocol). It evidences negative deviation in the curve of both samples, sign of the 

prevalence of dipolar interactions. The reversal field for both samples is similar (around 

≈ 0.85 T), confirming the result of the SFD, but the intensity of the deviation, 

proportional to the intensity of interparticles interaction energy, is more than two 

times larger for CFO-DEG. 
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Figure 2.15: ΔM-plot of CFO-DEG (circles) and CFO-OA (triangles) samples. 

 

 

As expected, the larger interparticle distance produced by the oleic acid coating, 

translates in less intense interparticle interactions. The intensity of the negative 

deviation for CFO-DEG is ≈ 2.5 times that of CFO-OA, almost the same ratio obtained 

between the two estimated dipolar energy (≈ 37 K Vs 14 K). 

The interparticle interactions are responsible of influencing the blocking temperature 

of SPM nanoparticles. Analyzing the ZFC-FC and TRM curves, and the blocking 

temperature distribution extracted by the TRM derivative (figure 2.16, see appendix 

8.2.1 for the detailed procedure to evaluate it), a higher anisotropy energy is shown by 

CFO-DEG, where the interparticle interactions exhibits stronger intensity. This 

increment in the anisotropy energy is small and disappears with the application of field 

larger than that (2.5 mT) used for measure such curves. This explains why this effect is 

no more visible in M Vs H and SFD distributions. 
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Figure 2.16: The ZFC (empty symbols) and FC (full symbols) for sample CFO-DEG (circles) and CFO-OA 

(triangles) are showed in panel (a). Panel (b) reports the TRM (full symbols) and the corresponding 

derivative curves (empty symbols) for sample CFO-DEG (circles) and CFO-OA (triangles), respectively. 

 

 

The exchange ligand process was employed to study the effect of diethylene glycol and 

oleic acid on the same batch of 5 nm cobalt ferrite particles. A detailed magnetic 

investigation has shown that a strong modification can be produced by this approach, 

controlling the magnetic behavior of surface component of each nanoparticle. 

Furthermore, each surfactant produces a specific distance among particles, which 

translates in different interparticle interactions, influencing the effective anisotropy 

energy. This study can be considered as a first step in the analysis of the role of the 

organic coating, indeed the same approach can be expanded to other surfactants and 

materials in order to develop new device at nanoscale.  
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 Notes: Average canting angle evaluated from Mössbauer 

spectroscopy in high field 

57Fe Mössbauer spectra have been recorded at 10 K under a magnetic field of 8 T (Bext) 

applied parallel to the γ–beam. For such setup, when the second and fifth lines have a 

non-zero intensity, they evidence a canted structure for iron magnetic moments with 

respect to the applied field (non-collinear magnetic structure) [100,101]. In case of a 

non-collinear spin structure, the measured effective nucleus field (Beff) forms the angle 

ϑ with the external field (Bext) as graphically illustrated in figure 2.17.  

 

 

Figure 2.17: The setup for 57Fe Mössbauer spectroscopy and the relation between the hyperfine field (Bhf) 

the measured effective nucleus field (Beff) and the external field (Bext), with evidenced the average canting 

angle ϑ. 

 

For a thin sample, where thickness effects are negligible and where the direction of the 

hyperfine field is random with respect to the gamma ray direction, the relative area of 

the Zeeman sextet are in the ratio: 

 

3: 2𝑝: 1: 1: 2𝑝: 3                  (2.2) 

 

where p is dependend on the eventual canting angle angle ϑ: 

 

𝑝 =
2 sin2 𝜃

1 + cos2 𝜃
            (2.3) 
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By normalizing the total area to 1, the area of lines 2-5 (A2,5) is equal to: 

 

𝐴2,5 =
1

2
sin2 𝜃      (2.4) 

 

From such value, the average canting angle ϑ is determined [100]: 

 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛√2𝐴2,5      (2.5) 
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Chapter 3  

Advanced analysis of nanoparticles 

morphology from TEM images 

Particle it morphology (i.e., size and shape) owns a key role in tuning MAE; it appears 

equally important to control the distribution of morphology in an ensemble of NPs, in 

order to minimize the different magnetic anisotropy among particles obtaining a more 

homogeneous response of the whole system. In this framework, it emerges the need 

of a precise statistical analysis of the size and shape distributions in order to understand 

and tune the MAE [65,111,112]. 

Here, a complete approach to study nanoparticles morphology by TEM analysis is 

proposed introducing the concept of aspect map (AM) [113]. It correlates size and 

shape, providing a comprehensive overview of an ensemble of nanoparticles and 

allowing to extract additional and relevant information from TEM images. In order to 

demonstrate the rigorous approach used to obtain our results, all the steps necessary 

to get aspect maps will be discussed in detail. Finally, the potentiality of the AMs in 

describing the morphological features of a sample will be shown trough a case study; 

aspect map will be employed in the analysis of high temperature thermal 

decomposition synthesis, allowing tuning a pre-synthesis vacuum step to increase 

particles size and improve size distribution. 

 Software and methods 

The software nowadays available for digital images analysis introduce new perspectives 

in nanoparticles size and morphology investigation. The first aim of the digital 

elaboration here described is to obtain black and white (B&W) binary images, which 

would preserve the original shape and size for each particle. The great advantage of 

using this approach is the possibility to use semiautomatic tools managing thousands 

of particles and collecting more detailed information. It allows conducting a 

morphological analysis, minimizing the effects of subjective choice of the operator in 

the measurements process. Of course several, important shrewdness have to be taken 

in order to avoid artifacts and wrong information. 
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For each image a multistep analysis routine is usually employed [114,115]. The first step 

involves the enhancement of the image contrast to evaluate the right particles 

perimeter, which needs to have particles with a surface as smooth as possible. To 

remove artifacts and reduce noise, it is possible to employ some filters, without altering 

the original information and the real shape of the particles. Finally, a segmentation 

process produces the final B&W binary image ready to be studied by a digital analysis 

software. Nowadays a wide range of commercial and free software are available; for 

our purpose we have performed the analysis using the free image processing suite 

“Fiji”[116]. 

 Size evaluation 

The use of software like Fiji allows collecting a lot of information about individual 

particle such as the minimum and maximum length and width, as well as the area and 

perimeter of the projected image. For spherical-like particles, one way to evaluate the 

average diameter is to calculate the mean value between the maximum width and 

length of the particle. This allows a good estimation of the diameter, regardless the 

particle shape. Finally, the frequency counts of particles size are fitted with a lognormal 

function [117]: 

 

P =
100

D w √2π
exp − [

ln2 (D 〈DTEM〉⁄ )

2w2 ]           (3.1) 

 

where <DTEM> is the median of the variable “diameter”, often used to estimate the 

average diameter of nanoparticles [118–120] and w is the standard deviation of the 

natural logarithm of the variable D. To estimate the polydispersity of the sample with 

respect to the average particle size, the empirical parameter PD [nm-1] has been 

defined: 

 

𝑃𝐷 = 100 ∗
𝑤

〈𝐷𝑇𝐸𝑀〉
                      (3.2) 
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 Shape evaluation 

To analyze the particle morphology, the shape descriptor termed as “circularity” (C) has 

been used: 

𝐶 = 4𝜋
𝐴

𝑃2
                  (3.3) 

 

where A and P are particle’s area and perimeter. This parameter is widely used to define 

the deviation from a perfect spherical shape [121,122], that is represented by a value 

of 1, while lower values describe square, triangular or more complex shapes. 

 

 

 

 

 

Figure 3.1: Circularity values for typical particles and 

ideal geometrical shape. The reported values have 

been evaluated by Fiji software. 

 

 

 

 

 

 

 

Figure 3.1 shows some examples of shapes and the effective results obtained through 

“Fiji” analysis of the circularity. It is worth mentioning that due to the digital nature of 

images, particles perimeters do not describe a perfectly smooth curve but present a 

somehow rough appearance that results in lower circularity values, in particular for 

smaller particles. As example, the sphere reported in figure 3.1 shows a circularity of 

0.909, though it owns the aspect ratio of a perfect sphere. 
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 Detailed morphological analysis of nanoparticles 

Figure 3.2a presents an example of a high contrast TEM image used for a detailed digital 

analysis. Figure 3.2b shows the same image after an editing process that has removed 

the background noise by accurately tuning the curves, and has increased the contrast. 

Such edited image can be converted into a B&W binary version (figure 3.2c).  

 

 

Figure 3.2: (a) original TEM image. (b) Adjusting levels and curves, the background noise was removed, and 

particles were isolated using “despeckle” and “remove outlines” filters. (c) Using the proper threshold and 

the “watershed” filter, the image was transformed in a binary version with clearly separated particles. (d) 

The final particles (with white borders and numbers) are superposed to the original image to confirm their 

correct identification, proving the accuracy of sampling and analysis. 

 

Often some regions of the initial image are useless for the analysis and/or they present 

particles superimposed to each other which can create artifacts in the segmentation 
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process [123]. For this reason, such regions must be excluded from the process, 

carefully setting specific criteria, i.e., a range of area and/or circularity. If only square 

and spherical particles are present, a lower threshold of 0.6 can be imposed for 

circularity, knowing that under this value we are considering only elongated or 

triangular shapes, those are absent in the real image. Figure 3.2d presents a final 

example of a good elaboration and the particles effectively measured. The numerical 

data evaluated from this image are now ready for a statistical analysis. 

 Aspect map: practical example 

As model system for morphology analysis, cubic and spherical particles of CoFe2O4 have 

been synthetized by high temperature decomposition of metalorganic precursors. Two 

sets of TEM images by two different ensemble have been considered; the first one with 

almost spherical shape nanoparticles (figure 3.3a) and the second one with cubic shape 

with rounded edges (figure 3.3b). Spherical particles of the first sample present a rough 

surface resulting in a mode value for circularity of 0.93(1) (figure 3.3d). The cubic 

particles instead have rounded edges, which increase the circularity from the ideal 

0.785 to 0.89(1), towards that of a more spherical shape (figure 3.3d). Individual size 

distributions are centered on 12.7(1) and 15.7(1) nm for spherical and cubic particles, 

respectively (figure 3.3c). 

We have created a single image from a set with different magnification, scaling all of 

them to the same size. This was done to simulate a single sample that contains two 

well-known size and shape distributions. The results of the analysis are shown in figure 

3.4. More than 4700 particles were collected allowing to use a binary step of 0.5 nm, 

which is very small and allows an higher resolution with respect the typical particles 

size analysis proposed in literature. Nevertheless, there is not a clear signature of the 

two particles size distributions, since a unique lognormal curve fits the distribution with 

a good accuracy (figure 3.4a). The circularity distribution presents a clear peak around 

0.93 (figure 3.4b), and a small shoulder around 0.89, as the original individual samples. 

Trying to analyze the particles size distribution with two log normal curves (figure 3.4c), 

the goodness of the fit evaluated by both the adjusted R2 and the reduced χ2 

parameters improves, but the results of the single fit components do not well represent 

the expected ratio (≈ 2:1) between the two original shapes (3000 spheres Vs 1757 

cubes). 
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Figure 3.3: TEM images of ensembles of spherical (a) and cubic (b) nanoparticles. A comparison between 

particles size distributions is shown in panel (c), while circularity distributions are reported in panel (d), 

using circles and squares to represent data for spherical and cubic samples, respectively. 
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Figure 3.4 The particle size distribution of the “composite” sample is shown in panel (a) while the lognormal 

fit is presented as a line. Panel (b) describes the circularity distribution of the sample. A couple of lognormal 

curves (continuous and dashed line) are used to fit the particle size distribution in panel (c); the total 

resulting fit is represented as a bold line. 
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Moreover, the calculated mean size values are not sufficiently accurate, being 13.2(1) 

and 17.0(3) nm for spheres and cubes, to be compared with the real values of 12.7(1) 

and 15.7(1) nm of the original samples. In addition, it is worth to mention that no 

correlation between the average size and the corresponding particle shape is provided 

by this kind of analysis. 

For a deeper and more accurate analysis of morphology, an aspect map was extracted 

(figure 3.5). The aspect map gives a complete description of nanoparticle, correlating 

for each one size and shape identifying a point on a surface, which represents the 

parameter called “aspect”. This allows a simpler and faster identification of each 

particle, distinguishing two of them not only for a difference in size, but also for a 

difference in shape. As in the case of a particle system, where the difference in 

diameter is too low to be able to clearly distinguish two groups, but the difference in 

volume is large enough to clarify the presence of a bimodal distribution, in the same 

way the “aspect” may show different groups of particles otherwise not clearly 

identifiable.  

 

Figure 3.5: Aspect map of the “composite” sample shown as a 3D surface. 
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The potential of aspect maps is well demonstrated by the results in figure 3.5, where 

the presence of two peaks, centered around the corresponding values of 13.0(5) nm 

(diameter) and 0.93(1) (circularity), and 15.5(5) nm (diameter) and 0.89(1) (circularity), 

is clearly evidenced. These values match perfectly with those of the original individual 

samples, confirming the validity of the method to analyze particles aspect and 

distinguish the presence of different groups. 

 Case Study: Effect of the oxygen content in the reaction 

environment on size and shape of CoFe2O4 nanoparticles 

studied by aspect maps. 

Advanced synthesis approaches, necessary to achieve a strict control of the structural, 

morphological and chemical properties of nanomaterials, are at the basis of a 

reproducible manipulation of their unique physical behavior. Nowadays, this is one of 

the most difficult problems faced by nanotechnology. In fact, any advanced application 

that takes advantage of nanoparticle systems will also rely on the achievement of such 

control. This is true in particular for magnetic nanoparticles that are unique and 

complex physical objects whose properties can greatly differ from their parent massive 

materials [10,124]. 

Within this context, the synthesis of spinel ferrite nanoparticles (MeFe2O4, Me = Fe2+, 

Co2+, Ni2+, Zn2+, …) with controlled morpho-structural features represents an important 

subject due to the strong interest in  these materials from both a fundamental [95,125–

127] and a technological point of view (e.g., MRI [16], hyperthermia [20], drug delivery 

[16,17], catalysis [128], microwaves applications [129]). In the last 20 years, different 

approaches have been developed to obtain spinel ferrite NPs with a specific size and 

composition, for example sol−gel [54,130,131], micellar methods [56,57], 

hydrothermal processing [58], surfactant-assisted high-temperature decomposition 

techniques [59,61,132] and polyol process [62,63]. Among them, the high-temperature 

thermal decomposition (HTD) of metal-organic precursors (acetylacetonates, acetates) 

has a number of advantages; for example, it allows obtaining highly crystalline products 

with narrow size distribution [87–89] in a wide range of chemical compositions. Similar 

size distribution and crystalline degree can be also obtained by metal-oleate based 

synthesis [75,132], but exploiting a more complex procedure (i.e., the synthesis of the 

precursors in a separate step [75,132] and several days of aging of the precursor to 
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obtain NPs with a single ferrite phase [133]). The advantage of metal-oleate based 

synthesis is the possibility to produce particles size above 12 nm [92,134], which is the 

size limit of the HTD synthesis based on acetylacetonate or acetates precursors 

[76,135,136]. In this case, a size increment is obtained by a seed mediated growth 

approach, which, however, employs more steps and induces a broadening in size 

distribution, and strain and defects in the crystalline structure [137]. 

The HTD synthesis process is usually described by the LaMer model [138,139] (notes 

3.3.4 at the end of this chapter). The solution is initially heated slightly above the 

decomposition temperature of the precursors (e.g., metal acetylacetonates [136]) to 

produce a high concentration of the “monomers”, above their supersaturation limit, 

initiating the nucleation process. Ideally, this should be very quick, bringing the 

concentration below the supersaturation threshold, thus avoiding further nucleation. 

Then, the growth proceeds with monomers addition and the solution temperature is 

increased to raise the supersaturation limit in order to reduce the formation of new 

nuclei. When almost all monomers are depleted, the solubility of particles increases 

and Ostwald Ripening (OR) may occur [138,140,141]. In the OR process, the particles 

under a critical size re-dissolve, producing new monomers that can feed the growth of 

the biggest particles, thus broadening the size distribution (i.e., defocusing). For 

surfactant coated NPs, this is usually quite a slow process that produces visible effects 

on size distribution only while retaining the solution under reflux for several hours. 

Indeed, due to the organic coating acting as a protective layer, the coalescence of 

primary particles can be considered negligible. The nucleation step in HTD synthesis 

involves almost all the precursors, leaving a relatively small amount available for the 

particle growth. This is a critical step for controlling the size of the nanoparticles.  

In most cases, HTD synthesis protocol makes use of a nitrogen flow [92,136,142] to 

reduce the oxygen content, creating a more homogenous environment and 

consequently leading to narrower size distributions. For the same reason, initially, the 

solution is often kept slightly above 100 °C to degas the system [74,143,144]. Despite 

the wide spread use of HTD approach, a systematic investigation on the influence of 

residual oxygen (RO) dissolved in the reaction solution has not been previously 

reported. In addition, a mechanistic approach to control the nanoparticle size beyond 

varying temperature and surfactants has never been attempted. Furthermore, as 

previously discussed, another key challenge of HTD is to obtain particles larger than 12 
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nm in a single step, while preserving both the crystalline phase and the chemical 

composition.  

The present study investigates the effect of residual oxygen dissolved in the reaction 

environment on the reaction kinetics and the morphological properties of CoFe2O4 

nanoparticles. The amount of RO was controlled by degassing the reaction 

environment at a different extent and monitoring the values of total residual pressure. 

It will be demonstrated how the control of RO is a powerful tool to tune the size of 

nanoparticles up to ≈ 19 nm, while retaining a narrow size distribution. Cobalt ferrite 

particles represent a model system for this study; furthermore, they are of interest in 

several fields, e.g., CoFe2O4 NPs in the 19-25 nm size have attracted attention for the 

design of new exchange coupled nanocomposites for applications as permanent 

magnets [145,146]. Moreover, the specific attention on obtaining a narrow size 

distribution emerges from applications that demand the switching of the magnetization 

in a very small range of magnetic applied field (e.g., magnetic hyperthermia [65]), which 

can be obtained with a sharp size distribution. The evolution of particles morphology 

was described by an analysis of S(T)EM images, correlating size and shape using aspect 

maps (AMs). Highlighting the various steps of growth with respect the RO amount, the 

formation mechanism of NPs was analyzed. 

 Results 

All syntheses were carried out using a standard Schlenk line setup. For the synthesis of 

CoFe2O4 (CF) nanoparticles, 0.67 mmol of iron (III) acetylacetonate (97%, Sigma-

Aldrich), 0.33 mmol of cobalt(II) acetylacetonate (97%, Sigma-Aldrich) and 8 mmol of 

1,2-hexadecanediol (90%,Sigma-Aldrich) were mixed with 16 mmol of oleic acid (90%, 

Alfa Aesar), 4 mmol of oleylamine (70%, Sigma-Aldrich) and 20 ml of benzyl ether (98%, 

Sigma-Aldrich) in a two neck flask connected to a condenser and equipped with a 

thermocouple connected to a temperature controller. A vacuum pump with digital 

controller was used to degas the solution for 60 min at a temperature of ≈ 110 °C at a 

fixed pressure. Later, the vacuum was turned off, and the solution temperature was 

raised and kept at 200 °C for 30 min under argon atmosphere. Finally, the solution was 

kept under reflux at 290 °C for 60 min.  After cooling the solution to room temperature, 

the nanoparticles were precipitated by adding hexane and excess of isopropanol and 

collected by magnetic separation. The nanoparticles were washed two times with 

hexane and acetone to remove the excess amount of surfactant. The final product was 

dried under ambient atmosphere. A similar protocol was used to prepare 5 samples 
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while degassing the solution at ≈ 110 °C at different pressure, that is at ≈ 1000, 40, 0.8, 

0.3, and 0.17 mbar for samples CF1, CF2, CF3, CF4, and CF5, respectively (table 3.1). 

All the samples showed x-ray diffraction (XRD) patterns with typical reflections of a 

cubic spinel structure, in agreement with the presence of the CoFe2O4 phase (PDF Card 

22−1086). No peaks of other phase were detected; as an example, the XRD pattern of 

sample CF4 is presented in figure 3.6.  
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Figure 3.6: XRD pattern of sample CF4, synthesized with a residual pressure setting of ≈ 0.30 mbar. 

 

 

An accurate description of particles morphology was derived from a statistical analysis 

of more than 2000 particles for each sample, as observed in S(T)EM images (figure 3.7). 

In order to evaluate the particle shape, an analysis of circularity distribution was carried 

out (table 3.1). In real particle systems, the spherical shape is associated with values of 

circularity C between 0.9 and 1, while the cubic one has C around 0.8 (figure 3.1). As 

shown in figure 3.7i-l, the observed circularities were in the range 0.88 and 0.92, which 

are in good agreement with a spherical-like shape. 
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Figure 3.7: TEM images of sample CF1 (a), CF2 (b), CF3 (c), and CF4 (d). For each samples, the particles size 

distribution (empty circles) and the result of a lognormal fit (black line) are presented in (e), (f), (g), and (h), 

respectively. The circularity distributions (empty squares) are reported in panels (i), (j), (k), and (l), with the 

black line being a guide to the eyes. 

 

For a deeper and more accurate analysis, aspect maps are calculated. Figure 3.8 reports 

the 2D and 3D aspect maps of samples CF1, CF2, CF3, and CF4, with numerical data 

summarized in table 3.1. 
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Figure 3.8: 2D and 3D aspect map for sample CF1 (panel a and b, respectively), CF2 (c and d), CF3 (e and f), 

and CF4 (g and h). 
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RP 
(mbar) 

Sample 
<D>TEM 

(nm) 
C 

PD 
(nm-1) 

Dmap
1 

(nm) 
Cmap

1 
Dmap

2 
(nm) 

Cmap
2 

R. A. CF1 11.4(2) 0.91(1) 1.8(1) 10.0(5) 0.94(1) 12.0(5) 0.94(1) 

4.0(1) CF2 10.2(2) 0.92(1) 3.1(1) 9.0(5) 0.94(1) 14.0(5) 0.92(1) 

0.8(1) CF3 13.6(4) 0.88(1) 2.1(1) 9.0(5) 0.90(1) 14.0(5) 0.88(1) 

0.3(1) CF4 18.1(1) 0.90(1) 0.4(1) - - 19.0(5) 0.90(1) 

 

Table 3.1: For each sample the residual pressure (RP) during the synthesis step at 110 °C, the average size 

evaluated by a lognormal distribution (<D>S(T)EM), the mode value of circularity (C), and the polydispersity 

(PD) are reported. From data extracted by aspect maps (figure 3.8), the mode values for size (Dmap
1 and 

Dmap
2) and for circularity (Cmap

1 and Cmap
2) are reported, distinguishing the subgroups with different apex. 

Uncertainties on the last digit are indicated in brackets. 

 

 

The sample degassed at ≈ 1000 mbar (CF1) showed a lognormal size distribution with 

an average particles’ diameter of 11.4(2) nm, agreeing closely with the reported size 

limit of 12 nm in acetylacetonates-based HTD method. Aspect maps provided a more 

detailed description, showing two peaks with the most intense one centered at a 

diameter Dmap
2 = 12.0(5) nm, and the second one at Dmap

1 = 10.0(5) nm. The average 

value of circularities (Cmap
1 and Cmap

2) was equal to 0.94(1) for both peaks. The effect of 

degassing in sample CF2 (residual pressure of ≈ 4 mbar) seems to lead to a reduction of 

particles size (lognormal fit average value of 10.2(2) nm), but aspect maps evidenced a 

more complex behavior. The main mode values Dmap
1 = 9.0(5) nm and Cmap

1 = 0.94(1) 

were identified, with an additional intense tail centered at Dmap
2 = 14.0(5) nm and Cmap

2 

= 0.92(1). The lognormal fit of sample CF3 size distribution (residual pressure of ≈ 0.8 

mbar) was centered at a higher value (13.6(4) nm). The sample showed an aspect map 

with two modes, Dmap
1 = 9.0(5) nm (Cmap

1 = 0.90(1)) and Dmap
2 = 14.0(5) nm (Cmap

2 = 

0.88(1)), with the second one presenting a much higher frequency count value, leading 

to a larger average size with respect CF2 and a C value still compatible with a spherical 

shape. Finally, the sample CF4 (residual pressure of ≈ 0.3 mbar) presented an average 

size of 18.1(1) nm (C = 0.90(1)). Moreover, a careful analysis showed that experimental 

data are left-skewed and are not perfectly reproduced by the lognormal curve. From 

the AMs a value of Dmap
1 = 19.0(5) nm (Cmap

1 = 0.90(1)), which is more representative of 

the measured size distribution, was deduced. Furthermore, it is worth to underline that 
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the sharp size distribution of this sample is associated with a polydispersity (PD) of 0.4 

nm-1, which is lower than the value observed in CF1 (1.8 nm-1).  

Preliminary investigation of the magnetic properties of CF1 and CF4 was performed in 

order to highlight the differences between the sample prepared by classical HTD 

procedure (CF1) and the one prepared with a highly reduced residual oxygen content 

in the synthesis environment (CF4). In both samples, the temperature dependence of 

magnetization recorded by zero-field cooled and field cooled protocols (not reported 

here) showed irreversibility in the temperature range 5-300 K. This indicates that the 

superparamagnetic blocking temperatures are higher than 300 K, as expected for 

CoFe2O4 NPs in the size range 12-18 nm [76,147].  The field dependence of 

magnetization was recorded at 5 K (figures 3.9a, b), and the saturation magnetization 

(MS), the reduced remanent magnetization (MR/MS), the coercive field (μ0HC) and the  

saturation field μ0HSAT [93] extracted from hysteresis loops are reported in table 3.2.  
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Figure 3.9: M Vs H (empty symbols) and MDCD (full symbols) curves for sample CF1 (a), and CF4 (b). The 

switching field distributions obtained by MDCD of CF1 and CF4 are reported in panel (c), as empty circles and 

full squares respectively, with the respective normal fit represented as a line. 

 

Both samples showed MS values quite close to bulk values (83 - 90 A m2 Kg-1)[148], as 

also reported for highly crystalline cobalt ferrite nanoparticles [111]. In addition, they 

exhibited similar values of reduced remanent magnetization (MR/MS), indicating a 

tendency towards a magnetic anisotropy with cubic symmetry [70]. The reversal 

mechanism of the magnetization was further investigated studying the field 

dependence of remanent magnetization using the DCD protocol [149] (full symbols in 

figures 3.9a and b). 
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Sample 
<D>TEM 
(nm) 

S/V 
(m-1) 

μ0HC 
(T) 

MS 
(A m2 kg-1) 

MR/MS 
μ0HSAT 

(T) 
μ0HC

SFD 
(T) 

σSFD (T) 

CF1 11.4(2) 0.53(1) 1.26(1) 87(9) 0.76(2) 3.4(5) 1.36(1) 0.49(1) 

CF4 18.0(1) 0.33(1) 1.18(1) 98(9) 0.80(2) 2.7(6) 1.24(1) 0.37(1) 

 

Table 3.2: The average size evaluated by a lognormal distribution (<D>TEM ), the surface to volume ratio 

(S/V), the coercive field (μ0HC), the saturation magnetization (MS) the reduced remanent magnetization 

(MR/MS) and the saturation field (μ0HSAT) are reported for samples CF1 and CF4. In addition, from a normal 

fit of switching field distribution, the average coercive field (μ0HC
SFD) and the standard deviation (σSFD) of 

the distribution, are proposed. 

 

 

 Discussions 

As reported in literature, the synthesis without degassing (CF1) produced a quite 

narrow particle size distribution with PD = 1.8(1) nm-1, related to the presence of two 

distinct steps for nucleation and growth. The drawback of this procedure is the 

relatively large amount of precursor depleted during nucleation, so that only the small 

residual quantity can contribute to the growth of nanoparticles (figure 3.10a and b). 

This leads to the relatively low size limit of 12 nm, usually reported for CoFe2O4 NPs 

obtained by the acetylacetonates HTD procedure [76,135,136]. It is reported that 

altering the nucleation step in such a way that the number of initial nuclei does not 

deplete the monomers, their concentration can be maintained above the 

supersaturation limit, thus leaving space to further nucleation [150]. This leads to a 

broad size distribution with a large number of small particles which can very likely re-

dissolve producing OR, and so a further broadening is induced. The broad size 

distributions of samples CF2 and CF3 (PD of 3.1(1) nm-1 and 2.1(1) nm-1, respectively), 

suggested that a lower amount of oxygen in the reaction environment reduces the 

reactivity of the monomer toward nucleation, which does not occur anymore in a quick 

single event. 
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Figure 3.10: (a) The monomer concentration vs reaction time is reported to compare the HTD process at 

ambient and in vacuum atmosphere (continuous and dashed lines, respectively). For the classical synthesis 

(b), a single quick nucleation is followed by a temporally separated growth step. In the modified approach 

(c), a superposition between a longer nucleation step and the growth of particles can be supposed; this 

could be responsible of a wide defocusing, but carefully tuning the vacuum, a subsequent self-focusing 

effect can be induced, resulting in a mean particle size above the limit of the classical method. 

 

 

As result, a double mode aspect distribution appeared in CF2 and CF3’s AMs, with 

values centered at 9.0(5) and 14.0(5) nm, where particles growth beyond the 12 nm 

limit is visible. This effect is stronger in CF3, where the lower residual oxygen resulted 

into an increasing fraction of particles’ size around 14 nm. In CF4, the double size 

distribution disappeared and a clear narrowing (i.e., focusing effect) of the distribution 

was observed.  

The achievement of a narrow size distribution in the synthesis of nanoparticles, that is, 

the reduction of differences in size among small and big nanoparticles, depends on 

many factors whose rigorous control is required to obtain the so-called size focusing 

effect. Such factors are the concentration of monomers in solution, the particle 

solubility, which on turn depends on their size, since small particles dissolve faster than 

the bigger ones, and their rate of growth, which also depends on their size, since 

smaller particles grow faster due to their higher free energy. This last case is observed, 

for example, in a diffusion-limited growth [138,151]. The presence of coating on the 
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nanoparticles influences the growth process too, since the coating is a dynamic barrier 

that adsorbs and desorbs on the particles’ surface, interfering with material exchange, 

and so it can be considered as a limiting factor for diffusion.  Indeed, the growth by HTD 

synthesis can be considered diffusion-limited [152]. The focusing effect can also be 

obtained by Ostwald Ripening, exploiting the dissolution of sacrificial material (a 

fraction of smaller particles or a secondary crystalline phase) [153,154]  that quickly 

dissolves producing new monomers used by the big particles to grow further [155]. In 

our nanoparticle system, a similar OR mechanism can be invoked to describe the 

particle growth. Indeed, the high concentration of NPs the solution (≈ 3 mg/ml) leads 

to a short interparticle distance, estimated in ≈ 45 nm under the hypothesis of <D> ≈ 

12 nm CoFe2O4 particles at the beginning of the self-focusing. The smaller particles 

quickly dissolve and their monomers produce an interparticle-diffusion that directly 

feeds the growth of the neighboring bigger particles, in an accelerated ripening with 

self-focusing effect [152,156]. This framework describes the focusing observed in 

sample CF4, coherently with the analysis of aspect maps, and graphically summarized 

in figure 3.10a and c. The small reduction of oxygen in CF2 synthesis induces multiple 

nucleation events, which lead to a clear defocusing effect with respect to CF1. A further 

reduction of oxygen gives origin to a small focusing effect in CF3, which is completed in 

CF4. Only in this sample the RO pressure had the optimal value to produce the initial 

large defocusing, needed to produce enough sacrificial small particles to feed the 

ripening process, and then lead to a strong “re-focusing“, completed in 60 min under 

reflux. To further confirm this growth mechanism, an additional sample, labeled CF5, 

was synthesized at a lower oxygen content (residual pressure ≈ 0.17 mbar). The sample 

was analyzed after 10, 30 and 60 min of reflux at the temperature of 290 °C (Table 3.3). 

 

RP (mbar) Sample <D>TEM (nm) PD (nm-1) Dmap (nm) Cmap 

0.17(1) 

CF5 10 min 3.8(1) 6.5(1) 4.0(5) - 

CF5 30 min 13.2(2) 1.8(1) 15.0(5) 0.94(1) 

CF5 60 min 18.3(3) 1.2(1) 19.0(5) 0.90(1) 

 

Table 3.3: Sample CF5 was prepared with a residual pressure of ≈ 0.17(1) mbar, and analyzed after 10, 30 

and 60 min under reflux. In table are reported the mean size (<D>TEM) and the polydispersity (PD), calculated 

from lognormal fit of particles size distribution obtained by TEM images. In addition, the mode value for 

size (Dmap) and shape (Cmap) obtained from 3D aspect map are reported. A circularity value could not be 

estimated after only 10 min of reflux. Uncertainties on the last digit are reported in brackets. 
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Aspect maps (figure 3.11b, d and f) showed a continuous increase of the average size 

with respect time under reflux, from 4.0(5) (10 min), to 15.0(5) (30 min) and to 19.0(5) 

nm (60 min). It was impossible to measure the circularity value of the sample at 10 min, 

but it was possible to obtain a circularity value of 0.94(1) and 0.90(1) after 30 min and 

60 min of reflux, respectively. This was accompanied by a significant increase in size, a 

small focusing of the shape distribution and a reduction of the PD (from  ≈ 1.8 to 1.2 

nm-1).  

 

Figure 3.11: TEM images of sample CF5 after (a) 10 minutes, (c) 30 minutes and (e) 60 minutes under reflux. 

For each step the particles size distribution is given in the inset. Panels on the right show the corresponding 

aspect maps after 10 (b), 30 (d) and 60 minutes (f). 
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Owing to the low amount of RO in the synthesis of CF5, the reactivity was so low, and 

the defocusing so wide, that after 60 min the system showed the effect of a strong 

growth but not a clear re-focusing effect. Actually, after 60 min particles size up to 25 

nm were observed, beyond the size limit of the sample CF4 where no particles larger 

than 21 nm were observed (figure 3.8g). This suggests that it is possible to complete 

the re-focusing, significantly increasing the average size, while keeping the sample 

under reflux for enough time and using a lower value of residual pressure. 

The magnetic properties (e.g., magnetic anisotropy, saturation magnetization) of 

monodomain nanoparticles are strictly related to their size and morphology. This 

correlation is well described by the M Vs H curves measured at 5 K for samples CF1 and 

CF4 (Figure 3.9a and b). Both samples present quite high values of coercivity, as 

expected considering the high magnetocrystalline anisotropy of CoFe2O4 NPs [157–

159]. The slightly higher value of μ0HC observed in CF1 may be mainly ascribed to the 

higher surface anisotropy component due the higher surface to volume ratio of CF1 

with respect to CF4 (≈ 0.53 Vs ≈ 0.33 nm-1). The increase of anisotropy was even clearer 

observing the value of the saturation field, which is 25% higher in CF1.  In addition, it 

should be underlined that, in order to design magnetic nanoparticles suitable for 

specific applications, it is essential to have very sharp distribution of size and shape.  

This study shows that the careful control of the RO represents an important tool in this 

direction, allowing obtaining particles with narrow size distribution and then a more 

homogeneous magnetic response of the nano-entities. This picture was well confirmed 

by the field dependence of remanent magnetization measured by the DCD protocol, 

and the related SFD, which provided additional information about the reversal process 

of magnetization. Fitting with a normal function the SFDs (figure 3.9c), the average 

coercive field (μ0HC
SFD) and the standard deviation (σSFD) of the distribution were 

estimated (table 3.2). The sample CF4 showed a slightly lower value of 1.24(1) Vs 

1.36(1) T, in agreement with the lower μ0HC, but, most importantly, its SFD is clearly 

narrower, with a 20 %, reduction of the standard deviation, indicating that the sharper 

particle size distribution is associated with a sharper SFD.  This represents a clear 

advantage, since it corresponds to a sharp reversal of the magnetization of the whole 

ensemble, and to a narrower distribution of SPM blocking temperatures. These 

magnetic features are suitable for technological applications, such as magnetic 

hyperthermia [65], where if the SFD is narrower it is possible to more precisely cut off 

the heating effect due to the SPM transition of the nanoparticles. 
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 Conclusions 

This work focused on the influence of the amount of residual oxygen content present 

in the reaction environment on the growth mechanism of CoFe2O4 nanoparticles 

prepared by thermal decomposition of acetylacetonate precursors. The study was 

conducted by a morphological analysis of NPs from S(T)EM images using a new 

statistical approach, based on the so-called aspect map that allows to better 

understand the NPs growth mechanism. The reduction of the oxygen content, i.e., 

degassing the solution at low pressure, prolongs the nucleation phase. This occurs in 

multiple events producing a defocusing effect and providing more precursors available 

for the growth phase. Due to the process conditions (i.e., high particle concentration 

and initial broad size distribution), an Ostwald ripening accompanied by a strong 

focusing effect was then favored. By tuning the oxygen content, the defocusing-

refocusing process was optimized to produce average particles size of 19 nm (well 

beyond 12 nm which is often considered a size limit for cobalt ferrite nanoparticles 

obtained by acetylacetonates HTD synthesis) and very narrow size distribution 

(polydispersity of 0.4(1) nm-1). In addition, considering the incomplete re-focusing at 

the lowest residual pressure employed in CF5, even after 60 min of reflux, this method 

seems promising for obtaining particles size up to 25 nm. It should be underlined that 

the study of RO is critical, due to the little differences in play; for this reason, the 

reproducibility of each experiment has been carefully checked. 

The rigorous control of the oxygen amount in the reaction environment was effective 

in producing improved magnetic properties. This work demonstrates it is an optimal 

strategy to reduce the switching field distribution up to 20 %, leading to an optimized 

magnetization reversal in a narrower magnetic field range, which represents a critical 

issue for specific applications. Indeed, it can be used to improve the performance of 

magnetic materials in several applications, from magneto-recording to biomedical 

ones.  In addition, cobalt ferrite particles in the 19-25 nm size range are of interest for 

the design of new exchange coupled nanocomposites for applications as permanent 

magnets [145,146]. Finally, the analysis by aspect maps has been shown to be very 

powerful providing a tool for understanding growth mechanism, being extendable to 

the study of many other systems. 
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 Notes: LaMer synthesis mechanism 

LaMer model [139] is usually employed to describe the formation of colloidal particles 

[138], e.g., for HTD  method.  

 

Figure 3.12: LaMer model of reaction (a), and common steps for HTD synthesis (b). 

 

 

As summarized in figure 3.12, we can distinguish different phases:   

I. The solution is heated up around 200°C, slightly above the decomposition 

temperature of the precursors (170-180 °C for cobalt and iron 

acetylacetonates). The concentration of the “monomer” (metal ions in this 

case) has a sharp increase. 

II. When monomer concentration overcomes the limit of supersaturation, the 

nucleation occurs. This step should be ideally very quick, producing a few 

number of nuclei, and dropping immediately the concentration of the 
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monomer under the supersaturation limit, to avoid successive nucleations. this 

is  possible employing high thermal decomposition of precursors (e.g., 

acetylacetonates) [136]. 

III. When the concentration of monomer is under the supersaturation, nuclei 

ideally grow for monomer addition. Keeping solution at higher temperature, 

usually around 300°C, increases supersaturation and reduces risk of further 

nucleations. When almost all monomer is consumed, and its concentration 

becomes very low, the solubility of particles increases, and Ostwald Ripening 

can occur [138,140,141]. In OR process, the small particles under a critical size 

re-dissolve, producing new monomers those feed the growth of the biggest 

particles, broadening the size distribution. This process further reduces the size 

of the smaller particles while produce an increment for the bigger ones, 

broadening the particle size distribution (defocusing). For surfactant coated 

nanoparticles, this is usually a quite slow process, which produces visible 

effects on size distribution only keeping the solution under reflux for several 

hours. 
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Chapter 4  

Tuning the magnetic anisotropy with 

chemical composition 

Beyond the magnetic interparticles interactions, the physics of nanoparticle assemblies 

is influenced by their finite-size effects and by the modification of the structural and 

electronic properties at their surface. Among the relevant features of the size reduction 

of magnetic particles, the presence of a non-collinear spin structure (spin-canting) at 

the particle surface deserves special attention, as it originates strong modifications in 

the magnetic properties. The symmetry breaking induces changes in the topology of 

the superficial magnetic moments and consequently in exchange integrals (through 

superexchange angles and/or distances between moments), thus leading to a different 

local surface anisotropy. Recently magnetic disorder has been found to be a key factor 

in order to improve the performance of nanoparticles based materials for different 

application, e.g., hyperthermia in cancer treatment [160]. 

Among nanostructured materials, magnetic ferrites nanoparticles (MeIIFe2O4; MeII = 

Fe2+, Ni2+, Co2+, etc) with spinel structure have generated much interest, due to their 

high chemical and thermal stability coupled with their rich crystal chemistry that offers 

excellent opportunities for fine tuning the magnetic properties [7]. This makes spinel 

ferrites ideal systems to be studied from a  fundamental point of view [95,125–127], 

but it also make them optimal candidates for a wide range of technological 

applications, from electronics [76,95] to biomedicine (e.g., MRI [16], hyperthermia [20], 

drug delivery [16,17]). Spinel ferrite has a face-centered cubic (fcc) structure in which 

the oxygen ions are cubic close-packed. The structure contains two interstitial sites, 

occupied by metal cations with tetrahedral (Td), and octahedral (Oh), oxygen 

coordination, resulting in a different local symmetry. In general, the cationic 

distribution between the two sites is quantified by the inversion degree (γ), which is 

defined as the fraction of divalent ions in octahedral sites. Super exchange interactions 

between magnetic atoms located in the same kind of interstitial sites (JTd-Td and JOh-Oh) 

lead to two ferromagnetically ordered sub-lattices. On the other hand, the dominant 

antiferromagnetic interactions between magnetic ions in the Td and Oh sites (JTd-Oh) 

induce a non-compensated antiferromagnetic order between the two sub-lattices 
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(ferrimagnetism, FiM). A sketch of the magnetic structure in spinel ferrites is reported 

in figure 4.1. The net magnetization can be considered a priori proportional to the 

difference between the Td and Oh sub-lattice magnetizations. Furthermore, one should 

also consider the magnetic anisotropy resulting from specific cationic inversion due to 

the single ion anisotropy of the divalent cations, which depends on interstitial site. 

 

Figure 4.1: Example of spinel ferrite structure. Oxygen ions are represented as small spheres, while the big 

ones represent the metal cations within the tetrahedral and octahedral-coordinated polyhedra. The atomic 

magnetic moments are described as vectors aligned along the easy axis [110]. 

 

 

In most of spinel iron oxide nanoparticles (-Fe2O3, Fe3O4), non-linear magnetic 

structures are attributed to a canted superficial magnetic layer: indeed, the spin-

canting originates from the competing interactions between the two sub-lattices 

together with the structural surface topological disorder induced by the symmetry 

breaking ace [101,161–163]. This feature has also been confirmed by polarized neutron 

scattering [164] and Mössbauer experiments [165] in cobalt and copper ferrite, 

respectively. Recently it has been demonstrated that an unusual correlation between 

cationic distribution and spin canting was established in some CoFe2O4 nanoparticles, 

as resulting from a disordered and non-homogeneous distribution of Fe and Co species 
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within the nanoparticles [6,32,96,161,166]. This picture allows concluding that the 

magnetic properties of ferrite nanoparticles with spinel structure are clearly influenced 

by the complex interplay between two inter-correlated parameters as cationic 

distribution and spin canting. 

Thus, this work aims to the chemical control of the magnetic properties (i.e., saturation 

magnetization and magnetic anisotropy) of spinel oxide nanoparticles with different 

content of Co and Ni as divalent cations (Co1-xNixFe2O4 , Ni = 0, 0.25, 0.50, 0.75, 1).  The 

evolution of magnetic structure (i.e., correlation between cationic distribution and spin 

canting) with the chemical composition has been studied, in order to clarify the 

dependence of the magnetic properties from the magnetic structure itself. Some 

examples of similar studies have reported the influence of cobalt substitution in 

increasing both parameters [167–169], but considering bigger particles, and often with 

a large difference of mean sizes among samples. In this study, the experimental 

investigation will be carried out on high crystalline nanoparticles with very 

homogenous size (diameter: 4.5 ± 0.2 nm) allowing to focus the study on the chemical 

composition, beyond the effect of particles size. 

 Structural analysis 

The X-ray diffraction (XRD) patterns (figure 4.2) exhibit the common reflexes of a cubic 

spinel structure (PDF card 22-1086) for all the samples; no other phases are detected. 

The size of the coherent crystalline domain (table 4.1), determined using the Debye-

Scherrer formula, is equal for all the samples within the experimental error. The value 

of the lattice parameter a becomes smaller increasing the Ni amount [170], as expected 

due to the larger ionic radius of Co2+ (≈ 0.58 Å in Td and ≈ 0.75 Å in Oh coordination) 

with respect to that of Ni2+ (≈ 0.55 Å in Td and ≈ 0.69 Å and Oh coordination) [128,171]. 

It is worth of mention that the lattice parameters a are larger than expected 

considering the bulk values of ≈ 8.38 Å and ≈ 8.33 Å for pure cobalt and nickel ferrite, 

respectively [128,172,173], especially for sample MF5 (pure nickel ferrite). 
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Figure 4.2: XRD patterns of all samples. 

 

 

 

Sample 
Experimental 

Formula 
<DXRD> 
(nm) 

a (Å) 
<DTEM> 
(nm) 

PD 
(nm-1) 

MF1 Co1.00Fe2.00O4.00 5.6(6) 8.394(4) 4.5(1) 2.0(1) 

MF2 Co0.60Ni0.40Fe2.00O4.00 5.9(5) 8.387(4) 4.6(1) 2.4(1) 

MF3 Co0.40Ni0.60Fe2.00O4.00 6.8(6) 8.378(4) 4.6(1) 2.4(1) 

MF4 Co0.30Ni0.70Fe2.00O4.00 6.0(7) 8.378(4) 4.5(1) 3.3(1) 

MF5 Ni1.00Fe2.00O4.00 5.3(6) 8.375(4) 4.3(1) 3.3(1) 

 

Table 4.1: Chemical formula by ICP analysis, mean coherent crystalline domain <DXRD>, lattice parameter 

a, mean diameter <DTEM>, and  polidisperity (PD) evaluated by TEM images. Uncertainties on the last digit 

are given in parentheses. 
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TEM images (figure 4.3) show high crystalline spherical-like particles with a high degree 

of aggregation, visible in particular in sample MF5 (figure 4.3g). Electron diffraction 

confirms the presence of a unique spinel phase (a representative example is shown in 

figure 4.3f for sample MF1). Particle size distributions (symbols in figure 4.3g) are well 

fitted by using lognormal functions for all the samples (lines in figure 4.3g), showing a 

relative low polydispersity ranging from 2.0 nm-1 for MF1, to 3.3 nm-1 for MF5. The 

mean particles size extracted by TEM are equal for all the samples (<DTEM> ≈ 4.5 nm), 

slightly lower that mean crystallite size extracted by XRD (<DXRD> ≈ 5.5 nm). In order to 

clarify whether this disagreement can be attributed to the background produced by the 

organic phase, and/or the strain effect, an estimation of the magnetic diameter has 

been obtained by the activation volume Vact (see Paragraph 4.5.2 for details). For 

sample MF3, the one with the largest difference between XRD and TEM diameter, the 

magnetic viscosity S was measured in the range of the reversal field µ0Hrev, between 0.2 

T and 1.2 T, being the coercivity 0.50 T (see notes 4.5.2, figure 4.7). Assuming a system 

composed of spherical particles, the obtained Vact. corresponds thus to a mean 

magnetic grain diameter of 4.7(5) nm, in perfect agreement with TEM measurement of 

4.6(1) nm. This result suggests that the larger XRD diameter can be due to the polyol 

coating (≈ 20 % in weight from TGA evaluation): the background produced by the 

organic phase can lead to underestimate the peak broadening and thus to overestimate 

the mean particles size. 

ICP analysis provides an estimation of the chemical composition (table 4.1) that is 

almost ideal for all the samples, except for MF2 and MF4, which exhibit a difference 

with respect the theoretical values. This loss could suggest that there is a better 

configuration found with composition around a 50% of cobalt and nickel atoms. Similar 

small deviation toward 50% composition have been already established by other 

authors [168], anyway a monotonic variation of composition is observed going from 

sample MF1 to sample MF5. 
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Figure 4.3: TEM images of samples MF1 (a), MF2 (b), MF3 (c), MF4 (d), and MF5 (e). Panel (a) represent an 

example of the high crystalline nature of the samples; for sample MF1 is also reported an electron 

diffraction analysis (f) which perfectly matches with the crystalline structure of spinel cobalt ferrite. 

Particles are quite aggregated in particular for sample MF5 (e). Panel (g) reports the particles’ size 

distributions of all samples. 
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 Magnetic Properties 

All samples own high crystalline spherical particles with the same average size, within 

the experimental error, therefore, any difference in magnetic properties can be 

ascribed to the effect of the chemical composition. 

At a temperature of 5 K, all samples behave as blocked ferrimagnets (figure 4.4); a 

significant decrease of the magnetic anisotropy is observed with the increase of cobalt 

content, as shown by the monotonic decrease of the coercive field (µ0HC) and of the 

saturation field (µ0HSAT) (table 2). Cobalt ions produce a marked magneto-crystalline 

anisotropy far above that of nickel and iron ions, indeed its orbital magnetic moment 

is not quenched by the crystal field, and a spin-orbit coupling occurs, particularly strong 

for Co2+ ions in octahedral sites [142,157,174]. Bulk CoFe2O4 crystals, have a strong 

cubic magnetic anisotropy, but such behavior is usually suppressed with particles size 

under 5 nm, and an uniaxial anisotropy is observed [43,44]. The reduced remanence 

magnetization (MR/MS) should be ≈ 0.8 and 0.5 for cubic and uniaxial anisotropy, 

respectively [3,44–46]. Analyzing the MR/MS value of sample MF1, only a small 

tendency towards cubic anisotropy is shown, furthermore, reducing the cobalt content, 

a reduction of MR/MS values is observed. The very low value of ≈ 0.29 measured for 

MF5 could be assigned to the frustrated surface spins [44], or due to the effect of strong 

dipolar interactions on a relative soft material [177]. On the other hand, due to the 

distribution of values of magnetic anisotropy energy, it is not possible to exclude that 

a fraction of particles is in the superparamagnetic state even at 5 K (temperature used 

for the measurement), thus reducing the MR/MS values. 

In the simplest approximation of Stoner and Wohlfarth [41] (i.e., single particle with 

uniaxial anisotropy), the relation between the anisotropy constant K and the anisotropy 

field 0HK can be defined as [28,178]: 

 

𝐾𝑒𝑓𝑓 =
𝜇0𝐻𝐾𝑀𝑆

2
            (4.1) 

 

Thus we can roughly estimate the effective anisotropy constant with the same formula, 

assuming negligible the deviation toward cubic anisotropy and the influence of 

interparticles interactions [149,179], and considering 0Hsat ≈ 0HK [93,149]. The 

estimated values show again a downward tendency with decreasing of Co content 
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(table 4.2), and all of them are higher than those reported for bulk and nanostructured 

cobalt (≈ 1 – 4 ∙ 105 J m-3 [149,179,180] ) and nickel ferrites (≈ 1 ∙ 104 J m-3 [181,182] ). 

It is interesting to note, that the susceptibility measured at 5 T, which is usually 

considered as an evaluation of the surface component of anisotropy [93], follows the 

same trend of the effective anisotropy. Furthermore, the ratio between the 

susceptibility at 5 T and the effective anisotropy is ≈ 2 ∙ 10-6 for all samples, except for 

MF5, for which is ≈ 7 ∙ 10-6, suggesting a much higher degree of frustration in its 

magnetic structure. 
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Figure 4.4: The field dependence of magnetization (a), the DCD curves (b) and the Switching Field 

Distributions (c) for sample MF1 (circles), MF2 (squares), MF3 (triangles), MF4 (stars), and MF5 (crosses). 

 

 

The switching field distribution (SFD, see appendix 8.2.3) [70] of the samples is 

reported in figure 4.4c, giving a qualitative estimation of the energy barrier distribution.  

Confirming the picture described by M Vs H curves, the average anisotropy energy is 

reduced by reducing the Co amount with a monotonic tendency. 
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Sample 
MS 

(A m2 kg-1) 
MR/MS 

μ0HC 
(T) 

μ0HSAT 
(T) 

Keff 
(J m-3) 

dM/dμ0H 5T 
(A m2 kg-1 T-1) 

MF1 130(10) 0.61(7) 0.88(7) 3.1(8) 10.7(1) ∙ 105 2.31(1) 

MF2 87(4) 0.59(4) 0.71(4) 2.7(1) 6.2(1) ∙ 105 1.20(9) 

MF3 77(4) 0.61(4) 0.50(1) 2.4(3) 4.9(1) ∙ 105 0.79(2) 

MF4 39(5) 0.52(8) 0.30(1) 2.0(2) 2.1(1) ∙ 105 0.56(3) 

MF5 37(4) 0.29(6) 0.028(1) 0.3(1) 0.30(1) ∙ 105 0.22(1) 

 

Table 4.2: Saturation magnetization (MS); reduced remanence magnetization (MR/MS); coercive field 

(μ0HC); saturation field (μ0HSAT); effective anisotropy constant (Keff); and the susceptibility at 5 T measured 

at 5K (dM/dμ0H). Uncertainties on the last digit are given in parentheses. 

 

 

Assuming the spin-only magnetic moment values of 5 μB for Fe3+,  3 μB for Co2+ and 2 μB 

for Ni2+ resulting from their electronic configuration [168,183], and considering the 

antiparallel arrangement of moments between tetrahedral and octahedral sites in 

spinel structure, the magnetization is expected to decrease when reducing the Co 

content to increase the Ni one. As listed in table 4.2, the experimental values of 

saturation magnetization confirm this hypothesis. It is worth to mention that MF1 

possesses a high magnetic saturation compared to that of bulk (≈ 83 - 90 A m2 Kg-1) 

[148], and also to those reported for highly crystalline cobalt ferrite nanoparticles 

[111]. On the other hand, a relatively low value is estimated in the case of MF5 (MS of 

bulk ≈ 55 A m2 kg-1 [184]). In this framework, the interplay between inversion degree 

and magnetic disorder (i.e., magnetic structure) can play a key role [6,183]. 

 Magnetic Structure  

In order to understand the evolution of magnetic properties with the chemical 

composition of the materials, a careful investigation of magnetic structure has been 

performed by 57Fe Mössbauer spectroscopy in presence of intense magnetic field.  

Figure 4.5 compares the 57Fe Mössbauer spectra recorded at 10 K under a magnetic 

field of 8 T applied parallel to the γ-beam on the MF1, MF3 and MF5 samples. The 

spectra are consistent with a well-blocked ferrimagnetic structure without any 
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superparamagnetic relaxation state. The hyperfine parameters  does not evidence at 

all the presence of Fe2+ ions, and the isomer shift values allow to attribute clearly the 

two sextets to the Fe3+ in tetrahedral and octahedral sites, consistent with a spinel 

ferrimagnetic structure (table 4.3), and to estimate their respective proportions from 

the relative absorptions areas. 
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Figure 4.5: In-field Mössbauer spectra recorded at 10 K under an applied magnetic field of 8 T parallel to 

the γ-beam, for MF1, MF3 and MF5 samples. The experimental data are represented as circles, the fit as a 

bold line, while the two FeTh and FeOh components are reported as a dashed and a thin line, respectively. 
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From the modelling of the in-field Mössbauer spectrum the effective field Beff and the 

angle θ (angle defined by the direction of the effective field and the γ-beam direction) 

have been estimated for both tetrahedral and octahedral iron components, allowing 

thus their respective hyperfine field Bhyp to be calculated (table 4.3). A non-zero 

intensity is shown by the second and fifth lines for both components, evidencing a 

canted structure for Fe3+ magnetic moments with respect to the applied field (non-

collinear magnetic structure) [100,101], with the respective canting angle θ reported in 

table 4.3 (see 2.3 notes for details on the estimation procedure). It is worth of mention 

that an asymmetrical broadening of the lines in Oh sites for sample MF5 was observed, 

probably due to the chemical disordered occupation of these sites, producing a wide 

range of possible chemical environments of Fe ions. 

 

 

Sample Site 
 

(mm s-1) 
 

(mm s-1) 
Beff 
(T) 

Bhyf 
(T) 

 (°) 

 10° 

Fe3+
A,B / 

Fe3+
total 

MF1 
Fe3+

A 0.34(1) -0.01(1) 59(2) 51(2) 10 0.37(1) 

Fe3+
B 0.48(1) -0.05(1) 47(2) 54(2) 18 0.63(1) 

MF3 
Fe3+

A 0.35(1) -0.01(1) 59(2) 51(2) 18 0.39(1) 

Fe3+
B 0.48(1) -0.03(1) 46(2) 54(2) 22 0.61(1) 

MF5 
Fe3+

A 0.35(1) -0.05(1) 59(2) 51(2) 12 0.22(1) 

Fe3+
B 0.48(1) -0.00(1) 46(2) 53(2) 38 0.78(1) 

 

Table 4.3: The isomer shift (),  quadrupole splitting (), effective field (Beff), hyperfine filed (Bhyf),  average 

canting angle (ϑ), and the ratio of each component evaluated by fitting the in-field Mössbauer spectra, are 

reported for samples MF1, MF3 and MF5. Uncertainties on the last digit are given in parentheses. 

 

 

According to the absorption area ratio of the two sextets, the accurate value of the 

atomic distribution of Fe3+ between Td and Oh sites has been estimated assuming the 

same values of the recoiless f Lamb-Mössbauer factor for these two species (table 4.3). 

ICP analysis has confirmed the 2:1 ratio between Fe3+ and divalent cations (i.e., Co2+ 

and Ni2+), thus, considering the hypothesis of absence of vacancies, and knowing the Fe 

occupancy of each site, the inversion degree γ has been estimated as the amount of 
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divalent ions in octahedral sites that should complete their occupancy. γ was calculated 

as 0.74(1) and 0.78(1) for MF1 and MF3, respectively, in agreement with values usually 

reported for cobalt ferrite (γ ≈ 0.7 - 0.8 [111,130,185] ).  For sample MF5 γ was 

estimated as 0.44(1), significantly different from what expected for pure nickel ferrite 

(γ ≈ 0.9 – 1) [130,186]. From these results, the cationic distribution was estimated. For 

Fe3+, Co2+and Ni2+ have been considered the magnetic moment values of 5 μB, 3 μB and 

2 μB, respectively. For simplicity, for sample MF3 has been defined an equivalent 

divalent cation Me2+ formed by a population of 40 % of Co and 60 % Ni, according to 

ICP data, with an average moment of 2.4 μB. Finally, considering the effect of the 

canting angles, the corresponding theoretical magnetization saturation values have 

been calculated as 90(1), 78(1) and 89(1) A m2 Kg-1, for MF1, MF3 and MF5, respectively. 

Only for MF3 this value is comparable with the experimental one, for this reason, for 

the other two an unusual cationic distribution was hypothesized. A more 

representative effective inversion degree γsat has been calculated considering the 

effective magnetic moment per unit formula (μF
exp) calculated on the experimental 

saturation magnetization. This depends on the magnetic moment of each site by the 

relation: 

 

𝜇𝐹
𝑒𝑥𝑝

= [𝜇𝐹𝑒−𝑂ℎ
𝑒𝑥𝑝

+  𝑥 ∙ 𝜇𝑀𝑒2+] − [𝜇𝐹𝑒−𝑇𝑑
𝑒𝑥𝑝

+ (1 − 𝑥) 𝜇𝑀𝑒2+  ]            (4.2) 

 

where 𝜇𝐹𝑒−𝑂ℎ
𝑒𝑥𝑝

 and 𝜇𝐹𝑒−𝑇𝑑
𝑒𝑥𝑝

 represent the experimental magnetic moment of iron in Oh 

and Td sites respectively, and  μMe2+ represents the magnetic moment of the divalent 

cation, with x its population in Oh sites. x corresponds to the effective inversion degree 

γsat and can be evaluated rewriting equation (4.2):  

 

𝛾𝑠𝑎𝑡 =
𝜇𝐹

𝑒𝑥𝑝
− 𝜇𝐹𝑒−𝑂ℎ

𝑒𝑥𝑝
+ 𝜇𝐹𝑒−𝑇𝑑

𝑒𝑥𝑝
+ 𝜇𝑀𝑒2+

2𝜇𝑀𝑒2+
         (4.3) 

 

Fixing the iron distribution in Td and Oh sites according to Mössbauer results (FeTd and 

FeOh , respectively), with the correction for their respective canting angles ϑTd and ϑOh 

the effective magnetic moment of iron in Td and Oh sites can be evaluated as 𝜇𝐹𝑒−𝑂ℎ
𝑒𝑥𝑝

=

5𝜇𝐵 𝑐𝑜𝑠(𝜗𝑇𝑑) 𝐹𝑒𝑇𝑑  and 𝜇𝐹𝑒−𝑇𝑑
𝑒𝑥𝑝

= 5𝜇𝐵 𝑐𝑜𝑠(𝜗𝑂ℎ) 𝐹𝑒𝑂ℎ . Thus, considering an 
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experimental error of ± 10° for the canting angle [166,187], the values of inversion 

degree have been calculated as γsat = 1.00(2), 0.78(2) and 0.00(2), for MF1, MF3 and 

MF5, respectively. The value for MF3, close to that estimated from in-field Mössbauer 

spectra, leads to the effective formula (Co0.12Ni0.10Fe0.78)[Co0.28Ni0.50Fe1.22]O4, where the 

parentheses indicate the tetrahedral coordinated cations, and the brackets the 

octahedral ones. The value of γsat = 1.00(2) for sample MF1 is translated in the formula 

(Fe0.74□0.26)[Co1.00Fe1.26]O4 , with vacancies in Td sites and a overpopulation of Oh sites 

that can justify such elevated value of MS ≈ 130 A m2 Kg-1. This 13 % overpopulation of 

octahedral Fe introduces only small distortions which are not visible in XRD pattern, 

but it can explain the slight increment in the lattice parameter with respect the bulk 

value [188].  The result for sample MF5 leads to the formula (Ni1.00Fe0.44)[ Fe1.56□0.44]O4 

explaining at the same time the low saturation and the unusual iron distribution from 

Mössbauer spectrometry. This unusual overpopulation of tetrahedral sites (≈ 44 %) 

finds a correlation with the quite large lattice parameter (≈ 8.37 Å versus 8.33 Å of bulk), 

although this parameter remains strongly dependent on the synthesis conditions. 

These cationic distributions allow to estimate the environment surrounding the Fe3+ 

ions and to explain the measured canting angles. In a spinel ferrite structure each 

tetrahedral (Fe3+) is surrounded by 12 nearest-neighbors octahedral ions, while an 

octahedral [Fe3+] ion owns only six tetrahedral nearest-neighbors [189]. As illustrated 

in figure 4.6, we can assume a statistical average environment for each site of samples 

MF1, MF3 and MF5, involving also the presence of the vacancies. According to the 

molecular field theory, the superexchange (SE) interaction energy JTd-Td and JOh-Oh are 

negligible compared to the JTd-Oh [190]. Thus, in first approximation, considering  the 

energy of Fe3+–O2-−Co2+ , comparable to that of Fe3+–O2-−Ni2+, and equal to JTd-Oh
1 = 13.7 

K, and for Fe3+–O2-−Fe3+ as JTd-Oh
2 = 20.1 K [161,189], we can qualitatively estimate the 

SE energy for Fe3+. For sample MF1 the SE energy allows an average canting of ≈ 10° for 

(Fe3+). The lower SE energy for [Fe3+] is the origin of its higher values of canting (≈ 18°). 

MF3 sample owns a smaller difference between the SE energy of the two sites, which 

is responsible of the close and relatively high values of ≈ 18° and ≈ 22° for (Fe3+) and 

[Fe3+], respectively, where the last one owns the lower SE energy and the higher canting 

angle. Finally, in sample MF5 the large presence of vacancies around (Fe3+) produces a 

low SE energy giving rise to a canting of ≈ 18°; furthermore the low amount of iron in 

tetrahedral sites produce an even lower SE energy for [Fe3+], resulting in a strong 

canting angle of ≈ 38°.  This increase of magnetic disorder observed going from MF1 to 
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MF5 samples can be then ascribed to cationic distribution, influencing chemical 

surrounding of the iron atoms. 

 

 

Figure 4.6: The nearest-neighbors for tetrahedral (Fe3+) and octahedral [Fe3+] is graphical schematize for 

sample MF1 (panels a and b respectively), MF3 (c and d) and MF5 (e and f). 
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 Conclusions 

The properties of spinel ferrites are directly related to their chemical composition. In 

this work it is shown how it is possible to finely tune the magnetic behavior in Ni-Co 

ferrite nanoparticles by controlling the chemical composition, beyond the effect of the 

particle size. The evolution of the magnetic behavior with respect to the different 

chemical composition has been provided both by M versus H and DCD and their 

derivative curves. It is clear that increasing the cobalt content, a stronger 

magnetocrystalline anisotropy was produced, and higher saturation magnetization is 

obtained. To study the magnetic structure of the samples, and in particular to 

understand the unusual saturation magnetization of samples Co100-Ni0, Co50-Ni50 and 

Co0-Ni100, 57Fe Mössbauer spectrometry under intense magnetic field was employed. 

The cationic distribution between the two Fe sublattices has been estimated, and, 

matching this information with the saturation magnetization, it was possible to propose 

a cationic distribution for Td and Oh sites, with the presence of vacancies and an unusual 

overpopulation of specific sites. In addition, a spin canted structure was evidenced and 

explained in terms of superexchange interactions energy produced by the average 

cationic distribution and vacancies in the spinel structure. This study represents an 

example of further development in the understanding of the link between the structure 

and magnetic behavior of ferrite nanoparticles beyond the volume effect. This is of 

fundamental importance for the development of the engineering of magnetic ferrite 

nanomaterials for technological applications. 

 Notes 

 Synthesis 

All samples were prepared by polyol process [62,186,191], where polyol acts as solvent, 

reducing agent and surfactant. This method allows to produce a wide range of pure 

metals and oxides [192,193], with the possibility to tune their chemical composition. In 

a typical synthesis of CoFe2O4 (MF1 sample) 2 mmol of iron (III) nitrate nonahydrate 

(Sigma Aldrich, > 98 %), 1 mmol of cobalt (II) nitrate exahydrate (Sigma Aldrich, 98 %) 

and 1 ml of distilled water were added to 100 ml of tri-ethylene glycol (TEG, Sigma 

Aldrich, 99 %) in a round bottom tree-neck flask. The solution, was heated in a mantle 

to the boiling point and kept under reflux for 2h, using a condenser and mechanical 

agitation; then it was cooled to room temperature. With the addition of acetone to the 

solution, the precipitation of a black powder was induced. The product was washed 



103 

 

again with acetone and separated via centrifuge; this procedure was repeated three 

times, and finally the powder was dried in an oven at 60°C overnight. For all samples, 

the same procedure has been employed, changing the relative amount of precursors, 

to obtain the desired nominal composition (Table 4.1). 

 Activation volume 

For the study of the low temperature dependence of the magnetic viscosity with 

respect an external field, the sample was brought at 5 K to a positive saturation field (5 

T); then a reverse negative field (µ0Hrev) was applied and the time dependence of 

magnetization was measured. M versus t was investigated, and a logarithmic decay of 

the magnetization was found according to: 

 

𝑀(𝑡) = 𝑀0 − 𝑆 ln(𝑡)        (4.4) 

 

where S is the magnetic viscosity [194]. By fitting the data with equation (4.4), S was 

estimated at different values of the reverse field. By combining the maximum value of 

magnetic viscosity (Smax) with the irreversible susceptibility (χirr), calculated at the same 

field from DCD curve, an estimation of the fluctuation field (µ0Hf) was obtained: 

 

𝜇0𝐻𝑓 =
𝑆𝑚𝑎𝑥

𝜒𝑖𝑟𝑟
            (4.5) 

 

Then the fluctuation field can be used to estimate the activation volume (Vact.) [194–

196], which can be defined as the smallest volume of material that coherently reverses 

in a single event [196]:  

 

𝑉𝑎𝑐𝑡 =
𝑘𝐵𝑇

𝑀𝑆𝐻𝑓
             (4.6) 

 

where kB is the Boltzmann constant.  
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Figure 4.7: For sample MF3, the time dependence of the magnetization reversal is reported in panel (a), 

with different applied field. For 1.2 T of applied field the experimental data (circles) and the best fit 

(continuous line) using equation (8.7) are reported in inset. The magnetic viscosity measured at each field 

is reported in panel (b). 

 

 Surfactant arrangement 

In order to study the interaction of TEG on nanoparticles the FT-IR spectra of the 

samples (figure 4.8) have been analyzed. The presence of spinel ferrite structure is 

confirmed by the signals around 590 cm-1, referred to the stretching vibration of the 

metal in tetrahedral site and the oxygen, while the signal around 400 cm-1 is analogous 

for the octahedral site [56,108]. The symmetrical and asymmetrical stretching of C-H 

(signals between 2937 and 2868 cm-1), and of C-O (around 1100 cm-1) confirm the polyol 

coating in all samples [63]. In particular, the interaction between polyol oxygen and 

metal cations at particles surface finds evidence both in the small shift to lower 

frequencies of the C-O signals with respect to the pure polyol [107], and in their 

different intensity profile [106,109], with two signals in place of the small three of the 

pure TEG. The signals around 3400 and at 1646 cm1 are referred to the stretching and 

bending modes of O-H of polyol and adsorbed water [63], respectively. Finally, the 

complex profile between 1450 and 1250 cm-1, produced by C-H bending [18], has 

different intensity and shape with respect free TEG, as results of interactions between 

polyol and NPs surface. 
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Figure 4.8: FT-IR spectra of all samples and pure TEG for comparison. 
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Figure 4.9: Panel (a) reports TGA curves for all samples and pure TEG. The corresponding SDTA curves are 

shown in the region around 250°C, in panel (b). 
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Figure 4.9 compares the TGA-SDTA curves of all samples. For each one a small loss in 

weight, with a corresponding endothermic event, is completed around 100 °C; it is 

produced by the evaporation of residual water and acetone. The successive main loss 

around 250 °C is coupled with an exothermic peak, and it is due to decomposition of 

TEG (decomposition temperature centered at 247 °C for pure TEG). It is worth of 

mention, that this loss increases with respect the amount of nickel. Suggesting again a 

stronger interaction between polyol and Ni at particles surface. MF1 shows the 

corresponding DTA peak centered around 250 °C; for MF2 and MF3, this peak becomes 

bigger, reflecting the larger amount of adsorbed TEG, and it moves toward 240 °C. For 

MF4 and MF5 there is a clear first peak around 230°C and a second around 270 °C. 

These data suggest that the amount of polyol present in MF1 (≈ 13 %) forms a complete 

single layer of TEG, further amount is not directly bonded at particle surface, and so it 

decomposes at lower temperature. In addition, in MF4 and MF5 the double peak signal 

can be associated to a double layer structure, where the first decomposition is related 

to the external one, while the second inner layer, directly bonded on the particles 

surface, and protected by the outer shell, decomposes at higher temperature. 

 

 

Sample Polyol (%) 

MF1 13(1) 

MF2 14(1) 

MF3 19(1) 

MF4 27(1) 

MF5 36(1) 

 

Table 4.4: For each sample, the amount of polyol evaluated by TGA is reported. 
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Chapter 5  

Competition between single particle 

anisotropy and interparticles interactions  

For monodomain particles of volume V, the magnetic anisotropy energy determinates 

the behavior of the system. The effective anisotropy constant is influence by several 

contributions such as particles shape, surface distortion of crystalline structure, stress 

or strain effects, but usually the most important role is acted by the magnetocrystalline 

contribution. In the previous chapter, we have analyzed the effect of the cobalt and 

nickel content in a set of spinel ferrite nanoparticles, showing how the 

magnetocrystalline anisotropy induced by single ion contribution dominates the 

system behavior. On the other hand, in several magnetic nanoparticles applications, 

the interparticles interactions cannot be neglected. One can estimated the rough 

contribution of interparticles dipolar interactions as [43]: 

 

𝐸𝑑𝑖𝑝 ≈
𝜇0

4𝜋

𝜇2

𝑑3
            (1.12) 

 

where µ represents the dipolar moment and  d the average interparticles distance. Such 

term adds a relevant contribution to the effective anisotropy energy, deeply influencing 

the overall magnetic behavior [197]. In concentrated systems, e.g., for high-density 

magnetic data storage [198], or when high saturation magnetization is an important 

requisite, as for biomedical applications [12], collective relaxation behaviors or 

particles agglomeration, due to interactions, may represent a critical issue. 

Within this framework, the study of the inter-correlated effect of the single particles 

anisotropy energy and the interparticles dipolar energy becomes fundamental. Their 

competitive role will be analyzed in two samples of spinel iron oxides observed in the 

previous chapter. Samples MF1 (CoFe2O4) and MF3 (Co0.4Ni0.6Fe2O4) have been chosen 

for this study, having a clear different magnetic anisotropy due to the different 

composition, but similar structure, with particles in close proximity but coated by the 
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same polyol layer (avoiding exchange interactions), thus presenting comparable 

interparticles distances.  

 Morphostructural characterization 

Both samples appear as ensembles of almost spherical particles, with a narrow size 

distribution centered at ≈ 4.5 nm (figure 4.3). They show a complete crystalline form, 

with XRD pattern (figure 4.2) perfectly matching the spinel cobalt iron oxide phase 

(CoFe2O4 PDF card 22-1086). The particles are strongly aggregated due to the presence 

of TEG, the weight of which has been estimated in ≈ 17 and ≈ 19 % for MF1 and MF3, 

respectively. The most important structural data are reported in table 5.1, for a 

detailed structural analysis see paragraph 4.1. 

 

Sample 
Experimental 

Formula 
<DTEM> 
(nm) 

PD (nm-1) Polyol (%) 

MF1 Co1.00Fe2.00O4.00 4.5(1) 2.0(1) 17.0(5) 

MF3 Co0.40Ni0.60Fe2.00O4.00 4.6(1) 2.4(1) 19.0(5) 

 

Table 5.1: For each sample the experimental formula evaluated by ICP analysis, the mean diameter <DTEM> 

and the polydispersity (PD), evaluated by TEM images, are summarized. From TGA analysis the % weight 

of polyol bonded to particle’s surface has been calculated. 

 

 Evolution of magnetic behavior with chemical composition 

As discussed in chapter 4, spinel ferrites own a FCC lattice of oxygen ions with Fe3+ and 

Me2+ cations in octahedral and tetrahedral site respectively. The magnetic coupling 

inside each site produces a parallel ferromagnetic alignment of spins, but the coupling 

between the two sub-lattices produces an antiparallel arrangement. Due to the 

different magnetic moment of the two lattices, a net magnetization emerges, 

producing a final ferrimagnetic ordering [35]. The specific nature of divalent cation 

produces different results, both in terms of saturation magnetization and magnetic 

anisotropy, in addition the possible substitution of Fe3+ in octahedral sites introduce a 

“inverse” structure with a further influence on magnetic properties [96,130].  
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The M Vs H curves of the two samples are proposed in figure 5.1, with data summarized 

in table 5.2 . As it has been discussed in paragraph 4.2, the reduction of the cobalt 

amount reduces the saturation magnetization of sample MF3 with respect to MF1. The 

experimental values of saturation magnetization are ≈ 130 and ≈ 77 A m2 Kg-1 for MF1 

and MF3, respectively. The lower saturation magnetization of MF3 is expected, 

considering the ferromagnetic structure of the ferrites, and assuming the values of 2µB 

for Ni2+, 3µB for Co2+ and 5µB for Fe3+, as result of the electronic configuration. Matching 

the magnetic data and the Mössbauer analysis, the saturation magnetization were 

explained in paragraph 4.3 with a cationic distribution of (Fe0.74□0.26)[Co1.00Fe1.26]O4.00 

and (Co0.12Ni0.10Fe0.78)[ Co0.28Ni0.50Fe1.22]O4.00 . MF3 presented an inversion degree γ ≈ 

0.78, in agreement with what reported usually reported for cobalt ferrite (γ ≈ 0.7 - 0.8) 

[111,130,185]. On the other hand, the high value of saturation of MF1 (≈ 130 A m2 Kg-

1) with respect the bulk (83 - 90 A m2 Kg-1 [148]), found justification with its unusual 

cationic distribution. 
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Figure 5.1: Magnetization Vs applied field for sample MF1 (circles) and MF3 (triangles). 

 

Cobalt ions produce a marked magneto-crystalline anisotropy far above that of nickel 

and iron, indeed its orbital magnetic moment is not quenched by the crystal field, and 

a spin-orbit coupling occurs, particularly strong for Co2+ ions in octahedral sites 
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[142,157,174]. Reducing the amount of cobalt, the magnetic anisotropy decreases, and 

this is reflected by the coercive field µ0HC and the saturation field µ0HSAT (table 5.2). 

Also the susceptibility measured at 5 T, which is related to the anisotropy of the surface 

component [93], follows the same trend. 

 

Sample 
MS 

(A m2 kg-1) 
MR/MS 

μ0HC 
(T) 

μ0HSAT 
(T) 

dM/dμ0H at 5 T 
(A m2 kg-1 T-1) 

MF1 130(10) 0.61(7) 0.88(7) 3.1(8) 2.31(1) 

MF3 77(4) 0.61(4) 0.5(1) 2.4(3) 0.79(2) 

 

Table 5.2: For both samples the saturation magnetization (MS), reduced magnetization (MR/MS), coercive 

field (μ0HC), saturation field (μ0HSAT), and the susceptibility of the high anisotropy component measured at 

5 T (dM/dμ0H) are reported. 

 

 

However, the analysis of ZFC-FC curves (figure 5.2) suggests a different picture. Despite 

the reduction of magnetic anisotropy increasing the amount of nickel, Tmax of ZFC 

remains almost constant for the two samples. The same behavior is shown by the 

blocking temperatures distributions (figure 5.2) obtained from the derivative of TRM 

curves, which are directly proportional to the anisotropy energy distribution (a detailed 

description is provided in appendix 8.2.1). In order to better analyze the thermal 

switching behavior of the samples, Mössbauer spectroscopy analysis has been carried 

out (figure 5.3, data summarized in table 5.3). The fraction of particles magnetically 

blocked for the interval of measurement of Mössbauer technique, is represented by a 

sextet, while the SPM component produces a doublet (see paragraph 2.2 for details). 

It is interesting to note that the fraction of blocked particles at room temperature, leads 

to similar values for both samples, as for TB measured by ZFC curves, in contradiction 

with the anisotropy behavior evinced from M Vs H curves. 
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Figure 5.2: ZFC (empty symbols) and FC (full symbols) for sample MF1 (a) and MF3 (c). The TRM curves and 

their derivative, represented as full and empty symbols, respectively, are shown in panel (b) and (d) for 

sample MF1 and MF3, respectively. 
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Figure 5.3: Mössbauer spectra at room temperature. The small circles represent the experimental points, 

while the sextet, the doublet and the total fit are described as dashed, thin and bold lines, respectively. 
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Sample Tmax (K) Tirr (K) TB (K) 
Mössbauer blocked 

fraction at 300 K 

MF1 229(4) 255(4) 174(2) 75(1) % 

MF3 231(4) 255(4) 170(2) 82(1) % 

 

Table 5.3: From ZFC-FC curves Tmax , Tirr and the mean blocking temperature TB are reported. Fitting 

Mössbauer spectra, the perceptual blocked fraction of particles at room temperature is extrapolated 

 

 Interparticle interactions 

The interparticles interactions can deeply affect the “blocking” behavior of 

nanoparticles. In order to clarify this aspect ΔM-plot have been analyzed (figure 5.4) 

(appendix 8.2.3 for details). The two samples exhibit an interacting behavior, with a 

strong negative deviation, originated by the prevalence of dipolar interactions. The 

reversal field and its intensity decrease with respect the amount of cobalt, as  expected 

considering the dipolar interaction energy roughly evaluated as [43]: 

 

𝐸𝑑𝑖𝑝 ≈
𝜇0

4𝜋

𝜇2

𝑑3
            (1.12) 

 

where µ is the magnetic moment of single particle and d the distance between particles 

center (considered as point dipole). The results, scaled for kB, are reported in table 5.4, 

and represent a roughly estimation of the temperature below which the dipolar 

interactions can result in an ordering of magnetic moments [43]. From this parameter, 

stronger interactions emerges for MF1, which cannot justify the similar blocking 

temperature for both samples. 
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Figure 5.4: ΔM-plot of sample MF1 (circles) and MF3 (triangles) are reported. The solid lines are a guide for 

the eyes. 

 

 

Sample μ0Hrev (T) ICM (a. u.) Edip / kB (K) 

MF1 0.85(5) -0.34(1) 44(1) 

MF3 0.56(1) -0.17(1) 12(1) 

 

Table 5.4: From ΔM-plot the reversal field (μ0Hrev) and the relative intensity of interactions (ICM) are 

reported. The evaluation of dipolar interaction energy (Edip) has been estimated using equation (1.12). 

 

 

Very different anisotropy energy are evidenced for the two samples by the M Vs H 

curves, but measuring the ZFC-FC curves at low field (2.5 mT), and analyzing Mössbauer 

spectra with no applied magnetic field, similar blocking energy are exhibited. Such 

results can be related to a kind of collective behavior induced by interactions, which 

create a condition of higher effective anisotropy, in particular for MF3. This emerges 

only under low field, and it is suppressed by the high field applied in M Vs H curves, 

where the single particle anisotropy dominates. To understand this complex behavior 

a modified Random Anisotropy Model is proposed.  



114 

 

 Random Anisotropy Model 

For a strongly correlated nanoparticles ensemble, the magnetic behavior is not only 

affected by the single particle anisotropy, indeed each particle experiences a random 

condition created by the surrounding environment. The random anisotropy model 

(RAM) is usually employed for polycrystalline samples with exchange interactions [199]. 

Anyway it works regardless the origin of interactions, exchange or dipolar, among 

particles, and it has been proposed, introducing some modifications, to describe 

nanoparticles embedded in a matrix [200], ensembles of nanoparticles with different 

concentration [201] and thin films of cobalt ferrite nanoparticles [202].  According to 

such modified model, the particles interact inside a correlation length L that describes 

a correlation volume V within which a number of particles N contributes with their 

magnetic anisotropy to create an average anisotropy condition. The anisotropy 

constant KN for this volume of particles is lower than that of single particles (K), but due 

to the larger volume involved, the anisotropy energy (Ea  KNV) of such entities is larger 

than that of the single particles. As the interparticle interactions increase, the 

correlation length expands, and the “cluster” anisotropy is mediated by a great number 

of particles, thus reducing its magnitude due to a statistical random walk effect. 

Furthermore, increasing the magnetic field reduces the correlation length, and 

prevents the “cluster” formation. For a non-interacting system the dependence of the 

blocking temperature from the field µ0H is described by the law [201,203]: 

 

𝑇𝐵 =
𝐾𝑉

𝐵
[1 −

 𝜇0𝐻

 𝜇0𝐻𝐾
]
𝛼

           (5.1) 

 

with α = 1.5 [203], and B is a constant defined considering the experimental time in 

MPMS as τm = 10 s,  τ0 = 10-10 s and the Boltzman constant  kB = 1.38065 10-23 J/K: 

 

𝐵 = 𝑘𝐵 ln (
𝜏𝑚

𝜏0
) = 3.49697 ∙ 10−22

𝐽

𝐾
         (5.2) 
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The anisotropy constant K can be evaluated using the relation: 

 

𝐾 =
𝑀𝑆 𝜇0𝐻𝐾

2
       (5.3) 

 

where µ0HK is the anisotropy field and MS the saturation magnetization of the material. 

According to the modified RAM model, for an assembly of interacting particles we can 

modify the (5.1) considering the number N of correlated particles within a correlation 

volume VN with the effective average anisotropy KN [201,203]: 

 

𝑁 = 1 + 𝑥
(𝐿3 − 𝐷3)

𝐷3
             (5.4) 

 

𝑉𝑁 =
𝜋

6
[𝐷3 + 𝑥(𝐿3 − 𝐷3)]                  (5.5) 

 

𝐾𝑁 =
𝐾

√𝑁
                  (5.6) 

 

 𝜇0𝐻𝐾
𝑁 =

2𝐾𝑁

𝑀𝑆
        (5.7) 

 

where x represents the perceptual volume concentration of magnetic phase and µ0HK
N 

the effective saturation field for the N correlated particles. All these parameters are 

related to L, and so field dependent, according to the relation [201][204]: 

 

𝐿 = 𝐷 + [
2𝐴𝑒𝑓𝑓

𝑀𝑆 𝜇0𝐻 + 𝐶
]
1/2

                (5.8) 
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where Aeff represents the interaction intensity [199], that for nanocrystalline alloys is 

the intergrain exchange constant A [200]. The parameter C was introduced for 

nanoparticles systems to overcome the divergence at µ0H = 0 T. It should take in count 

the influence of particles concentration on their interactions, assuming a value close to 

zero for clustered particles and the form C ≈ 2Aeff – MS µ0H  for non-interacting particles 

[201,203]. Finally, the (5.1) can be re-written as: 

 

𝑇𝐵 =
𝐾𝑁  V𝑁

𝐵
[1 −

 𝜇0𝐻

 𝜇0𝐻𝐾
𝑁]

1.5

                   (5.9) 

 

The TB value has been measured from TRM curves at several applied magnetic fields, 

and the experimental values of TB Vs H have been fitted with the relation (5.9) (figure 

5.5a). All data are summarized in table 5.5. In a condition of zero applied field both 

samples have a correlation length larger than the single particle diameter, but only for 

sample MF3 this distance is longer than the distance in which two particles are included 

(L 2NP), considering also the amount of surfactant. Similar situation is present even with 

a low applied field of 2.5 mT, as for the measurement condition of ZFC-FC-TRM curves, 

supporting the thesis of a larger effective anisotropy visible only for MF3 in such 

measurements and Mössbauer spectra. Indeed, with an applied field of 2.5 mT, the 

correlated effective volume of magnetic material for MF1 and MF3 is ≈ 170 and 660 

nm3 respectively, then, despite a different single particles anisotropy, the average 

anisotropy energy within this volume is comparable, in the order of 6(1) · 10-20 J. In this 

picture, MF1 appears as a strongly interacting sample, where the single particle 

anisotropy prevails. It shows stronger dipolar interactions, but the higher single particle 

anisotropy creates a correlation length not sufficient to induce cluster formation. On 

the other hand, MF3 has the right mix of lower anisotropy, long-range dipolar 

interactions, and inter-particle distance to produce a correlated state, at least until the 

applied field remains low. It is interesting to note that for MF3 the µ0Hlimit , the applied 

field which reduces the correlation length under the limit of L 2NP , is around 0.07(2) T 

(figure 5.8b). This explains why such effective anisotropy is visible only at low field. The 

analysis of M Vs H and ΔM-plot employ quite higher fields, which destroy the 

correlation length, thus allowing that the single particles anisotropy behavior emerges 

for both samples. 
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Figure 5.5: Panel (a) shows the dependence of the blocking temperature TB with respect the applied field 

for sample MF1 (empty circles) and MF3 (empty triangles), with the RAM fits represented as solid lines. For 

each sample, the correlation length (L0) dependence from the applied magnetic field is reported in panel 

(b), with the respective limit length which enclose two nanoparticles (L2NP) represented as dashed lines. 

 

 

 

 MF1 MF3 

L 2NP 10.1(1) nm 10.8(1) nm 

L0 ( H = 0 T) 8.1(1) nm 14.5(1) nm 

L0 ( H = 2.5 mT) 8.0(1) nm 14.2(1) nm 

µ0Hlimit - 0.07(2) T 

 

Table 5.5: The linear distance within two aligned nanoparticles, considering also the surfactant (L2NP) is 

compared to the correlation length (L0) extrapolated from RAM fits with an applied field of 0 and 2.5 mT. 

In addition, for MF3, it is reported the maximum field that produces a correlation length sufficient to involve 

two entire particles in the correlation volume. 
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 Conclusions 

The evolution of the effective magnetic anisotropy with respect the chemical 

composition was analysed in two samples of pure cobalt ferrite (MF1, CoFe2O4) and 

mixed cobalt-nickel ferrite (MF3, Co0.4Ni0.6Fe2O4) nanoparticles. The magnetization 

reversal process analyzed through M Vs H curves showed a strong reduction of the 

magnetic anisotropy introducing nickel in place of cobalt in MF3 sample. On the other 

hand, the thermal activated switching process of magnetization analyzed with ZFC-FC-

TRM protocol with a low field of 2.5 mT, and the Mössbauer spectroscopy at 300 K 

without applied field, underlined a different picture, where almost the same anisotropy 

energy emerges for the two samples. The influence of interactions on the anisotropy 

energy was particularly strong for both samples, as underlined by ΔM-plots, but in first 

approximation the simple analysis of the dipolar energy did not explain this aspect. The 

interplay between the single particle anisotropy energy and the interparticles 

interactions is the key point to understand this ambiguous behavior. Developing a 

modified random anisotropy model for the two samples, it has been shown as the 

strong single particle anisotropy prevailed in MF1; on the other hand the right mix 

between the lower anisotropy and the quite long-range dipolar interactions has 

produced a correlate state in MF3, which exhibited a blocking temperature higher than 

expected. This correlation was reduced by the application of an external field, 

explaining why with an intense applied field the single particle anisotropy behavior 

emerges. 
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Chapter 6  

Designing new exchange coupled 

nanocomposites 

Transition metal oxides represent an interesting class of materials due to their cross 

correlated electronic and magnetic properties [205,206]. For example magnetic oxides 

have been shown to display many interesting (magneto)transport properties, such as 

the colossal magnetoresistance (CMR) [207], tunnel magnetoresistance (TMR) [208], 

electroresistance [209], as well as magnetodielectric [210] and magnetoelectric [211] 

effects. Magnetoelectric multiferroics appear very promising from a technological 

point of view due to the presence and coupling of ferroelectric with ferromagnetic 

behavior, permitting the control of the magnetic states using a simple electric field (and 

conversely inducing an electric polarization by a magnetic field) [212].  

It was recently shown that composites including two or more transition metal oxides 

may be very attractive as their magnetic and electrical properties could be tuned or 

controlled owing to the interaction of its constituents. For example multiferroic and/or 

magnetoelectric properties were demonstrated in nanostructures consisting of 

CoFe2O4 pillars embedded in BaTiO3 matrix [213] or BiFeO3 pillars embedded in CoFe2O4 

[214]. It was also found that the magneto-transport, and more particularly the tunnel 

magneto-resistance (TMR), can be tuned in composites formed of micrometer-scale 

mixtures of strongly correlated materials such as (La,Sr)MnO3 and CoFe2O4 [215], owing 

to the dipolar field exerted by the CoFe2O4 particles onto the (La,Sr)MnO3 ones. In 

another system comprised of Fe3O4-CoFe2O4 core-shell nanoparticles the TMR is 

dominated by the interface exchange coupling [208]. 

It is here proposed how to tune and improve the coupling between electrical and 

magnetic response of composites of strongly correlated oxides by combining the 

materials on the nanoscale. To prepare such nanocomposites, two synthetic strategies 

have been used: mechanical mixing of two different nanoparticle systems (N-MIX) and 

growing nanoparticles of one of the system around nanoparticles of the other (NC), in 

order to maximize the contact between nanomaterials.  NC sample was prepared by a 

new synthetic approach, based on seed mediated growth self-combustion method.  



120 

 

We have chosen to combine nanoparticles of the well-known La0.67Ca0.33MnO3 (LCMO) 

and CoFe2O4 (CFO) oxides, considering CFO-LCMO as a model system to illustrate our 

approach. It is important to note that sample MF1, in-depth analyzed in chapters 4 and 

5, is here used as CoFe2O4. We present the complete structural and morphological 

characterization of N-MIX and NC as well as their magnetic and magnetotransport 

behavior to illustrate the relationship between morpho-structural features and physical 

properties. For the sake of clarity, a detailed description of the synthesis process to 

design such composite is proposed in the following sections. Further details on the 

calcination process and cobalt diffusion, and a full description of all magnetic 

characterization are proposed at the end of the chapter as supporting information in 

paragraph 6.6. 

 Synthesis 

 N-LCMO and N-CFO nanoparticles and N-MIX 

La0.67Ca0.33MnO3 nanoparticles (N-LCMO) were prepared by a polyol sol-gel approach 

[216]. 4.6 mmol of lanthanum (II) nitrate exahydrate (Fluka analytical, > 99 %), 2.3 mmol 

of calcium (II) nitrate tetrahydrate (Sigma Aldrich, 99 %) and 6.9 mmol of manganese 

(II) nitrate tetrahydrate (Sigma Aldrich, > 97 %) were mixed in an equal weight of 

distilled water in a 250 ml becker. Ethylene glycol (EG, Sigma Aldrich, 99.8 %) was added 

(1.5 times the volume of water) and the solution was kept at 80°C on a hotplate for 20 

minutes, under magnetic stirring. Then, the solution was kept at 150°C until the gel was 

formed, and finally, the temperature was increased to 300°C to induce the self-

combustion. The obtained powder was finally calcinated at 550°C for 2 hours. 

Sample N-CFO was prepared by polyol process. It is the sample MF1 in-depth analyzed 

in chapters 4 and 5, whose synthesis is described in paragraph 4.5.1. 

To prepare N-MIX sample, 80 mg of N-LCMO and 20 mg of N-CFO (effective weight 

considering also organic coating) were grounded in a mortar with acetone to obtain a 

fine mixture of the two powders. 

 Nanocomposites 

In order to improve the magnetic coupling between La0.67Ca0.33MnO3 (LCMO) and 

CoFe2O4 (CFO) phases, a nanocomposite (NC) was prepared by a seed mediated growth 

self-combustion method. N-CFO nanoparticles (20% in weight of the final product) 
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were dispersed in EG (10 ml) to be used as seeds for the growth of LCMO nanoparticles. 

4.6 mmol of lanthanum (III) nitrate hexahydrate (Fluka analytical, > 99 %), 2.3 mmol of 

calcium (II) nitrate tetrahydrate (Sigma Aldrich, 99 %) and 6.9 mmol of manganese (II) 

nitrate tetrahydrate (Sigma Aldrich, > 97 %)  were added to the EG solution (Sigma 

Aldrich, 99.8 %) with an amount of distilled water equal to their weight. The 

homogenous dispersion of the CFO seeds and the complete solubilization of the 

reactants was obtained keeping the solution on a hotplate at 80 °C, under magnetic 

agitation. Then, the solution was kept at 150°C until a thick and dense gel was formed, 

tuning the stirring speed in order to obtain a homogenous CFO dispersion. Finally, the 

temperature was increased to 300 °C and, after few minutes, the gel combustion 

occurs, producing a very soft and porous grey powder. To ensure the complete 

crystallization of LCMO, the product was calcinated in an oven at 550 °C for 2 hour. 

To perform TMR measurements, both N-MIX and NC were pressed (30 kN) in form of 

pellet, then they were calcinated at 550 °C for 2 h, in order to obtain a better 

connectivity among particles and so an improved conductivity trough the LCMO phase. 

All the structural, morphological and magnetic characterization has been performed on 

the so treated samples. 

 Structure and Morphology 

XRD patterns of N-LCMO and N-CFO samples (figure 6.1) show reflections of 

La0.67Ca0.33MnO3 perovskite (PDF card 01-089-6933) and CoFe2O4 cubic spinel oxide 

(PDF card 01-079-1744) structures, respectively. No reflections of any other phases are 

detected. According to TEM analysis, N-LCMO sample is composed of roughly spherical 

nanoparticles, having size ranging between 10 and 50 nm (figure 6.2a). The particles 

are strongly aggregated and the aggregates have usually a high porosity (figure 6.2b). 

The presence of pores is an expected result of the combustion of organic material and 

of gas evaporation during the self-combustion process. The introduction of the self-

combustion step on the hotplate at 300°C, before proceeding with calcination, allows 

to conduce it at a relatively low temperature (550°C) (figure 6.7, see paragraph 6.6.1) 

and with a quite shorter time (2h) with respect to what usually employed [217–219]. 
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Figure 6.1: XRD patterns of pure N-LCMO and N-CFO 

and composites N-MIX and NC. All reflections perfectly 

match with those of La0.67Ca0.33MnO3 (ICDD card 00-

049-0416) and CoFe2O4 (ICDD card 00-079-1744, 

reflections marked as *) phases. 

 

 

 

 

 

 

 

Figure 6.2: TEM images of sample N-LCMO (a and b), N-CFO (c and d) at different magnifications  
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This relative low temperature has been demonstrated to be enough to obtain high 

crystalline single-phase perovskite manganite with particles size among the smallest (≈ 

28 nm) reported in literature [218,219]. It is worth to mention that the LCMO nominal 

composition has been confirmed by EDS analysis, within the experimental error (± 5%). 

N-CFO particles exhibit an average diameter of ≈ 5 nm, with a narrow size distribution 

and a high degree of crystallinity (figure 6.2c and 6.2d). Despite the polyol coating, a 

strong aggregation among particles is observed.  

XRD patterns of both N-MIX and NC (figure 6.1) samples show only the main reflections 

of La0.67Ca0.33MnO3 and CoFe2O4 crystalline structures and no other phases are 

detected. The weight fraction of CFO and LCMO, estimated by the Rietveld analysis 

(table 6.1) suggests a ratio of ≈ 30% / 70% and 40% / 60% for N-MIX and NC, 

respectively. Within the experimental error of  5%, almost the same composition can 

be evaluated for the two composites. In both samples, EDS analysis shows that the 

stoichiometric formula of the original LCMO and CFO phases have been maintained. 

 

Sample <DXRD> CFO <DXRD> LCMO 
CFO 

(± 10 %) 
LCMO 

(± 10 %) 

N-LCMO - 28(1) nm - 100 % 

N-CFO 5(1) nm - 100 % - 

N-MIX 10(1) nm 43(1) nm 30 % 70 % 

NC 6(1) nm 32(1) nm 40 % 60 % 

 

Table 6.1: The average coherent crystalline domain size <DXRD> and the CFO / LCMO perceptual evaluated 

by Rietveld refinement using MAUD. Uncertainties in the last digit are given in parenthesis. 

 

 

TEM bright field images of the N-MIX sample are shown in figure 6.3a-d. The sample 

consists of two kinds of particles aggregates randomly distributed. In particular, in 

figure 6.3c the circles indicate different LCMO and CFO particles aggregates; the LCMO 

aggregates are generally larger than the CFO ones, which own an average size around 

300 nm. It is important to stress that an intimate mixing between the two phases has 

never been observed in this sample. 
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Figure 6.3: TEM images of sample N-MIX are shown in panel (a), (b) and (c), where the two circles identify 

the CFO and LCMO particles aggregates. Panel (d) reports the electron diffraction image of N-MIX. Panels 

(e) and (f) show the structure of sample NC; the CFO particles presence can be detected only with a darkfield 

image as in panel (g). The selected area electron diffraction image (SAED) of NC is reported in panel (h). 



125 

 

On the other hand, the NC sample shows clearly a different morphology: LCMO 

particles are generally less aggregated, and there is no trace of CFO particles at a first 

sight (figure 6.3e and f). Their presence is only revealed by TEM dark field images. In 

particular, figure 6.3h shows a selected area electron diffraction (SAED) pattern 

corresponding to the sample area imaged in figure 6.3f. It consist of intense diffraction 

spots, randomly distributed, and weak diffraction rings. Analyzing the interplanar 

distances obtained by SAED, it is possible to associate the origin of the intense 

diffraction spots to the presence of quite large LCMO crystals, and the diffraction rings 

to the presence of small CFO crystals oriented in all the directions. Figure 6.3g is the 

dark field image of figure 6.3f, obtained using part of the first diffraction ring. In this 

way, the CFO particles, responsible for that part of the diffraction ring, appear bright in 

the image. This picture clearly shows as the CFO particles do not form aggregates and 

are homogeneously distributed in the LCMO phase. The size of the cobalt ferrite 

particles is in perfect agreement with that measured for the CFO sample; instead, LCMO 

particles appear, in some cases, larger than those in N-LCMO. Concerning the particles 

size, TEM analyzes confirm XRD results. It is worth to note that sample N-MIX presents 

larger mean crystallite size for both LCMO and CFO phases compared to those of the 

original untreated compounds (table 6.1). On the other hand, sample NC shows LCMO 

particles only slightly larger than the untreated ones while the CFO particles keep their 

original size within the experimental error. This suggests that in NC sample the good 

dispersion of CFO particles inside the LCMO matrix protects them, avoiding their 

growth during the calcination of the pellet. 

 Magnetic properties 

The ZFC-FC of N-MIX sample, (figure 6.4c)  shows the FM/PM transition with the 

magnetization which falls to zero in both curves above ≈ 260 K, where the TC for LCMO 

of this composition is expected (figure 6.4a) [220,221]. No evidence of 

superparamagnetic transition related to CFO nanoparticles is identified, even if its 

presence has been clearly demonstrated by XRD and the results in M(H) curves. 

Considering the peak produced by the blocking temperature of pure CFO (figure 6.4b), 

it is reasonable to think that its contribution in ZFC-FC curves, should produce a signal 

that is hidden by that much stronger of LCMO, which represents ≈ 80% of the sample. 

To enforce this hypothesis, an artificial curve has been created by summing the 

contribution of CFO and LCMO curves with a weight ratio of 20 and 80 %, respectively 

(figure 6.9 in paragraph 6.6 supporting information). As expected, this curve exhibited 
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the same trend of that of N-MIX. Sample NC presents a ZFC curve with two clear peaks 

(figure 6.4d). The peak at ≈ 240 K reproduces exactly that of CFO phase (figure 6.4b). 

On the other hand, the peak around ≈ 110 K could be related to the presence of the 

nanostructured LCMO phase. This hypothesis is confirmed comparing the ZFC curve 

with that of a further composite, labelled as NC2, prepared with the same procedure 

of NC, but employing only 5% in weight of CFO phase. Its ZFC curve exhibits the 

dominant contribution of LCMO (figure 6.4d); the FM/PM transition is shifted toward 

lower temperature, with a drop in magnetization value, which induces a peak exactly 

around ≈ 110 K. This landscape can be confirmed and better described the TRM 

measurements [127] in 6.6.4 (see appendix 8.2.1 for detailed description of the 

method). 
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Figure 6.4: The ZFC and FC curves (empty and full symbols, respectively), for sample N-LCMO (a), N-CFO (b) 

and N-MIX (c) are shown. Panel (d) reports the ZFC-FC curves of sample NC (empty and full circles) and NC2 

(empty and full triangles). 
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 Reversal mechanism of the magnetization 

The field dependence of magnetization recorded at 5 K shows a clearly different 

behavior for N-MIX and NC samples (figure 6.5a). The loop shape of the N-MIX sample 

is typical of a not coupled system, being close to a simple superposition of the 

hysteresis loops of pure CFO and LCMO phases (figure 6.5b and c). Indeed the coercive 

field μ0HC reproduces the same value of N-LCMO, while the saturation field μ0HSAT is 

quite close to that of the pure CFO component (figure 6.5c and table 6.2). Both LCMO 

and CFO components are clearly detectable, but they appear acting individually, 

without a significant coupling. On the other hand, the M(H) curve for the NC sample 

(figure 6.5a) exhibits a nearly single phase behavior, indicating a strong coupling 

between LCMO and CFO phases. A closer inspection indicates the hysteresis loop is 

slightly constricted. This suggests a magnetic behavior that is placed in the transition 

region between that of a rigid magnet, where the soft and hard phases reverse 

coherently, and that of an exchange-spring system, characterized by an incoherent 

reversal mode, where the soft phase reverses first and support the switching of the 

hard component [30]. 
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Figure 6.5: M Vs H curve of N-MIX (circles) and NC (triangles) are reported in panel (a). The curves for N-

LCMO (b) and N-CFO (c) single phases are reported for comparison. For N-MIX (circles) and NC (triangles) 

the switching field distributions are reported in panel (d), while the original DCD curves are reported in inset 

(e).  
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It should be underlined that the saturation magnetization values (table 6.2) of both 

samples are lower with respect the bulk LCMO (≈ 97 A m2 kg-1), but the same results 

have been previously reported [222–224] supposing a magnetically disordered surface 

as the origin of reduction in saturation magnetization in nanoparticles. 

A more detailed investigation of the magnetization reversal has been performed 

analyzing the field dependence of the remanent magnetization measured by IRM and 

DCD protocols (table 6.2 and figure 6.11, paragraph 6.6.5, for pure phases). The SFD 

(see appendix 8.2.3 for detailed description) of sample N-MIX (figure 6.5d) presents a 

strong contribution centered at low field (≈ 0.05 T) as for the pure LCMO, and only a 

very weak signal due to high field contribution (≈ 1.73 T) of CFO phase, even at higher 

field than that of the pure one. It is a matter of fact that sample N-MIX shows the 

individual contribution of these two phases without a clear coupling. On the other 

hand, sample NC presents a different picture (figure 6.5d): both the contribution of the 

pure phases are visible but the two average switching fields are shifted closer with 

respect the original pure phases, as results of a strong coupling between them. 

 

 

Table 6.2: Saturation magnetization (MS), coercive (μ0HC) and saturation field (μ0HSAT), susceptibility at 5 T 

(dM/dμ0H), average switching field (μ0HC
SFD), and reversal field (μ0Hrev) measured at 5 K. Uncertainties in 

the last digit are given in parenthesis. 

 

The magnetic field dependence of the IRM and DCD magnetization is compared in so 

called ΔM-plots [225] in order to study the nature of magnetic interactions (table 6.2). 

Both N-MIX and NC show plots with negative deviations of the curves (figure 6.12c and 

Sample 
MS 

(A m
2
 kg

-1
) 

μ0HC (T) 
μ0HSAT 

(T) 

dM/d μ0H at 5T 

(A m
2
 kg

-1
 T

 -1
) 

μ0HC
SFD 

(T) 
μ0Hrev 

(T) 

N-LCMO 44(2) 0.050(1) 0.3(1) 0.05(1) 0.05(1) 0.07(1) 

N-CFO 107(6) 0.83(1) 3.2(4) 1.55(7) 1.10(1) 0.85(5) 

N-MIX 54(3) 0.067(1) 3.4(6) 0.26(1) 
0.05(2) 
1.71(2) 

0.07(1) 
1.83(5) 

NC 44(3) 0.94(1) 3.1(1) 1.5(2) 
0.42(5) 
0.31(5) 

1.25(5) 
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d), which reveal the prevalence of dipolar interactions [161,226,227]. Furthermore, 

sample N-MIX exhibits two different dips in the ΔM plots, indicating two mechanism of 

interaction, which are compatible with the independent interactions of LCMO and CFO 

particles. This is in agreement with the morphology evidenced in the TEM images, 

where LCMO and CFO particles are shown to form distinct aggregates, thus inducing 

interactions manly among particles of the same phase. In a stark contrast, sample NC 

shows a single broad signal centered at ≈ 1.25 T, thus confirming an almost single-phase 

interaction mechanism between LCMO and CFO, which is strongly related to the 

morphological structure of this sample. The coupling between CFO and LCMO particles 

is strong enough to shift the reversal process of the LCMO toward higher fields, far 

above its original coercive field. It allows an almost single magnetization switching, 

mostly related to the high field process of the CFO component, remarking the same 

behavior shown in M(H) curve. 

 Magnetoresistance 

Coherently with the differences in morpho-structural and magnetic properties, the two 

nanocomposites exhibit a well distinct electrical behavior. R Vs T curve of sample N-

MIX (figure 6.6a) shows a peak at a temperature TR (≈ 123 K) lower than the TC (≈ 260 

K) of LCMO component, when the metal-insulator transition occurs. This behavior is 

typical for systems in which the resistivity is dominated by grain boundaries [228] 

and/or surface effects [229]. The measured magneto-resistance (MR) effect (figure 

6.6b) shows a continuous increment reducing temperature until ≈ 120 K, when all 

material undergoes the FM-metallic transition. Then it remains almost constant down 

to ≈ 50 K; on further lowering of temperature an upturn is observed in resistance 

signifying Coulomb blockade phenomenon that is seen in metallic nanoparticles [230]. 

The low energy of the charge carriers at a so low temperature cannot contrast the 

coulomb repulsion and hence reduces the probability of tunneling [231], leading to a 

new insulating regime. Finally, the application of an external field induces a common 

spin orientation reducing the electronic scattering [207], as result the overall resistivity 

is reduced (figure 6.6a). 
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Figure 6.6: The temperature dependence of the resistance is reported in panel (a) for sample N-MIX (circles), 

NC (triangles in inset) and NC2 (squares) without (empty symbols) and with an applied magnetic field of 5 

T (full symbols). It is important to note that for sample NC the two curves are almost superimposed. Panel 

(b) reports the temperature dependence of the magnetoresistance for N-MIX (circles), NC (triangles) and 

NC2 (squares). For sample N-MIX, the magneto-resistance measured at 5 K and 150 K are reported in panel 

(c) and (d), respectively. A magnification at low field is reported in the respective insets, with arrows 

indicating the direction of field sweeping. 

 

On the other hand, sample NC shows high resistance values with a strong increment on 

reducing the temperature (figure 6.6a), reaching an unmeasurable high value below 

180 K. Such strong resistivity can be related to the specific structure of the sample. The 

CFO component in sample N-MIX does not increase the overall resistivity, since the CFO 

agglomerates do not represent a significant obstacle for the electric flow within the 

LCMO phase. On the other hand, the core/shell-like structure of NC owns a very fine 

and homogenous distribution of the insulating CFO, which promotes an insulating 

character for the composite [54]. Furthermore, no magneto-resistance effect is visible 

and the two curves with and without applied field are almost perfectly superimposed. 
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By the way, one should note that cooling down the sample, the MR curve exhibits a 

small negative peak (- 8 %) at ≈ 240 K, which could be related to the onset of the FM 

ordering. Analyzing the R Vs T curve of NC2 sample, an intermediate behavior is 

observed (figure 6.6a and b). A magnetoresistance effect is clearly visible but still the 

absolute value of resistance can be measured only down to ≈ 130 K. This suggests that 

the conductivity of such core/shell composites can be tuned, e.g., modifying the 

CFO/LCMO ratio and/or particles size. 

The MR behavior of N-MIX sample was further investigated by collecting R Vs H loops 

at constant temperatures. As shown in figure 6.6c the sample at 5 K shows a 

conventional behavior; sweeping the field from + 8 to - 8 T, a peak in MR is visible with 

a negative applied field μ0HC
MR, while sweeping in the opposite direction, the peaks 

appears with a positive μ0HC
MR. This is in contradiction to the inversion of R(H) loops 

observed in macroscopic composite of LSMO and CFO [215] . However, measuring the 

R(H) loops at higher temperatures leads to a decrease in μ0HC
MR and interestingly the 

R(H) loop is inversed for temperature above 100 K. The MR peak occurs before the 

switching of the direction of the applied field, reaching a maximum opposite value 

around 150 K (figure 6.6d). Such dipolar biasing effect [215] occurs at a low applied 

field, when the residual magnetization of CFO produces a stronger local dipolar field 

that leads to the antiparallel coupling of LCMO, which switches its magnetization, 

before the inversion of the external field Hext, but the dipolar field effect disappears 

under 100 K.  

 Conclusions 

We have reported the novel design of nanocomposites of transition metal oxides with 

tailored magnetic and electrical properties. We have illustrated the relationship 

between synthesis methods and morphology-physical properties using the well-known 

La0.67Ca0.33MnO3 (LCMO) and CoFe2O4 (CFO) oxides as model systems. The properties of 

a mechanical mixture of LCMO and CFO phases were compared with those of a 

nanocomposite prepared by a new synthetic approach. Structural and morphological 

characterization clearly showed a strong aggregation of CFO nanoparticles in N-MIX 

sample, hindering an intimate contact between the two magnetic phases. On the other 

hand, NC sample showed a very homogeneous morphology, with CFO nanoparticles 

well dispersed in the LCMO matrix. Consequently, a strong magnetic coupling has been 

shown by the NC sample, with magnetic behavior that can be considered in the 
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transition region between that of a rigid magnet and that of an exchange-spring system. 

On the other hand, a very poor coupling has been evidenced for the N-MIX, with 

independent reversal mechanism for LCMO and CFO phases. Similarly, both samples 

showed clearly different electrical behavior. While the NC composite is highly 

insulating, magnetoresistance and dipolar biasing effects are observed in the N-MIX 

sample. 

La0.67Ca0.33MnO3-CoFe2O4 samples have been used as a model system to illustrate this 

novel approach, and they represent a first attempt to produce such new 

nanocomposites of strongly correlated materials. Further improvement can be 

achieved by tuning the relative amount of CFO and its particles size. As well as creating 

an inverse core-shell structure, where LCMO represents the core surrounded by a thin 

CFO layer. 

 Supporting information 

 Calcination process 

A calcination process was employed in order to produce the complete crystallization of 

the manganite phase after the sol-gel synthesis. Performing several attempts at 

different temperature, the optimal condition has been found at 550 °C (figure 6.7), 

reaching the complete crystallization as the lowest possible temperature in order to 

retain the smallest particles size. 
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Figure 6.7:  XRD pattern of La0.67Ca0.33MnO3 phase calcinated at several temperatures. 
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 Cobalt doping effect 

In order to clarify the eventual diffusion of cobalt from the CFO to the LCMO phase in 

NC sample, the La0.67Ca0.33MnO3 (ICSD 155408) and the La0.67Ca0.33Mn0.9Co0.1O3 (ICSD 

165817) patterns have been compared with the experimental one. As shown in the 

pattern magnification in figure 6.8, the presence of Co as dopant should produce a 

quite clear shift in the experimental data. If the Rietveld refinement is conduced 

considering the two LCMO phases, the best fit corresponds to 1% in weight of the cobalt 

doped phase, under what can be considered the experimental error on this 

measurement (estimated around 5 %). Furthermore, if the fitting is forced using only 

the Co doped phase, but leaving the Co and Mn contents as free parameter, the best 

fit evaluates the Mn content as 0.9999 and the Co as 0.0001, strongly supporting its 

absence. 

 
 

 

 

Figure 6.8: Magnification of XRD pattern of NC sample in the range 35-65° (2-Theta).  
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 Simulated ZFC-FC curves for N-MIX sample 
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Figure 6.9: The experimental ZFC-FC curve (empty and full circles, respectively) and the artificial one (empty 

and full triangles, respectively) are shown. The two curves exhibit similar trends, with no clear evidence of 

the CFO contribution. 
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 TRM and derivative curves analysis 
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Figure 6.10: The TRM curves and their derivatives are shown for N- LCMO (a and b), N-CFO (c and d), N-MIX 

(e and f), NC (g and h), and NC2 (i and j). For NC, the curves measured with an applied field of 2.5 mT, 50 

mT and 100 mT are represented as circles, squares and triangles, respectively. 
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d(TRM)/dT curve (appendix 8.2.1 for a detailed description of the method) of NC 

sample measured at 2.5 mT (circles in figure 6.10h) shows a peak at ≈ 190 K perfectly 

compatible with the SPM behavior of pure CFO (figure 6.10d). Furthermore, two 

signals, centered at ≈ 111 K and ≈ 50 K are identified. In order to better analyze the 

nature of these two signals, the TRM and derivative curves have been measured at 

different fields (figure 6.10g and h). The peak at highest temperature shows a field 

dependent behavior, in agreement with the SPM blocking of CFO phase. On the other 

hand, the peak at ≈ 111 K does not show such field dependence, confirming that it can 

be related to the drop of the magnetization due to the LCMO FM / PM transition, which 

occurs at a temperature lower than expected (≈ 260 K). Again, this interpretation can 

be confirmed by the TRM of NC2 sample reported in figure 6.10i and j, where a TC ≈ 

200 K can be estimated. Such TC shift could be ascribed to cobalt or iron doping in LCMO 

structure, owing to the thermal treatment on the composite. Nevertheless, carefully 

analyzing the XRD pattern, no trace of such cobalt inclusion has been evidenced (figure 

6.8). On the nanoscale, a disordered magnetic structure arises at particles surface due 

to broken lattice symmetry and possible defects. Such defects induce larger Mn-O 

distance and a corresponding smaller Mn-O-Mn angle, inducing an effect on the local 

TC temperature. Reducing particles size,  the surface to volume ratio increases and the 

surface disorder has a strong influence on the TC of the whole particle, in particular 

under 40 nm, as experimentally observed by Markovic et al. [233]. Conflicting 

experimental results have been reported in literature for the particle size dependence 

of TC in manganites, probably mainly due to slightly different oxygen content and 

preparation procedure, which has a strong influence on particles surface. Anyway, 

Montecarlo simulations have shown that the reduced ionic coordination at particles 

surface lowers the TC for NPs [234], as confirmed by a systematic study on the effect of 

particles size on La0.6Pb0.4MnO3 by Zhang et al. [235]. The monodomain critical radius 

for manganites has been predicted around 40 nm [236] and a SPM blocking or spin-

glass like freezing has been suggested by several authors [219,237,238]. Anyway 

Markovich et al. [233] have found similar TC size dependence, observing that the ZFC 

curve peak has an AC frequency dependence, typical of interacting SPM particles, only 

for size around 10 nm, enforcing the hypothesis of a simple phase transition origin of 

the peak.  

Finally, in d(TRM)/dT curve of NC, a small peak appears at ≈ 50 K. Several authors have 

claimed to observe a spin-glass-like behavior in LCMO around ≈ 40-50 K [239–241], but 

in most of the cases this can be assimilated to the paramagnetic-ferrimagnetic (PM-
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FiM) transition of Mn3O4 impurities (TN ≈ 43 K) [242,243]. This can give a significant 

magnetic contribution even with an amount that is smaller than the XRD detection limit 

[244]. A second possible origin for such peak can be the freezing of a disordered surface 

shell on a ordered FM core, as reported by Zhu et al. for LSMO particles under 50 nm 

[245]. However, no field dependence of this peak is observed by measuring ZFC-FC-

TRM in different fields, instead, an increment of the magnetization compatible with a 

small fraction of impurities is evident. 
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 IRM, DCD and ΔM-plots 

For a more complete analysis of the two composites, a comparison with the pure LCMO 

and CFO phases has been carried out. For the sake of clarity, the detailed IRM e DCD 

curves with the respective derivatives are measured for each sample and shown in 

figure 6.11, while the obtained ΔM plots are compared in figure 6.12 (for a detailed 

description see appendix 8.2.3). 
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Figure 6.11: IRM (circles) and DCD (triangles) curves of samples N-LCMO (a), N-CFO (c), N-MIX (e), and NC 

(g). The corresponding derivatives curves  χirr = dMIRM/dμ0H (circles) and χirr = dMDCD/dμ0H (triangles) are 

reported in panels b, d, f, and h for samples N-LCMO, N-CFO, N-MIX, and NC, respectively, with data 

magnification reported in insets. 
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Figure 6.12: ΔM plots of samples N-LCMO (a), N- CFO (b), N-MIX (c), and NC (d). 
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Chapter 7  

Summary and perspectives  

The magnetic anisotropy is a key parameter to tune the magnetic properties of 

nanoparticles. In this view, the main work covered by this thesis has been to explore 

several ways to tune the magnetic anisotropy in nanoparticles based materials. 

It has been observed the effect of particles volume on the MAE, with a particular 

attention devoted to the importance of the size distribution. The aspect maps have 

been proposed as a new tool to analyze particles morphology; their potentiality has 

been practically demonstrated in the study and tuning of the HTD synthesis of 

nanoparticles. As result, narrower size and shape distributions have been obained, with 

a clear improvement in the switching field distribution of the system. 

Analyzing the properties of particles smaller than 10 nm, it has been shown the strong 

contribution of the surface anisotropy at this size scale. The origin of the surface 

anisotropy has been reduced to the symmetry breaking at the nanoparticle’s surface, 

inducing changes in the topology of the superficial magnetic moments and 

consequently in exchange integrals (through superexchange angles and/or distances 

between moments). As example of organic surfactant, the wide employed oleic acid 

coating has been studied, demonstrating its role in providing a more ordered 

environment around surface spins, thus reducing the surface anisotropy. Anyway, with 

particles smaller than 5 nm such effect is limited, becoming the surface component of 

anisotropy comparable to the bulk magnetocrystalline contribution. The oleic acid has 

been compared to the diethylene glycol, observing as the second reduces the local 

surface anisotropy better than the first does, showing in addition a much larger 

saturation magnetization. The analysis of the effect of different coatings is still an open 

topic, which deserves a particular attention, representing a way to modify the magnetic 

properties. 

In this context, a further step will be to analyze particles with different shape, e.g., 

spheres, cubes, octapods, in order to study the effect of faces and edges in inducing 

surface spin ordering and its effect on the local anisotropy. 
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Figure 7.1: Examples of ferrite nanoparticles with spherical (a) and cubic (b) shape. Furthermore, an 

example of star-like shape (octapod) is shown in panel (c). Synthesis and characterization have been 

performed at NTNU University in collaboration with Doc. Gurvinder Singh. 

 

 

A new and interesting development in this field is represented by hollow nanoparticles 

(HNPs), in which the surface component is maximized at the expenses of particles core 

(figure 7.2). Surface effects are more pronounced due to the availability of extra surface 

layer (inner layer) in addition to the interface between randomly oriented grains (outer 

layer), which contributes to enhance the total surface area.  

 

 

Figure 7.2: Hollow nanoparticles.  
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Recent studies have been accomplished in order to investigate the effect of such inner 

and outer spin disorder on the surface anisotropy and its relation with exchange bias 

[246]. Thus, the large particle anisotropy obtained for hollow nanoparticles can be 

attributed to the enhanced contribution from both “surface” and “finite size effects” 

[247]. In addition HNPs are promising materials for several applications, e.g., they can 

be used in biomedicine, in particular in target drug delivery because of its magnetic 

properties and hollow structure [12]. 

Using ferrite nanoparticles as a model system, it has been studied the effect of the 

chemical composition in tuning their magnetocrystalline anisotropy. Modulating the 

content of nickel in place of cobalt, it was possible to tune the effective MAE in a range 

of two order of magnitude. In addition, the same samples have showed an interacting 

regime in which has been evidenced the competitive role of single particle anisotropy 

and interparticle interactions. These results have been explained in the framework of 

a modified random anisotropy model. The conclusion are of interest, not only from a 

fundamental point of view, but also for their potentialities to design material for 

specific applications. As demonstrated by the results of the modified RAM study, it is 

possible to develop systems in which the thermal switching and the field switching of 

the magnetization can be modified separately, opening new interesting perspectives 

for technological applications.  

Nowadays, several advanced magnetic and magnetoelectronic devices rely on the 

interface exchange coupling (EC) between different magnetic phases (e.g., magneto-

recording, magnetoresistive random access memories, spring magnets, magnetic 

tunnel junctions, microwave absorption, and permanent magnets), where EC 

nanocomposites of hard-soft magnetic phases can be advantageous over single 

magnetic nanoparticles [30,82,248–250]. The great challenge for optimizing the 

performances of such devices is to control the interface exchange coupling strength 

through a proper engineering of the nanostructure. This offers a new degree of 

freedom in order to tune the coercivity, which represents the technological key 

parameter for any application of magnetic materials. Actually, the exchange interaction 

across the FM-FiM / AFM interface gives rise to an additional exchange anisotropy, 

which affects the magnetization reversal process of the whole system, producing 

significant changes in the coercivity [29,30,251]. Moreover, the increasing demand for 

miniaturization and enhanced thermal switching stability of magnetic devices 

stimulates a growing interest on the study of the magnetic properties of FM/AFM 



143 

 

exchange coupled systems, on a nanometric scale in at least one of their dimensions 

[47]. However, the effects of the size-confinement on the FM/AFM exchange coupling 

mechanism are still unclear and further fundamental studies are needed in the 

perspective of future technological applications. 

Nanostructured composites, as those proposed in chapter 6, represent the starting 

point to develop exchange coupled FiM/AFM systems. The analysis of different 

nanostructures has shown that the mechanical mixing induces a small coupling 

between the two magnetic phases, but it has produced an interesting dipolar bias effect 

important for the magnetotransport properties of the sample. On the other hand, the 

core/shell-like approach has demonstrated to represent an optimal way to maximize 

interface contact between the two phases in order to produce a strong exchange 

coupling. A further development of exchange coupled nanostructured compounds will 

be the deposition of FiM particles onto an AFM substrate, (e.g., La0.33Ca0.66MnO3). 

 

 

Figure 7.3: TEM image and graphical sketch of cubic nanoparticles of cobalt ferrite deposited onto a LCMO 

AFM film. The design of these materials has been performed in collaboration with Doc. Gurvinder Singh 

(NTNU University). 
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Chapter 8  

Appendix 

 Perovskites 

Perovskites are ABO3 structured compounds where A represents a large radius cation 

and B a small radius one. A cations describe the corners of a cubic cell, an oxygen ion is 

sited in the center of each cubic face and a B cation is sited in the center of such cell. 

Thus, the small B cation owns an octahedral coordination with 6 oxygen ions, while the 

large A cation is sited in the center of a dodecahedron, coordinated by 12 oxygen ions. 

 

 

Figure 8.1: R1-xAxMnO3 structure. The A-sites are represented by the large cations (largest spheres), while 

Mn in B-sites are described as the spheres inside the octahedra. Oxygen ions are represented as small 

spheres at the vertexes of the octahedra. 
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 Hole-doped rare-earth manganites 

Perovskites manganites own a perovskite structure with manganese representing the 

B cation. Hole-doped manganese oxides has attracted a new attention after the 

discovered of their colossal magnetoresistance (CMR) effect [207]. They own trivalent 

rare-earth elements (R) and a divalent alkaline-earth in A sites in a R1-xAxMnO3 

structure. The mixed valence of cations in A sites produce a mixed valence Mn3+ / Mn4+ 

in B sites. In the ideally perovskite structure, A cations describe a cubic cell, if the ions 

size produces a tolerance factor t = 1: 

 

𝑡 =
𝑟𝐴 + 𝑟𝑂

√2(𝑟𝑀𝑛 + 𝑟𝑂)
          8.1 

 

where rA, rO and rMn are the average A ions size, the oxygen radius and the manganese 

Mn3+ / Mn4+ average radius. Slightly differences from the ideal ions size induce lower-

symmetry distortions versions where the coordination numbers of A and B cations can 

be reduced. The orthorhombic and tetragonal phases are most common non-cubic 

variants. The nature and amount of the R1-X doping represent the main effects on the 

magnetic and electric properties of such compounds. In particular, compositions with 

x ≈ 0.3, usually own a curie temperature TC for the paramagnetic-ferromagnetic 

transition, which also correspond to an insulator-metal transition. 

The octahedral coordinated Mn ions own a splitting of 3d electrons in a lower energy 

triple degenerate state t2g and a higher energy double degenerate eg one. Mn3+ and 

Mn4+ ions own t2g
3 eg

1 and t2g
3 eg

0 configuration, respectively. A Jahn-Teller distortion 

occurs for Mn3+ octahedron, further splitting the energy levels (orbital ordering, figure 

8.2 [252]). A strong Hund coupling emerges inducing parallel arrangement among eg
1 

and t2g
3, allowing thus for an easy hoping trough the Mn-O-Mn bond. It occurs in a 

simultaneous double hopping for Mn3+→O2- and O2- → Mn4+, which is maximized if the 

spins of the two ions own a parallel alignment. These double exchange [253] 

interactions are both responsible of the magnetic order and the conductivity of such 

oxides. 

 

 



146 

 

 

Figure 8.2: Energy level diagram of Mn3+ 3d orbitals 

 

 

La1-xCaxMnO3 is one of the most studied hole-doped manganites with CMR properties. 

The different doping produces a rich phase diagrams with different effect of orbital 

ordering resulting in several possible combinations of magnetic and electric behavior.  

 Magnetic measurements protocols 

The magneto-thermic background of a material deeply influences its magnetic 

behavior. For this reason several magnetic measurements protocol have been 

developed in order to evaluate the magnetic properties of a sample. 

 Magnetization Vs Temperature 

For the magnetization Vs temperature analysis, the Zero Field Cooled (ZFC), Field 

Cooled (FC), and Thermo-Remanent Magnetization (TRM) represent frequently used 

protocols (figure 8.3). To perform ZFC measurements the sample is first cooled from 

room temperature to a low one in zero field; then the magnetization (MZFC) is recorded 

warming up the system, with a static applied magnetic field. With the same magnetic 

field applied, the MFC is recorded during the subsequent cooling to the lowest starting 

temperature. In the TRM measurements, the sample is cooled from high temperature 

to a low one (usually quite under the occurrence of the SPM blocking) in an external 

magnetic field, then the field is turned off and the magnetization is measured warming 

up to the starting temperature.  



147 

 

 

 

TRMFC
T

e
m

p
e

ra
tu

re ZFC
A

p
p

lie
d

 f
ie

ld

time

0

 

Figure 8.3: Graphical description of the ZFC-FC-TRM protocol. 

 

 

For an ensemble of non-interacting nanoparticles, information about the effective 

magnetic anisotropy energy distribution f(T) can be obtained by the TRM derivative 

curve [254]:  

 

𝑓(𝑡) ∝ – 
𝑑𝑀𝑇𝑅𝑀   

𝑑𝑇
             (8.1) 

 

These two quantities are proportional, thus, at a given temperature T’, the thermal 

energy kBT’ allows a fraction of particles to overcome their anisotropy energy barrier 

and to act as superparamagnet. At that temperature, the ratio between the fraction of 

unblocked (PSPM) and that of blocked (PB) particles can be defined as [180]: 

 

𝑅′ =
𝑃𝑆𝑃𝑀

𝑃𝐵
=

∫ 𝑓(𝑇)𝑑𝑇
𝑇𝑚𝑎𝑥

𝑇′

∫ 𝑓(𝑇)𝑑𝑇
𝑇′

𝑇𝑚𝑖𝑛

     (8.2) 
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where Tmin and Tmax represent the minimum and maximum temperatures covered in 

the range of measurement. According to the relation (8.1) and (8.2), the temperature 

corresponding to a value R’ = 1 is identified as that in which the integral of the TRM 

derivative curve reaches 50% of its maximum value; such temperature is usually 

considered as the average blocking temperature TB of the sample [32,180]. However, 

this definition does not consider the number of particles involved in in the SPM state, 

owning bigger particles larger magnetization contribution on the curve, in addition, as 

in composite samples, more than one distribution can be present, thus the evaluation 

of the respective average blocking temperature cannot be solved through the integral 

method. An alternative is to define TB as the temperature corresponding to the peak of 

the derivative curve [255,256], assuming that the particles size distribution is 

symmetric. It is worth to mention that this evaluation can introduce a difference 

smaller than 10 % with respect the other definition [180]. 

 Magnetization Vs Field 

Magnetization Vs field curves have been measured in the range − 5 T to + 5 T of applied 

field (figure 8.4). 
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Figure 8.4: Graphical description of M Vs H protocol. 
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Figure 8.5 shows an example of a curve measured at 5 K, where the analyzed sample is 

below its superparamagnetic transition temperature, and it exhibits a hysteretic 

behavior. The thermal energy is not enough to allow the flipping of the magnetization 

orientation of nanoparticles, which happens only with the application of a threshold 

field, producing the irreversibility behavior in such curves. For NPs ensembles, the size 

distribution translates in a distribution of anisotropy energy; in addition, they are 

supposed to have a random orientation of magnetic anisotropy axis. This means that is 

possible to identify an average field, the coercive field μ0HC, as the field necessary to 

reverse the average magnetization from a negative to a positive value. This field is 

proportional to the average anisotropy energy of the nanoparticles. The point of 

irreversibility of M Vs H curves, which we have measured as the point in which the 

difference between the branches is under the 1% of their maximum value, can be taken 

as the saturation field μ0HSAT, the maximum field that is necessary to apply to reverse 

all the superspins moments. 
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Figure 8.5: An example of M Vs H curve is shown. The coercive field μ0HC , the saturation field μ0HSAT and 

the remanent magnetization MR are evidenced. 
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the remanence magnetization MR can be directly evaluated by the curve as the residual 

magnetization after the field removal. Furthermore the saturation magnetization MS 

was extrapolated fitting the curves at high field using the Law of Approach to Saturation 

(LAS)[37]: 

𝑀 = 𝑀𝑆 (1 −
𝐴

𝐻
−

𝐵

𝐻2
)       (8.3) 

 

where A and B are constant parameters. An alternative approach is to consider also the 

contribution of an high anisotropy component visible only at high field, which exhibits 

a paramagnetic linear behavior [257]: 

 

𝑀 = 𝑀0 (1 −
𝐴

𝐻
−

𝐵

𝐻2
) + 𝜒𝑑𝐻         (8.4) 

 

where M0 represent the spontaneous magnetization and χd the susceptibility of spins 

with the highest anisotropy (e.g., canted spins). 

 The remanent magnetization analysis 

The field dependence of remanent magnetization was measured using the IRM 

(Isothermal Remanent Magnetization) and DCD (Direct Current Demagnetization) 

protocols. According to the IRM protocol, the sample, in the demagnetized state, was 

cooled in a zero magnetic field down to 5 K. Then, a small external field was applied for 

10 s, and after it was switched off, the remanence (MIRM) was measured. The process 

was repeated, increasing the field step by step up to 5 T. In a DCD measurement the 

initial state was the magnetically saturated one. After cooling the sample at 5 K, an 

external field of − 5 T was applied for 10 s, then it is turned off and the remanence 

(MDCD) was measured. As in IRM a small external field in the opposite direction to 

magnetization was applied for 10 s and then switched off, and the remanent 

magnetization was measured. This was repeated increasing the field up to +5 T. 
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Figure 8.6: IRM (a and b) and DCD (c and d) protocols graphical description. 

 

The differentiated remanence curve of MDCD with respect to the field μ0Hreverse (χirr = 

dMDCD/dμ0H), represents the irreversible component of the susceptibility. This quantity 

can be considered as a measure of the energy barrier distribution which, in a 

nanoparticles system, is associated with a distribution of particles coercivities and it is 

generally called the switching field distribution (SFD) [11,70,110]. 

ΔM-plots clarify picture of the interparticles interactions of a sample. For a system with 

uniaxial anisotropy and without interparticles interactions,  the same energy barrier is 

calculated from IRM and DCD curves, as in Wohlfarth relation [225]: 

 

𝑚𝐷𝐶𝐷(𝐻) = 1 − 2𝑚𝐼𝑅𝑀          (8.5) 

 

where mDCD and mIRM are the values of magnetization normalized for the saturation 

remanence for DCD and IRM curves, respectively. Kelly et al. rewrote this expression as 

[258]: 

 

∆𝑀 = 𝑚𝐷𝐶𝐷(𝐻) − 1 + 2𝑚𝐼𝑅𝑀            (8.6) 

 

In presence of interactions, the ΔM plot shows deviation from zero. Negative deviations 

are usually taken as indicative of the prevalence of interactions which stabilize the 
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demagnetized state (i.e., dipole-dipole interactions). Positive values are attributed to 

the prevalence of interactions promoting the magnetized state (i.e., exchange 

interactions) [70]. 
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