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1.1 Microalgae as a biofuel feedstock 

The identification of biofuels feedstocks characterized by environmental, economic 

and ethical sustainability is one of the main challenges to which the scientific 

community involved in the biofuels sector, is called to find a solution. Moreover, the 

biofuels industry, while spreading worldwide at a high rate, is still facing a growing 

dilemma, i.e. the finding of a feedstock source capable of keeping up with demand of 

fuels for the transportation sector. In fact, as energy demands and oil reserves begin 

to falter in their stability, the need for a reliable renewable fuel source grows. In 

Italy, 92% of the energy consumed by the transportation sector is today obtained 

from fossil oil and only the 3.4% from renewable sources (BEN 2013). The data are 

similar to the American consumption in the same field for the same year: 95% comes 

from petroleum and 4.6 % from renewable source (EIA 2013). Biofuels deriving 

from feedstocks such as plants, organic wastes or algae could help to reduce the 

world’s oil dependence (Naik et al., 2010). Moreover, biofuels would mitigate global 

warming problems since all the CO2 emitted during their burning can be fixed by 

plants used as biomass feedstock, through photosynthetic mechanisms. To date there 

are three different generations of biofuels (cf. Figure 1). 

 

Figure 1. Classification of biofuels. 

First generation biofuels are mainly biodiesel (or bio-esters in general) ethanol and 

biogas produced starting from biomass feedstocks such as rapeseed, sugarcane, 

maize, soybeans, palm oil and sunflower. They have now attained economic levels of 



production and their use is continuously increasing all over the world. On the other 

hand, the large scale diverting of farmlands or crops for biofuels can provoke the 

detriment of the food supply as well as a dramatic increase of food price which 

mainly impacts on the most vulnerable regions of the world. Another important 

concern is related to the low areal productivity of energetic crops which results in the 

need of huge land’s areas for meeting the global demand of biofuels (Chisti, 2007). 

This aspect determines important concerns related to the conversion of forests into 

energetic crops which can, in turn, contribute to enhance problems such as soil 

erosion, loss of habitat and reduction of valuable biodiversity. Finally, life cycle 

assessments of first generation biofuels clearly demonstrated that their production 

and transportation can result in the emission of CO2 amounts that approach those 

ones typical of traditional fossil fuels.  

The food versus fuel competition triggered by first generation biofuels has stimulated 

a greater interest for the development of biofuels produced from non-food biomass, 

commonly referred to as second generation biofuels (Timilsina et al., 2010). 

Biomasses to produce the latter ones are basically organic wastes and byproducts that 

may result from different manufacturing processes. Among the others, feedstocks 

can include for example agricultural residues, domestic wastes, wood/forestry 

residues, exhausted cooking oils and food wastes, even if, also non edible oil crops 

might be accounted among the suitable feedstock (Ahmad et al., 2011; Brennan and 

Owende, 2010). The most promising second generation biofuels are those produced 

starting from residual of non-edible lignocellulosic biomasses derived from plants. 

Lignocellulosic biomass is actually one of the most abundant and less exploited 

biological resources on the planet and thus today there is a great interest in 

developing suitable technologies for transforming it into liquid biofuels (Naik et al., 

2010). When compared to first generation ones, second generation biofuels do not 

involve 'food vs. fuel' antagonism, are more efficient and more environmentally 

friendly, require less farmland and can be grown in lands that are not suitable for 

food crops. However, since their production is strictly related to byproducts 

availability, second generation biofuels may not be abundant enough to meet the fuel 

demand on a large scale (Ahmad et al., 2011). 

Third generation biofuels derived from microalgae are considered to be a viable 

alternative energy resource to avoid the major drawbacks associated with first and 

second generation biofuels. When compared to conventional crop plants, which are 



usually harvested once or twice a year, microalgae have a very short harvesting 

cycle, allowing multiple or continuous harvests with significantly higher yields. They 

can be cultivated under hard agro-climatic conditions and are able to produce a wide 

range of commercially interesting byproducts such as fats, oils, sugars and functional 

bioactive compounds. Several microalgae are exceedingly rich in oil, which can be 

extracted and subsequently converted to biodiesel using existing technologies 

(Chisti, 2008). When compared to crops used for first generation biofuels, 

microalgae display superior biomass growth rates. Moreover, the corresponding oil 

content is higher than the one of terrestrial crops since it can exceed 80% of the dry 

weight of biomass. For these reasons the oil productivity of microalgae exceeds that 

one of terrestrial crops even 10-100 times (Chisti, 2008). Microalgae, differently 

from crops, are cultured in aquatic environments. For these reasons, cultivation of 

microalgae can be carried out in less extended and lower-quality lands, thus avoiding 

the exploitation of arable ones. In addition, cultivation of microalgae might be 

coupled with the direct bio-capture of CO2 emitted by industrial activities. Certain 

microalgae are effective in the production of hydrogen and oxygen through the 

process of biophotolysis while others naturally manufacture hydrocarbons which are 

suitable for direct use as high-energy liquid fuels. Therefore, the potential use of 

microalgae as renewable feedstock for the massive production of liquid biofuels is 

receiving a rising interest mostly driven by the global concerns related to the 

depletion of fossil fuels supplies and the increase of CO2 levels in the atmosphere. 

From a conceptual point of view the process shown in Figure 2 can be carried out for 

producing biofuels and capturing CO2 through microalgae. 

 

Figure 2. Conceptual scheme for the production of biofuels and CO2 capture through 

microalgae (Concas et al., 2014). 



Despite the apparent simplicity of the process, its implementation to the industrial 

scale is still not widespread since it is characterized by technical and economic 

constraints that might hinder its full scale-up. 

 

 

 

1.2 Microalgae: importance, photosynthesis and lipid production  

Microalgae, today well recognized to be as one of the oldest living organisms, are 

thallophytes having chlorophyll a as their primary photosynthetic pigment. The 

diversity among algae is enormous, not only with respect to the size and shape of the 

organisms, but also with respect to the various plastids that carry out photosynthesis 

in these eukaryotic cells. Those eukaryotic phototrophic microorganisms, are crucial 

for life on earth. Planktonic algae or phytoplankton, living in the oceans perform 

nearly half of the global photosynthesis (Behrenfeld and Falkowski, 1997). While the 

mechanism of photosynthesis in these microorganisms is similar to that of higher 

plants, they are generally more efficient converters of solar energy because of their 

simple cellular structure. In addition, since the cells grow in aqueous suspension, 

they have more efficient access to water, CO2, and other nutrients. Microalgae 

contain also numerous bioactive compounds that can be harnessed for commercial 

use (astaxanthin, lutein, carotenoids, ω3 and ω6). According to recent researches, 

algal protein is considered also as an optimal source for animal feed since algal 

protein has been estimated to have a relevant profile of amino acid (Gross, 2013). 

Chlorophyll is one of the valuable bioactive compounds that can be extracted from 

microalgal biomass. There are two main types of chlorophyll, chlorophyll a and 

chlorophyll b. Such molecule allows to selectively absorb light in the red and blue 

regions and therefore emits a green colour. Photosynthesis is a process which uses 

the light energy harvested by pigments to convert water and carbon dioxide into 

oxygen and carbohydrates. Ultimately, it converts solar energy into chemical energy. 

The basic chemical equation can be summarized as: 6H2O + 6CO2 → C6H12O6+ 6O2. 

The products from this chemical process reflects its significance, with carbohydrates 

being the primary building block for plants and oxygen being necessary for the 

survival of animal kingdom (Humphrey, 2004). The importance of photosynthesis 

for life on earth is further highlighted by plants forming the basis of all food chains 



(Hosikian et al., 2010). The photosynthetic process (cf. Figure 3) can be divided into 

two sets of reactions: the light-dependent (light) reactions and the light-independent 

(dark) reactions. The first ones, which convert the energy of light into chemical 

energy, take place within the thylakoid membranes of the chloroplasts, whereas the 

dark reactions, which use the produced chemical energy to fix CO2 into organic 

molecules, occur in the stroma of the chloroplast. During the light reactions, the 

energy transported by incident photons is captured by specific pigments and then 

used to "split water" into molecular oxygen, two H+ ions and into one pair of 

electrons, respectively. The energy of light is thus transferred to these electrons and 

is, finally, used to generate adenosine triphosphate (ATP) and the electron carrier 

nicotinamide adenine dinucleotide phosphate (NADPH). These two compounds carry 

the energy and the electrons generated during the light reactions to the stroma, where 

they are used by the enzymatic dark reactions related to the Calvin cycle to 

synthesize sugars from CO2. The main sugar synthesized during the Calvin cycle is 

glyceraldehyde 3-phosphate (G3P). Therefore the net result of the photosynthesis is 

the conversion of light, water and CO2 into G3P and molecular oxygen.  

 

Figure 3. Simplified scheme of photosynthesis in microalgae and lipid production metabolic 

pathways (adapted from Yonghua, 2012). 

 



The synthesized G3P finally passes into the cytosol where it will be involved as 

intermediate in the central metabolic pathways of the cell that lead to the production 

of several macromolecules among which starch, proteins and sugars. In the 

chloroplast also free fatty acids are synthesized starting from G3P. Fatty acids, along 

with G3P, are then transferred to the endoplasmatic reticulum where they are further 

converted into non polar storage lipids, such as triacylglycerides (TAGs), through a 

number of enzymatic reactions. Finally, TAGs are packaged into oil bodies that bud 

off into the cytosol (Sakthivel, 2011). These oil bodies have a fatty acid composition 

comparable to vegetable oils and thus can be extracted from the microalgae cell and 

subsequently converted to useful biofuels (Klok et al., 2013). Specifically, oils from 

algae can yield biodiesel through transesterification, and gasoline (petrol) or jet fuels 

through distillation and cracking, respectively (Georgianna and Mayfield, 2012). 

When compared to first generation biomass feedstocks, microalgae have been found 

to contain higher concentrations of lipids. The average lipid content varies between 1 

and 70% while under specific operating conditions certain species can reach 90% of 

oil weight by weight of dry biomass (Mata et al., 2010). Depending on the specific 

strain considered, microalgae can be characterized by high biomass growth rates 

which, coupled with the intrinsic high lipid content, can lead to very high oil 

productivity. Table 1 shows lipid content as well as lipid and biomass productivities 

of different microalgae species. 
 

Table 1. Biomass productivities, lipid content and lipid productivities of different microalgae 

species (Concas et al., 2014). 

Strain Biomass 
productivity 

(g/L/day) 

Lipid 
content 

(% biomass) 

Lipid 
productivity 
(mg/L/day) 

Reference 

Botryococcus braunii 0,35 17,9 61,8 (Orpez et al., 2009) 
Botryococcus braunii 0,29 17,9 51,4 (Orpez et al., 2009) 
Botryococcus braunii 0,03 36,1 12,3 (Sydney et al., 2011) 
Botryococcus braunii* 0,02 50,0 10,0 (Mata et al., 2010) 
Botryococcus braunii 0,04 22,0 9,5 (Dayananda et al., 

2007) 
Chaetoceros calcitrans  0,04 39,8 17,6 (Rodolfi et al., 2009) 
Chaetoceros muelleri  0,07 33,6 21,8 (Rodolfi et al., 2009) 
Chaetoceros muelleri* 0,07 33,6 21,8 (Mata et al., 2010) 
Chlamydomonas reinhardtii 2,00 25,3 505,0 (Kong et al., 2010) 
Chlorella* 0,00 37,5 18,7 (Mata et al., 2010) 
Chlorella emersonii* 0,04 44,0 30,2 (Mata et al., 2010) 
Chlorella protothecoides 7,30 50,3 3671,9 (Xiong et al., 2008) 
Chlorella protothecoides 4,10 43,0 1763,0 (Cheng et al., 2009) 
Chlorella protothecoides 4,85 36,2 1214,0 (Mata et al., 2010) 
Chlorella protothecoides 2,02 55,2 1115,0 (Xu et al., 2006) 
Chlorella pyrenoidosa* 3,27 2,0 65,4 (Mata et al., 2010) 
Chlorella sorokiniana IAM-212  0,23 19,3 44,7 (Rodolfi et al., 2009) 



Chlorella sp. 0,00 32,6 110,0 (Hsieh and Wu, 2009) 
Chlorella sp. 0,08 66,1 51,0 (Hsieh and Wu, 2009) 
Chlorella sp.* 1,26 29,0 42,1 (Mata et al., 2010) 
Chlorella vulgaris 0,35 42,0 147,0 (Feng et al., 2011) 
Chlorella vulgaris 0,35 42,0 147,0 (Feng et al., 2011) 
Chlorella vulgaris  0,20 18,4 36,9 (Rodolfi et al., 2009) 
Chlorella vulgaris 0,15 23,0 35,0 (Liang et al., 2009) 
Chlorella vulgaris  0,17 19,2 32,6 (Rodolfi et al., 2009) 
Chlorella vulgaris 0,09 34,0 31,0 (Liang et al., 2009) 
Chlorella vulgaris* 0,11 31,5 25,6 (Mata et al., 2010) 
Chlorella vulgaris 0,10 22,0 22,0 (Liang et al., 2009) 
Chlorococcum sp.  0,28 19,3 53,7 (Rodolfi et al., 2009) 
Chlorococcum sp.* 0,28 19,3 53,7 (Mata et al., 2010) 
Crypthecodinium cohnii* 10,00 35,6 3555,0 (Mata et al., 2010) 
Dunaliella primolecta* 0,09 23,1 20,8 (Mata et al., 2010) 
Dunaliella salina* 0,28 15,5 116,0 (Mata et al., 2010) 
Dunaliella sp.* 0,00 42,3 33,5 (Mata et al., 2010) 
Dunaliella tertiolecta* 0,12 43,9 52,6 (Mata et al., 2010) 
Ellipsoidion sp.  0,17 27,4 47,3 (Rodolfi et al., 2009) 
Euglena gracilis* 7,70 17,0 1309,0 (Mata et al., 2010) 
Haematococcus pluvialis* 0,06 25,0 13,8 (Mata et al., 2010) 
Isochrysis galbana* 0,96 23,5 225,6 (Mata et al., 2010) 
Isochrysis galbana  0,17 22,3 38,0 (Su et al., 2007) 
Isochrysis galbana  0,12 14,3 17,2 (Su et al., 2007) 
Isochrysis sp.  0,14 27,4 37,8 (Rodolfi et al., 2009) 
Isochrysis sp.* 0,13 20,1 37,8 (Mata et al., 2010) 
Isochrysis sp.  0,17 22,4 37,7 (Rodolfi et al., 2009) 
Monallanthus salina* 0,08 21,0 16,8 (Mata et al., 2010) 
Monodus subterraneus  0,19 16,1 30,4 (Liang et al., 2009) 
Monodus subterraneus* 0,19 16,0 30,4 (Mata et al., 2010) 
Nannochloris sp.* 0,34 38,0 68,7 (Mata et al., 2010) 
Nannochloropsis  0,17 29,2 49,7 (Rodolfi et al., 2009) 
Nannochloropsis sp.  0,21 29,6 61,0 (Rodolfi et al., 2009) 
Nannochloropsis sp.  0,20 24,4 48,2 (Rodolfi et al., 2009) 
Nannochloropsis sp.  0,17 21,6 37,6 (Rodolfi et al., 2009) 
Neochloris oleabundans 0,31 40,0 125,0 (Li et al., 2008a) 
Neochloris oleabundans 0,63 15,0 98,0 (Li et al., 2008a) 
Neochloris oleabundans 0,15 28,0 37,8 (Gouveia et al., 2009) 
Neochloris oleabundans 0,03 52,0 14,4 (Gouveia et al., 2009) 
Neochloris oleoabundans* 0,00 47,0 112,0 (Mata et al., 2010) 
Pavlova lutheri  0,14 35,5 50,2 (Rodolfi et al., 2009) 
Pavlova salina  0,16 30,9 49,4 (Rodolfi et al., 2009) 
Phaeodactylum tricornutum  0,24 18,7 44,8 (Rodolfi et al., 2009) 
Porphyridium cruentum    0,37 9,5 34,8 (Rodolfi et al., 2009) 
Scenedesmus obliquus* 0,37 33,0 122,8 (Mata et al., 2010) 
Scenedesmus quadricauda    0,19 18,4 35,1 (Rodolfi et al., 2009) 
Scenedesmus sp.  0,26 21,1 53,9 (Rodolfi et al., 2009) 
Scenedesmus sp.* 0,15 20,4 47,4 (Mata et al., 2010) 
Scenedesmus sp.  0,21 19,6 40,8 (Rodolfi et al., 2009) 
Skeletonema costatum  0,08 21,1 17,4 (Rodolfi et al., 2009) 
Skeletonema sp.  0,09 31,8 27,3 (Rodolfi et al., 2009) 
Skeletonema sp.* 0,09 22,6 27,3 (Mata et al., 2010) 
Spirulina maxima* 0,23 6,5 15,0 (Mata et al., 2010) 
Spirulina platensis* 2,18 10,3 224,5 (Mata et al., 2010) 
Tetraselmis sp.* 0,30 13,7 43,4 (Mata et al., 2010) 
Tetraselmis suecica  0,28 12,9 36,4 (Rodolfi et al., 2009) 
Tetraselmis suecica* 0,22 15,8 31,7 (Mata et al., 2010) 
Tetraselmis suecica  0,32 8,5 27,0 (Rodolfi et al., 2009) 
Thalassiosira pseudonana  0,08 20,6 17,4 (Rodolfi et al., 2009) 
* average values are reported     

 



The volumetric lipid productivity of microalgae is extremely variable depending 

upon the specific strain considered, and goes from 0.01 to 3,67 g oil L-1 day-1. 

However, it is worth noting that lipid productivity can be strongly affected by the 

specific culturing conditions adopted, i.e. growth medium composition, light regime, 

photobioreactor configuration and operation mode etc.. Consequently, it can be 

argued that, by suitably choosing the best performing strains, very high volumetric 

productivities of lipids can be achieved by using algae. 

 

 

 

1.3 Parameters affecting microalgae growth 

It is well known that algae growth in batch cultures proceeds according to the five 

main phases depicted in Figure 4 and described in what follows (Jalalizadeh, 2012): 

- a lag phase, where a growth delay takes place when cultivation starts due to 

physiological adjustments of the inoculum to changes in nutrient 

concentration, light intensity and other culture conditions; 

- an exponential phase, where cells grow and replicate exponentially with time, 

as long as all the conditions affecting algae growth are optimized, i.e. 

nutrients and light availability, optimal temperature, pH, etc.; 

- a linear growth phase, where biomass concentration grows linearly as a 

function of time; 

- a stationary growth phase, where the biomass concentration remains constant 

as a result of the reduced availability of nutrients and light that lead the death 

rate to equal the growth one; 

- a decline or death phase, where the decrease in the concentration of nutrients 

and/or the accumulation of toxic waste products lead the death rate to 

overcome the growth one.  

Such a growth behavior can be well described by the mass balance for microalgae 

biomass reported in what follows: 

 d

dX
k X

dt
 

 

where X is the microalgal biomass concentration (mass/volume), µ is the specific 

growth rate (1/time) and kd is the specific mass loss rate (1/time) which accounts for 

all the phenomena that are responsible of biomass depletion, i.e. cell catabolism, 



apoptosis, lysis, etc.. The term (µ - kd) is the net growth rate. While kd is usually 

considered to be constant, the growth rate µ depends upon several factors which can 

affect microalgae growth. Among them, light, nutrient concentration, pH and 

temperature (T) are quite important.  
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Figure 4. Schematic representation of biomass growth in a batch culture (adapted from 

Jalalizadeh, 2012). 

 

 

1.3.1 Effect of light intensity 

Light is essential for the phototropic growth of microalgae. Indeed, although 

photosynthesis has been optimized over three billion years of evolution, it remains 

inefficient at converting solar energy into chemical energy and biomass. The 

theoretical photoconversion efficiency of about 27% drops to 6% due to reductions 

in the efficiency of photon utilization and biomass accumulation (Weyer et al., 

2010). Indeed, although the theoretical maximum productivity of microalgae is 

estimated to be around 170 to 190 g DW m-2 d-1 (Weyer et al., 2010), the reported 

efficiencies in ponds or PBRs ranged from 20 to 35 g DW m-2 d-1 (Rodolfi et al., 

2009) with the present technology and available strains. The reasons for this 

efficiency drop in dense culture conditions are rooted in the very structural 



organization of the photosynthetic apparatus. Oxygenic photosynthesis is performed 

by four multisubunit membrane-protein complexes in the thylakoid membrane: two 

photosystems (PSI and PSII), cytochrome b6f, and ATPase (Nelson et al., 2004). 

Each photosystem includes a core complex that binds cofactors involved in electron 

transport together with additional chlorophyll (Chl) a and β-carotene as antenna 

pigments. Associated with the photosystems is an array of antenna complexes called 

light harvesting complexes (LHCs) which bind Chl a, b and xanthophylls, and 

enhance photon absorption and transfer excitation energy for photochemical 

reactions (Croce et al., 2013; Van Amerongen et al., 2013). LHCs also have essential 

roles in photoprotection, through the dissipation of excess light as heat (non-

photochemical energy quenching, NPQ), and in reactive oxygen species (ROS) 

scavenging. Photosynthetically active radiation (PAR) designates the spectral range 

(wave band) of solar radiation from 400 to 700 nm that microalgae are able to use 

during the process of photosynthesis (cf. Table 2). It should be noted that photons at 

shorter wavelengths (<400 nm) carry a very high energy content that can damage 

microalgal cells, while at longer wavelengths (> 700 nm) the energy carried does not 

allow photosynthesis to take place.  
 

Table 2. Photonic features of major pigments in microalgae (Carvalho et al., 2011). 

Pigment group  Color Ranges of 

absorption bands 

(nm) 

Pigments 

Chlorophylls 

 
Green 450–475 

630–675  
 

Hydrophobic Chlorophyll a 
Chlorophyll b 
Chlorophyll c1, c2, d 

 
Phycobilins  
 

Blue, red  500–650 Hydrophilic  
 

Phycocyanin 
Phycoerythrin 
Allophycocyanin 

Carotenoids  
 

Yellow, orange  
 

400−550  
 

Hydrophobic  
 

β-Carotene 
α-Carotene 
Lutein 
Violaxanthin 
Fucoxanthin 

 

When light penetrates in an optically dense medium such as a microalgal culture it 

experiences attenuation phenomena due to absorption by the medium as well by the 

pigments of microalagal cells. Indeed, the surface layers of microalgae easily reach 

saturation (and hence, photoinhibition) of photosynthesis (Powles, 1984) while the 

inner layers are light limited (Neale et al., 1986). This non-homogeneous light 

penetration results in a low productivity of the system. A reduction in pigment 



content per cell and a reduction in antenna size are targets for optimizing the 

photosynthetic yield of unicellular algae under mass culture (Melis, 2009). 

 

 

1.3.2 Effect of nutrients 

The medium where microalgae grow basically consists of water enriched by macro 

(C, N, P, S) and micro (Mg, Zn, Fe, K, Na etc.) nutrients as well as by the CO2 

transferred from the gas phase (i.e flue gas or air). Besides CO2, whose role in 

photosynthesis has been already discussed in paragraph 1.3.1, nitrogen and 

phosphorous are key elements for algae metabolism. Their suitable balancing in the 

growth medium is thus critical for an effective process design (Mandalam and 

Palsson, 1998). Ammonia, urea and nitrate are often selected as nitrogen source for 

the mass cultivation of microalgae. Although ammonia and urea are often used in 

mass cultivation owing to their relatively low-cost, selecting proper nitrogen source 

for each algal species is important in improving biomass and oil productivity (Li et 

al., 2008b). Urea and nitrate were found to be better nutrients than ammonia for the 

growth and lipid accumulation when considering Chlorella sp., Chlorella vulgaris, 

Neochloris oleoabundans and Scenedesmus rubescens (Li et al., 2008a; Hsieh and 

Wu, 2009). On the contrary, for different strains, the use of ammonia has been 

demonstrated to provoke higher biomass and lipid content than urea and nitrate (Xu 

et al., 2001). It should be noted that the optimal concentration of nitrogen to be 

assured in the growth medium depends upon two counteracting effects. Specifically, 

while a high availability of nitrogen typically leads to a high biomass productivity, a 

decrease of nitrogen concentration in the cultivation broth typically results in higher 

lipid contents counteracted by lower growth rates. Such behavior depends upon the 

fact that, under starvation conditions, nitrogen concentration is not enough for 

activating the metabolic pathways leading to protein synthesis required by growth so 

that the excess of carbon coming from photosynthesis is channeled into storage 

molecules such as triacylglycerides or starch (Scott et al., 2010). This inverse 

relationship between biomass productivity and lipid content makes the choice of the 

suitable nitrogen concentration not straightforward since a trade-off value should be 

assured in order to maximize lipid productivity (Concas et al., 2013). When 

considering phosphorus, microalgae are capable of metabolizing it mainly in 

polyphosphate form. Orthophosphate is generally considered the main limiting 



nutrient for freshwater strains but also in this case its optimal concentration depends 

upon contrasting effects. In fact, phosphorus starvation can result in higher lipid 

productivity, as reported for Monodus subterraneus, while may provoke changes in 

fatty acids composition for Phaeodactylum tricornutum and Dunialella tertiolecta 

(Liu et al., 2007). For all these reasons the preparation of the culture broth is a 

critical step for the entire process of biofuels production through microalgae. 

 

 

1.3.3 Effects of pH 

The time evolution of medium's pH during algal growth is a significant indicator of 

how well are evolving photosynthetic processes. In fact, as algae grow, dissolved 

CO2 is consumed by photosynthesis and, consequently, pH increases. However, pH 

variation not only represent a fundamental indicator of the evolution of 

photosynthetic activity but can also, in turn, strongly affects the growth kinetics of 

microalgae influencing the distribution of carbon dioxide species and carbon 

availability causing direct physiological effects (Cornet et al., 1995; Chen and 

Durbin, 1994). Moreover, in microalgal cultures, the hydrogen ion is recognized to 

be a non-competitive inhibitor near neutral conditions, while it can limit 

photosynthetic growth and substrate utilization rates at very low or very high pH 

levels (Mayo, 1997). Furthermore, pH can affect the enzymatic activity of intra and 

extra-cellular carbonic anhydrase, thus influencing the carbon capture mechanism of 

some microalgal strains (Concas et al., 2012). 

 

 

1.3.4 Effects of temperature 

Temperature is one of the main factors which regulate cellular, morphological and 

physiological responses of microalgae (Mayo, 1997; Durmaz et al., 2007). High 

temperatures generally accelerate the metabolic rates of microalgae, whereas low 

ones lead to inhibition of microalgal growth (Munoz and Guieysse, 2006). Under 

optimal temperature condition, the enzymes of microalgal cells show the highest 

activity. The optimal temperature range for microalgal growth depends on the 

specific strain considered but in general, it typically goes from a minimum of 5°C to 

a maximum of 35°C (Abu-Rezq et al., 1999). The control of temperature is a key 



factor for cultivating microalgae outdoors. Actually, temperature can vary depending 

upon the geographic region of cultivation. Seasonal and even daily fluctuations in 

temperature can interfere with algae production. The internal temperature in 

photobioreactors can reach values that are 30°C higher than ambient one if suitable 

temperature control equipment is not used. To overcome this problem evaporation, 

cooling or shading techniques are successfully employed.  

 

 

 

1.4 Production of biodiesel from microalgae 

Microalgae cultivation systems are very different from those ones typically used for 

producing biomass feedstock for first and second generation biofuels. Therefore, 

when compared to terrestrial crops, the production of microalgae requires specific 

cultivation, harvesting and processing techniques which should be correctly 

implemented to the aim of viably produce biodiesel (Mata et al., 2010). Figure 5 

shows a schematic representation of the process for the biodiesel production through 

microalgae. As it can be seen, the process starts with the CO2 capture and its 

conveying in the cultivation system where microalgae grow exploiting the sunlight 

and the nutrients suitably provided. Then, it follows the biomass harvesting, 

downstream processing and oil extraction to supply the biodiesel production unit. 

Cultivation of microalgae can be performed in open systems (ponds, raceways, lakes) 

or in closed ones, i.e. photobioreactors. Whatever the system being used, a suitable 

source of CO2 must be supplied to microalgae. To this aim, atmospheric air (0.03 

%v/v of CO2), flue gas (9-15% of CO2) or pure concentrated CO2 (100%v/v) can be 

used. Atmospheric air as CO2 source, significantly simplifies the lay-out and the 

operation of the plant while, because of the lower CO2 concentration in air, high 

volumes of air are required in order to sustain microalgae growth at an acceptable 

rate. This can result in very large cultivation systems that require a high land 

availability. On the contrary, when flue gases are used as carbon source, lower flow 

rates of gases should be pumped into the cultivation system for supplying the 

necessary amounts of carbon to sustain microalgae growth. 

Moreover, the use of costless feedstocks such as flue gases as source of CO2 might 

greatly improve the economic feasibility of the microalgae-based technology while, 

simultaneously, producing a positive impact on significant environmental concerns 



such as air pollution and climate changes. For this reason the potential exploitation of 

CO2 from flue gases is one of the main targets of scientists and technicians operating 

in this field (Concas and Cao, 2011; Francisco et al., 2010). However, the use of flue 

gas as carbon source might raise specific concerns related to the toxicity of some of 

its constituents with respect to algae. For this reason the flue gas should be pre-

treated before feeding it in the cultivation system. A further challenge in the carbon 

capture through microalgae is the use of pure concentrated CO2 (100 %v/v) obtained 

from flue gas. In this case in fact, beside the lesser volumes of photobioreactors that 

are needed, the potential poisoning effects provoked by other compounds in flue gas 

(NOx, SOx etc.) could be reduced thus increasing the net growth rate of microalgae. 

 

 

Figure 5. Schematic representation of the "algae to biodiesel" process (Concas et al., 2014). 

Besides CO2, several micro and macro nutrients must be supplied to the culture in 

order to sustain microalgal growth. It is noteworthy to underline that the exploitation 

of costless feedstocks such as wastewaters as sources of macronutrients, might 

greatly improve the economic feasibility of the microalgae-based technology while 

simultaneously producing a positive impact on important environmental concerns 

such as water pollution. In fact, wastewaters, even if pre-treated, may contain 

residual concentration of nitrogen and phosphorus which are capable to sustain 



microalgal growth (Concas and Cao, 2011). In particular, industrial and agricultural 

wastewater and secondary sewage treated effluent can be used as source of nitrogen 

and phosphorus (Devi et al., 2012). For this reason the operation step of medium 

preparation can involve a pre-mixing with wastewater. 

 

 

 

1.5 Cultivation of algae in open ponds and closed systems 

Open pond systems are cheap to construct and different designs have been proposed 

for open ponds, natural or artificial ones, operating at large scale. Typical examples 

are the unstirred ponds (lakes and natural ponds), the inclined ones, central pivot and 

the raceway ponds. Among the others, the most widespread typology of open pond is 

the so called “raceway pond”. However, low-cost open pond systems struggle to 

overcome several problems. These systems are more susceptible to contaminations 

by competing organisms such as mushrooms, bacteria and protozoa. Furthermore, 

since atmospheric carbon dioxide is used as carbon source, its transfer rate is very 

low and consequently carbon starvation phenomena could take place. Finally, 

sunlight is available only at the surface of the pond and hence, in the deeper strata of 

the liquid bulk, light limitation phenomena can arise. In addition open systems do not 

offer control over temperature and lighting. The growing season is largely dependent 

on location and, aside from tropical areas, is limited to the warmer months. 

To overcome limitations related to open system and in the meantime keeping their 

low operating cost, the potential use of closed raceway ponds are currently under 

study. 

Photobioreactors (PBR) are closed systems having no direct exchange of gases and 

contaminants with the environment where culture broth and microalgae are exposed 

to a photonic energy flux which triggers photosynthetic phenomena hence allowing 

biomass growth. Since they are closed reactors the crucial operating parameters such 

as temperature, pH, nutrient concentration, light intensity distribution, mixing, gas 

mass transfer rate can be suitably controlled and optimized. As a result 

photobioreactors typically have higher biomass productivities than open ponds. On 

the contrary, photobioreactors are more expensive and complicated to operate than 

open ponds. 

 



1.6 Brief overview of recent large-scale projects regarding the 

microalgae based technology  

In November 2006, the U.S. Green Energy Technology Company and the Arizona 

Public Service Company signed a joint agreement aimed to conduct an industrial 

research activity whose target was to develop a microalgae production system in 

Arizona State. The microalgae production system was fed with the CO2 of a flue gas 

from a 1040 MW power plant. In fact, the main target of the project was to verify 

whether the flue gas could be used as source of carbon dioxide to sustain microalgae 

growth in a large-scale plant. The microalgae were then subjected to a procedure 

aimed to extract the lipids which, subsequently were converted to biofuels through 

classical transesterification procedures. The achieved biofuels productivity was about 

5000-10000 gallon per acre per year (Keune, 2012).  

In 2007, The National Energy Board of the United States launched the so called 

“Mini-Manhattan Project” whose aim was to verify whether the use of microalgae 

might help the United States to get rid of oil dependence concerns. In this regard, a 

study by Keune (2012) confirmed that in 2010 U.S. had the potential capability to 

produce millions of microalgal bio-oil barrels per day through a commercially viable 

industrial scale production system. In the light of the consideration above, the U. S. 

Department of Energy in 2010 allocated $ 6 million funds to the Arizona State 

University with the aim of establishing sustainable algal biofuel consortium (SABC). 

Furthermore, $ 9 million U.S. dollars were allocated to University of California (San 

Diego) from the Department of Energy to fund a research activity aimed to create an 

algae biofuel commercialization consortium (CABC). Also the Cellana LLC 

consortium of Kailua-Kona and Hawaii was funded with 9 M$ by the US 

Department of Energy in order to support algae development on finance. 

The president Barack Obama made a speech at the University of Miami wherein he 

said that the renewable energy positioning in 2012 is algae bioenergy. In particular, 

he declared that his government would have invested 24 M$ in biofuel development, 

and claimed that “Whether you believe it or not, we can rely on the United States 

home-grown biofuel to replace 17% of imported petroleum fuels” (Keune, 2012). 

China is also paying attention to the microalgae bioenergy development. In the large-

scale microalgae cultivation field, Chinese Academy of Sciences has successfully 

developed a large “S” shaped pipe of closed photo biological reactor. In 2008, 

Shandong University of Science and Technology used the thermal power plant and 



chemical plant flue gas as sources of carbon dioxide to feed microalgae cultivation in 

the tower dimensional cultivation reactor. Subsequently, mature microalgae are 

transferred to energy conversion equipment to product bio-oil. This research results 

improved microalgae production technology. 

In 2010, the Chinese Academy of Sciences and China Petroleum Chemical 

Cooperation held a meeting about “Microalgae Biodiesel Technology Projects” 

where they decide to co-operate in developing microalgae biodiesel technology. Till 

now the outcomes of this cooperation are represented by a pilot study and an outdoor 

middle scale of microalgae energy plant will be established within 2015 (Wei, 2010). 

Hainan Greenbelt microalgae Biotechnology Company realized a microalgae 

cultivation experimental base in Ledong County, the microalgae oil content can 

reach to 28% - 32% .This Company planned to invest  29.8 M$ to develop a 

microalgae project in Hainan province. The target of this project is to produce about 

30 Mtons/year of biodiesel (Li, 2009). 

The new Austrian technology company is brewing a huge plan. They realized a 

microalgae ecological base in the Daqi of Inner Mongolia. It consists of 280 hectares 

of microalgal photobioreactors which have been completed in 2013. Microalgae 

ecological base officially reached industrialization level in 2014 (Li, 2009). 

In 2007, an algae production plant in the north part of Sweden was set to be built by 

Umeå Energi. This project is headed by Swedish University of Agricultural Science, 

and the development funding from Umeå Energi, Umeva AB, Ragn-Sells AB and 

Energi myndigheten. The project is focusing on the wastewater reclamation of algae 

production process, CO2 sequestration from flue gas, and valuable algae biomass 

production. (Aylott, 2011). 

In September 6, 2011, the EU launched an algal bioenergy development action plan 

that will be set to the Algae Development Project (EnAlgae) during the next four 

years. This action focused on the growth and yield information of microalgae and 

giant algae which are growing in the North Western Europe. The National Non-Food 

Crops Centre (NNFCC) in the U.K. and a number of major EU institutions 

participated in this project and provided 14 million euro funds (Wang, 2013). 

 

 

 



1.7 Improving biofuel production by phototrophic microorganisms 

through systems biology  

First generation Sanger DNA sequencing (1997) revolutionized science over the past 

three decades and the current next-generation sequencing (NGS, 2005) technology 

has opened the doors to the next phase in the sequencing revolution (cf. Figure 6).  

Using NGS, scientists are able to sequence entire genomes and to generate extensive 

transcriptome data from diverse organisms in a timely and cost-effective manner (cf. 

Table 3). The last developments, consisting of rapid and simplified library 

preparation methods as well as high throughput sequencing technologies, have 

extended the application of genomics, once limited to human and several model 

species, to many other species including photosynthetic eukaryotic algae. In 

particular, genome data shed light on the complicated evolutionary history of algae 

that form the basis of the food chain in many environments. In the Eukaryotic Tree 

of Life, the fact that photosynthetic lineages are positioned in four supergroups has 

important evolutionary consequences (Kim et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Next-generation sequencing and its applications. The three sources of genetic 

information: genomes, transcriptomes and epigenomes are shown in different columns with 

starting materials (i.e. DNA or RNA). Each application is highlighted in a white box with a short 

description (Kim et al., 2014). 

Albeit oleaginous microalgae are promising feedstock for biofuels, the genetic 

diversity, origin and evolution of oleaginous traits still remains largely unknown. For 



these reasons Whole-genome sequence analyses have become critical in the 

framework of algal research. In addition, several microalgae achieve maximal lipid 

yields only under stress conditions hindering their growth and providing 

compositions not ideal for biofuel applications.  
 

Table 3. Comparison of next-generation sequencing platforms (Kim et al., 2014). 

 

 

 

1.7.1 Nuclear genome 

In spite of their evolutionary importance, algae have been poorly studied due to the 

relatively small community of dedicated researchers and the limited genetic and 

molecular tools available for assessing gene function for these highly diverse groups 

(Tirichine and Bowler, 2011). One exception is the green alga Chlamydomonas 

reinhardtii, a model organism to study photosynthesis and flagella origin using 

whole genome data (Pröschold et al., 2005; Merchant et al., 2007). 

Several whole-genome sequences have become available over the last decade as a 

result of the growing interest in algae as buffers against global warming and as an 

alternative source of biofuel and food. The first algal genome of 16 Mbp in size was 

sequenced in 2004 from the extremophilic red alga Cyanidioschyzon merolae 

(Matsuzaki et al., 2004), followed by the 34 Mbp draft genome from the marine 

diatom Thalassiosira pseudonana (Armbrust et al., 2004). 

Over the last few years, different genomes of important algal groups have been 

sequenced and a large number of other sequencing projects are currently under way. 

The results are providing new information about the evolution of these organisms 

and their dominant functions in marine ecosystems. It is also envisaged that there 

will be an economic benefit deriving from these findings. 



From 2005 onwards, the introduction of NGS has dramatically accelerated genome 

sequencing of algae as shown in Table 4.  
 

Table 4. List of published algal-genome projects (March 2015). 

Genome  Size (Mb) Reference NGS platform 

Chlorarachniophyta  

Bigelowiella natans 

 

94.7 

 

Curtis et al., 2012 

 

Sanger, 454 

Chlorophyta 

Chlamydomonas reinhardtii 

Chlorella variabilis NC64A 

Chlorella protothecoides 

Coccomyxa subellipsoidea 

Volvox carteri 

Micromonas pusilla CCMP1545 

Micromonas sp. RCC299 

Ostreococcus tauri 

Ostreococcus lucimarinum 

 

121 

46 

22.9 

48.83 

137.68 

21.9 

20.9 

13.2 

12.6 

 

Merchant et al., 2007 

Blanc et al., 2010 

Gao et al., 2014 

Blanc et al., 2012 

Prochnik et al., 2010 

Worden et al., 2009 

Worden et al., 2009 

Palenik et al., 2007 

Derelle et al., 2006 

 

WGS 

WGS 

WGS 

WGS 

WGS 

WGS 

WGS 

WGS 

WGS 

Cryptophyta 

Guillardia theta CCMP2712 

 

87.2 

 

Curtis et al., 2012 

 

Sanger, 454 

Glaucophyta 

Cyanophora paradoxa 

 

70.2 

 

Price et al., 2012 

 

Sanger, 454, GAIIx 

Haptophyta 

Emiliania huxleyi CCMP1516 

 

167.68 

 

Read et al., 2013 

 

Sanger 

Heterokonta 

Aureococcus anophagefferens 

Ectocarpus siliculosus 

Nannochloropsis gaditana 

Thalassiosira oceanica 

Thalassiosira pseudonana 

Phaeodactylum tricornutum 

 

56.66 

214 

33.99 

92.04 

32.44 

27.45 

 

Gobler et al., 2011 

Cock et al., 2010 

Qingdao Inst. Bioe. Biop. Tech. 

Lommer et al., 2012 

Armbrust et al., 2004 

Bowler et al., 2008 

 

WGS 

 

 

454 

WGS 

Rhodophyta 

Chondrus crispus 

Cyanidioschyzon merolae 

Galdieria sulphuraria 

Porphyra yezoensis 

Porphyridium purpureum 

 

104.98 

16.55 

13.71 

43 

19.7 

 

Collén et al., 2013 

Matsuzaki et al., 2004 

Schönknecht et al., 2013 

Kasuza DNA Res. Inst. 

Bhattacharya et al., 2013 

 

Sanger 

WGS 

Sanger, GS20 

454, GAIIx 

GAIIx 



1.7.2 Chloroplast genome 

The endosymbiosis hypothesis was proposed to explain the origin of cellular 

organelles such as mitochondria and plastids (Mereschkowski, 1905; Sagan, 1967). 

In evolutionary biology, endosymbiosis specifically refers to a permanent 

irreversible symbiotic relationship in which a cell lives within another cell. Three 

major types of endosymbiosis (primary, secondary and tertiary) are recognized in 

photosynthetic eukaryotes based on the type of endosymbiont: i.e. a prokaryote gives 

rise to a primary plastid, and a eukaryotic endosymbiont gives rise to a secondary or 

tertiary plastid (Bhattacharya et al., 2004). Photosynthetic organelles called plastids, 

however, ultimately trace back to the single primary endosymbiosis where a 

cyanobacterium resided permanently within a heterotrophic eukaryotic host 

(Bhattacharya et al., 2004). This transition from a heterotroph to a photoautotrophic 

eukaryote altered ecosystems significantly because prior to primary endosymbiosis 

only cyanobacteria were able to conduct oxygenic photosynthesis. The first alga 

subsequently diverged into three phyla, the Glaucophyta, Rhodophyta and 

Viridiplantae (green algae and land plants). These three lineages contain two-

membrane-bounded plastids, however, glaucophyte plastids retain the peptidoglycan 

layer between the organelle membranes as in cyanobacteria. Both plastids of 

rhodophytes and glaucophytes contain chlorophyll a and phycobiliproteins with 

unstacked thylakoids, whereas chloroplasts of Viridiplantae contain chlorophylls a 

and b as photopigments with thylakoid stacks (granum). 

Plastid-genome size varies greatly across algal groups from 41 kbp (Micromonas 

pusilla CCMP1545, Worden et al., 2009) to 521 kbp (Floydiella terrestris, Brouard 

et al., 2010), but in general ranges from 100–200 kbp. The small size and highly 

conserved structure of plastid genomes makes the assembly and completion easier 

than for nuclear genomes (Harrison and Kidner, 2011). Sixty-five plastid genomes 

are available in the GenBank database including the euglenophyte Euglena gracilis 

(Hallick et al., 1993), which was the first to be sequenced. Approximately 42% of the 

published plastid genomes are from green algae, 21% are from stramenopiles, and 

14% are from red algae (Kim et al., 2014). 

The chloroplast genome of algae belonging to the Chlorophyta, displays 

extraordinary variability in terms of quadripartite structure, global gene organization 

and intron composition (de Cambiaire et al., 2006).  



The chloroplast genomes are particularly useful for phylogenetic reconstruction 

because of their relatively high and condensed gene content, in comparison to 

nuclear genomes (Leliaert et al., 2012) and represent a useful tool to better 

understand the evolution of algae. Indeed, the last few decades have seen a rising 

interest in chloroplast genome characterization and, as a result, a growing number of 

algae chloroplasts have been sequenced. 

 

 

1.7.3 Mitochondrial genome 

Mitochondrial genes provide valuable information about closely related species as 

well as about populations due to their fast evolutionary rate (Brown et al., 1979; 

Wilson et al., 1985; Zhang et al., 2012). For instance, the cox1 and cox2–3 genes are 

frequently used as mtDNA markers for species identification (Conklin et al., 2009). 

Despite its utility, complete mitochondrial-genome data from algae are still limited. 

To date the mitocondrial genomes sequenced are: 20 green algae, 38 stramenopiles, 

10 red algae, 2 cryptophytes, 2 glaucophytes and 1 haptophytes (Kim et al., 2014). 

Mitochondrial genome sequence data from the Chlorophyta, which includes most of 

the green algal diversification in the Plantae (Keeling et al., 2005), i.e., the 

chlorophyceans, trebouxiophyceans, ulvophyceans, and prasinophyceans (Lewis and 

McCourt, 2004), have revealed a fivefold variation in gene content and a genome 

architecture that varies from compact to expanded (Bullerwell and Gray, 2004; Gray 

et al., 2004; Pombert et al., 2004, 2006; Popescu and Lee, 2007).  

 

 

 

1.8 Genetic tools 

After the gene annotations on the sequences, used during the assembly process to 

determine where the genes start and end, a major part of the work when analyzing 

the algal assembled sequences consists of performing BLAST searches in the NCBI 

database. In fact, it helps determining whether an unknown algal sequence, matches 

with an already known one or, on the contrary, if the obtained sequence refers to 

genes coding for new proteins. For example, the Chlamydomonas reinhardtii 

genome is available within the NCBI and it can be compared with an unknown 



sequence of any algal species. There are different kinds of Blasts according to what 

type of sequence has to be compared; for a transcript the Blast t is considered while 

the Blast n is referred to nucleotides and finally Blast p as far as proteins are 

concerned. The BLAST search in algae bioinformatics is generally used for the 

functional and phylogenetic comparison of the newly sequenced organisms, with the 

already known sequences available in the database. The researcher examines the 

similarities between the sequences, and some of the sequences are downloaded and 

aligned with the data .For the conserved regions, annotations are transferred to the 

sequenced data, providing valuable information for the next step in the analysis 

which is the functional and phylogenetic characterization of the organism. 

Sequence analysis is a set of tools allowing one to carry out further and more detailed 

analyses on the query sequence. In particular, evolutionary analysis, identification of 

mutations, CpG islands and compositional biases, can be performed. The 

identification of these and other biological properties are all clues that aid the search 

to elucidate the specific function of your sequence. 

Functional characterization of organism is an advanced application of algae 

bioinformatics which is carried out to learn more about the algae. It is generally done 

using programming languages such as R. 

A phylogenetic tree is a mathematical structure which is used to model the actual 

evolutionary history of a group of sequences or organisms. The task of molecular 

phylogeny is to convert information available in the form of sequences into an 

evolutionary tree. A great (and ever increasing) number of methods have been 

described to perform this task. The most commonly used methods can be classified 

into three major groups; parsimony methods, likelihood methods, and distance 

methods. In maximum parsimony (MP) analysis, the tree(s) that requires the fewest 

character state changes is considered the best representation of the true phylogenetic 

tree (Kithching, 1998). In maximum likelihood (ML) methods, the likelihood of 

observing a given set of sequence data for a specific substitution model is maximized 

for each tree topology, and the topology that gives the highest maximum likelihood 

is chosen as the final tree (Nei and Kumar, 2000). MrBayes is another approach for 

reconstructing phylogeny and is based on Bayes’ theorem. Bayesian methods are 

closely related to other likelihood methods e.g. the ML analysis which searches for 

the tree that maximizes the likelihood of the data given an evolutionary model. In 

distance methods, evolutionary distances are computed for all pairs of taxa, and a 



phylogenetic tree is constructed by considering the relationships among these 

distance values.  



 

 

 

 

 

 
 

 

CHAPTER 2.  

Aim of the work 
 

 

 

 

 

 

 

 

 

 

 

 



The exploitation of microalgae as renewable feedstock for the production of biofuels 

is receiving a rising interest in response to the global concerns regarding the 

depletion of fossil fuels supplies and the increase of CO2 levels in the atmosphere. In 

fact microalgae can be cultivated thorugh relatively simple systems while using 

costless wastewaters as source of macro-nutrients and finally are capable to 

accumulate high amounts of lipids when cultivated under suitable operating 

conditions. In spite of such interest, the existing microalgae-based technology for 

CO2 sequestration and biofuels production is still not widespread since it is affected 

by economic and technical constraints that might have limited the development of 

industrial scale production systems. Therefore, in view of industrial scaling-up, the 

current technology should be optimized in terms of lipid productivities. In particular, 

the creation of new microalgal strains intrinsically characterized by high lipid 

productivities as well as by a good tolerance to high CO2 levels is an ambitious goal 

which might be achieved through genetic manipulations of strains available in 

nature. Most efforts have focused on stimulating fatty acid biosynthesis by increasing 

the availability of glycerol as a backbone of lipids, and overexpressing the genes 

involved in the triacylglycerol (TAG) biosynthesis pathway (Radakovits et al., 2010). 

However, these efforts have shown limited success, typically yielding less than a 

50% increase in lipid content. Another approach adopted to increase cellular lipid 

content is to block starch synthesis pathways. Several studies have reported the 

overaccumulation of lipid bodies in starch-devoid mutants of Chlamydomonas 

reinhardtii (Li et al., 2010a, 2010b; Wang et al., 2009; Work et al., 2010). However, 

impairing starch synthesis does not necessarily result in higher lipid content (Siaut et 

al., 2011). Therefore, the mechanisms involved in rerouting carbon metabolism from 

carbohydrates to fatty acids are still unknown. 

To this aim, the identification of genes involved in the lipid biosynthetic pathways or 

in the CO2 capture mechanisms represents an essential preliminary step to identify 

the most suitable genetic engineering strategy to improve lipid productivity of 

existing strains. For these reasons, sequencing of microalgae genomes has started to 

capture the interest of researchers during the last decade. However, while there are 

hundreds of strains potentially useful for producing biofuels, only 23 strains have 

been, so far, completely characterized from the genomic point of view. 

The aim of this thesis was to genetically characterize some among the most 

promising algal strains in view of their commercial application for the production of 



biofuels or CO2 capture. In particular 6 microalgal strains have been considered in 

this work: Chlorella sorokiniana SAG 211-8k, Pseudochloris wilhelmii SAG 55.87, 

Monodus subterraneus SAG 848.1, Scenedesmus obliquus SAG 276-1, Chlorella 

variabilis NC64A and Tetraspora sp. SCCA024. However, to date, only the genetic 

characterization of chloroplast and mitochondrial DNA of the strains Chlorella 

sorokiniana and Chlorella variabilis has been completed. The latter ones are very 

promising strains and in particular C. sorokiniana may be exploited for wastewater 

treatment because of its high specific growth rate and high affinity for acetic acid, an 

important contaminant found in wastewaters. In addition, it has been demonstrated in 

the literature that this strain is capable to fixe CO2 with a good efficiency thus being 

potentially useful for CO2 capture from flue gases (Wan et al., 2011). Finally, C. 

sorokiniana was found to be rich in proteins, several important minerals, lipids and 

anti-oxidants such as astaxanthin and β-carotene.  

On the other hand, C. varibilis is a model system to investigate virus/algal 

interactions and is potentially useful to study plant hormones (and receptors). A 

deeper understanding of the role of plant hormone molecules in green algae as well 

as of their synthesis and perception would possibly lead to the selection and 

improvement of better algal strains that could improve agricultural practices in 

developing countries (Stirk et al., 2002), result in better production of biodiesel, and 

enhance the quality and quantity of nutrient supplements (proteins, vitamins, etc.) 

(Blank et al., 2010). 

Subsequently, similarities and differences between strains belonging to green algae 

will be assessed with a specific focus on the identification of genes over/under 

expressed in those strains which are capable of accumulating high amounts of lipids. 

Finally, a suitable genetic manipulation strategy will be first identified and then 

implemented in order to improve the lipid productivity of wild strains. 



 

 

 

 

 

 

 

CHAPTER 3.  

The phylum Chlorophyta 
 

 

 

 

 

 

 

 

 

 



3.1. Trebouxiophyceae 

The green algae represent one of the most successful groups of photosynthetic 

eukaryotes, but compared to their land plant relatives, surprisingly little is known 

about their evolutionary history. This is in great part due to the difficulty of 

recognizing species diversity behind morphologically similar organisms (Lemieux et 

al., 2014). Early hypotheses on green algal phylogeny were based on morphology 

and ultrastructural data derived from the flagellar apparatus and processes of mitosis 

and cell division. These ultrastructural features, which apply to most green algae, 

supported the existence of the Streptophyta and Chlorophyta. The Chlorophyta 

includes the most investigated species of green algae. The Streptophyta consist of 

charophytes, a paraphyletic assemblage of freshwater algae, and land plants (Leliaert 

et al., 2012). On the other hand, four distinct classes can be recognized within the 

Chlorophyta, i.e. the predominantly marine, unicellular, Prasinophyceae; the 

predominantly marine and morphologically diverse Ulvophyceae; and the freshwater 

or terrestrial, morphologically diverse Trebouxiophyceae (=Pleurastrophyceae) and 

Chlorophyceae (cf. Figure 7).  

 

Figure 7. Overview phylogeny of the green lineage (Leliaert et al., 2012). 

It has been postulated that the Prasinophyceae have given rise to the Ulvophyceae, 

Trebouxiophyceae and Chlorophyceae (UTC). Later, phylogenetic analyses based on 

the nuclear-encoded small subunit rRNA gene (18S rDNA) largely corroborated 

these hypotheses. Moreover, the class Trebouxiophyceae “sensu stricto” is not a 

monophyletic group (Lemieux et al., 2014). This species-rich class displays 



remarkable variation in both morphology (comprising unicells, colonies, filaments 

and blades) and ecology (occurring in diverse terrestrial and aquatic environments). 

Moreover, there are some genera that include unicellular nonflagellated 

parasites/pathogens that still retain vestigial plastids (Figueroa-Martinez et al., 2014). 

Several species (e.g. Trebouxia, Myrmecia and Prasiola) participate in symbioses 

with fungi to form lichens and others (e.g. Chlorella, Coccomyxa, and Elliptochloris) 

occur as photosynthetic symbionts in ciliates, metazoa and plants.  

Members of Trebouxiophyceae reproduce asexually by autospores or zoospores. 

Sexually reproductive stages have not been observed directly in any of the 

trebouxiophyte algae (Lewis and McCourt, 2004). The Trebouxiophyceae also 

involves species that have lost photosynthetic capacity and have evolved towards 

free-living or parasitic heterotrophic lifestyles (e.g. Prototheca and 

Helicosporodium). Aside from their intrinsic biological interest, trebouxiophycean 

algae have drawn the attention of the scientific community because of their potential 

utility in a variety of biotechnological applications such as the production of biofuels 

or other molecules of high economic value (Hannon et al., 2010, Mata et al., 2010). 

 

 

 

3.2.The Chlorellales family 

The Trebouxiophyceae class includes the order Chlorellales (cf. Figure 8) which 

mostly involves unicellular coccoids of minute size that thrive in an extremely broad 

range of habitats (Friedl and Rybalka, 2012). This order brings together the 

Chlorellaceae family (Brunnthaler, 1915), that have been recently reorganized into 

some sister groups: the Chlorella and the Parachlorella clades (Krienitz et al., 2004), 

the Auxenochlorella clade (Pröschold and Leilaert, 2007) and the Marvania clade 

(Lemieux et al., 2014). 

Is interesting to note that this order includes photosynthetic and non photosynthetic 

organisms. The loss of photosynthesis has occurred several independent times. The 

genera Prototheca and Helicosporidium include unicellular nonflagellated 

parasites/pathogens that still retain vestigial plastids. Members of the genus 

Prototheca are ubiquitous opportunistic animal pathogens that can be found in 

diverse habitats, such as soil detritus, fresh and brackish water, and plant- and 

animal-derived foods for human consumption. Helicosporidium infections are 



common in insects, mites, trematodes and cladocerans (Tartar, 2013). The loss of 

photosynthesis probably occurred in the ancestors of Prototheca and 

Helicosporidium during their shift from mixotrophy to parasitism (Pombert et al., 

2014). It is unclear, however, if these two closely related genera lost their 

photosynthetic abilities independently.  
 

 

Figure 8. Phylogeny of Trebouxiophyceae (Lemieux et al., 2014).  

Recent phylogenetic analyses of nuclear 18S rRNA and β-tubulin data have shown 

that some Prototheca wickerhamii isolates are more closely related to photosynthetic 

taxa (e.g. Chlorella spp.) than to other Prototheca species (Mancera et al., 2012). 

These data suggest that the loss of photosynthesis has occurred at least twice in the 

evolution of parasitic/pathogenic Chlorellales. Moreover, the mixotrophic 

capabilities of various Chlorella species (Lee et al., 1996), which are able to use 

different organic compounds (e.g. glucose, glycerol, ethanol, acetate, and butyrate) 

as carbon sources, imply that nonphotosynthetic Chlorellales probably evolved from 



commensals (e.g. saprophytes; similar to Prototheca species living in animal 

integumentary tissues) that ultimately harnessed their heterotrophic abilities to 

invade novel ecological niches (Figueroa-Martinez et al., 2014). 

The genus Chlorella was first delineated by Beyerinck in 1890 as a genus of four 

species, two of which were previously described by Brandt (1881, 1882) as 

Zoochlorella. Common in nature, the genus is one of the most conspicuous of those 

green unicells showing no motility during reproduction. Over a hundred algal 

isolates were originally assigned to the genus Chlorella, but their taxonomy 

classification has long remained unreliable because of their lack of conspicuous 

morphological characters (Blanc et al., 2010). 

Among the different microalgae, Chlorella species are of interest because of their 

high productivity, high lipid content, and resistance to the high light conditions 

typical of photobioreactors. Several freshwater species of Chlorella have been 

extensively used commercially over the past 40 years as a food and feed supplement 

on account of their rapid growth and tolerance over a wide range of temperature and 

culture conditions. However, the economic feasibility of growing algae at an 

industrial scale is yet to be realized, in part because of biological constraints that 

limit biomass yield. On the basis of biochemical and molecular data, presently 

consists of five “true” Chlorella species: C. vulgaris Beyerinck , the archetype 

(lectotype) of coccoid green algal ‘balls’ (Krienitz et al., 2015), C. lobophora 

Andreyeva, C. sorokiniana Shihira et Krauss, C. heliozoae Pröschold et Darienko 

and C. variabilis Shihira et Krauss (Huss et al., 1999; Krienitz et al., 2004; Bock et 

al., 2011). 

 

 

3.2.1. Chlorella sorokiniana 

Chlorella sorokiniana is a non-motile unicellular alga (cf. Figure 9). This species is 

named after its isolator, Dr. Constantine Sorokin, who has published more detailed 

information for this species of Chlorella. The suitable temperature for the growth of 

this alga was found to be 30 °C. However, in the range of 30–40 °C, it had nearly 

similar growth profile. Temperature below the optimum was found to decrease the 

growth rate of the microorganism. The pH 7.5 was found favourable for the growth 

of this strain, while below pH 6.5, growth of the cell declines significantly.  



 

Figure 9. Chlorella sorokiniana. 

C. sorokiniana has demonstrated good nutrient removal capability (Kim et al., 2013; 

Ogbonna et al., 2000) as well as good lipid accumulation potential (Qiao and Wang, 

2009; Zheng et al., 2013, Lizzul et al., 2014). In addition, de-Bashan et al. (2008) 

reported the ability of this thermo-tolerant alga to grow in wastewaters hostile to 

other algal species. Griffiths and Harrison (2009) have also compared the lipid 

productivity amongst 55 algal species and identified C. sorokiniana as a potential 

candidate for achieving higher lipid productivity. This strain can take advantage of 

organic carbon sources, in addition to carbon dioxide, to grow under mixotrophic 

conditions with higher biomass yields than the corresponding ones observed under 

photoautotrophic conditions (Wan et al., 2011). Moreover, a recent work by 

Rosenber et al. (2014) investigated the effects of heterotrophic and mixotrophic 

growth on lipid biochemistry of Chlorella species, thus demonstrating that different 

lipid compositions can be achieved by cultivating C. sorokiniana under the trophic 

conditions above (cf. Figure 10). Ultimately, the desired lipid composition and 

content might be varied by suitably tuning the cultivation conditions.  

In addition, C. sorokinina, is playing an important role as food and feed because of 

the multiuse of its biomass previously known to be a rich source of carbohydrate, 

vitamins, and proteins. The high protein content makes it a suitable raw material for 

the production of single cell protein (Mahasneh, 1997) while the high vitamin 



content makes it a suitable feed for aquaculture systems (Gapasin et al., 1998). 

Morevoer, when cultivated under sulfur deprived condition (Chader et al., 2009) C. 

sorokiniana is capable to produce biohydrogen which in turn represents a clean 

source of energy. Additionally, it has been used for the production of commercially 

important antioxidants like lutein, α/β carotene, α/β tocopherol, zeaxanthin 

(Matsukawa et al., 2000). 
 

 

Figure 10. Distribution of total lipid extracts as fatty acids and TAG in three Chlorella strains 

(Rosenberg et al., 2014). 

These characteristics make this strain, as well as most of the species belonging to the 

Chlorella genus, a particularly promising feedstock in the biotechnological, 

environmental and energy sectors.  

In spite of this, the commercial exploitation of C. sorokiniana is still not widespread 

since its large scale production might be affected by technical constraints mainly 

arising from the still low lipid productivity achievable through the current cultivation 

technologies (Concas et al., 2012). In this regard, the knowledge of C. sorokiniana 

genome represents the first step towards the identification of suitable genetic 

engineering strategies aimed to increase its lipid productivity and thus to overcome 

the limitations described above. 

 

 

3.2.2. Chlorella variabilis NC64A 

Chlorella sp. NC64A, renamed Chlorella variabilis (Ryo et al., 2010), is a 

unicellular photosynthetic green alga member of the true Chlorella genus 

(Trebouxiophyceae) (Huss et al., 1999; Krienitz et al., 2004; Pröschold et al., 2011; 



Bock et al., 2011). Chlorella variabilis Shihira et R. Krauss (cf. Figure 11) is an 

intracellular photobiont of Paramecium bursaria (Karakashian and Karakashian, 

1965) but, as well as the other endosymbiotic Chlorella species, retains its ability to 

grow independently (Kodama and Fujishima, 2009). Although Chlorella species 

have been assumed to be asexual and nonmotile, the NC64A genome encodes all the 

known meiosis-specific proteins and a subset of proteins found in flagella. We 

hypothesize that Chlorella might have retained a flagella-derived structure that could 

be involved in sexual reproduction. 

 

 

 

 

 

 

 

 

 

Figure 11. Paramecium bursaria with symbiontic Chlorella variabilis. 

The microalga C. varibilis is particularly interesting since it is the host for a family 

of large (>310 kb), plaque-forming, dsDNA viruses (called Chlorella viruses) that 

are found in freshwater throughout the world. For this reason, this symbiotic alga 

represents a model system for the study of virus/algal interactions (Blanc et al., 

2010). This model system is relevant because the about 56% of the worldwide 

photosynthetically fixed CO2 is used by phytoplankton, including cyanobacteria and 

eukaryotic microalgae. However, about 20% of these photosynthetic organisms are 

typically infected by a virus. Thus, while viruses play a significant role in global 

carbon/nitrogen cycles, their role has been relatively neglected by scientists who 

model carbon/nitrogen cycles. Moreover, most known viruses infecting microalgae 

are large dsDNA viruses evolutionarily related to the chlorella viruses. The 

knowledge of the C. varibilis genome will, for the first time, allow to identify in 



which genes from both a dsDNA virus exceeding 300 kb and its host are available 

for analysis. 

In addition, similar to Chlamydomonas reinhardtii, Chlorella variabilis exhibits 

[FeFe]-hydrogenase (HYDA) activity during anoxia. In contrast to C. reinhardtii and 

other chlorophycean algae, which contain hydrogenases with only the HYDA active 

site (H-cluster), C. variabilis is the only known green alga containing HYDA genes 

encoding accessory FeS cluster binding domains (F-cluster) (Meuser et al., 2011). 

Moreover, it is likely that fermentative product secretion plays a significant role in 

providing reduced carbon substrates and or H2 to other organisms within a microbial 

community or symbiosis.  

In conclusion, like other microalgae, there is an increasing interest in using Chlorella 

in a variety of biotechnological applications, such as biofuels (Schenk et al., 2008), 

sequestering CO2 (Chelf et al., 1993), producing molecules of high economic value, 

or removing heavy metals from wastewaters (Rajamani et al., 2007). 



 

 
 

 

 

 

 

 

CHAPTER 4.  

Kinetic characterization of the 

growth and lipid accumulation 

of Chlorella sorokiniana 
 

 

 

 

 

 

 

 



4.1. Strain and culture conditions 

Chlorella sorokiniana (SAG 211-8k; authentic strain) was obtained from Sammlung 

von Algenkulturen, University of Göttingen (SAG), Germany 

(http://www.epsag.unigoettingen.de/html/sag.html). Unialgal culture was maintained 

under axenic conditions in shaken flasks illuminated by a photon flux of 90-100 µE 

m-2 s-1 and containing modified WARIS-H culture medium (McFadden and 

Melkonian, 1986) without soil extract or Bold Basal Medium (Bischoff and Bold, 

1963). A light/dark photoperiod of 12 h was assured during microalgae growth which 

was prolonged up to log phase. 

The inoculation procedure has been carried out as follows. First a single colony of 

microalgae cells has been taken from agar tube and then placed in a 50 mL flask 

containing 25 mL of standard BBM growth medium. Subsequently, the resulting 

cultures were maintained at 25 ± 1 °C, and illuminated by a photon flux density of 

∼80 μmol m−2 s−1 for 2 weeks using a 12:12 h light–dark photoperiod. Finally, a 

suitable amount of the culture above has been transferred into batch photobioreactors 

containing 1 or 2 L of BBM medium in order to obtain culture characterized by an 

optical density of about 0.05. The batch growth experiments have been carried out by 

using the obtained culture and providing a photon flux of about ∼80 μmol m−2 s−1 

with a photoperiod equal to 12:12 h light/dark, under continuous stirring and an air 

flux. As far as the growth experiments in the Biocoil photobioreactor, the cultures 

grown in the batch PBRs have been used as the inoculum while the remaining 

operating conditions are kept similar to the ones already specified for the batch 

experiments. 

 

 

 

4.2. Growth kinetics of C. sorokiniana in batch photobioreactors 

Unialgal culture was maintained under axenic conditions in shaken flasks containing 

Bold Basal Medium whose composition is reported in the following Table 5. 

 

 

 



Table 5. Chemical composition of the BBM growth medium 

 

 

 

 

 

 

 

 
 

Currently, a number of studies are being carried out in order to evaluate the effect of 

different culture medium compositions on the lipid yield and biomass production. In 

particular, since nitrogen starvation has been recognized to trigger lipid metabolism 

while reducing microalgae growth rate (Xu et al., 2001, Hu et al., 2008; Lin and Lin, 

2011), one of the most challenging tasks is to identify the concentration of nitrogen 

which represents the optimal compromise among lipid accumulation and growth rate 

lowering. For this reason, two different concentrations of nitrate, with respect to 

standard BBM, have been tested in order to identify the optimal one and to determine 

the influence of this element in the production of lipids. 

The initial cell density of each experiment was standardized at 0.06 optical density 

(O.D.). C. sorokiniana was cultured in 2 L bottles containing 1,8 L sterilized culture 

medium, with agitation of 500 rpm with constant aeration. The growth was 

monitored through spectrophotometric measurements (Genesys 20 

spectrophotometer, Thermo Fisher Scientific Inc. Waltham) of the culture media 

O.D. with 1 cm light path. The wavelengths corresponding to the absorption of 

Chlorophyll a (663 nm), Chlorophyll b (643 nm) and carotinoids (439 nm) have been 

analyzed since they are good indicators of algal biomass concentration at least in the 

range of cell densities usually observed in laboratory assays. The structural 

difference between chlorophyll a and chlorophyll b is htat the former is a blue/green 

pigment with maximum absorbance from 660 to 665 nm while the latter one is a 

green/yellow pigment characterized by a maximum absorbance from 642 to 652 nm 

(Hosikian et al., 2010).  

Component 
Concentration  

[g L-1] 

KH2PO4 0.175 

CaCl2 ∙ 2H2O 0.025 

MgSO4 ∙ 7H2O 0.075 

NaNO3 0.25 

K2HPO4 0.075 

NaCl 0.025 

FeSO4 ∙7H2O 0.0049 

Na2-EDTA 0.05 

KOH 0.031 

H3BO3 0.01142 

Trace Metal 

Solution 

Concentration  

[g L-1] 

MoO3 0.71 

MnCl2 ∙ 4H2O 1.44 

ZnSO4 ∙ 7H2O 8.82 

CuSO4 ∙ 5H2O 1.57 

Co(NO3) ∙2.6H2O 0.49 



The biomass concentration Cb (gdw L-1) was calculated from O.D. measurements 

using a suitable Cb vs. O.D. calibration curve (cf. Figure 12) which was obtained by 

gravimetrically evaluating the biomass concentration of known culture medium 

volumes that were previously centrifuged at 4000 rpm for 10 minutes and dried at 60 

°C for 24 hours.  

The pH was daily measured by pH-meter basic 20 (Crison, Barcelona, Spain). For 

the sake of reproducibility, each experimental condition was investigated at least in 

duplicate. 

 
 

 

Figure 12. Calibration line showing the correlation between wet weight of biomass pellet 

subjected to disruption and the corresponding dry weight content. 
 

 

By using the above calibration curve it was possible to follow the time evolution of 

the growth of C. sorokiniana in terms of biomass concentration.   

In particular, as it can be observed from Figure 13, C. sorokiniana grows in standard 

BBM until a stationary phase is reached after about 25 days. After this period of time 

a stationary biomass concentration of about 350 g m-3 is achieved.  



0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

 

 

B
io

m
a

ss
 c

o
n
c
e
n

tr
a
ti
o
n

 (
g
 m

-3
)

Time (dyas)

BBM

 

Figure 13. Chlorella sorokiniana grown in standard BBM. 

On the contrary, when the alga is grown under an increased content of nitrogen, i.e., 

5N (cf. Figure 14), the stationary phase is achieved after about 40 days, when the 

biomass concentration is about 550 g m-3 as a result of the higher concentration of 

nitrogen available in solution. Therefore, under such operating condition, a greater 

biomass concentration can be achieved with respect to corresponding one attained 

when using standard BBM medium.  
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Figure 14. Chlorella sorokiniana grown in nitrogen supplement. 

Finally as it can be observed from Figure 15, when the nitrogen concentration is 

reduced five times with respect to typical one of BBM standard medium, growth of 



C. sorokiniana takes place until a stationary phase is reached after about 10 days. 

After this period of time, the biomass concentration starts to decrease due to a 

probable onset of cell death phenomena. As it can be observed, the biomass 

concentration achieved at the stationary phase is very low, i.e. about 200 g m-3, as a 

result of the lower nitrogen concentration available in solution. 
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Figure 15. Chlorella sorokiniana grown in nitrogen starvation. 

 

 

 

4.3. Growth kinetics of C. sorokiniana in the BIOCOIL photobioreactor 

Growth of C. sorokiniana was carried out in a 6 L helical tubular photobioreactor 

coupled with a degasser system, as described in the literature (Concas et al., 2010). 

Briefly, the light collector of the photobioreactor consisted of 66 m transparent 

polyurethane tubing arranged around a circular metal frame. It was internally 

illuminated by three 60W white fluorescent lamps providing a light intensity of 100 

μE m-2 s-1 for a light-dark photoperiod of 12 h. Liquid circulation in the light 

collector was assured by a peristaltic pump. The degasser unit was a 1 L bubble 

column which allowed to remove photosynthetic oxygen by exposing the broth to 

atmosphere. Once the culture reached the stationary growth phase the 

photobioreactor was operated in fed-batch mode. The evolution of microalgae 

concentration during cultivation of C. sorokiniana in the BIOCOIL photobioreactor 



fed with air is shown in Figure 16. At regular intervals the withdrawals made during 

the operation in fedbatch mode. 

It can be observed that, after an exponential growth of 13 days, the culture reached 

the stationary phase when the biomass concentration was about 2 g L-1. Once the 

steady state was attained, the photobioreactor was operated in fed-batch mode. In 

fact, starting from the 15th day of culture, suitable amounts of culture were 

periodically withdrawn and then replaced by an equal volume of fresh medium.  
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Figure 16. Growth of Chlorella sorokiniana in helical tubular photobioreactor in 

fedbatch mode. 

As shown in Figure 16, after each withdrawal, the biomass concentration decreased 

and then started to increase as a result of the higher nutrient availability and the 

diminished concentration of toxic catabolites. The wet biomass harvested during 

each withdrawal cycle was centrifuged and then subjected to the different 

experiments.  

 

 

 



4.4. Spectrophotometric analysis of lipid content during growth. 

A rapid colorimetric method has been adopted to quantify the lipid content of 

microalgae during their growth. It is based on the capability of sulpho-phospho-

vanillin (SPV) to react with lipids to generate a reaction product which is 

chacracterized by a typical pink color whose intensity can be quantified using 

spectrophotometric methods, i.e. by measuring absorbance at 530 nm (cf. Figure 17). 

Phosphovanillin reagent was prepared by initially dissolving 0.6 g vanillin (Sigma-

Aldrich, St. Louis, MO, USA) in 10 ml absolute ethanol; 90 ml deionized water and 

stirred continuously. 

 

Figure 17. Schematic representation of colorimetric method for lipids quantification 

which employs sulpho-phospho-vanillin (Mishra et al., 2013). 

Subsequently 400 ml of concentrated phosphoric acid was added to the mixture, and 

the resulting reagent was stored in the dark until use. To ensure high activity, fresh 

phospho-vanillin reagent was prepared shortly before every experiment run. For SPV 

reaction of the algal culture for lipid quantification, a known dry amount of biomass 

was re-suspended in 100 µl deionized water. The samples were sonicated for 30 

minutes and then 2 mL of concentrated (98%) sulfuric acid was added to the sample 

and was heated for 10 minutes at 100 °C, and was cooled for 5 minutes in ice bath. 5 

mL of freshly prepared phospho-vanillin reagent was then added, and the sample was 

incubated for 15 minutes at 37 °C incubator shaker at 200 rpm. Absorbance reading 

at 530 nm was taken in order to quantify the lipid within the sample. 
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The calibration curve was obtained as follows. About 20 mg of commercial canola 

oil was dissolved in 10 ml chloroform (final concentration, 2 mg/ml) and the 

resulting solution was stored at −20 °C before use.  

A known amount of lipids (oil) was added in the empty tube which was then kept at 

60 °C for 10 minutes in order to evaporate the solvent. Subsequently, 100 μl of water 

was added to the lipid standard and the resulting solution was then subjected to the 

spectrophotometric analysis above described. Several samples where different 

amounts of lipids were used, were assessed thus allowing to obtain the calibration 

curve shown in Figure 18.  

 

Figure 18. Calibration curve using of lipid standard solutions (canola oil). 

As it can be observed a quite good correlation is achieved between optical density at 

530 nm and lipid content of the sample. Therefore, the use of this calibration line 

allows to confidently assessing the lipid content of a sample by using 

spectrophotometric techniques.  

The SPV method was then used to evaluate the lipid content of Chlorella 

sorokiniana during its batch growth. Figures 19-20-21 show the time evolution of 

lipid content of C. sorokiniana when it was cultivated under normal, five folds 

increased and five folds reduced, respectively nitrogen concentration in the growth 

medium. As it can be observed, the lipids content of algae decreases as the nitrogen 

content in solution is increased. In particular, when cultivated in standard BBM 

medium (cf. Figure 19), the lipid content of C. sorokiniana increases from an initial 

value of about 12 % wt to about 26 % wt. The time trend of the lipid content growth 

is quite similar to the one already observed for the corresponding biomass growth 

(cf. Figure 13). In fact, it can be observed that after an initial growth, the lipid 



accumulation rate start to decrease and finally reaches a kind of stationary phase after 

about 25 days of cultivation. 

On the other hand, when C. sorokiniana is cultivated under increased concentration 

of nitrogen, its lipid content increases with a smaller rate reaching a final stationary 

value of about 14 %wt (cf. Figure 20). It thus confirms that high nitrogen contents 

result in a kind of inhibition of lipid synthesis. Such a phenomen is probably due to 

the fact that algal metabolism, when high amounts of nitrogen are available, is 

preferably shifted towards the protein shynthesis rather than the synthesis of energy 

storage compunds such as lipids. 
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Figure 19. Lipids amount in Chlorella sorokiniana growth in standard BBM medium in 

batch photobioreactor. 
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Figure 20. Lipids amount in Chlorella sorokiniana growth in modified BBM with 

nitrogen supplementation in batch photobioreactor. 



Such result is somehow confirmed by the results obtained when growing C. 

sorokiniana under a reduced concentration of nitrogen. In fact, under these 

conditions, a significant lipid content, i.e. about 23 %wt, is achieved after only 10 

days of cultivation (cf. Figure 21). 
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Figure 21. Lipids amount in Chlorella sorokiniana growth in modified BBM with 

nitrogen starvation in batch photobioreactor. 

 

 

 

4.5. Lipid extraction 

Several methods for lipid extraction from microalgae are currently under 

investigation at the laboratory scale but solvent extraction appears to be, so far, the 

only viable way for performing lipid extraction at the industrial scale (Chisti, 2007). 

Typically, solvent extraction is carried out by contacting microalgal biomass with an 

organic eluting solvent which diffuses through the cell wall/membrane into the 

cytoplasm and interacts, through van der Waals type bindings, with the neutral lipids 

by forming organic solvent-lipids complexes. The latter ones, driven by a 

concentration gradient, counter-diffuses across the cell wall towards the bulk solvent 

from which they can be collected to be further processed (Halim et al., 2011; 2012). 

Solvent extraction of algal lipids can be performed starting from both wet and dry 

microalgal biomass and, depending upon which option is chosen, specific pre-

treatments should be carried out. In fact, lipid extraction from untreated wet biomass 



is characterized by low yields due to the immiscibility of water with the organic 

solvents. Therefore, when solvent extraction is applied to wet biomass, the 

microalgal cells tend to remain in the water phase due to their surface charges and 

thus they cannot contact the organic solvent phase which is able to extract lipids 

(Kim et al., 2013). Fortunately, this phenomenon can be prevented by breaking the 

cell wall of microalgae to provoke the release of intracellular lipids into the 

extracting mixture, thus facilitating the access of solvent to lipids. Therefore, once 

released from the algal cell, lipids are able to pass to the solvent phase from which 

they can be collected after evaporation of the solvent. We use a simple and low 

energy consuming technique for cell disruption, based on the use of low toxicity and 

cheap reactants such as H2O2. 

The wet biomass was resuspended in 1 ml of a 1/40 (v/v) solution of H2O2 for 4 

minutes under agitation. Hence, neutral lipid extraction was performed directly on 

the wet disrupted biomass according to a method that represents a slight modification 

of the one proposed by Fajardo et al. (2007). The method consists firstly of diluting 

1/10 the mixture of wet-disrupted biomass and disruption solution with ethanol (96% 

v/v) while assuring the contact for 18 hours under continuous stirring. As mentioned 

above, this step allowed also stopping the disruption reaction. The resulting hydro-

alcoholic solution was then subjected to centrifugation at 4000 rpm for 10 minutes in 

order to separate solid residuals (i.e. pieces of broken cells, organelles, etc.) from the 

supernatant liquid where lipids were transferred. The lipid-rich supernatant was then 

suitably stored while the residual solid was further contacted with ethanol for 1 hour 

under stirring in order to extract residual lipids remained in the solid phase. The 

extracted oil was evaporated to dryness in a rotary evaporator flask. 

At the end of each experiment growth in different conditions, was assessed the 

concentration of lipids in the algal biomass by extraction. The maximum value is 

obtained with growth in standard BBM (24.31%), the second one in nitrogen 

starvation (14.8%) and the last one in nitrogen supplement (12.75%). The cultivation 

of algae under nitrogen limitation conditions were reported to increase the 

accumulation of storage lipids such as triacylglycerols (TAG) while it had only 

limited effect on C. sorokiniana. 

 

 



4.6. Fatty acid methyl esters analysis 

As described before, one objective of this work was to select the best culture 

conditions with the aim of obtaining the maximum lipid productivity for biodiesel 

production. For this reason, after biomass recovery, lipids were extracted following 

the procedure described above, and fatty acids separated using GC–MS for their 

quantification.  

The fatty acid methyl esters (FAMEs) composition of extracted lipids was 

determined according to the European regulation/commission regulation EEC n° 

2568 (1991) after transesterification with methanol-acetyl chloride is performed. To 

this aim gas chromatographic analysis was carried using a flame ionization detector 

(FID) 67 (Thermo Trace Ultra, GC-14B) and a RTX-WAX column T (fused silca, 

0.25 mm x 60 m x 0.25 μm) maintained at 180 °C. Helium was used as carrier gas at 

a flow rate of 1 ml min-1. 

The effect of nitrate on fatty acid composition of C. sorokiniana were evaluated at 

early stationary growth phase when cells growth became plateau. The comparison 

among FAMEs profiles of three different grow condition (standard BBM, modified 

with 5N o 1/5 N) is reported in Table 6 in terms of weight percentage of each fatty 

acid with respect to the total amount of FAMEs identified. 
 

Table 6. Fatty acid methyl esters profile of lipids extracted after using the different 

culture condition. 

Carbon 
number  

Fatty acid  
name  

BBM BBM 
modified with 
5N  

C14:0  Myristic  0.49  0.12 
C16:0  Palmitic  23.45 8.66  
C16:1  Palmitoleic  4.45 2.59 
C17:0  Heptadecanoic  0.20 0.12 
C17:1  Heptadecenoic    
C18:0  Stearic  3.22 1.18 
C18:1  Oleic  8.21 4.70 
C18:2  Linoleic  21.41 23.57 
C18:3  Linolenic  16.78 37.11 
C20:0  Arachidic  0 0.09 
C22:0  Behenic  0.15 0 
-  Other 

polyunsat.  
0.1 0 

 

The European Standard for Biodiesel (UNE-EN 14214, 2003) limits the content of 

C18:3 and PUFAs in a quality biodiesel at 12% and 1% respectively. It can be 

observed that FAMEs obtained from biomass grow in modified BBM displayed an 



high content of linolenic acid (C18:3) that reduces the quality of the biodiesel 

product.  

Palmitic acid (C16:0) was the most abundance type of SFA that depicted similar 

accumulation trends as total SFAs in all samples. The content of C16:0 showed a 

sharp drop when nitrate was increased. Nitrogen limitation in the medium had been 

shown to increase the C18:1, while the C16:0 decreased.  

On the contrary, a low content of total saturated (20 %wt/wt), monounsaturated (7.4 

%wt/wt) and linoleic (8.4 % wt/wt) acids, which are the most useful fatty acids for 

producing biodiesel, was observed.  

The results clearly showed that the ability for the accumulation of fatty acid 

composition in the different sample of C. sorokiniana was differentially regulated in 

respond to various nitrate concentrations at the early stationary growth phase. 
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5.1. Isolation, sequencing and annotation of DNA 

The cells were harvested by centrifugation for 10 minutes at 4,000 g and 4 °C, and 

the cell pellet was ground to powder under liquid nitrogen using mortar and pestle. 

Total cellular DNA was isolated from fresh algal pellets with a DNeasy plant mini 

kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions. The 

DNA concentration for each extraction was measured with a NanoDrop ND-1000 

Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). The quality 

of the genomic DNA was assessed by electrophoresis on a 1% 1X TAE agarose gel. 

Whole-genome sequencing of Chlorella sorokiniana SAG 211-8k, Pseudochloris 

wilhelmii SAG 55.87, Monodus subterraneus SAG 848.1, Scenedesmus obliquus 

SAG 276-1, Chlorella variabilis NC64A and Tetraspora sp. SCCA024 strains were 

performed using an Illumina HiSeq2000 platform. Libraries of 300 and 800 base pair 

(bp) fragments were constructed using the TrueSeq DNA Sample Prep Kit (Illumina, 

San Diego, CA, USA) and paired-end reads were generated on the Illumina HiSeq 

2000 (100-bp reads) sequencing platform located at CRS4 in Pula (CA, Sardinia, 

Italy). Quantification and size distribution of the libraries were determined using the 

Agilent DNA 1000 kit (Agilent Technologies, Germany; cf. Figure 22). Each 

barcode sample was sequenced from both ends for 100 cycles and achieved 35 Gb of 

raw DNA sequence data each, which enabled an average of 1000-fold estimated 

coverage.  
 

 

Figure 22. Illumina’s HiSeq2000 sequencing system (a) and data quality over two 

libraries (300 – 800 bp) for each investigated strain. 

Reads were assembled by using Velvet (Zerbino and Birney, 2008), scaffolded and 

finished by some ad-hoc developed python packages. Genome annotation was based 

on Dogma (Wyman et al., 2004), RNAmmer (Lagesen et al., 2007) and T-rna scan 

(Schattnern et al., 2005) followed by manual inspection. Genes and ORFs were 



compared by Blast homology searches against the non-redundant database of 

National Center for Biotechnology and Information (NCBI).  

 

 

 

5.2. Chlorella sorokiniana organelles genomes  

5.2.1. Chloroplast DNA 

The chloroplast DNA (cpDNA) sequence of C. sorokiniana (GenBank accession 

number KJ397925) assembles as a circular map, obtained using the CGView 

software (Stothard and Wishart, 2005), of 109,811 bp which encodes a total of 111 

genes (cf. Figure 23, Table 7).  

 

Figure 23. Gene map of the chloroplast genome of C. sorokiniana (Orsini et al., 2014a). 



The chloroplast genes include 76 protein coding genes, 3 rRNAs and 31 tRNAs; the 

protein coding genes can be functionally categorized in the following classes: genes 

directly involved in photosynthesis, those involved in transcription, in translation and  

 in division (cf. Table 7).  

One of typical features of C. sorokiniana chloroplast genome is the lacking of rpoA 

subunit of the RNA polymerase (rpo) complex, while other Chlorellaceae belong the 

complete set of genes (rpoA, rpoB, rpoC1 and rpoC2).  

The C. sorokiniana plastid also encodes for tRNA(Ile)-lysidine synthetase (tilS). 

This enzyme is responsible for modifying the CAU anticodon of a unique tRNA that 

is cognate for isoleucine. Inside of algae group, however, tilS is generally encoded in 

the nuclear genome and targeted to the organelle (de Koning and Keeling, 2006). 

Conversely it lacks the full set of ndh genes likewise the large part of algal 

chloroplasts (Stoebe et al., 1998) and the conserved ORF ycf20. 

Eleven small hydrophobic subunits proteins (psbH, psbI, psbJ, psbK, psbL, psbM, 

psbTc, psbX, psbY, psbZ and ycf12) are conserved among cyanobacteria and higher 

plants (Shi and Schroder, 2004; Iwai et al., 2010). We observed the absence of psbX 

and psbY. 

A gene involved in starch and lipid metabolism, i.e. acetyl-CoA carboxylase beta 

subunit (accD gene), has been found in the chloroplast genome. This enzyme 

catalyzes the irreversible conversion of acetyl-CoA to malonyl-CoA during the fatty-

acid synthesis (Cronan and Waldrop, 2002). 

The four genes (chlB, chlI, chlL, chlN) involved in chlorophyll biosynthesis were 

found through similarity to the corresponding genes identified. In fact, C. 

sorokiniana shows the largest cytochrome f (petA gene product), cytochrome b6 

(petB), and subunit IV (petD) and the smallest petG, petL subunits. The functions of 

the small subunits above are unknown.  

The tRNA repertoire consists of 31 tRNAs, 24 of which occupying one strand while 

the remaining 7 genes occupying the other one.  

The trnL (uaa) has not been identified while it is conserved in the other Chlorellaceae 

except in P. wickerhamii. 

In addition, C. sorokiniana seems to have lost the trnI (cau) gene. In the genome, 

which doesn’t show introns, all genes are present in single copy. Moreover, as well 

as for other Chlorella strains, the genome is lacking large inverted repeat (IR).  

 



Table 7. Gene list for the Chlorella sorokiniana chloroplast chromosome 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. sorokiniana displays the standard architecture of the rRNA operon of Chlorphyta 

structure (16S rDNA – tRNA Ile – tRNA Ala – 23S rDNA). The overall AT content 

RNA Genes 
Ribosomal RNAs 
rrn23 rrn16 rrn5   
 
Transfer RNAs 
trnA(UGC) trnC(GCA) trnD(GUC) trnE(UUC) trnF(GAA) 
trnG(GCC) X2 trnG(UCC) trnH(GUG) trnI(GAU) trnK(UUU) 
trnL(CAA) trnL(GAG) trnL(UAG) trnM(CAU) X2 trnfM(CAU)  
trnN(GUU) trnP(UGG) trnQ(UUG) trnR(ACG) trnR(CCG) 
trnR(UCU) trnS(GCU) trnS(GGA) trnS(UGA) trnT(GGU) 
trnT(UGU) trnV(UAC) trnW(CCA) trnY(GUA)  
tilS     
     

Photosynthesis 
Photosystem I 
psaA psaB psaC psaI psaJ 
psaM     
     
Photosystem II 
psbA1 psbB psbC psbD1 psbE 
psbF psbH psbI psbJ psbK  
psbL psbM psbN psbT psbZ 
Cytochrome 
petA petB petD petG petL 
ATP synthase    
atpA atpB atpE atpF atpH 
atpI     
Chlorophyll biosynthesis 
chlB chlI chlL chlN  
Rubisco 
rbcL     
 

Ribosomal proteins 
Large subunits  
rpl2 rpl5 rpl12 rpl14 rpl16 
rpl19 rpl20 rpl23 rpl32 rpl36 
Small subunits 
rps2 rps3 rps4 rps7 rps8 
rps9 rps11 rps12 rps14 rps18 
rps19     
 

Trascription/translation 
RNA polymerase 
rpoB rpoC_1 rpoC_2   
Translation factors 
infA tufA    
 

Division 
minD ftsH    
Miscellaneus proteins  
accD clpP cysA cysT CemA 
ccsA     
Conserved ORFs 
ycf1 ycf3 ycf4 ycf12 ycf47 



of the cpDNA is 65.9% and the coding sequence is 59.1% (54,279 bp). The sequence 

analysis highlights that this plastid genome does not display a quadripartite structure.  

 

 

5.2.2. Mitochondrial DNA 

The mitochondrial DNA (mtDNA) sequence of C. sorokiniana (GenBank accession 

number KM241869) assembles as a circular map of 52528 bp which encodes a total 

of 32 protein coding genes, 3 rRNAs and 25 tRNAs (cf. Figure 24, Table 8), while 

accounting for 97.4 % of the total genome.  

 

Figure 24. Gene map of the mtDNA of C. sorokiniana (Orsini et al., 2014b). 

The AT content is 70.89%, all genes are present as single copies and do not contain 

introns. Seventeen conserved genes code for respiratory proteins of mitochondrial 

complexes I, III, IV, and V, but lack rps3 and rps19. The genome carries three 

protein coding genes, for subunits I and III of cytochrome c oxidase (cox1 and cox3, 

respectively) and cytochrome b (cob).  
 



 Table 8. Gene list for the Chlorella sorokiniana mitochondrial genome 

 

In addition, C. sorokiniana presents the tatC gene which is found in 

Trebouxiophyceae but not in Chlorophyceae algae. In the genome, 37 genes occupy 

the forward strand while 22 genes occupying the other one. The gene distribution 

over the two DNA strains is slightly biased. By comparing of the mt genome of C. 

sorokiniana with the corresponding ones, so far sequenced, of other 

Trebouxiophyceae, a substantial rearrangements among strains, including large 

inversion, is observed. 

These results indicate that important changes occurred at the levels of genome size, 

gene order, and intron content within the Trebouxiophyceae, while more similarity to 

the Chlorellaceae group are detected. 

 

 

RNA Genes 
Ribosomal RNAs 
rrn23 rrn16 rrn5   
 
Transfer RNAs 
trnA(ugc) trnC(gca) trnD(gcu) trnE(uuc) trnF(gaa) 
trnG(gcc)  trnG(ucc) trnH(gug) trnI(gau) trnK(uuu) 
trnL(uag) trnL(uaa) trnM(cau)x2 trnfM(cau) trnN(guu) 
trnP(ugg) trnQ(uug) trnR(acg) trnR(ucu) trnS(uga) 
trnT(ugu) trnV(uac) trnW(cca) trnY(gua)  
 

Genes for respiration and oxidative phosphorylation 
NADH dehydrogenase complex  
nad1 nad2 nad3 nad4 nad4L 
nad5 nad6 nad7 nad9  
 
Complex III  
cob     
 
Cytochrome oxidase phosphorylation  
cox1 cox2 cox3   
 
ATP synthase complex  
atp1 atp4 atp6 atp8 atp9 
 

Ribosomal protein genes 
Large subunits 
rpl5 rpl6 rpl16   
 
Small subunits 
rps2 rps3 rps4 rps7 rps10 
rps11 rps12 rps13 rps14 rps19 
     
Assembly, membrane insertion 
tatC     



5.3. Chlorella variabilis NC64A organelles genomes 

5.3.1. Chloroplast DNA 

The cpDNA sequence of C. variabilis (GenBank accession number KP271969) 

assembles as a circular map of 124793 bp which encodes a total of 114 genes (cf. 

Figure 25, Table 9).  

 

Figure 25. Gene map of the chloroplast genome of C. varibilis (Orsini et al., 2015). 
 

This chloroplast gene repertoire includes 79 protein coding genes (50% of the entire 

genome with an average length of 790 bp), 3 rRNAs and 32 tRNAs. One tRNA 

coding gene (tRNA-Leu) and two protein coding genes (both belonging to the 

photosystem II) contained introns.  

The genome shows strongly biased in gene distribution over the two DNA strains 

with 78 genes occupying the forward strand and 36 genes occupying the other. Like 

the others members of the Chlorella genus, the cp genome of C. variabilis not 

display a quadripartite structure. The GC content (33,9%) of the C. variabilis cp 

genome is close to those of Chlorella sp. ArM0029B (33,2%) (Jeong et al., 2014), C. 

sorokiniana (34,1%) (Orsini et al., 2014a) and C. vulgaris (31.6%) (Wakasugi et al., 

1997).  



Table 9. Gene list for the Chlorella varibilis chloroplast genome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The only difference with respect to the C. sorokiniana chloroplast genome, is the 

presence of the genes rpoA e ycf20. This demonstrates a close relation between the 

RNA Genes 
Ribosomal RNAs 
rrn23 rrn16 rrn5   
 
Transfer RNAs 
trnA(UGC) trnC(GCA) trnD(GUC) trnE(UUC) trnF(GAA) 
trnG(GCC) X2 trnG(UCC) trnH(GUG) trnI(GAU) trnK(UUU) 
trnL(CAA) trnL(GAG) trnL(UAG) trnM(CAU) X2 trnfM(CAU)  
trnN(GUU) trnP(UGG) trnQ(UUG) trnR(ACG) trnR(CCG) 
trnR(UCU) trnS(GCU) trnS(GGA) trnS(UGA) trnT(GGU) 
trnT(UGU) trnV(UAC) trnW(CCA) trnY(GUA)  
tilS     
     

Photosynthesis 
Photosystem I 
psaA psaB psaC psaI psaJ 
psaM     
     
Photosystem II 
psbA1 psbB psbC psbD1 psbE 
psbF psbH psbI psbJ psbK 
psbL psbM psbN psbT psbZ 
Cytochrome 
petA petB petD petG petL 
ATP synthase    
atpA atpB atpE atpF atpH 
atpI     
Chlorophyll biosynthesis 
chlB chlI chlL chlN  
Rubisco 
rbcL     
 

Ribosomal proteins 
Large subunits  
rpl2 rpl5 rpl12 rpl14 rpl16 
rpl19 rpl20 rpl23 rpl32 rpl36 
Small subunits 
rps2 rps3 rps4 rps7 rps8 
rps9 rps11 rps12 rps14 rps18 
rps19     
 

Trascription/translation 
RNA polymerase 
rpoA rpoB rpoC_1 rpoC_2  
Translation factors 
infA tufA    
 

Division 
minD ftsH    
Miscellaneus proteins  
accD clpP cysA cysT CemA 
ccsA     
Conserved ORFs 
ycf1 ycf3 ycf4 ycf12 ycf20 
ycf47     



two true Chlorellae species. The sequences of the symbiotic alga NC64A genomes 

presented here will help in the optimization of various processes, while further 

documenting the evolution of the green lineage. 

 

 

5.3.2. Mitochondrial DNA 

The mtDNA sequence of C. variabilis (GenBank accession number KP271968) 

assembles as a circular map of 78500 bp which encodes a total of 61 genes, all 

present as single copies (cf. Figure 26, Table 10).  

 

Figure 26. Gene map of the mitochondrial genome of C. varibilis 

This genome encodes mainly for 27 tRNAs (trn genes), 13 ribosomal proteins (rps 

and rpl), and 3 subunits involved in cytochrome c biogenesis (cox genes). The 

overall GC content is 28.2% and the coding sequence is 34% (average length: 835 

bp). 



Like the C. sorokiniana’s one, the mt genome of C. variabilis exhibits the tatC gene. 

The gene distribution over the two DNA strains is strongly biased (46 genes occupy 

the forward strand while 16 genes occupying the other one). It is interesting to note 

that all tRNA is detected in the forward strand, while the cox gene in reverse strand. 
 

Table 10. Gene list for the Chlorella varibilis mitochondrial genome. 

 

Although the mitochondrial genome is characterized by a higher mutation rate, the 

only differences between C. variabilis and C. sorokiniana DNA consists of two 

tRNAs, i.e. trnL(caa) and trnS(ugu), that are not detected in the latter strain. 

RNA Genes 
Ribosomal RNAs 
rrn23 rrn16 rrn5   
 
Transfer RNAs 
trnA(ugc) trnC(gca) trnD(guc) trnE(uuc) trnF(gaa) 
trnG(gcc)  trnG(ucc) trnH(gug) trnI(gau) trnK(uuu) 
trnL(caa) trnL(uag) trnL(uaa) trnM(cau)x2 trnfM(cau) 
trnN(guu) trnP(ugg) trnQ(uug) trnR(acg) trnR(ucu) 
trnS(gcu) trnS(uga) trnT(ugu) trnV(uac) trnW(cca) 
trnY(gua)     
 

Genes for respiration and oxidative phosphorylation 
NADH dehydrogenase complex  
nad1 nad2 nad3 nad4 nad4L 
nad5 nad6 nad7 nad9  
 
Complex III  
cob     
 
Cytochrome oxidase phosphorylation  
cox1 cox2 cox3   
 
ATP synthase complex  
atp1 atp4 atp6 atp8 atp9 
 

Ribosomal protein genes 
Large subunits 
rpl5 rpl6 rpl16   
 
Small subunits 
rps2 rps3 rps4 rps7 rps10 
rps11 rps12 rps13 rps14 rps19 
     

Assembly, membrane insertion 
tatC     



 

 

 

 

 

 

 

 
 

CHAPTER 6.  

Phylogenetic analysis 

 

 

 

 

 

 

 

 

 

 

 



6.1. Introduction  

The chloroplast genome is particularly useful for phylogenetic reconstruction 

because of its relatively high and condensed gene content, in comparison to nuclear 

genomes (Leliaert et al., 2012) and thus its knowledge can be a useful to better 

understand the evolution of algae. To date, several complete chloroplast genomes of 

green algae have been sequenced and assembled (Leliaert et al., 2012; Hamaji et al., 

2013; Lemieux et al., 2014) including 13 complete Chlorellaceae plastids (Wakasugi 

et al., 1997; de Koning and Keeling, 2006; Turmel et al., 2009; Jeong et al., 2014; 

Orsini et al., 2014a; Orsini et al., 2015). To perform a comprehensive comparative 

analysis of complete chloroplast genome evolution at different levels (strain-, 

species-, genus- and family) 11 members of this family, included two non-

photosynthetic organisms, have been included in the study: C. sorokiniana SAG 211-

8k; C. sorokiniana 1230; C. vulgaris C-27; C. variabilis NC64A; Chlorella sp. 

ArM0029B; Parachlorella kessleri, Auxenochlorella protothecoides 0710; 

Helicosporidium sp. ATCC 50920; Prototheca wickerhamii SAG 263-11; Marvania 

geminata SAG:12.88; Pseudochloris wilhelmii SAG:1.80 and Dicloster acuatus 

SAG:41.98 (cf. Table 11).  
 

Table 11. General features of cp DNAs from Chlorella sorokiniana SAG 211-8k (C. sor*) 

- 1230 (C. sor) and the Chlorellaceae: Auxenochlorella protothecoides (A. prot), Chlorella 

sp. ArM0029B (C. sp), C. variabilis (C. var), C. vulgaris (C. vul),  Dicloster acuatus (D. 

acu),Helicosporidium sp. (H. sp), Marvania geminate (M. gem), Parachlorella kessleri (P. 

kess),  Pseudochloris wilhelmii (P. wil) and Prototheca wickerhamii (P. wic). 

 

The loss of photosynthesis is typically associated with ptDNA reduction and the 

erosion of photosynthesis-related genes (de Koning and Keeling, 2006). The ptDNAs 

of Helicosporidium and Prototheca species have shorter intergenic regions, fewer 

introns, and reduced coding capacities as compared with photosynthetic Chlorellales 

(de Koning and Keeling, 2006). 



6.2. Gene content and structure 

The C. sorokiniana cpDNA shows the smallest plastid genome when compared to 

the other strains belonging to the Chlorella species. On the other hand, the AT 

content of 65.9%  is close to one of the other Chlorella species while is far from the 

ones of P. kessleri, A. protothecoides, D. acuatus and Helicosporidium sp.. The C. 

sorokiniana cp genome with 87 (79.8%) genes occupying the forward strand and 22 

genes occupying the other one, shows a gene distribution over the two DNA strains 

which is strongly biased, also when compared to the other Chlorelleae. In fact, 

corresponding values equal to 68.4%, 65.2% have been reported for C. variabilis and 

Chlorella sp. respectively while the C. vulgaris strain shows a value of 49.2% (cf. 

Table 11). Among the genes involved in chlorophyll biosynthesis, similarly to other 

Chlorellaceae, C. sorokiniana cp genome lacks of psbX and psbY while, the four 

genes chlB, chlI, chlL, chlN are well conserved. Moreover, eleven small 

hydrophobic proteins (psbH, psbI, psbJ, psbK, psbL, psbM, psbTc, psbX, psbY, 

psbZ and ycf12) well conserved in cyanobacteria (Inoue-Kashino et al., 2011) and 

higher plants (Shi and Schroder, 2004; Iwai et al., 2010; Kashino et al. 2007), are 

present in all genomes of Chlorellaceae. 

 

 

 

6.3. Gene order 

The conserved gene order of cp genomes among C. sorokiniana, Chlorella sp and C. 

variabilis were compared in Figure 27. To avoid complexity, in this section we did 

not extend the analysis to all other organisms included in the study but we limited 

comparison to the Chlorella clade organisms only; the C. sorokiniana versus C. 

vulgaris comparison was considered separately. 

The gene order between C. sorokiniana and Chlorella sp. is generally conserved; 

major rearrangements between them were found in three regions (cf. Figure 27). The 

cluster psbI-ycf3-trnR was observed in inverse orientation in the C. sorokiniana cp 

genome respect to both Chlorella sp. and C. variabilis strains. A similar 

rearrangement was observed in the trnQ-psaM-ycf12-psbK C. sorokiniana cluster, in 

particular it was remarked in different order respect to genome region comprising 

trnG-(present in two copies in the C. sorokiniana genome)-trnH-ycf47-trnF-trnC-

psbZ gene cluster, which is itself in inverse orientation in the Chlorella sp. and C. 



variabilis genomes. Moreover, in the latter strain this region shows an inversion 

(psbZ-trnK-tilS-trnF-ycf47 instead of ycf47-trnF-trnK-psbZ). 

 

Figure 27. Comparison between the C. sorokiniana, C. variabilis and Chlorella sp.. 
 

A more complex rearrangement was observed in the C. sorokiniana psaB-rbl32 

region (around positions 72000-10000), the cluster rpoC2-rpoC1-rpoB-trnC which 

precede this region shares conserved orientation among the three considered strains. 

The C. sorokiniana rbcL-rpl32 region can be considered as composed by several sub 

clusters: the trnR(acg)-rpl32 cluster that is conserved in orientation between C. 

sorokiniana and Chlorella sp. but shows an inversion between C. sorokiniana and C. 

variabilis; the minD gene, which is present with the same orientation in C. 

sorokiniana and C.variabilis but in opposite direction between C. sorokiniana and 

Chlorella sp.; the trnM-psaC-trnN cluster shows the same orientation between C. 

sorokiniana and Chlorella sp. (even if in the latter strain the ycf20 gene is inserted 

between the trnN and psaC genes) but is found in inverse orientation between the C. 

sorokiniana and C. variabilis genomes; the rbcL-rps14 cluster is upside down among 

the C. sorokiniana and the other two organisms. This region can be then considered 

as a large cluster rbcL-rps14-trnN-psaC-trnN inverted between C. sorokiniana and C. 

variabilis: Moreover, the cluster itself, if compared between C. sorokiniana and 

Chlorella sp., can be divided in two subcluster: rbcL-rps14 which is inverted in 

Chlorella sp. and similarly to the C. variabilis genome, and a subcluster trnN-psaC-

trnM which is conserved between C. sorokiniana and Chlorella sp.. 



The gene order comparison between C. sorokiniana and C. vulgaris is shown in 

Figure 28. With respect to the two above mentioned comparisons, the C. sorokiniana 

versus C. vulgaris contrast presents a higher occurrence of rearrangements, each of 

them involving a larger number of genes. A small amount of clusters were found in 

same orientation, even if in different order, between the two strains: trnE-rpl20-

rps18-trnW-trnP-psaJ-rps12-rps7-tnfA-rpl19-ycf4-psbI-ycf3-trnR, rrns-trnI-trnA-

rrnL-rrn5 (in the C. vulgaris the rrnL gene is interrupted and contains an intron plus 

the I-cvuI gene), trnk-psbZ-chlB-psaA-psaB (this cluster in the C. vulgaris is 

interrupted by the insertion of multiple genes), rbcL-rps14, chlN-chlL-ycf5-rpl32-

cysT, petD-petB-clpP. 

Other clusters, on the contrary, are present in inverse orientation and different order 

between the two strains: psbN-psbH, rpl12-trnR-chlI-petA-petL-petG, trnT-rps2-

atpI-atpH-atpF-atpA, atpB-atpE-rps4, psaI-accD-cysA, psbE-psbF-psbI-psbJ, trnG-

trnH, trnN-minD-trnR (in the C. vulgaris the minE gene interrupts the cluster). Some 

other isolated genes, trnS in particular, were observed in inverse orientation between 

the two algae strains.  

 

Figure 28. Comparison between the C. sorokiniana and C. vulgaris. 

6.4. Ancestral gene clusters 

Some ancestral gene clusters were preserved during the evolution of Chlorellalae. 

These clusters provide important information about the evolution of the organisms 

and in addition help the understanding of the phylogenic relationship between them. 

To identify the ancestral clusters carried by C. sorokiniana cpDNA as well as the 



derived clusters that are shared with others Chlorellaceae cpDNAs, we investigated 

the 19 gene clusters (cf. Figure 29).  

 

 

Figure 29. Conserved gene clusters in the Chlorellales algae. 

 



Regarding the presence of derived gene clusters, the C. sorokiniana chloroplast 

genome clearly bears more similarity with C. variabilis and Chlorella sp. ArM0029B 

than with the other cpDNAs compared. All the photosynthetic strains possess six 

intact conserved ancestral gene clusters (psbE-psbF-psbL-psbJ; rpl32-cysT-ycf1; 

psaJ-trnP(ugg)-trnW(cca); psaA-psaB; accD-psaI; psaM-trnQ(uug) and eight 

partially conserved blocks diverging and conserving contemporary (petA-petL-petG; 

trnC(gca)-rpoB-rpoC1-rpoC2; rps2-atpI-atpH-atpF-atpA; petB-petD; rrs-trnI(gau)-

trnA(ugc)-rrl-rrf; trnR(acg)-minD; atpB-atpE; psbD-psbC).  

Moreover, P. wickerhamii shows only one of the six intact clusters (rpl32-cysT-ycf1) 

and three of the eight partially conserved blocks (trnC(gca)-rpoB-rpoC1-rpoC2; rps2-

atpI-atpH-atpF-atpA; petB-petD; rrs-trnI(gau)-trnA(ugc)-rrl-rrf; trnR(acg)-minD; 

atpB-atpE). It is interesting to note that P. wilhemlii is the only photosynthetic 

Chlorellaceae that diverges from the others due to the absence of two clusters (ccsA-

chlL-chlN; trnT(ggu)-cysA). Turmel et al. (2009) showed that 10 gene linkages 

unique to Parachlorella and Chlorella are consistent with the notions that these 

green algae belong to the same monophyletic group (Chlorellaceae). In our study we 

used more than one species for the Chlorella genus and we observed that the 10 

clusters are preserved in all of them except for C. sorokiniana which doesn’t show 

the gene rpoA. In addition we found two new cluster (rrs-trnI(gau)-trnA(ugc)-rrl-

rrf/trnR(acg)-minD; accD-psaI) that are conserved between the species of the two 

genus.  

 

 

 

6.5. Phylogenetic analysis 

6.5.1. Parameters and data set 

The chloroplast genomes of 14 green algae were considered for phylogenomic 

analysis. The GenBank accession numbers of these green algal genomes are the 

following: C. sorokiniana SAG 211-8k (NC_023835.1); C. sorokiniana 1230 

(KJ742376.1); C. vulgaris C-27 (AB001684.1); C. variabilis NC64A (KP271969); 

Chlorella sp. ArM0029B (KF554427.1); Parachlorella kessleri (NC_012978.1), 

Auxenochlorella protothecoides (KC843975.1); Helicosporidium sp. ATCC 50920 

(NC_008100.1), Prototheca wickerhamii SAG 263-11 (KJ001761.1), Marvania 



geminata SAG:12.88 (KM462888.1), Pseudochloris wilhelmii SAG:1.80 

(KM462886.1), Dicloster acuatus SAG:41.98 (NC_025546.1), Coccomyxa 

subellipsoidea C-169 (NC_015084) and Pedinomonas minor (NC_016733.1). We 

selected seventy-one protein-coding genes on the basis of the work by Lemieux et 

al., (2014): accD, atpA, B, E, F, H, I, ccsA, cemA, chlB, I, L, N, clpP, ftsH, infA, 

petA, B, D, G, L, psaA, B, C, I, J, M, psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z, 

rbcL, rpl2, 5, 14, 16, 20, 23, 32, 36, rpoA, B, C1, C2, rps2, 3, 4, 7, 8, 9, 11, 12, 14, 

18, 19, tufA, ycf1, 3, 4, 12. The above indicated aminoacids sequences were aligned 

by MAFFT, the ambiguously aligned regions were removed using TRIMAL 

(Capella-Gutierrez et al., 2009) with same parameters indicated in Lemieux et al. 

2014 , Trimmed alignements were concatenated using Phyutility (Smith and Dunn, 

2008). Phylogenesis was inferred by Maximum Likelihood method implemented in 

MEGA6 using cpREV + Gamma4 models of sequence evolution. Confidence of 

branch points was evaluated by fast-bootstrap analysis with 500 replicates. 

Maximum likelihood tree from nuclear 18S gene (operon) sequences aligned by 

MAFFT with parameters optimized for RNA secondary structure, was inferred by 

MEGA package using GRT + Gamma models of sequence evolution. Similarly, 16S 

operons from chloroplast sequences were aligned by MAFFT as above described, 

and maximum likelihood tre was inferred using cpREV + Gamma models of 

sequence evolution. Confidence of branch points was evaluated for each tree by fast-

bootstrap analyses with 500 replicates. 

The complete cp genome of C. sorokiniana, was compared to the above mentioned 

organisms by using Mauve Alignment tool; chloroplast genomes were artificially 

rearranged when necessary for graphical reasons. Conserved cluster genes among 

Chlorella clade organisms were identified by BLASTN searches, while genoPlotR 

was used to prepare figures.  

 

 

6.5.2. Phylogenetic recostruction 

The aim of this work was to improve the knowledge about the evolution of the 

Chlorella–like organisms within the Chlorellaceae family (Krienitz et al., 2004, 

2010; Luo et al. 2006, 2010; Bock et al. 2011a, b; Skaloud et al. 2014) using a new 

data set of genes. The ML phylogenetic trees were inferred using respectively: 

nuclear sequences (18S rDNA) (cf. Figure 30), chloroplast rRNA operon data sets 



(16S-tRNA Ile-Ala-23S) (cf. Figure 31) and 71 chloroplast genes (cf. Figure 32) 

from the most comprehensive taxa sampling to date of the strains compared in this 

study. Trees were rooted with the class Trebouxiophyceae and focused on the 

Chlorellaceae family with an emphasis on the Chlorella clade. The taxa set includes 

photosynthetic and colorless Chlorellales.  
 

 

Figure 30. Phylogeny of 12 Chlorellaceae inferred using maximum likelihood (ML) 

analyses of nuclear 18S rRNA 

The trees are consistent with previous analyses (Huss et al., 1999; Ueno et al., 2003; 

Krienitz et al., 2004; Pröschold and Leilaert, 2007; Lemieux et al., 2014; Figueroa-

Martinez et al., 2014). Using the Coccomyxa and Pedinomonas genera as outgroup, 

the phylogenic analyses demonstrated five distinct clades of Chlorellaceae: the 

Chlorella, Parachlorella, Auxenochlorella, Marvania and Helicosporidium clades. In 

particular, C. sorokiniana, C. variabilis, C. vulgaris and Chlorella sp. ArM0029B are 

depicted as members of a strongly supported clade.  

In fact, the monophyly of the four species of Chlorella is well showed in the trees in 

Figure 32 and are characterized by their high sequence similarities with respectively 

97% between C. sorokiniana and Chlorella sp. ArM0029B and 98% between 

Chlorella sp. and C. variabilis bootstrap values. Furthermore, relative to the distance 

between Chlorella sp. ArM0029B and C. variabilis and Chlorella sp. ArM0029B 

and C. vulgaris C-27 we have had analogous results to a recently study (Jeong et al., 

2014). Indeed, the distance between the first and the second strain is more shorter 



compared or the distance between the first and the third strain, this result proved the 

close relationships of Chlorella sp. ArM0029B to C. variabilis. The monophyletic 

Chlorella clade appears as a sister clade to Auxenochlorella and Marvania clade, and 

this relationship is strongly supported by bootstrap analyses. The Dicloster genus 

belonging to the Parachlorella-clade was highly supported in all bootstraps.  

In addition, in the 16S operon tree the Parachlorella, Dicloster subclade and 

Chlorella Auxenochlorella/Marvania groups are separated in two branches with 

100% bootstrap supports. Chlorella clade is then separated by 

Auxenochlorella/Marvania clade with a very low bootstrap support (39%). 

 

Figure 31. Phylogeny of 12 Chlorellaceae inferred using chloroplast rRNA operon data 

sets (16S-tRNA Ile-Ala-23S) 

Our maximum likelihood (ML) analyses of nuclear 18S rRNA (cf. Figure 30), 

chloroplast rRNA operon data sets (16S-tRNA Ile-Ala-23S) (cf. Figure 31) and 71 

chloroplast genes (cf. Figure 32) sequences from the taxon included in this study 

depict P. wickerhamii SAG 263-11 as a sister clade to M. geminata with low 

bootstrap support while to A. protothecoides there is a strongly supported, but the 

taxon sampling remains relatively poor to confirm this relationship. Interestingly, the 

relationships among the genera, and even the monophyly of some of them, differed 

significantly across these reconstructions. In view of that, 16S rRNA sequences from 

various trebouxiophytes depict P. wickerhamii SAG 263-11 as a nonsister lineage to 

the other Prototheca and Helicosporidium species. These data suggest that the loss of 

photosynthesis has occurred at least twice in the evolution of parasitic/pathogenic 



Chlorellales (Figueroa-Martinez et al., 2014). The loss of photosynthesis has 

occurred several independent times among chlorophytes: at least twice in the order 

Chlorellales (Trebouxiophyceae) (Figueroa-Martinez et al., 2014). 

 

Figure 32. Phylogeny of Chlorellaceae inferred using 71 chloroplast genes. 

 

 

 

6.6. Concluding remarks 

Although significant efforts have been given to characterize growth phenotypes and 

the fatty acid content within the genus Chlorella, knowledge of the genetic and 

genomic basis that defines and controls their physiological behavior are still lacking; 

critical information is required to support effective genetic engineering strategies. 

Recently, an analysis of the mitochondrial and chloroplast genomes of two strains 

revealed that the genomic content was highly conserved between these species yet, 

evolutionarily divergent ‘hotspots’ were present, enabling an accurate phylotyping of 

these closely related species. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7.  

Conclusions and suggestions for 

further research  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



In the light of for sustainable development, microalgal biodiesel, as a renewable and 

sustainable energy type, has enjoyed a surge in popularity (Chisti, 2007; Chen et al., 

2012; Feng et al., 2012; Ito et al., 2012). In fact, differently from the first generation 

biofuels, the use of microalgae to produce bioenergy does not involve the triggering 

of "food for fuel" competitivity and thus represents a sustainable mean to face 

significant concerns, such as wars and political instabilities deriving from oil 

reserves shortage. Morevoer, the high oil yields and less land use are the main 

advantages of microalgae. However, in order to make the current technology viable 

at the large-scale, several limitations should be overcome. In particular, biomass and 

lipid productivities should be further increased and all the downstream processes, 

from harvesting to lipid extraction, should be optimized. To these aims, high efforts 

involving high investments should be done in order to implement an intensive 

multidisciplinary research activity both at the laboratory and the industrial scale.  

The microalgae cultivation is the base of biofuel development and suitable genetic 

engineering strategies  have to be developed in order to augment the microalgae oil 

content and their growth rate so that biofuels production could performed in a 

sustainable way. In particular, the creation of new microalgal strains intrinsically 

characterized by high lipid productivities as well as by a good tolerance to high CO2 

levels is an ambitious goal which might be achieved only once their genome is 

known. The results presented in this thesis represent the first step needed to design a 

genetic approache which may eventually facilitate large-scale production of algae. 

The use of transgenic microalgae for the production of bioproducts represent an 

enormous economic and biotechnology promise, because algal production combines 

the simplicity and speed of haploid, single-cell genetics in an organism with 

elaborate biosynthetic potential, and with the associated economic benefit of using 

photosynthesis to drive product formation.  

As technology continues to be progressed and algae production industrialization 

continues to be improved, microalgae energy as the third generation biofuel will 

contribute their own strength to relieve the tense situation of resources. 

The contribution of the present work, to this general target can be briefly 

summarized as follows. The growth kinetics of C. sorokiniana has been investigated 

along with their corresponding lipid content, both batch and helical photobioreactors. 

The main results achieved during this activity are the knowledge of the effect of 

nitrogen concentration in solution on the growth rate and lipid content of C. 



sorokiniana. These informations represent the first step towards the development of a 

nitrogen based strategy for the optimization of lipid productivity of C. sorokiniana 

cultures. 

As far as the genetic characterization activity, the chloroplast and mitochondrial 

DNAs of two strains, i.e. C. sorokiniana and C. variabilis, respectively, have been 

sequenced for the first time in the literature. The obtained results allowed to perform 

a phylogenetic assessment involving different microalgae strains belonging to the 

Chlorella clade. Such results represent the first important step towards the 

development of genetic engineering strategies aimed to improve the current 

microalgae based systems for the production of biofuels and the capture of CO2. 
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