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Abstract—The effective management of future smart grids
is strictly related to the accurate knowledge of the network
operating conditions via Distribution System State Estimation
(DSSE). To achieve this target, the measurement infrastructure
of the distribution systems needs a substantial upgrade. However,
obvious economic limitations prevent a massive deployment of
measurement instruments on the field in short times. As a con-
sequence, ad hoc meter placement techniques have to be applied
to define location and type of a minimum set of measurements
required to obtain the desired accuracy performance. This paper
presents a mathematical analysis showing the impact of current
and power measurements on the accuracy of DSSE results.
The goal is to provide the analytical tools to identify the best
placement for additional current or power measurements when
applying an incremental deployment of meters in the distribution
system. The analysis has a general validity but has also a clear
impact on practical situations when the monitoring systems is
upgraded starting from an existing infrastructure. Tests on a 95-
bus sample grid are presented in order to validate the found
mathematical results and to highlight the associated benefits in
a meter placement perspective.

Keywords—Distribution System State Estimation, Weighted Least
Squares Method, Uncertainty Analysis, Meter Placement, Current
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I. INTRODUCTION

Distribution System State Estimation (DSSE) is an essential
component of the Distribution Management Systems (DMS)
required for the control of future Smart Grids (SGs) [1]. DSSE
provides the real-time picture of the operating conditions
of the network, which is then used as input by different
DMS applications [2]. The accuracy of this information is
crucial for the efficient and reliable management of distribution
networks (DNs) [3]. To this purpose, a suitable measurement
infrastructure is essential to provide the real-time information
necessary to the DSSE algorithm to produce accurate results.

However, today’s DNs are usually endowed with very few
measurement instruments, which often are only available at
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the primary substation. In the DSSE context, the scarcity of
measurement devices is usually faced by considering the so-
called pseudo-measurements, namely forecasts derived from
historical or statistical information about the power generation
or consumption at the nodes [4], [5]. Despite making the
network observable, the use of pseudo-measurements usually
affects the accuracy of DSSE results because of the high
uncertainty associated with the forecast information [6]. For
this reason, it is well recognized that the reliable management
of future SGs requires an important upgrade of the DN
measurement system. Nevertheless, considering the large size
of DNs, a massive deployment of measurement devices is not
predictable, at least in short times, due to the resulting high
costs. Therefore, suitable meter placement strategies have to
be designed to apply a smart upgrade, likely in an incremental
way, of the measurement infrastructure.

In the literature, the meter placement problem for DNs is
generally tackled by applying optimization techniques aimed at
achieving the desired DSSE accuracy targets with a minimum
number of measurement devices. In [7], the focus is on the
voltage magnitude estimation and voltage measurements are
placed in the nodes with the highest standard deviation to
lower the estimation uncertainty below a given threshold. In
[8], the optimization problem is modeled through a mixed
integer linear programming formulation where the goal is to
minimize the Root Mean Square Errors (RMSEs) of the state
estimates. The use of heterogeneous devices with different
costs and accuracy characteristics, including last generation
Phasor Measurement Units (PMUs), is also investigated in
other papers (e.g. [9]–[11]). In [12], the uncertainties in the
network parameters are also taken into account in addition
to the meters uncertainties to ensure the achievement of the
desired accuracy targets. The need for better accuracies in
some critical points of the network is instead a main consid-
eration in [13], where an incremental placement is applied to
fulfil the accuracy requirements. In [14], the Fisher information
matrix is chosen as criterion for the meter placement, and
the effects brought by possible network topology changes are
also considered in the optimization approach. In [15] a mixed-
integer programming approach is used to define an optimal
meter placement strategy applicable also to DNs with non-
observable conditions.

All the above proposals, while presenting interesting ap-
proaches to address the meter placement problem, do not
allow a clear understanding of the impact brought by the
deployment of additional measurements. The authors of this
paper investigated the sources of uncertainty for the estimation
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of the voltage magnitude profile in [16], highlighting the
role of both the voltage measurements and the accuracy in
the branch current estimates for the final result. In [17], the
mathematical analysis was extended to the case of PMUs,
pointing out their impact on the voltage phase-angle estimation
and the different contribution of conventional and PMU voltage
measurements according to their accuracy level.

In this paper, the main goal is to analyze from a math-
ematical point of view the impact of flow measurements
(current and power measurements) on the accuracy of the
branch current estimations. Despite several papers reporting
experience-gained information about the local impact of flow
measurements (see for example [18]), to the best of author’s
knowledge, no other works investigated analytically this im-
pact. The analysis and results here presented can serve in a
meter placement perspective either for obtaining the desired
voltage estimation accuracy through a minimum number of
devices, as shown in [16], or for achieving specific accuracy
targets in the monitoring of the currents in particular branches
of the grid.

The rest of this paper is structured as follows. Section
II summarizes the peculiarities of DSSE and presents the
formulation adopted as a reference for the subsequent analysis.
In Section III, the impact of a measurement system com-
posed of only pseudo-measurements is investigated, in order
to give an indication of the accuracy achievable with this
basic solution. In Section IV, the impact given by additional
current or power measurements is presented. Section V shows
the tests carried out to prove the validity of the performed
mathematical analysis and presents the inherent benefits of the
found relationships in a meter placement perspective. Finally,
Section VI provides the concluding remarks.

II. DISTRIBUTION SYSTEM STATE ESTIMATION

State Estimation (SE) is a well-know mathematical tech-
nique used to estimate the most likely state of an electric grid
given a redundant set of measurements. The Weighted Least
Squares (WLS) method is the most commonly used approach
for dealing with SE [19] and is proved to be a reliable solution
also for DSSE [20]. It relies on the following measurement
model:

z = h(x) + e (1)

where z is the vector of input measurements at a given
time instant, x is the chosen vector of state variables at the
same instant, h(x) is the vector of the measurement functions
linking the measured quantities to the state vector, and e is
measurement error vector (generally assumed as composed of
uncorrelated and zero mean variables). The DSSE thus aims at
obtaining a snapshot of the state of the network at the operating
conditions corresponding to the measurement time.

Starting from this measurement model, the WLS method
minimizes the following objective function:

J(x) = [z− h(x)]TW[z− h(x)] (2)

where W is a weighting matrix, equal to the inverse of the
measurement error covariance matrix Σz, used to assign higher
weights to the most accurate measurements.

The minimization of the objective function in (2) can be
obtained by iteratively applying the Gauss-Newton method,
which leads to the solution of the following equation system
at each iteration k of the estimation algorithm:

G∆xk = H
T
W[z− h(xk)] (3)

where G = H
T
WH is the so-called Gain matrix, H is the

Jacobian of the measurement functions h(x), and ∆xk is the
vector used to update the state variables at iteration k according
to the following:

xk+1 = xk +∆xk (4)

The iterative process stops when a given convergence criteria
is achieved (usually the desired maximum deviation in ∆xk).
As known in the literature (see for example [21]), one of
the advantages in using the WLS method is the possibility to
obtain, as well as the state estimates, also their corresponding
uncertainties. The covariance matrix of the state estimates is
given by the inverse of the Gain matrix, thus resulting in:

Σx = G
−1 =

(

H
T
WH

)−1
(5)

The relationship in (5) provides the mathematical link to the
uncertainty of the state estimates and thus it will be the basis
for the following analysis developed in Sections III and IV.

Despite the many differences between DSSE and the clas-
sical SE applied to power systems, the WLS approach can be
also applied to DSSE. A peculiarity of DSSE is the possibility
to use different representations of the state vector x in (1).
While in transmission systems the common assumption is to
identify the state vector with the set of voltage magnitudes
and phase-angles, in DSSE alternative formulations can be
more advantageous. In this work, the DSSE formulations based
on branch currents introduced in [22] will be considered as
reference for the following mathematical developments. In the
following, for the sake of simplicity, the case of an equivalent
single-phase model is considered. The reported expressions
become thus more immediate and easier to illustrate, but
nothing prevents dealing with a three-phase system by applying
similar considerations and generalized expressions. According
to [22], the state vector can be written as:

x = [I1, ..., INbr
, θ1, ..., θNbr

, Vref ]
T

(6)

or as:

x = [ir1, ..., irNbr
, ix1, ..., ixNbr

, Vref ]
T
= [ir, ix, Vref ]

T
(7)

where Vref is the voltage magnitude at a given bus (usually
the slack bus at the main substation) that is chosen as the
reference for the phase angle, the couples (Ij , θj) and (irj , ixj)
represent the current of the j-th branch in polar and rect-
angular coordinates, respectively, ir and ix are the real and
imaginary parts of the branch current vector, and Nbr is the
total number of branches in the grid. Such formulations allow
directly obtaining the covariance sub-matrix of the branch
current estimates through (5). Moreover, it is worth noting that
[23] proved that it is possible to define the WLS estimators
so that different formulations provide the same estimation
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uncertainties, regardless of the used state vector, when fed with
the same measurements. As a result, the mathematical findings
obtained in next Sections have general validity for all the WLS
estimators, regardless of the state vector formulation used as
reference for the discussion. The most appropriate state vector
for each case will be thus used.

In the following, for the sake of simplicity, the case of
balanced distribution grids will be considered in order to refer
to an equivalent single-phase model. However, it would be
rather straightforward to extend the analysis to the case of
unbalanced three-phase distribution grids.

III. IMPACT OF PSEUDO-MEASUREMENTS

Because of the low number of measurement devices installed
on the field, the use of pseudo-measurements is often essential
to achieve the observability of distribution grids. Together with
the zero-injection nodes (buses where the absence of power
consumption or generation is a priori known), these inputs
provide the information on the power injections for each bus
of the grid. They are referred to as pseudo-measurements
because their value and associated uncertainty are the re-
sult of statistical representations or the elaboration of non-
real-time/historical measurements. This measurement set, in
addition to one voltage measurement (usually available at
the primary substation), guarantees the network observability.
The system obtained in this way has no redundancy and
is equivalent to a power flow scenario where the primary
substation is considered as a slack bus and all the other nodes
are treated as nodes operating with given active (P) and reactive
(Q) power consumption/injection values (henceforth referred to
as PQ values).

At distribution level, the grids are very often composed of
several feeders operated in radial mode (reclosing switches
between feeders can exist but they are normally open and
closed only in emergency cases to supply part of a faulty line).
The analysis of the branch current uncertainties for a DN in
radial configuration is thus, in general, the most interesting for
practical cases.

Let us consider the measurement configuration previously
described, with a voltage measurement at the primary substa-
tion and the PQ values at all the other nodes, and let us refer
to the state vector in (7). With such a DSSE formulation, the
powers are included in the WLS procedure by converting them
into equivalent real and imaginary current injections:

ieqinj,n =
Pinj,n − jQinj,n

v∗n
= ieqinj,rn + jieqinj,xn (8)

where Pinj,n and Qinj,n are the active and reactive power at the
node n, v∗n is the complex conjugate of the voltage at the same
node, ieqinj,n is the phasor of the equivalent current injection and

ieqinj,rn and ieqinj,xn are the associated real and imaginary parts,
respectively.

As discussed in [24], expressing the quantities in per unit
and considering the voltage magnitude almost equal to 1 p.u.
(with respect to the rated voltage) and the phase-angle very
small (as it usually happens in DNs), the same uncertainties
σPinj,n

and σQinj,n
of the active and reactive power can be

Fig. 1. Nodes downstream branches b and j in a generic network schema.

assigned, in first approximation, to the real and imaginary
currents, respectively. Such uncertainties can be thus used to
build the weighting matrix. The conversion of the powers in
equivalent currents simplifies the definition of the Jacobian
matrix Hpse (where the subscript pse stands for “pseudo” and
is used to recall the main information source). As shown in
[22] and [24], all the nonzero terms of the Jacobian will be 1
and -1 according to the default direction of the branch currents
chosen for the grid. Given this design of the Jacobian Hpse and
the weighting matrix Wpse, the corresponding Gain matrix
Gpse and the covariance matrix of the estimates Σpse can
be computed. From this calculation, the following variances

Σir

pse,bb and Σix

pse,bb can be found for the real and imaginary
components of the current in branch b, respectively:

Σir

pse,bb =
∑

h∈Γb

σ2
Pinj,h

(9)

Σix

pse,bb =
∑

h∈Γb

σ2
Qinj,h

(10)

where Γb is the set of all the nodes downstream the branch
b (see Fig. 1 for a visual representation of the node sets and
branches). These relationships highlight that, with the consid-
ered measurement scenario, the branch current uncertainties
are given (approximatively) by the quadratic combination of
the uncertainties of the current injections downstream the
branch, which are assumed to be uncorrelated.

The covariances between the estimates of the currents in
branches j and b are instead:

Σir

pse,jb =
∑

h∈Ψ

σ2
Pinj,h

(11)

Σix

pse,jb =
∑

h∈Ψ

σ2
Qinj,h

(12)

where Ψ = {Γj ∩Γb} is the set of the nodes downstream both
branch j and branch b (see Fig. 1). From (11) and (12), it
can be found that the covariance is zero when branch b is not
downstream branch j (or vice versa), whereas it is equal to
the variance of branch b (or j) if this is downstream branch j
(or b). It is worth noting that in the latter case it is Ψ = Γb

(or Ψ = Γj).
This particular form of the covariance also allows an ap-

proximate computation of the correlation factor between the
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current estimates of branches b and j. Assuming as an example
that branch b is downstream branch j, the following holds
(calculations are only shown for the real current, but analogous
relationships can be derived for the imaginary currents as well):

Σir

pse,jb = Σir

pse,bb (13)

which leads to the following correlation factor ρirpse,jb:

ρirpse,jb =

√

√

√

√

Σ
ir

pse,bb

Σ
ir

pse,jj

=

√

√

√

√

∑

h∈Γb
σ2
Pinj,h

∑

h∈Γb
σ2
Pinj,h

+
∑

k∈Ω
σ2
Pinj,k

(14)
where Ω = Γj \ Γb is the set of nodes between branches j
and b (namely, the nodes downstream branch j that are not
downstream branch b). From (14), it is possible to derive the
following example correlations:

ρirpse,jb











≃ 0 if
∑

h∈Γb
σ2
Pinj,h

≪
∑

k∈Ω
σ2
Pinj,k

≃ 1√
2

if
∑

h∈Γb
σ2
Pinj,h

≃
∑

k∈Ω
σ2
Pinj,k

≃ 1 if
∑

h∈Γb
σ2
Pinj,h

≫
∑

k∈Ω
σ2
Pinj,k

(15)

In (15), it is possible to observe that the larger the additional
uncertainty brought by the current injections in the nodes k ∈
Ω, the smaller the correlation factor. For the same reason, the
closer the branches, the higher the possibility to have high
correlation between the current estimates. As it will be shown
in Section IV, these elements and values of correlation will
play an important role also for determining the effects brought
by the placement of additional power/current measurements.

In a meshed grid scenario, an easy analytical derivation
of the final current estimate uncertainties cannot be obtained
due to the presence of the electrical constraints brought by
the Kirchhoff Voltage Law (KVL) along the mesh (see [22]
for details on how to integrate them in the branch-current
state estimation formulation). In this case, the inverse of the
Gain matrix has to be computed to evaluate variances and
covariances of each branch current. However, some of the
general considerations made for the radial grids still hold. For
example, it is easy to predict that the closer the branches,
the higher the probability to have large correlations between
the current branch estimates. Moreover, current injections with
large uncertainty in the nodes between two branches lead to
lower correlation between their current estimates.

IV. IMPACT OF BRANCH MEASUREMENTS

To show analytically the impact brought by additional
current measurements, let us indicate with HA, WA and
GA the Jacobian, the weighting matrix and the Gain matrix,
respectively, associated to a starting measurement configura-
tion available on the field. As indicated in Section II, the
corresponding covariance matrix obtainable for the state vector
estimations will be ΣA = G

−1

A . If an additional measurement,
independent from those already available, is added to the mea-
surement set, indicating with HB and WB the Jacobian and
weighting submatrices (which are, respectively, a row vector

and a single weight value) related to the new measurement, it
is possible to show that:

G = H
T
WH =

[

HT
A HT

B

]

[

WA 0

0 WB

] [

HA

HB

]

= H
T
AWAHA +H

T
BWBHB = GA +GB

(16)

In the following, a thorough discussion of the impact of
different branch measurements is reported.

A. Current Measurements

Considering an additional branch current measurement, that
could be a current magnitude measurement or a synchrophasor
measurement from PMU, it is possible to specify (16). Starting
with the measurement of the current magnitude, when the state
vector is expressed as in (6), the Jacobian matrix HB is a row
vector with only one nonzero entry: a 1 element is present at
index b corresponding to the measured current magnitude. The
Gain matrix thus becomes:

GB =





















0
...
0
1
0
...
0





















wB [0 · · · 0 1 0 · · · 0]

=















0 · · · · · · 0
...

. . .
0

wB
... 0

0
. . .















(17)

where wB = WB is the additional measurement weight. The
Gain matrix contribution associated to the new measurement
at branch b is thus a rank-1 matrix having only one nonzero
term equal to the measurement weight on the position (b, b).
In this scenario, it is possible to apply the Miller theorem
[25] to obtain the overall covariance matrix Σ = G

−1

and to understand the contribution brought by the additional
measurement in the system. According to [25], it is possible
to write:

Σ = (GA +GB)
−1 =

= G
−1

A −
1

1 + tr(GBG
−1
A )

G
−1

A GBG
−1

A (18)

where tr(·) stands for the matrix trace. Considering the par-
ticular characteristics of GB (see (17)), it is possible to find:

tr(GBG
−1

A ) = tr(GBΣA) =
σ2
Ab

σ2
Ib

(19)

where σ2
Ab = ΣA,bb corresponds to the variance achieved

for the current in branch b with the starting measurement
configuration and σ2

Ib
= W

−1

B is the variance associated to
the measurement added in this branch.
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Moreover, it is:

G
−1
A GBG

−1
A =

1

σ2
Ib

Λvar (20)

where Λvar is a positive definite matrix defined by the
following generic element:

Λvar,hk = ΣA,hbΣA,bk (21)

Including (19), (20) and (21) in (18), the new estimates
covariance matrix becomes:

Σ = ΣA −
1

σ2
Ib
+ σ2

Ab

Λvar (22)

From (22), it is possible to observe that an additional current
measurement clearly leads to an improvement in the currents
estimation accuracy, given the negative sign in the second
addend of (22). The impact of the new measurement uncer-
tainty appears in the denominator of the negative component
of (22): in particular, large uncertainties of the additionally
placed measurement lower the achievable improvement by
reducing the multiplicative factor for the matrix Λvar. In case
σ2
Ib

≪ σ2
Ab, instead, it is possible to note that the uncertainty

of the current estimation in the branch b, namely the branch
having the new measurement, will become almost equal to the
uncertainty of the measurement Ib since the covariance term
Σbb = σ2

b will be:

σ2
b =

σ2
Abσ

2
Ib

σ2
Ib
+ σ2

Ab

≃ σ2
Ib

(23)

where the first equality is a weighted average derived from
(22) and the second one is the result of the approximation.

For all the other branches of the grid, the resulting improve-
ment in their estimation uncertainty strictly depends on the
correlation between the starting estimations in the measured
branch b and the considered one j:

σ2
j = σ2

Aj −
Σ

2
A,jb

σ2
Ib
+ σ2

Ab

(24)

As highlighted by eq. (24), the larger the correlation between
the current estimations in branches b and j, the larger the ben-
efits brought by the additional measurements at branch b. The
entity of the covariance terms in the starting matrix ΣA thus
allows quantifying the potential benefits achievable, in terms
of currents estimation improvement, through the placement of
a current measurement in the generic branch b. This result,
jointly with the analysis shown in Section III, explains the
reason for the local impact of current measurements mentioned
in other works: indeed, the closer the branches, the larger the
possibility to have strong correlations.

When σ2
Ib

≪ σ2
Ab, as discussed above, the estimation

variance at the generic branch j can be also written as:

σ2
j ≃

σ2
Ajσ

2
Ib

σ2
Ab

+ σ2
Aj(1− ρ2A,bj) (25)

where ρA,bj is the correlation factor. According to the corre-
lation value, the following uncertainties can be derived:

σ2
j ≃











σ2
Aj if ρ2A,bj = 0

σ2
Aj(1− ρ2A,bj) if 0 < ρ2A,bj < 1

σ2
Ib

if ρ2A,bj = 1

(26)

where the last case can be obtained by considering that, if σ2
Aj

and σ2
Ab are fully correlated, then it is σ2

Ab = σ2
Aj .

Expression (22) also helps understanding the impact of the
additional measurement on the new correlation between the
estimations of the bth and jth branches. The new correlation
coefficient results:

ρjb =
ΣA,jbσ

2
Ib

(σ2
Ib

+ σ2
Ab)σbσj

= ρA,bj

σAjσIb
√

σ2
Ajσ

2
Ib
+ σ2

Ajσ
2
Ab(1− ρ2A,bj)

(27)

= ρA,bj

1
√

1 +
σ2

Ab

σ2

Ib

(1− ρ2A,bj)

< ρA,bj

where the last inequality holds when the correlation is not
complete and becomes ′ ≪ ′ if the measurement uncertainty
is much lower, as assumed above. Equation (27) guarantees,
when a measurement is added in branch b, a decrease in the
correlation with the estimations of other branch-currents, thus
reducing the beneficial effect brought by further additional
current measurements (according to what shown in (24)).

When a current phasor measurement from PMU is con-
sidered, equations similar to (18)-(24) hold for the additional
phase angle measurement. All the same relationships can be
repeated, with the only modification to consider the position
b + Nbr for the non-zero element in the Jacobian, given the
positioning of the current phase-angles in the state vector (6).

B. Power Flow Measurements

Focusing on power flow measurements, the derivation of
the uncertainty reduction due to an additional measurement in
branch b follows the same passages as in Section IV-A, since
it is possible to translate power measurements into equivalent
current ones. It is convenient, in this case, using the state
formulation (7), since, for a given branch b, an equivalent
measurement

ieqb =
Pb − jQb

v∗nb

= ieqrb + jieqxb (28)

can be defined, where Pb and Qb are the active and reactive
power measurements at branch b, v∗nb

is the complex conjugate
of the voltage at the node nb of the branch where the power
measurement is taken, and subscripts r and x indicate the real
and imaginary part of the branch current. As discussed also in
Section III, considering small voltage phase angle differences
and amplitudes close to 1 p.u., it is: ieqb ≃ (Pb − jQb)/Vnb

≃
Pb − jQb. It is thus clear that the description in terms of
rectangular coordinates fits perfectly.
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With this assumption, by first adding the Pb measurement,
equations corresponding to (18)-(22) follow and thus:

σ2
b =

σ2
Abσ

2
i
eq

rb

σ2
i
eq

rb

+ σ2
Ab

≃ σ2

i
eq

rb
≃ σ2

Pb
(29)

where σ2
i
eq

rb

and σ2
Pb

are the variances of the equivalent and

real measurements, respectively, while the first approximation
holds when σ2

i
eq

rb

≪ σ2
Ab and the second one depends on the

aforementioned assumptions on the voltages. Analogously:

σ2
j ≃ σ2

Aj −
Σ

2
A,jb

σ2
Pb

+ σ2
Ab

(30)

thus highlighting how, depending on the correlation of the
estimations, the new real power flow measurement impacts
also on the other branch-current estimations.

Adding the reactive measurements Qb leads to analogous
expressions and considerations on the estimation uncertainty,
where the starting covariance matrix, the index in the state
(now b+Nbr) and the measurement uncertainty are updated ac-
cordingly. The reactive power measurement in a given branch
directly reduces the uncertainty in the imaginary part of the
branch current and affects the other branches to a different
extent, depending on the correlation.

V. TESTS AND RESULTS

The analytical findings in Section III and IV are validated in
this Section by means of ad hoc simulations. To this purpose,
the 11 kV 95-bus grid depicted in Fig. 2 has been used for
the tests. The bus numeration is reported in black, while, to
avoid confusion, only some of the branch indexes are indicated
in red and italics, corresponding to main ramifications and
to branches relevant for the analysis in the following 1. The
grid has two large generation points (in nodes 28 and 95),
both with an injected power equal to 675 kW, and two large
loads (in node 3 and 27), with a power consumption equal to
821 kW and 678 kW, respectively. All the other loads have
a consumption lower than 150 kW. The used line parameters
and power consumption/generation values are taken from [26].

As first test case, the basic measurement configuration
scenario presented in Section III, composed of only one voltage
at the slack bus (node 1) and pseudo-measurements at all
the load and generation nodes is considered. The accuracies
used here are 1% and 50% for the voltage measurement and
the pseudo-measurements, respectively. Gaussian variables are
associated to these maximum deviations by using a coverage
factor of 3 (the same assumption will be used in the following
also for current and power measurements). It is important to
recall that the pseudo-measurements uncertainty reflects the
lack of knowledge on the power loads/generators and thus on
the actual operating conditions of the network. The uncertainty
assumptions for both pseudo and real measurements are made
without loss of generality, since different accuracies can be
adopted depending on the available information on network

1As for the numeration of the branches, each branch index is given by the
node number of its end node (the largest one), decreased by one.

Fig. 2. 95-bus test system.

conditions and knowledge on instrument specifications. Fig.
3 shows the levels of estimation uncertainty (here and in
the following, results will refer to the values of expanded
uncertainty with coverage factor equal to 3) achieved through
the inverse of the Gain matrix (5) for the real components
of current in the branches between node 1 and node 95.
The reported results obtained from the analytical formulas
have been validated also by means of Monte Carlo (MC)
simulations. The repeated random trials, corresponding to
different extractions of the measurement/pseudo-measurement
errors, allow computing the covariance matrix numerically,
thus confirming the results.

Coherently with Section III and the analytical expression
in (9), it is possible to proceed backwards (bottom-up in
the network) and see that the levels of current estimation
uncertainty are determined by the incremental contributions of
the pseudo-measurement uncertainties. In branch 94, due to the
large power generation in node 95, the uncertainty level is quite
large; moving backwards, the additional contribution of uncer-
tainty coming from the other power injections measurements
are comparatively small and, therefore, only a slight increment
of the uncertainty can be observed. This slight increase is
kept till branch 10: here, the current estimation uncertainty
also includes the contributions of the pseudo-measurements for
all the nodes downstream branch 11. Due to the high power
associated to the load in bus 27 and the generator in bus 28,
such contribution is also large and it consequently leads to an
evident increase in the estimation uncertainty.

In a similar way, Fig. 4 shows the uncertainty levels for the
current estimations (real parts) in the branches between node 1
and node 28. Following the same reasoning, it can be observed
that a quite large uncertainty is present in branch 27 due to
the large generation at bus 28. Such an uncertainty steps-up
moving to branch 26, due to the additional contribution brought
by the pseudo-measurement associated to the large load at
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Fig. 3. Uncertainty profile of the real part of current along the path between
node 1 and node 95.
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Fig. 4. Uncertainty profile of the real part of current along the path between
node 1 and node 28.

bus 27. Proceeding backwards, the following contributions of
uncertainty are relatively smaller and thus produce only a slight
increase of current estimation uncertainty. Then, arriving at
branch 10, the uncertainty level shows again an important
step-up due to the large uncertainty contribution coming from
the nodes downstream branch 28. The results presented in
Figs. 3 and 4, which are discussed here mainly from a
qualitative viewpoint, have been also evaluated numerically by
MC repeated trials, confirming the validity of (9) and (10).

Using the same test scenario, it is possible also to evaluate
the covariances and the correlation factors among the current
estimations in different branches. Fig. 5 shows the correlation
factors for the current estimations (real parts) in the branches
between node 1 and 28 with respect to the current estimates
in branch 27 and 26. Referring also to (14), it is possible to
evaluate the effects brought by the large uncertainties in the
pseudo-measurements of large loads or generators. In general,
they help increasing the correlation coefficient between two
current estimates when they are common to the subtrees
of both the considered branches, while they decrease the
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Fig. 5. Trend of the correlation factors for different branch current estimates
with respect to the estimations in branch 26 and 27.
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Power measurement at:

Fig. 6. Impact on the current estimation uncertainty of a different placement
of the power measurement.

correlation level when they belong to the set of nodes that is
downstream to only one of the branches. This is clearly visible
in Fig. 5: the current estimation in branch 26 has a very large
correlation with all the estimations in the upstream branches,
since the pseudo-measurements with large uncertainty in nodes
27 and 28 are both subtended to the considered branches. On
the other hand, the current estimation in branch 27 has a clearly
lower correlation factor with the current estimations in the
upstream branches. In fact, the large uncertainty contribution
given by the pseudo-measurement in node 27 is not subtended
by the branch 27 subtree and thus its contribution leads to
decorrelation among current estimations.

As discussed in Section IV (and specified in (24)), these
correlation factors play a key role to determine the impact
of a branch measurement (current or power) on the current
estimation uncertainty of the other branches. To show this
effect, tests have been carried out by considering a power
measurement placed either at branch 27 or at branch 26 (the
accuracy of both active and reactive power has been considered
equal to 1% of the actual power value). Fig. 6 highlights
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the different impact resulting from the choice of the power
measurement placement. As expected, since in the starting
scenario the correlations with the branch current estimate in
branch 26 were much higher, this placement leads to evident
advantages. In particular, since the correlation factor was
almost 1 for the feeder branches from 11 to 24, the uncertainty
level is extremely low in those branches and a reduction
higher than 90% is achieved with respect to the uncertainty
present in the starting scenario. Such a result highlights how
the analytical findings of Section IV can be exploited in a
meter placement perspective to identify the locations where
the installation of a branch measurement could bring the
largest benefits. The analysis of the correlation factors and
the performed tests also highlight how the additional branch
measurement has a local impact and only affects the current
estimates of a subset of branches of the grid. Coherently with
(24), indeed, only the upstream branches (between node 1
and the measured branch) and the downstream branches have
an improved current estimation. For all the other branches
(those not shown in Fig. 6), since the correlation with the
current estimates in branch 26 and 27 is zero, no estimation
improvement is obtained.

The effects of the correlation factors on the potential im-
provements for the branch current estimation have been also
evaluated in a quantitative way, to assess the correctness of
the relationships presented in Section IV. Tables I and II
provide some examples of the obtained results, referring to the
placement of a power measurement at branch 87 and a current
magnitude measurement at branch 10, respectively. In these
tests, both the measurements have been considered to have an
accuracy equal to 1%. Tables I and II show, once again, how
significant improvements can be achieved on the estimation of
those branch currents that are highly correlated with the current
estimation of the measured branch. Moreover, it can be noticed
that the results achieved with the analytical expressions given
in (30) and (24) for the computation of the refinement of the
current estimation uncertainty (for the additional power and
current magnitude measurement, respectively) are identical or
very close to the results achievable via MC simulation. This
proves the validity of the mathematical relationships derived
in Section IV. These relationships can be thus used, in a meter
placement perspective, as a basis to estimate the uncertainty
improvements achievable through an incremental deployment
of branch current/power meters and to figure out the best
locations for the installation of new measurement devices. This
can be important to achieve desired accuracy targets on the
knowledge of the current/power flow in specific branches of
the grid, but also for the accurate estimation of the voltage
profiles, since, as demonstrated in [16] and [17], the current
flows and the associated voltage drops play a crucial role for
the accuracy of the voltage estimations.

The last columns of Tables I and II provide instead the view
on the updated values of correlation (in terms of correlation
coefficients after the measurement placement) between the
current estimations in the considered branch and the branch
with the measurement. Coherently with (27), it can be observed
that a much smaller value of correlation is obtained. Only in
Table II, it can be noticed that a still important correlation,

TABLE I. IMPACT OF ACTIVE POWER MEASUREMENT AT BRANCH 87
ON THE REAL CURRENT ESTIMATES

Branch

Starting

uncertainty

[A]

Correlation

with meas.

branch

New uncertainty [A] New corr.

coeff.

with meas.

branch
Theoretical Simulation

8 31.75 0.57 26.01 26.01 0.01

16 25.22 0 25.22 25.22 0

30 19.25 0.95 6.29 6.29 0.03

94 17.71 0.97 4.06 4.06 0.05

TABLE II. IMPACT OF CURRENT MAGNITUDE MEASUREMENT AT

BRANCH 10 ON THE CURRENT MAGNITUDE ESTIMATES

Branch

Starting

uncertainty

[A]

Correlation

with meas.

branch

New uncertainty [A] New corr.

coeff.

with meas.

branch
Theoretical Simulation

8 22.90 0.99 0.88 0.88 0.79

16 10.94 0.71 7.66 7.55 0.03

30 16.00 0.60 12.79 12.76 0.02

94 16.57 -0.49 14.39 14.42 -0.02

even if lower, is present between the estimates in branch 8
and 10 (these branches are adjacent). Such a result suggests,
for example, that the placement of an additional power/current
measurement on the same branch would not bring almost any
improvement for the current estimation on the other branches.

Additional tests are finally presented to show how the
analytical findings could be exploited in a simple way to derive
possible meter placement criteria. Starting from the basic
measurement configuration with only a voltage measurement
at the main substation, it is assumed, as an example, that three
additional measurement points, each including one voltage
and one PQ power measurement, are placed to improve the
voltage estimation profile. In [16] and [17] it was proved that
solutions relying only upon the use of voltage measurements
are inefficient since they neglect the impact on the voltage
uncertainty brought by the currents (and the related voltage
drops), thus leading to a larger number of measurement points.

Based on this and following a criterion often used in the
literature, a strategy could be devised for an incremental
deployment of the meters (“Placement A” in the following),
which identifies at each step the bus with highest voltage
uncertainty and allocates a voltage measurement on that bus
and a power flow measurement on the arriving branch. A
second strategy (“Placement B”), which considers instead the
analytical findings of this paper, could be to identify the branch
with the highest correlations to the current estimation of the
other branches in the grid and use it and its end node for
the power and voltage measurements, respectively. This can
be done for example by finding, at each placement step, the
branch having the largest average correlation factor with the
other branches.

Table III shows the final locations of the voltage and power
measurements when applying the above strategies to place the
additional measurement points (it is worth noticing that each
pair of voltage and PQ measurements can be installed at the
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TABLE III. LOCATION OF THE ADDITIONAL MEASUREMENTS FOR

DIFFERENT PLACEMENT STRATEGIES

Placement

strategy

Bus voltage

measurements

Branch power

measurements

Placement A 27, 28, 95 26, 27, 94

Placement B 5, 19, 84 4, 18, 83

same bus with a single measurement device). Fig. 7 shows
instead the associated profile of expanded uncertainty for the
voltage estimation, which is obtained by using both voltage
and power measurements with an accuracy equal to 1%. It is
possible to observe that, in this scenario, both the strategies
give similar results, with Placement B guaranteeing a slightly
flatter profile of voltage estimation uncertainty, due to the fact
that branches having a larger impact on the current estimation
of the remaining branches have been chosen for the placement
of the power meters (thus acting on the uncertainties in the
voltage drops with a beneficial effect on the overall voltage
estimation profile). Different considerations can be drawn
when looking at the uncertainties of the current estimations.
Fig. 8 shows the current magnitude expanded uncertainty given
by the two meter placement solutions for the branches in the
feeders highlighted in Fig. 2. It is possible to observe that
Placement B allows having a lower estimation uncertainties
for more branches (the average expanded uncertainty among
all the branches of the grid is 1.84A, which is 20% lower
than Placement A), even if the expanded uncertainty of branch
27 is much higher because of its low correlation with the
other branches. The reported results show that two simple
(clearly non-optimal) placement approaches can lead to very
different uncertainty profiles for the branch currents, while
other complementary criteria could be applied to improve
the accuracy and satisfy specific objectives. The design of
a detailed meter placement strategy is out of the scope of
this paper, but the above results give an idea on how the
mathematical findings of this paper could be exploited for the
design of efficient and incremental meter placement solutions.
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Fig. 7. Voltage estimation uncertainty with different placement strategies.
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Fig. 8. Current estimation uncertainty in the main feeders with different
placement strategies.

VI. CONCLUSIONS

This paper presented a mathematical analysis aimed at
identifying the impact of current and power measurements
on the estimation uncertainty of the branch currents in the
grid. The derived formulation allows predicting the potential
improvements achievable in terms of accuracy of the branch
current estimations, through the deployment of power and
current measurements, depending on their placement. In this
way, it becomes possible to identify the most convenient
location for the meter placement, according to the desired
accuracy targets. Performed tests show the potential value
in a meter placement perspective and prove the validity of
the derived expressions. This mathematical framework can
serve thus as a useful tool for the design of meter placement
strategies aimed at guaranteeing specific accuracy targets with
a minimal installation of measurement instruments and thus it
can be very helpful in practice when dealing with a monitoring
system upgrade.
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