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A B S T R A C T

In the perspective of manipulating and controlling heat fluxes, graphene

represents a promising material revealing an unusually high thermal

conductivity κ. However, both experimental and theoretical previous

works lack of a strict thermal conductivity value, estimating results

in the range 89-5000 W m−1 K−1. In this scenario, I address graphene

thermal transport properties by means of molecular dynamics simula-

tions using the novel "approach to equilibrium molecular dynamics"

(AEMD) technique.

The first issue is to offer some insight on the active debate about

graphene thermal conductivity extrapolation for infinite sample. To

this aim, I perform unbiased (i.e. with no a priori guess) direct atom-

istic simulations aimed at estimating thermal conductivity in samples

with increasing size up to the unprecedented value of 0.1 mm. The

results provide evidence that thermal conductivity in graphene is def-

initely upper limited, in samples long enough to allow a diffusive

transport regime for both single and collective phonon excitations.

Another important issue is to characterize at atomistic level the ex-

perimental techniques used to estimate graphene thermal conductiv-

ity. Some of these use laser source to provide heat. For these rea-

sons, I deal with the characterization of the transient response to a

pulsed laser focused on a circular graphene sample. In order to repro-

duce the laser effect on the sample, the K−A ′1 and Γ − E2g optical

phonon modes, resulting from the decay of photo-excited electrons,

are thermalized. The estimated thermal conductivity in the case of

these single-mode thermalizations is dramatically reduced with re-

spect to the case in which all the vibrational modes are initially ex-

cited. A vibrational density of state (VDOS) analysis is performed to

explain such differences, showing that the phonon population distri-

bution remains out of the equilibrium for the whole simulation.

After the characterization of pristine graphene thermal properties, I

focus on the possible strategies to control heat transport in graphenebased

systems. One possibility is to exploit hydrogenation. In fact, Graphene

can react with atomic hydrogen creating a stable material which re-
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tains its crystalline hexagonal lattice, called graphane. In the second

part of this work, I present the results about thermal conductivity of

the three most stable graphane isomers (C-, B- and W-graphane), cal-

culated by AEMD simulations. I observe a dramatic reduction by at

least one order of magnitude with respect to pristine graphene, which

I explain in terms of the different VDOS and mean-free path distribu-

tion between graphene and graphane.

Finally, the deterioration of thermal transport upon hydrogenation in

graphene is proposed as a strategy to design a novel thermal diode.

I consider three graphane/graphene nanoribbons with vertical, trian-

gular and T-shaped junctions. All of them report a significant thermal

rectification, reaching the value of 54% for the triangular interface.

The physical origin of the observed rectification is analyzed in terms

of the different temperature-dependence of the thermal conductivity

between graphene and graphane and the overlap of VDOS for the

different morphologies. Moreover, I proposed a continuum model to

describe thermal rectification, which is based on the steady state tem-

perature profile, rather than the actual heat flux used in standard

analysis.

iv



P U B L I C AT I O N S

[1] G. Barbarino, C. Melis and L. Colombo, Effect of hydrogenation

on graphene thermal transport, Carbon, 80 167 (2014).

[2] G. Barbarino, C. Melis and L. Colombo, Intrinsic thermal conduc-

tivity in monolayer graphene is ultimately upper limited: A direct

estimation by atomistic simulations, Phys. Rev. B, 91 035416 (2015).

[3] C. Melis, G. Barbarino and L. Colombo, Exploiting hydrogena-

tion for thermal rectification in graphene nanoribbons, Phys. Rev. B,

92 245408 (2015).

[4] G. Barbarino, G. Fugallo, C. Melis, F. Mauri and L. Colombo, On

the propagation of heat waves in graphene (tentative title), in prepa-

ration, (2015).

v





C O N F E R E N C E S

The works presented in this thesis have been discussed in the follow-

ing national and international conferences:

1. (Febr.7, 2014) Contributed talk to "Graphene day"

University of Catania, (Italy)

2. (July8, 2015) Contributed talk to "Advanced Thermoelectrics at

nanoscale: from material to device" CECAM workshop

FIAP Jean Monnet-Paris, (France)

3. (Sept.15, 2014) Poster contribution to "E-MRS 2014 FALL MEET-

ING"

Warsaw University of Technology, (Poland)

4. (May26, 2014) Poster contribution to "E-MRS 2014 SPRING MEET-

ING"

Lille, (France)

vii





Noi vogliamo dunque abolire radicalmente la dominazione e lo

sfruttamento dell’uomo sull’uomo, noi vogliamo che gli uomini

affratellati da una solidarietà cosciente e voluta cooperino tutti

volontariamente al benessere di tutti; noi vogliamo che la società sia

costituita allo scopo di fornire a tutti gli esseri umani i mezzi per

raggiungere il massimo benessere possibile, il massimo possibile

sviluppo morale e materiale; noi vogliamo per tutti pane, libertà,

amore, scienza.

— Errico Malatesta

A C K N O W L E D G E M E N T S

First, I would like to express my gratitude to my supervisor,

Pr. Luciano Colombo, for his guidance during my Ph.D.. Pr.

Colombo taught me to be dedicated to my work and he intro-

duced me in the hard but rewarding research world. A special

thank to Dr. Claudio Melis for his constant support and insight

during my research activity. This work could not be accom-

plished without their help. I acknowledge Pr. Francesco Mauri

and Dr. Giorgia Fugallo for their supervision during my visit-

ing period at the IMPMC. I would also like to thank my referee

Pr. Giorgio Benedek for his helpful remarks on my thesis.

I acknowledge financial support by MIUR under project PRIN-

GRAF and computational support by CINECA under project

THEBUNA.

I would thank my colleagues, especially Roberto for the infor-

matics support, Silvia and Claudia for helping me to stay mo-

tivated through the hard times, Tommaso for his friendship. A

special thank to my parents for their great love and encourage-

ment, Elena, Ramona and Luana that are alway by my side,

no matter how far. Thanks to Mirko for his patience, because

he forced me to start the Ph.D. and then remained always by

my side. Thanks to all my friends who made my three years

in Cagliari so colorful, thanks to Capoeira and thanks to Citro

which made me feel less alone during my everyday life.

ix





C O N T E N T S

i introduction 1

1 introduction 3

ii theory of thermal transport and computa-

tional methods 17

2 basic theory of thermal transport 19

2.1 Introduction to thermal transport problems 19

2.2 Solving the heat equation in the case of periodic

boundary conditions 25

2.3 From macroscopic to microscopic analysis: Boltz-

mann transport equation 26

3 computational methods 29

3.1 Introduction to Classic Molecular Dynamics 29

3.2 Simulating thermodynamical ensamble by means

of MD 37

3.3 Synopsis of methods to calculate κ and phonon

properties by means of MD 40

3.4 Phonon properties derived from MD simulations 46

iii thermal transport in pristine monolayer-

graphene 49

4 upper limit in graphene intrinsic thermal

conductivity 51

4.1 Theoretical investigations about thermal conduc-

tivity in graphene: state of art 51

4.2 Thermal conductivity length dependence 53

4.3 AEMD simulation on increasing length graphene

samples 57

4.3.1 Computational details 58

4.3.2 Results and comparisons 60

5 heat propagation in transient regime in graphene 67

5.1 Comparison between molecular dynamics and ex-

perimental results 67

xi



xii contents

5.2 AEMD on a radial geometry graphene sample 69

5.2.1 Method 69

5.2.2 Results 71

5.3 Simulating a transient response to a laser pulse 72

5.3.1 Method 72

5.3.2 Results 76

5.4 Addressing thermal conductivity length depen-

dence 79

5.5 Analyzing the time evolution of the vibrational

density of states 80

iv tayloring thermal properties by hydrogena-

tion 85

6 thermal conductivity in hydrogenated graphene 87

6.1 Introduction to hydrogenated graphene 87

6.2 MD simulation on graphane 90

6.2.1 Structural feature prediction 90

6.2.2 Comparison between graphene, C-,B-, and

W-Graphane thermal conductivities 92

6.3 Discussion about thermal conductivity reduction

upon hydrogenation 95

7 exploiting hydrogenation for thermal rec-

tification in gns 101

7.1 Introduction to thermal rectification 101

7.2 Exploiting hydrogenation to control heat flux 102

7.2.1 Sample preparation and method 104

7.2.2 TR in graphane/graphene nanoribbons 107

7.3 SAMPLE A: interface thermal resistance and TR

explanation 110

7.4 Phonon transmission and analysis of the vibra-

tional density of states 112

7.5 Effective continuum model to calculate TR 114

v conclusions 121

8 conclusions and future direction 123

vi appendix 129

a appendix 131



contents xiii

a.1 Classical specific heat and quantum corrections

in graphene 131

bibliography 135



A C R O N Y M S

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

RT Room temperature

MD Molecular Dynamics

EMD Equilibrium Molecular Dynamics

NEMD Non-equilibrium Molecular Dynamics

AEMD Approach to Equilibrium Molecular Dynamics

PDOS (VDOS) Phonon (Vibrational) density of state

MFP Mean free path

NR Nanoribbon

GNR Graphene nanoribbon

GANR Graphane nanoribbon

CNT Carbon nanotube

SWCNT Single-wall Carbon nanotube

TD Thermal diode

TR Thermal rectification

LAMMPS Large-scale Atomic/Molecular Massively Parallel

Simulator

BTE Boltzmann transport equation

SMA Single mode approximation

RTA Relaxation time approximation

EIP Empirical interatomic potential

REBO Reactive empirical bond order potential

DFT Density functional theory

DFPT Density functional perturbation theory

xiv



acronyms xv

PLTR Pulsed laser-assisted thermal relaxation technique

VACF Velocity autocorrelation function

CG Conjugate gradient minimization

ITR Interface thermal resistance





Part I

I N T R O D U C T I O N

Since the first Graphene exfoliation in 2004[5], for which

A. Geim and K. Novoselov are awarded the Noble

Prize in 2010, it has been absolutely clear how many

unique and fascinating qualities this material has, such

as the remarkable mechanical, electrical and thermal

properties. In particular, thermal transport in graphene

has been largely studied both experimentally and the-

oretically, thanks to the promising technological ap-

plications in the framework of heat and energy pro-

duction management as well as in thermal circuits for

logic devices.





1
I N T R O D U C T I O N

Thermal management is a critical issue in electronic industry

for the designing of next generation integrated circuits. The

performances of ultra-large scale integrated circuits are indeed

critically affected by temperature. The number of components

packed in a single chip has been increasing at an amazing rate

as predicted by Moore’s law, stating that the number of transis-

tors in a dense integrated circuit doubles approximately every

two years [6] (see Fig.1.1).

Figure 1.1: Microprocessor transistor counts against dates of introduction

(note the logarithmic vertical scale). The line corresponds to ex-

ponential growth with transistor count doubling every two years,

as predicted by Moore’s law.
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4 introduction

The raise of the number of component interconnections and the

transistor size reduction increase the importance to remove heat

produced by thermal resistance. For these reasons, recent years

have seen a rapid growth of interest by the scientific and engi-

neering communities in the thermal properties of materials [7].

The amount of energy that can be transported away from a

given device is limited by the thermal conductivity κ of the cir-

cuit material. In this perspective graphene represents a promis-

ing material revealing an unusually high thermal conductivity

[8, 9, 10, 11].

Graphene is a two-dimensional (2D) atomic crystal composed

by carbon atoms arranged in a hexagonal lattice. It is only oneGraphene is a

two-dimensional

rippled sheet of

sp2-hybridized

carbon atoms

atom thick and despite the well-known Mermin rule [12, 13],

stating that two-dimensional crystals are thermodynamically

unstable, it still displays long-range crystalline order. In fact,

the stability of macroscopic 2D object has been questioned for

long time, both theoretically and experimentally [14].

Figure 1.2: Example of rippled graphene sample after a thermalization at

T=300 K in a molecular dynamics simulation.

Actually, transmission electron microscopy studies reveal that

the suspended graphene sheets are not perfectly flat but they ex-

hibit intrinsic microscopic roughening resulting in ripples with

a size distribution peaked around 50-100 Å[15]. The observed

corrugations may provide an explanation for the stability of this

two-dimensional crystal [16, 17]. In Fig.1.2, I show the rippled
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graphene sample, minimized and thermalized at T=300 K, dur-

ing a molecular dynamics simulation (MD).

On the other side, during the high temperature crystal growth

procedure, thermal fluctuations, detrimental for the stability,

rapidly grow and, in the meanwhile, the phonon density in-

creases leading to a divergence on a macroscopic scale. This

forces 2D crystallites to morph into a variety of stable three-

dimensional 3D structures. However, it is possible to grow a

monolayer material inside or on top of another crystal (as an

inherent part of a 3D system) and then remove it from the

bulk when the temperature is sufficiently low such that ther-

mal fluctuations are unable to break atomic bonds [18]. One Synthesis of

graphenechance is to mechanically split strongly-layered materials such

as graphite into individual atomic planes. This technique is re-

ferred to as micromechanical cleavage technique, or the "Scotch

tape method", and it is how graphene was first isolated and

studied [5]. Instead of cleaving graphite manually, it is also

possible to automate the process by employing, for example,

ultrasonic cleavage. An alternative approach is to start with

graphitic layers grown epitaxially on top of other crystals. Dur-

ing the 3D growth, the layers remain bound to the underlying

substrate and the bond-breaking fluctuations are suppressed.

Eventually, the epitaxial structure is cooled down and the sub-

strate removed by chemical etching. Today there are several

methods to produce graphene that can be extended to indus-

trial scale. For electronics applications, high quality graphene

can be grown on silicon carbide and other substrates through a

process known as chemical vapor deposition. For bulk applica-

tions in nanocomposites or printed electronics, natural graphite

can be used to create graphene flakes in solution. Finally, di-

rect chemical synthesis can be used to create small graphene

structures with well-defined geometries.[18] Graphene exhibits Main graphene

propertiesa number of intriguing properties. Its charge carriers exhibit

giant intrinsic mobility, have the smallest effective mass (it is

actually zero) and can travel micrometer-long distances with-

out scattering. Graphene can sustain current densities 6 orders

higher than copper, it is impermeable to gases and it shows su-
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perior mechanical properties with Young’s modulus of 1 TPa

and record stiffness. Electrons in single-layer graphene behave

like massless relativistic Dirac fermions and therefore electron

transport is described by a Dirac-like equation, which allows the

investigation of relativistic quantum phenomena in a bench-top

experiment and gives rise to unique effects such as quantum

spin Hall state. Its extraordinary high room temperature (RT)

carrier mobility, conductance quantization and possibilities of

inducing a band gap through the lateral quantum confinement

make graphene a promising material for the future electronic

circuits.

The strong and anisotropic bonding and the low mass of the car-

bon atoms give to graphene and related materials unique ther-

mal properties, forming a rich playground for new discoveries

of thermal transport physics and potentially leading to novel

thermal management applications [19, 20, 21].

Thermal conductivity κ is introduced through the empirical

Fourier law j = −κ∇T , where j is the heat flux and ∇T is the

temperature gradient. In more general case, the thermal con-Thermal

conductivity is the

property of a

material to conduct

heat

ductivity is a tensor of the second order that has nine compo-

nents, where κxy = κyx, κxz = κzx, and κyz = κzy according

to the reciprocity relation derived from the Onsagar’s princi-

ple of thermodynamics of irreversible processes. However, in

isotropic medium thermal conductivity does not depend on the

direction of the heat flow and κ is treated as a constant. In the

specific case of a 2D material such as graphene, anyway, just the

in-plane components of κ are meaningful.

In general, in a solid material, heat is carried by lattice vibra-

tions and electrons. The value of κe, i.e. the thermal conduc-

tivity relates to electrons, can be obtained from the measure-

ment of the electrical conductivity σ via the Wiedemann-Franz

law: κeσT =
π2K2B
3e2

, where KB is the Boltzmann constant and e

is the electronic charge [22]. In the case of graphene at room

temperature, showing a high total thermal conductivity, κe cor-

responds to just ∼ 1% of the total κ. This may seem unusual

for a semimetal but it is in line with the prediction for graphite

[9]. In fact, in carbon material, the strong sp2 covalent bond be-
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tween adjacent carbon atoms (for instance they are among the

strongest in nature) results in an efficient heat transfer by lattice

vibrations. In particular, in graphene the electronic thermal con-

ductivity is limited by the very small (vanishing) Fermi surface,

whereas the lattice contribution is very large due to the very

low anharmonicity at ordinary temperatures.

For this reason, a deep knowledge of thermal transport in graphene,

as well as a reliable estimation of its thermal conductivity, needs

an analysis of lattice vibrational normal modes. Quantum the- Quantization of the

lattice vibrational

modes
ory describes these modes as particles called phonons. Each

phonon with wave vector q is characterized by a specific fre-

quency ω(q) or energy (E = hω) and a group velocity v(q) =

∂ω(q)/∂q. The connection between frequencies and wave-vectors

are described in the dispersion relation curves of the system.

While for graphite many methods exist to experimentally char-

acterize the phonon band structure, such as inelastic x-ray or

neutron scattering, they do not give enough signal with graphene

because of its two-dimensional nature. Hence, only a very lim-

ited number of experimental data points for the graphene phonon

band structure were obtained using inelastic light scattering (Ra-

man) [23]. Raman spectroscopy experiments, in fact, enable to Graphene phonon

dispersion curve

obtained by Raman

spectroscopy

map out a general in-plane phonon dispersion by using the exci-

tation energy dependence of the various Raman lines. In Fig.1.3,

I report the results obtained in Ref.[24], in which by using Ra-

man spectroscopy with different laser energies, a detailed ex-

perimental phonon dispersion relation for many points in the

Brillouin zone has been mapped. Since they analyzed graphene

samples on Cu foils, in order to avoid the substrate effect on

the Raman spectrum, they considered the difference between

the spectra of the two isotopes C13 and C12, identifying peaks

which only correspond to graphene, even in the presence of

substrate-induced peaks. The experimental points are superim-

posed on theoretical phonon dispersions obtained from fully ab

initio calculations based on density functional theory corrected

with GW [25].

Another useful information about the heat transport behavior of

a solid is the vibrational density of state VDOS (or phonon den-
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sity of state PDOS) i.e. a function which describes the number

of states per unit angular frequency and area that are supported

by the material.

Figure 1.3: [Figure from Ref.[24]] Experimental phonon energies obtained in

Ref.[24] at the corresponding wave numbers superposed onto the

theoretical phonon dispersions taken from Ref.[25] for the C13

(left) and C12 (right) samples. In the top left the four in-plane

phonon branches have been labeled, whereas the corresponding

Raman lines are identified in the top right.

The graphene unit cell, shown by dashed lines in Fig.1.4, con-

tains N=2 carbon atoms. This leads to the formation of three

acoustic (A) and 3N− 3=3 optical (O) phonon modes. Longitu-

dinal (L) modes correspond to atomic displacements along the

wave propagation direction (compressive waves), while trans-

verse (T) modes correspond to in-plane displacements perpen-

dicular to the propagation direction (shear waves). In typical

three dimensional (3D) solids transverse modes can have two

equivalent polarizations, but the unique 2D nature of graphene

allows out-of-plane atomic displacements, also known as flex-

ural (Z) phonons. At low wave vector q near the center of theContribute to

graphene thermal

transport by ZA

flexural phonons

Brillouin zone, which is shown in Fig.1.4, the frequencies of the

transverse acoustic (TA) and longitudinal acoustic (LA) modes

have linear dispersions, while the flexural ZA modes have an

approximately quadratic dispersion. The existence and features

of these ZA modes are responsable for many of the unusual

thermal properties of graphene [26, 27, 28].
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Figure 1.4: (Top) Graphene crystal lattice in which the rhombic unit cell

is shown as a shaded region. (Bottom) The graphene Brillouin

zone.

Most investigations underline the dominant role in the trans-

port of heat played by acoustic phonons [26, 29, 30, 31, 32]. Even

if initially it has been guessed that only in-plane phonons carry

heat [33] (LA and TA), more recently it has been recognized

that the ZA phonons are in fact fundamental in graphene ther-

mal transport [31, 34, 35]. Despite they show a very low group

velocity, their life-time is comparatively very long due to selec-

tion rules for three-phonon scattering. In fact, by imposing that

the lattice potential energy must be invariant under the sym-

metry operations of the lattice, just phonon-phonon scatterings

with even number of flexural modes have been allowed. This

three-phonon scattering rule strongly restricts the phase space

for ZA scattering.

Following this picture, the thermal transport phenomena are de-

scribed in terms of many-body system of interacting phonons

and, in particular, the anharmonic interactions between phonons
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cause the thermalization and resistance to current flow, result-

ing in intrinsic thermal conductivity coefficient. The κ is also

limited by some extrinsic effects, such as the phonon scattering

with edges, defects or different isotopes in the graphene sample.

All the scattering event rates contribute to a finite phonon life-

time τ(q) and to its corresponding mean-free path (MFP) λ(q) =

τ(q)v(q) i.e. the average space traveled by the phonon without

experience scatterings. Noting that MFP is a spectral propertyPhonon life-time

and mean free path that depends on the frequency of each phonon, it is clear that

what is called the MFP of a material is an average MFP of all

the phonons which mainly contribute to thermal conduction. In

the case of graphene, it has been predicted theoretically around

∼ 1µm [31]. It can be also calculated by using κ = (1/2)CVVλ,

where (1/2) takes into account the material 2D nature, CV is

the specific heat and V the averaged phonon velocity, from the

experimental measured thermal conductivity (for example λ ∼

800 nm in Ref.[11]).

The first experiment aimed to measure graphene thermal con-

ductivity was done by Balandin in 2008 by using a technique

called Optothermal Raman measure, which basically uses a laser

beam focused on the sample as heater source and estimates the

established temperature gradients by measuring the Raman G-

peak shift [8, 36]. This last, in fact, manifests a strong temper-Measurement of the

graphene thermal

conductivity
ature dependence[37] which enables to monitor the local tem-

perature change produced by the laser excitation. Since this

first measure of graphene thermal conductivity, several exper-

imental and theoretical investigations have been focused on the

characterization of graphene thermal properties. However, at

the moment it is still difficult to assign a well defined intrinsic

graphene thermal conductivity value since all the experimen-

tally κ measures scatter between 600 and 5000 W m−1 K−1

[8, 20, 11, 27]. These differences have been justified in terms

of different sample qualities, defects and grains, thickness non

uniformity, strain distribution and temperature of the sample.

Generally graphene thermal conductivity can be measured by

means of two groups of techniques: transient and steady-state[20].

In transient techniques κ is measured by monitoring thermal
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gradients as a function of time. As far as concerns steady-state

techniques, a thermal gradient is established across the sample

and thermal conductivity is then measured once such a gradient

is constant with time. Both steady-state and transient methods

can rely on electrical means for supplying heating power or use

the power provided by light. Some examples of transient meth-

ods are:

a) the thermal bridge: in this case a direct current is used to

heat the sample and the temperature difference between

Theater and Tsensor is recorded trough two electrical resis-

tances (Rheater and Rsensor) [38].

b) the heat spreader method: in Ref.[39] a metallic heater is

used as Joule dissipator that spreads heat trough the graphene

flake and the resulting temperature profile along the sam-

ple is measured by three resistance temperature sensors in

series.

c) Non-contact optical microscopy [40]: this method is based

on a thermal lens microscopy setup with two pump-probe

laser beams configuration. The thermal lens signal is pro-

portional to the optical absorption and to the thermal con-

ductivity of the examined graphene sample.

The optothermal Raman technique, cited above, is indeed one

example of steady-state experiment.

In order to rationalize this experimental scenario, several the-

oretical models have been implemented [34, 41, 30] to better

estimate κ by accurately correlating thermal transport to the

atomistic structural and morphological features. Many differ- Theoretical

investigations about

graphene thermal

conduction

ent approaches, both ab initio technique without introduction

of any experimental-fitted parameter and empirical methods,

have been widely used to study thermal conductivity in pris-

tine graphene, including Boltzmann transport equation [30, 31,

29], molecular dynamics [42, 43, 44, 45], Green’s functions ap-

proaches [46] and lattice dynamics [? 33]. However also in the

framework of theoretical simulations, there are large discrepan-

cies in the resulting thermal conductivity values as due to the

different numerical technicalities and/or the model potentials
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used. The graphene thermal conductivity has been predicted to

range between 89 and 3000 W m−1 K−1 [47, 48, 49].

In my Ph.D. research, I focused in particular on molecular dy-

namics methodologies which accurately describe graphene phonon

transport properties.

I In Chapter 3, I introduce some of the most common compu-

tational methods. As far as concerned MD, both equilibrium

(EMD) [50] and non-equilibrium (NEMD) [51] methods have

been previously implemented. Recently, a novel transient tech-

nique named “approach to equilibrium molecular dynamics”

(AEMD) [52, 53] has been proposed, which basically uses the so-

lutions under given border and initial conditions of the Fourier

heat-transport equation

∂T

∂t
= α∇2T (1.1)

where α is the thermal diffusivity defined as α = κ
ρCV

, ρ is

the material density and CV is the volumetric specific heat. The

solution of Eq.1.1 is used in order to fit the time-evolution of

simulation temperature profile along the sample. I will focus in

particular on the description of NEMD and AEMD, which are

the methods I used in my works (AEMD as far as concerned

the results in Chapter 4, Chapter 5 and Chapter 6 and NEMD

for the results in Chapter 7).

Chapter 4 deals with the estimation of thermal conductivity in

monolayer-graphene. In the sample size domain so far explored,

the graphene κ shows an intriguing dependence on the sample

length Lx along the heat flux direction. An extrapolated infinite

value for such a thermal conductivity is sometimes suggested

for infinite samples, while other investigations predict anyway

an upper limit for it. I address this issue by performing direct

atomistic simulations aimed at estimating thermal conductiv-

ity in samples with increasing size up to the unprecedented

value of Lx=0.1 mm. Our results provide evidence that thermal

conductivity in graphene is definitely upper limited in samples

long enough to allow a diffusive transport regime for both sin-

gle and collective phonon excitations.
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In Chapter 5, I focus on the characterization via AEMD simula-

tions of the transient response to a pulsed laser focused on a free

standing graphene layer. It is interesting to observe heat pulse

propagation in a "transient" way since another open issue in

graphene thermal transport knowledge is to define the phenom-

ena occurred in transient regime before the thermal equilibrium

is reached. Moreover, in order to compare the simulations with

experiments, we must take care about the kind of measurement

we consider. For example, in the framework of MD simulations,

we can distinguish between NEMD techniques that are compa-

rable to a steady-state experiment and AEMD which is based on

monitoring the transient evolution towards equilibrium upon

a thermal perturbation. For a more realistic simulation of the

sample heating by means of a laser, we need to take into ac-

count the photo-electronic excitation decay in two principal op-

tical phonons, i.e. A ′1 and E2g. With this aim, we thermalized

the laser-spot exciting one single optical phonon mode with a

specific atom displacement pattern. Interestly enough, the ther-

mal conductivity obtained by fitting the simulation temperature

profile with the Fourier analytical solution in the case of this

single-mode spot excitation is some order of magnitude lower

with respect to the simulation in which all the possible phonon

modes are excited. In order to analyze such a difference, the

phonon relaxation during the achievement of an uniform tem-

perature distribution is analyzed in terms of phonon density of

state (PDOS), reveling what phonon-phonon decay channels oc-

cur. Nevertheless, the dynamical response to a heat pulse as is

described by Fourier diffusive equation (Eq.1.1) could be ques-

tionable for graphene and some non-Fourier phenomena, such

as the evidence of "second sound" feature, could be observed,

especially at low temperatures. I address also this issue, consid-

ering the analytical solution of a more generic heat equation.

In Chapter 6, I present our investigation addressed to thermal

conductivity in graphene upon hydrogenation, motivated by

the need to improve our basic understanding of thermal trans-

port properties in 2D carbon sheets, as well as by the possi-

ble useful applications. It is well known that the possibility to
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control heat fluxes generated by nanoscale thermal gradients

is a promising perspective in designing novel switch-on-off de-

vices as alternative to conventional electronics [54]. For instance,

novel kind of logic-devices could be created by using phonons

as information carriers in thermal circuits[55, 56, 57]. In ad-

dition, a tailored heat flux could be used as an effective tool

for thermal management improvement in nano-devices, such as

on-chip cooling and energy conversion. Heat flow in graphene

or graphene composites could be tunable through a variety of

means, including phonon scattering by defects, edges or inter-

faces. In Ref.[47] theoretical NEMD calculations demonstrated

that randomly adding as few as 10% hydrogen atoms on top

of pristine graphene causes a sharp drop of thermal conductiv-

ity. Instead of a randomly decorated graphene lattice, we con-

sidered ordered graphene decorations where H atoms are at-

tached to each C atom with 1:1 ratio. This hydrogenated form of

graphene is referred to as graphane [58] and it has been synthe-

sized by cold hydrogen plasma exposure at low pressure [59]. I

have already explained why in graphene the electronic thermal

conductivity is limited. Moreover, considering that graphane is

a semiconductor, the electronic contribution to thermal conduc-

tivity can be neglected, allowing the use of MD simulation to

investigate the thermal behaviour.

In the case of three graphane isomers we observed a dramatic

κ reduction by at least one order of magnitude with respect

to pristine graphene. We elucidated this reduction in terms of

different phonon density of states (PDOS) and mean-free path

(MFP) distribution between graphene and graphane.

Finally, in Chapter 7 I propose the possibility to use a suitable

hydrogen decoration upon a graphene nano-ribbon (GNR) in

order to design an efficient thermal diode (TD), i.e. a thermal

device where the magnitude of the heat flux depends on the

temperature gradient direction (thermal bias). The parameter

which indicates the diode’s efficiency is called thermal rectifica-

tion (TR) and it is defined as the relative difference between the
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heat flux modulus in the two opposite thermal bias (forward

and revers bias)

TR =
|Jfor|− |Jrev|

|Jrev|
(1.2)

We estimate the thermal rectification for graphane/graphene

nanoribbons with vertical, triangular and T-shaped morpholo-

gies and we report a significant TR up to ∼ 54% for the trian-

gular one. The dependence of the thermal rectification on the

nanoribbon dimensions, vertex angle and temperature gradient

is also explored. The physical origin of the observed rectification

is analyzed in terms of the different temperature-dependence of

the thermal conductivity in the pristine materials and the over-

lap of phonon densities in the different morphologies. Finally,

we propose a model to describe TR, which is only based on the

steady state temperature profile, rather than by using heat flux

as generally has been done. The model quantitatively predicts

thermal rectification in very good agreement with the standard

analysis based on the heat flux estimate.

All the simulations presented in this thesis are performed by us-

ing the Large-scale Atomic/Molecular Massively Parallel Simu-

lator (LAMMPS) package[60]. LAMMPS is a classical molecular Large-scale

Atomic/Molecular

Massively Parallel

Simulator

dynamics code that integrates Newton’s equations of motion for

collections of atoms, molecules, or macroscopic particles that in-

teract via short- or long-range forces with a variety of initial

and/or boundary conditions. It can model systems with parti-

cles up to millions or billions. It is designed for parallel comput-

ers on which LAMMPS uses spatial-decomposition techniques

to partition the simulation domain into small 3d sub-domains,

one of which is assigned to each processor. The current version

of LAMMPS is written in C++.





Part II

T H E O RY O F T H E R M A L T R A N S P O RT A N D
C O M P U TAT I O N A L M E T H O D S

Theory of transport in a material is devoted to study

the system response to an external perturbation and

to connect some macroscopic phenomena and the re-

lated measurable quantities to their microscopical ex-

planations. In the case of thermal transport, the mea-

surable coefficient is the thermal conductivity which

can be calculated in terms of the solid lattice vibra-

tions. Several efforts have been done to use computer

science and simulation codes to calculate thermal con-

ductivity, both in the framework of ab initio calcula-

tions than in Molecular Dynamics simulations.





2
B A S I C T H E O RY O F T H E R M A L T R A N S P O RT

2.1 introduction to thermal transport problems

Heat transfer is thermal energy in transit due to a spatial tem-

perature difference. Three kinds of heat transfer processes can

be considered. The first mode is the conduction, referred to the

case of heat transfer across a stationary medium, which may

be a solid or a fluid, when a temperature gradient is imposed

upon it. The convection mode, on the other side, refers to heat

transfer that will occur between a surface and a moving fluid

at different temperatures. Finally, the third mode is transferring

heat trough thermal radiation, when energy is emitted in the

form of electromagnetic waves.

As far as concerned conduction, the processes that sustain heat

transfer in this mode are completely related to atomic and molec-

ular activity. In fact, conduction may be viewed as the transfer

of energy from the more energetic to the less energetic particles

of a system due to interactions between them.

In order to analyze any thermal phenomenon, we must start

from a clear microscopic definition of temperature. By consid-

ering a system of molecules, we associate the temperature at

any point with the energy related to the random translational

motion as well as to the internal rotational and vibrational mo-

tions of the molecules in proximity to that point. In this picture,

higher temperatures are associated with higher molecular ener-

gies.

To describe heat conduction processes, an appropriate rate equa-

tion may be used to compute the amount of energy being trans-

ferred per unit time [61]. This equation is known as Fourier’s Heat conduction:

Fourier’s law and

thermal conductivity

definition

law:

Jx = −κ
dT

dx
(2.1)

19
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where Jx is the heat transfer rate in the x-direction per unit area

perpendicular to the direction of transfer, dTdx is the tempera-

ture gradient in this direction, while κ is a transport property

known as the thermal conductivity which is a characteristic of

the whole material. The minus sign is a consequence of the fact

that heat is transferred in the direction of decreasing temper-

ature. Exending Eq.2.1 to the case of tridimensional transport,

the following vectorial equation is obtained

J = −κ∇T (2.2)

This last implies that the heat flux is a directional quantity

whose direction is normal to a surface of constant temperature,

called isothermal surface.

In changing the material (e.g., from a metal to plastic), we would

find that this proportionality remains valid. Following this idea,

the proportionality may be converted to an equality by intro-

ducing a coefficient that is a measure of the material thermal

behavior. Hence, we write

κx =
Jx
dT
dx

(2.3)

which is the formal definition of thermal conductivity in a solid

material in x-direction. Similar definitions are associated with

thermal conductivities in the y- and z-directions. For an isotropic

material, in particular, the thermal conductivity is independent

on the direction of transfer and therefore κx=κy=κz. κ provides

an indication of the rate at which energy is transferred by the

diffusion process. It depends on the physical structure of the

material, atomic and molecular, which is in turn related to the

state of the matter. By instance in a solid state system, κ is gen-

erally larger with respect to that of a liquid, which is in turn

larger than the one of a gas.

Finally, if we embrace the picture of a solid as a system of free

electrons and atoms bound in a periodic lattice, thermal energy

transport may be due to two effects: the migration of free elec-

trons and the lattice vibrational waves, or in other words the

phonons motion (choosing a particle-like description of the phe-

nomenon) [62]. When both electrons and phonons carry ther-
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mal heat, the thermal conductivity may be expressed as: κ =

κe + κph.

It is important to underline that Fourier’s equation is a phe-

nomenological law and it has been developed from experimen-

tal evidence rather than being derived from first principles. More-

over, it is a steady state equation, which means that it is valid

when the thermal equilibrium is established and the tempera-

ture distribution is invariant with time.

The first task in a conduction analysis is to determine the tem-

perature field in a medium resulting from some imposed con-

ditions. This means to know how the temperature varies with

position in the system (what we will refer as the temperature

profile). Once this distribution is known, the conduction heat

flux at any point may be computed by Fourier’s law.

However, many heat transfer problems are time dependent. The

second task, therefore, is to develop procedures for determining

the time dependence of the temperature distribution within a

solid during a transient process.

The nature of the procedure used to obtain the temperature re-

sponse depends on assumptions that may be made for the pro-

cess. For example, a very simple approach, named the "lumped

capacitance method", may be used to determine the variation

of temperature with time. It is certainly the simplest and most Lamped capacitance

method validity and

Biot number
convenient strategy that can be used to solve transient heating

and cooling problems. The essence of this method is that the

temperature of the solid is spatially uniform at any instant dur-

ing the transient process or in other words that temperature

gradients within the solid are negligible. To better determine

under what conditions the lumped capacitance method can be

used with reasonable accuracy, we consider a steady-state con-

duction through a plane wall of area A (see Fig.2.1).

One surface of the wall is maintained at a temperature TS1 and

the other is exposed to a fluid of temperature T∞ < TS1. The

temperature of this surface will be some intermediate value TS2,

for which T∞ < TS2 < TS1. Hence under a steady-state condi-

tion, the surface energy balance is κA/L(TS1 − TS2) = hA(TS2 −

T∞), where L is the solid length, κ is the thermal conductivity of
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Figure 2.1: Biot number on steady-state temperature distribution in a plane

wall of area A.

the solid and h is the interface thermal conductivity. Rearrang-

ing, we then obtain TS1−TS2
TS2−T∞ = (L/κA)(1/hA) = Bi. The quantity

Bi is a dimensionless parameter, named the Biot number, and

it provides a measure of the temperature drop in the solid rel-

ative to the temperature difference between the solid’s surface

and the fluid. The Biot number may be interpreted as a ratio

of thermal resistances. In particular, if Bi << 1, the resistance

to conduction within the solid is much less than the resistance

to convection across the interface. Hence, the assumption of a

uniform temperature distribution within the solid is reasonable

if the Biot number is small. When this condition is verified, the

transient temperature response is determined by formulating

an overall energy balance on the entire solid. This balance must

relate the rate of heat loss at the surface to the rate of change of

the internal energy.

On the other side in the case where Bi << 1 is not satisfied, to

obtain the transient temperature response an equation which

takes into account both the time and spacial dependence of

the temperature T(x, t) has to be considered. We have seen byThe heat diffusion

equation Fourier’s law that the flow rate of heat energy through a sur-

face is proportional to the negative temperature gradient across

the surface (see Eq.2.1 for one dimensional case). In the absence

of work done, a change in internal energy per unit volume in



2.1 introduction to thermal transport problems 23

the material q is proportional to the change in temperature ∆T .

That is

∆q = CVρ∆T (2.4)

where CV is the volumetric specific heat capacity and ρ is the

mass density of the material. This last equation, choosing zero

energy at absolute zero temperature becomes

q = CVρT (2.5)

Increase in internal energy in a small spatial region of the ma-

terial, x−∆x 6 ε 6 x+∆x, over the time period t− δt 6 τ 6

t+ δt, is given by

CVρ

∫x+∆x
x−∆x

[T(ε, t+∆t) − T(ε, t−∆t)]dε (2.6)

= CVρ

∫x+∆x
x−∆x

∫t+∆t
t−∆t

∂T

∂τ
dεdτ

where we are assuming that the material has constant mass den-

sity and heat capacity through space as well as time. If no work

is done and there are neither heat sources nor sinks, the change

in internal energy in the interval [x−∆x,x+∆x] is accounted for

enteirely by the flux of heat across the boundaries. By Fourier’s

law (Eq.2.1), this is

κ

∫t+∆t
t−∆t

[
∂T

∂x
(x+∆x, τ)−

∂T

∂x
(x−∆x, τ)]dτ = κ

∫x+∆x
x−∆x

∫t+∆t
t−∆t

∂2T

∂2ε
dεdτ

(2.7)

by conservation of energy∫x+∆x
x−∆x

∫t+∆t
t−∆t

[CVρ
∂T

∂τ
− κ

∂2T

∂2ε
]dεdτ = 0 (2.8)

This is true for any rectangle [x−∆x, x+∆x][t−∆t, t+∆t] and

therefore the integrand must vanish identically:

CVρ
∂T

∂t
− κ

∂2T

∂2x
= 0 (2.9)

that can be rewritten as

∂T

∂t
=

κ

CVρ

∂2T

∂2x
(2.10)
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This is the most common form of the heat equation, where we

can define α = κ
CVρ

that is another thermal coefficient called

thermal diffusivity. The heat equation is a parabolic partial dif-

ferential equation which describes the distribution of heat (or

variation in temperature) in a given region over time. Solution

of Eq.2.10 provides the temperature distribution T(x) as a func-

tion of time (what we will refer as time-evolution of the temper-

ature profile along the sample).

To determine the temperature profile in a medium with length

L by solving an appropriate form of the heat equation, it is nec-

essary to fix the physical conditions existing at the boundaries

of the medium and, if the situation is time dependent, the condi-

tions existing in the medium at some initial time. In particular,

since the heat equation is second order in the spatial coordinates

and first order in time, two boundary conditions must be ex-

pressed for each coordinate needed to describe the system and

only one condition to specify the initial condition. This latter is

set once a function T(x, 0) = f(x) is defined for x ∈ [0,L]. As farInitial and boundary

conditions as concerned boundary of the system, on the other side, four

kinds of conditions are commonly encountered in heat transfer

problems:

a) Dirichlet (I = [0,L]) : T(0, t) = 0 = T(L, t).

b) Neumann (I = [0,L]) : Tx(0, t) = 0 = Tx(L, t).

c) Robin (I = [0,L]) : Tx(0, t) − a0T(0, t) = 0 and Tx(L, t) +

aLT(L, t) = 0.

d) periodic (I = [−L/2,L/2]): T(−L/2, t) = T(L/2, t) and Tx(−L/2, t) =

Tx(L/2, t).

Different boundary conditions correspond to different physical

models of cooling. The first one states that you have a constant

temperature at the boundary (in this case equal to zero). This

can be considered as the model of an ideal cooler having in-

finitely large thermal conductivity. The second one states that

we have a fixed or constant heat flux at the boundary. If the

flux is equal zero, the boundary conditions describe the heat

diffusion within an ideal heat insulator. Robin boundary con-

ditions are the mathematical formulation of the Newton’s law
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of cooling where the heat transfer coefficient α is utilized. The

heat transfer coefficient is determined by details of the interface

structure (sharpness, geometry) between two media. This law

describes quite well the boundary between metals and gas and

it is good for describing convective heat transfer at the surface.

Finally, the last one reflects the Stefan-Boltzmann law and is

good for describing the heat transfer due to radiation in vac-

uum.

2.2 solving the heat equation in the case of peri-

odic boundary conditions

In order to solve Eq.2.10 , we separate the variables in T in such

a way that T(x, t) = x(x)u(t) by obtaining

ut(t) = λαu(t) (2.11)

Xxx = −λX(x) (2.12)

The solutions of 2.11 are in the form:

u(t) = ae−λαt (2.13)

which specifies, therefore, the time evolution of the tempera-

ture.

As far as concerned the spatial dependence, the eigenvalue prob-

lem given by 2.12 has to be solved with the following periodic

boundary conditions:

• X(−L/2) = X(L/2)

• Xx(−L/2) = Xx(L/2)

The solution of the differential equation is

X(x) = bcos(βx) + csin(βx) (2.14)

Applying the boundary conditions:

• X(−L/2) = X(L/2)→ csin(βL/2) = 0→ c = 0 or β = 2nπ
L

• Xx(−L/2) = Xx(L/2) → bβsin(βL/2) = 0 → b = 0 or

β = 2nπ
L



26 basic theory of thermal transport

Therefore we have a sequence of positive eigenvalues:

λn = (
2nπ

L
)
2

(2.15)

with corresponding eigenfunctions:

Xn(x) = bcos(
2nπ

L
x) + csin(

2nπ

L
x) (2.16)

I will now show that nontrivial solutions for values of λ < 0 can-

not occur. Suppose that λ < 0, therefore there exist real numbers

b and c such that:

Xn(x) = be
−
√
−λx + ce

√
−λx (2.17)

That is umcompatible with the boundary conditions. In the case

of λ = 0, instead, the solution has the form X(x) = bx+ c which,

in addition with boundary conditions, gives the particular case

of temperature uniform in space i.e. X(x) = X0. I remark that

if Xn is a sequence of solutions of the heat equation with the

periodic boundary conditions, then any linear combination of

these solutions will satisfy Eq.2.12 with the same conditions.

The general solution will be therefore

T(x, t) = a0 +
∞∑
n=1

[ancos(
2nπ

L
x) + bnsen(

2nπ

L
x)]e−α(

2nπ
L )

2
t

(2.18)

It is possible to demonstrate that the coefficients a0,an and bn
depend on the initial conditions i.e. on the temperature profile

at t = 0 T(x, 0) = f(x) as

a0 =
1

L

∫L/2
−L/2

f(x)dx (2.19)

an =
2

L

∫L/2
−L/2

cos(
2nπ

L
x)f(x)dx (2.20)

bn =
2

L

∫L/2
−L/2

sin(
2nπ

L
x)f(x)dx (2.21)

2.3 from macroscopic to microscopic analysis : boltz-

mann transport equation

F. These elementary excitations have complete meaning only in

the harmonic approximation. However, as it has been amply
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demonstrated both theoretically and experimentally, they are

well-defined for practical purposes even when they have a fi-

nite lifetime (i.e. in an anharmonic crystal or crystal with de-

fects etc.). In equilibrium condition, the phonon system is char-

acterized by the well-known Bose-Einstein thermal equilibrium

distribution: Bose-Einstein

equilibrium phonon

populationnν =
1

exp(  hων
KBT

) − 1
(2.22)

where ν indicates (q,s) i.e. the phonon wave vector q in a spe-

cific phonon branch s, while ων is the phonon frequency.

In this scenario, the temperature gradient is a perturbation to

the phonon system thermodynamically equilibrated and there-

fore, in order to describe the system response, we need to intro-

duce a non-equilibrium statistical mechanics analysis.

In particular, to express κ as a function of microscopic quan-

tities, we need the out-of-equilibrium phonon distribution nν
(with the same ν definition given above) [28]. For small pertur-

bations, this non-equilibrium distribution is linearized around

the Bose-Einstein thermal equilibrium distribution i.e.:

nν = nν(nν + 1)∇TFν (2.23)

where Fν includes all deviations from equilibrium phonon dis-

tribution. Using the microscopic expression of the heat flux, κ

can be expressed in terms of microscopic quantities as

κ =
1

NV

∑
ν

nν(nν + 1) hωνvνFν. (2.24)

where  hων is the phonon energy, vν is the projection of the

phonon group velocity on the direction parallel to ∇T and NV

is the volume of the crystal. The challenge is to find the function

Fν that describes the deviations from equilibrium. In fact, to

obtain the out of equilibrium distribution, we have to solve the

linearized BTE: Boltzmann heat

transport equation
vν∇T(

∂nν

∂T
) =

∑
ν ′

Ων,ν ′nν ′ (2.25)

where the scattering operator is represented by a matrix of scat-

tering rates Ων,ν ′ , acting on the phonon populations nν.
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This scattering matrix is built by using phonon-phonon anhar-

monic processes and all the other scattering rates (isotopic and

extrinsic). For simplicity, the BTE is often solved in the single-

mode relaxation time approximation (SMA), which relies on the

assumption that heat-current is dissipated every time a phonon

undergoes a scattering event. In this case Fν = (vνων)
2τν,

where τν is the phonon lifetime i.e. the average time between

phonon scattering events at equilibrium. A more complete ap-

proach is obtained by solving the exact BTE (Eq.2.25), inverting

the scattering matrix Ων,ν ′ [41, 28].
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3.1 introduction to classic molecular dynamics

Classical molecular dynamics is a method, based on statistical

mechanics, that is used for computing the equilibrium prop-

erties of a many body system by averaging over a set of con-

figurations which are distributed according to some statistical

distribution function or statistical ensemble. The successive con-

figurations of the system are generated by following the simul-

taneous motion of its constituents (molecules, atoms) according

to the laws of classical mechanics [63].

In principle, the complete description of a many-body system

requires the solution of the time-dependent Schrödinger equa-

tion including both degree of freedom of electrons (whose co-

ordinates are rj = r1, r2, ..., rNe) and nuclei (with coordinates

Ri = R1, R2, ..., RNn): Theoretical

description of

many-body systemH(Ri, rj)Ψ(Ri, rj) = EΨ(Ri, rj) (3.1)

where the Hamiltonian operator is expressed by

H(Ri, rj) = Tn(Ri)+Unn(Ri)+Te(rj)+Uee(rj)+Uen(Ri, rj) (3.2)

The labels e and n refer respectively to electrons and nuclei;

i = 1, ··,Nn and j = 1, · ·Ne, where Nn and Ne are the numbers

of electrons and nuclei respectively.

The Tn (Te) operator represents the kinetic energy of the nu-

clei (electrons). The Unn operator represents the potential en-

ergy correspondent to the nucleus-nucleus interactions, Uee the

electron-electron interactions and Uen the electron-nucleus in-

teractions. Eq.3.1 however cannot be solved exactly for systems

consisting of more than two electrons. Hence, to study the dy-

namics of the vast majority of chemical systems, several ap-

proximations have to be imposed. The Born-Oppenheimer or

29
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adiabatic approximation states that the nuclear and electronic

motions can be treated separately. This is based on the observa-

tion that the ratio between the electronic and the nuclear mass

is small. The electrons can instantaneously adapt their wave-

function to the nuclear positions. The nuclear coordinates ap-

pear as parameters in the electronic Hamiltonian and the nu-

clei are considered "frozen" in their positions. In this way we

can separate the Schröedinger equation into two different equa-

tions. One is for the electrons and depends parametrically on

the nuclear coordinates:The

Born-Oppenheimer

or adiabatic

approximation

He(Ri, rj)ψ(Ri, rj) = Ee(Ri)ψ(Ri, rj) (3.3)

The other is for the nuclei:

[Tn(Ri) + Ee(Ri)]φ(Ri) = Eφ(Ri) (3.4)

where the eigenvalue Ee(Ri), calculated from Eq.3.3, plays the

role of the potential energy for the nuclear motion. Since the nu-

clei are sufficiently heavy particles the quantum effects on their

motion are negligible and they can be considered as classical

particles. In this way Eq.3.4 can be substituted by the classical

Newton equation of motion:

MR̈i = −
dEe(Ri)

dRi
(3.5)

The forces acting on the nuclei are obtained as the negative of

the gradients of the potential energy, and the time evolution

of the system is determined by integrating these equations of

motion.

A this point it is essential to evaluate the potential Ee(Ri). In

principle one should solve the electronic Schröedinger equation

(Eq.3.3) in order to obtain the potential, and this is the approach

followed by the first principles (or ab initio) methods. Instead

classical molecular dynamics simplifies the problem by using

empiric potentials which are functions of the atomic positions

and depend on parameters that fit, as accurately as possible,

experimental data or first principles calculations (see below).

To start a molecular dynamics simulation, the first step is the

initialization of the atomic positions and velocities. The atomic
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positions should be chosen compatibly with the structure which

has to be studied often by initial placing the particles in a spe-

cific lattice. Description of a

molecular dynamics

program
The initial velocities can be chosen randomly (usually according

to the Maxwell-Boltzmann distribution) in order to reproduce

the desired initial temperature.

After the initialization, the forces acting on every atom have to

be calculated.This is the most time consuming part of the molec-

ular dynamics simulation. For example, if we consider only the

interaction between a particle and the nearest image of another

particle for a system ofN atoms, this impliesN× (N− 1)/2 eval-

uation of distances. Therefore the time needed for force evalua-

tion scale as N2. There exist some efficient techniques to speed

up the procedure in such a way that the simulation time scales

as N instead of N2.

The next step is to calculate the coordinates and the velocities

of the atomsat future times by integrating the equations of mo-

tions. Due to the complicated nature of the potential energy of

the system (which is a function of the positions of all of the

atoms), there is no analytical solution. Therefore the only way

of evolving the system in time is to solve numerically the equa-

tions of motion.

Time is partitioned in intervals of appropriate length which are

usually called time steps. In principle it is desirable to have long

time steps in order to observe the system for a long time. How-

ever, if the time step is too long, there is a risk that the system

will deviate from its true evolution. In general the time-step

must be chosen small enough to sample the fastest vibrational

mode in the system. Typical time steps for classical molecular

dynamics are in the order of 1 femtosecond.

There are many different algorithms used to integrate the equa-

tions of motion, in the following I will describe the most popu-

lar. The Verlet algorithm is the most simple and popular integra- Velocity Verlet

algorithmtion algorithm used in molecular dynamics [64]. The derivation
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of the Verlet algorithm starts from the Taylor expansion of the

coordinate of a particle around time t:

R(t+∆t) = R(t)+v(t)∆t+
F(t)
2M

∆t2+
1

6
b(t)∆t3+O(∆t4) (3.6)

where v(t) is the velocity, F(t) is the force, M is the particle

mass, b(t) is the third derivative of the particle position with

respect to time and ∆t is the time step. Similarly:

R(t−∆t) = R(t)−v(t)∆t+
F(t)
2M

∆t2−
1

6
b(t)∆t3+O(∆t4) (3.7)

The sum of these two equations is:

R(t+∆t) + R(t−∆t) = 2R(t) +
F(t)
M
∆t2 +O(∆t4) (3.8)

R(t+∆t) ' 2R(t) − R(t−∆t) +
F(t)
M
∆t2

The new positions are estimated with an error of order ∆t4. In

order to calculate the new positions, the Verlet algorithm does

not need to compute the velocities. The velocities can be ob-

tained from knowledge of the trajectory:

v(t) =
R(t+∆t) − R(t−∆t)

2∆t
+O(∆t2) (3.9)

Hence velocities are only accurate to order ∆t2.

There are several algorithms which are equivalent to the Ver-

let one. An example is the so called Leap Frog algorithm [65],

which evaluates the velocities at half integer time steps and uses

these velocities to compute the new positions. In such a way, this

algorithm allows the evaluation of the velocities with a greater

precision than the Verlet algorithm. However, the disadvantage

for both methods is that the velocities are not calculated at the

same time as the positions. As a consequence kinetic and poten-

tial energy are not defined at the same instant. The velocity Ver-

let algorithm solves this problem by calculating positions and

velocities at equal times:

R(t+∆t) = R(t) +∆tv(t) +∆t2
F(t)
2M

(3.10)

v(t+∆t) = v(t) +∆tF(t+∆t) +
F(t)
2M

(3.11)

It is obvious that a good molecular dynamics program requires

a good algorithm to integrate Newton’s equations.
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Another issue which crucially determines the reliability of the

molecular dynamic simulations is the choose of the rules gov-

erning interaction of atoms in the system. Classical molecular Interatomic

empirical potentialsdynamics, in fact, is based on the use of force fields which con-

tain all the information necessary to calculate the forces and

energies [63]. A force field consists of:

a) A simple analytic model of the interatomic potential en-

ergy (IP) with contributions from processes such as the

stretching of the bonds, the bending of the angles and the

torsion about bonds. For all these contributions the energy

is a function of the particles coordinates, so it is correlated

to the structure.

b) A series of parameters used to build the potential energy

function.

c) Characteristics of the building blocks of the molecule such

as atom types, containing information about the hybridiza-

tion state and the local environment of an atom.

One could assume a functional form for the potential function

and then choose the parameters to reproduce a set of experi-

mental data, as in the case of the so-called empirical interatomic

potential (EIP), or in addition the potential functions could be

derived from quantum-mechanical arguments (sometimes re-

ferred to as semi-empirical potential).

Generally, the energy of N interacting particles may be written

as:

E =

N∑
i=1

Vi(Ri) +
∑
i<j

V2(Ri, Rj) +
∑
i<j

∑
j<l

V3(Ri, Rj, Rl) + · · ·

(3.12)

where Vm is called m-body potential, while the first (one body)

term corresponds to an external potential. The simplest model

of IP is the pair potential, such as the Lennard-Jones and the

exponential Morse. Such potentials can be directly applied to

a completely arbitrary configuration of atoms but do not accu-

rately describe any but the simplest closed-shell systems. In par-

ticular, pair potentials are completely inapplicable to strongly
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covalent systems. Moreover, even by considering three-body po-

tentials, a wide range of bonding geometries can not be de-

scribed.

As an alternative, a new approach to construct an accurate and

tractable potential, could be not based on a traditional many-

body expansion of energy but on a parametrized bond order

function, used to introduce many-body effects and chemical

bonding into a pair potential. In fact, beginning with a local

basis of unperturbed atomic orbitals, the chemical bending en-

ergy Eb can be expressed as a sum over nearest neighbors:

Eb =
∑
i

∑
j>i

fCi,j[ai,jV
R(Ri,j) − bi,jVA(Ri,j)] (3.13)

where VR(Ri,j) and VA(Ri,j) are pair-additive interatomic repul-

sive and attractive interaction, respectively. fCi,j is a cut-off func-

tion that ensures only nearest-neighbors interactions. The quan-

tity Ri,j = Ri−Rj is the distance between pairs of atoms i and j

which are nearest-neighbor, and bij is the corresponding bond

order. In particular, this last bij ∼ N−(1/2), where N is the local

coordination number, predicting an increase in bond length and

a decrease in individual bond energy as coordination increases.

The most commonly used EIPs for Carbon-based material, such

as diamond, graphite, graphene and hydrocarbons are those de-

veloped by Tersoff[66] and Brenner[67, 68, 69]. The convenience

of the Tersoff and Brenner EIPs comes from their rather simple,

analytical forms and the short range of atomic interactions.

In the Tersoff potential, for example the functional forms of in-

teratomic interactions are VR(Ri,j) = A exp−λ1Ri,j and VA(Ri,j) =

B exp−λ2Ri,j, while the analytic parametrized forms for the

bond order depends both on the local coordination around atom

i and on bond angles θi,j,k between atoms i, j and k:Empirical bond

order Tersoff

potential bi,j = (1+βnζni,j)
− 1
2n (3.14)

ζi,j =
∑
k6=i,j

fCi,jgi,j,k exp λ33(Ri,j − Rj,k)3 (3.15)

where fCi,j has the same definition given above and gi,j,k is a

bond-bending spline function defined as:

gi,j,k = 1+
c2

d2
−

c2

d2 + (h− cos[θi,j,k])2
(3.16)
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All the parameters (A, λ1,B, λ2,β, λ3, c,d,h,n) present in the

equations have been empirically fitted. The angle term allows

the Tersoff potential to describe the strong covalent bond that

occurs in carbon system and to be compatible with different car-

bon bonds geometry, such as tetrahedral in diamond and 120
◦

tribonded in graphene.

On the other side, Brenner developed the so called Reactive Em-

pirical Bond Order potential (REBO). I will expose the second Reactive Empirical

Bond Order

potential
generation version of this potential, that includes both modi-

fied analytic functions for the intramolecular interactions and

an expanded fitting database, especially though with the aim of

modeling hydrocarbon materials.

In this second generation potential, the form of the interaction

functions are

VR(Ri,j) = (1+
Q

Ri,j
)A exp−αRi,j (3.17)

VA(Ri,j) =
3∑
n=1

Bn exp−λnRi,j (3.18)

and bond order term:

b̄i,j =
1

2
[bσ−πi,j + bσ−πj,i ] +ΠRCi,j + bDHi,j (3.19)

bσ−πj,i = (1+
∑
k6=i,j

fCi,kgi,j,k)
−1/2 (3.20)

gi,j,k =

5∑
i=0

βicos
i[θi,j,k] (3.21)

bDHi,j =
T0
2

∑
k,l 6=i,j

fCi,kf
C
j,l(1− cos

i[Θi,j,k,l]) (3.22)

cos[Θi,j,k,l] = ”j,i,k · ”i,j,l (3.23)

ηj,i,k =
Ri,j ×Rj,k
|Ri,j||Rj,k|

sin[θi,j,k] (3.24)

No predetermined atomic hybridizations are assumed as in tra-

ditional force fields; atomic bonding is determined, indeed, from
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local bonding neighbors and non-local conjugation i.e. not only

by considering the number of neighbors one atom has, but also

if it belongs to a conjugate system. This makes this potential

particularly suitable to simulate atomic rehybridization as well

as covalent bonds break.

As in Tersoff case, bσ−πj,i depends on the local coordination of

atoms around atom i and the angle θi,j,k between atoms i, j

and k. The coefficients βi in the bond-bending spline function

Eq.3.21 were fit to experimental data for graphite and diamond.

The value of the term ΠRCi,j depends on whether a bond between

atoms i and j has radical character and is part of a conjugated

system, while bDHi,j depends on the dihedral angle Θijkl for

carbon-carbon double bonds. This dihedral bending function

that depends on the local conjugation and is zero for diamond

is instead very important for describing graphene. It involves

third nearest-neighbor atoms and is given by Eq.3.22 where T0
is a parameter and Θijkl is given by Eq.3.23. ”jikl and ”ijlr are

unit vectors normal to the triangles formed by the atoms given

by the subscripts. In flat graphene, the dihedral angle, Θijkl, is

either 0 or π and the dihedral term is subsequently zero.

Thus, an accurate description of the lattice dynamics is criti-

cally important in modeling the lattice thermal conductivities of

SWCNTs and graphene. The original parameter sets of the Ter-

soff and Brenner EIPs do not accurately reproduce the phonon

dispersions of graphene, as has been noted previously. In par-

ticular, they do not accurately obtain the velocities of the three

acoustic branches near the center of the Brillouin zone.

Lindsay and Broido presented in Ref. [34] an optimized parame-

ter sets for the Tersoff and Brenner EIPs, which better represent

the lattice dynamical properties of graphene. In detail, imple-

menting a χ2 procedure, they fitted the force field parameters

giving greatest importance to the phonon frequencies and the

velocity in the near-zone-center acoustic branches, in order to

improve the potential accuracy in the transport phenomena de-

scription. These optimized parameters for the Tersoff and Bren-

ner potentials have been demonstrated to improve the agree-

ment between the calculated ZA, TA and LA phonon branches
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in graphene and in-plane graphite. Based on this, we expect

that they will also provide better representation of the lattice dy-

namics and of phonon thermal transport in graphene, graphene

nanoribbons, and graphane. For this reasons, in the works I

present in this thesis, I always refer to this optimized version

of Tersoff and REBO interatomic potentials.

3.2 simulating thermodynamical ensamble by means

of md

The previously explained mechanical formulation of MD can

be naturally recast into a statistical mechanics formulation. In

fact, the set of instantaneous particle positions R1, R2, ...RN and

velocities v1, v2, ...vN uniquely define a microstate Γ(t) in the

6N-dimensional phase space of the system. Generating trajecto-

ries is therefore equivalent to generate the time evolution of the

microstate in the corresponding phase space. This is the basic

ingredient for developing a theory based on statistical mechan-

ics.

Let us consider a given system property (or observable) and let

us define the corresponding microscopic (i.e. computable on the

basis of particle positions and/or velocities) operatorO. Then, if

we know the microstate Γ we can evaluate the instantaneous op-

erator value O(Γ(t)). In other words, we can compute the value

assumed by the observable when the system is in that given mi-

crostate at time t. According to statistical mechanics, we there-

fore define the macroscopic (i.e. the experimentally measurable)

value Omacro to be the time average 〈O(t)〉tobs .

Omacro = 〈O(t)〉tobs =
1

tobs

∫tobs
0

O(Γ(t))dt (3.25)

where the time integral is performed over the observation time

tobs. In practice, the molecular dynamics run is performed over

a finite number Nsteps of time steps, so that

Omacro = 〈O(t)〉obs =
1

tobs

Nstep∑
i=0

O(Γ(ti)) (3.26)
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The major conceptual steps explained above allow to set up the

iterative scheme shown in Fig.3.1. This scheme permits to gen-

erate by computer simulation the time evolution of a system on

which an observation procedure is performed.

Figure 3.1: Iterative molecular dynamics loop which includes the evaluation

of the instantaneous value of O(Γ(t)) of a given observable. One

iteration corresponds to increasing time by an amount δt.

In order to implement the procedure, it needs just to choose

the proper thermodynamical ensembles where time averages

are performed and operationally select a subset of the phase

space compatible with the imposed conditions of temperature,

pressure (or stress), volume and so on. This formulation widely

enlarges the playground for MD investigations of condensed-

matter systems to including nearly any possible thermodynam-

ical condition.

According to statical mechanics, keeping the system into the

canonical ensemble means coupling it to an external thermal

reservoir. Several algorithms are available to implement this

concept.

If the temperature at time t is T(t), multiplying the velocity by

a factor λ will produce a temperature change:Defining a canonical

ensamble in MD

simulation

Tnew − T(t) = ∆T = (λ2 − 1)T(t) (3.27)

Therefore the simplest way to control the temperature is to mul-

tiply the velocities at each time step by λ =
√
Treq
Tcurr

, where Treq
is the required temperature and Tcurr is the current tempera-

ture. A different approach adopted is the Nosé algorithm. This

Nosé method is based on the use of an extended Lagrangian,

containing fictitious coordinates and velocities additional to the
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particle ones. In order to mimick the coupling to a thermal reser-

voir, a new fictitious degree of freedom s is added to the system

and a classical Lagrangian is written as

LNose =
1

2

N∑
α=1

mαs
2Ṙ2α +

1

2
msṡ

2 −U(R1, ...RN) − gKBTlns

(3.28)

where ms acts as the effective mass associated to the new co-

ordinate s and g is the number of degrees of freedom for the

extended system. The Nosé Lagrangian allows for energy (i.e. Nosé and

Nosé-Hoover

thermalization

methods

heat) exchange between the physical system and the reservoir

(described by s), the thermal inertia being described by the pa-

rameter ms.

The new extended system (i.e. The N particles plus the thermal

bath) is microcanonical, while it can be proved that ensemble

averages performed during a Nosé MD run reduce to canon-

ical averages. The Nosé method can be generalized into the

Nosé-Hoover chains approach: the original thermostat is now

coupled to a series of other fictitious thermostas whose role is

basically to allow for fluctuations of the variable s. The Nosé-

Hoover method is proved to accurately generate a canonical

distribution and to improve the ergodicity of the simulated sys-

tem. In the next works I always use this two kinds of constant

temperature algorithms.

After the explanation given above about the molecular dynam-

ics simulations basic concepts, I would like now to explore how

to use it to measure interesting properties of many-body sys-

tems. To measure an observable quantity in a molecular dynam-

ics simulation, we have first of all to express it as a function

of the positions and momenta of the particles of the system.

Among the properties of the system that we can calculate by

using an MD code there are:

• the thermodinamical properties such as temperature, pres-

sure and heat capacity;

• the functions which characterize the local structure of the

system, such as the radial distribution function;

• dynamic equilibrium properties.
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As far as concerned temperature operative definition in molecu-

lar dynamics simulation, a convenient expression for T is used,

based on the energy equipartition in classical many-body sys-

tems with N particles. This rapresents the link between classical

mechanics and thermodynamics:Operative

temperature

definition in MD

simulation
T(t) =

N∑
i=1

mivi(t)
2

KBNf
(3.29)

where Nf is the degrees of freedom (= 3N-1 for a system with

fixed momentum). Since the total kinetic energy of a system

fluctuates, to get an accurate estimate of the temperature, one

should average over many fluctuations. The relative tempera-

ture fluctuations will be of order 1√
N

.

3.3 synopsis of methods to calculate κ and phonon

properties by means of md

In the Section 2.1, I have previously exposed the thermal con-

ductivity operative definition as well as its importance on the

characterization of a material thermal behavior. In this Section, I

will summarize the possible strategies used to calculate κ by us-

ing MD simulations. The two most popular techniques to model

the heat transport by MD are equilibrium molecular dynamics

(EMD) and non equilibrium (NEMD) or “direct” method. The

first [70, 71] calculates the thermal conductivity at temperature

T , in the framework of linear-response theory of transport coef-

ficients, by using Green-Kubo formula:Thermal

conductivity

evaluation by means

of equilibrium

Green-Kubo

approach

καβ = (kBT
2V )−1

∫+∞
0

〈 Jα(t)Jβ(0)〉 dt (3.30)

where Jα is the heat flux vector in the α direction, KB is the

Boltzmann constant, V is the system Volume and 〈〉 denotes

the ensamble average. This approach, which can be used in dif-

ferent transport phenomena, is based on statistical mechanics

fluctuation-dissipation theorem which relates a non-equilibrium

transport coefficient (κ in the case of heat transport) to the equi-

librium system properties trough the autocorrelation functions
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of some specific variables (in this case heat fluxes). The advan-

tages of the equilibrium method is that it allows to compute the

full conductivity tensor from one simulation and that it does

not suffer from severe finite size effects as NEMD (see after),

mainly because in EMD the phonons are not strongly scattered

by the boundaries of the simulation box. The main drawback is

intrinsic to the method, as we need to probe small thermal fluc-

tuations around equilibrium over long time scales, several sta-

tistical averages over different initial conditions are required. In

addition, very long time needed to converge the current-current

autocorrelation function. It has been recently shown [72] that as

many as O(106) atoms and several hundred thousands MD

time-steps are indeed necessary to provide a fully converged

value of lattice thermal conductivity in a system such as bulk

crystalline silicon.

NEMD[73] instead, calculates κ in analogy to the experimental

measurement, i.e. by means of the Fourier law (Eq.2.2) where

the external perturbation and the system response are sepa-

rately computed, eventually getting the thermal conductivity

as the response-to-perturbation ratio: Thermal

conductivity

evaluation by means

of non equilibrium

direct method

καβ = − lim
∂T
∂xβ
→0

lim
t→+∞ 〈Jα(t)〉∂T

∂xβ

(3.31)

Practically, a thermal gradient is established by thermostating

the two opposite terminal layers of a finite-thickness slab at

different temperatures Tcold and Thot, while its inner part is

evolved microcanonically (see Fig.3.2). After a long enough sim-

ulation, a steady state thermal gradient is so generated and ∂T
∂x

and Jx are computed.

This NEMD implementation is generally known as "direct method"

of computing κ, in contrary of "inverse" Müller-Plate method[51].

This last reverses the usual cause and effect picture, by impos-

ing an heat flux on the system and eventually measuring the

temperature gradient from the simulation. More in detail, the

periodically-repeated simulation box is divided into Ns slabs.

Slab 0 is defined as the hot slab and slab Ns/2 is the cold slab.

The heat flux is generated by exchanging the kinetic energy be-

tween the hottest atom in the cold slab and the coldest atom
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Figure 3.2: Schematic representation of NEMD “direct” method. The two op-

posite edges of a finite-thickness sample are termalized at Tcold
and Thot and a linear temperature gradient is established.

in the hot slab in order to decrease the temperature in the cold

slab and increase it in the hot one. After a suitable number ofThermal

conductivity

evaluation by means

of non equilibrium

Müller-Plate method

exchanges, a non equilibrium steady state is eventually reached

and both 〈Jx(t)〉 and ∂T
∂x are easily computed. In order to cal-

culate temperature gradient generally it is necessary to avoid

the external regions, in which non-linear temperature profile is

created as due to the non-Newtonian nature of the heat transfer

(see Fig.3.3).

NEMD methods are mainly limited by the very long simulation

time needed to establish a steady state condition, once that a

given temperature gradient or heat current is imposed, with an

advantage in the case of Müller and Plate technique which re-

quires the sampling of rapidly converging temperature gradient

rather than slowly converging heat flux.

In order to overstep these limitations, in ref.[53, 74], the new

AEMD approach is proposed, in which the simulation is per-

formed in a transient thermal conduction regime. The methodApproach to

equilibrium

molecular dynamics
has been fully exploited to investigate the thermal transport

properties of disordered and nanostructured silicon samples

[52].

The two simulation cell halves are separately equilibrated in or-

der to obtain an initial Heaviside-step temperature profile. The

left side of the simulation cell is firstly equilibrated at T1 by



3.3 synopsis of methods to calculate κ and phonon properties by means of md 43

Figure 3.3: Schematic representation of the Müller and Plate method. The

sample is divided in N slots and a flux exchange between the

slot 0 and Ns/2 generates the showed temperature profile (black

line) along the sample. The lateral regions presents non-linear

profiles as effect of the artificial heat exchange.

keeping frozen all the atoms belonging to the right side. Then

the same procedure is performed by equilibrating the right side

at T2 < T1 and by keeping frozen the left side. In Fig.3.4 I show

by stick and ball representation the simulation cell upon which

the step-like temperature profile is imposed. The color map rep-

resents the different atomic temperatures showing a lower av-

erage temperature T2 for the right side with respect to the left

side temperature T1.

The system is eventually left free to reach the thermal equilib-

rium under microcanonical (NVE) constraints. Therefore the to-

tal energy is conserved, and the system could reach an average

temperature determined by the ratio of the total mass times

the heat capacity of the two materials. The ensemble-averaged

instantaneous temperature of each subsystem is recorded dur-

ing the simulation and the decay of the temperature difference

∆T = T1 − T2 can be estimated.

The formula

T(x, t) = a0 +
∞∑
n=1

[ancos(
2nπ

L
x) + bnsen(

2nπ

L
x)]e−α(

2nπ
L )2t

(3.32)
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Figure 3.4: Simulation cell stick and ball representation together with color

map showing the atomic temperatures along the sample. The

right side average temperature T2 is lower with respect to the

left side temperature T1.

can be calculated for the specific case of an initial temperature

profile T(x, 0) having the shape of an Heaviside step function

H(x) as in the simulation:

H(x) = T1 for −L/2 < x < 0

H(x) = T2 for 0 < x < L/2

We consider an interval for the x coordinate I = [−L/2,L/2]

with periodic-boundary conditions T(−L/2, t) = T(L/2, t) and

Tx(−L/2, t) = Tx(L/2, t). In this case for the coefficients a0,an
and bn we have:

a0 =
1
L

∫L/2
−L/2H(x)dx =

T1−T2
2 (3.33)

an = 2
L

∫L/2
−L/2 cos(

2nπ
L x)H(x)dx (3.34)

= 2
L [

L
2nπT1sin(

2nπ
L x)]0−L/2 +

2
L [

L
2nπT2sin(

2nπ
L x)]

L/2
0 = 0

bn = 2
L

∫L/2
−L/2 sin(

2nπ
L x)H(x)dx (3.35)

= 2
L [

L
2nπT1(−cos(

2nπ
L x))]0−L/2 +

2
L [

L
2nπT2(−cos(

2nπ
L x))]

L/2
0

= [( 1
2nπcos(2nπ)(T1 − T2) + (T2 − T1)]

We can also estimate the time evolution of the temperature dif-

ference ∆T = T1 − T2. We have that:

T1 =
2

L

∫0
−L/2

T(x, t)dx (3.36)

T2 =
2

L

∫L/2
0

T(x, t)dx (3.37)



3.3 synopsis of methods to calculate κ and phonon properties by means of md 45

and therefore:

∆T =

∞∑
n=1

bn

πn
(2cos(2πn) − 2)e

−n2π2αt

L2 (3.38)

Fig.3.5 shows the time evolution of the temperature profile T(x, t)

during the AEMD simulation on a graphene sample with L=500

nm and ∆T(0)=200 K. We notice the same qualitative behavior

as described by the analytical solutions (black lines) of the heat

equation derived above. Starting from the initial Heaviside-step

function the temperature profile evolves towards the first har-

monic corresponding, reaching the constant value equal to the

average (T2 + T1)/2. We can estimate the thermal diffusivity α

of our system by fitting the numerical ∆Tsim with the analyti-

cal solution in Eq.3.38. Finally, using the so computed α we can

calculate κ by using the formula α = κ
CVρ

. CV is the volumetric

heat capacity and in some cases, it can be approximated with

the Dulong e Petit classic heat capacity (see Appendix).

Figure 3.5: Temperature profile calculated in an AEMD simulation on a

graphene sample at different time-steps (t=0, 20, 100, 500 ps) to-

gether with the corresponding analytical solutions.

Solving the Fourier heat equation to obtain Eq.3.38, we have as-

sumed that κ is not dependent on the x position. Actually, in

AEMD simulations, this assumption is indeed not strictly satis-

fied since κ is actually a function of temperature, which is in

turn a function of x. However, in Ref.[74] has been proved that
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by performing simulations where the initial temperature differ-

ences ∆T(0) between the hot and cold regions are different, no

significant variation has been observed in the κ computed. For

example Fig.3.6 (taken from Ref.[74]) shows κ calculated in the

case of crystalline silicon sample, at six different initial ∆T(0)

namely: 50 K, 100 K, 150 K, 200 K, 250 K and 300 K. No mean-

ingful κ dependence on ∆T(0) has been observed. From one per-

spective, large initial temperature differences are favored since

increasing ∆T(0) the error significantly decreases (see in Fig.3.6

the κ convergence to the value 18.5± 0.1 Wm−1K−1 for ∆T(0)

greater than 150 K). On the other side, it needs to remark that

Fourier heat equation is valid under the assumption of small

temperature gradient in order to ensure the validity of linear

response regime.

Figure 3.6: κ in a crystalline silicon sample with L=108 .61 nm as function

of the initial temperature difference between the hot and cold

regions ∆T (0).

3.4 phonon properties derived from md simulations

A very effective method for deriving phonon dispersion curves

and vibrational density of states, valid for finite temperatures,

is through molecular dynamics simulations of the modelled ma-

terial. This method has certain advantages; anharmonic interac-

tions between atoms are implicitly taken into account, since it is



3.4 phonon properties derived from md simulations 47

Figure 3.7: Comparison between phonon dispersions in graphene calcu-

lated with DFT (dashed red line) and REBO potential (solid black

line)

based on processing of the atomic trajectories. Phonon frequen-

cies are calculated by diagonalizing the dynamical matrix com-

puted from molecular dynamics simulations based on fluctuation-

dissipation theory for a group of atoms. In particular, we con-

sider a crystal with N unit cells. Each unit cell contains K basis

atoms labeled with the index k = 1, 2, · · K. Instead of calculat-

ing effective spring constants between individual atoms in real

space, it is more efficient to assess the effective elastic coupling

in reciprocal space. Phonon dispersion

based on Green’s

functions

calculation

If un,k is a displacement vector of the atom k in the nth cell with

equilibrium position R0n,k in real space, its Fourier transform is

defined as

ũk(q) =
1√
N

∑
n

un,kexp(qR0n,k) (3.39)

Based on fluctuation-dissipation theory, the force constant co-

efficients of the system in reciprocal space are given by [75? ]

Θkα,k ′β(q) = KBTG−1
kα,k ′β(q) (3.40)

where G is the Green’s functions coefficients defined as

Gkα,k ′β(q) = 〈ũkα(q) · ũ∗k ′β(q)〉 (3.41)

where 〈〉 denotes the ensemble average and ũkα(q) is the α com-

ponent of the atomic displacement of the kth atom of the unit

cell in the q-vector reciprocal space.
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In practice, the Green’s functions coefficients can also be com-

puted according to the following formula,

Gkα,k ′β(q) = 〈Rkα(q) ·R∗k ′β(q)〉− 〈R〉kα(q) · 〈R∗〉k ′β(q) (3.42)

where R is the instantaneous positions of atoms in the reciprocal

space, and 〈R〉 is the averaged atomic positions. The inverse of

the correlation matrix of atomic displacements divided by the

thermal energy can be interpreted as the renormalized force

constants in the reciprocal space.

Once the force constant matrix is known, the dynamical matrix

D can then be obtained by

Dkα,k ′β(q) = (mkm
′
k)

−1/2Φkα,k ′β(q) (3.43)

whose eigenvalues are exactly the phonon frequencies at q.

Applying the method outlined above, I calculate the disper-

sion curve of graphene by using the REBO potential. In Fig.3.7

the MD graphene phonon dispersions (solid black line) is com-

pared with the ones calculated by ab-initio density functional

theory (DFT) calculations (dashed red line)[76], testing also the

REBO reliability in graphene. We observed a good description

of the acoustic branches especially near Γ point. This is impor-

tant in order to predict the transport properties in which acous-

tic phonons are mainly involved. On the other side, the REBO

potential slightly underestimates the optical bands which are,

however, barely involved in thermal transport.



Part III

T H E R M A L T R A N S P O RT I N P R I S T I N E
M O N O L AY E R - G R A P H E N E

In this part, I will present my molecular dynamics

studies addressing thermal transport in pristine mono-

layer graphene. In particular, I will show two differ-

ent developments of AEMD technique focusing on

the thermal conductivity estimate. In the Chapter 4,

I will disentangle the question about thermal conduc-

tivity length dependence. In Chapter 5, indeed, I will

analyze the response to a laser thermal excitation in

a transient regime, by distinguish the most probably

phonon excited modes and decay channels.





4
U P P E R L I M I T I N G R A P H E N E I N T R I N S I C

T H E R M A L C O N D U C T I V I T Y

4.1 theoretical investigations about thermal con-

ductivity in graphene : state of art

As I explained in the previous Chapter 2, theoretical approach

used to study graphene thermal transport involves the Boltz-

mann transport equation (BTE) which relates the overall κ to

the material phonon properties, such as phonon equilibrium

distribution, specific heat and group velocity. Generally, some

approximations are widely used in phonon transport models to

solve BTE equation e.g. the relaxation time approximation (RTA)

[77, 33] or long-wavelength approximation (LWA) [78, 79, 80]. RTA and LWA

approximations in

solving BTE
The former uses an approximated form for the deviation of

phonon population with respect to the Bose-Einstein equilib-

rium distribution (function Fν in Eq.2.24). In detail, a life-times

τi for each phonon mode with the corresponding frequency ωi
has been considered, which is additive with respect to the dif-

ferent life-times τi,j corresponding to the various scattering pro-

cesses: τ−1i =
∑
j τ

−1
i,j . On the other side, in the LWA the solid is

represented as an elastic continuum in which acoustic branches

with small frequencies are included.

The potential anharmonicity permits phonon-phonon scatter-

ings which are of two kinds: Normal scatterings (N) with wave-

vector conservation and Umklapp scatterings (U) with a mo-

mentum lose. These last actually provide heat flux dissipation.

In Fig.4.1 the two kinds of phonon-phonon scattering are schemat-

ically shown: in N processes two initial phonons with wave vec-

tors q1 and q2 create a phonon with wave vector q3, which is

the vectorial sum of q1 and q2, while in U processes, the re-

sulting momentum q3 is outside the first Brillouin zone, and

51
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Figure 4.1: Schematic representation of Normal scattering N and Umklapp

scattering U.

therefor is equivalent to a wave vector q ′3 summed with a recip-

rocal lattice vector G.

Even if momentum conserving nature of N processes prevents

them from dissipating heat-current, they are involved in trans-

port phenomena in terms of rearrangement of phonon distri-

bution and therefore they are fundamental in the estimation of

the correct transport properties, included thermal conductivity

evaluation.

Both the approximations cited before experience troubles in dis-

tinguish between Normal and Umklapp events. Moreover, these

approximations totally neglect the right selection rule for three-

phonon scatterings [30, 81], which has fundamental effects on

graphene thermal transport by reducing the phase space of al-

lowed scattering processes and then critically affecting the phonon

population distribution.

More rigorous approaches have been implemented to solve these

problems. They are based on the exact solution of BTE, by tak-

ing into account the whole scattering matrix [41, 30] (see Chap-

ter 2). In this latter, the only inputs to the calculation are har-Exact solution of

BTE: complete

scattering matrix
monic and anharmonic interatomic force constants (IFC). The

first enter in the dynamical matrix, which is the one used to

compute phonon dispersionsω(q), while the second in the phonon-

phonon scattering matrix to calculate phonon life-time τ(q). The

IFC could be calculated using a force field [29], generally Tersoff
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or Reactive Empirical Bond Order (REBO) potential (see Chap-

ter 3), or by first principles approach (DFT or DFPT) [30].

In the framework of molecular dynamics simulations, EMD cal-

culates the thermal conductivity κ at temperature T along a

given x direction by using the equilibrium fluctuations of the

heat current vector J through the current-current autocorrela-

tion function [42]. NEMD, [45] instead, calculates κ in analogy

to the experimental steady-state measurement, i.e. by means of

the Fourier law and separately computing the external pertur-

bation ∂T/∂x and the system response Jx (more in particular in

Chapter 3).

Finally, I want to underline that to analyze transport, especially

in the specific case of 2D materials, it is important to distin-

guish between different phonon transport regimes. Here I re- Classification of

different transport

regimes
port the different regimes classification according to the nomen-

clature of Guyer [82]. In the ballistic regime, the extrinsic scat-

terings with sample edges, grain boundaries and other defects

dominate with respect to the phonon-phonon interactions. In

the Poiseuille regime the N scattering events start to dominate

even if the boundaries scatterings are still present. Differently, in

the Ziman regime the N scatterings sustain the heat flux which

is dissipated by resistive scatterings (U). Finally, in the kinetic

regime intrinsic resistive processes (U) have highest probability.

4.2 thermal conductivity length dependence

An exotic feature of graphene thermal transport, which has

been predicted by several theoretical works [33, 41, 34, 45] and

recently experimentally observed[43], is the κ dependence on

the sample length Lx in the direction of the temperature gradi-

ent. At the moment different interpretations for such a κ length-

dependence behaviour have been supplied. In molecular dy-

namics methods [42], the κ(Lx) dependence is due to the sim-

ulations cell finiteness which hinders phonons having mean

free path (MFP) greater than the actual cell length Lx. In princi- Simulating ballistic

and diffusive

transport regimes
ple, a reliable description of the intrinsic thermal conductivity,

needs to achieve the diffusive regime by increasing the simula-
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Figure 4.2: Schematic representation of the characteristic length Lx in case

of different methodologies: (a) experimental thermal resistance

measures [43]; (b) NEMD simulations [45]; (c) AEMD simula-

tions [1].

tion cell length up to a critical length Ldiff. Ldiff is the length at

which all the phonons become diffusive, which in graphene is

reported to range between 1-10 µm [31]. In the case of non equi-

librium molecular dynamics, besides the previously described

phenomenon, the κ(Lx) dependence is strengthen by the pres-

ence of the thermostats at the sample boundaries, which artifi-

cially scatter phonons [45] (see Fig.4.2).

On the other side in LWA approximations such as Klemens-like

models, the κ(Lx) dependence is artificially included by con-

struction, through the low-frequencies cut-off ωmin ∝
√

1
Lx

[77].ωmin was first introduced by Klemens in the case of graphite,Graphene thermal

conductivity length

dependence in LWA
where the heat transport is approximately two-dimensional un-

til a low-bound frequency, under which a strong coupling with

cross-plane phonon modes appears and heat starts to propa-

gate non only in the graphite planes but in all the directions.

To adapt the thermal transport description given for graphite

to graphene, in which the transport is intrinsically 2D even

for small phonon frequencies, the low-bound cut-off ωmin in

graphene is determined by the condition that the MFP cannot

exceed the physical size Lx of the sample.
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RTA approximation, on the other side, does not give any size-

able Lx dependence of κ, due to a Normal scattering overesti-

mate.

As far as concerned the exact BTE solution, an empirical length-

dependent rate is introduced to count boundary scatterings in

a finite size sample [30].

Recently, a further evidence of thermal conductivity size depen-

dence has been experimentally shown [43] by performing ther-

mal resistance measurements on suspended single-layer graphene

samples. In detail, a single-layer graphene was suspended be- Graphene thermal

conductivity length

dependence in

experiments

tween two SiN membranes, one used as an heater resistor Rh
and other as a sensor Rs to measure the temperature rise at the

end of the sample (see Fig.4.2). A µA-DC current was applied

to Rh to produce Joule heat and therefore to increase the tem-

perature with respect to the environment. In the meanwhile, an

AC current is used to measure the resistance of the same Rh.

The produced Joule heating gradually dissipates through the

graphene sheet resulting in a temperature rise in the sensor re-

sistor Rs. In the steady state, the thermal conductivity of the

graphene sheet can be obtained by measuring the temperature

rise in the Rh and Rs and the Joule heatQh applied to the heater.

A κ(Lx) logarithmic dependence was observed for sample lengths

up to 9 µm. I point out that no other experimental measures

have been performed for longer length scales.

Fig.4.2 shows a schematic representation of the characteristic

length Lx in the case of different methodologies. In the experi-

mental thermal resistance measures (a) Lx is the sample length

suspended between the two resistors [43]. In NEMD simulations

(b), the Lx corresponds to the distance between the thermostats

which artificially scatter the phonons [45]. In the AEMD simu-

lation Lx is the actual cell dimension along x.

Even if both experiments and theory agree on the actual κ length-

dependence, an active debate about a possible divergence of

thermal conductivity for Lx → ∞ is still open. In particular, Extrapolation of

graphene thermal

conductivity for

infinite sample

theoretical models taking into account only in-plane phonon

modes (i.e. by disregarding out-of-plane flexural modes), pre-

dict a κ(Lx) logarithmic divergence at room temperature [77].
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Figure 4.3: κ(Lx) trend in Silicum up to Lx=10µm.

In fact, I have already cited in Introduction the importance of

ZA modes in graphene since a non reliable description of ther-

mal transport is obtained in the case in which these are not

considered. In Ref.[43] the logarithmic divergence has been sug-

gested based on NEMD and experiments performed on sample

lengths up to 9 µm. The actual κ divergence was interpreted as

due to the 2D nature phonons and their non equilibrium distri-

bution. In particular, the authors showed that the differences in

phonon populations between non equilibrium condition (such

as NEMD) with respect to the equilibrium populations (EMD),

promote the κ logarithmic divergence. However, the observed

k(Lx) logaritmic trend in lengths range up to 9 µm does not

necessarily imply a divergent thermal conductivity for Lx →∞.

For example, in the same length range, the logaritmic behavior

is observed, by means of AEMD simulations with Tersoff empir-

ical potential, even for a very well-known 3D material as Silicum

(see Fig.4.3). This probably suggests that this k(Lx) dependence,

at least in the case of AEMD calculations, is not related to the

particularity of 2D graphene nature, but it is indeed due to the

specific regime in which the measures are performed.

The conclusions based on general arguments valid for 2D sys-

tems has been questioned in the specific case of graphene.
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On the other side, in Ref.[41] it has been argued that, even by

assuming κ = κ(Lx) as due to a regime of ballistic phonon trans-

port in samples with Lx < Ldiff, an upper limit for thermal con-

ductivity should be anyhow reached for long enough samples

(Lx > Ldiff), where a fully diffusive regime can be eventually

reached. It has also been calculated that such a diffusive regime

is reached only for mm-long samples that can accommodate

not only single-phonon with typical MFP of ∼ 1 µm [31] but

even collective excitations. They suggest the evidence of an hy-

drodynamic regime, in which how I explained before, the main

phonon scattering mechanisms are the N events. The heat trans-

port in this case is characterized by the creation of phonon pack-

ets that conserve to a large extend their momentum. Therefore,

the typical heat diffusive behavior is altered until Lx is lower

than the MFPs of these collective phonon excitations which are

typically ∼ 100 µm [41]. The actual occurrence of a truly dif-

fusive regime in mm-long systems has not yet been confirmed

since both experiments and MD simulations (of any kind) ex-

plored so far much smaller samples.

4.3 aemd simulation on increasing length graphene

samples

In the work [1], I elucidate the present dilemma by performing

“approach to equilibrium molecular dynamics” (AEMD) [74]

simulations (see Chapter 3) on pristine graphene samples hav-

ing Lx up to the unprecedent size of 0.1 mm. Our final goal

is to unequivocally state whether an actual κ vs Lx divergence

is present or whether a saturation occurs, revealing a diffusive

regime achievement. The predicted behavior could be also a mo-

tivation to perform experimental measures for samples in this

length-scale no yet explored.
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4.3.1 Computational details

All the simulations presented in this Chapter are performed

by using “Reactive Empirical Bond Order” (REBO) potential in

its second generation form [68], whose reliability for graphene

has been tested by comparing the graphene phonon dispersions

with the ones calculated by ab-initio density functional theory

(DFT) calculations as it has been shown in Chapter 3. Equations

of motion are integrated by the velocity Verlet algorithm with

1.0 fs time-step. Thermal conductivities have been evaluated by

fitting the computed time-dependent temperature difference be-

tween the left and the right side of the sample ∆T(t)C, recorded

during a microcanonical run, with the analytical one ∆T(t)A.

In particular, an initial temperature gradient has been imposed

∆T(0)=200 K by thermalizing half of te sample at T1=400 K and

the other T2=200 K by means of an atomic velocity rescaling

performed every simulation step. We pointed out that the final

results are independent on the initial ∆T in a range of 100-400

K, as it has been previously generally demonstrated as far as

concerned AEMD methodology[52] (see Chapter 3). The fitting

parameter is the thermal diffusivity α. The corresponding ther-

mal conductivity has been evaluated as κ = αρCV .

In this work, we decided to use quantum corrections on the cal-

culation of specific heat, CV , in order to take into account the

deviations from the Maxwell-Boltzmann distribution at room

tempertaure, that is for graphene considerably below Debye

temperature ΘD (see Appendix).

I calculated graphene thermal conductivity on thirteen samples

having periodically repeated simulation cells along the x and y

directions (see Fig.4.2) with fixed lateral width Ly and length

0.83 µm 6 Lz 6 100 µm. The periodic boundary conditions en-

able to simulate an infinite sample in the lateral direction. The

corresponding simulation cell spanned the range 24000-2880000

atoms, requiring different simulation times for the AEMD anal-

ysis extending from 0.411 ns to 10 ns.

With the aim of limiting the huge computational cost of MD

simulations on such a mm-long samples, we had to reduce the
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samples lateral size. In order to do this we at first needed to ex-

plore the κ(Ly) dependence for a fixed Lx (for example I choose

Lx=125.1 nm). In fact, Fig.4.4 demonstrates the κ independence

on the sample width for Lx greater than 2.2 nm.

Figure 4.4: κ vs Ly for fixed Lx=125.1 nm and ∆T(0)=200 K. The κ value is

basically independent on the cross section for Lx > 2.2 nm.

Basing on this assumption, I initially calculated κ on samples

having Lx=0.7 nm, and by means of a specific fitting function

I estimated the corresponding κ values for Lx=2.2 nm. In de-

tail, I compared the κ estimated values on 5 samples having

0.834 µm 6 Lx 6 20 µm for both Ly1=0.7 and Ly2=2.2 nm. The

ratio R(Lx) =
κLy1
κLy2

have been calculated and fitted by means

of the suitable function f(Lx) = A ∗ L0.4
x + C. The correspond-

ing R(Lx) values for Lx > 20 µm have been then extrapolated.

Fig.4.5 represents the calculated values of R(Lx) together with

the corresponding fitting function.

In fact, for Lx > 20 µm we calculated κLy1 in samples with later

size Ly1=0.7 nm and after we extrapolate κLy2 (which corre-

sponds to the saturation thermal conductivity value with lateral

dimension) by considering R(Lx)× κLy1. By means of the prece-

dent procedure we are enable to reach simulations cell length

for graphene that has never been atomistically described before.
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Figure 4.5: Calculated R(Lx) values (red dots) together with the correspond-

ing fitting function f(x) = A ∗ x0.4 +C (dashed black line). The

fitting function has been used to extrapolate the κ values for

Ly2=2.2 nm and Lx > 20 µm.

4.3.2 Results and comparisons

Graphene thermal

conductivity length

dependence: state of

the art

In Fig.4.6 I compare our results with other works addressed to

investigate the κ(Lx) dependence both theoretically, by using

NEMD with Rebo and Tersoff empirical potentials, and experi-

mentally [45, 43]. I point out that the REBO potential strongly

underestimate the overall κ values, both in the case of AEMD

and NEMD calculations, with respect to DFT and Tersoff poten-

tial. However a perfect agreement is shown between our values

and NEMD results which use the same Rebo potential, giving

another prove of the AEMD technique reliability.

All the results are in agreement in to predict a logarithmic κ(Lx)

behavior in the length range up to 10 µm.

In order to asses that the κ absolute value differences have not

physical reasons and depend only on the empirical potential

chosen, in Fig.4.7 we compare our κ with experimental mea-

sures as normalized to their corresponding value calculated for

a reference sample with Lx=10 µm. The overall agreement in

the κ-vs-Lx trend is really remarkable, providing a convincing

evidence about the reliability of the present simulations.
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Figure 4.6: Thermal conductivity κ(Lx) of monolayer graphene for increas-

ing sample dimension Lx. Red squares: present AEMD results.

Yellow diamonds: NEMD data taken from Ref.[43]. Magenta

dots: NEMD data taken from Ref.[45]. Green triangles: experi-

mental data taken from Ref.[43].

Figure 4.7: Comparison of our results with experimental data. Red squares:

present AEMD results. Green triangles: experimental data taken

from Ref.[43]. All thermal conductivity values are normalized to

κ(10µm), corresponding to a sample with size Lx=10 µm.

Since the only estimation of κ for sample dimensions greater

than ∼ 50 µm are based on the extract ab initio solution of the

BTE [41], I directly compare AEMD and BTE results in Fig.4.8,

in which, motivated by the previusly described REBO potential
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Figure 4.8: Thermal conductivity κ(Lx) of monolayer graphene for increas-

ing sample dimension Lx. Red squares: present AEMD results.

Black dashed line: exact solution of BTE provided in Ref.[41]. For

sake of comparison, all thermal conductivity values are normal-

ized to κ(100µm), corresponding to a sample with size Lx=100

µm.

limitation, I report both sets of κ data as normalized to their cor-

responding value calculated for a reference sample with Lx=100

µm.

In Ref.[41] the linearized BTE has been exactly solved by consid-

ering the complete matrix of scattering rates acting on the out

of equilibrium phonon distribution, in which the inter-atomic

force constants have been calculated by DFT. As far as con-

cerned the extrinsic scattering with boundaries in a finite sam-

ple of length Lx, they introduced a rate proportional to 1/Lx.

The main result of this work is to state that in graphene, even

at room temperature, collective hydrodynamic modes dominate

the transport. These collective phonon excitations are charac-

terized by comparatively larger MFP than single-phonon ones

(λ=100 µm instead of 800 nm).

Fig.4.8 further confirms the reliability of our approach in the de-

scription of the κ-vs-Lx trend. The fact that two independent cal-

culations of rather different nature predict the same saturation
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trand provide clear evidence that κ(Lx) has indeed an ultimate

upper limit.

This result also confirms the assumption of Ref.[41] which iden-

tifies the importance of collective modes to properly define the

critical sample length governing the ballistic-to-diffusive trans-

port transition.

Moreover, Fig.4.8 shows that the κ(Lx) trend change at Lx=0.1

mm, indicating that in this length range transport in graphene

approaches to become diffusive. Even from this point of view,

we are in quite agreement with Ref.[41], which indicates as the

critical sample length above which is observed a truly diffusive

phonon transport regime Ldiff=1 mm.

Recent Monte Carlo simulations upon graphene samples in micron-

range, proved that the ballistic-to-diffusive crossover is captured

for a sample length of 0.1 mm [? ]. More in detail, they used a

full-dispersion phonon Monte Carlo simulation technique, which

involves a stochastic solution to the phonon Boltzmann trans-

port equation with the relevant scattering mechanisms (edge,

three-phonon, isotope, and grain boundary scattering) taking

into account the dispersion of all three acoustic phonon branches

that are calculated from the fourth-nearest-neighbor dynamical

matrix. This enable an efficient transport description (includ-

ing inelastic and elastic scattering, as well as enabling the incor-

poration of real-space edge features) with an accurate account

of phonon dispersions. The authors shown a thermal conduc-

tivity increase with increasing length up to 100 µm and they

proved that 20% of phonons involved in heat transport have

MFP longer than this length and more than 10% longer than

200 µm.

The length dependence which is empirically modelled in previ-

ous theoretical works, is actually directly observed in our calcu-

lations without any a priori assumption. Unfortunately for the

big simulation effort, we could not further increase our sample

size, and for this reason we could not obtain the intrinsic ther-

mal conductivity absolute value.

In any case, even if Fig.4.6 does show a κ ∼ logLx trend in

the range 1 µm 6 Lx 6 10 µm in agreement with the experi-
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mental evidence [43], such a logarithmic dependence does not

imply any divergent thermal conductivity for Lx → ∞. The

claimed κ ∼ logLx divergence does not in fact occur in our

calculation. This could be due to the fundamental role of out-

of-plane oscillations in graphene thermal transport. Interesting

enough, this conclusion is fully consistent with EMD simula-

tions [42], where such out-of plane modes were artificially hin-

dered showing that, under such a condition, a divergence of

κ-vs-Lx is indeed found.

In conclusion, these results are the first direct evidence that κ

in graphene is upper limited and underlines that a reliable mea-

sure of thermal conductivity value needs samples long enough

to allow pure diffusive heat transport either for single and for

collective phonon excitations. Moreover, they suggest that the

experimental measures conducted in smaller samples have been

performed in a quasi-ballistic regime and therefore they could

not estimate the upper limit of intrinsic graphene thermal con-

ductivity.
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5
H E AT P R O PA G AT I O N I N T R A N S I E N T R E G I M E

I N G R A P H E N E

5.1 comparison between molecular dynamics and

experimental results

I have previously underlined the wide interval of reported val-

ues for thermal conductivity in graphene, ranging from 600 to

5000 Wm−1K−1 [8, 9, 39, 83, 38], as due to the difference in the

measurement techniques as well as different sample qualities re-

lated to the presence of defects, thickness non-uniformity, strain

distribution and sample temperature. As far as it concerns the

experimental investigations, I want to stress now their division

into two different categories, respectively addressing a steady

state or a transient thermal conduction regime. Optothermal Steady state or

transient

experimental

investigations

micro-Raman spectroscopy belongs to the first category, where

κ is estimated by measuring the Raman G peak shift due to

a local temperature rise in response to heating [8, 9, 83] (see

Introduction). Alternatively, temperature is measured by ther-

mocouples and thermal bridges [38]. On the other side, meth-

ods addressed to a transient regime such as 3-ω technique, heat

spreader methods [39] and pulsed laser-assisted thermal relax-

ation technique (PLTR) [40] measure thermal gradient as a func-

tion of time, enabling fast measurements of the thermal diffu-

sivity α over large T ranges. The specific heat CV and mass

density ρ have to be determined independently to calculate κ

since κ = αρCV .

I have also summarized the many theoretical models numeri-

cally implemented to compute κ [34, 41, 30]. In particular, equi-

librium and non-equilibrium molecular dynamics (MD) simula-

tions have been performed with this aim [42, 43]. Non-equilibrium

MD is comparable to an experiment performed in a steady state

regime, while approach to equilibrium MD (AEMD) [52], which

67
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is based on the analysis of the system evolution towards equilib-

rium upon a thermal perturbation, is comparable to an experi-

ment performed in a transient regime.

Both experimental methods rely on electrical means for supply-

ing heating power and measuring T [43, 39, 38] or alternatively

the power is provided by means of optical sources [8, 9, 83]. Re-

cently, the thermal diffusivity of few-layer graphene has been

measured by using a noncontact optical microscopy transient

method based on a mode mismatched thermal lens technique

in a pump-probe two-laser beams configuration [84] (see Intro-

duction). Actually, these non-contact laser-based transient tech-

niques are particularly suitable to investigate deviations from

a purely diffusive thermal transport, which could lead to a

non-Fourier description of the sample dynamical response to

a heat pulse. In particular, the evidence of that kind of anoma-Evidence of second

sounds:

hydrodynamic

regime

lous behavior has been recently argued in Ref.[41], where it has

been guessed that in such materials as graphene, graphane and

boron nitride at room temperature the typical diffusive behav-

ior of heat is altered. In fact, in this case, the phonon gas expe-

rience the so-called hydrodynamic regime, similarly to the case

of an ideal gas where particles scatter without dissipating mo-

mentum. Phonons in hydrodynamic regime form wave-packets

which conserve to a large extent their momentum, leading to

heat propagation by wave-like motion. This kind of effect is

called "second sounds" and it has been observed experimentally

just at cryogenic temperature (less than 100 K) in solid Helium

[85] and in some dielectric solids such as Bi [86] and NaF [87].

In detail, second sound is a quantum mechanical phenomenon

in which heat transfer occurs by dumped wave, rather than by

the more usual mechanism of diffusion. Heat takes the place

of pressure in normal sound waves. This leads to a very high

thermal conductivity. It is known as "second sound" because the

wave motion of heat is similar to the propagation of sound in

air.



5.2 aemd on a radial geometry graphene sample 69

5.2 aemd on a radial geometry graphene sample

5.2.1 Method

In order to disentangle this topic, I focus in this Chapter on the

characterization by MD simulations of the transient response to

a pulsed laser focused on a free standing graphene layer. In par-

ticular, we directly observe by atomistic simulations the time

evolution of the temperature profile initially generated by the

laser pulse by taking into account different phonon-mode exci-

tations and their subsequent relaxation toward the equilibrium

distribution.

In the paper [4], indeed, I performed AEMD simulations in a

pristine circular graphene sample with radius Rsample=248.1

nm (see Fig.5.1) and a total number of atoms as large as 7192979.

The heat absorption due to a laser spot focused in the centre of

the sample has been mimicked by thermalizing a central con-

centric region with radius Rspot=49.6 nm.

Figure 5.1: Schematic representation of the temperature time evolution in a

circular graphene sample. At t=0 (left) a central circular spot has

been heated-up mimicking a pulsed laser assisted laser experi-

ment.

In particular, Rsample, Rspot as well as their ratio have been

chosen as in Ref.[8] where the graphene thermal conductivity

has been measured for the first time by optothermal Raman

spectroscopy.

All the simulations have been performed by using Tersoff em-

pirical potential which has been optimized to describe phonon

thermal transport in graphene. The equations of motion have

been integrated by the velocity Verlet algorithm with 1.0 fs time-

step (see Chapter 3).
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I studied the system at two different initial temperatures T (0)1 =100

K and T (0)2 =300 K by thermalizing the whole sample by means

of the Nosé-Hoover thermostat using a damping parameter of

100.0 fs for 55 ps. In both cases, an initial step-like temperature

profile has eventually been imposed by thermalizing the central

spot at T (0)1,spot=115 K and T (0)2,spot=345 K, respectively for other

55 ps. Next the system was aged in a microcanonical run dur-

ing which the radial temperature profile was recorded until the

temperature was uniformly distributed along the sample. The

overall procedure has typically taken about 20 ps. In order to

reduce the numerical noise, I chose a suitable combination of

time and space-average on temperature profiles. In detail, the

temperature has been recorded on 10000 concentric rings of in-

creasing radius and then averaged-out every 40 rings resulting

in a profile with 250 points. We further time-averaged the tem-

peratures every 1 ps in such a way to preserve the information

concerning its time evolution and to reduce the noise, obtaining

a temperature profile Tsim(Ri, t) with 1 6 i 6 250.

The heat transport in the transient condition is described through

the radial heat equation:Fourier heat

equation in radial

simmetry
∂2T(r, t)
∂2r

+
1

r

∂T(r, t)
∂r

=
CVρ

κ

∂T(r, t)
∂t

(5.1)

I numerically solved Eq.5.1 obtaining the temperature profile

Ttheo(R, t). By fitting Tsim(Ri, t) with Ttheo(R, t) we extract the

system thermal diffusivity α and the thermal conductivity κ.

The fitting procedure used is based on the minimization of the

χ2 function:

χ2 =
∑
i,t

p2i (Tsim(Ri, t) − Ttheo(Ri, t))2 (5.2)

in which i is the ring index and t the simulation time step. In

Ttheo(Ri, t) is included the κ parameter that we are interested to

calculate trough the χ2 minimization. Each temperature value

Tsim(Ri, t) was weighted with pi = 1/σi where σi is the cor-

responding standard deviation of temperature which depends

on the number of atoms Ni contained in each ring as σi ∼ 1√
Ni

.

For first, I analyzed the dependence of error in the ring tem-

perature on the number of atoms Ni contained in that ring to
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obtain the constant of proportionality in the previous relation.

By performing a canonical (NVT) run, I just recorded the tem-

perature fluctuation during 10000 time steps at both T (0)1 =100 K

and T (0)2 =300 K in each ring without any perturbation i.e. with

no laser beam excitation. The average temperature, as well as

the temperature standard deviation σi for each ring has been

then calculated. Fig.5.2 shows, for example, the σi VS Ni behav-

ior in the case T (0)1 =100 K. Data have been fitted by the function

f(x) = a 1√
x

, in order to obtain a. The same procedure has been

repeated for T (0)2 =300 K. By using the so-obtained weights pi
and by means of the χ2 minimization technique, we obtained κ

values for both temperatures.

During the fitting procedure, the χ2 function has been evaluated

in a grid of discrete points in order to find its minimum. As far

as concerned the errors in the thermal conductivity obtained

by the fit procedure, we considered the difference between κ

values corresponding to the increment and decrement of the χ2

minimum by a quantity equal to the grid resolution.

5.2.2 Results

Fig.5.3 top (bottom) shows an example of the time evolution

of the simulated temperature profile (red symbols) for both

cases discussed above, together with the fitted solution of Eq.5.1

Ttheo(R, t) (black lines). The κ resulting from fitting procedure

are 752± 6 and 621± 5 W m−1 K−1 in the case of T (0)1 =100 K

and T (0)2 =300 K, respectively.

As a proof of validity of this methodology, I compared these

results with the thermal conductivities calculated by means of

AEMD method in its standard implementation (see Chapter 3)

i.e. by fitting the temperature difference between two sample

sides (right and left) in a rectangular geometry instead of the cir-

cular one considered in this Chapter. Upon the sample, whose Comparison with

the rectangular

geometry
length L=517.8 nm has been chosen similar to the diameter of

the precedent samples, an initial step-like temperature profile

has been imposed maintaining, of course, the same initial tem-
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Figure 5.2: Temperature standard deviation σi in the i ring calculated in the

case of T (0)1 =100 K during a canonical run of 10000 time steps

versus the number of atoms in the corresponding ring Ni (red

squares). Fitting function f(x) = a 1√
x

(black line).

perature differences ∆T1=15 K and ∆T2=45 K for the two cases

here considered. The κ obtained are 863± 13 and 687± 8 in the

case of T (0)1 =100 K and T (0)2 =300 K, respectively, in well agree-

ment with the new method findings.

5.3 simulating a transient response to a laser pulse

5.3.1 Method

A more realistic simulation of the spot heating by a laser pulse

must take into account that the laser pulse photo-generates elec-

trons and holes that eventually cool down by interacting with

optical phonons [88, 35]. In fact, the laser pulse, dependingLaser

photo-excitation and

optical phonon

modes

on the pump photon energy, creates electrons and holes which

immediately after photo-excitation, thermalize with each other

and with the existing carriers, thereby acquiring Fermi-Dirac

distributions with high temperatures. The thermalization times

for the photo-excited carriers are supposed to be extremely short

and in the 20-40 fs range. The thermalized electron and hole dis-

tributions then lose most of their energy to the optical phonons
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Figure 5.3: Time evolution of the temperature profile for an hot spot at

T
(0)
1,spot=115 K (top) and T (0)2,spot=345 K (bottom) excited in a sam-

ple initially equilibrated at T (0)1 =100 K (top) and T (0)2 =300 K (bot-

tom). Red symbols: AEMD simulations. Black lines: solution of

the radial heat equation.

in about 500 fs after photo-excitation. For this reason the elec-

tron temperature rapidly decreases and correspondingly the

phonon temperature rapidly increases. It has been argued that

the two phonon modes with the strongest electron-phonon cou-

pling in graphene are the optical K−A1’ and Γ −E2g (described

in Fig.5.4) at frequencies of 1172 cm−1 and 1588 cm−1 [89], re-

spectively. In particular, the electron-phonon scatterings can be

intravalley in the case of the E2g phonons at Γ point, or inter-

valley due to the A ′1 mode at K point. Optical excitations in fact

can induce a non-equilibrium phonon distribution, with signif-

icant overpopulation of these phonon modes. Such optical vi-

brations eventually thermalize into acoustic modes by means

of anharmonic phonon-phonon interactions, following different

decay channels. Actually, to describe heat transport in the case

of a response to a laser pulse, it could be crucial to focus on
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the analysis of the anharmonic phonon processes by consider-

ing the different decay channels for the modes described above.

Moreover, it could be important to compare the overall simu-

lation time, determined for example on the specific features

of the experiments considered (sample size, observation time,

magnitude of initial perturbation), with the typical phonon an-

harmonic life-time τph−ph. The values of the optical phonon

thermalization time, for example, has been estimated of about

7ps in graphite from time-resolved terahertz spectroscopy [90].

While in Ref.[31] they obtained by means of ab-initio calculations

τK−A ′1 ∼ 8 ps at 100 K and ∼ 5 at 300 K and τE2g ∼ 3.5 ps at 100

K and little less at 300 K.

Figure 5.4: Excited atomic displacements corresponding to the K-A1’ and

Γ -E2g optical phonon modes.

In order to reproduce such phenomenon starting from the ther-

malized samples at T (0)1 =100 K and T (0)2 =300 K , we excited in

the spot region just one single optical phonon mode by perform-

ing a velocity rescaling (which acts on both the modulus and

the direction of the atomic velocities) according to the specific

atom displacement pattern of the K−A1’ and Γ − E2g modes

(shown in Fig.5.4). Fig.5.5 shows what happens in this case

when T (0)2,spot=345 K. By the following velocity rescaling proce-

dure we are able to actually reach the spot target temperature in

1 ps . In detail, for 1000 time-steps at each current atomic veloc-

ity a velocity vector have been added with the specific direction

θ corresponding to the pattern in Fig.5.4 and a modulus ε.

vnewx = voldx + εcos(θ) vnewy = voldy + εsen(θ) (5.3)

This last has been chosen by means of a trial and error ap-

proach in such a way that the overall temperature computed
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in the spot by averaging the atomic kinetic temperatures of the

atoms inside this region reaches the decided value, in this case

T
(0)
2,spot=345 K. Fig.5.6 shows the dependence of the T (0)2,spot tem-

perature obtained developing the precedent procedure on the

magnitude of the velocity scaling vector ε. For example, in this

case I choose ε=4.21.

Figure 5.5: T (0)2,spot during the 1 ps of thermalization procedure. The spot

temperature reached is 345 K.

Figure 5.6: ε used in Eq.5.3 versus T (0)2,spot after 1 ps of thermalization pro-

cedure.
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T (0) κwhite κK−A ′1 κΓ−E2g

100 K 752±6 487±2 514±3

300 K 621 ±5 497±3 520±3

Table 5.1: Thermal conductivities (in unit of W m−1 K−1) estimated at

T
(0)
1 =100 K and T

(0)
2 =300 K in the case of white and colored

(K−A1’ and Γ − E2g modes) thermalizations.

5.3.2 Results

By means of the procedure described above, we performed AEMD

simulations for the two initial sample temperatures T (0)1 =100 K

and T (0)2 =300 K by considering three different hot spot excita-

tions, namely:

• a white thermalization where we act on all the spot degrees

of freedom;

• a colored thermalizations where just the atom’s displace-

ment of the K−A1’ modes is excited;

• a colored thermalizations where just the atom’s displace-

ment of the Γ − E2g modes is excited.

Fig.5.7 compares the temperature profile evolution for the case

of white (first line), colored K−A1’ (second line) and colored

Γ −E2g (third line) thermalizations (red dots) in the case T (0)1 =100

K, while Fig.5.8 shows the profile for the same kinds of thermal-

ization procedures but in the case T (0)2 =300 K. All the simula-

tion profiles have been fitted with the solution of the radial heat

equation in order to estimate the corresponding κ (see Table5.1).

Table5.1 shows that in the case of a white thermalization we ob-

tain thermal conductivity values much larger than exciting sin-

gle modes. Another interesting result shown in Table5.1 is the

lack of temperature dependence of thermal conductivity in the

case of colored thermalizations. It is instead well-known that

thermal conductivity in graphene strongly depends on temper-

ature as in fact observed for the white thermalization.



5.3 simulating a transient response to a laser pulse 77

Figure 5.7: Temperature profile evolution in the case of white (first line),

colored K−A1’ mode (second line) and colored Γ − E2g’ mode

thermalizations (third line) where T (0)1 =100 K. Black lines repre-

sents the solution of Eq.5.1, Ttheo(R, t) which has been used to

fit Tsim(R, t) in order to obtain α.

A further prove of the different transient thermal behavior be-

tween white and colored thermalizations is given by Fig.5.9,

where the time evolution of the temperature difference ∆T(t) be-

tween the spot and the rest of the sample is shown. In this case

we observe a slower ∆T(t) decrease in the case of the colored

(K − A1’ mode) thermalizations indicating an overall thermal

conductivity reduction. Fig.5.9 also shows that the solutions of

Eq.5.1 are not able to accurately fit ∆T(t). In particular the an-
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Figure 5.8: Temperature profile evolution in the case of white (first line),

colored K−A1’ mode (second line) and colored Γ − E2g’ mode

thermalizations (third line) where T (0)2 =300 K. Black lines repre-

sents the solution of Eq.5.1, Ttheo(R, t) which has been used to

fit Tsim(R, t) in order to obtain α.

alytical fitting curve (continuous lines) during the first few ps

decreases much faster with respect to the ∆T(t) coming from

the simulations, while it underestimates the simulation curve

decreasing velocity in the final time-steps. Actually, these effects

compensated one to each other, resulting in an overall reliable

estimate for κ coefficient. The discrepancies could be explained

in terms of non diffusive thermal conduction in graphene which

has been previously discussed by Ref.[41]. For future purpose,
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I could try to fit the evolution of the temperature profile by

using the hyperbolic hydrodynamics heat conduction equation

instead of the common parabolic one (Eq.5.1): Hyperbolic

hydrodinamic heat

equation∂2T(r, t)
∂2r

+
1

r

∂T(r, t)
∂r

=
CVρ

κ

∂T(r, t)
∂t

+
1

C2
∂2T(r, t)
∂2t

(5.4)

where C is called the speed of second sound and the other quan-

tities defined as in Eq.5.1.

However, in Ref.[91], in which such non diffusive anomalies

have been analyzed, it has been demonstrated that thermal trans-

port in graphene is anyway dominated by a Fourier-diffusive

behavior. This statement enables us to use Eq.5.1 and justifies

the corresponding analysis.

Figure 5.9: ∆T(t) fitted with the solutions of the radial heat equation for the

white and the colored (K−A ′1 mode) thermalizations.

5.4 addressing thermal conductivity length depen-

dence

I previous showed in Chapter 4 that graphene experiences a pro-

nounced length-dependence thermal conductivity up to lengths

L ∼ 0.1mm [41, 2]. We explore wether such a length-dependence

is still present in the case of both white and colored thermal-

izations by doubling Rsample from 248.10 nm to 431.63 nm,

reaching a total number of atoms equal to 20659238. Table5.2

shows the estimated thermal conductivities at T (0)1 =100 K and
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T (0) Rsample κwhite κK−A ′1

100 K 248.10 nm 752±6 487±2

431.63 nm 865±20 652±5

300 K 248.10 nm 621±5 497±3

431.63 nm 670±13 508±3

Table 5.2: Thermal conductivities estimated (W m−1 K−1) at T (0)1 =100 K and

T
(0)
2 =300 K in the case of white and colored (K−A ′1) thermaliza-

tions.

T
(0)
2 =300 K in the case of white and colored (K−A ′1) thermal-

izations. At T (0)1 =100 K we observe, for both thermalizations, an

actual thermal conductivity length-dependence which is more

pronounced than at T (0)2 =300 K. Moreover, by the increasing of

the sample size the expected temperature dependence of ther-

mal conductivity is recovered.

5.5 analyzing the time evolution of the vibrational

density of states

To the aim of further investigating the different phonon trans-

port properties observed in the case of the colored and white

thermalizations, resulting in (i) a different κ values and (ii) dif-

ferent κ dependence on T , I focused on the time evolution of

the vibrational density of states (VDOS). The VDOS has been

calculated as the Fourier transform of the velocity autocorrela-

tion function, where the atomic velocities have been collected

on the central spot during the microcanonical run following the

initial colored (K−A1’) thermalization at T (0)1,spot=115 K.

Actually, the velocity autocorrelation function is usually calcu-

lated when one wishes to analyze the vibrational or diffusive

properties of a system. If the velocity vector for a group of atomsVibrational

properties and

autocorrelation

velocity function

is v, then the velocity autocorrelation can be written as

VACF(t) =
〈v(0) · v(t)〉
〈v(0) · v(0)〉

(5.5)



5.5 analyzing the time evolution of the vibrational density of states 81

If the motion of the atoms tends to an oscillatory pattern, the

VACF will characterize the oscillations because the velocity of

the atoms will self-correlate in a periodic fashion. Similarly, if

the velocity of atoms tends to one direction, then the VACF

will gradually grow in magnitude characterizing the diffusion

of the atoms. In this case we are interested on using the VACF to

calculate the vibrational spectrum of the system, which is found

by taking the Fourier transform of the VACF as:

F(ω) =
1√
2π

∫∞
−∞ dteiωtVACF(t) (5.6)

The vibrational density of states (VDOS) is then Φ(ω) = F(ω)2.

In detail, the LAMMPS code provides a computation that cal-

culates the velocity auto-correlation function (VACF), averaged

over a group of atoms. Each atom’s contribution to the VACF

is its current velocity vector dotted into its initial velocity vec-

tor at the time the compute has been specified. Thereafter, the

VACF have been Fourier transformed obtaining a VDOS for the

specific atom region.

A Gaussian low pass filter with a width of 41.7 cm−1 has been

applied to reduce the noise of the data. The accuracy of this

method has been compared to results obtained from density

functional theory (DFT) calculations through the diagonaliza-

tion of the dynamical matrix and have been shown to be in

general agreement.

Fig.5.10 (top) shows the time evolution of the colored VDOS

(t=5, 20, and 270 ps) (projected in the central spot) during the

microcanical run following the initial spot thermalization at

T
(0)
1,spot=115 K according to the K−A1’ mode. Fig.5.10 (bottom)

shows instead the corresponding "equilibrium" VDOS calculated

during a microcanonical run in which the whole sample was

thermalized by means of the Nosé-Hoove scheme T=100 K.

During the first few ps, we observed significant differences be-

tween the colored (top) and the "equilibrium" VDOS as far as it

concerns the position as well as the intensity of the main peaks.

In particular, in the colored VDOS (top) we clearly observe the

presence of the characteristic K−A1’ peak at a frequency 1172
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Figure 5.10: (Top: vibrational density of states (VDOS) projected on the cen-

tral spot estimated at different times (t=5, 20, and 270 ps) in

the case of the colored K−A1’ thermalization. Bottom: VDOS

projected on the central spot estimated in the case of thermal

equilibrium condition at T (0)1 =100 K . The dashed line repre-

sents the frequency of the K−A1’ mode.

cm −1, that we intentionally activate, which is absent in the

equilibrium VDOS (bottom).

Moreover, during the first 5 ps we observed a depopulation of

the K −A1’ peak which decays into one couple composed by

LA and LO phonons and another couple of acoustic modes TA

and LA which generate the two observed peaks at frequencies

of ∼ 50 cm −1 and ∼ 1250 cm −1. Such decay channels have

been previously identified in Ref.[88], by means of explicit cal-

culations of phonon-phonon and electron-phonon interactions

by DFPT, as the most probable K − A1’ decays with an over-

all probability of 55%. This mechanism is still present after 20

ps (time needed to flat the initial temperature step) since the

K−A1’ peak intensity further decreases while the intensity of
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the TA-LA peaks increases. In the period between 20 and 270 ps

we observed the presence of other K−A1’ decay channels iden-

tified by the appearance of two additional peaks at frequencies

of ∼ 400 cm −1 and ∼ 800 cm −1 corresponding to the decays

into the TA-TA and TA-LA modes.

This analysis suggests that in the period of 20 ps after the col-

ored thermalization, the phonon population distribution is far

from the equilibrium, being characterized by only few specific

sharp phonon peaks. This gives rise to a completely different

thermal transport mechanism with respect to the white case in

which all the phonon modes were initially occupied, resulting

in an overall thermal conductivity reduction.

In conclusion, in the work [4] I have introduced a novel method-

ology to analyze the transient heat transport regime in the case

of a laser pulse excitation on a graphene sample by explicitly

reproducing the excitation of the K −A1’ and Γ − E2g optical

phonon modes which are the ones strongly coupled with photo-

generated electrons. In detail, in order to estimate thermal con-

ductivities in a transient regime, we initially create a step-like

temperature gradient by means of two different thermalization

procedures i.e a white where all the vibrational modes were ini-

tially excited and a colored one where only one of the K−A1’

and Γ − E2g was initially excited. The thermal conductivity, es-

timated by using the numerical solution of the radial heat equa-

tion, shows a strong dependence on the kind of thermalization

i.e. in the case of both colored thermalization κ is dramatically

reduced with respect to the white one. Moreover we observed

that κ is much less sensitive to temperature in the case of the

colored thermalization. We interpret such different thermal con-

duction behavior by analyzing the time dependent vibrational

density of states in both cases. In particular we observe that the

colored phonon population remains far from the equilibrium

during the whole simulation giving rise to a completely differ-

ent thermal transport mechanism and more importantly we can

identify the optical phonons decay channels into the acoustic

phonons.





Part IV

TAY L O R I N G T H E R M A L P R O P E RT I E S B Y
H Y D R O G E N AT I O N

In this part, I will address the hydrogenation effect on

graphene thermal transport. In chapter 6, I will show

the results concerning the thermal conductivity mea-

sure in graphane by explaining the mainly reasons

behind its dramatic κ reduction with respect to the

pristine graphene. On the other side, in Chapter 7 I

will design a new graphane/graphene thermal diode

analyzed by means of NEMD calculations.





6
T H E R M A L C O N D U C T I V I T Y I N

H Y D R O G E N AT E D G R A P H E N E

6.1 introduction to hydrogenated graphene

Both chemical and/or physical strategies have been proposed

to tune graphene thermal transport, which could be useful in

nanoscale engineering and heat management.

For instance, one can imagine atoms or molecules being at-

tached to the atomic scaffold in a strictly periodic manner, which

should result in a different electronic structure and, essentially,

a different crystalline material.

The idea of attaching atomic hydrogen to each site of the graphene

lattice, has been at first theoretically introduced by Sofo et al.

[58] and Boukhvalov et al. [92].

In 2009 for the first time Elias et al. synthesized this hydro-

genated graphene referred to as graphane[59]. Hydrogenation Orderly hydrogen

decorating graphene:

graphane synthesis
procedure has been performed on graphene crystals prepared

using micromechanical cleavage of graphite on top of an oxi-

dized Si substrate as well as on free-standing graphene mem-

branes. After an initial annealing at 300◦C for the duration of

4 hours in argon atmosphere in order to remove any possi-

ble contamination, they have been exposed to a cold hydrogen

plasma. In particular, it has been used a low-pressure (0.1 mbar)

hydrogen-argon mixture with dc plasma ignited between two

aluminum electrodes for a two hours long treatment. In this

way, stable hydrogenated graphane samples at room T have

been obtained, which showed the same characteristics during

repeated measurements for many days. More recently, a sys-

tematic study by Wen et al. [93] has proved that actually there

exist eight graphane isomers. They all correspond to covalently

87



88 thermal conductivity in hydrogenated graphene

bonded hydrocarbons with a C:H ratio of 1. Interesting enough,

four isomers have been found to be more stable than benzene.

The attractive feature of graphane is that by variously decorat-

ing the graphene atomic lattice with hydrogen atoms, creating

the different isomer configurations, it is possible to generate

a set of two dimensional materials with new physic-chemical

properties [76].

For instance, it has been calculated that graphane, differently to

graphene which is a highly conductive semi-metal, is an insula-

tor with an energy gap as large as ∼6 eV [76], making it interest-

ing in naturenoelectronic field. As far as the elastic behavior is

concerned, it has been proved that hydrogenation largely affects

the elastic moduli as well: the in-plane stiffness and Poisson ra-

tio of graphane are smaller than those of graphene.Main graphane

properties
All these differences between graphane and graphene, are mainly

due to the change in the carbon atoms hybridization from sp2

to sp3 upon hydrogenation. This bounding transition removes

the conducting p-bands opening the energy gap. In addition, it

enables lattice deformations by variations of the tetrahedral an-

gles (on the contrary of the strength carbon-carbon bonds in flat

sp2 hexagonal lattice), decreasing the Young modulus.

Moreover, graphene hydrogenation has been shown to be very

effective on controlling thermal conductivity. In Ref.[47] theoret-

ical NEMD calculations demonstrated that by randomly adding

as few as 10% hydrogen atoms on top of pristine graphene a

dramatic reduction of thermal conductivity has been observed.

Moreover, they studied the case where hydrogen atoms are ar-

ranged in regular stripes perpendicular or parallel to the heat

flux, obtaining that for the former a small coverage causes a

sharp thermal conductivity drop while in the latter thermal

conductivity gradually decreases with the increase of coverage

from 0% to 100%.

In contrast to the large variety of experimental and theoreti-

cal works on graphene thermal properties, few information are

available on graphane. In particular, to the best of our knowl-

edge, no experimental works have been published yet on graphane

thermal conductivity.



6.1 introduction to hydrogenated graphene 89

On the other side, as concerned theoretical investigation, in

Ref.[94] a molecular dynamics study about graphene and C-

graphane κ dependence from shear strain has been presented.

The authors performed EMD simulations by using Tersoff po-

tential on simulation cells having an area of 5.4× 13 nm2, much

more smaller with respect to our samples. They observed that

under the same shear strain, the graphane sheet has much lower

thermal conductivity than the graphene one and measured for

not strained samples κ ' 625 Wm−1K−1 and 380 Wm−1K−1

for graphene and C-graphane respectively.

More recently, another paper addresses the thermal transport

in graphane nanoribbons (GANRs) by using non equilibrium

Green function method to calculate phonon transmission in the

framework of Landauer approach[95]. In this case, they have

found that the (GANRs) thermal conductivity is reduced of

about 40% with respect to the case of the graphene ribbons.

Motivated by this scenario, as well as by the need to improve

our basic understanding of thermal transport properties in 2D

carbon sheets already addressed in the previous Chapter, I present

in this Chapter a through investigation of thermal conductivity

in graphane.

Between the eight different graphane isomers identified so far,

the most stable ones are three conformers referred to as chair

(C-graphane), boat (B-graphane) or washboard (W-graphane)

[93, 76]. In C-graphane the hydrogen alternate on both sides

of the carbon sheet, in B-graphane pairs of hydrogen atoms al-

ternate along the armchair direction of the carbon sheet, finally

in W-graphane double rows of hydrogen are aligned along the

zigzag direction of the carbon sub-lattice and alternate on both

sides of the carbon sheet. According to first principles calcula-

tions, C-graphane is the most energetically favorable conformer

followed by W- and B-graphane [76, 96].
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6.2 md simulation on graphane

In the work [1], I studied thermal conductivity of these graphane

isomers by means of “approach to equilibrium molecular dy-

namics” (further details in Chapter 3).

Basing on the previously proved assumption that the method is

invariant with respect to the initial temperature gradient value

(see Chapter 3), we imposed an initial temperature gradient

∆T(0)=200 K by thermalizing half of the sample at T1=400 K

and the other at T2=200 K in both graphene and graphane iso-

mers case by using a velocity rescaling. The equations of motion

are integrated by the velocity Verlet algorithm with 1.0 fs time-

step. As I have already explained in Chapter 3, the periodic

boundary conditions applied to the simulation cell during the

calculations, enable to simulate an infinite sample in the lateral

directions.

6.2.1 Structural feature prediction

All the simulations are performed as in Chapter 4 with the “Re-

active Empirical Bond Order” (REBO) potential in its second

generation form [68], needed to investigate hydrocarbon mate-

rials such as graphane.

An important issue we need to address is the reliability of REBO

potential for the description of the graphane structural features.

To this aim, starting from the orderly hydrogenated planar graphene,

we performed a geometry optimization by means of the conju-

gate gradient algorithm (CG). Actually the procedure is aimed

at the minimization of the total potential energy of the system

as a function of the N atom coordinates:

E(R1, R2, ....Rn) =
∑
i,j

Epair(Ri, Rj) +
∑
i,j

Ebond(Ri, Rj) (6.1)

+
∑
i,j,k

Eangle(Ri, Rj, Rk) +
∑
i,j,k,l

Edihedral(Ri, Rj, Rk, Rl)

where the first term is the sum of all non-bonded pairwise inter-

actions, including long-range Coulomb interactions, while the
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Figure 6.1: Stick and ball representation of the top and side views of the

three C-, B-, and W-graphane isomers. For visualization reasons,

we represent simulation cells much smaller with respect to the

ones used for the AEMD calculations.

others terms are bond, angle, and dihedral interactions, respec-

tively. The starting point for the minimization is the current

configuration of the atoms. In order to find the configuration

corresponding to a local potential energy minimum, atom coor-

dinates are iteratively adjusted until one of the following stop-

ping criteria is satisfied: i) the change in energy or in force gra-

dient between outer iterations is less than a certain tolerance, ii)

the search does not reduce more the energy because even the

maximum atom displacement is tiny compared to typical atom

coordinates precision and iii) the number of outer iterations or

the number of total force evaluations exceed a maximum value

set. At each iteration the force gradient is combined with the

previous iteration information to compute a new search direc-

tion perpendicular (conjugate) to the previous search direction.

In particular, I used the Polak-Ribiere (PR) version of the algo-

rithm which is thought to be the most effective CG choice for

many problems. The PR variant generalizes the CG method to

a non-linear optimization which affects how the direction in the

minimum searching is chosen.

Fig.6.1 shows the structural minima for the three graphane iso-

mers under investigation: all the structural parameters are in

good agreement with previous DFT calculations [76], as shown

in Table6.1. Here we observed angle and bond deviations be- Graphane structural

features predicted by

REBO potential
low 2% and dihedral deviations below 12%. As far as concerns

the stability, we remark that the REBO potential predicts, simi-

larly to DFT calculations, the three isomers to be almost isoener-
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Table 6.1: C1-C2 and C-H bond lengths (see Fig.6.1), C1C2C3 angles

and H1C2C3H2 dihedral angles for C-graphane, B-graphane, W-

graphane systems obtained using REBO potential or by DFT cal-

culations.

DFT C-Graphane B-Graphane W-Graphane

C1-C2 1.54 [Å] 1.54 [Å] 1.54 [Å]

C-H 1.09 [Å] 1.09 [Å] 1.09 [Å]

C1C2C3 111.5◦ 110.7◦ 111.2◦

H1C2C3H2 180
◦

180
◦

58
◦

REBO C-Graphane B-Graphane W-Graphane

C1-C2 1.54 [Å] 1.54 [Å] 1.54[Å]

C-H 1.09 [Å] 1.09 [Å] 1.09[Å]

C1C2C3 110.2◦ 110.2◦ 110.2◦

H1C2C3H2 180
◦

180
◦

51
◦

getic (although DFT predicts a small energy difference which is

likely not captured by REBO due to the lack of dispersive and

torsional interactions of the REBO potential).

6.2.2 Comparison between graphene, C-,B-, and W-Graphane ther-

mal conductivities

By considering the graphene honeycomb structure, there may

be two different edge shapes when they are cut, namely: arm-

chair edge and zigzag edge (see Fig.6.2). For all the samples, I

analyzed the thermal transport by considering heat flux flowing

in both armchair and zigzag directions because in principle we

can not a priori guess that the transport properties are isotropic

in such materials.

As a benchmark calculations, I report in Fig.6.3 thermal conduc-

tivity values (calculated by using the same procedure of Chap-

ter 4) in armchair and zigzag directions for graphene samples

with 125.8 6 Lx 6 2096.5 nm and 145.0 6 Lx 6 2420.6 nm, re-
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Figure 6.2: κ Armchair (red) and zigzag (green) directions in graphene hon-

eycomb.

spectively, and with fixed lateral width Ly=2.2 nm, which is the

minimum lateral size for which κ has been demonstrated to be

independence on the sample width (see Fig.4.4 Chapter 4).

Figure 6.3: κ vs. Lx plot for graphene in armchair (red) and zigzag (black)

directions at 300 K.

The κ(Lx) values for the largest simulation cells with Lx=1672.6

nm and Lx=2178.5 nm are 697.2± 0.4 and 789.3± 0.3 W m−1

K−1 for armchair and zigzag directions, respectively. The small

armchair-zigzag anisotropy in thermal transport we found (ther-

mal conductivity along zig-zag direction slightly higher than

the one along armchair direction) has been already pointed out

by previous MD investigations [47, 48]. It has been known that

such anisotropy is due to the simulation cell length finiteness

and it tends to vanish in longer samples, coherently with the

expected graphene symmetric behavior. Our κ values are in
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very good agreement with previous results obtained by solving

Boltzmann transport equation in relaxation time approximation

(BTE-RTA) using the same REBO potential [34]. On the other

hand, the present κ(Lx) values are underestimated with respect

to state-of-art experiments [8, 97], as likely due to the small

REBO underestimation of the acoustic phonon group velocities

with respect to other potentials such as Tersoff. The choice of

the present interatomic potential is nevertheless justified by the

need to simulate hydrocarbons such as graphane. Since BTE rep-

resents the most reliable theoretical tool for thermal transport

estimations, the excellent agreement with such methodology is

a further clear validation of the AEMD method.

Similarly to what has been done with graphene, I calculated

the thermal conductivity of the three C-, B- and W-graphane

isomers in both the armchair and zigzag directions. Actually

we don’t know the graphane thermal conductivity dependence

upon sample length, but basing on the previous observed graphene

case, we performed AEMD simulations on graphene, C-, B- and

W-graphane with periodically repeated simulation cells having

108.9 6 Lx 6 1754.2 nm and the same fixed lateral width Ly=2.2

nm.

Fig.6.4 represents the C-, B- and W-graphane thermal conduc-

tivities along the armchair direction together with the one of

graphene for comparison. It is important to remark that, for the

range of Lx values of interest for the present investigation, it

is definitely true that κ(Lx) ∼ log(Lx) for both graphene and

graphane.

Thermal conductivities are always significantly smaller than the

one of graphene. Differently to graphene, in graphane we ob-

serve a rather weak κ dependence from Lx suggesting a differ-

ent distributions in phonons mean free path (MFP). In particu-

lar, we observe a κ convergence for samples having Lx ∼ 500 nm

suggesting that the thermal transport in graphane is character-

ized by phonons with smaller MFP than graphene. The κ(Lx)

values for the biggest simulation cells with Lx=1754.2 nm, Lx
=1661.6 nm, Lx=1452.6 nm are 79.3± 0.5, 38.3± 0.2, 30.8± 0.4
for C-, B- and W-graphane respectively.
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Figure 6.4: κ vs. Lx plot for C-, B- and W-graphane and graphene in arm-

chair direction at 300 K.

Fig.6.5 represents the C-, B- and W-graphane thermal conduc-

tivities along the zig-zag directions together with the one of

graphene for comparison. We considered simulation cells with

151.7 6 Lx 6 2025.3 and the fixed lateral width Ly = 2.0 nm, 2.1

nm and 1.8 nm for C-, B- and W-graphane respectively. Also in

this case the logaritmic dependence is lower respect to the case

of graphene. The κ(Lx) values for the biggest simulation cells

with Lx=2025.3 nm are 78.0± 0.1, 64.1± 0.2, 86.2± 1.6 for C-, B-

and W-graphane respectively. Table6.2 summarizes the κ results

corresponding to the biggest simulation cells for all the systems

here considered, showing that the κ(Lx) calculated for all the

graphane isomers are at least one order of magnitude smaller

than the ones for graphene having similar cell-lengths in both

armchair and zigzag directions.

6.3 discussion about thermal conductivity reduc-

tion upon hydrogenation

In order to elucidate the dramatic reduction of graphane ther-

mal conductivity with respect to pristine graphene, we com-

pared the phonon dispersion curves and the phonon density

of state (PDOS) of graphene and C-graphane.
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Figure 6.5: κ vs. Lx plot for C-, B- and W-graphane and graphene in zig-zag

direction at 300 K.

Table 6.2: Thermal conductivity values for graphene with length Lx=1672.6

nm, C-graphane with Lx=1754.2 nm, B-graphane with Lx=1661.6

nm, W-graphane with Lx=1452.6 nm in armchair direction and

for graphene with length Lx=2178.5 nm, C-, B-, W-graphane with

Lx=2025.3 nm in zigzag direction (units of Wm−1K−1).

κ Graphene C-Graphane B-Graphane W-Graphane

ac 697.2±0.4 79.3±0.5 38.3±0.2 30.8±0.4

zz 789.3±0.3 78.0±0.1 64.1±0.2 86.2±1.6

These two quantities are calculated directly from molecular dy-Phonon properties

analysis in graphane namics simulations by constructing the dynamical matrix based

on fluctuation-dissipation theory (see Chapter 3)[75, 80]. Fig.6.6

(right) shows the comparison between graphene (solid red line)

and C-graphane (dashed blue line) PDOS. We observed a sig-

nificant variation of the peak positions as well as their intensi-

ties upon the graphene hydrogenation. We focused in particu-

lar on the acoustic range of the PDOS (up to ∼ 30 THz) since

thermal conductivity of graphene is largely dominated by these

phonons [98]. In this range we observed a significant shift of

the C-graphane PDOS by ∼ 10 THz together with a reduction

of the peaks intensity. This can explain the reduced thermal
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conductivity of graphane with respect to pristine graphene. In

addition, we observed a general broadening of the C-graphane

peaks with respect to graphene. This can suggests an overall

lifetime reduction of the corresponding modes which is again

related to a reduced thermal conductivity.

Fig.6.6 (left) shows the phonon dispersion curves for graphene

(solid red line) and C-graphane (dashed blue line). In the case of

C-graphane we observed a reduction of the slope of the acoustic

TA and LA branch with respect to graphene indicating an over-

all reduction of the corresponding TA and LA group velocities.

Several previous papers [78, 33, 79] underlined the importance

of the TA and LA modes for graphene thermal conductivity for

this reason a significant reduction of their group velocities can

explain the suppression of thermal conductivity observed in the

case of graphane.

Figure 6.6: Vibrational density of state (right) and dispersion curves (left) of

graphene (solid red line) and C-graphane (dashed blue line).

Another important issue related to the thermal conductivity de-

crease is the significant reduction of all the elastic constant of

graphane with respect to graphene[76] as due to the sp2 to sp3

transition. This reduction can give rise to an increase in the

graphane roughness, which affects the overall thermal trans-

port. In order to further explore this feature, we estimate the Evidence of

increased roughness

in graphane
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graphane maximum out-of-plane oscillation amplitudes ∆z dur-

ing a NVT simulation performed at 300 K for 1.0 ns. Table6.3

shows the calculated ∆z values together with the correspond-

ing κ(Lx) for graphene and graphane. We observed that κ is

correlated to the inverse of ∆z: the increase of the out-of-plane

oscillation amplitudes hinders the overall thermal transport.

Table 6.3: Maximum out-of-plane oscillation amplitudes (units of nm) and

κ values (units of Wm−1K−1) for graphene with Lx=146.3 nm,

C-graphane with Lx=131.6 nm, B-graphane with Lx=124.6 nm, W-

graphane with Lx=108.9 nm samples

Graphene C-Graphane B-Graphane W-Graphane

κ 657.70±0.41 28.58±0.05 22.74±0.04 16.18±0.02

∆z 1.25 1.98 2.09 2.91

In fact, it is reasonable that the differences in the elastic be-

haviour between graphene and graphane reflect in the differ-

ent thermal transport behaviour of the two materials. The in-

creasing in the out-of-plane bending movement of graphane

should affect especially flexural phonon modes[99]. In partic-

ular, the first flexural mode is closely related to the Young’s

modulus, which is reduced in the case of graphane with re-

spect to graphene[100]. In this perspective, the reduction of

phonon life-times that I described before is related to the sub-

stantial increase of the graphane flexural modulus with respect

to graphene, which makes the anharmonic decay into two lower-

energy phonons much easier. Unfortunately, this change in the

flexural dispersion slope is not so clear in Fig.6.6 (left) as due

to the simulation cell size, which affects especially the phonon

band near Γ point.

In conclusion, thermal conductivity of three hydrogenated graphene

isomers (B-,C-, and W-graphane) has been calculated by means

of the approach to equilibrium molecular dynamics methodol-

ogy. The overall graphane thermal conductivity is dramatically

reduced with respect to pristine graphene by more than one

order of magnitude. We explained this reduction in terms of
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different vibrational density of states and dispersion curves. In

particular, we observed a reduced PDOS peaks intensity in the

acoustic range in the case of graphane together with a reduce

group velocity of the TA and LA acoustic modes. In addition we

correlated the κ decrease with the increasing out-of-plane oscil-

lation amplitude, due to the sp2 − sp3 transition. The observed

dramatic reduction of thermal transport upon hydrogenation in

graphene, could be explored as a way to tune thermal transport

in graphene for phononic applications such as thermal diodes.
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E X P L O I T I N G H Y D R O G E N AT I O N F O R

T H E R M A L R E C T I F I C AT I O N I N G N S

7.1 introduction to thermal rectification

It is well-known that tailoring heat flux could be very useful

for thermal management improvement in nano-devices, such

as on-chip cooling and energy conversion, as well as to create

thermal circuits using phonons as information carriers in logic-

devices [56, 55, 101] and in this framework an important role

is played by possible thermal devices which experience thermal

rectification. We will refer to such devices as thermal diodes

(TDs).

Thermal rectification (TR) is a phenomenon in which thermal

transport along a specific axis is dependent upon the sign of

the temperature gradient or heat current (hereafter referred to

as thermal bias). This non linear response to a thermal perturba-

tion has been a topic of great interest, as concerned theoretical

explanations as well as possible applications. For this reason, ac-

tivity in this area has been largely increased in the last decade.

Several theoretical studies focused on thermal rectification have

proposed alternative systems such as: non-linear lattices [102],

asymmetric shape samples [103, 104] and interfaces between dif-

ferent materials [105, 106, 107]. As far as concerned the first, for First attempt to

design solid state

TDs
example, Terraneo et al. demonstrated theoretical rectification

behavior using a nonlinear one-dimensional chain of atoms be-

tween two thermostats at different temperatures. In their sys-

tem, they were able to change the chain from a normal conduc-

tor in one direction to a nearly perfect insulator in the other di-

rection by exploiting the non-linearity of the potential. In Ref.[55],

on the other side, a TR value 100 times larger has been achieved

by coupling two nonlinear lattices.

101
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For technological applications, the key issue is to suitably de-

sign the TD device in order to enhance the overall thermal rec-

tification. Thermal diodes formed by a junction between two

different bulk materials have been proposed, such as for exam-

ple junctions between two different perovskite cobalt oxide, Sil-

icon and Germanium or Silicon and amorphous polyethylene.

However, it has been shown [103] that these two-segment TDs

experience a large interface contact resistance which limits the

resulting TR efficiency. In fact, the design of one-material basedTD based on two

different materials thermal diodes seems to be a crucial issue in the perspective to

enhance TD’s efficiency.

On the other side, the first experimental evidence of a solid state

thermal rectifier has been obtained in 2006 by Chang et al.. They

analyzed carbon nanotubes (CNT), where the mass distribution

was suitably modulated along the CNT axis by a non-uniform

deposition of C9H16Pt molecules [108]. The resulting nanoscale

system yields asymmetric axial thermal conductance. In partic-

ular, by means of a thermal bridge-like experiment (see Intro-

duction), greater heat flow in the direction of decreasing mass

density has been measured.

An alternative approach is to use one dimensional (1D) sys-

tems (i.e. nanotubes or nanowires) where the 1D intrinsic na-

ture enhances non linear thermal effects such as TR [55, 109,

110]. Eventually, the link between low-dimensionality and non-

linear thermal effects has motivated the investigation of 2D sys-

tems such as graphene. TDs made of graphene nanoribbonsTD based on low

dimensional systems (GNR) have been recently proposed, where different asymmet-

ric shapes, thickness and folding, as well as non-uniform distri-

butions of defects have been investigated [105, 111, 112, 48, 113,

114]. In particular, a TR as large as ∼ 350% has been estimated

by means of Non Equilibrium Molecular Dynamics simulations

(NEMD) in triangular and T-shaped GNRs [115].

7.2 exploiting hydrogenation to control heat flux

The previous chapter deals with the strong hydrogenation ef-

fects on graphene thermal properties. In particular, the κ reduc-
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tion has been observed both in randomly H-decorated graphene

samples [47] and in the most stable graphane isomers, as I

proved in Ref.[1]. Motivated by these results, in this Chapter

I present a molecular dynamics study aimed at exploring hy-

drogenation in graphene as a possible strategy to design effi-

cient TDs which can be in principle synthesized by cold hydro-

gen plasma exposure using pattern-masks of different shapes

[59]. A first attempt to identify possible TR effects in graphane/-

graphene NRs has been previously studied by means of NEMD

[112], where a simple planar graphane/graphene junction was

analyzed. In such a system, a TR as large as ∼ 20% was pre-

dicted for infinite extended junctions. In details, they used a

definition of TR coefficient based on the so-called interface ther-

mal resistance (ITR). ITR, also known as thermal boundary re-

sistance, or Kapitza resistance, is a measure of an interface re-

sistance to thermal flow. This exists even at atomically perfect

interfaces. In fact, due to the differences in electronic and vi-

brational properties in different materials, when an energy car-

rier (phonon or electron, depending on the material) attempts

to traverse the interface, it will scatter through it. In the case

of phonon heat transport, the probability of transmission after

scattering will depend on the available phonon energy states on

the two sides of the interface. In Ref.[112], the authors imposed

a fixed heat flux (in one direction and after in the opposite one)

and measured the ITR at graphane/graphene interface, which

eventually has been used to compute TR. Anyway, the unreli-

able larger TR up to 20% for temperature gradient (about ∼ 30

K) much smaller than the ones we tested, is due to the supposed

infinite extension of the graphane/graphene interface, that they

obtained by imposing periodic boundaries condition in the di-

rection along the interface.

I further explore the role of graphane/graphene interfaces in

providing a rectification mechanism by considering more com-

plex junctions, namely: vertical, triangular and T-shaped. Among

all possible graphane isomers, I considered the W graphane,

which shows the largest κ reduction with respect to pristine

graphene, as it has been proved in Chapter 6 [1].
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Having assessed in the previous Chapter the reliability of such

a potential for the description of thermal transport in graphene-

based systems, as well as for the graphane configuration fea-

tures, the present simulations have been performed by using

the “Reactive Empirical Bond Order” (REBO) potential in its

second generation version[68].

7.2.1 Sample preparation and method

As mentioned above, I studied three kinds of nanoribbons, namely:

sample A with a vertical graphane/graphene junction, sample

B with a triangular-like junction, and sample C with a T-shaped

junction. They are shown in Fig.7.1. We considered sample sizes

with 30.8 nm6 Lx 6 123.4 nm and 23.8 nm6 Ly 6 95.8 nm and

in this case, differently from the precedent ones, no periodic

boundary conditions have been set to properly describe a finite

width nanoribbon. The three samples have been generated by

decorating along the armchair direction a graphene nanoribbon

according to the following specific motifs:

• Sample A has been obtained by simply hydrogenating half

of the GNR length along the heat transport direction x (see

Fig.7.1, a).

• Sample B has been generated so as to obtain an inner tri-

angular region of pristine graphene with a vertex angle θ

(see Fig.7.1, b).

• Sample C has been obtained by hydrogenating half of the

GNR along x, leaving a pristine graphene channel of width

d=3 nm (see Fig.7.1, c).

All samples have been carefully relaxed by means of a combina-

tion of conjugate-gradient total energy minimization (see Chap-

ter 6), followed by a 0.1 ns low-temperature (10 K) MD sim-

ulated annealing, and a further conjugate-gradient minimiza-

tion. The NEMD simulations presented in Ref.[3] have been

performed by thermostating the system by means of the Nosé-

Hoover scheme (see Chapter 3) using a damping parameter of

100.0 fs and time step as small as 0.2 fs.
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Figure 7.1: Stick and ball representation of the three graphane/graphene TD

samples discussed in the text. The carbon (hydrogen) atoms are

colored in gray (yellow).

In order to evaluate and quantify any possible rectification phe-

nomena, it needs at first to generate a stationary thermal con-

duction regime along the sample. With this aim, two regions L

and R on the opposite samples edges along the x direction have

been eventually coupled to Nosé-Hoover thermostats set at un-

like temperatures TL and TR respectively, to run the following

NEMD simulations (see Fig.7.2).

By using the LAMMPS code command to perform time inte-

gration on Nose-Hoover style, in fact, it is possible to compute

a global scalar which is extensive and represents the cumula-

tive energy changed during the performed canonical (NVT) run.

This cumulative injected (extracted) energy corresponds to the

work done by the hot (cold) thermostat during the NEMD sim-

ulation. Eventually, we calculated the corresponding heat flux
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Figure 7.2: Schematic view of the simulation set-up used to estimate thermal

rectification. The temperatures of the two thermostated regions

are TL < TR (TL > TR) for the forward (reverse) bias respectively.

The corresponding heat fluxes injected into (Ji) and extracted

from (Je) the sample are indicated in both cases.

modulus as the numerical time derivative of the energy injected

into (extracted from) the sample per unit cross-sectional area.

We underline that, by means of the present procedure, we can

estimate heat fluxes without any reference to the Fourier for-

malism, whose validity is still debated in the case of strong per-

turbations such as large thermal gradients.

In order to ensure that a non-equilibrium stationary state con-

dition is properly set, we exploit the fact that in this condition

the modulus of the heat flux injected into |Ji| and extracted from

|Je| the sample must be equal. For this reason, we monitored the

relative difference |Ji|−|Je|
|Ji|

, until such a quantity was negligibly

small. Deviations from the asymptotic average zero value are

considered as the error estimate in our heat flux.

Among the different definitions of thermal rectification (involv-

ing for example the estimate of thermal conductivity [107] or

the ratio between the forward (for) and reverse (rev) thermal

bias conditions [104]) we consider the most frequently one used

in Literature [106, 110, 112, 48, 113, 114], namelyThermal rectification

definition based on

heat fluxes TR =
|Jfor|− |Jrev|

|Jrev|
(7.1)

where the forward and reverse fluxes (Jfor and Jrev, respec-

tively) are calculated as the average between the injected and
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extracted flux in the corresponding thermal bias condition. In

order to calculate TR we have to perform two simulations for

each sample: (i) the left thermostat is initially set at temperature

TL while the right thermostat at temperature TR, with TL < TR;

(ii) the temperature gradient is inverted and the calculation is

repeated for such an opposite bias condition. Fig.7.3 shows an

example of the procedure we used to estimate TR in the case of

sample B with ∆T = TL− TR=100 K. The top panel shows in red

(green) the energy injected (extracted) into (from) the sample by

the hot (cold) reservoir. The middle panel shows the correspond-

ing heat fluxes obtained as the time derivative of the energy

divided by the cross-sectional area. The bottom panel shows

the relative difference between the extracted and injected heat

fluxes. Dashed black lines represent the time-average of all the

corresponding quantities actually used to calculate TRs. Fig.7.3

clearly proves that a stationary regime of thermal conduction is

eventually reached.

7.2.2 TR in graphane/graphene nanoribbons

By means of the procedure described above, we calculated ther-

mal rectifications as a function of ∆T keeping the average tem-

perature of each sample always at T=300 K. In detail, we set

∆T=100 K (Thot=350 K and Tcold=250 K), 200 K (Thot=400 K

and Tcold=200 K), 300 K (Thot=450 K and Tcold=150 K) and 400

K (Thot=500 K and Tcold=100 K).

Fig.7.4 shows TR dependence on ∆T for sample A (black squares),

B (blue circles) and C (red triangles) which by construction have

the same dimension 30.8× 23.8 nm2. In all cases we observe a

monotonic TR increase with respect to ∆T. Such a trend, which

has been previously identified in many cases of shaped GNR

(with no hydrogen) [115, 104], is analogous to the behaviour

predicted by the nonlinear I-V characteristic curve in electric

diodes. Stronger is the perturbation (in this case the tempera-

ture gradient), stronger is the non linear effect (in this case TR).

The maximum values of TRs, obtained for ∆T=400K, are 15.1±
0.1% for sample A, 20.1± 0.2% for sample B and 14.1± 0.1% for
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Figure 7.3: Top: injected (red) and extracted (green) energy in the case of

sample B with ∆T = TL − TR=100 K. Middle: time numerical

derivative per unit cross-sectional area (heat fluxes) of injected

(red) and extracted (green) energy. Bottom: relative difference be-

tween the extracted and the injected heat flux. Dashed black lines

represent the time-average of all the corresponding quantities.

sample C. The present results show that the triangular graphane/-

graphene nanoribbons are the best thermal rectifiers, similarly

to previous findings on different shape asymmetric graphene

nanoribbons[115].

Since the triangular junction shows the largest TR, we investi-

gated its dependence upon sample size and vertex angle θ (see

Fig.7.1, b). In detail, we considered a sample set with increas-

ing length in the range 30.8 nm6 Lx 6 123.4 nm, by preserving
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Figure 7.4: TR vs. ∆T for sample A (black squares), B (blue circles) and C

(red triangles). The sample area is 30.8× 23.8 nm2.

the same aspect ratio. The vertex angle has been fixed to θ=40◦

and ∆T=400 K. The maximum number of atoms considered was

∼ 7× 105.

Fig.7.5 (green triangles) shows the total rectification as a func-

tion of the sample length Lx. A linear relationship is observed

in the length range explored, bringing to the highest rectifica-

tion value TR=54± 4% for Lx=123.4 nm. Interestingly enough,

sample A does not show a similar behavior: as a matter of fact,

by varying Lx in the same range as above we obtained the very

same TR value. This result is once again consistent with previ-

ous data [112]. In this latter, in fact, it has been proved that for

a graphane/graphene planar junction, which in this case is sup-

posed to be infinite, by increasing the ribbons dimension in the

heat flux direction from 20 nm to 100 nm, no TR variation has

been observed.

The different behavior of sample A and B suggests different

physical mechanisms leading to thermal rectification. In partic-

ular, for model A this phenomenon is mainly related to the dif-

ferent temperature-dependence of the intrinsic thermal conduc-

tivity of the two materials (see after). For this reason, the overall

TR is almost unaffected by the sample size. On the other hand,
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the key feature of sample B is the increasing of the graphane/-

graphene interface area for increasing Lx, which results in an

overall rectification raise.

Figure 7.5: Rectification as a function of the sample length Lx (top axis) and

vertex angle θ (bottom axis) for sample B with ∆T=400 K.

In order to disentangle the effect of the sample asymmetry on

the total rectification, we explored the TR dependence on the

vertex angle θ by keeping fixed the sample length Lx =30.8 nm

and the sample width Ly=23.8 nm. Fig.7.5 (blue dots) shows

that TR increases as θ increases from 20◦ to 40◦ due to an higher

sample asymmetry (i.e. an higher ratio between the right and

the left graphene edges). A similar trend has been observed in

a pure triangular GNRs[105].

7.3 sample a : interface thermal resistance and tr

explanation

In order to rationalize the scenario presented, I first investi-

gated the simplest case of sample A. As already pointed out by

Ref.[112], an actual thermal resistance at the graphene/graphene

interface is expected because of a remarkable interface phonon

scattering. Fig.7.6 shows the temperature profile estimated in

the non-equilibrium stationary condition in the case of the for-
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ward (top) and reverse (bottom) bias for ∆T=400 K. In both

cases we observe that graphane shows a much larger temper-

ature slope with respect to graphene due to its reduced thermal

conductivity [1]. Moreover, we observe an abrupt temperature Definition of

interface thermal

resistance
discontinuity ∆Tint at the graphane/graphene interface, indi-

cating the presence of an interface thermal resistance Rint =

∆Tint/|J|. The corresponding estimated values are Rforint=4.0 ×
10−11 (m2W−1K) and Rrevint=5.1× 10−11 (m2W−1K) respectively.

We attribute the small variation between Rforint and Rrevint to the

different interface temperatures occurring in the forward and

reverse bias (see Fig.7.6).

Figure 7.6: Temperature profile along sample A for the forward (top) and

reverse (bottom) bias. The vertical black dashed line indicates the

position at Lx=18.0 nm of the actual graphane (left) /graphene

(right) interface.

The observed TR can be easily explained in terms of the differ-

ent dependence of the thermal conductivity on temperature in

the two materials [106]. To demonstrate this idea, we take into

account the thermal conductivity of graphene and graphane es-

timated by solving the Boltzmann transport equation via DFT

calculations in Ref.[41]. In the case of ∆T=400 K and forward

bias (corresponding to TL=100 K and TR=500 K) we consid-

ered the graphane thermal conductivity κcoldgraphane at T=200 K
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and the graphene thermal conductivity κhotgraphene at T=400 K.

Conversely, in the reverse bias (corresponding to TL=500 K and

TR=100 K) we considered the graphane thermal conductivity

κhotgraphane at T=400 K and the graphene thermal conductivity

κcoldgraphene at T=200 K. We accordingly estimate an effective ther-

mal conductivity in forward and reverse bias condition as

1

κfor
∼

1

2κcoldgraphane

+
Rforint
Lx

+
1

2κhotgraphene

(7.2)

1

κrev
∼

1

2κhotgraphane

+
Rrevint
Lx

+
1

2κcoldgraphene

(7.3)

by describing the system as a series of thermal resistances [106].

We obtained κfor=803 W m−1K−1 and κrev=517 W m−1K−1,

confirming that in the case of forward bias the thermal conduc-

tion is favoured.

7.4 phonon transmission and analysis of the vibra-

tional density of states

The previous analysis can be straightforwardly exploited only

for simple planar junctions as in sample A. In the case of more

complicated interface morphologies, such those found in sam-

ples B and C, it should be better consider interface phonon trans-

mission as inferred by the analysis of the vibrational density of

states (VDOS). In particular, by estimating the overlap between

the VDOS calculated in neighbour sample regions, it is possible

to qualitatively compare how phonons are transmitted along

the sample in the forward and reverse bias. To this aim, we di-

vided each sample in five different contiguous regions along

the x direction (see Fig.7.7). For each of the five regions we

calculated the corresponding VDOS by Fourier transforming

the velocity autocorrelation function(see Chapter 5) in both the

forward and reverse configurations. Finally, we estimated the

VDOS overlap between neighbour regions.

Fig.7.8 shows an example of the VDOS overlap between dif-

ferent regions in sample B for the forward (top) and reverse
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Figure 7.7: Schematic view of the 5 different contiguous regions where the

VDOS was estimated in sample B.

(bottom) bias, while Fig.7.9 reports the resulting estimate of the

VDOS overlap for all the systems here investigated.

Figure 7.8: VDOS overlap between 5 different contiguous regions (1/2, 2/3,

3/4, 4/5) for sample B in the forward (top) and reverse (bottom)

configurations. The black, red, green, blue and cyan lines are

respectively to the VDOS calculated in region 1, 2, 3, 4, and 5.

The filled patterned gray domain corresponds to the overlap area

between two contiguous regions.
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Figure 7.9: VDOS overlap magnitude along the x direction for sample A

(left), B (center) and C (right) for forward (black squares) and

reverse (red circles). The graphane/graphene interface in sample

A at x=18.0 nm is indicated by a dashed line.

For sample A and C we observe an abrupt reduction of the

VDOS overlap corresponding to the graphane/graphene inter-

face which is located at x=18.0 nm. Interestingly enough, in

both cases the VDOS reduction in the forward bias is smaller

than the one in the reverse case, giving rise to an overall asym-

metric phonon transport. On the other hand, for sample B the

VDOS overlap increases (decreases) with x in the forward (re-

verse) case due to a different angular-dependent phonon trans-

mission at the graphane/graphene interface. This last result jus-

tifies also the TR increase with Lx, which we have observed just

in sample B.

7.5 effective continuum model to calculate tr

In conclusion, I propose a thermal rectification analysis based

on effective continuum model. A further rationalization of ther-Mathematical

necessary condition

for thermal

rectification
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mal rectification effects, in fact, is obtained by considering the

unidimensional heat equation in a steady-state condition:

d

dx

[
κ(x, T)

dT(x)

dx

]
= 0 (7.4)

where κ(x, T(x)) is the thermal conductivity, which in our case

depends on both temperature T(x) and x. T(x) is the temper-

ature profile that, in the steady-state, only depends on x. By

integrating Eq.7.4 we obtain:

κ(x, T(x))
dT(x)

dx
= −J (7.5)

where the integration constant J, which is determined through

the boundary conditions, is nothing but the heat flux. It has

been recently demonstrated that a necessary condition for ther-

mal rectification is that thermal conductivity must be a function

of both x and T , and that this function must be non-separable

[116].

In fact, in the case in which thermal conductivity is separable,

it can be written as the product of two independent functions

of the variables x and T, i.e. κ(x, T) = A(x)λ(T). Therefore , by

integrating Eq.7.5:∫T2
T1

λ(T)dT = −J

∫L2
L1

dx

A(x)
(7.6)

This can be rewritten to give the heat rate as

J = −

∫T2
T1
λ(T)dT∫L2
L1

dx
A(x)

(7.7)

To calculate rectification, the only difference between Jfor and

Jrev is that the boundary conditions in the integral of λ(T) are

reversed. Since reversing the limits changes the sign of the in-

tegral, it can be easily seen that the reversing of the boundary

temperatures results in Jfor = −Jrev and TR = 0. Therefore, it

can be concluded that separable thermal conductivity is a suf-

ficient condition for no thermal rectification i.e. if the thermal

conductivity κ(x, T) is separable, there is no TR.

Based on Eq.7.5, we want to model the thermal rectification in

sample B, which is the one showing the largest TR as well as
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a remarkable TR size dependence. Since we previously demon-

strated [1] that κ of pristine graphene is more than one order

of magnitude larger the the corresponding graphane one, we

can assume that in sample B the heat flux will be mainly con-

veyed along the pristine graphene region, being suppressed in

graphane. This is confirmed by Fig.7.10 (top line) where both

the modulus (color map) and the orientation (vectors) of the

in-plane heat flux Jx−y are shown for the forward (right) and

reverse (left) bias. Conversely, Fig.7.10 (bottom line) proves thatHeat flux field by

color map

representation
the out-of-plane component of the heat flux field Jz has an op-

posite behavior, showing a suppression in the graphene region.

This allows the overall heat flux conservation along the whole

sample.

LAMMPS code define a computation that calculates the heat

flux vector based on contributions from atoms in the specified

group. This can be used by itself to measure the heat flux into or

out of a reservoir of atoms, or to calculate a thermal conductiv-

ity using the Green-Kubo formalism (see Chapter 3). The heat

flux J is defined by:

J =
1

V
[
∑
i

eivi −
∑
i

Sivi] (7.8)

=
1

V
[
∑
i

eivi −
∑
i<j

(fi,j · vj)xi,j]

=
1

V
[
∑
i

eivi +
1

2

∑
i<j

(fi,j · (vi + vj))xi,j]

where ei in the first term of the equation is the per-atom energy.

This is calculated by adding the computed per-atom kinetic en-

ergy and per-atom potential energy; Si in the second term is the

per-atom stress tensor. The tensor multiplies vi as a 3x3 matrix-

vector multiply to yield a vector. The vector J actually calculated

by the code is an extensive quantity, meaning it scales with the

number of atoms in the simulation. It must be divided by the

appropriate volume to get a flux, which would then be an inten-

sive value, meaning independent of the number of atoms in the

simulation.
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Figure 7.10: Modulus (color map) and vector field of Jx−y for sample B in

the forward (left) and reverse (right) reservoirs configurations

(top line). Modulus (color map) and vector field of Jz for sample

B in the forward (left) and reverse (right) reservoirs configura-

tions (bottom line)

In order to represent the vector field Jx−y in Fig.7.10 we have

partitioned the simulation cell by 13× 13 mesh. In each portion

of such a mesh, the local value of Jx−y has been calculated by

considering only the x and y components of the J computed

with the precedent procedure. These locale Jx−y values have

been therefore averaged over all atoms there contained for 200

ps. The same procedure is repeated for Jz in the out-of-plane

direction.

Taking into account only the graphene active channel, the over-

all thermal conductivity will be a function of the temperature

T(x) and the slab height h which, in turns shows an x de-

pendence for the specific case of the triangular shape. Such a

κ(h) dependence has been recently predicted in free-standing
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graphene nanoribbons by means of the linearized Boltzmann

transport equation [117]. Since the explicit analytical form of

κ(h(x)) is not known, we consider an overall x-dependence as

implicitly contained in T(x). Therefore, in order to solve Eq.7.5

and estimate J, we need to find an analytical approximation

for κ(T). I fitted the data of Ref.[41] in the interval 100-500 K

(where our atomistic simulations are performed) by a power se-

ries expansion to obtain the following analytical expression for

κgraphene(T):Temperature

dependence of

graphene thermal

conductivity

obtained by BTE

κgraphene(T) = a0 + a1T + a2T
2 + a3T

3 +O(T4) (7.9)

where: a0=805736, a1=−205.642, a2 =0.467112 and a3=−0.000363619.

To a first approximation, we neglected the quadratic and cubic

terms, which are about zero, and solved the following first or-

der differential equation for both forward and reverse configu-

rations:

[a0 + a1T(x)]
dT(x)

dx
= −J (7.10)

The solution for Eq.7.10 is:

T(x) =

√
a0c− 2a0Jx+ a

2
1 − a1

a0
(7.11)

where c is a constant defined by the boundaries conditions. In

the case of sample B with Lx=30.8 nm and ∆T=400 K, I used

the solution T(x)for (T(x)rev) for the forward (reverse) bias case

to fit the corresponding temperature profile along the sample,

obtaining Jfor (Jrev). Fig.7.11 shows the fitting of T(x)for and

T(x)rev, together with the corresponding MD temperature pro-

files. The predicted TR=J
for−Jrev

Jrev is 19.4% in very good agree-

ment with the simulation result of 20.1%.

In conclusion in the work [3], we demonstrated that graphane/-

graphene nanoribbons can be efficiently used as thermal diodes.

In particular, we designed three kinds of thermal diodes based

on different graphane/graphene junction morphologies (i.e. ver-

tical, triangular and T-shaped) and we identified the triangu-

lar junction as the one with the highest thermal rectification

of ∼ 54%. Moreover, we explored the dependence of thermal
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Figure 7.11: Temperature profiles along sample B with Lx=30.8 nm and

∆T=400 for the forward (black squares) and reverse (red cir-

cles) bias together with the corresponding analytical solutions

of Eq.7.11: T(x)for (black line) and T(x)rev (red line).

rectification upon thermal gradient, showing an overall TR in-

crease for all the three kinds of diodes, while we observed a

significant TR increase with size only for the triangular one. We

explored the size and vertex angle thermal rectification depen-

dence for the triangular junction finding an increase with both

of them. We also investigated the physical reasons behind ther-

mal rectifications in terms of interface thermal resistance and

different temperature-dependence of the thermal conductivity

in graphane and graphene for the vertical junction. For more

complicated junctions, such as the triangular and T-shaped, we

compared phonon transmission along the sample in the for-

ward and reverse configurations in terms of a vibrational den-

sity of states analysis. A further razionalization of thermal rec-

tification has been proposed by using an effective continuum

model based on the steady-state heat equation solution, which

is able to quantitatively estimate thermal rectification for a graphane/-

graphene triangular junction.
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C O N C L U S I O N S A N D F U T U R E D I R E C T I O N

In this thesis I investigated the thermal properties of graphene

and graphene-based systems by means of non equilibrium molec-

ular dynamics simulations.

As a first analysis, I addressed the issue of calculating ther-

mal conductivity in mono-layer pristine graphene. An innova-

tive method with respect to the mainly common equilibrium

molecular dynamics (EMD) and non-equilibrium Müller and

Plate method, named "Approach to equilibrium" (AEMD) has

been used. This technique has been previously tested for other

bulk materials [52] and in this work applied for the first time

to graphene [2]. By using this approach, we are able to sim-

ulate the system evolution from a non equilibrium condition,

in which a temperature gradient is imposed upon the sample,

through an equilibrium state where the temperature distribu-

tion is uniform along the system. In the initial non-equilibrium

state, a step-like temperature profile has been set. We used the

solution in terms of harmonic functions of the well-known heat

equation to fit the temperature difference ∆T(t) between the

two sides (left and right) of the sample. By using this proce-

dure, the sample thermal diffusivity is obtained. The purpose

of this work is to address the dependence of κ on the sam-

ple length in the direction of heat transfer, definitively solving

the active debate about the infinite sample length extrapolation.

We address this issue by avoiding any guess or approximation

on the underlying microscopic heat transport mechanisms; we

rather perform direct atomistic simulations aimed at estimat-

ing thermal conductivity in samples with increasing size up to

the unprecedented value of Lx = 0.1 mm. In fact, our goal is

to provide evidence that thermal conductivity in graphene is

definitely upper limited in samples long enough to allow a dif-

fusive transport regime for both single and collective phonon

123
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excitations. Finally, our data are compared with the ab-initio re-

sults, obtained by exactly solving the Boltzmann transport equa-

tion [41]. The excellent agreement shown is the clear prove that

a diffusive-to-ballistic crossover has been approached at about

Lx = 0.1mm as indeed proposed in the ab-initio analysis. The

longer characteristic length at which a pure diffusive phonon

behavior is experienced has been explained as due to the longer

mean-free-path (MFP) of phonon collective excitations with re-

spect to the single phonon mode MFP. These collective phonon

behavior has been guessed to affect the graphene thermal trans-

port much more strongly with respect to other bulk materials

even at room temperature. For this reasons, a further investiga-

tion could be suggested in order to explore the hydrodynamical

regime in graphene where such collective excitations dominate

the heat transport. Moreover, the discussion in our work could

stimulate experimental efforts in order to measure thermal con-

ductivity on mm-long samples.

Continuing in the framework of pristine graphene thermal char-

acterization, in Chapter 5 I focused on the transient response to

a laser beam excitation on a circular graphene sample. This is

a crucial topic since many experimental methods rely on opti-

cal sources in order to provide heating power. In our work [4]

the heat absorption due to the laser spot has been mimicked

by reproducing the excitation of the K − A1’ and Γ − E2g op-

tical phonon modes, which are the ones who experience the

strongest coupling with photo-generated electrons [118]. In this

case, the previously used AEMD simulation technique has been

implemented by fitting the time evolution of temperature pro-

file T(r, t)sim, instead of ∆T(t). Eventually, the solution of the

radial heat equation T(r, t)theo is used to fit the simulation

T(r, t)sim. The estimated thermal conductivity shows a depen-

dence on the kind of thermalization procedure used. In partic-

ular, we compare the κ resulting from a "white" spot thermal-

ization procedure, where all the degrees of freedom have been

thermalized, with the corresponding κcolored, obtained by se-

lecting a single phonon mode within the spot . In both cases

of K − A1’ and Γ − E2g excited modes, the κ is shown to be
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dramatically reduced with respect to the fictitious "white" ther-

mostat procedure. Moreover, κcolored is much less sensitive to

both temperature and size. With the aim of elucidating such dif-

ferences, we analyzed the time dependent vibrational density

of states in all the cases. The VDOS analysis has been reveled

to be very useful because it allows to distinguish the different

decay channels of the two considered optical phonon modes,

explaining why the thermal transport behavior in these single-

mode cases is different with respect to the case in which all the

phonon modes are equally excited. In particular, we observe

that the colored phonon population remains far from the equi-

librium during the whole simulation, giving rise to a completely

different thermal transport mechanism.

On the other side, we must point out that by comparing the tem-

perature difference between the spot and the rest of the sample

∆T(t)sper and the corresponding ∆T(t)theo predicted by heat

equation solutions, some discrepancies have been noticed in the

first simulation time-steps. This last feature could be interpreted

in the framework of the recently observed thermal transport hy-

drodynamic regime in graphene, by instance responsible of the

collective phonon excitation whose importance has been cited in

our precedent work. In this sense a future direction of investiga-

tion could be to consider the complete heat transport equation

behind the Fourier formalism in order to explore such anoma-

lies.

In the second part of this thesis, I focused on the hydrogenated

graphene systems. In particular, we studied [1] the effects of

hydrogenation on graphene thermal properties such as ther-

mal conductivity and phonon vibrational density of state. The

ordered hydrogenated graphene characterized by 1:1 ratio be-

tween C and H atoms, namely graphane, has been considered.

The three most stable graphane isomers (B-, C-, and W-graphane)

[76], differing in the specific position of H atoms with respect

to the C lattice, have been analyzed. AEMD simulations have

been performed on samples with increasing lengths Lx in the

direction of the heat flux. In the length range here explored it is

definitely true that κ(Lx) ∼ log(Lx). The presence of Hydrogen
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drastically changes the overall graphane thermal conductivity,

that is reduced with respect to pristine graphene by more than

one order of magnitude for all the isomers and in both armchair

and zigzag transport directions. Moreover, a small anisotropy

has been observed between armchair and zigzag directions as

due to the simulation cell finiteness. The isomer which shows

the largest reduction is W-graphane.

We explained this reduction in terms of different vibrational

density of states (VDOS) and dispersion curves. We observed a

reduction of the peaks intensity in the acoustic range of graphane

VDOS and a reduced group velocity of the TA and LA acoustic

modes in phonon dispersion curve. In addition, we correlated

the κ decrease with the increasing out-of-plane oscillation am-

plitude, due to the sp2-sp3 bond transition upon hydrogenation.

In this scenario, another possibility should be exploiting other

Hydrogen isomers, for example Deuterium, a heavier isotope

containing a neutron in addition to a proton. It has been al-

ready proved that the graphene deuteration reaction proceeds

faster than hydrogenation [119] and that the electronic structure

is modified, a tuneable electron energy gap can be induced, by

both hydrogenation and deuteration. To the best of my knowl-

edge, there are no works addressing the thermal properties of

the deuterated graphane. However, it is reasonable that, by con-

sidering a heavier isotope , the phonon spectra should be more

strongly modified . In particular, a lowering of the high fre-

quency modes should be aspected.

Finally, we propose an useful application of the previously ob-

served graphene thermal conductivity reduction upon hydro-

genation by designing a novel thermal diodes based on graphane/-

graphene interface [3]. Such a thermal device can be potentially

applied in the framework of thermal management in electronics

as well as in logic circuits based on phononic instead of elec-

tronic information. We considered three kinds of graphene/-

graphane nanoribbons with different interface morphologies:

vertical, triangular and T-shape junctions. For all of these a com-

plete characterization has been performed in terms of thermal

rectification coefficient (TR). In detail, to calculate thermal recti-
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fication, a NEMD simulation has been performed in which we

imposed a stationary thermal conduction regime and then cal-

culated the corresponding heat flux. A quantitative difference

between heat flux magnitude in one temperature gradient di-

rection ("forward") with respect to the "reverse" temperature

gradient has been observed, identifying the typical non-linear

effect characteristic of a diode. The highest thermal rectification

has been obtained in the case of triangular junction, reaching a

value of 54%. Moreover, we showed an overall TR increase with

∆T for all the three kinds of diodes and a significant TR increase

with size only for the triangular junction. In the case of this

largely efficient triangular junction, we also explored the ther-

mal rectification dependence on the vertex angle: an increase

with its has been observed, that could be seen as an evidence of

the importance of anisotropy in such non-linear phenomena.

Such an observed TR has been discussed by considering differ-

ent physical reasons. In the case of vertical junction the phe-

nomenon is explained in terms of interface thermal resistance

and different temperature-dependence of the thermal conduc-

tivity between graphane and graphene. On the other side, for

the triangular and T-shaped junctions, we compared phonon

transmission along the sample in the forward and reverse con-

figurations by a vibrational density of states analysis. The over-

lap between VDOS in contiguous regions along the sample, ac-

tually, gives an indication about how phonons are transmitted

in the forward and reverse bias.

Our final goal is to propose an analysis of thermal rectification

in triangular junction based on an effective continuum model,

which is only based on the steady state temperature profile,

rather than the actual heat flux. The model quantitatively pre-

dicts thermal rectification (TR= 19.4%) in very good agreement

with the standard analysis (20.1%) based on the heat flux. We re-

mark the convenience of working with simple continuum model

which allows to quickly estimate thermal rectifications at a neg-

ligible computational cost. In particular such a model has been

developed in order not to be explicitly dependent on the ma-

terials atomic structure since the only inputs needed are the
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analytical form for κ(T) (which can be easily obtained from pre-

vious experimental or theoretical data) and the actual shape of

the sample.



Part VI

A P P E N D I X





A
A P P E N D I X

a.1 classical specific heat and quantum correc-

tions in graphene

In order to obtain the thermal conductivity κ from the thermal

diffusivity α computed in AEMD simulation, the formula α =
κ
ρCV

is used, where the graphene volumetric heat capacity CV
must be inserted.

Actually we know that the total energy in an harmonic crystal

with N atoms has the form

E =
∑
k,s

(nk,s +
1

2
) hωs(k) (A.1)

where nk,s and ωs(k) are the number and the frequencies of

modes with momentum k in the s branch. Moreover in a quan-

tum system the thermal energy density u can be written as

u = ueq +
1

V

∑
k,s

1

2
 hωs(k) +

1

V

∑
k,s

 hωs(k)

exp(−
 hωs(k)
KBT

) − 1
(A.2)

where ueq is the energy of the equilibrium configuration. In the

quantum theory of an harmonic solid, the specific heat is then

CV =
1

V

∑
k,s

∂

∂T

 hωs(k)

exp(−
 hωs(k)
KBT

) − 1
(A.3)

In the case KBT/ h is larger with respect to all the phonon fre-

quencies i.e. when every normal mode is in a highly excited

state, we can expand Eq.A.3 obtaining CV = 3NV KB which is the

classical form for the specific heat of a N-atomic system derived

by Dulong and Petit, while additional terms in the expansion

give the quantum correction to the specific heat at temperature

high enough for the expansion to be valid. On the other side for
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intermediate and low temperature another form must be found.

One extrapolation historically used is due to Debye

CV =
∂

∂T

3 hc

2π2

∫kD

0

k3dk
exp

 hck
KBT

− 1
(A.4)

where a linear dispersion ωk = ck for all the branches has been

guessed. It is convenient to define a phonon frequency ωD to

which corresponds the maximum momentum kD. We define

from these, ΘD =  hωD/KB =  hckD/KB, which is called Debye

temperature and it is a measure of the temperature above which

all modes begin to be excited and below which modes begin

to be frozen out. Eq.A.4 can be rewritten in terms of Debye

temperature as

CV =
∂

∂T

3 hc

2π2

∫kD

0

k3dk
exp

 hck
KBT

− 1
= 3NKBq(

ΘD
T

) (A.5)

In the AEMD simulations generally, the classical approxima-

tion by Dulong and Petit is used for the specific heat. This

choice is coherent with the classical nature of MD simulation,

in which the phonon distribution is the classical one and not

the corresponding quantum Bose-Einstein distribution. In fact,

Fig.A.1 shows the total energy during a NVE run in function

of the system temperature T (for T=290,295,300,305,310 K) for

a graphene sample with N=480 atoms performed by using em-

pirical Tersoff potential. The black line is the data fitting func-

tion, whose T-derivative gives the value of CV , according to

the basic definition CV = ∂u
∂T . The value obtained by means of

this simple procedure is CV · V = 0.129958eVK very similar to

CV · V = 0.12384eVK which is the Dulong and Petit prediction

for the same system.

However, in graphene the maximum values of frequencies for

the planar and the Z modes are found to be, respectively, 3.01

and 1.68 in units of 104 Hz. These values correspond to De-

bye temperatures 2300 and 1287 K, respectively [120]. All the

simulations shown in this thesis are performed at an average

temperature of 300 K. This temperature is largely below the

graphene Debye temperatures ΘD=1000-2300 K. Therefore, we

should discuss the amount of error involved in using the classi-

cal approximation to phonon occupation statistics.
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Figure A.1: Total energy E for graphene system at T=290,295,300,305,310 K

together with the corresponding fitting function. The angular

coefficient obtained by the fit is a=0.129958.

In particular, because it represents the total energy of the crystal

weighted by the respective phonon population, the volumetric

specific heat of the solid gives a good indication of the errors

done by considering the classical approximation.

In Ref.[121] the ratio of the computed specific heat using clas-

sical statistics and Bose-Einstein (BE) statistics is showed for

different temperatures, stating that the classical approximation

clearly over predicts the total specific heat by more than three

times at room temperature.

At every temperature, the Dulong and Petit value is always

greater than the corresponding value obtained from BE statis-

tics, and they converge one to each other in the high-temperature

limit.

In order to overcome this problem, generally, in graphene some

quantum corrections are added to the calculation in order to im-

prove the MD classical predictions. In detail, the κ is computed

from the calculated α by using κ = αCVρq. This last q depends

on the temperature T at which the simulation is performed and

in particular on the ratio between T and ΘD which in our case

is 0.15. The quantum correction is based on Eq.A.4 and the tab-

ular value for q is taken from Ref.[122] and it is equal to 0.213

for graphene at T=300 K.



134 appendix

In Chapter 4 and 6 we use such corrections, in the first case

for sake of convenience to facilitate the comparison with other

literature results in which these are generally used, in the latter

to obtain a more realistic graphane κ estimate (which has been

measured for the first time in our work), within the limitation

of the empirical potential used. On the other side, we discarded

the quantum correction in the Chapter 5, since in this case we

are mainly interested in the relative difference in κ measures

according to the different thermalization techniques rather that

to its exact absolute value.
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