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unit vector connecting M1 and M2. . . . . . . . . . . . . . . . . . 60

6.1 Different views of the monoclinic phase of Ga2O3. The structure

of β-Ga2O3 can be seen as a collection of zigzag double chains of

edge-sharing GaO6 units (violet and green Ga-octahedra) linked

by single chains of vertex-sharing GaO4 (blue Ga-tetrahedra). . . 67

6.2 Band structure and projected density of states of β-Ga2O3 . . . . 68

vii



6.3 Absorption spectra of β-Ga2O3 at normal incidence on the (010)

surface with polarizations E‖c and E‖a. Absorption spectra of a

(-201) wafer orientation. . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Tauc plot of the absorption coefficient, showing the polarization

dependent onsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Gap vs volume as obtained from hybrid and self-interaction cor-

rected functionals, as well as from GW0 many-body perturbation

theory. The line EXP marks the cell volume obtained from experi-

mental lattice parameters. . . . . . . . . . . . . . . . . . . . . . . 71

6.6 The bixbyite structure (group Th) has six-fold coordinated cations

occupying 8b high-symmetry and 24d Wyckoff sites. The 8b sites

are highlighted by the local oxygen octahedra in the left panel, the

24d in the right one. . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.7 Band structure ob bixbyite In2O3. The k-points are: Γ = (0 0 0);

H= (1
2
− 1

2
1
2
); N= (0 0 1

2
); Γ = (0 0 0); P= (1

4
1
4

1
4
); H= (1

2
− 1

2
1
2
). 73

6.8 XRD patterns of (GaxIn1−x)2O3 films with different indium con-

tents (x) deposited on (0001) sapphire substrates at substrate tem-

perature of 500◦C. Peaks marked by triangle belong to monoclinic

structure while that marked by circle belong to cubic structure.

Peaks not assigned belong to the sapphire substrate. . . . . . . . 74

6.9 Different pairings patterns of 6% In-content in β-Ga2O3. . . . . . 75

6.10 Sketch of different configurations of In on the Ga2O3 simulation

supercell. Occupied octahedra in the β structure double-rows are

darkened. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.11 Left: direct gap at zone center as function of In concentration.

Right: normalized volume of In-doped Ga2O3 as function of con-

centration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.12 Mixing free energy as a function of In concentration at 810 K

and 2000 K for β-phase vs epitaxial bixbyite (left panel), and β-

phase vs free-standing bixbyite (right panel). The phase separation

region extends between the vertical dashed and dash-dotted lines. 80

6.13 Left panel: volume vs mole fraction for the free-standing β and

bixbyite phases. Right panel: fundamental gap in the same phases

and interpolations vs x (quadratic for bixbyite; linear at low x for

β). A correction for the gap error has been introduced. The gap

show a sizeable bowing in bixbyite at large x. . . . . . . . . . . . 82

viii



6.14 Supercell of Ga1−xInx)2O3 with 50% In-concentration. In this

structure In is six-fold coordinated occupying 2a Wyckoff sites

while Ga is five-fold coordinated occupying 2c Wyckoff sites. . . . 84

6.15 Revised phase diagram for (Ga1−xInx)2O3 for T=800 K. . . . . . . 86

7.1 Macroscopic averages of the electron density (full line) and the

corresponding electrostatic potential (broken line) at a GaAs/AlAs

heterojunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Upper panel: simulation cell for the (100) superlattice (for defi-

niteness I display the epitaxial geometry). Lower panel: the elec-

trostatic potential of the superlattice, showing small but definite

bulk regions on either side of the interface. The potential is aligned

with the lower side of the cell. . . . . . . . . . . . . . . . . . . . . 90

7.3 Schematic of the staggered and straddling offset for, respectively,

the epitaxial and free-standing superlattice configurations. . . . . 91

7.4 Valence (VBO, top) and conduction (CBO, bottom) interface band

offsets between In2O3 and (Ga1−xInx)2O3 in the bixbyite phase,

both epitaxially constrained on In2O3, or with compliant substrate.

The offset between Ga2O3 and low x (Ga1−xInx)2O3 at x ' 0.1 in

the β phase for the same conditions are also reported. . . . . . . . 92

8.1 Different views of the orthorhombic phase of Ga2O3. Ga occupies

octahedral (Ga1, Ga2, Ga4) and tetrahedral (Ga3) sites which

form zigzag ribbons of edge-sharing octahedra and corner-sharing

tetrahedra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Polarization calculated along a path connecting the centrosymmet-

ric parent phase (0) to non-centrosymmetric ε-Ga2O3 (1). . . . . . 96

B.1 Brillouin Zone of space group Cmcm (63) . . . . . . . . . . . . . 104

B.2 Brillouin Zone of space group Cmc21 (36) . . . . . . . . . . . . . 104

B.3 Brillouin Zone of space group C2/m (12) . . . . . . . . . . . . . . 105

B.4 The k-vector types of space group C2/m (12) . . . . . . . . . . . 106

B.5 Brillouin Zone of space group Ia3̄ (206) . . . . . . . . . . . . . . . 107

B.6 The k-vector types of space group Ia3̄ (206) . . . . . . . . . . . . 108

D.1 Various heterostructure band alignments . . . . . . . . . . . . . . 110

ix



List of Tables

5.1 Total energy and the density of the magnetization for the structure

Cmc21 with the AFM-c configuration. . . . . . . . . . . . . . . . 56

5.2 Parameters of the eq.(5.3) and ME tensor coefficient for the non-

zero component αzy in LMO compared with the range of value

obtained by Iniguez for Cr2O3 for the individual IR modes. . . . . 58

6.1 Different polymorphs of Ga2O3. The type and the space group of

these structures are specified. . . . . . . . . . . . . . . . . . . . . 66

6.2 Structure parameters of β-Ga2O3 in the monoclinic phase, it has

Z=4 formula units per crystallographic cell. . . . . . . . . . . . . 67

6.3 Computed structure parameters of In2O3 in the Ia3̄ phase. . . . 72

6.4 The energy of structure with 6% In-content in different configura-

tions, in β-Ga2O3 phase. Every In occupies octahedral site . . . . 75

6.5 Calculated structure parameters of InGaO3. The unit cell contains

ten atoms, i.e. Z=2 formula units per unit cell. . . . . . . . . . . 84

8.1 Structure parameters of ε-Ga2O3 in the orthorhombic phase, Pna21 ,

with Z=8 formula units per crystallographic cell. . . . . . . . . . . 94

8.2 Structure parameters of Ga2O3 in the orthorhombic phase, Pnma.

The structure has been predicted by PSEUDO. . . . . . . . . . . 96

A.1 Computed equilibrium structure of the paraelectric Cmcm phase

of La2Mn2O7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Computed equilibrium structure of the ferroelectric Cmc21 phase

of La2Mn2O7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



C.1 Cr2O3 : Technical parameters. . . . . . . . . . . . . . . . . . . . . 109

xi



INTRODUCTION

This Ph.D. thesis reports a theoretical study of electronic and structural prop-

erties of different materials for electronic and optical tecnological applications.

Over the past few years, in fact, the renaissance of several physical effects has

evolved rapidly, firstly due of their implementation in numerous innovative de-

vices.

Among them, the magnetoelectric (ME) effect, or, more in general, the multi-

ferroicity, was studied the first time at the end of the 1800. Then, the interest in

magnetoelectric coupling phenomena declined for several decades until a revival

in the 1990s. A coupling between electric and magnetic fields in solid state mate-

rials was supposed as early as 1894 by Pierre Curie, but it was only in 1959 that

magnetoelectric coupling in a ferroelectric, Cr2O3, was predicted by Dzyaloshin-

skii and observed by Astrov a year later. Nevertheless, the operating margin

regarding the investigation about these materials is still huge, as demonstrated

by the increasing of the number of publications in the last ten years. Theoretical

and experimental approaches are applied to devices for amplitude modulation,

polarization and phase control of optical waves, magnetoelectric data storage

and switching, optical diodes, spin-wave generation as much as amplification and

frequency conversion.

Another example is represented by the gallium oxide, Ga2O3. It has been

determined since the 1950s, but only during the 2000s it has been widely used

for the preparation of gas sensors, optoelectronic devices, luminescent materials

and catalysts in diverse gas and liquid phase chemical reactions. Nowadays, bulk

β −Ga2O3 is well known as a transparent conducting oxide (TCO) because of its

wide bandgap.

1
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This thesis is fitted with this context and, for the sake of clarity, it is basically

divided into two different main topics.

The former one, discussed in the I part, is related to the analysis of magnetic

properties in a layered perovskite, La2Mn2O7, LMO. In this framework, I have

explored an unconventional type of multiferroicity obtained via magnetic doping

of a wide-gap layered-perovskite ferroelectric belonging to the family AnTinO3n+2.

Using the n = 4 member La2Ti2O7 as home base, I have substituted 3d atoms

for Ti. This isovalent substitution of Mn for Ti produces multiferroicity with

weak ferromagnetic (FM), order due to canting of antiferromagnetic Mn spins,

and larger than usual linear magnetoelectric coupling [1].

Operationally, I have optimized the structures involved in the paraelectric

(PE) ferroelectric (FE) transition. Then, I have determined that La2Mn2O7 is a

multiferroic materials since ferroelectric (FE) and magnetic order coexist in the

same phase, in fact it is approximately a G-type antiferromagnet and exhibits a

spontaneous polarization, comparable to displacive ferroelectrics. Finally, I have

demonstrated that La2Mn2O7 is also a magnetoelectric materials having a non-

zero lattice-mediated magnetoelectric tensor, α. Moreover, magnetic noncollinear

spin-orbit calculations reveal that spins point along the c direction but manifests

a spin canting in the bc plane generating a weak ferromagnetism interpretable by

Dzyaloshinsky-Moriya (DM) interaction.

The latter one is described in the II part and concerns the miscibility between

Gallium, Ga2O3, and Indium, In2O3, oxides, (Ga1−xInx)2O3. Due to its large band

gap between approximately 3.5 eV and 5 eV, the (Ga1−xInx)2O3 alloy system

can be promising for use in applications like high-power devices, transparent

electronics, and solar-blind ultraviolet (UV) photo-detectors.

Operationally, I have studied the electronic and local structural properties of

pure Ga2O3 and In2O3. Then, I have explored alloyed oxide based on the mon-

oclinic, β, equilibrium structures of Ga2O3 in different In concentrations. The

structural energetics of In in Ga2O3 causes most sites to be essentially inacces-

sible to In substitution, thus limiting the maximum In content to somewhere

between 12 and 25 % in this phase [?]. As function of x, the gap, volume and

band offsets to the parent compound also exhibit anomalies as function of x [3].

Furthermore, I have explored alloyed oxide based on the bixbyite equilibrium

structures of In2O3 in all x range [4]. The main result is that the alloy could

phase-separate in a large composition range, exhibiting a large and temperature-
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independent miscibility gap. On the low-x side, the favoured phase is isostructural

with β − Ga2O3, and on the high-x side it is isostructural with bixbyite In2O3.

In addition, in accord with experimental results, intermediate alloying shows an

additional crystallographic phase, in competition with the bulk Ga2O3 and In2O3

phases. Finally, I have investigated the ε-phase of Ga2O3, that results to be

the second most stable structure beside β-Ga2O3. Moreover, ε-Ga2O3 exhibits

a large spontaneous polarization and a sizeable diagonal piezoelectric coefficient,

comparable with typical polar semiconductors.

Methods and technical issues

This theoretical study is based on ab initio calculation that have been per-

formed within the Density Functional Theory (DFT) using the Generalized Gra-

dient Approximation (GGA) for the exchange and correlation energy and the

Projector Augmented Wave approach, PAW method, for describing the electron-

ion interaction, as implemented in the Vienna Ab Initio Simulation package,

VASP [5].

In every section, however, I will describe the appropriate calculations tech-

nical details, whereas the theoretical approaches will be introduced in the first

Chapter. Since in both parts a multiferroic material has been described, in Chap-

ter 2 I will briefly explain the mechanisms that cause multiferroicity.



CHAPTER 1

Density Functional Theory

This section gives an overview of the theoretical approaches and approxima-

tions used in first principle calculations and, in particular, in my research. I have

performed my calculations within the Density Functional Theory (DFT), devel-

oped by Hohenberg, Kohn, and, subsequently, Sham in the mid fifties [6,7]. This

theory, is widely used for electronic structure calculation of the ground-state prop-

erties in numerous systems like atoms, molecules and solids. The DFT approach

is based on the works of Thomas and Fermi [8,9] but replaces the computation of

the many-body wave-function by using single-particle wave-functions including

exchange and correlation terms.

In the following, I will summarize the most important features of the DFT:

the Born-Oppenheimer approximation [10], the Kohn-Sham equations and, in the

end, some theories for the exchange and correlation energy. Then, I will explain

the Bloch theorem to describe the motion of electrons in a crystal. Finally, I will

take magnetic effects into account introducing the non-collinear magnetism for

spin-polarized systems.

1.1 Many-Body System

The physical properties of a solid or, more generally, of a macroscopic many-

body system, result from their atomic-scale properties, explained by quantum

mechanics. Mathematically, a physics system is described by the solutions of the

Schrödinger equation for the stationary states, therefore time independent, that

4
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is expressed as:

Ĥ|Ψ〉 = E |Ψ〉 (1.1)

where the wave-function Ψ depends on the position of the electrons, r, and the

nuclei, R, Ψ = Ψ(r,R). Considering only Coulomb forces, without relativistic

corrections, the Hamiltonian can be expressed as the contribution of the kinetic

operator for electrons and nuclei, and additional operators that represent the

electron-electron, nucleus-nucleus and electron-nucleus interactions:

Ĥ = T̂el(r) + T̂nucl(R) + V̂el,el(r) + V̂nucl,nucl(R) + V̂el,nucl(r,R) (1.2)

Ĥ =−
∑
i

}2

2m
∇2
i −

∑
I

}2

2M
∇2
I+

+
1

2

∑
i,j

e2

|ri − rj|
+

1

2

∑
I,J

ZIZJe
2

|RI −RJ |
− 1

2

∑
i,I

ZIe
2

|ri −RI |

(1.3)

where the indices i, j refer to electrons and the indices I, J refer to nuclei.

Nevertheless, this equation is impossible to be solved exactly but the problem

can be simplified by introducing suitable approximations. In this content, the

first approximation was proposed in 1927 by Born and Oppenheimer [10], which

treats separately the motion of atomic nuclei and electrons. This approximation

allows us to uncouple of the electronic and nuclear motion, and the result are two

equations: one for the electronic states, where the nuclei are considered in fixed

positions, and the other for the vibrational states of the nuclei, where the total

energy of the electrons is added to their potential energy.

In this framework, the electronic Schrödinger equation is solved, considering only

the wave-function Ψel that depends on electron positions, while the nuclei are

fixed, “frozen”, in a certain configuration, very often the equilibrium one.

Ψ(r,R) = Ψel(r,R)Φnucl(R) (1.4)

The Hamiltonian of the electron motion is written as follows:[
−
∑
i

}2

2m
∇2
i +

1

2

∑
i,j

e2

|ri − rj|
− 1

2

∑
i,I

ZIe
2

|ri −RJ |

]
Ψel(r,R) = Eel(R)Ψel(r,R)

(1.5)
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and for each electronic energy eigenstate, the energy eigenstates of nuclear mo-

tions are:[
−
∑
I

}2

2M
∇2
I +

1

2

∑
I,J

ZIZJe
2

|RI −RI |
+ Eel(R)

]
Φnucl(R) = EΦnucl(R) (1.6)

therefore, the total energy of the many-body system will be:

E = Eel(R) + Vnucl,nucl(R) (1.7)

The many-electron equation is reduced to two separate equations, for the elec-

tronic and the nuclear motion, although, the eq.(1.5) is still impossible to resolve.

This many-electron equation can be approximate to a one-particle equation for

one single electron moving in an average potential generated by all the other elec-

trons. This approximation is called the mean field approximation (also known as

self-consistent field theory). It consist in replacing, in eq.(1.2), the operators,

that represent the electron-electron interactions, Vel,el(r) =
∑

i

∑
j;j 6=i

e2

|ri−rj | , by a

effective potential V eff(r) given by the average:

V eff =

〈∑
j
j 6=i

e2

|ri − rj|

〉
(1.8)

V eff(r) is chosen in such a way that the electronic Hamiltonian is the sum of single

particle Hamiltonians and the electronic wave-function Ψel(r), in the (1.57), can

be expressed as the product of wave-functions of single particle:

Ψel(r) = ψ1(r1)ψ2(r2)...ψn(rn) (1.9)

the Schrödinger equation (1.5) is reduced to a system of separate single-particle

equations: [
− }2

2m
∇2
i + V eff(r)−

∑
I

ZIe
2

|r−RI|

]
ψi(r) = εiψi(r) (1.10)

with Eel(R) =
∑
εi, the i run from 1 to n. In order to determine the form of the

effective potential, it is possible to use empirical methods, based on functions or

parameters obtained experimentally, or methods from first principles, based on

theoretical self-consistent developments. In particular, I will describe the Hartree,

Hartree-Fock and Density Functional theories.
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1.2 Hartree and Hartree-Fock Theories

In the Hartree method, for the electron i -th located at ri, the effective poten-

tial, eq.(1.8), generated by all the other electrons, can be derived applying the

variational principle. The many-electron wave-function can be considered as the

product of the one-electron wave-functions (1.9) to find the expectation value of

Ĥ

E [Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(1.11)

obtaining

E = 〈Ψ|Ĥ|Ψ〉 =
∑
i

∫
drψ∗i (r)

(
− }2

2m
∇2
i −

∑
I

ZIe
2

|r−RI|

)
ψi (r) +

+
e2

2

∑
i,j
j 6=i

∫
drdr′ψ∗i (r)ψ∗j (r′)

1

|r− r′|
ψi (r)ψj (r′)

(1.12)

Introducing, now, a Lagrange multiplier, λi, to take the normalization of the

one-electron wave-functions into account, it is possible to minimize the previous

equation, so that

δ

(
〈Ψ|Ĥ|Ψ〉 −

∑
i

λi〈ψi|ψi〉

)
= 0 (1.13)

where i = 1, ..., n giving the Hartree equations:− }2

2m
∇2
i −

∑
I

ZIe
2

|r−RI|
+
e2

2

∑
j
j 6=i

∫
dr′ψ∗j (r

′)
1

|r− r′|
ψj(r

′)

ψi (r) = λiψi (r)

(1.14)

The third term, is the Hartree potential

e2

2

∑
j
j 6=i

∫
dr′ψ∗j (r

′)
1

|r− r′|
ψj(r

′) (1.15)

that depends on the (electronic) charge density ni(ri) =
∑
ψ∗i (r)ψ∗i (r) and on

the eigenfunctions, which are solutions of the same equation. These equations

are calculated using an iterative method : once the charge density are calculated, it

can be calculate the Hartree potential generated by this density and, then, resolve

the Schrödinger equation getting new eigenfunctions. The cycle is repeated a

number of times up to the convergence that ensicure the difference between the
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initial and final value of the eigenvalues will be lower than a fixed one. The

Lagrange multiplier, λi, coincides with the energy eigenvalue of a single electron

εi.

However, the wave-function considered in the Hartree theory is not antisymmetric

for the exchange of two electrons, and, being electrons fermions, the many-particle

wave-function needs to be antisymmetric by exchange of couple of electrons. This

constraint can be added by hand, resorting to the Slater determinantal form:

Ψ(r1, ..., rn) =
1√
n!

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) ... ψn(r1)

. . . .

. . . .

ψ1(rn) ψ2(rn) ... ψn(rn)

∣∣∣∣∣∣∣∣∣∣
(1.16)

In addition, it needs take the spin states, so that the electron wave-function

will be given by the product of the spatial and spin contributions:

ψ(ζ) = φ(r)χ(σ) (1.17)

Ψ(ζ1, ..., ζn) = Φ(r1, ..., rn)Γ(σ1, ..., σn) (1.18)

The follow equation, called Hartree-Fock equation, is obtained by applying

the variational principle:− }2

2m
∇2
i −

∑
I

ZIe
2

|r−RI|
+
e2

2

∑
j
j 6=i

∫
dr′ψ∗j (r

′)
1

|r− r′|
ψj(r

′)

ψi (r)

−

e2

2

∑
j
j 6=i

∫
dr′ψ∗j (r

′)
1

|r− r′|
ψi(r

′)

ψj (r) δσiσj = εiψi (r)

(1.19)

where the first term includes the electronic kinetic energy, electron-nucleus and

the Hartree potential, while the second one is the exchange energy. It can be

seen that the Hartree potential is a local potential, since it depends on the mutual

electron position. To be more precise, it is the Coulomb interaction acting on the

i -th electron due to the all the others. Moreover, the Hartree-Fock potential is

non-local since depends on an average contribution. Furthermore, the Hartree-

Fock potential takes into account the correlation of the spin, that is different

from zero only for interaction between electrons with the same spin, and is null,

consequently, for all pairs of opposite spin contributions.
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1.3 Hoehenberg-Kohn Theorem

The Hartree-Fock approach, assuming independent electrons in an effective

potential, is an approximation to the true many-body problem. Due to the huge

number of electron-electron interactions in a real system, this method is not able

to give a reasonable result. Realistic calculations, however, can be performed

with the Density Functional Theory, (DFT). This method, proposed by Kohn

in the early 60s, has been widely used in the field of condensed matter physics.

It is mainly based on the Hoehenberg-Kohn Theorem, which supposes all

the physical properties of a system could only be determined by the knowledge

of the charge density of the ground state [6]. Considering now a system of N

electrons moving under the influence of an external potential, V (ri) and the

mutual Coulomb repulsion, W (ri, rj), the Hamiltonian can be written as:

Ĥ = T̂ + V̂ext + Ŵ =
∑
i

(
− }2

2m
∇2

ri
+ V (ri)

)
+
e2

2

∑
i,j
j 6=i

W (ri, rj) (1.20)

The charge density in the ground state can be expressed as:

n(r) =
∑
i

|ψi(r)|2 (1.21)

Theorem 1 The external potential Vext, and hence the total energy, is uniquely

determined by the density of the ground state of a system of interacting charges,

except for an additive constant.

Theorem 2 The ground state energy can be obtained variationally: the charge

density that minimises the total energy is the exact ground state density. Since

the charge density of the ground state uniquely determines the potential Vext, and

this potential uniquely determines the wave-function of the ground state, Ψ, then

the full many- body ground state is a unique functional of n(r).

Consequently, for every multi-body wave-function Ψ, representing the elec-

tronic ground state, there is a correspondence with the charge density of the

ground state:

n(r) = 〈Ψ|
∑
i

δ(r− ri)|Ψ〉 (1.22)
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And, in addition, for each external potential, Vext, exists a bijective correspon-

dence with the wave-function of the ground state, Ψ

Vext ⇐⇒ Ψ⇐⇒ n(r) (1.23)

Subsequently, from the Hohenberg-Kohn theorem, the wave-function of the ground

state and the external potential are functionals of the charge density of the ground

state

n(r)⇒ |Ψ [n]〉 ⇒ Vext [n] (1.24)

The energy of the ground state related to an external potential V0 (external

potential of a system with a charge density of ground state n0(r) and energy EV0)

can be written as functional of of the charge density of the ground state:

EV0 [Ψ0]⇒ EV0 [n0] (1.25)

EV0 [n] ≡ 〈Ψ0 [n] |T̂ + V̂ext + Ŵ |Ψ0 [n]〉. (1.26)

For the Rayleigh-Ritz principle, the exat ground state must be determined by

minimizing this energy functional: E0 < EV0 [n] per n 6= n0, then

E0 = EV0 [n0] = min
n∈N

EV0 [n] (1.27)

where N is the set of all the charge densities.

The eq (1.26) can be rewritten as:

E [n] = FHK [n] +

∫
Vext(r)n(r)dr (1.28)

which FHK [n] = 〈Ψ0 [n] |T̂ + Ŵ |Ψ0 [n]〉. Since such a functional is not dependent

on any external potential, it is the same for all the systems with N interacting

electrons.

By applying the variational principle that preserve the number of electrons,

δ

δn(r)
=

(
E0 [n]− µ

∫
d(r)n(r)

)
= 0 (1.29)

the Euler Lagrange equation is obtained as:

δE0 [n]

δn(r)
=
δFHK [n]

δn(r)
+ Vext(r) = λ (1.30)
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where λ is the Lagrange multiplier with respect to the constraint of the conser-

vation of the number of electrons, which coincides with energy eigenvalue.

The determination of the functional FHK [n] is, however, still difficult to be

solved because it takes into account all the interactions between electrons. Nev-

ertheless, this problem is simplified in the formalism of Kohn- Sham [7], where a

system of non-interacting electrons is considered. In such as a system, the ground

state density is obtained, in practice, by solving the N one-electron Schrödinger

equations. This method is still exact since it yields the same ground state density

as the real system, but greatly facilitates the calculation.

1.4 Kohn-Sham equations

Kohn and Sham considered a system of non-interacting electrons subjected to

a generic potential Vs, the resulting Hamiltonian can be express as:

Ĥ = T̂ + V̂s (1.31)

According to the Hohenberg-Kohn theorem, in the non-interacting electrons sys-

tem, a unique functional energy will exist that is given by:

Es [n] = Ts [n] +

∫
d(r)Vs(r)n(r) (1.32)

where Ts [n] is the kinetic energy functional, and n is the charge density. This

equation differs from eq (1.28), by considering Ts [n] instead of FHK [n]. The exact

density of the ground state of a non-interacting electrons system is produced by

applying the variational principle, δEs [n] = 0,

ns(r) =
∑
i

|φi(r)|2 (1.33)

where the φi(r) are the eigenfunctions satisfying the Scrödinger equation(
}2

2m
∇2 + Vs(r)

)
φi(r) = εiφi(r) (1.34)

according to the Hohenberg-Kohn theorem. These eigenfunctions are uniquely

determined by the potential Vs. Assuming the density of the ground state of the

non-interacting electrons system equal to the density of the interacting electrons
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system, ns(r) = n(r), the expression of the energy functional can be written as:

E [n] = Ts [n] +

{
T [n]− Ts [n] +W [n]− e2

2

∫∫
n(r)n(r′)

|r− r′|
d(r)dr′

}
+
e2

2

∫∫
n(r)n(r′)

|r− r′|
d(r)dr′ +

∫
n(r)Vext(r)d(r)

≡ Ts +
e2

2

∫∫
n(r)n(r′)

|r− r′|
d(r)dr′ +

∫
n(r)Vext(r)d(r) + Exc [n]

(1.35)

The functional Exc [n] can be defined as:

Exc [n] ≡ FHK [n]− e2

2

∫∫
n(r)n(r′)

|r− r′|
d(r)dr′ − Ts [n] (1.36)

This functional, called exchange and correlation energy, contains the electron-

electron interaction contribution (not the Coulomb interaction) and the difference

between the kinetic energy of the interacting electrons system and the kinetic

energy of non-interacting electrons system corresponding to the same charge den-

sity.

Applying the variational principle to the energy functional of the interacting

electrons system it can be written:

δE [n]

δn(r)
=
δTs [n]

δn(r)
+ e2

∫
n(r′)

|r− r′|
d(r′) + Vext(r) + vxc [n] = 0 (1.37)

where vxc [n] is the exchange and correlation potential defined as:

vxc [n] ≡ δExc [n]

δn(r)
. (1.38)

As previously done in the case of the non-interacting electrons system:

δTs [n]

δn(r)
+ Vs(r) = 0, (1.39)

where the potential Vs(r) will be defined as:

Vs(r) = Vext(r) + e2

∫
n(r′)

|r− r′|
dr′ + vxc [n] (r) (1.40)

Although exact in principle, Kohn-Sham theory is approximate in practice be-

cause of the unknown exchange-correlation functional. This functional is not

possible to be determined exactly, but approximations are required.
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1.5 Exchange and correlation energy

Two simple physical ways to approximate the exchange-correlation energy

are the Local (Spin) Density Approximation, L(S)DA, and Generalized Gradient

Approximation, GGA.

1.5.1 Local (Spin) Density Approximation

In the local density approximation, the exchange and correlation energy of an

electronic system, is a purely local functional. It is assumed that the energy of the

exchange-correlation εxc(r) for an electron in the position r in an inhomogeneous

electron gas, is equal to the energy of the exchange-correlation, Exc, for a uniform

gas of electron density n(r) at the position r,

Exc [n(r)] =

∫
εxc(r)n(r)d(r) (1.41)

then, the exchange and correlation potential is:

Vxc(r) =
δExc [n(r)]

δn(r)
=
∂ [n(r)εxc(r)]

∂n(r)
(1.42)

with

εxc(r) = εunif
xc [n(r)] (1.43)

The exchange and correlation energy, εunif
xc [n(r)], consists of separately con-

tributions of exchange and correlation. The first one is determined analytically

in the limits of low and high charge density, precisely rs → ∞, rs → 0, with

rs =
(

4πn
3

)−1/3
u.a. Wigner-Seitz radius 1. In fact,

εx [n(r)] = −3

4

(
3

π

)1/3

= −3

4

(
9

4π2

)1/3
1

rs
= −0.458

rs
u.a. (1.44)

Analytic expressions for the correlation energy are proposed by Ceperley and

Alder [11] and Perdew and Wang [12] using quantum Monte-Carlo simulations of

the homogeneous electron gas.

Including the spins, the exchange and correlation energy can be rewritten as:

εxc [n+, n−] = εx [n+, n−] + εc [n+, n−] (1.45)

1Radius of the sphere that can be associated to each electron in atomic units, so that the
volume of all spheres ’add up’ to the total volume of the system. In the other word, the Wigner-
Seitz radius, is the radius of a sphere whose volume is equal to the mean volume per atom in
a solid
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and the exchange contribution can be expressed as:

εx [n+, n−] =
1

2
εx [2n+] +

1

2
[2n−] (1.46)

Considering the same method in LDA, can be set Cx = 3
4

(
3
π

)1/3

εx [n+, n−] = 21/3Cx

∫ [
n

4/3
+ (r) + n

4/3
− (r)

]
d(r) (1.47)

1.5.2 Generalized Gradient Approximation

In the Generalized Gradient Approximation (GGA), the exchange-correlation

energy is defined as in the LDA plus the second-order gradient of the charge

density, ∇n(r). Expanding in series with respect to the exchange-correlation

energy for an electron gas with uniform density:

εxc [n] =

∫
[g00(n) + g22(n)(∇n)2 + g42(n)(∇2n)2

+g43(n)(∇2n)(∇n)2 + g44(n)(∇n)4 + ...]dr

(1.48)

and including spin contributions, the exchange and correlation contribution is:

εGGA
xc =

∫
f(n+, n−,∇n+,∇n−)dr. (1.49)

In comparison with LSD, GGA tends to improve the total energies. GGA expands

and soften bonds, an effect that sometimes corrects and sometimes overcorrects

the LSD prediction. Typically, GGA favors density inhomogeneity more than

LSD does. GGA produces the corrected fundamental state for magnetic transition

metals, better than LSDA. While in the case of spin unpolarized, using LSDA

more satisfactory results are obtained than the GGA [13].

1.6 Kohn-Sham equations for crystalline solids

An ideal crystal is constituted by a repetition of ordered spatial structural

units, which can be described through a single periodic lattice. Each lattice

point is associated with a structural unit, which can contain only one atom or

group of atoms, called base. The grid is defined by a set of data points with the

relation:

R = n1a1 + n2a2 + n3a3 (1.50)
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where the ai are the fundamental translation vectors that define a primitive cell

which contains a single lattice point. Generally, these vectors are given with the

crystallographic axes, and n are integers. There are 14 distinct translational lat-

tices, called Bravais lattices, grouped into seven crystal systems according to the

seven types of conventional unit cell. The three base vectors define, in addition,

the periodicity of the lattice, and for any vector R lattice, the external potential

Vext(r) has the same frequency as the Bravais lattice associated to the solid:

Vext(r + R) = Vext(r) (1.51)

Moreover, the density in a point (r) and the correspondent energy are invariant

under translations of vectors R belonging to the lattice, or rather both the poten-

tial of Kohn-Sham and the total Hamiltonian have the periodicity of the lattice.

This is a consequence of the Bloch theorem:

Theorem 3 (Bloch) Any solution of the Schrödinger equation with a periodic

potential can be represented as a plane wave modulated by a function having the

same periodicity of the lattice.

In accord with Bloch’s theorem, the eigenstates of a one-particle Hamiltonian

can be written as the product of a plane wave and a lattice-periodic function

ψn,k(r) = eik·run,k(r) (1.52)

where un,k(r) is the lattice-periodic function

un,k(r + R) = un,k(r), (1.53)

and the indices k and n are the wave-vector labelling the wave-function and the

band index which labels the different solutions for a given k, respectively. If the

wavefuntions are shifted by a lattice vector, they became:

ψn,k(r + R) = eik·Rψn,k(r). (1.54)

Thanks to their periodicity, the functions un,k(r), can be developed in series of

plane waves, whose wave vectors are the vectors of the reciprocal lattice of the

crystal:

uk(r) =
∑
G

eiG·rcG (1.55)
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where G is the vector of the reciprocal lattice, and satisfies the relation:

R ·G = 2πm m ∈ N , (1.56)

Therefore, the wave-function can be expressed as:

ψn,k(r) =
∑
G

ei(k+G)·rcn,k+G (1.57)

The allowed electronic states, and thus the set of discrete points k, are determined

by the periodic boundary conditions of Born-Von Karman2. The k-wavevector,

labeling the wave-function, can be chosen in the first Brillouin zone due to the

translational symmetry. Computationally, a complete expansion in terms of in-

finitely many plane waves is not possible, for this reason the plane wave expansion

must be truncated. A cutoff energy value, Ecut−off determines the number of plane

waves in the expansion, satisfying:

}2

2m
|k + G|2 ≤ Ecut−off . (1.58)

Basis set size depends only on the computational cell size and the cutoff energy

value. For a periodic system, integrals in real space over the (infinitely extended)

system are replaced by integrals over the (finite) first Brillouin Zone in reciprocal

space, according to the Bloch’s theorem. For example, the charge density are

defined as:

n(r) =
∑
i

∫
BZ

dk|ψik(r)|2 (1.59)

In this equation, such integrals are performed by summing the function values

of the integrand at a finite number of points in the Brillouin Zone, called the

k-point mesh. Choosing a sufficiently dense mesh of integration points is crucial

for the convergence of the results, and is therefore one of the major objectives

when performing convergence tests.

K-points sampling and method for smearing

The widely used sets of special points, are the Monkhorst and Pack [14] and

the linear tetrahedron method ones. The first k-point mesh consist of an equis-

paced grid of k-points, while, in the second one, reciprocal space is divided into

tetrahedra. In other word, partial occupancies are used to decrease the number

2ψ(r +Niai) = ψ(r)
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of k-points necessary to calculate an accurate band-structure energy. That error,

introduced in this approximation, is greater in the metals. In metallic systems

Brillouin-zone integrals over functions that are discontinuous at the Fermi-level

require a greater number of points k to accurately calculate the Fermi surface. In

order to solve this problem the step function3 is replaced by a smooter function,

called smearing, σ. Several methods have been proposed to solve the problem of

a much faster convergence speed without destroying the accuracy of the sum, for

example:

Fermi-Dirac smearing, in this case the step function is simply replaced by

the Fermi-Dirac functions [15]

f

(
εkv − EF

σ

)
=

1

exp

(
εkv − EF

σ

)
+ 1

(1.60)

Gaussian smearing, in the Gaussian smearing the step function is replaced

by function [16]:

f

(
εkv − EF

σ

)
=

1

2

(
1− erf

[
εkv − EF

σ

])
(1.61)

This method serves as an mathematical tool to obtain faster convergence with

respect to the number of k-points.

The linear tetrahedron method, in this case reciprocal space is divided into

tetrahedra with matrix elements and band energies linearized in k. The linear

approximation allows the integration to be performed analytically, taking into

account the often complicated shape of the Fermi surface [17].

Methfessel-Paxton method, which approximates the step-function by start-

ing with the delta-function using expansion in a set of orthogonal Hermite poly-

nomials [18].

3The function of occupancy of states, at T = 0 is the step function, equal to one if the
eigenvalue εkv < EF and zero for εkv > EF , where EF is the Fermi energy.



CHAPTER 1. DENSITY FUNCTIONAL THEORY 18

1.7 Pseudopotentials

The Kohn-Sham equations, obtained by developing single electron orbitals in

a series of plane waves, are described by the secular equation:

∑
G′

[
}2

2m
|k + G|2 + VH(G−G′) + Vsc(G−G′) + Vext(G,G′)

]
cn,k+G′ =

= εn,kcn,k+G

(1.62)

The expansion of the wave-functions in plane waves uses the same resolution in

all regions of space, so, if we want to accurately describe all the electrons of the

system, including those belonging to the inner shells (core electrons), we would

need a very large number of plane waves. This problem can be overcame by using

the method of the pseudo-potential.

Pseudopotentials were suggested by Phillips and Kleinman [19] and enlarged

by Heine, Cohen [20]. This method allows us to achieve a resonable convergence

considering appropriate basis set. The pseudo-potentials are constructed to re-

place the atomic all-electron potential with a weaker potential. The core states are

neglected and the valence electrons are described by pseudowave-function. The

pseudopotential formalism grew out of the Orthogonalized Plane Wave (OPW)

method [21], in which valence wave-functions were expanded in a set of plane

waves (PW) which are orthogonalized to all of the core wave-functions ψc. The

valence states are smoothed in the core region by subtracting out the core or-

thogonality wiggles, leading to pseudostates ψpseudo.

Figure 1.1 shows the ionic potential, solid line, the pseudo-potential, dotted

line, and the corresponding wave-functions. With rc is indicated the radius of

the core. The pseudopotential approximation replaces the strong ionic potential

V = Z/r in the core region, by a weaker pseudopotential Vpseudo. The corre-

sponding set of pseudo-wave-functions ψpseudo and the all-electron wave-functions

ψAE are identical outside a chosen cutoff radius rc and so exhibit the same scat-

tering properties, but ψpseudo does not possess the nodal structure that cause the

oscillations inside rc, which means they can now be described with a reasonable

number of plane-waves. The conditions of a good pseudopotential are that it

reproduces the logarithmic derivative of the wave-function (and thus the phase-

shifts) correctly for the isolated atom, and also that the variation of this quantity

with respect to energy is the same to first order for pseudopotential and full po-
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Figure 1.1: Approximation of the effective potential with a pseudo-potential. The all-electron
potential V=Z/r and orbital ψv are altered to the pseudopotential Vpseudo and pseudo-orbital
ψpseudo inside the core radius rc. Ref. [22].

tential, norm-conservation criterion. In the region outside the core, in fact, the

pseudo-wave-functions and effective functions (AE, all -electrons), must have the

same dependence on the spatial coordinate, and the same norm, so that they can

generate the same charge density, guaranteeing the principle of conservation of

charge [22].

1.7.1 Projector-Augmented Waves

In the projector-augmented waves (PAW) method [23], the all-electron valence

wave-functions, (AE), are built starting from the pseudo-wave-functions, (PS), via

a linear transformation as:

|ψAE
n 〉 = |ψPS

n 〉+
∑(

φAE
n 〉 − φPS

n 〉
)
〈pPS
i |ψPS

n 〉 (1.63)

Because of that, this method consists in separating the total wave-function in

a wave-function within the partial spherical region of the core, centered on the

core, while the outside in a function expressed as a series of plane waves or other

functions of an appropriate base. Obviously, on the surface of the sphere the two

functions should have the same value and the same first derivative.

In the previous equation (1.63), the funtions φAE
n are the solutions of the

Schrödinger equation for an atom not spin-polarized with energy εi in the regime
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of valence; the partial wave-functions φPS
n are identical to the actual wave-functions

outside the core region; the pPS
i , are functions projected that satisfy the relation:

〈pPS
i |φPS

n 〉 = δij〈r|pPS
i 〉 = 0, r > rc (1.64)

The charge density corresponding to an effective eigenstate, ψAE
n , given by n(r) =

〈ψAE
n |r〉〈r|ψAE

n 〉 is composed by:

n(r) = nPS(r)− nPS,1(r) + nAE,1(r) (1.65)

where nPS(r) is the pseudo-charge density, while the other two terms represent

the pseudo-density and the actual density of a particular site, defined respectively

as:

nPS(r) = 〈ψPS
n |r〉〈r|ψPS

n 〉

nPS1(r) =
∑
i,j

〈φPS
i |r〉〈r|φPS

i 〉〈ψPS
n |pPS

i 〉〈pPS
j |ψPS

n 〉

nAE1(r) =
∑
i,j

〈φAE
i |r〉〈r|φAE

i 〉〈ψPS
n |pPS

i 〉〈pPS
j |ψPS

n 〉

(1.66)

The PAW method allows us to describe the wave-functions of the valence or-

bitals, properly orthogonalized at the core wave-functions, even in core frozen

approximation, i.e. it was assumed they do not satisfy the different chemical

configurations in which the atom can be considered [24].

1.8 Spin-polarized DFT, collinear and non collinear

magnetic ordering

The Kohn-Sham theory can also be extended to spin-polarized systems [25].

In this case, the electron density is constituted by two spin independent densities

n+ and n−. Each of these densities is built through Kohn-Sham orbitals, and

satisfies the equation: {
− }

2m
∇2 + V s

s (r)

}
φsi (r) = εsiφ

s
i (r) (1.67)
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where s indicates the spin component + or −. In this case, the potential in (1.40),

is defined as:

V s
s (r) = Vext(r) + e2

∫
n(r′)

|r− r′|
dr′ + vsxc [n+, n−] (r) (1.68)

and the potential for exchange and correlation:

vsxc [n+, n−] ≡ δExc [n+, n−]

δns(r)
. (1.69)

The spin density, built with the Kohn-Sham orbitals, is expressed as:

ns(r) =
Ns∑
i

|φsi (r)|2 (1.70)

with N s number of occupied orbital.

In general, for a spin-polarized system, the density of the spins is considered

having a single direction (collinear), coincident with z -axes by convention. In

more complex structures, otherwise, the density of the spins or, better, the den-

sity of the magnetization, varies in all directions of space (non-collinear). Figure

1.2 displays the different types of collinear and non-collinear magnetic ordering.

Noncollinear magnetic ordering may arise from a topological frustration of ex-

change interactions, the competition between spin- and orbital magnetism, from

competing ferromagnetic and antiferromagnetic interactions in disordered alloys

[24].

A generalization of LSDA functional, for non-collinear magnetism, was pro-

posed by Kübler et al. [26]. In this case, the magnetization associated with

different atoms in a unit cell, is allowed to point along different, non collinear,

directions and provides the spin quantization axes. Only the GGA leads reliable

and accurate results [27] while the LSDA predicts often the wrong ground state.

The success of GGA’s derives from their ability to correct many of the limitations

of the LSD without increasing the computational cost significantly.

Figure 1.2: Schematic of the distinction between collinear ferromagnetic (left) and anti-
ferromagnetic (center) and non-collinear (right) moment configuration. Ref. [28].
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For a system of interacting electrons, immersed in a magnetic potential the

potential can be written

Û =
∑
i

V (ri) + 2µB
∑
i

B(ri) · Ŝi (1.71)

where B(ri) is the magnetic field, µB = e}
2me

is the Bohr magneton and Ŝi is the

i-th electron spin operator. The energy will be a function of the density matrix

nαβ in which α and β are the spins along a defined direction. The total density

matrix may then be defined as

Tr [nαβ(r)] ≡ nTr(r) =
∑
αβ

nαα(r)δβα = n+(r) + n−(r) (1.72)

In a magnetic system non-collinear the off-diagonal elements are nonzero, and

the density matrix is expressed as:

nαβ =
1

2
nTr(r)δβα + m · σαβ (1.73)

where

m(r) = −µB
∑
αβ

nβα(r)σβα = −µB[n+(r)− n−(r)] (1.74)

is the density of magnetic momentum or magnetization, and σ = (σx, σy, σz) is

the vector of the Pauli spin matrices.

Exchange and correlation energy. In this formalism, the exchange and cor-

relation energy is not known in general, but only for a spin-polarized homogeneous

electron gas with charge density nαβ defined in (1.72), and magnetization density

m(r), defined in (1.74):

Exc [nαβ] =

∫
nTr(r)εxc [nαβ(r)] dr =

∫
nTr(r)εxc [nTr(r), |m(r)|] dr (1.75)

The Kohn-Sham potential is:

Vs(r) = V0(r) +

∫
n(r′)

|r− r′|
dr′ + Vxc(r) (1.76)

Bs(r) = B0(r) + Bxc(r) (1.77)
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where the exchange and correlation potential consisting of a scalar contribution,

is defined as:

Vxc [nαβ] (r) =
δExc [nαβ]

δnTr(r)
= εxc [nαβ] (r) + nTr(r)

∂Exc [nαβ(r)]

∂nTr(r)
(1.78)

and the magnetic exchange and correlation field is:

Bxc [nαβ] (r) = −δExc [nαβ]

δm(r)
= e(r)nTr(r)

∂εxc [nαβ(r)]

∂|m(r)|
(1.79)

where e(r) =
∂εxc [nαβ]

∂|m(r)|
is the local direction of the magnetization at the point r.

Pseudopotentials. The noncollinear PAW formalism differs from that described

in Section 1.7.1. The major difference in non-collinear formalism is that the spin

indices are included. In the PAW approach, charge and spin densities are de-

composed into pseudodensities and compensation densities accounting for the

difference between the pseudodensities and all-electron densities. In this contest,

the density matrix nαβ(r) is composed of a soft pseudodensity and augmenta-

tion and compensation contributions in complete analogy to the scalar case. The

generalization is straightforward it is sufficient to add spin indices to the pseudo-

wave-function |Ψm〉. The AE wave function Ψα
m is derived from the pseudo-wave

function Ψ̃α
m by means of a linear transformation:

|Ψα
m〉 = |Ψ̃α

m〉+
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|Ψ̃α

m〉 (1.80)

where the index i is referred to the atomic site, the index m stands for the band-

index and the k points within the first Brillouin zone. The ψi is the AE partial

waves, obtained for a nonmagnetic reference atom by radially integrating the

Schrödinger equation for a set of energies εk and are orthogonalized to the core

states, the pseudo partial waves φ̃i are equivalent to the AE partial waves outside

a core radius rc and match continuously onto ψi inside the core radius. The

core radius rc is usually chosen approximately around half the nearest neighbor

distance. The projector functions p̃i are dual to the partial waves:

〈p̃i|φ̃i〉 = δij (1.81)

Startin from eq. (1.80) the AE total density matrix is given by:

nαβ(r) = ñαβ(r) + n1
αβ(r)− ñ1

αβ(r) (1.82)
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where ñ is the the soft pseudodensity matrix calculated directly from the pseudo-

wave functions on a plane-wave grid:

ñαβ(r) =
∑
m

fm〈Ψ̃β
m|r〉〈r|Ψ̃α

m〉 (1.83)

where fm is the Fermi-Dirac occupation function.

The on-site charge-densities are defined as:

n1
αβ(r) =

∑
m,(i,j)

fm〈Ψ̃β
m|p̃i〉〈φi|r〉〈r|φj〉〈p̃j|Ψ̃α

m〉 (1.84)

ñ1
αβ(r) =

∑
m,(i,j)

fm〈Ψ̃β
m|p̃i〉〈φ̃i|r〉〈r|φ̃j〉〈p̃j|Ψ̃α

m〉. (1.85)

In summary, for magnetic calculations, orbitals and charge densities must

be calculated separately for spin-up and spin-down electrons. A total charge-

density and a spin-density may be calculated by taking the sum and the difference

of the spin-up and spin-down densities, respectively. As long as only collinear

magnetic structures with a fixed spin-quantization axis are considered, charge

and spin densities are scalar quantities and the step from nonspin-polarized to

spin-polarized calculations is trivial [29].



CHAPTER 2

Ferroelectricity and structural phase transitions

Ferroelectricity is a property of certain nonconducting crystals, or dielectrics,

that exhibit spontaneous electric polarization1, that can be reversed in direction

by the application of an appropriate electric field. Ferroelectric materials are

subjected to a structural phase transition. Below a transition temperature called

the Curie temperature, Tc =TCurie, this materials are polar and possess a spon-

taneous polarization or electric dipole moment. Above Tc, the materials have a

centrosymmetric structure and no electric dipole moment is present. The non-

polar phase encountered above the Curie temperature is known as the paraelectric

phase.

The direction of the spontaneous polarization conforms to the crystal sym-

metry of the material. While the reorientation of the spontaneous polarization

is a result of atomic displacements. Summarizing, the characteristic properties

of ferroelectrics include spontaneous electric polarization, polarization reversal,

where the polarity can be reoriented, or reversed fully or in part, through the

application of an electric field, (switching), and disappearance of the polarization

above a ferroelectric phase transition temperature TCurie.

In this framework, the simplest theory of structural phase transitions is Lan-

dau’s (1937) phenomenological theory.

1Electric polarization consists in a separation of the centre of positive and negative electric
charge, making one side of the crystal positive and the opposite side negative

25
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Figure 2.1: Typical behaviour of the order parameter η at a phase transition. Above Tc η is
vanishing and below Tc η has some finite value.

Landau’s Theory. Based exclusively on symmetry considerations, Landau’s

theory can provide a reliable description of a system’s equilibrium behaviour

near a phase transition. Landau’s theory characterizes the transition in terms

of an order parameter, η, a physical entity that is zero in the high-symmetry

(disordered) phase, and changes continuously to a finite value once the symmetry

is lowered: the paraelectric-ferroelectric transition.

Landau’s theory assumes that the free energy of one unit cell of the crystal may

be expanded in a power series in this order parameter;

F (η) = F0 + αη2 + βη3 + γη4... (2.1)

where the coefficients F0, α, β and γ may be functions of temperature. The phase

stability is obtained minimizing the energy, it means that:

∂F (η)

∂η

∣∣∣∣
η0

= 0
∂2F (η)

∂η2

∣∣∣∣
η0

> 0 (2.2)

The high-symmetry phase 〈η〉 = η0 = 0 is then stable only if the linear term in η

in eq. (2.1) is absent and if α is positive. The system is distorted if α is negative.

Furthermore, at a continuous phase transition F (η) must increase with |η| at Tc,

α = 0, so that β = 0 and γ > 0. So, the energy must be invariant with respect

to symmetry operation η → −η
During the temperature changes, the crystal changes its symmetry contin-

uously, when T=Tc it takes a sudden change. Above the temperature Tc, the

crystal is in the phase 1, for T<Tc the crystal is in the phase 2.

Landau’s theory is then completed by the further assumption that since α

changes sign at Tc, it can be written as an analytic function of T near Tc:

α = a(T− Tc), γ = u > 0 (2.3)
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Figure 2.2: F (η) as a function of order parameter, for different values of temperature. The
minimum of the free energy below Tc should occur at η 6= 0 and above Tc at η = 0.

where u is assumed to be independent of temperatures close to Tc.

F (η) = F0 + a(T− Tc)η
2 + uη4... (2.4)

The stability conditions for the low-temperature phase is obtained applying the

condition in eq. (2.2):

2η
[
a(T− Tc) + 2uη2

]
= 0 (2.5)

whose solutions are:

η = 0 η = ±

√[
a(Tc − T)

2u

]
(2.6)

The first solution is true at any temperature, al-

though for T <Tc there are metastable positions,

which can be determined by studying the second

derivative of the free energy. The second solution

is only valid for T <Tc.

Follow this theory, considering the polarization as the order parameter, it is possi-

ble to obtain the value of the spontaneous polarization in the ferroelectric phase,

where

Ps = ±
√

1

2u
[(Tc − T)]

1
2 , T < Tc (2.7)
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The equilibrium temperature of transition from paraelectric to ferroelectric phase

is Tc =TCurie; all the properties are dependent on the difference between the crys-

tal temperature T and the phase transition temperature Tc. The ± signs indicate

that the polarization can point in either direction along the symmetry axis (recall

that this is the uniaxial case), and correspond to the two energetically equivalent

states of the ferroelectric crystal at zero electric field.

Ab initio theory of the ferroelectric phase transition is based on density func-

tional theory, developed be Kohn, Hohenberg and Sham, described in the previous

chapter, using the Kohn-Sham formalism. In the next section, I will briefly ex-

plain the applications of the first principles calculations to ferroelectric crystals,

resorting to the VASP code. The method used in this code is based on works of

R. Resta, R. D. King-Smith and D. Vanderbilt.

2.1 Polarization as Berry phase

The macroscopic electric polarization of a crystal is defined as the dipole

moment per unit volume:

P =
1

V

[
−e
∑
j

ZjRj +

∫
rn(r)dr

]
(2.8)

where e is the electron charge, V the crystal volume, Rj is the j th lattice vector,

−eZj is the ionic charges and n(r) is the electronic charge density.

Furthermore, the measured quantity is not P (P is not a bulk property) but

the difference in polarization between two different states of the same crystal,

∆P =

1∫
0

dλ
dP

dλ
(2.9)

where the parameter λ varies continuously between the two configurations.

A variation of the polarization is related to perturbations of the crystal, for exam-

ple, by applying a strain (piezoelectric crystal), a temperature change (pyroelec-

tric crystal), or a spontaneous polarization generated by an external electric field

(ferroelectric crystal) [30]. As an instance, in a piezoelectric crystal, the macro-

scopic polarization difference is calculated between the strained and unstrained

structures of the crystal.

From the theoretical point of view the macroscopic electronic polarization of
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an insulating crystal is defined by the “Modern Theory of Polarization” proposed

by R. Resta, R. D. King-Smith and D. Vanderbilt [31–35]. This theory assumes

polarization can be computate in electronic structure codes through the Berry

phase of the electronic Bloch wave-functions. This theory applies to the case

of zero temperature and zero electric field. The last condition is necessary to

consider the Hamiltonian, describing the crystal periodic, with eigenfunctions

in Bloch form. The potential is no longer a periodic function in presence of a

macroscopic field.

The electronic contribution to the difference in the polarization has been iden-

tified by King-Smith and Vanderbilt as a geometric phase of the valence wave

functions, Berry Phase, due to a change in the Hamiltonian of the adiabatic

system [31]:

∆Pe =

λ2∫
λ1

∂Pe

∂λ
dλ (2.10)

with:

∂Pe

∂λ
=

i|e|}
NVme

∑
k

M∑
n=1

∞∑
m=M+1

〈Ψ(λ)
nk |p̂|Ψ

(λ)
mk〉〈Ψ

(λ)
mk|∂V

λ

∂λ
|Ψ(λ)

nk 〉(
ε

(λ)
nk − ε

(λ)
mk

)2 + c.c. (2.11)

where me is the electronic mass, e is the electronic charge, N is the number of

unit cells in the crystal, M is the number of occupied bands, p̂ is the momen-

tum operator, and the Ψ
(λ)
nk are the Bloch functions2, solutions to the crystalline

Hamiltonian. In addition, the potential V λ, is the Kohn-Sham potential [33].

Now ∆Pe = Pλ2
e −Pλ1

e , where:

Pλ
e = −if |e|

8π3

M∑
n=1

∫
BZ

dk〈uλnk|∇k|uλnk〉 (2.12)

where f is the occupation number of states in the valence band, uλnk is the periodic

eigenstate of the Bloch function. The sum n runs over all M occupied bands. The

previous expression (eq. (2.12)) can be written in terms of Wannier functions as:

Pλ
e = −f |e|

V

M∑
n=1

〈W λ
n |r|W λ

n 〉 (2.13)

with Wn is the Wannier function associated with valence band n. Unlike the Bloch

functions which are delocalized in space, the Wannier functions are localized. In

2Ψnk(r) = eik·runk(r)
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eq. (2.13) the change in polarization of a solid is proportional to the displacement

of the charge centers

rn〈W λ
n |r|W λ

n 〉 (2.14)

of the Wannier functions corresponding to valence bands. Rewriting this expres-

sion in terms of the periodic cell functions:

rn = −if |e|
8π3

M∑
n=1

∫
BZ

dkeiϕn(k)〈uλnk|∇k|uλnk〉 (2.15)

Compare eq. (2.12) with eq. (2.15) results that the change in polarization ∆P is

only well-defined modulo
f |e|R
V

, where R is a lattice vector. Wannier functions

is invariant modulo R, with respect to the choice of phase of the Bloch functions.

Multiplying each |Ψnk〉 for one phase eiϕn(k), where ϕn(k) is a real function of

k, you get a set of functions that are still eigenstates of the Hamiltonian. The

phase factor, however, is not canceled out in the calculation of Wannier functions,

which therefore are not invariant under gauge transformations.

Computational method. In the eq. (2.12) is not specified the relationship

between the phase of the eigenvectors uλnk generated by a numerical diagonal-

ization routine. The problem can be result dividing the eq. (2.12) into three

equations, one for each component of Pλ
e in the three directions of the vectors of

the reciprocal lattice Gi, so that, for example:

Gi ·Pλ
e = −if |e|

8π3

∫
A

dk2dk3

M∑
n=1

|G1|∫
0

dk1〈uλnk|
∂

∂k1

|uλnk〉 (2.16)

Consequently,
3∑
i=1

(Pλ
e )i =

3∑
i=1

(Gi ·Pλ
e )

Ri

2π
(2.17)

with Ri·Gi = 2π. In addition, the surface integral in eq. (2.16) can be represented

in two dimensions, by a k-points Monkhorst-Pack grid [14], defined as k⊥. To

remove the influence of the arbitrary phase of the functions uλnk, introduced by the

diagonalization routine, King-Smith e Vanderbilt proposed to replace the integral

with:

φ
(λ)
J (k⊥) = Im

{
ln

J−1∏
j=0

det
(
〈u(λ)

mkj
|u(λ)
nkj+1

〉
)}

(2.18)
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which it is determined by calculating the periodic part of the wave function from

a string of points k, kj = k⊥+jG‖/J , with j = 0, ..., J−1 So, for J large enough,

you have:

φ
(λ)
J (k⊥) = −i

M∑
n=1

|G‖|∫
0

dk‖〈u(λ)
nk |

∂

∂k‖
|u(λ)
nk 〉 (2.19)

the functions u
(λ)
nkJ

, now, will be determined by:

u
(λ)
nkJ

(r) = e−iG‖·ru
(λ)
nk0

(r) (2.20)

In practice the eq. (2.16) is evaluated by:

(
P(λ)
e

)
i

=
f |e|Ri

2πV Nk⊥

∑
k⊥

φ
(λ)
J (k⊥) (2.21)

where Nk⊥ is the number of points in the perpendicular grid. Changes of the

phase of u
(λ)
nkJ

can change the value of the sum in eq. (2.21) by an integer multi-

ple of 2π. Correspondingly the arbitrary constant in the definition of φ
(λ)
J (k⊥), in

the eq. (2.18), arises from the fact that the imaginary part of the log of a complex

number is only defined up to a constant multiple of 2π. Therefore
(
P

(λ)
e

)
i

will be

equal in magnitude to
f |e|Ri

2πV Nk⊥

instead of
f |e|R
2πV

. The phase, introduced in this

way, can be removed if we consider the difference between φ
(λ1)
J (k⊥) and φ

(λ2)
J (k⊥).

In conclusion, since this geometric phase is defined up to a multiple of 2π, the

polarization will be defined up to a polarization quanta, given by ∆P
(i)
0 =

f |e|
V

Ri,

where f can be considered as a spin degeneration factor, which assumes the val-

ues f = 2 systems for non-spin-polarized, while f = 1 for spin-polarized systems

[36].

In a particular case of a ferroelectric material, the spontaneous polarization

can be defined as half of the difference between two states polarized in an opposite

manner, or as the difference in polarization between the structure in the ferro-

electric phase and the structure center-symmetrical, in the paraelectric phase. In

practice, it must calculate the polarization for a number of different configurations

between the ferroelectric structure and the reference center-symmetrical and the

change of polarization between two of these configurations must be smaller than

the polarization quantum [36].
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Figure 2.3: Calculated polarization as a function of percentage distortion from the high sym-
metry non-polar structure (0% distortion) to the ground state R3c structure for perovskite
BiFeO3 [37].

Figure 2.3 gives an example of the change in polarization P calculated in this

way. P is calculated along a path from the original R3c structure through the

centrosymmetric cubic structure to the inverted −(R3c) structure [37].



Part I

Multiferroicity and

magnetoelectricity in a doped

topological ferroelectric
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This part reports my research on multiferroic materials. Multiferroics, i.e.

materials where ferroelectric (FE) and magnetic order coexist in the same phase,

have been the focus of much recent interest, due to their basic conceptual inter-

est [36] as well as their potential for practical applications, such as the ability

to switch magnetic memories electrically [38]. Unfortunately, materials for which

magnetic and electrical order parameters either arise independently, or are cou-

pled (so called multiferroic magnetolectrics) in a single phase are very rare [39].

Evidence of this is schetched in Figure 2.4 which describes the relationship be-

tween this type of materials. In particular, the intersection, red hatching, repre-

sents materials that are multiferroic, and blue hatching represents materials that

exhibit magnetoelectric coupling. The last one is an independent phenomenon

that can, but need not, arise in any of the materials that are both magnetically

and electrically polarizable [38].

Figure 2.4: Representation of the relationship between multiferroic and magnetoelectric mate-
rials. Ref. [38].

The fact that multiferroic magnetoelectric materials are rare is related to the

microscopic origin of magnetism and ferroelecticity. An empirical rule states that

ferroelectric materials are usually nonmagnetic, while spin-ordered systems seem

not to allow ferroelectric distortions. In conventional ferroelectric materials, for

example in ABO3 cubic perovskite structure, the polarization arises when non

magnetic cation, B, shift away from the center of the octahedron, as positive and

negative charges gives rise to electric dipole moment. In magnetic materials, the

magnetic cation remains in the centrosymmetric position, so, no dipole moment

is rised.

In other word, this mechanism is related to the competition in covalent band

formation. The magnetic properties of atoms, in fact, are determined by ions with

partially occupied d -orbital, whereas the electric dipole moment in ferroelectrics

arise from stereochemical activity of ions unpaired s-electrons [40].
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Figure 2.5: Perovskite oxides, of general formula ABO3 with a pseudocubic structure, where
A and B are two different cations, furnish many interesting ferroelectrics. The B-type cation
is octahedrally coordinated with oxygen. The left panel shown the relative symmetry break-
ing displacement of the B-cation with respect to the O atoms which is responsible for the
spontaneous polarization.

Formally, the potential energy, in terms of small displacement, Q, is given by

the 1st and 2nd Jahn-Teller effect (J-T):

E = E0 +Q 〈0|H1|0〉+
Q2

2
〈0|H2|0〉+

−Q2
∑
n

| 〈0|H1|n〉 |2

En − E0

+ ...
(2.22)

where H1 = δH/δQ and H2 = δ2H/δQ2. The first term is non zero for orbitally

degenerate states. The second term, always positive, concerns the nuclei motion

with fixed electrons. The last one, always negative, is related to relaxation of

electron distribution. The first-order J-T effect arises from incomplete shells of

degenerate orbitals whereas, the second, arises from filled and empty molecular

orbitals that are close in energy [41].

In other words, conventional ferromagnetism requires d electrons but conventional

ferroelectricity requires “d 0-ness”. Consequently, the multiferroicity seems to be

chemically prohibited.

In the particular case of ABO3 cubic perovskite structure, sketched in Figure

(2.5), J-T effect keeps centrosymmetry of octahedron, but second order J-T effect

breaks centrosymmetry of octahedron, and it becomes difficult to design a B site

driven multiferroic.
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The purpose of this work is to explore an unconventional type of multiferroic-

ity obtained in a particular crystal, belonging to layered-perovskite ferroelectrics

of the family AnBnO3n+2. This study is focus on structural, electronic, ferroelec-

tric and magnetoelectric properties of La2Mn2O7, through first-principles based

on density functional theory calculations. In particular, this part is organized as

follows:

In the Chapter 3, I introduce a mechanism to obtain ferroelectric order com-

patible with the magnetic order in layered-perovskite oxides. In addition, I ex-

plain how ferroelectricity occurs in this particular materials.

Chapter 4 concerns the investigation on magnetic properties of a doped topo-

logical ferroelectric oxide. I report the results of the spontaneous polarization,

that is calculated using the “Modern Theory of Polarization” based on the Berry

phase.

Finally, in Chapter 5, I quantify the coupling between electric and magnetic

fields trough the determination of the magnetoelectric tensor. I also explain a

weak ferromagnetic effect due to Dzyaloshinskii-Moriya interaction.

In conclusion, this work was presented at several international conferences3

and summarized in a section of the article “Topological multiferroics” published

in the journal Phase Transitions (Vol. 88, Iss. 10, 2015).

31) “MAMA-Trend: Trends, challenges and emergent new phenomena in multi-functional
materials” May 2013 Sorrento, Italy; 2) “Electronic structure at the cutting edge with Elk”
July 2013 Lausanne, Switzerland; 3) School on “Density Functional Theory and Beyond: Com-
putational Materials Science for Real Materials ” August 2013 Trieste, Italy; 4) FISMAT2013
“Italian National Conference on Condensed Matter Physics (Including Optics, Photonics, Liq-
uids, Soft Matter) ” September 2013 Milano, Italy



CHAPTER 3

Ferroelectricity in a layered perovskite

Recently, it has been suggested [42,43] that a possible way around the mutual

incompatibility of magnetism and displacive ferroelectricity can be move away

from the ideal ABO3 cubic perovskite structure and explore alternative mecha-

nisms for ferroelectricity.

As an instance, ferroelectricity in layered-perovskite oxides is not displacive, but

rather results from dipoles generated by anti-ferrodistortive, AFD, oxygen- octahe-

dra rotations, BO6, which do not compensate and give rise to a net macroscopic

polarization due to the layered structure. The rotation of oxygen octahedra is a

common AFD instability in perovskite oxides, but not all contribute to polariza-

tion, octahedral rotations suppress ferroelectricity in a number of these materials.

The layered-perovskite oxides, considered in this work, are structure with general

formula AnBnO3n+2, where n is the number of perovskite-like planes within a

layer (Figure 3.1). The stoichiometries are also given as ABOx with its corre-

sponding ideal oxygen content x=(3+2)/n. Within the layers the corner-shared

BO6 octahedra extend zig-zag-like along the b-axis and chain-like along the a-

axis. The layers are n octahedra thick, thus the thickness of the layers rises with

increasing n [44].

Figure 3.2 explains the behavior of these distortions comparing bulk and lay-

ered perovskite. It shows the electric dipoles that appear as a consequence of the

displacement of the oxygen atoms for a layered, on the left, and a non-layered,

on the right, perovskite structures. In particular, in left panel are sketched a

layer with four of perovskite-like planes. Referring to Figure 3.2 the total dipole

37
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Figure 3.1: Sketch of the idealized (i.e. non-distorted) crystal structure of the n=2, 3 and 4
members of the perovskite-related layered homologous series AnBnO3n+2 projected along the
a-axis. Circles represent the A-cations. Ref. [44].
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associated to one layer is player = 2p1 + p2 + p3 + p4 6= 0 for a layered structure,

while player = 0 for the bulk structure. The AFD instability in the former causes

a spontaneous polarization, while in the latter do not. Since ferroelectricity is

due entirely to the layered structure justifies the label “topological” attached to

these ferroelectrics [43].

Figure 3.2: Tipical anti-ferrodistortive mode occuring in a layered peroskite oxide on (a) panel.
It is shown one layer with n = 4 perovskite-like planes. (b) oxygen-octahedra rotations existing
in an ideal (non-layered) perovskite structure. Arrows on the site of both sketches represent
the electric dipole associated to distortion. Ref. [43].

Among the layered-perovskite oxides I have considered the Lanthanumti-

tanate, La2Ti2O7, (hereafter denoted as LTO). LTO is a n=4 member of the

family of layered compounds, sketched in Figure 3.1. In particular, LTO consists

of blocks of four perovskite units, TiO6 stacked along a [011] direction, with each

block separated by an additional layer, as shown in Figure 3.3.

López-Pérez and Íñiguez [43] have studied the origin of ferroelectricity in this

type of layered perovskites. They have determined that LTO is one of the mate-

rials with the highest ferroelectric Curie temperature known (1770 K), a sizeable

spontaneous polarization Ps =29µC/cm2 and high permittivity ε ∼ 50. These

properties make LTO a potential candidate for multiple applications, in par-

ticular, in the field of information storage, in fact ferroelectric properties are

essentially used to manufacture of ferroelectric random access memory elements

[45].

At 1770K LTO transforms its orthorhombic structure, which corresponds to

the ferroelectric (FE) phase, with the space group Cmc21 (N0 = 36), into the

paraelectric (PE) phase, Cmcm (N0 = 63). This structure are sketched in Figure

3.4. This transformation occurs through the combination of a rotation distortion

of the oxygen octahedra.
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Figure 3.3: The structure of the La2Ti2O7 layered perovskite in the non-distorted phase in x,
y, z views. Ref. [43].

Figure 3.4: The structures involved in the La2Ti2O7 phase transition, PE phase on the left
and FE phase on the right. Ti ions (blue) are surrounded by oxygen octahedra (O red), with
La ions (violet) interspersed. Ref. [43].



CHAPTER 4

Multiferroic material: La2Mn2O7

In order to achieve multiferroicity in a topological ferroelectric layered perovskite

could be consider a doping or a full substitution of the B-cation, non magnetic,

by a magnetic cation. Following this idea, La2Mn2O7 (LMO) has been built from

full substitution of Ti by Mn in LTO. This compound, since Mn is a magnetic

cation having valence 4+ with 3d3 configuration, presupposes magnetic properties

in addition to ferroelectricity.

As a result of the isovalent substitution, LMO adopts orthorhombic structures,

with space groups Cmcm and Cmc21 for paraelectric (PE) and ferroelectric (FE)

phases, as in Ref. [43] for LTO. (Indeed, it is not known whether the synthesis

of LMO is possible and which structure will result, given the competition with

other phases such as LaMnO3.)

The distorsion has involved only the plane bc, in fact the

components along the a-axis are unchanged. As shown

in the figure on the left, it is evident that the structural

instability is predominantly due to oxygen octahedra ro-

tations around the a-axis, though there is a negligible

La and Mn displacement.

Both orthorhombic structures have been optimized in volume and ionic config-

urations. First-principles calculations have been performed using the Generalized

Gradient Approximation (GGA) of the theory of Density Functional (DFT), as

implemented in the Vienna Ab Initio Simulation Package (VASP) [5], for the

determination of energy exchange and correlation. This approximation contains

41
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Figure 4.1: Structures involved in PE→FE phase transition of La2Mn2O7. Cmcm is the
centrosymmetric and Cmc21 is the distorted structures, both have 44-atom conventional cell.
Coordinate axes are labeled referring to crystallographic axes.

non-local corrections which depend, in absolute value, on the gradient of the

charge density and the spin density that lead to a more accurate description of

the structural and magnetic properties. The electron-ion interaction has been

described by the method of the projector-augmented plane waves, PAW [23,46],

in particular, the ionic core is for La 5s, 5p, 5d, 6s, Mn 3d, 4s, while for the O, the

states are 2s, 2p. A 350 eV plane wave energy cutoff and a 6×1×5 Monkhorst-

Pack k-points mesh for Brillouin zone integrations [14] have been used.

The lattice parameters calculated for the Cmcm, PE phase, and Cmc21 , FE

phase, are listed in the Table A.1 and A.2 in Appendix A. The energy of the

ground state to the distorted structure is -354.73088 eV, while for the centrosym-

metric structure is -354.42281 eV.

Estimate of TC. To study the structural phase transition quantitatively, then

to calculate the Curie temperature, I have compared the energies, per unit vol-

ume, of the phases involves, PE-FE. The difference of energies per unit volume

involved in LTO transition results 1.09 meV/Å3, for BaTiO3 (BTO), in analo-

gous transition Pm3m (PE) and P4mm (FE) the difference is 0.11 meV/Å3, that
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corresponds to Curie temperatures 1770 K and 400 K, respectively [43]. Con-

sequently, in first approximation, the difference of 0.92 meV/Å3 corresponds a

TC =1500 K in LMO.

The investigation into the LMO multiferroicity follows with the exploration

of different type of magnetic order that this structure can assume.

4.1 Magnetic properties

The particular magnetic order is a result of the magnetic interactions between

atoms, expressed as interactions between spins. In the Heisenberg model of these

interactions make a contribution to the Hamiltonian of the type:

Ĥspin = −2
∑
i 6=j

JijSiSj (4.1)

where Jij is identified as exchange constant (exchange integral) between pair

spins.

In the simplest case of the interaction between two electrons having the wave

function ψa(r1) and ψb(r2), respectively, since the total wave function must be

antisymmetric for the exchange of two electrons, so only two possible states are

possible, one singlet, with χS if the spatial part is symmetrical, and one triplet

state with χT if the spatial part is antisymmetric:

ΨS =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS

ΨT =
1√
2

[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT

The energies of these states are:

ES =

∫
Ψ∗SĤΨSdr1dr2

ET =

∫
Ψ∗TĤΨTdr1dr2

The constant of exchange is expressed as the difference between the singlet state

and the triplet:

J =
ES − ET

2

The triplet state is favoured for J > 0, and the interaction is ferromagnetic,
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viceversa, singlet state is favoured for the condition J < 0, and the interaction

will be antiferromagnetic.

The exchange interaction described above is also known as direct exchange

short-range. In many compounds with rare earths such interaction can not be

responsible for the magnetic behaviour, as there is a sufficient overlap of the

orbitals of the two ions interacting 1.

In these compounds the interaction is a superexchange indirect long-range

interaction between two magnetic ions, M, mediated by a non-magnetic ion which

separates them. Figure 4.2 shown, as an example, the superexchange interaction

in Cu2O2.

Figure 4.2: Strong antiferromagnetic exchange interaction in cuprates, two Cu2+ ions mediated
by an oxygen ion O2−. Ref. [47].

If the magnetic ions are the same, as in Cu2O2 or MnO, shown in Figure 4.3,

the constant of exchange depends on both the interatomic distance that the angle

formed by the M−O−M binding. To define the type of interaction I resort to

the superexchange semi-empirical rule of Goodenough-Kanamori, formulated by

Goodenough [48] and later developed by Kanamori [49].

Goodenough-Kanamori rule: if the orbitals of the metal ions are partially

occupied and the M−O−M bond angle is between (120÷180)◦ the exchange in-

teraction is antiferromagnetic, if one of the two metal ions has an orbital partially

occupied and the other an empty orbital, and the bond angle is ∼ 90◦, then the

exchange is ferromagnetic.

Figure 4.4 shows some examples of superexchange interation [47] to illustrate

this rule.

1For example, f orbitals are located very close to the core, there is only a weak probability
density that extends beyond the core and then there could be an overlap of the orbitals of the
ions first neighbors.
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Figure 4.3: In the crystal of MnO, each ion of Mn2+ has a orbital 3d partially occupied,
they are separated by the presence of an ion of O2− and form a bond angle 180◦, in agreement
with the Goodenough-Kanamori rule, the exchange interaction is antiferromagnetic. In fact, the
configuration (a) has a greater energy cost compared to the configuration (b) that, consequently,
is favoured. Ref. [50].

Figure 4.4: Left panel. Strong antiferromagnetic exchange interaction if the half-filled orbitals
of two cations overlap with the same empty or filled orbital of the intervening anion. Right panel.
Weaker ferromagnetic exchange interaction if the half-filled orbitals of two cations overlap with
orthogonal orbitals of the same intervening anion. Ref. [47].
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Figure 4.5: Energetically (a) favourite , (b) unfavourite alignment

Some oxides consisting of magnetic ions with different value, however, exhibit

a ferromagnetic ordering due to the so-called double exchange. Figure 4.5 shows

the mechanism of double exchange in a compound in which coexist manganese

ions with valence 3+ and 4+. The electron occupying the orbital eg ion 3d4 can

make the transfer on the orbital eg ion 3d3 only if the electrons occupying orbitals

t2g ion 3d3 are aligned ferromagnetically (a). The alignment of ferromagnetic

favours charge transport through the crystal, which then becomes metallic [50].

Types of spin ordering in perovskite oxides. There are various combina-

tions of antiferromagnetic alignment of the magnetic moments. In particular, for

the perovskite-type transition-metal oxides, some possible configurations, repre-

sented in Figure 4.6, are:

A-type: The intra-plane coupling is ferromagnetic while inter-plane coupling

is antiferromagnetic.

C-type: The intra-plane coupling is antiferromagnetic while inter-plane cou-

pling is ferromagnetic.

G-type: Both intra-plane and inter-plane coupling are antiferromagnetic.
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The G-type is the most frequent, in fact, in this pattern, the superexchange

interaction tends to align antiparallel moments of all the first neighbours. But,

depending on the overlap of the orbitals, in accord with the rule Goodenough-

Kanamori, you can also be obtained coupling ferromagnetic between planes, as

in the case of the order of A-type, common in cubic perovskites AMO3 [51].

Figure 4.6: Typical magnetic structures for the perovskites. Ref. [51].

4.1.1 Results and discussions

Figure 4.7 shows the different magnetic configurations studied, for each opti-

mized structures in both PE and FE phases.

• FM each Mn spins are aligned parallel to other,

• AFM-a, between the two blocks of four perovskite units (along the b-axis)

the Mn spin alignment is antiparallel, while inside each block the spins are

aligned in parallel,

• AFM-b, within each block, the spins related to two consecutive planes

(perpendicular to the axis b) are aligned antiparallel to the axis b, while

those regarding to the other two planes are aligned parallel,

• AFM-c, is the most stable, and it can be seen as an antiferromagnetic

ordering of A-type (see Figure 4.6) given that the spins on a plane have

opposite direction to those on the next plane. However, observing the

structure rotated 45◦, we understand that the interaction is that of local

antiferromagnetic structure of G-type (all the neighbours of a given spin

are opposite).

The same methods have been used to optimize every structure. In each con-

figuration of the center-symmetrical structure, the Mn−O−Mn bonds form an

angle between 170◦ and 180◦, while, in the distorted structure, the bonds varies

from 147◦ to 165◦. Then, according to Goodenaugh-Kanamori rule, antiferromag-

netic order is energetically favourited, the coupling between two next-to-nearest
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Figure 4.7: Types of magnetic ordering examined.

neighbour cations, Mn4+, through the intermediary oxigen anion is superexchange

with an angle ∼180◦.

The following tables show the values obtained of the total energy, with an

error of the order of 10−5eV, the density of the magnetization and the difference

in energy between the FM and AFM configurations.

M(µB) ∆E(eV)

FM 24 0.0

AFM-a 0 –0.0151

AFM-b 0 –0.0861

AFM-c 0 –0.4261

Cmcm

M(µB) ∆E(eV)

FM 24 0.0

AFM-a 0 –0.0208

AFM-b 0 –0.0564

AFM-c 0 –0.1610

Cmc21

For both structures, PE and FE, of LMO phases, the configuration AFM-c

is that which corresponds to the minimum energy, then is the most favored. All

nearest neighbours of a given Mn, that is, have opposite spin, as indeed expected

from superexchange between Mn4+ ions with majority t2g orbitals. By approx-

imate I mean that the magnetic couplings depend on the respective location of

Mn; for example, the coupling between neighbouring Mn in different blocks of

the layered structure differs (by about 20% ) from that between Mn within the

block. The total magnetic moment is almost entirely provided by Mn, for which

the magnetization integrated in a sphere of radius has a value of about ± 2.60

µB.
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Figure 4.8: Total Energy as a function of the distortion in ferromagnetic, FM, and antiferro-
magnetic, AFM-C, configurations.

Figure 4.9: Differences in energy between the ferromagnetic state and the antiferromagnetic
AFM-c, as a function of the distortion
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Figure 4.8 shows the values of the total energies for the two configurations as

a function of the distortion. Clearly phase AFM-there is always favoured, and

structurally it is Cmc21 .

Figure 4.9 shows the differences in energy between the ferromagnetic state

and the antiferromagnetic AFM-c, as a function of the distortion. As a result,

in the phase transition PE−→FE the AF order is always favoured, but the FE

distortion reduces the dominance of superexchange. In fact, during the transition

the bonds angle Mn−O−Mn is reduced at least 20◦.

In all the calculations only a collective mode displacement, δ, has been con-

sidered, in particular, for FE order δ =1.365 Å, whereas for AF order δ =1.228Å.

Estime of TN. The TN has been estimated in accord with the Ising 3D AF

model. The energy of a spin configuration is given by the Hamiltonian Function

Ĥspin = −
∑
<ij>

JijSiSj

where < ij > indicates that sites i and j are nearest neighbours. For any two

adjacent sites i, j the interaction is Jij, where the first sum is over pairs of adjacent

spins (every pair is counted once). In the particular case of a cubic 3-dimensional

isotropic lattice, that has a single coupling independent of direction, accurate

simulations provide a temperature critical Tc in the coupling constant unit. The

most precise value for the critical point of the 3D-Ising model has been obtained

by Monte Carlo simulations [52]:

λc =
J

Tc

λc = 4.51152 (4.2)

with interaction energy J and critical temperature Tc. The temperature of Néel

TN ≡Tc can be determinated by knowledge of the J constant extracted from cal-

culations of total energy. The J coupling has been determinated is J = 5 meV

which corresponds to TN = 4.51J ∼270 K.

First-principle calculations have demonstrated that LMO presents an antifer-

romagnetic behaviour during the phase transition, then LMO is a multiferroic

materials in that magnetic and ferrolectric orders coexist in the same phase. In

the follow section I report the calculation of the spontaneous polarization to con-

firm the ferroelectrity.
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4.2 Spontaneous Polarization

The macroscopic polarizability can be expressed as the sum of two contribu-

tions, one ionic and the other electronic

∆P = ∆Pion + ∆Pel

calculated using the theory of Berry phase, King-Smith and Vanderbilt, discussed

in the Section 2.1 on page 28. The first contribution is obtained from:

∆Pion =
|e|Zκu
V

while the second is to consider:

∆Pe = Pλ2
e −Pλ1

e

where λ1 identifies the high symmetry phase, paraelectric, while with λ2 the

ferroelectric phase.

4.2.1 Results and discussions

According to the Modern Theory of Polarization, discussed in the section 2.1,

the calculation related to the electronic contribution to the polarization was car-

ried out along each direction of the vector of the reciprocal lattice G‖, specifying

the number J of k-points on the kj = k⊥ + jG‖/J mesh, with j = 0, ..., J − 1.

From calculation of spontaneous polarization for the most stable antiferromag-

netic configuration, AFM-c, ∆PCmc21−Cmcm = 0.16688 C/m2 has been obtained.

Figure 4.10 shows the trend of polarization as a function of the distortion.

The Berry-phase polarization, 17µC/cm2, is somewhat but not significantly

smaller than in LTO, 29µC/cm2. This difference in polarization is related to the

mode effective charge defined as:

Z̄sα =
∑
iβ

Z∗i,αβξs,iβ,

with Z∗i,αβ effective-charge tensor and ξs,iβ the vibrational mode, and the indices

i, α and β, are relative to the atom considered and spatial directions, respectively.

LTO collective distortion is decomposed in two main modes ξ1, associated with

the octahedra rotation (81 % of distortion), and ξ2, associated with the deforma-

tion of octahedra (19 %). These modes are Z̄1,z=1.8 and Z̄2,z=12.0 respectively.
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Figure 4.10: Computed distortion dependence of the polarization.

The sum of these contributions, appropriately weighing percentage, can be con-

sidered as a collective calculated tensor charge of totally Z̄∗=3.73. The LMO

has about the same polarization of LTO, less distortion, and then a charge of so

composed largest, Z̄∗=4.3, obtained considering the collectively mode ξ1 and ξ2.

Consequently the value of 16.7 µC/cm2 is comparable with the result obtained

for LTO.

Figure 4.11, shows the energies of AF phase of LMO from Cmcm (PE) through

Cmc21 (FE), and also depicts the polarization developing as the rotational dis-

placements increase. Already at this level, there is evidence of magnetoelectricity:

as the FE rotations are undone (as they would be, e.g., by an electric field), the

FM-AF energy difference, hence the average magnetic coupling, doubles in inten-

sity.
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Figure 4.11: Computed distortion dependence of the polarization (blue) the total energy in
the AF configuration (red) in Cmcm → Cmc21 transition



CHAPTER 5

Magnetoelectric effect

The coupling between magnetic moment and ferroelectricity, or the ability

of a magnetic moment to be produced by an externally applied electric field, or

an electric moment to be produced by an externally applied magnetic field, is

namely magnetoelectric effect. This magnetoelectric effect was predicted in 1894

by P. Curie [53], but it was first observed experimentally by Astrov [54] in a

monocrystal of antiferromagnetic Cr2O2 in 1961. Firstly, it was formulated by

L.D. Landau and E. Lifshitz [55] and later, in 1959, it was analytically described

by I. Dzyaloshinskii [56], basing his theory on symmetry arguments and ther-

modynamics only. More recently, related studies on magnetic ferroelectrics have

signalled a revival of interest in this phenomenon opening a new window of oppor-

tunities for application usage. Already, ideas of four-state memory, spintronics

and magnetic field sensors are being under intense development [57–60]

5.1 Lattice-Mediated Magnetoelectric effect

The magnetoelectric effect, as electric and magnetic response of the system

to a magnetic field and electric fields, respectively, is defined, in linear approxi-

mation, by the relations:

Pi = αijHj

Mj = αijEi

54
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where P is the polarization, M is the magnetization, H, E are the magnetic and

electric fields respectivly, the α is the linear magnetoelectric tensor. It is defined as

αij 6
√
χmii χ

e
jj, where χm e χe are the magnetic and dielectric susceptibilities. It

is related to simultaneous effect, spin-orbit magnetic component and the dielectric

response, the last is due to changes in the structural and electronic state induced

by the external electric field. I neglect the purely electronic response (fixed-ion)

that would require calculations in finite electric field, but I focus on the terms

products from the fields through the distortion of the structure, lattice-mediated

response.

The energy of a linear magnetoelectric crystal is given by [61]

E({un} , E ,H) = E0 +
1

2

NIR∑
n=1

Cnu
2
n+

− Ω0

∑
i

Ei[Platt,i({un}) +
1

2

∑
i′

χeii′Ei′ ]

− Ω0

∑
j

Hj[Mlatt,j({un}) +
1

2

∑
j′

χejj′Hj′ ]

− Ω0

∑
ij

αijEiHj

(5.1)

where un is the amplitude of a IR mode and Cn the corresponding eigenvalue.

Then, the lattice contributions to polarization and magnetization are

Platt,i =
1

V

NIR∑
n=1

peniun

Mlatt,j =
1

V

NIR∑
n=1

pmnjun

un =
1

Cn

∑
i

peniEi

(5.2)

where peni is the polarization of the nth IR mode and pmnj is the magnetic analogue.

Consequently

αlatt,ij =

NIR∑
n=1

penip
m
nj

Cn
(5.3)

5.1.1 Results and discussions

To quantify the linear magnetoelectric (ME) coupling, the lattice part of the

ME tensor has been computed as the most likely dominant contribution defined



CHAPTER 5. MAGNETOELECTRIC EFFECT 56

by eq. (5.3). To avoid a lengthy and expensive IR mode analysis, here only the

collective displacement, connecting the FE and PE phases, has been considered.

This is, of course, a superposition of several modes, so that we will obtain a global

effect of the PE to FE transformation and not a mode-by-mode analysis.

To compute the magnetic response to lattice distorsions, non-collinear mag-

netic calculations including spin-orbit interaction, SOC, have been performed. In

particular, I have used a different code for the treatment of non-collinear mag-

netic structures. This was written by David Hobbs, and spin-orbit coupling was

implemented by Olivier Lebacq and Georg Kresse (for the formalism see 1.8).

Operationally, I have started performing a collinear calculations then, the

fully non-collinear magnetic structure calculations have been performed replacing

initial local magnetic moment for each ion in x, y and z direction respectively,

finally I have included the spin-orbit coupling. The spin-orbit coupling works only

for PAW potentials and is not supported for ultrasoft pseudopotentials. If spin-

orbit coupling is not included, the energy does not depend on the direction of the

magnetic moment, i.e. rotating all magnetic moments by the same angle results

exactly in the same energy. Hence there is no need to define the spin quantization

axis, as long as spin-orbit coupling is not included. Spin-orbit coupling, however,

couples the spin to the crystal structure. In this framework, all magnetic moments

are given with respect to the axis (sx, sy, sz). To initialise calculations with the

magnetic moment parallel to a chosen vector (x, y, z), it is therefore possible to

either specify (assuming a single atom in the cell). By comparing the energies for

different orientations the magnetic anisotropy can be determined.

Total Energy(eV) M (µB)

M. collinear -363.06238 0
M. non-collinear -363.05536 0
+ Spin-orbit -365.39390 mx = 0.01÷ 0.12

my = 0.53
mz = 0

Table 5.1: Total energy and the density of the magnetization for the structure Cmc21 with
the AFM-c configuration.

As shown in Table 5.1, the introduction of the spin-orbit lowers the total

energy of about 2.34 eV. Interestingly, these calculations reveal that the collinear-

AF Mn spins point along the c-axis, but with a slight canting towards the b-axis

and an even smaller component along the a axis, with a resulting small net

magnetic moment of 0.065 µB/Mn essentially parallel to b. In particular, the

components along b-axis of magnetic moment for ion is about 0.12 µB refer to
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Mn in proximity to layer, whereas is very little, about 0.01 µB for Mn inside the

structure. Figure 5.1(a) highlights the inclination of the spins due to the spin-

(a) (b)

Figure 5.1: (a) Spin canting due to the spin-orbit interaction. (b) Polarization and magneti-
zation induced by the total distortion mode.

orbit interaction, while 5.1(b) shows polarization and magnetization calculated

in function of the distortion, around the structure Cmc21 .

Similarly, Benedek and Fennie obtained for Ca3Mn2O7
1, CMO, a magnetization

for Mn 0.04 µB( vs about 0.07 µB in LMO) [42]. This difference can be related

to different distortion modes. Magnetoelectricity in CMO results by competition

between rotation, tilt and polar distortion modes, even if, the canted moment is

the results only by the rotation distortion.

Table 5.2 compares parameters entering the eq.(5.3) and the ME tensor for

LMO and Cr2O3
2 (as computed in [61]). The final ME coefficient is much larger

in LMO, and results from the larger magnetic response to lattice distortions and

the much softer force constant of the predominantly rotational collective mode,

and similar polarization responses. α is in Gaussian unit [62] 3.

1CMO structure belongs to Ruddlesden-Popper perovskite family with genetal formula
An+1BnO3n+1. Any given member of the Ruddlesden-Popper series consists of ABO3 perovskite
blocks stacked along the [001] direction with an extra AO sheet inserted every n perovskite unit
cells. In CMO n=2.

2Data related to Cr2O3 structure are listed in Appendix C
3α is calculate SI-Unit, which can be converted to the practical units by µ0 = 4π ×

10−7Vs/(Am) and c = 3 × 108m/s, in this way you get a dimensionless quantity in Gaussians
units.
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Figure 5.2: (a) Primitive cell of the Cr2O3. The arrows represent the antiferromagnetic spin
alignment, while the dotted arrows show the effect of the spin-orbit. (b) Variation of polarization
and magnetization induced by IR modes, A2u (dotted line) and Eu (line) as a function of the
amplitude of the modes. Ref. [61].

La2Ti2O7 Cr2O3

Cn (eV/ Å2 ) 3.8 10.4 ÷ 32.5
pdn (|e|) 4.3 0.16 ÷ 8.52
pmn (10−2) (µB/Å) 66.0 0.02 ÷ 11.32
αn(10−4g.u.) 48.9 -0.01 ÷ 0.68

Table 5.2: Parameters of the eq.(5.3) and ME tensor coefficient for the non-zero component
αzy in LMO compared with the range of value obtained by Iniguez for Cr2O3 for the individual
IR modes.

By symmetry, the ME tensor is off-diagonal in LMO.

α =

 0 0 0

0 0 αzy

0 αyz 0


Since Cmc21 belongs to magnetic group Fcm ′m2 , the magnetoelectric tensor is

non-diagonal with two components αyz and αzy [63]. In this case only one inde-

pendent component survives, αyz, then result in a cross-field response My=αEz.

To be more precise, an electric field Ez could produce a magnetization variation

My = αzyEz. Similarly, a polarization change Pz = αzyHy could be produced by

a magnetic field Hy.
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Figure 5.3: Canting of magnetic moments and a resulting net magnetization M 6= 0 in an other-
wise collinear antiferromagnet. The Dzyaloshinskii-Moriya (DM) interaction is an antisymmet-
ric, anisotropic exchange coupling HDM = D12 ·S1×S2 between two spins S1 and S2 separated
by a lattice bond r12 with no inversion center, i.e. D12 ∼ λa× r12. The Dzyaloshinskii-Moriya
vector D is proportional to a spin-orbit coupling constant λ, and depends on the position of
the oxygen ion between two magnetic transition metal ions. Ref. [66]

5.2 Dzyaloshinskii-Moriya coupling

Dzyaloshinskii and Moriya have explained the weak ferromagnetism, that it

is observed in several antiferromagnetic insulating compounds, on the basis of

Landau’s theory of phase transitions of the second kind. They have shown that

“weak” ferromagnetism is due to relativistic spin-lattice interaction and magnetic

dipole interaction [64,65]. The weak ferromagnetism in LMO can be interpretated

by Dzyaloshinskii-Moriya (DM) interaction. This is an other term in the spin-

spin interaction manly associated to the crystal symmetry. For this reason there

is a relationship between the oxygen-octahedra rotations, the ferroelectricity and

the week ferromagnetism, wFM, in other terms, the wFM is due to the DM

interaction induced by the oxygen-octahedra rotations.

Formally, the Hamiltonian function for spin-spin interaction can be written

as [67]

Hspin =
1

2

∑
i,j

siJijsj

where Jij is decomposed in

Jij = JijI3 + J S
ij + J A

ij

where I3 is the unit matrix and:

Jij =
1

3
Tr(Jij)

J S
ij =

1

2
(Jij + J t

ij)− JijI3

J A
ij =

1

2
(Jij − J t

ij)

(5.4)
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Figure 5.4: The cluster model with two transition metal ions M1, M2 with the oxygen atom,
O, between them. With the noncollinear spin directions ē1 and ē2, there arise the spin current
j̄s ∝ ē1×ē2 between M1 and M2. Here the direction of the vector j̄s (denoted by the short arrow
near the middle of the diagram) is that of the spin polarization carried by the spin current.
The direction of the electric polarization P̄ is given by P̄ ∝ ē12× j̄s where ē12 is the unit vector
connecting M1 and M2. Ref. [68].

in which t denotes transposed matrices. Then, according to Moriya [65] a typical

intersite interaction consists of the following terms:

siJijsj = Jijsi · sj + siJ S
ij sj + Dij(si × sj)

where the first and second terms on the rights are the isotropic and the symmetric

anisotropic exchange interactions, respectively, while the third term represents

the DM interactions with the DM-vectors Dij being defined as:

Dx
ij =

1

2
(Jyzij − J

zy
ij ) Dy

ij =
1

2
(Jxzij − Jzxij ) Dz

ij =
1

2
(Jxyij − J

yx
ij )

Moreover, according to Katsura, Nagaosa and Balatsky, the direction of electric

polarization is given by:

P ' rij × [ei × ej]

where ei , ej are the noncollinear spin directions of the transition metal ions and

rij is the bond direction [68].

5.2.1 Results and discussions

Spin-orbit coupling (SOC) has been included in non-collinear calculations.

Comparing non-collinear results for canted and non-canted Mn spins, I obtain

directly

δMDM = (0, 62.5, 0)mµB/Mn δEDM = 0.1meV δPDM = (1, 1,−2)µC/m2
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Clearly the FM moment, energy gain, and induced polarization are all very

small (although computationally measurable); in fact, they result from small

components acquired by Mn spins along the a and b axes (besides the c axis)

due to SOC. The energy gain and induced polarization are indeed

δMDM '
∑

Dij · [ei × ej] δPDM '
∑

rij × [ei × ej]

where the ei are spin directions, rij vectors connecting spin locations, D the

Dzyaloshinskii-Moriya coupling (D ⊥ rij ), and the sums are over spin pairs.

In conclusion, the wFM tends to enhance the polarization, otherwise the spins

of each pair were in the same plane, the induced polarization and energy gain

would vanish.



Conclusions

In summary, I found that LMO is a topological multiferroic with large mag-

netoelectric response. LMO’s ferroelectricity results from its layered structure,

producing dipoles from rotations instead of off-centering displacements. The pola-

rization is P=(0, 0,Ps) with Ps =0.17 C/m2, comparable to displacive FE’s. I

estimated the TC about 1500 K.

LMO is in essence a high Neél temperature, TN=270 K, approximately G-type

antiferromagnet, as expected from superexchange between Mn4+ ions; however,

Mn AF-ordered spins are canted due to spin-orbit coupling, giving rise to weak

ferromagnetism and small off-polar axis polarization.

LMO’s off-diagonal lattice magnetoelectric tensor couples M(P) to orthog-

onal electric (magnetic) fields, and notably, due to softer force constants and

large magnetization sensitivity to ionic motion, it is about 50-fold that of the

prototypical magnetoelectric Cr2O3.
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This Part is devoted to the investigation of (Ga1−xInx)2O3 alloys. Alloying

Ga2O3 with In2O3 offers an opportunity to tune the band gap and heterostruc-

tures enable electronic and optical confinement. The first part of the following dis-

cussion is published in the “Journal of Physics: Conference Series, 566(1):012016,

2014” that principally summarizes the electronic properties of Ga2O3 in the β

phase and introduces alloys with In at low concentration. Progress in the alloy-

ing at low In concentration, for example, the determination of solubility limit, are

summarized in the “Applied Physics Express, 8(2):021102, 2015”. Furthermore,

the characterization of (Ga1−xInx)2O3 alloys in the overall x -range and band off-

set at interfaces are described in the “Journal of Physics: Condensed Matter,

in print (2015)” Finally, a new paper, that contains the revised phase diagram

and the polarization of new stable and meta-stable phases of (Ga1−xInx)2O3, is

submitted.

Introduction

Compound semiconductor systems based on the group III-oxides such as gal-

lium oxide (Ga2O3), aluminium oxide, (Al2O3), and indium oxide, (In2O3), have

been the pioneer for new semiconductor device technologies. In fact, these trans-

parent conducting oxides, TCOs, are used in a variety of applications including

flat panel displays and solar energy conversion devices. Among these, Ga2O3 is

attracting interest recently as a material for high-power transport and ultravio-

let optical absorbers, owing to its wider band gap and larger electric breakdown

voltage compared to e.g. GaN. The bandgap of β-Ga2O3 is 4.6–4.9 eV, which

corresponds to the second largest bandgap after that of diamond among semi-

conductors. Recently, Ga2O3 have had some attempts to develop optical devices

such as deep ultraviolet photo detectors [69, 70] and GaN-based blue light emit-

ting diodes, [71] using Ga2O3 epitaxial layers and substrates mainly by making

the best use of its transparency [72,73].

Combined with In2O3 (already widely used as Transparent Conducting Ox-

ide, TCO), Ga2O3 originates a new materials system which is tunably insulating,

easily n-doped (not so easily p-doped), and potentially magnetic (as In2O3 can be

made ferromagnetic [74] through magnetic doping, the same may well apply to

Ga2O3). A natural development that can be envisaged is the growth of a solid so-

lution (Ga1−xInx)2O3, typically (though not necessarily) epitaxially on the parent

compounds; this would enable one a) to combine and tune the functionalities of

the two parent compounds, and b) to export the band-engineering and nanostruc-
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turation concepts well known in other semiconductor systems (such as arsenides

and nitrides) to much higher absorption energies and breakdown voltages.

Phase relationships in the Ga2O3-In2O3 system have been previously studied

with somewhat conflicting results. Investigations of the phase diagram of the

system Ga2O3–In2O3 have shown the existence of a solid solution over a wide

composition range extending up to x ≈ 0.42 [75]. Firstly, Goldschmidt et al.

[76] proposed a phase diagram which included solid solution with β-gallia, cubic

and corundum-like structures (α-alumina). Based on structural considerations

and lattice parameter measurements Shannon and Prewitt [77] proposed that In

replaces all of the octahedrally coordinated Ga cation to form β-Ga2O3, Schnei-

der et al. [78] and MacDonald et al. [79] reported the formation of unknown

product(s) in the intermediate composition Ga2O3–In2O3 and confirm those of

Goldschmidt.

Further, the band-engineering and nanostructuration concepts from popu-

lar semiconductor systems such as, e.g., AlGaAs or InGaN may be exported

to these materials, and thus to a whole new region of high absorption ener-

gies and breakdown voltages. This may enable the design of devices based on

Ga2O3/(Ga1−xInx)2O3 such as high-power field effect transistors and far-UV pho-

todetectors or emitters.



CHAPTER 6

Gallium and Indium Oxides. Structure and electronic

properties

6.1 Gallium Oxide

Gallium oxide, Ga2O3, exists in various polymorphs. In Table 6.1 I have

reported the polymorphs identified in 1952 by Roy et al. [80] from powder X-

ray diffraction techniques. These different phases are analogous to other binary

oxides such as Al2O3 and Fe2O3. Despite that the crystal structure of ε-Ga2O3

was not able to be determined.

name type space group (No)

α corundum R3̄ c (161)
β monoclinic C2/m (12)
γ cubic spinel Fd3̄ m (227)
δ bixbyite Ia3̄ (206)
ε orthorhombic Pna21 (33)

Table 6.1: Different polymorphs of Ga2O3. The type and the space group of these structures
are specified.

Among them, the most stable phase is the monoclinic β-Ga2O3 at ambient

condition [81]. As shown in Figure 6.1, the unit cell contains 20 atoms, with two

crystallographically nonequivalent Ga atoms in tetrahedral and octahedral like

coordinations in the lattice.
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C2/m a = 12.46241 Å b = 3.08801Å c = 5.87998Å
(No. 12) α = γ = 90◦, β = 103.66◦

Atom x y z Wyc
Ga1 0.09003 0.00000 0.79490 4i
Ga2 0.34149 0.00000 0.68562 4i
O1 0.16395 0.00000 0.10930 4i
O2 0.49601 0.00000 0.25609 4i
O3 0.82657 0.00000 0.43649 4i

Table 6.2: Structure parameters of β-Ga2O3 in the monoclinic phase, it has Z=4 formula units
per crystallographic cell.

Figure 6.1: Different views of the monoclinic phase of Ga2O3. The structure of β-Ga2O3 can
be seen as a collection of zigzag double chains of edge-sharing GaO6 units (violet and green
Ga-octahedra) linked by single chains of vertex-sharing GaO4 (blue Ga-tetrahedra).

Structure optimization. Geometry and volume optimizations as well as elec-

tronic structure calculations have been performed using density functional theory

(DFT) in the generalized gradient approximation (GGA), and the PAW method

as implemented in the VASP code [5]. The k-point meshes of Brillouin zone sam-

pling for the primitive cells, based on the Monkhorst–Pack scheme were set at

4×8×6. The cutoff energy has been set at 470.9 eV. The equilibrium structure are

obtained after cell geometry and volume fully relaxation. The calculated lattice

parameters compare well with experimental data [82], reported in parenthesis:

a=12.46 (12.23)Å, b=3.08 (3.04)Å, c=5.88 (5.80)Å, θ=103.65 (103.7)◦, fractional

coordinates are listed in Table 6.2.

Electronic properties of β-Ga2O3. The energy band structure of β phase,

shown in Figure 6.2(a), similarly to other binary Ga compounds, has mainly O 2p

character in the upper valence band and Ga s content in the bottom conduction

band, as dispayed in Figures 6.2(b) and 6.2(c). The Fermi energy is set at the zero

point of the energy scale. The direct gap appears at the Γ point. The calculated

band gap is smaller than the experimental results, in fact GGA underestimates

it at about 2 eV, as expected of semilocal functionals. Adding an empirical self-
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(a) Band structure of monoclinic Ga2O3. The k points
are Y’ = ( 1

2
1
2 0), V= ( 1

2 0 0), Y= (0 1
2 0), Γ = (0 0 0),

A= (00 1
2 ), M= (0 1

2
1
20), L’= ( 1

20 1
20), M’= (0 1

2
1
2

1
2 ).

(b) Projected DOS of Ga (c) Projected DOS of O

Figure 6.2: Band structure and projected density of states of β-Ga2O3
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energy correction [83] involving the high-frequency dielectric constant1, I have

obtained a gap of 4.2 eV, not far from the experimental range of 4.5÷5 eV.

(a) (b)

(c) (d)

Figure 6.3: Absorption spectra of β-Ga2O3 at normal incidence on the (010) surface with
polarizations E‖c and E‖a. Absorption spectra of a (-201) wafer orientation.

Surprisingly, the precise value of the gap is still uncertain even in recent work

[84]. The reason for this is probably the significant anisotropy of the absorption

bandgap, which has been analysed with computational techniques and experi-

mental methods [85]. Ab initio calculations are performed using hybrid function-

als, HSE [86], and variational pseudo self-interaction corrections, VPSIC [87, 88]

(known to be free of the typical LDA/GGA gap errors). Polarized absorption

experimentally measured are reported in Figure 6.3.

1This correction shifts the value of the gap by an amount equal to ∆ = α/ε where α is a
constant, ∼ 9 eV, and ε is the high-frequency dielectric constant.



CHAPTER 6. GALLIUM AND INDIUM OXIDES 70

The bandgap edge is seen to be a function of light polarization and crystal

orientation, with the lowest onset occurring at polarization in the ac crystal plane

around 4.5-4.6 eV; polarization along b-axes unambiguously shifts the onset up

by 0.2 eV, it is the direct evidence for anisotropy. Figure 6.4 shows the three

Figure 6.4: Tauc plot of the absorption coefficient, showing the polarization dependent onsets.
Ref. [85].

theoretical distinct absorption edges as a function of polarization, the band gap

obtained with electric field vector E polarized along the crystallographic b-axes,

E‖b, is higher than other orientations, E‖c and E‖a. Theoretical results repro-

duce well the sequence of the bandgap edges of experimental one although the

theoretical gap value is systematically higher than experimental results. This

error is justified from choice of theoretical method, in fact, gaps can be oversti-

mates in PSIC calculations. Figure 6.5 provides an example in support of this

explanation.

In this figure, the direct gap, obtained by different computational methods

as a function of the crystal cell volume, is reported [85]. Predicted crystal cell

volume is clearly different in every set of data, and the difference of the calculated

gap using PSIC method or hybrid functional are also evident. On the other hand,

these advanced methods confirm a direct minimum gap at zone center between 4.2

eV (hybrids) and 4.7 eV (self-interaction-correction). Furthermore, the pressure

derivative of the gap results to be 3 meV/kbar essentially as in GGA (see later)

and in agreement with experimental results [84].
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Figure 6.5: Gap vs volume as obtained from hybrid and self-interaction corrected functionals,
as well as from GW0 many-body perturbation theory. The line EXP marks the cell volume
obtained from experimental lattice parameters. Ref. [85].

6.2 Indium Oxide

Indium oxide is used in batteries, transparent thin film infra-red reflectors. It

is also commonly doped with tin oxide (SnO2) to make indium tin oxide (ITO),

which is used in transparent conductive thin films, that are used in various differ-

ent types of displays, energy efficient windows and photovoltaics [89–92]. In this

material, the nature of the band gap is remained contentious [93] for decades,

only recently it is resolved from a joint experimental and theoretical effort [94].

The direct electronic band gap of the bulk material is of the order of 2.9 eV, and

the large disparity between the electronic and optical band gaps (Egopt ∼ 3.6 eV)

arises from a combination of dipole forbidden optical transitions and conduction

band occupation.

In2O3 is a candidate to realize the bandgap engineering of Ga2O3, since both

indium and gallium belonging to the same elements group, have similar electron

structures. In2O3 exists in three different phases characterized by space group

symmetries: two body-centered cubic I213 and bixbyite-type Ia3̄ , and a rhombo-

hedral corundum-type R3̄ c [95]. In addition, two new high-pressure metastable

phases were discovered: the orthorhombic Pbcn and Pnma [96].

Among these phases the most studied is the Ia3̄ one [97]. This phase crys-

tallizes in a body-centered cubic, bixbyite. The structure contains Z=8 formula

units per crystallographic cell, where each In atom occupy two nonequivalent sites
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and is coordinated by six oxygen atoms in a distorted octahedron, as shown in

Figure 6.6.

Figure 6.6: The bixbyite structure (group Th) has six-fold coordinated cations occupying
8b high-symmetry and 24d Wyckoff sites. The 8b sites are highlighted by the local oxygen
octahedra in the left panel, the 24d in the right one.

Structural optimization. The structural optimization are obtained using the

same method of Ga2O3, in this case the bulk Brillouin zone is sampled on a 2×2×2

Monkhorst-Pack grid and the cutoff energy is set at 450 eV. The equilibrium

lattice parameters and internal coordinates are listed in Table 6.3.

Ia3̄ a = b = c α = β = γ
(No. 206) 10.29108Å 90◦

Atom x y z Wyc
In1 0.25000 0.25000 0.25000 8b
In2 0.46622 0.00000 0.25000 24d
O 0.38974 0.15453 0.38234 48e

Table 6.3: Computed structure parameters of In2O3 in the Ia3̄ phase.

Electronic properties of In2O3. The calculated band gap is smaller than the

experimental results also in the case of In2O3. I have obtained a gap of 0.933

eV, but, including the empirical self-energy correction (∆ = 9eV/ε)2 the value

increses to 2.808eV, in decent agreement with 2.9 eV.

2I have considered the electronic dielectric constant of In2O3 calculated by Varley and
Schleife, ε = 4.80 [98].
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Figure 6.7: Band structure ob bixbyite In2O3. The k-points are: Γ = (0 0 0); H= ( 1
2 −

1
2

1
2 );

N= (0 0 1
2 ); Γ = (0 0 0); P= ( 1

4
1
4

1
4 ); H= ( 1

2 −
1
2

1
2 ).

6.3 (Ga1−xInx)2O3 alloys

Since unalloyed In and Ga oxides have different structures (bixbyite and mon-

oclinic β, respectively) the high-In and low-In-content alloying limits will behave

quite differently, and at intermediate concentrations the two phases are likely

to mix in an complicated way. The experimental alloying of Ga2O3 with In2O3

exhibits significant limitations, with β-Ga2O3-like and bixbyite-like X-ray spec-

tra at low x and high x respectively, and a mixed-phase region at midrange x.

In particular, the β-Ga2O3-like phase persists only up to about 15% or so [84].

Thus, keeping in mind that the large-x end of the alloying spectrum will have

to be treated differently, here I consider the low-x end substituting In for Ga in

β-Ga2O3 at nominal concentrations of 3, 6, 9, and 12 % (one to four In atoms

per 80-atom or 32-cation supercell).
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Figure 6.8: XRD patterns of (GaxIn1−x)2O3 films with different indium contents (x) deposited
on (0001) sapphire substrates at substrate temperature of 500◦C. Peaks marked by triangle
belong to monoclinic structure while that marked by circle belong to cubic structure. Peaks
not assigned belong to the sapphire substrate. Ref. [84].

6.3.1 Low-x (Ga1−xInx)2O3 alloys

Different atomic arrangements, in 80-atom supercells by 1×2×2 expansion of

the primitive cell of the normal monoclinic structure, have been construited. In

particular, supercells of Ga2O3 with In→Ga substitutions was sampled some of

the various possible octahedral and tetrahedral sites and combinations thereof

as function of composition (i.e. In concentration). I have optimized (in volume,

shape, and internal coordinates) supercells with a 2×4×2 k-point grid. The

calculations at 3% In (one “isolated” In atom per 80-atom cell) show that In only

substitutes octahedral Ga: tetrahedral sites are ruled out by a huge excess energy

cost of 1.1 eV. Therefore, half the cation sites are essentially inaccessible to In,

and hence the amount of In that can actually be incorporated into Ga oxide is
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Figure 6.9: Different pairings patterns of 6% In-content in β-Ga2O3.

6% In-content

Patern 0 1 2 3 4 *
∆E(meV) 0 16 50 100 125 250

Table 6.4: The energy of structure with 6% In-content in different configurations, in β-Ga2O3

phase. Every In occupies octahedral site

automatically halved – to put it differently, all available sites would be occupied

already at 50% nominal In content.

Even reaching this limit, though, is quite unlikely. Indeed, In incorporation

is not arbitrary in terms of configuration. At 6% In-content, i.e two In atoms

per supercell, it is possible estimate the energetics of pairing (or, rather, non-

pairing) of In in Ga2O3. Figure 6.9 displays the preferential couplings. The

energy of configuration ‘0’ is chosen as zero; the structures numbered ‘1’ to ‘4’

are in progressively unfavourable energetic order, with ‘1’ at 16 meV, ‘2’ at 50

meV, ‘3’ at 100 meV, ‘4’ at 125 meV. In the configuration labeled ‘*’, In atoms

occupy adjacent octahedra; this structure is 250 meV higher than the reference.

Clearly, In atoms tend to avoid one another, and it is likely that at the common

growth temperatures of 850 K the typical configurations will be such as our ‘0’

and ‘1’, described above. Analysing the structure, this suggests that well below

a half, and probably closer to a quarter, of the octahedral sites can be occupied

by In with a reasonable energy cost; when these are filled, the formation of some

mixed β/bixbyite phase may be preferable to substitution in the β phase. This

brings the effective solubility in the original β-Ga2O3 structure down to between

12% and 25% as found in experiment [84].
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Consistently with the above configurational restrictions on pairing, the admis-

sible arrangements at 9% and especially 12% In content are few. The resulting

structures are probably a fairly decent model of the alloy, given the very limited

configurational freedom of In already at these concentrations. (Cluster-expansion

work is ongoing on miscibility at finite temperature and will be reported in the

next section.)

I have chosen as dilute limit the concentration of 3% In, i.e. one “isolated”

In atom per 80-atom cell. Besides being computational feasible, 3% is actually

a quantitatively accurate dilute limit: the formation energy calculated in the

standard way [99] is Ef (1)=0.24 eV/In, which yields a concentration of 2.7% at

the typical growth temperature Tg=775÷800 K [84,100]. The chemical-potential

reservoir for In is the bixbyite phase of In2O3, which might occur in nanograins

embedded in Ga2O3. Indium substitution at tetrahedral sites costs δEt=1.1 eV

Figure 6.10: Sketch of different configurations of In on the Ga2O3 simulation supercell. Occu-
pied octahedra in the β structure double-rows are darkened.

more than at octahedral sites; thus the tetrahedral-site occupation probability is

lower than that of octahedral sites by a factor exp (−δEt/kBTg) ∼ 0.5-1×10−7.

Therefore, the In concentration in Ga2O3 cannot exceed the value whereby the

octahedral sites are all occupied, i.e. 50%. Because the Ga2O3 structure is

made up of double rows of octahedra sharing sides and connected by tetrahedra,

there is limited configurational leeway for In placement in the system (see Figure

6.10). The energetics of In substitution in various configurations (a sample is
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depicted in Figure 6.10) have been evaluated at concentrations between 6% and

25%, i.e. for 2 to 8 In atoms in the 80-atom, 32-cation 1×4×1 cell, and it

have been extrapolated numerically to 50% (tetrahedral sites are neglected). The

results have shown that two In’s prefer to sit on different double-rows or, failing

that, on first-neighbour octahedra in adjacent subrows, which locally resemble

the native In2O3 bixbyite structure. The formation energy E per In decreases

slightly for two and three In per cell, then increases steeply. For the configurations

in Figure 6.10 I have found that the excess formation energies over that of a

single In are δEf (2)=–0.044, δEf (3)=–0.019, δEf (4)=+0.021, δEf (5)=+0.074,

δEf (6)=+0.144, δEf (7)=+0.171, δEf (8)=+0.180, in eV/In (the last two are not

shown in Figure 6.10). The cell is kept at the volume of the undoped material,

which is strictly correct in the dilute limit [101]; at higher concentration I account

for an enthalpic energy cost. The concentration is evaluated as the thermal

average of the In population in the supercell (M=32 cation sites)

x =
〈N〉
M

=
1

M

∑M
N=1N exp [−βgF (N)]∑M
N=1 exp [−βgF (N)]

, (6.1)

where βg=1/kBT g and F (N)=Ef (1)+δEf (N)–TgS+δH is the free energy per

In in the N -In substituted cell. E is the formation energy, S the formation

vibrational entropy (S has been estimated from the Debye temperature of the

two bulk oxides, and find TgS ' 0.015 eV), and δH ' 0.09 eV is the energy

cost related to the internal pressure building up in the constrained cell. δH is

estimated as the energy difference (per In) between the constrained and volume-

relaxed cell; if cell-length changes are allowed along a given direction, as would

occur in epitaxy, δH decreases by about one third. In any event, entropy and

enthalpy provide only small corrections over the structural energy Ef discussed

previously. The thermal population average, Eq.(6.1), gives a concentration of

9%, with an error bar of +2% and –1% estimated varying the δE’s between 0.5

and 1.5 times those calculated. Again, this low solubility follows from tetrahedral

sites being ruled out and from In occupying only about 3 out of 16 octahedral

sites in the cell on (thermal) average.

The gap and the volume change with concentration of (Ga1−xInx)2O3 have

been calculated in the 80-atom supercell for the structures mentioned. The gap

as function of In-content is shown in Figure 6.11, left, and the volume is in

the same figure, right. Although the gap is underestimated (a token of using

GGA), its concentration change of 17 meV/% is quite similar to 20 meV/%
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Figure 6.11: Left: direct gap at zone center as function of In concentration. Right: normalized
volume of In-doped Ga2O3 as function of concentration.

experimentally [84]. Using the the volume change with x and the bulk modulus,

the concentration derivative can be evaluated as a pressure derivative, obtaining

2.5 meV/kbar. This is similar to the Ga2O3 value of 3 meV/kbar [85,102], which

suggests that the gap is mainly affected by volume change, and marginally by

other factors. In this light, the agreement with experiment therefore falls in line

with expectations from previous work [103].

6.3.2 Structure and gap over the whole x range of

(Ga1−xInx)2O3 alloys

In this section, I will report the modelling of (Ga1−xInx)2O3 over the entire

range of x. Previous results for the low-x end of the composition range are

integrated in a comprehensive picture of the miscibility and attendant properties.

The main result is that the alloy will phase-separate between approximately 15

and 35% In content for the free-standing alloy (15 and 45% for the epitaxial case).

On the low x side, the favoured phase is isostructural with β-Ga2O3; above the

phase separation region, it is isostructural with bixbyite In2O3. We also find

that as function of x the gap, volume, and band offsets to the parent compound

exhibit discontinuities typical of a first-order phase transition as function of x.

Methods and technical issues. Geometry and volume optimizations as well

as electronic structure calculations are performed by the previous method, using

the VASP code [5]. The compositional variation has been simulated explicitly

mixing In and Ga cations, as dictated by the mole fraction x of In, into two

distinct structures. For low x, monoclinic β-Ga2O3 phase, doped with In, has

been considered; this alloy is free-standing, i.e. energy is calculated at zero stress.
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In agreement with previous predictions, reported in the section 6.3, this phase is

only relevant up to about x = 0.2 (I will also refer to x as a percentage, e.g. 20%

in the latter instance). Whereas bixbyite phase has considered over the whole

range of x; this is obtained naturally substituting Ga for In in In2O3, which is

indeed a bixbyite as many other sesquioxides [104, 105]. Specifically, bixbyite

alloy has been analysed in two settings: free-standing and In2O3-epitaxial. In the

latter, the in-plane lattice parameters are fixed to that of In2O3 and the vertical

lattice parameter and all internal coordinates are optimized.

Both the β and bixbyite supercells contains 80 atoms, i.e. 32 cations. The

choice of configurations in the β phase has been discussed previous. For the

bixbyite phase, I have found that Ga substitution is slightly favoured at the high-

symmetry cation site (see Figure 6.6). Then, I have substituted more and more

Ga for In on those sites, and then on the lower symmetry ones. For each x, a

few (in fact, mostly symmetry-dictated) configurations have been sampled. All

the following discussions are based on the lowest energy configurations found at

each x. It should be emphasized that, our sampling being quite coarse, these

need not be the absolute minimum energy states for each x; in addition, the

possible occurrence of higher-energy configurations in small proportions at finite

temperature is neglected.

Phase separation. To address the occurrence of phase separation, the Helmholtz

free energy of the mixture are calculated as a function of x. The enthalpic term,

PV , vanishes because the pressure P is zero in all cases. The entropy is the sum

of mixing and vibrational entropy. The mixing entropy has the standard form:

Sm(x) = −x log x− (1− x) log (1− x). (6.2)

Since growth happens at temperatures comparable to or higher than the Debye

temperatures3, the vibrational entropy can modelled as that of a single-frequency

oscillator at the Debye frequency.

Thus, this term can be written as:

Sv(x) = 3 [(1 + n) log (1 + n)− n log n] , (6.3)

where n is the Planck-Bose distribution

n(T, x) = (eΘm(x)/T − 1)−1 (6.4)

3Debye temperature is 420K for In2O3 and 870K for Ga2O3.
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and the mixture’s Debye temperature Θm(x) is assumed to be an interpolation

of that of the parent compounds:

Θm(x) = (1− x) ΘGa2O3 + xΘIn2O3 . (6.5)

The phase separation in a mixture occurs when the chemical potential (i.e., in

the present case, the free energy per cation site) is a negative-curvature function

of an extensive parameter such as x. The values, x1 and x2 at which the chemical

potential curvature becomes negative and then positive again delimit the phase

separation region; in general these bounds depend on temperature T, and the x

range they identify is the miscibility gap. When –and if– the negative curvature

region vanishes as T changes, i.e. x1 and x2 coincide, there is complete misci-

bility. Although the chemical potential should be used in phase separation, it is

also acceptable to use the mixing free energy, i.e. the chemical potential after

subtraction of the bulk free energy. For the latter I have used this relation:

Fbulk(x) = xFIn2O3 + (1− x)FGa2O3 , (6.6)

which interpolates the values for two equilibrium bulk phases (bixbyite and β,

respectively). The conclusions are essentially the same in both cases.

Figure 6.12: Mixing free energy as a function of In concentration at 810 K and 2000 K for
β-phase vs epitaxial bixbyite (left panel), and β-phase vs free-standing bixbyite (right panel).
The phase separation region extends between the vertical dashed and dash-dotted lines.

The results, reported in the Figure 6.12, suggest a miscibility gap between

about 15 and 40% In content at typical growth temperatures. Being related

to a change of structure, the miscibility gap does in fact survive up to (and
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above) the melting temperatures of the parent compounds. The panel on the

right, compares the mixing free energies of the free-standing β phase (circles)

with that of the epitaxial bixbyite phase (squares). Whereas the panel on the

left, compares the same quantities for the same β phase with that of the free-

standing bixbyite phase (diamonds). The considered temperatures are 800 K, a

typical growth temperature, and 2000 K, near the melting temperature of the

parent compounds. The free energy is evidently upward-convex in a wide region

of intermediate x, indicating that a phase separation occurs. The borders of that

region, x1 and x2, define the miscibility gap.

On the low-x end, the β phase prevails in all cases, and the change in curvature

occurs (hence the phase separation region starts) at about x1 ' 0.15. This con-

firms largely our previous estimate (section 6.3) of 10% maximum In solubility,

and experiments [100] giving similar results. At high x, the end of the miscibility

gap region is estimated at x2 ' 0.45 ÷ 0.55 for the epitaxial case (left panel),

subject to large uncertainties in locating the free-energy downturn from the epi-

taxial phase. Therefore, the miscibility gap is approximately x ∈ (0.15, 0.55) for

the epitaxial bixbyite and β phase.

Comparison with the growth and X-ray diffraction study by Zhang et al [84]

suggest that all this is quite plausible, even accounting for their epitaxial con-

ditions being different from those simulated. Most importantly, at 2000 K the

borders of the phase separation region are about the same as at 800 K, i.e. the

miscibility gap hardly changes (it actually may widen slightly). Since the melting

temperatures of the parent compounds are around 2200 K, we conclude that in

the practical range of T the miscibility gap between the epitaxial and β phases

is x ∈ (0.15, 0.55) independent of T.

The competition between β phase and free-standing bixbyite are shown in

Figure 6.12, right panel. A phase separation region exists here too, involving the

structure change to the β phase at low x : the lower limit is again x1 ' 0.15.

The free-standing bixbyite phase is favoured over the β phase (as well as over the

epitaxial) over the rest of the x range, from x1 ' 0.2 or so onward. However, its

own free energy is upward-convex for most of the range; this indicates a phase

separation between Ga2O3 and In2O3 within the bixbyite phase; the change in

curvature on the high x side is approximately at x2 ' 0.8 ÷ 0.85. Therefore the

overall miscibility gap is x ∈ (0.15, 0.85) in the free-standing case. This is quite

clearly the case at both 800 K and 2000 K. Thus, as in the epitaxial case, we

conclude that in the practical range of T the miscibility gap for free-standing

bixbyite is x ∈ (0.15, 0.85) independently of T. An experimental determination
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of the Ga2O3-In2O3 phase diagram [75] suggests that indeed at the In end of the

range the single-crystal stability region is quite marginal, being limited to x>0.9

or so.

Discontinuity of gap and volume across the transition. Interestingly,

there are other properties of the materials that exhibit discontinuities as func-

tion of concentration due to the change in phase and structure. In Figure 6.13,

left panel, the calculated optimized volume are shown in the two free-standing

bixbyite and β phases, showing a clear volume discontinuity at any given x. At

x1<x, both phases start to form and coexist; the volume first drops, then recovers

as x increases.
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Figure 6.13: Left panel: volume vs mole fraction for the free-standing β and bixbyite phases.
Right panel: fundamental gap in the same phases and interpolations vs x (quadratic for bixbyite;
linear at low x for β). A correction for the gap error has been introduced. The gap show a
sizeable bowing in bixbyite at large x.

The energy gap shows analogous interesting features. The β phase has a

linear decrease in good agreement with pressure experiments [2,84]. The bixbyite

gap is also linear at low x, but picks up a significant bowing near x = 1. To

correct for the semilocal density-functional error, the GGA calculated gap has

been supplemented with an ad hoc ‘scissor’-like correction

δEg(x) = 2.5x+ 2.7(1− x)eV (6.7)

which brings the GGA gap to the experimental value in Ga2O3 and In2O3 [85,106]

(incidentally, the correction reduces the bowing as obtained from GGA eigenval-

ues). Since the lowest gap is dipole-forbidden, to compare with the experimental

optical onsets [84] I have estimated the position of the optical onset at all x as the
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GGA gap value (corrected by equation 6.7) plus the difference of optical onset

and minimum gap in In2O3 (0.55 eV). The agreement is decent, on the experi-

ment side, the data are for films grown on sapphire, the In content is generally

lower than the nominal one especially at intermediate x, and the gap in the x = 0

and x = 1 limits is larger than in most reports; on the theory side, I have applied

a simple correction that offers no guarantee of being equally appropriate for all

transitions and all x. As I now discuss, an interesting crossover behaviour is more

easily observable in the band offsets at the interface with the parent compounds.

6.4 (Ga1−xInx)2O3 alloys at x ∼ 0.5: InGaO3

In the previous sections I have shown that (Ga1−xInx)2O3 has a monoclinic

crystal structure for low In content and a cubic bixbyite phase for highest In

contents. In addition, in accord with experimental results [77], intermediate al-

loying shows an additional crystallographic phase. In particular, around 50% of In

content, a new centrosymmetric phase, belonging to hexagonal P63/mmc space

group, is in competition with the monoclinic and bixbyite phases. Theoretical

studies on (Ga1−xInx)2O3 phase stability and optical properties have been pub-

lished recently also by Peelaers et al. [107], but the picture is apparently still far

from complete. In recent growth experiments [108,109] on the (Ga1−xInx)2O3 al-

loy in the vicinity of x = 0 and x = 0.5 have suggested that stable (or metastable)

phases other than those so far assumed as ground state may in fact be stabilized.

In particular, in Schewski et al. work [108] three competing phases are reported

to appear near x ∼ 0.5: that derived from the bixbyite structure of In2O3; a

hexagonal phase previously observed at exactly x = 0.5; and finally a monoclinic

close relative of the β-Ga2O3 structure. In this section, I will report a revised

phase diagram of (Ga1−xInx)2O3 accounting for new findings around x ' 0.5. In

brief, the results are that the hexagonal and β structures do indeed compete en-

ergetically with the bixbyite phase that was expected based on previous results,

and this competition occurs only in the vicinity of x ∼ 0.5.

6.4.1 Structure optimization

The same method previously used is considered to geometry and volume opti-

mizations. In particular, a 470.7eV cutoff energy and a 2×2×2 Gamma centered

grid are used4. Atom parameters are in perfect accord with the experimental

4For hexagonal lattices, the energy converges significantly faster with Γ centered grids than
with standard Monkhorst Pack grids.
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(a)

(b)

Figure 6.14: Supercell of Ga1−xInx)2O3 with 50% In-concentration. In this structure In is
six-fold coordinated occupying 2a Wyckoff sites while Ga is five-fold coordinated occupying 2c
Wyckoff sites.

data, although the lattice parameters are slightly lower than the calculated one.

In Table 6.5, structure parameters of InGaO3 in the unit cell, are reported, in

parentheses data are referred to that Shannon’s work.

P63/mmc a = b = 3.36878Å c = 12.20095Å
(No. 194) (a = b = 3.310Å) ( c = 12.039Å)

α = β = 90◦, γ = 120◦

Atoms x y z Wyc
In 0.00000 0.00000 0.00000 2a
Ga 0.33333 0.66667 0.25000 2c
O 0.00000 0.00000 0.25000 2b
O 0.33333 0.66667 0.08716 4f

Table 6.5: Calculated structure parameters of InGaO3. The unit cell contains ten atoms, i.e.
Z=2 formula units per unit cell.

In this structure In is coordinated by six oxygens, the polyhedral share edge

and form a layer normal to c-axes. These layers alternate with layers of GaO5

trigonal bipyramids, each of which shares its two vertices with three InO6 poly-

hedral (see Figure 6.14).

Both out of interest for the possible energetic stability, and for the possibility

that the structure might turn out to be polar, I have investigated this phase in a

range of x from 0.45 to 0.55.

The main result is that in this whole region this phase is lower in energy than,
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therefore favoured over the bixbyite, and also degenerate at x = 0.5 with the β

phase. The difference is a sizeable 0.1 eV/cation. As to the alloy energetics, cal-

culations reveal that the lowest energy structures of the sample of configurations

for the hexagonal symmetry in the vicinity of x = 0.5 are lower in energy by about

0.1 eV than the free-standing bixbyite configurational sample, and therefore more

stable than bixbyite, or at least (given the model uncertainties) competing with

it for stability. In the Schewski et al. paper reporting the occurrence of hexag-

onal phase crystallites, β-phase inclusions were also reported, in a region that

I had previously neglected given its seemingly skyrocketing energy at large x.

Therefore, a few concentration points around x = 0.5 for the β phase have been

calculated, the results are that indeed it competes with the hexagonal phase and

the bixbyite. As in previous section the sampling of configurations is very limited

and therefore the error bars on the energies determining relative stability should

be assumed to be large.

In addition, structural analysis have shown a reduction of the symmetry in

two type of polar phases, hexagonal and orthorhombic one. The little variation of

In-concentration could lead to an occurrence of a little electric dipol in structures

with orthorhombic symmetry. Unfortunately, it never occurs, even at a generic

concentration, for generic atomic arrangements, and enabling all kinds of sym-

metry lowering starting from P63mmc. In conclusion, this phase, is robustly non

polar.

6.4.2 Revised phase diagram

Previous calculations have revealed that the β structure of Ga2O3 is disfavored

over bixbyite for x above 0.2 or so. The internal energy of that phase increased

drastically and monotonically as a function of x, so I refrained from pursuing it

further. However, growth experiments indicate that when x = 0.5 the β phase is

indeed present [108]. I have thus revisited the previous assessment and studied

the β phase in that region of concentration. It turns out that at exactly x = 0.5

the β phase is more stable than bixbyite and as stable as the hexagonal phase

discussed above. At this concentration, In atoms all occupy octahedra, and Ga

atoms all occupy tetrahedra. If we move away from exact 50-50 concentration,

however, the energy shoots up immediately, accompanied by a volume collapse

by about 10% at x = 0.47 and x = 0.53, and increasing on both sides of the

energy minimum.

Based on the calculations discussed above it is possible to revise the phase

diagram in Figure 6.12 to account for the new phases. The diagram is reported
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Figure 6.15: Revised phase diagram for (Ga1−xInx)2O3 for T=800 K.

in Figure 6.15 in the form of a mixing free energy, constructed as discussed pre-

viously. The temperature is 800 K, a typical growth temperature. The stability

of the β phase up to about x = 0.2 is confirmed, and so is the phase separa-

tion into components of the bixbyite phase (signalled by the convexity of the

free energy). The hexagonal phase is, now, the stable one in a range that, con-

servatively, extends from x ∼ 0.4 to x ∼ 0.6. Given the upward-concave free

energy, the hexagonal phase does not phase-separate into binary components in

this range. In addition, as mentioned, the β phase has a very narrow stability slot

at x = 0.5. Moreover, the phase boundaries are quite insensitive to temperature,

at least within the bounds of our model (there is no guarantee, of course, that

the vibrational entropies of all phases will be the same). Thus, as dictated by

the curvature of the mixing free energy, there is full miscibility of the two binary

oxides at all temperatures in the ranges x ∈ (0, 0.17) and x ∈ (0.35, 0.65), where,

respectively, the β and the hexagonal structures are adopted. In the bixbyite-

dominated ranges x ∈ (0.17, 0.35) and x ∈ (0.65, 0.85), phase separation into

binaries is expected, from the negative curvature of the mixing free energy.
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6.5 Conclusion

Using density-functional ab initio theoretical techniques, I have established

that (Ga1−xInx)2O3 could exist in the β phase at low in concentration (below

15% or so) and in the bixbyite phase at high In concentration (above 35 to 50%

depending on the epitaxial conditions). The compound could phase-separate at

intermediate mole fractions, and the two phases will coexist. This amounts to a

first-order disproportionation phase transition as function of the mole fraction x.

Discontinuities in the calculated volume, gap, and other electronic properties also

confirm this conclusion. In addition, I have found that the gap and the volume

as function of x exhibit discontinuities typical of a first-order phase transition as

function of x.

Finally, from further calculations, the phase diagram of (Ga1−xInx)2O3 have

been revised, showing that the β phase is stable (without phase separation into

binary components) at low x and exactly at 50-50 concentration; a new hexagonal

phase is stable (again without phase separation into binary components) for x

from about 0.4 to 0.6, where it is robustly non-polar; and bixbyite will be stable

for x between 0.2 and 0.4, and upward of 0.6, but should phase-separate into

binary components.



CHAPTER 7

Band offset at interfaces

Band offsets at interfaces are key quantities in the design and engineering of

heterostructures. The discontinuity in the local band structure at semiconductor-

semiconductor and semiconductor-oxide interfaces is a crucial physical property

for the operation of most electronic and optoelectronic devices [110]. For ex-

ample, high-speed transistors and semiconductor lasers, which have significant

impacts on information and communication technology. Ab initio theory has

been predicting reliable offsets all along. The correct way of calculating band

offsets [111] is as the sum ∆Eb + ∆V of the interface jump ∆V in electrostatic

potential between the two regions being interfaced, and the difference ∆Eb of

the band edge of interest in each of the two materials, taken separately each in

their own internal potential. In particular, since the ab initio pseudopotentials

used here are nonlocal, the band energies in each bulk material are referenced to

the macroscopically averaged electrostatic potential, V̄ (z). The variation of the

space coordinate r is limited to the component perpendicular to the interface,

and values of the potentials are averaged over the remaining two coordinates, i.e.

averaged in the plane parallel to the interface:

V̄ (z) =
1

Na2

∫
V (r)dxdy (7.1)

where a is a cell parameter [112,113]. Figure 7.1 provides an example of planar av-

erages of the electron density (full line) response at a GaAs/AlAs heterojunction.
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Figure 7.1: Macroscopic averages of the electron density (full line) and the corresponding
electrostatic potential (broken line) at a GaAs/AlAs heterojunction. Ref. [111].

7.1 Ga2O3 / (Ga1−xInx)2O3

For these calculations a 2×2×2 160-atom cell have been used, as depicted in

Figure 7.2, upper panel. The (100) interface has been construited as half of the

supercell along the (100) axis with pure β-Ga2O3, and the other half with a Ga-In

alloy. Firstly, the concentration picked was 12% as it is near the maximum achiev-

able (as discussed previously), and because, given the energetics constraints, the

configurational freedom of In is very limited, and there is no serious need for a

detailed In configurations sampling, which would be computationally unfeasible.

The (100) interface has been chosen for computational convenience; it remains to

be assessed how much the offsets change with orientation.

This super-unit cell repeats periodically the two layers, effectively producing a

superlattice; it is found that the thickness of the layers is sufficient to reproduce

identifiable bulk regions on either side of interface, with flat, bulk-like average

potential, as shown in Figure 7.2, lower panel. This superlattice are considered

in two strain states, epitaxial and free-standing; in the former case, the lattice

constants have fixed in the bc crystal plane and the monoclinic angle to those of

Ga2O3, and only the a lattice parameter has been relaxed; in the second case,

all lattice parameters have been optimized. The internal coordinates have been

optimized in all cases.

The local potential has been determined including only the ionic and Hartree

potential. VASP calculates the average electrostatic potential at each ion by

placing a test charge with the norm 1, at each ion and calculating

V̄n =

∫
V (r)ρtest(|r−Rn|)d3r (7.2)

In this supercell the average electrostatic potential are displayed in Figure
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Figure 7.2: Upper panel: simulation cell for the (100) superlattice (for definiteness I display
the epitaxial geometry). Lower panel: the electrostatic potential of the superlattice, showing
small but definite bulk regions on either side of the interface. The potential is aligned with the
lower side of the cell.

7.2, lower panel. As schematized in Figure 7.3, at the (100) interface between Ga

oxide and the alloy at 12% In, an alignment of type-B staggered results when the

alloy is epitaxial on Ga2O3, and type-A straddling in a free-standing superlattice;

the valence offsets from Ga2O3 to (Ga1−xInx)2O3 are –0.14 eV (Ga2O3-epitaxial)

and 0.15 eV (free-standing), and the conduction offsets are –0.41 eV (epitaxial)

and –0.05 eV (free-standing). This considerable difference is due almost entirely

to strain-induced shifts of the valence band maximum (VBM) and conduction

band minimum (CBM), whereas the electrostatic interface alignment is hardly

insensitive to strain. This indicates that a marked dependence on the strain

state, and hence on the growth quality, is to be expected. Importantly, given

the limited In solubility, this is about as much of an offset as can be expected

between Ga2O3 and (Ga1−xInx)2O3.

I expect the above estimate to be rather accurate. This interface is be-

tween materials differing only very slightly due to compositional changes, so that

beyond-DFT corrections to the band edges will essentially cancel out; on the

other hand, strain-induced band-edge shifts are known to be well described by

standard functionals [83]. In this case, the gap error essentially cancels out, so

the absolute value of the gap is insensitive to the offsets.
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GaO GaInO

0.15

0.05

VBO (eV) = ΔEV+ΔV = 0.41 - 0.26

Straddling gap - Type A

(Free-standing)

GaO
GaInO

0.14

0.41

VBO (eV) = ΔEV+ΔV = 0.14 - 0.28

Staggered gap - Type B

(Epitaxial)

Figure 7.3: Schematic of the staggered and straddling offset for, respectively, the epitaxial and
free-standing superlattice configurations.

7.2 In2O3 / (Ga1−xInx)2O3

In this section, I have extended the work to a much larger range in the bixbyite

structure. I have simulated the (001)-like interface with In2O3/(Ga1−xInx)2O3 su-

perlattices epitaxially constrained to In2O3, containing 160 atoms in the primitive

cell, and with explicit atomic substitutions.

On the bixbyite side of the phase separation region, the offsets are again

type-B (a relatively uncommon occurrence in itself), but most interestingly they

are staggered in the opposite direction, i.e. both the conduction and valence

offsets encountered in going from the parent compound into the alloy are generally

positive, whereas they were negative in the low-x limit (see the sketches in Figure

7.4. This suggests interesting perspectives for interface offset tuning in this alloy

system. The offset values are also rather interesting in terms of potential charge

confinement. We purposely refer to offsets only, starting from zero at x=0 and

x=1, as any gap corrections will largely cancel out of the offsets themselves. Of

course, in the case of free-standing bixbyite, all the calculated values refer to the

mixed phase and not the possibly compositionally segregated one.

7.3 Conclusion

In summary, I performed first-principles calculations of the interface proper-

ties of the Ga2O3/(Ga1−xInx)2O3 and In2O3/(Ga1−xInx)2O3 systems. This calcu-

lations proves that the band offset between Ga oxide and the alloy at 12% In is

type-B staggered when the alloy is epitaxial on Ga2O3 and type-A straddling in

a free-standing superlattice. The valence offsets from Ga2O3 to (Ga1−xInx)2O3

are −0.14 eV (Ga2O3 epitaxial) and 0.15 eV (free-standing), and the conduction
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Figure 7.4: Valence (VBO, top) and conduction (CBO, bottom) interface band offsets between
In2O3 and (Ga1−xInx)2O3 in the bixbyite phase, both epitaxially constrained on In2O3, or with
compliant substrate. The offset between Ga2O3 and low x (Ga1−xInx)2O3 at x ' 0.1 in the β
phase for the same conditions are also reported.

offsets are −0.41 eV (epitaxial) and −0.05 eV (free-standing). In the latter case,

from calculation of In2O3/(Ga1−xInx)2O3 systems, the interface band offsets re-

sults to be largely type-B staggered and positive at large x, whereas staggered

and negative in the low-x limit.



CHAPTER 8

Epsilon-Ga2O3

In this chapter, I report recent calculations on the energetics and polarization

properties of the ε-Ga2O3 phase. Firstly, this phase was synthesized by Roy et al.

[80] from powder X-ray diffraction techniques, but identified in 2013 by Playford

et al. [114]. Very recently, from growth experiments, Oshima et al. [109] reported

that the ε phase of Ga2O3 can be obtained at 820 K via epitaxial constraints,

whereas a bulk phase transition is not expected below 1500 K [115]. The ε phase

of Ga2O3 is only slightly energy-disfavored over the stable β, and as dictated by

symmetry it has a large spontaneous, or permanent, polarization of about 0.25

C/m2. Most importantly, once it is stabilized, this phase cannot be transformed

into (is not symmetry-related to) the stable β phase. These results do indeed open

up some interesting perspectives, such as exploiting the polarization properties

of ε-Ga2O3.

8.1 Structure optimization

The ε-Ga2O3 phase is structurally similar to the same phase of ε-Fe2O3 or

κ-Al2O3 [116] and its space group is Pna21 , which does not contain inversion.

ε-Ga2O3 structure derives from a ABAC pseudo-close-packed stacking of four

oxygen layers, with Ga occupying octahedral and tetrahedral sites. This struc-

ture, as displayed in Figure 8.1, consists of triple chains of octahedra sharing

edges and simple chains of tetrahedra sharing corners which run parallel to the

a direction. In Table 8.1 I report the structural parameters of the equilibrium
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Figure 8.1: Different views of the orthorhombic phase of Ga2O3. Ga occupies octahedral (Ga1,
Ga2, Ga4) and tetrahedral (Ga3) sites which form zigzag ribbons of edge-sharing octahedra
and corner-sharing tetrahedra.

structure obtained after cell geometry and volume fully relaxation. I have used

a 4×2×2 k-point grid for Brillouin zone integrations and a 490.7 eV plane wave

energy cutoff. The calculated structural parameters are in essential agreement

Pna21 a = 5.12604 Å b = 8.80567Å c = 9.42423Å
(No. 33) (a = 5.120 Å) (b = 8.792Å) (c = 9.410Å)

α = β = γ = 90◦

Atom x y z Wyc
O1 0.97031 0.32468 0.42135 4a
O2 0.52269 0.48831 0.42852 4a
O3 0.65081 0.00160 0.19973 4a
O4 0.15307 0.15863 0.19308 4a
O5 0.84866 0.17085 0.66597 4a
O6 0.51974 0.16764 0.93392 4a
Ga1 0.19176 0.15034 0.58280 4a
Ga2 0.67863 0.03213 0.79146 4a
Ga3 0.17784 0.15200 0.99363 4a
Ga4 0.81228 0.16176 0.30414 4a

Table 8.1: Structure parameters of ε-Ga2O3 in the orthorhombic phase, Pna21 , with Z=8
formula units per crystallographic cell.

with a previous study [115], parenthetical parameters to compare. The total

energy results to be -29.6958 eV/per formula unit and the energy difference with

the β phase at zero temperature is just 90 meV per formula unit as found pre-

viously; indeed, Ref. [80] predicted that the ε phase could become favoured over

the β at temperatures above 1500 K, still well below the melting temperature of

Ga2O3.

Indeed, this phase has most recently been grown epitaxially by Oshima et al.
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[109]. Epitaxial stabilization of the ε phase is not endangered by a possible decay

in the β ground state. This is due to the simple reason that there is no possible ε-

to-β symmetry path, since the space group Pna21 is not a supergroup of C2/m.

This is quite analogous to the situation of III-V nitrides, which are wurtzites

(group P63mc) and cannot transform, again for symmetry reasons, into its close

relative zincblende (group F 4 3m), despite the volume being almost the same and

the energy difference being about only 10 meV/atom (the two ε and β phases

also have the same volume and an energy difference of about 15 meV/atom).

However, just as ε-Ga2O3, zincblende nitrides can be grown under appropriate

epitaxial constraints.

8.2 Pyroelectricity and piezoelectricity

Since the space group Pna21 is polar, observable polar vector quantities are

allowed in ε-Ga2O3. The polarization is an obvious example. To calculate it

properly as difference between polar and non-polar state, as prescribed by pola-

rization theory, I have investigated a virtual phase transitions of a hypothetical

non-polar parent phase into the polar ε phase. (“Non-polar parent” here means

a structure having a higher symmetry than the polar one.) I have used the

PSEUDO [117] program of the Bilbao Crystallographic Server1, which is designed

to detect pseudosymmetry in a given structure and derive a virtual parent high-

symmetry structure. In particular, PSEUDO checks the approximate coincidence

of the transformed structures with the original one through an identification of

the atomic displacements relating the two configurations. If these displacements

are smaller than a fixed tolerance, the structure is flagged as pseudosymmetric.

Among the supergroups of Pna21 , the centrosymmetric phase is chosen to

have symmetry group Pnma (No. 62). The structural parameters obtained

from cell geometry and volume fully relaxation, using the same k-point grid

for Brillouin zone integrations of the ε phase, are report in Table 8.2. The

spontaneous polarization has been calculated, as dictated by the modern the-

ory of polarization [31–35], as difference of the values calculated in this phase

and in a centrosymmetric parent phase. In this case, the polarization results

∆P = PPna21 −PPnma = 0.233 C/m2 along the polar c axis. The predicted phase

have zero polarization in the chosen crystallographic setting; the evolution of P

with a path connecting the two structures is displayed in Figure 8.2. This result

guarantees that the polarization is, as desired, the minimum value modulo the

1www.cryst.ehu.es

www.cryst.ehu.es
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Pnma a = 5.07204 Å b = 6.75903 Å c = 14.38827 Å
(No. 62) α = β = γ = 90◦,

Atom x y z Wyc
O1 0.97866 0.96892 0.69076 8d
O2 0.50000 0.00000 0.50000 4a
O3 0.48654 0.75000 0.00082 4c
O4 0.97372 0.75000 0.85656 4c
O5 0.97649 0.25000 0.84670 4c
Ga1 0.11224 0.00193 0.81658 8d
Ga2 0.86799 0.25000 0.97905 4c
Ga3 0.60602 0.75000 0.88510 4c

Table 8.2: Structure parameters of Ga2O3 in the orthorhombic phase, Pnma. The structure
has been predicted by PSEUDO.

polarization quantum.
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Figure 8.2: Polarization calculated along a path connecting the centrosymmetric parent phase
(0) to non-centrosymmetric ε-Ga2O3 (1).

This value is similar to that of BaTiO3, a factor of 3 larger than in AlN,

and nearly a factor 10 larger than in GaN. The structure of the ε phase is not

structurally switchable (in the same sense that wurtzite is not: of course the polar

axis can be inverted by inverting the growth direction); therefore P is expected to

maintain its orientation along the polar axis within any given crystalline domain.

ε-Ga2O3 can thus be classified as a pyroelectric material.

The symmetry of the ε-Ga2O3 structure allows for five distinct piezoelectric

coefficients, as it is reported in Appendix E on page 112. Here, the only diagonal

coefficient, e33, has been calculated, by finite differences differentiation of the

polarization with respect to the axial strain ε3=(c-c0)/c0. The result is e33=0.77

C/m2, which is in line with typical coefficients of strongly polar semiconductors

(oxides and nitrides), although much smaller than the values of up to 20 C/m2
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of strong ferroelectrics (e.g. PZT [118,119]).

These results do indeed open up some interesting perspectives. For example,

one may exploit the polarization properties of ε-Ga2O3 growing it epitaxially

on GaN, to build a high-mobility transistor. Since the polarization difference is

very large, electron gases at huge concentrations could be obtained at a GaN/ε-

Ga2O3 interface; and since the gap of ε-Ga2O3 is much larger than that of GaN,

the confinement should be quite efficient. It would then be possible to set up a

“writ-large” version of the GaN/AlGaN HEMTs currently in use.

8.3 Conclusion

The study on the ε-phase of Ga2O3 have confirmed that this is the second most

stable structure beside β-Ga2O3. This phase has a large spontaneous polarization

(0.25 C/m2) and a sizeable diagonal piezoelectric coefficient (e33=0.77 C/m2).

Symmetry dictates that this phase, once epitaxially stabilized, will not transform

back into the ground-state β, despite having the same volume and a small energy

difference; in this sense, the ε-β relation is similar to the one between zincblende

and wurtzite III-V nitrides.



CONCLUSIONS

First principles calculation allows to make quantitative predictions of materi-

als properties and to provide an explanation of some properties that have already

been proved experimentally.

In this Ph. D. thesis, I report the results about theoretical prediction of a

new “multiferroic structure” and a “new optical structure”.

The first part of my research has been focused on a new class of multi-

functional magnets called multiferroics, where magnetism and ferroelectricity are

strongly coupled together. For example, electric polarization may be switched

by applied magnetic fields, and vice-versa. Because of that these materials can

be considered as suitable candidates for several applications, in particular, in the

field of information storage such as random access memory devices. Among the

class AnBnO3n+2 of layered-perovskite oxides, I have considered the Lanthanum-

titanate, and in order to achieve multiferroicity in this topological ferroelectric

I have suggested an isovalent substitution of the Ti-cation, non magnetic, by a

magnetic cation, Mn.

In a nutshell, this study is focus on structural, electronic, ferroelectric and

magnetoelectric properties of La2Mn2O7, through first-principles based on density

functional theory calculations. The polarization has been calculated, according

to the Modern Theory of Polarization, as a difference of the values calculated in

the ferroelectric phase (Cmc21 ) and in a centrosymmetric parent phase (Cmcm).

The polarization results along the z axis with a value Ps=0.17 C/m2 that is

comparable to displacive ferroelectrics, and the estimated TC is about 1500 K.

The stable magnetic structure is an approximate G-type AF, as expected from
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superexchange between Mn4+ with majority t2g orbitals. The estimated Neél

temperature is TN = 270 K in the Ising 3D AF model.

In addition, magnetic noncollinear spin-orbit calculations reveal that spins

point along the c direction, and that LMO is a weak ferromagnet to spin canting

in the bc plane, interpreted by Dzyaloshinsky-Moriya (DM) interaction. Interest-

ingly, LMO has a lattice-mediated magnetoelectric tensor, α, larger than of the

paradigmatic magnetoelectric Cr2O3 and with only non-diagonal elements, which

results in a cross-field response. In summary, I have found that La2Mn2O7 is a

topological multiferroic with large magnetoelectric response.

The second part of my research is based on the investigation about Gallium,

Ga2O3, Indium oxides, In2O3, and their solid solutions. This study is motivated

by the recently attracting interest on novel materials systems for highpower trans-

port devices as well as for optical ultraviolet absorbers and emitters. Resorting

to an appropriated optimization of physical properties and nanostructuration of

Gallium- and Indium-based semiconductor layers of chosen composition, it is

possible to tune their key properties (such as band gaps, interface band offsets,

vibrational absorptions, as well as, potentially, the magnetic behaviour) lead-

ing overall to novel multi-functional nanomaterials, nanostructures and devices.

This may enable the design of devices based on interfaces Ga2O3/(Ga1−xInx)2O3

or In2O3/(Ga1−xInx)2O3 such as high-power field effect transistors and far-UV

photodetectors or emitters.

Firstly, I have performed first-principles calculations on the electronic and lo-

cal structural properties of both bulk oxides in the β and bixbyite phases of Ga2O3

and In2O3, respectively. Thereafter, I have analysed the miscibility between this

compound, showing that the β phase is stable (without phase separation into

binary components) at low x and exactly at 50-50 concentration; a hexagonal

phase is stable (again without phase separation into binary components) for x

from about 0.4 to 0.6, where it is robustly non-polar; and bixbyite will be stable

for x between 0.2 and 0.4, and upward of 0.6, but should phase-separate into

binary components.

Later calculations have performed on interface properties of the Ga2O3 /

(Ga1−xInx) system. The band offset between Ga oxide and the alloy at 12%

In results of type-B staggered when the alloy is epitaxial on Ga2O3, and type-A

straddling in a free-standing superlattice. Whereas in In2O3/(Ga1−xInx) interface

the band offsets results to be largely type-B staggered and positive at large x, on

the contrary, staggered and negative in the low-x limit.
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Finally, I have found that another phase, ε, of Ga2O3 is in competition with the

that β. Interestingly, ε phase have a large spontaneous polarization (0.25 C/m2)

and a sizeable diagonal piezoelectric coefficient (e33=0.77 C/m2). Moreover, for

reasons of symmetry, this phase, once epitaxially stabilized, will not transform

back into the ground-state β, contrasting with previous works. In summary, I

found that stable Ga2O3 and In2O3 alloys could exist in particular concentration,

it is also possible to engineer devices based on interfaces between pure oxides and

alloys for optical devices.



APPENDIX A

La2Mn2O7 cell parameters

Cmcm a = 3.9365Å b = 25.0350Å c = 5.3131Å
α = β = γ = 90◦

Atoms x y z Wyc
La(1) 0.0000 0.2956 0.2500 4c
La(2) 0.0000 0.4466 0.7500 4c
Mn(1) 0.5000 0.3433 0.7500 4c
Mn(2) 0.5000 0.4422 0.2500 4c
O(1) 0.5000 0.2895 0.9868 8f
O(3) 0.5000 0.3958 0.9971 8f
O(5) 0.5000 0.5000 0.5000 4a
O(6) 0.0000 0.3471 0.7500 4c
O(7) 0.0000 0.4533 0.2500 4c

Table A.1: Computed equilibrium structure of the paraelectric Cmcm phase of La2Mn2O7.
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Cmc21 a = 3.9031Å b = 25.1709Å c = 5.3335Å
α = β = γ = 90◦

Atoms x y z Wyc
La(1) 0.0000 0.2966 0.2139 4a
La(2) 0.0000 0.4468 0.7188 4a
Mn(1) 0.5000 0.3425 0.7483 4a
Mn(2) 0.5000 0.4422 0.2234 4a
O(1) 0.5000 0.2834 0.9602 4a
O(2) 0.5000 0.2970 0.4854 4a
O(3) 0.5000 0.3893 0.0108 4a
O(4) 0.5000 0.4045 0.5216 4a
O(5) 0.5000 0.4929 0.9372 4a
O(6) 0.0000 0.3465 0.7537 4a
O(7) 0.0000 0.4510 0.2310 4a

Table A.2: Computed equilibrium structure of the ferroelectric Cmc21 phase of La2Mn2O7.



APPENDIX B

Brillouin Zone

B1 Brillouin Zone of space group Cmcm (63)

B2 Brillouin Zone of space group Cmc21 (36)

B3 Brillouin Zone of space group C2/m (12)

B4 The k-vector types of space group C2/m (12)

B5 Brillouin Zone of space group Ia3̄ (206)

B6 The k-vector types of space group Ia3̄ (206)
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Figure B.1: Brillouin Zone of space group Cmcm (63)

Figure B.2: Brillouin Zone of space group Cmc21 (36)
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Figure B.3: Brillouin Zone of space group C2/m (12)
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Figure B.5: Brillouin Zone of space group Ia3̄ (206)
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APPENDIX C

Cr2O3

Magnetic space group Rhombohedral R3̄ c num. 161
Unit cell 10 atoms
Cell parameters a=5.37Å

α=54.66◦

Cr positions x, x, x with x=0.1536
O positions 0.9424, 0.5575, 0.25
Gap ∼ 2.1 eV
Magnetic moment Cr ∼ 2.8 µB
IR modes (cm−1) A2u=408, 596

Eu=316, 455, 578, 653

Table C.1: Cr2O3 : Technical parameters.
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APPENDIX D

Types of heterostructures

The potential profile near the heterojunction has step-discontinuities. Tree

types of heterojunction are identified, according to the alignment of the bands

producing the discontinuity. Figure D.1 shows a sketch of this band alignements.

Figure D.1: Various heterostructure band alignments. Conduction-band-edge and valence-
band-edge position for each alignements have been labeled Ecb and Evb, respectively.
Source: http://pubs.rsc.org/en/content/articlehtml/2013/cs/c2cs35374a.

• Type I (or A) -straddling, the band gap of one material entirely overlaps

that of the other and the potential discontinuities for the conduction band,

Ecb, and for the valence band, Evb. Both the hole and electron accumulate

in one of the two components. This does not promote the flow of charge

carriers instead, this band alignment promotes recombination.

• Type II (or B) -staggered, both the conduction-band edge and the valence-

band edge of one material being lower than the corresponding band edges
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of the other material, electrons are confined in one material, while holes are

confined in the other material.

• Type III -broken or misaligned, electrons and holes are confined separately

in the two materials. But, as the valence band of the material, in which the

holes are confined, overlaps the conduction band of the other material.



APPENDIX E

Piezoelectric tensor
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