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Summary 
 

The Supramontes region and Gennargentu massif are two of the most interesting 

territories of Central Eastern Northern Sardinia. Riparian vegetation among 

mountainous waterways of these territories are mainly constituted by Alnus glutinosa 

with other associated taxa such as Taxus baccata, Ilex aquifolium and Rhamnus 

persicifolia. Rare and threatened Sardinian endemic species such as Ribes multiflorum 

subsp. sandalioticum, Aquilegia barbaricina, Rhamnus persicifolia and Paeonia corsica 

grow under and close to the canopy of such riparian woods. 

Temperature is considered one of the major environmental factor governing seed 

germination in moist soil and, also is responsible for changes in dormancy states of 

seeds. Seed dormancy prevents germination in a specified period of time, under any 

combination of environmental factors that otherwise favour germination and it is 

mediated, at least in part, by the plant hormones abscisic acid and gibberellins. 

Dormancy can be broken by some environmental stimuli, such as a cold and/or warm 

stratification and gibberellic acid (GA) treatment. As dormancy is present throughout 

the higher plants in all major climatic regions, adaptation has resulted in divergent 

responses to the environment. Through this adaptation, germination is timed to avoid 

unfavourable weather for subsequent plant establishment and reproductive growth. In 

non-dormant seeds, the germination response to accumulated temperature could be 

modelled by a thermal time (θ) approach; in this model, seeds accumulate units of 

thermal time (°Cd) to germinate for a percentile g of the population. When seeds are 

subjected to temperatures (T) above a base temperature for germination (Tb), 

germination rate increases linearly with temperature to an optimum temperature (To), 

above which germination rate starts to decrease. In the sub-optimal range (To – Tb), 

germination occurs in the time tg, when the thermal time accumulated has reached the 

critical value (θg) for a percentile g of the population, and can be described as θg = (T – 

Tb)tg. 

In this work, the class of dormancy and thermal requirements for seed dormancy 

release and germination were investigate and/or confirmed for R. persicifolia, A. 

barbaricina, P. corsica and R. multiflorum subsp. sandalioticum; a thermal-time model, 

based on a soil heat sum approach, was developed in order to characterize its thermal 

niche for germination and predict its seed germination phenology in the field. 
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R. persicifolia showed physiological dormancy (PD), while the other three 

species highlighted morphophysiological dormancy (MPD); in particular, epicotyls 

MPD was found in P. corsica and confirmed in R. multiflorum subsp. sandalioticum. 

Thermal thresholds (Tb and θ50) requirements of seed germination were identified for all 

these species; in addition, the thermal thresholds for embryo growth was detected for A. 

barbaricina. The soil heat sum model developed in this work may have applicability to 

predictions of in situ regeneration of other species growing on Mediterranean mountain 

waterways. This work could confirmed that the studied species, belonging to different 

families placed in different phylogenetic clades, could have experienced a convergent 

evolution on their seed morphology and type of seed dormancy, as a response to similar 

environmental and climatic conditions due by the same habitat and ecosystem. 



11 

 

General Introduction and Literature Review 

 

Seed structure 

 

Seeds are the dispersal and propagation units of the Spermatophyta (seed plants): 

Gymnosperms (conifers and related clades) and Angiosperms (flowering plants). A seed 

contains an embryo consisting of a simple axis (radicle/hypocotyl) with cotyledons 

(seed leaves) attached. Plants in the classes Monocotyledons and Dicotyledons of the 

flowering plants (angiosperms) have respectively one and two cotyledons, and some 

gymnosperms have several cotyledons. A typical seed includes three basic parts: an 

embryo, a supply of nutrients for the embryo, and a seed coat. In many angiosperms, the 

mature embryo is surrounded by the endosperm (endospermic seed), whereas in others 

the endosperm is absent or reduced to a few cell layers (non-endospermic seed; see Fig 

1). The shape of embryos and their sizes are variable. In angiosperm seeds with a well-

developed endosperm, the embryo occupies a smaller fraction of the seeds than in other 

non-endospermic species, where the growing embryo completely resorbs the endosperm 

into the cotyledons (e.g. many legumes). The exterior covering structure of the seed is 

called the seed coat or testa. (Bewley and Black, 1985). The endosperm in an 

angiosperm is the product of a fusion of a second male gamete and two nuclei in the 

embryo sac of the ovule and is therefore triploid. The perisperm in other angiosperms is 

from maternal origin (diploid), and the tissue surrounding the embryo in gymnosperms 

is also maternal (haploid). The testa in all seeds originates from the boundary layers of 

the ovule. 
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Figure 1 - Biodiversity of the structure of mature seeds of angiosperms. In several species the endosperm 

is completely obliterated during seed development and the nutrients are translocated to storage 

cotyledons. Mature seeds of (a) Pisum sativum, (b) Arabidopsis thaliana, (c) Capsicum annuum and (d) 

Nicotina tabacum (from Finch-Savage and Leubner-Metzger, 2006). 

 

In his classic paper on the comparative internal morphology of seeds, Martin 

(1946) examined seeds of 1287 genera of plant, and created a system of seed 

classification in which divided seed embryos into three primary types: basal, peripheral, 

and axile. Basal is further divided into four subtypes and axile into seven (Fig. 2). In the 

“basal” seed types, embryos are usually small, non-peripheral, and restricted to the 

inferior half of the seed, except in the lateral type. The seeds are medium to large, with 

abundant endosperm, starchy or oily. The rudimentary and broad subtypes are found in 

the monocotyledons and dicotyledons; the capitate and lateral subtypes are typical of 

the monocotyledons (Fig. 2). In the “pheripheral” seed type, embryos are usually 

elongated and large. The embryo occupies one-quarter to three-fourths of the seed. It is 

partially contiguous to the seed coat and often curved, central or lateral, with cotyledons 

narrow or expanded. The endosperm or perisperm is starchy. As is typical in 

dicotyledons (Fig. 2). In the “axile” seed types, embryos range from small (occupying 

only part of the seed’s lumen) to large (occupying the whole lumen), central (axile), 

straight, curved, coiled, bent, or folded. The endosperm can be oily or starchy. Found in 

gymnosperms, dicotyledons and monocotyledons (Fig. 2). 
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Figure 2 – The seed type identified by Martin (1946). Image from Martin (1946). 

 

Recently, a revision of Martin's seed classification system, with particular reference to 

his dwarf-seed type was proposed by Baskin and Baskin (2007). According to this 

revision, the dwarf category has been removed and the micro category replaced by 

“undifferentiated” to reflect the state of the embryo in fresh seeds. Seed size is not 

longer a criterium for the assignment to a specific seed type; in particular, the "micro 

seed type" is replaced by a "undifferentiated seed type", indicating that the embryo in 

fresh seeds lacks organs and that most of these seeds are of micro-size, but there are 

also relatively large seeds whose embryos lack organs at the to time of maturity. 

 

Seed germination 

Germination involves the imbibition of water, a rapid increase in respiratory activity, 

the mobilization of nutrient reserves and the initiation of growth in the embryo. It is an 

irreversible process; once germination has started the embryo is committed irrevocably 

to growth or death (Fenner and Thompson, 2005). The visible sign that germination is 
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complete is usually the penetration of the structures surrounding the embryo by the 

radicle; the result is often called visible germination. Subsequent events, including the 

mobilization of the major storage reserves, are associated with growth of the seedling. 

Virtually all of the cellular and metabolic events that are known to occur before the 

completion of germination of non-dormant seeds also occur in imbibed dormant seeds; 

indeed, the metabolic activities of the latter are frequently only subtly different from 

those of the former. Hence, a dormant seed may achieve virtually all of the metabolic 

steps required to complete germination, yet for some unknown reason, the embryonic 

axis (i.e. radicle) fails to elongate (Bewley, 1997). Uptake of water by a mature dry seed 

is triphasic, with a rapid initial uptake (phase I) followed by a plateau phase (phase II). 

A further increase in water uptake occurs only after germination is completed, as the 

embryonic axes elongate. Because dormant seeds do not complete germination, they 

cannot enter phase III (Fig. 3). 

 

 

Figure 3 - Time course of major events associated with germination and subsequent post-germinative 

growth (from Bewley, 1997). 

 

Among environmental factors, temperature is considered one of the major 

environmental factor governing seed germination in moist soil and, also is major 

responsible for changes in dormancy states of seeds (Baskin and Baskin, 1998). In a 

series of studies on geographical variation in germination temperature in Europe, P. A. 

Thompson (cited in Probert, 2000) concluded that both minimum and maximum 
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temperatures for germination varied consistently along a north-south gradient; both 

were lower in Mediterranean species compared with those from northern Europe. 

Indeed, some workers have identified a typical ‘Mediterranean’ germination syndrome, 

a key feature of which is a rather low optimal temperature (typically 5-15◦C) for 

germination (Thanos et al., 1989). In northern Europe, the priority is to avoid 

germinating during or immediately before the severe winter, which often seems to be 

best arranged by needing relatively high temperatures for germination (Fenner and 

Thompson, 2005). Spring germination is typical of temperate and alpine plants, where 

in this season the germination prevails due to temperatures being too low to stimulate 

emergence following autumn dispersal or due to a requirement for cold stratification 

over winter (Baskin and Baskin, 1998; Walck et al., 2011; Mondoni et al., 2012). 

 

Seed dormancy 

Seed dormancy is an innate seed property that defines the environmental conditions in 

which the seed is able to germinate. It is determined by genetics with a substantial 

environmental influence (Donohue, 2005) which is mediated, at least in part, by the 

plant hormones abscisic acid and gibberellins. Not only is the dormancy status 

influenced by the seed maturation environment, it is also continuously changing with 

time following shedding in a manner determined by the ambient environment. As 

dormancy is present throughout the higher plants in all major climatic regions, 

adaptation has resulted in divergent responses to the environment. Through this 

adaptation, germination is timed to avoid unfavourable weather for subsequent plant 

establishment and reproductive growth (Finch-Savage and Leubner-Metzger, 2006). A 

more sophisticated and experimentally useful definition of dormancy has been proposed 

by Baskin and Baskin (2004): a dormant seed does not have the capacity to germinate in 

a specified period of time under any combination of normal physical environmental 

factors that are otherwise favourable for its germination, i.e. after the seed becomes 

non-dormant (Baskin and Baskin, 1998). 

 Nikolaeva (1977) devised a dormancy classification system reflecting the fact 

that dormancy is determined by both morphological and physiological properties of the 

seed. Based on this scheme, Baskin and Baskin (1998, 2004) have proposed a 

comprehensive classification system which includes different classes of seed dormancy: 

physiological (PD), morphological (MD), morphophysiological (MPD), physical (PY) 
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and combinational (PY + PD). The system of dormancy classification is hierarchical, 

and consists of five classes, further divided into levels and types: 

1) Physiological dormancy (PD) is the most abundant form and is found in seeds 

of gymnosperms and all major angiosperm clades (Fig. 5). It is the most prevalent 

dormancy form in temperate seed banks and the most abundant dormancy class ‘in the 

field’. PD is also the major form of dormancy in most seed model species ‘in the 

laboratory’. PD can be divided into three levels: deep, intermediate and non-deep 

(Baskin and Baskin, 2004). Baskin and Baskin (2004) considered the ability of 

exogenous GA to overcome dormancy a decisive element in distinguishing among 

levels of PD in their dormancy classification systems. In fact, the balance between 

abscisic acid (ABA) and GA and sensitivity to these hormones regulates the onset, 

maintenance and termination of dormancy. ABA synthesis and signalling (GA 

catabolism) dominate the dormant state, whereas GA synthesis and signalling (ABA 

catabolism) dominate the transition to germination (Finch-Savage and Leubner-

Metzger, 2006). Table 1 reported the characteristics of dormancy of the three PD levels 

(Baskin and Baskin, 2004). 

 

Table 1- Characteristics of dormancy in seed with deep, intermediate and non-deep PD (from Baskin and 

Baskin, 2004). 

 

 

Based on patterns of change in physiological responses to temperature, five types of 

non-deep PD can be distinguished (Baskin and Baskin, 2004). Most seeds belong to 

type 1 or 2, in which the temperature range at which seed germination can occur 

increases gradually during the progression of non-deep dormancy release from low to 

higher (type 1; Fig. 4) or from high to lower temperature (type 2; Fig. 4). In type 3 (Fig. 
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4), temperature range for germination increases during dormancy release as a 

continuum from medium to high and low, while in type 4 and 5 (Fig. 4), dormant seed 

not germinate at any temperature, but non-dormant seeds germinate only at high 

temperature (type 4) or at low temperature (type 5). 

 

 

 

Figure 4 - Five types of non-deep Physiological seed dormancy (PD) according to Baskin and Baskin 

(2004). Modified from Leubner (2014; http://www.seedbiology.de). 

 

2) In seeds with Morphological dormancy (MD), the embryo is either small 

(underdeveloped) and undifferentiated or small (underdeveloped) and differentiated, i.e. 

cotyledon(s) and radicle can be distinguished. In seeds with non-dormant, 

underdeveloped, differentiated embryos, the embryos simply need time to grow to full 

size and then germinate (radicle protrusion). The dormancy period is the time required 

for completion of embryo growth, after which the radicle emerges, and arbitrary cut-off 

time for assigning seeds to MD is about 30 days. Thus, seeds that take significantly 

longer than 30 days to germinate are considered to have MPD. Seeds with this latter 

kind of dormancy (MPD) have an underdeveloped embryo with a physiological 

component of dormancy. Thus, in order to germinate they require a dormancy-breaking 

pre-treatment. 3) In seeds with morphophysiological dormancy (MPD), embryo 

growth/radicle emergence requires a considerably longer period of time than in seeds 

with MD. There are eight known levels of MPD, based on the protocol for seed 

dormancy break and germination, and temperature or temperature sequence required to 

break them is show in Table 2. 
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Table 2 - Eight levels of morphophysiological dormancy (from Baskin and Baskin, 2004). 

 

 

In addition, Baskin et al. (2008) reported a new level of morphophysiological dormancy 

(i.e. non-deep simple epicotyl) in Viburnum odoratissimum seeds, and more recently 

Jayasuriya et al. (2010) reported a new kind of epicotyl PD in a tropical Fabaceae 

species, where the delay in plumule emergence is not correlated to an underdeveloped 

embryo. 

4) Physical dormancy (PY) is caused by water impermeable layers of palisade cells in 

the seed or fruit coat that control water movement. Mechanical or chemical scarification 

can break PY dormancy (Baskin and Baskin, 1998); 5) Combinational dormancy (PY + 

PD) is evident in seeds with water impermeable coats (as in PY) combined with 

physiological embryo dormancy (Baskin and Baskin, 2004). 

 

Evolutionary trends of seeds structure and dormancy 

The most obvious morphological difference in mature angiosperm seeds is their 

‘embryo to seed’ size ratios resulting from the extent to which the endosperm is 

obliterated during seed development by incorporating the nutrients into the storage 

cotyledons. Based on the internal morphology of mature seeds, Martin (1946) defined 

seed types with distinct embryo to endosperm ratios, arranged them in a seed 

phylogenetic tree and proposed evolutionary seed trends (see Fig. 5 that shows the 

distribution of Martin’s seed types in the modern angiosperm phylogenetic tree). Forbis 

et al. (2002) calculated ‘embryo to seed’ (E:S) values for the different seed types. These 

E:S values show a clear trend increasing from low E:S values up the phylogenetic tree 

to high E:S values. Finch-Savage and Leubner-Metzger (2006) reported their general 

evolutionary seed trends. Their supported that: (a) in mature seeds of primitive 

angiosperms a small embryo is embedded in abundant endosperm tissue and this 
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characteristics prevail among basal angiosperms; (b) the general evolutionary trend 

within the higher angiosperms is via the linear axile seed type (embryo linear axile and 

developed, endosperm abundance medium to high) towards the foliate axile seed types 

(embryo foliate axile and developed, often storage cotyledons, endosperm abundance 

low or endosperm obliterated) with storage cotyledons. In addition, embryo dominance 

and endosperm reduction lead via the foliate axile seed type with spatulate axile embryo 

to the diverted seed types bent, folded and investing axile embryo; (c) the general seed 

trends there are clade-specific seed type differences, with some exceptions; (d) a small 

embryo is also found in primitive gymnosperms and an increase in the E:S values is also 

evident within the gymnosperms (Fig. 5). 

An increase in relative embryo size appears therefore to be a general 

evolutionary trend within the angiosperms and the gymnosperms. MD and MPD are 

present in basal type seeds, but can also be typical of some specialized species (Fig. 5). 

MD is thought to be the ancestral dormancy type among seed plants and is the most 

primitive dormancy class. MD and MPD are typical in primitive angiosperms and 

gymnosperms (Fig. 5). PD and ND are distributed over the entire phylogenetic tree. The 

most phylogenetically restricted and derived dormancy classes are PY and PY + PD 

(Fig. 5). 
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Figure 5 - Angiosperm seed evolution depicted in a phylogenetic tree constructed by the Angiosperm 

Phylogeny Group II (2003). Image from Finch-Savage and Leubner-Metzger (2006). 

 

 

Thermal time model 

Three cardinal temperatures (base, optimum and ceiling) describe the range of 

temperature over which seeds of a particular species can germinate (Bewley and Black, 

1994). The minimum or base temperature (Tb) is the lowest of temperature at which 

germination can occur, while the optimum temperature (To) is the temperature at which 

germination is most rapid, and the maximum or ceiling temperature (Tc) is the highest 

temperature at which seeds can germinate (Fig. 6). 
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Figure 6 - Schematic illustration of cardinal temperatures: base temperature (Tb), optimum temperature 

(To) and ceiling temperature (Tc). 

 

Many mathematical models have been developed to describe germination patterns in 

response to temperature (e.g, Garcia-Huidobro et al., 1982; Covell et al., 1986; Ellis et 

al., 1986; Pritchard and Manger, 1990; Hardegree, 2006). In these models, seeds 

accumulate units of thermal time (°Cd) to germinate for a percentile g of the population. 

When seeds are subjected to temperatures (T) above a base temperature for germination 

(Tb), germination rate increases linearly with temperature to an optimum temperature 

(To), above which germination rate starts to decrease (Garcia-Huidobro et al., 1982). In 

the sub-optimal range (To – Tb), germination occurs in the time tg, when the thermal 

time accumulated has reached the critical value (θg) for a percentile g of the population. 

The germination response of the seeds to constant temperature in the suboptimal range 

has been modelled using the equation (Garcia-Huidobro et al., 1982): 

 

1/tg (days
-1

) = (Tg – Tb) / θ 

 

where 1/tg is the rate of germination of different percentiles of a seed population at sub-

optimal constant temperatures, tg is the time taken for cumulative germination to reach 

percentile g, Tg is the temperature (°C), Tb is the base temperature for subset g of the 

population, and θ is the thermal time (°Cd above Tb) required for cumulative 

germination to achieve percentile g. 

Linear regression has been used to express probit(g) as a function of thermal 

time (θg) and the form of cumulative germination response of seeds has been described 

by the equation (Covell et al., 1986): 

 

probit(g) = K + θg / σ, 
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where K is an intercept constant when θg is zero, θg  may be normal or log-normal 

distributed (and the best model evaluated on the basis of the r
2
 values; Hardegree, 

2006), and σ is the standard deviation of the response to θg (i.e. the reciprocal of the 

slope), and represents the sensitivity of the population to θg (Covell et al., 1986). 

The models have been used to predict seed germination of non-dormant seeds 

(and subsequent seedling emergence) in the field from these simple parameters 

describing the seed response to ambient soil conditions (e.g. Finch-Savage and Phelps, 

1993; Hardegree and Van Vactor, 2000; Steadman et al., 2003; Chantre et al., 2009), 

and more recently, to assess the impact of different simulated climate change scenarios 

on seed dormancy release and germination timing (Orrù et al., 2012). 

 

Mediterranean climate 

 

The Mediterranean climate is characterized by its seasonality in temperature and 

rainfall, which leads to a hot drought in summer and a cool wet winter (Joffre et al., 

1999). This peculiarity has important implications for plant germination physiology, 

since dry summer conditions limit water availability and thus germination and growth, 

while cool winter temperatures can limit germination during the season with high water 

availability (Rundel, 1996). Under a Mediterranean climate, plant growth and 

reproduction must occur in a window of favourable conditions that may vary in length 

and in which environmental cues and constraints play a central role (Debussche et al., 

2004). Maximum germinability of Mediterranean species occurs at temperatures 

between 15 and 20°C, and usually decreases above 20°C, but remains high at 

temperatures below 15°C (Thanos et al., 1995; Galmés et al., 2006; Luna et al., 2012). 

Among species there are considerable variation in the germination-temperature 

relationship and, while some species have a narrow range of temperature requirements, 

others exhibit reduced variability when tested across a range of temperatures. The 

germination temperature-niche may interact with other factors controlling germination, 

such as soil moisture or dormancy break. Seeds of some species may remain dormant 

until they are exposed to cold period and after germinate, but in other species the cold 

period can impose dormancy (Baskin and Baskin, 1998; Probert, 2000). 
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Mediterranean basin 

 

The Mediterranean basin has been recognised as one of the 34 most important 

“biodiversity hotspots” (Fig. 7), considering its high number of endemic plant species 

(Mittermeier et al., 2004). This area not only constitutes a refuge for many relic species, 

but the relatively short distance of many islands and peninsulas promotes floristic 

exchanges and active plant speciation. The western Mediterranean basis includes the 

Tyrrhenian islands (Balearic Islands, Corsica, Sicily and Sardinia). 

 

 

Figure 7 - Biodiversity Hotspots Map from http://www.conservation.org. 

 

Sardinia (Fig. 8), with its 24,090 km2, is the second-largest island in the Mediterranean 

Sea. The prolonged isolation and high geological diversity created a wide range of 

habitats rich in endemic species, particularly on its mountain massifs, where the 

insularity is strengthened by the altitude and diversity of terrains (Médail and Quézel, 

1997). The Sardinian flora consists of 2408 taxa including 2295 species (Conti et al., 

2005) 168 of which are exclusive endemics (Bacchetta et al., 2012). Médail and 

Diadema (2009) identified the Central- Northern Sardinia as one of the 52 putative 

floristic refugia within the Mediterranean, i.e. places facilitating the long-term 

persistence of a species (one or more glacial-interglacial cycles) or of one or more of its 

meta-populations in a well-defined geographical area (e.g. mountain range, gorge). This 

region represents also a Southern European refugium (sensu Tzedakis et al., 2002) for 

http://www.conservation.org/
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some temperate tree species, as detected for the Supramontes biogeographic sector (CE-

Sardinia; Fenu et al., 2010). The Supramontes region and Gennargentu massif are two 

of the most interesting territories of Central Eastern Northern Sardinia (Fig. 7). Cañadas 

et al. (2014), on the basis of the distribution of endemic-vascular-plant richness, 

identified the Supramontes and Gennargentu as micro-hotspots in Sardinian region; 

these micro-hotspots hosting more than the 20% of the 171 Sardinian endemic taxa. 

 

 

Figure 8 – Sardinia (yellow square) with the Gennargentu (red square) and Supramontes massif (orange 

square). 

 

Riparian vegetation among mountainous waterways of these territories are 

mainly constituted by Alnus glutinosa (L.) Gaertn. with other associated taxa such as 

Taxus baccata L., Ilex aquifolium L. and Rhamnus persicifolia Moris. Threatened 

Sardinian endemic species such as Ribes multiflorum Kit ex Roem et Schult. subsp. 

sandalioticum Arrigoni, Aquilegia barbaricina Arrigoni et E.Nardi, Rhamnus 

persicifolia Moris and Paeonia corsica Sieber ex Tausch (Fig. 9) grow under and close 

to the canopy of such riparian woods. 
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Figure 9 - Sardinian endemic species. 

 

Climate change 

 

The Intergovernmental Panel on Climate Change (IPCC) reports the definition of 

"Climate change" as a change in the state of the climate that can be identified (e.g. using 

statistical tests) by changes in the mean and/or the variability of its properties, and that 

persists for an extended period, typically decades or longer. It refers to any change in 

climate over time, whether due to natural variability or as a result of human activity 

(IPCC, 2007). IPCC has predicted temperature increases of approx. 2 – 4°C by 2090 – 

2099 according to different emission scenarios and in particular, in the Mediterranean 

region, a declining trend of precipitation was observed from 1900 to 2005 (IPCC, 

2007). Large increases in temperature have been predicted and reported for the 

Mediterranean mountain ranges (Bravo et al., 2008). Predictions have been grouped 

into four families of scenarios (A1, A2, B1 and B2) that explore alternative 

development pathways, covering a wide range of demographic, economic and 

technological driving forces and resulting greenhouse gas emissions (IPCC, 2007). The 
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A1 storyline assumes a world of very rapid economic growth, a global population that 

peaks in mid-century and rapid introduction of new and more efficient technologies; B1 

describes a convergent world, with the same global population as A1, but with more 

rapid changes in economic structures toward a service and information economy; B2 

describes a world with intermediate population and economic growth, emphasising local 

solutions to economic, social, and environmental sustainability; A2 describes a very 

heterogeneous world with high population growth, slow economic development and 

slow technological change. Climate-change impacts on biodiversity, both positive and 

negative, are already manifest in recent widespread shifts in species ranges and 

phenological responses. The climate in high mountains is warming up at an 

exceptionally high rate (Bravo et al., 2008). In response to the climate change, plants 

can adapt to the new environmental conditions or, when possible, migrate to track their 

climatic niches (Meineri et al., 2013). 
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Aims 

 

The aim of this work is to: 

i. investigate the seed dormancy breaking treatments and germination 

requirements in freshly matured seeds of R. persicifolia, A. barbaricina, P. 

corsica, and R. multiflorum subsp. sandalioticum, both in controlled condition 

and in the field. 

ii. evaluate if these endemic species, mainly growing among mountain 

Mediterranean streams, show the same patterns of seed dormancy and 

germination, and if these species are adapted to these particular habitats and 

ecological conditions. 

iii. investigate the thermal requirements for seed dormancy release and germination 

of the targeted taxa, and develop a thermal-time model based on a soil heat sum 

approach to predict their seed germination in the field. 

iv. evaluate if the projected climate change scenarios likely threaten the natural 

regeneration of mountain species. 
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Chapter I - Thermal niche for in situ seed germination by 

Mediterranean mountain streams: model prediction and 

validation for Rhamnus persicifolia seeds
1
 

 

1 This chapter has been published in Annals of Botany as: Porceddu M, Mattana E, Pritchard HW, 

Bacchetta G. 2013. Thermal niche for in situ seed germination by Mediterranean mountain streams: 

model prediction and validation for Rhamnus persicifolia seeds. Annals of Botany, 112: 1887-1897. 

 

Abstract 

 Background and Aims: Mediterranean mountains species face exacting 

ecological conditions of rainy, cold winters and arid, hot summers, which affects 

seed germination phenology. In this study, a soil heat sum model was used to 

predict field emergence of Rhamnus persicifolia, an endemic tree species living 

at the edge of mountain streams of central eastern Sardinia. 

 Methods: Seeds were incubated in the light at a range of temperatures (10 to 25 

and 25/10°C) after different periods (up to 3 months) of cold stratification at 

5°C. Base temperatures (Tb), and thermal times for 50% of germination (θ50) 

were calculated. Seeds were also buried in the soil in two natural populations 

(Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and 

exhumed at regular intervals. Soil temperatures were recorded using data loggers 

and soil heat sum (°Cd) calculated on the basis of the estimated Tb and soil 

temperatures. 

 Key Results: Cold stratification released physiological dormancy (PD), 

increasing final germination and widening the range of germination 

temperatures, indicative of a type 2 non deep PD. Tb was reduced from 10.5°C 

for non-stratified seeds to 2.7°C for 3-months cold stratified seeds. The best 

thermal time model was obtained by fitting probit germination against log °Cd. 

θ50 was 2.6 log °Cd for untreated seeds and 2.17 - 2.19 log °Cd for stratified 

seeds. When θ50 values were integrated with soil heat sum estimates, field 

emergence was predicted from March to April and confirmed through field 

observations. 

 Conclusions: Tb and θ50 values facilitated model development of thermal niche 

for in situ germination of R. persicifolia. These experimental approaches may be 

applied to model the natural regeneration patterns of other species growing on 

Mediterranean mountain waterways and of physiologically dormant species, 

with overwintering cold stratification requirement and spring germination. 

 

Keywords: base temperature, climate change, cold stratification, physiological 

dormancy, Rhamnaceae, Rhamnus persicifolia, soil heat sum, thermal time. 
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Introduction 

Seed dormancy prevents germination in a specified period of time, under any 

combination of environmental factors that otherwise favour germination (Baskin and 

Baskin, 2004). Thus, dormancy is an adaptive trait that optimizes the distribution of 

germination over time in a population of seeds (Copete et al., 2011). In seasonal 

climates, temperature is usually the main environmental factor governing seed 

germination in moist soil (Fenner and Thompson, 2005). Seeds of many temperate plant 

species are dormant at the time of dispersal, and specific temperature requirements must 

be met before dormancy is lost and germination is possible (Baskin and Baskin, 1998). 

Depending on the species and timing of dispersal, seeds may experience a warm period 

before autumn and winter begin, or be subjected to cold stratification during winter 

immediately after autumn shedding (Baskin and Baskin, 1989; Noronha et al., 1997). 

The requirement for chilling, widespread amongst temperate species, represents a 

natural mechanism which ensures that germination occurs in the spring (Probert, 2000). 

During exposure to low temperatures, the range of temperatures over which seeds will 

germinate, as well as germination percentages, increases (Baskin and Baskin, 1988). 

The Mediterranean climate is characterized by its seasonality in temperature and 

precipitation, which leads to a hot drought in summer and a cool wet winter (Joffre et 

al., 1999). This peculiarity has important implications for plant germination physiology, 

since dry summer conditions limit water availability and thus germination and growth, 

while cool winter temperatures can limit germination during the season with high water 

availability (Rundel, 1996). 

The canopies of woody plants modify the microclimate beneath and around them 

through interception of precipitation and by shading, which influence maximum soil 

temperature and the amount of soil moisture available to plants (Breshears et al., 1998). 

As the course of action and relative importance of factors regulating germination in the 

laboratory may be quite different from those occurring under field conditions 

(Thompson, 1973), linkage between field, garden and laboratory studies is crucial 

(Brändel and Schütz, 2005). 

As reproduction niche and reproductive success are related to temperature, all 

aspects of the plant reproductive cycle are potentially sensitive to climate change 

(Bykova et al., 2012). The Intergovernmental Panel on Climate Change (IPCC) has 

predicted temperature increases of approx. 2 – 4°C by 2090 – 2099 and in particular, in 
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the Mediterranean region, a declining trend of precipitation was observed from 1900 to 

2005 (IPCC, 2007). In response to the climate change, plants can adapt to the new 

environmental conditions or, when possible, migrate to track their climatic niches 

(Meineri et al., 2013). 

In non-dormant seeds, the germination response to accumulated temperature has 

been modelled by a thermal time (θ) approach (Garcia-Huidobro et al., 1982; Covell et 

al., 1986; Ellis et al., 1986; Ellis et al., 1987; Pritchard and Manger, 1990; Hardegree, 

2006). In this model, seeds accumulate units of thermal time (°Cd) to germinate for a 

percentile g of the population. When seeds are subjected to temperatures (T) above a 

base temperature for germination (Tb), germination rate increases linearly with 

temperature to an optimum temperature (To), above which germination rate starts to 

decrease (Garcia-Huidobro et al., 1982). Thus, in this sub-optimal range (To – Tb), 

germination occurs in the time tg, when the thermal time accumulated has reached the 

critical value (θg) for a percentile g of the population, and can be described as θg = (T – 

Tb)tg. 

Intra-specific variation in Tb among populations of the same species may be due 

to different environmental conditions during seed development (Daws et al., 2004). 

However, Tb has been found to change also with dormancy status. In particular, 

Pritchard et al. (1999) found that Tb decreased by 1°C every 6 days of pre-chilling at 

6°C, in Aesculus hippocastanum L. seeds. Thus seed dormancy release in this species 

could be described simply in terms of Tb reduction, gradually allowing germination to 

occur at progressively lower temperatures (Pritchard et al., 1999). In addition, seed 

germination may be predicted in relation to thermal time accumulation (heat sum, °Cd) 

above a gradually reducing Tb (Steadman and Pritchard, 2004). This approach has been 

used to predict seed germination in the field (i.e. Hardegree and Van Vactor, 2000; 

Steadman et al., 2003; Chantre et al., 2009) and, more recently, to assess the impact of 

different simulated climate change scenarios on seed dormancy release and germination 

timing in Vitis vinifera L. subsp. sylvestris Hegi (Orrù et al., 2012). 

Sardinian massifs represent a Southern European refugium for some temperate 

tree species sensu Tzedakis et al. (2002). In this region, vegetation among mountain 

waterways is mainly constituted by Alnus glutinosa (L.) Gaertn. woods, where also the 

rare Sardinian endemic Rhamnus persicifolia Moris may be found. Seeds of the 

Rhamnaceae have an investing embryo (Martin, 1946) and can be non-dormant or, 

following the dormancy classification system (Baskin and Baskin, 1998; Baskin and 



35 

 

Baskin, 2004), show physiological (PD), physical (PY) or combinational (physical and 

physiological; PY+PD) dormancy. PY is the most represented class in this family (61% 

of the investigated species), followed by PY+PD (22%), PD (12%) and ND (6%; Walck 

et al., 2012). Mattana et al. (2009) reported that germination of R. persicifolia seeds 

could be achieved, without any scarification, at warm temperatures (≥ 20°C), excluding 

the presence of PY. Whilst there was no obligate requirement for alternating 

temperature or light, pre-chilling had a positive effect on germination rate, reducing T50 

by more than 50%, and indicating the presence of PD in this species. However, the 

effect of pre-chilling on seed germination over a wide range of temperatures, and the 

identification of the type of PD according to the seed dormancy classification system 

(Baskin and Baskin, 2004), remain to be investigated. 

 The aims of this work were to (1) investigate the thermal requirements for seed 

dormancy release and germination of the rare R. persicifolia and (2) develop a thermal-

time model, based on a soil heat sum approach, in order to characterize its thermal niche 

for seed germination and predict its seed germination phenology in the field. 
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Material and Methods 

Study species 

Rhamnus persicifolia is a small dioecious tree or shrub. It is closely related to R. 

cathartica, but with elliptic-lanceolate leaves and reddish ripe drupes. It is endemic to 

Central-Eastern Sardinia (Italy) occurring at 600 - 1500 m a.s.l. on both limestone and 

siliceous substrata. This species grows in scattered groups or as single trees, in riparian 

woods or hygrophilous scrubs along mountainous waterways (Mattana et al., 2009). R. 

persicifolia is included in the Italian Red Book as vulnerable (Conti et al., 1992; Conti 

et al., 1997), because of its narrow distribution and population decline, induced by 

human activities and by climate change (Arrigoni, 1977). To date, only six populations 

are known; half of these are threatened by low plant numbers or unbalanced sex ratio 

(Bacchetta et al., 2011). 

 

Seed lot details 

Fruits of R. persicifolia were collected directly from 15 plants on 16 September 2011 

along the Rio Correboi (Villagrande Strisaili, OG) and from five plants on 30 

September 2011 along the Rio Olai (Orgosolo, NU) streams in the Central-Eastern 

Sardinia (see Table 1). The low number of sampled plants was due to the few female 

individuals found on these two populations (see Bacchetta et al., 2011). Seeds were 

immediately separated from the pulp by rubbing the fruits through sieves under running 

water. The cleaned seeds were then spread out and left to dry at room temperature, until 

the experiments started as specified below.  
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Table 1 - Locations, habitat characteristics and dates of experimental trials carried out in each site (Rio Correboi: RC; Rio Olai: RO) of the two natural populations of R. persicifolia. 

Population 
Soil substrate 

type 

Experimental 

sites 
Habitat 

Altitude 

(m a.s.l.) 
Aspect 

Date of field 

sowing 

Dates of 

exhumation and 

days after sowing 

Rio Correboi 

(Villagrande 

Strisaili, OG), 

RC 

Metamorphytes 

RC1 IN 
Riparian wood with Alnus glutinosa – Mantle 

shrubs with Rubus ulmifolius 

1209 

0 

30/09/11 
26/04/12 (209 days) 

25/06/12 (269 days) 

RC1 OUT 
Open grassland of Carici-Genistetea lobelioidis. NE 

RC2 IN 
Riparian wood with A. glutinosa – Mantle shrubs 

with R. ulmifolius 

1267 

0 

30/09/11 

09/12/11 (70 days) 

29/03/12 (181 days) 

26/04/12 (209 days) 

25/06/12 (269 days) RC2 OUT Open grassland of Carici-Genistetea lobelioidis. NE 

RC3 IN 
Shady rocky outcrop with Ribes multiflorum subsp. 

sandalioticum and Rubus ulmifolius 

1347 

NE 

30/09/11 
26/04/12 (209 days) 
25/06/12 (269 days) 

RC3 OUT Open grassland of Carici-Genistetea lobelioidis. NE 

Rio Olai 

(Orgosolo, NU), 

RO 

Metamorphytes 
RO IN 

Riparian wood with A. glutinosa – Mantle shrubs 

with R. ulmifolius. 
970 

0 

05/10/11 

09/12/11 (65 days) 

29/03/12 (176 days) 

26/04/12 (204 days) 

25/06/12 (264 days) 
RO OUT 

Open grassland of Carici-Genistetea lobelioidis. 0 

For each experimental site, IN and OUT differentiate between underneath and outside the canopy, respectively. 
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Germination tests under controlled conditions 

For the Rio Correboi provenance collection, three replicates of 20 seeds were sown on 

the surface of 1% agar water in 90 mm diameter plastic Petri dishes and incubated in the 

light (12 h light / 12 h darkness), for 1 to 4 months at a range of constant temperatures 

(10, 15, 20, and 25°C) and at an alternating temperature regime (25/10°C). In the 

alternating temperature regime, the 12 h light period coincided with the elevated 

temperature period. At the same time, three different cold stratification periods were 

started (5°C in 1% agar water in 90 mm diameter plastic Petri dishes for 1, 2 and 3 

months: C1, C2 and C3 treatments, respectively) and, at the end of each pre-treatment, 

seeds were incubated, as above detailed. 

Due to the low availability of seeds collected in the Rio Olai (see Table 1), these 

seeds were only stratified for 3 months at 5°C and then incubated at 25°C (12 h light / 

12 h darkness). These conditions were chosen on the basis of earlier findings (Mattana 

et al., 2009). 

Germination was defined as visible radicle emergence (> 1 mm). Germinated 

seeds were scored three times a week. At the end of the germination tests, when no 

additional germination had occurred for two weeks, a cut test was carried out to 

determine the firmness of remaining seeds and the number of empty seeds. Firm seeds 

were considered to be viable. This methodology was chosen on the basis of previous 

findings on seeds of this species, which highlighted a very high seed viability, with 

100% of filled seeds staining uniformly red in 1% solution of 2,3,5-triphenyl-

tetrazolium chloride (Mattana et al., 2009). 

 

Field experiments 

Within 15-20 days of collecting, seeds were placed in fine-mesh polyester envelopes (3 

replicates of 25 seeds) and buried in soil at a depth of 2-3 cm. Envelopes were buried 

both underneath (IN) and outside (OUT) the canopy, with a distance between them of 

ca. 6 m, at each experimental site of the 2 natural populations, for a total of 6 

experimental sites for Rio Correboi (RC), in order to cover the whole altitudinal range 

of the population and two for Rio Olai (RO; Table 1). Envelopes buried in experimental 

sites RC2 and RO were exhumed at about 3-months intervals from September 2011 to 

June 2012 (with an intermediate exhumation also in April 2012; Table 1). Alternatively, 
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those buried in experimental sites RC1 and RC3 were exhumed only in April and June 

2012. Retrieved envelopes were analysed in the laboratory, where they were washed 

under running water and opened. The number of germinated seeds was recorded, and a 

cut test carried out to check the viability of any remaining non-germinated seeds, as 

described above. 

Soil temperatures at the level of the envelopes were recorded IN and OUT the 

canopy at 90-minutes intervals, using data loggers (TidbiT
®
 v2 Temp logger, Onset 

Computer Corporation, Cape Cod, Massachusetts, U.S.). 

 

Data analysis 

The final germination percentage was calculated as the mean of the three replicates ± 

standard deviation (± 1SD), on the basis of the total number of filled seeds. Generalized 

Linear Models (GLMs) were used to compare: 1) final germination percentages and Tb 

achieved under controlled conditions for seed collected in Rio Correboi, followed by a 

post-hoc pairwise comparisons t-test (with Bonferroni adjustment), and 2) the field 

germination percentages at each experimental site (RC1, RC2, RC3 and RO) at different 

exhumation dates (Dec. 2011, Mar. 2012, Apr. 12 and Jun. 12), both underneath (IN) 

and outside (OUT) the canopy (see Table 1). GLMs, with a logit link function and 

quasibinomial error structure, were used when analysing germination percentages, while 

a GLM with a log link function and quasipoisson error structure was used for analysing 

Tb values. Quasibinomial and quasipoisson error structures and F tests with an empirical 

scale parameter instead of chi-squared on the subsequent ANOVA were used in order to 

overcome residual overdispersion (Crawley, 2007). 

Thermal time analyses were carried out for Rio Correboi seeds germinating at 

constant temperatures for untreated seeds (0, control) and after each cold pre-treatment 

(C1, C2 and C3). Estimates of time (tg, days) taken for cumulative germination to reach 

different percentiles (g) for successive increments of 10% germination were 

interpolated from the germination progress curves (Covell et al., 1986). The 

germination rate (1/tg) was regressed, using a linear model, as a function of temperature 

according to the following equation (Garcia-Huidobro et al., 1982): 

 

1/tg (days
-1

) = (Tg – Tb) / θ  (Eq. 1) 
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An average (± 1SD) of the x-intercept among percentiles was calculated for the 

sub-optimal temperature range (10–20°C) to establish the Tb for each treatment (Ellis et 

al., 1986; Pritchard and Manger, 1990). Linear regression equations were then 

recalculated for each percentile, but constrained to pass through Tb (Hardegree, 2006). 

A comparison of regressions was then made between this model and one in which the Tb 

were allowed to vary for all the percentiles and the best estimate was considered to be 

that which resulted in the smallest residual variance (Covell et al., 1986). Thermal time 

(θ, °Cd) estimates for each treatment were then calculated separately as the inverse of 

the sub-optimal regression equations (Covell et al., 1986; see Eq. 1). 

Tb values were fitted as a function of the length of the stratification period using 

a linear model. Generally, θ did not accumulate during pre-treatments because the 

stratification temperature (5°C) was lower than Tb. However, in seeds stratified at 5°C 

for 120 days (C3), Tb reduced during stratification to below the stratification 

temperature itself. Using the relationship between rate of decline of Tb and temperature, 

and assuming that the rate of reduction of Tb continued unchanged, according to 

Steadman and Pritchard (2004), θ accumulated during the C3 stratification phase was 

calculated. 

Germination percentages were transformed to probits using tabular data from 

Finney (1971). Linear regression was used to express probit(g) as a function of thermal 

time (θg) and the form of cumulative germination response of seeds described by the 

equation (Covell et al., 1986): 

 

probit(g) = K + θg / σ  (Eq. 2), 

 

where K is an intercept constant when θg is zero, θg  may be normal or log-normal 

distributed (and the best model evaluated on the basis of the r
2
 values; Hardegree, 

2006), and σ is the standard deviation of the response to θg (i.e. the reciprocal of the 

slope), and represents the sensitivity of the population to θg (Covell et al., 1986). Thus 

the flatter the slope of the fitted line, the greater the variation in response to thermal 

time between individual seeds (Daws et al., 2004). 

A heat sum approach was used to predict seed germination in the field, 

according to Orrù et al. (2012). These authors used environmental temperatures of the 

natural populations above Tb to assess the temperature accumulation till the 

achievement of θ50 (Orrù et al., 2012). In this study, soil heat sum was calculated, 
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starting from the date of sowing, according to the following equation, modified from 

Daws and Jensen (2011): 

 

Soil heat sum (°Cd) = {∑ [(TS – Tb) x t]}/18  (Eq. 3), 

 

where TS is the temperature at each logging interval recorded by data loggers, Tb is the 

base temperature for germination calculated day by day, according to the length of 

stratification experienced in the field, t is the length of logging interval expressed in 

hours and 18 is the number of logging records per day. All statistical analyses were 

carried out using R v. 2.14.0 (R Development Core Team 2011). 

Pluviometric data for Rio Correboi (monthly averages of rainfall from 1922 to 

2009 from the nearby climatic station of Fonni, NU) and Rio Olai (monthly averages of 

rainfall from 1936 to 2009 from the nearby climatic station of Montes, Orgosolo, NU), 

were acquired from Regione Autonoma della Sardegna 

(http://www.regione.sardegna.it/j/v/25?s=131338&v=2&c=5650&t=1). The presence / 

absence of the tree canopy of riparian wood with A. glutinosa was observed at each 

field excursion realized during this study. 

 

Results 

Seed germination under controlled conditions 

The fitted GLM highlighted a statistically significant effect (P < 0.001) on germination 

of temperature (T) and treatment (S) factors and of their interaction (T x S; Fig. 1) for 

seeds collected in Rio Correboi (see Table 1). Untreated seeds (0) germinated at 

percentages ranging from ca. 50% to ca. 87% at all the tested temperatures, except at 

10°C where germination was less than 15% (Fig. 1). The applied cold stratification 

treatments increased seed germination percentages and widened the range of 

germination temperatures (Fig. 1). In particular, the effect of cold stratification was 

positive and statistically significant (P < 0.001) at 10°C, with germination increasing 

with the length of stratification from 12 ± 8% (0) to 92 ± 8% (C3) and at 15°C, with 

percentages increasing from 61 ± 5% (0) to 87 ± 3% (C3). Untreated and cold-stratified 

seeds reached high germination when incubated at the alternating temperature regime 

(25/10°C), with percentages > 80% for 0, C1 and C2 treatments, without statistically 
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significant differences (P > 0.05); whereas after C3, germination significantly (P < 

0.05) decreased to 68 ± 11% (Fig. 1). 

 

 

Figure 1 - Effects of temperatures and cold treatments (0, control; C1, C2 and C3 cold stratification at 

5°C for 1, 2 and 3 months, respectively) on final germination for Rhamnus persicifolia seeds collected in 

Rio Correboi. Data are the mean of three replicates (1 ± s.d.). Temperatures, treatments and their 

interaction are statistically significant (P < 0.001 by GLM). Post hoc pairwise t-test comparisons (with 

Bonferroni adjustment) were carried out for each germination temperature and bars with different letters 

indicate significant (P < 0.05) variation. 

 

Final germination for seeds collected in Rio Olai incubated at 25°C after 3 

months at 5°C was 60 ± 7%. 

 

Thermal requirement for germination 

Goodness of fit (r
2
) for the linear regressions of 1/t against temperature for Rio Correboi 

collections showed that the best sub-optimal model included data only up to 20°C (i.e. 

excluding 25°C; Fig. 2A). Based on germination rate responses for each 10
th

 percentile 

from 10% to 80% germination, it was possible to estimate the mean base temperature 

for germination (Tb) in the sub-optimal temperature range for each treatment (Fig. 2A). 

Average Tb  were 10.5 ± 0.6, 8.5 ± 0.9, 6.1 ± 1.4 and 2.7 ± 0.8°C, for 0, C1, C2 and C3 

treatments, respectively. For the different treatments, linear regressions were re-
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calculated for each percentile, constraining them to pass through the mean Tb. This 

model led to no differences on residual sum of squares and showed higher values of r
2
 

for all of the linear regression equations (r
2
 > 0.75 for 0, r

2
 > 0.93 for C1, r

2
 > 0.81 for 

C2 and r
2
 > 0.81 for C3), than the model where Tb varied for each percentile (r

2
 > 0.73 

for 0, r
2
 > 0.87 for C1, r

2
 > 0.73 for C2 and r

2
 > 0.54 for C3). Tb values were 

statistically different (P < 0.001) by GLM and the post hoc pairwise t-test comparison 

(with Bonferroni adjustment) highlighted significant differences among all treatments 

(Fig. 2B). The relationship between Tb and the length of the stratification period at 5°C 

is shown in Fig. 2B. The linear regression highlighted that this negative relationship was 

statistically significant (r
2
 = 0.91, P < 0.0001; Fig. 2B), with Tb decreasing by 0.09°C 

per day of stratification or by 1°C for every 11 d of chilling. After 68 days of 

stratification, Tb decreased below 5°C, and seeds accumulated 1.36 log °Cd (θs) in the 

next 22 days until the end of the C3 treatment at 90 days. 
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Figure 2 - (A) Base temperatures (Tb), calculated for different germination percentiles of Rhamnus 

persicifolia seeds, after each pre-treatment (0, control; C1, C2 and C3 cold stratifications at 5°C for 1, 2 

and 3 months, respectively) and incubation in the suboptimal temperatures (10-20°C). Within each pre-

treatment, the linear regressions for the different percentiles were constrained to the common value of Tb. 

Linear regressions of percentiles with P > 0.05 were not included. (B) Relationship between Tb and 

stratification time at 5°C. Data are the mean ± s.d. of Tb of each percentile. Statistical differences among 

pre-treatments were analyzed by GLM followed by post hoc pairwise t-test comparisons (with Bonferroni 

adjustment). Mean Tb values with different letters are significantly different at P < 0.05. 

 

 Figure 3 shows the relationship between log thermal time (θ) and germination 

expressed in probits, calculated according to Eq. 2. The relationship between log θ and 

probit germination had better residual sums of square (0.1091, 0.0961, 0.0228 and 

0.1366 for 0, C1, C2 and C3, respectively) and r
2 

(0.95, 0.97, 0.99 and 0.96 for 0, C1, 

C2 and C3, respectively) than when expressed on a linear scale (data not shown). 

Thermal time for 50% of germination (θ50) was greater for the control (2.59 log °Cd) 

compared to the cold treated seeds (from 2.17 to 2.19 log °Cd; Fig. 3). Seeds of 0 and 

C2 had a greater σ value (0.26 and 0.25 log °Cd, respectively) compared to C1 and C3 

(0.18 and 0.12 log °Cd, respectively; Fig. 3). 
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Figure 3 - Probit germination after each pre-treatment (0, control; C1, C2 and C3 cold stratification at 5°C 

for 1, 2 and 3 months, respectively) as a function of log-thermal time requirement. Thermal times were 

calculated from germination time-courses from estimated Tb of 10.5, 8.5, 6.1 and 2.7°C for 0, C1, C2 and 

C3, respectively. Points are the mean of three replicates. Thermal times to reach θ50 are also shown 

(dashed lines). 

 

Seed germination in the field 

In December 2011, the great majority of seeds (> 85%) were dormant (Table 2), 

although a few seeds (< 3%) had started to germinate in RO. In March 2012, seeds 

started germinating also in Rio Correboi, while the majority of the remaining seeds 

were still dormant, and the level of dead seeds always < 7% (Table 2). In Rio Olai, the 

majority of the seeds germinated, reaching values of ca. 70% both IN and OUT and the 

remaining seeds were mainly dead (Table 2). By April 2012, germination in RC1 was 

ca. 60% with ca. 25% of seeds remaining dormant and 15 % dead, for both IN and 

OUT. In RC2 IN and OUT, ca. 75 and 35% of the seeds, respectively, had germinated; 

ca. 14 and 45% of seeds were dormant and ca. 11 and 20% of seeds dead. For RC3 

OUT, germination reached ca. 43%, with ca. 10 and 47% being dormant or dead 

respectively. No germination data were available for RC3 IN due to predation by 

animals (Table 2). 

At the last exhumation, in June 2012, the percentage of dead seeds was high for 

all the experimental sites in both populations, ranging from 24 ± 9% for RC1 OUT to 91 

± 4 % for RC2 OUT, and all the remaining seeds germinated (Table 2). The bag in RC1 

IN was not retrieved, as it was likely washed away, while seeds in that of RC3 IN were 

predated by animals (Table 2). 
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Table 2 - Evaluation categories of the exhumed seeds (%), recorded soil temperatures (°C), calculated soil heat sum (log °Cd), and field germination percentages (mean ± s.d.) for 

each experimental site (Rio Correboi: RC; Rio Olai: RO) underneath (IN) and outside (OUT) the canopy at the different exhumation dates. 

Date of 

exhumation 

Experimental 

site 

Evaluation categories of the exhumed seeds 

(%, mean ± 1SD) Period 

Recorded mean 

soil temperature 

(°C) 

Calculated 

soil heat sum 

(log °Cd) 

Predicted soil 

heat sum 

(log °Cd) 

  IN  OUT  IN OUT IN OUT IN OUT 

  G V D NT P  G V D NT P        

09/12/2011 
RC2 0 ± 0 95 ± 2 5 ± 2 - -  0 ± 0 98 ± 2 1 ± 2 - - II 4.9 3.0 1.54 0.95 - - 

RO 1 ± 2 83 ± 8 16 ± 11 - -  3 ± 2 87 ± 6 11 ± 4 - - II 7.5 6.6 1.68 1.88 - - 

29/03/2012 
RC2 32 ± 18 61 ± 19 7 ± 2 - -  2 ± 3 95 ± 5 5 ± 5 - - IV 6.3 3.5 1.96 1.43 2.15 - 

RO 73 ± 12 6 ± 7 21 ± 16 - -  75 ± 3 8 ± 7 17 ± 7 - - IV 8.2 11.0 2.16 2.43 2.29 2.28 

26/04/2012 

RC1 57 ± 24 28 ± 13 15 ± 15 - -  61 ± 12 25 ± 13 13 ± 2 - - IV 8.9 10.4 2.44 2.37 2.22 2.23 

RC2 74 ± 5 14 ± 5 11 ± 2 - -  35 ± 12 45 ± 8 20 ± 7 - - IV 9.5 9.7 2.34 2.28 2.28 2.16 

RC3 - - - - 100  43 ± 25 10 ± 9 47 ± 33 - - III 6.7 16.2 1.94 2.69 - 2.18 

RO 55 ± 11 7 ± 4 38 ± 11 - -  73 ± 3 14 ± 11 13 ± 8 - - IV 11.7 13.7 2.49 2.68 2.21 2.27 

25/06/2012 

RC1 - - - 100 -  76 ± 9 0 ± 0 24 ± 9 - - V 17.4 27.5 3.01 3.15 - 2.29 

RC2 71 ± 21 0 ± 0 29 ± 21 - -  9 ± 4 0 ± 0 91 ± 4 - - V 19.3 27.0 3.02 3.11 2.26 - 

RC3 - - - - 100  4 ± 4 0 ± 0 96 ± 4 - - III 16.6 27.6 2.90 3.22 - - 

RO 45 ± 24 0 ± 0 55 ± 24 - -  57 ± 11 0 ± 0 43 ± 11 - - V 17.1 27.1 3.02 3.19 2.18 2.22 

The soil heat sum values, predicted on the basis of the thermal time (θ) model (expressed as probit germination and log °Cd; see Fig. 3) are also reported for the 

different germination percentages for values comprised between 10 and 80% (see Fig. 3).G = germinated seeds; V = viable dormant seeds; D = dead seeds; P = 

preyed seeds; NT = not retrieved envelopes. 

Periods, identified according to the presence/absence of the canopy and to the seasons for all the experimental sites for RC1, RC2 and RO, correspond to: (I) from 

the sowing to the disappearance of the tree canopy; (II) from the disappearance of the canopy to the start of the stratification period; (III) the stratification period; 

(IV) from the end of the stratification period to the appearance of the canopy; (V) from the appearance of the canopy to the start of the summer droughts; (VI) the 

summer drought period. For RC3 they correspond to: (I) from the sowing to the start of the stratification period; (II) the stratification period; (III) from the end of the 

stratification period to the start of the summer droughts; (IV) the summer drought period. 
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GLM highlighted a statistically significant (P < 0.001) effect for all the factors 

(Date, D; Position, P; Site S) as well as for their interactions, except for the two way 

interaction D x P and the three way interaction D x P x S for which P > 0.05 (Table 3). 

 

Table 3 - GLM results for the effect on seed germination in the field of the following factors: “Date” (D: 

Dec. 11, Mar. 12, Apr. 12 and Jun. 12), “Position” (P: IN and OUT) and “Experimental site” (S: RC1, 

RC2, RC3 and RO). 

 Df Deviance Resid. df Resid. dev F P (>F) 

NULL   62 3105.85   

Date (D) 3 1371.24 59 1734.61 59.3520  < 0.001 

Position (P) 1 98.21 58 1636.40 12.7530  < 0.001 

Site (S) 3 456.67 55 1179.73 19.7661  < 0.001 

D x P 3 34.36 52 1145.37 1.4872  > 0.05 

D x S 5 408.83 47 736.54 10.6173  < 0.001 

P x S 2 385.86 45 350.68 25.0519  < 0.001 

D x P x S 3 10.34 42 340.34 0.4474  > 0.05 

 

 

Soil heat sum and thermal niche for in situ seed germination 

The establishment of the tree canopy of A. glutinosa woods was very similar in the two 

streams (Rio Correboi and Rio Olai), starting at the end of April and disappearing in 

mid-October (Fig. 4). In detail, the annual trend of soil temperatures could be divided 

into six periods, according to the presence/absence of the canopy and to the seasons, for 

RC1, RC2 and RO experimental sites: (I) from the sowing at the end of September/early 

October to the disappearance of the tree canopy in mid-October; (II) from the 

disappearance of the canopy in mid-October to the start of the stratification period, 

when mean daily temperatures fell to 5°C in December; (III) the main stratification 

period, from December to March, when mean daily temperatures are close to 5°C; (IV) 

from the end of the stratification period in March to the appearance of the canopy in 

April; (V) from the appearance of the canopy in April to the start of the summer 

droughts in June/July; (VI) the summer drought period when rainfall drastically reduces 

(Fig. 4 and Table 2). The absence of a riparian wood in RC3 (see Table 1) lead to only 

four environmental periods: (I) from the sowing to the start of the stratification period in 

December; (II) the stratification period until March; (III) from the end of the 

stratification period to the start of the summer droughts in June/July; (IV) the summer 

drought period. 
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By combining Eq. 3 and the equation in Fig. 2B, where Tb was calculated day by 

day, for Rio Correboi seeds, according to the length of stratification experienced in the 

field, it was possible to calculate the soil heat sum reached by the seeds at the different 

exhumation times for each experimental site of both populations (Table 2). The values 

calculated for RC2 and RO (for which there was a complete temporal sequence) were 

compared with those estimated using the thermal time (θ) model, expressed as probit 

germination and log °Cd (for germination values comprised between 10 and 80%; see 

Fig. 3). The linear regression highlighted a statistical significant relationship between 

calculated and estimated data (n = 5; P = 0.0018; r
2
 = 0.97; y = 1.0992x – 0.1739). 

 In RC2 (Fig. 4A) the length of the effective stratification periods was 92 days for 

IN and 98 days for OUT (with 41 and 47 days of snow cover, respectively), leading to 

Tb values at the end of the stratification period of 2.9°C and 2.5°C for IN and OUT, 

respectively. Before (periods I-II) and during stratification (period III), mean soil 

temperatures were similar or lower than Tb (10.2°C), preventing the soil heat sum 

accumulation for germination. However, after stratification (period IV) the lower Tb 

values and the increasing soil temperatures allowed the threshold of 2.19 log °Cd 

(which corresponds to the value to achieve 50% of germination in laboratory, θ50) to be 

reached 194 (IN) and 211 (OUT) d from sowing (Fig. 4B). This estimated time was 

confirmed by the germination recorded in the field (Table 2; Fig. 4C). 

In RC1, the length of the stratification period was 90 days for IN and 104 days 

for OUT environmental conditions, leading to Tb values at the end of the stratification 

period of 2.9°C and 1.9°C for IN and OUT, respectively. After stratification, the 

threshold for θ50 was reached 186 and 200 d after sowing for IN and OUT, respectively, 

consistent with the field values presented in Table 2. In RC3, the effective stratification 

period was 116 d for IN and 93 days for OUT, leading to Tb values at the end of the 

stratification period of 2.5°C and 2.9°C for IN and OUT, respectively. Therefore, the 

threshold for θ50 was reached in period III, 171(OUT) and 219 (IN) d after sowing. 

Although few field germination data were available for this experimental site, the 

highest germination (43.0 ± 25.2% for OUT) was recorded in April (Table 2). 

In RO, the length of stratification period was 75 d for both IN and OUT (with 15 

and 20 days of snow cover, respectively), leading to Tb values at the end of the 

stratification period of 4.4°C for each site (Fig. 4). Before (periods I-II) and during 

stratification (period III), mean soil temperatures were similar or lower than Tb 

(10.2°C), leading to a slow accumulation of heat sum (1.73 log °Cd for IN and 1.97 log 
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°Cd for OUT) by the end of the period III (Fig. 4B). After stratification (period IV), the 

lower Tb values and the increasing soil temperatures enabled θ50 for RC seeds to be 

reached 164 (OUT) and 178 (IN) d after sowing (Fig. 4B). Although these times were 

estimated using data from seeds belonging to a different population (RC), the estimated 

dates were confirmed by the high germination percentages recorded in the field from 

March to April (Fig. 4C). 

 

 

Figure 4 - Soil temperatures, soil heat sum and field germination for Rio Correboi (RC2) and Rio Olai 

(RO). (A) Annual trends of mean daily temperatures recorded in the soil both underneath (IN) and outside 

(OUT) the tree canopy and mean monthly rainfall (data from the nearby weather stations of Fonni and 

Montes for RC2 and RO, respectively); (B) soil heat sum (expressed in log °Cd); and (D) field 

germination (3 replicates of 25 seeds each) IN and OUT at each time of exhumation, expressed in days 

(d) after the sowing. The inset plot (C) shows the detail of the achievement of the θ50 threshold value 

(2.19 log °Cd). The background grey squares correspond to the presence of the tree canopy. The details of 

periods I, II, III, IV, V and VI are as given for Table 2. 

 

Discussion 

Type of dormancy 

Final germination of R. persicifolia seeds was significantly improved by cold 

stratification (5°C) at intermediate and low temperatures, confirming the presence of 

physiological dormancy (PD) and supporting earlier observations (Mattana et al., 2009). 
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PD is also known in seeds of R. cathartica, R. caroliniana, R. frangula and R. 

purshiana (Baskin and Baskin, 1998), R. alaternus and R. cathartica (Dupont et al., 

1997; García-Fayos et al., 2001), and R. alnifolia and R. lanceolata (Sharma and 

Graves, 2005). As just 1 month of cold stratification is sufficient to break R. persicifolia 

seed dormancy, the seeds appear to have non-deep PD (Baskin and Baskin, 2004). 

Further, as the temperature range at which the R. persicifolia seeds could germinate 

widened from higher to lower, the seeds have type 2 non-deep PD (Baskin and Baskin, 

2004). 

 

Thermal requirements for germination 

The optimal temperature for germination of non-dormant seeds of R. persicifolia is 

presumed to be around 20°C, as the best fit of the germination rate data in the sub-

optimal temperature range excluded 25°C, which fell in the supra-optimal temperature 

range. Tb in seeds of R. persicifolia varied from ca. 10°C for non-treated seeds to ca. 

3°C for 3-months cold stratified seeds. To our knowledge this is the first report of Tb for 

a member of the Rhamnaceae. As constraining the linear regressions of each percentile 

for germination through the mean Tb improved the residual sum of squares and r
2
 

values, Tb can be used to describe the whole population response in R. persicifolia 

seeds, as previously reported for other species (e.g. Covell et al., 1986; Ellis et al., 

1987; Pritchard and Manger, 1990; Orrù et al., 2012). 

Treatments for dormancy release clearly modified Tb in R. persicifolia seeds and 

the widening of the range of temperatures for germination can be used as a surrogate for 

the efficient removal of dormancy. Chilling at 5°C reduced Tb in R. persicifolia seeds by 

ca. 0.09°C per day of chilling, such that Tb reached the chilling temperature after 68 

days of stratification. A similar trend has been observed in A. hippocastanum seeds with 

Tb reducing by 0.17°C per day of chilling at 6°C (Pritchard et al., 1999). In both these 

species, the sequential removal of dormancy lowers Tb until the stratification 

temperature becomes permissive for germination growth per se (Pritchard et al., 1999). 

However, the process is nearly twice as rapid in A. hippocastanum seeds, with Tb 

reducing by 1°C for every 5.9 days of chilling compared with 11.1 days of chilling in R. 

persicifolia. Consequently, it is clear that the quantitative impacts of a shortened cold 

season as a result of climate change will be highly species-specific in respect to the 

efficiency of dormancy loss and timing of the germination. 
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The best model was obtained by fitting germination expressed in probit and log-

normal (log °Cd) rather than normal distributed thermal times (°Cd), as previously 

reported for other herbaceous (Covell et al., 1986; Ellis and Butcher, 1988) and tree 

species (Pritchard and Manger, 1990). Seeds of R. persicifolia vary in their thermal time 

estimates to reach θ50, depending on treatment. Chilling increased the rate of 

accumulation of thermal units (°Cd) at any temperature in the sub-optimal range, 

leading to a reduction in θ50 values from 2.59 log °Cd (385°Cd) for untreated seeds to 

about 2.18 log °Cd (150°Cd) for cold stratified seeds. Batlla and Benech-Arnold (2003) 

also detected a cold-induced decrease in θ50, from 80°Cd to 56°Cd, for seeds of 

Polygonum aviculare stratified at 12 and 1.6°C, respectively. Similarly, the thermal 

history of V. vinifiera subsp. sylvestris seed lots varying with maternal environment is 

known to affect θ50 (33.6°Cd to 68.6°Cd) for non-dormant, cold-stratified seeds (Orrù et 

al., 2012). 

 

Soil heat sum and thermal niche for in situ seed germination 

Maximum germination of Mediterranean species is typically in the range 5-15°C and is 

limited in autumn and winter, and usually decreases markedly above 20°C (Thanos et 

al., 1995; Luna et al., 2012). R. persicifolia showed a typical germination phenology of 

temperate and alpine plants, where spring germination prevails due to temperatures 

being too low to stimulate emergence following autumn dispersal or due to a 

requirement for cold stratification over winter (Baskin and Baskin, 1998; Walck et al., 

2011; Mondoni et al., 2012). However, under harsh Mediterranean climatic conditions, 

the topsoil in the mountains remains moistened for only few weeks after snow-melt, 

such that adaptation for fast germination in the early spring is an advantage (Giménez-

Benavides et al., 2005; Mattana et al., 2010). The dormancy breaking and thermal time 

requirements identified in this study, together with the recorded annual trends in soil 

temperature, allowed a model for thermal niche of seed germination to be constructed 

and spring emergence to be predicted for R. persicifolia seeds. Soil temperatures around 

5°C (i.e. the stratification temperature tested in the controlled conditions) from 

December to February for Rio Olai (ca. 75 days) and from December to March (ca. 95 

days) for Rio Correboi facilitate both a fall in Tb to ca. 3°C and efficient germination of 

the seeds in March and April when the mean soil temperatures are of ca. 10°C. 
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 Plant distribution and competitiveness are highly dependent on environmental 

envelopes or niches (Walck et al., 2011; Bykova et al., 2012). For R. persicifolia 

habitat, up to six temperature periods were identified throughout the year, which 

contribute to a better understanding of the field germination period in this and other 

species growing along Mediterranean mountain waterways; especially as there have, 

hitherto, been no historical series of monthly averages of temperatures and rainfall at 

altitudes higher than ca. 1100 m a.s.l. on Sardinia. In each investigated site, seed 

germination of R. persicifolia was obtained after cold stratification, when the canopy 

was absent. Tree canopy seems therefore to have no influence on seed germination 

sensu stricto, but closure of canopy could influence survival of new established 

seedlings due to microclimate amelioration (moister and cooler) during the dry and hot 

Mediterranean summers (Valiente-Banuet et al., 1991; Greenlee and Callaway, 1996; 

Gómez-Aparicio et al., 2005). This was confirmed by the high germination percentages 

reached under controlled conditions by untreated and cold-stratified seeds (> 80%) 

when incubated in the alternating temperature regime (25/10°C). The ecological 

significance of germination stimulation by alternating temperature can be interpreted as 

a season-sensing system for temperate plants because the diurnal fluctuation of the soil 

surface temperature is large in the spring before dense vegetation covers the ground of 

deciduous forest or grassland (Shimono and Kudo, 2003). 

The ecology of germination identified in this study for R. persicifolia, explains 

the present distribution of this species which is mainly limited to small “temperate” 

refuge areas along mountain waterways (Mattana et al., 2009), where the general lack 

of rainfall during summer is overcome by the moisture of the soil. These findings 

confirm the identification of R. persicifolia as a species with a relic distribution, as 

previously reported by Arrigoni (1977) and Bacchetta et al. (2011). 

The quantification of thermal time for germination has been used in different 

studies to characterise changes in seed dormancy and subsequent germination in the 

field (i.e. Forcella et al., 2000; Hardegree and Van Vactor, 2000; Steadman et al., 2003; 

Chantre et al., 2009). Recently, Orrù et al. (2012) used an environmental heat sum 

approach (using mean monthly temperatures) to predict germination timing under two 

simulated IPCC scenarios (+1.8°C for B1 and + 3.4°C for A2; IPCC, 2007) for V. 

vinifera subsp. sylvestris seeds. The B1 scenario of +1.8°C would still adequately 

overcome dormancy for all the investigated populations, whereas under the A2 scenario 

with +3.4°C the higher winter temperature would not allow seed dormancy loss in the 
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lowest investigated population (Orrù et al., 2012). The same altitude related pattern of 

seed dormancy release and germination in response to global warming can be assumed 

for R. persicifolia seeds. An increase of +1.8°C (B1) would not reduce the stratification 

period at 5°C for the high Rio Correboi population (ca. 90 days, leading to a Tb of ca. 

3°C), whereas it could affect that of the low Rio Olai population (ca. 21 days; Tb of ca. 

9°C). However, an increase of +3.4°C (A2) would reduce the cumulative stratification 

time at 5°C to only 50 (Tb of ca. 6.5°C) and 17 days (Tb of ca. 9°C) for Rio Correboi 

and Rio Olai, respectively. According to the B1 scenario, these changes on Tb and the 

increased soil temperatures would affect the germination time, by anticipating field 

germination to February-March and March-April, for Rio Olai and Rio Correboi, 

respectively. An increase of + 3.4°C (A2) could lead to germination in the field in 

Autumn (November) in both sites. This phenological shift to germination in autumn is 

possible as seeds of this species may germinate also at temperatures ≥ 15°C without any 

cold stratification. Therefore, warmer temperatures and a consequent reduction of the 

stratification period would not be detrimental per se for seed germination. However, 

seedling survival over winter might then become the limiting event for the natural 

regeneration of the species. Moreover, projections for Mediterranean mountains predict 

lower precipitations mainly during spring (Nogués-Bravo et al., 2008) and the seedling 

growing season could be shortened also by a reduction in soil moisture and water 

availability. 

 

Conclusions 

In conclusion, type 2 non deep physiological dormancy (PD) was identified for R. 

persicifolia seeds, the thermal niche requirements for dormancy release and germination 

were quantified and predictions for germination validated through field observations of 

emergence. Overall, the results confirm the value of using a soil heat sum approach to 

predict the effects of subtle changes in field temperature on germination performance. 

The soil heat sum model developed for seed germination in this species may have 

applicability to predictions of in situ regeneration of other species growing on 

Mediterranean mountain waterways and of physiologically dormant species of 

temperate and alpine regions, where spring germination prevails due to a requirement 

for cold stratification over winter. 
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Chapter II - Multiphasic thermal parameters for embryo growth, 

seed dormancy loss and germination in Aquilegia barbaricina 

 

Abstract 

 Background and Aims: The threshold-based thermal time models have been used 

to investigate seed dormancy loss and germination. In this study, this approach 

was applied to characterize thermal requirements for embryo growth as well as 

dormancy release and germination of Aquilegia barbaricina seeds. 

 Methods: Seeds of two different populations of A. barbaricina were incubated in 

the light at a range of temperatures (10 – 25 and 25/10 °C), without any pre-

treatment, after W+C stratification (3 months at 25 °C followed by 3 months at 5 

°C), and a GA3 treatment (250 mg/L in the germination substrate). During 

germination tests, the time of seed coat and endosperm rupture were scored and 

embryo growth assessed. Base temperatures (Tb) and thermal times for 50% (θ50) 

of embryo growth and seed germination were calculated. 

 Key Results: The species showed an intermediate morphophysiological 

dormancy (MPD) and warm followed by cold stratification and GA3 treatment 

promoted embryo growth and subsequent seed germination. Embryo growth did 

not differ among populations, while differences were found on germination. Tb 

for embryo growth was approximately 5 °C both in W+C stratified and GA3 

treated seeds. For W+C pre-treated seeds the optimal temperature for embryo 

growth (Toe) was ca. 15 °C and the ceiling temperature (Tce) ca. 29 °C. Tb for 

germination varied from ca. 5 to 7 °C in W+C stratified seeds, and from 5 to 8 

°C for GA3 treated seeds. θ50 for embryo growth reduced from 2.64 log °Cd for 

GA3 treated seeds to 2.10 log °Cd for W+C stratified seeds. Same trend was 

detected also for germination, with a reduction in θ50 values from ca. 2.80 log 

°Cd to 2.03 log °Cd for GA3 treated and W+C stratified seeds, respectively. 

 Conclusions: The modelling of the thermal time approach applied on embryo 

growth, associated to results obtained on seed germination, is an important first 

study that correlates the thermal threshold with seed morphology. Multi-step 

seed germination detected in this study identified embryo growth phase as the 

riskiest step for the germination process of A. barbaricina seeds. 

 

Keywords: Aquilegia barbaricina, columbine, morphophysiological dormancy, multi-

step germination, Ranunculaceae, thermal threshold, thermal time. 
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Introduction 

Two-step germination, in which testa and endosperm rupture are sequential events 

controlled by phyto-hormone balance, is widespread over the entire phylogenetic tree 

and has been described for many families, e.g. Amaranthaceae (Karssen, 1976), 

Solanaceae, (Krock et al., 2002; Petruzzelli et al., 2003), and Brassicaceae (Liu et al., 

2005; Müller et al., 2006), as well as in Ranunculaceae (Hepher and Roberts, 1985). In 

many plant species the seed-covering layers impose a physical constraint to radicle 

protrusion, which has to be overcome by the growth potential of the embryo (Kucera et 

al., 2005; Müller et al., 2006). Abscisic acid (ABA) and gibberellic acid (GA) play an 

important role in a number of physiological processes of seed germination. ABA 

induces dormancy during maturation, and GA plays a key role on dormancy release and 

in the promotion of germination, and can act on testa and endosperm rupture (Finch-

Savage and Leubner-Metzger, 2006). Müller et al. (2006) reported that, in Lepidium 

sativum L. and Arabidopsis thaliana (L.) Heynh. seeds, endosperm rupture is promoted 

by GA and inhibited by ABA. 

It is known that temperature is one of the most important environmental factors 

controlling germination (Probert, 2000), determining both the fraction of seeds in a 

population that germinate and the rate at which they emerge (Heydecker, 1977). In non-

dormant seeds, the germination response to accumulated temperature has been modelled 

by a thermal time (θ) approach (Covell et al., 1986; Ellis et al., 1986; Ellis et al., 1987; 

Garcia-Huidobro et al., 1982; Hardegree, 2006; Pritchard and Manger, 1990). In this 

model, seeds accumulate units of thermal time (°Cd) to germinate for a percentile g of 

the population. When seeds are subjected to temperatures (T) above a base temperature 

for germination (Tb), germination rate increases linearly with temperature to an 

optimum temperature (To), above which germination rate starts to decrease (Garcia-

Huidobro et al., 1982). Thus, in this sub-optimal range (To – Tb), germination occurs in 

the time tg, when the thermal time accumulated has reached the critical value (θg) for a 

percentile g of the population, and can be described as θg = (T – Tb)tg. Intra-specific 

variation in Tb among populations may be due to different environmental conditions 

during seed development (Daws et al., 2004). Thermal time approach has been used to 

predict seed germination in the field (i.e. Hardegree and Van Vactor, 2000; Steadman et 

al., 2003; Chantre et al., 2009), and recently, to assess the impact of different simulated 

climate change scenarios on seed dormancy release and germination timing in Vitis 
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vinifera L. subsp. sylvestris Hegi (Orrù et al., 2012), and to model the in situ natural 

regeneration patterns of Rhamnus persicifolia Moris (Porceddu et al., 2013). However, 

to date there are no specific studies on the threshold temperatures and thermal time 

requirements on embryo growth. 

Seeds of Ranunculaceae species contain rudimentary or linear underdeveloped 

embryos (Martin, 1946; Baskin and Baskin, 2007) and can exhibit both morphological 

(MD) and morphophysiological (MPD) dormancy (Baskin and Baskin, 1994, 1998; 

Walck et al., 1999). In particular, Aquilegia sp. pl. seeds have linear underdeveloped 

embryos (sensu Baskin and Baskin, 2007) and stratification of the seeds at 3–5°C for 2–

4 weeks is recommended before sowing for germination (Ellis et al., 1985). Mattana et 

al. (2012) reported MPD for Aquilegia barbaricina Arrigoni et E.Nardi and A. 

nugorensis Arrigoni et E.Nardi, where the combination of both warm and cold pre-

treatment was needed to break dormancy. However, the results shown by these authors 

were not exhaustive, highlighting, in particular for A. barbaricina, low final percentages 

of seed germination. 

Two-step germination has already documented in Ranunculaceae (Hepher and 

Roberts, 1985), leads us to hypothesize that such event could be occur also in members 

of Aquilegia. Furthermore, linear underdeveloped embryos present in Aquilegia spp. 

suggests that the thermal time approach would be applied to other phases of seed 

germination that from imbibition ends with the radicle protrusion. Therefore, the aims 

of this work were to: (1) identify the phases of seeds germination of Aquilegia 

barbaricina and (2) investigate the thermal requirements for embryo growth, dormancy 

release and seeds germination of this threatened species. 

 

Materials and Methods 

Study species 

Aquilegia barbaricina (Ranunculaceae) is a rhizomatous perennial herb underground 

branched with stems 30-60 cm high (Arrigoni et Nardi, 1977; Fenu et al., 2011). The 

fruits are erect capsules which produce dark trigonal seeds with a rudimentary, 

underdeveloped embryo (Mattana et al., 2012). Phenological data indicate a flowering 

period from May to June and a fruiting period from June to July (Mattana et al., 2012). 

A. barbaricina is an exclusive endemic to the Gennargentu and Supramontes regions 

(CE-Sardinia), growing from 800 to 1,400 m a.s.l. in wet woodlands, meadows and 
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stream margins, mainly occurring on siliceous substrates and secondarily on limestone 

ones (Fenu et al., 2011; Garrido et al., 2012). This species is included in the IUCN Red 

Lists (http://www.iucnredlist.org), and it is classified as “Critically Endangered” (Fenu 

et al., 2011), and also as one of the 50 most endangered plants of the Mediterranean 

islands (de Montmollin and Strahm, 2005). 

 

Seed lot details 

Seeds of A. barbaricina were collected directly from plants in riparian woods of Alnus 

glutinosa (L.) Gaertn. at the time of natural dispersal in early summer 2011 in two 

different populations in CE-Sardinia (Table 1). 

 

Table 1 – Population data and seed lot details. 

Locality 
Population 

code 
Region 

Geographical 

coordinates 

(UTM - Datum 

WGS84) 

Elevation 

range  

(m a.s.l.) 

Aspect 
Date of 

collecting 

Mean seed 

mass  

(mg  ± SD) 

Rio Correboi 

(Villagrande 

Strisaili, OG) 

RC Gennargentu 
N 40°03’  

E 09°20’ 
1190 - 1300 E - NE 29/06/2011 1.26 ± 0.06 

Rio Olai 

(Orgosolo, NU) 
RO Supramontes 

N 40°07’  

E 09°22’ 
948 - 970 NE 28/06/2011 1.40 ± 0.05 

 

Germination tests 

3 replicates of 20 seeds each per condition, belonging to each investigated population 

(see Table 1), were sown in July 2011, on the surface of 1% agar water in 60-mm 

diameter plastic Petri dishes. Dishes were incubated in the light (12 h of irradiance) at 

different range of germination temperatures (10, 15, 20, 25 and 25⁄10°C). In the 

alternating temperature regime, the light period coincided with the elevated 

temperature. Further replicates were given a warm (W = 25°C for 3 months) followed 

by a cold stratification (C = 5°C for 3 months), before being incubated at the range of 

germination temperatures (Table 2). This pre-treatment was chosen on the basis of the 

findings of a previous study on seed germination of this species (Mattana et al., 2012). 3 

extra replicates of 20 seeds each were also sown on the surface of 1% agar water with 

250 mg·l
-1

 GA3 and incubated in the light (12 h light ⁄ 12 h dark) at the range of 

germination temperatures. 

http://www.iucnredlist.org/
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Germination was defined as visible radicle emergence. Germinated seeds were 

scored 3 times a week. During germination tests, seeds with split seed coat were scored 

and the time from seed coat splitting to endosperm rupture was estimated by daily 

monitoring the time from seed coat splitting to radicle emergence in 15 seeds for each 

condition, belonging to each investigated population. Germination tests lasted for a 

minimum of 1 month and a maximum of 4 months. When no additional germination had 

occurred for 2 weeks, a cut-test was carried out to determine the viability of the 

remaining seeds. The final germination percentage was calculated as the mean of 3 

replicates (± 1 SD), on the basis of the total number of filled seeds. 

 

Table 2 - Experimental design. 

Condition Embryo growth measurements 

Code Description 
Number of 

measurements 
Timing 

0 Control 5 After 15, 30, 60, 90 and 120 days. 

W + C 

3 months, 25°C 

(W) → 3 months, 

5°C (C) 

13 

After 15, 30, 60 and 90 days during warm (W), 15, 

30, 60 and 90 days during cold (C), and 15, 30, 60 

and 90 and 120 days after sowing for germination. 

GA3 

GA3 (250 mg·l-1) 

in the germination 

medium 

5 After 15, 30, 60, 90 and 120 days. 

 

Embryo measurements 

Embryo growth was assessed at different times, during the above described conditions 

and germination temperatures by measuring 10 seeds for each sample interval (see 

Table 2). Seeds were cut in half under a dissecting microscope and images of embryos 

acquired using a Zeiss SteREO Discovery.V8, with an objective Achromat S 0.63x, 

FWD 107mm (Carl Zeiss MicroImaging GmbH) at a 6.3x magnification, coupled to a 

Canon (Power shot G11) digital camera. Embryo and seed lengths were measured using 

the image analysis software ImageJ 1.41ᴏ (National Institutes of Health, Bethesda, MA, 

USA). Seed length was measured ignoring the seed coat. The initial embryo length was 

calculated by measuring 20 randomly selected seeds before the start of the experiments. 

The embryo length of seeds with a split seed coat but no radicle protrusion (i.e. critical 

embryo length) was determined for 20 randomly selected seeds and used for seeds that 

had germinated before measurements (Vandelook et al., 2007). 
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Thermal time analyses 

Thermal time analyses were carried out for non-dormant seeds of both populations, 

germinating at constant temperatures after W+C pre-treatment (W = 25°C for 3 months 

followed C = 5°C for 3 months) and with GA3 treatment (250 mg l
-1

 in the germination 

substrate). Estimates of time (tg, days) taken for cumulative germination to reach 

different percentiles (g) for successive increments of 10% germination were 

interpolated from the germination progress curves (Covell et al., 1986). Germination 

rate (1/tg) was regressed, using a linear model, as a function of temperature according to 

the following equation (Garcia-Huidobro et al., 1982): 

 

1/tg (days
-1

) = (T– Tbg) / θg  (Eq. 1). 

 

An average (± 1SD) of the x-intercept among percentiles was calculated for the sub-

optimal temperature range (10–20°C) to establish the base temperature for germination 

(Tbg) for each treatment (Ellis et al., 1986; Pritchard and Manger, 1990). Linear 

regression equations were recalculated for each percentile, but constrained to pass 

through Tbg (Hardegree, 2006). A comparison of regressions was then made between 

this model and one in which the Tbg were allowed to vary for all the percentiles and the 

best estimate was considered to be that which resulted in the smallest residual variance 

(Covell et al., 1986). Thermal time (θg, °Cd) estimates were then calculated separately 

as the inverse of the sub-optimal regression equations (Covell et al., 1986; see Eq. 1). 

Germination percentages were transformed to probits using tabular data from 

Finney (1971). Linear regression was used to express probit(g) as a function of both θg 

and log θg for the suboptimal temperature range for each seed lot and the best model 

evaluated on the basis of the r
2
 values (Hardegree, 2006). The following equation was 

used to describe the form of cumulative germination response of seeds (Pritchard and 

Manger, 1990): 

 

probit(g) = K + log θg / σ  (Eq. 2), 

 

where K is an intercept constant when thermal time (θg) is zero and σ is the standard 

deviation of the response to log θg (i.e. the reciprocal of the slope), and represents the 
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sensitivity of the population to θg (Covell et al., 1986). Thus, the flatter the slope of the 

fitted line the greater the variation in response to thermal time between individual seeds 

(Daws et al., 2004). 

Thermal time approach as above described for seed germination was also used 

for analysing embryo growth rate. Estimates of time (te, days) taken for different 

percentiles of seeds (e) to reach the critical embryo length were interpolated from the 

embryo growth progress curves. Embryo growth rate (1/te) was regressed, using a linear 

model, as a function of temperature according to the modified equation 1: 

 

for the sub-optimal range,  1/te (days
-1

) = (T – Tbe) / θe1  (Eq. 3), 

while for the supra-optimal range, 1/te (days
-1

) = (Tce – T) / θe2  (Eq. 4). 

 

An average (± 1SD) of the x-intercept among percentiles was calculated for both sub-

optimal and supra-optimal temperature ranges, to establish the base temperature (Tbe) 

and, when possible, the ceiling temperature (Tce) for embryo growth, respectively. The 

optimum temperature for embryo growth (Toe) was calculated as the intercept of sub- 

and supra-optimal temperatures response functions. Thermal time (θe, °Cd) estimates 

were calculated separately as the inverse of the regression equations. Linear regression 

equations were recalculated for each percentile, but constrained to pass through Tbe. 

Linear regression was used to express probit cumulative percentiles of embryo growth 

(e) as a function of both θe and log θe and the best model evaluated on the basis of the 

r
2
. The equation 5 was used to describe the form of cumulative percentiles response of 

seeds to reach the critical embryo length for the sub-optimal temperature range: 

 

probit (e) = K1 + log θe1 / σ1  (Eq. 5), 

 

where K1 is an intercept constant when thermal time (θe1) is zero and σ1 is the standard 

deviation of the response to log θe1 (i.e. the reciprocal of the slope), and represents the 

sensitivity of the population to θe1. 
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Statistical analysis 

Generalized Linear Models (GLMs) were used to compare embryo length, rate of 

endosperm rupture event, final germination percentages among tested temperatures and 

base temperature (Tb) among percentiles for seed collected both in Rio Correboi (RC) 

and Rio Olai (RO). Then, significant differences within each condition were analysed 

by a post-hoc pairwise comparisons t-test (with Bonferroni adjustment). GLMs with a 

log link function and quasipoisson error structure were used for analysing embryo 

length, rate of endosperm rupture and Tb values, while a GLM with a logit link function 

and quasibinomial error structure was used for analysing germination percentages. 

Quasipoisson and quasibinomial error structures and F tests with an empirical scale 

parameter instead of chi-squared on the subsequent ANOVA were used in order to 

overcome residual overdispersion (Crawley, 2007). All statistical analyses were carried 

out with R v. 2.14.0 (R Development Core Team, 2011). 

 

Results 

Embryo growth, endosperm rupture and seed germination 

The mean initial embryo length was 0.029 ± 0.006 mm for seeds of both populations 

(Fig. 1). During the W pre-treatment, embryo increased very slightly, and the mean 

embryo lengths after 90 days were 0.042 ± 0.005 mm for RO and 0.037 ± 0.003 for RC, 

without statistical significant differences (P > 0.05) respect to initial value (Fig. 1). 

Similar trend was observed during the subsequent C pre-treatment, and the final embryo 

lengths measured after 180 days were 0.047 ± 0.007 and 0.044 ± 0.011 mm for RO and 

RC, respectively (Fig. 1). After 150 days of pre-treatment (W for 90 days and then C for 

60 days) the embryo, in each population, did not growth further. GLM analysis detected 

no statistical significant differences (P > 0.05) between initial embryo length and final 

embryo length measured at the end of W+C, and highlighted no statistical differences 

also among populations. 
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Figure 1 – Embryo growth during stratification at 25°C for 3 months (W) and then at 5°C for another 3 

months (C) for seeds collected in Rio Correboi (RC) and Rio Olai (RO) populations. Initial and final 

embryo lengths measured at the end of W and C pre-treatments, are not significantly different at P > 0.05 

with GLM, as well as between populations. Data are the mean (± SD) of 20 seeds for initial embryo 

length and of 10 seeds for each subsequent measurement. 

 

GLM analysis highlighted a statistically significant differences (P < 0.001) on embryo 

lengths for the “treatment” factor, while no statistical differences were found for one 

way analysis of “population” and “temperature” factors and for all their interactions 

(Table 3). 

Statistically significant differences (P < 0.001) were found on estimate rate of 

endosperm rupture, for “treatment” and “temperature” factors, while no statistical 

difference (P > 0.05) was detected for the “population” factor. A statistically significant 

difference (P < 0.001) was found for the interactions “treatment” × “population” and 

“treatment” × “temperature” and no statistical significant differences were detected for 

the interactions “population” × “temperature” and “treatment” × “temperature” × 

“population” (Table 3). 

GLM highlighted a statistical differences (P < 0.05) on percentages of seed 

germination, for all factors, as well as for all their interactions (Table 3). 
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Table 3 - GLMs results of the following factors: “Treatment” (0, control; W+C, 25°C for 3 months and 

then 5°C for another 3 months; GA3, 250 mg l-1 in the germination substrate), “Temperature” (10, 15, 20, 

25 and 25⁄10°C),“Population” (RO, Rio Olai; RC, Rio Correboi) and interaction of them for embryo 

length (mm), rate of endosperm rupture (days-1) and seed germination (%). 

Embryo length (mm) Df Deviance  Resid. Df Resid. Dev F P (>F) 

NULL   298 5.2642   

Treatment 2 3.1617 296 2.1025 244.1995 <2e-16 *** 

Population 1 0.0010 295 2.1015 0.1549 0.6942 

Temperature 4 0.0445 291 2.0570 1.7179 0.1462 

Treatment:Population 2 0.0023 289 2.0548 0.1738 0.8406 

Treatment:Temperature 8 0.0824 281 1.9724 1.5905 0.1275 

Population:Temperature 4 0.0112 277 1.9612 0.4322 0.7853 

Treatment:Population:Temperature 8 0.0315 269 1.9297 0.6088 0.7702 

Rate of endosperm rupture (d
-1

) Df Deviance  Resid. Df Resid. Dev F P (>F) 

 

NULL 

   

283 

 

64.390 

  

Treatment 1 12.1639 282 52.226 1.047.452 < 2.2e-16 *** 

Population 1 0.3706 281 51.855 3.1910 0.0751923 

Temperature 4 20.3480 277 31.507 43.8047 < 2.2e-16 *** 

Treatment:Population 1 0.9061 276 30.601 7.8028 0.0055985 ** 

Treatment:Temperature 4 2.4064 272 28.195 5.1804 0.0004941 *** 

Population:Temperature 4 0.6684 268 27.527 1.4388 0.2214675 

Treatment:Population:Temperature 4 0.4923 264 27.034 1.0599 0.3768206 

Germination (%) Df Deviance  Resid. Df Resid. Dev F P (>F) 

 

NULL 

   

89 

 

5098.6 

  

Treatment 2 3640.4 87 1458.2 445.2532 < 2.2e-16 *** 

Population 1 55.4 86 1402.8 13.5411 0.0005014 *** 

Temperature 4 206.9 82 1196.0 12.6505 1.584e-07 *** 

Treatment:Population 2 149.2 80 1046.8 18.2441 6.461e-07 *** 

Treatment:Temperature 8 457.8 72 589.0 13.9978 3.024e-11 *** 

Population:Temperature 4 165.5 68 423.5 10.1215 2.501e-06 *** 

Treatment:Population:Temperature 8 167.1 60 256.4 5.1091 7.146e-05 *** 

 

The mean critical embryo lengths calculated on seeds incubated at different germination 

conditions after W+C pre-treatment with a split seed coat but without endosperm 

rupture (as well as no radicle protrusion), were 0.115 ± 0.020 and 0.117 ± 0.023 mm for 

RO and RC populations, respectively (Fig. 2A). Within all treatments, no statistical 

significant differences (P > 0.05) were highlighted on the different temperatures tested 

in each population (Fig. 2A). However, incubation temperatures had a statistically 

significant effect (P < 0.001) on final embryo length respect to the initial embryo 

length, or that calculated at the end of W+C pre-treatment (Fig. 2A). Temperatures in 
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the control (0) had no effect on the embryo growth, and the differences between initial 

embryo lengths were due to the elapsed period from the initial to final (120 days) 

measurements (Fig. 2A). In both populations, values obtained at the end of W+C and 

during GA3 showed values similar to critical embryo length, while at the end of 0 they 

were similar to initial embryo length (Fig. 2A). 

Seeds exhibited a two-step germination which followed embryo growth, with a 

delay detected between testa rupture, when the endosperm was exposed due to the 

embryo elongation, and endosperm rupture due to radicle emergence (Fig. 2B). 

Treatments and temperatures had a statistical significant effect (P < 0.001) on the rate of 

endosperm rupture in both populations (Table 1; Fig. 2B). After W+C treatment, the 

mean time course from testa to endosperm rupture (i.e. radicle protrusion) decreased 

with increasing temperature, ranging from 0.17 ± 0.05 days
-1

 at 10°C to 0.77 ± 0.28 

days
-1

 at 20°C for RO, and from 0.16 ± 0.08 days
-1

 at 10°C to 0.75 ± 0.30 days
-1

 at 20°C 

for RC populations (Fig. 2B). At 25°C and at 25/10°C the mean time course increased 

with a rate of 0.41 ± 0.25 and 0.55 ± 0.21 days
-1

 for RO, and 0.35 ± 0.23 and 0.53 ± 

0.28 days
-1

 for RC population (Fig. 2B). In the GA3 treatment, the mean time course 

from testa to endosperm rupture was slower respect to after the W+C treatment (Fig. 

2B) and, in particular, this difference was more evident in seeds of RO population, with 

a rate of 0.05 ± 0.01 days
-1

 at 10°C and of 0.28 ± 0.22 days
-1

 at 25°C (Fig. 2B). 

While no seeds germinated during the control (0), they germinated with high 

percentages (> 50%) both after W+C and during GA3 treatments in each population 

(Fig. 2C). Statistically significant differences (P < 0.001) among temperatures were 

detected within each treatment, except for seeds of RC treated with GA3 (P > 0.05) 

where the germination range were from ca. 52% (at 10°C) to ca. 80% (at 25°C; Fig. 

2C). GA3 treated seeds of the RO population germinated with a range from 12% (at 

10°C) to 62% (at 20°C; Fig. 2C). After W+C, high germination was detected at 25°C 

(88 ± 6%) for RO, and at 15°C (81 ± 12%) for RC (Fig. 2C). 
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Figure 2 – Final embryo length values (A), time from seed coat splitting to endosperm rupture (B) and 

cumulative germination percentages (C) achieved at the end of germination tests (120 days), after each 

pre-treatment (0, control; W+C, 25°C for 3 months and then 5°C for another 3 months; GA3, 250 mg l-1 in 

the germination substrate) for each population (Rio Olai and Rio Correboi). Embryo lengths measured at 

the start of germination tests (initial embryo length) are reported as a reference for the control and GA3 

while the value assessed at the end of pre-treatment is reported for W+C (black circles; A). The results in 

the alternating temperature regime (25⁄10°C) are here highlighted with a grey diamonds (A and B) and 

grey coarse bar (C). Data are the mean of 10 seeds (± SD) for embryo measurements, 20 (± SD) seeds 

(when available) for endosperm rupture rate and 3 replicates (± SD) of 20 seeds each for germination 

data. Dash lines (A) correspond to the Critical embryo length. General linear models (GLMs) were 

carried out within each treatment to test the effect of temperature on embryo growth, rate of endosperm 

rupture and germination. Values with the same letter are not different at P > 0.05 by post hoc pairwise t-

test comparisons (with Bonferroni adjustment). 

 

Thermal time approach on embryo growth 

GLM analysis (Table 1) did not show statistically significant differences (P > 0.05) on 

embryo growth between populations, therefore a combined population response dataset 

was used to evaluate embryo thermal requirements, ascribing this characteristic to the 

species level. Seeds germinated after W+C and during GA3 treatments showed 

differences on both critical embryo length rate (1/te) and cardinal temperatures (Fig. 3). 

Based on embryo length rate responses for each 10
th
 percentile (from 10% to 90%) of 

seeds that reached the critical embryo length, it was possible to estimate the mean base 



72 

 

temperature (Tbe) in the sub-optimal temperature range for W+C and GA3, and the mean 

ceiling temperature (Tce) in the supra-optimal temperature range, and subsequently the 

optimal temperature for embryo growth (Toe) for W+C (Fig. 3). Linear regressions for 

the different percentiles of sub-optimal temperature range for W+C were calculated 

passing through 5°C, which corresponds to an embryo growth rate equal to 0, value 

obtained at the end the W+C pre-treatment (see figure 1), and after were constrained to 

pass through the common value of Tbe. For the supra-optimal temperature range, linear 

regressions were constrained to pass through the common value of Tce. Linear 

regressions for the different percentiles for GA3 were constrained to the common value 

of Tbe. These models showed higher values of r
2
 for all of the linear regression 

equations, than the model where Tbe and Tce varied for each percentile. Average Tbe 

were 5.20 ± 0.60 and 5.30 ± 2.56°C for W+C and GA3 treatments, respectively (Fig. 3), 

without statistically significant differences among treatments (P > 0.05). Average Tce 

for W+C was 29.52 ± 2.37°C, and the average Toe was 15.00 ± 1.02°C (Fig. 3) whereas 

in GA3 treatment Toe may be assumed as ≥ 25°C (Fig. 3). 

 

 

Figure 3 - Cardinal temperatures (Tbe, base temperature, Toe, optimal temperature and Tce, ceiling 

temperature) to reach critical embryo length for seeds of A. barbaricina, calculated after W + C (25°C for 

3 months and then 5°C for another 3 months) and incubated at a different range of germination 

temperatures (10, 15, 20 and 25°C), and Tbe calculated after GA3 (250 mg l-1 in the germination substrate) 

treatment and incubated at constant temperatures in the suboptimal range (≤ 25°C). Linear regressions for 

the different percentiles of sub-optimal temperature range for W+C were calculated passing through 5°C, 

which corresponds to an embryo growth rate equal to 0, value obtained at the end of the W+C pre-

treatment (see figure 1), and after were constrained to pass through the common value of Tbg; for the 

supra-optimal temperature range, linear regressions were constrained to pass through the common value 

of Tce. Linear regressions for the different percentiles for GA3 were constrained to the common value of 

Tbg. Percentiles for which regression lines had a P > 0.05, Tbg and Tce values were not calculated. 
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Figure 4 shows the relationship between log thermal time (θe) and percentages of seeds 

that reached the critical embryo length expressed in probits, calculated according to Eq. 

5. The relationship between log θe and probit critical embryo length had better residual 

sums of square (0.1420 for W+C and 0.1228 for GA3) and r
2
 (0.95 and 0.97 for W+C 

and GA3, respectively) than when expressed on a linear scale (data not shown). Thermal 

time required for 50% of seeds to reach the critical embryo length (θe50) was greater for 

the GA3 with value of 2.64 log °Cd compared to the W+C treated seeds with value of 

2.10 log °Cd. However, seed of W+C and GA3 that reach the critical embryo length 

showed a very similar σ value (0.51 and 0.43°Cd, respectively; Fig. 4). 

 

 

Figure 4 - Probit percentages of seeds of A. barbaricina that reached the critical embryo length after W + 

C (25°C for 3 months and then 5°C for another 3 months) and after GA3 (250 mg l-1 in the germination 

substrate) treatments as a function of log thermal time requirement (log θe). Thermal times were 

calculated from critical embryo length time-courses assuming Tb of 5.20 and 5.30°C, for W + C and GA3, 

respectively. Thermal times to reach 50% of seeds that reached the critical embryo length (θe50) are also 

reported. 

 

Thermal time approach on seed germination 

The Tbg for RO population were 6.85 ± 0.26°C for W+C and 8.43 ± 1.53°C for GA3 

treatment, while for RC population were 5.34 ± 1.38 and 5.42 ± 0.26°C for W+C and 
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GA3 treatment, respectively (Fig. 5). These values were statistically different (P < 0.01) 

by GLM and a post-hoc pairwise comparisons t-test (with Bonferroni adjustment) 

highlighted that this difference was determined by the Tbg value of GA3 treated seeds 

belonging to RO population (Fig. 5). For each treatment on both populations, the linear 

regressions were re-calculated for each percentile, constraining them to pass through the 

mean Tbg (Fig. 5). This model led to no differences in residual sum of squares compared 

with when Tbg was allowed to vary for each percentile, and showed highest values of r
2
 

for all of the linear regression equations (r
2
 > 0.91 for RO W+C, r

2
 > 0.58 for RC W+C, 

r
2
 > 0.88 for RO GA3 and r

2
 > 0.57 for RC GA3). 

 

 

Figure 5 - Base temperatures for germination (Tbg) for the two populations (RO, Rio Olai; RC, Rio 

Correboi) of A. barbaricina, calculated after W+C (25°C for 3 months and then 5°C for another 3 

months) and GA3 (250 mg l-1 in the germination substrate) treatments, and incubated at constant 

temperatures (10–20°C). Within each population, the linear regressions for the different percentiles were 

constrained to the common value of Tbg. Percentiles for which regression lines had a P > 0.05, Tbg values 

were not calculated. 

 

Figure 6 shows the relationship between log thermal time (θg) and germination 

expressed in probits, calculated according to Eq. 2. The relationship between log θg and 

probit germination had better residual sums of square both in W+C pre-treated seeds 
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(0.1349 and 0.1851 for RO and RC populations, respectively) and in the GA3 treated 

seeds (0.0098 and 0.1477 for RO and RC populations, respectively) as well as for r
2
 

with values of 0.94 for RO and 0.92 for RC population in W+C pre-treated seeds, and 

0.99 and 0.96 in GA3 treated seed for RO and RC populations, respectively, than when 

expressed on a linear scale (data not shown). Thermal time required for 50% of 

germination (θg50) was greater for the GA3 treated seeds (2.88 and 2.72 log °Cd for RO 

and RC, respectively), compared to the W+C pre-treated seeds (2.04 and 2.02 log °Cd 

for RC and RO, respectively; Fig. 6). In addition, GA3 treated seeds of RO had a greater 

σ value (0.45 log °Cd) than the seeds belonging to RC population (0.33 log °Cd) and of 

those W+C pre-treated seeds (0.38 log °Cd and 0.26 log °Cd for RC and RO 

populations, respectively; Fig. 6). 

 

 

Figure 6 – Probit germination after W+C (25°C for 3 months and then 5°C for another 3 months) and 

after GA3 (250 mg l-1 in the germination substrate) treatments for each populations (RO, Rio Olai; RC, 

Rio Correboi) as a function of log thermal time requirement (log θg). Thermal times were calculated from 

germination time-courses assuming Tb of 6.85°C and 5.34°C for W+C, and 8.43°C and 5.42°C for GA3, 

for RO and RC, respectively. Thermal times to reach 50% of germination (θg50) are also reported. Linear 

regression of W+C for RC was calculated without the value obtained for g = 40. Thermal times to reach 

50% of germination (log θg50) are also reported. 
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Discussion 

Type of dormancy 

The embryo in seeds of Aquilegia barbaricina is small at dispersal and must grow 

before radicle emergence. Therefore, following the dormancy classification system 

(Baskin and Baskin 1998, 2004), these seeds are morphologically dormant (MD). 

Generally, if embryos have only MD, growth is completed in a relatively short period, 

and seeds germinate in 30 days or less (Baskin and Baskin, 2004). A. barbaricina seeds 

of each population did not germinate without any treatment, even after 120 days. After 

warm and cold stratification or GA3 treatment, seeds started to germinate (radicles 

emerged) at all tested temperature, due to increased embryo growth. Thus, seeds of this 

species also have a physiological component of dormancy (PD), and are 

morphophysiologically dormant (MPD), as previously reported by Mattana et al., 

(2012). The request of both warm and cold stratifications, as well as the ability of 

exogenous GA3 to overcome the physiological dormancy detected for this species, 

indicate an intermediate simple MPD (sensu Baskin and Baskin, 2004). A wide variety 

of dormancy types in Ranunculaceae species exists (Baskin and Baskin, 1998). For 

example, seeds of Delphinium tricorne and Caltha leptosepala of North America, and 

Aconitum lycoctonum of Western Europe have deep complex MPD (Baskin and Baskin, 

1994; Forbis and Diggle, 2001; Vandelook et al., 2009); non-deep complex MPD has 

been observed in seeds of the South European perennial Eranthis hiemalis (Frost-

Christensen, 1974); epicotyl dormancy has been found in the North American Hepatica 

acutiloba and Cimicifuga racemosa (Baskin and Baskin, 1985), and deep simple 

epicotyl MPD has been observed in seeds of the European Anemone nemorosa 

(Mondoni et al., 2008). The difference of dormancy type present in Ranunculaceae may 

result from an adaptation to specific habitat conditions and to the wide distribution of 

this family. Vandelook et al. (2009) reported that more distantly related species of the 

Ranunculaceae with similar habitat preferences have developed different dormancy 

breaking requirements, and this might be the result of independent evolutionary 

adaptations within the Ranunculaceae, resulting in differing dormancy breaking 

requirements. 
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Multiphasic seed germination 

Testa and endosperm rupture has been identified as two sequential steps during seed 

germination in many species (i.e. Liu et al., 2005; Manz et al., 2005; Müller et al., 

2006; Petruzzelli et al., 2003). This study confirmed the presence of two-step 

germination in Ranunculaceae member, as previously reported by Hepher and Roberts 

(1985) in Trollius ledebouri seeds. Data obtained from this study highlighted that seeds 

of Aquilegia barbaricina exhibited a multi-step seed germination. In particular, at least 

3 phases may be identified after imbibition: (I) the embryo grows inside the seed, (II) 

seed coat splits and, (III) the endosperm weakens allowing the radicle protrusion. Is 

known that the inhibitory effect of ABA is counteracted by gibberellin and that 

endosperm rupture is under the control of an ABA – gibberellin antagonism (Koornneef 

et al., 2002; Leubner-Metzger, 2003; Kucera et al., 2005; Weitbrecht et al., 2011). In 

seeds of A. barbaricina, the effect of GA3 increased the meantime course rate from testa 

and endosperm rupture, compared to W+C stratified seeds. In addition, statistical 

difference was detected between temperatures in each treatment, leading to the 

hypothesis that, as occurs in the treatments, also the temperature may have effects on 

meantime course of this events. Therefore, the effects of gibberellins not only promoted 

embryo growth, but also endosperm rupture and radicle protrusion. 

A an overall, without considering the incubation temperature, non-dormant seeds 

(i.e. after warm and cold stratification), reached their critical embryo length after less 

than 2 days of incubation, while the seed coat started to split and the radicle to protrude 

after ca. 6 days and then they continue with an overlap among all the phases (Fig. 7). 

This overlap suggests that the seeds coat may start to split when embryos are still 

growing, before they reach their “critical length” for germination and that radical 

protrusion follows immediately the split of the seed coat (Fig. 7). 
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Figure 7 – Interval of time (in days) to complete the critical embryo growth, split seed coat and radicle 

protrusion events in non-dormant (i.e., during incubation after warm and cold stratification) seeds of 

Aquilegia barbaricina. 

 

Thermal thresholds for embryo growth and seed germination 

The base temperature for embryo growth rate (Tbe) of non-dormant seeds of A. 

barbaricina was approximately 5°C both in W+C-stratified and GA3 treated seeds. For 

W+C pre-treated seeds it was possible to calculate all cardinal temperatures, with 

optimal temperature for embryo growth to ca. 15°C and ceiling temperature to ca. 29°C. 

Base temperature for germination (Tbg) varied from ca. 5 to 7°C in W+C stratified 

seeds, and from 5 to 8°C for GA3 treated seeds, depending on the provenance. To our 

knowledge, this is the first report of Tb calculated for embryo growth. Considering that 

no seeds of A. barbaricina germinated without treatment at the tested constant 

temperatures, a Tb ≥ 25 °C (i.e. the highest temperature tested) may be supposed for 

dormant seeds of the two investigated populations. However, this remains to be 

confirmed by incubating seeds without pre-treatments at higher temperatures (i.e. up to 
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30 °C). Similar trend was detected in seeds of Vitis vinifera subsp. sylvestris (Orrù et 

al., 2012). As constraining the linear regressions of each percentile for germination 

through the mean Tb improved the residual sum of squares and r
2
 values, Tb for embryo 

growth and for germination can be used to describe the whole population response in A. 

barbaricina seeds, as previously reported for other species (e.g. Covell et al., 1986; 

Ellis et al., 1987; Pritchard and Manger, 1990; Orrù et al., 2012; Porceddu et al., 2013). 

The best model was obtained by fitting germination expressed in probit and log-normal 

(log °Cd) rather than normal distributed thermal times (°Cd), as previously reported for 

other herbaceous (Covell et al., 1986; Ellis and Butcher, 1988) and tree species 

(Pritchard and Manger, 1990; Porceddu et al., 2013). Also regarding the thermal times 

of embryo growth rate was obtained the best model by fitting the values in probit and 

log-normal (log °Cd) compared to when normal distributed, confirming that this 

methodology increases the goodness of the model. 

Seeds of A. barbaricina varied in their thermal time estimates to reach θ50, depending 

on treatment. Pritchard et al. (1999) reported that treatments for dormancy release can 

modify the Tb for seeds belonging to the same population. In this study, W+C pre-

treatment increased the rate of accumulation of thermal units for embryo growth (°Cd), 

leading to a reduction in θ50 values from 2.64 log °Cd (ca. 440 °Cd) for GA3 treated 

seeds to 2.10 log °Cd (128 °Cd) for W+C stratified seeds. Same trend was detected also 

for germination, with similar behaviour for Rio Correboi and Rio Olai populations, 

recording a reduction in θ50 values from ca. 2.80 log °Cd (ca. 650 °Cd) for GA3 treated 

seeds to 2.03 log °Cd (110 °Cd) for W+C stratified seeds. Porceddu et al. (2013) 

detected, for Rhamnus persicifolia seed germination, a cold-induced decrease in θ50 

from 2.59 log °Cd (385°Cd) to about 2.18 log °Cd (150°Cd), for untreated and cold 

stratified seeds, respectively. Similarly, a cold-induced decrease in θ50 have been 

reported also in Polygonum aviculare and in V. vinifiera subsp. sylvestris seeds (Batlla 

and Benech-Arnold, 2003; Orrù et al., 2012). In A. barbaricina little differences in θ50 

values for W+C treated seeds were detected between embryo growth (2.10 log °Cd) and 

seed germination (2.03 log °Cd); this allows to affirm that, to achieving of the units of 

thermal time for critical embryo length, the seeds reached also an amount of units of 

thermal time useful for germination. Therefore, the achievement of the critical embryo 

length and radicle protrusion can be described as two phases more or less overlapping in 

time, supporting the hypothesis showed in Figure 7. The analysis carried out in this 

study showed that in A. barbaricina the thermal requirements for embryo growth did 
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not vary among populations, while for seed germination these were different among 

populations. Embryo growth could be strictly related to the seeds biology of the species, 

while germination could be more related to the habitat of provenance of the species. 

 

Conclusions 

In conclusion, intermediate simple morphophysiological dormancy (MPD) was 

identified for A. barbaricina seeds. Thermal time model developed in this work allowed 

to identify the thermal thresholds (Tb and θ50) requirements of embryo growth and seed 

germination of this species. In addition, results indicate that A. barbaricina showed a 

multi-step seed germination, with embryo growth representing the riskiest phase for the 

seed germination process of this species. This first attempt to model thermal 

requirement for embryo growth using a thermal time approach was confirmed by the 

morphological observations. This model has significant advantages over some previous 

models for estimation of germination, in particular for seeds that highlight a 

morphological component to dormancy, and may be useful to predict with a good 

accuracy the seedling emergence in the field (see Chapter 4). 
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Chapter III - Sequential temperature control of multiphasic 

growth and germination of Paeonia corsica seeds 

 

Abstract 

 Background and Aims: Morphophysiological dormancy (MPD) is a class of seed 

dormancy in which the embryo is both underdeveloped and physiologically 

dormant. In this study, MPD was investigated in seeds of Paeonia corsica 

(Paeoniaceae). 

 Methods: Seeds were incubated in the light at a range of temperatures (10 – 25 

and 25/10 °C), without any pre-treatment, after W (3 months at 25 °C), C (3 

months at 5 °C), W+C stratification (3 months at 25 °C followed by 3 months at 

5 °C), and a GA3 treatment (250 250 mg l
-1

 in the germination substrate). During 

germination tests, the time of seed coat and endosperm rupture were scored and 

embryo growth assessed. Epicotyl-plumule emergence were scored at 10, 15 and 

20°C after control, C and W, and at 15°C during GA3 treatment. 

 Key Results: Embryos were small at seed dispersal, with an initial embryo:seed 

(E:S) ratio of ca. 0.3 (embryo length, ca. 1.4 mm), whereas the critical E:S ratio 

for germination was twice as long (ca. 0.6 with embryo length of ca. 3.9 mm). 

Testa and endosperm ruptures were identified as sequential events in seeds of 

this species. GA3 and W followed by low temperature (≤ 15°C) promoted 

embryo growth (maximum growth rate of ca. 0.04 mmd
-1

) and subsequent seed 

germination (i.e. radicle emergence; ca. 65%). Low germination occurred at 

warmer temperatures (> 20°C) only for GA3 treated seeds, and cold stratification 

induced secondary dormancy, even when applied after warm stratification. After 

radicle emergence, epicotyl–plumule emergence was delayed for ca. 3 months. 

Mean time of epicotyl–plumule emergence was positively affected by cold 

stratification and GA3. 

 Conclusions: Seeds of this species showed non-deep simple (root) - non-deep 

simple (epicotyl) morphophysiological dormancy. P. corsica seeds exhibited 

differential temperature sensitivity for the sequential steps in the development 

process that resulted in the precise and optimal timing of seedling emergence. 

 

Keywords: cold stratification; embryo growth; epicotyl dormancy; 

morphophysiological dormancy; Paeoniaceae; warm stratification. 
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Introduction 

Seed dormancy is an important adaptation to prevent germination before or during 

unfavourable environmental conditions for seedling development (Baskin and Baskin, 

1998). The process of seed germination starts when the dry seeds come into contact 

with water and ends when the radicle has emerged through all the coats enveloping the 

embryo (Finch-Savage and Leubner-Metzger, 2006; Weitbrecht et al., 2011). Testa 

rupture and endosperm rupture are two sequential steps during germination (e.g. 

Karssen 1976; Hepher and Roberts, 1985; Krock et al., 2002; Liu et al., 2005; Müller et 

al., 2006; Linkies et al., 2009). In many plant species the seed-covering layers impose a 

physical constraint to radicle protrusion, which has to be overcome by the growth 

potential of the embryo (Kucera et al., 2005; Muller et al., 2006). Two-step germination 

is widespread over the entire phylogenetic tree and has been described for many plant 

families, e.g. for Ranunculaceae (Hepher and Roberts, 1985), Amaranthaceae (Karssen, 

1976), Solanaceae, (Krock et al., 2002; Petruzzelli et al., 2003) and Brassicaceae (Liu et 

al., 2005; Muller et al., 2006). 

In seeds with underdeveloped embryos, if embryo growth and radicle emergence 

are completed in about 30 days under suitable conditions, seeds have morphological 

dormancy (MD); if germination is delayed for more than about 30 days and seeds 

require a dormancy-breaking treatment such as exposure to moist cold (0–10°C) and/or 

to moist warm (≥ 15°C) stratification to germinate, they are described as having 

morphophysiological dormancy (MPD; Nikolaeva, 1977; Baskin and Baskin, 1990, 

1998). Nine types of MPD have been defined, based on temperature requirements for 

embryo growth, the breaking of physiological dormancy (PD), and on the ability of 

gibberellic acid to overcome dormancy (Baskin and Baskin, 2004; Baskin et al., 2008). 

Abscisic acid (ABA) and gibberellic acid (GA) play an important role in a 

number of physiological processes of seed germination. ABA induces dormancy while 

GA plays a key role on dormancy release and germination (Finch-Savage and Leubner-

Metzger, 2006). High ABA:GA ratio maintains dormancy, while dormancy release 

involves a net shift to increased GA biosynthesis and ABA degradation resulting in low 

ABA:GA ratio (Ali-Rachedi et al., 2004; Cadman et al., 2006; Liu et al., 2010). These 

two hormones may act also in the promotion of testa and endosperm rupture (Finch-

Savage and Leubner-Metzger, 2006). In Lepidium sativum L. and Arabidopsis thaliana 

(L.) Heynh. endosperm rupture is promoted by GA and inhibited by ABA and Lepidium 
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endosperm weakening is known to be promoted by GA and inhibited by ABA (Müller 

et al., 2006). 

According to Martin (1946) and Baskin and Baskin (1998), Paeoniaceae have 

seeds with rudimentary embryos, thus they need to grow before the seed germinates. 

Seed dormancy has been studied in different species of Paeoniaceae, and all of them 

have MPD (Barton, 1933; Nikolaeva et al., 1985; Wang and van Staden, 2002). 

Saunders (1918) observed that epicotyl growth was delayed after radicles emerged from 

seeds of Paeonia suffruticosa Andrews, and Barton (1933) found that epicotyl 

dormancy of seeds of this species could be broken by exposing germinated seeds at 

temperature of ca. 5°C. Deep simple epicotyl MPD has been found in P. officinalis L. 

and P. ostii T.Hong & J.X.Zhang var. lishizhenii B.A.Shen (Nikolaeva et al., 1985; 

Wang and van Staden, 2002), and non-deep simple morphophysiological dormancy in 

P. californica Nutt.(Schlising, 1976). More recently, Hao et al. (2013) correlated root 

length and epicotyl–plumule germination in P. ludlowii (Stern & G.Taylor) D.Y.Hong 

seeds, highlighting an essential root lengths ≥ 6 cm for epicotyl dormancy release by 

cold stratification. Germination of Paeoniaceae is hypogeal. During hypogeal 

germination, cotyledons remain inside the seed coat and stay below the surface of the 

soil as there is no substantial elongation of hypocotyl, while the epicotyl is released 

from the seed through extension of the cotyledonary petioles (Sadhu, 1989). Schlising 

(1976) reported that elongation of cotyledon bases during hypogeal germination of P. 

californica seems to permit optimal germination at soil depths of only 2-3 cm. 

The taxonomy of the genus Paeonia in central Mediterranean islands was 

extremely controversial and unclear, especially in Sardinia (see Moris, 1837; Cullen and 

Heywood, 1964; Pignatti, 1982; Akeroyd, 1993; Cesca et al., 2001). Currently, as 

reported by Hong (2005), De-Yuan and Xiao-Quan (2006) and Bacchetta et al. (2012), 

only Paeonia corsica Sieber ex Tausch grows in Sardinia, and there is no information 

on seed dormancy and germination strategies for this species. 

Therefore, the main aim of this study was to investigate the seed germination 

ecology of P. corsica, in order to: (i) identify the class of dormancy sensu Baskin & 

Baskin (2004), and if MPD is present, at what level; (ii) evaluate the sequential steps 

during seed germination. 
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Materials and Methods 

Study species and seedlot details 

Paeonia corsica is a geophyte entirely glabrous, very occasionally pubescent on 

the lower surface of leaves. This species is characterized by mostly 9 leaflets often 

rather densely holosericeous beneath and mostly short-tomentose carpels with the 

widest part above the middle, which distinguish it from the related species, P. mascula 

(L.) Mill., P. coriacea Boiss. and P. cambessedesii (Willk.) Willk. (De-Yuan and Xiao-

Quan, 2006). P. corsica is confined only to Corsica and Sardinia (Bacchetta et al., 

2012). In Sardinia, the species grows from 400 to 1700 m a.s.l. in different geological 

substrates (sedimentary, volcanic and metamorphic rocks), and it prefers deep, rich and 

wet soils. Flowering occurs from late March to early May, and the fruiting period 

usually occurs from early September to October. 

Seeds of P. corsica were collected directly from plants near and under riparian 

woods of Alnus glutinosa (L.) Gaertn. at the time of natural dispersal in September 

2011, at ca. 1,200 m a.s.l. along the Rio Correboi (Villagrande Strisaili, OG) in CE 

Sardinia (Italy). 

 

Experimental trials 

3 replicates of 20 seeds each per condition (Table 1), were sown in September 2011, on 

the surface of 1% agar water in 90-mm diameter plastic Petri dishes and incubated in 

the light (12 h light ⁄ 12 h dark) at a range of germination temperatures (10, 15, 20, 25 

and 25⁄10°C). In the alternating temperature regime, the 12-h light period coincided 

with the elevated temperature period. Further replicates were given a warm (W = 25°C 

for 3 months) and a cold stratification (C = 5°C for 3 months) and a combination of 

them (W+C), before being incubated at the range of germination temperatures (Table 

1). 3 extra replicates of 20 seeds each were sown on the surface of 1% agar water with 

250 mg·l
-1

 GA3 and incubated at the range of germination temperatures (Table 1). 

As different developmental steps on the seed germination of this species were 

identified during this study, embryo growth, time from testa to endosperm rupture, 

radicle and epicotyl-plumule emergence were measured as separate phases. 
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Table 1 - Experimental design. 

Condition Embryo growth measurements 

Code Description 
Number of 

measurements 
Timing 

0 Control 5 After 15, 30, 60, 90 and 120 days at 10-25°C and 25⁄10°C. 

W 3 months, 25°C 8 

After 30, 60 and 90 days during warm stratification (W), 15, 

30, 60, 90 and 120 days after sowing for germination at 10-

25°C and 25⁄10°C. 

C 3 months, 5°C 8 

After 30, 60 and 90 days during cold stratification (C), 15, 30, 

60, 90 and 120 days after sowing for germination at 10 - 25 

and 25⁄10°C.. 

W + C 

3 months, 25°C (W) 

→ 3 months, 5°C 

(C) 

12 

After 30, 60 and 90 days during warm (W), 15, 30, 60 and 90 

days during cold (C), 15, 30, 60, 90 and 120 days after 

sowing for germination at 10-25°C and 25⁄10°C. 

GA3 
GA3 (250 mg·l

-1
) in 

germination medium 
5 After 15, 30, 60, 90 and 120 days at 10-25°C and 25⁄10°C. 

 

Embryo measurements 

Embryo growth, during the above described conditions and germination temperatures, 

was assessed at different times (Table 1) by measuring 10 seeds for each sample 

interval. Seeds were cut in half under a dissecting microscope and images of embryos 

acquired using a Zeiss SteREO Discovery.V8, with an objective Achromat S 0.63x, 

FWD 107mm (Carl Zeiss MicroImaging GmbH) at 5.0x magnification, coupled to a 

Canon (Power shot G11) digital camera. Embryo (E) and seed (S) lengths were 

measured using the image analysis software ImageJ 1.41ᴏ (National Institutes of Health, 

Bethesda, MA, USA). Seed length was measured excluding the thickness of the seed 

coat and the embryo to seed length (E:S) ratio calculated for each seed. The initial E:S 

ratio was calculated by measuring 20 randomly selected seeds before the start of the 

experiments. The critical E:S ratio of seeds with a split seed coat but no radicle 

protrusion (i.e. when the endosperm was exposed) was determined for 20 randomly 

selected seeds and used for seeds that had germinated before measurements commenced 

(Vandelook et al., 2007). 
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Endosperm rupture and radicle emergence 

During tests, seeds with split seed coat were scored, and the time from seed coat 

splitting to endosperm rupture (i.e. when the radicle emerges) was monitored in 15 

seeds for each condition. Germination was defined as visible radicle emergence. 

Germinated seeds were scored 3 times a week. Germination tests lasted for a minimum 

of 1 month and a maximum of 4 months. When no additional germination had occurred 

for 2 weeks, a cut-test was carried out to estimate the viability of the remaining seeds. 

The final germination percentage was calculated as the mean of 3 replicates (± 1 SD), 

on the basis of the total number of firm seeds. 

 

Epicotyl dormancy release 

To evaluate the delay of the epicotyl–plumule germination (i.e. when the epicotyl or the 

first true leaf was emerged) after radicle protrusion in seeds of P. corsica, a warm pre-

treatment (i.e. W = 3 months at 25°C on the surface of 1% agar water, see Table 1), was 

applied in March 2012 to 200 seeds before incubation for germination at 15°C. 

Germinated seeds were then: (A) kept at 15°C on agar water for an additional 2-weeks 

period in order to allow root growth, before transplanting to a sterilised soil substrate of 

sand ⁄ soil / peat (1:1:1) at 10, 15 and 20°C; (B) moved to 5°C for 2 months on agar 

water, before transplanting to the soil substrate at 10, 15 and 20°C; (C) moved to 25°C 

for 2 months on agar water, before transplanting to the soil substrate at 10, 15 and 20°C; 

and (D) kept at 15°C for 2 months on the surface of 1% agar water with GA3 (250 mg l
-1

 

in the germination substrate). For each condition 15 seeds were used. Epicotyl–plumule 

germination were scored twice per week. The mean time to epicotyl–plumule 

emergence for each condition was calculated on the basis of the total number of 

seedlings with the epicotyl–plumule emerged. When no additional radicle or epicotyl–

plumule germination occurred for 2 weeks, after a minimum of 4 months, both 

experiments were stopped. 

 

Statistical analysis 

Generalized Linear Models (GLMs) were used to evaluate the effect of pre-treatments 

(i.e. 0, W, C, W+C and GA3) on embryo growth rate, E:S ratio and rate of endosperm 

rupture event. The GLM for final seed germination percentages was unbalanced due to 
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many 0 values and was not carried out. The effect of incubation temperature within each 

pre-treatment was also assessed by GLM for embryo growth rate, E:S ratio, rate of 

endosperm rupture event and final germination percentages. The effect of each 

condition on the percentages of epicotyl–plumule emergence were analyzed by GLM, 

based on the number of seeds with epicotyl–plumule emerged on the total of 15 

germinated seeds for each condition, while GLM, based on the total of seeds with 

epicotyl–plumule emerged, was used to evaluate the effects of each condition on the 

time between radicle emergence and epicotyl–plumule emergence. Significant 

differences highlighted by GLM on embryo growth rate, E:S ratio, rate of endosperm 

rupture event and epicotyl–plumule, were then analysed by a post-hoc pairwise 

comparisons t-test (with Bonferroni adjustment). A log link function and quasipoisson 

error structure was used for analysing embryo growth rate, E:S ratio, rate of endosperm 

rupture event and epicotyl–plumule emergence. A logit link function and quasibinomial 

error structure was used for analysing seed germination percentages while a logit link 

function and binomial error structure was used for analysing epicotyl–plumule 

germination percentages. Quasipoisson and quasibinomial error structures and F tests 

with an empirical scale parameter instead of chi-squared on the subsequent ANOVA 

were used in order to overcome residual overdispersion (Crawley, 2007). All statistical 

analyses used R v. 2.14.0 (R Development Core Team, 2011). 

 

Results 

Embryo growth and root emergence 

GLM highlighted a highly statistically significant effect (P < 0.001) of W and GA3 

treatments on embryo growth rate (Table 2). At 10 and 15°C, embryos of seeds from the 

W treatment grew with a mean rate of 0.027 ± 0.014 and 0.044 ± 0.004 mm d
-1

, 

respectively, significantly faster (P < 0.001) than at 20 and 25°C and 25/10°C (ca. 0.01 

mm d
-1

; Fig. 1A). Seeds on GA3 had embryos extending at ca. 0.03 mm d
-1

 at warm 

temperatures (≥ 15°C), significantly faster (P < 0.01) than at 10°C (0.016 ± 0.007 mm d
-

1
; Fig. 1A). Seeds of the control (0) and after C and W+C treatments embryos grew very 

slowly (≤ 0.01 mm d
-1

) at all germination conditions, with no statistical differences 

among temperatures (P > 0.05; Fig. 1A). 

The mean initial E:S ratio for P. corsica seeds was 0.27 ± 0.04, with a mean 

embryo length of 1.41 ± 0.21 mm and mean seed length of 5.19 ± 0.48 mm. The critical 
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E:S ratio for germination was 0.58 ± 0.09, with a mean embryo length of 3.95 ± 0.71 

mm and mean seed length of 6.82 ± 0.56 mm. All treatments, except C, had a moderate 

statistically significant effect (P < 0.05) on E:S ratio (Table 2). At the last measurement 

(after 120 days from sowing or from moving after pre-treatments; see Table 1), seeds 

reached their critical E:S ratio for germination at 15°C for the W pre-treatment, while 

the mean E:S ratios were ca. 0.5 at 20°C, ca. 0.4 at 25°C and < 0.4 at 10 and 25/10°C, 

with these differences being statistically significant (Fig. 1B; P < 0.001). For control (0) 

and after C and W+C pre-treatments, E:S ratios were low (< 0.5) at all the tested 

temperatures. Highly statistically significant differences were detected among 

temperatures for the control (0) and W+C treatment (P < 0.001), while no statistical 

differences were detected after C (P >0.05; Fig. 1B). GA3 treated seeds reached their 

critical E:S ratio at warm temperatures (≥ 15°C) with high values (from ca. 0.6 to ca. 

0.8), while at 10°C the mean E:S ratio was ca. 0.5, with these values being significantly 

different (P < 0.001; Fig. 1B). 

 

Table 2 - GLMs results of embryo growth rate and E:S ratio of the following factors: 0, control; C, pre-

chilling; W, warming; W+C; GA3, 250 mg l-1. 

Embryo growth rate (mmd
-1

) Estimate Std. Error z value Pr(>|z|) 

(Intercept) 0.001852 0.164247 0.011 0.991002 

C -0.366370 0.238691 -1.535 0.124804 

W 0.704285 0.195433 3.604 0.000314 *** 

W+C 0.084849 0.217609 0.390 0.696599 

GA3 1.008470 0.186343 5.412 6.24e-08 *** 

E:S ratio Estimate Std. Error t value Pr(>|t|) 

(Intercept) -1.02452 0.04103 -24.972 < 2e-16 *** 

C 0.01602 0.06068 0.264 0.79190 

W 0.18858 0.05777 3.264 0.00122 ** 

W+C 0.13565 0.05829 2.327 0.02060 * 

GA3 0.46214 0.05238 8.823 < 2e-16 *** 

*** P < 0.001, ** P < 0.01 and * P < 0.05 

 

Germination followed the same trend as that detected for embryo growth, with high 

germination at 15°C, with 63 ± 10% and 63 ± 3% for W and GA3 treatments, and low 

germination (7 ± 3%) at the end of the Control (0; Fig. 1C). Seeds also germinated at 

10°C in W and GA3 treatments (10 ± 9% and 15 ± 0%, respectively; Fig. 1C), but no 

germination was detected in the Control (Fig. 1C). Germination of 37 ± 21% was 
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obtained at 20°C in GA3 treatment, but no germination was detected after W treatment 

and in the Control (Fig. 1C). Low germination (< 10%) was detected at 25 and 25/10°C 

in GA3 treatment (Fig. 1C), while no germination occurred at warm (> 20°C) 

temperatures after W treatment and at temperatures > 15°C in the Control (Fig. 1C). No 

germination was detected at all temperature tested after C and W+C treatments (Fig. 

1C). 

 

  

Figure 1 - Rate of embryo growth (A), final values of E:S ratio (B), and cumulative germination 

percentages (C) achieved at the end of germination tests (120 days), after each pre-treatment (0, control; 

W, 25°C for 3 months; C, 5°C for 3 months; W+C, 25°C for 3 months and then 5°C for another 3 months; 

GA3, 250 mg l-1 of GA3 in the germination substrate). E:S ratio measured at the start of germination tests 

and at the end of pre-treatments for W, C and W+C are reported here as a reference, with black circles 

(B). The results in the alternating temperature regime (25/10°C) are highlighted with a different symbol 

(diamonds and squares for embryo growth rate and E:S ratio, respectively) compared to constant 

temperature values. Data are the mean of 10 seeds (± SD) for embryo growth rate and E:S ratio, and of 3 

replicates (± SD) for germination data. The gray band (B) corresponds to the range of values of the 
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critical E:S ratio calculated on 20 seeds. GLM was carried out within each pre-treatment to test 

differences in values of either embryo growth rate, E:S ratio, and germination data. Values with the same 

letter are not different at P > 0.05 by post-hoc pairwise comparisons t-test (with Bonferroni adjustment). 

 

Testa and endosperm rupture events during germination 

Paeonia corsica seeds exhibit different steps of germination, with a delay detected 

between testa rupture (i.e. when the endosperm was exposed by a split seed coat), and 

endosperm rupture (i.e. with radicle emergence). At 15°C after W and during GA3 

treatments, the mean time course from testa to endosperm rupture were 0.09 ± 0.07 

days
-1

 and 0.07 ± 0.07 days
-1

, respectively, with these differences being not statistically 

significant at P > 0.05 (Fig. 2). 

 

  

Figure 2 - Time course from testa to endosperm rupture at 15°C after W (3 months at 25°C) and with GA3 

(250 mg l-1 in the germination substrate) treatments. Data are the mean of 20 seeds. Dashed lines 

corresponds to the means. 

 

Epicotyl–plumule germination 

The epicotyl–plumule of seeds having radicle emerged, incubated without any 

treatment, emerged only at 10°C, with a value of 93% (Fig. 3A). After 2 months of 

warm stratification, epicotyl–plumule emerged only at 10°C with a value of 42% (Fig. 

3A). After 2 months of cold stratification, 92% and 58% of epicotyl–plumule emerged 

at 10 and 15°C, respectively, and only 1 seed at 20°C (Fig. 3A). During 2 months of 

GA3 treatment, epicotyl–plumule emerged from all germinated seeds (Fig. 3A). These 

differences in epicotyl–plumule emergence were statistically significant at P < 0.001, 
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but no statistical differences (P > 0.05) were detected at 10°C among treatments (Fig. 

3A). 

The different applied conditions of treatments and temperatures had a significant 

effect on the mean time for epicotyl–plumule germination (P < 0.001; Fig. 3B). After C, 

the highest mean rate was detected at 15°C (0.039 ± 0.022 days
-1

) and then at 10°C after 

C (0.031 ± 0.013 days
-1

) and GA3 treatment at 15°C (0.023 ± 0.003 days
-1

; Fig. 3B). 

Lower mean values were detected at 10°C after 0 and W (0.011 ± 0.002 days
-1

 and 

0.008 ± 0.000 days
-1

, respectively; Fig. 3B), without statistical differences (P > 0.05) 

between these two conditions (Fig. 3B). 

 

  

Figure 3 – Percentages (A) and days (B) of epicotyl–plumule emergence at 10, 15 and 20°C after each 

pre-treatment (0, control; C, 5°C for 2 months; W, 25°C for 2 months) and at 15°C during GA3 treatment 

(GA3, 250 mg l-1 in the substrate). N = 15 germinated seeds (when available) for each condition. GLM 

was carried out to test differences in values. Bars or box plot with the same letter are not different at P > 

0.05 by post-hoc pairwise comparisons t-test (with Bonferroni adjustment). 
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Discussion 

Morphophysiological dormancy 

The embryo in seeds of Paeonia corsica is small at dispersal time and must grow before 

radicle emergence. Therefore, following the dormancy classification system (Baskin 

and Baskin 1998, 2004), these seeds are morphologically dormant (MD). Generally, if 

embryos have only MD, growth is completed in a relatively short period, and seeds 

germinate in 30 days or less (Baskin and Baskin, 2004). P. corsica seeds germinated to 

very low levels (ca. 7%) at 15°C without any treatment and more than 100 days were 

required to reach this percentage of germination. After warm stratification or GA3 

treatment, seeds start to germinate (radicles emerged) in ca. 30 days, due to increased 

embryo growth and seed germination rates. GA3 treatment also widened the temperature 

range for germination in P. corsica seeds. Thus, seeds of this species also have a 

physiological component to dormancy (PD), and are morphophysiologically dormant 

(MPD). In addition, cold stratification (C) failed to break PD, and imposed secondary 

dormancy, also when preceded by warm stratification (W+C), delaying embryo growth 

and preventing seed germination even at 10 and 15°C. More recently, secondary 

dormancy induced by cold stratification has been reported also in seeds of Poa laxa 

subsp. laxa (Mondoni et al., 2012) and Ribes multiflorum subsp. sandalioticum 

(Mattana et al., 2012). Probert et al. (1989) highlighted that prolonged chilling of high-

dormancy batches of Ranunculus sceleratus led to a reduction in both the rate and 

capacity of germination, indicating that chilling induced a secondary dormancy. 

The MPD identified in P. corsica confirms the presence of this class of 

dormancy for Paeoniaceae, as already reported by other authors (Barton, 1933; 

Nikolaeva et al., 1985; Wang and van Staden, 2002). In addition, the delay of about 1 

month after pre-chilling and of 3 months after warming treatment, detected between 

onset of seed germination (root emergence) and epicotyl–plumule emergence in this 

species, suggested the presence of epicotyl dormancy, and can be described as a kind of 

simple epicotyl MPD. Epicotyl MPD have been found also in P. suffruticosa, P. 

officinalis and P. ostii var. lishizhenii seeds (Barton, 1933; Nikolaeva et al., 1985; 

Wang and van Staden, 2002). Roots and shoots can have different levels of PD (Baskin 

and Baskin, 1983, 1986); therefore, to describe dormancy in seeds with simple epicotyl 

MPD, the level of PD (deep, intermediate and non-deep; Baskin and Baskin, 2004) in 

both the root and shoot must be described (Baskin et al., 2009). Warm stratification and 
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GA3 treatment enhanced embryo growth and subsequent seed germination at low 

temperatures; therefore, P. corsica roots have non-deep PD. Furthermore, epicotyl–

plumule emergence was affected positively by chilling pre-treatment and GA3 

treatment, and this suggested that epicotyls of P. corsica have non-deep PD. Therefore, 

it is possible affirm that seeds of P. corsica have non-deep simple (root) – non-deep 

simple (epicotyl) MPD. This level of epicotyl MPD have been found by other authors in 

Viburnum odoratissimum (Baskin et al., 2008), Daphniphyllum glaucescens subsp. 

oldhamii var. oldhamii (Baskin et al., 2009) and in Ribes multiflorum subsp. 

sandalioticum (hereafter R. sandalioticum) seeds (Mattana et al., 2012). 

Morphophysiological dormancy is common among basal angiosperms (Baskin 

and Baskin, 1998), and embryo size increases from basal families having small embryos 

to the most derived families having larger embryos (Martin 1946; Forbis et al., 2002). 

However, a few families within the Saxifragales (i.e. Paeoniaceae and Grossulariaceae) 

have relatively small embryos, as does Parnassiaceae within the Celastrales (Forbis et 

al., 2002). P. corsica (Paeoniaceae) and R. sandalioticum (Grossulariaceae), two 

species that growth in the same ecosystem and ecological conditions in Sardinia, show 

the same class of dormancy, and the presence of MPD may be evidence to adaptation to 

common environmental conditions as suggested by Forbis et al. (2002). 

 

Embryo growth and germination under GA3 treatment 

In non-dormant seeds of P. corsica, 10 and 15°C were the temperatures that stimulate 

embryo growth, with higher E:S ratio values than other temperatures (see Fig. 1). GA3 

treatment had a strong effect on E:S ratio value at all temperature tested, influencing 

also the embryo growth rate. Several authors have suggested a minimum embryo length 

for germination in species where embryos must elongate before radicle emergence (see 

Kondo et al., 2004; Copete et al., 2011; Mattana et al., 2012). In P. corsica seeds, the 

final mean critical E:S ratio occurred in seeds incubated at 15°C in the control and at 

10°C after W pre-treatment was lower for germination, while in GA3 treated seeds the 

value was higher than the final mean critical E:S ratio calculated for germination. 

Therefore, germination can occur also when the critical value was not reached. In 

addition, GA3 treated seeds incubated at high temperatures (> 20°C) showed that 

embryo can grow further the critical E:S ratio. Therefore, although GA3 promoted 

embryo growth, it had no effect on germination at high temperatures (i.e. > 20°C). In 
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this work, the value of the mean critical E:S ratio for germination in P. corsica was 

reported as value comprised from minimum to maximum critical E:S ratio, according to 

Newton et al. (2013) that showed that, in seeds of Narcissus pseudonarcissus and 

Galanthus nivalis, the mean germination embryo length was attained or exceeded, 

while, germination at cooler temperatures, in some seeds, commenced before the 

germination embryo length was reached. 

GA3 treatment, moreover, besides acting on the embryo growth, also widened 

the temperature range for germination in P. corsica seeds, allowing low percentages of 

seed germination also at temperatures > 15°C. Similar behaviour was found by Mattana 

et al. (2012) in GA3 treated seeds of R. sandalioticum. 

 

Testa and endosperm rupture events during germination 

The endosperm is known to act as a barrier for radicle protrusion and thereby the 

completion of germination in seeds from several angiosperm clades (see Hepher and 

Roberts, 1985; Karssen, 1976; Bewley, 1997; Leubner-Metzger, 2003; Muller et al., 

2006). Seeds of Paeoniaceae are anatropous, with testa constituted of many cells thick 

and the inner epidermis of the outer integument (endotesta) is unspecialized (Corner, 

1976). Data from this study highlighted that P. corsica seeds exhibited a two-step 

germination, with a lapse of time from testa to endosperm rupture. However, statistical 

analysis showed no difference in the meantime course from testa to endosperm rupture 

in warm stratified and GA3 treated seeds. It is known that the inhibitory effect of ABA 

is counteracted by gibberellin and that endosperm rupture is under the control of an 

ABA– gibberellin antagonism (Koornneef et al., 2002; Leubner-Metzger, 2003; Kucera 

et al., 2005; Weitbrecht et al., 2011); in P. corsica it would appear that the effects of 

gibberellins promote and / or facilitate to endosperm rupture and radicle protrusion, 

however, specific tests on this topic need to be conducted (see Muller et al., 2006). 

 

Ecological correlates of seed germination 

Seeds of P. corsica ripen in late summer and dispersal takes place in autumn, mainly by 

barochory. Following dispersal in early autumn, the seeds are exposed to a mean soil 

temperature < 20°C without having experienced a warm stratification, thus they stay 

dormant in the ground until the next summer when the seeds are exposed at a cycle of 

warm temperature, i.e. when the mean soil temperature is > 20°C. Once imbibed, 
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embryos may start to grow inside the seeds. However, it is only when mean soil 

temperatures drop below 15°C in October - November and following the periods of 

annual maximum precipitation that embryo growth reaches the critical E:S ratio (mean 

embryo length of ca. 4.0 mm), thereby allowing seeds to germinate. Germinated seeds 

go through the winter with an emerged radicle, and epicotyl–plumule emerge only after 

ca. 3 months (March - April), when mean soil temperatures again reach 10 – 15°C. 

Seedling establishment is completed before the end of the second wet season (May - 

June). Seedling growth can take place for 2 months, until the start of summer, so that 

the seedlings enter the dry summer period (June – August) with well-developed root and 

shoot systems. 

Secondary dormancy of non-germinated seeds imposed by cold stratification in 

the first winter prevents radicle emergence in late spring and exposure of recently 

emerged seedlings to the dry summer conditions that would most likely kill them. 

However, the request of low temperatures (10 - 15°C) for the embryo growth and 

germination of non-dormant seeds, could suggest that these phases are the most 

sensitive to temperature, and could impact on germination phenology and/or could 

reduce the level of natural emergence in the field, highlighting an increasing threat from 

global warming. 

 

Conclusions 

Paeonia corsica showed non-deep simple (root) - non-deep simple (epicotyl) 

morphophysiological dormancy and a multi-step of seed germination from dispersal to 

seedling establishment was observed in this species. Similar pattern on seeds 

germination was detected for R. sandalioticum, where the species showed high 

specialisation with the Mediterranean seasonality (Mattana et al., 2012), suggesting for 

this species and P. corsica that their embryo morphology and seed germination 

characteristics are closely tied to ecology, as a convergent response to similar 

environmental conditions due by the same ecosystem (Forbis et al., 2002). This was 

confirmed in a related study (see Chapter 4) where the seeds were sown in their natural 

population and results highlight similar requirements for dormancy breaking, 

germination and epicotyl dormancy release for this two species. 
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Chapter IV - Thermal time model predicts long-term in situ 

germination of endospermic seeds of three endemic 

Mediterranean mountain species 

 

Abstract 

 Background and Aims: The effect of environmental temperature conditions on 

embryo growth, seed germination and epicotyl emergence was assessed for three 

endemic Mediterranean mountain species and a soil heat sum model was used to 

predict their seed germination in the field. 

 Methods: Seeds of each species were buried in the soil in their natural 

populations, both underneath and outside the tree canopy, and exhumed at 

regular intervals. Embryo growth measurements, seed germination and epicotyl 

emergence were assessed at different exhumation times. Soil temperatures were 

recorded using data loggers and soil heat sum (°Cd) was calculated and 

predicted on the basis of the estimated Tb, soil temperatures, and field 

germination. A soil heat sum approach was then applied to predict germination 

timing under two simulated IPCC scenarios (B1: +1.8 °C; A2: +3.4 °C). 

 Key Results: θ50 for embryo growth (2.10 log °Cd) and germination (2.04 log 

°Cd) for A. barbaricina were reached in April. The highest field germination of 

P. corsica was recorded from September to November and estimated θ50 values 

falls within the range of 339.26 - 1367.68 °Cd, while highest germination of R. 

sandalioticum was recorded in December allowed to estimate the θ50 values falls 

within the range of 0 °Cd - 715.92 °Cd. Soil heat sum under the two different 

IPCC scenarios could lead the completion of germination forward by about 1 

month for all three species. 

 Conclusions: Field observations allowed to validate the thermal niche 

requirements for seed germination obtained in controlled condition, and the 

developed model based on soil heat sum approach allowed to estimate the 

thermal accumulation requirements and to predict with good accuracy the seed 

germination in the field. The model developed may have applicability to 

predictions of in situ regeneration under different scenarios of increasing 

temperatures. 

 

Keywords: global warming, IPCC scenarios, thermal time, embryo growth, phenology, 

endemic vascular flora, Sardinia 
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Introduction 

The Mediterranean climate is characterized by a high seasonality in temperature and 

precipitation, which leads to a hot drought in summer and a cool, wet, winter (Joffre et 

al., 1999). This peculiarity has important implications for plant germination physiology, 

since dry summer conditions limit water availability and thus germination and growth, 

while cool winter temperatures can limit germination during the season with high water 

availability (Rundel, 1996). In seasonal climates, temperature is usually the main 

environmental factor influencing seed germination in moist soils (Fenner and 

Thompson, 2005). 

Seed dormancy is an important adaptation to prevent germination before or 

during unfavourable environmental conditions for germination and subsequent seedling 

development (Baskin and Baskin, 1998). Dormancy breaking and germination 

requirements are specific for each species and depend on phylogeny, geographical 

distribution, habitat preference and life cycle (Vandelook et al., 2008). Morphological, 

physical and physiological are three fundamentally different types of seed dormancy, 

and they may be found combined among them (e.g. morphophysiological dormancy, 

MPD; Fenner and Thompson, 2005). MPD is frequent in parts of the world with moist 

seasonal climate (Fenner and Thompson, 2005). Breaking MPD requires embryo 

growth and a treatment to overcome their physiological component (Baskin and Baskin, 

2004). Embryo morphology has important implications for dormancy and germination. 

Generally, embryo size increases within the angiosperms from basal families to the 

most derived families: a small embryo surrounded by abundant endosperm is considered 

to be a plesiomorphic condition, whereas more derived species often have a more 

developed embryo (Martin, 1946; Forbis et al., 2002). However, different eudicot taxa, 

such as Santalales, Paeoniaceae, Grossulariaceae and Parnassiaceae, present an 

underdeveloped embryo, thus suggesting that embryo morphology is closely tied to 

ecology, as a convergent response to similar environmental conditions (Forbis et al., 

2002). Vandelook et al. (2012) reported that the relative embryo length in Apiaceae 

may have evolved as an adaptation to habitat and life cycle, and Mattana et al. (2013) 

indicated that embryo morphology and type of dormancy in Grossulariaceae are closely 

tied to plant ecology. 

In non-dormant seeds, the germination response to accumulated temperature has 

been modelled using a thermal time (θ) approach (Garcia-Huidobro et al., 1982; Covell 
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et al., 1986; Ellis et al., 1986, 1987; Pritchard and Manger, 1990; Trudgill et al., 2000; 

Hardegree, 2006). In this model, seeds accumulate units of thermal time (°Cd) to 

germinate for a percentile g of the population and, as reported in the Chapter 2 for 

Aquilegia barbaricina Arrigoni et E.Nardi, this approach may be applied to identify the 

thermal thresholds (Tb and θ50) requirements for embryo growth. Seed germination may 

be predicted in relation to thermal time accumulation (heat sum, °Cd) above a gradually 

reducing Tb (Steadman and Pritchard, 2004). This approach has been used to predict 

seed germination in the field (i.e. Hardegree and Van Vactor, 2000; Steadman et al., 

2003; Chantre et al., 2009) and to assess the impact of different simulated climate 

change scenarios on seed dormancy release and germination (Orrù et al., 2012). 

Recently, Porceddu et al. (2013) used a soil heat sum model to predict in situ seed 

germination of Rhamnus persicifolia Moris. Soil heat sum approach may be used to 

predict seed germination phenology in the field under the current environmental 

conditions (i.e. temperature), but could also be useful to predict the impact of climate 

warming on seed germination. 

The Intergovernmental Panel on Climate Change (IPCC) has predicted 

temperature increases of approx. 2–4 °C by 2090 – 2099. In particular, large increases 

in temperature have been predicted and reported for the Mediterranean mountain ranges 

(Peñuelas and Boada, 2003; Bravo et al., 2008). Mediterranean mountains represent one 

of the most important centre of biodiversity and differentiation of the world (Médail and 

Quézel, 1997), and Supramontes and Gennargentu massif have been recognised as two 

of micro-hotspots within Sardinian region (Cañadas et al., 2014). Mountains of Central 

Northern Sardinia (Italy) are characterized by riparian vegetation constituted by Alnus 

glutinosa (L.) Gaertn. with other associated taxa such as Taxus baccata L., Ilex 

aquifolium L. and R. persicifolia. The canopies of woody plants modify the 

microclimate beneath and around them through interception of precipitation and by 

shading, which influence maximum soil temperature (Breshears et al., 1998). Rare and 

threatened Sardinian endemic species such as Ribes multiflorum Kit ex Roem et Schult. 

subsp. sandalioticum Arrigoni (Grossulariaceae), A. barbaricina (Ranunculaceae), and 

Paeonia corsica Sieber ex Tausch (Paeoniacea) grow in the same ecosystem and 

ecological conditions under and close to the canopy of such riparian woods. 

Embryo in seeds of R. multiflorum subsp. sandalioticum (hereafter R. 

sandalioticum), A. barbaricina and P. corsica are linear underdeveloped sensu Baskin 

and Baskin (2007), and all these species show a morphophysiological dormancy 
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(MPD); in particular A. barbaricina shows an intermediate simple MPD (Chapter 2), 

while R. sandalioticum and P. corsica show non-deep simple (root) - non-deep simple 

(epicotyl) MPD (Mattana et al., 2012b; Chapter 3). 

In this study, embryo morphology, seed germination and thermal requirements of R. 

multiflorum subsp. sandalioticum, A. barbaricina and P. corsica were correlated with 

the environmental temperature conditions, in order to: (1) investigate the field embryo 

growth and seed germination of these Sardinian endemic mountain species with 

endospermic seeds; (2) develop a model based on soil heat sum approach and predict 

their seed germination phenology in the field, under present climatic conditions and two 

different IPCC scenarios of increasing temperatures. 

 

Materials and Methods 

Study species 

Aquilegia barbaricina (Ranunculaceae), Paeonia corsica (Paeoniaceae) and Ribes 

sandalioticum (Grossulariaceae) are endemic species of Sardinia and grow in the same 

localities from ca. 1,000 m a.s.l. to the higher elevation of CE-Sardinia mountains, in 

wet woodlands, meadows and stream margins under and near riparian woods (see 

Tables 1 and 2). Information of embryo and seed germination obtained in controlled 

conditions are reported in Chapters 2 and 3 for A. barbaricina and P. corsica, 

respectively, and those for R. sandalioticum from Mattana et al. (2012b). Warm 

stratification release dormancy in R. sandalioticum (Mattana et al., 2012b) and P. 

corsica (Chapter 3), while warm plus cold stratification is needed to break dormancy in 

A. barbaricina (Mattana et al., 2012a; Chapter 2). 

 

Seed lot details 

Seeds of A. barbaricina, P. corsica and ripe berries of R. sandalioticum were collected 

directly from plants near and under riparian woods of A. glutinosa at the time of natural 

dispersal in 2011. Seeds of R. sandalioticum were immediately separated from the pulp 

by rubbing fruits through sieves under running water. The cleaned seeds were then 

spread out and left to dry at room temperature. 
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Table 1 – Seed lot details, embryo and germination characteristics of each study species. Tbe, Toe, and Tce correspond to the base, optimal and ceiling temperature for embryo growth, 

respectively, while Tb correspond to the base temperature for seed germination. 

Species Population 
Date of 

collecting 

Seed mass  

(mg) 
Tbe (°C) Toe (°C) Tce (°C) 

Tb (°C) 

dormant 

seeds 

Tb (°C) 

non-dormant 

seeds 

Initial  

embryo 

length 

Critical 

 embryo 

length 

Max 

germination  

in laboratory 

(%) 

Viability 

(%) 
Source 

A. barbaricina 
Rio Correboi  

(Villagrande Strisaili, OG) 
29/06/2011 1.26 ± 0.06 5.20 ± 0.60 15.00 ± 1.02 29.52 ± 2.37 > 25 5.34 ± 1.38 0.03 ± 0.01 0.12 ± 0.02 81± 12 98 ± 2  Chapter 2 

P. corsica 
Rio Correboi  

(Villagrande Strisaili, OG) 
26/08/2011 89.11 ± 14.78 ND ND ND 15* 10* 0.14 ± 0.02 0.39 ± 0.07 63± 10 85 ± 7 Chapter 3 

R. 

sandalioticum 

Monte Novo San 

Giovanni  

(Orgosolo, NU) 

26/08/2011 4.71 ± 0.48 ND ND ND 10* 5* 0.05 ± 0.01 0.18 ± 0.02 95 ± 5 95 ± 5 This work 

* Tb values estimated as the lowest tested temperature at which germination occurred (see Trudgil et al., 2000) 
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Germination and embryo growth in controlled conditions 

Whilst information on embryo and seed germination under controlled conditions of the 

seed lots of A. barbaricina and P. corsica are reported in Chapters 2 and 3, to obtain 

this data for the seed lot of R. sandalioticum 3 replicates of 20 seeds of this taxon were 

sown on the surface of 1% agar water in 90 mm diameter plastic Petri dishes, stratified 

for 3 months at 25°C and then incubated at 5, 10 and 15°C in the light (12 h light / 12 h 

darkness; Mattana et al., 2012b). Germination was defined as visible radicle emergence 

(> 1 mm). Germinated seeds were scored 3 times a week. At the end of the germination 

tests, when no additional germination had occurred for 2 weeks, a cut test was carried 

out to determine the firmness of remaining seeds and the number of empty seeds. Firm 

seeds were considered to be viable. Germination results are reported in Table 2. 

 

Seed germination and embryo growth in natural conditions 

According to the methodology in Porceddu et al. (2013; see Chapter 1) seeds of each 

species were placed in fine-mesh polyester envelopes (3 replicates of 25 seeds) and 

buried in the soil at a depth of 2-3 cm, within ca. 20 days after seed collection (Table 2). 

Envelopes were buried both underneath (IN) and outside (OUT) the tree canopy, with a 

distance between them of ca. 6 m, in each natural population (Table 2). Envelopes 

buried in the experimental sites were exhumed at about 3-months intervals from 

September 2011 to June 2012 (with an intermediate exhumation also in April 2012) for 

A. barbaricina, from September 2011 to March 2012 for R. sandalioticum, and from 

September 2011 to December 2012 for P. corsica. A further exhumation for P. corsica 

was performed also in March 2013 to evaluate the number of seed with epicotyl-

plumule (hereafter “epicotyl”; see Chapter 3) emerged. Retrieved envelopes were 

analysed in the laboratory, where they were washed under running water and opened. 

The number of germinated and epicotyl emerged seeds was recorded. In addition, 

embryo growth in the field was assessed during each exhumation time (Table 2), by 

measuring 20 randomly chosen seeds. Seeds were cut in half under a dissecting 

microscope and images of embryos were acquired using a Zeiss SteREO Discovery.V8, 

with an objective Achromat S 0.63x, FWD 107mm (Carl Zeiss MicroImaging GmbH) 

at a 6.3x magnification for A. barbaricina and R. sandalioticum and at a 4.0x 

magnification for P. corsica, coupled to a Canon (Power shot G11) digital camera. 

Embryo and seed lengths were measured using the image analysis software ImageJ 
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1.41ᴏ (National Institutes of Health, Bethesda, MA, USA). Seed length was measured 

ignoring the seed coat. The initial embryo length was calculated by measuring 20 

randomly selected seeds before starting the experiments. The embryo length of seeds 

with a split seed coat but no radicle protrusion (i.e. critical embryo length) was 

determined for 20 randomly selected seeds and used for seeds that had germinated 

before measurements (Vandelook et al., 2007). 
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Table 2 - Locations, habitat characteristics and dates of experimental trials carried out in each sites (Rio Correboi: RC IN and RC OUT; Monte Novo San Giovanni: MSG IN and 

MSG OUT) of the natural populations of each species. For each experimental site, IN and OUT differentiate between underneath and outside the tree canopy, respectively. 

Species Population 
Experimental 

sites 
Habitat 

Altitude 

(m a.s.l.) 
Aspect 

Date of field 

sowing 

Dates of exhumation 

and days after 

sowing 

A. barbaricina 

Rio Correboi 

(Villagrande 

Strisaili, OG) 

RC IN 

Riparian wood of black alder (Glechomo-Alnetum 

glutinosae) – Mantle shrubs of elm-leaf blackberry 

(Pruno-Rubion ulmifolii) 
1267 

0 

18/07/2011 

16/09/2011 (60 days) 

09/12/2011 (144 days) 

29/03/2012 (255 days) 

26/04/2012 (283 days) 

25/06/2012 (343 days)  

RC OUT Open grassland of Carici-Genistetea lobelioidis NE 

P. corsica 

Rio Correboi 

(Villagrande 

Strisaili, OG) 

RC IN 
Riparian wood of black alder (Glechomo-Alnetum 

glutinosae) – Mantle shrubs of elm-leaf blackberry 

(Pruno-Rubion ulmifolii) 
1267 

0 

16/09/2011 

09/12/2011 (84 days) 

29/03/2012 (195 days) 

25/06/2012 (283 days) 

19/09/2012 (369 days) 

28/12/2012 (469 days) 

10/04/2013 (572 days) 

RC OUT Open grassland of Carici-Genistetea lobelioidis NE 

R. sandalioticum 

Monte Novo 

San Giovanni 

(Orgosolo, NU) 

MSG IN Mantle shrubs of elm-leaf blackberry (Pruno-

Rubion ulmifolii) 

1225 

0 

16/09/2011 
09/12/2011 (84 days) 

29/03/2012 (195 days) 
MSG OUT Open grassland of Carici-Genistetea lobelioidis 0 
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Soil heat sum approach 

A soil heat sum approach was used to predict field germination phenology for all the 

investigated species according to Porceddu et al. (2013). Soil temperatures at the level 

of the envelopes were recorded both underneath (IN) and outside (OUT) the tree canopy 

of the natural population sites at 90-minutes intervals, using data loggers (TidbiT
®
 v2 

Temp logger, Onset Computer Corporation, Cape Cod, Massachusetts, U.S.). Soil 

temperatures above Tb of each species were used to assess the temperature accumulation 

till the achievement of θ50. Soil heat sum was calculated, starting from the date of 

sowing, according to the following equation: 

 

Soil heat sum (°Cd) = {∑ [(TS – Tb) x t]}/16 , (Eq. 1) 

 

where TS is the temperature at each logging interval recorded by data loggers, Tb is the 

base temperature for seed germination of each species (see Table 1), t is the length of 

the logging interval expressed in hours and 16 is the number of logging records per day 

(Porceddu et al., 2013). In addition, for A. barbaricina it was also possible to build a 

predictive model for embryo growth according to the following equations: 

 

Soil heat sum (°Cd) = {∑ [(TS – Tbe) x t]}/16, (Eq. 2) 

 

 

for the sub-optimal temperature range (i.e. soil temperatures < 15°C; see Chapter 2) 

and: 

 

Soil heat sum (°Cd) = {∑ [(Tce – Ts) x t]}/16, (Eq. 3) 

 

for the supra-optimal temperature range (i.e. soil temperatures > 15°C; see Chapter 2). 

Pluviometric data for Rio Correboi (monthly averages of rainfall from 1922 to 

2009 from the nearby climatic station of Fonni, NU) and Monte Novo San Giovanni 

(monthly averages of rainfall from 1936 to 2009 from the nearby climatic station of 

Montes, Orgosolo, NU), were acquired from Regione Autonoma della Sardegna 

(http://www.regione.sardegna.it/j/v/25?s=131338&v=2&c=5650&t=1). The presence / 

absence of the tree canopy of riparian wood was observed at each field excursion during 
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this study, and the different periods described by Porceddu et al. (2013) identified (see 

Chapter 1). 

 

Statistical analysis 

Generalized Linear Models (GLMs) were used to compare the field embryo length, seed 

germination and epicotyl emergence percentages of each species at different 

exhumation dates, both IN and OUT the tree canopy (see Table 2). GLM with a log link 

function and quasipoisson error structure was used for analysing embryo length values, 

while GLMs with a logit link function and quasibinomial error structure were used 

when analysing germination and epicotyl percentages. Quasibinomial and quasipoisson 

error structures and F tests with an empirical scale parameter instead of chi-squared on 

the subsequent ANOVA were used in order to overcome residual overdispersion 

(Crawley, 2007). All statistical analyses were carried out with R v. 2.14.0 (R 

Development Core Team, 2011). 
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Results 

Embryo growth and germination tests in natural conditions 

Soil temperatures recorded by data loggers were very similar for the 2 localities (RC 

and MSG; Fig. 1A), with an annual mean temperature of ca. 9.5°C for IN in both 

populations, and of ca. 10.2°C and ca.11.8°C for RC OUT and MSG OUT, respectively, 

ranging from a minimum of -0.6°C (OUT; January 12, 2012) to a maximum of 29.6°C 

(OUT; July 12, 2012) in RC, and a minimum of 0.2°C (OUT; February 23, 2012) to a 

maximum of 27.7°C (OUT; July 13, 2012; Fig. 1A) in MSG. The lowest mean 

temperatures (ca. 1°C) were detected in the period III in all experimental sites, whereas 

the highest mean temperatures were reached in the period VI with ca. 18°C for RC IN 

and MSG IN, and ca. 22° for RC OUT and MSG OUT (Fig. 1A). The length of the 

effective cold stratification periods (i.e. mean daily temperatures < 5°C) was 92 days for 

RC IN and MSG IN (both with 41 days of snow cover), and 98 days for RC OUT (with 

47 days of snow cover) and 93 days for MSG OUT (with 44 days of snow cover), and 

occurred from December to March (Fig. 1A). The length of the warm stratification 

periods (i.e. mean daily temperatures > 20°C) was 64 and 44 days for RC IN and MSG 

IN, respectively, and 80 days for RC OUT and 96 days for MSG OUT, and occurred 

from June to August-early September (Fig. 1A). 

Embryos of A. barbaricina seeds did not grow from July 2011 (date of field 

sowing) to December 2011 (period II; Fig. 1B). In March 2012 (period IV) embryos 

started to grow and reached an embryo length of ca. 0.11 mm both in RC IN and OUT; 

at the same time a few seeds (ca. 30%) had started to germinate in RC IN (Fig. 1B-C). 

In April 2012, between period IV and V, the seeds reached their critical embryo length 

(ca. 0.12 mm) and the majority of the seeds had germinated, reaching values of approx. 

80% both in RC IN and OUT (Fig. 1B-C). In June 2012 (period VI), the percentage of 

germinated seeds of A. barbaricina was ca. 95% both IN and OUT RC experimental 

sites (Fig. 1B-C). More specifically, in A. barbaricina the month where both the critical 

embryo length was reached and maximum germination achieved was April (Fig. 1). 

Embryos of P. corsica did not grow respect to the initial embryo length (ca. 0.15 

mm) from the date of sowing (September 2011) to June 2012 (period VI; Fig. 1B). In 

September 2012 (period I), the embryo started to grow and reached length values of 

0.26 and 0.34 mm for RC IN and OUT, respectively (Fig. 1B). Seeds also started to 

germinate, with approx. 56 and 10% of germinated seeds for RC OUT and IN, 
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respectively (Fig. 1C). Critical embryo length (ca. 0.40 mm) was reached at the end of 

December 2012, between the end of period II and the start of period III (i.e. start of cold 

stratification period), and germination was approx. 78% in RC IN and approx. 50% in 

RC OUT (Fig. 1B-C). In this exhumation time, ca. 30% of seeds in RC OUT had 

emerged epicotyls, while in RC IN all seeds were without emerged epicotyl (Fig. 1D). 

At the last exhumation, in April 2013 (period IV), the percentage of seeds with emerged 

epicotyl was approx. 45 and 70% for RC IN and OUT, respectively (Fig. 1D). Each 

phase of seed germination in P. corsica occurred in the second year after sowing; 

critical embryo length was reached from September to December (depending on the 

position), seed germinated in September in RC OUT and in December in RC IN, but 

epicotyl emerged in April in both experimental sites (Fig. 1). 

Germination of R. sandalioticum seeds was faster with respect to the other two 

species. From the date of field sowing (September 2011) to December 2011 (period II) 

the embryo grew from the initial embryo length (ca. 0.05 mm) to a value near the one of 

critical embryo length (ca. 0.18 mm), and the seeds germinated with a percentage of ca. 

58% in RC IN and ca. 84 % in RC OUT, but no seeds had emerged epicotyls (Fig. 1B-

D). At the last exhumation, in March 2012 (period IV), the germinated seeds with 

emerged epicotyls reached values of approx. 55% in RC IN and ca. 82 % in RC OUT, 

while ca. 12 and 15 % of the seeds had a protruded radical but no emerged epicotyl in 

RC IN and RC OUT, respectively (Fig. 1C-D). To summarize, the critical embryo 

length in R. sandalioticum seeds was reached in December, and at the same time the 

seeds germinated, while epicotyl emergence occurred in March (Fig. 1). 
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Figure 1 - (A) Annual trends of mean daily temperatures recorded in the soil both underneath (IN) and 

outside (OUT) the tree canopy for Rio Correboi (RC) and Monte Novo San Giovanni (MSG), and mean 

monthly rainfall obtained from the nearby weather stations of Fonni for RC and of Montes for MSG; (B) 

Embryo length in mm (data are the mean of 20 seeds at each exhumation time); (C) field germination 

(data are the mean 3 replicates of 25 seeds each) IN and OUT at each time of exhumation; and (D) field 

epicotyl emergence (data are the mean of 3 replicates of 25 seeds each) IN and OUT at each exhumation 

time of  P. corsica and R. sandalioticum. The background grey squares correspond to the presence of the 

tree canopy. I, II, III, IV, V and VI correspond to different periods identified by Porceddu et al. (2013; see 

Chapter 1). 

 

Generalized linear models (GLM) identified a high statistically significant (P < 0.001) 

effect for all three factors (“Date of exhumation”, D; “Position”, P; “Species”, S; Table 

3) for embryo length. For seed germination and epicotyl emergence, GLMs highlighted 

a high statistically significant difference (P < 0.001) for the “D” and “S” factors and a 

statistically significant (P < 0.05) effect for the “P” factor (Table 3). A highly 

statistically significant difference (P < 0.001) was found for all the two-way interactions 

(D × P, D × S and P × S) on embryo length, seed germination and epicotyl emergence 

(Table 3). No statistically significant differences (P > 0.05) were detected for the three-

way interaction (D × P × S) for embryo length, seed germination and epicotyl 

emergence (Table 3). 
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Table 3 - GLMs results for the effect on (I) embryo length, (II) seed germination and (III) epicotyl 

emergence in the field of the following factors: “Date of exhumation” (D: see table 2), “Position” (P: IN 

and OUT) and “Species” (S: A. barbaricina, R. sandalioticum and P. corsica). 

(I) Embryo  Df Deviance Resid. df Resid. dev F P (>F) 

NULL   557 354.55   

Date (D) 6 222.432 551 132.12 662.8910 < 0.001 

Position (P) 1 0.637 550 131.48 11.3866 < 0.001 

Species (S) 2 66.182 548 65.30 591.7089 < 0.001 

D × P 6 1.569 542 63.73 4.6769 < 0.001 

D × S 5 29.825 537 33.91 106.6599 < 0.001 

P × S 2 1.033 535 32.87 9.2371 < 0.001 

D × P × S 5 0.527 530 32.35 1.8855 > 0.05 

(II) Germination Df Deviance Resid. df Resid. dev F P (>F) 

NULL   71 6210.7   

D 6 1802.1 65 4408.7 47.4112 < 0.001 

P 1 37.4 64 4371.2 5.9072 < 0.05 

S 2 3454.5 62 916.8 272.6571 < 0.001 

D × P 6 129.5 56 787.3 3.4066 < 0.001 

D × S 3 193.8 53 593.5 10.1971 < 0.001 

P × S 2 240.8 51 352.7 19.0097 < 0.001 

D × P × S 3 14.0 48 338.7 0.7360 > 0.05 

(III) Epicotyl 

emergence 
Df Deviance Resid. df Resid. dev F P (>F) 

NULL   71 5644.2   

D 6 2883.90 65 2760.3 105.5932 < 0.001 

P 1 23.25 64 2737.1 5.1079 < 0.05 

S 2 2018.71 62 718.3 221.7438 < 0.001 

D × P 6 134.13 56 584.2 4.9113 < 0.001 

D × S 3 136.81 53 447.4 10.0186 < 0.001 

P × S 2 214.37 51 233.0 23.5471 < 0.001 

D × P × S 3 0.00 48 233.0 0.0000 > 0.05 
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Soil heat sum for embryo growth and seed germination of Aquilegia barbaricina 

Figure 2 reports the soil heat sum accumulation till the achievement of θ50 threshold 

value for embryo growth (Fig. 2A) and germination (Fig. 2B) in the field for A. 

barbaricina seeds, both IN and OUT the tree canopy, according to field germination 

and temperature recorded by each data logger. θ50 values were expressed in log °Cd, 

according to the best model obtained under controlled conditions (see Chapter 2). 

Immediately after sowing (period VI), and during periods I, II and III, Tb of dormant 

seed of A. barbaricina was higher than the mean soil temperatures, and this prevented 

the soil heat sum accumulation both for embryo growth and germination. However, 

after cold stratification (period IV), when the seed dormancy was broken, the lower Tb 

values and the increasing soil temperatures allowed the threshold of 2.10 log °Cd (for 

embryo growth) and 2.04 log °Cd (for germination) to be reached from late April to 

early May (period V; Fig. 2A-B). More specifically, θ50 for embryo growth was reached 

in April 29 for IN and in the May 03 for OUT (287 and 291 days after sowing for IN 

and OUT, respectively; Fig. 2C), while θ50 for germination was reached in April 28 for 

IN and in May 02 for OUT (286 and 289 days after sowing for IN and OUT, 

respectively; Fig. 2D). This estimated time was confirmed by the embryo measurements 

and germination recorded in the field (see Fig. 1). 
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Figure 2 – Soil Heat Sum (expressed in log °Cd) to achievement the θ50 threshold value for (A) embryo 

(50% of seeds that reached the critical embryo length) and (B) germination (50% of seed germination in 

the field) of A. barbaricina, both underneath (IN) and outside (OUT) the tree canopy. The inset plots (C 

and D) show the details of the achievement of the θ50 threshold value (2.10 and 2.04 log °Cd, for embryo 

and germination respectively). Dark grey short dashes represent the base temperature before (Tb > 25°C) 

and after (5.20 and 5.34°C for embryo growth and seed germination, respectively) cold stratification. The 

background grey squares correspond to the presence of the tree canopy. I, II, III, IV and V correspond to 

different periods identified by Porceddu et al., (2013) and described in the Chapter 1. 

 

The linear regression analysis carried out to detect relationships between estimated and 

calculated values of soil heat sum highlighted a significant correlation for embryo 

growth (P < 0.05; r
2
 = 0.84; y = 0.67x + 1.09), while showed not statistically significant 

relationships for seed germination (P > 0.05; r
2
 = 0.72; y = 0.39x + 1.53). 

 

Soil heat sum estimates for seed germination of Paeonia corsica and Ribes 

sandalioticum 

In controlled conditions, non-dormant seeds of P. corsica germinated only at two of the 

range of tested temperatures (see Chapter 3). The same trend was identified for R. 
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sandalioticum (see Table 1) which germination of non-dormant seeds occurred at 5°C 

(57 ± 15%) and 10°C (95 ± 5%), and only few seeds (< 5%) germinated at 15°C. 

Therefore the dataset was not large enough to correlate germination rate and 

temperature for germination for both species and, consequently, it was not possible to 

build a thermal time model to calculate their Tb, as for A. barbaricina seeds. Therefore 

for these species Tb was estimated using the lowest tested temperature at which 

germination was recorded. These values were 15 and 10°C, for dormant and non-

dormant seed of P. corsica, respectively, and 10 and 5°C for dormant and non-dormant 

seed of R. sandalioticum, respectively (see Table 1). 

 The soil heat sum accumulation range to achievement the θ50 threshold value, 

both IN and OUT (Fig. 3), was estimated by using these values and according to field 

seed germination percentages obtained during different exhumation times (Fig. 1C) and 

to temperatures recorded by each data logger (Fig. 1A). From the date of sowing 

(September; period I) to the end of period V (June), seeds of P. corsica did not 

experience the warm stratification period (i.e. period VI) and Tb estimated for dormant 

seeds was higher than the mean soil temperatures, and this prevented the soil heat sum 

accumulation (Fig. 3A). The increasing soil temperatures during period VI allowed the 

beginning of soil heat sum accumulation. During this period, seeds of P. corsica 

released PD dormancy and Tb estimate decreased to a value of 10°C; this increased the 

rate of soil heat sum accumulation. The absence of germination (0%) observed in June 

and the germination obtained in September in RC OUT (ca. 56 %) allowed to estimate 

that the θ50 values for seed germination falls within the range of 339.26 - 1367.68 °Cd 

in this experimental site, while the germination of ca. 10% and ca. 76 % recorded in RC 

IN in September and in December, respectively (see Fig. 1C), indicated that the θ50 

estimated falls within the range 670.04 - 901.95 °Cd (Fig. 3A). However, the value of 

901.95 °Cd was reached in November 16
th
, and after this date the seeds did not 

accumulate heat sum. 

As regards of R. sandalioticum (Fig. 3B), the Tb estimated for dormant and non-

dormant seeds of this species was lower than the mean soil temperatures, and this 

promoted the soil heat sum accumulation immediately after sowing (in September; 

period I). During the first exhumation carried out in December (period II), seeds 

germinated were > 50% in both experimental sites of MSG (see Fig. 1C); by this time 

seeds had accumulated 659.27 °Cd in MSG IN and 715.92 °Cd in MSG OUT (Fig. 3B). 
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This allowed to estimate that θ50 falls within the range 0 °Cd - 659.27 °Cd in MSG IN, 

and 0 °Cd - 715.92 °Cd in MSG OUT (Fig. 3B). 

 

 

Figure 3 - Soil Heat Sum (°Cd) for the achievement of the predicted minimum and maximum values for 

germination near to θ50 threshold value (50% of seed germination in the field) of P. corsica and R. 

sandalioticum, both underneath (IN) and outside (OUT) the tree canopy, calculated according to their 

exhumation times. The background grey squares correspond to the presence of the tree canopy. I, II, III, 

IV and V correspond to different periods identified by Porceddu et al., (2013) and described in Chapter 1. 

 

Seed germination phenology under different climate scenarios 

Figures 4, 5 and 6 show the soil heat sum accumulation and the achievement of the θ50 

of each species in the field, both IN and OUT, for the present climate data and under 

two different IPCC scenarios (B1, +1.8 °C and A2, +3.4 °C; IPCC, 2007). Figure 4 

shows the soil heat sum accumulation and the achievement of the θ50 threshold value for 

A. barbaricina. The increase in temperature of +1.8 °C (B1 scenario) and +3.4°C (A2 

scenario) in RC should lead to a reduction of the period III (i.e. cold stratification) from 

ca. 90 days in B1 scenario to ca. 45 days in A2 scenario, with an increase of the mean 

soil temperature of ca. 3°C in the latter scenario with respect to the present mean soil 
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temperature (ca. 1°C; Fig. 4A). The increase in the mean temperature during period III 

would not compromise seed dormancy release in A. barbaricina. However, after cold 

stratification period, the increased temperature would accelerate germination of non-

dormant seeds, bringing it forward from late-April to middle-April in RC IN and from 

early-May to late-April in RC OUT for the B1 scenario, and to early-April and middle-

April in RC IN and RC OUT, respectively, for the A2 scenario (Fig. 4B). 
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Figure 4 - (A) Annual trends of mean daily temperatures recorded in the soil for Rio Correboi (RC) with mean monthly rainfall obtained from the nearby weather stations of Fonni, 

and (B) Soil heat sum (expressed in log °Cd) to achievement the θ50 threshold value (2.04 log °Cd) for A. barbaricina seed germination, both underneath (IN) and outside (OUT) the 

tree canopy, for the present data and under two different IPCC scenarios (B1, +1.8 °C and A2, +3.4 °C). The inset plots (C) show the details of the achievement of the θ50 threshold 

value. The background grey squares correspond to the presence of the tree canopy. I, II, III, IV, V and VI correspond to different periods identified by Porceddu et al., (2013). 

Results of the present data was already reported in figure 1A and 2, and it is presented again to better understand the differences with the other two scenarios. 
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In addition, the increase in temperature predicted in both scenarios, should not affect the 

length of period VI (i.e. the summer drought period) in RC, but should increase its mean 

soil temperature. The mean soil temperature in RC IN should increase from approx. 

19°C to approx. 21 and 23°C in B1 and A2 scenarios, respectively; while in RC OUT it 

should increase from approx. 24°C to 26 and 28°C in B1 and A2 scenario, respectively 

(Fig. 5). In particular, an increased soil heat sum would accelerate the achievement of 

the θ50 threshold value in P. corsica seed germination both in RC IN and RC OUT (Fig. 

5). The increase in temperature predicted in B1 scenario should anticipate seed 

germination of this species in June-August for RC OUT and in August-September for 

RC IN (Fig. 5). The increase in temperature predicted in A2 scenario should bring 

forward seed germination in June-early August for RC OUT and in July-August for RC 

IN (Fig. 5). 
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Figure 5 – (A) Annual trends of mean daily soil temperatures for Rio Correboi (RC) with mean monthly 

rainfall obtained from the nearby weather stations of Fonni. (B) Soil Heat Sum (°Cd) to achievement of 

the predicted minimum and maximum values for germination near to the θ50 threshold value, both 

underneath (IN) and outside (OUT) the tree canopy, for the present data and under two different IPCC 

scenarios (B1, +1.8 °C and A2, +3.4 °C). The background grey squares correspond to the presence of the 

tree canopy. I, II, III, IV, V and VI correspond to different periods identified by Porceddu et al., (2013) 

and described in Chapter 1. 

 



128 

 

An increased soil heat sum would accelerate the achievement of the θ50 threshold value 

in R. sandalioticum seeds in MSG. In B1 scenario, it should bring forward its seed 

germination to November, while in A2 scenario it could bring it forward to October 

(Fig. 6). More specifically, seed germination of this species would occur ca. 38 and 45 

days earlier in B1 and A2 scenarios, respectively (Fig. 6). 
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Figure 6 - (A) Annual trends of mean daily temperatures recorded in the soil for Monte Novo San Giovanni (MSG) with mean monthly rainfall obtained from the nearby weather 

stations of Montes, and (B) Soil Heat Sum (°Cd) to achievement of the predicted minimum and maximum values for germination near to the θ50 threshold value, both underneath 

(IN) and outside (OUT) the tree canopy, for the present data and under two different IPCC scenarios (B1, +1.8 °C and A2, +3.4 °C). The background grey squares correspond to the 

presence of the tree canopy. I, II, III, IV, V and VI correspond to different periods identified by Porceddu et al., (2013). Results of the present data was already reported in figure 1A 

and 3, and it is presented again to better understand the differences with the other two scenarios. 
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Discussion 

Seed dormancy 

Baskin and Baskin (1998) discussed the phylogenetic relationships of dormancy at the 

family level, and reported that MD and MPD are basal in the evolutionary trend for the 

angiosperms, while PD, PY and (PY+PD) are derived. Martin (1946) placed several 

plant families, including Aquifoliaceae, Araliaceae, Magnoliaceae, Papaveraceae, and 

Ranunculaceae, at the base of his phylogenetic tree. Forbis et al. (2002) reconstructed 

the E:S (the ratio of embryo to seed) value of the angiosperm ancestor with standard 

phylogenetic methods, and showed that the low embryo size to seed size ratio (E:S) 

increased between ancestral and derived angiosperms. Forbis et al. (2002) confirmed 

that the Ranunculaceae are an ancestral family and placed the Paeoniaceae and the 

Grossulariaceae as derived families. A. barbaricina (Ranunculaceae) showed an initial 

embryo length of ca. 0.03 mm and a seed length of ca. 0.19 mm (i.e. E:S = 0.16; 

Chapter 2), while R. sandalioticum and P. corsica (Saxifragales) showed an initial E:S 

ratio of ca. 0.3 and of ca. 0.2, respectively (Mattana et al., 2012b; Chapter 3). The 

similar E:S values detected between these three species confirm that there was a 

convergent evolution in embryo size at dispersal time in this taxa although belonging to 

different families, as a response to similar environmental conditions due to the same 

habitat and ecosystem, as suggested by Forbis et al. (2002). 

 

Ecological correlates of embryo growth, seed germination, epicotyl emergence and 

seedling establishment in natural conditions 

The phenology of embryo growth and of the radicle and cotyledon emergence in the 

seeds of A. barbaricina, P. corsica and R. sandalioticum were studied in this work. All 

species disperse between period VI and I, in presence of a tree canopy. All three species 

developed specific mechanisms for achieving seed germination, which are useful to 

avoid unfavourable environmental conditions for plant establishment.  

Seeds of A. barbaricina are dispersed in summer and germinate the following 

spring/early summer, therefore the seeds experience warm stratification during the 

summer and cold stratification during autumn/winter (Mattana et al., 2012a). Embryos 

start to grow inside the seeds after cold stratification, and when the critical embryo 
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length is reached, seeds germinate during the early spring. In this way, seedlings can 

grow before the dry summer period. 

Seeds of P. corsica are dispersed in autumn and stay dormant until the next 

summer when seeds are exposed to warm temperature. During the warm stratification 

period, the embryos can grow inside the seeds, however, the critical embryo length can 

be reached before the cold stratification period, allowing seeds to germinate. 

Germinated seeds go through the winter with an emerged radicle, and the cold 

stratification period allows epicotyls to emerge in April. Seedlings establishment is 

completed before the end of the second wet season so that they could grow with well-

developed roots and shoots before the dry summer period. 

Berries of R. sandalioticum are dispersed in late summer and the seeds are 

exposed to warm temperatures. Once imbibed, embryos can grow inside the seeds, 

reaching the critical embryo length before the cold stratification period, thereby 

allowing seeds to germinate. Germinated seeds go through the winter with an emerged 

radicle, epicotyls emerge and seedlings establishment is complete before the end of the 

wet season and they could grow until the start of the summer. This allows the seedlings 

to enter the dry summer period with a well-developed root and shoot systems (Mattana 

et al., 2012b). 

Seed germination of A. barbaricina and R. sandalioticum was obtained when the 

tree canopy was absent, therefore its seems to have no influence on seed germination 

sensu stricto for these two species; similar behavior was found in R. persicifolia, species 

that growth in the same ecosystem and ecological conditions in Sardinia (Porceddu et 

al., 2013; see Chapter 1). In P. corsica, on the contrary, the tree canopy seems to have 

negatively influence on seed germination; maximum germination for OUT (i.e. outside 

the tree canopy) was obtained in September and only few germinated seeds was found 

for IN in this period, while maximum germination for IN was obtained in December 

when the canopy was absent. In all species, however, closure of the tree canopy could 

influence survival of newly established seedlings due to microclimate amelioration 

(moister and cooler) during the dry and hot Mediterranean summers (Valiente-Banuet et 

al., 1991; Greenlee and Callaway, 1996; Gómez-Aparicio et al., 2005). The seeds of the 

all the investigated species showed a high synchronisation with the Mediterranean 

seasonality with respect to embryo growth, seed germination and seedling 

establishment, and thus demonstrating to have developed peculiar adaptations to the 
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harsh Mediterranean climatic conditions, as previously reported for R. sandalioticum by 

Mattana et al. (2012b). 

 

Soil heat sum for in situ seed germination 

The quantification of thermal time for germination has been used in different studies to 

characterize changes in seed dormancy and in the subsequent germination in the field 

(i.e. Forcella et al., 2000; Hardegree and Van Vactor, 2000; Steadman et al., 2003; 

Chantre et al., 2009; Porceddu et al., 2013). In this work we used the soil heat sum 

model applied by Porceddu et al. (2013; see Chapter 1), and the thermal threshold 

requirements (θ50) of A. barbaricina calculated previously in controlled conditions 

(Chapter 2) to predict embryo growth and seed germination phenology in the field under 

the current environmental conditions. The obtained results showed a high correlation 

between soil heat sum accumulation to reach θ50 for the critical embryo length and seed 

germination. The model applied in this work demonstrated that, in the original 

population, these values were reached between April and May, thus confirming that the 

θ50 for embryo growth and the θ50 for seed germination are reached approximately at the 

same time. Results were validated through field observations of embryo growth 

measurements and seed germination. The model can also be used to estimate the range 

of θ50 for seed germination in species where the thermal time value (θ50) in controlled 

conditions is unknown. The model allowed to estimate the soil heat sum accumulation 

for seed germination of P. corsica and R. sandalioticum seeds and to know 

approximately their thermal requirements. 

 

Phenology of seed germination under a changing climate 

Knowledge of thermal requirements for each species may be used to predict the seed 

germination phenology under increasing temperatures due to global warming. Orrù et 

al. (2012) used an environmental heat sum approach to predict germination timing 

under two simulated IPCC scenarios (+1.8 °C for B1 and + 3.4 °C for A2; IPCC, 2007) 

for Vitis vinifera subsp. sylvestris seeds, highlighting an altitude-related risk from 

climate warming, in particular under A2 scenario where the higher winter temperature 

would not allow seed dormancy loss in the lowest populations. Porceddu et al. (2013; 

see Chapter 1) reported that in R. persicifolia seeds, the warmer temperatures predicted 

by two simulated IPCC scenarios may reduce the cold stratification period useful for 
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dormancy release, and may anticipate the field germination, however, the increasing 

temperatures and the consequent reduction of the stratification period would not be 

detrimental per se for seed germination of this species. Results of this present study 

highlighted that the B1 and A2 scenarios may affect the rate of heat sum accumulation 

of all the studied species. In particular, soil heat sum under these two different IPCC 

scenarios bring completion of germination forward by about 1 month for all three 

species. The increasing temperature predicted in both scenarios should not compromise 

the dormancy release of A. barbaricina; however, the phenological shift of seed 

germination increases the temporal distance from the period of summer drought and 

could therefore enhance the seedlings growth of this species before the harsh period. On 

the contrary, this shifting, in particular in A2 scenario, could increase the risk of late 

frosts in spring which could damage young seedlings and increase the potential 

mortality of plants. The increasing temperature might be a disadvantage for P. corsica; 

in fact, the shifting could concentrate the process of seed germination during the 

summer drought period, increasing the risk of mortality for young seedlings. In 

addition, it could inhibit the establishment of seedlings at lower elevations, as 

previously reported for V. vinifera subsp. sylvestris (Orru et al., 2012), with a 

consequent shift of the species at higher altitudes. However, these latter are areas lack 

of riparian woods, which represent the typical habitat where these species grow. This 

elevation range shift would thus lead to a reduction of their distribution and of their 

ecological range. The bringing forward of seed germination in R. sandalioticum would 

not cause particular problems for the seedlings growth because it would coincide with 

the period of maximum rainfall, when the seedlings could benefit of water availability 

and mild temperatures. However, the sensitivity of R. sandalioticum to low 

temperatures for seed germination highlighted the presence of an increasing threat due 

to global warming, which could reduce the level of natural emergence in the field 

(Mattana et al., 2012b). 

 

Conclusion 

In conclusion, the seed germination phenology of three endemic Mediterranean 

mountain species with endospermic seeds growing in the same ecosystem was 

characterized. The thermal niche requirements for seed germination obtained in 

controlled condition in previous works (Chapters 2 and 3) were validated through field 

observations, and the developed model based on soil heat sum approach proposed by 
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Porceddu et al. (2013) allowed to predict with good accuracy the seed germination in 

the field and to estimate the thermal accumulation requirements for seed germination of 

each species. In addition, the model developed may have applicability to predictions of 

in situ regeneration under different IPCC scenarios of increasing temperatures. This 

work could confirmed that species, belonging to different families placed in different 

phylogenetic clades (Forbis et al., 2002), could have experienced a convergent 

evolution on their seed morphology and type of seed dormancy, as a response to similar 

environmental and climatic conditions due by the same habitat and ecosystem (Forbis et 

al., 2002). 
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General conclusions 

The main conclusions achieved in the present thesis are summarized in the following 

points: 

1- Type 2 non deep physiological dormancy (PD) was identified for R. 

persicifolia seeds, the thermal niche requirements for dormancy release and germination 

were quantified and predictions for germination validated through field observations of 

emergence. The soil heat sum model developed in chapter 1 for seed germination in R. 

persicifolia may have applicability to predictions of in situ regeneration of other species 

growing on Mediterranean mountain waterways and of physiologically dormant species 

of temperate and alpine regions, where spring germination prevails due to a requirement 

for cold stratification over winter. 

2- Intermediate simple morphophysiological dormancy (MPD) was identified for 

A. barbaricina seeds. Thermal time model developed in chapter 1 allowed to identify 

the thermal thresholds (Tb and θ50) requirements of seed germination of this species. In 

addition, a similar model developed to embryo measurements allowed also to identify 

Tb and θ50 requirements of embryo growth for A. barbaricina. The modelling of the 

thermal time approach applied on embryo growth is an important first study that 

correlates the thermal threshold with seed morphology. In addition, results obtained in 

chapter 2 indicate that A. barbaricina showed a multi-step seed germination. The 

empirical knowledge of how the different phases occur during seed germination were 

confirmed by their thermal requirements. This model has significant advantages over 

some previous models for estimation of germination, in particular for seeds that 

highlight a morphological component to dormancy. 

3- Paeonia corsica showed non-deep simple (root) - non-deep simple (epicotyl) 

morphophysiological dormancy and a multi-step of seed germination from dispersal to 

seedling establishment was observed also in this species, as individuated in A. 

barbaricina. Similar pattern on seeds germination was detected for R. sandalioticum, 

showing a high specialisation with the Mediterranean seasonality. 

4- In chapter 4, the seed germination phenology of three endemic Mediterranean 

mountain species with endospermic seeds growing in the same ecosystem (i.e. A. 

barbaricina, P. corsica and R. sandalioticum) was characterized. The thermal niche 

requirements for seed germination obtained in controlled condition, reported in chapter 

2 and 3, were validated through field observations, and the developed model based on 
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soil heat sum approach proposed in chapter 1 allowed to predict with good accuracy the 

seed germination in the field and to estimate the thermal accumulation requirements for 

seed germination of each species. In addition, the model developed may have 

applicability to predictions of in situ regeneration under different IPCC scenarios of 

increasing temperatures. In addition, chapter 4 could suggest that the studied species 

with endospermic seeds, belonging to different families placed in different phylogenetic 

clades, could have experienced a convergent evolution on their seed morphology and 

type of seed dormancy, as a response to similar environmental and climatic conditions 

due by the same habitat and ecosystem. 
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† Background and Aims Mediterranean mountain species face exacting ecological conditions of rainy, cold winters
and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to
predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams
of central eastern Sardinia.
† Methods Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 8C) after different periods
(up to 3 months) of cold stratification at 5 8C. Base temperatures (Tb), and thermal times for 50 % germination (u50)
were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both under-
neath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data
loggers and soil heat sum (8Cd) was calculated on the basis of the estimated Tb and soil temperatures.
† Key Results Cold stratification released physiological dormancy (PD), increasing final germination and widening
the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10.5 8C for non-
stratified seeds to 2.7 8C for seeds cold stratified for 3 months. The best thermal time model was obtained by
fitting probit germination against log 8Cd. u50 was 2.6 log 8Cd for untreated seeds and 2.17–2.19 log 8Cd for strati-
fied seeds. When u50 values were integrated with soil heat sum estimates, field emergence was predicted from March
to April and confirmed through field observations.
† Conclusions Tb and u50 values facilitated model development of the thermal niche for in situ germination of
R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other
species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering
cold stratification requirement and spring germination.

Key words: Base temperature, climate change, cold stratification, physiological dormancy, Rhamnaceae, Rhamnus
persicifolia, seed germination model, soil heat sum, thermal time.

INTRODUCTION

Seed dormancy prevents germination in a specified period of
time, under any combination of environmental factors that other-
wise favour germination (Baskin and Baskin, 2004). Thus, dor-
mancy is an adaptive trait that optimizes the distribution of
germination over time in a population of seeds (Copete et al.,
2011). In seasonal climates, temperature is usually the main en-
vironmental factor governing seed germination in moist soil
(Fenner and Thompson, 2005). Seeds of many temperate plant
species are dormant at the time of dispersal, and specific tem-
perature requirements must be met before dormancy is lost and
germination is possible (Baskin and Baskin, 1998). Depending
on the species and timing of dispersal, seeds may experience a
warm period before autumn and winter begin, or be subjected
to cold stratification during winter immediately after autumn
shedding (Baskin and Baskin, 1989; Noronha et al., 1997).
The requirement for chilling, widespread amongst temperate
species, represents a natural mechanism which ensures that ger-
mination occurs in the spring (Probert, 2000). During exposure to
low temperatures, the range of temperatures over which seeds

will germinate, as well as germination percentages, increases
(Baskin and Baskin, 1988).

The Mediterranean climate is characterized by its seasonality
in temperature and precipitation, which leads to a hot drought in
summer and a cool, wet, winter (Joffre et al., 1999). This peculi-
arity has important implications for plant germination physi-
ology, since dry summer conditions limit water availability and
thus germination and growth, while cool winter temperatures
can limit germination during the season with high water avail-
ability (Rundel, 1996).

The canopies of woody plants modify the microclimate
beneath and around them through interception of precipitation
and by shading, which influence maximum soil temperature
and the amount of soil moisture available to plants (Breshears
et al., 1998). As the course of action and relative importance of
factors regulating germination in the laboratory may be quite dif-
ferent from those occurring under field conditions (Thompson,
1973), linkage between field, garden and laboratory studies is
crucial (Brändel and Schütz, 2005).

As reproduction niche and reproductive success are related to
temperature, all aspects of the plant reproductive cycle are
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potentially sensitive to climate change (Bykova et al., 2012). The
Intergovernmental Panel on Climate Change (IPCC) has pre-
dicted temperature increases of approx. 2–4 8C by 2090–
2099. Furthermore, in the Mediterranean region, a declining
trend of precipitation was observed from 1900 to 2005 (IPCC,
2007). In response to climate change, plants can adapt to the
new environmental conditions or, when possible, migrate to
track their climatic niches (Meineri et al., 2013).

In non-dormant seeds, the germination response to accumu-
lated temperature has been modelled by a thermal time (u) ap-
proach (Garcia-Huidobro et al., 1982; Covell et al., 1986; Ellis
et al., 1986, 1987; Pritchard and Manger, 1990; Hardegree,
2006). In this model, seeds accumulate units of thermal time
(8Cd) to germinate for a percentile g of the population. When
seeds are subjected to temperatures (T ) above a base temperature
for germination (Tb), the germination rate increases linearly with
temperature to an optimum temperature (To), above which ger-
mination rate starts to decrease (Garcia-Huidobro et al., 1982).
Thus, in this sub-optimal range (To–Tb), germination occurs in
the time tg, when the thermal time accumulated has reached the
critical value (ug) for a percentile g of the population, and can
be described as ug ¼ (T – Tb)tg.

Intraspecific variation in Tb among seed populations may be
due to different environmental conditions during seed develop-
ment (Daws et al., 2004). However, Tb has also been found to
change with dormancy status. In particular, Pritchard et al.
(1999) found that Tb decreased by 1 8C every 6 d of pre-chilling
at 6 8C in Aesculus hippocastanum seeds. Thus seed dormancy
release in this species could be described simply in terms of Tb

reduction, gradually allowing germination to occur at progres-
sively lower temperatures (Pritchard et al., 1999). In addition,
subsequent seed germination may be predicted in relation to
thermal time accumulation (heat sum, 8Cd) above a gradually re-
ducing Tb (Steadman and Pritchard, 2004). This approach has
been used to predict seed germination in the field (i.e.
Hardegree and Van Vactor, 2000; Steadman et al., 2003;
Chantre et al., 2009) and, more recently, to assess the impact
of different simulated climate change scenarios on seed dor-
mancy release and germination timing in Vitis vinifera subsp.
sylvestris (Orrù et al., 2012).

Sardinian massifs represent a southern European refugium for
some temperate tree species sensu Tzedakis et al. (2002). In this
region, vegetation among mountain waterways is mainly consti-
tuted by Alnus glutinosa woods, where the rare Sardinian
endemic Rhamnus persicifolia may also be found. Seeds of the
Rhamnaceae have an investing embryo (Martin, 1946) and can
be non-dormant or, following the dormancy classification
system (Baskin and Baskin, 1998, 2004), show physiological
(PD), physical dormancy (PY) or combined (physical and
physiological; PY + PD) dormancy. Physical dormancy is the
most represented class in this family (61 % of the investigated
species), followed by PY + PD (22 %), PD (12 %) and non-
dormancy (ND) (6 %; Walck et al., 2012). Mattana et al.
(2009) reported that germination of R. persicifolia seeds could
be achieved, without any scarification, at warm temperatures
(≥20 8C), excluding the presence of PY. Whilst there was no ob-
ligate requirement for alternating temperature or light, pre-
chilling had a positive effect on the germination rate, reducing
T50 by .50 % and indicating the presence of PD in seeds of
this species. However, the effect of pre-chilling on seed

germination over a wide range of temperatures, and the identifi-
cation of the type of PD according to the seed dormancy classi-
fication system (Baskin and Baskin, 2004), remain to be
investigated.

The aims of this work were to (1) investigate the thermal
requirements for seed dormancy release and germination of the
rare R. persicifolia and (2) develop a thermal-time model,
based on a soil heat sum approach, in order to characterize the
thermal niche for seed germination and predict the seed germin-
ation phenology in the field.

MATERIALS AND METHODS

Study species

Rhamnus persicifolia is a small dioecious tree or shrub. It is
closely related to R. cathartica, but with elliptic–lanceolate
leaves and reddish ripe drupes. It is endemic to Central–
Eastern Sardinia (Italy), occurring at 600–1500 m a.s.l. on
both limestone and siliceous substrata. This species grows in
scattered groups or as single trees, in riparian woods or hy-
grophilous scrubs along mountainous waterways (Mattana
et al., 2009). Rhamnus persicifolia is included in the Italian
Red Book as vulnerable (Conti et al., 1992, 1997), because of
its narrow distribution and population decline, induced by
human activities and by climate change (Arrigoni, 1977). To
date, only six populations are known; half of these are threatened
by low plant numbers oran unbalanced sex ratio (Bacchetta et al.,
2011).

Seed lot details

Fruits of R. persicifolia were collected directly from 15 plants
on 16 September 2011 along the Rio Correboi (RC; Villagrande
Strisaili, Ogliastra) and from five plants on 30 September 2011
along the Rio Olai (RO; Orgosolo, Nuoro) streams in Central–
Eastern Sardinia (see Table 1). The low number of sampled
plants was due to the few female individuals found in these
two populations (see Bacchetta et al., 2011). Seeds were imme-
diately separated from the pulp by rubbing the fruits through
sieves under running water. The cleaned seeds were then
spread out and left to dry at room temperature, until the experi-
ments started, as specified below.

Germination tests under controlled conditions

For the RC provenance collection, three replicates of 20 seeds
were sown on the surface of 1 % agar water in 90 mm diameter
plastic Petri dishes and incubated in the light (12 h light/12 h
darkness) for 1–4 months under a range of constant temperatures
(10, 15, 20 and 25 8C) and under an alternating temperature
regime (25/10 8C). In the alternating temperature regime, the
12 h light period coincided with the elevated temperature
period. At the same time, three different cold stratification
periods were started (5 8C in 1 % agar water in 90 mm diameter
plastic Petri dishes for 1, 2 and 3 months: C1, C2 and C3 treat-
ments, respectively) and, at the end of each pre-treatment,
seeds were incubated, as detailed above.

Due to the low availability of seeds collected in the RO (see
Table 1), these seeds were only stratified for 3 months at 5 8C
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and then incubated at 25 8C (12 h light/12 h darkness). These con-
ditions were chosen on the basis of earlier findings (Mattana et al.,
2009).

Germination was defined as visible radicle emergence
(.1 mm). Germinated seeds were scored three times a week. At
the end of the germination tests, when no additional germination
had occurred for 2 weeks, a cut test was carried out to determine
the firmness of the remaining seeds and the number of empty
seeds. Firm seeds were considered to be viable. This methodology
was chosen on the basis of previous findings on seeds of this
species, which highlighted a very high seed viability, with 100 %
of non-empty seeds staining uniformly red in 1 % solution of
2,3,5-triphenyl-tetrazolium chloride (Mattana et al., 2009).

Field experiments

Within 15–20 d of collection, seeds were placed in fine-mesh
polyester envelopes (three replicates of 25 seeds) and buried in
soil at a depth of 2–3 cm. Envelopes were buried both under-
neath (IN) and outside (OUT) the canopy, with a distance
between them of approx. 6 m, at each experimental site of the
two original populations, for a total of six experimental sites
for RC, in order to cover the whole altitudinal range of this popu-
lation, and two for RO (Table 1). Envelopes buried in experimen-
tal sites RC2 and RO were exhumed at intervals of about 3
months from September 2011 to June 2012 (with an intermediate
exhumation also in April 2012; Table 1). Alternatively, those
buried in experimental sites RC1 and RC3 were exhumed only
in April and June 2012. Retrieved envelopes were analysed in
the laboratory, where they were washed under running water
and opened. The number of germinated seeds was recorded,
and a cut test was carried out to check the viability of any remain-
ing non-germinated seeds, as described above.

Soil temperatures at the level of the envelopes were recorded IN
and OUT of the canopy at 90 min intervals, using data loggers
(TidbiTw v2 Temp logger, Onset Computer Corporation, Cape
Cod, MA, USA).

Data analysis

The final germination percentage was calculated as the mean
of the three replicates+ standard deviation (s.d.), on the basis
of the total number of filled seeds. Generalized linear models
(GLMs) were used to compare: (1) final germination percentages
and Tb achieved under controlled conditions for seed collected in
RC, followed by a post hoc pairwise comparisons t-test (with
Bonferroni adjustment); and (2) the field germination percen-
tages at each experimental site (RC1, RC2, RC3 and RO) on
different exhumation dates (December 2011, March 2012,
April 2012 and June 2012), both IN and OUT of the canopy
(see Table 1). Generalized linear models, with a logit link func-
tion and quasi-binomial error structure, were used when analys-
ing germination percentages, whereas a GLM with a log link
function and quasi-poisson error structure was used for analysing
Tb values. Quasi-binomial and quasi-poisson error structures and
F-tests with an empirical scale parameter instead of x2 on the
subsequent analysis of variance (ANOVA) were used in order
to overcome residual overdispersion (Crawley, 2007).

Thermal time analyses were carried out for RC seeds germin-
ating at constant temperatures for untreated seeds (0, control) and
after each cold pre-treatment (C1, C2 and C3). Estimates of timeT
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(tg, d) taken forcumulative germination to reach different percen-
tiles (g) for successive increments of 10 % germination were
interpolated from the germination progress curves (Covell
et al., 1986). The germination rate (1/tg) was regressed, using a
linear model, as a function of temperature according to the fol-
lowing equation (Garcia-Huidobro et al., 1982):

1/tg(d−1) = (Tg –Tb)/u (1)

An average (+ s.d.) of the x-intercept among percentiles was cal-
culated for the sub-optimal temperature range (10–20 8C) to es-
tablish the Tb for each treatment (Ellis et al., 1986; Pritchard
and Manger, 1990). Linear regression equations were then recal-
culated for each percentile, but constrained to pass through Tb

(Hardegree, 2006). A comparison of regressions was then made
between this model and one in which the Tb were allowed to
vary for all the percentiles, and the best estimate was considered
to be that which resulted in the smallest residual variance
(Covell et al., 1986). Thermal time (u, 8Cd) estimates for each
treatment were then calculated separatelyas the inverse of the sub-
optimal regression equations [Covell et al., 1986; see eqn (1)].

The Tb values were fitted as a function of the length of the
stratification period using a linear model. Generally, u did not ac-
cumulate during pre-treatments because the stratification tem-
perature (5 8C) was lower than the Tb. However, in seeds
stratified at 5 8C for 120 d (C3), Tb reduced during stratification
to below the stratification temperature itself. Using the relation-
ship between rate of decline of Tb and temperature, and assuming
that the rate of reduction of Tb continued unchanged, according to
Steadman and Pritchard (2004), u accumulated during the C3
stratification phase (us) was calculated.

Germination percentages were transformed to probits using
tabular data from Finney (1971). Linear regression was used to
express probit (g) as a function of thermal time (ug) and the
form of cumulative germination response of seeds described
by the equation (Covell et al., 1986):

probit(g) = K + ug/s (2)

where K is an intercept constant when ug is zero, ug may be
normal or log-normal distributed (and the best model evaluated
on the basis of the r2 values; Hardegree, 2006), ands is the stand-
ard deviation of the response to ug (i.e. the reciprocal of the
slope), and represents the sensitivity of the population to ug

(Covell et al., 1986). Thus the flatter the slope of the fitted line,
the greater the variation in response to thermal time between in-
dividual seeds (Daws et al., 2004).

A heat sum approach was used to predict seed germination in
the field, according to Orrù et al. (2012). These authors used en-
vironmental temperatures of the original populations above Tb to
assess the temperature accumulation until the achievement of u50

(Orrù et al., 2012). In this study, soil heat sum was calculated,
starting from the date of sowing, according to the following equa-
tion, modified from Daws and Jensen (2011):

Soil heat sum (WCd) = {
∑

[(TS –Tb) × t]}/18 (3)

where TS is the temperature at each logging interval recorded by
data loggers, Tb is the base temperature for germination calcu-
lated day by day, according to the length of stratification

experienced in the field, t is the length of the logging interval
expressed in hours and 18 is the number of logging records per
day. All statistical analyses were carried out using R v. 2.14.0
(R Development Core Team, 2011).

Pluviometric data for RC (monthly rainfall averages from
1922 to 2009 from the nearby climatic station of Fonni, Nuoro)
and RO (monthly rainfall averages from 1936 to 2009 from the
nearby climatic station of Montes, Orgosolo, Nuoro) were
acquired from Regione Autonoma della Sardegna (http://
www.regione.sardegna.it/j/v/
25?s=131338&v=2&c=5650&t=1). The presence/absence of
the tree canopy of riparian wood with A. glutinosa was observed
at each field excursion realized during this study.

RESULTS

Seed germination under controlled conditions

The fitted GLM highlighted a statistically significant effect (P ,
0.001) on germination of temperature (T ) and treatment (S)
factors and of their interaction (T × S; Fig. 1) for seeds collected
in RC (see Table 1). Untreated seeds (0) germinated at percen-
tages ranging from approx. 50 % to approx. 87 % at all the
tested temperatures, except at 10 8C where germination was
,15 % (Fig. 1). The applied cold stratification treatments
increased seed germination percentages and widened the range
of germination temperatures (Fig. 1). In particular, the effect of
cold stratification was positive and statistically significant (P ,
0.001) at 10 8C, with germination increasing with the length of
stratification from 12+ 8 % (0) to 92+ 8 % (C3), and at 15
8C, with percentages increasing from 61+ 5 % (0) to 87+ 3
% (C3). Untreated and cold-stratified seeds reached high germin-
ation when incubated under the alternating temperature regime
(25/10 8C), with percentages .80 % for 0, C1 and C2
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and bars with different letters indicate significant (P , 0.05) variation.
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treatments, without statistically significant differences (P .
0.05); whereas after C3, germination significantly (P , 0.05)
decreased to 68+ 11 % (Fig. 1).

Final germination for seeds collected in RO incubated at 25 8C
after 3 months at 5 8C was 60+ 7 %.

Thermal requirement for germination

Goodness of fit (r2) for the linear regressions of 1/t against
temperature for RC collections showed that the best sub-optimal
model included data only up to 20 8C (i.e. excluding 25 8C;

Fig. 2A). Based on germination rate responses for each 10th per-
centile from 10 to 80 % germination, it was possible to estimate
the mean base temperature for germination (Tb) in the sub-
optimal temperature range for each treatment (Fig. 2A).
Average Tb values were 10.5+ 0.6, 8.5+ 0.9, 6.1+ 1.4 and
2.7+ 0.8 8C, for 0, C1, C2 and C3 treatments, respectively.
For the different treatments, linear regressions were re-calculated
for each percentile, constraining them to pass through the mean
Tb. This model led to no differences in residual sum of squares
and showed higher values of r2 for all of the linear regression
equations (r2 . 0.75 for 0, r2 . 0.93 for C1, r2 . 0.81 for C2
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and r2 . 0.81 for C3) than the model where Tb varied for each
percentile (r2 . 0.73 for 0, r2 . 0.87 for C1, r2 . 0.73 for C2
and r2 . 0.54 for C3). The Tb values were statistically different
(P , 0.001) by GLM, and the post hoc pairwise t-test compari-
son (with Bonferroni adjustment) highlighted significant differ-
ences among all treatments (Fig. 2B). The relationship between
Tb and the length of the stratification period at 5 8C is shown in
Fig. 2B. The linear regression highlighted that this negative rela-
tionship was statistically significant (r2 ¼ 0.91, P , 0.0001;
Fig. 2B), with Tb decreasing by 0.09 8C d21 of stratification or
by 1 8C for every 11 d of chilling. After 68 d of stratification,
Tb decreased below 5 8C, and seeds accumulated 1.36 log 8Cd
(us) in the next 22 d until the end of the C3 treatment at 90 d.

Figure 3 shows the relationship between log thermal time (u)
and germination expressed in probits, calculated according to
eqn (2). The relationship between log u and probit germination
had better residual sums of square (0.1091, 0.0961, 0.0228 and
0.1366 for 0, C1, C2 and C3, respectively) and r2 (0.95, 0.97,
0.99 and 0.96 for 0, C1, C2 and C3, respectively) than when
expressed on a linear scale (data not shown). Thermal time for
50 % of germination (u50) was greater for the control (2.59 log
8Cd) compared with the cold-treated seeds (from 2.17 to
2.19 log 8Cd; Fig. 3). Seeds of 0 and C2 had a greater s value
(0.26 and 0.25 log 8Cd, respectively) compared with C1 and
C3 (0.18 and 0.12 log 8Cd, respectively; Fig. 3).

Seed germination in the field

In December 2011, the great majority of seeds (.85 %) were
dormant (Table 2), although a few seeds (,3 %) had started to
germinate in RO. In March 2012, seeds also started germinating
in RC, while the majority of the remaining seeds were still
dormant, and the level of dead seeds was always ,7 %
(Table 2). In RO, the majority of the seeds germinated, reaching
values of approx. 70 % both IN and OUT, and the remaining
seeds were mainly dead (Table 2). By April 2012, germination
in RC1 was approx. 60 %, with approx. 25 % of seeds remaining
dormant and 15 % dead, for both IN and OUT. In RC2 IN and
OUT, approx. 75 and 35 % of the seeds, respectively, had

germinated; approx. 14 and 45 % of seeds were dormant and
approx. 11 and 20 % of seeds were dead. For RC3 OUT, germin-
ation reached approx. 43 %, with approx. 10 and 47 % being
dormant or dead, respectively. No germination data were avail-
able for RC3 IN due to predation by animals (Table 2).

At the last exhumation, in June 2012, the percentage of dead
seeds was high for all the experimental sites in both populations,
ranging from 24+ 9 % for RC1 OUT to 91+ 4 % for RC2 OUT,
and all the remaining seeds germinated (Table 2). The bag in RC1
IN could not be retrieved, as it was probably washed away, while
seeds in that of RC3 IN were predated by animals (Table 2).

Generalized linear models highlighted a statistically signifi-
cant (P , 0.001) effect for all the factors (date, D; position, P;
site S) as well as for their interactions, except for the two-way
interaction D × P and the three-way interaction D × P × S for
which P . 0.05 (Table 3).

Soil heat sum and thermal niche for in situ seed germination

The establishment of the tree canopy of A. glutinosa woods was
very similar in the two streams (RC and RO), starting at the end of
April anddisappearing inmid-October (Fig.4). Indetail, theannual
trend of soil temperatures could be divided into six periods, accord-
ing to the presence/absence of the canopy and to the seasons, for
RC1, RC2 and RO experimental sites: (I) from the sowing at the
end of September/early October to the disappearance of the tree
canopy in mid-October; (II) from the disappearance of the
canopy in mid-October to the start of the stratification period,
when mean daily temperatures fell to 5 8C in December; (III) the
main stratification period, from December to March, when mean
daily temperatures are close to 5 8C; (IV) from the end of the strati-
fication period in March to the appearance of the canopy in April;
(V) from the appearance of the canopy in April to the start of the
summer droughts in June/July; and (VI) the summer drought
period when rainfall drastically reduces (Fig. 4, Table 2). The
absence of a riparian wood in RC3 (see Table 1) led to only fouren-
vironmental periods: (I) from sowing to the start of the stratification
period in December; (II) the stratification period until March; (III)
from the end of the stratification period to the start of the summer
droughts in June/July; and (IV) the summer drought period.

By combining eqn (3) and the equation in Fig. 2B, where Tb

was calculated day by day, for RC seeds, according to the
length of stratification experienced in the field, it was possible
to calculate the soil heat sum reached by the seeds at the different
exhumation times for each experimental site of both populations
(Table 2). The values calculated for RC2 and RO (for which there
was a complete temporal sequence) were compared with those
estimated using the thermal time (u) model, expressed as
probit germination and log 8Cd (for germination values from
10 to 80 %; see Fig. 3). The linear regression highlighted a stat-
istically significant relationship between calculated and esti-
mated data (n ¼ 5; P ¼ 0.0018; r2 ¼ 0.97; y ¼ 1.0992x –
0.1739).

InRC2(Fig.4A), the lengthof theeffectivestratificationperiods
was 92 d for IN and 98 d for OUT (with 41 and 47 d of snow cover,
respectively), leading to Tb values at the end of the stratification
period of 2.9 and 2.5 8C for IN and OUT, respectively. Before
(periods I and II) and during stratification (period III), mean soil
temperatures were similar or lower than Tb (10.2 8C), preventing
the soil heat sum accumulation for germination. However, after
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TABLE 2. Evaluation categories of the exhumed seeds (%), recorded soil temperatures (8C), calculated soil heat sum (log 8Cd) and field germination percentages (mean+
s.d.) for each experimental site (Rio Correboi, RC; Rio Olai, RO) underneath (IN) and outside (OUT) the canopy at the different exhumation dates

Evaluation categories of the exhumed seeds (%, mean+1 s.d.)

Recorded
mean soil

temperature
(8C)

Calculated
soil heat sum

(log 8Cd)

Predicted soil
heat sum
(log 8Cd)

IN OUT
IN OUT IN OUT IN OUT

Date of exhumation Experimental site G V D NT P G V D NT P Period

09/12/2011 RC2 0+0 95+2 5+2 – – 0+0 98+2 1+2 – – II 4.9 3.0 1.54 0.95 – –
RO 1+2 83+8 16+11 – – 3+2 87+6 11+4 – – II 7.5 6.6 1.68 1.88 – –

29/03/2012 RC2 32+18 61+19 7+2 – – 2+3 95+5 5+5 – – IV 6.3 3.5 1.96 1.43 2.15 –
RO 73+12 6+7 21+16 – – 75+3 8+7 17+7 – – IV 8.2 11.0 2.16 2.43 2.29 2.28

26/04/2012 RC1 57+24 28+13 15+15 – – 61+12 25+13 13+2 – – IV 8.9 10.4 2.44 2.37 2.22 2.23
RC2 74+5 14+5 11+2 – – 35+12 45+8 20+7 – – IV 9.5 9.7 2.34 2.28 2.28 2.16
RC3 – – – – 100 43+25 10+9 47+33 – – III 6.7 16.2 1.94 2.69 – 2.18
RO 55+11 7+4 38+11 – – 73+3 14+11 13+8 – – IV 11.7 13.7 2.49 2.68 2.21 2.27

25/06/2012 RC1 – – – 100 – 76+9 0+0 24+9 – – V 17.4 27.5 3.01 3.15 – 2.29
RC2 71+21 0+0 29+21 – – 9+4 0+0 91+4 – – V 19.3 27.0 3.02 3.11 2.26 –
RC3 – – – – 100 4+4 0+0 96+4 – – III 16.6 27.6 2.90 3.22 – –
RO 45+24 0+0 55+24 – – 57+11 0+0 43+11 – – V 17.1 27.1 3.02 3.19 2.18 2.22

The soil heat sum values, predicted on the basis of the thermal time (u) model (expressed as probit germination and log 8Cd; see Fig. 3), are also reported for the different germination percentages for
values from 10 to 80 % (see Fig. 3).

G, germinated seeds; V, viable dormant seeds; D, dead seeds; P, predated seeds; NT, envelopes not retrieved.
Periods, identified according to the presence/absence of the canopy and to the seasons for all the experimental sites for RC1, RC2 and RO, correspond to: (I) from sowing to the disappearance of the tree

canopy; (II) from the disappearance of the canopy to the start of the stratification period; (III) the stratification period; (IV) from the end of the stratification period to the appearance of the canopy; (V) from
the appearance of the canopy to the start of the summer droughts; and (VI) the summer drought period. For RC3 they correspond to: (I) from sowing to the start of the stratification period; (II) the
stratification period; (III) from the end of the stratification period to the start of the summer droughts; and (IV) the summer drought period.
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stratification (period IV), the lower Tb values and the increasing
soil temperatures allowed the threshold of 2.19 log 8Cd (which
corresponds to the value to achieve 50 % of germination in the la-
boratory,u50) to be reached 194 (IN) and 211 (OUT)d from sowing
(Fig. 4B). This estimated time was confirmed by the germination
recorded in the field (Table 2, Fig. 4C).

In RC1, the length of the stratification period was 90 d for IN
and 104 d for OUT environmental conditions, leading to Tb

values at the end of the stratification period of 2.9 and 1.9 8C

for IN and OUT, respectively. After stratification, the threshold
for u50 was reached 186 and 200 d after sowing for IN and
OUT, respectively, consistent with the field values presented in
Table 2. In RC3, the effective stratification period was 116 d
for IN and 93 d for OUT, leading to Tb values at the end of the
stratification period of 2.5 and 2.9 8C for IN and OUT, respective-
ly. Therefore, the threshold for u50 was reached in period III,
171 (OUT) and 219 (IN) d after sowing. Although few field ger-
mination data were available for this experimental site, the

TABLE 3. GLM results for the effect on seed germination in the field of the following factors: ‘Date’ (D: December 2011, March 2012,
April 2012 and June 2012), ‘Position’ (P: IN and OUT) and ‘Experimental site’ (S: RC1, RC2, RC3 and RO)

d.f. Deviance Residual d.f. Residual deviance F P

Null 62 3105.85
Date (D) 3 1371.24 59 1734.61 59.3520 ,0.001
Position (P) 1 98.21 58 1636.40 12.7530 ,0.001
Site (S) 3 456.67 55 1179.73 19.7661 ,0.001
D × P 3 34.36 52 1145.37 1.4872 .0.05
D × S 5 408.83 47 736.54 10.6173 ,0.001
P × S 2 385.86 45 350.68 25.0519 ,0.001
D × P × S 3 10.34 42 340.34 0.4474 .0.05
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highest germination (43.0+ 25.2 % for OUT) was recorded in
April (Table 2).

In RO, the length of the stratification period was 75 d for both IN
andOUT (with 15 and 20 d ofsnow cover, respectively), leading to
Tb values at the end of the stratification period of 4.4 8C for each
site (Fig. 4). Before (periods I and II) and during stratification
(period III), mean soil temperatures were similar or lower than
Tb (10.2 8C), leading to a slow accumulation of heat sum
(1.73 log 8Cd for IN and 1.97 log 8Cd for OUT) by the end of
period III (Fig. 4B). After stratification (period IV), the lower Tb

values and the increasing soil temperatures enabled u50 for RC
seeds to be reached 164 (OUT) and 178 (IN) d after sowing
(Fig. 4B). Although these times were estimated using data from
seeds belonging to a different population (RC), the estimated
dates were confirmed by the high germination percentages
recorded in the field from March to April (Fig. 4C).

DISCUSSION

Type of dormancy

Final germination of R. persicifolia seeds was significantly
improved by cold stratification (5 8C) at intermediate and low tem-
peratures, confirming the presence of PD and supporting earlier
observations (Mattana et al., 2009). Physical dormancy is also
known in seeds of R. cathartica, R. caroliniana, R. frangula
and R. purshiana (Baskin and Baskin, 1998), R. alaternus and
R. cathartica (Dupont et al., 1997; Garcı́a-Fayos et al., 2001),
and R. alnifolia and R. lanceolata (Sharma and Graves, 2005).
As just 1 month of cold stratification is sufficient to break
R. persicifolia seed dormancy, the seeds appear to have
non-deep PD (Baskin and Baskin, 2004). Further, as the tempera-
ture range at which the R. persicifolia seeds could germinate
widened from higher to lower, the seeds have Type 2 non-deep
PD (Baskin and Baskin, 2004).

Thermal requirements for germination

The optimal temperature for germination of non-dormant
seeds of R. persicifolia is presumed to be around 20 8C, as the
best fit of the germination rate data in the sub-optimal tempera-
ture range excluded 25 8C, which fell in the supra-optimal tem-
perature range. The Tb in seeds of R. persicifolia varied from
approx. 10 8C for non-treated seeds to approx. 3 8C for seeds
cold stratified for 3 months. To our knowledge, this is the first
report of Tb for a member of the Rhamnaceae. Constraining the
linear regressions of each percentile for germination through
the mean Tb improved the residual sum of squares and r2

values; therefore, Tb can be used to describe thewhole population
response in R. persicifolia seeds, as previously reported for other
species (e.g. Covell et al., 1986; Ellis et al., 1987; Pritchard and
Manger, 1990; Orrù et al., 2012).

Treatments for dormancy release clearly modified Tb in
R. persicifolia seeds, and the widening of the range of tempera-
tures for germination can be used as a surrogate for the efficient
removal of dormancy. Chilling at 5 8C reduced Tb in
R. persicifolia seeds by approx. 0.09 8C d21 of chilling, such
that Tb reached the chilling temperature after 68 d of stratifica-
tion. A similar trend has been observed in A. hippocastanum
seeds, with Tb reducing by 0.17 8C d21 of chilling at 6 8C

(Pritchard et al., 1999). In both these species, the sequential
removal of dormancy lowers Tb until the stratification tempera-
ture becomes permissive for germination growth per se
(Pritchard et al., 1999). However, the process is nearly twice as
rapid in A. hippocastanum seeds, with Tb reducing by 1 8C for
every 5.9 d of chilling compared with 11.1 d of chilling in
R. persicifolia. Consequently, it is clear that the quantitative
impacts of a shortened cold season as a result of climate
change will be highly species-specific with respect to the effi-
ciency of dormancy loss and the timing of germination.

The best model was obtained by fitting germination expressed
in probit and log-normal (log 8Cd) rather than normal distributed
thermal times (8Cd), as previously reported for other herbaceous
(Covell et al., 1986; Ellis and Butcher, 1988) and tree species
(Pritchard and Manger, 1990). Seeds of R. persicifolia vary in
their thermal time estimates to reach u50, depending on treatment.
Chilling increased the rate of accumulation of thermal units (8Cd)
at any temperature in the sub-optimal range, leading to a reduction
in u50 values from 2.59 log 8Cd (385 8Cd) for untreated seeds to
about 2.18 log 8Cd (150 8Cd) for cold-stratified seeds. Batlla and
Benech-Arnold (2003) also detected a cold-induced decrease in
u50, from 80 8Cd to 56 8Cd, for seeds of Polygonum aviculare
stratified at 12 and 1.6 8C, respectively. Similarly, the thermal
history of V. vinifiera subsp. sylvestris seed lots varying with ma-
ternal environment is known to affect u50 (33.6 to 68.6 8Cd) for
non-dormant, cold-stratified seeds (Orrù et al., 2012).

Soil heat sum and thermal niche for in situ seed germination

Maximum germination of Mediterranean species is typically in
the range 5–15 8C and is limited to autumn and winter, and usually
decreases markedly above 20 8C (Thanos et al., 1995; Luna et al.,
2012). Rhamnus persicifolia showed a typical germination phen-
ology of temperate and alpine plants, where spring germination
prevails due to temperatures being too low to stimulate emergence
following autumn dispersal or due to a requirement for cold strati-
fication over winter (Baskin and Baskin, 1998; Walck et al., 2011;
Mondoni et al., 2012). However, under harsh Mediterranean cli-
matic conditions, the topsoil in the mountains remains moistened
for only a few weeks after snow-melt, such that adaptation for
fast germination in the early spring is an advantage (Giménez-
Benavides et al., 2005; Mattana et al., 2010). The dormancy break-
ing and thermal time requirements identified in this study, together
with the recorded annual trends in soil temperature, allowed a
model for the thermal niche of seed germination to be constructed
and spring emergence to be predicted for R. persicifolia seeds. Soil
temperatures of around 5 8C (i.e. the stratification temperature
tested in the controlled conditions) from December to February
for RO (approx. 75 d) and from December to March (approx. 95
d) for RC facilitate both afall in Tb to approx. 3 8C and efficient ger-
mination of the seeds in March and April when the mean soil tem-
peratures are approx. 10 8C.

Plant distribution and competitiveness are highly dependent on
environmental envelopes or niches (Walck et al., 2011; Bykova
et al., 2012). For R. persicifolia habitat, up to six temperature
periods were identified throughout the year, which contribute to a
better understanding of the field germination period in this and
other species growing along Mediterranean mountain waterways;
especially as there have, hitherto, been no historical series of
monthly averages of temperatures and rainfall at altitudes higher
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thanapprox.1100 ma.s.l. inSardinia. Ineach investigatedsite, seed
germination of R. persicifolia was obtained after cold stratification,
when the canopy was absent. Tree canopy seems therefore to have
no influence on seed germination sensu stricto, but closure of the
canopy could influence survival of newly established seedlings
due to microclimate amelioration (moister and cooler) during the
dry and hot Mediterranean summers (Valiente-Banuet et al.,
1991; Greenlee and Callaway, 1996; Gómez-Aparicio et al.,
2005). This was confirmed by the high germination percentages
reached undercontrolled conditions byuntreatedand cold-stratified
seeds (.80 %) when incubated under the alternating temperature
regime (25/10 8C). The ecological significance of germination
stimulation by alternating temperature can be interpreted as a
season-sensing system for temperate plants because the diurnal
fluctuation of the soil surface temperature is large in the spring
before dense vegetation covers the ground of deciduous forest or
grassland (Shimono and Kudo, 2003).

The ecology of germination identified in this study for
R. persicifolia explains the present distribution of this species
which is mainly limited to small ‘temperate’ refuge areas
along mountain waterways (Mattana et al., 2009), where the
general lack of rainfall during summer is overcome by the mois-
ture of the soil. These findings confirm the identification of
R. persicifolia as a species with a relic distribution, as previously
reported by Arrigoni (1977) and Bacchetta et al. (2011).

The quantification of thermal time for germination has been
used in different studies to characterize changes in seed dor-
mancy and subsequent germination in the field (i.e. Forcella
et al., 2000; Hardegree and Van Vactor, 2000; Steadman et al.,
2003; Chantre et al., 2009). Recently, Orrù et al. (2012) used
an environmental heat sum approach (using mean monthly tem-
peratures) to predict germination timing under two simulated
IPCC scenarios (+1.8 8C for B1 and + 3.4 8C for A2; IPCC,
2007) for V. vinifera subsp. sylvestris seeds. The B1 scenario
of +1.8 8C would still adequately overcome dormancy for all
the investigated populations, whereas under the A2 scenario
with +3.4 8C the higher winter temperature would not allow
seed dormancy loss in the lowest investigated population (Orrù
et al., 2012). The same altitude-related pattern of seed dormancy
release and germination in response to global warming can be
assumed for R. persicifolia seeds. An increase of +1.8 8C (B1)
would not reduce the stratification period at 5 8C for the high
RC population (approx. 90 d, leading to a Tb of approx. 3 8C),
whereas it could affect that of the low RO population (approx.
21 d; Tb of approx. 9 8C). However, an increase of +3.4 8C
(A2) would reduce the cumulative stratification time at 5 8C to
only 50 (Tb of approx. 6.5 8C) and 17 d (Tb of approx. 9 8C) for
RC and RO, respectively. According to the B1 scenario, these
changes in Tb and the increased soil temperatures would affect
the germination time, by anticipating field germination to
February–March and March–April, for RO and RC, respective-
ly. An increase of 3.4 8C (A2) could lead to germination in the
field in autumn (November) in both sites. This phenological
shift to germination in autumn is possible as seeds of this
species may also germinate at temperatures ≥15 8C without
any cold stratification. Therefore, warmer temperatures and a
consequent reduction of the stratification period would not be
detrimental per se for seed germination. However, seedling sur-
vival over winter might then become the limiting event for the
natural regeneration of the species. Moreover, projections for

Mediterranean mountains predict lower precipitations mainly
during spring (Nogués-Bravo et al., 2008), and the seedling
growing season could also be shortened by a reduction in soil
moisture and water availability.

Conclusions

In conclusion, Type 2 non-deep PD was identified for
R. persicifolia seeds, the thermal niche requirements for dor-
mancy release and germination were quantified, and predictions
for germination were validated through field observations of
emergence. Overall, the results confirm the value of using a
soil heat sum approach to predict the effects of subtle changes
in field temperature on germination performance. The soil heat
sum model developed for seed germination in this species may
have applicability to predictions of in situ regeneration of other
species growing by Mediterranean mountain waterways and
of PY species of temperate and alpine regions, where spring
germination prevails due to a requirement for cold stratification
over winter.
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Central Northern Sardinia has been identified as one of the 52 putative glacial refugia in the 

Mediterranean region, whose existence implies the local long term persistence of a species or 

population, within a well-defined geographical range (e.g. mountain, gorge; Médail et Diadema, 

2009). This region represents also a Southern European refugium (sensu Tzedakis et al., 2002) 
for some temperate tree species, as detected for the Supramontes biogeographic sector (CE-

Sardinia; Fenu et al., 2010). The Supramontes region and the Gennargentu massif are two of 

the most interesting mountain territories of Sardinia. In these areas, vegetation among 

waterways is mainly constituted by Alnus glutinosa (L.) Gaertn. woods. Rare and threatened 
Sardinian endemic species belonging to genera typical of temperate climates (e.g. Aquilegia L., 

Paeonia L. and Ribes L.) grow under and close to the canopy of such riparian woods. 

Environmental conditions during seed maturation influence germination, with temperature 

being the major environmental factor responsible for changes in dormancy states of seeds 
(Baskin et Baskin, 1998). Thermal time (θ, in °Cd), is commonly used as a mean to model 

population germination responses to temperature (Steadman et al., 2003). It is based on the 

linear increase in germination rate that occurs as germination temperature is raised above the 

base temperature for germination (Covell et al., 1986). The seed germination niche of Aquilegia 
barbaricina Arrigoni et Nardi, Paeonia corsica Sieber ex Tausch, Rhamnus persicifolia Moris, 

Ribes multiflorum Kit ex Roem et Schult. subsp. sandalioticum Arrigoni, and Taxus baccata L. 

is being characterized, with the aims of evaluating if these species show the same patterns of 

seed dormancy and germination, and understanding whether these habitats can act as a refuge 
under Mediterranean climate for these species. 

In this work three study areas were selected: one in the Gennargentu massif and two in the 

Supramontes region (Table 1). Data-loggers have been buried in the natural populations in 

order to study and monitor the annual trend of temperatures and to detect differences in soil 
temperature underneath and outside the tree canopy. At the same time, seeds of the studied taxa 

have been sown in the field to investigate their in situ germination. The daily maximum, 

minimum, average temperature and ∆T (difference between daily maximum and minimum 

temperatures) is being analysed. Different environmental conditions (temperature and light) and 
several pre-treatments (cold and warm stratifications and combinations of them) are being 

tested on fresh seeds in laboratory, so that their optimal conditions and thermal requirements 

(thermal time approach; Pritchard et al., 1996) for embryo growth, seed dormancy loss and 

germination can be revealed. All the investigated taxa belong to families characterized as 
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having oily (Corner, 1976), and endospermic seeds (Martin, 1946). Therefore, their seed oil 

content is being quantified, using the Supercritical Fluid Extraction with carbon dioxide (SFE-

CO2) methodology (Seal et al., 2008), and thermal analysis of seeds and extracted oils being 

carried out using the Differential Scanning Calorimeter (DSC) to investigate ice crystallization 

and melting, so that seed freezing tolerance in the natural environment can be predicted. 

 
Table 1 - Localities and geographic data of the study areas. 

Study area Locality Coordinate

s 

Altitude 

(m a.s.l.) 

Substrate 

Gennargentu Rio Correboi 
(Vilagrande 

Strisaili, OG) 

N 40°03’  
E 09°20’ 

1267 Metamorphytes 

Supramontes Monte Novo San 

Giovanni (Orgosolo, 

NU) 

N 40°07’ 

E 09°24’ 

1265 Limestones 

Rio Olai (Orgosolo, 

NU) 

N 40°08’ 

E 09°21’ 

947 Metamorphytes 

 
The preliminary data on soil temperature (from June to December 2011; Fig. 1), underneath and 

outside the tree canopy, showed a difference on average temperatures and ∆Ts. In Rio Correboi, 

the mean daily temperature underneath the canopy ranged from 17.17 ± 2.3°C in summer to 

9.39 ± 2.60°C in autumn, with a maximum of 23.40°C on July and a minimum of 5.41°C on 
December, whereas outside the canopy these values ranged from 20.19 ± 4.23°C to 7.68 ± 

2.43°C for summer and autumn, respectively and maximun values of 40.06°C on July and 

minimum of 2.74°C on December (Fig. 1). In Rio Olai, mean daily temperatures underneath the 

canopy ranged from 16.30 ± 1.13°C in summer to 10.33 ± 2.29°C in autumn, with a maximum 
of 22.75°C on August and a minimum of 3.59°C on December, whereas outside the canopy 

from 23.68 ± 3.11°C in summer to 10.56 ± 2.99°C in autumn, with maximum and minimum 

values of 47.16°C (July) and 2.82°C (December), respectively (Fig. 1). In Monte Novo San 

Giovanni mean daily temperatures underneath the canopy were 17.54 ± 2.33°C and 9.75 ± 
2.80°C for summer and autumn, respectively with a maximum of 25.28°C on July and a 

minimum of 4.56°C on December, whereas outside the canopy it was 22.36 ± 2.9°C, ranging 

from a maximum of 39.86°C on July and a minimum of 4.01°C on December (Fig. 1).  

High differences in ∆Ts were also detected in summer for each locality, with the ∆Ts calculated 
for outside being approximately five times higher than those obtained underneath the canopy 

(Fig. 1). In Rio Correboi, the average ∆Ts were 2.57 ± 0.76°C and 12.24 ± 5.87°C, in Rio Olai 

3.97 ± 1.03°C and 21.24 ± 6.47°C, and in Monte Novo San Giovanni 3.62 ± 1.02°C and 16.72 

± 3.86°C, underneath and outside the tree canopy, respectively (Fig. 1). In autumn, quite 
similar values were detected in each locality underneath and outside the tree canopy, with the 
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latter being only ca. two times higher: 1.57 ± 1.03°C and 3.82 ± 1.52°C for Rio Correboi, 3.30 

± 1.51°C and 6.95 ± 4.27°C for Rio Olai and 1.99 ± 1.34°C and 4.58 ± 2.50°C for Monte Novo 

San Giovanni (Fig. 1). 

 

 
Figure 2 – On the left, the soil temperature trends recorded for summer and autumn by data 
loggers; on the right, the ∆Ts calculated underneath (IN) and outside (OUT) the tree canopy for 

the two seasons 

 

The high differences in ∆Ts, as well as those highlighted in average temperatures, detected 
between seasons are due to the vegetation canopy that is well established in summer, generating 
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a different microhabitat respect to the autumn, when deciduous species such as Alnus glutinosa 

lose their leaves and the natural conditions underneath and outside the canopy are quite similar. 

Although preliminary, these data reveal new insights on the effect of vegetation canopy in the 

annual trend of soil temperatures in Mediterranean mountains and will be helpful to analyse and 

discuss the results of the experiments on seed dormancy, germination ecology and seed freezing 

tolerance in the natural environment that are still in progress. These approaches and the data 
generated will help us understanding of the potential impact of climate change on natural 

regeneration in this niche environments. 
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