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Introdu
tion

In last years, several 
hanges have a�e
ted the way in whi
h the ele
tri
al systems

must be operated and 
on
eived. As an example, due to the deregulation of the

energy market, the power generation dispat
h is now established through e
onomi-


al 
riteria and not only a

ording to te
hni
al 
onsiderations, leading in this way to

new issues in the management of the system. Re
ently, the in
reasing attention to-

wards a sustainable and environmentally friendly future has pushed many 
ountries

to provide in
entives for the installation of generation plants supplied by renewable

energy sour
es, su
h as wind power or photovoltai
 plants. Consequently, a large

number of small-size units has been installed and 
onne
ted to the distribution level

of the system, 
reating the so-
alled Distributed Generation (DG). This overturns

the traditional view of the ele
tri
al systems to be 
omposed of large-s
ale genera-

tion plants 
onne
ted to the transmission grid, and with the distribution network

responsible only for the �nal delivery of the energy to the 
ustomers.

In the up
oming future, the investments in the sphere of ele
tri
 mobility are

expe
ted to bring a massive in
rease of Ele
tri
al Vehi
les (EVs) 
onne
ted to the

distribution system, and energy storage devi
es are expe
ted to be deployed through-

out the network. All these elements, together with the DG, go under the more ge-

neral name of Distributed Energy Resour
es (DERs). The availability of DERs has

the potentiality to provide signi�
ant bene�ts for a �exible and e�
ient operation

of the network. However, their presen
e also in
reases the 
omplexity of the system.

As a result, a new management and 
ontrol philosophy is required to deal with this

evolving s
enario and to satisfy the always stri
ter requirements on system reliability

and e�
ien
y.

The renowned 
on
ept of Smart Grid was born in this 
ontext, as an answer to

the need of smarter solutions for the management of the modern ele
tri
al systems.

Many de�nitions, with di�erent nuan
es, 
an be found to des
ribe the 
on
ept of

Smart Grid, depending on the features that are to be highlighted. In general, the

Smart Grid 
an be seen as a modernized power network in whi
h advan
ed auto-

mated fun
tions are implemented, exploiting a suitable 
ommuni
ation infrastru
-

ture, to e�
iently perform the management, 
ontrol and prote
tion of the network.

In the Smart Grid paradigm, a key role is played by the measurement system

v



INTRODUCTION

deployed to monitor the network. In fa
t, all the possible 
ontrol and management

appli
ations have to rely either on the pi
ture of the operating 
onditions or on the

knowledge of spe
i�
 quantities of the network. Su
h information is provided by the

measurement system, whi
h, therefore, represents the 
ore for the operation of the

Smart Grid. It is worth underlining that, in this 
ontext, the measurement system

has to be intended with an extended meaning, in
luding both the measurement in-

frastru
ture (i.e. the measurement devi
es installed on the �eld) and the algorithms

provided for pro
essing the raw measurement data (i.e. the appli
ations envisaged

for 
olle
tion, 
oordination and elaboration of the measurement data).

State Estimation (SE) algorithms are an essential part of the measurement sys-

tem of an ele
tri
al grid. SE is a mathemati
al te
hnique that uses the measurements

gathered from the instruments deployed on the �eld to identify the 
urrent opera-

ting state of the network. Therefore, it represents the link between the measurement

infrastru
ture and the management system in the 
ontrol 
enters. On
e the state of

the network is known, all the ele
tri
al quantities 
an be 
omputed and any 
ontrol

or management fun
tion 
an be run. For the su

essful operation of su
h fun
tions,

the a

ura
y of the estimated ele
tri
al quantities is a fundamental feature. SE plays

a 
ru
ial role also from this standpoint, be
ause it allows �ltering out the errors in-

trinsi
ally present in the measurements due to their limited a

ura
y. The relevan
e

of SE within the measurement system is thus evident, sin
e it 
an be 
onsidered as

the �nal ring of the measurement 
hain, and sin
e it is essential for enhan
ing the

a

ura
y of the quantities provided to the upper level fun
tions.

SE has been used, sin
e several de
ades, in the 
ontrol 
enters of the transmis-

sion systems. In the Smart Grid s
enario, distribution systems, whi
h 
urrently

are usually unmonitored, will also be equipped with 
omputational 
enters having

appropriate management systems. As a 
onsequen
e, SE is expe
ted to play a key

role also at the distribution level. However, SE has to be suitably revised for �t-

ting the distribution systems, and this is not an easy task due to several reasons.

First of all, distribution networks di�er signi�
antly from transmission grids, hen
e

a simple adjustment of existing algorithms developed for the transmission level is

not su�
ient. As a result, ad ho
 state estimators, tailored to the features of the

distribution systems, have to be 
on
eived. Moreover, sin
e distribution grids have

been so far poorly monitored, the penetration of measurement instruments in these

networks is minimal, often limited to the High Voltage to Medium Voltage (HV/MV)

substations. To ta
kle this problem, and make the SE possible, all the types of avai-

lable information must be exploited. Statisti
al or histori
al data are then used to


reate the so-
alled pseudo-measurements. Pseudo-measurements allow SE to be

performed but, sin
e su
h information is based on fore
ast data, the a

ura
y of

the SE results 
an be drasti
ally a�e
ted. Another major issue in the 
ontext of

distribution systems is given by the huge dimension of su
h networks. This aspe
t

vi



emphasizes the problem of the 
omputational e�
ien
y of the estimation algorithms.

To this purpose, proper solutions have to be found to allow real-time running of SE

with the reporting rates required by the downstream 
ontrol and management fun
-

tions.

For all these reasons, Distribution System State Estimation (DSSE) is an im-

portant resear
h topi
 nowadays, and it still represents a 
hallenging task. This

thesis aims at addressing some of the issues related to SE in distribution systems.

In parti
ular, the main goals are:

- to propose a state estimation algorithm tailored for distribution networks, able

to �t the main features of these grids and to 
ombine the requirements of

a

ura
y and 
omputational e�
ien
y needed for the pra
ti
al purposes;

- to present approa
hes able to further enhan
e the 
omputational e�
ien
y of

the estimation algorithm without redu
ing its a

ura
y performan
e;

- to assess the impa
t of the measurements, in terms of both typology and

pla
ement, on the �nal a

ura
y of the estimated quantities and to highlight

the importan
e of a proper modeling of the measurement un
ertainties for the

a
hievement of the best possible a

ura
y in the output results;

- to advan
e proposals for the e�e
tive deployment of both SE and the mea-

surement infrastru
ture, taking into a

ount the requirements of a

ura
y, ef-

�
ien
y, robustness and low 
osts predi
table in real distribution systems.

The thesis is organized a

ording to the following outline. In Chapter 1, after an

overview on the basi
s and on the methods 
ommonly used to perform SE, the 
hal-

lenges related to the realization of SE in distribution systems are des
ribed. Then, a

new state estimation algorithm, using the bran
h 
urrents as state variables, and tai-

lored for the distribution networks, is proposed. The novel algorithm over
omes the

issues present in previous bran
h-
urrent estimators and allows for easy integration

of all the kinds of measurements, in
luding the new generation Phasor Measurement

Units (PMUs).

In Chapter 2, formulations traditionally used for the in
lusion of the equality


onstraints into the estimation algorithms are presented. Then, a new approa
h well-

suited to the proposed bran
h-
urrent estimator is shown and 
ompared to existing

methods. Su
h approa
h allows redu
ing the exe
ution times of the estimator and

to improve its 
onvergen
e properties.

Chapter 3 reports a 
omprehensive analysis of the performan
e of the proposed

bran
h-
urrent state estimator, in terms of estimation a

ura
y, numeri
al properties

and 
omputational e�
ien
y. In parti
ular, these features are 
ompared to those

of other estimators existing in the literature, based on di�erent state variables, in
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INTRODUCTION

order to highlight both strengths and weaknesses of the proposed solution. Su
h

analysis aims at providing a ben
hmark for the 
hoi
e of the state estimator most

suitable for networks with di�erent topologies and for di�erent 
on�gurations of the

available measurement infrastru
ture.

In Chapter 4, an analysis of the impa
t of di�erent measurement types, and of

their pla
ement, on the �nal a

ura
y of the SE results is presented. Su
h analysis

provides useful information for the sele
tion of the measurement infrastru
ture to be

deployed in future distribution grids, and points out some important 
onsiderations

for a smart 
hoi
e of the meter pla
ement.

Chapter 5 fo
uses on the impa
t of the measurements and in parti
ular of their

modeling on the �nal a

ura
y of the estimation results. The importan
e of duly


onsidering all the measurement aspe
ts into the estimator model is pointed out. In

parti
ular, proper 
onsideration of the 
orrelations existing among measurements

is shown to be 
ru
ial to a
hieve signi�
ant improvements in the a

ura
y of the

estimation out
ome.

In Chapter 6, a multi-area ar
hite
ture, based on a distributed measurement


on�guration, is proposed as overall measurement system for the distribution grids.

The multi-area s
heme is almost a 
ompulsory solution at the distribution level,

due to the large size of these networks. In this framework, the state estimator

has to be adapted for integrating the information provided by di�erent areas. The

proposed solution allows for the estimation of the operating 
onditions on the whole

area with redu
ed exe
ution times, minimum 
ommuni
ation 
osts, and robustness

to possible 
ommuni
ation failures. High a

ura
y performan
e are also obtained,

thanks to the proper modeling of the 
orrelations arising among the data provided

by di�erent areas into the multi-area estimator.

Summary 
omments on the obtained results and �nal 
onsiderations 
on
lude

this thesis.

viii



Chapter 1

Bran
h Current Distribution System

State Estimation

1.1 State Estimation overview

The idea to apply State Estimation (SE) methods to the ele
tri
al power systems

dates ba
k to the 1970s, when Fred S
hweppe proposed the use of SE te
hniques

for a
hieving an a

urate knowledge of the operating 
onditions of transmission

networks [1�3℄. In [1℄, S
hweppe des
ribes SE as the result of the 
ombination of two

big �elds, load �ow and statisti
al estimation theory. Basi
ally, SE 
an be de�ned

as a mathemati
al te
hnique that, through the pro
essing of raw measurements and

network data (su
h as, for example, topology of the network, impedan
es of the

lines, et
.), allows the estimation of the most probable operating state of a network.

A

ording to S
hweppe's de�nitions, the state of an ele
tri
al system is given by the

set of the voltage magnitudes and angles at all the network buses. The estimation

of the voltages, together with the knowledge of the network data, allows also the


omputation of all the other quantities representative of the ele
tri
al system, thus

providing an overall pi
ture of the operating 
onditions of the network.

SE was identi�ed by S
hweppe as the ne
essary link between the raw measure-

ment data provided by the instruments deployed on the �eld and the management

programs installed in the 
ontrol 
enters. In fa
t, measurements are always a�e
ted

by errors due to the limited a

ura
y of the measurement devi
es. Moreover, bad

data, instrument failures, 
ommuni
ation errors and telemetry loss 
an also o

ur.

As a result, meter readings are not always fully reliable and available for dire
t use

in 
ontrol appli
ations. For this reason, a suitable pro
essing of the telemetered mea-

surements is needed in order to remove 
learly erroneous data, to handle possible

measurement unavailability and to �lter out the random errors intrinsi
ally present

in the measurements.

1



1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

Sin
e the '70s, SE has been obje
t of large resear
h e�orts. Currently, it re-

presents the heart of the 
ontrol 
enters of transmission systems, where it enables

proper operation of the 
ontrol programs and serves as monitoring tool for human

operators. Comprehensive reviews of the state of the art in power system SE 
an

be found in [4, 5℄.

In general, SE tools 
ommonly implemented in 
ontrol 
enters in
lude the fol-

lowing fun
tionalities [4℄:

- Topology pro
essor : it allows building the 
urrent topology of the network,

a

ording to the a
quired states of swit
hes and breakers.

- Observability analysis: it is a pre-pro
essing stage where all the gathered mea-

surements are analyzed to verify the observability of the whole network; if the

redundan
y of the available measurements is not su�
ient to a
hieve the full

observability of the system, the observable islands have to be dete
ted in order

to allow SE to be run at least on them.

- SE algorithm: it is the 
ore of the state estimator, that is the algorithm

designed to pro
ess the 
olle
ted real-time measurements and to provide the

estimated state of the network.

- Bad data dete
tion and identi�
ation: depending on the estimation approa
h,

this step 
an be dire
tly in
luded in the estimation algorithm or 
an be a post-

pro
essing step. It allows dete
ting, identifying and then dis
arding possible

bad data o

urring due to instrument malfun
tioning, 
ommuni
ation errors or

other reasons. A preventive bad data 
he
k 
an be also performed before run-

ning the SE algorithm in order to immediately reje
t senseless measurements

(su
h as, for example, negative voltage or 
urrent magnitudes).

- Topology error identi�
ation: similarly to the bad data identi�
ation, it is a

step where the estimation results are analyzed to identify possible errors in

the assumed topology of the network (due to an erroneous or missed 
ommu-

ni
ation of the state of a swit
h).

Fig. 1.1 shows the �ow
hart for the typi
al operation of a state estimator. It

is possible to observe that, if bad data or topology errors are dete
ted, then SE

must be repeated, after the 
orre
tive a
tions, sin
e su
h errors drasti
ally a�e
t

the estimation results. Ea
h one of the stages in
luded in Fig. 1.1 represents an

important resear
h topi
 within the wider �eld of SE. In this thesis, as re
alled in

the following, the fo
us is mainly on the SE algorithms, but it is worth underlining

that ea
h one of the mentioned steps is essential for the e�e
tive realization and

deployment of a SE fun
tion into a power system 
ontrol 
enter.

2



1.1. State Estimation overview

Network data

(line impedan
es,

shunt admittan
es)

Swit
hes and
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Bad data
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State Estimation

algorithm

Bad data
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results
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yes
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Figure 1.1: Operation �ow
hart of a state estimator
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1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

1.2 State Estimation in distribution systems

1.2.1 Evolution of distribution systems

SE is today an essential part of the Energy Management Systems (EMSs) imple-

mented in the 
ontrol 
enters of transmission grids. In distribution systems, instead,

the detailed monitoring of the network has not been ne
essary so far, sin
e the pas-

sive operation of these grids allowed an easy management without advan
ed 
ontrol

tools. As a 
onsequen
e, until now, SE has not been generally employed at the

distribution level.

Currently, however, signi�
ant 
hanges are a�e
ting the operation of distribution

systems [6℄. First of all, be
ause of the massive in
rease of Distributed Generation

(DG), the assumption of passive behaviour is no longer valid; bi-dire
tional power

�ows are now possible and this 
alls for a more 
omplex and a
tive management of

the network [7℄. Moreover, new players are entering (or are going to enter in the

up
oming future) in the s
enario of distribution systems. Among these, it is worth

mentioning the Ele
tri
 Vehi
les (EVs), whose foreseeable spread in next years is

expe
ted to have a signi�
ant impa
t on the distribution system operation [8℄. If

EVs are not properly managed, major issues 
ould arise be
ause of the large power

demand o

urring in 
ase of 
ontemporary request of 
harge by many vehi
les. On

the 
ontrary, a suitable management of the 
harging strategy 
an be bene�
ial for the

grid operation, 
ontributing to voltage 
ontrol and power loss minimization [9, 10℄.

Besides the EVs, storage devi
es and demand-side management are also fore
ast

to support the operation of future distribution grids [11, 12℄. All these options are

in
luded under the more general name of Distributed Energy Resour
es (DERs);

they are an important solution for a
hieving higher openness to renewable energy

sour
es, postponement of grid refurbishment, and improvement of e�
ien
y and

reliability of distribution networks. Again, to 
oordinate the operation of all these

assets, smart Distribution Management Systems (DMSs), equipped with advan
ed


ontrol fun
tions, must be developed.

In this 
ontext, SE will be playing a 
ru
ial role. In fa
t, for the proper fun
-

tioning of the 
ontrol tools, an a

urate awareness of the operating 
onditions is

essential. A poorly a

urate knowledge would be detrimental, leading to possible

wrong de
isions by the DMS with 
onsequent te
hni
al issues or unwanted 
osts [13℄.

Thus, like in transmission systems, SE is ne
essary to pro
ess measurement data,

enhan
e their a

ura
y and provide a reliable pi
ture of the operating 
onditions to

the upper level fun
tions within the DMS.
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1.2.2 Features of distribution systems

Despite the similar role of SE in both transmission and distribution grids, the real-

ization of the state estimators in the two systems has ne
essarily to be quite di�erent.

In fa
t, distribution grids di�er signi�
antly from the transmission ones under sev-

eral aspe
ts. Typi
al features of distribution networks a�e
ting the Distribution

System State Estimation (DSSE) are [14℄:

- Imbalan
e: distribution grids, like the transmission ones, are three-phase net-

works. However, transmission grids are generally balan
ed systems and 
an

be, for this reason, modeled through an equivalent single-phase s
heme repre-

senting the positive sequen
e of the system. Distribution grids, instead, 
an

have signi�
ant unbalan
es of the three-phase quantities due to the presen
e of

many non-symmetri
al loads and of single-phase portions of the network. The

imbalan
e of the grid is further exa
erbated today by the massive growth of

small-size generation plants, mainly fed by renewable energy sour
es, 
hara
ter-

ized by single-phase 
onne
tion to the network. As a 
onsequen
e, distribution

systems have ne
essarily to rely on a three-phase model of the network and to

duly 
onsider the mutual 
oupling among the di�erent phases. Comprehensive

referen
es for the three-phase modeling of lines and other 
omponents of the

distribution systems 
an be found in [15, 16℄.

- Topology : di�erently from the transmission systems, whi
h, for reliability rea-

sons, are generally highly meshed networks, most of the distribution systems

are radial or weakly meshed. This allows for the development of di�erent for-

mulations of the SE algorithm, tailored to su
h topology of the system. The

idea to 
onsider bran
h-
urrents as state variables in the estimator, instead of

the traditionally used node voltages, relies on the possibility to a
hieve simpler

and faster estimators exploiting the radial or weakly meshed 
on�guration.

- Line parameters: distribution and transmission lines obviously di�er be
ause

of the asso
iated voltage levels and their physi
al 
hara
teristi
s. In trans-

mission, the series impedan
e in the equivalent pi-model of the line is mainly


omposed of the indu
tan
e term, while the resistan
e term is signi�
antly

lower. Having very low R/X ratios allows negle
ting the resistan
e for pra
-

ti
al purposes and de
oupling the SE algorithms, separating the estimation

of voltage magnitudes and angles. In distribution systems, instead, the same


onsiderations do not hold. In fa
t, it is not unusual to �nd R/X ratios equal,

or even higher, to 1. As a result, de
oupling versions of the DSSE algorithms


annot be easily obtained. Another important di�eren
e in the modeling of

the line 
on
erns the shunt admittan
es. In distribution systems the 
apa
itive

terms are usually very low (above all in 
ase of overhead lines, [15℄) and this

5



1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

allows approximating the line model by 
onsidering only its series impedan
e.

As a result, modeling and fun
tions to be in
luded in the DSSE algorithm 
an

be signi�
antly simpli�ed.

- Number of nodes: this represents a 
riti
al aspe
t for distribution systems. In

fa
t, the number of nodes in Medium Voltage (MV) networks 
an be really

high, even some orders of magnitude larger than the number of nodes in trans-

mission systems. This situation is further aggravated if the monitoring of the

distribution grid is extended to the Low Voltage (LV) lines. As a 
onsequen
e,

it is 
lear that 
omputational issues arise, together with demanding require-

ments for data a
quisition and storage in the 
omputational 
enters; thus,

suitable solutions have to be found. First of all, the design of fast and e�
ient

DSSE algorithms, able to redu
e exe
ution times and to make real-time ope-

ration possible, is essential. From this point of view, it is worth re
alling that

DSSE algorithms 
annot be de
oupled in the same way of the estimators for

transmission systems, and that a three-phase modeling must be used. These

fa
tors imply additional 
omputational burden for the estimator and make the

goal of e�
ien
y even more 
hallenging. An alternative solution to deal with

the large size of distribution networks (presented in Chapter 6) is the design of

suitable Multi-Area State Estimation (MASE) ar
hite
tures. As an example,

DSSE 
ould be de
omposed a

ording to the di�erent voltage levels of the net-

work or a

ording to geographi
al 
riteria. Even if the MASE approa
h 
an

bring large improvements in terms of exe
ution times, due attention must be

paid to the proper design of both the ar
hite
ture and the MASE algorithm.

In fa
t, a de
omposition in too many areas or the use of ina

urate MASE

te
hniques 
an lead to a signi�
ant loss of a

ura
y in the estimation results

or to additional issues 
on
erning 
ommuni
ation.

- Number of measurement devi
es: as already mentioned, distribution networks

have been so far poorly monitored networks. As a 
onsequen
e, measurement

instruments installed on the grid are very few, often limited only to the High

Voltage to Medium Voltage (HV/MV) substation. Be
ause of the huge number

of nodes, the redundan
y of available measurement devi
es is not expe
ted to

signi�
antly in
rease in the near future. To deal with this issue, all the possible

information has to be exploited to 
reate the so-
alled pseudo-measurements.

Pseudo-measurements 
an be de�ned as non-real-time measurements derived

from statisti
al, histori
al or fore
ast data owned by the Distribution System

Operator (DSO). In parti
ular, typi
al pro�les of loads and generators 
an

be used to 
reate pseudo-measurements for the power inje
tions at the nodes.

The use of su
h pseudo-measurements allows obtaining the observability of the

network and thus to solve the DSSE problem. However, sin
e these data are
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not based on real measurements, their modeling into the DSSE algorithm must

be done using large un
ertainties, and this drasti
ally a�e
ts the a

ura
y of

the estimation results. To this purpose, many resear
h e�orts are 
urrently

ongoing for the development of te
hniques and methods aimed at providing

pseudo-measurements with enhan
ed a

ura
y and detailed modeling of their

un
ertainty (see, for example, [17�19℄). As additional issue, sin
e the redun-

dan
y of the measurements (even when in
luding pseudo-measurements) is

not high, other auxiliary fun
tions of the state estimator 
ould work not prop-

erly. As an example, in some 
ases, the bad data dete
tion and identi�
ation

fun
tion 
an be unable to dete
t an erroneous measurement or, even if the

dete
tion is su

essful, it 
ould be unable to properly identify the wrong data

(problem of bad data on 
riti
al measurements, see [4℄ for details).

- Un
ertainty of network model : in the SE framework, the data of the network

are usually assumed to be known and they serve as input for the SE algorithm.

In distribution systems, however, the knowledge on the line parameters 
an

be highly un
ertain, due to the network aging and the la
k of re
ent a

urate

measurement 
ampaigns. As a result, su
h un
ertainty 
an more or less heavily

a�e
t the a

ura
y of the estimation results. The impa
t of this un
ertainty on

the DSSE model has, therefore, to be duly taken into a

ount and evaluated,

in order to guarantee the proper operation of the estimator and the reliability

of the a
hieved results.

1.3 Weighted Least Square estimators

Fo
using on the SE algorithms, di�erent approa
hes 
an be used to perform SE. All

the methods usually refer to the same measurement model, whi
h is used as starting

point for de�ning the obje
tive fun
tion implemented in the algorithm.

1.3.1 Measurement model

The measurement model 
ommonly used for SE is:

y = h(x) + e (1.1)

where:

- y is the ve
tor of the available measurements that will be used as input in

the SE algorithm; measurements 
an be voltages on the nodes and 
urrents or

a
tive and rea
tive powers either on the bran
hes or on the node inje
tions.

7



1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

- x is the ve
tor of the 
hosen state variables; a

ording to the traditional design

of power system state estimators, it is usually 
omposed by the voltage magni-

tudes and angles at all the network buses; more in general, however, the state

of the system 
an be de�ned as a set of variables that, on
e known, allows

the 
omputation of all the ele
tri
al quantities of the network. Thus, di�erent

options for the 
hoi
e of the state ve
tor are possible.

- h(x) is the ve
tor of measurement fun
tions (in general nonlinear) linking

measurements y to the state variables x; basi
ally, ea
h fun
tion expresses the

asso
iated measured quantity in terms of the adopted state variables.

- e is the ve
tor of the measurement errors; traditionally, they are 
onsidered as

zero mean (E(ei) = 0), de
orrelated (E(eiej) = 0, for i 6= j) errors, thus with
a resulting diagonal 
ovarian
e matrix (Σy = E(eeT ) = diag(σ2

i ), where σi is
the standard deviation asso
iated to the i -th measurement yi).

1.3.2 WLS method

Despite the large number of alternatives proposed in the literature (see, for example,

[20�25℄), most of the estimators implemented in transmission system 
ontrol 
enters

refer to a same approa
h, the Weighted Least Squares (WLS) method.

As for DSSE, di�erent alternative approa
hes are also possible. In [26℄, some of

the te
hniques most used in transmission systems have been 
ompared to test their

performan
e when adapted to work in a distribution system 
ontext. The analysis

shows that the WLS method has the best performan
e in terms of bias, 
onsisten
y

and quality of the estimation results, and thus it 
an be 
onsidered a proper 
hoi
e

for use also in DSSE.

In the WLS approa
h, the estimation algorithm is designed to a
hieve the mini-

mization of the following obje
tive fun
tion:

J(x) =
M
∑

i=1

wi [yi − hi(x)]
2

(1.2)

where wi is the weight assigned to the i -th measurement, andM is the total number

of measurements available as input for the estimator. The term y − h(x), that is
the di�eren
e between measured value and 
orresponding quantity obtained as a

fun
tion of the state ve
tor, is 
ommonly indi
ated in the literature as measurement

residual.

Equation (1.2) 
an be generalized in matrix form as:

J(x) = [y − h(x)]T W [y − h(x)] (1.3)
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where W is a resultingM ×M weighting matrix, having the weights wi on the diag-

onal elements. The weighting matrix plays a 
riti
al role in the WLS approa
h. In

fa
t, it allows 
onsidering the di�erent reliability of measurements, giving more im-

portan
e to those with higher a

ura
y. For a proper modeling of the WLS method,

it should be 
hosen as the inverse of the 
ovarian
e matrix Σy of the measurement

errors.

The minimization of the obje
tive fun
tion J(x) is usually obtained using an

iterative Gauss-Newton method. Its appli
ation (see [4℄ for details) leads, at ea
h

iteration k, to the following equation system (often referred to as normal equations

in the literature) to be solved:

G(xk)∆xk = HT
kW [y − h(xk)] (1.4)

where Hk = H(xk) is the Ja
obian of the measurement fun
tions h(x), G(xk) =
HT
kWHk is the so-
alled Gain matrix, and ∆xk is the updating state ve
tor used

to 
ompute the new state a

ording to the following:

xk+1 = xk +∆xk (1.5)

The iterative pro
ess 
ontinues until a spe
i�ed 
onvergen
e 
riterion is a
hieved.

Usually, the largest absolute element in the updating state ve
tor ∆x is 
ompared

to a de�ned toleran
e threshold ǫ, and the algorithm stops when max(|∆x|) < ǫ.
The state ve
tor obtained at the last iteration is the estimation out
ome provided

by the WLS algorithm.

1.4 Bran
h Current based estimators

First works proposing state estimators spe
i�
ally 
on
eived for distribution systems

date ba
k to the 1990's. A �rst attempt to address the DSSE issue, relying on a min-

imum number of available measurement devi
es, was performed in [27℄. In [28, 29℄,

instead, the need to use three-phase models for the modeling of distribution networks

was highlighted. To this purpose, the traditional WLS method was adapted to in-


lude the three-phase framework and to 
onsider the mutual 
oupling among the

di�erent phases. In [30, 31℄, di�erent alternatives for the state variables to be used

into the DSSE algorithm were proposed. In [30℄, the WLS algorithm was modi�ed

to use the node voltages in re
tangular 
oordinates in pla
e of the traditionally used

voltage magnitudes and angles. Some approximations were also made to a
hieve a

de
oupled version of this estimator. In [31℄, instead, Baran and Kelley proposed for

the �rst time the use of a WLS estimator based on bran
h 
urrents (in re
tangu-

lar 
oordinates) as state variables. Su
h a solution allows exploiting the radial or

weakly meshed topology of the distribution grids and to develop simpler and faster

estimators.
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In the following years, several works have 
ontributed to the development of

enhan
ed Bran
h Current Distribution System State Estimation (BC-DSSE) algo-

rithms. In [32℄, the �rst version of the BC-DSSE was modi�ed in order to a
hieve

a per-phase de
oupled version of the estimator. However, both the algorithms pro-

posed in [31, 32℄ initially allowed pro
essing only power and 
urrent measurements.

For this reason, developments of these original versions have been presented af-

terwards in [33, 34℄, where possible formulations to in
lude the voltage magnitude

measurements in the estimator model are presented.

1.4.1 Framework of BC-DSSE

The BC-DSSE approa
h is based on an iterative WLS algorithm 
omposed, at ea
h

iteration, of the following three main steps:

1) de�nition/update of input measurements;

2) solution of the normal equations (1.4) of the WLS problem;

3) forward sweep 
al
ulation to 
ompute the bus voltages of the network.

In the �rst step, the de�nition or update of the measurements is required to


onvert power measurements in equivalent 
urrent measurements. This pro
ess has

been introdu
ed to allow an easier treatment of possible power �ow measurements

and, above all, of the pseudo-measurements of node power inje
tions. In fa
t, given

a pair of a
tive and rea
tive power, the following equivalent 
urrent measurements


an be 
al
ulated at ea
h iteration k:

irk + jixk =

(

P + jQ

vk

)∗

(1.6)

where ir and ix are the real and imaginary 
omponents of the 
urrent, P and Q
are the a
tive and rea
tive measured powers to be 
onverted, and vk is the 
om-

plex voltage available at iteration k either in the node of the power inje
tion or in

the sending node of the measured bran
h power (depending on the type of power

measurement). The operator * is instead the 
omplex 
onjugate operator.

As it 
an be observed, su
h transformation 
onverts the power measurements

in the same quantities used as state variables in the WLS algorithm, thus allow-

ing an easy and linear in
lusion in the estimator. This operation 
an be really


onvenient in terms of e�
ien
y of the algorithm, above all 
onsidering that the

pseudo-measurements of power inje
tion represent, of 
ourse, the majority of the

input measurements to be pro
essed.

In the se
ond step of the algorithm, relying on the 
olle
ted input measurements

and assuming the knowledge of topology and data of the network, the WLS problem

des
ribed in Se
tion 1.3.2 has to be solved. The main novelty of the BC-DSSE ap-

proa
h is in the 
hoi
e of the state variables; in this 
ase, a

ording to the proposals
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presented in [31�34℄, and 
onsidering the three-phase formulation of the estimator,

the state ve
tor x is:

x = [xA,xB,xC ] (1.7)

where the generi
 state ve
tor xφ asso
iated to phase φ (with φ = A,B,C) is:

xφ = [ir1φ, ..., i
r
Nbrφ

, ix1φ, ..., i
x
Nbrφ

] (1.8)

with the generi
 variable iiφ indi
ating the 
urrent on the i -th bran
h of phase φ
and with Nbr equal to the total number of bran
hes for the 
onsidered phase.

Consistently with the used state ve
tor, measurement fun
tions h(x) and Ja
o-

bian matrix H(x) have to be 
al
ulated, and then the normal equations (1.4) 
an

be solved.

Finally, on
e the state of the bran
h 
urrents at iteration k is obtained, the volt-

ages at all the network buses are 
omputed by means of a forward sweep 
al
ulation.

In the forward sweep, starting from the voltage at the HV/MV substation node,

all the remaining voltages are a
hieved, des
ending the network and exploiting the

temporarily estimated bran
h 
urrents, through a simple 
al
ulation of the voltage

drops along the lines. Sin
e the knowledge of the voltage at the HV/MV substation

is needed to 
ompute all the remaining ones, in [31℄ it is proposed, to this purpose,

to use the voltage measurement in substation (whi
h is usually available) or, if this

is not possible, to set su
h voltage to 1 per unit (or the rated voltage of the system).

It is worth to re
all that, sin
e DSSE has to 
onsider the three-phase nature of

the network, the 
al
ulation of the voltage drops has to duly 
onsider the mutual


oupling among the phases. Thus, given a generi
 three-phase line, like the one

depi
ted in Fig. 1.2, the voltage on the ending node is given by:





v2A
v2B
v2C



 =





v1A
v1B
v1C



−





zAA zAB zAC
zBA zBB zBC
zCA zCB zCC









iA
iB
iC





(1.9)

where zii (with i = A,B,C) is the self impedan
e of phase i and zij (with j = A,B,C
but 6= i) is the mutual impedan
e between phases i and j.

Figure 1.2: Three-phase line.
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It is important to underline that the forward sweep is an essential step, not only

to obtain the voltage pro�le of the network and to make it available as output of

the estimator, but, above all, to update the estimated voltages and to allow, in this

way, the re�nement of the equivalent 
urrent measurements at ea
h iteration.

As in generi
 WLS estimators, the BC-DSSE algorithm stops when the largest

absolute element of the updating state ve
tor ∆x is smaller than a 
hosen threshold

ǫ.

1.4.2 Measurement fun
tions h(x)

Traditional measurements that 
an be in
luded in the BC-DSSE are: a
tive and

rea
tive power (either on a bran
h or on a node inje
tion), 
urrent magnitude on

a bran
h and voltage magnitude on a node. To solve the WLS problem, all the


orresponding measurement fun
tions, whi
h express the measured quantity in terms

of the state variables, have to be de�ned.

• A
tive and rea
tive power �ow

As des
ribed in the previous subse
tion, in BC-DSSE a
tive and rea
tive pow-

ers are 
onverted in equivalent 
urrent measurements. Thus, indi
ating with

heqir
lφ
and heqix

lφ
the measurement fun
tions asso
iated to the real and the imagi-

nary part of the equivalent 
urrent obtained for a power �ow measurement on

bran
h l of phase φ, it is:

heqir
lφ
+ jheqix

lφ
= α(irlφ + jixlφ) (1.10)

where α = 1 if the measured power is in the same dire
tion of the 
orrespond-

ing bran
h 
urrent used in the state ve
tor and α = −1 if the power is in the

opposite verse. As it 
an be observed, obviously, the transformation of the

powers in equivalent 
urrents leads to a linear relationship for this measure-

ment fun
tion. Moreover, these fun
tions are only related to state variables

(irlφ and ixlφ) belonging to the same phase of the measurement, thus, there is

no 
oupling among the di�erent phases.

• A
tive and rea
tive power inje
tion

Similarly to the previous 
ase, the power inje
tions are 
onverted in equivalent


urrent inje
tions. The asso
iated measurement fun
tions, for the equivalent


urrent inje
tion on phase φ of node i, are:

heqir
inj,iφ

+ jheqix
inj,iφ

= α

[

∑

k∈Ω

(irkφ + jixkφ)−
∑

m∈Λ

(irmφ + jixmφ)

]

(1.11)
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where Ω is the set of bran
hes in
oming on node i and Λ is the set of bran
hes

outgoing from node i. The variable α in this 
ase, instead, is equal to 1 if the


onsidered power inje
tion is drawn from the network (like for a load), while

it is equal to -1 in the opposite 
ase (like for a generator). Even in this 
ase,

it is possible to observe that the obtained measurement fun
tions are linearly

related to the state variables and that no 
oupling exists among the di�erent

phases.

• Current magnitude

The fun
tion asso
iated to a 
urrent magnitude measurement Ilφ on phase φ
of a generi
 line l is:

hIlφ =
√

irlφ
2 + ixlφ

2
(1.12)

It is possible to noti
e that 
urrent magnitude measurements introdu
e non-

linearities in the estimator model and lead to the 
oupling between real and

imaginary state variables. However, they are still related to state variables

belonging only to the same phase φ of the measurement, thus, no 
oupling

among the di�erent phases is introdu
ed.

• Voltage magnitude

The voltage phasor viφ on the phase φ of a generi
 node i, 
an be expressed

as:

viφ = v1φ −
∑

k∈Γ

Zk,φik (1.13)

where v1φ is the voltage phasor on phase φ of the starting node of the network

(that is usually 
hosen to be the HV/MV substation bus), Zk,φ and ik are,

respe
tively, the row related to phase φ of the three-phase impedan
e matrix

and the 
olumn ve
tor of the three-phase 
urrents asso
iated to bran
h k,
and Γ is the set of bran
hes in the path between the starting node and the


onsidered bus i.

The related voltage magnitude measurement Viφ 
an, instead, be expressed as:

Viφ =

[

v1φ −
∑

k∈Γ

Zk,φik

]

e−jδiφ (1.14)

where δiφ is the angle of the 
onsidered voltage on the phase φ of node i. With

further modi�
ations, it is possible to write:

Viφ = Re

[

V1φe
j(δ1φ−δiφ) −

∑

k∈Γ

Zk,φike
−jδiφ

]

(1.15)
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and the �nal fun
tion of the voltage magnitude measurement is:

hViφ = V1φ cos(δ1φ−δiφ)−
∑

k∈Γ

(Rk,φi
r
k−Xk,φi

x
k) cos(δiφ)−

∑

k∈Γ

(Xk,φi
r
k+Rk,φi

x
k) sin(δiφ)

(1.16)

whereRk,φ andXk,φ are the real and imaginary part, respe
tively, of the 
onsid-

ered row ve
tor of the three-phase impedan
e matrix Zk,φ of the bran
h k. As
it 
an be observed, found relationship for the voltage magnitude measurement

is nonlinear and introdu
es in the estimator model 
oupling both between real

and imaginary 
omponents of the 
urrents, and among the di�erent phases of

the system.

To solve the WLS problem, besides the de�nition of the measurement fun
tions,

the 
omputation of their derivatives with respe
t to ea
h state variable has to be

developed in order to a
hieve the Ja
obian matrix. Details on the Ja
obian terms

resulting for ea
h measurement fun
tion are provided in Appendix A.1.

1.5 New formulation of BC-DSSE

Bran
h-
urrent based estimators proposed in [31�34℄ 
an be potentially well suited to

the problem of DSSE. In fa
t, they are able to easily in
lude the pseudo-measurements

about power inje
tions on the nodes, whi
h are the majority of the measurements

available in distribution systems; moreover, they 
an also in
lude 
urrent magnitude

measurements without too mu
h 
omplex fun
tions, as it is the 
ase, instead, of the

traditional voltage-based estimators. However, the formulations provided in [31�34℄

show some issues in spe
i�
 
ases. In parti
ular:

- The voltage pro�le of the network is obtained through the forward sweep

step starting from the voltage measurement in the HV/MV substation; thus,

the a

ura
y of the voltage pro�le is drasti
ally a�e
ted by the un
ertainty

of su
h voltage measurement; moreover, further issues 
an arise in 
ase of

unavailability or bad data for this measurement.

- Despite the e�orts made in [33,34℄ to in
lude the voltage measurements in the

BC-DSSE model, both the papers show that this kind of measurement does

not have a 
lear impa
t on the a

ura
y of the BC-DSSE results.

- Referen
e papers on BC-DSSE date ba
k to the 1990's. As a result, they

only 
onsider the possibility to have traditional measurements as input to the

estimator. However, re
ently, new generation measurement devi
es, su
h as

Phasor Measurement Units (PMUs), are be
oming widespread on the market.

Therefore, the estimator model has to be adapted in order to in
lude the

measurements provided also by these new measurement instruments.
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In [35,36℄, a new formulation of the BC-DSSE model has been proposed to solve

the aforementioned issues and to 
onsider phasor measurements. The following

subse
tions present the proposed model and the overall stru
ture of the designed

BC-DSSE algorithm. Next se
tion shows the bene�ts 
oming from the proposed

new formulation. The following se
tion, instead, deals with the in
lusion of phasor

measurements provided by PMUs in the estimator model.

1.5.1 Extension of the state ve
tor

The voltage pro�le of a grid is one of the most important information needed in the


ontrol 
enter of a network. For this reason, the problems inherent to the proposed

versions of the BC-DSSE are a signi�
ant limit to its appli
ability in a real 
ontext.

To deal with this issue, and to allow an a

urate estimation even for the voltage

pro�le, in [35, 36℄ the BC-DSSE model has been modi�ed to in
lude the sla
k bus

voltage as state variable into the state ve
tor. As a 
onsequen
e, the proposed new

state ve
tor to be used in the estimator model is:

x = [xA,xB,xC ] (1.17)

with the total state ve
tor 
omposed of the single ve
tors asso
iated to ea
h phase

of the system, and with the generi
 single-phase state ve
tor xφ equal to:

xφ = [Vsφ, i
r
1φ, ..., i

r
Nbrφ

, ix1φ, ..., i
x
Nbrφ

] (1.18)

where Vsφ is the voltage magnitude of the 
hosen sla
k bus of the network on the

phase φ.
It is worth re
alling that, in general, the sla
k bus voltage is usually used in

power networks as a referen
e for the angles of all the ele
tri
al quantities of the

system. Thus, the sla
k bus voltage angle of the �rst phase is usually set equal to

zero and all the other angles are de�ned as angle di�eren
es with respe
t to this

referen
e. As a 
onsequen
e, the estimation of the voltage magnitude is su�
ient to

obtain a 
omplete information on the voltage state of the sla
k node, and this allows


omputing all the remaining voltages at the other nodes of the network exploiting

the result of su
h estimation.

It is also important to highlight that the proposed solution meets the proper

de�nition of state of a network. In fa
t, as mentioned in the previous se
tions,

the state of a network 
an be de�ned as a set of variables that allow the 
omplete

knowledge of the system and, thus, the 
omputation of all the other quantities

representative of the network. With the only 
urrent state variables this was not

possible due to the la
k of information for the voltages. Instead, with the in
lusion

of the sla
k bus voltage, the de�nition is now fully respe
ted, and all the other

ele
tri
al quantities of the grid 
an be obtained starting from the estimated values.
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1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

With respe
t to the previous formulation, the new one is expe
ted to provide the

following advantages:

• to obtain a larger impa
t on the estimation results by using voltage measure-

ments;

• to a
hieve an improved knowledge of the sla
k bus voltage state and a more

a

urate estimation of the overall voltage pro�le of the network.

1.5.2 The proposed estimator

The bran
h-
urrent based estimator here proposed basi
ally keeps many of the fea-

tures of the original version of BC-DSSE proposed by Baran and Kelley. The main

di�eren
es are the addition of the sla
k bus voltage in the state ve
tor and some

other details that are des
ribed in the following subse
tions. The overall stru
ture

of the estimation algorithm is 
omposed of the following steps:

1) initialization of the state ve
tor x;

2) building of the weighting matrix W;

3) building of the 
onstant Ja
obian sub-matri
es;

4) start of the iterative pro
edure;

5) 
omputation of the equivalent 
urrent measurements and update of the mea-

surement ve
tor y;

6) building of the non-
onstant Ja
obian sub-matri
es;

7) 
omputation of the measurement fun
tions h(x);

8) 
al
ulation of the measurement residuals r = y − h(x);

9) 
al
ulation of the Gain matrix G = HTWH;

10) solving of the normal equations G∆xk = HTWr;

11) update of the state ve
tor xk+1 = xk +∆xk;

12) exe
ution of the forward sweep step to 
ompute the voltage at the di�erent

buses;

13) 
he
k of the 
onvergen
e 
riterion: if max(|∆x|) < ǫ then quit the iterative

pro
edure, otherwise go ba
k to step 5.

16



1.5. New formulation of BC-DSSE

1.5.3 State initialization

The initialization of the state ve
tor is a pro
edure that, if properly designed, 
an

lead to a faster 
onvergen
e of the estimation algorithm. The simplest approa
h,

but also the least e�
ient, is to initialize the state ve
tor with the so-
alled �at

start. A

ording to this approa
h all the voltage magnitudes should be set equal

to 1 p.u., while the 
urrent magnitudes should be set equal to 0. As for the angles,

both voltage and 
urrent angles should be set equal to 0 for the �rst phase and

±120◦ for the other phases. Su
h initialization, sin
e the initial 
onditions are far

from the real ones, leads to a signi�
ant number of iterations for the algorithm to


onverge. Moreover, in [31℄, where this approa
h is implemented, the need to dis
ard

the 
urrent magnitude measurements in the �rst step of the algorithm is pointed

out, sin
e the starting angles of the 
urrents would lead to a wrong 
al
ulation of

the related Ja
obian terms.

In [32℄, to improve the 
onvergen
e properties of the algorithm, the 
urrent angles

are proposed to be set with the opposite angle with respe
t to the one of the power

measurement in substation (that is usually an available measurement). In fa
t, sin
e

it is S = vi∗ (where S is the 
omplex power in substation) and under the assumption

v = 1∠0 p.u., it is possible to �nd that the angles of S and i are equal but opposite
in sign. Thus, a

ording to [32℄, for a feeder with a good power fa
tor it is a good


hoi
e to initially set all the 
urrents with su
h angle value (for the �rst phase, while

angles of the other phases are obtained in the same way but then shifted of ±120◦).
In this way, di�erently from the �at start, it is possible to use the 
urrent magnitude

measurements also in the �rst step. However, this pro
edure works properly only in


ase of radial networks.

In the proposed BC-DSSE algorithm, a di�erent approa
h has been 
on
eived to

enhan
e the state initialization. The proposed te
hnique is based on the knowledge

of the node power inje
tions (nodes 
an be load or generation buses where at least the

pseudo-measurements should be available, or a priori known zero inje
tion nodes).

The power inje
tion on a generi
 node i 
an be written as:

Si = vi

[

∑

k∈Ω

ik −
∑

m∈Λ

im

]

(1.19)

where Ω is the set of bran
hes in
oming in node i and Λ is the set of bran
hes

outgoing from i (with the assumption that powers drawn by loads are positive and

powers provided by generators are negative).

Eq. (1.19) 
an be written in matrix form as:

Si = viAii (1.20)

where i is the 
olumn ve
tor of the bran
h 
urrents of the network and Ai is a row
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1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

ve
tor having terms equal to ±1 in the positions asso
iated to the 
urrents involved

in the 
onsidered power inje
tion.

Starting from eq. (1.20), for ea
h phase φ, the initialization 
an be performed

using: the value of the voltage measurement vsφ in substation for all the power

inje
tions (the voltage magnitude measurement is usually available and the angle


an be set equal to 0 or ±120◦ depending on the 
onsidered phase); the row ve
tors

Aiφ (whi
h depend only on the topology of the network); the known values of the

power inje
tions Siφ. Writing the equation in matrix form, it is:

Sφ = vsφAφiφ = Uφiφ (1.21)

where Sφ is the 
olumn ve
tor of the power inje
tions, Aφ is a matrix 
omposed of

the ve
tors Aiφ on the rows, and Uφ is the matrix obtained from the multipli
ation

vsφAφ.

It is worth noting that in 
ase of radial networks, both the bran
h 
urrents and

the pseudo-measurements are n − 1 (where n is the total number of nodes of the

grid), sin
e the sla
k bus (substation) is 
ommonly not 
onsidered in the set of the

pseudo-measurements. Thus, matrix Uφ is a square matrix that 
an be inverted to

�nd:

iφ = Uφ
−1Sφ (1.22)

The obtained ve
tor is the initialization for the 
urrent state of phase φ. The

initialization for the voltages 
an be then a
hieved through a forward sweep, 
onsid-

ering the voltage drops starting from the sla
k bus voltage in substation.

The approa
h proposed until now works properly only in 
ase of radial networks.

If some meshes are present, the number of bran
hes in
reases while the number

of pseudo-measurements does not 
hange: thus, the equation system (1.21) is not

solvable, sin
e the number of unknowns is larger than the number of equations. To

handle this issue, the following 
onstraint on the Kir
hho�'s voltage law on the

meshes 
an be added to the equation system:

∑

j∈Ψ

αjZjij = 0 (1.23)

where Ψ is the set of bran
hes involved in the 
onsidered mesh, Zj and ij are

the three-phase impedan
e matrix and the three-phase 
urrent ve
tor asso
iated to

bran
h j, respe
tively, and αj is ±1 depending on the referen
e mesh dire
tion with

respe
t to the dire
tion of bran
h j.
It is worth noting that the presen
e of meshes 
auses the 
oupling among the

di�erent phases of the network. Therefore, a three-phase equation system is needed.

Building the three-phase version of the equation system in (1.21) and adding the

mesh 
onstraints, the following holds:
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







SA
SB
SC
0









=









UA 0 0
0 UB 0
0 0 UC

Umesh













iA
iB
iC





(1.24)

where Umesh is a matrix 
ontaining in ea
h row the impedan
e terms (in the posi-

tion 
orresponding to the bran
h 
urrents to be multiplied) determining the mesh


onstraint. Writing (1.24) in 
ompa
t form, it is:

Stot = Utoti (1.25)

It is worth noting that ea
h additional bran
h with respe
t to the radial tree of

the network leads to a mesh 
onstraint, thus in the extended equation system the

number of unknown bran
h 
urrents is equal to the number of available equations

and Utot is a square matrix that 
an be inverted to provide:

i = U−1
totStot (1.26)

As in the 
ase of radial systems, the resulting ve
tor provides the initialization

for the 
urrent state, while the voltage initialization 
an be then a
hieved by means

of a forward sweep step.

Finally, it is important to underline that the state initialization approa
h pre-

sented here is proposed to improve the 
onvergen
e properties of the algorithm when

any other information is missing. However, in a real environment, the state estima-

tor 
an rely on the knowledge of the quantities estimated in the previous time step.

Thus, in su
h a s
enario, the best 
hoi
e should be to use the previously estimated

quantities as initial state. In parti
ular, in 
ase of high reporting rate for the SE

tool and with quasi-stationary operating 
onditions, su
h 
hoi
e 
an provide an ini-

tialization really 
lose to the real 
onditions, thus allowing a signi�
ant redu
tion of

the number of iterations required from the algorithm to 
onverge, and 
onsequently

de
reasing the total exe
ution times.

1.5.4 Equivalent 
urrent measurements

In Se
tion 1.4, the 
onversion of the power measurements (or pseudo-measurements)

in equivalent 
urrents has been introdu
ed. The following relationship is used:

ir + jix =

(

P + jQ

v

)∗

(1.27)

For a proper modeling, due attention must be paid to the resulting un
ertainties

of the 
urrents, whi
h have to be 
al
ulated for obtaining the weights to be in
luded

in the weighting matrix of the SE algorithm.
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1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

Manipulating eq. (1.27), the following 
an be obtained:

ir + jix =
(P − jQ)(vr + jvx)

V 2
(1.28)

Considering the voltage magnitude approximately equal to 1 p.u., it is:

ir = P cos δ +Q sin δ (1.29)

ix = P sin δ −Q cos δ (1.30)

where δ is the angle of the voltage that, in �rst approximation, 
an be 
onsidered

as 0 for the �rst phase and ±120◦ for the other phases.
Taking into a

ount the power un
ertainties and the law of propagation of the

un
ertainty, the following holds:

[

Σirx
]

=

[

∂firx
∂xpq

]

[

Σpq

]

[

∂firx
∂xpq

]T

(1.31)

where Σpq and Σirx are the 
ovarian
e matrix of the measurement errors in P and

Q and the unknown 
ovarian
e matrix of the resulting measurement errors in ir and
ix, respe
tively, while the derivative matrix is a matrix in
luding the derivatives of

the fun
tions asso
iated to ir and ix (see equations (1.29) and (1.30)) with respe
t

to the variables P and Q.

Expanding the matri
es in (1.31), it is possible to obtain:

[

σ2
ir σirix

σirix σ2
ix

]

=

[

cos δ sin δ
sin δ − cos δ

] [

σ2
P σPQ
σPQ σ2

Q

] [

cos δ sin δ
sin δ − cos δ

]

(1.32)

where σ2
P and σ2

Q are the varian
es of P and Q, σPQ is the possible 
ovarian
e existing

between P and Q, and σ2
ir , σ

2
ix and σirix are the similar varian
e and 
ovarian
e terms

referred to the 
urrents ir and ix.
Assuming the 
ovarian
e σPQ as null, the following results 
an be found:

σ2
ir = σ2

P cos2 δ + σ2
Q sin2 δ (1.33)

σ2
ix = σ2

P sin2 δ + σ2
Q cos2 δ (1.34)

σirix = cos δ sin δ(σ2
P − σ2

Q) (1.35)

From the obtained relationships, it is possible to observe that in 
ase of δ = 0,
the 
ovarian
e term is null and the varian
es of ir and ix are equivalent to the

ones of P and Q. Instead, when δ = ±120◦, both the varian
es and the 
ovarian
es

are nonzero terms and have to be taken into a

ount. As a result, the weights to

be 
onsidered in the weighting matrix of the BC-DSSE algorithm 
an be obtained

through the inversion of the 2 × 2 
ovarian
e matrix Σirx and have to in
lude also

the resulting 
ovarian
e terms.
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1.5.5 Building of Ja
obian and measurement fun
tions

The measurement fun
tions used in the new formulation of the BC-DSSE algorithm

are the same des
ribed in Se
tion 1.4.2. Some 
hanges arise instead for the Ja
obian

matrix, due to the in
lusion of the voltage sla
k bus into the state ve
tor. In fa
t,

the Ja
obian terms are the derivatives of the measurement fun
tions with respe
t to

the state variables used in the state ve
tor. Thus, be
ause of the additional voltage

into the state ve
tor, also the derivatives with respe
t to the sla
k bus voltage state

variable have to be 
al
ulated. Appendix A.1 reports the Ja
obian terms for the

derivatives with respe
t to the real and imaginary 
urrent variables. Appendix A.2

reports, instead, the additional terms of the Ja
obian asso
iated to the derivatives

with respe
t to the sla
k bus voltage.

From an implementation standpoint, it is important to observe that some of the

measurement fun
tions used in BC-DSSE are linear. This means that the asso
iated

Ja
obian sub-matrix is 
onstant. Therefore, the 
omputation of these sub-matri
es


an be made outside the iterative pro
edure required to solve the WLS problem, in

order to redu
e the exe
ution times. Moreover, on
e built the 
onstant Ja
obian sub-

matrix Hy, the related measurement fun
tions hy(x) 
an be simply 
omputed as a

matrix multipli
ationHyx between Ja
obian and temporary state ve
tor. Sin
e the

pseudo-measurements, whi
h are the majority of the available input measurements

for the estimator, are 
hara
terized by linear fun
tions, su
h implementation s
heme

allows obtaining important bene�ts in terms of exe
ution times.

As for the nonlinear measurement fun
tions, instead, the resulting Ja
obian sub-

matri
es depend on the variables in
luded in the state ve
tor, thus they should be

updated at ea
h iteration of the WLS pro
edure. In some papers, it is proposed

to stop in any 
ase the update of the Ja
obian after a given number of iterations,

be
ause if the algorithm is 
lose to 
onverge the 
hanges in the Ja
obian terms are

minimal. However, the number of iterations needed to 
onverge is stri
tly dependent

on the type of network and on its operating 
onditions. For this reason, here, the

Ja
obian sub-matri
es related to nonlinear fun
tions are always updated at ea
h

iteration of the WLS pro
edure.

1.5.6 Forward sweep step

As des
ribed in Se
tion 1.4, the forward sweep 
al
ulation is an essential step in

the BC-DSSE model sin
e it allows the 
omputation of all the bus voltages that are

needed to re�ne the equivalent 
urrent measurements. Di�erently from the original

proposal of Baran and Kelley in [31℄, in the BC-DSSE formulation here proposed

this 
al
ulation is performed starting from the estimated sla
k bus voltage (instead

of the measured substation voltage) and then 
omputing the voltage drops along

the lines resulting due to the estimated 
urrents. Thus, the quantities involved in
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1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

this 
al
ulation are: the estimated state variables (both the sla
k bus voltage and

the 
urrents) and the impedan
es of the bran
hes in the path between the sla
k bus

and ea
h 
onsidered node.

The exe
ution of this step 
an be performed by building a prede�ned matrix Znod,

whi
h depends on the parti
ular topology of the network, 
ontaining the impedan
e

terms needed to 
ompute the voltage drops involved in the 
al
ulation of ea
h bus

voltage. Therefore, it 
an be written:

v = vslack − Znodi (1.36)

where v is the 
olumn ve
tor of the 
omplex voltages of ea
h node of the network;

vslack is a 
olumn ve
tor (with the same size of v) 
omposed of the estimated sla
k

bus voltage; i is the 
olumn ve
tor of the 
omplex bran
h 
urrents.

Expanding eq. (1.36) to highlight all the three-phase 
omponents, it is:





vA
vB
vC



 =





vslackA
vslackB
vslackC



−





ZAAnod ZABnod ZACnod
ZBAnod ZBBnod ZBCnod
ZCAnod ZCBnod ZCCnod









iA
iB
iC





(1.37)

where the subs
ripts A, B and C indi
ate the phase to whi
h the ve
tors are referred.

As for the matrix Znod, the sub-matri
es in
luded in the diagonal blo
ks 
ontain the

self-impedan
e terms of the bran
hes involved in ea
h voltage drop 
al
ulation, while

the sub-matri
es outside the diagonal blo
ks in
lude the related mutual impedan
e

terms.

1.5.7 Treatment of meshes

Di�erently from the voltage based estimators, whi
h 
an handle the meshes with-

out parti
ular modi�
ations of the algorithm, the BC-DSSE model has to be duly

adapted to 
onsider possible meshes and the 
onsequent presen
e of additional 
ur-

rent state variables asso
iated to the re
losing bran
hes. To deal with this issue,

both [31℄ and [32℄ propose the in
lusion in the estimator model of the 
onstraint

given by the Kir
hho�'s voltage law along the mesh. Possible methods to in
lude

the equality 
onstraints in the BC-DSSE model are des
ribed with more details in

Chapter 2. Here, a simple way to ta
kle this issue is presented, that is the in
lusion

of the mesh 
onstraint as a virtual measurement.

A

ording to the virtual measurement approa
h, the 
onstraint has to be 
on-

sidered as any other measurement. Thus, both the measurement fun
tion and the

related Ja
obian sub-matrix have to be 
omputed.

The Kir
hho�'s voltage law 
onstraint 
an be expressed in the following way:

∑

h∈Ψ

αhZhih = 0 (1.38)
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where Ψ is the set of bran
hes involved in the 
onsidered mesh, Zh is the three-phase

impedan
e matrix of bran
h h, ih is the three-phase ve
tor of the 
omplex 
urrents

asso
iated to bran
h h, and αh is +1 or −1 depending on the mesh dire
tion with

respe
t to the 
onventional dire
tion assumed for the 
urrent of bran
h h.
Equation (1.38) 
an be also written in the following form:

∑

h∈Ψ

αh [(Rhi
r
h −Xhi

x
h) + j(Xhi

r
h +Rhi

x
h)] = 0 (1.39)

where Rh and Xh are the real and the imaginary parts of the three-phase impedan
e

matrix Zh, respe
tively.

As it 
an be observed, ea
h mesh in
ludes two 
onstraints, one for the real part

of the equation and the other one for the imaginary part. As a result, the following

two measurement fun
tions 
an be obtained:

hrmesh =
∑

h∈Ψ

αh(Rhi
r
h −Xhi

x
h) (1.40)

hxmesh =
∑

h∈Ψ

αh(Xhi
r
h +Rhi

x
h) (1.41)

The found relationships show that the mesh 
onstraints 
an be expressed through

linear measurement fun
tions. Consequently, the related Ja
obian sub-matrix is 
on-

stant and 
an be built outside the iterative WLS pro
edure. Details on the Ja
obian

terms asso
iated to the mesh 
onstraints, when 
onsidered as virtual measurements,


an be found in Appendix A.3.

It is worth noting that, if the mesh involves all the three phases of the system,

then there are two 
onstraints for ea
h phase, that is overall six 
onstraints to

be in
luded in the BC-DSSE model. The virtual measurements asso
iated to the

meshes must be set equal to zero and, sin
e these are a
tually 
onstraints, a large

weight must be assigned to ea
h one of them to emphasize their high 
on�den
e.

1.6 Advantages of the new formulation

This se
tion presents the bene�ts brought by the new BC-DSSE model on the a

u-

ra
y of the estimation results. To this purpose, some tests have been performed on

the simple 18-bus network depi
ted in Fig. 1.3. Details about the line parameters

and the rated load 
onsumption 
an be found in [37℄. Generation of 0.35 MW and

0.75 MW has been 
onsidered in nodes 7 and 14, respe
tively.

Tests have been performed by means of a Monte Carlo approa
h through 25000

trials. True referen
e operating 
onditions have been 
al
ulated by 
onsidering the

nominal load 
onsumption and by performing a power �ow 
omputation. Then, for
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Figure 1.3: 18-bus test network.

ea
h Monte Carlo iteration, measurements are extra
ted taking into a

ount the

assumed measurement un
ertainties. In parti
ular: pseudo-measurements on both

load and generation nodes have been 
onsidered with a maximum deviation of 50%

with respe
t to the nominal values of a
tive and rea
tive power and with Gaussian

distributions; voltage magnitude measurements have been assumed to be available in

substation (node 1) and on nodes 4 and 11, with normal distribution and maximum

value equal to 1%; measurement of a
tive and rea
tive power has been supposed on

the starting bran
h of the network, with normal distribution and maximum value

equal to 3%.

First of all, the 
apability of the new BC-DSSE formulation to �lter out the

errors present in the substation voltage measurement (that is, on the node assumed

as sla
k bus, whose voltage is in
luded in the state ve
tor) has been evaluated. Fig.

1.4 shows the detail of the measured value of voltage and the resulting estimation for
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Figure 1.4: Sla
k bus voltage: measured versus estimated values.

24



1.6. Advantages of the new formulation

50 Monte Carlo iterations. It is possible to observe that, thanks to the presen
e of

the other voltage measurements on nodes 4 and 11, the measurement in substation


an be 
learly re�ned leading to an estimation 
loser to the true voltage value (that

is 1.02 p.u.).

Table 1.1 shows, instead, the overall results for the estimated voltage pro�le in

terms of both magnitudes and angles. In parti
ular, the minimum and the maximum

expanded un
ertainties (with a 
overage fa
tor equal to 3) among all the nodes of

the grid are reported.

Table 1.1: Voltage estimation results for original and new BC-DSSE model.

Model Type

Voltage Magnitude Voltage Angle

Min Un
.

(%)

Max Un
.

(%)

Min Un
.

(
rad)

Max Un
.

(
rad)

Original BC-DSSE 0.99 1.04 0.08 0.10

Proposed BC-DSSE 0.56 0.59 0.07 0.09

Results highlight the inability of the original BC-DSSE model to a

urately es-

timate the voltage pro�le of the network. In fa
t, all the estimations are strongly

a�e
ted by the un
ertainty of the measurement in substation. This is 
lear looking

at the minimum and the maximum un
ertainties for the voltage magnitude: both

of them are around 1%, that is the un
ertainty of the voltage measurement in sub-

station. In the proposed model, instead, the whole pro�le 
an rely on the enhan
ed

estimation of the sla
k bus voltage and, thus, un
ertainties lower than 0.6% 
an be

a
hieved for all the nodes of the network. Results also show that drawba
ks of the

original BC-DSSE model are mainly fo
used on the voltage magnitude estimation.

However, a slight degradation of the estimation a

ura
y also exists for the other

quantities, as it 
an be seen for the voltage angle estimations.

As further 
on�rmation of the obtained results, tests with an in
reasing number

of voltage measurements have been 
arried out. At the beginning, only the voltage

measurement in substation (plus the additional power measurement on the starting

bran
h) has been taken into a

ount. Then, in ea
h following test, an additional

voltage measurement is 
onsidered on a randomly 
hosen node. All the voltage

measurements have been assumed to have an un
ertainty equal to 1%. Fig. 1.5

shows the results for the maximum voltage magnitude expanded un
ertainty among

the nodes. It is possible to observe that the original BC-DSSE does not allow

an enhan
ement of the voltage magnitude estimation, in spite of the in
reasing

number of voltage measurements pla
ed in the network. With the new state ve
tor,

instead, ea
h additional voltage measurement brings an improvement in the resulting

estimation, 
on�rming the proper operation of the proposed formulation.
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Figure 1.5: Voltage magnitude estimation with an in
reasing number of voltage

measurements.

1.7 In
lusion of PMU measurements

1.7.1 Phasor Measurement Units

The Phasor Measurement Units (PMUs) are new generation measurement devi
es

able to provide a

urate measurements of voltage and 
urrent phasors syn
hronized

to an absolute time referen
e [38℄. Time syn
hronization is possible thanks to the

Global Positioning System (GPS), whi
h provides a referen
e time signal syn
hro-

nized to the Coordinated Universal Time (UTC) with a time un
ertainty lower than

1 µs. The use of a 
ommon time referen
e allows for the syn
hronization of real-time

measurements performed in remote points of the network, providing in this way a

snapshot of the ele
tri
al quantities a�e
ting the grid in a given instant of time.

Moreover, using a universal referen
e allows dire
t measurement of phase-angles,

whi
h was so far te
hni
ally infeasible.

Besides the time syn
hronization, PMUs also have other advan
ed features. First

of all, they are digital instruments based on mi
ropro
essors, and this allows for the

implementation of 
omplex signal pro
essing te
hniques in order to a
hieve the high-

est possible a

ura
y. In last years, large resear
h e�orts have been fo
used on the

design of algorithms able to 
ompute the so-
alled syn
hrophasors with the maxi-

mum a

ura
y, even under dynami
 
onditions [39�42℄. In addition, the availability

of in
reasingly powerful and performing pro
essors allows for the attainment of high

reporting rates, with the 
onsequent possibility to perform many measurements per

se
ond.
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For all these reasons, PMUs represent an interesting option for the monitoring

and 
ontrol of modern power networks [43℄. In transmission systems, the deployment

of PMUs is ongoing sin
e several years. In many 
ountries their operation is still

in a testing stage, but in the near future measurement systems based on PMUs

are expe
ted to provide support to the Supervisory Control and Data A
quisition

(SCADA) systems and to enable new advan
ed fun
tions into the 
ontrol 
enters

[44, 45℄.

State estimation is of 
ourse one of the main appli
ations that 
an take advan-

tage from the deployment of PMUs on the network. Many works deal with the

issue of in
luding phasor measurements in state estimators for transmission systems.

In [46℄, the possibility to have linear state estimators based on phasor measurements

is shown. However, su
h possibility is 
onstrained to the presen
e of PMUs in ea
h

node of the network and, thus, it is not appli
able in 
urrent pra
ti
al 
ases. In [47℄,

instead, a two-step state estimator is proposed to minimize the modi�
ations to

existing SE algorithms. In this proposal, the �rst step is performed relying on 
on-

ventional measurements and using one of the traditional SE formulations; then, an

additional step is performed, by introdu
ing the phasor measurements, in order to

re�ne the estimation results. Hybrid formulations of SE, simultaneously in
orpo-

rating both 
onventional and phasor measurements, have been also proposed [48℄.

Furthermore, alternative methods to in
lude the phasor measurements have been

also presented. In [49℄, for example, di�erent solutions for in
luding the 
urrent

phasor measurements in traditional voltage based estimators are tested and ana-

lyzed.

In distribution systems, the need of PMUs for the monitoring and 
ontrol is

still a debated topi
. On one hand, the time syn
hronization, the high a

ura
y

and reporting rate 
an be important features also at the distribution level. On the

other side, the high 
osts of the 
ommer
ial PMUs 
urrently available in the market

represent an obsta
le to their e�e
tive deployment. As a result, a trade-o� has

to be found 
onsidering both the 
osts involved in the installation of the di�erent

measurement instruments (and the asso
iated 
ommuni
ation infrastru
ture) and

the te
hni
al requirements needed for the di�erent appli
ations envisioned in the


ontrol 
enter [50℄.

Whatever the 
hosen solution for the measurement system, the state estimators


on
eived for distribution systems should be able to handle the possible presen
e of

PMU measurements. Sin
e in distribution grids SE will be based on newly designed

algorithms, an hybrid solution, simultaneously implementing both 
onventional and

syn
hronized measurements, is the most suitable 
hoi
e. Next subse
tions show

the arrangement of the BC-DSSE algorithm in 
ase of PMU measurements, the

mathemati
al fun
tions to be 
onsidered for handling voltage and 
urrent phasors

and some implementation details useful to speed up the algorithm.
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1.7.2 BC-DSSE formulation with PMU measurements

As aforementioned, PMUs have the 
apability to provide both magnitude and an-

gle measurements of voltage and 
urrents. In parti
ular, angle measurements are

provided with referen
e to a 
osine wave, at the nominal frequen
y of the system,

syn
hronized to the o

urren
e of the UTC se
ond [51℄. To exploit su
h angle mea-

surements and to have an information 
onsistent with the other angle quantities, the


hoi
e of the sla
k bus angle as a referen
e is not possible anymore. In [52℄, the pos-

sibility to use the UTC time as referen
e for the angles of all the ele
tri
al quantities

involved in the SE problem, when PMU measurements are available, is presented.

Following this solution, the sla
k bus angle is not a known quantity anymore and it

also has to be estimated.

As a 
onsequen
e, when PMU measurements are available, the BC-DSSE for-

mulation here proposed has to be modi�ed in order to allow the estimation of the

sla
k bus angle. To make this possible, the state ve
tor presented in equations (1.17)

and (1.18) has to be extended to in
lude also the sla
k bus angle information. In

parti
ular, with referen
e to the generi
 single-phase state ve
tor xφ (asso
iated to

phase φ), and 
onsidering the sla
k bus voltage in re
tangular 
oordinates, the state

ve
tor be
omes:

xφ = [vrsφ, v
x
sφ, i

r
1φ, ..., i

r
Nbrφ

, ix1φ, ..., i
x
Nbrφ

] (1.42)

where vrsφ and vxsφ are the real and imaginary part of the sla
k bus voltage, respe
-

tively.

It is worth underlining that the in
lusion of the sla
k bus angle information in the

state ve
tor 
an be obtained using both re
tangular and polar 
oordinates. However,

in the proposed BC-DSSE algorithm, the use of re
tangular 
oordinates has been

preferred sin
e it allows a simpler implementation of measurement fun
tions and

Ja
obian in the algorithm. It is also important to re
all that, sin
e the state ve
tor

is 
hanged, the resulting modi�
ations for the Ja
obian terms (that is, the derivatives

with respe
t to both real and imaginary part of the sla
k bus voltage) have to be

duly taken into a

ount (see Appendix A.4).

1.7.3 PMU measurement fun
tions

In the same way of the traditional measurements, even for the phasor measurements

it is ne
essary to �nd the measurement fun
tions to be 
onsidered in the SE algo-

rithm. PMUs usually provide the phasor measurement in terms of magnitude and

angle. However, for the in
lusion into the BC-DSSE algorithm, their transformation

in re
tangular 
oordinates is more 
onvenient sin
e it allows a simpler implementa-

tion.
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• Current phasors

In this 
ase, the bene�ts resulting from the transformation of a 
urrent pha-

sor in re
tangular 
oordinates are evident, sin
e this 
hoi
e allows a
hieving

linear fun
tions. Similarly to the 
ase of bran
h power measurements, the mea-

surement fun
tion for a 
urrent phasor measured on the phase φ of a generi


bran
h l is:
hir

lφ
+ jhix

lφ
= α(irlφ + jixlφ) (1.43)

where α is ±1 depending on the dire
tion of the measured 
urrent with respe
t

to verse assumed as positive for the 
urrents in
luded in the state ve
tor. It is

possible to observe that 
urrent phasor measurements do not imply 
oupling

among the di�erent phases of the system.

• Voltage phasors

As seen in equation (1.13), the voltage phasor viφ on the phase φ of a generi


node i, 
an be expressed as:

viφ = v1φ −
∑

k∈Γ

Zk,φik (1.44)

where Γ is the set of the bran
hes involved in the path between sla
k bus and

measured node. Starting from this expression, it is possible to �nd:

hvr
iφ
+ jhvx

iφ
= Re

[

v1φ −
∑

k∈Γ

Zk,φik

]

+ j Im

[

v1φ −
∑

k∈Γ

Zk,φik

]

(1.45)

hvr
iφ
= vr1φ −

∑

k∈Γ

(Rk,φi
r
k −Xk,φi

x
k) (1.46)

hvx
iφ
= vx1φ −

∑

k∈Γ

(Xk,φi
r
k +Rk,φi

x
k) (1.47)

It is possible to observe that both the real and the imaginary part of the volt-

age measurement lead to 
oupling among the di�erent phases of the network.

However, both the fun
tions are 
hara
terized by linear relationships.

Besides the 
omputation of the measurement fun
tions, it is important to prop-

erly model the un
ertainty of the re
tangular quantities that have been obtained.

In fa
t, these quantities represent indire
t measurements whose un
ertainty should

be 
al
ulated duly 
onsidering the error propagation 
oming from the provided mag-

nitude and angle measurements. The re
tangular expression of both 
urrents and

voltages is obtained by means of the following:
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1. BRANCH CURRENT DISTRIBUTION SYSTEM STATE ESTIMATION

yr = Y cos δ (1.48)

yx = Y sin δ (1.49)

where y indi
ates the generi
 phasor (either of 
urrent or voltage), Y and δ are its
magnitude and angle, while yr and yx are its real and imaginary parts, respe
tively.

Indi
ating with Σyrx the desired 
ovarian
e matrix of the phasor measurement

in re
tangular 
oordinates and with ΣY δ the 
ovarian
e matrix of the polar version

of the phasor, the error propagation law is:

[

Σyrx
]

=

[

∂fyrx

∂xY δ

]

[

ΣY δ

]

[

∂fyrx

∂xY δ

]T

(1.50)

where fyrx is the ve
tor of the fun
tions shown in (1.48) and (1.49) whose derivatives

with respe
t to the starting quantities Y and δ have to be 
al
ulated.

Computing the derivative terms in (1.50), the following holds:

[

σ2
yr σyryx

σyryx σ2
yx

]

=

[

cos δ − Y sin δ
sin δ Y cos δ

] [

σ2
Y σY δ
σY δ σ2

δ

] [

cos δ sin δ
−Y sin δ Y cos δ

]

(1.51)

where σ2
Y and σ2

δ are the varian
e terms asso
iated to the starting magnitude and

angle measurements (whi
h 
an be obtained from the PMU data sheets, see for

example [53℄), σY δ is the possible 
ovarian
e term between magnitude and angle

measurement, and σ2
yr , σ

2
yx and σyryx are the equivalent terms asso
iated to the real

and imaginary 
omponents of the phasor.

Assuming the absen
e of 
orrelation between magnitude and angle measurement,

the following un
ertainty terms 
an be found:

σ2
yr = σ2

Y cos2 δ + σ2
δ Y

2 sin2 δ (1.52)

σ2
yx = σ2

Y sin2 δ + σ2
δ Y

2 cos2 δ (1.53)

σyryx = cos δ sin δ (σ2
Y − σ2

δ Y
2) (1.54)

It is possible to observe that the proper modeling of the measurement errors

for the re
tangular 
omponents of the phasor leads to a matrix where a 
ovarian
e

term also exists. As a 
onsequen
e, the weighting matrix should be built taking into

a

ount the presen
e of su
h 
orrelation and in
luding the weights resulting from

the inversion of the full 
ovarian
e matrix Σyrx.
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1.7.4 Building of PMU Ja
obian and fun
tions

In the previous subse
tion, the measurement fun
tions to be 
onsidered for the


urrent and voltage phasor measurements have been presented. Obviously, ea
h

one of these measurements implies the presen
e of two rows in the Ja
obian matrix

(one for the real 
omponent and one for the imaginary one). The details about the

derivative terms arising from the phasor measurements are shown in Appendix A.4.

Here, some indi
ations about the implementation of Ja
obian and measurement

fun
tions in the proposed BC-DSSE algorithm are provided. In parti
ular, it is

useful to highlight that both 
urrent and voltage measurements are 
hara
terized

by linear fun
tions. This implies that the 
orresponding Ja
obian sub-matri
es are


onstant matri
es that 
an be built outside the iterative WLS pro
ess. Moreover,

the asso
iated measurement fun
tions 
an be simply 
omputed, at ea
h iteration of

the algorithm, through a matrix multipli
ation between Ja
obian sub-matrix and

state ve
tor.

Further simpli�
ations are possible if the measurement system is only 
omposed

of PMUmeasurements (in addition to the power inje
tion pseudo-measurements). In

fa
t, it is possible to observe that, if there are not any voltage or 
urrent magnitude

measurements, then all the measurements to be 
onsidered in the BC-DSSE model

are 
hara
terized by linear relationships. In su
h a situation, the whole Ja
obian

matrix and even the Gain matrix 
an be 
omputed only on
e outside of the iterative

WLS pro
ess, allowing in this way a signi�
ant redu
tion of the exe
ution times.
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Chapter 2

In
lusion of equality 
onstraints into

BC-DSSE

2.1 Equality 
onstraints

In the previous Chapter, it has been mentioned that SE 
an be performed following

di�erent methods, ea
h one with its strengths and weaknesses. The WLS method

is in general the most used te
hnique in transmission systems [4℄, and some works

show that it 
an be the most 
onvenient 
hoi
e even for DSSE [26℄. Despite the tra-

ditional use of voltage magnitudes and angles as state ve
tor of the system, the WLS

approa
h 
an be implemented in di�erent ways depending on the variables 
hosen as

state ve
tor. The used state ve
tor, obviously, has an impa
t on the 
hara
teristi
s

of the estimator. Besides the SE approa
h and the 
hoi
e of the state variables,

there is another important aspe
t a�e
ting implementation, 
omputational burden

and performan
e of the SE algorithm: the way in whi
h the equality 
onstraints are


onsidered and in
luded into the SE model.

The equality 
onstraints are sure information deriving from a priori knowledge

on the operating 
onditions or the topology of the network. The most 
ommon


ase of equality 
onstraints that 
an be found in ele
tri
al systems is given by the

so-
alled zero inje
tions. The zero inje
tions are nodes where there is the 
ertainty

that there is neither load 
onsumption nor power generation. For instan
e, nodes in

whi
h there is the bran
hing of an in
oming line in more outgoing bran
hes, without

the presen
e of 
onne
ted loads or generators, are typi
al examples of zero inje
tion

nodes.

The in
lusion of the equality 
onstraints in transmission system state estimators

has been widely investigated in the literature and di�erent approa
hes have been

proposed to this aim. One of the simplest methods to handle these 
onstraints is

to 
onsider them as virtual measurements [4℄. Taking into a

ount the previously
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mentioned zero inje
tion, the 
orresponding virtual measurement 
an be a power or

a 
urrent inje
tion on the node equal to zero. The problem in su
h approa
h is that

the un
ertainty asso
iated to this information is null and, therefore, the resulting

weight for the virtual measurement should be in�nite. Obviously, this value 
annot

be used in the real implementation and then it is repla
ed by a very large weight

in order to emphasize the higher reliability of this information with respe
t to the

reliability of the other measurements. However, the use of very large weights 
an lead

to numeri
al problems in the running of the SE algorithm and thus other methods

have been proposed.

An alternative approa
h is given by the use of the Lagrangian method (see, for

example, [54℄). This te
hnique has been 
on
eived to deal with 
onstrained mini-

mization problems and for this reason it is well suited to be used even in the SE


ontext. In [55℄, to further improve the numeri
al properties of the SE algorithm, a

formulation based on the use of augmented matri
es has been proposed: however,

su
h kind of approa
h leads to large equation systems to be solved at ea
h itera-

tion of the SE algorithm. More re
ently, in [56℄, a modi�ed version of the virtual

measurement approa
h has been proposed: the use of very large weights has been

avoided by 
onsidering low weights even for the zero inje
tions and then re-imposing

the 
onstraints between subsequent iterations of the SE algorithm.

In this Chapter, an alternative option for the in
lusion of the equality 
onstraints

in the proposed BC-DSSE model is presented and tested. It is worth underlining

that, in distribution systems, the issue of dealing with the equality 
onstraints 
an

be parti
ularly relevant. In fa
t, the number of zero inje
tions 
an be very high,

sin
e, in the three-phase model of the distribution network, many nodes may have

no loads or generators 
onne
ted to some of the phases. Moreover, as anti
ipated

in Chapter 1, di�erently from the voltage based estimators, in the bran
h-
urrent

formulation of the SE algorithm even the Kir
hho�'s voltage law along the meshes

has to be 
onsidered as a 
onstraint. For these reasons, in the BC-DSSE models, an

e�
ient handling of the equality 
onstraints is an important requirement.

2.2 Classi
al formulation of the equality 
onstraints

Zero inje
tions are the most 
ommon 
ase of equality 
onstraints that 
an be found

in distribution networks. They 
an be generally represented as:

c(x) = 0 (2.1)

where c(x) is a 
olumn ve
tor of the fun
tions expressing the 
onstraints asso
iated

to the 2Nc zero inje
tions in terms of the state variables (2Nc be
ause ea
h one

of the Nc zero inje
tion nodes has 
onstraints on both the a
tive and the rea
tive


omponent of the power or 
urrent inje
tion). It is important to highlight that the
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onstraints

fun
tions involved in c(x) 
an be linear or nonlinear, depending on the 
hosen state

ve
tor. In the 
ase of the proposed BC-DSSE model, sin
e the 
onstraints 
an be


onsidered as zero 
urrent inje
tions, c(x) is a ve
tor of linear fun
tions (see the

measurement fun
tions of the equivalent 
urrent inje
tion measurements in Se
tion

1.4.2 for details), thus it is:

c(x) = Cx (2.2)

where the Ja
obian C is a 2Nc × N matrix (N is the number of variables in the

state ve
tor) in whi
h the j-th row in
ludes the derivatives of the j-th zero inje
tion

fun
tion with respe
t to the variables of the state ve
tor (see Appendix A.1 for

details about the 
reation of the Ja
obian matrix asso
iated to equivalent 
urrent

inje
tions).

As for the mesh 
onstraints, similarly, the Kir
hho�'s voltage law along the

meshes 
an be expressed as:

m(x) = 0 (2.3)

where m(x) is a 2Nmesh size ve
tor (with Nmesh representing the number of meshes

in the network) in whi
h ea
h 
ouple of rows j and j + 1 refers to the 
onstraints

asso
iated to the real and imaginary voltage drop along the path of the 
onsidered

mesh. As in the previous 
ase, the fun
tions asso
iated to the mesh 
onstraints


an be linear or nonlinear depending on the 
hosen state ve
tor. In the 
ase of the

BC-DSSE algorithm here proposed, again, the mesh 
onstraints are linear fun
tions

(see Se
tion 1.5.7 for the details about the measurement fun
tions asso
iated to the

meshes) and they 
an be expressed as:

m(x) = Mx (2.4)

where M is a 2Nmesh × N matrix having in ea
h row the derivatives of the 
orre-

sponding mesh fun
tion with respe
t to the state variables (details about the terms

in the Ja
obian matrix M 
an be found in Appendix A.3)

In the following subse
tions, the most used methods to deal with the equality


onstraints, namely the Virtual Measurements (VM) approa
h and the Lagrange

Multipliers (LM) method, will be presented. Su
h methods are then used as referen
e

for assessing the performan
e of the proposed approa
h, whi
h will be presented in

Se
tion 2.3.

2.2.1 Virtual Measurements approa
h

As already anti
ipated, the simplest method to 
onsider the equality 
onstraints in

the SE model is to in
lude them as virtual measurements with very large weights.

Indi
ating with ym the 
olumn ve
tor of the proper measurements (that is, the

ve
tor of the real-time measurements and the pseudo-measurements), with yzi the
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2. INCLUSION OF EQUALITY CONSTRAINTS INTO BC-DSSE


olumn ve
tor of the virtual measurements given by the zero inje
tions, and with

yzm the 
olumn ve
tor of the mesh 
onstraints, the total measurement ve
tor to be


onsidered in the BC-DSSE model is:

y =





ym

yzi

yzm



 =





ym

0

0





(2.5)

In the same way, and using the same subs
ripts for the notation, the Ja
obian,

the weighting matrix and the residual ve
tor 
an be written as:

H =





Hm

Hzi

Hzm



 =





Hm

C

M





(2.6)

W =





Wm 0 0

0 Wzi 0

0 0 Wzm





(2.7)

r =





rm
rzi
rzm



 =





ym − hm(x)
−c(x)
−m(x)





(2.8)

Taking into a

ount the so-
alled normal equations to be solved at ea
h iteration

of the WLS step in the SE algorithm (see equation (1.4)), the equation system

be
omes:

(HT
mWmHm +CTWziC +MTWzmM)∆x =

HT
mWmrm −CTWzic−MTWzmm

(2.9)

whi
h 
an be rewritten as:

(Gm +Gzi +Gzm)∆x = HT
mWmrm −CTWzic−MTWzmm (2.10)

where Gm = HT
mWmHm is a Gain matrix 
omponent asso
iated to the measure-

ments and, similarly, Gzi = HT
ziWziHzi and Gzm = HT

zmWzmHzm are Gain matrix


ontributes brought by the zero inje
tion and mesh 
onstraints, respe
tively. It is

worth underlining that the size of the obtained equation system is equal to N , where

N is the number of variables in the 
hosen state ve
tor.

Despite its simpli
ity, the VM approa
h 
an lead to numeri
al problems in the

solution of the normal equations shown in (2.10) be
ause of the simultaneous pres-

en
e of weights with di�erent orders of magnitude. Su
h issue, well-known in the

literature under the name of ill-
onditioning (see for example [4℄ for more details),
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al formulation of the equality 
onstraints

brings small errors in the di�erent entries of the equation system to be translated

in large errors for the solution ve
tor. Thus, both 
onvergen
e problems for the SE

algorithm and poor a

ura
y in the estimation results 
an arise in presen
e of an

ill-
onditioned equation system.

This aspe
t 
an be parti
ularly 
riti
al in distribution systems sin
e, in addition

to the large weights of the equality 
onstraints, there is the simultaneous presen
e

of pseudo-measurements that, instead, have to be 
onsidered with a very low weight

due to their poor reliability. For this reason, it is important to pay due attention to

the numeri
al properties of the DSSE algorithm during its design.

2.2.2 Lagrange Multipliers method

The Lagrange Multipliers (LM) method is a te
hnique used in many di�erent 
on-

texts for solving 
onstrained minimization problems. For this reason, it 
an represent

a suitable option also for the SE problem in presen
e of equality 
onstraints. A

ord-

ing to this approa
h, the obje
tive fun
tion to be minimized in the WLS problem

(des
ribed in Se
tion 1.3.2) has to be extended by in
luding also the equality 
on-

straints through suitable Lagrange multipliers. Taking into a

ount the expression

of the 
onstraints given by the fun
tions c(x) and m(x) for the zero inje
tions and

the meshes, respe
tively, the obje
tive fun
tion be
omes:

J(x) = [y − h(x)]T W [y − h(x)] + λ
T
zic(x) + λ

T
zmm(x) (2.11)

where λzi and λzm are the 
olumn ve
tors of the Lagrange multipliers asso
iated to

the zero inje
tion and mesh 
onstraints, respe
tively.

Ea
h Lagrange multiplier appearing in the above equation is an unknown and,

thus, the derivation of the obje
tive fun
tion and the subsequent appli
ation of the

Gauss-Newton approa
h to solve the resulting equations lead to the following system

to be solved at ea
h iteration of the WLS step:





Gm CT MT

C 0 0
M 0 0









∆x

−λzi
−λzm



 =





HTWr

−c(x̂)
−m(x̂)





(2.12)

where c(x̂) and m(x̂) are the 
onstraint fun
tions 
omputed through the estimated

state ve
tor x̂.

In (2.12), it is possible to observe that the equality 
onstraints are duly 
onsid-

ered in the estimation pro
ess and that it is still ne
essary to 
ompute both the


onstraint fun
tions c(x) and m(x) and the 
orresponding Ja
obian matri
es C and

M. However both the zero inje
tions and the meshes are not 
onsidered as mea-

surements anymore and thus they do not need to have an asso
iated weight. The
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only Gain matrix involved in the equation system is Gm, that is the Gain matrix

asso
iated to the set of real measurements and pseudo-measurements.

Su
h solution allows avoiding the use of large weights and hen
e relieves the ill-


onditioning problem. It is worth noting that in [4℄, to further redu
e the numeri
al


onditioning of the system, the use of a normalization 
oe�
ient γ for the weighting

matrix is suggested. The normalization 
oe�
ient 
an be 
hosen as:

γ =
1

max(Wii)
= min(σ2

ii) (2.13)

where Wii is the weight of the generi
 i-th measurement (or pseudo-measurement)

and σii is its standard deviation.

Introdu
ing the normalization 
oe�
ient in equation (2.12), the resulting system

to be solved at ea
h iteration of the SE algorithm is:





γGm CT MT

C 0 0
M 0 0









∆x

−λzi
−λzm



 =





γHTWr

−c(x̂)
−m(x̂)





(2.14)

It is important to highlight that the obtained equation system is expe
ted to

have better numeri
al properties with respe
t to the one found in equation (2.10),

but also implies a larger number of unknowns due to the presen
e of the Lagrange

multipliers. Considering that ea
h 
onstraint has an asso
iated multiplier, the size

of the equation system (2.14) is N + 2Nc + 2Nmesh.

2.3 State Ve
tor Redu
tion approa
h

In this Se
tion, a possible alternative approa
h to deal with the equality 
onstraints

in the proposed BC-DSSE algorithm is shown. The proposal is based on a simple

State Ve
tor Redu
tion (SVR): this 
an be easily obtained thanks to the linearity of

the fun
tions expressing the 
onstraints in the proposed BC-DSSE formulation [57℄.

Firstly, let us 
onsider the 
ase of zero inje
tions. As already mentioned, zero

inje
tions 
an be expressed as equivalent phasor 
urrent inje
tions equal to zero.

Thus, both for the real and the imaginary part of the 
urrent, it is possible to write:

∑

j∈Θi

αji
r
j = 0 (2.15)

∑

j∈Θi

αji
x
j = 0 (2.16)

where Θi is the set of the bran
hes in
ident to the zero inje
tion node i, and αj is
a 
oe�
ient equal to +1 or −1 depending on the in
oming or outgoing dire
tion
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tor Redu
tion approa
h

of the j-th bran
h. From the above relationships, it is easy to observe as a simple

state variable elimination 
an be obtained expressing one of the in
ident bran
h


urrents in terms of the remaining ones (a

ording to the Kir
hho�'s 
urrent law).

The total state ve
tor x 
an be, therefore, divided in a redu
ed state ve
tor x̃ of

length Ñ = N −2Nc and a set of 2Nc removable state variables xzi (where Nc is the

number of zero inje
tion nodes). Sin
e ea
h one of the eliminated variables is linked

to the remaining ones through the inje
tion 
onstraints, the following relationship

between the starting state ve
tor x and the redu
ed version x̃ 
an be found:

x =

[

x̃

xzi

]

=

[

IÑ
Γzi

]

x̃ (2.17)

where IÑ is a Ñ × Ñ identity matrix and Γzi is a 2Nc × Ñ matrix with nonzero

elements equal to ±1 that link the eliminated variables xzi to the remaining ones.

As for the mesh 
onstraints, in the same way, it is possible to exploit the linear

relationship of the 
onstraint fun
tion for writing one of the 
urrents involved in the

mesh as a fun
tion of the other ones. As already seen in Se
tion 1.5.7, the mesh


onstraint 
an be expressed as:

∑

h∈Ψ

αhZhih = 0 (2.18)

where Ψ is the set of the bran
hes involved in the mesh, αh is ±1 depending on the

dire
tion of the generi
 h-th 
urrent (with respe
t to the 
onventional dire
tion of

the mesh), and Zh and ih are the three-phase versions of the impedan
e and the


urrent of the h-th bran
h, respe
tively. From equation (2.18) it is possible to �nd:

ik = −αkZ−1
k

∑

h∈Ψ
h 6=k

αhZhih (2.19)

where k is the index of the bran
h whose 
urrents irkφ and i
x
kφ will be eliminated from

the state variables. The above equation thus allows a
hieving the expression of the


urrents in bran
h k as a fun
tion of the remaining bran
h 
urrents of the mesh.

Considering this additional step, 2Nmesh state variables xzm 
an be eliminated

(where Nmesh is the number of meshes; in general, if the mesh involves three-phase

bran
hes, for ea
h re
losing bran
h it is Nmesh = 3) and the state ve
tor x̃ 
an be

further redu
ed to a length equal to Ñ = N − 2NC − 2Nmesh. Equation (2.17) 
an

be adapted to 
onsider also the variables eliminated due to the mesh 
onstraints as

follows:

x =





x̃

xzi
xzm



 =





IÑ
Γzi
Γzm



 x̃ (2.20)
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where Γzm is a 2Nmesh × Ñ matrix linking the 2Nmesh eliminated 
urrent variables

xzm to the remaining ones.

In presen
e of the new state ve
tor x̃, the only arrangement needed to adapt the

BC-DSSE algorithm 
on
erns the normal equations to be 
onsidered in the WLS

step, whi
h have to be adapted a

ording to the following:

H̃T
mWmH̃m∆x̃ = H̃T

mWmrm (2.21)

where the new Ja
obian H̃m is:

H̃m = Hm





IÑ
Γzi
Γzm





(2.22)

and the residual ve
tor is 
omputed as rm = ym − h(
[

x̃T, x̃TΓT
zi, x̃

TΓT
zm

]T
).

On
e the state ve
tor x̃ is found, it is easy to 
ompute the eliminated bran
h


urrents using the matri
es Γzi and Γzm as shown in equation (2.20). It is important

to note that, sin
e the equality 
onstraints are information known a priori, the

matri
es Γzi and Γzm 
an be built outside the SE algorithm, exploiting the knowledge

on the topology and the features of the network. This avoids the 
omputation of

su
h matri
es inside the algorithm and thus allows saving 
omputational time.

Among the other 
hara
teristi
s of the proposed method, it is 
lear that the

ill-
onditioning problems brought by the VM method are avoided, sin
e the in-

put measurement ve
tor in
ludes only the real-time measurements and the pseudo-

measurements. The redu
tion of the state ve
tor, however, leads to a lower sparsity

of the system, re�e
ting the fa
t that ea
h eliminated variable is expressed in terms

of some remaining quantities. This 
an represent a drawba
k for the e�
ien
y of

the algorithm, be
ause the �ll-ins in the involved matri
es 
an a�e
t the sparse te
h-

niques usually adopted for handling the matri
es and solving the equation system.

At the same time, anyway, the redu
tion of the state ve
tor also allows having a

signi�
antly smaller equation system to be solved. In fa
t, as 
an be seen in equa-

tion (2.21), the size of the system in this 
ase be
omes N − 2Nc − 2Nmesh, that

is signi�
antly smaller than the 
ases of the VM and LM approa
hes (in parti
u-

lar 
onsidering that the number of zero inje
tions in distribution systems is usually

quite high). From a 
omputational standpoint, this aspe
t 
ountera
ts the draw-

ba
k given by the lower sparsity: the performan
e of the BC-DSSE algorithm has,

thus, to be evaluated in ea
h spe
i�
 
ase depending on the parti
ular features of

the analyzed network.

A further dis
ussion 
on
erns the appli
ability of this approa
h to other WLS

DSSE algorithms. From this point of view, it is worth to highlight that the elimi-

nation of the state variables, even if possible also with other state ve
tors, 
an be

implemented with su
h simpli
ity and e�
ien
y only when using re
tangular bran
h
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urrents, thanks to the linearity of the fun
tions asso
iated to the 
onstraints. When

di�erent variables are used in the state ve
tor, instead, the non-linearity of the 
on-

straints make the appli
ation of su
h approa
h signi�
antly more 
omplex and less

e�
ient.

2.4 Tests and results

2.4.1 Test assumptions and metri
s

Several tests have been performed on the unbalan
ed IEEE 123-bus network to

assess the performan
e of the SVR approa
h here proposed for the treatment of

the equality 
onstraints. Results are 
ompared to those obtained by means of the

traditionally used VM and LM metods in order to highlight the advantages or the

possible drawba
ks asso
iated to the proposed method. Fig. 2.1 shows the topology

of the ben
hmark grid; the data of the network 
an be found in [58℄.

1

3

4 5 6

2

7
8

12

11
14

10

20

19

22

21

18
35

37

40

135

33

32

31

27 26

25

28

29
30

250

48
47

49
50

51

44

45
46

42

43

41

36

38

39

66

65

64

63

62

60
160 67

57

58
59

54

5352
55 56

13

34

15

16

17

96

95

94

93

152

92
90 88

91 89 87 86

80

81

82

83

84

78
8572

73

74

75

77

79

300

111 110

108

109
107

112 113 114

105

106

101

102

103
104

450

100

97

99

68

69

70

71

197

151

150

61

610

 
9

24

23

251

195

451

149

350

98

76

Figure 2.1: IEEE 123-bus test network.

In order to a
hieve signi�
ant results from a statisti
al point of view, tests have

been performed through Monte Carlo simulations. The number of Monte Carlo

trials for ea
h simulated s
enario is NMC = 25000. For ea
h test, �rst of all, the true


onditions of the network are 
omputed by means of a power �ow 
al
ulation. Then,

in ea
h trial, measurements are extra
ted adding random errors to the 
orresponding

true values a

ording to the assumed un
ertainty of the quantities. In parti
ular, the
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measurement system has been supposed to be 
omposed of PMUs, with syn
hronized

measurements 
hara
terized by normal un
ertainty with standard deviation equal to

one third of the a

ura
y value. A

ura
ies equal to 0.7% and 0.7 
rad (i.e. 0.7 ·10−2

rad) have been 
onsidered for the magnitude and angle measurements, respe
tively,

in order to simulate a maximum Total Ve
tor Error (TVE) of 1% (as pres
ribed by

the syn
hrophasor standard [51℄ for the measurements in steady state 
onditions).

In addition to the PMU measurements, pseudo-measurements having a Gaussian

distributed un
ertainty, with a maximum deviation equal to 50% of the nominal

value, have been 
onsidered for all the loads of the network. Extra
ted measurements

are then provided as input to the BC-DSSE algorithm for the estimation pro
ess

and the results are stored for the subsequent analysis.

In order to perform a global assessment, the performan
e of the di�erent ap-

proa
hes is evaluated in terms of a

ura
y, numeri
al properties and 
omputational

e�
ien
y. To this purpose, the following metri
s have been used.

- Estimation a

ura
y : the Root Mean Square Error (RMSE) is an index 
om-

monly used in Monte Carlo simulations for assessing the a

ura
y of an esti-

mated quantity. Given a quantity x, whose true value is xtrue and the 
orre-

sponding estimation is x̂, the RMSE resulting from NMC Monte Carlo trials

is de�ned as:

RMSEx =

√

√

√

√

1

NMC

NMC
∑

i=1

(x̂i − xtrue)2 (2.23)

In this se
tion, however, the fo
us is not on the a

ura
y of a spe
i�
 quantity,

but on the overall a

ura
y performan
e of the di�erent approa
hes. For this

reason, a mean RMSE, obtained by averaging the RMSEs through all the

bran
hes or nodes of the network (depending on the 
onsidered quantity), is

introdu
ed as overall index for the a

ura
y assessment.

Besides the a

ura
y of the estimated quantities, another parameter will be

monitored to evaluate the a

ura
y of the di�erent approa
hes in modeling the

zero inje
tion 
onstraints. Su
h parameter is given by the sum of the power

inje
tions among all the zero inje
tion nodes and allows evaluating possible

issues deriving from an improper modeling of the zero inje
tion 
onstraint.

In [56℄, as an example, it is shown that an unsuitable modeling of the zero

inje
tion 
onstraints 
an also lead to the estimation of signi�
ant amounts

of inje
ted powers in the zero inje
tion nodes, despite the in
lusion of the


onstraint in the estimation algorithm. Equation (2.24) shows the de�nition

of the indexes 
on
erning both a
tive and rea
tive power inje
tion (with B

representing the set of all the zero inje
tion nodes of the network).

P0inj =
∑

i∈B

|Pi|, Q0inj =
∑

i∈B

|Qi| (2.24)
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- Numeri
al properties: as already anti
ipated in the presentation of the VM

approa
h, one possible issue in the modeling of the equality 
onstraints is given

by the resulting 
ondition number of the equation system to be solved. The


ondition number 
an be de�ned as the sensitivity of the solution of a linear

system of equations to possible errors present in the input data. In parti
u-

lar, a high 
ondition number means that the obtained solution ve
tor 
an be

drasti
ally a�e
ted by possible errors (even if small) present in the entries of

the equation system, while a low 
ondition number indi
ates a strong robust-

ness of the solution ve
tor to possible erroneous data. Be
ause of the need to

solve an equation system at ea
h iteration of the WLS step in the estimation

pro
ess, this issue obviously a�e
ts also the SE problem [4℄. The so-
alled ill-


onditioning of the system 
an lead to ina

ura
ies in the estimation results,

to possible 
onvergen
e problems (i.e. a larger number of iterations required

to the algorithm to 
onverge) and, in the worst 
ases, even to numeri
al insta-

bilities for the algorithm.

In all the presented approa
hes, the equation systems to be solved (i.e. (2.10),

(2.14) and (2.21) for the VM, LM and SVR methods, respe
tively) 
an be

rewritten in a 
ommon 
ompa
t form as follows:

Gtot∆xtot = u (2.25)

where Gtot is a 
oe�
ient matrix, ∆xtot is the total ve
tor of the unknowns

(note that this ve
tor in
ludes di�erent variables depending on the approa
h

and, in the 
ase of LM method, also the Lagrange multipliers are in
luded in

it) and u is the ve
tor resulting from the measurement and 
onstraint residuals

in the se
ond member of the equation system.

Given this 
ompa
t form of the equation system, the 
ondition number K 
an

be 
omputed referring to the 
oe�
ient matrixGtot a

ording to the following:

K(Gtot) = ‖Gtot‖ · ‖G−1
tot‖ (2.26)

where ‖·‖ stands for the 2-norm of the 
onsidered matrix.

Besides the 
ondition number, other interesting properties are the density and

the size of the 
oe�
ient matrix: in fa
t, both of them have a dire
t impa
t

on the 
omputational burden and the e�
ien
y of the estimation algorithm.

The density of a matrix is de�ned as the ratio between the number of nonzero

terms and the total number of elements in the matrix. A low density of the

matrix implies a large number of zeros and allows adopting suitable sparse

te
hniques for handling the matrix and solving the equation system. Su
h

te
hniques 
an lead to signi�
ant bene�ts for the 
omputational burden of the

algorithm. The size of the 
oe�
ient matrix is, instead, dire
tly related to the
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number of unknowns and equations to be solved. Obviously, a smaller number

of unknowns and equations brings advantages from the point of view of the


omputational burden and, 
onsequently, on the overall exe
ution times.

All these parameters (
ondition number, density and size of the 
oe�
ient

matrix) will be duly taken into a

ount in the following tests, in order to

highlight di�eren
es among the presented approa
hes and to show their impa
t

on the performan
e of the BC-DSSE algorithm.

- Computational e�
ien
y : the e�
ien
y is a 
ru
ial fa
tor in the design of the

estimation algorithm, sin
e the real-time running and the reporting rate of the

estimator are stri
tly dependent on it. As a 
onsequen
e, in the following tests,

the overall exe
ution times of the di�erent approa
hes will be assessed through

the monitoring of the average exe
ution time among the di�erent Monte Carlo

trials. Moreover, sin
e the exe
ution times are dire
tly a�e
ted by the number

of iterations needed for the algorithm to 
onverge, the average number of itera-

tions among the NMC Monte Carlo trials, for the di�erent alternative methods,

will be also evaluated. It is worth underlining that a
hievable results 
an be

signi�
antly a�e
ted by the hardware, software and implementation te
hnique

adopted for developing the SE algorithm. However, here, the implementation

of all the versions of the 
ompared methods has been referred to a 
ommon and

optimized stru
ture of the BC-DSSE algorithm; the only di�eren
es 
on
ern

the implementation details asso
iated to the di�erent in
lusion of the equality


onstraints in the BC-DSSE model, in order to make the 
omparison as fair as

possible. Tests have been performed under Matlab environment and run on a

2.4 GHz quad-
ore pro
essor with 8 GB RAM.

2.4.2 Impa
t of the weight on VM approa
h

Before beginning the 
omparison of the di�erent methods presented to deal with the

equality 
onstraints, a �rst series of tests, fo
used only on the VM approa
h, has been


arried out. In fa
t, in the VM approa
h, di�erent settings 
an be used, depending

on the parti
ular 
hoi
e of the weights assigned to the virtual measurements. For

this reason, some tests have been performed by using di�erent weights for the virtual

measurements, in order to highlight the impa
t of di�erent 
hoi
es. In these tests,

a measurement system 
omposed of three measurement points, pla
ed at nodes 150,

18 and 67, is assumed to be available in addition to the pseudo-measurements. Ea
h

measurement point is supposed to have a voltage syn
hrophasor measurement on

the node and 
urrent syn
hrophasor measurements on all the bran
hes 
onverging

to the monitored bus.

Table 2.1 shows the results for the total power inje
tion in the zero inje
tion

nodes when weights with in
reasing orders of magnitude are used. As it 
an be
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expe
ted, the use of larger weights leads to lower values of the power inje
tions

estimated in the zero inje
tion nodes, while, if low weights are used, a non-negligible

amount of power inje
tion is erroneously assigned to su
h buses. As a 
onsequen
e,

to stri
tly ful�l the 
onstraints, the weights to be used should be su�
iently high.

Table 2.1: Variation of P0inj and Q0inj in VM

Virtual Measurement weight

108 109 1010 1011 1012

P0inj [kW ] 2.1 2.2 · 10−1 2.2 · 10−2 2.2 · 10−3 2.2 · 10−4

Q0inj [kvar] 3.2 3.3 · 10−1 3.3 · 10−2 3.3 · 10−3 3.3 · 10−4

In any 
ase, it is worth noting that, despite the signi�
ant variation of erroneous

power inje
tion estimated in the zero inje
tion nodes, in all the 
ases the mean

RMSE for the a
tive powers in the bran
hes is similar (5.4 kW). The reason is

twofold: on one hand, the errors in the zero inje
tion estimations are di�erent in

sign, and this leads to an overall 
ompensation that limits the e�e
ts brought on

the bran
h power estimations; on the other side, the high un
ertainty of the pseudo-

measurements determines poor a

ura
y in the estimations of the power �ows: thus,

the impa
t of the erroneously estimated zero inje
tions is in any 
ase small with

respe
t to the a
tual errors in the bran
h power estimations.

Table 2.2 shows instead the trend for the 
ondition numbers obtained with dif-

ferent weights. As anti
ipated in previous se
tions, it is possible to see that larger

weights result in in
reasing values of 
onditioning. Despite the di�erent orders of

magnitude in the obtained 
ondition numbers, the tests here performed (with dou-

ble pre
ision) do not show any parti
ular deterioration of the a

ura
y results or of

the 
onvergen
e properties. However, it is important to underline that even larger


ondition numbers 
ould be obtained if other operating 
onditions or measurement


on�gurations are 
onsidered. Moreover, features of the network (like, for example,

the impedan
e values [4℄) signi�
antly a�e
t the 
onditioning, and their e�e
ts are

strongly dependent on the used hardware. Therefore, in general, the 
hoi
e of the

weight should be 
arefully evaluated, sear
hing a trade-o� between the requirement

to a

urately model the equality 
onstraints and the need to avoid ill-
onditioning

Table 2.2: Variation of the 
ondition number K in VM

Virtual Measurement weight

108 109 1010 1011 1012

K 6.20 · 104 2.66 · 105 2.64 · 106 2.64 · 107 2.64 · 108
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of the system. In the 
omparison tests shown in the rest of the Chapter, the weight

used for the virtual measurements in the VM approa
h will be 
onventionally set

equal to 1010.

2.4.3 Impa
t of the zero inje
tion 
onstraints

In this subse
tion, tests aimed at assessing the impa
t of the zero inje
tions on

the performan
e of the di�erent approa
hes are presented. The same measurement

system illustrated in the previous subse
tion (measurement points in nodes 150, 18

and 67) is used as referen
e 
on�guration.

Performed simulations 
learly highlight an important result: all the 
onsidered

methods exhibit really similar a

ura
y performan
e. As an example, the mean

of the per
ent values of RMSE obtained for the voltage and 
urrent magnitude

estimations are 0.14% and 7.40%, respe
tively, for all the tested methods. Similar

results 
an be found also for the mean RMSEs of the other ele
tri
al quantities. As

for the power inje
tion estimation in the zero inje
tion buses, it has been already seen

that the VM approa
h has values of the P0inj andQ0inj indexes slightly di�erent from

zero: this re�e
ts the approximation made by using a weight di�erent from in�nite,

whi
h, theoreti
ally, would properly represent the null un
ertainty asso
iated to the


onstraint. Nevertheless, su
h approximation does not have signi�
ant e�e
ts on

the a

ura
y of the other estimated ele
tri
al quantities. In 
ase of the LM and

SVR methods, instead, sin
e there is no approximation in the modeling of the zero

inje
tion 
onstraints, the power inje
tion estimated in the zero inje
tion buses is, as

expe
ted, equal to zero.

Sin
e all the methods show a similar behaviour from the point of view of the

a

ura
y, the evaluation of the performan
e 
an be fo
used on their 
omputational

e�
ien
y. In this 
ase, signi�
ant di�eren
es 
an be found due to the di�erent

numeri
al properties of the presented approa
hes. Table 2.3 shows the 
hara
teristi
s

of the 
oe�
ient matrix involved in the equation systems of the di�erent methods.

First of all, it is possible to note the signi�
ant redu
tion of the size of the equation

system resulting from the elimination of the state variables in the SVR method.

Table 2.3: Numeri
al properties of the 
oe�
ient matrix

Method Coe�. matrix

density

Coe�. matrix

size

Condition

number

VM 3.26% 454 × 454 2.64 · 106

LM 1.48% 692 × 692 1.21 · 105

SVR 21.17% 216 × 216 2.75 · 104
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Su
h a large redu
tion derives from the large number of zero inje
tions (119 over

227 total nodes for all the three-phases) that are present in the grid be
ause of the


onne
tion of many single-phase loads to three-phase nodes. As it 
an be observed

in Table 2.3, however, this size redu
tion happens at the 
ost of a signi�
ant in
rease

in the density of the 
oe�
ient matrix. On the 
ontrary, in the LM method, the

high number of zero inje
tions leads to a larger size and a lower density of the


orresponding 
oe�
ient matrix.

Table 2.4 shows the obtained results in terms of average number of iterations

and exe
ution times. It is possible to observe that the SVR approa
h 
learly results

the most e�
ient method, with an enhan
ement of the 
omputational performan
e

larger than 20% and 30% with respe
t to the VM and LM methods, respe
tively.

Moreover, it is worth noting that, given the density of the 
oe�
ient matrix and

the not too mu
h large size of the equation system, in this spe
i�
 
ase, the SVR

approa
h 
ould be also designed without using sparse te
hniques for handling the


oe�
ient matrix and solving the equation system: in su
h 
onditions, the enhan
e-

ment of the 
omputational performan
e rises up to more than 30% and 40% with

respe
t to the VM and LM approa
hes, respe
tively.

Table 2.4: Average iteration numbers and exe
ution times

Method Iteration

number

Exe
ution

time [ms℄

VM 3.36 17.6

LM 3.36 20.5

SVR 3.20 14.0

Results also show that the SVR method has better 
onvergen
e properties: the

average iteration number is, in fa
t, slightly lower than those of the VM and LM

approa
hes. This 
an be a very important feature, above all for those network (or,

in general, those s
enarios resulting from the parti
ular measurement system and

operating 
onditions) that require a large number of iterations for the algorithm


onvergen
e. An additional advantage guaranteed by the SVR method 
on
erns the


onditioning of the 
oe�
ient matrix. As it 
an be seen from Table 2.3, the SVR

method has the lowest 
ondition number, while the VM approa
h, with the 
hosen

weight for the virtual measurements, presents the worst result.

2.4.4 Impa
t of the measurement 
on�guration

Additional tests have been performed to verify the obtained results even with other

measurement system 
on�gurations. First of all, the possible use of di�erent mea-

surement devi
es has been taken into a

ount. To this purpose, PMU measurements
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have been repla
ed with voltage magnitude measurements on the monitored nodes

and a
tive and rea
tive power measurements on the 
onne
ted bran
hes. Un
ertain-

ties with normal distribution and maximum values equal to 1% and 3% have been


onsidered for the voltage and power measurements, respe
tively.

Performed tests 
on�rm all the results previously found for the 
ase of PMU

measurements. In fa
t, all the approa
hes show similar a

ura
y performan
e, while,

from the 
omputational point of view, the SVR method results again the most

e�
ient one. Tables 2.5 and 2.6 show the numeri
al properties and the e�
ien
y

results for the di�erent approa
hes. In Table 2.5, numeri
al properties basi
ally

repli
ate the 
hara
teristi
s of the 
oe�
ient matrix seen in Table 2.3 for the PMU

measurements (it is worth noting that, in this 
ase, due to the la
k of syn
hronized

measurements, the size of the equation systems is smaller be
ause of the di�erent

formulation of the state ve
tor, and in parti
ular of the sla
k bus voltage variables).

Even in this 
ase, the SVR approa
h is 
hara
terized by a redu
ed size of the equation

system but also by a higher density of the 
oe�
ient matrix. Moreover, it exhibits

the best properties from the point of view of the system 
onditioning.

In Table 2.6, the out
omes of the simulations show that, also in this 
ase, the

SVR method allows saving 
omputational time, with improvements higher than 15%

and 30% with respe
t to the VM and LM approa
hes (more than 23% and 37% if

the SVR approa
h is handled without using sparse matrix te
hniques). Furthermore,

Table 2.5: Numeri
al properties of the 
oe�
ient matrix, traditional measurements

Method Coe�. matrix

density

Coe�. matrix

size

Condition

number

VM 3.09% 451 × 451 4.05 · 106

LM 1.40% 689 × 689 4.77 · 104

SVR 20.56% 213 × 213 9.98 · 103

Table 2.6: Average iteration numbers and exe
ution times, traditional measure-

ments

Method Iteration

number

Exe
ution

time [ms℄

VM 4.99 22.9

LM 4.99 27.8

SVR 4.97 19.4
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it is possible to observe that the use of traditional measurements leads to a higher

number of iterations for the algorithm 
onvergen
e. The 
onvergen
e properties of

the SVR are, in this 
ase, almost equal to those of the other methods.

Another series of tests has been 
arried out taking into a

ount again the start-

ing measurement 
on�guration with PMUs. In these tests, additional voltage phasor

measurements are supposed to be available besides the measurement points in nodes

150, 18 and 67. Su
h s
enarios have been 
hosen be
ause the voltage measurements

are parti
ularly 
riti
al for the BC-DSSE algorithm. In fa
t, ea
h voltage mea-

surement introdu
es non-zero quantities in all the Ja
obian terms asso
iated to the

bran
h 
urrents in the path between the sla
k bus and the monitored node. As a

result, the following 
oe�
ient matrix is also 
hara
terized by a larger number of

non-zero elements, and this higher density 
ould a�e
t the 
omputational e�
ien
y

of the di�erent methods.

To assess su
h impa
t, tests have been performed assuming two additional volt-

age measurements in nodes 86 and 105. Table 2.7 reports the obtained results in

terms of both numeri
al properties and 
omputational e�
ien
y. As expe
ted, the

presen
e of the additional voltages leads to higher densities for the 
oe�
ient ma-

tri
es of all the analyzed methods: this is the main reason for the longer exe
ution

times with respe
t to those shown in Table 2.4. It is important to underline that the

obtained in
rease in the exe
ution times further emphasize the bene�ts related to

the use of the SVR approa
h. In this 
ase, the improvements in the 
omputational

e�
ien
y with respe
t to VM and LM are larger than 26% and 40%, respe
tively.

Table 2.7: Numeri
al properties and 
omputational e�
ien
y, two additional volt-

age measurements

Method Coe�. matrix

density

Coe�. matrix

size

Iteration

number

Exe
ution

time [ms℄

VM 5.95% 454 × 454 3.24 20.4

LM 2.68% 692 × 692 3.24 25.0

SVR 24.52% 216 × 216 3.15 15.0

To 
he
k the trend in the improvements brought by the SVR method, another

test has been performed adding four supplementary voltage measurements with

respe
t to previous s
enario (in nodes 25, 42, 48 and 91). Table 2.8 shows the

asso
iated results in terms of density of the 
oe�
ient matrix and e�
ien
y of the

di�erent methods. As it 
an be observed, the pla
ement of the additional voltage

measurements signi�
antly a�e
ts the matrix densities for all the methods and this


auses an important rise of the exe
ution times. In these 
onditions the advantages

brought by the use of the SVR approa
h be
ome still more evident, with saved
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times 
lose to 30% and 50% with respe
t to the VM and LM approa
hes. It is

worth underlining that, as previously mentioned, with these values of density of the


oe�
ient matrix and this size of the equation system, further advantages 
ould be

obtained by designing the SVR method without using sparse te
hniques. In this


ase, in fa
t, the enhan
ement in the 
omputational performan
e with respe
t to

VM and LM rises up to almost 37% and 50% for the s
enario with two additional

voltage measurements, and up to more than 45% and 60% for the measurement


on�guration with six supplementary voltages.

Table 2.8: Coe�
ient matrix density and 
omputational e�
ien
y, six additional

voltage measurements

Method Coe�. matrix

density

Iteration

number

Exe
ution

time [ms℄

VM 10.36% 3.16 25.8

LM 4.64% 3.16 35.8

SVR 31.49% 3.09 18.2

2.4.5 Impa
t of the mesh 
onstraints

To evaluate the behaviour of the di�erent approa
hes when dealing with the mesh


onstraints, some tests have been performed on the ben
hmark network 
onsidering

two re
losing bran
hes (between nodes 151 and 300 and between nodes 54 and 94)

and taking into a

ount the base monitoring 
on�guration 
omposed of syn
hronized

measurement points in nodes 150, 18 and 67.

The presen
e of meshes, as shown in Table 2.9, has a remarkable impa
t on the


hara
teristi
s of the 
oe�
ient matri
es for all the approa
hes. The �rst e�e
t is

on the size of the equation systems to be solved. In 
ase of VM, the presen
e of

the additional bran
hes 
reating the meshes leads to a larger number of unknowns

and, 
onsequently, even to a larger number of equations required to solve the system.

This is obviously re�e
ted in the size of the 
oe�
ient matrix. In the LM method,

this aspe
t is further exa
erbated by the need to have a Lagrange multiplier for

ea
h 
onstraint. For this reason, the in
rease of the size of the 
oe�
ient matrix

for the LM method (with respe
t to the size reported in Table 2.3 for the 
ase of

radial network) is bigger than the one resulting for the VM approa
h. As for the

SVR method, instead, sin
e ea
h equality 
onstraint leads to the elimination of a

state variable, no 
hange appears in the size of the equation system and, thus, in

the 
oe�
ient matrix.
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Table 2.9: Numeri
al properties of the 
oe�
ient matrix, weakly meshed network

Method Coe�. matrix

density

Coe�. matrix

size

Condition

number

VM 11.42% 466 × 466 1.52 · 107

LM 1.78% 716 × 716 5.92 · 105

SVR 34.43% 216 × 216 7.88 · 104

Also from the point of view of the 
oe�
ient matrix density, the e�e
ts brought by

the mesh 
onstraints are di�erent depending on the spe
i�
 approa
h. It is important

to observe that ea
h mesh introdu
es several non-zero entries in the Ja
obian matrix

M, sin
e it involves all the three-phase 
urrents of the bran
hes belonging to the

mesh itself. In the VM and SVR approa
h, due to the multipli
ations involving

the Ja
obian in the 
omputation of the 
oe�
ient matrix, this leads to a signi�
ant

in
rease of the matrix density. In the LM method, instead, sin
e the 
onstraints are

not involved in any matrix multipli
ation, and given also the important in
rease in

the size of the 
oe�
ient matrix, the sparsity properties are not jeopardized.

All these aspe
ts obviously bring dire
t e�e
ts on the 
omputational performan
e

of the di�erent approa
hes. Table 2.10 shows the obtained results in terms of itera-

tion numbers and exe
ution times. Despite the signi�
ant in
rease of the 
oe�
ient

matrix density, the SVR approa
h provides, on
e again, the best results both from

the point of view of the 
onvergen
e properties and, above all, of the exe
ution

times. Moreover, it is also important to highlight that, in this s
enario, be
ause of

the drasti
 in
rease of the density in the VM approa
h, the LM method provides

better 
omputational performan
e than the VM method. The time saved by using

the SVR approa
h is larger than 25% with respe
t to both VM and LM methods,

with a peak of 43% if no sparse te
hniques are used.

Table 2.10: Average iteration numbers and exe
ution times, weakly meshed net-

work

Method Iteration

number

Exe
ution

time [ms℄

VM 3.55 31.7

LM 3.56 31.0

SVR 3.42 23.2
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2.4.6 Impa
t of the size of the network

A last series of tests has been performed to investigate the possible e�e
ts brought

by di�erent sizes of the network. This analysis is 
ru
ial, sin
e a
tual distribution

grids are generally very large networks that 
an also have thousands of nodes. Thus,

it is important to test the performan
e of the di�erent approa
hes even for networks

with similar dimensions. To this purpose, and to make the 
omparison with the

previous results possible, networks with larger number of nodes have been 
reated

by 
onsidering an in
reasing number of feeders, where ea
h feeder repli
ates the

topology of the original 123-bus network. In all the tests, the measurement system

is supposed to be 
omposed of a measurement point in the primary substation and,

for ea
h feeder, of two measurement points in the nodes 
orresponding to the buses

18 and 67 of the original version of the grid.

The main e�e
t brought by the in
reasing sizes of the network is the redu
tion

of the density in the 
oe�
ient matri
es. Figure 2.2 shows, as an example, the

de
reasing trend obtained for the density of the 
oe�
ient matri
es of the di�erent

methods when passing from one to ten feeders. It is possible to observe that, despite

the in
reasing number of measurements, the presen
e of a large number of nodes

drasti
ally redu
es the matrix density. In this situation, even 
onsidering the huge

size resulting for the equation systems, the use of sparse te
hniques is a for
ed 
hoi
e

for the design of an e�
ient BC-DSSE algorithm.

Table 2.11 reports the results obtained when ten feeders are 
onsidered in the

network. In this 
on�guration, the resulting grid has more than two thousands

nodes (
onsidering the three phases). From Table 2.11, it is possible to observe that,

obviously, the exe
ution times are signi�
antly higher than those of all the previous
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Figure 2.2: Variation in the 
oe�
ient matrix density for networks with an in-


reasing number of feeders
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tests (given the larger size of the equation system to be solved). Even in this

s
enario, the SVR method keeps all the aforementioned advantages; its exe
ution

times are in fa
t signi�
antly lower than those of the other methods and it allows

saving more than 25% and 38% of the 
omputation time required by the VM and

LM approa
hes, respe
tively. Similar results and similar 
onsiderations also hold for

the tests performed with di�erent numbers of feeders.

Table 2.11: Numeri
al properties and 
omputational e�
ien
y, 10-feeders network

Method Coe�. matrix

density

Coe�. matrix

size

Iteration

number

Exe
ution

time [ms℄

VM 0.36% 4486 × 4486 4.00 185.4

LM 0.15% 6866 × 6866 4.00 223.1

SVR 2.22% 2106 × 2106 4.00 137.4

2.5 Final dis
ussion

Tests and results shown in this Chapter 
learly highlight that the in
lusion of the

equality 
onstraints through the elimination of state variables 
an provide important

bene�ts from the point of view of the 
omputational e�
ien
y of the BC-DSSE

algorithm. It is important to underline that su
h approa
h, even if well-known in the

literature, is usually not implemented in traditional voltage based estimators, sin
e

the resulting non-linearity of the 
onstraints does not allow a simple and e�
ient

implementation of this te
hnique. The possibility to express the 
onstraints with

linear relationships and to obtain the state ve
tor redu
tion in a simple way is, thus,

a spe
i�
 feature of the BC-DSSE algorithm.

The a
hievable improvements on the 
omputational e�
ien
y are, obviously,

stri
tly dependent on the parti
ular features of the 
onsidered network. The tests

here proposed, for example, refer to a ben
hmark network having a lot of zero inje
-

tions, whi
h 
an be easily handled with the proposed approa
h. However, it is to be

noted that, in a three-phase 
ontext, a large number of zero inje
tions should be a


ommon feature, sin
e three-phase nodes often have loads or generators 
onne
ted

to only one of the phases.

The SVR method proved also to be e�
ient in handling the mesh 
onstraints,

despite the in
rease of 
omputational burden 
aused by the many �ll-ins brought

by the meshes. From this standpoint, two aspe
ts have to be underlined. First of

all, depending on the size of the 
onsidered network, the possibility to design the

proposed method without using sparse matrix te
hniques 
an be taken into a

ount.
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Performed tests show that, if the network is not too large, 
omputations made by

using full matri
es 
an be 
onvenient in some s
enarios, above all if the density of the


oe�
ient matrix of the equation system is quite high. In this 
ase, the performan
e

of the algorithm are only a�e
ted by the size of the equation system and not by the

number of �ll-ins in the 
oe�
ient matrix. Thus, in
reasing advantages 
an be

obtained even in 
ase of a large number of meshes.

Instead, when the size of the network is very large, the use of sparse matrix

te
hniques is almost a for
ed 
hoi
e for obtaining an e�
ient design of the algorithm.

In this situation, the performan
e of the proposed approa
h 
an be adversely a�e
ted

by the �ll-ins appearing with a large number of meshes. However, hybrid solutions


ombining the advantages of di�erent methods 
an be also 
on
eived to deal with

this possible issue. As an example, the LM method proved to have smaller problems

(from the point of view of the density of the 
oe�
ient matrix) in presen
e of mesh


onstraints. Thus, a solution implementing the SVR method for the zero inje
tion


onstraints and adopting the LM approa
h for handling the mesh 
onstraints 
an

be also 
onsidered to further improve the e�
ien
y performan
e. In any 
ase, it is

worth noting that distribution grids are usually radial or weakly meshed networks.

As a result, possible problems 
aused by the number of �ll-ins in the 
oe�
ient

matrix of the equation system are generally limited, and the SVR approa
h 
an be


onveniently adopted to handle all the types of 
onstraints.
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Chapter 3

Performan
e analysis of BC-DSSE

3.1 WLS distribution system state estimators

As des
ribed in Chapter 1, the SE problem in power systems is traditionally fa
ed

referring to WLS estimation algorithms that use the voltage magnitudes and angles

at the di�erent buses of the network as state variables [4℄. Several reasons support

this 
hoi
e. First of all, transmission grids are usually highly meshed networks,

be
ause this topology ensures a higher reliability for the system. As a 
onsequen
e,

the 
hoi
e of state variables asso
iated to the nodes, rather than to the bran
hes,

allows a
hieving a smaller size for the equation systems to be solved inside the

algorithm. Moreover, transmission systems are usually 
hara
terized by very low

R/X ratios. This feature 
an be duly exploited in pra
ti
al appli
ations by negle
ting

the resistan
e terms. In this way, the SE algorithm 
an be de
oupled, separating the


omputation of the voltage magnitudes from the estimation of the voltage angles.

In distribution systems, be
ause of the di�erent features of the network, these

advantages do not hold anymore. In most of the 
ases, distribution grids are radial

or only weakly meshed; thus, the number of bran
hes and nodes in the network

is similar. As for the line parameters, R/X ratios 
lose to 1 or even higher are

quite 
ommon; therefore, the de
oupling of the traditional state estimators is not

possible. As a result, di�erent formulations of the WLS algorithm 
ould be more


onvenient than the traditional one and, in general, the ele
tri
al quantities related

to the bran
hes be
ome a possible alternative as state variables of the system.

For these reasons, in the literature, two main 
lasses of WLS algorithms have

been developed to deal with the DSSE problem: state estimators based on the node

voltages (as, for example, in [28�30,54,59℄) and estimators using the bran
h 
urrents

as state variables (like, for example, [31�34, 36, 60℄). Ea
h one of these 
ategories


an be further divided depending on the implementation of the state variables in

polar or re
tangular 
oordinates.

55



3. PERFORMANCE ANALYSIS OF BC-DSSE

This Chapter aims at assessing the performan
e of the proposed DSSE algorithm.

The goal is to highlight the strengths and weaknesses of the presented proposal,

providing a 
omprehensive and as fair as possible evaluation of the performan
e

through the 
omparison with other types of WLS estimators available in the litera-

ture, based on di�erent state variables. In fa
t, for example, the type of variables

dire
tly estimated through the DSSE algorithm 
ould a�e
t the �nal estimation a
-


ura
y. Moreover, the need to 
onsider di�erent mathemati
al relationships in the

algorithm 
an imply a di�erent 
omputational burden, and thus, also a di�erent

e�
ien
y for the alternative approa
hes [61℄. Besides the global performan
e of the

proposed DSSE formulation in terms of a

ura
y, e�
ien
y, 
omputational burden

and numeri
al properties, the possibility to design a phase-de
oupled version of the

algorithm will be also investigated. Furthermore, the impa
t brought by the network

parameter un
ertainties, due to the mathemati
al model used in the algorithm, will

be analyzed.

3.2 Node voltage based estimators

As aforementioned, voltage based estimators are well known in the literature sin
e

they are 
ommonly used in transmission systems. Their main advantage is the

handling of the meshed networks: in fa
t, they guarantee a 
onstant number of state

variables regardless of the radial, weakly or highly meshed topology of the network.

Moreover, the 
onstraints asso
iated to the appli
ation of the Kir
hho� voltage law

along the meshes are inherently 
onsidered in the model and do not require a spe
i�


implementation. Sin
e in distribution systems the traditional de
oupling of the state

estimator, obtained by negle
ting the resistan
e 
omponent of the line parameters,

is not possible, both polar and re
tangular 
oordinates have been proposed as a

possible 
hoi
e for the state variables of the system.

3.2.1 Polar voltage DSSE formulation

Referring to the three-phase model of the distribution systems, if the node voltages

in polar form are assumed as state variables of the DSSE algorithm, the state ve
tor


an be written as x = [xA,xB,xC ], where the generi
 
omponent xφ referred to

phase φ is:

xφ = [δ2φ, ..., δNφ, V1φ, ..., VNφ] (3.1)

where δiφ and Viφ are the angle and the magnitude of the voltage at the i -th node of

the phase φ and Nφ is the number of buses belonging to the phase φ of the network.

This state ve
tor is usually implemented when only 
onventional measurements

are deployed in the grid: in fa
t, the voltage angle of the �rst node (namely the
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sla
k bus of the system) is 
hosen as angle referen
e, �xed equal to zero (or ±120◦

depending on the 
onsidered phase of the system) and thus it 
an be removed from

the set of variables within the state ve
tor. Instead, if syn
hronized measurements

provided by PMUs are also available, as shown in [52℄, the referen
e is given by the

UTC time and thus the voltage angle of the sla
k bus should be also in
luded in the

state ve
tor for being estimated, leading to:

xφ = [δ1φ, ..., δNφ, V1φ, ..., VNφ] (3.2)

The main di�eren
es among the di�erent formulations are basi
ally fo
used on

the mathemati
al relationships needed to express the measurement fun
tions and,


onsequently, the Ja
obian matrix involved in the estimation pro
ess. Considering

[28℄ as referen
e for the mathemati
al details involved in the 
omputation of the

fun
tions asso
iated to the 
onventional measurements, and [49℄ for the in
lusion of

the syn
rophasor measurements, the following relationships have been 
onsidered.

• A
tive and rea
tive power �ow

Indi
ating with hPlφ
and hQlφ

the measurement fun
tions asso
iated to the

a
tive and rea
tive power �ow measurement on the phase φ of bran
h l, it is
possible to write (see [28℄ for details):

hPlφ
= Vsφ

C
∑

ψ=A

{gl,φψ [Vsψ cos(δsφ − δsψ)− Vrψ cos(δsφ − δrψ)]

+ bl,φψ [Vsψ sin(δsφ − δsψ)− Vrψ sin(δsφ − δrψ)]}
(3.3)

hQlφ
= Vsφ

C
∑

ψ=A

{gl,φψ [Vsψ sin(δsφ − δsψ)− Vrψ sin(δsφ − δrψ)]

− bl,φψ [Vsψ cos(δsφ − δsψ)− Vrψ cos(δsφ − δrψ)]}
(3.4)

where Vsψ and Vrψ are the voltage magnitudes of the generi
 phase ψ at the

sending and the re
eiving node of bran
h l, respe
tively; δsψ and δrψ, similarly,

are the voltage angles of the generi
 phase ψ at the sending and the re
eiving

nodes of the line, respe
tively; gl,φψ and bl,φψ are, respe
tively, the real and

imaginary parts of the admittan
e in bran
h l: if ψ = φ the 
omponents refer

to the self-admittan
e of the bran
h, while if ψ 6= φ the terms represent the mu-

tual admittan
e between the di�erent phases of the three-phase model. From

(3.3) and (3.4) it is possible to observe that the found relationships are non-

linear and involve the voltage states of both magnitudes and angles of all the

three phases of the sending and the re
eiving node of the 
onsidered line. As

a 
onsequen
e, the derivatives required in the Ja
obian matrix, if 
omputed
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without using approximations, are also nonlinear and would need to be up-

dated at ea
h iteration of the estimation pro
ess. Moreover, 
oupling among

the di�erent phases exists be
ause of the presen
e of the mutual admittan
e

terms.

• A
tive and rea
tive power inje
tion

The power inje
tion on the phase φ of node i 
an be seen as the sum of the

bran
h powers 
onverging to the 
onsidered node. As a result, the measure-

ment fun
tions hPinj,iφ
and hQinj,iφ

, related to the a
tive and rea
tive 
ompo-

nents of the power inje
tion, respe
tively, 
an be written as:

hPinj,iφ
= Viφ

∑

k∈Ω

C
∑

ψ=A

{gk,φψ [Viψ cos(δiφ − δiψ)− Vrkψ cos(δiφ − δrkψ)]

+ bk,φψ [Viψ sin(δiφ − δiψ)− Vrkψ sin(δiφ − δrkψ)]}
(3.5)

hQinj,iφ
= Viφ

∑

k∈Ω

C
∑

ψ=A

{gk,φψ [Viψ sin(δiφ − δiψ)− Vrkψ sin(δiφ − δrkψ)]

− bk,φψ [Viψ cos(δiφ − δiψ)− Vrkψ cos(δiφ − δrkψ)]}
(3.6)

where Ω is the set of bran
hes 
onverging to node i, Viψ and δiψ are the voltage

magnitude and angle of the generi
 phase ψ of the 
onsidered node i, Vrkψ
and δrkψ are the 
orresponding voltage magnitudes and angles of the ending

nodes of the k -th bran
h and gk,φψ and bk,φψ are, similarly to the previous


ase, the real and imaginary parts of the admittan
es in bran
h k. As in the


ase of power �ows, it is possible to note that the relationships des
ribing

the power measurements, and the asso
iated derivative terms, if 
onsidered

without any approximation are nonlinear and introdu
e 
oupling among the

di�erent phases.

• Current magnitude

The fun
tion asso
iated to a 
urrent magnitude measurement Ilφ on the phase

φ of a generi
 line l 
an be obtained as follows:

hIlφ =
√

irlφ
2 + ixlφ

2
(3.7)

where irlφ and ixlφ are the real and imaginary parts of the 
onsidered 
urrent,

whi
h 
an be 
omputed as follows:

irlφ =
C
∑

ψ=A

{gl,φψ [Vsψ cos(δsψ)− Vrψ cos(δrψ)]

− bl,φψ [Vsψ sin(δsψ)− Vrψ sin(δrψ)]}
(3.8)
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ixlφ =

C
∑

ψ=A

{gl,φψ [Vsψ sin(δsψ)− Vrψ sin(δrψ)]

+ bl,φψ [Vsψ cos(δsψ)− Vrψ cos(δrψ)]}
(3.9)

where, similarly to the 
ase of the bran
h power �ows, Vsψ and Vrψ are the

voltage magnitudes of the generi
 phase ψ at the sending and the re
eiving

nodes of bran
h l, δsψ and δrψ are the voltage angles at the same nodes, and

gl,φψ and bl,φψ are, respe
tively, the real and imaginary parts of the admittan
e

in bran
h l. As 
lear from the shown relationships, the 
urrent magnitude

measurement fun
tions are nonlinear and involve all the three phases of the

sending and re
eiving nodes of the 
onsidered bran
h. The 
al
ulation of the

derivatives with respe
t to the generi
 variable x of the state ve
tor, 
omputed

by using the rule of di�erentiation [28℄, yield:

∂Ilφ
∂x

=
∂Ilφ
∂irlφ

·
∂irlφ
∂x

+
∂Ilφ
∂ixlφ

·
∂ixlφ
∂x

(3.10)

∂Ilφ
∂x

=
∂irlφ
∂x

cos(θlφ) +
∂ixlφ
∂x

sin(θlφ) (3.11)

where θlφ is the 
urrent angle that 
an be obtained from the 
al
ulated real

and imaginary 
urrents as follows:

θlφ = tan−1

(

ixlφ
irlφ

)

(3.12)

As it 
an be observed from equations (3.7)-(3.12), if the proper 
omputation of

the measurement fun
tions and the Ja
obian sub-matrix related to the 
urrent

magnitude measurements is performed, several steps are needed. Moreover,

the Ja
obian has to be updated at ea
h iteration of the estimation pro
ess.

• Voltage magnitude

The measurement fun
tions related to a voltage magnitude measurement Viφ
on the phase φ of the node i is trivial, sin
e it 
orresponds to a state variable

of the system. Thus, it is:

hViφ = Viφ (3.13)

The presen
e of voltage magnitude measurements does not introdu
e 
oupling

among the di�erent phases of the system. Moreover, the 
orresponding Ja-


obian sub-matrix is 
onstant and, hen
e, it 
an be 
omputed outside the

iterative part of the DSSE algorithm to redu
e the 
omputational burden and

speed up the estimation pro
ess.
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• Current and voltage phasors

Following what demonstrated in [49℄, the more 
onvenient way to in
lude the


urrent PMU measurements in a voltage based estimator is by 
onsidering

them in re
tangular 
oordinates. The referen
e fun
tions are thus the same

indi
ated in (3.8) and (3.9) for the real and the imaginary 
omponents of

the 
urrent, respe
tively. It is worth noting that, similarly to what shown in

Chapter 1 for the BC-DSSE estimator, the in
lusion of the syn
hrophasors

in re
tangular 
oordinates leads to 
orrelations between real and imaginary

parts of the phasor, whi
h should be duly 
onsidered for a proper modeling

of the measurement errors. It is also worth noting that the derivatives to

be 
onsidered in the Ja
obian are not 
onstant and need to be 
omputed at

ea
h iteration of the WLS algorithm. As for the voltage phasor measurements,

instead, their in
lusion in the mathemati
al model of the polar voltage based

estimator is straightforward, sin
e both magnitudes and angles are variables

of the used state ve
tor. In this 
ase, therefore, the Ja
obian sub-matrix is


onstant and 
an be 
omputed only on
e outside the iterative part of the

estimation algorithm.

In 
omparison to the BC-DSSE proposed in Chapter 1, it is important to under-

line that in this model all the measurement fun
tions are dire
tly 
onsidered (while

in the re
tangular BC-DSSE formulation the power measurements were 
onverted

in equivalent 
urrent measurements). As a result, the polar Node Voltage DSSE

(NV-DSSE) does not require the 
omputation of equivalent measurements and the


onsequent 
al
ulation of the related full 
ovarian
e matrix of the measurement

errors. Furthermore, it is worth noting that, di�erently from the bran
h 
urrent

estimator, the other ele
tri
al quantities of the network (in this 
ase, for example,

the 
urrents) do not need to be 
omputed at ea
h iteration of the WLS algorithm,

but, if required, they 
an be 
al
ulated at the end of the iterative pro
ess (in the

proposed bran
h 
urrent estimator, instead, a forward sweep step was ne
essary at

ea
h iteration to 
ompute the node voltages to be used in the 
al
ulation of the

equivalent 
urrent measurements). This allows redu
ing the 
omputational 
osts

in the polar NV-DSSE. At the same time, however, the presen
e of many nonlin-

ear measurement fun
tions and the need to update at ea
h iteration the asso
iated

Ja
obian sub-matri
es, lead to the opposite e�e
t of in
reasing the 
omputational

burden.

3.2.2 Re
tangular voltage DSSE formulation

The re
tangular version of the voltage based DSSE is an alternative that allows a

more straightforward implementation of many of the measurement fun
tions. In

parti
ular, similarly to the proposed BC-DSSE, power measurement fun
tions 
an
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be linearized by using equivalent 
urrent measurements. This allows an easier imple-

mentation of many of the measurements available in a distribution system, namely

the pseudo-measurements related to the power inje
tions of loads or generators. Re-

ferring to the three-phase model of the distribution systems, and indi
ating with

x = [xA,xB,xC ] the three-phase state ve
tor, if only traditional measurements are

available in the �eld, the generi
 
omponent xφ referred to phase φ is:

xφ = [vr1φ, ..., v
r
Nφ, v

x
2φ, ..., v

x
Nφ] (3.14)

where vriφ and v
x
iφ are, respe
tively, the real and the imaginary parts of the voltage at

node i. If also PMU syn
hrophasors are present in the measurement system, instead,

the ve
tor xφ is:

xφ = [vr1φ, ..., v
r
Nφ, v

x
1φ, ..., v

x
Nφ] (3.15)

where the imaginary part of the sla
k bus voltage is introdu
ed be
ause of the use

of the UTC time as referen
e for the angle measurements.

The indi
ations shown in [30℄ are used as referen
e for the implementation of

the measurement fun
tions for this DSSE model. In the following, for the sake of


onvenien
e, the measurement fun
tions used in the implementation are reported.

• A
tive and rea
tive power �ow

As aforementioned, in the re
tangular NV-DSSE model, power measurements

are 
onverted in equivalent 
urrent measurements (see Se
tion 1.4 for details

on the 
omputation of the equivalent measurements). As a 
onsequen
e, the

a
tive and rea
tive power �ow in bran
h l are 
onverted in real and imagi-

nary 
urrents on the line, whi
h 
an be expressed in terms of the re
tangular

voltages used in the state ve
tor as follows:

heqir
lφ
=

C
∑

ψ=A

{gl,φψ
[

vrsψ − vrrψ
]

− bl,φψ
[

vxsψ − vxrψ
]

} (3.16)

heqix
lφ
=

C
∑

ψ=A

{gl,φψ
[

vxsψ − vxrψ
]

+ bl,φψ
[

vrsψ − vrrψ
]

} (3.17)

where vrsψ and vxsψ are the real and the imaginary parts of the voltage at the

sending node of the 
onsidered bran
h l, respe
tively, vrrψ and vxrψ are the anal-

ogous voltages at the re
eiving node of the line, and gl,φψ and bl,φψare the real
and imaginary terms of the admittan
e for bran
h l. From the reported equa-

tions, it is possible to observe that the 
onversion of the powers in equivalent


urrents allows a
hieving linear relationships. As a 
onsequen
e, the resulting

Ja
obian sub-matrix is 
onstant and 
an be 
omputed only on
e at the begin-

ning of the estimation pro
ess. The presen
e in the fun
tions of the self and
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mutual terms of bran
h admittan
e, instead, leads to the 
oupling among the

di�erent phases of the system.

• A
tive and rea
tive power inje
tion

Also for the power inje
tions, the 
onversion in equivalent 
urrent measure-

ments is generally performed. Considering the equivalent measurements deriv-

ing from a power inje
tion on the phase φ of node i, the following holds:

heqir
inj,iφ

=
∑

k∈Ω

C
∑

ψ=A

{gk,φψ
[

vriψ − vrrkψ
]

− bk,φψ
[

vxiψ − vxrkψ
]

} (3.18)

heqix
inj,iφ

=
∑

k∈Ω

C
∑

ψ=A

{gk,φψ
[

vxiψ − vxrkψ
]

+ bk,φψ
[

vriψ − vrrkψ
]

} (3.19)

where Ω is the set of the bran
hes 
onverging to node i, vriψ and vxiψ are the real

and the imaginary parts of the voltage of the generi
 phase ψ at the 
onsidered

node i, vrrkψ and vxrkψ are the real and imaginary parts of the voltages on the

phase ψ of the ending node of the k-th bran
h, and gk,φψ and bk,φψ are the real

and imaginary parts of the admittan
es in bran
h k. Similarly to the previous


ase, it is possible to note that the measurement fun
tions are 
hara
terized

by linear relationships (and 
onsequently by a 
onstant Ja
obian) and that

they imply the 
oupling among the di�erent phases of the system.

• Current magnitude

In [30℄, the 
urrent magnitude measurements are 
onverted in equivalent 
ur-

rent phasors exploiting the phase-angle 
omputed starting from the re
tangular


omponents of the 
urrent 
al
ulated as in (3.16) and (3.17). Here, to have a

fair 
omparison with the other approa
hes, su
h a 
onversion is not performed

and the 
urrent magnitude is implemented in its original form. Similarly to

what shown in the previous subse
tion for the polar NV-DSSE, the 
urrent

magnitude measurement in a generi
 bran
h l is 
omputed as:

hIlφ =
√

irlφ
2 + ixlφ

2
(3.20)

where irlφ and ixlφ are the real and imaginary parts of the 
onsidered 
urrent


al
ulated as in (3.16) and (3.17). Even in this 
ase, the rule of di�erentiation


an be used to 
ompute the derivatives to be in
luded in the Ja
obian matrix

and, thus, the following holds:

∂Ilφ
∂x

=
∂irlφ
∂x

cos(θlφ) +
∂ixlφ
∂x

sin(θlφ) (3.21)
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where x is the generi
 state variable of the state ve
tor and θlφ is the 
urrent

angle in the 
onsidered bran
h, whose tangent is equal to the ratio between

the 
omputed real and imaginary 
omponents of the 
urrent phasor. It is

worth noting that proper 
onsideration of the 
urrent magnitude measurement

implies a nonlinear fun
tion involving also the other phases of the grid and,

therefore, lead to the 
oupling among the three-phases of the system.

• Voltage magnitude

A voltage magnitude measurements on the phase φ of a generi
 node i of
the grid 
an be in
luded in the model of the re
tangular NV-DSSE algorithm

a

ording to the following:

hViφ =
√

vriφ
2 + vxiφ

2
(3.22)

where Viφ is the 
onsidered voltage magnitude and vriφ and vxiφ are the real

and imaginary 
omponents of the same voltage. It is possible to observe that

(3.22) is a nonlinear fun
tion but it does not introdu
e any 
oupling among

the di�erent phases of the system (thus, only state variables belonging to the

same phase of the measured voltage are involved in the 
al
ulations).

• Current and voltage phasors

The in
lusion of the 
urrent and voltage phasors in the re
tangular NV-DSSE

is straightforward. As for the 
urrents, the linear relationships shown in (3.16)

and (3.17) 
an be used to 
onsider the real and imaginary part of the phasor,

respe
tively. As for the voltage phasors, the implementation is also easy, sin
e

the measurements 
an be 
onverted in re
tangular 
oordinates in order to

have a full 
orresponden
e with the 
hosen state variables of the algorithm. In

both 
ases, it is worth noting that the 
onversion in re
tangular 
oordinates

of the syn
hrophasors provided by the PMUs requires the 
omputation of the

resulting full 
ovarian
e matrix, starting from the original measurement errors

asso
iated to the magnitude and phase-angle measurements. The pro
edure

to 
al
ulate this 
ovarian
e matrix is the same indi
ated in Se
tion 1.7.3 for

the re
tangular BC-DSSE. It is also important to note that both 
urrent and

voltage phasors, being 
hara
terized by linear measurement fun
tions, allows

the 
omputation of their 
onstant sub-matri
es only on
e in the estimation

algorithm.

In this formulation of the DSSE, similarly to the proposed re
tangular BC-DSSE,

equivalent 
urrent measurements are introdu
ed in pla
e of the original power mea-

surements. This allows the a
hievement of linear fun
tions (and 
onstant Ja
obians)

for the bran
h power measurements and above all for the pseudo-measurements of
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power inje
tions, whi
h are the majority of measurements in the distribution system


ontext. Di�erently from the re
tangular BC-DSSE, however, the voltages needed to

update at ea
h iteration the equivalent 
urrent measurements are dire
tly estimated

into the state ve
tor, and thus they do not need any other dedi
ated step. As for

the estimation of the 
urrents (or the powers) in the bran
hes, if needed, it 
an be


arried out at the end of the algorithm, outside of the iterative part, exploiting the

estimation of the node voltages and the 
onsequent knowledge of the voltage drop

along the lines.

3.3 Bran
h 
urrent based estimators

As illustrated in Chapter 1, the idea to use the re
tangular bran
h 
urrents as state

variables in the DSSE has been 
on
eived be
ause of the radial topology of many

of the distribution networks and the simpli
ity in the de�nition of the measurement

fun
tions (in parti
ular for the power measurements, when 
onverted in equivalent


urrent measurements). As already des
ribed, besides the 
omputation of the equiv-

alent 
urrent measurements, this pro
edure also requires the exe
ution of a forward

sweep step at ea
h iteration of the WLS algorithm, in order to obtain the updated

values of the voltages at the nodes. Some years later, the possibility to implement

a DSSE algorithm using the bran
h 
urrents in polar 
oordinates was advan
ed by

Wang and S
hulz [60℄. The main reason for this proposal was asso
iated to the


onsequent easiness in the handling of possible 
urrent magnitude measurements.

In fa
t, this kind of measurements 
an bring issues in traditional state estimators

and, for this reason, sometimes they are also dis
arded in 
ase of high redundan
y

of the measurements. Sin
e in distribution systems the measurements are only few,

the possible presen
e of 
urrent magnitude measurements 
annot be disregarded.

As a 
onsequen
e, they should be duly taken into a

ount and properly introdu
ed

into the DSSE model. The use of the polar BC-DSSE, thanks to the use of the


urrent magnitudes as state variables of the system, represents of 
ourse the most

straightforward solution for the management of these measurements.

3.3.1 Polar 
urrent DSSE formulation

Similarly to the polar version of the NV-DSSE, the polar BC-DSSE does not take

parti
ular advantages from a possible de�nition of equivalent 
urrent measurements

in pla
e of the powers. For this reason, power measurements 
an be de�ned in their

original form. Despite the la
k of this 
al
ulation, similarly to the re
tangular version

of the BC-DSSE, a forward sweep step is required at ea
h iteration of the estimation

algorithm to 
ompute the updated values of the voltages at the nodes. In fa
t (as

it will be shown in the following des
ription of the measurement fun
tions) the
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knowledge of the node voltages is ne
essary to 
al
ulate the measurement fun
tions

and the Ja
obian terms needed in the estimator. It is worth noting that, similarly

to what des
ribed in Chapter 1 for the re
tangular BC-DSSE, the original version

of the polar BC-DSSE presented in [60℄ is based on the use of only 
urrents in

the state ve
tor. However, su
h a 
hoi
e does not allow the a
hievement of any

knowledge about the voltage pro�le of the network. To deal with this issue, in [36℄,

a modi�ed version of this estimator has been proposed, where the sla
k bus voltages

are in
luded within the state ve
tor. As shown also for the re
tangular BC-DSSE

(Se
tion 1.6), the extended state ve
tor with the additional sla
k bus voltages allows

a suitable estimation of the voltage pro�le and to properly exploit the presen
e

of the voltage measurements available in the network. Referring to this extended

model, and taking into a

ount the three-phase s
heme of the distribution systems,

the state ve
tor x = [xA,xB,xC ] has, for ea
h phase φ, the following form:

xφ = [Vslack,φ, I1φ, ..., INbrφ, θ1φ, ..., θNbrφ] (3.23)

where Vslack,φ is the voltage magnitude of the phase φ of the sla
k bus, Ilφ and θlφ
are the magnitude and phase-angle, respe
tively, of the 
urrent in the same phase

φ of the generi
 bran
h l, and Nbr represents the total number of bran
hes present

in the network. The state ve
tor formulation shown in (3.23) 
an be used when

only 
onventional measurements are available on the �eld. Similarly to the other

estimators, if PMU measurements are also present, then the phase-angle of the sla
k

bus voltage has also to be estimated and thus it has to be in
luded in the state ve
tor.

In this 
ase, the in
lusion of the sla
k bus voltage is more 
onvenient if performed by

referring to its re
tangular 
omponents (the measurement fun
tions deriving from

this 
hoi
e are simpler, see [36℄ for additional details). As a 
onsequen
e, the state

ve
tor when syn
hrophasor measurements are present is:

xφ = [vrslack,φ, v
x
slack,φ, I1φ, ..., INbrφ, θ1φ, ..., θNbrφ] (3.24)

where vrslack,φ and v
x
slack,φ are the real and imaginary parts of the sla
k bus voltage on

the 
onsidered phase φ. In the following, referring to the 
onsiderations presented

in [60℄, the measurement fun
tions used for the implementation of the polar BC-

DSSE algorithm are reported for the sake of 
onvenien
e.

• A
tive and rea
tive power �ow

The a
tive and rea
tive power measurements on the phase φ of a generi
 bran
h
l 
an be expressed in terms of the polar 
oordinates of the bran
h 
urrents as

follows:

hPlφ
= αVsφIlφ cos(δsφ − θlφ) (3.25)
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hQlφ
= αVsφIlφ sin(δsφ − θlφ) (3.26)

where Vsφ and δsφ are the voltage magnitude and angle, respe
tively, of the

phase φ of the sending node of bran
h l, Ilφ and θlφ are the 
urrent magnitude

and angle of the same phase φ of bran
h l, and α is ±1 depending on whether

the measured power has the same dire
tion of the one 
hosen as 
onvention-

ally positive for the bran
h or not. From (3.25) and (3.26) it is possible to

observe that the measurement fun
tions des
ribing the bran
h power �ows are

nonlinear and they require the knowledge of the voltages in the 
onsidered

node. This emphasize the importan
e to perform the forward sweep step at

ea
h iteration of the DSSE algorithm (in order to have the updated values of

voltage) and above all to in
lude the sla
k bus voltages within the state ve
tor

in order to have a proper estimation of the voltage pro�le of the network. As

shown in [60℄, the Ja
obian terms 
an be 
onveniently 
al
ulated using the

same 
al
ulations needed for the de�nition of the measurement fun
tions. It is

also worth noting that, similarly to the re
tangular BC-DSSE, power measure-

ments do not imply the 
oupling among the di�erent phases of the system.

• A
tive and rea
tive power inje
tion

As seen in the previous 
ases, the power inje
tion in a generi
 node i 
an be

de�ned as the sum of the powers of the bran
hes 
onverging to the 
onsidered

node. Indi
ating with Ω and Λ, respe
tively, the sets of the bran
hes in
oming

and outgoing from the 
onsidered node i, the sear
hed measurement fun
tions


an be expressed as:

hPinj,iφ
= αViφ

[

∑

k∈Ω

Ikφ cos(δiφ − θkφ)−
∑

m∈Λ

Imφ cos(δiφ − θmφ)

]

(3.27)

hQinj,iφ
= αViφ

[

∑

k∈Ω

Ikφ sin(δiφ − θkφ)−
∑

m∈Λ

Imφ sin(δiφ − θmφ)

]

(3.28)

where Viφ and δiφ are the voltage magnitude and angle at the 
onsidered node

i, respe
tively, Ikφ and θkφ are the 
urrent magnitude and angle of the generi


bran
h k (the same notation also holds for the 
urrents of the bran
hes m) and

α is a 
onstant equal to ±1 depending on the dire
tion of the power inje
tion

(load 
onsumption or power generation). As in the previous 
ase, it is possible

to observe that power inje
tions are 
hara
terized by nonlinear measurement

fun
tions that require the knowledge of the voltage pro�le of the network for

their 
al
ulation. Moreover, they involve multiple bran
hes but do not imply

any 
oupling among the di�erent phases of the three-phase system.
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h 
urrent based estimators

• Current magnitude

The de�nition of the 
urrent magnitude measurements is obviously trivial sin
e

su
h measurements 
orrespond to state variables of the system. Therefore, for

the generi
 measurement on bran
h l, it is possible to simply write:

hIlφ = Ilφ (3.29)

where Ilφ is the 
urrent magnitude of the 
onsidered bran
h. In this 
ase, the

measurement fun
tions are linear and the related 
onstant Ja
obian matri
es


an be 
omputed only on
e at the beginning of the estimation pro
ess.

• Voltage magnitude

A voltage magnitude measurement on the phase φ of a generi
 node i 
an
be treated by 
onsidering the voltage drops along the lines, starting from the

estimated sla
k bus voltage. In parti
ular, indi
ating with Γ the path between

the sla
k bus and node i, it is possible to write:

viφ = vslackφ −
∑

k∈Γ

Zk,φik (3.30)

where viφ is the voltage phasor on the phase φ of the measured node i, vslackφ
is the voltage phasor on the same phase of the sla
k bus, Zk,φ is the row of

the three-phase impedan
e matrix of bran
h k in
luding the self and mutual

impedan
es for phase φ, and ik is the three-phase ve
tor of the 
urrents in

bran
h k. Starting from (3.30), it is possible to de�ne the voltage magnitude

measurement fun
tion in node i as:

hViφ = Re

{[

vslackφ −
∑

k∈Γ

Zk,φik

]

e−jδiφ

}

(3.31)

where δiφ is the voltage angle on the phase φ of node i. From (3.31) it is

possible to obtain:

hViφ = Vslackφ cos(δslackφ− δiφ)−
∑

k∈Γ

C
∑

ψ=A

Zk,φψIkψ cos(ζk,φψ+ θkψ− δiφ) (3.32)

where Vslackφ and δslackφ are the magnitude and the angle of the sla
k bus

voltage, Zk,φψ and ζk,φψ are the magnitude and the angle of the impedan
e in

bran
h k (the self impedan
e of phase φ if ψ = φ or the mutual term between

phases φ and ψ if ψ 6= φ), and Ikψ and θkψ are the magnitude and angle of

the 
urrent on phase ψ of the k-th bran
h. As it 
an be observed from (3.32),

the voltage magnitude measurement fun
tion involves the 
urrents of all the
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bran
hes (and phases) in the path between sla
k bus and measured node. The

fun
tion is nonlinear and implies the 
oupling among the di�erent phases of

the system.

• Current and voltage phasors

The in
lusion of the 
urrent phasors in the polar BC-DSSE algorithm is straight-

forward, sin
e PMUs provide the 
urrents in terms of their magnitude and

phase-angle, thus in the same form of the variables within the state ve
tor. As

for the voltage phasors, instead, a 
onvenient implementation 
an be obtained

by implementing the phasors in re
tangular 
oordinates (see [36℄ for further

details). Considering a voltage syn
hrophasor measurement on the phase φ of

a generi
 node i, the asso
iated measurement fun
tion 
an be obtained by 
om-

puting the real and the imaginary parts of the voltage measurement fun
tion

reported in (3.30) as follows:

hvr
iφ
= vrslackφ −

∑

k∈Γ

C
∑

ψ=A

Zk,φψIkψ cos(ζk,φψ + θkψ) (3.33)

hvx
iφ
= vxslackφ −

∑

k∈Γ

C
∑

ψ=A

Zk,φψIkψ sin(ζk,φψ + θkψ) (3.34)

where vrslackφ and vxslackφ are the real and imaginary parts of the phase φ of

the sla
k bus voltage, and the impedan
e and 
urrent terms are the same

presented for the 
ase of voltage magnitude measurements. As it 
an observed,


urrent phasor measurements are linear, with a 
onstant Ja
obian, and do

not introdu
e any 
oupling among the phases of the system, while voltage

phasor measurements are nonlinear and imply the 
oupling of the phases of

the network.

• Meshes

As des
ribed in Chapter 1, DSSE algorithms based on bran
h 
urrent state

variables require the expli
it implementation of the mesh 
onstraints brought

by the Kir
hho�'s voltage law along the meshes. As a 
onsequen
e, even

for the polar BC-DSSE it is ne
essary to de�ne the equivalent measurements

asso
iated to the mesh 
onstraints to be in
luded in the DSSE model. As seen

in Se
tion 1.5.7, the mesh 
onstraint 
an be expressed in the following terms:

∑

h∈Ψ

αhZhih = 0 (3.35)

where Ψ is the set of the bran
hes belonging to the 
onsidered mesh, αh is

±1 depending on the mesh dire
tion with respe
t to the 
onventional dire
-

tion assumed for the h-th bran
h 
urrent, and Zh and ih are the three-phase
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impedan
e matrix and the three-phase 
urrent ve
tor asso
iated to the h-th
bran
h, respe
tively. Expressing (3.35) in terms of the polar 
urrents of the

polar BC-DSSE state ve
tor, and 
onsidering that the Kir
hho�'s voltage law

holds for both the real and imaginary voltage drops, it is possible to �nd:

hrmesh,φ =
∑

h∈Ψ

C
∑

ψ=A

αhZh,φψIhψ cos(ζh,φψ + θhψ) (3.36)

hxmesh,φ =
∑

h∈Ψ

C
∑

ψ=A

αhZh,φψIhψ sin(ζh,φψ + θhψ) (3.37)

where Zh,φψ, ζh,φψ, Ihψ and θhψ are the same terms of impedan
e and 
urrent

used also for the voltage measurement fun
tions. As 
lear from (3.36) and

(3.37), measurement fun
tions asso
iated to the mesh 
onstraints are nonlinear

and imply the 
oupling among the di�erent phases of the grid.

3.4 Tests and results

3.4.1 Test assumptions and metri
s

Several tests have been performed to analyze the performan
e and 
hara
teristi
s

of the presented WLS formulations in di�erent s
enarios. The balan
ed 95-bus

network depi
ted in Fig. 3.1

1

is used as ben
hmark grid to assess the performan
e

of the WLS models in presen
e of 
hanging measurement system 
on�gurations and

in 
ase of meshed topology of the network (obtained by 
onne
ting some nodes as

des
ribed in the following). The presen
e of either 
onventional or syn
hrophasor

measurements has been supposed to investigate possible di�eren
es of the impa
t

brought on the WLS algorithms performan
e. Data of the 95-bus network 
an be

found in [62℄. Further simulations are then 
arried out on the unbalan
ed IEEE

123-bus network shown in Fig. 3.2 [58℄. The fo
us in this 
ase is on the impa
t

brought by the three-phase model of the network (with the 
onsequent presen
e of

mutual terms for the bran
h impedan
es) on the numeri
al properties of the di�erent

WLS formulations. Moreover, the possibility to a
hieve the phase-de
oupling of the

di�erent WLS algorithms is also studied.

Tests have been performed by means of Monte Carlo simulations using a number

of Monte Carlo trials NMC = 25000. In all the tests, a load �ow, referring to the

nominal 
onditions of the network, is performed to �nd the operating 
onditions of

the grid to be 
onsidered as referen
e. Then, starting from these referen
e 
onditions,

1

As for the numeration of the bran
hes, ea
h bran
h index is given by the node number of its

end node (the largest one), de
reased by one.
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Figure 3.1: Balan
ed 95-bus test network
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Figure 3.2: Unbalan
ed IEEE 123-bus test network

measurements and pseudo-measurements are extra
ted a

ording to their assumed

un
ertainty distribution. In parti
ular, the following assumptions have been used in

all the tests.
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- Pseudo-measurements are assumed to be available for all the load and genera-

tion nodes, and are 
onsidered as random variables with a Gaussian probability

distribution having expanded un
ertainty (with 
overage fa
tor equal to three)

equal to 50% of their rated value.

- Real measurements are assumed as random variables with a Gaussian probabil-

ity distribution having standard deviation equal to one third of their a

ura
y.

As for the 
onventional measurements, an a

ura
y of 1% and 2% is 
onsid-

ered for voltage and 
urrent magnitude measurements, respe
tively. As for the

syn
hrophasors provided by PMUs, instead, an a

ura
y equal to 0.7% and

0.7 
rad has been taken into a

ount for the measurements of magnitude and

phase-angle, respe
tively; su
h a 
hoi
e allows obtaining a maximum TVE of

1% as pres
ribed by the standard for the syn
hrophasors [51℄ for the measure-

ments in steady state 
onditions.

- Equality 
onstraints are handled in all the methods by means of virtual mea-

surements with a weight equal to 1010. As seen in Chapter 2, some bene�ts


ould be a
hieved for the re
tangular BC-DSSE by in
luding the equality 
on-

straints through a state ve
tor redu
tion; however, here, the same approa
h

has been adopted for all the algorithms in order to obtain a fair 
omparison

through the use of the same settings.

- The same 
onvergen
e 
riterion has been used for all the algorithms. To

a
hieve a 
omparable behaviour even from this point of view, in bran
h 
ur-

rent based estimators the stop 
riterion has been �xed on the voltage variables,


onsidering at ea
h iteration the di�eren
e between the a
tual voltage state

(as obtained from the forward sweep) and the voltage state of the previous

iteration. Similarly to the voltage estimators, the maximum absolute value

among these voltage di�eren
es is 
ompared to a prede�ned threshold (10−6

for all the estimators).

As for the metri
s used to assess the performan
e of the di�erent WLS algo-

rithms, similarly to Chapter 2, the mean RMSE has been adopted as global index

for the evaluation of the estimation a

ura
y. Together with the a

ura
y perfor-

man
e, the 
omputational e�
ien
y of the di�erent WLS formulations has been

evaluated through the average of the exe
ution times in the di�erent Monte Carlo

trials. In addition, the average number of the iterations and the numeri
al properties

of the di�erent WLS formulations, in terms of density of the Gain matrix, are also

monitored. The number of iterations is 
onsidered sin
e the 
onvergen
e properties

of the algorithm have an obvious impa
t on the exe
ution times. As for the Gain

matrix, its density 
an a�e
t the exe
ution times when sparse matrix methods are

used, as usual, to handle the matri
es and to solve the equation systems within
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the WLS algorithm. In the following se
tions, a detailed analysis is 
arried out to

investigate the impa
t of these aspe
ts on the overall performan
e of the di�erent

WLS formulations.

3.4.2 Results on the 95-bus network

The �rst series of tests has been performed referring to a realisti
 measurement sys-

tem s
enario, where only few measurement devi
es are pla
ed on the network. To

this purpose, three measurement points have been assumed to be available at nodes

1, 11 and 55. Ea
h measurement point is 
omposed of the voltage measurement

at the node and of 
urrent measurements in two of the bran
hes 
onne
ted to the

node. The test has been 
arried out 
onsidering the possibility to have either 
onven-

tional or syn
hrophasor measurements (thus 
onsidering magnitudes or phasors of

voltage and 
urrent). A �rst important result is obtained looking at the a

ura
ies

provided by the tested algorithms. In fa
t, all the WLS formulations provide the

same a

ura
y results regardless of the used state variables. This is a relevant result

sin
e it highlights that the di�erent 
hoi
e of the state variables does not a�e
t the

estimation a

ura
y. Moreover, it also proves that the 
onversion of the power mea-

surements in equivalent 
urrents, into the re
tangular formulations of both the node

voltage and the bran
h 
urrent estimators, does not lead to any degradation of the

a

ura
y performan
e of the 
orresponding estimators. As a 
onsequen
e, the 
hoi
e

of the most suitable algorithm to be used in a spe
i�
 
ontext 
an be addressed by

other fa
tors, like, for example, the 
omputational e�
ien
y. Table 3.1 shows the

results of mean RMSE obtained for all the WLS formulations.

Table 3.1: Test with starting measurement 
on�guration, 
urrent and voltage esti-

mations: mean Root Mean Square Errors (RMSEs)

Measurement

type

Current

magnitude

[%℄

Current

angle

[
rad℄

Voltage

magnitude

[%℄

Voltage

angle

[
rad℄

Conventional 9.26 3.94 0.20 0.09

PMU 8.30 2.59 0.14 0.01

As for the 
omputational e�
ien
y, instead, di�erent results have been obtained

depending on the adopted formulation. Table 3.2 shows the 
omparison of the re-

sults in terms of exe
ution times, together with the 
onvergen
e properties and the

numeri
al 
hara
teristi
s of the Gain matrix of ea
h one of the tested algorithms.

It is possible to observe that signi�
antly lower exe
ution times 
an be obtained
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Table 3.2: Test with starting measurement 
on�guration, 
omputational and nu-

meri
al properties

Estimator

Measurement

type

Avg

Exe
ution

Time [ms℄

Avg

Iteration

Number

Gain

matrix

density [%℄

re
t. BC-DSSE

Conventional 7.5 6.4 3.7

PMU 4.5 3.5 3.8

polar BC-DSSE

Conventional 25.8 6.3 5.3

PMU 18.3 4.2 5.4

re
t. NV-DSSE

Conventional 9.3 6.4 5.8

PMU 5.3 3.5 5.8

polar NV-DSSE

Conventional 23.3 6.3 5.8

PMU 14.4 3.6 5.8

through the re
tangular versions of the estimators. The main reason is the presen
e

of a larger number of linear measurement fun
tions. In parti
ular, the 
onversion

of the pseudo-measurements, whi
h represent the majority of the measurements to

be pro
essed, in equivalent 
urrents allows only one 
omputation of the related 
on-

stant Ja
obian sub-matrix, thus saving 
omputational time. It is also important to

note that, in the measurement s
enario with syn
hrophasor measurements, sin
e all

the measurements involved in the estimation pro
ess are linear (only for the re
tan-

gular estimators), then the whole Ja
obian matrix 
an be built only on
e and also

the Gain matrix 
an be fa
torized outside the iterative part of the WLS pro
edure.

This, obviously, allows saving additional 
omputation time. In general, it is also

interesting observing that, in 
ase of PMU measurements, the availability of pha-

sor measurements allows improving the 
onvergen
e properties of all the algorithms.

From this point of view (
onvergen
e properties), all the 
ompared formulations

exhibit a similar behaviour. In the 
omparison between the two best formulations,

namely the proposed BC-DSSE and the re
tangular NV-DSSE, it is possible to ob-

serve that the bran
h 
urrent version provides slightly better e�
ien
y performan
e.

This is also due to a more straightforward management of the pseudo-measurements

that, as seen in Chapter 1, 
an be expressed as a simple sum of the used state vari-

ables. In this way, in fa
t, only a redu
ed number of state variables are involved

in the asso
iated Ja
obian sub-matrix and this leads to a lower density of the Gain

matrix. As dis
ussed also in Chapter 2, this allows obtaining important advantages,

in parti
ular 
onsidering the 
ommon use of sparse matrix methods for the exe
ution

of the mathemati
al operations within the algorithms.
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Impa
t of the measurement system 
on�guration

Further tests have been performed by 
onsidering di�erent 
on�gurations of the

measurement systems. The aim is to highlight possible di�eren
es with respe
t to

the previous test s
enario, or possible drawba
ks for some of the WLS algorithms, in

presen
e of spe
i�
 
on�gurations of the measurement infrastru
ture. In parti
ular,

looking at the mathemati
al relationships des
ribing the measurement fun
tions of

the di�erent WLS formulations, it 
ould be expe
ted that voltage measurements are


riti
al for the bran
h 
urrent estimators and, on the 
ontrary, 
urrent measurements


ould be troublesome for voltage based estimators.

Following this 
riterion, and to emphasize possible drawba
ks, a test has been

performed adding seven voltage measurements with respe
t to the starting mea-

surement system s
enario used in the previous test. Voltage measurements have

been pla
ed at nodes: 28, 40, 54, 76, 81, 87 and 95. Even in this 
ase, obtained

results show that all the estimators provide the same a

ura
y performan
e, thus


on�rming the previous 
omments on this aspe
t. As for the 
omputational perfor-

man
e, Table 3.3 shows the results in terms of exe
ution times, average iteration

number and Gain matrix density. It is possible to note that, again, the re
tangular

versions of the estimators provide results largely better than the polar ones (the

exe
ution times are more than halved). At the same time, in the 
omparison be-

tween BC-DSSE and NV-DSSE, it is possible to observe that voltage measurements

bring a 
lear degradation of the e�
ien
y performan
e of the bran
h 
urrent based

estimators. In parti
ular, the sparsity properties of both the re
tangular and polar

BC-DSSE are signi�
antly worsened due to the 
onsidered voltage measurements.

Table 3.3: Test with additional voltage measurements, 
omputational and numer-

i
al properties

Estimator

Measurement

type

Avg

Exe
ution

Time [ms℄

Avg

Iteration

Number

Gain

matrix

density [%℄

re
t. BC-DSSE

Conventional 11.1 6.3 22.6

PMU 6.2 3.5 23.1

polar BC-DSSE

Conventional 29.7 6.2 23.4

PMU 21.9 4.2 23.9

re
t. NV-DSSE

Conventional 9.3 6.3 5.8

PMU 5.5 3.5 5.8

polar NV-DSSE

Conventional 23.1 6.2 5.8

PMU 13.4 3.2 5.8
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This is an expe
ted result sin
e, in the bran
h 
urrent formulations, ea
h voltage

measurement involves the 
urrent variables of all the bran
hes in the path between

the 
hosen sla
k bus and the measured node. The important in
rease of density of

the Gain matrix is 
learly re�e
ted in the e�
ien
y performan
e of the algorithms

and in fa
t, in this 
ase, the re
tangular NV-DSSE exhibits exe
ution times lower

than the proposed BC-DSSE.

A similar test has been performed repla
ing the voltage measurements with 
ur-

rents in the bran
hes adja
ent to the previously 
onsidered nodes. Thus, seven

additional 
urrent measurements have been 
onsidered in bran
hes 27, 39, 53, 75,

80, 86 and 94. Fo
using on the 
omputational properties of the algorithms (the

a

ura
y results are the same for all the estimators even in this 
ase), Table 3.4

shows an overview of the di�erent results. As it 
an be observed, the same s
enario

presented in Table 3.2 has been obtained. In fa
t, re
tangular estimators provide

signi�
antly better exe
ution times and, in parti
ular, the proposed BC-DSSE has

the lowest exe
ution times. In general, however, it is possible to observe that, di�er-

ently from the previous test, in this 
ase the addition of 
urrent measurements does

not 
ause any parti
ular degradation of the performan
e of voltage estimators.

Table 3.4: Test with additional 
urrent measurements, 
omputational and numer-

i
al properties

Estimator

Measurement

type

Avg

Exe
ution

Time [ms℄

Avg

Iteration

Number

Gain

matrix

density [%℄

re
t. BC-DSSE

Conventional 7.1 5.7 3.8

PMU 4.4 3.0 3.9

polar BC-DSSE

Conventional 23.5 5.6 5.3

PMU 18.2 4.1 5.4

re
t. NV-DSSE

Conventional 8.8 5.7 5.8

PMU 5.2 3.0 5.8

polar NV-DSSE

Conventional 21.0 5.6 5.8

PMU 15.5 3.8 5.8

Impa
t of the network topology

An important di�eren
e between voltage and 
urrent based estimators is given by

the need to expli
itly introdu
e the mesh 
onstraints in the bran
h 
urrent formu-

lations. Moreover, it is worth noting that, when radial networks are 
onsidered,

the number of unknowns in the di�erent estimators is the same; instead, if meshed
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Table 3.5: Nodes 
onne
ted by bran
hes to simulate the presen
e of meshes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7 Mesh 8

3-35 26-47 35-59 76-81 26-40 51-66 35-87 76-92

topologies are assumed, the number of state variables for the bran
h 
urrent estima-

tors automati
ally in
reases (if, as in this analysis, virtual measurements are used

to handle the mesh 
onstraints) as a dire
t 
onsequen
e of the additional bran
hes

(with respe
t to a generi
 radial tree of the network) 
reating the meshes. For this

reason, it is important to assess the behaviour of the proposed BC-DSSE algorithm

in 
ase of meshed networks.

To this purpose, meshed topologies have been designed, starting from the radial

95-bus network, adding some bran
hes in order to 
reate the meshes. Tests have been


arried out on the resulting meshed grids, by 
onsidering the starting measurement


on�guration with measurement points in nodes 1, 11 and 55. All the simulations

prove, on
e again, that all the di�erent estimators have equivalent performan
e

from the point of view of the estimation a

ura
y. Di�erent results are obtained,

instead, for the e�
ien
y of the WLS algorithms. Fig. 3.3 shows the exe
ution times

a
hieved for the re
tangular versions of BC-DSSE and NV-DSSE, when a growing

number of meshes is assumed. The 
onsidered meshes and the nodes 
onne
ted by

the additional bran
hes 
reating the mesh are indi
ated in Table 3.5.
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Figure 3.3: Impa
t of the meshed topology on the exe
ution times of re
tangular

estimators

The shown results highlight that the performan
e of the NV-DSSE are pra
ti-


ally not a�e
ted by the presen
e of meshes in the network, while the proposed

BC-DSSE shows a degradation of its performan
e with an in
reasing number of
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meshes. It is also worth noting that the presen
e of the meshes, obviously, 
reates


ompletely di�erent 
onditions for the powers and 
urrents �owing in the network.

These di�erent 
onditions a�e
t the number of iterations required by the algorithms

to 
onverge. In Fig. 3.3, the average number of iterations required by the tested al-

gorithm (both BC-DSSE and NV-DSSE have exhibited always the same 
onvergen
e

properties), when 
onsidering the di�erent network topologies, is reported (between

parenthesis). Su
h information allows explaining the slight ripple observable for the

exe
ution times.

As for the motivations leading to the degradation of the BC-DSSE performan
e,

the main reason is related to the large number of state variables involved in the

measurement fun
tion des
ribing the mesh 
onstraint. As it 
an be observed in

Se
tion 1.5.7, in fa
t, ea
h 
onstraint involves all the bran
hes in the path of the mesh.

As a 
onsequen
e, the numeri
al properties of the Gain matrix are signi�
antly

a�e
ted, as 
learly shown in Fig. 3.4. Similar dis
ussions 
an be done also for the

polar versions of BC-DSSE and NV-DSSE, but 
onsidering that, as in the previous

tests, signi�
antly higher exe
ution times are provided by these formulations.
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  BC−DSSE conventional meas.
  NV−DSSE conventional meas.
  BC−DSSE PMU meas.
  NV−DSSE PMU meas.

Figure 3.4: Impa
t of the meshed topology on the Gain matrix density of re
tan-

gular estimators

Impa
t of network parameters un
ertainty

Additional tests have been performed to evaluate the impa
t of the network param-

eters un
ertainty on the estimation results of the proposed BC-DSSE algorithm in


omparison to the other WLS formulations. The un
ertainty of the network param-

eters is an aspe
t often negle
ted in the solution of the SE problem. Usually, in

fa
t, line parameters are 
onsidered using their nominal values and no attention is

paid to the possible un
ertainty in the knowledge of su
h values. However, some
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works are available in the literature showing the e�e
ts brought by the network pa-

rameters un
ertainty on the a

ura
y of the SE results [63�66℄. Su
h issue 
ould be

also parti
ularly relevant in distribution systems [67℄, where the lines 
an be quite

old and the network information 
an refer to manufa
turers' data that do not take

into a

ount possible variations brought by the environmental 
onditions or by the

normal aging of the lines.

In this subse
tion, the main aim is to assess the possible di�erent e�e
ts arising

due to the di�erent model of the WLS formulations. In fa
t, from a mathemati
al

point of view, the propagation of the network un
ertainty is quite di�erent for 
urrent

and voltage based estimators. In parti
ular, in NV-DSSE, the network parameters

appear in the Ja
obian matrix and thus they are dire
tly involved in the WLS pro
e-

dure. In BC-DSSE, instead, due to the majority of equivalent 
urrents asso
iated to

the pseudo-measurements, only few Ja
obian terms (namely those related to voltage

measurements or mesh 
onstraints) involve the line parameters. However, network

data strongly a�e
t the result of the forward sweep, sin
e this step is based on the


omputation of the voltage drops along the lines. As a 
onsequen
e, it 
ould be

interesting to understand if the di�erent WLS formulations are 
hara
terized by a

di�erent impa
t of this additional 
omponent of un
ertainty that, in pra
ti
al 
ases,

is always present and should be properly taken into a

ount.

To this purpose, several tests have been performed on the ben
hmark 95-bus

test network by 
onsidering the starting measurement 
on�guration 
omposed of

measurement points in nodes 1, 11 and 55. Network parameters un
ertainty has

been 
onsidered assuming both Gaussian and uniform distributions. Results of

the simulations 
learly show that this additional 
omponent of un
ertainty lead

to a worse a

ura
y of the estimation results. As an example, Figs. 3.5 and 3.6

show the expanded un
ertainty (with a 
overage fa
tor equal to three) obtained

for the estimations of voltage magnitudes and angles (expressed as di�eren
es with

respe
t to the sla
k bus voltage angle), respe
tively, when uniformly distributed

network parameters, with a maximum deviation of 10%, are taken into a

ount.

Syn
hronized measurements have been 
onsidered for this test. In parti
ular, the

results a
hievable by 
onsidering or not the network parameters un
ertainty are

pointed out. For the sake of 
larity in the presentation of the results, the estimations

of the proposed BC-DSSE are 
ompared only to those of the polar NV-DSSE, but

analogous results have been a
hieved even for the other two types of estimator. As


lear in the �gures, a slight worsening of the estimation a

ura
y has been obtained

for the voltage magnitude, while the degradation of the results is more evident for

the voltage angles. However, it 
an be observed that, regardless of the di�erent

propagation of the un
ertainty, the same impa
t is brought by the line parameters

un
ertainty both on the 
urrent and the voltage based estimator results. Su
h

result is also 
on�rmed by the other performed simulations. As a 
onsequen
e, even
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Figure 3.5: Expanded un
ertainty of voltage magnitude estimation, impa
t of

network parameters un
ertainty
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Figure 3.6: Expanded un
ertainty of voltage angle estimation, impa
t of network

parameters un
ertainty

when network data un
ertainty is duly taken into a

ount, all the di�erent WLS

formulations provide equivalent results from the point of view of the estimation

a

ura
y.

3.4.3 Results on the 123-bus network

All the 
onsiderations made in the previous test s
enario, referring to the balan
ed

95-bus grid, have been veri�ed even in an unbalan
ed network s
enario. To this

purpose, tests have been performed on the unbalan
ed IEEE 123-bus network (Fig.
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Table 3.6: Test with unbalan
ed network, 
urrent and voltage estimations: mean

Root Mean Square Errors (RMSEs)

Measurement

type

Current

magnitude

[%℄

Current

angle

[
rad℄

Voltage

magnitude

[%℄

Voltage

angle

[
rad℄

Conventional 7.82 6.74 0.20 0.07

PMU 7.60 5.51 0.19 0.02

3.2). A measurement system 
on�guration 
omposed of measurement points in

nodes 18, 67 and 149 has been 
onsidered for the tests. As presented in Chapter

1 for the re
tangular BC-DSSE and in this Chapter for the other formulations of

WLS estimator, in unbalan
ed 
onditions the three-phase model of the distribution

system has to be 
onsidered. This implies to duly 
onsider all the mutual terms of

impedan
e arising among the di�erent phases of the system. Mutual impedan
es

appear both in the 
omputation of the measurement fun
tions and in the Ja
obian

matrix used within the WLS pro
edure. Moreover, in 
ase of BC-DSSE, mutual

terms have to be duly 
onsidered also during the forward sweep step.

Table 3.6 shows the a

ura
y results obtained for voltage and 
urrent estimations

in terms of mean RMSE. Con�rming the previously found results, even in this 
ase,

all the tested algorithms provide estimations with exa
tly the same a

ura
y. As

expe
ted, instead, signi�
antly di�erent results have been obtained for the 
omputa-

tional performan
e. Table 3.7 shows the results in terms of exe
ution times, iteration

numbers and density of the Gain matrix. As it 
an be seen, the re
tangular versions

of the WLS estimators are the fastest ones even in this 
ontext and, in parti
ular, the

proposed BC-DSSE exhibits signi�
antly better performan
e than the other ones. In

fa
t, it is important to note that, when unbalan
ed networks are 
onsidered, the need

to use the three-phase models and, 
onsequently, to 
onsider the mutual impedan
e

terms emphasizes the di�eren
es between 
urrent and voltage based estimators. In

the bran
h 
urrent formulations, all the pseudo-measurements (thus, the majority of

the available measurements) do not imply the 
oupling among the di�erent phases

of the system and this simpli�es the 
omputation of the related measurement fun
-

tions and, above all, of the Ja
obian terms (ea
h pseudo-measurement is asso
iated

only to state variables belonging to the same phase of the system). Instead, in 
ase

of NV-DSSE, the 
oupling brought by the pseudo-measurements requires the proper


onsideration of all the mutual terms, thus in
reasing the 
omputational burden of

the algorithms (pseudo-measurements involve the state variables of all the phases of

the system). The e�e
ts of this 
oupling is 
lear looking at the density of the Gain

matri
es. In this 
ase, in fa
t, the di�eren
e between 
urrent and voltage estima-
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Table 3.7: Test with unbalan
ed network, 
omputational and numeri
al properties

Estimator

Measurement

type

Avg

Exe
ution

Time [ms℄

Avg

Iteration

Number

Gain

matrix

density [%℄

re
t. BC-DSSE

Conventional 40.4 4.8 3.1

PMU 29.7 3.0 3.3

polar BC-DSSE

Conventional 68.8 4.7 3.6

PMU 61.3 3.8 3.7

re
t. NV-DSSE

Conventional 57.6 4.8 6.5

PMU 34.2 3.0 6.5

polar NV-DSSE

Conventional 161.0 4.4 6.5

PMU 147.8 3.9 6.5

tors is larger with respe
t to a similar balan
ed network s
enario (see for example

Table 3.2). The 
onsequent in
rease of the 
omputational burden is relevant in par-

ti
ular for the polar version of NV-DSSE: in this 
ase, in fa
t, exe
ution times are

signi�
antly higher than all the other estimators.

Phase-de
oupling of the WLS estimators

As additional analysis, the possibility to design phase-de
oupled versions of the

proposed BC-DSSE and the other WLS estimators has been investigated. Su
h pos-

sibility, advan
ed even in some other papers in the literature (for example [32℄), has

been 
onsidered taking into a

ount that, usually, self impedan
es are larger than

the mutual terms. The performed tests have shown that it is possible to a
hieve the

same a

ura
y results of the fully 
oupled estimators if mutual impedan
es are ne-

gle
ted only in the Ja
obian matrix, but not in the 
omputation of the measurement

fun
tions. In 
ase of the bran
h 
urrent estimators, mutual terms have also to be

duly 
onsidered during the forward sweep step. Negle
ting the mutual impedan
es

in the Ja
obian allows a
hieving three di�erent Ja
obian and Gain matri
es for ea
h

phase. As a result, the WLS pro
edure 
an be performed separately for the di�erent

phases, thus relying on smaller equation systems to be solved. Moreover, parallel


omputing 
an be exploited to further speed up the estimation pro
ess.

From a 
omputational point of view, di�erent results have been obtained for

the tested WLS algorithms. Table 3.8 shows the exe
ution times and the iteration

numbers obtained for the di�erent estimators. It is worth underlining that the

reported exe
ution times have been obtained without 
onsidering any parallelization
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Table 3.8: Test with phase-de
oupled estimators, 
omputational performan
e

Estimator

Measurement

type

Avg

Exe
ution

Time [ms℄

Avg

Iteration

Number

re
t. BC-DSSE

Conventional 22.6 5.5

PMU 19.6 4.9

polar BC-DSSE

Conventional 62.3 5.4

PMU 58.0 4.9

re
t. NV-DSSE

Conventional 118.9 16.4

PMU 102.6 16.3

polar NV-DSSE

Conventional 307.9 16.7

PMU 325.7 16.4

in the estimation pro
ess. In 
ase of parallel 
omputing, thus, exe
ution times

approximately equal to one third of those reported 
ould be expe
ted. Looking at

Table 3.8, some important 
onsiderations 
an be drawn. First of all, it is possible

to observe that signi�
ant di�eren
es have been obtained, between the 
urrent and

voltage based estimators, in terms of number of iterations required to 
onverge.

The reason for su
h out
ome is the di�erent impa
t of the made approximation in

the two 
lasses of estimator. In fa
t, as already highlighted, in 
urrent estimators

only few measurements (the voltage ones) bring 
oupling among the phases of the

system. As a 
onsequen
e, the mutual terms negle
ted in the Ja
obian matrix are

few and their approximation do not signi�
antly a�e
t the 
onvergen
e properties

of the algorithm. Instead, in 
ase of voltage estimators, the approximation involves

a large number of measurements (all the pseudo-measurements) and Ja
obian terms.

For this reason, the 
onvergen
e properties of the algorithm are drasti
ally a�e
ted

and the number of iterations is very high. As 
lear from the shown results, in


ase of voltage formulations, the advantages brought by the phase-de
oupling of the

estimator are thus adversely balan
ed by a signi�
antly larger number of iterations

required from the algorithm to 
onverge.

As additional 
onsideration, it is possible to note that, in 
ase of 
urrent estima-

tors (where the degradation of the 
onvergen
e properties is limited), the exe
ution

of three WLS pro
edures based on smaller equation systems brings important ad-

vantages even if no parallelization is used. This emphasizes the bene�ts 
oming

from the possible use of a de
oupled version in the proposed estimator. Finally, it

is worth noting that, when di�erent measurement system 
on�gurations or network

topologies (i.e. meshed topologies) are 
onsidered, even the proposed BC-DSSE 
an
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ussion

be 
hara
terized by a larger number of 
oupled measurements (both voltage mea-

surements and meshes introdu
e 
oupling among the phases). As a 
onsequen
e,

there 
ould be s
enarios where the 
onvergen
e properties of the estimator 
ould

be more signi�
antly a�e
ted, thus leading to smaller bene�ts, but, in general, re-

sults prove that the phase-de
oupling of the proposed BC-DSSE is possible and 
an

signi�
antly enhan
e the overall e�
ien
y of this estimator.

3.5 Final dis
ussion

The 
hoi
e of a suitable DSSE algorithm is important for the proper management of

the distribution systems. In parti
ular, the a

ura
y of the estimation results plays

a 
ru
ial role for the de
isions taken by the DMS. Furthermore, the 
omputational

e�
ien
y of the estimation algorithm is essential to allow the real-time exe
ution of

the DMS tasks with, possibly, high reporting rates.

For this reason, in this Chapter, the attention has been fo
used on the perfor-

man
e of the proposed BC-DSSE algorithm, providing a 
omparison with respe
t

to di�erent formulations of the WLS estimators. The analysis has been made de-

signing all the algorithms with the same settings in order to a
hieve a 
omparison

as fair as possible. Performed tests prove that, regardless of the 
hoi
e of the state

variables, WLS algorithms provide always the same a

ura
y results. Su
h feature

has been 
on�rmed even when 
onsidering the e�e
ts brought by the network pa-

rameters un
ertainty. This is an important result, sin
e it proves that the equivalent

measurements introdu
ed in the proposed BC-DSSE model do not a�e
t the esti-

mation a

ura
y. From the point of view of the 
omputational e�
ien
y, instead,

di�erent results have been obtained depending on the implementation details of the

algorithms. In general, performed tests show that the proposed BC-DSSE and the

re
tangular NV-DSSE are the most e�
ient, thanks to the presen
e of many linear

measurement fun
tions (in some 
ases obtained by means of equivalent 
urrent mea-

surements). In parti
ular, the proposed BC-DSSE results the best option in a
tual

s
enarios where few real measurements are available and the networks usually have

radial or weakly meshed topology. However, in 
ase of di�erent s
enarios (if many

voltage measurements or meshes are present), the performan
e of the BC-DSSE 
an

be slightly deteriorated and the use of the re
tangular NV-DSSE 
ould be
ome more


onvenient.

In a three-phase 
ontext, the estimators performan
e are a�e
ted also by the

presen
e of the mutual impedan
es. In this 
ase, the phase 
oupling introdu
ed

by the measurement fun
tions leads to a degradation of the performan
e of voltage

based estimators, emphasizing the advantages related to the proposed BC-DSSE

formulation. The possibility to use phase-de
oupled versions of the BC-DSSE esti-

mator, negle
ting the mutual impedan
es in the Ja
obian, has been also studied. In
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general, it is possible to say that su
h approximation is feasible and brings to the

same a

ura
y results of the fully 
oupled estimator. From the 
omputational point

of view, this solution brings advantages for the 
omputational burden required at

ea
h iteration of the algorithm. In fa
t, the de
oupling allows dividing the estima-

tion of ea
h phase, a
hieving smaller equation systems to be solved and using parallel


omputing for the estimation pro
ess. However, at the same time, it 
an also lead

to a degradation of the 
onvergen
e properties of the algorithm, thus demanding

a larger number of iterations to 
onverge. For this reason, the possible use of the

de
oupled version of the estimator should be 
arefully evaluated depending on the


onsidered s
enario. In general, performed tests show that, in realisti
 s
enarios, the

proposed BC-DSSE has only a limited deterioration of the 
onvergen
e properties

and thus signi�
ant improvements 
an be obtained for the 
omputation times.

As �nal 
onsideration, it is worth noting that many di�erent versions of the BC-

DSSE estimator 
ould be obtained by 
hanging the implementation details. As an

example, in the literature 
ommon approximations are to 
onsider the phase-angle

di�eren
es between di�erent nodes equal to zero (for example, in the 
omputation of

the Ja
obian terms) or to 
onvert the voltage or 
urrent magnitude measurements

in equivalent phasor measurements exploiting the angle estimations of the previous

iteration. Su
h approximations 
an be introdu
ed in the proposed estimator. In

the presented algorithm, however, the introdu
tion of possible approximations has

been avoided in order to a
hieve estimation results as a

urate as possible or, when

they have been introdu
ed (as in the 
ase of the three-phase de
oupled formula-

tion), the a
hievement of equivalent a

ura
ies has been tested. Moreover, it is also

worth noting that, in this Chapter, in the perspe
tive to test the algorithm with

settings equal to those of the other WLS formulations, the proposed BC-DSSE has

been implemented by using virtual measurements to handle the equality 
onstraints.

However, as shown in Chapter 2, large bene�ts 
an be obtained by adopting the

proposed state ve
tor redu
tion. Obviously, this should be an additional feature to

be duly taken into a

ount in the overall evaluation of the proposed estimator.
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Chapter 4

Impa
t of measurements on DSSE

4.1 Role of the measurements in DSSE

Until now, the analysis of the DSSE issue has been mainly fo
used on the devel-

opment of an estimation algorithm tailored for distribution systems and able to


ombine a

ura
y and e�
ien
y properties. However, the main requirement needed

to a
hieve a

urate estimation results is, of 
ourse, the availability of a suitable

measurement system on the �eld. As already mentioned in the �rst Chapter, this

represents a parti
ularly 
riti
al aspe
t, sin
e distribution systems have been tra-

ditionally managed without the extensive use of measurement devi
es. However,

re
ent 
hanges in the distribution system s
enario, like the in
reasing penetration

of DG or the growing presen
e of other DERs, have brought signi�
ant modi�
a-

tions to the traditional operation of these networks, adding higher un
ertainty and

variability to the operating 
onditions. For this reason, and be
ause of the more

advan
ed fun
tions needed to manage su
h a 
omplex s
enario, a
tual distribution

systems have to ne
essarily rely on a upgraded 
on�guration of the measurement

system in order to a
hieve the required targets of estimation a

ura
y needed for

the proper operation of the 
ontrol and management fun
tions.

The main obsta
le to the deployment of measurement devi
es in distribution

grids is obviously given by the involved 
osts. It is worth noting that related 
osts

are not only those asso
iated to the measurement instruments and the required

transdu
ers, but also those 
on
erning the 
ommuni
ation system and all the infra-

stru
ture needed to transmit, a
quire, elaborate and store the measurement data.

In the literature, many resear
h works have investigated the problem of �nding a

proper trade-o� between the need to enfor
e the measurement system and the ne-


essity to minimize the �nan
ial investments. To this purpose, several 
riteria have

been proposed aimed at de�ning measurement systems able to a
hieve the desired

te
hni
al goals with limited 
osts. The di�erent proposals mainly di�er for the type
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of the optimization pro
ess used to de�ne type, number and pla
ement of the mea-

surement devi
es, for the te
hni
al requirements to be ful�lled, and for the di�erent

parameters and features of the network taken into a

ount.

In [68℄, as an example, the enhan
ement of the voltage magnitude estimation

is addressed by deploying additional voltage magnitude measurements in the nodes

having the highest standard deviation as a result of the DSSE pro
ess. The sequen-

tial pla
ement of the voltage measurements is performed until the attainment of a

pre�xed a

ura
y goal for the voltage magnitude estimation in all the buses of the

network. In [69℄, similarly, the fo
us is on the a

ura
y of the voltage magnitude

estimations. A two-step pro
ess is proposed to dete
t the best 
andidates for the

pla
ement of a new measurement point, whi
h, in this 
ase, relies on a bran
h power

measurement in addition to the voltage magnitude one. A

ura
y requirements

also for the voltage angles, besides the voltage magnitudes, are instead 
onsidered

in [70℄. The meter pla
ement te
hnique here proposed is based on the analysis of the


ovarian
e matrix of the voltage magnitudes and angles for ea
h bus. Nodes with

the worst matrix determinant are sele
ted for the pla
ement of voltage magnitude

measurements. On
e the target for the voltage magnitude a

ura
y is a
hieved, a

similar 
riterion is adopted for de�ning the pla
ement of power measurements, in

order to ful�l the a

ura
y target also for the voltage angles. Further re�nements

to this meter pla
ement te
hnique have been presented in [71℄.

More 
omplex s
enarios, with additional features of the distribution grids, have

been taken into a

ount in some other papers. In [72℄, the installation of measure-

ment points near to swit
hes, tap 
hanger transformers and large industrial loads

or generation plants is suggested. Starting from this base 
on�guration, additional

devi
es, if needed, are added to satisfy the a

ura
y targets required by the 
ontrol

fun
tions designed for voltage regulation, swit
hing 
onsequen
e assessment and loss

estimation. In [73℄, instead, a meter pla
ement approa
h based on dynami
 program-

ming has been proposed. The allo
ation of the measurements aims at a
hieving the

desired a

ura
y goals with minimum 
osts, and also takes into a

ount the e
onomi


advantages deriving from the installation of multiple devi
es in the same measure-

ment point. Moreover, the unavoidable presen
e of un
ertainty in the knowledge of

the network parameters is also 
onsidered in the meter pla
ement pro
edure. The

same te
hnique, based on the Bellman's prin
iple, has been adapted in [74℄ to 
on-

sider also the de
ay of the metrologi
al 
hara
teristi
s of the measurement system

and to guarantee, in this way, the robustness of the a

ura
y results with respe
t to

possible lost or malfun
tioning of the measurement devi
es.

The possible impa
t of modern measurement instruments is also 
onsidered in

di�erent papers. In [50℄, for instan
e, a meter pla
ement te
hnique that involves

also smart meters and PMUs, and that takes into a

ount the di�erent a

ura
ies

and 
osts of these devi
es, has been proposed. Su
h approa
h has been further
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extended in [75℄ to 
onsider the possibility of di�erent network 
on�gurations and

the presen
e of 
hanging operating 
onditions brought by the variable behaviour of

loads and generators over the time.

Despite the existen
e of a large number of proposals, whi
h 
ould provide useful

advi
es about typology, number and position of the measurement devi
es to be

installed, a 
lear idea of the impa
t of the di�erent types of measurement on the

DSSE results is still ne
essary, in order to properly design (or to improve) the

meter pla
ement te
hniques and to address them to a
hieve the desired te
hni
al

requirements. Several papers report general 
omments about the impa
t of spe
i�


kinds of measurements, and their pla
ement, on the DSSE results (for example,

[60, 76℄). Only few works, however, provide detailed analysis on this aspe
t. In

[77℄, some generalizable rules are provided. In parti
ular, interesting 
onsiderations


on
ern the global e�e
t brought by the voltage magnitude measurements on the

voltage magnitude estimation, and the lo
al impa
t of the power measurements for

the bran
h power estimation. Empiri
al analysis of the impa
t of di�erent types of

measurements 
an be found also in [78℄.

This Chapter aims at performing a more detailed analysis on the impa
t of both

traditional and modern measurement devi
es on the a

ura
y of the DSSE results.

The analysis is developed through tests spe
i�
ally 
on
eived to highlight how the

estimation of the di�erent ele
tri
al quantities is a�e
ted by type and pla
ement of

the instruments 
onstituting the measurement system. In the 
ase of the voltage

magnitude estimation, 
onsiderations obtainable by means of experimental tests are

also supported by a theoreti
al explanation, whi
h is derived from the mathemati
al

analysis of the propagation of the un
ertainty towards the voltage magnitude esti-

mation in the DSSE. It is important to underline that all the 
onsiderations drawn

in this Chapter, whi
h refer to results a
hieved through the bran
h 
urrent version

of the DSSE, 
an be easily extended to all the WLS based estimators, sin
e, as

shown in Chapter 3, all the DSSE algorithms provide pra
ti
ally the same a

ura
y

results independently of the 
hosen state ve
tor. Shown results aim at providing a


lear pi
ture of the possible e�e
ts obtainable through the installation of a spe
i�


measurement devi
e and, thus, are intended to give support for the 
hoi
e of the

measurement system to be installed in future distribution grids.

4.2 Test assumptions

Tests performed to analyze the measurement impa
t on the a

ura
y of the DSSE

results have been 
arried out on the 95-bus network depi
ted in Fig. 4.1. As already

seen in Chapter 3, this is a balan
ed network: for the study here proposed, this is not

a problem sin
e the results obtainable on the equivalent single-phase model 
an be

generalized to ea
h one of the three-phases in an unbalan
ed 
ontext. The grid is also
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Figure 4.1: 95-bus test network, with indi
ation of the main feeders


hara
terized by two large sour
es of DG in nodes 28 and 95. This allows assessing

the impa
t of the measurements in a realisti
 s
enario with an a
tive behaviour

of the network. Fig. 4.1 also shows, in red, the bran
hes that 
ompose the main

feeders of the network

1

. Some of the results will be presented fo
using only on these

bran
hes, for the sake of 
larity.

Tests have been 
arried out following the same approa
h used in the previous

Chapters. Monte Carlo simulations have been run to obtain statisti
al information

about the estimation results, with a number of trials NMC = 25000. Ea
h Monte

Carlo trial is performed extra
ting the measurements by adding random errors to

the referen
e values (a
hieved through a power �ow 
al
ulation) a

ording to the

assumed un
ertainty. Pseudo-measurements are supposed to be always available

for all the node inje
tions, and are 
onsidered to be 
hara
terized by un
ertainty

with Gaussian distribution having, if not di�erently indi
ated, maximum un
ertainty

equal to 50%. Real measurements are instead 
onsidered and pla
ed di�erently

depending on the spe
i�
 test 
ase. In general, however, all the real measurements

are supposed to have Gaussian un
ertainty with standard deviation equal to one

third of the a

ura
y value.

As for the parameters used to assess the impa
t of the measurements on the esti-

mation results, the main fo
us is, obviously, on the a

ura
y of the results. Therefore,

1

As for the numeration of the bran
hes, ea
h bran
h index is given by the node number of its

end node (the largest one), de
reased by one. If results refer only to the bran
hes of the feeder,

the numeration of the bran
hes is the one reported in red in the Figure.
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the expanded un
ertainty (with a 
overage fa
tor equal to 3) of the estimated quanti-

ties will be monitored to evaluate the e�e
ts deriving from ea
h spe
i�
 measurement


on�guration.

4.3 Impa
t of measurements on voltage estimation

The a

urate estimation of the voltage pro�le of a network plays a fundamental

role for the e�
ient management of the network itself. In fa
t, many of the 
ontrol

fun
tions envisaged in future DMSs rely on the knowledge of the voltage magnitude

at the di�erent nodes of the grid. A high a

ura
y in su
h knowledge is 
ru
ial, sin
e

it allows the DSO to operate the network with a better awareness and 
on�den
e

on the operating 
onditions. In this way, possible de
isions oriented to keep a too

large safety margin 
an be avoided, allowing a more e�
ient and reliable operation

of the network.

The analysis of the impa
t of the di�erent measurements on the estimation of the

voltage pro�le 
an be handled 
onveniently, from a mathemati
al point of view, by

referring to the BC-DSSE algorithm [79℄. In the following, �rst of all, the theoreti
al

analysis is presented, in order to highlight the main sour
es of un
ertainty a�e
ting

the a

ura
y of the voltage estimation. Then, tests and results performed on the

95-bus network are presented, in order to prove the validity of the developed anal-

ysis and to highlight the impa
t of the measurement 
on�guration on the voltage

estimation results.

4.3.1 Mathemati
al analysis of the voltage estimation

un
ertainty

The analysis here performed refers to the use of the BC-DSSE algorithm presented in

Chapter 1. However, sin
e the estimation results given by WLS estimators having

di�erent state ve
tors are the same, the out
omes of this analysis have general

validity for all the DSSE algorithms based on the WLS approa
h. In this se
tion,

just the presen
e of traditional measurements is taken into a

ount. The e�e
ts

resulting from the possible use of syn
hronized measurements provided by PMUs is

the fo
us of Se
tion 4.5.

Re
alling what was shown in Chapter 1, the stru
ture of the state ve
tor x used

in the BC-DSSE algorithm, when no PMU measurements are available, is:

x = [Vs, i
r
1, ..., i

r
Nbr
, ix1 , ..., i

x
Nbr

] (4.1)

where Vs is the voltage magnitude of the 
hosen sla
k bus, irj and i
x
j are the real and

imaginary parts of the 
urrent on the generi
 bran
h j, and Nbr is the total number
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of bran
hes in the network. The resulting size of the state ve
tor is, therefore,

N = 2Nbr + 1.
As known from the literature (see, for example, [4℄ or [26℄), WLS based estimators

allow obtaining the 
ovarian
e matrix asso
iated to the estimated state variables,

by means of the inversion of the Gain matrix G used in the last iteration of the

estimation pro
ess (see equation (1.4)). As a 
onsequen
e, the estimation 
ovari-

an
e matrix G−1
is a N × N matrix having the varian
es related to the estimated

state variables on the diagonal and the 
ovarian
e terms outside the diagonal. Re-

ferring to the assumed stru
ture of the state ve
tor in equation (4.1), thus, the term

G−1(1, 1) of this 
ovarian
e matrix is asso
iated to the resulting varian
e of the volt-

age magnitude estimation V̂s in the sla
k bus. The following analysis is 
arried out

by fo
using on the fa
tors a�e
ting this varian
e term. However, sin
e the referen
e

node 
an be 
hosen arbitrarily, the �nal results of this study 
an be extended to

dedu
e the fa
tors a�e
ting the un
ertainty of the voltage magnitude estimation of

all the nodes of the network.

Varian
e of the sla
k bus voltage

To dete
t the sour
es leading to the resulting un
ertainty for the sla
k bus voltage

estimation V̂s, the Gain matrix 
an be divided as follows:

G = A+B (4.2)

with:

A =

[

G11 G12

0 G22

]

, B =

[

0 0

G21 0

]

(4.3)

where G11 is a s
alar, G12 is a row ve
tor of size 1×2Nbr , G22 is a 2Nbr×2Nbr matrix

and G21 is a 
olumn ve
tor of size 2Nbr × 1. Sin
e the Gain matrix is symmetri
, it

is: G21 = GT
12 (where the supers
ript T indi
ates the transpose operator).

In [80℄, it is shown that, when B is a rank one matrix (as in this 
ase), the inverse

of the sum A+B 
an be written as:

G−1 = (A+B)−1 = A−1 − kC (4.4)

where:

k =
1

1 + tr(BA−1)
(4.5)

C = A−1BA−1
(4.6)

with tr(·) representing the tra
e of the 
onsidered matrix (that is the sum of the

elements on the main diagonal of the matrix).
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A

ording to [81℄, instead, the inverse of the upper blo
k triangular matrix A


an be expressed as:

A−1 =

[

G−1
11 −G−1

11 G12G
−1
22

0 G−1
22

]

(4.7)

Using (4.7) to 
al
ulate C, the following blo
k matrix 
an be found:

C =





−G12G
−1

22
GT

12

G2

11

G12G
−1

22
GT

12
G12G

−1

22

G2

11

G
−1

22
GT

12

G11

−G
−1

22
GT

12
G12G

−1

22

G11





(4.8)

It is worth noting that the sub-matri
es present in C, as expressed in (4.8), have

the same size of the sub-matri
es previously de�ned in A and B.

Sin
e our fo
us is on the varian
e of V̂s, let us 
onsider only the element (1, 1)
of the estimation 
ovarian
e matrix G−1

. Using (4.4), and exploiting (4.5) and the

blo
k matri
es obtained in (4.7) and (4.8), it is possible to �nd:

G−1(1, 1) =
1

G11
+

1

(G11)2
G12G

−1
22 G

T
12

1 + tr(BA−1)
(4.9)

The tra
e of BA−1
is:

tr(BA−1) = − 1

G11
G12G

−1
22 G

T
12 (4.10)

Thus, (4.9) be
omes:

G−1(1, 1) =
1

G11
+

1

(G11)

G12G
−1
22 G

T
12

G11 −G12G
−1
22 G

T
12

(4.11)

With some arithmeti
s, it is possible to write:

G−1(1, 1) =
1

G11
+

1

(G11)2
G11G12G

−1
22 G

T
12 − k2 + k2

G11 −G12G
−1
22 G

T
12

(4.12)

where:

k2 = G12G
−1
22 G

T
12G12G

−1
22 G

T
12 (4.13)

Then:

G−1(1, 1) =
1

G11
+

1

(G11)2
(G12G

−1
22 G

T
12 +

k2

G11 −G12G
−1
22 G

T
12

) (4.14)
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Writing the last member of the above equation as a fun
tion of k, the following
holds:

G−1(1, 1) =
1

G11
+

1

(G11)2
[G12(G

−1
22 + k

G−1
22 G

T
12G12G

−1
22

G11
)GT

12] (4.15)

Looking at the starting equation in (4.4) and 
onsidering the blo
ks in matrix C

(equation (4.8)), it is possible to note that the term between the parenthesis is:

G−1
22 + k

G−1
22 G

T
12G12G

−1
22

G11

= G−1
22 − kC22 = ΣI (4.16)

where ΣI represents the blo
k of the 
ovarian
e matrix G−1
asso
iated to the esti-

mations of the 
urrents in
luded in the state ve
tor (it 
an be obtained deleting the

�rst row and the �rst 
olumn of G−1
).

Then, the �nal result is:

G−1(1, 1) =
1

G11

+
1

G2
11

[G12ΣIG
T
12] (4.17)

Analysis of the elements of the Gain matrix

To fully understand the meaning of the relationship found in (4.17), it is ne
essary

to analyze the sub-matri
es that 
ompose the Gain matrix. In parti
ular, the fo
us

will be on the blo
ks G11 and G12, sin
e they are those involved in equation (4.17).

As seen in Chapter 1, the Gain matrix is 
al
ulated as:

G = HTWH (4.18)

where the Ja
obianH and the weighting matrixW are involved in this 
omputation.

For the purposes of this analysis, it is useful to analyze the Gain matrix by

separating the 
ontributions 
oming from the voltage measurements and the other

remaining measurements (powers and 
urrents). It is worth re
alling that, in the

BC-DSSE formulation, all the power measurements (both bran
h powers and power

inje
tions) are 
onverted in equivalent 
urrent measurements. As a result, the mea-

surement ve
tor used as input for the estimation algorithm is 
omposed only of

voltage or 
urrent measurements. Grouping these two sets of measurements, Ja
o-

bian and weighting matrix 
an be divided in the following way:

H =

[

HV

HI

]

W =

[

WV 0

0 WI

]

(4.19)

where HV and HI are the Ja
obian sub-matri
es asso
iated to the voltage and 
ur-

rent measurements, respe
tively, and WV and WI are, similarly, the 
orresponding

weighting sub-matri
es.
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Computing the Gain matrix through the above formulation of Ja
obian and

weighting matrix, it is possible to �nd:

G =
[

HT
V HT

I

]

[

WV 0

0 WI

] [

HV

HI

]

=

= HT
VWVHV +HT

IWIHI = GV +GI

(4.20)

where GV and GI are the independent 
ontributions brought to the Gain matrix by

the voltage and 
urrent measurements, respe
tively.

Obviously, both GV and GI are N×N matri
es and, similarly to what has been

done in (4.3), they 
an be divided in four sub-matri
es having the same size and

notation of the blo
ks of the Gain matrix. Sin
e all the 
urrent measurements have

null derivatives with respe
t to the sla
k bus voltage variable (see Appendix A), the

sub-matri
es GI11 , GI12 and GI21 are null matri
es and, therefore, it is possible to

obtain:

G =

[

GV 11 GV 12

GT
V 12 GV 22 +GI22

]

(4.21)

As it 
an be observed, the sub-matri
es G11 and G12, whi
h are those of interest

in this analysis, are only dependent on the voltage measurements, while no 
ontri-

bution is brought by the 
urrents. As a result, their 
omputation is redu
ed to the

analysis of the elements involved in the matrix multipli
ation HT
VWVHV . To this

purpose, 
onsidering the derivative terms appearing in HV (i.e. in the Ja
obian sub-

matrix related to the voltage magnitude measurements, whose elements are reported

in Appendix A.1), the following results 
an be found:

G11 =
∑

i

WVi(cos δi)
2

(4.22)

G12(1,j) =

{

∑

i λjiRjiWVi cos δi if j ≤ Nbr
∑

i λjiXjiWVi cos δi if j > Nbr

(4.23)

where: i is the index of the node where the voltage measurement is pla
ed; δi is
the di�eren
e between the angle of the voltage in node i and the referen
e angle

in the sla
k bus; WVi is the weight asso
iated to the voltage measurement in node

i; λji is a logi
 value equal to 1 if the bran
h j is in the path, 
onsidered in the

Ja
obian, between node i and the sla
k bus, while it is equal to 0 otherwise; Rji =
(−rj cos δi−xj sin δi) and Xji = (xj cos δi−rj sin δi) are the derivatives of the voltage
magnitude measurement in node i with respe
t to the real and imaginary parts of

the 
urrent in bran
h j, respe
tively, with rj and xj representing the resistan
e and
rea
tan
e of bran
h j.
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Sour
es of un
ertainty for the voltage magnitude estimation

The main fa
tors a�e
ting the a

ura
y of the voltage magnitude estimation are

obtained by 
ombining the mathemati
al results found in (4.17), (4.22) and (4.23).

Some approximations 
ommonly made in distribution systems 
an be supposed in

order to identify the un
ertainty sour
es having a larger impa
t. For example, sin
e

distribution systems usually have short lines with low impedan
es, the voltage angles

δi are generally very small and they 
an be 
onsidered, in �rst approximation, equal

to 0. In this 
ase, 
onsidering the resulting value of G11 in (4.22), and introdu
ing

it into (4.17), the varian
e of the sla
k bus voltage estimation be
omes:

σ2
V̂s

= σ2
1 + σ2

2 =
1

∑

iWVi

+
1

(
∑

iWVi)
2
[G12ΣIG

T
12] (4.24)

Equation (4.24) highlights the presen
e of two di�erent 
ontributions to the

overall varian
e of the voltage estimation. In parti
ular, the �rst term is a 
onstant


ontribution that only depends on the number and the a

ura
y of the voltage

measurements available on the network. If, for the sake of simpli
ity, the hypothesis

to have voltage measurements with the same un
ertainty is 
onsidered, the following

holds:

σ2
1 =

1

MVWV

=
σ2
V

MV

(4.25)

where MV is the total number of voltage measurements available on the network

and WV and σ2
V are, respe
tively, the 
ommon weight and varian
e assumed for the

voltage measurements.

As for the se
ond term in equation (4.24), the presen
e of the matrix multipli
a-

tion leads to a long sum of elements, making the a
hievement of a 
lear relationship

di�
ult. However, just as an example, it is possible to suppose that the 
ovarian
e

matrix of the 
urrent estimations ΣI is diagonal. In this 
ase, and always under the

hypothesis to have voltage measurements with the same un
ertainty, the following

relationship 
an be found:

σ2
2 =

1

M2
V

∑

i

Nbr
∑

j=1

λji(r
2
jσ

2
irj
+ x2jσ

2
ixj
) (4.26)

where i, as before, represents the index of the node where ea
h voltage measurement

is pla
ed, while σ2
ir
j
and σ2

ix
j
are the varian
es of the real and imaginary parts of the


urrent in bran
h j. In real 
ases the 
ovarian
e matrix ΣI 
annot be 
onsidered

as diagonal, sin
e the presen
e of many pseudo-measurements leads to a strong


orrelation among the di�erent 
urrent estimations. Nevertheless, equation (4.26)


an be useful to obtain a better understanding: in fa
t, it shows that the 
omponent

σ2
2 is basi
ally given by the sum, for ea
h voltage measurement, of the un
ertainty
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terms related to the voltage drops between the measured node and the 
onsidered

bus.

Finally, as already mentioned at the beginning, it is worth remarking that the

analysis here performed, even if developed by referring to the sla
k bus voltage, 
an

be easily extended to the voltage estimation in ea
h bus of the network, be
ause the


hoi
e of the sla
k bus is arbitrary. In parti
ular, from the obtained results, it is

possible to state that:

- ea
h bus has a 
ommon and 
onstant term of un
ertainty that depends only

on the number and the a

ura
y of the voltage measurements deployed on

the network; moreover, sin
e the other 
ontribution is an additional term of

un
ertainty, this represents the lowest value of un
ertainty that 
an be a
hieved

with the 
onsidered measurement system;

- ea
h bus has a se
ond 
ontribution of un
ertainty, whi
h mainly depends on

the knowledge of the voltage drops present, for ea
h voltage measurement, in

the path between the measured and the 
onsidered node; as a result, this term

is stri
tly dependent on the a

ura
y of the 
urrent estimations (as it 
an be

seen in equation (4.26)) and on the pla
ement of the voltage measurements

(be
ause this a�e
ts the number of terms involved in the sum of equation

(4.26)).

4.3.2 Validation of the mathemati
al analysis

Several tests have been performed on the 95-bus network to validate the theoreti
al

analysis and to highlight the impli
ations arising from the found results. The �rst

series of tests has been 
arried out to demonstrate the goodness of the proposed

analysis. A referen
e measurement system 
omposed of four voltage magnitude

measurements, pla
ed at nodes 1, 11, 28 and 37, and with a

ura
y equal to 1%,

has been taken into a

ount for these tests.

Fig. 4.2 shows the results 
on
erning the expanded un
ertainty (with 
overage

fa
tor equal to 3) of the voltage magnitude estimations. In parti
ular, both the

theoreti
al and the statisti
al un
ertainty are reported. The theoreti
al un
ertainty

is obtained extra
ting the voltage sla
k bus varian
e from the estimation 
ovari-

an
e matrix G−1
and then 
omputing the remaining voltage un
ertainties using the


ovarian
e matrix ΣI of the 
urrent estimations and applying the un
ertainty prop-

agation law. The statisti
al un
ertainty, instead, is the simple result a
hieved by

means of the Monte Carlo simulation. It is possible to observe that a really good

mat
hing exists: this 
on�rms the reliability of the information asso
iated to the

matrix G−1
for expressing the un
ertainty of the estimation results.

Besides this aspe
t, Fig. 4.2 also allows a �rst assessment of the reliability

of the results found in the previous mathemati
al analysis. As aforementioned,
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Figure 4.2: Expanded un
ertainty of voltage magnitude estimation with theoreti
al

approa
h and Monte Carlo simulations

the 
onstant term of un
ertainty σ2
1 represents the lowest limit of un
ertainty that


an be a
hieved with a given measurement system. The value obtained for the


onsidered measurement s
enario is indi
ated in Fig. 4.2 as �theoreti
al limit". It


an be observed that the un
ertainty of all the voltage estimations is higher than

this limit. Moreover, the impa
t brought by the se
ond 
omponent of un
ertainty σ2
2


an be also evaluated. The best estimations are around node 11: in fa
t, this area is

quite 
lose to all the assumed voltage measurements and this allows minimizing the

number of voltage drops 
ontributing to the overall un
ertainty. On the 
ontrary,

the worst estimation is on node 95. This is justi�ed by the long distan
e of this

node from the buses having the voltage measurements and by the high un
ertainty

asso
iated to the large 
urrent inje
ted by the generator on this node.

As a 
on�rmation of the role played by the bran
h 
urrent un
ertainty (and, thus,

by the voltage drops) on the resulting un
ertainty of the voltage pro�le, another

test has been performed 
onsidering di�erent loading 
onditions for the network.

In parti
ular, a s
enario with the power inje
tions (both load 
onsumptions and

generator inje
tions) s
aled at 125%, 100%, 75% and 50% is taken into a

ount. Fig.

4.3 shows the obtained results, always 
onsidering the previous base measurement


on�guration. It is worth re
alling that pseudo-measurements are supposed to be

known with an un
ertainty expressed in relative terms. For this reason, a lower

loading 
ondition leads to a lower un
ertainty, in absolute terms, on the knowledge

of the bran
h 
urrents. As a result, it is possible to observe that, for lower values of

the loading 
onditions, the 
ontribution of the un
ertainty term σ2
2 is redu
ed and

this leads to a 
onsequent improvement of the voltage estimation, in general, for all

the nodes of the network.
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Figure 4.3: Expanded un
ertainty of voltage magnitude estimation for di�erent

loading 
onditions in the network

Another test has been performed, instead, 
onsidering the original values of

power inje
tions, but assuming di�erent un
ertainties in the knowledge of the pseudo-

measurements. In this 
ase, the expe
ted result is to have better estimations of the

bran
h 
urrents by assuming an improved knowledge of the prior information and,

in these 
onditions, to a
hieve a redu
tion of the un
ertainty term σ2
2. Test results

shown in Fig. 4.4 
on�rm all the provided 
onsiderations. In parti
ular, it is possible

to observe as, with a quite low pseudo-measurement un
ertainty (10%), the impa
t

brought by the voltage drops is signi�
antly redu
ed and the un
ertainty of all the

voltage pro�le is very �at and 
lose to the theoreti
al limit given by σ2
1 . In general,

this emphasizes the potential bene�ts 
oming from an a

urate modeling of the loads

and generators behaviour.
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Figure 4.4: Expanded un
ertainty of voltage magnitude estimation for di�erent

un
ertainties in the knowledge of the pseudo-measurements
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Figure 4.5: Expanded un
ertainty of voltage magnitude estimation in presen
e of

bran
h power measurement

All the previous tests refer to modi�
ations of the s
enario involving all the nodes

of the network. This 
an be a motivation for the global e�e
ts found on the 
hanging

un
ertainties of the voltage pro�le. For this reason, a further test has been performed

to highlight possible bene�ts 
oming from just one additional measurement. In

parti
ular, the installation of a power measurement on the bran
h 
onne
ted to

the generation node 95 has been supposed. Fig. 4.5 shows the impa
t of su
h

measurement when 
onsidering a quite large or a very low un
ertainty (10% and 1%,

respe
tively). It is possible to observe that, even in the worst 
ase, when the power

measurement has low a

ura
y, the presen
e of only one additional measurement, if

suitably 
hosen, 
an provide signi�
ant bene�ts to the voltage estimation of a large

number of nodes. In this 
ase, the found result is strongly related to the 
hoi
e of

monitoring a very large 
urrent, whi
h is asso
iated to the high power inje
ted by

the generator at node 95. By measuring this large 
urrent, it is possible to improve

the knowledge of the 
urrent estimations in many of the adja
ent bran
hes and, thus,

to redu
e the 
onsequent e�e
ts of the voltage drop un
ertainties involved in σ2
2.

4.3.3 Impa
t of the analysis on a meter pla
ement perspe
-

tive

As further dis
ussion, a test highlighting the impa
t of the presented analysis in

a meter pla
ement perspe
tive is proposed. The test has been performed starting

from the same 
on�guration (with four voltage measurements at nodes 1, 11, 28 and

37) used in the previous simulations. As it 
an be observed in the previously shown

results, su
h 
on�guration does not allow an a

urate estimation of the voltage
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magnitude for all the nodes of the network. To solve this issue and to improve

the estimation a

ura
y of the voltage pro�le, if the knowledge brought by the

pseudo-measurements 
annot be enhan
ed, the only 
hoi
e is to deploy additional

measurement devi
es on the network.

Several meter pla
ement te
hniques deal with this issue by dete
ting the buses

with the highest voltage un
ertainty and pla
ing an additional measurement in these

nodes [68, 70℄. In the following, the 
ase of six additional voltage measurements (in

nodes 4, 25, 27, 93, 94 and 95), pla
ed a

ording to this approa
h, will be taken

into a

ount; su
h solution will be indi
ated as "Solution A". On the other hand,

a possible alternative solution is 
hosen here by taking into a

ount the results of

the performed analysis and looking at the operating 
onditions of the network. In

parti
ular, an additional voltage measurement has been added in node 95, in order

to redu
e the theoreti
al limit of voltage un
ertainty given by σ2
1. Moreover, three

power measurements (in bran
hes 3, 26 and 94

2

) are 
hosen to improve the a

ura
y

of some of the largest 
urrents of the network. The goal is, in this 
ase, to redu
e

the 
ontribution of un
ertainty given by σ2
2 . This measurement 
on�guration is

indi
ated in the following as "Solution B".

Fig. 4.6 shows the un
ertainty results obtained through the two di�erent mea-

surement systems. It is possible to observe that Solution A allows a signi�
ant en-

han
ement of the voltage estimation in many of the nodes, due to the large number of

voltage measurements and the 
onsequent redu
tion of the un
ertainty 
ontribution

σ2
1 . Despite this improvement, there are still some nodes exhibiting a signi�
antly

high un
ertainty. In 
ase of Solution B, instead, the best a
hievable un
ertainty is

higher, sin
e the number of used voltage measurements is lower. However, all the

nodes show a similar behaviour and the a
hieved un
ertainty for the voltage pro�le

is very �at. This solution, therefore, even if using a lower number of measurement

devi
es with respe
t to the meter pla
ement of Solution A, 
ould be able to ful�l a

possible a

ura
y target of 0.5% for all the nodes of the network.

As a �nal 
onsideration, it is worth noting that, in general, the marginal bene�ts

arising from the installation of an additional voltage measurement de
rease with

in
reasing number of su
h measurements. In Fig. 4.7, as an example, the values

of the theoreti
al limit of un
ertainty that 
an be a
hieved by using an in
reasing

number of voltage measurements is reported. The dependen
e of su
h limit on the

a

ura
y of the measurement devi
es is also shown. As it 
an be observed, it is 
lear

that the reported trends are proportional to 1/
√
MV . These trends, in grids without

too heavy loading 
onditions and with a suitable monitoring of the main 
urrents,


an provide a good referen
e for the expe
ted un
ertainty of the voltage estimations

depending on number and a

ura
y of the available voltage measurements.

2

As for the numeration of the bran
hes, ea
h bran
h index is given by the node number of its

end node (the largest one), de
reased by one.
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Figure 4.6: Expanded un
ertainty of voltage magnitude estimation for di�erent

measurement 
on�gurations
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Figure 4.7: Theoreti
al limit of the expanded un
ertainty of voltage magnitude

estimation for in
reasing number of voltage measurements

4.4 Impa
t of measurements on �ow estimation

In the literature, many of the works dealing with the issue of the a

ura
y of the

estimation fo
us their attention on the voltage magnitude estimation. In fa
t, above

all in a
tive s
enarios with strong penetration of DG, the parti
ular behaviour of

loads and generators in spe
i�
 periods of the day 
an easily lead to under or over

voltage issues. The regulation of the voltage pro�le through the 
ontrolled inje
-

tion of rea
tive power in the grid, the generation 
urtailment or the demand-side

management is one of the main tasks in the DMS. For this reason, many of the
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meter pla
ement te
hniques are designed to ful�l pre�xed targets of a

ura
y in the

voltage estimation.

Nevertheless, the a

urate estimation of the �ows in the di�erent bran
hes of the

grid is, in the same way, equally important. The knowledge of the �ows, intended

as powers or 
urrents, is in fa
t essential for several management fun
tions, like, for

instan
e, loss evaluation and optimal power �ow, or to relieve possible over loading


onditions. Some works underline the importan
e of the power �ows estimation.

In [13℄, as an example, the referen
e measurement 
on�guration used in the tests is

obtained through a meter pla
ement te
hnique designed to guarantee a minimum

a

ura
y in the knowledge of the bran
h a
tive powers. In [82℄, instead, the impor-

tan
e to have a suitable measurement 
on�guration for a
hieving a

urate energy

�ow estimations is highlighted. Furthermore, as already seen in the previous Se
tion,

it is useful to remind that the un
ertainty in the knowledge of the bran
h 
urrents

has dire
t e�e
ts also on the voltage pro�le estimation. As a 
onsequen
e, under-

standing the main fa
tors a�e
ting the estimation of the bran
h �ows is important

both for the power/
urrent estimation itself and for the a
hievement of an a

urate

voltage knowledge.

In the following, tests aimed at highlighting the impa
t of di�erent measurement


on�gurations on the a

ura
y of the 
urrent and power estimations are 
arried out.

4.4.1 Impa
t of power measurements

One of the main pe
uliarities of distribution systems is the la
k of real measurements

installed on the �eld and the 
onsequent ne
essity to use pseudo-measurements to

a
hieve the observability of the network. A large sour
e of un
ertainty is, doubtless,

the poor reliability asso
iated to the information dedu
ed from the histori
al or

statisti
al data used to 
reate the pseudo-measurements. Suitable methods aimed

at enhan
ing the a

ura
y of the pseudo-measurements are in
reasingly required and

represent a hot resear
h topi
. To show the possible impa
t deriving from a more

a

urate knowledge of the loads and generators behaviour, a �rst series of tests has

been performed assuming di�erent values of a

ura
y for the pseudo-measurements.

Figs. 4.8 and 4.9 show the results obtained for the a
tive power and the 
urrent

magnitude estimation, respe
tively, by 
onsidering only one voltage measurement

in the substation (with a

ura
y of 1%) and pseudo-measurements in all the load

and generation nodes. It is worth noting that the state estimation performed on

su
h s
enario is equivalent to the exe
ution of a power �ow 
al
ulation, sin
e the

number of measurements is equal to the number of unknown state variables (there

is no redundan
y in the measurements).

From the �gures it is possible to observe that, sin
e the a

ura
y of all the

power inje
tions has been 
hanged, the whole pro�le of un
ertainty is s
aled with

respe
t to the referen
e 
ase of pseudo-measurements with un
ertainty equal to
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Figure 4.8: Impa
t of the pseudo-measurements a

ura
y on the power �ows esti-

mation
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Figure 4.9: Impa
t of the pseudo-measurements a

ura
y on the 
urrent magnitude

estimation

50%. As in the 
ase of the voltage magnitude estimations, this out
ome, even if

trivial, emphasizes the importan
e to perform an a

urate and detailed modeling

of the pseudo-measurements for improving the 
on�den
e on their knowledge. An

alternative option 
ould be to use the smart meters to telemeter a

urate real-time

measurements of power inje
tion to the 
ontrol 
enter. This solution 
ould bring

signi�
ant advantages, but it is not easily feasible be
ause the 
onsequent massive

amount of data implies hard requirements from the point of view of the 
ommuni-


ation.

Considering a more realisti
 s
enario with pseudo-measured inje
tions having

low reliability (assumed un
ertainty equal to 50%), the following tests show the
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impa
t brought by bran
h power measurements. The �rst test has been performed

assuming, in addition to the voltage measurement in substation, the measurement of

the powers in the bran
hes departing from su
h node. An a

ura
y of 3% is supposed

for both the a
tive and the rea
tive power measurements. Results a
hieved for the


urrent magnitude estimation are reported in Fig. 4.10. They are 
ompared to

those obtained by 
onsidering, as referen
e s
enario, the only voltage measurement

in substation, in order to highlight the impa
t brought by the additional power

measurements.

Fig. 4.10 shows that a very large enhan
ement of the estimation a

ura
y is

present in the measured bran
hes (1 and 3) and in all the bran
hes of the main

feeder that are 
lose to the measured ones (in parti
ular, in the path between the

substation and node 11). For these bran
hes, the expanded un
ertainty of the 
urrent

magnitude estimation is lower than 3%. Moving away from the monitored bran
hes,

the improvements in the estimation a

ura
y are less prominent but still evident:

for the bran
hes in the feeders between nodes 11 and 28 and between nodes 11

and 42 (see Fig. 4.1), the resulting un
ertainty is around 30% (with respe
t to an

un
ertainty larger than 40% for the referen
e s
enario without power measurements).

E�e
ts of the power measurements 
an be seen even in the bran
hes of the feeder

arriving at node 95 (very far from the substation). A similar behaviour has been

obtained also for the expanded un
ertainties of a
tive and rea
tive power.

For a better understanding of the obtained results, it is important to spe
ify

that the monitored bran
hes in the substation (in parti
ular bran
h 3) 
arry a very

large 
urrent. This 
an be the reason of su
h a large impa
t on so many bran
hes.

To further investigate this aspe
t, another test has been performed removing the

power measurements from substation and pla
ing them at bran
h 75 (whi
h 
arries

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0

10

20

30

40

50

60

70

Branch

C
ur

re
nt

 m
ag

ni
tu

de
 u

nc
er

ta
in

ty
 [%

]

 

 

   No meas
   PQ meas

Figure 4.10: Impa
t of power measurements in substation on the 
urrent magni-

tude estimation
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a signi�
antly lower 
urrent). Results shown in Fig. 4.11 for the 
urrent magnitude

estimation 
learly indi
ate that the size of the monitored 
urrent plays a key role

for the resulting impa
t. In fa
t, in this 
ase, the only estimations a�e
ted by the

additional power measurement are those of the bran
hes 
lose to bran
h 75, i.e. the

bran
hes in the path between nodes 61 and 76. For all the other 
urrent estimations,

the impa
t of this power measurement is negligible.

As a result, some important 
onsiderations 
an be drawn from these two per-

formed tests. The main 
onsideration is that the impa
t brought by the power

measurements stri
tly depends on the size of the measured quantity. In fa
t, ob-

viously, the main impa
t of the measurement is on the un
ertainty of 
urrent and

power in the measured bran
h. In the adja
ent bran
hes, the un
ertainty of the


orresponding 
urrents/powers is also related to the additional 
ontributions of un-


ertainty 
oming from the possible inje
tions or from the 
urrents/powers 
arried by


onne
ted laterals. If the power in the measured bran
h is very large with respe
t to

the other ones, these additional 
ontributions of un
ertainty 
an be relatively small

and do not jeopardize the estimation un
ertainty in the adja
ent bran
hes. On the


ontrary, if the measured power is very small, its a

urate knowledge does not bring

any bene�t to the estimation in the adja
ent bran
hes, sin
e their a

ura
y will be

a�e
ted by the larger 
ontributions of un
ertainty 
oming from the power inje
tions

or the powers of the other 
onne
ted bran
hes.

Possible impli
ations, in a meter pla
ement perspe
tive, arising from these 
on-

siderations are shown in the following test. Two di�erent measurement 
on�gura-

tions, ea
h one 
omposed of four measurement points, are taken into a

ount. In

the �rst one (indi
ated in the following as "Con�guration A"), measurement points

have been assumed at nodes 1, 11, 37 and 60: this 
hoi
e has been made to test
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Figure 4.11: Impa
t of power measurements in bran
h 75 on the 
urrent magnitude

estimation
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a s
enario where the monitored quantities are in the 
entral nodes of the network.

As for the se
ond 
on�guration (indi
ated in the following as "Con�guration B"),

measurement points are pla
ed at nodes 1, 28, 37 and 95: this 
hoi
e has been made

to assure the monitoring of the largest 
urrents in the network, i.e. those 
oming

from the substation and the generation nodes. Ea
h one of the measurement points

is 
omposed of power measurements in two of the bran
hes 
onne
ted to the bus

(obviously, only one measurement is possible for nodes 28 and 95). Moreover, the

measurement of the voltage in the substation is always available.

Fig. 4.12 shows the results obtained for the expanded un
ertainty of the a
tive

power estimations with the two di�erent measurement systems. The attention 
an be

fo
used on the bran
hes 
onstituting the main feeders of the 95-bus network (see Fig.

4.1), be
ause the powers involved in the lateral bran
hes are smaller and, thus, also

their un
ertainties in absolute terms are low. As in the previous tests, it is possible to

observe that the e�e
ts of the power measurements are 
learly larger in the bran
hes


lose to the measurement points. For example, in 
ase of Con�guration A, very low

un
ertainties have been obtained for the power estimations of the bran
hes 
lose

to the measurement points in nodes 11 and 60 (see Fig. 4.1 for the numbering of

the bran
hes of the feeder). Nevertheless, due to missing monitoring of the DG, a

high un
ertainty is still present in the bran
hes near to generation nodes. With the

measurement system assumed in Con�guration B, instead, several bran
hes exhibit

a worse estimation a

ura
y. However, a �atter pro�le of un
ertainty has been

obtained, thanks to the measurement of the largest 
urrents. As a 
onsequen
e, in

this s
enario, all the bran
h powers are estimated with an un
ertainty lower than

70 kW. Su
h a solution, thus, proves to be suitable for minimizing the maximum

un
ertainty among the power estimations of all the bran
hes of the network.
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Figure 4.12: Expanded un
ertainty of a
tive power estimation with di�erent mea-

surement 
on�gurations
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4.4.2 Impa
t of 
urrent magnitude measurements

Together with the use of enhan
ed power inje
tions or the deployment of bran
h

power measurements, the other dire
t way to improve the un
ertainty of the �ows

in the network is the use of 
urrent magnitude measurements. In this subse
tion,

tests aimed at assessing the impa
t brought by these measurements, and highlight-

ing possible di�eren
es with respe
t to the use of power measurements, have been

performed.

The �rst test has been 
arried out by 
onsidering the installation of 
urrent

magnitude measurements (with un
ertainty equal to 2%) in the bran
hes departing

from the substation. Moreover, in the substation, the presen
e of the voltage mea-

surement is assumed. Results of this test are 
ompared to those obtained in the

previous subse
tion with the same pla
ement of the power measurements, and with

the referen
e s
enario where only the voltage measurement is 
onsidered.

Fig. 4.13 shows the results for the un
ertainty in the a
tive power estimation.

As expe
ted, it 
an be observed that the impa
t brought by the 
urrent measure-

ments is similar to that of the power measurements. In fa
t, the measurement of the

large 
urrents departing from the substation allows a
hieving a signi�
ant improve-

ment in the estimation of the power �owing in the bran
hes 
lose to the substation

bus. Moreover, be
ause of the large size of the measured 
urrents, the estimation

enhan
ement, even if less prominent, is also propagated to the farthest bran
hes in

the main feeders of the network. In 
omparison to the results obtained by using

power measurements, Fig. 4.13 shows that the dire
t measurement of power leads

to larger advantages, above all in the bran
hes 
loser to the substation bus.

Fig. 4.14 reports, instead, the results obtained for the relative un
ertainties of


urrent magnitude estimation. Even in this 
ase, it is possible to note the signi�-


ant bene�ts brought by the monitoring of the substation bran
hes: in the feeder

between nodes 1 and 11 the estimation un
ertainty is redu
ed to values smaller than

4%. Another interesting aspe
t arising from the results shown in Fig. 4.14 is that,

in this 
ase, di�erently from what seen for the a
tive power estimations, the dire
t

measurement of the 
onsidered quantity (that is, of 
urrent magnitude) brings only

slightly larger bene�ts (with respe
t to the use of power measurements) and basi-


ally only in the measured bran
hes. On the 
ontrary, in the farthest bran
hes of

the feeders, better 
urrent magnitude estimations are obtained 
onsidering the de-

ployment of power measurements. This demonstrates, in general, the larger impa
t

asso
iated to the 
ombined measurement of a
tive and rea
tive power.

As a �nal 
onsideration about the use of 
urrent magnitude measurements, it is

important to underline that their use has been always parti
ularly 
riti
al in the state

estimation 
ontext. In fa
t, their presen
e in an a
tive s
enario (with bi-dire
tional

power �ows) 
an lead to multiple solutions of the SE problem, 
ausing possible 
on-

vergen
e issues and 
onsequent ina

ura
ies in the estimation results. This problem
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Figure 4.13: Impa
t of 
urrent magnitude measurements in substation on the

a
tive power estimation
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Figure 4.14: Impa
t of 
urrent magnitude measurements in substation on the


urrent magnitude estimation

is well known in the literature [4, 83℄ and in fa
t, in transmission systems, 
urrent

magnitude measurements are often disregarded. In distribution systems, given the

low redundan
y of the available real-time measurements, the possible presen
e of


urrent magnitude measurements is an essential additional sour
e of information

and, thus, they 
annot be disregarded as well. However, in the de
isional stage

for the 
hoi
e of the measurement devi
es to be used in the upgrade of the a
tual

measurement system, this aspe
t should be duly taken into a

ount.
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4. IMPACT OF MEASUREMENTS ON DSSE

4.4.3 Impa
t of voltage measurements

As �nal analysis of the impa
t of the di�erent types of measurement on the �ow

estimations, the possible e�e
ts brought by the deployment of voltage measurements

are investigated. As �rst test, a measurement system 
omposed of four voltage

measurements (with un
ertainty equal to 1%) in nodes 1, 28, 37 and 95 has been


onsidered. In Fig. 4.15, the a
tive power estimation results obtained with this

measurement 
on�guration are 
ompared to those related to the presen
e of only a

voltage measurement in the substation. It is possible to observe that, in this 
ase,

an evident enhan
ement of the a

ura
y of the a
tive powers 
an be obtained. The

reason for this out
ome is strongly 
onne
ted to the absen
e of power or 
urrent

measurements. In fa
t, ea
h 
ouple of voltage measurements provides a sort of


onstraint on the voltage drops along the bran
hes and, thus, on the �owing 
urrents.

Be
ause of the poor a

ura
y asso
iated to the pseudo-measurements, and without

any better information available, these 
onstraints are able to enhan
e the highly

un
ertain knowledge on the bran
h powers.

As a 
on�rmation, another test has been performed 
onsidering the availabil-

ity of measurement points in the same nodes (1, 28, 37 and 95). In one 
ase, the

presen
e of power measurements (with un
ertainty equal to 3%) on all the bran
hes


onverging to ea
h monitored nodes has been 
onsidered. In the se
ond s
enario,

this measurement 
on�guration is integrated with the addition of the voltage mea-

surements on the nodes. Fig. 4.16 shows the obtained results. It is possible to

note that, in this 
ase, the e�e
ts brought by the same voltage measurements are

pra
ti
ally negligible. The reason is due to the presen
e of the power measurements,

whi
h already provide an important information 
on
erning the overall power �ow-
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Figure 4.15: Impa
t of voltage magnitude measurements on the a
tive power

estimation, when no �ow measurements are available
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Figure 4.16: Impa
t of voltage magnitude measurements on the a
tive power

estimation, when power measurements are also available

ing in the paths between the measured nodes. In su
h a situation, the "
onstraint"

given by the voltage measurements 
an bring some additional advantages but not

so important as in the previous test.

4.5 Impa
t of syn
hronized measurements

As already dis
ussed in the �rst Chapter, PMUs are modern measurement instru-

ments that are be
oming in
reasingly widespread in transmission systems. The


apability to provide very a

urate measurements of 
urrent and voltage phasors,

and the syn
hronization with respe
t to an absolute time referen
e, are the main

reasons for the spread of these measurement devi
es. In distribution systems, de-

spite the ne
essity to foresee a measurement system upgrade, the deployment of

PMUs is strongly limited by their high 
osts.

In this Se
tion, regardless of the e
onomi
 aspe
ts involved in the 
hoi
e of the

measurements systems, some tests have been performed to analyze, te
hni
ally, the

possible advantages 
oming from the use of PMUs. It is important to underline

that PMUs are measurement devi
es very di�erent from the other 
onventional

measurements, under many points of view. As an example, PMUs are designed

to give time tagged measurements that refer to a spe
i�
 instant of time. The


omplian
e requirements provided by the standard for the sysn
hrophasors [51℄ set

a

ura
y limits referred to both steady-state and dynami
 
onditions. As a result,


ompliant PMUs provide instantaneous measurements whose a

ura
y is guaranteed

under most of the pra
ti
al operating 
onditions (ex
ept for the presen
e of large

step 
hanges, whi
h are, however, suitably marked). Moreover, it is worth noting
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4. IMPACT OF MEASUREMENTS ON DSSE

that there are devi
es able to provide syn
hrophasor measurements with signi�
antly

higher a

ura
y. On the other side, however, the upstream presen
e of transdu
ers

leads to the unavoidable degradation of su
h a

ura
y. As a result, to obtain the

real a

ura
y of the PMU measurements, a detailed analysis of all the 
ontributions

of un
ertainty arising from the whole measurement 
hain would be ne
essary.

Conventional instruments, instead, use a spe
i�
 time window to perform their

measurements. Their a

ura
y is generally provided for steady-state 
onditions,

while their behaviour under dynami
 
onditions 
ould be not well known. In the

distribution system s
enario, where high dynami
s 
an be expe
ted (due for exam-

ple to the unpredi
table and intermittent operation of the DG based on renewable

sour
es), the a

ura
y 
hara
teristi
s of the traditional measurements 
ould be sig-

ni�
antly degraded. Another aspe
t a�e
ting the overall a

ura
y of a measurement

system based on 
onventional devi
es is the la
k of syn
hronization among the dif-

ferent measurements 
olle
ted from the grid.

An extensive analysis of all the possible sour
es of un
ertainty for traditional or

syn
hronized measurements is out of the s
ope of this thesis. The tests presented

here, basi
ally, aims at highlighting the di�erent e�e
ts on the estimation results

a
hievable when using phasor measurements in pla
e of the 
onventional measure-

ments of voltage and power. To 
ompare the results, in the following, a measurement

system 
omposed of four measurement points at nodes 1, 28, 37 and 95 is 
onsidered.

In 
ase of 
onventional measurements, voltage and power measurements are assumed

to have un
ertainties equal to 1% and 3%, respe
tively. As for the PMUs, instead,

magnitude and angle measurements are supposed to have un
ertainty equal to 1%

and 1 
rad (10−2
rad), respe
tively. These a

ura
ies have been 
hosen referring to

the worst 
ase s
enario possible for the PMUs, a

ording to the limit of 1% imposed

by the syn
hrophasor standard [51℄ for the TVE in steady state 
onditions.

A �rst test has been performed by 
onsidering only voltage measurements in

the monitored nodes. In this s
enario, ea
h PMU provides an additional voltage

angle measurement with respe
t to the traditional measurements. Therefore, it is

possible to roughly assess the additional 
ontribution brought by the voltage angle

measurements on the estimation of the di�erent quantities. Results show that the

knowledge of the voltage angles is useful to improve the estimation of both a
tive

and rea
tive powers. As an example, Fig. 4.17 shows the results obtained for

the estimations of a
tive power in the bran
hes belonging to the main feeders of

the network (indi
ated in red in Fig. 4.1). It is possible to observe that PMUs

allow a 
lear improvement, whi
h in some bran
hes is larger than 60 kW. Similar

enhan
ements have been a
hieved even for the 
urrent magnitude estimations. Fig.

4.18 reports the 
orresponding per
ent results, always fo
using on the bran
hes

of the main feeders. As for the voltage magnitude estimation, both 
onventional

instruments and PMUs rely on voltage magnitude measurements with the same
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Figure 4.17: Un
ertainty on the a
tive power estimation in 
ase of voltage mea-

surements
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Figure 4.18: Un
ertainty on the 
urrent magnitude estimation in 
ase of voltage

measurements

un
ertainty. However, sin
e, as seen in Se
tion 4.3, the voltage magnitude estimation

is a�e
ted also by the voltage drops, the better estimation of the �ows allowed by

the PMUs leads also to a slightly better estimation for the voltage magnitude pro�le.

Another test has been 
arried out by taking into a

ount only the �ow measure-

ments in the bran
hes adja
ent to the 
onsidered nodes and the voltage measurement

in the substation. In this 
ase, both the measurement typologies rely on two infor-

mations: a
tive and rea
tive power for the traditional measurements and 
urrent

magnitude and angle for the PMUs. This test allows 
omparing the di�erent im-

pa
t of su
h measurements on the estimations of the ele
tri
al quantities of the
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4. IMPACT OF MEASUREMENTS ON DSSE

network. Even in this 
ase, PMUs lead to a higher a

ura
y for the power estima-

tions. However, sin
e the presen
e of �ow measurements allows better estimations

with respe
t to the previous test, in this 
ase the enhan
ements are lower in abso-

lute terms (around 10 kW for several bran
hes). Similar reasoning also holds for the


urrent estimations. Fig 4.19 shows the results obtained for the 
urrent magnitude

estimation. It is possible to see that, in general, a signi�
ant enhan
ement of the

a

ura
y has been obtained with respe
t to the previous measurement test-
ase (see

the 
orresponding results in Fig. 4.18). Even in this s
enario with enhan
ed estima-

tions, PMUs still allow improving the knowledge on the 
urrent magnitudes. Su
h

enhan
ement in the �ow estimations, even if not too large, is 
learly re�e
ted also

in the voltage magnitude estimations, whose results are shown in Fig. 4.20
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Figure 4.19: Un
ertainty on the 
urrent magnitude estimation in 
ase of �ow

measurements
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Figure 4.20: Un
ertainty on the voltage magnitude estimation in 
ase of �ow

measurements
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4.6. Final dis
ussion

As �nal test, the simultaneous use of all the measurements (voltage magnitude

and powers for the traditional meters and voltage and 
urrent phasors for the PMUs)

has been 
onsidered. In 
ase of traditional measurements, with respe
t to the pre-

vious test, the only addition of the voltage magnitude measurements is provided.

As already seen in the previous se
tions, su
h addition has 
lear e�e
ts on the un-


ertainty of the voltage magnitude estimation, while it is not parti
ularly useful

to enhan
e the estimation of 
urrents and powers in the network (see Fig. 4.16).

In 
ase of PMUs, besides the voltage magnitudes, even the voltage angle measure-

ments are added to the set of the input measurements. The presen
e of voltage

angle measurements proves to have an impa
t on the power estimations and, in this


ase, in parti
ular for the rea
tive powers. Fig. 4.21 shows the enhan
ement in the

rea
tive power estimations obtained by adding voltage phasor measurements to the

measurement s
enario of the previous test. It is possible to observe that a slight en-

han
ement has been obtained for all the bran
hes of the main feeder. Sin
e the same

enhan
ement has not been obtained in 
ase of traditional measurements (thus, with

the only addition of voltage magnitude measurements), this estimation improvement


an be totally attributed to the presen
e of the voltage angle measurements.
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Figure 4.21: Un
ertainty on the rea
tive power estimation in the 
ases of only


urrent or 
urrent and voltage phasor measurements

4.6 Final dis
ussion

The 
hoi
e of a measurement system aimed at enabling the a

urate estimation of

the ele
tri
al quantities of a grid is one of the most 
hallenging issues in distribution

systems. This Chapter presented an analysis of the impa
t brought by di�erent

measurements on the estimation of the di�erent ele
tri
al quantities of a network.
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4. IMPACT OF MEASUREMENTS ON DSSE

Results of this analysis allow some important 
onsiderations, whi
h 
an be helpful

in a meter pla
ement perspe
tive.

First of all, it has been shown that the voltage pro�le estimation is basi
ally

determined by two fa
tors. The �rst one is the number and the a

ura
y of the

voltage measurements deployed on the network. The se
ond one is linked to the

a

ura
y in the knowledge of the �ows in the network (and, thus, of the voltage

drops along the bran
hes). If the largest 
urrents in the network are monitored, then,

the un
ertainty on the voltage pro�le estimation is similar for all the nodes and it

basi
ally depends only on number and a

ura
y of the available voltage measurement

devi
es. This means that the position of the voltage measurements is not de
isive

and 
an be adapted a

ording to other requirements (like, for example, the ne
essity

to 
onne
t voltage and 
urrent or power measurements in the same measurement

point in order to redu
e the 
osts).

As for the bran
h �ows estimation, test results show that signi�
ant enhan
e-

ments 
an be obtained only by installing 
urrent or power measurements. The

impa
t of these measurements is in general dependent on the size of the measured

quantity. If the measured power or 
urrent is large, then the positive e�e
ts of su
h

measurement 
an be propagated even to the power and 
urrent estimation of other


onne
ted bran
hes. Instead, if the measured quantity is not so large, than the

e�e
ts are only lo
al and limited to the measured bran
h and, maybe, to few other

very 
lose bran
hes. This aspe
t emphasizes the ne
essity to monitor, in parti
ular,

the bran
hes belonging to the main feeders or those 
onne
ted to large loads or gen-

erators (in general, those bran
hes that 
an be reasonably expe
ted to 
arry large


urrents).

Finally, further analysis has been proposed to investigate the possible te
hni
al

bene�ts 
oming from the use of PMUs. Su
h analysis has been limited to 
onsider

the impa
t brought by the additional angle measurements. It has been shown that

the knowledge of the angles 
an provide some bene�ts, in a 
ontext 
hara
terized

by low redundan
y of the measurements, above all for the power estimations. Other

additional bene�ts 
ould be provided by the higher a

ura
y of these devi
es and

the availability of the syn
hronization to an absolute time referen
e, but the detailed

analysis of these aspe
ts is out of the s
ope of this thesis.
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Chapter 5

Impa
t of 
orrelations on DSSE

5.1 Measurement 
orrelation in DSSE

The deployment of a suitable measurement system is essential for the e�e
tive man-

agement and 
ontrol of future distribution systems. Nevertheless, the number of

measurement devi
es that will be installed in the near future is not expe
ted to

be too large, due to obvious e
onomi
 reasons. As a 
onsequen
e, a 
areful 
hoi
e

of type and pla
ement of the measurements is ne
essary to a
hieve spe
i�
 require-

ments in the DSSE results. In any 
ase, it is 
lear that e
onomi
 
onstraints bring

limitations to the design of the measurement system and this, in turn, leads to limits

also for the a

ura
y a
hievable in the DSSE. As a 
onsequen
e, solutions able to

enhan
e the a

ura
y of the DSSE results are strongly required. A way to enhan
e

the estimation results is to provide a very a

urate modeling of the measurements

used in the SE pro
ess. In [84℄, as an example, the importan
e of 
onsidering the

un
ertainty 
ontribution brought by the instrument transformers, in the modeling

of the measurement un
ertainties provided to the WLS estimator, has been high-

lighted. In [85℄, it is shown that proper 
onsideration of the un
ertainty sour
es

present in the whole measurement 
hain, thus in
luding both measurement devi
es

and instrument transformers, allows improving the a

ura
y performan
e of WLS

state estimators.

Besides the a

urate de�nition of the un
ertainty of ea
h single measurement,

a proper modeling of the measurement un
ertainties should also take into a

ount

possible 
orrelations existing among di�erent measurements. In general, 
orrelations

are usually negle
ted in the SE models. In the literature, only a few works deal with

this issue and investigate the impa
t brought by possible 
orrelations. In [86℄, the

estimation of the operating 
onditions is performed by means of a probabilisti


power �ow using the measured values as 
onstraints; in this approa
h, 
orrelations

among the power inje
tions of similar loads are 
onsidered to improve the estima-
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tion results. A probabilisti
 power �ow in
luding 
orrelations is also used in [87℄;

in this 
ase the 
onsidered 
orrelations are among the loads belonging to the same

geographi
al area and among similar generation sour
es. Some works show also the

possibility to take into a

ount the 
orrelations in the weighting matrix of the WLS

estimators. In [88℄, for example, the WLS model in
ludes the 
orrelations among

the pseudo-measurements of di�erent loads and generators, and between a
tive and

rea
tive power inje
tion of the same node. Possible 
orrelations existing in real

measurements are 
onsidered in the WLS estimators in [89℄ and [90℄. In [89℄, a

point estimate method is used to 
ompute the 
orrelations arising among voltage

and a
tive and rea
tive power provided by multifun
tion meters. In [90℄, instead,

uns
ented transformations are used to 
onsider the possible 
orrelations among in-

strument transformer signals and to 
al
ulate the resulting 
ovarian
e matrix for

the power meter outputs. More re
ently, [91℄ has investigated the impa
t, over long

exe
ution periods of SE, brought by the time 
orrelation in PMU measurements

provided with high reporting rate.

In this Chapter, an overall analysis of the most important sour
es of 
orrelation

that 
an a�e
t the DSSE is performed [92℄. In parti
ular, possible 
orrelations

arising in the measurements provided by power meters and PMUs are investigated.

Moreover, 
orrelations in pseudo-measurements asso
iated to loads and generators

with similar behaviour, or belonging to the same geographi
al area, are dis
ussed.

Finally, tests aimed at highlighting the e�e
ts deriving from the in
lusion of su
h


orrelations in the WLS model of the DSSE are presented and dis
ussed.

5.1.1 In
lusion of 
orrelation in DSSE

This subse
tion shows how to 
onsider 
orrelations in the mathemati
al model of

the estimators based on the WLS approa
h. The in
lusion of the 
orrelations follows

the same pattern for all the types of input data. Thus, the following 
onsiderations

hold for all the types of measurement 
orrelations and the presented s
heme serves

as a general referen
e for all the 
ases analyzed below.

As already des
ribed in Chapter 1, WLS estimators use a weighting matrix W

to assign a di�erent level of 
on�den
e to the input measurements. The proper

implementation of the WLS approa
h is obtained generating the weighting matrix

through the inversion of the 
ovarian
e matrix Σy of the measurement errors. In the

traditional approa
h, all the measurements are 
onsidered as independent and the


ovarian
e matrix Σy is a diagonal matrix, where the i-th element of the diagonal

is the varian
e σ2
yi
of the i-th measurement yi. In this 
ase, the resulting weighting

matrix is also diagonal and the i-th weight (asso
iated to the i-th measurement) is

the inverse of the varian
e σ2
yi
. More in general, if the 
orrelations among di�erent

measurements are 
onsidered, the expression of the 
ovarian
e matrix is:
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tion meters
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(5.1)

where σyi is the standard deviation of the i-th measurement, ρi,j is the 
orrelation
fa
tor between measurements i and j, and M is the total number of measurements.

In this 
ase, obviously, the weighting matrix resulting from the inversion of Σy is

not diagonal anymore. However, it is worth noting that, in general, not all the

measurements are 
orrelated and only some 
ovarian
e terms are di�erent from zero.

As an example, in 
ase of real measurements, the measurements provided by di�erent

devi
es 
an be reasonably 
onsidered as independent. Possible 
orrelations 
an be

found, instead, among the measurements provided by the same instrument. In this

s
enario, indi
ating with Yk the set of all the measurements 
oming from the k-th
devi
e, and with Ypseudo the set of all the pseudo-measurements, the 
ovarian
e

matrix Σy 
an be written as the following diagonal blo
k matrix:

Σy =




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
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Σy1
0 . . . 0

0 Σy2
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(5.2)

where Σyk
and Σypseudo

are the 
ovarian
e sub-matri
es asso
iated to the sets of the

measurements in the k-th devi
e and of the pseudo-measurements, respe
tively. It

is worth noting that the weighting matrix resulting from (5.2) is also a diagonal

blo
k matrix, whi
h 
an be obtained through the inversion of the single 
ovarian
e

sub-matri
es. From a 
omputational point of view, this allows avoiding the inversion

of the full 
ovarian
e matrix and, thus, 
an lead to a redu
tion of the 
omputational

burden.

5.2 Analysis of 
orrelation in multifun
tion meters

As anti
ipated in the previous Se
tion, measurements provided by di�erent instru-

ments 
an be reasonably 
onsidered as de
orrelated, sin
e they do not have 
om-

mon sour
es of un
ertainty. Instead, measurements 
oming from the same devi
e


an share one or more sour
es of un
ertainty and, thus, they 
an be 
orrelated. In

the analysis developed here, the fo
us is on the 
orrelations arising in multifun
tion

meters. In this 
ontext, multifun
tion meters are intended as instruments able to
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5. IMPACT OF CORRELATIONS ON DSSE

provide measurements of both voltage magnitude and a
tive and rea
tive power.

To assess the possible presen
e of 
orrelation in su
h measurements, the 
onne
tion

s
heme depi
ted in Fig. 5.1 (whi
h is derived from [89℄) is 
onsidered. A

ording to

Fig. 5.1, multifun
tion meters provide the three-phase measurements of voltage and

power relying on the a
quisition of the voltage and 
urrent signals at the monitored

point. For ea
h phase, the measurements of voltage magnitude V , a
tive power P
and rea
tive power Q are, therefore, obtained through the elaboration of the 
orre-

sponding inputs of the phase, i.e. the voltage magnitude V (the same provided as

output), the 
urrent magnitude I and the phase-angle di�eren
e α = δ− θ, where δ
and θ are the phase-angles of voltage and 
urrent, respe
tively.

Figure 5.1: Measurement s
heme of a multifun
tion meter

Fo
using, for the sake of simpli
ity, only on one phase of the system, and taking

into a

ount only the fundamental 
omponents of the input signals of voltage and


urrent, it is possible to express the measured a
tive and rea
tive powers as:

P = P (V, I, α) = V I cos(α)

Q = Q(V, I, α) = V I sin(α)
(5.3)

Equation (5.3) indi
ates that both the powers are indire
t measurements ob-

tained through the elaboration of all the input variables. As a result, sin
e the input

un
ertainties are the same, it is 
lear that 
onsequent 
orrelations arise. In [89℄, the

full 
ovarian
e matrix of the output measurements is obtained by means of a point es-

timation method that is performed after the �rst iteration of the SE algorithm. It is

worth noting that, besides the 
omputational burden asso
iated to exe
ution of this

te
hnique, the 
ovarian
e matrix obtained in this way is only an estimation of the

118



5.2. Analysis of 
orrelation in multifun
tion meters

real 
ovarian
e matrix. Here, instead, the law of propagation of the un
ertainty [93℄

is applied to a
hieve the proper 
ovarian
e matrix.

Indi
ating with fvpq the ve
tor of the mathemati
al fun
tions asso
iated to the

output measurements, it is:

fvpq =





V
P (V, I, α)
Q(V, I, α)





(5.4)

Then, indi
ating with xviα and Σviα the ve
tor and the 
ovarian
e matrix of the

input variables, respe
tively, it is possible to express the 
ovarian
e matrix Σvpq of

the output measurements as:

[

Σvpq

]

=

[

∂fvpq
∂xviα

]

[

Σviα

]

[

∂fvpq
∂xviα

]T

(5.5)

where the derivative matrix is the Ja
obian of the fun
tions asso
iated to the output

measurements with respe
t to the input variables:

[

∂fvpq
∂xviα

]

=













∂V
∂V

∂V
∂I

∂V
∂α

∂P
∂V

∂P
∂I

∂P
∂α

∂Q
∂V

∂Q
∂I

∂Q
∂α













=









1 0 0

I cosα V cosα −V I sinα
I sinα V sinα V I cosα









(5.6)

and the input 
ovarian
e matrix, 
onsidering all the input measurements as inde-

pendent, is:

Σviα =





σ2
V

σ2
I

σ2
α





(5.7)

where σV , σI and σα are the standard deviations asso
iated to voltage magnitude,


urrent magnitude and phase-angle di�eren
e, respe
tively.

Solving the matrix multipli
ation in (5.5), the following varian
es of the output

measurements 
an be found:

σ2
V = σ2

V (5.8)

σ2
P = σ2

V I
2 cos2 α + σ2

IV
2 cos2 α + σ2

αV
2I2 sin2 α (5.9)

σ2
Q = σ2

V I
2 sin2 α + σ2

IV
2 sin2 α+ σ2

αV
2I2 cos2 α (5.10)
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As for the 
ovarian
es terms, the following results 
an be obtained:

σV P = σ2
V I cosα (5.11)

σV Q = σ2
V I sinα (5.12)

σPQ =
1

2
sin 2α(σ2

V I
2 + σ2

IV
2 − σ2

αV
2I2) (5.13)

Sin
e the information provided by the multifun
tion meter only refers to the

voltage and power measurements, it is ne
essary to 
onvert the found relationships

in terms of these output variables and of the independent un
ertainty 
ontributions.

Considering that un
ertainties are usually expressed in terms of their relative values,

it is more 
onvenient to present the varian
es terms in (5.8 - 5.10) divided by the

squared measured quantities, thus obtaining:

σ2
V

V 2
=
σ2
V

V 2
(5.14)

σ2
P

P 2
=

(

σ2
V

V 2
+
σ2
I

I2
+ σ2

α tan
2 α

)

(5.15)

σ2
Q

Q2
=

(

σ2
V

V 2
+
σ2
I

I2
+ σ2

α cot
2 α

)

(5.16)

As for the 
ovarian
e terms, the 
onversion of equations (5.11 - 5.13) leads to:

σV P
V P

=
σ2
V

V 2
(5.17)

σV Q
V Q

=
σ2
V

V 2
(5.18)

σPQ
PQ

=
σ2
V

V 2
+
σ2
I

I2
− σ2

α (5.19)

Relationships found in (5.8 - 5.13) are those to be 
onsidered in the DSSE model

if the input measurements used in the estimation algorithm are voltage and power

measurements. Instead, if power measurements are 
onverted in equivalent 
urrents,

as in the 
ase of the BC-DSSE algorithm presented in this thesis, an additional

elaboration must be performed to a
hieve the �nal 
ovarian
e matrix Σvi related to

the voltage magnitude and the equivalent 
urrent measurements.

As in the previous 
ase, the law of propagation of the un
ertainty 
an be used

to 
ompute the resulting varian
e and 
ovarian
e terms arising due to the presen
e
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of the indire
t 
urrent measurements. Retrieving equations (1.29) and (1.30) from

Chapter 1, the real and imaginary parts ir and ix of the equivalent 
urrents are:

ir = P cos δ +Q sin δ (5.20)

ix = P sin δ −Q cos δ (5.21)

where δ is the voltage angle in the 
onsidered node. It is worth noting that, to

have a faster 
omputation of the BC-DSSE algorithm, it is more 
onvenient to

build the weighting matrix only on
e, before the iterative part of the estimator;

thus, a 
onstant 
ovarian
e matrix is needed. For this reason, the voltage angle

δ 
an be assumed, in �rst approximation, equal to 0 or ±120◦, depending on the

phase, if the overall measurement system in
ludes only traditional measurements.

In 
ase of presen
e of PMUs, instead, sin
e the angles have to be referred to the

UTC referen
e, the voltage angle measured (on the 
onsidered phase) by one of

the available PMUs 
an be used as referen
e. In both 
ases (measurement system

with only traditional devi
es or with the presen
e of PMUs), this 
hoi
e lead to an

approximation. However, sin
e in distribution systems the lines are usually short

and the impedan
es are low, the di�eren
es in the phase-angles for the di�erent

nodes of the network are generally quite small. For this reason, the introdu
ed

approximation is in general a

eptable and, as also shown in Chapter 3, it does not

a�e
t the a

ura
y performan
e of the BC-DSSE algorithm.

Considering the relationship fun
tions shown in (5.20) and (5.21), the ve
tor fvi
of the measurement fun
tions asso
iated to the quantities to be provided as input

to the BC-DSSE algorithm 
an be de�ned as:

fvi =





V
ir(P,Q)
ix(P,Q)





(5.22)

Then, applying the law of propagation of the un
ertainty, the following 
ovarian
e

matrix 
an be obtained:

[

Σvi

]

=

[

∂fvi
∂xvpq

]

[

Σvpq

]

[

∂fvi
∂xvpq

]T

(5.23)

where xvpq is the set of the variables V , P and Q, and the Ja
obian involved in the

matrix multipli
ation is:

[

∂fvi
∂xvpq

]

=













∂V
∂V

∂V
∂P

∂V
∂Q

∂ir

∂V
∂ir

∂P
∂ir

∂Q

∂ix

∂V
∂ir

∂P
∂ix

∂Q













=









1 0 0

0 cos δ sin δ

0 sin δ − cos δ









(5.24)
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It is worth underlining that, sin
e the 
ovarian
e matrix Σvpq to be used in (5.23)

is the full matrix obtained through (5.5), the �nal 
ovarian
e matrix Σvi is a full

matrix as well. Therefore, 
ovarian
e terms arise, indi
ating the presen
e of resulting


orrelations among voltage magnitude, real and imaginary 
urrents.

5.3 Analysis of 
orrelation in PMUs

Similarly to the 
ase of the multifun
tion meters, even when 
onsidering PMUs, it

is reasonable to assume that measurements provided by di�erent devi
es are inde-

pendent. The fo
us is, thus, on the measurements provided by the same PMU. Fig.

5.2 provides an illustration of the general measurement s
heme of a PMU, with the

indi
ation of the main blo
ks involved in the 
omputation of the output syn
hropha-

sors. As des
ribed in [94℄, ea
h one of these blo
ks is a sour
e of un
ertainty for the

�nal syn
hrophasor measurement. In parti
ular:

- Transdu
ers: voltage and 
urrent transformers (VTs and CTs, respe
tively)

are usually employed, whose un
ertainty depends on their a

ura
y 
lass, as

de�ned in the standards [95℄ and [96℄. Some PMUs provide the possibility

to 
ompensate the transdu
er errors. However, this would require a very a
-


urate 
hara
terization of ea
h single transdu
er, whi
h 
ould be impra
ti
al;

moreover, the behaviour of the transdu
ers depends on the operating and en-

vironmental 
onditions, thus, a total 
ompensation of their errors is, in any


ase, impossible.

- Syn
hronization system: it allows the time syn
hronization to the UTC refer-

en
e through the a
quisition of the GPS signal; su
h syn
hronization is a�e
ted

by a given un
ertainty depending on the 
hara
teristi
s of the GPS re
eiver.

It is worth noting that this un
ertainty 
ontribution plays an essential role in

Figure 5.2: Un
ertainty sour
es in the measurement s
heme of a PMU
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the �nal a

ura
y of the syn
hrophasor, sin
e a time syn
hronization error is

dire
tly translated in a phase-angle error.

- A
quisition system: it in
ludes both the analog signal 
onditioning and the

analog to digital 
onverters. Here, un
ertainties arise be
ause of noise, nonlin-

earity and gain errors in the signal 
onditioning and due to the quantization

error in the analog to digital 
onversion.

- Syn
hrophasor algorithm: is the mathemati
al 
ore of the PMU, that is the

algorithm designed to estimate the syn
hrophasor by using the a
quired signals

of voltage and/or 
urrent and the time information 
oming from the previous

stages. The un
ertainty introdu
ed in this step is highly dependent on the type

of implemented algorithm and the 
hara
teristi
s of the input signal (presen
e

of harmoni
s and/or interharmoni
s, frequen
y of the signal, et
.)

The un
ertainty 
ontributions 
oming from transdu
ers, a
quisition system and

syn
hrophasor algorithm should be a

urately 
hara
terized to �nd out if there are


ommon errors a�e
ting di�erent signals. In general, 
orrelations 
an arise from

these stages, but their study would require a deep analysis (whi
h should be spe
i�


for ea
h single PMU) that it is out of the s
ope of this thesis. Instead, as for

the un
ertainty 
ontribution asso
iated to the syn
hronization system, the same


omponent of error 
an be attributed to all the signals pro
essed simultaneously by

the PMU, sin
e all the 
hannels refer to the same time information provided by the

timing 
ontroller. Consequently, in the following, the analysis will be fo
used on the


orrelations brought by the presen
e of this 
ommon 
omponent of time error.

5.3.1 Correlation fa
tor between angle measurements

As aforementioned, the un
ertainty 
oming from the syn
hronization system has a

dire
t impa
t on the angle measurements, sin
e time errors are dire
tly translated

into errors on the angle estimations. As a 
onsequen
e, the magnitude measurements

provided by the PMU 
an be still assumed as de
orrelated, while 
orrelations arise

among the di�erent angle measurements.

To evaluate the 
orrelation between two generi
 angle measurements A and B,

the previously des
ribed sour
es of un
ertainty 
an be taken into a

ount through

the sum of the following three 
ontributions:

ǫA = ǫTA + ǫSA
+ ǫtb (5.25)

ǫB = ǫTB + ǫSB
+ ǫtb (5.26)

where ǫA and ǫB are the angle deviations resulting in the two measurements A and B;

ǫTi (i = A,B) is the e�e
t of the transdu
er angle error (or of the residual un
ertainty,
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5. IMPACT OF CORRELATIONS ON DSSE

if a 
ompensation of the transdu
er errors is performed); ǫSi
is the 
omponent of

error asso
iated to the elaboration of the signal inside the PMU (whi
h 
omprises

both the 
ontribution related to the a
quisition system and the e�e
ts brought by the

parti
ular syn
hrophasor estimation algorithm implemented in the digital pro
essor);

ǫtb is the 
ommon 
omponent of time base error, whi
h is related to the a
hieved

syn
hronization level.

Indi
ating with σTi , σSi
and σtb the standard deviations asso
iated to the three

un
ertainty 
ontributions, and assuming all these 
omponents as de
orrelated, the

varian
e of ea
h measurement 
an be expressed as:

σ2
i , E[ǫ2i ] = σ2

Ti
+ σ2

Si
+ σ2

tb (5.27)

As for the 
ovarian
e, instead, sin
e the time base error is the only 
ommon


omponent, it is:

E[ǫAǫB ] = E[(ǫTA + ǫSA
+ ǫtb)(ǫTB + ǫSB

+ ǫtb)] = E[ǫ2tb] = σ2
tb (5.28)

Exploiting the knowledge of varian
e and 
ovarian
e, it is possible to obtain the

resulting 
orrelation fa
tor, whi
h is:

ρA,B =
E[ǫAǫB]

σAσB
=

σ2
tb

√

(

σ2
TA

+ σ2
SA

+ σ2
tb

) (

σ2
TB

+ σ2
SB

+ σ2
tb

)

(5.29)

Equation (5.29) shows that the 
orrelation fa
tor depends on the ratio between

the 
ommon 
omponent of un
ertainty and the total ones. It is worth noting that

all the 
ontributions of un
ertainty are generally indi
ated in the data sheets as

maximum angle deviations, thus in degrees or radians. As a 
onsequen
e, they

are expressed in absolute values and do not depend on the parti
ular measured

quantity. As an example, in [96℄, the maximum angle deviation indi
ated for voltage

transdu
ers 
ompliant with the 0.5-
lass a

ura
y is 5.8 · 10−3
rad. Thus, for two

di�erent voltage angle measurements (for example referred to di�erent phases of the

node) it is: ǫTA = ǫTB = ǫT . Assuming that also the system error inside the PMU has

similar un
ertainty properties for all the 
hannels, then it would be: ǫSA
= ǫSB

= ǫS.
With these assumptions, (5.29) be
omes:

ρA,B =
σ2
tb

(σ2
T + σ2

S + σ2
tb)

(5.30)

In equation (5.30), the impa
t brought by the 
ommon 
omponent of un
ertainty

on the resulting 
orrelation fa
tor is 
lear.

Just as an example, the data sheets of a 
ommer
ial PMU [53℄ have been used to

assess the value of the 
orrelation fa
tor in a real s
enario. In [53℄, it is possible to
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�nd that the maximum deviation brought by the system error ǫS is equal to 0.03◦ =
0.52 ·10−3

rad, while the maximum deviation asso
iated to the time base error ǫtb, is
1 µs. Considering the period of an ele
tri
al quantity at the nominal frequen
y of 50

Hz, the time base deviation 
an be automati
ally translated in an angle deviation

equal to 0.018◦ = 0.31 ·10−3
rad. Finally, 
onsidering the standards [96℄ as referen
e

for the voltage transdu
ers, and taking into a

ount the requirements provided for

the 0.5-
lass a

ura
y, the maximum deviation of the transdu
er errors is assumed

equal to 5.8 ·10−3
rad. With these data, the resulting 
orrelation fa
tor between two

voltage angle measurements is ρA,B = 2.8 · 10−3
, whi
h is a very low value. Looking

at the 
onsidered deviations, it is 
lear that su
h result is stri
tly a�e
ted by the

presen
e of the large un
ertainty asso
iated to the transdu
er. Just as an example,

if the possibility to perfe
tly 
ompensate the transdu
er error is supposed, then the

resulting 
orrelation fa
tor is ρA,B = 0.26. Even in this 
ase, the 
orrelation fa
tor

is not parti
ularly high, however, su
h value 
ould be able to a�e
t the a

ura
y

performan
e of the DSSE algorithm. In the following, this result will be taken into

a

ount for the analysis of the impa
t of the PMU 
orrelation on the DSSE a

ura
y.

5.3.2 Covarian
e matrix of PMU measurements

To in
lude the 
orrelations among the angle measurements simultaneously performed

by a PMU in the WLS formulation, it is ne
essary to properly build the 
ovarian
e

matrix of the PMU measurement errors. This 
ovarian
e matrix stri
tly depends

on the way in whi
h PMU measurements are introdu
ed in the DSSE model. As an

example, in [97℄, the 
ovarian
e matrix has been obtained for a traditional voltage

based estimator, where PMU measurements are in
luded in polar 
oordinates for

the voltages, and in re
tangular 
oordinates for the 
urrent phasors.

In the BC-DSSE model proposed here, as des
ribed in Chapter 1, both voltage

and 
urrent phasors 
an be 
onveniently in
luded by using their re
tangular 
oordi-

nates. Considering this aspe
t, and indi
ating with yA and yB two generi
 phasors

measured by the same PMU (
an be either voltage or 
urrent phasors), whose mag-

nitude and angle measurements are Yi and αi (with i = A,B) and the real and

imaginary parts are yri and yxi , respe
tively, the following ve
tor fpmu of the input

measurements to the estimation algorithm 
an be de�ned:

fpmu =











yrA (YA, αA)

yxA (YA, αA)

yrB (YB, αB)

yxB (YB, αB)











(5.31)

Indi
ating with xpmu the set of PMU measurements Yi, αi, and with σYi and

σαi
the 
orresponding values of standard deviation, the 
ovarian
e matrix Σypmu

of
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the re
tangular phasors 
an be obtained by applying the law of propagation of the

un
ertainty as follows:

Σypmu
=

[

∂fpmu

∂xpmu

]









σ2
YA

0 0 0
0 σ2

αA
0 ρσαA

σαB

0 0 σ2
YB

0
0 ρσαA

σαB
0 σ2

αB









[

∂fpmu

∂xpmu

]T

(5.32)

where ρ is the 
orrelation fa
tor between the angle measurements αA and αB and

the Ja
obian matrix, involving the derivatives of the ve
tor fpmu with respe
t to the

set of PMU measurements xpmu, is:

[

∂fpmu

∂xpmu

]

=













cosαA −YA sinαA 0 0

sinαA YA cosαA 0 0

0 0 cosαB −YB sinαB

0 0 sinαB YB cosαB













(5.33)

Making the matrix multipli
ation in equation (5.32), it is possible to observe that

all the varian
es and the 
ovarian
e terms related to the same phasor measurement

(for example, the terms related to the 
orrelation between yrA and yxA) are the same

already obtained in Se
tion 1.7.3 (Chapter 1) and they only depend on the 
onversion

of the phasors in re
tangular 
oordinates. However, in addition to these terms, also


ovarian
es between the re
tangular 
omponents of di�erent phasor measurements

arise. In parti
ular, it is possible to �nd:

σyr
A
yr
B
= yxA y

x
B ρ σαA

σαB
(5.34)

σyr
A
yx
B
= −yxA yrB ρ σαA

σαB
(5.35)

σyx
A
yr
B
= −yrA yxB ρ σαA

σαB
(5.36)

σyx
A
yx
B
= yrA y

r
B ρ σαA

σαB
(5.37)

where the subs
ripts of σ in the left term indi
ate the quantities involved in the


ovarian
e.

Obtained results 
learly show that the resulting 
ovarian
e matrix is full and that


orrelations arise among all the re
tangular 
omponents of the di�erent phasors. It

is important to note that the found relationships are valid for ea
h 
ouple of phasors

and, thus, the same 
ovarian
e terms 
an be obtained also when 
onsidering more

simultaneous phasor measurements. For example, in 
ase of measurement of a three-

phase voltage and a three-phase 
urrent, the found relationships have to be used to

express all the 
ovarian
es between ea
h possible 
ombination of the six phasor

measurements.
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5.4 Analysis of 
orrelation in pseudo-measurements

Pseudo-measurements are a parti
ular 
ase of input data where the presen
e of


orrelation is highly possible [86�88,92,98℄. Sin
e the prior information on the power

inje
tions provides the largest number of input data for the DSSE, and sin
e su
h

information is in general poorly reliable, additional details asso
iated to a 
orrelated

behaviour 
ould be parti
ularly useful to enhan
e the estimation results.

Di�erent types of 
orrelation 
an be dete
ted in pseudo-measurements. A possi-

ble 
orrelation is among the power 
onsumptions at di�erent nodes of the network;

su
h 
orrelation 
an arise, for example, be
ause of load similarity or due to the

weather 
onditions. In a smart grid s
enario, operations 
arried out by the DSO

(for instan
e, in a demand side management 
ontext) 
an provide an additional

sour
e of 
orrelation. This kind of 
orrelation 
an be quite high above all for the

loads belonging to the same geographi
al area [87,88℄. In a similar way, 
orrelation


an exist among the power inje
tions at di�erent generation nodes. As an example,

it is easy to imagine the presen
e of high 
orrelation degrees among generation plants

of the same typology based on renewable energy sour
es. For instan
e, the power

produ
tion of photovoltai
 and wind plants is strongly dependent on the weather


onditions: 
onsequently, plants lo
ated in the same area 
an be expe
ted to have a


orrelated behaviour during the day. Even in this 
ase, management interventions

performed by the DSO (like, for example, rea
tive generation 
ontrol or a
tive power


urtailment for voltage 
ontrol purposes) 
an play an additional role in 
orrelating

DG nodes. This type of 
orrelation, whi
h involves di�erent nodes of the network,

will be indi
ated in the following as "inter-node 
orrelation". It is worth underlining

that, in a three-phase 
ontext, the power inje
tions on the di�erent phases of the

same node 
an be seen as inje
tions at three di�erent buses. As a result, the same


onsiderations made for the inter-node 
orrelation 
an be applied also to the 
ase of

power inje
tions 
on
erning the di�erent phases of the same node.

Another kind of 
orrelation that is likely to be present is between the a
tive

and the rea
tive power inje
ted at the same node. This 
orrelation 
an exist as

a 
onsequen
e of the degree of knowledge about the power fa
tor of the inje
tion

and 
an be quite relevant. In some works, indeed, the power fa
tor of the loads

is assumed to be perfe
tly known [88℄: in this 
ase, the resulting 
orrelation fa
tor

would be equal to ±1 (one of the two powers 
ould be also expressed in terms of

the other one). In the following, this 
orrelation will be referred to as "intra-node


orrelation".

The tests performed in the next Se
tion take into a

ount the possible presen
e of

both inter-node and intra-node 
orrelation. It is worth noting that, when these two

types of 
orrelation are simultaneously present, also 
ross-
orrelation fa
tors arise.

As an example, if the a
tive power 
onsumptions of two loads are 
orrelated, and the
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5. IMPACT OF CORRELATIONS ON DSSE

a
tive and rea
tive powers of ea
h node are also related, then spurious 
orrelation

arises between the a
tive power of one node and the rea
tive power of the other one.

This aspe
t has to be 
arefully 
onsidered in the design of the 
ovarian
e matrix. In

the following tests, spurious 
orrelations are 
omputed through the multipli
ation

of the di�erent fa
tors involved in the 
ross-
orrelation.

5.5 Tests and results

5.5.1 Test assumptions

Several tests have been performed on the 95-bus network (already used in the pre-

vious 
hapters, but reported again in Fig. 5.3

1

for the sake of 
onvenien
e) to

analyze the impa
t deriving from the in
lusion of possible 
orrelations in the DSSE

model. Tests refer to the equivalent single-phase model of the 95-bus network, in

order to make easier the evaluation of the 
orrelation impa
t and to obtain a 
learer

presentation of the results. However, as highlighted in previous se
tions, 
orrela-

tions 
an arise also between ele
tri
al quantities belonging to di�erent phases. In

parti
ular, both PMU angle measurements and a
tive power pseudo-measurements


an introdu
e a given degree of 
orrelation among quantities related to di�erent

phases. As pointed out in the analysis, the way to deal with these 
orrelations is

exa
tly the same to be used for the 
orrelations between quantities belonging to

the same phase. Thus, the same 
onsiderations and e�e
ts highlighted through the

single-phase model 
an be reasonably extended also to the three-phase s
enario.

Tests have been performed by using a Monte Carlo approa
h with a number

of trials NMC = 50000. In the simulations, �rst of all, true referen
e operating


onditions are 
omputed by means of a power �ow 
al
ulation. Then, for ea
h

Monte Carlo trial, measurements are extra
ted through the addition of random

errors to the referen
e values. It is important to underline that here, di�erently

from the tests performed in the other 
hapters, the generation of the random errors

has to duly 
onsider, besides the assumed un
ertainty for the 
onsidered quantities,

also the assumed 
orrelations. The following assumptions have been used in all the

performed tests:

- pseudo-measurements are 
onsidered to be available on all the load and gen-

eration nodes of the network with an expanded un
ertainty (three times the

standard deviation of a Gaussian distribution) equal to 50%;

- real-time measurements are assumed to be random variables with a standard

deviation equal to one third of their a

ura
y value.

1

As for the numeration of the bran
hes, ea
h bran
h index is given by the node number of its

end node (the largest one), de
reased by one.
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5.5. Tests and results

Figure 5.3: 95-bus test network

For ea
h kind of 
orrelation, several tests have been performed using di�erent

measurement 
on�gurations. In the presented results, however, a referen
e measure-

ment 
on�guration is used, whi
h is 
omposed of four measurement points at nodes

1, 11, 37 and 60. Ea
h measurement point is assumed to have a devi
e able to

measure the voltage at the node (the magnitude or the phasor depending on the use

of 
onventional meters or PMUs, respe
tively) and the �ows in two of the bran
hes


onne
ted to the 
onsidered bus (the 
urrent magnitude or the a
tive and rea
tive

power in 
ase of traditional measurement devi
es or the 
urrent phasors in 
ase of

PMUs). Table 5.1 shows the overall set of real-time measurements 
onsidered in the

referen
e measurement s
enario. As for the assumed 
orrelations, di�erent assump-

tions are made depending on the spe
i�
 test. Therefore, details on this aspe
t will

be provided separately for ea
h test.

On
e extra
ted, the measurements are provided as input to two di�erent es-

timators. In the �rst one, the DSSE algorithm is designed with the traditional

Table 5.1: Measurement point positions

Nodes 1 11 37 60

Bran
hes 1 (1-2) 11 (11-12) 36 (37-36) 60 (60-61)

(Start-End node) 3 (1-4) 28 (11-29) 40 (37-41) 76 (60-77)
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5. IMPACT OF CORRELATIONS ON DSSE

assumption of having independent measurements: thus, the 
ovarian
e matrix of

the measurement errors, and the 
onsequent weighting matrix, do not in
lude the


orrelations. In the se
ond one, instead, 
orrelations are duly 
onsidered in the 
o-

varian
e matrix of the measurement errors and, in this way, are introdu
ed in the

DSSE model. Results provided by the two di�erent estimators are �nally 
ompared

to assess the impa
t brought by the proper modeling of the 
orrelations in the DSSE

model. To this purpose, the a

ura
y results of the di�erent estimation algorithms

are evaluated by 
omparing the expanded un
ertainties (with a 
overage fa
tor equal

to three) of voltage and 
urrent estimations. In some tests, if the results do not re-

quire a detailed plot of the estimations at ea
h node or bran
h, an overall index for

the whole network is used, that is the mean of the expanded un
ertainties (with

a 
overage fa
tor equal to three) through all the nodes or bran
hes of the network

(depending on the 
onsidered quantity).

5.5.2 Impa
t of multifun
tion meter 
orrelation

As shown in Se
tion 5.2, the 
ovarian
e terms and 
orrelation fa
tors arising in

the output measurements of a multifun
tion meter are stri
tly dependent on the

values of the measured quantities. Thus, it is not possible to simply de�ne a spe
i�


value of the 
orrelation fa
tor to be used in the simulations. The tests are hen
e

performed referring to the real behaviour of these meters. Starting from the true

values of voltage and 
urrent in the 
onsidered measurement point, the 
orresponding

measurements are extra
ted and then used to 
ompute the resulting outputs of

voltage and a
tive and rea
tive power. A

ura
ies equal to 1% and 5.8 · 10−3
rad

have been assumed for the magnitude and angle measurements of both voltage and


urrent, respe
tively, thus 
onsidering a main error 
ontribution 
oming from the

transdu
ers. The pro
edure des
ribed in Se
tion 5.2, based on the law of propagation

of the un
ertainty, is then used for the 
omputation of the 
ovarian
e matrix of the

multifun
tion meter measurement errors. Finally, the 
orresponding weighting sub-

matrix to be in
luded in the DSSE model is obtained through the inversion of the

above mentioned 
ovarian
e matrix.

A �rst test has been performed 
onsidering the multifun
tionmeters pla
ed in the

measurement points indi
ated in Se
tion 5.5.1. As previously 
laimed, 
orrelation

fa
tors arising in ea
h multifun
tion meter 
an be highly variable, depending on the

size of the measured quantities. Table 5.2 shows, as an example, the 
orrelation

fa
tors among the measurement errors for the multifun
tion meter pla
ed in node

1. It is possible to observe that 
orrelation varies from low values (0.10 for the


orrelation fa
tor between the a
tive power P3 in bran
h 3 and the rea
tive power

Q1 in bran
h 1) to quite high fa
tors (0.71 for the 
orrelation between voltage V1
and a
tive power P1).

Performed test shows that 
onsidering the presen
e of the 
orrelations in the
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Table 5.2: Matrix of the 
orrelation fa
tors among the measurement errors of the

multifun
tion meter at node 1

V1 P1 Q1 P3 Q3

V1 1.00 0.71 0.21 0.62 0.61

P1 0.71 1.00 0.20 0.46 0.40

Q1 0.21 0.20 1.00 -0.10 0.38

P3 0.62 0.46 -0.10 1.00 0.50

Q3 0.61 0.40 0.38 0.50 1.00

DSSE model allows a
hieving better a

ura
y performan
e of the estimator. Table

5.3 shows the results of mean expanded un
ertainty for both voltages and 
urrents.

It is possible to observe that slight improvements are present for the estimations of

all the ele
tri
al quantities. However, a di�erent impa
t is obtained for the di�erent

quantities. In fa
t, for the voltage estimations, the bene�ts 
oming from the intro-

du
tion of the 
orrelations in the DSSE model are basi
ally spread among all the

nodes. Fig. 5.4 shows, as an example, the results obtained for the expanded un
er-

tainty of the voltage magnitude: it is 
lear that all the nodes exhibit an improved

estimation when 
onsidering the 
orrelations in the estimator model. In the 
ase

of the bran
h 
urrents, instead, the e�e
ts brought by the 
orrelation are mainly

lo
al and fo
used on the bran
hes 
lose to the measurement points. As a 
onse-

quen
e, several bran
hes are pra
ti
ally not a�e
ted by the 
onsidered 
orrelation,

while other bran
hes (
lose the multifun
tion meters) show a more evident impa
t

(as an example, in the 
onsidered s
enario, the expanded un
ertainty for the 
urrent

magnitude in bran
h 7 de
reases from 42.8% to 40.9%).

Similar results have been obtained also 
onsidering di�erent measurement pla
e-

ments. In general, therefore, it is possible to say that proper 
onsideration of the

multifun
tion meter 
orrelation 
an be useful to slightly enhan
e the a

ura
y perfor-

man
e of the DSSE. The impa
t of su
h 
orrelations is usually not too large; however,

Table 5.3: Impa
t of multifun
tion meter 
orrelation on the mean of the expanded

un
ertainty of voltage and 
urrent estimations

Model

Current

magnitude

[%℄

Current

angle

[
rad℄

Voltage

magnitude

[%℄

Voltage

angle

[
rad℄

no 
orr.

in weights

22.66 6.79 0.51 1.9 · 10−2

with 
orr.

in weights

22.54 6.76 0.50 1.8 · 10−2
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Figure 5.4: Expanded un
ertainty of voltage magnitude estimation with multifun
-

tion meter 
orrelation

all the ele
tri
al quantities 
an a
hieve some bene�ts from the 
orre
t 
onsideration

of these 
orrelations in the modeling of the measurement errors.

5.5.3 Impa
t of PMU 
orrelation

In Se
tion 5.3, it has been shown that possible 
orrelations 
an arise among the

di�erent angle measurements provided by a PMU, due to the presen
e of a 
ommon


omponent of error asso
iated to the time syn
hronization. In the most general


ases, the resulting 
orrelation fa
tors are almost negligible be
ause of the presen
e

of a larger un
ertainty 
ontribution brought by the transdu
ers. However, if an

a

urate 
ompensation of the transdu
er errors is performed (it is worth noting that

a perfe
t 
ompensation is a
tually not possible), then the 
orrelation fa
tors rise up

to more signi�
ant values.

In this subse
tion, taking into a

ount the results found in Se
tion 5.3, some

tests have been performed by 
onsidering a 
orrelation fa
tor ρ equal to 0.26 among

all the angle measurements provided by ea
h PMU. The a

ura
ies are assumed

equal to 0.7% and 0.7 
rad for the magnitude and angle measurements, respe
-

tively, in order to obtain a maximum TVE of 1% as pres
ribed by the standard of

syn
hrophasors [51℄ for the tests in steady-state 
onditions. The measurement pla
e-

ment des
ribed in Se
tion 5.5.1 has been adopted in the tests. Results show that,

in this s
enario, proper 
onsideration of the PMU 
orrelation in the DSSE model

brings only very small enhan
ements on the a

ura
y performan
e of the estimator.

In fa
t, almost the same estimation un
ertainties have been obtained both negle
t-

ing and 
onsidering the 
orrelations in the estimator. The same kind of results 
an

be obtained also 
onsidering di�erent pla
ements for the PMUs. The possible rea-

sons for su
h a very small impa
t 
an be both the low value of 
orrelation and the
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Table 5.4: Impa
t of PMU 
orrelation on the mean of the expanded un
ertainty

of voltage and 
urrent estimations

Model

Current

magnitude

[%℄

Current

angle

[
rad℄

Voltage

magnitude

[%℄

Voltage

angle

[
rad℄

no 
orr.

in weights

22.42 6.70 0.36 1.4 · 10−2

with 
orr.

in weights

22.36 6.62 0.36 1.3 · 10−2

simultaneous high a

ura
y of the PMU measurements. Indeed, in this situation,

the additional information asso
iated to the measurement 
orrelations 
an be not so

valuable to further improve the already good estimations determined by the highly

a

urate PMU measurements.

To further investigate this aspe
t, additional tests have been 
arried out by

raising the 
orrelation fa
tors up to 0.9. Table 5.4 shows the 
onsequent results

for the mean expanded un
ertainty of both voltage and 
urrent estimations. It is

possible to note that, in this 
ase, thanks to the presen
e of very large 
orrelation

fa
tors, some slight improvements on the estimation a

ura
y 
an be observed, in

parti
ular for the 
urrents. In fa
t, similarly to the 
ase of multifun
tion meters, the

large 
orrelation allows re�ning the estimation a

ura
y for the bran
hes 
losest to

the measurement points. As an example, in this 
ase, when PMU 
orrelations are

duly 
onsidered, the un
ertainty of the 
urrent magnitude estimation in bran
h 7

goes from 39.5% to 37.4%. Similar results and similar 
onsiderations 
an be a
hieved

also when 
onsidering di�erent measurement 
on�gurations. In general, thus, it is

possible to say that the impa
t brought by the PMU measurement 
orrelations in

realisti
 s
enarios is usually limited; however, if additional sour
es of 
orrelation

are present and the 
orrelation fa
tors rise up to larger values, then some more

signi�
ant enhan
ement 
an be a
hieved, in parti
ular on the 
urrent estimations of

the bran
hes 
losest to the measurement points.

5.5.4 Impa
t of pseudo-measurement 
orrelation

As des
ribed in Se
tion 5.4, two di�erent types of 
orrelation 
an be de�ned for the

pseudo-measurements. The �rst one is an inter-node 
orrelation, that is a 
orrelation

among the power 
onsumptions (or generations) at di�erent nodes. The se
ond one

is an intra-node 
orrelation, that is the 
orrelation between the a
tive and rea
tive

power inje
tion at the same bus. In this se
tion, tests have been performed to high-

light the possible e�e
ts 
oming from the proper 
onsideration of these 
orrelations

133



5. IMPACT OF CORRELATIONS ON DSSE

in the measurement model of the DSSE. At the beginning, several tests have been

performed by 
onsidering separately inter-node and intra-node 
orrelations, in order

to point out the impa
t brought by ea
h one of them. Then, the overall impa
t

deriving from the simultaneous presen
e of both the types of 
orrelation has been

investigated.

Simulations have been 
arried out 
onsidering the presen
e of multifun
tion me-

ters, PMUs or voltage and 
urrent magnitude measurements in the monitored points

indi
ated in Table 5.1. To avoid the superimposition of the e�e
ts brought by the

real-time measurement 
orrelations, both the multifun
tion meter and the PMU

measurements are assumed as de
orrelated. In parti
ular, a

ura
ies of 1% and 3%

have been assumed for the voltage magnitude and the a
tive and rea
tive power

measurements provided by the multifun
tion meters, respe
tively, while a

ura
ies

of 0.7% and 0.7 
rad have been assumed for the magnitude and angle measurements

provided by the PMUs. In 
ase of voltage and 
urrent magnitude measurements,

instead, the assumed a

ura
y is 1% for both the measurements.

Inter-node 
orrelation

The �rst test has been performed by taking into a

ount a strong inter-node 
orre-

lation between the generation nodes (
orrelation fa
tor equal to 0.9) and among the

a
tive power 
onsumptions at nodes 3, 21, 53 and 76 (
orrelation fa
tor equal to 0.8).

Figures 5.5 and 5.6 show the results for the expanded un
ertainty of the 
urrent mag-

nitude and angle estimations, respe
tively, when 
onsidering multifun
tion meters

in the measurement points. It is possible to observe that the in
lusion of the 
orrela-

tions in the weighting matrix of the DSSE model 
learly leads to signi�
ant bene�ts

on the estimation results. In parti
ular, assumed 
orrelations prove to be useful for

enhan
ing the 
urrent estimation in the bran
hes 
lose to the 
orrelated nodes. As

an example, in bran
hes 19 and 20, whi
h are adja
ent to the 
orrelated load in

node 21, the un
ertainty of the 
urrent magnitude estimation de
reases from 48.8%

to 28.8% when 
orrelations are duly 
onsidered. In the same way, with a proper

measurement error modeling, bran
h 27 is able to exploit the 
orrelation between

the generators for redu
ing the estimation un
ertainty of its 
urrent magnitude from

32.2% to 20.8%. Similar 
onsiderations also hold for the 
urrent angle estimations:

for instan
e, in bran
h 27, the estimation improvement is equal to almost 6 
rad.

The parti
ular 
hoi
e of the measurement pla
ement and of the 
orrelated nodes

also highlights that the impa
t is not always the same in all the bran
hes adja
ent

to the 
orrelated nodes. For example, it is worth noting that bran
hes 1 and 2

(whi
h 
onne
t the substation bus to the 
orrelated node 3) do not exhibit any

enhan
ement on the estimation a

ura
y, despite the presen
e of the near 
orrelated

bus. The reason in this 
ase is due to the presen
e of a very 
lose measurement

point (in substation): in this situation, the 
urrents in bran
hes 1 and 2 are already
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Figure 5.5: Expanded un
ertainty of 
urrent magnitude estimation with inter-node


orrelation in nodes 3, 21, 53 and 76
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Figure 5.6: Expanded un
ertainty of 
urrent angle estimation with inter-node


orrelation in nodes 3, 21, 53 and 76

a

urately estimated (be
ause of the power measurements in bran
h 1) and, thus,

the additional 
ontribution brought by the load 
orrelation does not further improve

the estimation a

ura
y. More in general, it is worth noting that the e�e
ts of the


onsidered 
orrelations are mainly on the 
urrent estimations of the lateral bran
hes.

Su
h estimations are generally 
hara
terized by very large relative un
ertainties, but

usually refer to small size 
urrents. For this reason (taking also into a

ount the

impa
t of the 
urrent estimations on the resulting voltage pro�le, as des
ribed in

Chapter 4), the bene�ts on the voltage estimations are less evident and, in general,

are mainly fo
used on few nodes.

Very similar results have been obtained even when 
onsidering PMUs or voltage
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and 
urrent magnitude measurements in pla
e of the multifun
tion meters. Thus,

obtained results are not dependent on the parti
ular type of real-time measurements

deployed on the network. In general, this �rst test shows that inter-node 
orrelations


an be parti
ularly useful for enhan
ing the estimation a

ura
y of those 
urrents

that 
annot be a

urately estimated due to the la
k of a 
lose measurement point.

This is a very important result for two reasons. From one hand, this implies that

the knowledge of the 
orrelations is able to re�ne the poorly a

urate information

in
luded in the pseudo-measurements. On the other hand, the presen
e of large

e�e
ts in the unmonitored areas 
an be a signi�
ant bene�t in the distribution

system s
enario, sin
e several areas 
an be totally unobserved due to the limited

deployment of measurement instruments.

Additional tests have been performed to 
on�rm the results obtained in the

previous test. Following the assumptions used in [88℄, di�erent groups of 
orrelated

loads have been identi�ed in order to simulate the presen
e of 
orrelation among the

loads belonging to the same geographi
al area. In parti
ular, four 
orrelated zones

have been 
onsidered:

- zone A: loads in
luded between nodes 12 and 27;

- zone B: loads in
luded between nodes 38 and 54;

- zone C: loads in
luded between nodes 62 and 76;

- zone D: loads in
luded between nodes 81 and 94.

In ea
h area, a 
orrelation fa
tor equal to 0.8 has been assumed among the a
tive

power 
onsumptions of the loads. Moreover, the 
orrelation between the generation

nodes (with 
orrelation fa
tor equal to 0.9) has been always assumed to be present.

A series of tests has been 
arried out 
onsidering the presen
e of 
orrelation in

only one of the aforementioned 
orrelated areas. Fig. 5.7 shows, as an example, the

results obtained for the 
urrent magnitude estimation when 
onsidering the inter-

node 
orrelation in zone A (in 
ase of PMU measurement points). It is possible to

observe that, in the bran
hes 
orresponding to the 
orrelated area, a signi�
ant en-

han
ement of the estimation results has been obtained by in
luding the 
orrelations

in the estimator model. In parti
ular, estimations are signi�
antly re�ned in all

the lateral bran
hes, where the un
ertainty has been redu
ed to values around 30%

(with respe
t to un
ertainties very 
lose to 50% when 
orrelations are not taken into

a

ount). Moreover, thanks to the 
orrelation among all the loads of the area (and

the 
onsequent enhan
ement of all the lateral bran
h 
urrent estimations), an evi-

dent impa
t has been found even for the bran
h 
urrents of the feeder: for example,

in bran
h 21 the estimation un
ertainty de
reases from 2.8% to 1.9%. Similar 
on-

siderations also hold for the 
urrent angle estimations and for the 
ases of di�erent

measurement instruments installed on the network.

The lo
al impa
t of the 
orrelations is 
on�rmed also by the other simulations

performed with only one group of 
orrelated loads. Fig. 5.8 shows, instead, the
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Figure 5.7: Expanded un
ertainty of 
urrent magnitude estimation with inter-node


orrelation in zone A
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Figure 5.8: Expanded un
ertainty of 
urrent magnitude estimation with inter-node


orrelation in all the zones

results obtained when the load 
orrelations are assumed for all the aforementioned

zones. In this 
ase, as it 
an be expe
ted, the results 
ombine the lo
al impa
ts

brought by the 
orrelations of ea
h area. As a 
onsequen
e, the improvement in the


urrent estimations 
an be seen for a larger number of bran
hes. Basi
ally, however,

the same 
onsiderations highlighted for the previous s
enarios still hold.

Intra-node 
orrelation

The following test aims at assessing the impa
t of the intra-node 
orrelation. To

this purpose, a 
orrelation fa
tor equal to 0.8 has been assumed between the a
tive

and the rea
tive power inje
tion of ea
h load. Results of this test show a di�erent
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impa
t depending on the type of measurement devi
es used in the network. In fa
t,

the introdu
tion of the intra-node 
orrelations brings additional information about

the power fa
tor of the loads. The main e�e
ts are hen
e on the 
urrent angle es-

timations and, as a 
onsequen
e, this knowledge is parti
ularly useful when other

information on the phase-angles is missing. As a 
on�rmation, Figs. 5.9 and 5.10

show the di�erent results obtained for the 
urrent angle estimations when 
onsid-

ering voltage and 
urrent magnitude measurements, or when PMUs are used. It

is possible to observe that, in the �rst 
ase, sin
e both the voltage and 
urrent

measurements do not provide any kind of information about the phase-angles, the

in
lusion of the intra-node 
orrelation in the estimator model allows signi�
antly
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Figure 5.9: Expanded un
ertainty of 
urrent angle estimation with intra-node


orrelation in 
ase of voltage and 
urrent magnitude measurements
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Figure 5.10: Expanded un
ertainty of 
urrent angle estimation with intra-node


orrelation in 
ase of PMU measurements
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enhan
ing the 
urrent angle estimations for several bran
hes. In parti
ular, it is

worth noting that the improvements are mainly 
on
entrated on the bran
hes 
lose

to the measurement points: this demonstrates that the intra-node 
orrelation allows

integrating the information 
oming from the measurement devi
es. Instead, when

PMU measurements are 
onsidered, sin
e both voltage and 
urrent phasors already

have highly a

urate information on the phase-angles, the additional 
ontribution

brought by the intra-node 
orrelation allows only slight improvements on the 
urrent

angle knowledge. In 
ase of multifun
tion meters, basi
ally the same 
onsiderations

made for the PMUs hold, sin
e the simultaneous measurements of a
tive and rea
-

tive power allows a
hieving a good knowledge on the phase-angles of the ele
tri
al

quantities.

Inter-node and intra-node 
orrelation

Another series of tests has been performed to evaluate the impa
t brought by the

simultaneous presen
e of both inter-node and intra-node 
orrelation. In the pre-

sented test, inter-node 
orrelations have been assumed among the loads of all the

previously identi�ed areas (with a 
orrelation fa
tor equal to 0.8) and between the

generators in nodes 28 and 95 (with 
orrelation fa
tor equal to 0.9). Moreover, intra-

node 
orrelation between the a
tive and the rea
tive power inje
tion of ea
h load

(with 
orrelation fa
tor equal to 0.8) has been 
onsidered. It is worth re
alling that

in this 
ase, besides the assumed 
orrelations, even indire
t 
orrelations arise (for

example between the a
tive and the rea
tive power of di�erent loads interested by

inter-node 
orrelation), thus leading to a larger number of variable 
orrelations. Test

results show a 
umulative e�e
t of the two kinds of 
orrelation. As a 
onsequen
e,

in the 
urrent magnitude estimations, the proper modeling of the 
orrelations in

the DSSE basi
ally leads to the same results highlighted in the inter-node 
orrela-

tion tests (sin
e the intra-node 
orrelation has pra
ti
ally no impa
t on the 
urrent

magnitude estimations). Instead, in the 
ase of 
urrent angle estimations, di�erent

results 
an be observed, be
ause of the di�erent e�e
ts obtained by using di�erent

measurement instruments. In Fig. 5.11, as an example, the results obtained when


onsidering voltage and 
urrent magnitude measurements are shown. It is possible

to note that, in this 
ase, the overall impa
t obtained by properly 
onsidering the


orrelations in the estimator model is quite large, sin
e both the inter-node and

the intra-node 
orrelation bring signi�
ant bene�ts to the estimation a

ura
y. As

additional 
onsideration, it is also worth noting that, in su
h a s
enario, the large

improvements a
hievable on the 
urrent estimations are also re�e
ted on the voltage

estimations. Fig. 5.12 shows, for example, the un
ertainty resulting for the voltage

magnitude estimation: it is possible to see that, in this 
ase, proper 
onsideration

of the input data 
orrelations in the measurement model of the DSSE leads to 
lear

improvements for several nodes.
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Figure 5.11: Expanded un
ertainty of 
urrent angle estimation with inter and

intra-node 
orrelation in 
ase of voltage and 
urrent magnitude measurements
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Figure 5.12: Expanded un
ertainty of voltage magnitude estimation with inter

and intra-node 
orrelation in 
ase of voltage and 
urrent magnitude measurements

As further analysis, additional tests have been 
arried out to assess the impa
t

of di�erent levels of 
orrelation. To this purpose, the assumptions 
onsidered in

the previous test have been assumed as referen
e and 
orrelation fa
tors have been

proportionally redu
ed with respe
t to the values used in that s
enario. As it 
an be

expe
ted, the enhan
ements deriving from the proper in
lusion of the 
orrelations

in the DSSE model are strongly related to the 
orrelation fa
tor values. Table

5.5 shows, as an example, the improvements a
hievable on the 
urrent magnitude

estimation of some bran
hes when assuming di�erent levels of 
orrelation. Obviously,

in
reasing values of 
orrelation fa
tors lead to larger improvements. Moreover, it is
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also worth noting that the impa
t is nonlinear, even be
ause of the presen
e of

spurious 
orrelations. Thus, in
reasing values of 
orrelation fa
tors lead to more

and more important improvements on the a

ura
y of the estimation results.

Table 5.5: Impa
t of di�erent levels of 
orrelation

Correlation level

Expanded un
ertainty improvement [%]

Bran
h 25 Bran
h 39 Bran
h 75

25% 1.7 5.7 5.1

50% 6.8 15.4 14.7

75% 16.2 29.4 28.0

100% 33.0 48.4 46.7

E�e
ts of possible mismat
h in 
orrelation values

In this subse
tion, additional tests have been performed to analyze the impa
t of

a possible mismat
h in the knowledge of the 
orrelation fa
tors. In fa
t, until now,

all the tests have been performed by 
onsidering the presen
e of a given 
orrelation

among the pseudo-measurements and assessing the bene�ts 
oming from the proper

in
lusion of su
h 
orrelation in the DSSE model. In pra
ti
al s
enarios, however, the

exa
t knowledge of the 
orrelation values is unrealisti
. Thus, tests performed here

aim at assessing the impa
t brought by the in
lusion of a non-perfe
tly mat
hing

value of 
orrelation in the measurement model of the estimator.

To this purpose, some tests have been 
arried out by 
onsidering: an inter-node


orrelation (with 
orrelation fa
tor equal to 0.6) in all the four zones previously

de�ned for the inter-node 
orrelation tests; an inter-node 
orrelation (
orrelation

fa
tor equal to 0.675) between the a
tive power inje
ted by the generators in nodes

28 and 95; an intra-node 
orrelation (
orrelation fa
tor equal to 0.6) between the

a
tive and rea
tive powers of ea
h load inje
tion. Obviously, the indire
t 
orrelations

arising in this 
ontext have also to be taken into a

ount. The 
hoi
e of these


orrelation values allows assessing the e�e
ts deriving from the 
onsideration in the

DSSE model of both underestimated and overestimated 
orrelations. Starting from

this referen
e s
enario, in fa
t, tests have been performed using the above mentioned


orrelations for the measurement extra
tions, but introdu
ing in the estimator model


orrelation fa
tors ranging from 1/4 to 5/4 of the a
tual values. In this way, the

e�e
t of possible errors in the knowledge of the 
orrelations 
an be evaluated.

Test results 
learly show that, even when 
onsidering a not perfe
tly mat
hed

value of 
orrelation fa
tor in the DSSE, signi�
ant bene�ts on the estimation a

u-

ra
y 
an be still a
hieved. As an example, Fig. 5.13 reports the results obtained for
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Figure 5.13: Expanded un
ertainty of 
urrent magnitude and angle estimation in

bran
h 45 in presen
e of 
orrelation mismat
h

the 
urrent estimation in bran
h 45 when 
onsidering voltage and 
urrent magnitude

measurements in the network. It is possible to observe that, obviously, the largest

improvements are obtained 
onsidering a perfe
t knowledge of the 
orrelation fa
tor.

Nevertheless, even when the 
orrelation fa
tors introdu
ed in the DSSE model are

signi�
antly di�erent from the a
tual ones, large enhan
ement on the estimation a
-


ura
y 
an be still obtained. For example, in this 
ase, the un
ertainty of the 
urrent

magnitude estimation de
reases from more than 40% to around 25% by 
onsidering

the proper 
orrelation fa
tors. However, also when the 
orrelations 
onsidered in

the DSSE are halved, the 
urrent magnitude un
ertainty 
an be still redu
ed to a

value lower than 28%. Similar 
onsiderations hold also for the 
urrent angle estima-

tions and for the results found in the other bran
hes of the network. Su
h results

have been also 
on�rmed by 
onsidering di�erent measurement 
on�gurations (with

di�erent meter pla
ement) in the network. Thus, it is possible to 
on
lude that a

proper in
lusion of pseudo-measurement 
orrelations in the model allows enhan
ing

the a

ura
y of the DSSE results and 
an provide important bene�ts even when


orrelation values are not perfe
tly known.

5.6 Final dis
ussion

This Chapter shows the importan
e of a proper measurement modeling for a
hieving

an enhan
ed estimation of the ele
tri
al quantities of the network. In parti
ular,

the possible 
orrelations existing among the measurements provided as input to the

DSSE algorithm 
an represent an important, additional sour
e of information when
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only a limited number of measurement instruments is available on the �eld. The

developed analysis shows that, di�erently from the 
ommon assumptions used in

SE, 
orrelations 
an exist among the real-time measurements provided by the same

devi
e. Moreover, in the distribution system s
enario, additional 
orrelations are

highly possible among the pseudo-measurements. For instan
e, loads with similar

behaviour or generation plants based on renewable energy sour
es are likely to have

a strong 
orrelation in their power inje
tions.

Performed tests show that the proper 
onsideration of these 
orrelations in the

modeling of the measurement errors allows improving the a

ura
y of the DSSE

results. However, a di�erent impa
t is obtained when 
onsidering the 
orrelation

of real-time measurements and pseudo-measurements. In the �rst 
ase, 
orrela-

tions arising both in multifun
tion meters and in PMUs, if suitably 
onsidered in

the DSSE model, 
an provide some advantages, above all in the estimation of the

bran
h 
urrents 
losest to the 
onsidered measurements. However, these advantages

are usually not very strong. As a 
onsequen
e, the possible use of these 
orrelations

should be 
arefully assessed, even 
onsidering that their use implies an in
rease of

the 
omputational burden, with the 
onsequent e�e
ts on the estimator e�
ien
y.

In 
ase of pseudo-measurements, instead, the bene�ts provided by the proper imple-

mentation of the 
orrelations in the measurement model of the DSSE are signi�
ant.

In parti
ular, large improvements 
an be a
hieved for all the bran
h 
urrents 
lose

to the 
orrelated nodes. Consequently, su
h 
orrelation, when present, is a valuable

information that should be duly exploited, sin
e it allows improving the knowledge

about the pseudo-measurements and, in this way, it leads to enhan
ed estimations

even in those unmonitored areas of the network that 
annot rely on any 
lose mea-

surement devi
e.

In a realisti
 environment, the pseudo-measurement 
orrelations 
ould be ob-

tained from histori
al data, from the knowledge on the loads or generators behaviour,

or also from the results of the run-time estimations. As a 
onsequen
e, it is important

to note that the 
orrelation degrees are, in general, not perfe
tly known. Neverthe-

less, performed tests show that, even if the assumed 
orrelations do not perfe
tly

mat
h the a
tual ones, their introdu
tion in the DSSE model still allows obtaining

signi�
ant advantages. Su
h a result proves that bene�ts related to the use of the

pseudo-measurement 
orrelations 
an be a
hieved also in pra
ti
al s
enarios.

143



5. IMPACT OF CORRELATIONS ON DSSE

144



Chapter 6

Multi-area DSSE

6.1 Multi-area state estimation

One of the most important issues in distribution systems is the size of these net-

works. As already des
ribed in Chapter 1, the high number of nodes, together with

the need to 
onsider the three-phase model of the grid, signi�
antly a�e
ts the es-

timator e�
ien
y, leading to long 
omputation times for the solution of the DSSE

problem. This aspe
t is parti
ularly 
riti
al, above all 
onsidering that a
tual distri-

bution grids need to deal with an in
reasing penetration of renewable sour
es, whi
h

are highly intermittent and 
hara
terized by a qui
kly variable behaviour. In this


ontext, in fa
t, the real-time management and 
ontrol of the network (and thus

also the exe
ution of the DSSE) should be performed with high reporting rates, in

order to make the dete
tion of fast dynami
s a�e
ting the network possible. Thus

the development of an e�
ient and fast DSSE is essential. Moreover, additional is-

sues 
an also arise, as for the 
ommuni
ation system or for the storage requirements,

be
ause of the large amount of data to be managed.

A possible way to ta
kle this problem 
an be the employment of s
alable solutions

by means of a multi-area partition of the network. It is worth noting that multi-area

te
hniques have been also proposed to enable wide-area management and 
ontrol in

transmission systems. However, the obje
tives pursued at the transmission and

distribution side are di�erent. In transmission systems, the goal is basi
ally to ag-

gregate state estimations performed on di�erent sub-networks, usually managed by

di�erent Transmission System Operators, in order to have integrated data on a wide

area. In distribution systems, instead, the aim is to de
ompose the DSSE problem

in order to have smaller systems to be handled. In this way, storage and 
ommuni-


ation requirements 
ould be distributed in the system and the DSSE pro
ess 
an

be performed on smaller networks, allowing the redu
tion of the overall exe
ution

times. It is also worth highlighting that distribution systems in
lude grids operated
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at di�erent voltage levels: then, a multi-area solution 
an be useful also to handle,

separately, networks with di�erent te
hni
al features.

Despite the large number of works dealing with the Multi-Area State Estimation

(MASE) issue in transmission systems, the possibility to employ a similar solution

also at the distribution level has not been deeply investigated so far. Several issues

prevent an easy implementation of the multi-area approa
h in distribution systems.

The main problem is given by the limited number of measurement instruments in-

stalled on the �eld. As an example, the possibility to split the grid in redu
ed areas


an be stri
tly 
onditioned by the availability of measurements allowing the observ-

ability, or a minimum redundan
y, for ea
h sub-network. Thus, the design of the

multi-area partition has to duly 
onsider the 
on�guration of the a
tual measure-

ment system, or, in a perspe
tive of measurement system upgrade, the 
hoi
e of the

meter pla
ement. Another severe issue is that, be
ause of the low number of real

measurements, an important deterioration of the DSSE a

ura
y performan
e 
an

arise by using multi-area approa
hes. To this purpose, suitable pro
edures 
ould be

used to integrate the results of the lo
al estimations in order to in
rease the overall

a

ura
y of the DSSE. Several solutions have been proposed, for the same purposes,

for transmission systems. Thus, some of these methods 
ould be adapted for being

used in a distribution s
enario, or, alternatively, te
hniques spe
i�
ally designed for

the distribution systems should be 
on
eived. From this point of view, it is impor-

tant to underline that di�erent solutions 
ould provide di�erent e�e
ts both on the

resulting a

ura
y performan
e and on the 
ommuni
ation requirements. Both these

aspe
ts should be duly taken a

ount for the development of a multi-area approa
h

well suited to the distribution systems.

In general, for the proper design of a multi-area s
heme, it is 
lear that a reason-

able trade-o� among the 
ontrasting features of a

ura
y, e�
ien
y, and 
ommuni
a-

tion and storage requirements has to be found. In the next subse
tion, some di�erent

ways to approa
h the MASE problem are shown in order to highlight strengths and

weaknesses of ea
h method. Then, in the following, a proposal spe
i�
ally 
on
eived

for the distribution networks, taking into a

ount the pe
uliarities of these systems,

is presented and tested.

6.2 Multi-area approa
hes

Several MASE approa
hes are available in the literature, usually 
on
eived for the

transmission system s
enario. The di�erent proposals 
an be 
lassi�ed a

ording

to several 
riteria, like, for example: the level of area overlapping, the timing of

the estimation pro
esses, the used 
omputing ar
hite
ture or the adopted solution

methodology [99℄. The knowledge of pros and 
ons of the alternative solutions

within ea
h 
ategory 
an be useful to identify the types of approa
h more suited to
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the features and requirements of the distribution networks.

6.2.1 Level of area overlapping

The possible approa
hes to the MASE problem 
an be dis
erned depending on the

way in whi
h the network is partitioned. The typologies of multi-area partition 
an

be basi
ally 
lassi�ed in three main groups: no overlapping, minimum overlapping

and extended overlapping. Fig. 6.1 shows a s
hemati
 overview of the di�erent


riteria.

Figure 6.1: Main types of multi-area partition

The partition without any overlapping implies a de
omposition of the network

where no buses are shared between di�erent areas. In this 
ase ea
h node belongs

to only one sub-network and the size of ea
h area is minimized. In transmission

systems, sin
e the state ve
tor of the 
onventional estimators is usually 
omposed of

the voltages at the nodes, su
h a solution leads to independent lo
al estimations for

the di�erent sub-networks. The re�nement of the SE a

ura
y of ea
h area is usually

obtained by in
luding the border information of the neighboring areas (the voltage

estimations at the border nodes and/or the powers at the bran
hes 
onne
ting the


onsidered area to the adja
ent ones) in spe
i�
ally designed integration pro
edures.

As an example, in [100℄, independent lo
al estimations are performed at the �rst

step of the MASE algorithm. Then, the voltage estimations at the border buses and

the power measurements at the tie-lines 
onne
ting the di�erent areas are in
luded

in a se
ond step to obtain 
onsistent results among the areas. In [101℄, instead,

information related to the border buses is 
onsidered at ea
h iteration of the MASE

pro
ess in order to improve the a

ura
y of the estimation results. Other MASE ap-

proa
hes using a multi-area partition with no overlapping 
an be found, for example,

in [102, 103℄.

In the solution with minimum overlapping, instead, one node is shared between

adja
ent areas. This allows also sharing some measurements between the lo
al SEs

of adjoining areas. Moreover, su
h partition leads to the presen
e of more voltage

estimations, brought by the overlapped sub-networks, on the 
ommon buses. The
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di�erent voltage estimations on the shared nodes 
an be duly exploited to re�ne

the SE results. For example, in [104℄, the MASE problem is ta
kled through an

optimization te
hnique, where the di�erent voltage estimations on the shared node

(given by adja
ent areas) are handled by means of an equality 
onstraint. For the

solution of the optimization problem, ea
h lo
al SE updates the information about

the shared node voltage estimation 
oming from the adja
ent areas at ea
h iteration

of the estimation pro
ess. Similarly, in [105℄, the lo
al SEs involve the voltage state

of a shared bus; even in this 
ase, the information about this voltage estimation is

ex
hanged between the neighboring areas at ea
h iteration of the MASE pro
ess in

order to a
hieve 
onsistent and enhan
ed results.

In a multi-area de
omposition with extended overlapping, more nodes are shared

between di�erent areas. In this 
ase, hen
e, the amount of measurements and

node voltage estimations shared between di�erent areas is larger than the previ-

ous s
hemes. This option 
an provide some bene�ts for the integration of the lo
al

SE results, but also implies a larger size for the sub-networks, with a possible impa
t

on the MASE e�
ien
y (in terms of overall exe
ution times). Examples of MASE

approa
hes relying on extended overlapping partitions 
an be found in [106, 107℄.

In [107℄, for instan
e, the partition is performed dete
ting independent areas sepa-

rated by 
onne
ting tie-lines; however, ea
h lo
al SE in
ludes in its state ve
tor also

the voltage variables of all the border nodes belonging to the adjoining areas.

In distribution systems, as aforementioned, it is important to remark that the


hoi
e of the network partition is signi�
antly a�e
ted by the available 
on�guration

of the measurement system. In parti
ular, due to the low number of measurement

devi
es deployed on the �eld, it is essential to pay due attention to possible observ-

ability problems and to the a
hievement of minimum redundan
y levels depending

on the desired targets of robustness for the MASE.

6.2.2 Timing of the estimation pro
esses

The timing used for the exe
ution of the lo
al SE in ea
h area of the network is

an essential element 
hara
terizing the MASE approa
hes. In transmission systems,

usually, all the proposals refer to a parallel running of the lo
al estimations. However,

in general, as indi
ated also in [108℄, two di�erent options are possible: in series or

in parallel estimation of the areas. Fig. 6.2 shows a s
hemati
 overview of the two

possible alternatives.

In the series implementation of the MASE, lo
al SEs are performed sequentially

and ea
h area exploits the estimation results provided by the neighboring upstream

areas. It is worth noting that su
h a solution 
ould be parti
ularly interesting in

the distribution system s
enario, be
ause it 
ould allow a more �exible partition

of the network with the possibility to 
reate areas that be
ome observable thanks

to the information provided by the upstream areas. Additional bene�ts 
on
ern
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Figure 6.2: In series and in parallel Multi-Area State Estimation

the storage requirements (ea
h area has to 
onsider only its own data plus possible

information about the border nodes and the 
onne
ting lines of the adjoining areas)

and the 
ommuni
ation 
osts (whi
h are quite low, sin
e the 
ommuni
ation between

adja
ent areas 
an be limited to the only �nal estimation results of the border

quantities). The major drawba
k of su
h approa
h, instead, is on the e�
ien
y. In

fa
t, the sequential run of the lo
al estimations leads to long exe
ution times; in

any 
ase, it is worth underlining that the sequential exe
ution of the SE in smaller

networks allows saving 
omputation time with respe
t to the estimation pro
ess


arried out on the whole network.

In 
ase of parallel estimation of the areas, the lo
al SEs are performed simultane-

ously in all the sub-networks. The main bene�t provided by this approa
h is 
learly

on the exe
ution times, whi
h 
an be signi�
antly lowered thanks to the parallel

running of the lo
al SEs. In order to enhan
e the estimation results provided by the

area SEs, suitable pro
edures of integration of the lo
al estimation results are usu-

ally employed. The 
ommuni
ation 
osts, the storage requirements and the a

ura
y

results of the �nal estimation are stri
tly dependent on the parti
ular methodology

used for this integration pro
edure. It is also important to underline that, in general,

parallel exe
ution of the lo
al SEs requires the observability of all the areas. As a


onsequen
e, su
h solution is possible only if it is supported by the presen
e of a

suitable measurement infrastru
ture.

In pra
ti
al 
ases, obviously, hybrid solutions 
an be also designed. In fa
t, it is

possible to 
on
eive s
hemes where the lo
al SEs are performed in parallel only in

some areas, while other zones are enabled to run the SE only after the a
quisition

of the estimation results from the upstream sub-networks.
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6.2.3 Computing ar
hite
ture

A very important feature for the multi-area approa
hes is the type of 
omputing

ar
hite
ture used to perform the MASE. Possible options 
an be 
lassi�ed in two

main 
ategories: 
entralized ar
hite
ture (in the literature, often referred also to as

hierar
hi
al) and de
entralized ar
hite
ture. Fig. 6.3 shows a simple s
heme of the

two options together with the indi
ation of the main features for ea
h one.

Figure 6.3: Centralized and de
entralized ar
hite
ture

A hierar
hi
al solution is 
hara
terized by the presen
e of a 
ontrol 
enter gath-

ering all the data and performing all the main fun
tions. In this ar
hite
ture, ea
h

area 
ommuni
ates only with the 
entral unit. This unit, in addition to the 
ol-

le
tion of the real-time measurements 
oming from the di�erent areas, has also to

handle the pseudo-measurements for the whole grid and to store the network data

of all the sub-networks. As a 
onsequen
e, high 
ommuni
ation 
osts and storage

requirements 
an derive from this solution. At the same time, the exe
ution and


oordination of the di�erent area SEs in a single 
omputing 
enter 
an fa
ilitate

the implementation of advan
ed MASE te
hniques, with 
onsequent bene�ts for the

a

ura
y of the estimation results. Moreover, the 
on
entration of all the data in a


entral station 
an provide additional advantages in terms of a more straightforward

management and 
ontrol of the network.

In a de
entralized ar
hite
ture, instead, the 
omputing 
enters are distributed

over the network. Ea
h area has a dedi
ated unit, whi
h is responsible for the exe-


ution of the lo
al SE and for the 
ommuni
ation with the neighboring areas of the

data needed for the re�nement of the lo
al estimation results. In this s
heme, ea
h
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area handles its own real-time measurements, pseudo-measurements and network

data. This allows a redu
tion of the 
ommuni
ation and storage requirements in

ea
h 
omputing node, but at the 
ost of having a dedi
ated 
enter in ea
h area and

with possible limitations for the design of the MASE te
hnique. Management and


ontrol fun
tion 
an be implemented either on a 
entral 
omputing 
enter or lo
ally

in the sub-network units. In the last 
ase, a 
entral master 
ould exist in any 
ase,

but with fun
tions that 
an be limited to the 
oordination and supervision of the

lo
al units and to the monitoring of the network operation.

It is worth noting that, even in this 
ase, hybrid solutions, 
ombining some

of the bene�ts of both the 
entralized and de
entralized approa
hes, 
an be also


on
eived. As an example, the ar
hite
ture 
ould be designed to have a hierar
hi
al


on�guration for the management of the MASE pro
ess but with 
omputing nodes

distributed over the network. In this 
ase, ea
h node handles the measurements

and pseudo-measurements of its area and performs the lo
al SE. Then, the sub-

network SE results are sent to a 
entral master that operates the additional steps of

re�nement of the estimation. In su
h s
heme, the advantages are in the distribution

of the pro
essing tasks and in the redu
tion of the data to be 
ommuni
ated to the


entral station (for example, the a
quisition of the measurements from the �eld is

performed lo
ally by the sub-network units).

In transmission systems, most of the proposals refer to a hierar
hi
al design

of the MASE [100, 102, 107℄; in some 
ases, the approa
h is expli
itly 
on
eived

to allow a distributed ar
hite
ture [103, 105℄. Some de
entralized s
hemes have

been also proposed in [101, 104℄ to distribute the pro
essing, 
ommuni
ation and

storage requirements. In the distribution system s
enario, given the large amount of

data to be managed, a de
entralized solution 
an provide important bene�ts for the


ommuni
ation and storage requirements. At the same time, 
entralized solutions

allow larger �exibility for the design of the MASE te
hnique and this 
an be 
ru
ial

to limit the deterioration of the estimation a

ura
y brought by the low number of

available measurement devi
es. As a result, the 
hoi
e of the ar
hite
ture has to

a
hieve a proper trade-o� among these di�erent requirements.

6.2.4 Solution methodology

The MASE issue 
an be ta
kled by using a large variety of mathemati
al te
hniques.

The aspe
t 
ommon to all the possible approa
hes is the need to 
oordinate the

estimations of the di�erent areas in order to improve the a

ura
y of the �nal re-

sults. Regardless of the details of the di�erent te
hniques, two main 
ategories 
an

be distinguished depending on the 
oordination level used in the MASE pro
ess:

MASE algorithms with integration of the results at the SE level, and algorithms

with 
oordination at the iteration level. In the �rst 
ase, the algorithms are usually


omposed of two steps: in the �rst one, SE is performed in ea
h area; in the se
ond
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one, the estimations provided by the lo
al areas are integrated in order to re�ne the

results. In the se
ond 
ategory, instead, the MASE algorithms are designed to have

an ex
hange of data between adjoining zones (generally about the estimations of the

border quantities) at ea
h iteration of the estimation pro
ess. Thus, the lo
al esti-

mators have to in
lude in their model the information 
oming from the neighboring

areas and have to update it at ea
h iteration of the MASE.

The two approa
hes have signi�
antly di�erent features in terms of a

ura
y,

e�
ien
y and 
ommuni
ation 
osts. The most evident impa
t is on the 
ommuni
a-

tion requirements. In fa
t, it is 
lear that the MASE algorithms with 
oordination

at the iteration level imply high 
ommuni
ation 
osts, sin
e the ex
hange of data

is required many times during a single estimation. Moreover, a good level of syn-


hronization is also needed (between the iterations in the di�erent sub-network SEs)

in order to e�
iently perform the estimation pro
ess. Despite these stri
t require-

ments on 
ommuni
ation and syn
hronization, the algorithms with 
oordination at

the iteration level 
an provide very good performan
e from an a

ura
y point of

view. In several 
ases, the mathemati
al model provided in these algorithms allows

the a
hievement of an optimum solution, i.e. an estimation solution equal to the

results obtainable by performing the SE on the whole network. In general, however,

a large number of iterations of the MASE algorithm 
an be needed to a
hieve su
h

result, with the obvious 
onsequen
es on the overall exe
ution times. As for the

two-step MASE approa
hes, instead, the opposite 
onsiderations 
an be made. In

fa
t, these te
hniques generally provide only sub-optimal solutions (with a 
onse-

quent deterioration of the a

ura
y performan
e with respe
t to the 
ase of SE on

the whole network), but also demand low 
ommuni
ation 
osts and allow a
hieving

largely redu
ed exe
ution times.

Even in this 
ase, the 
hoi
e of the best algorithm should be 
arefully assessed,

also by taking into a

ount the features of the grid to be monitored, the 
omputing

ar
hite
ture to be used and the spe
i�
 targets to be satis�ed.

6.3 Multi-area proposal for DSSE

In the literature, only few works deal with the problem of the Multi-Area Distribu-

tion System State Estimation (MA-DSSE). In [108℄, a hierar
hi
al two-step estima-

tor has been proposed, where a 
entral 
oordinator re�nes the lo
al estimations to

a
hieve the overall voltage pro�le of the network. In [109℄, instead, the MA-DSSE

problem is ta
kled by means of a di�erential evolution algorithm having distributed

lo
al estimators 
oordinated at the iteration level. Here, in the following, a de
en-

tralized MA-DSSE approa
h, based on a two-step pro
edure and designed to have

a

urate estimations, low 
ommuni
ation 
osts and distributed storage requirements,

is presented.
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The �rst issue in the development of the multi-area s
heme is, obviously, the

de�nition of the di�erent network areas. As already mentioned in the previous

se
tions, in distribution systems the partition of the grid has to be duly 
oordinated

with the available measurement system, in order to avoid possible observability

problems in the 
reated areas. Assuming a distribution network with measurements

only in the main substation, and designing the multi-area s
heme in parallel with

the upgrade of the measurement infrastru
ture of the grid, the proposed solution is

based on the following assumptions.

- The de
omposition into areas 
an be addressed by both topologi
al and geo-

graphi
al 
riteria; however, when possible, the partition should be performed

so to 
reate areas having a similar number of nodes.

- Adja
ent areas are overlapped and share one node (minimum overlapping);

this node has to be monitored with a suitable measurement point and 
an be

shared by more than two areas.

- Ea
h measurement point has to monitor all the ele
tri
al quantities available

in the bus; thus, it has to in
lude the voltage measurement at the node and

as many �ow measurements (powers or 
urrents) as the bran
hes 
onverging

to the node.

The solution here proposed, s
hemati
ally depi
ted in Fig. 6.4, provides several

advantages. The 
reation, when possible, of zones with a similar number of nodes

aims at avoiding the presen
e of areas a
ting as bottlene
ks for the exe
ution times

and is thus 
on
eived to maximize the e�
ien
y of the MA-DSSE. The 
hoi
e of

the minimum overlapping and the pla
ement of a measurement point in the shared

node is instead thought to ensure the observability for ea
h area. In fa
t, if the

pseudo-measurements of the power inje
tions for all the load and generation nodes

are available, then the presen
e of these measurement points guarantees the observ-

ability in all the areas. Moreover, the presen
e of at least one measurement point in

ea
h zone is 
ru
ial also for the robustness to possible 
ommuni
ation failures. In

fa
t, also in 
ase of 
ommuni
ation problems, ea
h area 
an a
hieve the estimation

Figure 6.4: S
heme of the multi-area partition of the network
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of its own operating 
onditions (even if with a lower a

ura
y) and it 
an enable

possible management and 
ontrol tools. It is important also to note that ea
h over-

lapped node 
ould be shared by more than two areas: in this way, the number

of 
reated areas 
an be maximized, keeping low, at the same time, the number of

measurement points to be installed (in a perspe
tive of stri
t e
onomi
 
onstraints

for the network upgrade). The full monitoring of all the ele
tri
al quantities asso-


iated to the overlapped node, instead, allows exploiting the measurements on the

bran
hes 
onne
ted to the shared node, but not belonging to the area of interest,

as equivalent inje
tions for the 
onsidered area. This leads to a higher redundan
y

in the measurement of the �ows in
oming or outgoing from ea
h area. Finally, in


ase of traditional measurements (in this 
ase, ea
h area has its own sla
k bus angle

referen
e), the phase-angles of the di�erent zones 
an be sequentially shifted, by us-

ing the di�eren
e in the voltage angle estimation on the overlapped node, to obtain


onsistent phase-angle information for the whole network. In this way, an overall

pi
ture of the operating 
onditions of the entire grid 
an be obtained.

The proposed MA-DSSE approa
h is based on a two-step estimation pro
edure.

In the �rst step, all the measurements internal to the 
onsidered area are exploited

to perform a lo
al DSSE. As anti
ipated, the �ow measurements on the bran
hes


onverging to the overlapped nodes of the area, whi
h are external to the area itself,

are lumped all together and introdu
ed in the lo
al DSSE as equivalent inje
tion for

the node. The lo
al estimations 
an be performed in parallel among the di�erent

areas of the network, and in a totally independent way. Their results are then used

as input for the se
ond step. Besides the estimated values, ea
h area has to provide

to the se
ond step also the 
orresponding varian
es asso
iated to the estimations.

In the algorithm used here, lo
al estimations are 
arried out by means of the BC-

DSSE algorithm presented in Chapter 1; the needed estimation varian
es 
an be

thus obtained through the inversion of the Gain matrix used in the last iteration of

the WLS pro
ess. However, it is worth noting that other WLS estimators based on

di�erent state variables 
an be also used (the estimation varian
es 
an be always

obtained by inverting the 
orresponding Gain matrix).

The design of the se
ond step plays a key role for the �nal a

ura
y of the estima-

tion results. In [110℄, a study of possible alternative solutions, with di�erent levels

of 
omplexity and 
omputational burden, has been presented. The analysis empha-

sizes that di�erent a

ura
y results 
an be obtained depending on the goodness of

the adopted method. In the proposal here presented, the se
ond step is performed

through a new BC-DSSE in ea
h sub-network, whi
h uses the estimation results of

the �rst step as input measurements. In parti
ular, for ea
h area i, de�ning as Γi
the set of the adjoining areas, the following equivalent measurements are used:

- the output x̂i of the �rst step estimation in area i ;

- for ea
h area j belonging to Γi, its voltage estimation on the shared node
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between areas i and j ;

- for ea
h overlapped node of the area i, the 
urrent estimations in the bran
hes

of the neighboring areas 
onverging to su
h node are lumped up to a single

equivalent 
urrent inje
tion on the 
ommon bus.

For the proper implementation of the se
ond step, due attention must be paid to

the phase-angles of the estimated quantities 
oming from the neighboring areas. In

parti
ular, if the measurement system is 
omposed of traditional measurements, it is

ne
essary to 
onsider that ea
h sub-network has its own angle referen
e. In this 
ase,

as for the voltage estimations provided by the adja
ent areas, only their magnitude

is taken into a

ount. Instead, as for the equivalent 
urrent inje
tions, a realignment

of ea
h bran
h 
urrent involved in the 
omputation of the inje
tion has to be done

exploiting the mismat
h (between the 
onsidered area i and the adjoining area j )

of the voltage angle estimation on the shared node. In 
ase of measurement system


omposed of PMUs, instead, sin
e the phase-angles of all the sub-networks have the

same referen
e given by the UTC time, no phase-angle realignment is needed for

the 
urrents. Moreover, the 
omplex voltage estimations 
oming from the adja
ent

areas 
an be in
luded in re
tangular 
oordinates and they 
an 
ontribute, in this

way, to the re�nement of the �nal phase-angle estimations.

Starting from this set of inputs, the se
ond step is thus implemented by applying,

in ea
h area i, the BC-DSSE to the following equivalent measurement model:

y2nd =

[

x̂i
x̂Bj

]

=

[

xi
fj(xi)

]

+

[

ǫi
ηj

]

(6.1)

where y2nd is the ve
tor of the equivalent measurements used in the se
ond step;

xi and x̂i are the state ve
tor of the 
onsidered area i and its estimation, respe
-

tively; x̂Bj is the set of the equivalent measurements resulting from the estimated

border quantities in the neighboring areas j ; fj(xi) is the ve
tor of the measurement

fun
tions linking the equivalent measurements from areas j to the state variables

of area i; ǫi and ηj are, respe
tively, the error ve
tors asso
iated to the �rst step

estimations 
oming from area i and to the equivalent input measurements provided

by the adjoining area j. Similarly to the �rst step, these errors 
an be modeled

through a 
ovarian
e matrix Σy and its inverse should be 
onsidered as weighting

matrix for the se
ond step.

The results arising from this se
ond DSSE are the �nal estimations for ea
h sub-

network. Sin
e the 
ommuni
ation required to perform this se
ond step is limited to

the ex
hange, among the adja
ent areas, of the border quantity estimations, this MA-

DSSE te
hnique 
an be easily implemented in a de
entralized way. Therefore, in the

designed ar
hite
ture, ea
h area has a mini-
ontrol 
enter where the lo
al estimations

are 
arried out; su
h 
omputing nodes work in parallel and 
ommuni
ate only with

the intelligent nodes of the neighboring zones. This allows distributing the storage
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requirements (for example, the sub-network data 
an be stored in the 
omputing


enter of the asso
iated area) and minimizing the 
ommuni
ation requirements (ea
h

area 
olle
ts its own measurements and 
ommuni
ates only with the intelligent nodes

of the adjoining zones to ex
hange few border quantity estimations).

6.4 Data 
orrelation in the proposed multi-area ap-

proa
h

The proposed multi-area approa
h is based on the exe
ution of DSSEs relying on

WLS algorithms. As a 
onsequen
e, 
oherently with the dis
ussions made in the

previous 
hapters of this thesis, due attention has to be paid to the modeling of the

measurements used as input to the estimator, in order to a
hieve estimation results

as a

urate as possible. Sin
e the �rst step estimations are obtained by means of

a normal DSSE, based on the real-time measurements and pseudo-measurements

available for the 
onsidered sub-network, all the aspe
ts highlighted in the previous


hapters about the proper modeling of these measurements still hold. For this

reason, the fo
us of this Se
tion is on the modeling of the equivalent measurements

used as input for the DSSE of the se
ond step. In parti
ular, it is important to

note that, be
ause of the 
hosen multi-area partition with overlapped nodes and

the presen
e of measurement points shared by di�erent sub-networks, 
orrelations


an arise between the estimation results obtained in adja
ent sub-networks [111℄.

Thus, in the following of this Se
tion, the analysis of the 
orrelations among the

states estimated by adjoining areas during the �rst step is presented, and the way

to properly 
onsider it into the measurement model of the se
ond step DSSE is

shown.

6.4.1 Covarian
e among the state estimations of adjoining

areas

Sin
e the 
orrelations among the estimated states of adjoining areas arise be
ause of

the presen
e of shared measurements, to formalize this 
orrelation it is ne
essary to

highlight the relationship between �nal estimation and starting measurements. Con-

sidering only the last iteration n of the DSSE algorithm and linearized measurement

fun
tions, the solution of the normal equations used in the WLS pro
ess yields:

∆x̂n = G−1
n HT

nW(y− h(x̂n−1)) (6.2)

where ∆x̂n is the updating state ve
tor x at iteration n, Gn = HT
nWHn is the Gain

matrix,Hn is the Ja
obian of the measurement fun
tions,W is the weighting matrix,
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y is the set of available measurements and h(x̂n−1) is the vetor of the measurement

fun
tions 
omputed through the state ve
tor estimated at the previous iteration.

Grouping the terms in (6.2), it is possible to write:

∆x̂n = B ·∆y (6.3)

where B = (HTWH)−1HTW is the pseudoinverse matrix linking the update of the

estimated state x̂ to the measurement residuals ∆y.

Considering the link between estimations and measurements expressed in (6.3),

it is possible to analyze the 
orrelation arising in the estimations of two areas sharing

some measurements. To this purpose, let us 
onsider two generi
 areas A and B,


hara
terized by Ni state variables and Mi measurements, (with i = [A,B]), and
with a 
onsequent [Ni × 1] state ve
tor xi and an [Mi × 1] measurement ve
tor yi.

Hen
e, ea
h area has an [Mi ×Ni] Ja
obian matrix Hi and an [Mi ×Mi] weighting
matrix Wi.

If the measurements shared between areas A and B are MAB, then the overall

number of measurements available in the two areas is: M = MA + MB − MAB.

Considering areas A and B together, it is possible to 
reate an [M×1] measurement

ve
tor yTOT and an [M ×M ] weighting matrix WTOT in
luding all the available

measurements. The measurement ve
tor yTOT 
an be written as:

yTOT =





yAA
yAB
yBB





(6.4)

where yAA and yBB are the sub-ve
tors of the measurements belonging only to area

A or B, respe
tively, while yAB is the ve
tor of the measurements shared between

the two sub-networks. Coherently with the 
onstru
tion of the measurement ve
tor

yTOT , the weighting matrix WTOT 
an be expressed as follows:

WTOT =





WAA 0 0

0 WAB 0

0 0 WBB





(6.5)

whereWAA, WAB, andWBB are the diagonal sub-matri
es 
omposed of the weights

asso
iated to the MAA, MAB, and MBB measurements (
onsidered as un
orrelated),

respe
tively.

For ea
h area, it is also possible to build an expanded Ja
obian matrix HiTOT

involving the relationship among the ve
tor yTOT of all the measurements of the

network and the state of the 
onsidered area: for the measurements not belonging

to the area itself, the 
orresponding rows of the Ja
obian will have null elements

and thus it is:
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HATOT
=

[

HA

0

]

, HBTOT
=

[

0

HB

]

(6.6)

Considering the null elements of the expanded Ja
obians HiTOT
, it is possible to

verify that the following relationship holds:

Gi = HT
i WiHi = HT

iTOT
WTOTHiTOT

(6.7)

Considering (6.7), it is possible to write a matrix BiTOT
that links the estimates

of the area i to the ve
tor yTOT , whi
h is:

BiTOT
= G−1

i HT
iTOT

WTOT (6.8)

Sin
e, as known, the inverse of the Gain matrix is the 
ovarian
e matrix of the

estimated states, (6.8) 
an be rewritten as:

BiTOT
= ΣiH

T
iTOT

WTOT (6.9)

where Σi is the 
ovarian
e matrix of the estimates of area i.

Considering the stru
ture shown in (6.5) for the overall weighting matrix and in

(6.6) for the Ja
obian matri
es, the matrixBiTOT

an be de
omposed in the following

way for the two areas A and B :

BATOT
=
[

BA 0
]

, BBTOT
=
[

0 BB

]

(6.10)

where BA and BB are, respe
tively:

BA = ΣAH
T
AWA, BB = ΣBH

T
BWB (6.11)

Considering the relationship shown in (6.3), and applying the law of propagation

of the un
ertainty, the 
ovarian
e between the state variables estimated in areas A

and B 
an be written as follows:

Σx̂A,x̂B
= BATOT

ΣyTOT
BT
BTOT

(6.12)

where ΣyTOT
is the 
ovarian
e matrix of all the measurement errors. Considering

that the weighting matrix is 
hosen as the inverse of the measurement error 
ovari-

an
e matrix, (6.12) be
omes:

Σx̂A,x̂B
= BATOT

W−1
TOTB

T
BTOT

(6.13)

Considering (6.10) for the matri
es BiTOT
, equation (6.13) be
omes:

Σx̂A,x̂B
=
[

BA 0
]

W−1
TOT

[

0 BB

]T
(6.14)
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and, taking into a

ount (6.11), it results:

Σx̂A,x̂B
=
[

ΣAH
T
AWA 0

]

W−1
TOT

[

0 ΣBH
T
BWB

]T
(6.15)

Sin
e the weighting and 
ovarian
e matri
es are symmetri
, it is possible to

rewrite (6.15) as follows:

Σx̂A,x̂B
=
[

ΣAH
T
AWA 0

]

W−1
TOT

[

0

WBHBΣB

]

(6.16)

In the Ja
obians of the areas A and B indi
ated in (6.16), it is possible to separate

the 
ontributions of the measurements belonging only the 
onsidered area from those


oming from the shared measurements as follows:

HA =

[

HAA

HAB

]

, HB =

[

HBA

HBB

]

(6.17)

and, thus, it is possible to rewrite (6.16) as follows:

Σx̂A,x̂B
=
[

ΣAH
T
AAWAA ΣAH

T
ABWAB 0

]

×

×





WAA 0 0

0 WAB 0

0 0 WBB





−1

×





0

WABHBAΣB

WBBHBBΣB





(6.18)

Finally, performing the matrix multipli
ation in (6.18), it is possible to obtain

the following expression for the 
ovarian
e matrix:

Σx̂A,x̂B
= ΣAH

T
ABWABHBAΣB (6.19)

6.4.2 Covarian
e between the voltage estimation of adjoining

areas

The relationship expressed in (6.19) provides the 
ovarian
es existing between ea
h

state variable of area A and area B. As shown in Chapter 4, the impa
t of the

measurements on the �nal estimation results is di�erent depending on their typology.

In parti
ular, it has been shown that voltage measurements have a global e�e
t on

the a

ura
y of the voltage magnitude pro�le of the network, while the 
urrents

usually have only a lo
al impa
t that is highly dependent on the size of the measured


urrent. For this reason, in the 
ase of interest, the attention 
an be fo
used on the


ovarian
e brought by the shared voltage measurement pla
ed at the overlapped

node on the voltages to be ex
hanged by the two di�erent areas.

As shown in Chapter 1, the state ve
tor in the BC-DSSE model is 
omposed

by the 
urrents of all the bran
hes and the voltage in the sla
k bus. Referring, for
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the moment, to the 
ase of only traditional measurements available on the �eld,

the voltage magnitude of the sla
k bus has to be 
onsidered in the state ve
tor.

Sin
e the un
ertainty obtained in the estimation pro
ess is not dependent on the

parti
ular 
hoi
e of the sla
k bus of the area, then, without any loss of generality,

the overlapped node 
an be 
onsidered as sla
k bus for both the areas A and B.

Assuming, as made in Chapter 1, that the sla
k bus voltage magnitude is the �rst

element of the state ve
tors xA and xB, the analysis 
an be 
onsequently redu
ed

to the 
omputation of the element (1, 1) of the 
ovarian
e matrix Σx̂A,x̂B
. It is

possible to observe that this 
al
ulation involves only the �rst row of ΣA and the

�rst 
olumn of ΣB in (6.19). Furthermore, sin
e the only shared measurement is

the voltage magnitude at the overlapped node (indi
ated in the following as Vs), it
is:

WAB =
1

σ2
Vs

= wVs (6.20)

where σ2
Vs

is the varian
e asso
iated to the voltage magnitude measurement at the

shared node, and wVs is the 
orresponding weight 
onsidered in the weighting matrix.

As for the Ja
obian matrix, the derivative of the measurement fun
tion asso
iated

to the voltage Vs with respe
t to the elements of the state ve
tors xA and xB yields:

HAB = HBA = [1, 0, ..., 0] (6.21)

As a result, it is possible to �nd that the only 
ontribution to the sought 
ovari-

an
e between the �rst step estimation of the sla
k bus voltages in areas A and B is

given by:

Σx̂A,x̂B
(1, 1) = σ2

V̂sA
wVsσ

2
V̂sB

(6.22)

where σ2
V̂sA

and σ2
V̂sB

are the resulting varian
es in the estimation of the sla
k bus

voltage provided by areas A and B.

Equation (6.22) shows that the 
ovarian
e between the voltages to be in
luded

in the se
ond step of the multi-area estimation pro
ess 
an be 
omputed without the


ommuni
ation of additional data by the adjoining area (the only needed information

is the varian
e of the voltage estimation in the overlapped node, whi
h has to be


ommuni
ated in any 
ase). Su
h 
ovarian
e term 
an be in
luded in the matrix of

the measurement errors used in the se
ond estimation step to 
al
ulate the weighting

matrix to be adopted in the se
ond BC-DSSE run.

When PMUs are used in pla
e of the 
onventional measurements, the approa
h

to 
ompute the arising 
ovarian
es is similar to the previous 
ase, but it has to

take into a

ount the presen
e of two shared measurements (both the real and the

imaginary part of the voltage at the overlapped node, whi
h are indi
ated in the

following as vrs and v
x
s , respe
tively) and the di�erent formulation of the state ve
tors

xA and xB (the sla
k bus voltage is, in this 
ase, in
luded in re
tangular 
oordinates

within the state ve
tor).
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orrelation in the proposed multi-area approa
h

In this 
ase, the elements of interest in the 
ovarian
e matrix Σx̂A,x̂B
are those

in
luded in the sub-matrix (h, k), with h = 1, 2 and k = 1, 2: su
h sub-matrix

in
ludes the 
ovarian
e terms asso
iated to all the possible 
ombinations among the

re
tangular 
omponents of the voltage sla
k bus estimations of area A and the same

estimations provided by area B.

As for the weighting matrix WAB, sin
e the PMUs provide the voltage phasor

measurements in polar 
oordinates, but these measurements are in
luded in re
tan-

gular 
oordinates in the BC-DSSE model, a full weighting matrix has to be 
onsid-

ered for in
luding the 
orrelations arising between real and imaginary 
omponents

of the measured voltage (see Se
tion 1.7.3 in Chapter 1 for the details). Thus, it is:

WAB =

[

wvrs wvrsvxs
wvxs vrs wvxs

]

(6.23)

Instead, as for the Ja
obian matri
es HAB and HBA, the two rows related to the

derivatives of the measurements vrs and v
x
s with respe
t to the variables of the state

ve
tor (
onsidering the state ve
tor built as indi
ated in Chapter 1 for the 
ase of

PMU measurements) are:

HAB = HBA =

[

1, 0, . . . , 0
0, 1, . . . , 0

]

(6.24)

Referring to this stru
ture of the Ja
obian matri
es, and 
onsidering the matrix

multipli
ations involved in equation (6.19), the following holds:

[ΣAH
T
AB]

∣

∣

∣

∣

h=1,2

=

[

σ2
v̂r
sA

σv̂r
sA
v̂x
sA

σv̂x
sA
v̂r
sA

σ2
v̂x
sA

]

(6.25)

[HT
BAΣB]

∣

∣

∣

∣

k=1,2

=

[

σ2
v̂r
sB

σv̂r
sB
v̂x
sB

σv̂x
sB
v̂r
sB

σ2
v̂x
sB

]

(6.26)

where the notation P|h=..;k=.. indi
ates the rows h or 
olumns k to be 
onsidered

in the resulting matrix P, the terms σv̂rsi and σv̂xsi (with i = A,B) are, respe
tively,
the standard deviations of the real and the imaginary part of the sla
k bus voltage

estimated by area i, and σv̂rsiv̂xsi is the resulting 
ovarian
e.

Using the same kind of notation, the sub-matrix of interest a
hievable from (6.19)

is:

Σx̂A,x̂B

∣

∣

∣

∣

h=1,2;k=1,2

=

[

σ2
v̂r
sA

σv̂r
sA
v̂x
sA

σv̂x
sA
v̂r
sA

σ2
v̂x
sA

]

[

wvrs wvrsvxs
wvxs vrs wvxs

]

[

σ2
v̂r
sB

σv̂r
sB
v̂x
sB

σv̂x
sB
v̂r
sB

σ2
v̂x
sB

]

=

[

σv̂r
sA
v̂r
sB

σv̂r
sA
v̂x
sB

σv̂x
sA
v̂r
sB

σv̂x
sA
v̂x
sB

]

(6.27)
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where σv̂r
sA
v̂r
sB

is the 
ovarian
e between the real part of the voltage estimated in

A and the real part of the voltage estimated in B and the other elements have

analogous interpretations.

Equation (6.27) points out that, for the 
omputation of the 
ovarian
es between

the voltages estimated on the overlapped node by areas A and B, the only data to

be re
eived by the neighboring area i are the varian
es σ2
v̂rsi

and σ2
v̂xsi

(related to the

real and imaginary parts, respe
tively) and the 
ovarian
e term σv̂rsiv̂xsi . It is worth
noting that these data should be 
ommuni
ated in any 
ase and, therefore, even

in this 
ase, there are no additional 
osts in the 
ommuni
ation between adjoining

areas. Finally, equation (6.27) also shows that, in general, the resulting 
ovarian
e

matrix is full and 
ovarian
e terms arise for all the possible 
ombinations of the

re
tangular voltage terms.

6.5 Tests and results

6.5.1 Test assumptions

The performan
e of the proposed multi-area approa
h has been evaluated through

several tests performed on the unbalan
ed IEEE 123-bus network. Fig 6.5 shows

the network topology and 
hosen multi-area partition. Following the indi
ations

Figure 6.5: Multi-area partition of the IEEE 123-bus network
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reported in Se
tion 6.3, the de
omposition has been 
arried out aiming to a
hieve

sub-networks with a similar number of nodes, in order to enhan
e the e�
ien
y of

the multi-area solution. Moreover, the use of areas with overlapped nodes has been

exploited to 
reate more observable sub-networks starting from a limited number

of measurement points. As an example, node 67 is shared by three areas and the


orresponding measurement point allows the observability for both areas C and D.

A

ording to the proposed method (and the 
hosen multi-area partition), mea-

surement points are 
onsidered in the shared nodes 18 and 67 in addition to the

measurement point in substation (node 150). Ea
h measurement point in
ludes a

voltage magnitude measurement at the node and power measurements in all the


onverging bran
hes. The alternative of having PMU measurements has been also

analyzed, and in this 
ase voltage and 
urrent phasor measurements are 
onsidered

in the measurement system. In addition to the real-time measurements, the availabil-

ity of pseudo-measurements for all the load 
onsumptions has been also 
onsidered,

in order to obtain the observability for all the identi�ed areas.

As in the previous 
hapters, tests have been performed by means of Monte Carlo

simulations (NMC = 50000 Monte Carlo trials have been used in ea
h test). In

all the tests, true referen
e operating 
onditions are obtained through a power �ow


al
ulation. The resulting ele
tri
al quantities are then used for the random ex-

tra
tion of measurements and pseudo-measurements, a

ording to their probability

distribution. In parti
ular, the following assumptions have been 
onsidered.

- Pseudo-measurements are assumed as random variables having a Gaussian

probability distribution and an expanded un
ertainty equal to 50% (three

times the standard deviation).

- Real-time measurements are assumed as random variables with Gaussian di-

stribution and standard deviation equal to one third of their a

ura
y value.

As for the traditional measurements, a

ura
ies equal to 1% and 3% have

been 
onsidered for the voltage magnitude and the power measurements, re-

spe
tively; as for the syn
hronized measurements, a

ura
ies of 0.7% and 0.7


rad have been assumed for the magnitude and phase-angle measurements of

both voltage and 
urrent phasors.

The properties of the proposed multi-area solution have been evaluated with

parti
ular attention to the a

ura
y performan
e. To this purpose, the estimation

results obtained with the presented approa
h (hen
eforth indi
ated as MA-DSSE)

are 
ompared to those a
hievable by using di�erent methods. A �rst term of 
om-

parison is given by the results obtained through the estimation 
arried out on the

whole network (indi
ated in the following as Integrated State Estimation (ISE)). The

estimation on the overall system represents, in fa
t, the optimum solution that 
an

be obtained with the assumed measurement 
on�guration. As a 
onsequen
e, su
h
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omparison allows assessing the degradation arising in the a

ura
y of the results

due to the implementation of the multi-area s
heme. Another used term of 
ompar-

ison is the estimation obtained through the lo
al BC-DSSE performed in ea
h area

(indi
ated in the following as Lo
al State Estimation (LSE)). These results, whi
h

are the outputs of the �rst step estimation in the proposed MA-DSSE algorithm,

are useful to evaluate the impa
t brought by the se
ond BC-DSSE run envisioned

in the se
ond step of the MA-DSSE pro
ess.

The goodness of the se
ond step has been also analyzed evaluating the a

ura
y

performan
e obtainable through other possible approa
hes. In parti
ular, in the

following tests, the �rst of the methods presented in [110℄ (hen
eforth indi
ated

as MASE-1) is used to see the di�eren
es a
hievable with alternative se
ond step

implementations. The method MASE-1 operates the se
ond step by 
omparing the

voltage estimations in the shared nodes, as 
omputed by the lo
al estimators of the

di�erent overlapping areas, and uses the most a

urate one to 
orre
t the voltage

pro�le of the areas with worse estimations. Su
h 
orre
tion is performed by means

of a simple shift, a

ording to the di�eren
e in the voltage estimation between the

most a

urate estimation and the 
onsidered one, for the voltages of all the nodes

of the 
orre
ted areas. This kind of approa
h is taken into a

ount sin
e it is very

simple and it demands only minimum pro
essing 
osts to be 
arried out.

Finally, the a

ura
y performan
e of the proposed MA-DSSE method are also

analyzed assessing the impa
t deriving from the in
lusion in the measurement model

of the 
ovarian
e terms between the voltage estimations performed by the lo
al

estimators of di�erent areas. To this purpose, in some tests, the MA-DSSE approa
h

has been also tested by negle
ting these 
orrelation terms, in order to assess the

di�eren
es in the results obtained in the two di�erent 
ases (in
luding or not the


orrelations in the estimator model).

6.5.2 Test results

Starting measurement 
on�guration

The �rst series of tests has been performed referring to the starting measurement


on�guration 
omposed of the measurement points in nodes 150, 18 and 67. First of

all, the validity of the mathemati
al approa
h developed in Se
tion 6.4 to 
al
ulate

the 
ovarian
e between the voltage estimations on the shared nodes obtained by

di�erent lo
al estimators has been veri�ed. This 
he
k has been performed by 
om-

paring the 
orrelation fa
tors obtained through the theoreti
al formulation (using

the 
ovarian
es 
al
ulated with (6.22) and (6.27) for the traditional and syn
hropha-

sor measurements, respe
tively) and those obtained by means of the Monte Carlo

simulations. Table 6.1 shows, as an example, the 
orrelation fa
tors obtained for

the voltages to be in
luded in the se
ond step estimation for area A when 
onsid-
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Table 6.1: Correlation between �rst step voltage estimations

Voltage

estimations

Theoreti
al


al
ulation

Monte Carlo


al
ulation

V A
150 - V

B
18 0.581 0.581

V A
150 - V

C
67 0.585 0.583

V A
150 - V

D
67 0.585 0.583

V C
67 - V D

67 1.000 1.000

ering traditional measurements (reported results refer only to the �rst phase of the

network, but analogous results have been a
hieved even for the other phases). A
-


ording to the proposed method, the voltages to be taken into a

ount are the sla
k

bus voltage of the 
onsidered area (V A
150) and the voltage estimations on the shared

nodes performed by the neighboring zones (V B
18 , V

C
67 and V D

67 for areas B, C and D,

respe
tively). From Table 6.1 it is possible to observe that the 
orrelations between

the sla
k bus voltage estimation in area A and the voltage estimations 
oming from

the adja
ent areas are not negligible. Moreover, a full 
orrelation exists between the

voltage estimations on node 67 provided by areas C and D. It is worth noting that,

if some of the inputs to the se
ond step estimation are fully 
orrelated, as in this


ase, then, only one of them is 
onsidered in order to avoid singularity problems for

the matri
es involved in the subsequent estimation pro
ess. In all the 
ases, the 
or-

relation fa
tors 
al
ulated through the proposed mathemati
al formulation exhibit

a very good mat
hing with the values resulting from the Monte Carlo simulation,


on�rming thus the validity of the presented approa
h. In a similar way, a very good

mat
hing has been found also for the 
orrelations among the voltages to be in
luded

in the se
ond step estimation of the other areas of the network.

As for the a

ura
y performan
e of the proposed method, Fig. 6.6 shows the

results obtained for the expanded un
ertainty (with a 
overage fa
tor equal to three)

of the voltage magnitude estimation in the di�erent areas. The results reported in

Fig. 6.6 and in the following tests refer only to the �rst phase of the system, but

the shown un
ertainty levels and the following 
onsiderations hold always for all

the phases. It is worth noting that the node numeration reported in the �gures

does not 
orrespond to the node indexes shown in Fig. 6.5. In fa
t, for 
larity

in the presentation of the results, the nodes have been renumbered so to have the

aggregation of the buses related to the same areas. Moreover, it should be observed

that the overall number of nodes is only 80 be
ause several of the laterals in the

network are single-phase bran
hes. In order to avoid a 
omplex representation, the

estimation un
ertainty shown for the shared nodes is always the one 
oming from
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Figure 6.6: Expanded un
ertainty for the voltage magnitude estimation in 
ase of

starting measurement 
on�guration with traditional measurements

area A: in the other areas the resulting un
ertainty is usually di�erent, but, in

general, the un
ertainty level 
an be easily dedu
ed by the results on the other

buses sin
e the pro�le is always quite �at.

Some interesting 
onsiderations 
an be drawn by the results shown in Fig. 6.6.

First of all, it is important to note the di�eren
e in the un
ertainty levels obtained

with the lo
al estimations. This is an expe
ted result: in fa
t, as already pointed

out in Chapter 4, the a

ura
y of the voltage estimations is stri
tly asso
iated to

the number of voltage measurements available on the network. As a result, the lo
al

estimation in area A is the best one, sin
e it relies upon a larger number of voltage

measurements. Furthermore, sin
e area A in
ludes all the measurement points in-

stalled in the network, the results of the LSE in this sub-network are pra
ti
ally the

same as the ISE. On the 
ontrary, in areas B, C and D, due to the presen
e of only

one voltage measurement, the a

ura
y of the voltage pro�le is signi�
antly worse

than the ISE and it is limited by the a

ura
y of the voltage measurement itself.

The results obtained through the �rst step estimations emphasize the importan
e

to 
on
eive suitable approa
hes to re�ne the LSEs. With the assumed measurement

s
enario, both MASE-1 and the proposed MA-DSSE allow improving the estimation

results and a
hieving a

ura
ies very similar to those provided by the ISE. In 
ase

of MASE-1, this 
an be obtained 
onsidering, in the shared nodes, the optimum

estimations provided by area A. In fa
t, the subsequent shift of the voltages in the

other nodes of the worse estimated zones leads to the propagation of the smaller

un
ertainty of area A to all the sub-networks. In 
ase of MA-DSSE, in the same

way, the equivalent measurements in
luded in the se
ond run of the BC-DSSE lead

to similar bene�ts. However, it is worth noting that su
h results 
an be obtained
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only by 
onsidering a proper modeling of the measurements to be in
luded in the

se
ond step estimation. As a 
on�rmation, Fig. 6.7 shows the results obtained

with the MA-DSSE method when 
onsidering or negle
ting the 
orrelation between

the voltage estimations provided by di�erent areas. It is 
lear that, if existing


orrelations are disregarded, the results 
an be adversely a�e
ted, leading to less

a

urate estimations.

Figure 6.7: MA-DSSE with or without 
orrelations, expanded un
ertainty for the

voltage magnitude estimation with starting measurement 
on�guration

The 
onsiderations reported for the voltage magnitude estimations in 
ase of

traditional measurements are also valid when 
onsidering the deployment of PMUs.

The use of the di�erent types of measurement implies, instead, some di�eren
es

in the 
onsiderations for the voltage angle estimations. In the 
ase of 
onventional

measurements, ea
h area has its own sla
k bus angle referen
e. To a
hieve 
onsistent

results for the whole network, it is ne
essary to 
onsider an absolute referen
e bus

and to refer the angles of all the areas to this referen
e. This phase-angle alignment,

as aforementioned, 
an be done by exploiting the mismat
h on the voltage angle

information provided by the di�erent areas in the shared nodes. The results obtained

in this way, referred to the entire grid, show that all the estimators (thus in
luding

also the LSEs) give very similar estimation out
omes, with an expanded un
ertainty

of the voltage angles lower than 2 mrad for all the nodes. When PMU measurements

are 
onsidered, instead, all the areas already have a 
ommon referen
e given by the

UTC time. Therefore, in this 
ase, no alignment pro
edures are needed. The voltage

angle un
ertainties a
hieved in this 
ase, as shown in Fig. 6.8, exhibit a trend very

similar to the one seen for the voltage magnitudes. Indeed, the LSE results in areas

B, C and D are 
hara
terized by a signi�
antly lower a

ura
y, due to the presen
e

of only one PMU in the sub-network. However, the exe
ution of suitable se
ond

step approa
hes allows re�ning the results and a
hieving estimation a

ura
ies very
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Figure 6.8: Expanded un
ertainty for the voltage angle estimation in 
ase of start-

ing measurement 
on�guration with syn
hronized measurements


lose to those provided by the ISE. Moreover, it is worth highlighting that if, instead

of the absolute phase-angles, the angle di�eren
es with respe
t to a referen
e node

are 
al
ulated (as it is for the 
onventional measurements), even in this 
ase the

a
hievable un
ertainties would be similar for all the estimators and largely lower

than 2 mrad.

Final 
onsiderations 
on
ern the estimation results obtained for the bran
h 
ur-

rents. In this 
ase, it is interesting to observe how the 
hosen measurement 
on-

�guration, with the monitoring of the �ows in all the bran
hes 
onverging to the

overlapped nodes, allows a good estimation of the bran
h 
urrents sin
e the �rst

step. This result is a 
onsequen
e both of the a

urate monitoring of the �ows

in the border bran
hes and, in general, of the lo
al impa
t brought by the �ow

measurements. In fa
t, the lo
al e�e
t of the �ow measurements leads to a sort

of de
oupling in the bran
h 
urrent estimations of the di�erent areas. Moreover,

sin
e the border quantities are already a

urately known (thanks to the presen
e of

the real-time measurements), the data ex
hange performed in the se
ond step does

not lead to further improvements in the knowledge of the in
oming and outgoing

�ows from ea
h area. The bene�ts asso
iated to this meter pla
ement, in a 
urrent

estimation perspe
tive, are also 
on�rmed by the very similar results obtained for

all the estimators: in fa
t, both lo
al and multi-area estimators exhibit a

ura
y

performan
e very 
lose to the referen
e ones provided by the ISE.

Sin
e one of the main advantages brought by the use of multi-area approa
hes

is the redu
tion of the exe
ution times, Table 6.2 shows the 
omparison of the


omputation times a
hieved by means of the ISE and the multi-area te
hniques. In

the multi-area approa
hes the overall exe
ution times are obtained by summing the

longest times among the one required by the di�erent lo
al estimations (�rst step)
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and the one asso
iated to the se
ond step, thus simulating the parallel running of

the di�erent area estimations. Tests are performed in Matlab environment using a

2.4 GHz Quad Core Pro
essor with 8 GB RAM. As 
lear from the shown results,

the use of the multi-area approa
hes allows a signi�
ant redu
tion of the exe
ution

times. In 
ase of MASE-1, obviously, resulting 
omputation times are better than

those provided by the MA-DSSE, sin
e the se
ond step only requires a simple shift of

the voltage estimations. It is worth underlining that su
h results are only indi
ative

and do not take into a

ount the time 
onsumption of additional tasks like the

a
quisition of the data, the 
ommuni
ation between areas, et
.

Table 6.2: Average exe
ution times for ISE and MASE approa
hes

Measurements

ISE

[ms℄

MASE-1

[ms℄

MA-DSSE

[ms℄

Conventional 98.8 15.4 21.0

PMU 71.2 10.3 15.7

Measurement 
on�guration with additional measurement points

The previous series of tests basi
ally showed that, if one of the sub-networks in
ludes

all the measurement points available on the grid, then the proposed MA-DSSE

approa
h is able to provide the same results a
hievable by means of the ISE. To assess

the performan
e of the proposed method even in presen
e of di�erent measurement

s
enarios, other tests have been performed assuming additional measurements in

the network. In parti
ular, the following tests show the 
ase of two additional

measurement points installed in nodes 86 and 105 (in area C and D, respe
tively).

Fig 6.9 shows the results for the voltage magnitude estimation in 
ase of 
on-

ventional measurements. It is possible to observe that the ISE 
learly provides the

best estimation results, sin
e it is the only approa
h to pro
ess simultaneously all

the measurements available on the �eld. The impa
t brought by the number of

pro
essed voltage measurements 
an be 
learly observed looking at the results for

the LSEs in the di�erent areas. Area A provides the best results among the di�erent

sub-networks, sin
e it 
an rely upon three measurement points; area B, instead, has

the worst a

ura
y results (only one measurement point available), while areas C

and D signi�
antly enhan
e their a

ura
y with respe
t to the results obtained with

the previous measurement 
on�guration, thanks to the presen
e of the additional

measurement point. However, in all the 
ases, a signi�
ant di�eren
e exists with

respe
t to the results provided by the ISE.

Large enhan
ements with respe
t to the lo
al estimation results 
an be obtained
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Figure 6.9: Expanded un
ertainty for the voltage magnitude estimation in 
ase of

additional measurement points with traditional measurements

through the multi-area approa
hes. In this s
enario, however, signi�
ant di�eren
es


an be found depending on the design of the se
ond step. In parti
ular, the MASE-

1 approa
h 
learly shows its limits on the re�nement of the estimation results. As

evident from Fig. 6.9, the voltage 
orre
tion performed through this approa
h only

allows propagating the un
ertainty level of the areas with the better lo
al estimations

towards the adjoining zones. In this 
ase, sin
e the LSE in area A is the best one,

its un
ertainty level 
an be spread to all the sub-networks (all the other areas are

adja
ent to area A). However, no improvements 
an be obtained in area A. With

the proposed MA-DSSE te
hnique, instead, the use of a se
ond step in
luding the

information provided by the adja
ent areas allows re�ning the estimation results

in all the zones. In parti
ular, it 
an be observed that the estimation of area A


an be signi�
antly improved, sin
e the se
ond step allows integrating the useful

information provided by areas C and D. In the same way, areas C and D 
an

re�ne their estimations exploiting the estimation 
oming from area A and D or C

(depending on the 
ase). Instead, as for area B, it should be noted that the �nal

un
ertainty level is higher than the other zones be
ause this sub-network 
annot

integrate the voltage information provided by areas C and D. Similar results and


onsiderations also hold for the 
ase of measurement points based on PMUs.

As for the estimation of the other ele
tri
al quantities, 
onsiderations similar to

those reported for the previous measurement s
enario 
an be done. The estimation

of the voltage angles has to be di�erentiated depending on the presen
e of tradi-

tional or syn
hronized measurements. In the 
ase of traditional measurements, the

estimation on the whole grid, obtained by shifting the voltage angle estimations in

areas B, C and D so to 
onsider the sla
k bus of area A (node 150) as unique refer-

en
e, leads to very similar results for all the monitored estimators, with estimation
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un
ertainties lower than 2 mrad for all the buses. In 
ase of PMU measurements, in-

stead, the voltage angle estimations referred to the UTC time exhibit a trend of the

un
ertainty levels analogous to the one shown in Fig. 6.9 for the voltage magnitudes.

However, if the phase-angle di�eren
es with respe
t to the sla
k bus in node 150 are


omputed, as it happens for the 
onventional measurements, even in this 
ase the

estimation results are very 
lose for all the estimators, with estimation un
ertainties

lower than 1.5 mrad for all the nodes. As for the 
urrent estimations, again, the

same 
onsiderations made for the previous tests with the starting measurement 
on-

�guration 
an be done. In fa
t, the lo
al impa
t of the �ow measurements and the

already a

urate monitoring of the in
oming and outgoing �ows of ea
h area lead

to estimations very similar to those provided by the ISE sin
e the �rst step of the

multi-area estimation.

Sin
e important di�eren
es 
an be found for the estimations of the voltage mag-

nitudes, an additional test has been 
arried out to 
on�rm the di�erent behaviour of

the multi-area approa
hes when 
onsidering the presen
e of multiple measurement

points. To this purpose, a possible future s
enario with an enhan
ed measurement

system has been taken into a

ount. With respe
t to the measurement 
on�guration


onsidered in the previous test, additional measurement points have been pla
ed in

nodes 25, 42, 48 (area B) and 91 (area C ). Summarizing, in this augmented mea-

surement system, four measurement points are present in area B, three are in areas

A and C, and two are in area D.

Fo
using on the results obtained for the voltage magnitude estimations, Figs.

6.10 and 6.11 show the un
ertainty levels obtained when 
onsidering traditional or

syn
rophasor measurements, respe
tively. As it 
an be observed, the ISE provides

the best a

ura
y performan
e, while the results asso
iated to the LSEs are signif-

i
antly less a

urate and stri
tly dependent on the number of measurement points

available on ea
h sub-network. As for the multi-area approa
hes, shown results


on�rm the 
onsiderations highlighted in the previous tests. The MASE-1 method

allows propagating the un
ertainties of the best LSEs to the adjoining zones. In

parti
ular, in this s
enario, the highest a

ura
y of area B 
an be propagated to

area A, while the LSE in area D 
an be enhan
ed exploiting the more a

urate esti-

mation 
oming from area A or C. However, large improvements 
an be obtained by

using the proposed MA-DSSE method. In fa
t, the integration of the information

provided by the adjoining areas leads to signi�
ant enhan
ements for the estimation

a

ura
y of all the areas. In parti
ular, in this 
ase, it is interesting to observe that

area A, even if it does not have the largest number of measurement points, be
omes

the most a

urate sub-network thanks to the a
quisition of the information 
oming

from all the other zones. This 
learly demonstrates the bene�
ial e�e
t brought by

the estimations of the neighboring zones in
luded in the se
ond step of the proposed

MA-DSSE approa
h.
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Figure 6.10: Expanded un
ertainty for the voltage magnitude estimation in 
ase

of augmented measurement system with traditional measurements

Figure 6.11: Expanded un
ertainty for the voltage magnitude estimation in 
ase

of augmented measurement system with syn
hronized measurements

6.6 Final dis
ussion

The development of suitable multi-area approa
hes is almost a mandatory task in

distribution systems, given the very large number of nodes present in these networks

and the need to 
onsider three-phase models of the system. Nevertheless, the design

of multi-area te
hniques for the distribution level is parti
ularly 
hallenging, mainly

be
ause of the s
ar
ity of measurement devi
es usually available in these grids. In

spite of this issue, the design of the multi-area method should be able to ful�l
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ussion

the desired requirements of a

ura
y, speed and e�
ien
y, while keeping low the


omputational burden and the 
ommuni
ation 
osts.

In this Chapter, a multi-area state estimation algorithm taking into a

ount the

main features of the distribution networks, and thus tailored to these systems, has

been presented. The proposed MA-DSSE algorithm is designed to allow a de
entral-

ized s
heme of the ar
hite
ture and to distribute, in this way, the pro
essing, storage

and 
ommuni
ation requirements. Several tests have been performed to assess the

goodness of the proposed method. Simulation results show that the two-step formu-

lation of the MA-DSSE algorithm allows a signi�
ant enhan
ement of the voltage

magnitude estimations with respe
t to the results given by the lo
al estimations. On

the 
ontrary, instead, the voltage magnitude estimations provided by the MA-DSSE

are in general worse than those a
hievable through the estimation on the whole

network; however, this an expe
ted 
ost to be paid for speeding up the estimation

pro
ess (the exe
ution times resulting for the MA-DSSE, in the proposed test 
ases,

are about �ve times smaller than those obtainable through the ISE). Moreover, the

parti
ular 
on�guration 
hosen for the measurement system and the multi-area par-

tition allows a
hieving optimum results, similar to those provided by the ISE, for the

estimations of 
urrents (both in magnitude and angle) and voltage angle di�eren
es.

As des
ribed also in the other Chapters of this thesis, important enhan
ements

on the a

ura
y performan
e 
an be obtained by 
onsidering a proper model of the

measurements used in the estimation algorithms. In this 
ase, the fo
us has been on

the modeling of the equivalent measurements provided as input to the se
ond-step

estimation pro
ess. The developed analysis showed that, be
ause of the 
hosen parti-

tion of the network, 
orrelations 
an arise between the voltage estimations provided

by di�erent sub-networks. As 
on�rmed by the performed tests, proper 
onsider-

ation of these 
orrelations in the se
ond-step of the MA-DSSE algorithm allows

enhan
ing the �nal a

ura
y of the estimation results. Moreover, the developed

analysis showed that the 
omputation of these 
ovarian
e terms does not require

the ex
hange of additional data between adja
ent areas. Thus, existing 
orrelations


an be duly 
onsidered in the MA-DSSE measurement model without any in
rease

in the 
ommuni
ation 
osts.

In general, several di�erent multi-area approa
hes 
an be 
on
eived. The te
h-

nique here proposed provides, however, a good trade-o� among the requirements of

redu
ing the size of the DSSE problem, speeding up the estimation pro
ess, and pro-

viding estimation results as a

urate as possible with only minimum 
ommuni
ation


osts and redu
ed 
omputational burden.
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Con
lusions

The 
hanges o

urring in ele
tri
al systems, due to te
hni
al and e
onomi
 reasons,

and the requirements of a reliable and e�
ient delivery of the power supply to the


ustomers demand a smarter management of the 
urrent grids at all the levels. In

parti
ular, the distribution level, until now managed without a detailed monitoring

of its operating 
onditions, requires signi�
ant reinfor
ements, in terms of both

measurement infrastru
ture and 
ontrol fun
tionalities, to deal with the 
hanges in

a
t. In this 
ontext, Distribution System State Estimation tools play a key role,

sin
e they allow the estimation of the operating 
onditions of the distribution grid,

representing the essential link between the measurements gathered from the �eld

and the 
ontrol fun
tions envisaged in future Distribution Management Systems.

In this thesis, the fo
us has been on the development of appropriate pro
edures to

a

urately perform DSSE. Several goals have been pursued. First of all, a DSSE algo-

rithm spe
i�
ally 
on
eived for the distribution systems and tailored to the features

of these networks has been designed. The proposed estimator allows the proper

pro
essing of all the types of measurement, in
luding both 
onventional measure-

ments and new generation syn
hrophasors provided by Phasor Measurement Units.

Parti
ular attention has been paid to the measurement model to be used within the

DSSE algorithm, sin
e its implementation 
an strongly a�e
t the a

ura
y a
hiev-

able in the estimation results. Moreover, a simple method to handle the equality


onstraints, well suited to the proposed estimator, has been presented to improve

its 
omputational e�
ien
y. The proposed estimator has been 
riti
ally analyzed

and 
ompared to other approa
hes available in the literature, in order to highlight

strengths and weaknesses of the 
on
eived solution.

In the se
ond part of the thesis, the problem of DSSE has been analyzed from

a wider perspe
tive, aiming at highlighting the impa
t of di�erent measurement as-

pe
ts on the estimation results. The impa
t of measurement type and pla
ement on

the estimation a

ura
y of the di�erent ele
tri
al quantities has been deeply inves-

tigated, supporting the empiri
al results through a detailed mathemati
al analysis.

Su
h study 
an provide important guidelines for the 
hoi
e of the measurement in-

frastru
ture to be deployed in future distribution systems in order to a
hieve spe
i�


a

ura
y targets for the estimation of the di�erent ele
tri
al quantities. The possi-
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bility to enhan
e the estimation a

ura
y by properly 
onsidering the measurement


orrelations has also been investigated. Developed analysis shows that di�erent

sour
es of 
orrelation 
an exist in the measurements used as input to the DSSE

algorithm. Performed simulations prove that the in
lusion of these 
orrelations in

the DSSE model 
an lead to signi�
ant bene�ts on the estimation a

ura
y.

Finally, a possible de
entralized multi-area ar
hite
ture, designed to handle large

distribution networks, has been proposed. Su
h a solution has been 
on
eived duly

taking into a

ount the opposite requirements of a

ura
y, 
omputational e�
ien
y

and low 
ommuni
ation 
osts desirable in realisti
 s
enarios. Even in this 
ase,

parti
ular attention has been fo
used on the proper modeling of the measurements

in order to a
hieve estimation results as a

urate as possible. To this purpose, a

mathemati
al analysis has been developed to assess the 
orrelations arising in the

proposed multi-area approa
h. Test results 
on�rm the validity of the developed

analysis and, above all, prove the importan
e of a proper 
onsideration of all the

measurement aspe
ts for enhan
ing the a

ura
y of the estimations.

In 
on
lusion, in this thesis, the problem of state estimation in future distribution

system has been deeply analyzed, fo
using in parti
ular on the issues related to the

measurement modeling and pro
essing. The analysis and the results presented in this

thesis shows how the a
hievement of a really smart management and 
ontrol of future

distribution grids (as expe
ted in the Smart Grid s
enario) is stri
tly dependent on

the smart deployment, pro
essing and management of the measurements in the

network.
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Appendix A

Ja
obian of BC-DSSE

A.1 Ja
obian of original BC-DSSE

The Ja
obian of the original BC-DSSE in
ludes all the derivatives of the traditional

measurements with respe
t to the real and imaginary 
omponents of the bran
h


urrents. Following the same s
heme used in Se
tion 1.4.2 for the measurement

fun
tions, the relationships asso
iated to the di�erent Ja
obian terms are here re-

ported.

• A
tive and rea
tive power �ow

∂heqir
lφ

∂irjψ
=











0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j 6= l

α for phase ψ = φ and bran
h j = l

(A.1)

∂heqir
lφ

∂ixjψ
= 0 for ea
h phase ψ and bran
h j (A.2)

∂heqix
lφ

∂irjψ
= 0 for ea
h phase ψ and bran
h j (A.3)

∂heqix
lφ

∂ixjψ
=











0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j 6= l

α for phase ψ = φ and bran
h j = l

(A.4)

where α is +1 or −1 depending on the dire
tion of the measured power with

respe
t to the 
onventional dire
tion assumed for the bran
h 
urrent.
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• A
tive and rea
tive power inje
tion

∂heqir
inj,iφ

∂irjψ
=



















0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j not 
onverging in node i

α for phase ψ = φ and bran
h j in
oming in node i

−α for phase ψ = φ and bran
h j outgoing from node i

(A.5)

∂heqir
inj,iφ

∂ixjψ
= 0 for ea
h phase ψ and bran
h j (A.6)

∂heqix
inj,iφ

∂irjψ
= 0 for ea
h phase ψ and bran
h j (A.7)

∂heqix
inj,iφ

∂ixjψ
=



















0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j not 
onverging in node i

α for phase ψ = φ and bran
h j in
oming in node i

−α for phase ψ = φ and bran
h j outgoing from node i

(A.8)

where α is +1 for positive powers drawn by loads and −1 for positive power

generations.

• Current magnitude

∂hIlφ
∂irjψ

=











0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j 6= l

cos θlφ for phase ψ = φ and bran
h j = l

(A.9)

∂hIlφ
∂ixjψ

=











0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j 6= l

sin θlφ for phase ψ = φ and bran
h j = l

(A.10)

where θlφ is the angle of the 
urrent in bran
h l and for phase φ.

• Voltage magnitude

Indi
ating with Γ the set of bran
hes linking the 
hosen sla
k bus to the node

i where there is the voltage measurement, it is:

∂hViφ
∂irjψ

=











0 for j 6∈ Γ

−rφφj cos δiφ − xφφj sin δiφ for phase ψ = φ and bran
h j ∈ Γ

−rφψj cos δiφ − xφψj sin δiφ for phase ψ 6= φ and bran
h j ∈ Γ

(A.11)
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A.2. Additional terms for traditional measurements

∂hViφ
∂ixjψ

=











0 for j 6∈ Γ

xφφj cos δiφ − rφφj sin δiφ for phase ψ = φ and bran
h j ∈ Γ

xφψj cos δiφ − rφψj sin δiφ for phase ψ 6= φ and bran
h j ∈ Γ

(A.12)

where rφφj and xφφj are the real and the imaginary part of the self-impedan
e

of bran
h j; rφψj and xφψj are the real and the imaginary part of the mutual

impedan
e in bran
h j between phases φ and ψ; δiφ is the voltage angle of

node i for phase φ (where there is the 
onsidered voltage measurement).

A.2 Additional terms for traditional measurements

Be
ause of the in
lusion of the sla
k bus voltage in the state ve
tor of the BC-DSSE

model, the resulting derivative terms with respe
t to the voltage state variable must

be 
omputed. Looking at the measurement fun
tions reported in Se
tion 1.4.2, it is

easy to observe that only the voltage magnitude measurements depend on the sla
k

bus voltage state. As a result, power measurements (both the equivalent 
urrents

asso
iated to power inje
tions and bran
h power �ows) and 
urrent magnitude mea-

surements have derivative terms with respe
t to the voltage state variable equal to

zero. As for the voltage magnitude measurements, 
onsidering with i the node where
the voltage measurement is installed, and with Vsψ the sla
k bus voltage magnitude

in
luded in the state ve
tor for phase ψ, it is:

∂hViφ
∂Vsψ

=

{

cos(δ1φ − δiφ) if phase φ = ψ

0 if phase φ 6= ψ
(A.13)

A.3 Ja
obian for the mesh virtual measurements

The Ja
obian sub-matrix for the mesh 
onstraints has to be 
omputed when su
h


onstraints are in
luded in the BC-DSSE model as virtual measurements. Indi
ating

with Ψ the set of bran
hes involved in the 
onsidered mesh, it is:

∂hrmesh
∂Vsψ

= 0 for ea
h phase ψ (A.14)

∂hrmesh
∂irjψ

=











0 for j 6∈ Ψ

αjr
φφ
j for phase ψ = φ and bran
h j ∈ Ψ

αjr
φψ
j for phase ψ 6= φ and bran
h j ∈ Ψ

(A.15)
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∂hrmesh
∂ixjψ

=











0 for j 6∈ Ψ

−αjxφφj for phase ψ = φ and bran
h j ∈ Ψ

−αjxφψj for phase ψ 6= φ and bran
h j ∈ Ψ

(A.16)

∂hxmesh
∂irjψ

=











0 for j 6∈ Ψ

αjx
φφ
j for phase ψ = φ and bran
h j ∈ Ψ

αjx
φψ
j for phase ψ 6= φ and bran
h j ∈ Ψ

(A.17)

∂hxmesh
∂ixjψ

=











0 for j 6∈ Ψ

αjr
φφ
j for phase ψ = φ and bran
h j ∈ Ψ

αjr
φψ
j for phase ψ 6= φ and bran
h j ∈ Ψ

(A.18)

where rφφj , xφφj , rφψj and xφψj have the same meaning as in the previous 
ase for the

voltage magnitude measurements, and αj is +1 or −1 depending on the dire
tion

of the mesh in bran
h j with respe
t to the 
onventional dire
tion assumed for the


orresponding bran
h 
urrent.

A.4 Ja
obian in 
ase of PMU measurements

Considering the in
lusion of both the real and the imaginary 
omponents of the

sla
k bus voltage when PMU measurements are available on the �eld, the following

derivative terms 
an be found for the 
urrent and voltage phasors.

• Current phasors - real 
omponent

Considering the measurement of the 
urrent phasor on the phase φ of the

generi
 bran
h l, it is:

∂hir
lφ

∂vrsψ
= 0 for ea
h phase ψ (A.19)

∂hir
lφ

∂vxsψ
= 0 for ea
h phase ψ (A.20)

∂hir
lφ

∂irjψ
=











0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j 6= l

α for phase ψ = φ and bran
h j = l

(A.21)

∂hir
lφ

∂ixjψ
= 0 for ea
h phase ψ and bran
h j (A.22)

where α is +1 or −1 depending on the dire
tion of the measured 
urrent with

respe
t to the 
onventional verse assumed for the bran
h 
urrent.
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A.4. Ja
obian in 
ase of PMU measurements

• Current phasors - imaginary 
omponent

Considering the measurement of the 
urrent phasor on the phase φ of the

generi
 bran
h l, it is:

∂hix
lφ

∂vrsψ
= 0 for ea
h phase ψ (A.23)

∂hix
lφ

∂vxsψ
= 0 for ea
h phase ψ (A.24)

∂hix
lφ

∂irjψ
= 0 for ea
h phase ψ and bran
h j (A.25)

∂hix
lφ

∂ixjψ
=











0 for phase ψ 6= φ

0 for phase ψ = φ and bran
h j 6= l

α for phase ψ = φ and bran
h j = l

(A.26)

where α is +1 or −1 depending on the dire
tion of the measured 
urrent with

respe
t to the 
onventional verse assumed for the bran
h 
urrent.

• Voltage phasors - real 
omponent

Indi
ating with Γ the set of bran
hes linking the 
hosen sla
k bus to the node

i where there is the voltage measurement, it is:

∂hvr
lφ

∂vrsψ
=

{

1 for phase φ = ψ

0 for phase φ 6= ψ
(A.27)

∂hvr
lφ

∂vxsψ
= 0 for ea
h phase ψ (A.28)

∂hvr
iφ

∂irjψ
=











0 for j 6∈ Γ

−rφφj for phase ψ = φ and bran
h j ∈ Γ

−rφψj for phase ψ 6= φ and bran
h j ∈ Γ

(A.29)

∂hvr
iφ

∂ixjψ
=











0 for j 6∈ Γ

xφφj for phase ψ = φ and bran
h j ∈ Γ

xφψj for phase ψ 6= φ and bran
h j ∈ Γ

(A.30)

where rφφj and xφφj are the real and the imaginary parts of the self-impedan
e of

bran
h j, and rφψj and xφψj are the real and the imaginary parts of the mutual

impedan
e in bran
h j between phases φ and ψ.

181



APPENDIX A. JACOBIAN OF BC-DSSE

• Voltage phasors - imaginary 
omponent

Indi
ating with Γ the set of bran
hes linking the 
hosen sla
k bus to the node

i where there is the voltage measurement, it is:

∂hvx
lφ

∂vrsψ
= 0 for ea
h phase ψ (A.31)

∂hvx
lφ

∂vxsψ
=

{

1 for phase φ = ψ

0 for phase φ 6= ψ
(A.32)

∂hvx
iφ

∂irjψ
=











0 for j 6∈ Γ

−xφφj for phase ψ = φ and bran
h j ∈ Γ

−xφψj for phase ψ 6= φ and bran
h j ∈ Γ

(A.33)

∂hvx
iφ

∂ixjψ
=











0 for j 6∈ Γ

−rφφj for phase ψ = φ and bran
h j ∈ Γ

−rφψj for phase ψ 6= φ and bran
h j ∈ Γ

(A.34)

where rφφj and xφφj are the real and the imaginary parts of the self-impedan
e of

bran
h j, and rφψj and xφψj are the real and the imaginary parts of the mutual

impedan
e in bran
h j between phases φ and ψ.

It is important to highlight that traditional and PMU measurements 
an also

exist simultaneously. In this 
ase, the presen
e of PMUs implies the use of the

extended state ve
tor with the real and imaginary sla
k bus voltage. Thus, even

for the 
onventional measurements, it is ne
essary to 
ompute the Ja
obian terms


orresponding to the derivatives with respe
t to real and imaginary sla
k bus voltage.

As seen in Appendix A.2, power and 
urrent measurements do not depend on the

voltage state, therefore, their derivatives with respe
t to the new state variables are

null. The only modi�
ation is thus for the voltage magnitude measurements, whi
h

have the following derivative terms with respe
t to the sla
k bus voltage state (for

measurement on the phase φ of the generi
 node i):

∂hViφ
∂vrsψ

=

{

cos(δiφ) if phase φ = ψ

0 if phase φ 6= ψ
(A.35)

∂hViφ
∂vxsψ

=

{

sin(δiφ) if phase φ = ψ

0 if phase φ 6= ψ
(A.36)
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