
			
	

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

Economics and Business

Cycle XXXI

TITOLO TESI

Community Detection Tree-Based Algorithm for

semi-supervised clustering

Settore/i scientifico disciplinari di afferenza

SECS-S/01

Presentata da: Giulia Contu

Coordinatore Dottorato Professor Andrea Melis

Tutor Professor Claudio Conversano

Esame finale anno accademico 2017 – 2018

Tesi discussa nella sessione d’esame Febbraio 2019

This thesis is dedicated to my family and my friends

Acknowledgements

This thesis represents my journey in the research in Statistics, a difficult and

still beautiful journey. I have travelled with amazing people in this three years,

people that have supported me in this journey. I would like to thank many

people.

The first two are Professor Mola and Professor Conversano. I have to thank them

for offering me the possibility to study what I love, for believing in me when

I probably could not believe in myself. I have to say thank you to Professor

Mola for teaching me how beautiful Statistics can be, and the importance to

understand and to analyze data carefully. And I thank Professor Conversano for

supporting me during this three years: he taught me patience, which is essential

to analyze data, results and methodologies with proper care. Moreover, he

helped me in the preparation of all papers, all presentations and on this thesis.

The third person that has been really important in this journey is Professor

Adalbert Wilhelm. He has welcomed me and treated me like one of the family

during the time I spent in Jacob University.

The fourth person is Doctor Frigau, my colleague and friend, that has helped

me in the study of statistics, learning R and in the realization of this thesis.

Above all, I thank Luca for his friendship.

Moreover, I would like to thank Professor Gianni Bella and Professor Stefano

Matta for making this trip much nicer and funnier. I want to thank them for

their friendship and the time spent together.

Another person is very important for me. She is the Professor Luisa Salaris.

She is a guide, a constant support and a dear friend.

I would like to thank my PhD colleagues. A special dedication is for Sara and

Christelle.

Additionally, I would like to thank my brother Carlo, for supporting me in life

and in this thesis. He read all the thesis and helped me improving the text

quality, so thank you Carlo for everything.

The biggest acknowledgment goes to my family, that always supports me.

And last, but not least, I would like to thank my friends, my beautiful friends,

for making my life better and to remember me how beautiful life can be.

4

Abstract

Statistical methods improve and change in time, in line with the continuous in-

creasing complexity of the phenomena and the size of the information available.

Different approaches are combined together in order to improve the ability to

analyze the data and to identify the possible relationships among them. In par-

ticular, the advantage of supervised and unsupervised learning approaches have

been joined together in the last decades. But there is also a third way, which is

actually a halfway: the semi-supervised learning approach.

This new approach has been applied on different methodologies, as for instance

the cluster analysis. In fact, a variant of the traditional clustering paradigms has

been proposed in order to obtain a better partitioning of the data, that consid-

ers and incorporates background knowledge. Different kinds of semi-supervised

clusters have been identified in recent studies. Bair (2013) has classified them

in three approaches: partial labeled data, cluster with constraints and cluster

associated with an outcome variable. The last category is also the less developed

in literature, and is generally used only in the medical domain.

The aim of this thesis is to define a semi-supervised clustering method able to

identify clusters that are similar with respect to a specific outcome variable.

A new algorithm will be proposed, based on the combination of two different

methodologies: the tree-based method and the community detection in net-

works.

This algorithm is called Community Detection Tree-Based Algorithm for Semi-

supervised Clustering (CTSC) and aims to define clusters that differ for the value

of the response variable, and whose elements are similar for the same values of

the outcome variable.

Three phases compose the CTSC. The pre-training and training phases focus on

the application of the recursive partioning and on the definition of the proximity

matrix. The matrix is pivotal to reveal the relationships between the observa-

tions, taking into account the outcome variable. Finally, the last phase, i.e. the

cluster phase, focuses on the application of a community detection algorithm on

the proximity matrix.

An innovative element is introduced in the algorithm: the clustering problem is

transformed into a community detection problem. In fact, the cluster analysis

is realized through the community detection algorithm, following the statement

of Arruda et al. (2012), de Oliveira et al. (2008), Granell et al (2011, 2012).

Moreover, different combinations of trees and community detection algorithms

will be studied to offer a useful tool to the study of diverse phenomena and

datasets. In fact, CTSC can be applied on different research areas and on dif-

ferent datasets.

Generally, the thesis presents some innovative aspects. Firstly, it is defined a

new semisupervised cluster algorithm able to identify clusters similar respect to a

specific outcome variable. Secondly, the clusters are identified combing different

methodologies: tree based methods and the community detection algorithm.

Thirdly, the community detection algorithms are used in the identification of

clusters instead of the cluster traditional methodologies.

This thesis is composed by four chapters. The first chapter is focused on the

description of semi-supervised learning, to better define a framework for the

present proposal. Different algorithms will be analyzed to better comprehend

their peculiarities, their structure and the goals.

The second chapter is focused on the review of the literature related to the tree-

based methods, in order to evaluate the different algorithms and the splitting

criteria. The second chapter aims to study the tree methodology in order to

identify the most useful algorithm for the classification of the observations, tak-

ing into account a specific outcome variable.

The third chapter is focused on the study of the community detection meth-

ods. Specifically, several researches on networks and complex networks will be

analyzed. Particular attention will be dedicated to the study of the different

methodologies for the identification of the communities inside the networks.

The aim of the third chapter is to identify the most useful algorithms to define

the clusters inside the datasets.

The fourth chapter is focused on the presentation of the new algorithm. The

three steps of CTSC will be defined, in order to explain how they work and their

intermediate and final results. The application of CTSC on simulated data and

on three different datasets is presented, with the aim to evaluate the results,

the peculiarities, the limitations and the advantages of this algorithm. Then,

a comparison between the CTSC and the traditional cluster algorithms will be

6

proposed, in order to evaluate the differences.

Finally, the possible future developments of CTSC will be presented.

7

Contents

1 Semi-supervised Clustering 1

1.1 Abstract . 1

1.2 Unsupervised, supervised and semi supervised learning 2

1.3 Clusters analysis . 4

1.4 Semisupervised clustering . 8

1.4.1 Partially labeled data . 9

1.4.2 Clusters with constraints . 11

1.4.3 Cluster associated with an outcome variable 16

1.4.4 Other methods . 19

2 Tree-based methods 26

2.1 Abstract . 26

2.2 Tree-based methods . 26

2.3 The main elements of the tree . 28

2.3.1 Splitting criteria . 28

2.3.2 Pruning criteria . 33

2.4 Classification and regression trees models 36

2.5 Multivariate trees . 39

2.6 Bagging, Random forest and Boosting . 40

2.7 CART and GBM . 43

3 Network and community detection 45

3.1 An introduction to networks . 45

3.2 The Network . 47

3.3 Graph . 49

3.4 Centrality measures . 52

3.5 Different kinds of networks . 54

3.5.1 Information Networks . 54

3.5.2 Technological Networks . 56

i

3.5.3 Biological Networks . 57

3.5.4 Social Networks . 58

3.6 Complex Networks . 59

3.6.1 The characteristics of a complex network 61

3.6.2 Complex networks models . 63

3.7 Community detection . 68

3.7.1 Community detection models . 71

3.7.2 Traditional methods . 71

3.7.3 Divisive methods . 74

3.7.4 Modularity methods . 76

3.7.5 Dynamic methods . 77

3.7.6 Other methods . 79

3.7.7 Overlapping community . 82

3.8 Three community detection algorithms: Louvain clustering,Walktrap and La-

bel prop . 83

4 A new semi supervised cluster method 88

4.1 Abstract . 88

4.2 CTSC ingredients . 88

4.3 Community Detection Tree-Based Algorithm for Semi-supervised Clustering

(CTSC) . 92

4.4 Related algorithms in literature . 97

4.5 Empirical evidence . 98

4.5.1 Simulated data . 99

4.5.2 The Unesco website data . 108

4.5.3 Boston data . 126

4.5.4 rent99 dataset . 139

5 Conclusions 152

A Tables and graphs 156

A.1 Simulated data . 156

A.2 Unesco website data . 183

A.3 Boston data . 187

A.4 rent99 . 193

Bibliography 199

ii

List of Figures

1.1 The different phase in the cluster analysis, source: Sarstedt and Mooi,

2014 . 5

1.2 The Framework of the SCREEN Method, source: Tang et al. (2007) . . 15

1.3 Initialization of SCREEN Method, source: Tang et al. (2007) 15

1.4 C-NBC algorithm, source: Lasek (2014) 22

1.5 AssignDeferredPointsToClusters function, source: Lasek (2014) 22

1.6 Constraint-driven DBSCAN, source: Ruiz et al. (2007) 24

2.1 Example of a general decision tree for classification (source: Barros et

al., 2015) . 27

3.1 The town of Konigsberg in Prussia, source: MacTutor History of Math-

ematics Archive . 46

3.2 Graph representation, source Baesens (2015) 48

3.3 The degrees (source: Wallis, 2007) . 51

3.4 Connected and disconnected graphs (source: Ahuja et al., 1993) 51

3.5 Undirected and directed graphs (source: Easley and Kleinberg, 2010) . 51

3.6 Citation network (source: Small, 1973) . 55

3.7 the Internet network (source: Newman, 2006) 57

3.8 The Milgram study, source Milgram 1967 62

3.9 Random graph Erdös and Rényi, source Fortunato (2010) 64

3.10 Small-world networks Watts and Strogatz, source Fortunato (2010) . . . 65

3.11 Static scale-free networks Barabãsi and Albert, source Fortunato (2010) 67

3.12 Community in network, source: Newman, 2006 69

3.13 Overlapping communities, source: Fortunato and Hric, 2016 70

3.14 Community in network (source: Papadopulos, 2012) 73

4.1 Unesco Dataset, Louvain algorithm - 75th iteration 109

4.2 Unesco data, Louvain, comparison between groups 111

4.3 Unesco data, Louvain, comparison between groups 112

iii

4.4 Unesco data, Louvain, comparison between groups 113

4.5 Unesco Dataset, Walktrap algortihm - 29th iteration 114

4.6 Unesco data, Walktrap, comparison between groups 115

4.7 Unesco data, Walktrap, comparison between groups 116

4.8 Unesco data, Walktrap, comparison between groups 117

4.9 Unesco Dataset, Label prop algorithm - 23th iteration 118

4.10 Unesco data, Label prop, comparison between groups 119

4.11 Unesco data, Label prop, comparison between groups 120

4.12 Unesco data, Label prop, comparison between groups 121

4.13 Unesco data, K-means . 123

4.14 The boxplots of the outcome variable Age 123

4.15 Unesco data, Hierarchical cluster Complete 124

4.16 The boxplots of the outcome variable Age 124

4.17 Algorithm applied including CART and Louvain - Best partitions 129

4.18 Algorithm applied including GBM and Louvain - Best partitions 130

4.19 CTST applied on Boston data, CART and Walktrap - Best partitions . 131

4.20 Algorithm applied including GBM and Walktrap - Best partitions . . . 132

4.21 Algorithm applied including CART and Label Propagation - Best partitions133

4.22 Algorithm applied including GBM and Label Propagation - Best partitions134

4.23 Mclust Boston data- BIC . 138

4.24 Mclust Boston data- Classification . 139

4.25 Algorithm applied in rent99 including CART and Louvain - Best partitions141

4.26 Algorithm applied on rent99 including GBM and Louvain - Best partitions142

4.27 Algorithm applied on rent99 including CART and Walktrap - Best par-

titions . 143

4.28 Algorithm applied on rent99 including GBM and Walktrap - Best partitions144

4.29 Algorithm applied on rent99 including CART and Label Propagation -

Best partitions . 145

4.30 Algorithm applied on rent99 including GBM and Label Propagation -

Best partitions . 146

4.31 Mclust on rent99- BIC . 149

4.32 Mclust on rent99- Classification . 150

A.1 CTSC applied on Boston, CART and Louvain 187

A.2 CTSC applied on Boston, BGM and Louvain 188

A.3 CTSC applied on Boston, CART and Walktrap 189

iv

A.4 CTSC applied on Boston, GBM and Walktrap 190

A.5 CTSC applied on Boston, CART and Label Propagation 191

A.6 CTSC applied on Boston, GBM and Label Propagation 192

A.7 CTSC applied on rent99 including CART and Louvain 193

A.8 CTSC applied on rent99 including GBM and Louvain 194

A.9 CTSC applied on rent99 including CART and Walktrap 195

A.10 CTSC applied on rent99 including GBM and Walktrap 196

A.11 CTSC applied on rent99 including CART and Label Propagation 197

A.12 CTSC applied on rent99 including GBM and Label Propagation 198

v

Chapter 1

Semi-supervised Clustering

1.1 Abstract

The term Statistical learning defines a varied and wide set of tools useful to understand

data. Inside this set, it is possible to identify different methodologies, that have been theo-

rized through time. Among the oldest methodologies, it is possible to find for instance the

least squares method, proposed by Legendre (1805) and Gauss (1809) at the beginning of the

nineteenth century; the logistic regression theorized by Pearl and Read in 1920; the probit

model proposed by Gaddum(1933) and Bliss (1934); and the linear discriminant analysis

(LDA) in 1936 [181, 136, 201, 275, 272, 1, 157, 88, 122, 123, 287, 186]. In the definition of

statistical methods, the most important changes took place when the computing technology

allowed to improve the possibility of computation: an example of this is the classification

and regression trees (CART) introduced by Breiman, Friedman, Olshen and Stone in the

1980s [61, 25, 203, 276, 274, 157]. The Statistical learning models can be assembled in two

main groups: linear and nonlinear models. Specifically, it is possible to find the general-

ized linear models (GLM) that join together different methods such as linear and logistic

regression as theorized by Nelder and Wedderburn in the 1970s [215, 189, 157]; and the

generalized additive models (GAM) that are defined as a flexible method for identifying

nonlinear covariate effects in exponential family models and other likelihood-based regres-

sion models [148, p. 308].

Generally, the statistical learning methods can be classified in different ways. Firstly, it is

possible to distinguish between parametric and non-parametric methods. In the first case,

the analysis starts with the definition of the form of function. On the contrary, in the

second case it is not possible to make assumptions about the form of function, the space

distribution and the classifier structure [254].

Secondly, it is possible to distinguish between supervised and unsupervised methods. The

former defines models able to predict and to estimate a function and the results are deter-

1

mined by one or more inputs [157]. Supervised models can also be defined as a methods that

attempt to discover relationship between the input attributes and the target attribute [254,

p. 476]. Among supervised models is also possible to distinguish between Classification

Models and Regression Models. The former is related to qualitative variables, the latter to

numerical variables [101, 254]. Otherwise, the unsupervised methods allows to comprehend

and to analyze the relationships and the structure of data [157]. In this case, it is not

possible to have information about the function that is related to the data. The aim is to

find the regularities in the input [10].

This chapter is focused on the study of the middle way between supervised and unsuper-

vised learning. This new approach is called semisupervised learning. Particular attention

will be applied on the study of the applications and the characteristics of this new form of

learning. Later, the analysis will be especially focused on the application of semisupervised

learning and cluster analysis. Traditional clustering approaches and the new semisuper-

vised approach will be specifically analyzed. The aim of this chapter is to better define the

framework that lies beneath this study.

1.2 Unsupervised, supervised and semi supervised learning

The learning of data operates on a dataset where it is possible to identify features and, in

some cases, a qualitative or quantitative outcome variable [131]. Mainly, the aims can be

two: to define a predictive model able to understand and predict the relationship between

outcome variable and features; or to describe the organizational structure of the data. The

learning is called supervised in the former case, and unsupervised in the latter. Specifically,

given a labelled set of pairs of input and output D(xi, yi), the supervised approach has the

aim to learn a mapping from x to y , where [211, 74]:

• yi are called labels or targets of xi;

• D is the training set;

• N is the number of training examples.

The supervised learning problems can be casted into two different areas: classification and

regression. The former is used when a qualitative variable is predicted; the latter for quan-

titative variables [131].

The unsupervised learning operates on a training sample with n instances {xi}ni=1. Gen-

erally, the instances are independently and identically distributed. The aim is to reveal

intrinsic structures that are embedded within the data relationships. In this case, the

learning process does not consider prior information about the data, but it is guided by the

2

data and it tries to discover a specific and interesting structure in the data [269, 211].

Kevin (2016) has stated that the unsupervised learning can represent the typical learning of

humans and animals. Moreover, he has argued that this kind of approach is more applicable

than supervised learning, because it does not require the knowledge of human experts to

analyze the data manually.

One of the most traditional unsupervised method is cluster analysis. It has the goal to sep-

arate the n instances into groups. Other methods are, for instance, the novelty detection,

which has the aim do identify the instances that are very different from the majority, and

the dimensionality reduction, which has the goal to identify the lower dimensional features

vector able to represent each instance, maintaining key characteristics of the training sam-

ple [330].

Finally, a new approach has emerged lately. It is called the semisupervised learning. It

combines the strengths of the supervised and unsupervised learning paradigms. In other

words, it is somewhere between unsupervised and supervised learning [330, p. 9]. It is

located halfway between supervised and unsupervised learning [74, p. 17]. It attempts to

include additional information to extend both unsupervised and supervised learning [330].

It operates considering both labeled and unlabeled data. For instance, the application of

semi supervised learning to supervised classification has the aim to identify a better classi-

fier f(.) considering both the labeled and unlabeled data, rather than to consider only the

labeled ones. The application on unsupervised clusters allows to obtain better clustering

than the clustering from unlabeled data alone.

Generally, given a data setX = (x1, x2, . . . , xL+U) divided in two datasetXL = (x1, x2, . . . , xL)

and XU = (xL+1, xL+2, . . . , xL+U) where L and U are the labeled and unlabeled data items,

the aim is to propagate labels from labeled instances to unlabeled instances in accordance

to some diffusion rule.

In the implementation of semi-supervised learning methods, three different assumptions will

be considered [330]:

• the first is the Cluster assumption. It establishes that the data points, which are

located in the same high-density region, will be likely in the same class;

• the second assumption is the Smoothness assumption. It states that data points are

probable candidates to be members of the same class, if they are near in the attribute

space;

• finally, the third assumption is called Manifold assumption. It establishes that a set of

data points that are located in a high dimensional space can be reduced to a smaller

space using a nonlinear mapping function.

3

Moreover, the semisupervised learning can be applied on transductive learning and on in-

ductive learning [74, p. 453]. In fact, the study of semi supervised learning was introduced

by Vapnik in the 1970s. He has focused his attention on the problem of transductive learn-

ing [74]. The transductive learning attempts to realize the inference on the correct labels of

the unlabeled data set. Its aim is to perform predictions only learning from the test points.

On the contrary, the inductive learning attempts to estimate a mapping from the available

data to the output variable. In this second case, the goal is to output a prediction function

which is defined on the entire space X.

One of the applications of semisupervised learning is cluster analysis. Before to focus on

semi-supervised clustering approach, in the following paragraphs will be introduced the

traditional cluster methods and its characteristics.

1.3 Clusters analysis

Cluster Analysis is an unsupervised methodology that identifies interrelationships among

data to make an assessment [156, 289, 184]. Specifically, the term clustering is used to iden-

tify methods to group unlabeled data [156]. The aim is to divide data into groups where

the objects within the same group are very similar to each other and different from objects

in other groups [326, 187, 200, 144, 242]. In other words, it attempts to partition a data set

into homogeneous subgroups and can be applied to perform exploratory pattern-analysis,

grouping, decision-making, and machine-learning situations, including data mining, docu-

ment retrieval, image segmentation, and pattern classification [156, 326, 187, 144].

Clustering evolves in different steps as shown in Figure 1.1.

Specifically, It is possible to identify the following phases [156]:

• pattern representation, it is referred to specific elements: the cluster algorithms, as

for instance the number of classes, the number of available patterns, the type and

scale of the features available. Moreover, this step is composed of two activities: the

feature selection, where the most effective subset of the original features is identified

and used in clustering; and the feature extraction, where one or more transformations

of the input features are later used to produce new salient features;

• the definition and choice of the pattern proximity. It is measured through a distance

function defined on pairs of patterns. An example of measure is the Euclidean distance;

• clustering, or grouping. Different kinds of algorithms are used to cluster, as for in-

stance the Hierarchical Clustering Algorithms and Partitional Clustering Algorithms.

The former group the data into a hierarchical tree-like structure using bottom-up or

4

Figure 1.1: The different phase in the cluster analysis, source: Sarstedt and Mooi, 2014

top-down approaches. The main feature is that each cluster is derived from those

obtained in the immediate previous stage. The latter decompose the dataset into

a number of disjoint clusters that are usually optimal in terms of some predefined

objective functions. Its partitions are realized considering the features of resulting

clustering;

• data abstraction, it is a process to extract a simple and compact representation of a

data set.

It is necessary to consider specific aspects while choosing the algorithm. In particular, it

is possible to choose different approaches with delineated characteristics able to support the

identification of clusters. Firstly, the approaches can be agglomerative or divisive. These

approaches can be distinguished considering the pattern condition at the starting point.

Specifically, in the first case each pattern is a distinct cluster and, later, it is merged with

the other pattern until a stopping criterion is satisfied. Step by step, from the bottom to

the top level the observation first, and the cluster later, are joined together. In the second

case, all patterns are included in a single cluster that is then split until a stopping criterion

is satisfied.

Secondly, the approach can be monothetic or polythetic. In the first case, the splitting is

realized considering only one feature to divide the collection of patterns. In the second case

all features are considered in the computation of distances between patterns.

5

Thirdly, the approach can be hard or fuzzy. The former is characterized by the fact that

each pattern is allocated in a single cluster, the latter by the fact that a degree of member-

ship is defined for each pattern and for each cluster. It must be underlined that the fuzzy

clustering becomes hard when the pattern is allocated considering the largest measure of

membership.

Finally, the approach can be deterministic or stochastic. Specifically, partitional approaches

can use traditional techniques or random searches to optimize a squared error function.

The over mentioned characteristics are fundamental to identify the different models defined

in literature. As evidenced before, the models can be casted in two main groups. The first

is called partitive clustering methods. These algorithms identify a partition of a database

D of n objects into a set of k clusters, where the value of k is an input parameter for these

algorithms. Two requirements are necessary in the procedure. Firstly, each cluster must

contain at least one object and each object must belong to exactly one cluster. The number

of clusters is previously fixed. The algorithm evolves with an initial partition. Later, at

each iteration a tentative partition is constructed by relocating the data points to optimize

a conditional criterion. This procedure ends only when convergence or stability of partition

occurs. Commonly partitive clustering approaches include different k-means type of meth-

ods such as: k-means, k-modes and k-median [242, 119, 119].

The most common traditional partitive cluster method is the k-means [23, 2]. It is usually

applied on datasets with quantitative variables. The algorithm is characterized by a pa-

rameter k that represents the number of clusters and a center mj . Each point is assigned

to the cluster whose center is nearest. Moreover, the squared Euclidean distance is used to

measure the distance between observations. It is calculated as:

d(xi, x
′
i) =

p∑
j=1

(xi − x
′
i)

2

where xi and x
′
i are the observations from a data set with p features and xij corresponds

to the value of the jth feature for observation i. The aim of the k-means clustering is to

assign each observation to a cluster in order to minimize the function called within-cluster

sum of squares (WCSS). It is calculated through the formula:

K∑
k=1

∑
Ci=k

∑
C
′
i=k

p∑
j=1

(xij − xi′j)
2

where K is equal to the number of clusters, Ci defines the cluster to which observation i is

assigned and where 1 ≤ Ci ≤ K. The WCSS can be also calculated as:

K∑
k=1

nk
∑
Ci=k

p∑
j=1

(xij − ¯xi′j)
2

6

where nk is the number of observations in cluster k and x̄ij is the mean of feature j in

cluster k.

Specifically, it involves in the following steps:

• each observation is randomly assigned to an initial cluster;

• it is necessary to calculate the mean of feature j in cluster k for each feature j and

cluster k;

• each observation i is allocated to a new cluster Ci following the formula: Ci =

argmink
∑p

j=1(xij − x̄kj)2;

• the steps 2 and 3 are iterated until the algorithm converges.

The characterizing element of this algorithm is the necessity to define chiefly the number

of desired clusters K.

The second algorithm is the hierarchical clustering. The aim is to use distances between

data groups for merging or splitting certain clusters at each step of the procedure. The hi-

erarchical clustering can be agglomerative or divisive. Each node forms a singleton cluster

at the bottom or top level of the three and later the nodes are joined together. The results

of hierarchical clustering can be represented with a tree. All nodes of the tree represent a

cluster. The tree is called dendrogram.

In literature, it is possible to identify different variants of hierarchical method and different

ways to calculate the dissimilarities between clusters. Generally, the dissimilarity between

cluster can be defined as d(a, b), where a and b are the pairwise of clusters. The dissim-

ilarities, called also linkages, used in hierarchical method are: single-linkage, the distance

between two clusters is defined as the minimum of the distances between all pairs of patterns

drawn from the two clusters; complete linkage, distance is defined as the maximum of all

pairwise distances between patterns in the two clusters. Specifically, given two clusters C1

and C2, where i ∈ C1, if xi is included in cluster C1, the dissimilarity between data points

xi and xi′ is calculated for the single-linkage algorithm as [23]:

d(C1, C2) = mini∈C1,i
′∈C2

d(xi, x
′
i)

and the complete linkage dissimilarity is defined as:

d(C1, C2) = maxi∈C1,i
′∈C2

d(xi, x
′
i) =

1

n1n2

∑
i∈C1

∑
i′∈C2

d(xi, x
′
i)

Moreover, it is possible to identify two more dissimilarities in literature. The first is

centroid linkage. The distance between a and b is calculated considering centroids of the

7

points. Specifically, defined xij as the j − th component of the i − th vector in X, it is

possible to define the centroid of X as the average value of xij , ranging over values of i.

The second is the average linkage. The distance between X and Y is the average distance

between pairs a ∈ A and b ∈ B. Hierarchical clustering has the advantage of simplicity and

the disadvantage to be heuristic [2].

Recently, researchers have observed some drawback of clustering. For instance, You et

al. (2016) have underlined that the traditional cluster approaches have three limitations.

Firstly, the experts do not consider prior knowledge on the dataset. Secondly, results

obtained handling high dimensional data are not relevant. Finally, Bair (2013) has evidenced

also that traditional supervised classification methods are not useful when it is necessary

to analyze a subset of the labelled data.

1.4 Semisupervised clustering

In literature, it is possible to find new algorithms that attempt to overcome some of the

cluster problems. Researchers have proposed a number of algorithms in order to enhance

clustering quality by employing supervision approches and to solve the above mentioned

problems of unsupervised cluster [39, 174]. Specifically, researchers have focused their at-

tention on the identification of a new class of models called semi-supervised methods. This

class has recently become a topic of significant interest [153, 326, 38, 206, 285].

The semi supervised clustering is a variant of the traditional clustering paradigms. Its aim

is to obtain a better partitioning of data considering and incorporating background knowl-

edge [132, 146, 257]. It offers the opportunity to handle and to steer the clustering process

and it gives a way to interact and to manage with data to better understand them [86].

In semi-supervised clustering, two different kinds of prior knowledge are considered: label in-

formation and pairwise constraints, also called instance-level constraints[73, 329, 285, 140].

Givoni and Frey (2009) have stated that it is possible to identify some differences between

partial labels, when a small subset of instances present labels, and instance-level constraints,

when information is given in terms of constraints on pairs of data points. Firstly, the labeled

data can always be used to construct instance-level constraints while the inverse does not

hold in general. Secondly, the instance-level constraints do not directly provide information

about the total number of clusters or classes in the data. Generally, the pairwise constraints

are casted in must-links and cannot-links. The two constraints identify two points belonging

to the same cluster or to different clusters [167].

Moreover, the semi-supervised clustering models can be casted in three general categories of

methods: constraint-based methods, distance based methods and hybrid methods [228, 308,

319, 285, 322]. The aim of constraint-based methods is to handle the clustering process

8

with pairwise instance constraints or initialize cluster centroids by labeled instances. They

use a specific constraint to guide the algorithm to obtain the appropriate data partitioning

[39]. Finally, the algorithm modifies the objective function in order to respect the provided

constraints [228].

Instead, the distance based approches uses the constraints in order to learn a new distance

metric and group instances. Specifically, it is characterized by the definition of a clustering

distortion measure able to define a good partition.

Lastly, the hybrid approach combines the two above-mentioned approaches under a proba-

bilistic framework.

In addition, the semi supervised methods are casted with respect to the similarity measure

and the pairwise constraints. Specifically, Grira et al. (2005) have classified the methods in

similarity-adapting methods, where the similarity measures are adapted in order to respect

the available constraints, and in search-based methods, where the clustering algorithm is

modified in order to consider the constraints and the labels to better perform clustering.

The use of constraints can modify the results of clustering algorithms. Finally, an interest-

ing classification of semisupervised clustering was proposed by Bair (2013). He has defined

the clustering algorithms basing on the nature of the known outcome data. Specifically,

he has identified three approaches: the partially labelled data; the cluster with constraints;

and the cluster associated with an outcome variable.

1.4.1 Partially labeled data

The clustering algorithms known as partially labelled data are based on label information.

The cluster assignment for a subset of the data is known previously. In other words, the

classification of some observations is known before starting the clustering process. Conse-

quently, the cluster analysis involves classifying the remaining unlabeled observation con-

sidering the known cluster assignment for labeled data. Labelled and unlabelled data are

used in the algorithm [46, 282, 46]. The goal is to understand both how combining labeled

and unlabeled data can change the learning behavior, and how to design algorithms to take

advantage of such a combination [330].

Inside this group, it is possible to identify different models. For instance, Basu et al (2002)

have proposed two different models. The first is a generalization of k-means clustering. It is

useful to cluster data where class labels are known for a subset of observations. To identify

the clusters, they have defined xi and x
′
i as the observations from a data set with p features,

and xij as the value of the jth feature for observation i. Moreover, they have supposed the

existence of a subset S1, . . . , SK of the x
′
i such that xi ∈ Sk. Finally, they have defined the

9

algorithm with different steps as shown in the Box 1.1

1. For each feature j and cluster k, the initial cluster means is calculated as:

x̄kj =
1

‖Sk‖
∑
i∈Sk

xij

2. Each observation i is located to a new cluster Ci. If xi ∈ S, defined Ci = Sk then
xi ∈ Sk. Otherwise we consider:

Ci = argmink

p∑
j=1

(xij − x̄kj)2

3. For each feature j and cluster k, it is necessary to calculate the mean of feature j in
cluster k x̄kj ;
4. It is necessary to repeat steps 2 and 3 until the algorithm converges.

Box 1.1: Generalization of k-means clustering

The second model proposed by Basu et al. (2002) is called seeded k-means clustering. It

differs from the traditional k-means clustering from the first step in the procedure. Specif-

ically, it identifies a subset called seeded set S ⊆ X. For each xi ∈ S, it is provided the

partition to which it belongs. The partition of the seeded set S represents the seeded clus-

tering and it is used to guide the k-means clustering [38]. The algorithm involves different

phases as shown in box 1.2.

Set of data point X = x1, . . . , xN , xi ∈ Rd, number of cluster k, set S = ∪Kl=1Si of
initial seeds.
Disjoint K partitioning Xl

K
l=1 of X such that KMeans objective function is optimized.

1. Initialize: µ
(0)
h = 1

‖Sh‖
∑

x∈Sk
xi, for h = 1, . . . ,K, t← 0

2. Must repeat until convergence

2a. Assign each data point x to the cluster h∗ for h∗ = argmin‖x− µ(t)
h ‖

2

Box 1.2: Algorithm Seed-Kmeans

Another interesting algorithm has been proposed by Shental et al. (2003). They have

defined a framework for semi-supervised clustering that considers information in form of

equivalence constraints. It is called generalized Expectation Maximization algorithm (EM

algorithm). In this model, the equivalence constraints are defined as binary functions of

pairs of points, indicating whether the two points come from the same source or from two

10

different sources [267, p. 466]. If the points derive from the same source, they are called

positive constraints, otherwise they are called negative constraints. The former are handled

through the EM procedure, the latter with the Generalized EM procedure using a Markov

network.

To sum up, these methods combine labeled and unlabeled data with the aim to use previous

information that can improve the learning approach and the similarity of partition.

1.4.2 Clusters with constraints

The clusters with constraints are based on the presence of complex relationships among

the observations. Specifically, in this case it is possible to previously identify and recognize

specific relationships among the observations. Two kinds of constraints have been defined

in literature: Must-Link Constraints and Cannot-Link Constraints.

Specifically, defined S = {s1, s2, . . . , sn} as the set of points which must be partitioned into

K clusters, si and sj as any pair of points in S and d(si, sj) as their distance, it is possible

to define the Must-Link Constraints as a constraint that involves joining together in the

same cluster a pair of point si and sj with i 6= j [95, 193, 20, 46, 309]. On the contrary, it is

possible to identify the Cannot-Link Constraints as the constraint characterized by the fact

that the pair of distinct si and sj are allocated in different clusters under a general proba-

bilistic framework [39]. These types of constraints are useful to define groups composed by

similar instances. Moreover, they support the encoding background knowledge even when

class labels are not known a priori [169]. Finally, the consideration of constraints supports

the clustering algorithm to define more accurately the clusters of this partition.

Inside the constraint methods, it is possible to identify different models. For instance,

a model has been proposed by Wagstaff and Cardie (2000). They called it the COP-

COBWEB. It is based on the COBWEB method, that was theorized by Fisher in 1987,

which consists in an incremental clustering algorithm [292, 180]. COBWEB considers the

concept of category utility to define a clustering that maximizes inter-cluster dissimilarity

and intra-cluster similarity. It refers to four operators: add, new, merge, and split to in-

corporate a new instance into the top level of the existing hierarchy. It involves applying

the operator that maximizes the category utility of the resulting hierarchy. Wagstaff and

Cardie (2000) have modified COBWEB introducing the concept of constraint. Specifically,

they have defined D as dataset, Con= as set of must-link constraints and Con6= as a set of

cannot-link constraints. They have established that the algorithm considers each instance

Di in the dataset. If there is some must-link constraint that establishes that Di is in the

same cluster as Dj , it is reinforced the constraint that includes Di in cluster Cj . Otherwise,

in the algorithm the add, new, and merge operators are used to establish where to allocate

11

Di. Specifically, to add an instance to a specific cluster Cj , it is necessary to evaluate the

existence of a cannot-link constraint that would prevent Di from joining Cj [292]. Later,

it is necessary to create a new singleton cluster for Di. However, it is possible to merge

two clusters only checking the presence of any cannot-link constraints that would invalidate

the merge. At the end, the partition that presents the highest value of category utility is

chosen.

Wagstaff et al. (2001) have proposed a general method able to consider and incorporate

background knowledge in the form of instance-level constraint into the k-means cluster-

ing algorithm. It is a modification of K-means clustering and is called COP- KMEANS

[319, 293]. The algorithm involves different steps, as shown in the Box 1.3. Inside the algo-

rithm, both must-link and the cannot link constraints are considered, in order to generate

a partition that satisfies all given constraints.

COP-KMEANS data set D must-link constraints Con= ⊆ DxD, Cannot-link con-
straints Con6= ⊆ DxD
1. Let C1, . . . , Ck be the initial cluster centers
2. For each point di in D, assign it to the cluster Cj such that
VIOLATE-CONTRAINTS (di, Cj , Con 6=) is false. If no such cluster exists, fail
(return{})
3. For each cluster, Ci updates its center by averaging all of the points dj that have
been assigned to it.
4. Iterate steps 2 and 3 until converge
5. Return {C1, . . . , Ck}
VIOLATE-CONSTRAINTS (data point d, cluster C, must-link constraints Con= ⊆
DxD, Cannot-link constraints Con6= ⊆ DxD
1. For each (d, d= ∈ Con=, if d= /∈ C, return true.
2. For each (d, d6= ∈ Con6=, if d6= ∈ C, return true.
3. Otherwise, return false.

Box 1.3: Constrained K-means Algorithm

The two models, COBWEB and COP-KMEANS, differs only because in COP-KMEANS

each observation is allocated to the nearest cluster such that no constraints are violated.

Davidson and Ravi (2005) have proposed a k-Means algorithm considering four different

types of constraints. They have identified two different kinds of constraints that are dif-

ferent form the Must-Link and Cannot-Link Constraints. Specifically, they have identified

δ Constraints or Minimum Separation Constraints, and ε Constraints. The δ Constraints

identify the minimum value of the distance between any pair of points in two different clus-

ters. Specifically, identified a pair of cluster Si and Sj with i 6= j and a pair of point sq and

sp such that sq ∈ Si and sp ∈ Sj , the distance must respect the constraint d(sq, sp) ≥ δ. In

12

other word, the distance between a pair of points has to be at least δ. Inside the second

group, the value of the constraint is fixed to ε ≥ 0. Moreover, it is established that given a

Si cluster containing two or more point, the distance is equal to d(sq, sp) ≤ ε [95].

Davidson and Ravi (2005) have defined different models considering the constraints in sin-

gular way or combined between them, as show in Box 1.4 and 1.5.

Defined a given collection C of must-link constraints, it can be transformed into an
equivalent collection M = M1,M2, . . . ,Mr of constraints, by computing the transitive
closure of C.
1. Compute the transitive closure of the constraints in C. Let this computation result
in r sets of points, defined by M1,M2, . . . ,Mr

2. Let S
′

= S − ∪ri=1Mi (S
′

denotes the subset of points that are not involved in any
must-link constraint)
3. If r ≥ Kl then
(a) Let A = (∪ri=Kl

Mi) ∪ S
′

(b) Output M1,M2, . . . ,MKl−1, A else
|S′ | < Kl − r then Output ”There is no solution.”
else
(a) Let t = Kl − r. Partition S

′
into t clusters A1, A2, . . . , At arbitrarily.

(b) Output M1,M2, . . . ,Mr, A1A2, . . . , At

Box 1.4: Algorithm for the ML-Feasibility Problem

Algorithm for the δ Feasibility Problem
Let S = {s1, s2, . . . , sn} denote the given set of points which must be partitioned into
K clusters
1. For each point si do
(a) Determine the set xi ⊆ S− Si of points such that for each point xj ∈ Xi, d(si, xj) <
δ.
(b) For each point xj ∈ Xi, create the must-link constraint si, xj .
2. Let C denote the set of all the must-link constraints created in Step 1. Use the
algorithm for the MLfeasibility problem with point set S, constraint set C and the
values Kl and Ku.

Box 1.5: Algorithm for the δ Feasibility Problem

The above-mentioned models refer to the k-means clustering algorithm. However, in lit-

erature it is also possible to find other models, based on the hierarchical clustering method.

For instance, Miyamoto and Terami (2010) have proposed a hierarchical algorithm with

pairwise constraints. They have taken into consideration the presence of must-link and

cannot-link constraints and they have combined the single linkage with the Kernel func-

tion. Specifically, they have introduced the pairwise constraints in the single linkage and

13

have used Kernel approach to overcome the problem related to the centroid method and

the Ward method.

Bade and Nurnberger (2006) have created another model, called Biased Hierarchical Ag-

glomerative Clustering (BiHAC). It is a hierarchical agglomerative clustering algorithm that

uses must-link-before (MLB) to supervise the clustering process.

Zhao and Qi (2010) have proposed a model that is based on a new type of constraint for

hierarchical agglomerative clustering. It is called ordering constraint (OC). The algorithm

is based on the idea that if the instance A is more similar to the instance C than the instance

B, it is necessary to define a ordering constraint that establishes that A must merge with

C before merging with B during clustering. After introducing ordering constraints, the

algorithm involves realizing a hierarchical agglomerative clustering. The aim is to built a

dendrogram that respects the ordering constraint. Zhao and Qi (2010) have called the algo-

rithm HACOC. The researchers identified three advantages of this algorithm. Firstly, it uses

prior knowledge that provide to prevent many inaccurate merging operations. Secondly, it

generates a stable dendrogram. Finally, it is possible to obtain different dendrograms con-

sidering various ordering constraints.

In addition, Tang et al. (2007) have introduced the Semi-supervised Clustering method based

on spheRical K-mEans via fEature projectioN (SCREEN) (Box 1.6). They have solved the

problem of constraint-guided feature projection with the semi-supervised clustering algo-

rithms. They have included inside the model must-link and cannot-link constraints. Later,

as showed in Figure 1.2 and 1.3, they have eliminated the must-link constraints and they

have used the average instances a, b and c in each closure to represent the original cannot-

link constraints. The size of each transitive closure becomes the weight of the representative

instance.

Then, they have combined a K-means for semi-supervised clustering with constraint-

guided feature projection approach (SCREENPROJ) to further improve the performance

of semi-supervised clustering in the high-dimensional datasets [285]. Specifically, they have

attempted to maximize the objective function:

f(x1, x2) =
∑

(x1,x2)∈CCL

‖F T (x1, x2‖)2 − ‖F T (x1, x2)‖2

with the constraints:

F Ti Fj =

{
1 ifi = 1

1 ifi 6= 1

where F is the projection matrix whose column vectors are orthogonal to each other. The

function f can be also written as:

f(x1, x2) =
∑

(x1,x2)∈CCL

‖w1w2 ∗ F T (x1, x2)‖2

14

Figure 1.2: The Framework of the SCREEN Method, source: Tang et al. (2007)

Figure 1.3: Initialization of SCREEN Method, source: Tang et al. (2007)

15

where w
′
i i1N

′ identifies the set of weights for the reduced instances after pre-processing to

the must-link constraints and N
′

is the reduced size of instances.

Algorithm: SCREEN Input: Set of unit-length instances
X
′

= x
′
i i1N

′ , set of corresponding weight W = w
′
i i1N

′ ,

set of cannot-link constraints CCL = {(x′i, x
′
j)}, and number of clusters K.

Output: K partitions of the instances.
Steps:
1. X

′
= SCREENPROJ(X,W,CCL)

2. X
′
k = PCSKM(X

′
,W,CCL), where k = 1, . . . ,K

3. post-process X
′
k to be in accordance with the original instances X.

Box 1.6: Algorithm: SCREEN

1.4.3 Cluster associated with an outcome variable

In Cluster associated with an outcome variable, the clusters are realized considering a given

outcome variable, and defined considering previous information of the outcome variable.

In literature, it is possible to find few methods that consider outcome variable [23].

One of the early methods has been theorized by Bair and Tibshirani (2004). The model has

been developed to diagnose cancer more accurately, taking into account both the genetic

profile of a tumor and the patient survival. For this reason, they have proposed a semi

supervised method useful to identify subtypes of cancer that are both clinically relevant

and biologically meaningful. They have analyzed n patients to measure the expression level

of p genes for each patient, where n � p. Specifically, they have attempted to identify

a classifier that can diagnose which type of cancer a future patient will have, given the

expression levels of the patient’s p genes [24, p. 513]. The algorithm involves two principal

phases. Firstly, for each feature in the data set, a test statistic Tj is calculated for testing the

null hypothesis of no association between the jth feature and the outcome variable. Three

different cases of outcome variable are taken into account. Specifically, if the outcome

variable is [24, 171, 23]:

• binary, Tj may be a t-statistic;

• continuous, Tj is a t-statistic for testing the null hypothesis that the regression coef-

ficient is equal to 0;

• a right-censored survival time, Tj is the corresponding test statistic from a Cox propor-

tional hazards model. The estimated Cox score represents a measure of the association

between the gene’s expression level and patient survival.

16

Secondly, a threshold M is chosen though the cross-validation and, later, the k-means clus-

tering is applied to the features for which Tj > M . The choice to use the k-means clustering

is affected by the prior biological knowledge and the researchers have chosen a value of k = 2.

Finally, the nearest shrunken centroid (NSC) [286] is used to assign the future patients to

one of the k groups previously identified, and then the partial least squares (PLS) [157] are

used to calculate a corrected Cox Score. The aim is to identify a better measure to build the

different clusters. Bair and Tibshirani (2004) have demonstrated that choosing the genes

with the largest absolute corrected Cox-score produces better clusters than those obtained

using the largest raw Cox scores. They have demonstrated that their method performs

significantly better than the existing methods and it also has the advantage to select and

use only a reduced number of genes as predictors.

Another method has been theorized by Koester et al. (2010). Specifically, they have stated

that the unsupervised learning procedure is not able to identify cancer subtype correlated

with the patient survival. Moreover, Koester et al. (2010) have stated that the supervised

learning approach can obtain good results but with the limited biological interpretation

[171].

The semi supervised method proposed by Koester et al. (2010) differs from the method

of Bair and Tibshirani (2004) because Koester et al. (2010) has not used the k-means

clustering method. Koester et al. (2010) have proposed a method called semi-supervised

recursively partitioned mixture model (SS-RPMM). The aim of the model is to find cancer

subtype associated with patient survival.

The algorithm involves firstly selecting a group of features that are most strongly associ-

ated with the outcome variable, and then applying the recursive partitioned mixture model

(RPMM) proposed by Houseman et al. (2008).

Specifically, the RPMM is based on a beta distribution. Given a subject i, defined Yi =

(Yi1, . . . , Yij) as a vector of J continuous outcomes, which assumes values between 0 and

1, Hoiseman et al. (2008) have assumed a distribution f(Yij = y|Cij = k; Θkj) where Θkj

is a vector of parameters that depend on class k and j. They have defined an algorithm

that starts fitting a two-class model to the dataset. This phase allows to define two sets

of weights that identify the posterior class membership in the two classes. This weight is

equal to wik = P (Ci = k|Yi). The algorithm involves applying the weighted likelihood

EM algorithm [102] with the aim to obtain the two classes corresponding to the new split.

Finally, it can fail and the recursion is stopped, or can involve defining new weights and

new recursions. The two possibilities are related to the data.

Koester et al. (2010) have stated that the RPMM model is able to estimate the number

of clusters in a robust and computationally efficient manner. For this reason, they have

17

adapted the model and transformed it in the SemiSupervised(SS)-RPMM. This model is

based on a variable Z, specifically Z = (Ti, di) where T is the observed failure and d is an

indicator that measures whether the event was observed or not. Moreover, the proportional

hazards model is used through the formula:

h(ti) = exp(y0) +XT
i δ +

K∑
k=2

ykI[(Ci = kho(t)]

where Xi are the additionally patient information and I(Ci = k) is an indicator for the

class membership in the k− th class for the i− th patient. Moreover, they have considered

and they have applied, as done before by Bair and Tibshirani (2004), the Cox model as:

h(ti) = exp(y0) +XT
i δ + yjYij

in which Yij represents the expression j in subject i.

Koester et al. (2010) have stated that their model is able to combine the strengths of the

semi supervised model proposed by Bair and Tibshirani (2004) and the ability of the RPMM

to identify the number of clusters in a robust and efficient way. However, Gaynor and Bair

(2013) have affirmed that it is possible to identify a disadvantage on the SS-RPMM. Specif-

ically, the disadvantage is determined by the fact that some features are discarded in the

first phase and they are not considered in the following phases of the algorithm. In addition,

it is possible that features with a weak association with the outcome variable are used for

the definition of clusters determining an uncorrected identification of the final partitions.

To overcome this problem, Gaynor and Bair (2013) have proposed another method called

supervised sparse clustering (SSC). It is a modification of the method proposed by Wit-

ten and Tibshirani (2010), called sparse clustering. The SSC attempts to maximize the

equation:
p∑
j=1

wj

(1

n

n∑
i=1

n∑
i′=1

(xij − x
′
ij)

2 −
K∑
k=1

1

nk

n∑
i=1

n∑
Ci=k

(xij − x
′
ij)

2
)

where:

• xij is an observation of a dataset composed by n observations and p features and

partitioned into K cluster;

• nk is the number of observations in cluster k;

• w is the weight attributes to each feature.

The maximization is realized through the use of an algorithm that sets the value of wj = 1√
n

and updates w′js iteratively, where s is a tuning parameter used to perform the cluster.

18

When the value of s increases, the number of w′js = 0 decreases. Choosing correctly this

value allows to identify clusters using only a subset of features for which wj > 0. The choice

of initial feature weight is realized as follows [137]: firstly, a test statistic tj is calculated,

or testing the null hypothesis of no association between the jth feature and the outcome

variable; then, it is chosen a threshold M useful to define the initial weights as:

wj =

{
1√
m

if‖Tj‖ > M

0 if‖Tj‖ ≤M

where m is the number of features such that ‖Tj‖ > M . Later, the value of the weight

feature is updated until the procedure converges.

To sum up, these methods use the information of the outcome variable to define a bet-

ter partition of data. These methods involve considering a specific dataset that is highly

correlated with the outcome variable, or a specific variable able to identify similar groups.

1.4.4 Other methods

There are also other semisupervised clustering algorithms that have not been considered by

Bair (2013). Those methods are based on distance measures and constraints with the aim

to learn a new distance metric to group instances. Specifically, they are characterized by

the definition of a clustering distortion measure able to define a good partition.

These algorithms involve learning firstly a distance metric from the given pairwise con-

straints. Then, a linear transformation is defined starting from the learned distance metric,

that is later applied to generate a new vector representation for the data points. Finally,

data partition is computed applying the existing clustering algorithms to the transformed

vector representation [289].

Different distance measures are also defined in literature. Their definition allows evaluating

the distance taking into account the different weights or the importance factors. More-

over, they can improve the performance of clustering or classification algorithms, such as

K-Means and K-Nearest-Neighbor (KNN).

Other methods combine constraint-based methods and distance based methods. For in-

stance, Bar-Hillel et al. (2003) have introduced a model that modified the Relevant Com-

ponent Analysis (RCA) algorithm including constraints. Specifically, they have considered

the side-information in the form of equivalence relations to learn a Mahalanobis metric.

Xiang et al. (2008) have defined the Mahalanobis distance as a measure between two data

points in the space defined by relevant features [309, p. 3]. It is possible to calculate it

considering two data instances through the formula:

dM (xi, xj) =
√

(xi, xj)TM(xi, xj)

19

where xi and xj are two instances and M is a non-negative and triangle-inequal matrix.

The RCA is used to identify and down-scale global unwanted variability within the data.

The model involves changing the feature space used for data representation through a global

linear transformation [27]. Specifically, it assigns large weights to relevant dimensions and

low weights to irrelevant dimensions. The relevant dimensions are calculated through the

chunklets that can be defined as a subset of points that are known to belong to the same

although unknown class; chunklets are obtained from equivalence relations by applying a

transitive closure [27, p. 12]. The aim of RCA is to reduce the number of clusters. Inside

the RCA, Bar-Hillel et al. (2003) have introduced an information theoretical criterion. It

establishes that when an input X is transformed into a new representation Y , it is possible

to maximize the mutual information I(X,Y) between X and Y under suitable constraints.

Specifically, the researchers have attempted to obtain:

minB
1

p

K∑
j=1

nj∑
i=1

|| xji −mj || s.t. | B |≥ 1

where

• xji identifies a set of chunklets of data points;

• mj defines the mean of points in chunklet j after the transformation;

• P is the total number of points in chunklets;

• B denote a Mahalanobis distance matrix.

They have defined a method that can be used considering different criteria and it sup-

ports and improves the cluster analysis.

Givan and Frey (2005) have extended the affinity propagation model considering instance-

level constraints. They have considered instance-level constraints for some input data points

and have incorporated constraints able to alter the similarities between data points. Specifi-

cally, they have attempted to define a model able both to combine instance-level constraints

with a clustering algorithm and to find a clusters using side information. The model in-

volves considering the maximal similarity between must-link points, the minimal similarity

between cannot-link points and the shortest-path similarity between any other two points.

Moreover, the ”meta-points” have been introduced in the model. These points are com-

puted to find a closure of the must link constraints. They have been added at each resulting

group and at the points in a cannot-link constraint. Givan and Frey (2005) have applied

their model on the analysis of the interactive image segmentation.

20

Zhou et al. (2005) have proposed another model called Neighborhood-Based Clustering al-

gorithm (NBC). It is based on the concept of Neighborhood, specifically on neighborhood

relationship among data. This concept is used as an object to build a neighborhood based

clustering model to discover group. The main concept of NBC is the Neighborhood Density

Factor (NDF), which is a measure of relative local density [179]. NBC is characterized by

the ability to measure relative local densities. It is able to discover clusters of different local

densities and of arbitrary shape. It involves two phases. The first is focused on the evalua-

tion of NDF, the second on the clustering of dataset. Specifically, NBC evolves calculating

the value of NDF of a points pi included in a database D, i = 0, 1, . . . , | D |. If the value of

NDF is equal to 1, pi is assigned in the cluster c. Later, a variable to store the dense points

is introduced, called DPSet. It is used to cluster in an iterative process of assigning points.

Specifically, the temporary variable for storing references to point, called q, is cleared, and

the k+-neighborhood of points is assigned to c. If q is equal to 1, this point is added to

DPSet, otherwise it is omitted and the next point is analyzed. The algorithm is repeated

until no point in D presents an NDF value equal to 1.

It is possible to identify other variation of NBC. For instance, Lasek (2014) has combined

the known NBC algorithm and instance-level constraints such as must-link and cannot-link.

The model is called C-NBC algorithm. Inside the model, deferred points are considered.

Lasek (2014) has stated that a point p is called deferred if it is involved in a cannot-link rela-

tionship with any other point or it belongs to a k+
−-punctured neighborhood k∗NN(q−), where

q is any point involved in a cannot-link relationship [179, p. 117]. The algorithm evolves,

as shown in Figure 1.4, in two parts. Firstly, the deferred points are not assigned to any

cluster and these points are used to calculate NDF factors. Secondly, deferred points are

allocated to appropriate clusters. C-NBC allocates deferred points to appropriate clusters.

The allocation of clusters is realized considering the Assign Deferred Points To Clusters

function (Figure 1.5). It assigns points to clusters after checking if such an assignment is

feasible.

The difference between C-NBC and NBC is that the former introduce deferred points inside

the model and it attempts to find a deal with must-link constraints when building clusters.

Finally, other methods are based on Density Based Spatial Clustering of Applications

with Noise (DBSCAND) proposed by Ester et al. (1996). The algorithm is focused on the

concept of neighborhood that is defined in this case as a region of given radius and containing

a minimum number of data points [257, p. 218]. The shape of a neighborhood is defined

by the choice of a distance function for two points p and q. Different concepts and aspects

are introduced inside the model: some are related to the points and their position, other

21

Figure 1.4: C-NBC algorithm, source: Lasek (2014)

Figure 1.5: AssignDeferredPointsToClusters function, source: Lasek (2014)

22

to the concept of distance between points. Specifically, it is possible to identify at least a

minimum number of points neighbours, called MinPts, in a radius, called Eps. Moreover,

it is possible to articulate the concept of density in [119, p. 228]:

• directly density-reachable: establishes that a point p is directly density-reachable to a

point q with respect to Eps, MinPts if

p ∈ NEpsq

| NEps(q) |≥MinPts

The density-reachable is symmetric or pairs for core points.

• density-reachable: demonstrates that a point p is density-reachable from a point q with

respect to Eps and MinPts, if it is possible to identify a chain of points p1, . . . , pn,

pn = q, such that pi+1 is directly density-reachable from pi. It is a transitive relation,

but it is not symmetric.

• density-connected : establishes that a point p is density connected to a point q with

respect to Eps and MinPts, if it is possible to identify a point such that both p and q

are density-reachable from o with respect to Eps and MinPts. In this case, the density

is a symmetric relation.

Ruiz et al. (2007) have proposed another model based on different assumptions. It is

called Constraint-driven DBSCAN (C-DBSCAN) [179]. The algorithm is composed by

three phases, as shown in Figure 1.6 [257]. Firstly, the space is partitioned through the

KD-Tree construction algorithm. In fact, the data space is shared iteratively into cubes

by splitting planes perpendicular to the axes. The cubes become the nodes and they are

partitioned in order to contain a minimum number of data points. Secondly, cannot link

constraints are used to identify local clusters. In particular, if inside the leaf nodes of the

KD-Tree it is identified a cannot-Link constraint, the leaf become a singleton local cluster.

Otherwise, if there is no cannot-Link constraints, the algorithm evolves as a traditional DB-

SCAN . It is firstly checked the presence of neighborhood with at least a minimum point. If

the neighborhood has too few points, then p is considered as a noise point and is therefore

ignored. Otherwise, all data points, which are density-reachable from it, become members

of the same local cluster. In the final step, the algorithm joins together the adjacent clusters

hierarchically, while enforcing the remaining Cannot-Link constraints.

To conclude, the semi supervised learning approach has been described in order to show

how this method combines the advantage of both the supervised and the unsupervised

23

Figure 1.6: Constraint-driven DBSCAN, source: Ruiz et al. (2007)

24

learning approaches, and the labeled and unlabeled data. A review of the literature has

been made to identify a framework where the proposal of this thesis will find its place.

The framework is the unsupervised learning method and, specifically, those algorithms that

are able to obtain clusters associated with an outcome variable. The aim is to define an

algorithm able to define groups that are similar with respect to a specific variable.

In the following two chapters, the methodologies used to define the proposal of this thesis

will be presented. Specifically, the second chapter will be focused on the study of the tree-

based methods, the third on the study of community detection algorithms. Finally the

fourth chapter will present the algorithm and its applications.

25

Chapter 2

Tree-based methods

2.1 Abstract

The chapter is focused on the study of the tree-based methodologies. Origins, algorithms,

strengths and weaknesses will be considered and analyzed. The aim is to analyze the

different tree algorithms to identify the most useful for the development of the proposal of

this thesis.

Three parts compose the chapter. The first part focuses on the definition of tree-based

methods, the second on the analysis of different algorithms, their evolution and criteria

and the third on the study of bagging, random forest and boosting. Finally, in the last

part of the chapter, the methodologies used to define the new semi supervised algorithm is

presented.

2.2 Tree-based methods

The tree-based methods define a wide set of methodologies finalized to partition the fea-

tures space in different areas with the aim to realize classification and regression analysis

[283, 101].

Generally, given a dependent variable Y , n observations and Xi covariates, the three in-

volves splitting progressively the observations in subsets. The aim is to obtain subset more

homogenous within compared to the initial set. Step by step, the group heterogeneity is

reduced until it is defined the terminal node with high level of homogeneity.

When the dependent variable is qualitative, the tree is defined as classification; on the

contrary, when the dependent variable is quantitative, it is called regression.

The tree can be also defined as decision tree methods. Murthy (1998) has defined decision

trees as a way to represent rules underlying data with hierarchical, sequential structures

that recursively partition the data [212, p. 1]. Moreover, Alpaydin (2010) has defined deci-

sion tree method as a hierarchical model for supervised learning whereby the local region is

26

Figure 2.1: Example of a general decision tree for classification (source: Barros et al.,

2015)

identified in a sequence of recursive splits in a smaller number of steps [10, p. 185]. Later,

Barros et al. (2015) have stated that decision trees are an efficient nonparametric method

that can be applied either to classification or to regression tasks. They are hierarchical data

structures for supervised learning whereby the input space is split into local regions in order

to predict the dependent variable [37, p. 8]. Finally, Natingga (2017) has stated that a

decision tree is the arrangement of the data in a tree structure where, at each node, data

is separated to different branches according to the value of the attribute at the node [214,

p. 52].

The tree can be represented through a directed graph beginning with one node and branch-

ing to many [304]. These graphs are able to represent the partitions inside the features

space.

Generally, the partitioning is realized in a top-down approach. As shown in Figure 2.1,

in the first step all observations are contained in the top node. This node is later split in

different nodes that contain a subset of the observations. The size of the tree is chosen

through the estimation of the splitting criteria. At the end, the best tree is selected. The

tree is built in order to reach different goals: firstly, to describe data through the reduction

of its volume, by transforming it into a more compact form without losing the essential char-

acteristics of the data; secondly, to provide an accurate summary of the variables; thirdly,

to classify, discover and identify well-separated classes inside the data [212].

The use of trees has several advantages in many researchers’ opinion. For instance, they

are self-explanatory, their graphic representation is easy to understand, and is also easy

27

to convert them in sets of rules. Moreover, they can manage nominal and numeric input

attributes, and they are also useful to analyze datasets with many errors and missing values

[101, 254, 157].

At the same time, trees have also a few disadvantages, as for instance: they do not perform

well if there are many complex interactions between the attributes; they are over-sensitive

with respect to their training set, the irrelevant attributes and the noise [254]. Moreover,

James et al. (2013) have stressed that trees do not have the same level of predictive accuracy

as other regression and classification approaches. Finally, another drawback is determined

by the high variance in the trees [131]. A change on the data can affect the results. The

top-down process determines this instability. In fact, if some error is made in the top split,

it will propagate in the whole process. A reduction of variance is recorded in Bagging that

will present in the at the end of the chapter.

2.3 The main elements of the tree

In the building of a tree, specific elements are considered. Two are considered the main

important: the definition of the splitting criterion and the stop-splitting rule.

2.3.1 Splitting criteria

In the building of trees, a major problem is the choice of attributes to be used in splitting

the node in subsets. It is possible to define a spitting criterion as statistical indicator able to

identify the best partitioning defined with respect to a specific covariates. Different criteria

are theorized in literature. The splitting criteria defined in literature can be classified in

information theory-based criteria, distance-based criteria, other classification criteria and,

finally, regression criteria [212, 196, 37].

The rules relative to the information theory are based on Shannon’s entropy [266]. Specifi-

cally, entropy is the measurement of the informational content of a message [71]. Shannon

(1948) has defined the entropy of the set of probabilities (po, p1, . . . , pn) as [266, 71]:

K = −
∑

pilogpj .

An example of a criterion based on the Shannon entropy is the method Class-Attribute

mutual information. It was defined by Chain et al. (1995) in the attempt to maximize

Shannon’s entropy and to minimize the loss of information [78]. Defined x = t as the

partitioning of the one-dimensional feature space, and established that x can take a higher

or lower value than t, it is possible to define the amount of average mutual information

28

equal to:

K(C,X) =
2∑
i=1

2∑
j=1

p(ci, xj)log2

ci
xij

p(ci)

where C represents the set of pattern classes c1 and c2, which have a priori probabilities to

equal respectively p(c1) and p(c2) [78, 264, 284, 37]. Moreover, p(ci, xi) is the joint proba-

bility of the occurrence of ci and xi, and ci
xij

is the probability that the observation comes

from the class ci given the outcome xi of event X [78, 264, 284, 37].

Another measure based on Shannon’s entropy is the Information gain [203, 196, 82, 37]. In-

formation gain is used to select the best feature (reducing the entropy by the largest amount)

at each step of growing a decision tree [82, p. 388]. This rule is based on the evalua-

tion of impurity-based criteria. The level of impurity identifies the level of separability

of the subset. Specifically, it is possible to define a subset as pure, if it contains the in-

stances that belong to the same classes [37]. In this case, to define the entropy, it is

necessary to consider two discrete random variables X and Y that have respectively the

values (x0, x1, . . . , xn) and (y0, y1, . . . , yn) [121, 147, 69, 244]. Moreover, it is necessary to

define Px(xi) as the probability of the event X = xi; Py(yj) as the probability of the event

Y = yj ; Pxy(xi, yj) as the probability of the events (X = xi;Y = yj); and finally Px|y(xi|yj)
as the probability that (X = xi|Y = yj). The entropy can be calculated for the variable X

as [121, 147, 69, 244, 82, 10]:

K(X) = −
∑

Px(xi)logPx(xi)

and for the joint variables (X,Y) as

K(X,Y) = −
∑

Pxy(xi, yj)logPxy(xi, yj)

The third and last measure based on Shannon entropy is the minimum entropy-of-error

(MEE), defined by Sa et al. (2009) [99]. The splitting criterion is based on the Shannon

entropy of E and it is calculated as:

Hy(E|L) = −[P−1lnP−1 + P0lnP0 + P1lnP1]

where:

• E is the error random variable associated to the errors ei = t(ω(xi))− t(y(xi)). ei can

assume values equal to −2, 0, 2. Zero corresponds to a correct decision; the value 2 is

a misclassification that happens when xi class is the candidate class and the splitting

rule produces the complement; and the value −2 the other way around;

• L is a subset of X;

29

• ω is the class assignment function of X;

• P−1 = Py(E = −2), P1 = Py(E = 2) and Po = Py(E = 0) = 1− P−1 − P1.

The second group of criteria is related to the distance measures [212, 37]. The concept of

distance is referred to the distance between class probability distributions. It measures the

separability, divergence or discrimination between classes. The first criterion included in

this group is the Gini index. It is calculated as [138, 203, 212]:

φ(t) = 1−
∑
j

p2(j|t)

Another criterion is proposed by Breiman et al. (1984) and is called twoing binary crite-

rion. Generally, the binary criteria require that the attributes have their domain split into

two mutually exclusive subdomains, which allow to realize the binary split. They involve

dividing the value of attribute ai in two subset that is possible to call d1 and d2. They are

able, using binary criterion β, to obtain two exhaustive subsets and to define a division that

maximizes the value i selected for attribute ai. It is possible to define the optimal binary

split β∗ as:

β∗ = maxd1,d2β(ai, d1, d2, X, y)

then, the twoing binary criterion of Breiman et al. (1984) is calculated through the formula:

βtwoing(ai, d1, d2, X, y) = 0, 25 ∗ pd1 ∗ pd2 ∗
(k∑

l

abs(pyl|d1 − pyl|d2)2
)

where abs(.) returns the absolute value [254, 196, 37].

Friedman (1977) and Rounds (1980) have proposed another measure based on the Kolmogorov-

Smirnoff (KS) distance [129, 256]. This distance identifies a point x∗ that minimizes the risk

of misclassification. Specifically, given F1(x) and F2(x) the univariate distributions of two

classes, the point x∗, which minimizes the risk of misclassification, is the point for which:

D(x) =| F1(x)− F2(x) |

where D(x∗) = maxxD(x). However, the marginal cumulative distributions are not known

in nonparametric applications, but it is possible to estimate them through the empirical

cumulative distributions F̂1(x) and F̂2(x) [129, 256]. In this way, the Kolmogorov-Smirnoff

(KS) distance becomes:

D(x∗j) = maxxj | F̂1(x)− F̂2(x) |

where D(x∗j∗) = maxjD(x∗j).

Another criterion is the χ2 statistic. It measures the association between attributes and

30

classes comparing the observed values with those that one would expect. The aim is to find

the predictive attribute with the highest degree of association to the class attribute. For

this reason, it is necessary to maximized the value of χ2. Different researchers have used

the χ2 as splitting criterion as for instance Minger (1989) and White et al. (1994). χ2 is

calculated through the formula [203, 303, 37]:

χ2 =
∑
i

∑
j

(Eij −Oij)2

Eij

where Oij is the observed number of cases with value aj and Eij is the expected number

of cases which should have in case of association between variables. It is noticed that χ2

statistic is useful only if the number of frequencies is high. Otherwise, it becomes a poor

approximation [37].

Another measure is the mean posterior improvement (MPI) theorized by Taylor and Silver-

man (1993). It gives a measure of the improvement obtained through the split. It assumes

the maximum value when the individuals belonging to the same class are placed in the same

partition. It is calculated through the formula [37]:

βMPI(ai, d1, d2, X, y) = pd1 ∗ pd2 − (

k∑
l=1

(p.,ylpd1∩ylpd2∩yl))

The last criterion was proposed by Mola and Siciliano (1997) and it refers to the index τ . τ

was firstly proposed by Goodman and Kruskal (1954) as a splitting rule [142, 207]. Mola and

Siciliano (1997) have modified it to make it more useful in the definition of univariate trees.

The τ index can be used to evaluate both each attribute individually and each possible

binary split provided by grouping the values of a given attribute in d1 and d2. Defined pt(i)

as the proportion of cases in node t that present category i of X, pt(j|i) as the proportion

of cases in node t that belong to class j of Y given that they have category i of X, and

p2
t (j) as the node proportion of all cases belonging to class j, the τ index for attribute it is

calculated as:

τi(Y |X) =

∑
i

∑
j p

2
t (j|i)pt(i)−

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

and for the split as:

τi(Y |X) =

∑
j p

2
tl(j|i)ptl

∑
j p

2
rl(j|r)ptr

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

where Xs is the splitting variable, l and r are the two categories and s is the split [207, 37].

Inside the class other classification criteria, it is possible to find different measures as for

instance the permutation statistic theorized by Li and Dubes in 1986. They have defined

a splitting criterion starting from the measure of similarity between two binary vectors.

31

Defined V1 and V2 as two binary vectors of size N , which can assume value 0 and 1, S as

the space of permutation of V2, D as the number of (1,−1) matches between the entries of

V1 and the permutation of V2, it is possible to define S(V1, V2) as:

S(V1, V2) = Pr(D ≤ d|H0)− Pr(D = d|H0)U

where U is a random variable distributed uniformly over [0, 1] and it is independent of D.

Moreover, defined C
′
(i, j) as the pattern class of training pattern i for each feature j and

Vt(∗, j) = [Vt(1, j)Vt(2, j) . . . Vt(N, j)] as the binary vector of the quantized version of the

ordered feature values, the splitting criterion is calculated through the formula [188]:

St(j) =| S[Vt(∗, j), C(∗, j)]− 0.5 |

This statistic measures the similarity between the pattern class labels and the values of the

threshold jth feature by assessing the unusualness of the pattern class labels, when compared

to randomly assigned labels with the number of labels from each class held constant [188,

p. 231].

Another interesting splitting criterion was theorized by Chandra et al. (2010). It has been

called distinct class based splitting measure (DCSM). It is designed to reduce the impurity

of the training patterns in each partition. DCSM is defined for a given attribute xj as

[72, 37]:

M(xj) =

V∑
v=1

[NV

NU
∗D(v)exp(D(v)) ∗

C∑
k=1

][
aω

v
k ∗ exp(δv(1− (aω

v
k)

2))
]

Two parts compose the indicator. The former is D(v)exp(D(v)) where D(v) denotes the

number of distinct classes in partition v. When the number of distinct classes increases, the

term D(v) increases [72]. As well, the latter is a
ω
v
k ∗ exp(δv(1− (aω

v
k)

2))]. Specifically, aω
v
k

and δv decreases when a decrease in impurity is recorded [72].

Finally, the fourth group of splitting criteria is composed by the regression criteria. For

continuous variable y, the most common approach is the mean squared error (MSE) [37]:

MSE(ai, X, y) = N−1
x

|a|∑
j=1

∑
xl∈vl

(y(xl)− ȳ(vl))
2

The aim is to minimize the within-partition variance. The MSE can be calculated weighting

each partition according to the estimated probability of an instance belonging to the given

partition. It is estimated with the formula:

ωMSE(ai, X, y) =

|a|∑
j=1

pvj ,.
∑
xl∈vl

(y(xl)− ȳ(vl))
2

32

Another common criterion is the sum of absolute deviations (SAD) that refers to the median

and is calculated as:

SAD(ai, X, y) = σx

|a|∑
j=1

pvj ,.σvj

where σx is the standard deviation of instances in X and σvj is the standard deviation of

instances in Xai=vj . The aim of this criterion is to reduce the value of variance in the phase

of partition.

To sum up, in the creation of univariate decision trees it is possible to use different criteria

considering different kinds of measures. The general aim is to identify the best tree and the

classes inside the data.

2.3.2 Pruning criteria

The application of the splitting criteria on data can determine as a result a big tree, which

can cause problems in the analysis of the results and in their interpretation. For this

reason, researchers have defined pruning criteria. The aim of pruning criteria is to improve

the understandability of the tree, reducing their size but without losing in accuracy.

The size reduction can be realized before or after the end of the tree building. The pre-

pruning establishes when the growth of a tree must be stopped. Different criteria can be

used in order to delete the branches that do not improve the predictive accuracy of the

tree [118]. For instance, one of this criteria establishes that the size of the tree is chosen

taking into account the class homogeneity. Another criterion establishes that it is necessary

to consider a minimum number of instances for a non-terminal node [37]. Generally, these

criteria are able to define primarily the size of the tree.

On the contrary, starting by an unpruned tree, the post-pruning techniques define criteria

to remove sub-trees.

The main pruning methods are: reduced-error pruning; pessimistic error pruning; minimum

error pruning; critical-value pruning; cost-complexity pruning ; and error-based pruning.

Reduced-error pruning has been proposed by Quinlan (1987). It is a simple procedure

starting from the bottom to the top of the tree, each internal node is replaced with the

most frequent class to evaluate whether a reduction in term of accuracy is obtained. The

accuracy is evaluated in terms of the reduction of misclassification error. The procedure

stops when it is not possible to obtain an increase of accuracy.

Quinlan (1987) has proposed also the second criterion: the pessimistic error pruning. It is

based on the idea that the error ratio estimated using the training set is not reliable enough,

because is optimistically biased and can not be used to evaluate whether to prune tree or

33

not. For this reason, Quinlan (1994) has introduced a measure called continuity correction

for binomial distribution. It is calculated as:

ε
′
(T, S) = ε(T, S) +

‖leaves(T)‖
2‖S‖

where ε(T, S) is the error rate of the tree T and sample S, and ‖leaves(T)‖ defines the

number of leaves of T . This criterion is a top-down approach. It operates analyzing the

internal node of the tree and estimating the ε. Moreover, if an internal node is pruned, the

nodes deriving from it are removed. For this reason, this criterion provides a relatively fast

pruning.

The third criterion is the minimum error pruning. It was proposed by Niblett and Bratko

(1987) and later modified by Cestnik and Bratko (1991). It is a bottom-up approach aims

to minimize the expected error rate on an independent data set. Generally, the probability

that an observation located in a node t belongs to the ith class is estimated as:

pi(t) =
ni(t) + paim

n(t) +m

where

• pi(t) is the posterior probability;

• pai is the prior probability of the ith class;

• m identifies a parameter that determines the impact of pai on the estimation of pi(t);

• ni(t) is the number of training examples of class i reaching a node t;

• n(t) the total number of examples in t.

Cestnik and Bratko have defined the pi(t) as m-probability estimate. Moreover, they have

established that when a new observation is classified, the expected error rate is estimated

as:

EER(t) = mini{1− pi(t) = mini

{
n(t)− ni(t) + (1− pai ∗m)

nt+m

}
Generally, if m is very high, the pruning will be more severe.

The fourth criterion is the Critical-value pruning theorized by Mingers (1987). It is similar

to the pre-pruning technique. It is an bottom-up approach, which initially defines a thresh-

old, a critical value cv. The nodes of the tree are pruned if the splitting measure overcomes

the cv. Later, the best tree is chosen taking into account the measure of the accuracy of

the tree and the significance of the tree.

The fifth criterion is the Cost-complexity pruning. It has been proposed by Breiman (1984)

34

and is based on the concept of complexity cost. Specifically, given a subtree T < TMAX , it

is possible to define the cost-complexity measure Rα(T) as:

Rα(T) = R(T) + α‖T‖

where ‖T‖ defines the complexity for any subtree taking into account the number of terminal

node in T , R(T) is a misclassification error and α is a real number that identifies the

complexity parameter. The Rα(T) is estimated as the sum of the misclassification cost of

the tree and the cost of the penalty for complexity [61]. The value of α influences the size

of the tree. Specifically, if α is small, the penalty to obtain a big tree is small, consequently

T will be large. On the contrary, an increase of α determines a tree with a reduced number

of terminal nodes. It is chosen the tree that minRα(T).

The procedure of Cost-complexity pruning is composed by two phases. Firstly, a sequence

of trees is generated beginning by the tree T , and a pruning trees that present the lowest

increase in apparent error rate is defined. It is evaluated as:

α =
R(T) +R(Ti)

‖T̃‖ − 1

Secondly, the best tree is chosen among the sequence based on its relative size and accuracy.

Breiman (1984) have suggested to use the training set to build the trees and the pruning

set to evaluate the cross validation.

Finally, the last criterion is the error-based pruning (EBP). It has been proposed by Quinlan

(1993) and it is implemented as the default pruning strategy of C4.5 (a classification tree

algorithm proposed by Quinlan in 1993). It is an evolution of pessimistic pruning and is

based on the expected error rate. The true novelty is that EBP simplifies a decision tree

T by grafting a branch Tt onto the place of the parent of t itself, in addition to pruning

nodes [118, p. 481]. To decide if a non-terminal node has to be replaces or not by a leaf, an

expected error is calculated by using an upper confidence bound. Specifically, it is assumed

that the errors in the training set are binomially distributed and that they can be calculated

as:

EBP = ε(T, S) + Zα

√
ε(T, S)(1− ε(T, S)

‖S‖

where ε(T, S), as evidenced before, is the misclassification rate of the tree T and training

set S, Z defines the inverse of the standard normal cumulative distribution and α identifies

the desired significance level. The tree is pruned, and the node substituted, taking into

account the lowest value of EBP.

To sum up, the size of the tree can be decided before or after the construction of the tree.

The prune activity is realized following different criteria. The general aim is to define the

correct size of the tree in order to create better partition of the data.

35

2.4 Classification and regression trees models

As evidenced before, trees can be used to fit a relationship between the responce variable,

y, and the covariates xi. When the responce variable is qualitative, the tree is called classi-

fication tree, on the contrary, when the responce variable is a quantitative, the tree is called

regression tree.

The classification tree is defined taking into account a qualitative variable y that assumes

values 1, 2, . . . ,K and p predictors, x1, x2, . . . , xp. The classification tree involves partition-

ing the space of X into k disjoint sets defined as R1, R2, . . . , Rk. The partition is realized

recursively using one variable at time. A regression tree is similar to a classification tree,

except that the Y assumes numerical values. The three algorithms were first studied and de-

veloped inside the Institute for Social Research at the University of Michigan [283, 210, 254].

These studies were focused on the building of a binary segmentation tree to comprehend

the relationship between target and input attributes [212, 37]. The first study of this kind

was published by Belson (1959) [253, 199].

The first regression model was written by Morgan and Sonquist in 1963. They have theo-

rized the Automatic Interaction Detection (AID) [163, 283, 274]. AID is an algorithm for

growing a binary regression tree [163, 253, 199]. It involves splitting the data in each node

into two children nodes [190].

Instead, the first classification tree algorithm proposed in literature has been the Theta AID

(THAID). It was theorized by Morgan and Messenger (1973). THAID is an extension of

AID for categorical outcome [253, 199]. Its aim is to maximize the sum of the number of

observations in each modal category [190]. It uses the entropy to evaluate the purity of

the nodes. As evidenced before, this concept comes from the information theory and is the

measure of impurity in data [93]. It is calculated as:

φ(t) = −
∑
j

p(j|t)logp(j|t)

where p(j|t) is the proportion of class j observations in node t [190]. Another possible

measure is the Gini index.

The second interesting classification tree model was proposed by Kass in 1980 and it was

called Chi-square Automatic Interaction Detector (CHAID). CHAIS, as THAID before, was

an evolution of AID and THAID [163, 304, 254, 71, 253]. It uses the p-value of the Chi-

square and selects the predictor on the basis of the optimal split. It defines non-binary

split and it works well with larger amounts of data [71]. It involves identifying a predictor

X useful to split a node. Later, other nodes are split considering the characteristics of the

variables [190]. The CHAID was originally designed for classification and later extended to

36

regression [190, 254].

One of the most well-known and used tree algorithm is the Classification And Regression

Trees (CART). It has been proposed by Breiman et al. (1984). It is a sophisticated program

for fitting trees to data [61, 283, 254, 71], a powerful method to make predictions and an

important tools to support decisions [157]. CART attempts to construct a binary decision

tree by selecting the most useful variable from a set of candidate predictor variables [25,

p. 136].

CART can be defined as a binary recursive partitioning procedure able to process continuous

and nominal variables as targets and predictors [61, 274]. It is called:

• binary because each node is split in two groups, first node is called parent node and

the split nodes child nodes;

• recursive because the binary partitioning process can be applied over and over again;

• and, finally, the term partitioning is used to explain how the dataset is split into

sections or partitioned.

It can be also defined as an analytical tool useful to explore such relationships between

the target variable and covariates [273]. Yohannes and Hoddinott (1999) have defined it

as a nonparametric technique that can select from among a large number of variables those

and their interactions that are most important in determining the outcome variable to be

explained [320, p. 4]. Questier et al. (2005) have defined it as a statistical technique that

can select from a large number of explanatory variables (x) those that are most important

in determining the response variable (y) to be explained. This is done by growing a tree

structure, which partitions the data into mutually exclusive groups (nodes) each as pure or

homogeneous as possible concerning their response variable [243, p. 46].

CART can be applied either as a classification tree or as a regressive tree. It involves

stratifying or segmenting the predictor space [61, 157]. The beginning, all observations are

contained inside a root node [320]. Later, the observations are split in groups or binary

nodes that are internally more homogenous than the root node [320, 274]. To obtain this

division, the algorithm considers the first variable and splits all possible points in two parts,

also called child nodes [320, 254].

In case of regression tree, it is supposed to obtain M partition R1, R2, . . . , RM and to model

the response as a constant cm in each region as:

f(x) =

M∑
m=1

cmI(x ∈ Rm)

37

it is chosen the sum of square as criterion minimization, and the best ĉm is the average

value of yi in region RM . ĉm is equal to:

ĉm = ave(yi|xi ∈ Rm)

To define the best partition, it is firstly consider a splitting variable j and a split point s

and it is identified the pair of plane: R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}.
The j and s are chosen in way to minimize:

minj,s[min
c1

∑
x1∈R1(j,s)

(yi − c1)2 + min
c2

∑
x2∈R1(j,s)

(yi − c1)2]

The process of partition is repeated. Later, the size of the tree is established referring to

a decrease in sum-of-squares due to the split exceeds some threshold or through the cost

complexity pruning explained before [131].

On the contrary, in case of classification tree, the CART uses three different measures of

impurity: the misclassification error, the Gini index and cross-entropy or deviance. Defined

this measure, the best split on the variable is chosen. It is split for which reduction in

impurity is the highest [320, 274]. The algorithm defines the ”best” splits on each vari-

able attempting to obtain the best reduction of impurity for each split [207, 320, 274].

Finally, the splitting process continues until every observation is located in a terminal node

[207, 320, 274].

A particularly interesting aspect of the CART algorithm is how it handles the missing val-

ues. Two different approaches are used. The first is used with categorical predictor. A

new category called missing is creates and it is analyzed if the observation with missing

value can have different behave than those with nonmissing values. The second approach

is based on the construction of surrogate variables. Specifically, it is created a a list of

surrogate predictors and split points. The first surrogate can be defined as the predictor

and corresponding split point that best mimics the split of the training data achieved by the

primary split [131, p. 311]. The same definition can be extent to the second, the third

and the other surrogate. During the training phase or during prediction, the surrogates

are used only whether primary splitting predictor is missing in order to reduce the effect

of missing data. To sum up, CART is useful to analyze complex data. Moreover, it is able

to show results in an informative and original way. Interactions become interpretable and

understandable also by non-statisticians. Additionally, it is able to handle a wide range of

response variables and the missing values in both response and explanatory variables [273].

38

2.5 Multivariate trees

The above analyzed model can be defined as univariate. In literature, another kind of tree

is theorized: the multivariate regression tree (MRT). Barros (2015) has stated that decision

trees with multivariate splits are harder to interpret respect to the univariate split. How-

ever, they are very useful because they allow to obtain smaller trees that are able to better

represent the real-world application [149, 213, 254, 37].

In fact, the adjective ”multivariate” is used to define different kinds of tree-based ap-

proaches. One is the tree built considering more attributes at the same time in the partition

of the observations. Brodley and Utgoff (1992) have theorized an useful algorithm called

Linear Machine Decision Trees (LMDT) [288, 63, 213, 111, 37]. It is useful to build a

multi-class, multivariate decision tree using a top-down approach [288, 63, 111]. It involves

using a linear machine to classify the initial set of training instances by partitioning the

feature space into R regions, one for each of the R observed classes. If the instances in a

region are from one class, the region is assigned that class label. Otherwise the algorithm

is applied recursively to the region [111, p. 891]. LMDT presents two positive aspects [63,

p. 1]. Firstly, it is an efficient approach to eliminate the noisy or irrelevant variables and to

find a multivariate splits. Secondly, it is able to find a good partition [288, 63].

Brodley and Utgoff (1995) have stated that the difference between univariate and multivari-

ate trees is that in a univariate decision tree a test is based on just one feature, whereas in

a multivariate decision tree a test is based on one or more features [64, p. 47].

On the contrary, for De’ath (2002) the MRT is a natural extension of univariate regression

trees, with the univariate response of the latter being replaced by a multivariate response

[100, p. 1106]. In this second case, the focus is moved from the covariates to the outcome

variable. The MRT is a form of multivariate regression in that the response is explained,

and can be predicted, by the explanatory variables [100, p. 1106]. Moreover, De’ath (2002)

has stated that the method can be also considered as a constrained clustering, because the

output of the algorithm is composed by similar clusters. The MRT is particularly useful

to make predictions, descriptions and explorations. The algorithm involves as a univariate

tree. The difference is based on the impurity of the node. In MRT, the impurity is cal-

culated summing the univariate impurity measure over the multivariate response, and the

splits are defined minimizing the sums of squared distances of sites from the centroids of the

nodes. At the end, the measure of the multivariate tree is established by cross validation.

Finally, the adjective ”multivariate” is used by Zhang and Ye (2008) to define a tree-based

approach to the analysis of multivariate ordinal data [324].

In multivariate trees, the definition of criteria and the selection of the features to be used are

39

different with respect to the univariate tree and to the different multivariate theorized tree.

For instance, Brodley and Utgoff (1992) have identified five different approaches to reduce

the number of features in the splitting nodes. However, two are the basic and most im-

portant: the Sequential Backward Elimination (SEE) and the Sequential Forward Selection

(SFS). The former involves considering all features in the first step and then removing the

features that determine the smallest decrease of the selected criterion. The latter involves

considering one features in the first step and adding the features that allow obtaining the

largest increase of selected partition criterion. In both cases, the criteria selected for the

partition are the Gini index or the Information Gain Ratio.

On the contrary, De’ath (2002) has stated that it is necessary to redefine the measure of the

impurity of a node for multivariate tree adding the univariate impurity measure. He has

computed the sum of squares of the multivariate mean. He has established that each split

has to minimize the sums of squared distances (SSD) of sites from the centroids of the nodes

to which they belong [100]. Specifically, he has defined the sum of squares multivariate tree

(SS-MRT) as [100]: ∑
ij

(xij − x̄j)

where xij is the species data for site i and species j and x̄j is the mean.

The measure can also be calculated considering the median. De’ath (2002) has defined the

Multivariate sums of absolute deviations about the median (LAD-MRT) as:∑
ij

|(xij − x̃j)|

where x̃j is the median.

To conclude, it is possible to find splitting criteria for univariate and multivariate trees. The

choice among them is related to the data, their characteristic and the aim of the analysis.

2.6 Bagging, Random forest and Boosting

Recently new algorithms have been proposed to realize decision trees. Among them, Bag-

ging, Random forest and Boosting are especially interesting.

Bagging, also called Bootstrap aggregation, was proposed by Breiman (1996). It is a tech-

nique that allows to reduce the variance associated with prediction and to improve the

prediction process [59, 40, 104, 283, 196]. It is based on bootstrap method where samples

are drawn from the available data. The prediction method is applied on the data and

the results are obtained through the average of regression and simple vote for classification

[40, 283, 157]. The bootstrap method allows to obtain the reduction of the variance and it is

40

used to improve the accuracy of classification or regression methods [57, 283, 276]. Breiman

(1996) has proposed the application of boosting to classify trees results in classifiers, which

are generally competitive with any other classifier [40, 283]. It is possible to demonstrate

that averaging a set of observations reduces variance on trees [157]. In fact, given a set of

n independent observations (Z1, . . . , Zn) whose variance is equal to σ2, the mean variance

of the observations is equal to σ2/n [157]. In the same way, to reduce the variance and

increase the accuracy, it is possible to use many training sets from the population and to

build a separate prediction model using each training set. Finally, it is possible to average

the resulting predictions [157]. In bagging, it can generate different bootstrapped training

data sets and to apply the function on these sample and, finally, to average the prediction.

Particularly, it is possible to calculate:

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x)

where:

• B is the training set;

• f̂ is the applied function;

• f̂∗b is the applied function calculated on the bth bootstrapped training set.

The application of bagging to decision trees allows to define B regression trees using B

bootstrapped training sets and to average the resulting predictions [157]. In this way, the

variance averaging the B trees is reduced [283, 157].

To sum up, it is possible to state that bagging overcomes the high variability of decision

trees and it is useful to improve the accuracy and efficiency in the estimation of decision

trees. [57, 157].

Random forests is an improvement of bagging that is based on the use of de-correlated trees

[60, 157, 198, 93]. The random forest (RF) is a powerful technique frequently used in data

science [93]. Breiman (2002) has stated that a random forest is a classifier consisting of

a collection of tree-structured classifiers h(x,Θk), k = 1, . . . where the Θk are independent

identically distributed random vectors and each tree casts a unit vote for the most popular

class at input x [60, p. 6]. It can be also defined as a set of random decision trees in

which each tree generated on a random subset of the data builds independent decision

trees [198, 155, 93, 214]. The defining element of random forest is the fact that a set of

predictor variables is selected randomly and restricted in each split, producing even more

diverse trees [276, 157, 93]. In this way, it is possible to provide an efficient way to generate

locally suboptimal splits that can improve the global performance of an ensemble of trees

41

[276, 93]. The rule for variable selection of m variables out of total variables p, is m =
√
p

for classification and m = p/3 for regression problems randomly to avoid correlation among

the individual trees:

Boosting algorithm [157]:
1. Set f̂(x) = 0 and ri = yi for all i in the training set.
2. For b = 1, 2, . . . , B repeat: Fit a tree f̂∗b with d splits (d+ 1 terminal nodes) to the
training data (X, r);
Update f̂∗b by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂∗b(x)

Update the residuals

ri ← rif̂
∗b(xi)

3. Output the boosted model

f̂(x) =
B∑
b=1

λf̂∗b(x)

Box 2.1: Boosting algorithm, source James et al. (2013

Three elements are typical of the boosting model [157]:

• B, that indicates the number of trees. Usually, the trees are built referring to the

cross-validation, to reduce overfitting;

• λ, that is a shrinkage parameter. It assumes a small positive number generally the

value is equal to 0.01 or 0.001;

• d, that is the number of split in each tree. It can be also defined as the interaction

depth, and controls interaction the interaction order. This value is really important

because it is able to control the complexity of the boosted ensemble.

The distinctive aspect of Boosting is the ability to learn slowly. A tree is constructed only

after adaptation, using residuals rather than the outcome Y . In this way the tree can

improve the estimated function f̂ in areas where it does not perform well [157, 198]. More-

over, shrinkage parameter slows the process down even further, allowing more and different

shaped trees to attack the residuals. At the end, we obtain a model that performs well

[157, 198].

42

2.7 CART and GBM

The analysis above has allowed to identify which methodologies based on trees can be

useful for the definition of the algorithm. Two specific approaches are taken into account to

theorize CTSC: the Classification And Regression Trees (CART) and the Gradient boosting

Machine (GBM), that can be defined as an ensemble of weak prediction models, typically

decision trees.

The former has been theorized by Breiman et al. (1984) and, as evidenced in chapter two,

involves segmenting the predictor space [61, 157]. The observations are firstly contained

in a root node. Later, they are split into groups or binary nodes that are internally more

homogenous than the root node [320, 274]. The core idea is to identify a value to maximize

the goodness of a split [213]. CART can be used for both qualitative and quantitative

responce variable.

GBM, on the other side, has been proposed by Friedman in 2001 (Box 2.2) and is a forward

stage-wise additive model [130]. It is built using the gradient descent in function space

(Box 2.2) [130]. Specifically, the GBM starts defining the function able to map x to y,

F (x), and minimizing the expected value of some specified loss function, which measures the

discrepancy between the model and desired prediction, L(y, F (x)) over the joint distribution

(y, x)values. A parameterized function h(x, a), where x represents the input variables and

a = {a1, a2, . . . } are the parameters, is taken into account in the definition of the GBM.

Moreover, an unconstrained negative gradient is included in the algorithm. This gradient

defines the direction of the steepest descendent and is equal to:

−gm(xi) =
[∂L(yi − F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

where m is the number of iterations. Friedman (2001) has introduced a generalization of

the unconstrained gradient −gm taking into account the member of the parameterized class

h(x, am) that produces hm = h(xi, am)}N1 [130]. This generalization allows moving from

an unconstrained to a constrained negative gradient equal to:

am = argmina,β

N∑
i=1

[
−gm(xi)− βh(xi, a)

]2

This constraint is used in a steepest-descent strategy. The algorithm allows also to define

the successive increments as {ρm}M1 . Specifically, unconstrained and constrained gradient

are able to define the steepest-descent direction, where ρm is called line search along that

direction [130]. The ρm is equal to:

ρm = argminρ

N∑
i=1

L(yi, Fm−1(xi) + ρh(xi, am))

43

Friedman (2001) has stated that one can use this approach to minimize any differentiable

loss L(y, F) in conjunction with forward stage-wise additive modeling [130, p. 1193]. More-

over, he has also stated that Gradient boosting of regression trees produces competitive,

highly robust, interpretable procedures for both regression and classification, especially ap-

propriate for mining less than clean data [130, p. 1189].

1. F0 = argminρ
∑N

i=1 L(yi, ρ)

2. For m = 1 to M do:

3. ỹi =
[
∂L(yi−F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

4. am = argmina,β
∑N

i=1

[
ỹi − βh(xi, a)

]2

5. ρm = argminρ
∑N

i=1 L(yi, Fm−1(xi) + ρh(xi, am))

6. Fm(x) = Fm−1(x) + ρh(x, am)

7. end For.
end Algorithm.

Box 2.2: Algorithm Gradient Boosting

To sum up, the tree-based method is useful to support the study of the relationship

between a response variable and one or more covariates. It can be an important tool to

comprehend a phenomenon and to support decision-making. In literature, regression and

classification trees, univariate and multivariate trees are theorized. Criteria and splitting

rules are defined to improve the results of the tree and to obtain a good partition of the

data. This method will be used to define the proposal of this thesis. Specifically, it will be

used to analyze the data and to outline the relationship between the outcome variables and

the covariates.

44

Chapter 3

Network and community detection

This chapter is focused on the study of networks and community detection algorithms. Ori-

gins, algorithms, strengths and weaknesses will be considered and analyzed.

The chapter is divided into three main parts. The first part is focused on the study of the

network to define its components, links and applications. It is divided into three sections.

Specifically, the first section of the first part will be dedicated to the different definitions of

network and its characteristics. The second section will analyze the network representation:

it will focus on the analysis of graphs in mathematical terms, identifying the key elements

of networks. The third section will analyze the measure of centrality, that has been studied

as a fundamental aspect to comprehend networks.

The second part on the new development in the studies of complex networks and commu-

nity detection. The first section of the second part will define the main networks analyzed

in literature such as: information, social, technological and biological. The second section

will be focused on complex networks, their peculiarities and their models. Thirdly, the last

section will define the analysis of networks in terms of communities and it will describe

different useful methods to identify the communities inside the network.

Finally, the last part of this chapter is focused on the presentation of specific three commu-

nity detection algorithms used to define a new semi supervised clustering method.

3.1 An introduction to networks

The study of networks started in the 1700s. Specifically, the first study has been realized

by Leonhard Euler, a Swiss mathematician, in 1736 [120, 103]. He tried to solve a famous

and old problem related to the town of Konigsberg in Prussia (the actual Lithuania). The

city had been built near the mouth of the river Pregel that divides the city into four parts.

To reach all the four parts of the city, citizens could use seven different bridges, shown in

45

Figure 3.1: The town of Konigsberg in Prussia, source: MacTutor History of Mathe-

matics Archive

Figure 3.1. Euler focused on the possibility to walk through the entire city crossing each

bridge only once [9] and his study demonstrated the impossibility of this option [21].

The Euler’s research has marked the birth of graph theory and the study of networks.

The development of the theories and models has affected the diffusion and the application

of graph theory on different contexts.

Specifically, in time researchers have provided attention on the study of Network Theory,

Theory of Network, the Network analysis [56].

Borgatti et al. (2011) have defined network theory as the mechanisms and processes that

interact with network structures to yield certain outcomes for individuals and groups [56,

p. 1168]. The focus here is on the ability to provide a useful framework to discuss interac-

tions among the nodes of the network.

The Theory of Network is described as the processes that determine the reason why net-

works have a specific structure.

Finally, the network analysis is defined by Scott (2007) as a body of qualitative measures

of network structure [263, p. 3]. Moreover, Knobe and Yanf (2008) have defined it as an

institutionalized, transdisciplinary perspective whose basic concepts and measures are now

widely familiar to researchers from such diverse fields as sociology, anthropology, economics,

origination studies, business management, public health, information science, biology, com-

plexity and chaos theory [170, p. 2]. The development of these studies has been supported

by the improvement of computing powers and by the possibility to study the properties of

46

a plenty of large databases of real networks [217, 277].

The use of network theory has been extended in different area such as sociology, social

psychology, mathematics, political science, communication, anthropology, economics and

epidemiology [217, 139, 164, 170, 125, 192, 98, 92, 259, 258]. In time, researchers have

focused on the analysis of single small graphs and the properties of individual vertices or

edges; as well as in the study of complex networks and community detection [219, 50].

3.2 The Network

Networks can be defined as an important tool to analyze and comprehend different phe-

nomena. In literature, it is possible to find different definitions of networks.

Generically speaking, researchers have defined the network as a collection of objects in

which some pairs of these objects are connected by links [114, 172]. Other studies have

described it as an ensemble of nodes and edges [13, 9, 15, 3, 183, 238, 56, 172]. Finally,

other researchers have defined the network as a graph composed by points joined together

by connections [43, 114, 234]. The definitions offered by Newman (2003) and Jha et al.

(2015) are particularly interesting. Newman (2003) defined the network as a set of items,

which we will call vertices or sometimes nodes, with connections between them, called edges

[219, p. 168]. Later, in 2010 he defined it as a collection of points joined together in pairs

by lines [216, p. 109]. In addition, Jha et al. (2015) have described it as a set of points

(referred to as vertices or nodes) connected together by a set of lines (referred to as edges

or links) [159, p. 13].

Both definitions identify the elements that characterize networks and their nature.

Other interesting definitions of network consider different aspects, such as the relationship

among the nodes and the social elements. In this specific case, the network is defined as

a set of actors and the relations [170, 208]. Moreover, considering the social implication,

Wasserman and Faust (1994) have defined network as a finite set or sets of actor and the

relation or relations defined on them [301, p. 20]. Van Loon (2006) has defined network as

a device for organizing and conceptualizing non-linear complexity [290, p. 307]. These defi-

nitions have highlighted the capacity of the network to represent the relationships existing

among nodes [173, 241].

A more general definition is preferred in this work: the network is as a set of nodes and

links that present specific common characteristics and are joined together by the existence

of specific peculiarities.

In the study of networks, it is fundamental to comprehend the nature of the components, the

47

Figure 3.2: Graph representation, source Baesens (2015)

connections and interactions inside the network and, moreover, the pattern of the connec-

tions between the components. It is therefore necessary to define the different components

of the network. These essential elements are the nodes and the links.

Van Loon (2006) has defined the nodes as the points where links are concentrated. The

nature of nodes depends on the kind of network. Specifically, the nodes can be individuals

or objects, biological or informatics elements, young men and women, computers or web

users [192]. The different nature of nodes affects the created relationships. For instance,

the nodes interact in the social networks in several ways and with a variable rate which

depends on various factors [260]. The created relationships can be different: they can be

defined as cooperative, hostile, predatory, competitive and aggressive [173].

The nodes are joined together by edges, as show in Figure 3.2. Edges are the most basic

unit of the network. They are defined as the line connecting two vertices [219, p. 173].

In literature, they are often called differently: they are called bonds in physics, links in

computer science, and ties in sociology [290]. The edges show presence of a specific relation

and different level of interaction between two or more vertices [234]. Katz et al. (2004) have

underlined how, in sociology, the ties can be classified in different ways such as: communi-

cation ties (who gives information or advice to whom); formal ties (who reports to whom);

affective ties (who likes whom, or who trusts whom); material or work flow ties (who gives

resources to whom); and finally proximity ties and cognitive ties (who knows who knows

whom) [164, p. 308]. Moreover, an edge can also be defined as directed if it runs in only

one direction; if it runs in both directions it is called undirected.

Another characteristic element is considered as a fundamental component by Van Loon

(2006). It is the so called mesh and can be defined as the overall structure, pattern and

shape of the network [290, p. 307]. This is a crucial aspect because it gives the overall

structure and shapes the network: it is the distinctive element of a network and makes it

unique.

48

To sum up, the network is characterized by three elements: the nodes, i.e. the elements that

define and constitute the network; the edges, that indicate the existence and the nature of

relationships between the nodes; the mesh, that identifies the structure of the network and

the model of relationship.

However, these fundamental elements are not enough to define a network. It is necessary

to consider two more aspects to figure out what a network is: the walk and the path.

The walk is described as a finite sequence of vertices

(xo, x1, . . . , xn)

and edges

(a1, a2, . . . , an)

of G, where G indicates the graph representation of the network [5, 26, 295]. Knoke and

Yang (2008) define the network as an alternating sequence of incident nodes and lines, in

which each node is incident with its preceding and following lines [170, p. 47]. Finally, it

can be also defined as a sequence of lines in a graph evidencing the passage of information

between the nodes [263]. A walk can be simple when no edge is repeated and the total

number of edges cab be defined as length of a walk [54, 172].

The path is described as a sequence of nodes in which each consecutive pair in the sequence

is connected by an edge [117, 81, 114, 172, 161]. It is a walk in which no node is visited

more than once [4]. The walk of minimal length between two nodes is defined as shortest

path or geodesic [301, 219, 172]. Moreover, it is possible to define the distance dij between

two vertices i and j as the number of links along the shortest path connecting them [43].

A graph can be cyclic and acyclic. The former, also called a loop, is a closed walk of at

least three nodes, in which no edge is repeated [54, 26, 67, 35]. On the contrary, the latter

is a graph with no cycle, also known as a forest.

An example of acyclic graph is the tree, which can therefore be defined as a connected

acyclic graph [26]. Newman (2010) has defined it as a connected, undirected network that

contains no closed loops [216, p. 127]. Finally, another element related to the path is the

diameter. It is the length, in terms of number of edges, of the longest geodesic path between

any two vertices [219].

3.3 Graph

It is possible to generalize the definition of network through mathematics and graph repre-

sentations. This generalization is fundamental for the network to become useful in different

49

research areas [161, 53]. Graphs can be defined as mathematical models of network struc-

tures [103, 114, 295, 53]. The different elements of graphs can be summarized with mathe-

matical expressions. A graph G can be described as a set of vertices V and a collection of

pairs of vertices E [54, 26, 103, 65, 105]. Specifically, the graph is indicated as:

G = (V,E)

the set of vertices of G with the expression:

V = V (G)

and the set of edges as:

E = E(G)

The vertex is the fundamental unit of a network and it can be called site in physics studies,

node in computer science research and actor in sociology [219]. As evidenced before, the

different vertices are joined together by edges. Given two nodes, x and y, the edge that

links the two nodes is written as xy or (x, y) and the nodes are called endpoints [65]. If

vertices x and y are endpoints of one edge, then x and y are said to be adjacent to each

other and they are written as x ∼ y [263, 170, 9]. Moreover, vertices adjacent to x are

defined as neighbors of x and the set of all vertices adjacent to x is called the neighborhood

of x, denoted by N(x) [295].

Graphs have two main characteristics. The first is the order, that expresses the number of

vertices and is indicated as vG. The second is the size, that represents the number of the

edges of the graph and is indicated as eG [26, 161].

Another element that characterizes the graph is the degree, or valency (Figure 3.3) . It is

indicated as d(x) of the vertex X and it expresses the number of edges that have X as an

endpoint [54, 81, 62, 43, 230, 234, 19]. Balakrishman (1997) has defined the valency as the

number of edges adjacent to the vertex. When the number of edges is zero, the degree is

indicated as d(x) = 0 and is called isolated vertex. When the number of edges is 1, the

degree is called pendant and the relative edge is called pendant edge. In addition, if all edges

have the same degree, the graph is called regular [261, 295]. Generally, the use of regular

graphs is common in physics, chemistry and geo-spatial settings [172].

Further, a graph can be classified as connected if, for every pair of distinct nodes i and j, it is

possible to identify a path from i to j; otherwise, it is called unconnected or disconnected, as

shown in Figure 3.4 [117, 26, 35]. The bridge is the element that transforms a disconnected

graph into a connected graph [9]. If the graph is disconnected, it is possible to partition

the vertex set in two subsets identified as V1 and V2. The subsets do not have common

elements.

50

Figure 3.3: The degrees (source: Wallis, 2007)

Figure 3.4: Connected and disconnected graphs (source: Ahuja et al., 1993)

Besides, the graph can be classified as direct and indirect. The direct graph is composed

by directed edges and in this case is called digraph. In direct graph, it is important to take

into account the direction of the link. Instead, if the edges are not directed in the graph, it

is identified an undirected graph [54, 175].

Usually, directed edges are called arcs [62]. Broder et al (2000) and Wallis (2010) have

defined the arc as an ordered pair of vertices. The first vertex of the arc is called start,

or tail or origin, and the second is called finish, head or terminus. An example of direct

graph is represented by the telephone calls or email messages between individuals, where

each message only goes in one direction [219].

If the graph is directed, the degree of the node is obtained adding together the number of

Figure 3.5: Undirected and directed graphs (source: Easley and Kleinberg, 2010)

51

outgoing links (calculated through the formula kouti =
∑

j aij) and the number of ingoing

links (kini =
∑

j aij) [234]. Consequently, the total degree is calculated through the formula

ki = kouti +kini [172]. It is possible to identify the degree distribution, P (k), as the probability

that a randomly chosen node has degree k or, equivalently, as the fraction of nodes in the

graph having degree k [219, 50]. On the contrary, it is possible to define the indirect graph

as a set of nodes and edges where each graph is an unordered pair of nodes (i, j) [62].

Graphs can also be classified as:

• complete, when all nodes are connected [117, 5];

• hypergraphs, when edges join together more than two vertices [219];

• isomorphic, when two graphs have a correspondence between their vertex sets. Specif-

ically, the isomorphic graphs have the same order and size. Given two graphs G and

H, the isomorphic graphs are indicated as G = H [26].

In addition, graphs can be naturally partitioned in various ways. Specifically, the graph

H = (W,F) is a subgraph of the graph G = (V,E) if W and F are a subset respectively

of V and E [117, 5, 81, 261]. In other words, the subgraph is a subset of nodes and lines

within a large graph [170, p. 47].

Graphs can also evolve over time. Their vertices or edges can appear or disappear, or values

defined on those vertices and edges can change.

Finally, graphs can be represented as an adjacency matrix, i.e. a matrix An×n where the size

is nxn and n represents the number of nodes in the network. It is indicated as A = [aij],

where aij = 1 if a link exists between node i and j, otherwise aij = 0 . The matrix is

symmetric when aij = aji for every i and j [26, 49, 21, 152, 21, 11].

3.4 Centrality measures

In the study of networks, one of the most important topic is the centrality measures. This

measures allow to comprehend how the traffic flows through a network [55, 172, 233]. They

consider all the information included in the network to give better ranking results [75].

Specifically, the concept of centrality identifies the relative importance of the elements or

links within the network [91]. A strong attention is necessary in the study of centrality

measures in the social network analysis [233]. In time, researchers have defined different

measures such as Clustering Coefficient, Degree Centrality, Closeness, Betweenness.

The Clustering Coefficient Ci is a measure of the local density of a network. It quantifies

the tendency of a network to be composed by groups [159, 234, 299]. Clustering, also

called transitivity, is based on the idea that if it is possible to find in a network a vertex

52

A connected with B, and B connected to C. Consequently, the probability that the vertex

A will be connected with C is very high. In terms of social network, this probability can

be explained with the idea that a friend of your friend is likely also to be your friend [219].

Krause (2007) has described the Clustering Coefficient as the degree to which an individual

is connected to immediate neighbors [173]. Other researchers have defined it as the ratio

of the real number of the edges Ei among these ki nodes to the largest number of edges,
ki

(ki−1)/2 [36, 8, 32, 249, 67, 16]. It is calculated through the formula:

Ci =
2Ei

ki(ki − 1)

Assumed that it is possible to find ki nodes connected with node i in the network, the Ci

node is defined as neighbors of node [297, 315].

The second centrality measure is the Degree Centrality. It is the number of links incident

upon a node [26, 76]. It gives information about the connections of single nodes [299].

Moreover, it is a measure of the popularity of a node [223]. It is possible to identify two

different measures. In fact, degree centrality can be calculated the for only the vertices or

the whole graphs. In the first case, the degree centrality is calculated through the formula:

CD(v) =
deg(v)

n− 1

where deg(v) expresses the degree of the graph. In the second case, it is calculated through

the formula:

CD(G) =

∑‖V ‖
i=1

(
CD(v∗)− CD(vi)

)
H

where CD(v∗) is the node with the highest degree centrality, CD(vI) is the degree of central-

ity of the node i and H is the maximum value of degree. Finally, if the network is directed,

two separate measures of degree centrality can be defined. Specifically, degree centrality

can be defines as indegree, the count of the number of ties directed to the node, and as

outdegree, the number of ties that the node directs to others [26, 263, 170].

The third centrality measure is the Closeness, the shortest-path length. Chen et al. (2012)

have stated that the closeness is a measure of how long an information from a given node to

other reachable nodes will spread into the network [75]. Wang et al. (2017) have specified

that closeness is able to measure the transformation independence of a node’s information

in a network. They have showed how a node, if it is closer to others, can reach other nodes

more easily and has a higher closeness centrality [299]. Generally, it can be stated that

closeness is a centrality measure referred to the vertex within a graph: specifically, the ver-

tices, which tend to have short geodesic distances to other vertices within the graph, have

53

higher closeness [75, 233]. Closeness can be calculated through the formula:

CC(G) =
1∑

t∈V dG(v, t)

The denominator measures the mean geodesic distance between vertex v and all other

reachable vertices.

Finally, the last measure is the Betweenness. It can be defined considering nodes and edges.

It indicates the influence and the importance of the two elements in the whole of the network

[315, 299, 35]. It measures the influence of a node over the flow of information between

other nodes [128, 139, 66]. Specifically, considered n nodes, the node betweenness is the

ratio between the m shortest paths of nodes going through a specific node ni and the M

shortest paths among them [128, 76, 315]. In the same way, the edge betweenness is the

ratio of the number of the shortest paths going through the edge to the shortest paths of all

node pairs [315]. In social networks, the betweenness is defined as the number of shortest

paths between pairs of individuals that pass through a particular individual [173, p. 17]. It

is calculated through the formula [151]:

CB(v) =
∑

s 6=v 6=t∈v

σst(v)

σst

where σst(v) indicates the number of shortest paths from each pair of vertices s to t, and

σst the number of shortest paths from s to t that pass through a vertex v [68, 233].

3.5 Different kinds of networks

As evidenced before, in the last decades particular attention has been posed on the anal-

ysis of different kinds of networks. They are proposed and analyzed by researchers to

comprehend their characteristic, main elements and level of complexity. Networks can be

casted in four main categories: information, technological, biological and social networks

[277, 219, 172].

3.5.1 Information Networks

The Information Networks describe the relationships among pieces of information. Two

main elements are included in this group: the citation networks and the web networks.

The former is generated by the citations between academic journals or papers, as shown

in Figure 3.6. Usually, researchers quote in their article previews published works. The

structure of the citation network is composed by the vertices, which can be the articles, the

text and the pictures held in the paper; and the links, which are the citations that join a

paper to another paper [270, 8, 109, 108]. Specifically, the edges are directed from article A

54

Figure 3.6: Citation network (source: Small, 1973)

to article B and they indicate that A cites B [219, 216, 311]. This network is able to show

the stored information, but also the social aspect of the citation [145].

The interest in of networks of citations has started in the 1950s, when large citation

databases became available [133]. One of the first research has been made by Eugene

Garfield in 1955. He has proposed a citation index to improve the communication between

researchers and to define a measure of the impact of papers in the research field [134, 135].

Later, other researchers have developed new studies. For instance, Small (1973) has realized

the first application of citation networks. Recently, Hu et al. (2012) and Lucio-Arias and

Scharnhorst (2012) have applied the graph theory to the study of citations attempting to

predict the impact of papers and identify a useful mathematical approach.

The structure of Citation networks is similar to the World Wide Web (WWW). The

WWW was invented in the 1980s by scientists of the CERN laboratory in Geneva as an

instrument to exchange information [108, 216]. Specifically, webpages create a network in

which the edges are defined by the referencing of one page by another [124, 28]. Websites

as Napster or Facebook define a network where the nodes are the Internet users and the

links are the exchanged content [172]. There is a big difference between the Internet and

the World Wide Web: the former is composed by a physical network in which computer are

55

linked together by cables [28, 35]; the latter is composed by webpages, Internet users and

links.

Another example of an information network is the one formed by the semantic relationships

between words or concepts [8, 219]. Generally, this kind of network is analyzed in order to

comprehend different aspects such as the structure of the network, which nodes are linked

to many other nodes, how and how many times the structure of network changes [231, 172].

3.5.2 Technological Networks

The technological networks are able to represent the relationship and the distribution of

resources and services. Examples of technological networks are: the communication net-

works, generated by telephone or internet networks; the transportation networks, generated

by routes, rails and airlines routes; and the energy networks, like the circuits of gas and

electricity [4, 172, 53, 161, 21].

These networks are characterized by the movement of some entities from one point to an-

other within the underlying network. In the example above, the entities are electricity,

consumer product, people and vehicles. The aim is to move these elements as soon as pos-

sible and efficiently, in order to provide a good service to the users of the network.

These networks have different kinds of ties: some are physical, as for instance cables and

lines that link houses, buildings, district and countries; some are virtual connection, such

as a wireless link for cellphones; finally, some are defined by the travels, as for instance the

airplane routes.

The telephone network is the oldest technological network still in use [216]. On the contrary,

the youngest is the Internet, which is now able to link together hundreds of millions, maybe

billions of devices, as shown in Figure 3.7. Banking transactions, music, mails, videos and

contents have changed completely because of these networks [219, 172].

56

Figure 3.7: the Internet network (source: Newman, 2006)

3.5.3 Biological Networks

The third class of networks is composed by biological systems. Biologists have considered

the network as a fundamental instrument to analyze the different biological phenomenon

because they are able to describe the interactions between the components of a system as

part of the interaction set [173]. In their studies on biological networks, researchers have

focused on different areas, such as neurology, biomedicine and ecology.

Neurological networks are generated by affinity for binding among neurons [216]. Partic-

ularly interesting are the studies made by Jeong et al. (2000), that have analyzed the

networks among cells.

Biomedical networks join together different kinds of networks, such as metabolic networks,

protein-protein interaction networks, genetic regulatory network [8, 35, 216]. For instance,

Barabasi and Oltvai (2004) have studied the interaction between genes and proteins and

explained the functional organization of the cell; Ma and Zang (2003) have focused their

research on metabolic networks. Other researchers have considered other biomedical topics,

such as epidemiological networks, describing the spread of disease in a population.

Finally, the ecological networks are generated by the interactions among organisms. An

example is the network that describes the predator-prey relationships. They are also

called food webs. The fundamental elements of these networks are the vertices, repre-

sented by the different species, and the edges, represented by the relationship predator-prey

[8, 109, 110, 216]. Particularly interesting are the studies made by Pimm (1979,1982) and

57

Cohen et al. (1990), who have studied the food webs to comprehend how species interact

and who eats whom. Equally relevant are the studies of Dunne et al. (2002) that have

analyzed how a stable community is changed after the invasion of a new species.

3.5.4 Social Networks

Social networks can be defined as a set of people, or groups of people, with some pattern of

contacts or interactions between them [218, 219, 89, 216, 172, 42, 262]. Therefore, the Social

Network Analysis (SNA) is the study of actors and connections within a social network [87].

The SNA considers different aspects and describes different phenomena. Researchers have

usually analyzed the different kinds of social behaviors to investigate the nature of the rela-

tionships. Specifically, researchers have attempted to comprehend if they are cooperative,

hostile, predatory, competitive or aggressive [173]. In this analysis, one of the main aspects

is the definition of the nature of edges. In fact, the edges can represent different aspects:

friendships, professional relationships, exchanges of goods or money, communication pat-

terns, romantic or sexual relationships or other types of connections [216]. The intensity,

frequency and directness of interactions are also an important aspect.

Generally, researchers have focused their attention on the study of social organizations

composed by human beings. The main research areas have been sociology, anthropology,

psychology, business and public health [172]. Moreover, in some studies the nodes of net-

work are animals and in this case the aim is to analyze the animal behavior [173].

To sum up, it is possible to state that the scholars are interested to analyze the structure

of networks, the social interactions and the different kinds of network [301].

The first steps of SNA, that took place in the 1930s, are particularly relevant. SNA has been

developed with the aim to study the relationships among social entities [263, 219, 50, 170].

The first study has been realized by Jacob Moreno in 1934 [209]. He has studied the relation-

ship between social structures, analyzing the friendship choices within the school classrooms

and identifying the connections among students. Moreover, he has invented sociogram, a

social configuration that allows to visualize the structure of networks, the channels through

which the information flows from one individual to another and how individuals influence

each other. It is a graph with points and lines, particularly useful to represent the nodes

and their relationships.

Later in the 1950s and 1960s, different researchers cooperated inside the Tavistock Institute

and the Routledge &Kegan Paul (RKP) to produce a series of relevant studies in social

sciences. For instance, Clyde Mitchell (1969) and Elizabeth Bott (1957) have focused their

studies on the relationships inside communities and families [301, 89]. Mitchell (1969) has

defined the use of formal mathematical ideas to study community and family networks

58

[58, 205].

After the 1960s, the study of social networks has grown considerably. The innovations in

computing have offered the possibility to investigate large-scale networks. Mark Granovet-

ter (1973) has focused its studies on the strength of interpersonal ties; Barry Wellman (1979)

has analyzed the social networks considering the community question debate in urban so-

ciology; Berkowitz and Wellman (1988) have studied the relationships within and between

organizations; Wasserman and Faust (1994) have realized a reviews of methods used in the

analysis of social networks and they have developed practical example of the application

of these methods; Carrington et al. (2005) have joined together the different quantitative

models and methods used in social networks to offer an important support to data analysis.

Recently, the study of interactions between the social networks and the Internet has been

given a lot of attention. The launch and development of social media applications such

as Facebook, Flickr, Twitter have caused the birth of new networks called Social Media

networks [231, 21]. They are able to join and create interactions between people located in

different places, cities and countries. Moreover, they facilitate the interaction and sharing

of information with different people, including relatives, co-workers, family, friends, fans,

and others. Each social network can be defined considering specific aspects. For instance,

Facebook is more focused on social interaction, Flickr on content sharing and Twitter on

widespread social interactions for users [208].

To sum up, the social networks are able to represent the relationships between individuals

that interact in different ways, situations and environments.

3.6 Complex Networks

The last decade has witnessed the birth of a new interest around the study of networks,

particularly of complex networks [30, 66, 316, 70, 325, 49, 97]. This has happened because

the models proposed in mathematical graph theory were not able to represent real networks

[29, 50, 182]. Researchers have felt the need to develop new models able to represent the

growth of networks and to reproduce the structural properties observed in real topologies

[316]. Albert and Barabasi (1999, 2002) have identified three factors that explain this new

attention on complex networks. Firstly, they have underlined how the computerization of

data acquisition in all fields determined the necessity and the opportunity to analyze large

databases considering the topology of various real networks. Secondly, the increased com-

puting power have allowed the study and the investigation of networks that contain millions

of nodes, making it possible to analyze aspects that could have not been considered before

[8, 232, 91]. Thirdly, the study of complex networks has been affected by the necessity

to comprehend the behavior of systems and the interactions and relationships among the

59

nodes within the networks [29, 8].

The three above mentioned reasons have influenced the effort of the researchers to com-

prehend the structure of more complex networks. The main goal is to better comprehend

the complex networks, their evolutionary mechanisms and their dynamical and functional

behavior [29, 50].

In the path that led to the study of complex networks, three main steps must be taken into

account. First of all, the definition of the Complex network theory as a subfield of statisti-

cal physics for structurally disordered, dynamically heterogeneous systems with non-trivial

topology. This theory was an extension of graph theory applied to systems with high struc-

tural heterogeneity and inherently dynamical properties [232].

Secondly, the definition of Complexity science, given by Bocaletti et al. (2014), as the study

of systems with many interdependent components, which, in turn, may interact through

many different channels [49, p. 5].

Finally, the process of definition of the concept of complex network, described as [...] graphs

with large size and complex [77, p. 1317] by Chen et al. (2007), as networks with more com-

plex architectures than classical random graphs with their simple Poissonian distributions

of connections by Dorogovtsev et al. (2008) [107, p. 1275], and as a graph G comprising

a set of N nodes (or vertices) connected by a set of M links (or edges), being ki the degree

(number of links) of node i by Arenas et al. (2008) [16, p. 95].

In mathematical terms, it is possible to define the complex network as a graph G(V,E),

where V identifies the set of nodes, V = n, and E the set of edges, E = m [265].

The study of complex networks has therefore become a common focus of many branches of

science [325, 277, 107, 192]. A relevant amount of complex real phenomena can be repre-

sented by complex networks [35]. For instance, networks such as the World Wide Web, the

Internet, basic cellular networks, neural networks, co-authorship and citation networks of

scientists, and many others can be defined and called complex [325, 277, 66, 85, 194, 70, 16,

35, 7, 297, 97].

All complex networks have a skewed distribution of connections with many hubs, strong in-

homogeneity, high clustering, as well as nontrivial temporal evolution [44]. Moreover, they

are [...] open, value-laden, directed, multilevel, multicomponent, reconfigurable systems of

systems, and placed within unstable and changing environments [49, p. 6]. In addition, they

are also able to change, evolve, transform through internal and external dynamic interac-

tions affecting the subsystems and components at both local and global scale [30, 44, 261].

Finally, many complex networks are characterized by the presence of vertices with diverse

and distinct functions. It can be interesting to comprehend the structure [6].

Complex networks are able to represent the composite, heterogeneous, complicated reality

60

in people’s and business life. As stated by Boccaletti et al. (2014), they are a challenge

for scientists that attempt to observe, to comprehend and to predict their multi-scale and

multicomponent dynamics.

3.6.1 The characteristics of a complex network

The study of complex networks has been focused on the analysis of models, on the definition

of their specific elements and on the analysis of their peculiarities. In particular, new

concepts and measures related to these kinds of networks have been developed and proposed

in the past few years [8, 16]. Particular attention has been posed in the definition of

three specific characteristics: the small-world, the scale-tree and the degree distribution

[44, 115, 235, 8, 249, 194, 98].

The small-word concept is related to the distance and the path between nodes. Albert and

Barabasi (2002) have defined the distance between two nodes as the number of edges along

the shortest path connecting them [8, p. 38]. In addition, some researchers have evidenced

that in some real large networks it is possible to reach a specific node from another following

the path with the smallest number of links [235, 90, 271, 35, 216, 297, 98]. This means that

it is possible to reach a specific node in a very small number of steps [90, 271, 297]. This

aspect is called small-word: it describes the possibility to identify a relatively short path

between any two nodes despite the large size of a network [8, 51, 91, 28, 52, 139, 90, 161].

The studies firstly of Milgram (1967) and later of Travers and Milgram (1969) on this topic

are particularly interesting and famous. Milgram (1967) has established that the distance

between people in the United States is on average equal to six paths, as shown in Figure

3.8 [202]. Specifically, he has realized a survey asking people that lived in Nebraska to send

letters to individuals in Boston. He has given only some information about the recipients

such as: name, occupation and rough location. He has supposed that hundreds of steps

were necessary to deliver the letters: however, he was surprised to record in average only

six steps between sender and recipient. This result has evidenced how the distance among

people is not so significant. Similar results have been obtained by Dodds et al. (2003) that

have considered the dispatch of emails.

The second fundamental property of complex networks is called scale tree. It describes

the fact that the probability distribution of the number of links per node can be defined by

a power-law with a degree exponent equal to γ. It can be expressed through the formula

P (k) ≈ kγ , where the value of γ moves from 2 to 3 [44, 108, 113, 51, 250, 249, 52, 85,

90, 306, 271, 91, 98]. In particular, complex networks are characterized to have a highly

heterogeneous distribution of degrees [98]. For this reason, when one deals with a large

network, it is necessary to know that the nodes have a significant probability of having a

61

Figure 3.8: The Milgram study, source Milgram 1967

very large number of connections compared to the average connectivity k [235]. In other

words, a highly connected vertex is more likely to receive further links from newly arriving

vertices [66]. Caldarelli et al. (2002) have defined this property as rich get richer rule. This

result is totally different from what happens in the homogeneous networks where each node

has approximately the same number of links [302].

The third element of complex networks is the degree distribution. As evidenced before,

it expresses the number of edges that have X as an endpoint. The measure of degree

distribution can be calculated for different kinds of networks such as bipartite graphs and

direct graphs. In the first case, it is necessary to identify two-degree distributions, one for

each type of vertex. In the second case, the vertex has the in-degree and the out-degree

distribution at the same time. The two distributions are indicated with the function pjk

where j represents the in-degree and k the out-degree distribution. The degree distribution

can be represented through two histograms: the plot of the pk for any network, and the plot

of the cumulative distribution function, where pk indicates the probability that the degree

is greater than or equal to k [219, 50]. The cumulative distribution function is given by

Pk =

∞∑
k′=k

pk′

where P (k) is the distribution that gives the probability that a randomly selected node

has exactly k edges [8]. The study of the degree distribution is specifically related to the

analysis of random graph.

In time, another property of complex networks has been introduced. It is called fitness

[44, 28, 35]. This property refers to the probability that some nodes both have more links

than other nodes and increase their degree more rapidly. This happens because some nodes

have a greater fitness and they tend to win out and become very highly connected. Each

node presents a different ability to compete for links. Given the fitness parameter to each

node η chosen from a distribution p(η), the probability, which a new node connects one of

its m links to a node i, depends on the number of links ki and on the fitness of the node,

62

and is calculated as: ∏
i

=
ηiki∑
ηjkj

The formula evidences how new nodes link preferentially to nodes with higher k and larger

fitness. It is possible to state that the attractiveness and evolution of the node is determined

by the fitness and the number of links [45, 44].

3.6.2 Complex networks models

The analysis and study of complex network have evidenced the necessity to identify new

mathematical models to express and represent networks [7, 219]. In particular, in time

researchers have defined models able to represent specific characteristics of the complex

networks. The aim was fundamentally to explain phenomena, their characteristic and their

changes in time.

Specific complex networks can be found in literature, such as Random graphs, Generalized

random graphs, Small-world networks, Static scale-free networks, Evolving scale-free net-

works, Weighted networks and Spatial networks.

The random graph is identified as G(n, p) where n is the set of vertices chosen to be an

edge with probability p [80]. Albert and Barabãsi (2002) have defined the Random-graph

theory as the analysis and the study of the properties of the probability space associated

with graph with N nodes where N →∞. Boccaletti et al. (2006) have used the term Ran-

dom network to identify the disordered nature of the arrangement of links between different

nodes. Dorogovtsev and Goltsev (2008) have defined the random graph as a statistical

ensemble, where each member is realized with some prescribed probability statistical weights

[107, p. 1277].

The study of random graph started in 1959 with the study realized by Erdös and Rényi

that have attempted to identify a probabilistic method to generate random graphs with N

nodes and K links (Figure 3.9). The model establishes that given N disconnected nodes,

the random graph is obtained joining together randomly selected nodes until the number

of edges is equal to K. Albert and Barabasi (2002) have evidenced how the construction

of random graphs is characterized to start with a set of N isolated vertices that are joined

together through random edges until a fully connected graph is obtained. The obtained

random graph is only one of the many possible combinations of connections [13]. The

total number of combinations is equal to Cn[N(N−1)/2] and the realization is equiprobable

[7, 8, 13, 234]. The model can be also defined referring to the Binomial and the Poisson

model. In the first case, the model is indicated as Gnk. It defines the graph characterized

63

to appear with probability pk(1 − p)[K−k], where K is the maximum possible number of

edges and is calculated through the formula K = 1
2n(n− 1) [109, 52, 219, 35, 234]. Instead,

the Poisson model is used when N is large and k is fixed [50, 35]. The degree distribution

follows a Poisson distribution and it is calculated as:

p(k) =
zke−z

k!

The model defined by Erdös and Rényi (1959) can be extended in a variety of ways to make

a random graph able to represent the real networks. For example, one of this model is the

configuration model. It was introduced by Bender and Canfield (1978) and allows to sample

graphs with a given degree sequence, which is defined as a set of n values of the degrees

ki of vertices i = 1, . . . , n from the distribution. Boccaletti at al. (2006) have defined it as

any sequence of N integer numbers D = k1, k2, . . . , kN where
∑

i ki = 2K and K is the

number of links in the graph [50, p. 192]. The model defines a process that generates every

possible graphs with the given degree sequence.

The random graph is characterized by a set of nodes n and a probability p and they are

able to represent the complexity of the real network.

Figure 3.9: Random graph Erdös and Rényi, source Fortunato (2010)

The second relevant model proposed in literature is the Small-world networks. It was

theorized by Watts and Strogatz (1998) and joins together two different models: the finite-

dimensional lattices and classical random graph. The former is a variation of the Bethe

lattice, that is an infinite regular graph where all vertices are topologically equivalent and

boundaries are absent. The latter is the random model presented before. The combination

of the two models is the base of the small-world network. It is also characterized by the

combination of two properties: the small-world property and the property of high clustering

coefficient. In fact, the small-world network has vertices with a specific position in space as

64

Figure 3.10: Small-world networks Watts and Strogatz, source Fortunato (2010)

small-world property and is based on the proximity, which plays a role in deciding which

vertices are connected to others.

The starting point of the model is the presence of N nodes located as a ring, where each

node is connected to its nearest neighbors, as shown in Figure 3.10. Moreover, each link

connected to a clockwise neighbor is the result of a rewiring procedure implemented with a

probability p. Later, the edge is reconnected to a vertex chosen uniformly at random over

the entire ring. The process is repeated by moving clockwise around the ring, considering

each vertex in turn until one lap is completed. Next, the process is repeated after k laps.

Two quantities are typical of this model: the path length l(p), which is defined as the

number of edges in the shortest path between two vertices, and the cluster coefficient [34].

If p is equal to zero, it obtains a regular lattice; otherwise if p is equal to one, it obtains a

random graph.

The small-world network presents specific properties. It is characterized by the fact that

firstly local neighborhood is preserved; secondly, the diameter of the network measures

average shortest distance between two vertices; and it increases logarithmically with the

number of vertices N [94]. Moreover, it is possible to connect any two vertices in the

network through just a few links, and the local connectivity would suggest the network to be

of finite dimensionality [12, p. 11149]. Finally, the small-world networks can be used to

analyze different phenomena. For instance, as evidenced by Albert and Barabãsi (2002),

this model is able to represent a social system in which the most of people are friends with

their immediate neighbors and, at the same time, have some friends that live far, such as

in other countries and old acquaintances.

The third model is called static scale free network and focuses on capturing the network

65

dynamics [8, 13, 219]. In the reality, networks change in time and the static scale-free

networks attempt to reproduce these changes. One of the most famous model was presented

by Barabãsi and Albert in 1999 and is referred to indirect networks (Figure 3.11) [30, 31, 8].

The model is based on two assumptions. The former states that in the real networks

the number of nodes increases in time and the networks are characterized to be an open

system. The latter argues that the connection between two nodes is independent of the

degree of the nodes and the new edges are placed randomly. The static scale free network

algorithm considers the presence of a small number of nodes m0 that increases at each step

t = 1, 2, 3, . . . , N . New node j and new links are added to the network. The probability that

the link connects the j node with another existing node i is calculated with the formula:∏
j→1

=
ki∑
k!

and it is linearly proportional to the actual degree of i. Moreover, at each step the new

node has m more links. The network has N = m0 + t nodes and K = m ∗ t number of

links in a specific time t that corresponds to an average degree k = 2m for large times. The

model theorized by Barabãsi and Albert (1999) was studied by many researchers. They

have attempted to build the algorithm with the aim to make the model a more realistic

representation of real networks. For instance, Krapivsky and Redner have considered a

directed version of the model; Dorogovtsev et al. (2000) have defined a model that considers

a linear preferential attachment of the link. They have established that the probability that

a link connects j with another existing node i with j is calculated as:∏
j→1

=
ki + k0∑
l ki + k0

where k0 is a constant that plays the role of the node initial attractiveness. Dorogovtsev

et al. (2000) have stated that the probability is proportional to the attractiveness of the

network. It is measured as As = A + qs, where A is the initial attractiveness and A > 0,

and later the probability is equal qs, which measure number of incoming links to a site s.

Finally, Dorogovtsev and Mendes (2000) have defined a model that considers not only the

possibility to add new nodes and links in a network, but also the possibility that some nodes

are removed.

To summarize, the static scale free network is able to represent how the network changes,

considering at the same time the nodes and the edges.

66

Figure 3.11: Static scale-free networks Barabãsi and Albert, source Fortunato (2010)

The fourth model is the Weighted network. It identifies and defines the existence of a

different intensity of the connections between the nodes [8, 79, 80]. In this case, the different

links present a numerical value that measures the strength of the connection. The presence

of different levels of association has been recognized in different real networks as for instance

social networks, food networks and the Internet [321, 15, 234, 50].

The weighted network can be represented through the graph Gw = (N,L,W) where N =

{n1, n2, . . . , nN} indicates the set of nodes, L = {l1, l2, . . . , lK} the set of links and W =

{w1, w2, . . . , wK} the set of weights [80, 299]. In addition, the weighted networks can be

represented as a matrix W where the wij is the weight of the link connecting node i to node

j [220, 50, 35].

In literature, it is possible to find different models that attempt to explain the construction

of weighted networks. For instance, Boccaletti et al. (2006) have stated that the most

simple model is based on random graphs with a given probability distribution P (k), where

the weights of the edges are distributed considering a weight distribution Q(w). Yook et al.

(2001) have defined the Weighted exponential (WE) model that is based on the unweighted

scale-free networks of Barabãsi and Albert (1999). They have established that starting with

m0 nodes a new node j is added at each step with a weight equal to:

wij =
ki∑
i
′ ki

where i
′
is a sum over the m existing nodes to which the new node j is connected. Moreover,

Antal and Krapivsky (2005) have defined a model considering the edges weight. They have

established that the probability the new node is connected to an already existing node is

67

proportional to the weight of that node. The probability is equal to:∏
j→i

=
si∑
l ki

where si is the node strength that is the generalization of the degree ki of a node i [50].

Finally, the study of complex networks has considered other kinds of networks, as for in-

stance those related to the space in which nodes occupy a precise position and edges are real

physical connections [50]. These kinds of networks are called Spatial networks. It is possi-

ble to find real examples of this kind of network such as the information, communication

and transportation networks [50]. Generally, these networks are geographically constrained,

because the nodes are collected in spatial networks and links are limited by the physical

space [50]. Many researchers have also studied spatial networks and their construction. For

instance, Stoneham (1977) and Csanyi and Szendroi (2004) have studied the network with

spatial implications taking into account the small-world problem. Other researchers, such

as Warren et al. (2002), have analyzed the implication of scale-free structure on spatial

networks. They have stated that in spatial networks the probability of connection is higher

for pairs of vertex that are close together in that space [300].

The above mentioned models are able to represent the complex real networks considering

specific and distinctive aspects. Each model can support the analysis of networks and the

interpretation of their changes in time.

3.7 Community detection

In the last decade, another topic related to complex networks has been studied thor-

oughly: Community Detection [246, 83, 268, 236, 237, 225, 182, 296, 318, 252, 14, 83,

98, 18, 154, 227, 221, 185, 84, 195, 281, 312, 328]. This topic is based on the anal-

ysis of a specific characteristic of complex networks: the structure of the community

[222, 291, 143, 294, 183, 307, 265, 204, 280, 41, 195]. The community structure can be

defined as a modular decomposition of the network as a number of modules that each com-

prises a group of nodes densely connected to each other but sparsely connected to nodes in

other modules [232, p. 3].

Following Beckett’s definition (2017), the modules are a subset of nodes in which the interac-

tions in the network occur within modules rather than between modules. The community

structure can be also defined as a set of nodes with more internal links than external

[224, 317], as shown in Figure 3.12, and the community as a set of nodes with the same

properties [160, 224, 19, 299].

Many different definitions of community can be found in literature [323, 126]. One of them

68

describes it as a subgroup of nodes with a density of internal connections larger than the

density of external links [139, 98, 141, 222, 127, 70, 236, 17, 291, 294, 182, 318, 152, 252,

185, 265, 14, 245, 317, 154, 227, 298, 84, 158, 126, 19, 41, 195, 312, 328, 150]. Raghavan et

al. (2007) have defined it as a group of nodes that are similar to each other and dissimilar

from the rest of the network [247, p. 1].

Communities can be found in different kinds of networks. They represent an important

topic for different research areas such as social sciences, biology, computer science, engi-

neering, economics, politics [240, 176, 98, 265, 14, 76, 204]. In each area, the community

assumes a specific definition. In social networks, the community is defined as a group of

entities closer to each other in comparison to other entities of the dataset [42, p. 116] or as

individuals that interact with each other within a group more frequently than outside the

group [314, 227, 42, 312].

Figure 3.12: Community in network, source: Newman, 2006

The concept of community has been remained the same. It has been established, for

instance, that communities can overlap as well as share some of the vertices, as shown in

Figure 3.13 [185]. A subdivision into overlapping communities is called cover [126]. On the

contrary, not overlapped communities are called partitions [126]. Instead, a cover can be

defined as crisp when shared vertices belong to their communities with equal strength, or

fuzzy when the strength of their membership can be different in different clusters [126].

69

Figure 3.13: Overlapping communities, source: Fortunato and Hric, 2016

In addition, the network communities can be studied both at a local and a global level

[261, 158]. In the first case, researchers focus their attention on the study of a unique

sub graph, as for instance a subgroup composed by people that are joined by a feeling of

friendship. In the second case, the focus is based on the whole graph and the aim is to

comprehend the entire system of the network.

It is also possible to distinguish between strong and weak communities. Specifically, Fortu-

nato and Hirc (2016) have defined the first as a subgraph each of whose vertices has a higher

probability to be linked to every vertex of the subgraph than to any other vertex of the graph;

the second as a subgraph such that the average edge probability of each vertex with the other

members of the group exceeds the average edge probability of the vertex with the vertices of

any other group [126, p. 7-8]. Each node has more connections within the community in

strong community V than with the rest of the graph, kini (V) > kouti (V),∀i ∈ V . On the

contrary, the sum of all degrees within V in weak community V is larger than the sum of

all degrees toward the rest of the network,
∑

i∈V k
in
i (V) >

∑
i∈V k

out
i (V) [70]. It can be

stated that the community in a strong sense is also a community in a weak sense, however

the opposite is not true.

Community detection is an important area of the study of complex networks. Defining

and identifying the community is fundamental to comprehend the structural and dynami-

cal properties of the networks. Moreover, community detection is important to reveal both

the internal organization of networks and the presence of special relationships between the

nodes [224, 176, 307, 126, 231, 265, 227, 154, 245, 41]. In addition, it identifies central

nodes and helps to comprehend their function and the relationships and exchanges between

different communities [126, 41, 150].

70

Finally, the community detection aim is to divide a network into groups of nodes that are

are densely connected inside but sparsely connected outside [224, 268, 98, 76, 278]. Mirsaleh

and Meybodi (2016) have defined the community detection as the process of partitioning

the network into some communities in such a way that there exist many connections in the

communities and few connections between them [204, p. 535].

Applying community detection allows to divide a complex network into a number of commu-

nities characterized by a high interconnection between the nodes [224, 278, 299]. Moreover,

analyzing the modular structure is important to comprehend the dynamic behavior of the

system, the structure of the network and the correlation inside the network.

3.7.1 Community detection models

Numerous methods have been developed to realize the community detection in complex net-

works. Many of this methods are developed referring to tools and techniques from different

disciplines such as physics, biology, applied mathematics, computer and social sciences

[246, 294, 183, 176, 318, 252, 307, 231, 265, 14, 98, 265, 18, 84, 76, 281]. This has happened

because the theorized algorithms are widely used in many fields [225, 265, 14, 317, 18].

Following the literature review realized by Fortunato (2010), the methods of community

detection can be classified in traditional, divisive algorithm, modularity-based methods, dy-

namic methods and other methods.

3.7.2 Traditional methods

Traditional methods can be casted in graph partitioning, hierarchical clustering, partitional

clustering and spectral clustering [313, 298].

In graph partitioning, the graph is divided into groups with specific properties. The number

of parts is generally specified before the partition [42]. The aim of this method is to divide

the vertices in g groups of predefined size, such that the number of edges lying between

the groups is minimal [221, 313, 216]. The number of edges running between clusters is

called cut size [125]. One of the traditional graph partitioning method has been proposed

by Kernighan and Lin (1970). It attempts to solve the following problem: given a graph G

with cost on its edge, partition the nodes of G in two subset no larger than a given maximum

size, so as to minimize the total cost of the edges cut [166, p. 291]. The method starts with

an initial partition of the graph in two clusters of the predefined size. The division is realized

considering some information about the graph structure, or randomly. Later, equal number

of vertices is moved from one subgroup to the other to reduce the benefit function. This

function measures the difference between the number of edges inside the modules and the

number of edges lying between them [239, 221, 238, 216]. Finally, after some swaps with

71

positive and negative effect on the benefit function, the partition with the largest value of

benefits function is selected and used as starting point of a new series of iterations. This

method presents some limits as for instance the fact that is necessary to know the network

and its structure before the analysis [221, 220].

Another traditional method is the hierarchical clustering [166, 70, 261, 318, 42]. It identifies

different groups choosing a similarity measure capable of computing the similarity for each

pair of vertices [221, 261, 318]. This method can be applied considering two different

approaches: the agglomerative approch or the divisive one. In the first case, the similar

nodes are aggregated one after the other with the aim to create a unique community.

Instead, in the second case, the analysis starts considering a large cluster that is divided

in smaller clusters [70, 246, 261, 42]. The clusters are obtained considering a measure of

similarity xij between pairs (i, j) of vertices [221]. In literature, it is possible to find different

measures of similarity. For instance, it is possible to use the Euclidean distance, which is

calculated as:

xij =

√∑
k 6=i,j

(Aik −Aij)2

where Aij is an element of the adjacency matrix for vertices i and j [221]. The Euclidean

distance assumes value zero, if the vertex pairs are equivalent in structure. Otherwise,

if the pairs do not share the same neighbors, it reaches a very large value [221]. In the

computation of the Euclidean distance, it is necessary to consider that two vertices can

be perfectly structurally equivalent by this measure without actually being connected to one

another, the existence or not of an edge between i and j makes no difference to equation

[221, p. 325]. Another measure is the Pearson correlation between columns, or rows, of the

adjacency matrix. It is calculated through the formula:

xij =
1
n

√∑
k(Aik − µi)(Ajk − µj)

σiσj

where µi = 1
n

∑
j Aij and σ2

i = 1
n

∑
j(Aij − µi)2. This measure behaves differently: the

vertices that are equivalent in terms of structure have high values in this case [221]. In both

approaches, the hierarchical partitioning process can be represented by a dendrogram, as

shown in Figure 3.14 [106, 83, 70, 237, 238].

The hierarchical partitioning method has the advantage that knowing many information

about the network before the analysis is not necessary [221, 125]. However, it also has some

disadvantages. For instance, this procedure produces many partitions and it is necessary

to find the better representation of the community structure of the graph. Moreover, it

is possible that vertices of a community may not be correctly classified, and vertices with

just one neighbor are often classified as separated clusters in nonsense way [125]. For these

72

Figure 3.14: Community in network (source: Papadopulos, 2012)

reasons, graph partitioning is more used in computer science, whereas hierarchical clustering

is more used in sociology [221, 296].

The third method proposed in literature is the partitional clustering. In this method, the

number of clusters is pre-assigned and the point is attributed to each cluster k considering

the distance in the metric space. Its aim is to maximize or to minimize a given cost

function based on distances between points or from points to centroids. The method starts

considering the presence of centroids and it attributes each vertex to the nearest centroid.

This operation is repeated until the positions of the centroids are stable. The obtained

solution is not optimal, and it strongly depends on the initial choice of the centroids [125].

The most used approaches are: the Minimum k-clustering, where the cost function is equal

to the largest distance between two points of a cluster with the aim to identify very compact

clusters; the k-clustering sum, in which a cost function equal to the average distance between

all pairs of points of a cluster is used; the k-center, where a centroid is defined for each cluster

i and the maximum of the distances of each cluster point from the centroid computed; and,

the k-median where the maximum distance from the centroid is replaced by the average

distance. Finally, the last function is the k-means clustering where the cost function is

calculated as:
k∑
i=1

∑
xj∈si

∣∣|xj − ci2∣∣ |
where ci is a centroid. Moreover, a variation of this method called fuzzy k-means clustering

has been proposed, where the cost function is calculated as:

n∑
i=1

k∑
j=1

umij
∣∣|xj − cj2

∣∣ |
where uij represents the membership matrix, which indicates the degree of membership of

point i in cluster j and cj is the centre of cluster j. This method attempts to attribute the

point at the correct cluster considering the fact that a point may belong to two or more

clusters at the same time [125].

The last traditional method is the spectral clustering [261, 98, 229]. In this method, the

73

partition, called cut, into clusters is realized using the eigenvectors [221, 106, 112, 238, 318,

216, 261, 98]. To realize the clustering, the set of objects are transformed into a set of

points in space, whose coordinates are elements of eigenvectors [261]. Later, the clusters

are created using standard techniques such as k-means clustering. The transformation in

eigenvectors allows to better represent the cluster properties [221, 125]. If the eigenvectors

present high values, the groups are well separated from each other. Fundamentally, the

method consists in a hierarchical clustering. It starts merging only the pairs of clusters that

have at least one interconnecting edge [106, 318]. It proceeds defining different partitions,

and in the end the partition with the largest modularity is chosen [106]. Finally, this model

is characterized by the use of Laplacian eigenvectors with the aim to get good partitions

[239, 106, 224, 238].

The first contributions about spectral clustering has been written by Donath and Hoffmann

(1973) and Fiedler (1973). For what concerns the application on graphs, the model proposed

by Donetti and Munoz (2004) is particularly interesting. They have defined a hierarchical

clustering based approach with eigenvectors of the Laplacian matrix of the graph to find

the similarity between nodes [106].

3.7.3 Divisive methods

The second group of methods is composed by divisive algorithms. These methods identify

communities through the detection of the edges that connect vertices of different commu-

nities and removing them [229]. The aim is to disconnect the clusters from each other.

In this method, it is fundamental to choose the edges and to split the network in communi-

ties, which are constructed removing edges progressively from the original graph [139, 221,

106, 83, 70, 240, 112, 313, 238, 42, 258, 150]. The most famous method has been theorized

by Girvan and Newman (2002). It is different from the previous model because it uses a new

measure to define the clusters. The measure is called betweenness. The concept of between-

ness identifies the frequency of the participation of edges to a process [139, 246, 70, 125].

Three different definitions are proposed in literature: geodesic edge betweenness, which

identifies the number of shortest paths between all vertex pairs that run along the edge;

random-walk edge betweenness, which is defined as the frequency of the passages across the

edge of a random walker running on the graph; finally, the current-flow edge betweenness,

that is defined as the average value of the current flow by the edge [139, 238].

The model of Girvan and Newman (2002) begins with the calculation of the betweenness

and it proceeds removing the edges with the highest betweenness. Initially, the nodes are

considered in a single cluster and after they are split in components. Later, the betweenness

74

for all edges affected by the removal is recalculated. Finally, the second phase is repeated

until no edges remain. The model is based on a divisive hierarchical clustering approach

[143]. The main idea of the model is that edges that run between communities have higher

betweenness values than those that lie within communities. The algorithm has been ap-

plied to different real networks. Girvan and Newman (2002) have stated that their model is

applicable on weighted, directed and large graphs, and is able to define communities inside

the network. However, it is possible to identify some downsides, too, as for instance the

absence of a guide to support the decision of how many communities a network should be

split into [221].

Another divisive method has been theorised by Radicchi et al. (2004). They have defined

an algorithm to discover the communities in a network considering the degree of nodes.

The method operates removing the edge of lower coefficient at each step. The difference be-

tween this method and the one proposed by Newman and Girvan (2002) is that the former

removes the edge with the smallest value of edge-clustering coefficient, whereas the latter

removes the edge with the highest betweenness value. The edge-clustering coefficient can

be defined as the fraction of triangles to which an edge can belong [246]. Given an edge

that runs between two vertices i and j, with the degrees ki and kj , and assumed that is

possible to identify only one edge between any pair of vertices equal to min(ki − 1, kj − 1),

the edge-clustering coefficient can be calculated as:

Cij =
zij + 1

min(ki − 1, kj − 1)

where zij is the measured number of triangles to which the edge belongs and +1 is a penal-

ization to increasing weights of edges that belong to zero triangles, but which join vertices

of low degree. The algorithm starts with the removal of edges with low values of Cij ; later,

the coefficient is recalculated for the remaining edges. The main downside of this method

is that it is totally focused on the presence of triangles in networks and if they are a few,

the coefficient assumes small values, so the algorithm is not able to find the communities

[246, 291, 221].

An alternative measure of centrality for edges is the information centrality. It is based on

the concept of efficiency that measures how the information travels on a graph according

to the length of the shortest paths between vertices. The information centrality is a useful

measure to quantify the relevance of each edge in the network [261, 127]. Fortunato (2010)

has defined it as the average of the inverse distances between all pairs of vertices [125,

p. 100]. In addition, Fortunato et al. (2004) has defined a method based on the efficiency.

In their algorithm, the centrality information is calculated estimating the distance between

75

all pairs of vertices. The algorithm operates in four phases. It starts calculating the infor-

mation centrality score for each of the edges and removing the edge with the highest score.

Later, an analysis of the network components is performed and the procedure is reiterated

until all edges are removed and the system breaks up into N disconnected nodes. However,

this method cannot be used with large-scale networks, because in this kind of networks it

can be difficult to compute the shortest paths [98].

3.7.4 Modularity methods

The main characteristic of the third group of community detection methods is the use

of a specific measure: the modularity. It is a measure proposed by Newman and Girvan

(2004) to estimate the goodness of the modules obtained from the community detection

[221, 220, 224, 33, 152, 11, 150]. The modularity is calculated through the formula:

Q =
∑
l

eii − a2
i

where eii is the fraction of the edges that connects vertices in community i; ai =
∑

i eij is

the fraction of edges that connects to vertices in community i, and eij indicates the fraction

of the edges connecting vertices in two different communities i and j [221, 222, 83]. The

modularity defines the quality of a specific community division in a network [152, 105, 150].

For this reason, the best partition has a high modularity [221, 152]. Dinh and Thai (2015)

have defined it as a measure to qualify the goodness of community structures and stated that

many efficient methods to maximize modularity have been proposed but without optimality

guarantees [105, p. 1].

Many different kinds of algorithms based on modulatory measures have been theorized. The

first group is composed by Greedy techniques proposed by Newman (2004) [222, 294, 229].

These methods join together the vertices into communities with the aim to obtain an increase

in terms of modularity. The partition is defined in different steps. Firstly, a hierarchical

cluster is realized. The algorithm starts considering each singular node as a single vertex

without edges. They are gradually inserted to reduce the number of the single nodes. The

inclusion of vertex is realized in order to obtain the maximum increase of modularity [222].

The algorithm of Newman outperforms the previous algorithms in both modularity and

efficiency [240].

Clauset et al. (2004) have proposed a different method to improve Newman’s. It is based

on the greedy optimization of modularity to detect communities in large networks [83].

Researchers have introduced the use of sparse matrices inside the model to rearrange the

data in the form of binary trees. The algorithm starts considering each node individually

76

and it clusters the nodes to create a unique community. It computes the modulatory for

each pair of nodes through the formula:

∆Qcci,cj = Q(G,C − ci − cj + (ci ∪ cj)−Q(G, C)

where G is undirected graph, C is a clustering of G, ci and cj are two communities, Q(G, C)
is the modularity of community C in graph G. The algorithm chooses the pair of nodes

that presents the maximum value of ∆Q and merges them into a new community. The

algorithm stops when all nodes are joined in pair and communities [83, 294, 150].

The second groups of algorithms is called ”Simulated annealing”. It is a probabilistic

procedure for the global optimization and consists in n exploration of the network space

to find a global optimum of the a function called maximum [125]. The aim is to find a

stable system in which the function obtains the maximum value and it is not possible to

find relevant variations of the state. This procedure was theorized firstly by Guimerã et

al. (2007). They consider the network in terms of local and global space. In the first case,

a single vertex is shifted randomly from one cluster to another; in the second case, the

communities are merged and split. The splitting can be done in different ways. In this

approach, the best results are obtained optimizing the modularity of a bipartition of the

cluster [145]. Specifically, Guimerãet al. (2007) have introduced a modularity measure of

bipartite networks. This kind of graphs have two partitions that are non-overlapping sets

and links that have one end node from each set. An example of bipartite network is the

citation network that can be shared in two sets where one represents the researchers and

the other one the publications [109, 145, 325]. The same biparition can be found in the

artists collaboration network, where it is possible to identify two sets: the first composed

by artists, the second by teams [109, 145, 325]. Guimerã et al. (2007) have focused on

the artists collaboration network and they have attempted to define groups of actors that

are closely connected to each other through the concept of co-participation in many teams.

Their aim was to define an approach able to identify modules in each of the two sets of

nodes in the bipartite network independently.

Finally, Fortunato et al. (2010) have stated that the modularity optimization method can

be used from a resolution limit problem: it is not able to classify specific cases of graphs

and it determines an overestimation of network links.

3.7.5 Dynamic methods

Another class of methods is the dynamic algorithms. It is possible to include inside this

group different kinds of methods based on different concepts.

The first concept is the random walk [261, 318]. Newman (2005) has defined the random

77

walk of a vertex i as the number of times that a random walk starting at s and ending at t

passes through i along the way, averaged over all s and t [223, p. 42]. The relative models are

based on the idea that a strong community is characterized by the high density of internal

edges: consequently, an elevate number of paths can be followed. Different researchers

have used this kind of approach [318, 125]. For instance, Zhou (2003) has used random

walks to define a distance between pairs of vertices; Latapy and Pons (2005) have proposed

another distance measure considering the probability that the random walker moves from

a vertex to another in a fixed number of steps [327]. Specifically, given a transition matrix

Pnxn = pij where pij =
xij
di

and di is the degree of ni, let Pmij the probability of ending at

nj , the distance measure D(i, j) is calculated as:

D(i, j) =

√√√√ N∑
n−1

(Pmin − Pmjn)2

dn

The formula can be generalized to communities as:

D(Ck, Ck′) =

√√√√ N∑
n−1

(PmCk
− Pm

C
′
k

)2

dn

where PmCk
= 1

Nk

∑
i∈ P

m
ij is the probability of going from Ck to nj , ni /∈ Ck in m steps.

The second concept is the synchronization [125]. This phenomenon describes the situation

in which the units of the system are in the same or similar state at every time. Many

researchers have used it to create a model for the partition of graphs, as for instance Arena

et al. (2006) and Boccaletti et al. (2007) [17, 48].

The third concept is the label propagation, and Raghavan et al. (2007) have proposed a

new method based on it [247]. They have attempted to define a method that starts giving

a unique label at each vertex of the network. Later, each vertex takes the label shared by

the majority of its neighbors. At the end, some labels dominate, other disappear inside the

network and the communities are defined as groups of vertices having identical labels at

convergence. This method has some advantages: for instance, it does not need any infor-

mation about the number and the size of the clusters, and it does not need any parameter.

It is interesting to underline that Raghavan et al. (2007) have stated that the community

detection is similar to network partitioning. The aim of community detection is to find

groups that either have an inherent or an externally specified notion of similarity among

nodes within groups. Instead, the aim of network partitioning is to divide any given network

into approximately equal size groups irrespective of node similarities [247].

Finally, the last concept it the map representation [255]. A cogent representation can of-

fer important information about the network, the interactions between the elements and

78

the structure of complex systems. A model has been proposed by Rosvall and Bergstrom

(2007). These researchers have adopted as information-theoretic approach to measure: how

efficiently a map represents the underlying geography; how many details are lost in the

process of simplification; and, finally, to quantify and to resolve the cartographer’s tradeoff.

Rosvall and Bergstrom (2007) have used a map to describe the dynamics across the links

and nodes in directed and weighted networks that represent the local interactions among

the subunits of a system. They focus their attention firstly on the system-wide flow of

information that characterizes the behavior of the full system and, secondly, in the iden-

tification of the modules that can describe how information flows into the network. They

have considered the random walk as a proxy for the information flow. They have provided

a mechanism for generating a dynamic into a network capable of describing a random walk

within a network. They have shown that to solve a coding problem is equivalent to find

community structures in networks [255].

3.7.6 Other methods

It is possible to identify some models that cannot be included in the previous categories.

For instance, a method has been proposed by Bagrow and Bollt (2008), an agglomerative

technique called L-shell method. This method operates at a local level, assuming that it

is possible to detect a community without requiring knowledge of the entire network. It

consists in an l−shell that starts from a vertex and spreads outward. Specifically, a shell is

a set of vertices at a fixed geodesic distance from the origin. The method starts considering

a vertex-origin and keeps adding vertices lying on successive shells. Two elements are

calculated: the emerging degree and total emerging degree. The former is defined as the l

number of edges that connect that vertex to vertices. The latter is the sum of the emerging

degrees of all vertices on the leading edge of the l − shell [22]. During each iteration, the

number of edges connecting vertices of the new layer to vertices inside and outside the

running cluster is calculated. If the ratio of these two numbers is bigger than the predefined

threshold, the vertices of the new shell are added to the cluster, otherwise the process ends

[22, 125].

Another method was theorized by Eckmann and Moses (2002). It is based on a local

criterion and on the use of clustering coefficient of a vertex. Specifically, this coefficient is

able to distinguish tightly connected groups of vertices.

The algorithm starts with clustering. Later, the neighbors vertices and the triangle are

identified inside the cluster. Then, the local curvature is defined with the aim to quantify

79

the aggregation of triangles with congruent edges. This curvature is equal to

cn = 2tn/((vn − 1)vn)

where tn is the number of triangles containing n as a corner, vn is the number of links

leaving n, and ((vn − 1)vn)/2 is the maximal number of possible triangles. The graph is

considered as a geometric space where the communities appear as portions of the graph

with a large curvature [116].

Reichardt and Bornholdt (2006) have proposed a method that combines a quality function

theorized from the same authors in (2004) and the modularity Q as defined by Newman

and Girvan. The quality function is calculated as [251]:

H({σ}) = −
∑
i 6=j

aijAij(σiσj) +
∑
i 6=j

bij(1−Aij)δ(σiσj)

+
∑
i 6=j

cijAij [1− δ(σiσj)]−
∑
i 6=j

dij(1−Aij)[1− δ(σiσj)]

where Aij is an adjacency matrix of the graph; 1, 2, . . . , q are the spin state or group index

of node i in the graph, aij , bij , cij and dij are the weights of the individual contributions.

If pij is the probability that a link exists between node i and j, it can be normalized

to
∑

i 6=j pij = 2M , and estimated as pij =
kikj
2M , where k is the degrees of nodes. The

modularity is calculated adapting to the quality function as:

Q = − 1

M
H({σ})

To maximize the modularity Q is necessary to minimize the first function. Moreover, this

algorithm uses efficient update rules to directly optimize modularity.

Another model has been proposed by Long et al. (2007). The model is based on graph

approximation to learn link-pattern based community structures from a graph. Long et

al. (2007) have defined a link-pattern based community as group of nodes which have the

similar link patterns [191, p. 232]. The model generalizes the traditional graph partitioning

approaches referring to different community structures. The aim of the model is to find

strongly connected subgraphs from a graph.

Zarei and Samani (2009) have proposed a general spectral method to find communities. It is

based on network complement and anti-community concepts. Specifically they have defined

anti-community structure as groups of vertices which are densely connected whereas inter-

groups [323, p. 1722]. Zarei and Samani (2009) have attempted to identify the communities

in a graph looking for anticommunities in the complementary graph. They have used the

eigenspace representation of matrices corresponding to a network complement to reveal the

community structure of a network. They have stated that the Laplacian eigenspace is the

80

best candidate for spectral community detection especially in networks with a heterogeneous

community structure [323, p. 1722].

Another method is the stochastic block model [162, 197]. It is a generative model for the

identification of blocks (groups). It is included inside the general class of random graph

models. Generally, it involves assigning each n vertices to one of K blocks, groups, or

communities. Later, undirected edges are located independently between vertex pairs with

probability to be a function only of the group memberships of the vertices. Generally, the

unnormalised maximum loglikelihood, which is able to give partition g in q groups of the

network G, is defined using stochastic block model, as follows:

Ls(G|g) =

q∑
r,s=1

er,slog
(er,s
nrns

)
where er,s is the number of edges running from group r to group s, nr and ns are the number

of vertices in r or s, and the sum runs over all pairs of groups. Karrer and Newman (2011)

have modified the previouos model introducing a parameter. They have called the model

degree-corrected stochastic block model (DCSBM) . They have defined the unnormalised

maximum log-likelihood as [162]:

Ls(G|g) =

q∑
r,s=1

er,slog
(er,s
eres

)
where er and es are the sum of the degrees of the vertices in r or s.

Finally, the last group of models is related to the benchmark [139, 177, 310, 126]. This mod-

els are based on the idea that although many algorithms have been proposed, none of them

has been subjected to strict tests to evaluate their performance. For this reason, a bench-

mark network must be defined. It is based on a planted - partition model [139, 177, 310, 126].

A certain number of groups of nodes are define into network. Each node has a probability

pin of being connected to nodes of its group and a probability pout of being connected to

nodes of different groups [139, 177]. A groups is defined as community when pin ≥ pout

inside the network. Otherwise, it is defined as a random graph when pin ≤ pout. Girvan and

Newman (2002) have proposed a model called the Girvan and Newman (GN) benchmark.

The benchmark is composed by 28 nodes, each with an expected degree of 16, which are

divided into four groups of 32 [139, 177, 310, 126]. Generally, GN benchmark is regularly

used to test algorithms for community detection. The result of the algorithm application

on different dataset can be compared with the results obtained in the application on this

benchmark [139, 177, 126]. However, GN benchmark has two drawbacks. The first is that

all nodes have the same expected degree, and the second is that all communities have equal

size [139, 177, 126].

81

Lancichinetti, Fortunato and Radicchi have introduced a new class of benchmark graphs.

They have generalized the GN benchmark introducing power law distributions of degree

and community size [177]. It is called Lancichinetti-Fortunato-Radicchi (LFR) benchmark.

The LFR benchmark involves different steps. Firstly, a degree γ taken, defined as a power

law distribution with exponent, is given at each node, the extremes of the distribution (kmin

and kmax) are chosen, and the average degree k is defined. Secondly, each node shares a

fraction 1 − µ of its links with the other nodes of its community and a fraction µ with the

other nodes of the network; µ is the mixing parameter [178, p. 2]. Thirdly, the size of the

communities are defined considering the power law distribution with exponent β, so that

the sum of all sizes equals the number N of nodes of the graph; than, a minimal and maxi-

mal community size smin and smax is established to respect smin ≥ kmin and smax ≥ kmax.

Later, all totally independent nodes are assigned to a randomly chosen community: if the

community size exceeds the internal degree of the node, the node enters the community,

otherwise it remains homeless, and in the next iterations it places a homeless node to a

randomly chosen community. The algorithm stops when all nodes have a community. Fi-

nally, to enforce the condition on the fraction of internal neighbors expressed by the mixing

parameter µ, the steps are rewired to obtain the desired share µ with good approximation.

3.7.7 Overlapping community

Recently particular attention has been posed on the study of a special kind of complex

networks: the multilayer networks. This kind of networks is called in different ways such

as multilayer, multiplex and network of networks [168]. In general, it can state the mul-

tiple communities have common nodes [17, 42]. An example of multilayer community is

represented by the private and personal relationships that all people develop in their life,

creating a large network characterized by the interaction between communities.

Many researchers have attempted to apply the community detection to multiple communi-

ties [268, 279, 165, 97]. The aim of community detection is to divide into multiple groups

that are known as overlapping nodes [268, 97]. There are specific models that can be used

to evaluate this particular kind of networks. Specifically, two categories of overlapping

community detection approaches have been identified. They are the node-based and the

link-based algorithms [268, 165]. The former divides the nodes of the network into different

communities establishing that a link usually represents the unique relation in a network.

The latter operates in two phases: in the first phase, the edges of the network are clustered;

in the second phase, the link communities are mapped to node communities by gathering

nodes incident to all edges within each link community.

82

Tagarelli et al. (2017) have identified three models to analyze multilayer networks: the

flattening method, that determines a single-layer network from the multilayer one; the ag-

gregation method, that detects a community structure separately for each network layer;

and finally the direct method, that computes a community structure directly on the input

multilayer network, by optimizing some multilayer quality-assessment criterion.

3.8 Three community detection algorithms: Louvain clus-
tering,Walktrap and Label prop

The analysis above has allowed to identity three community detection algorithms useful to

define a new semi-supervised approach. They are Louvain,Walktrap and Label prop.

The louvain clustering has been developed by Blondel et al. (2008). It is based on modularity

and on the method proposed by Clauset et al. (2004). Modularity is a measure theorized

by Newman and Girvan (2004) to estimate the goodness of the modules obtained with

community detection. It is calculated through the formula:

Q =
∑

eii − a2
i

where eii is the fraction of the edges that connects vertices in community i; ai =
∑

i eij is

the fraction of edges that connects to vertices in community i and eij indicates the fraction

of the edges connecting vertices in two different communities i and j. The modularity

defines the quality of a particular community division in a network. For this reason, a high

modularity indicates the achievement of a good partition.

The method proposed by Clauset et al. (2004) is based on the greedy optimization of

modularity to detect community in large networks. Clauset et al. (2004) have introduced

the use of sparse matrices inside the model to rearrange the data in the form of binary

trees. The algorithm starts considering each node individually and it clusters the nodes to

create a unique community. It computes the modulatory for each pair of nodes through the

formula:

∆Qcci,cj = Q(G,C − ci − cj + (ci ∪ cj)−Q(G, C)

where:

• G = (V,E) identifies an undirected graph;

• ci and cj defined two different communities;

• C is the clustering of G;

83

• Q(G, C) identifies the modularity

The algorithm chooses the pair of nodes that presents the maximum value of ∆Q and merge

them into a new community. The algorithm stops when all nodes are joined in pairs and

communities.

As evidenced before, the algorithm proposed by Blondel et al. (2008) combines modularity

and the Clauset model. It is applied on weighted networks and operates in two phases.

Firstly, it assigns each node of the network to different communities. In this initial partition,

each node corresponds to one community. Then, the algorithm considers a node i and a

node j and it evaluates if it is possible to record an increase in modularity joining together

the two points in the same community. This step is repeated for all nodes and each node is

located in the community that generates the highest increase in modularity. This process

is repeated until all nodes are located and until no further improvement can be achieved.

The efficiency is measured through the gain in modularity, ∆Q. It is calculated by moving

an isolated node i into a community C and through the formula:

∆Q = {
∑

in +Ki,in

2m
−
(∑

tot +Ki

2m

)2

} − {
∑
in

+Kin2m−
(∑

tot

2m

)2

} −
(
Ki,in

2m

)2

where:

•
∑

in is the sum of the weights of the links inside C;

•
∑

tot is the sum of the weights of the links incident to the nodes in C;

• Ki is the sum of the weights of the links incident to node i;

• Ki,in is the sum of the weights of the links from i to the nodes in C;

• m is the sum of the weights of all the links in the network.

In the second phase, the algorithm involves building a new network, which is created using

the communities found during the first phase as nodes. In this case, too, the algorithm is

based on a weighted network. The weights of the links are given by the sum of the weights

of the links between nodes in the corresponding two communities. When the new commu-

nities are defined, the algorithm repeats the first phase, until it is not possible to define new

communities and the highest modularity is attained [47].

Equally important for the definition of the CTSC is the cluster Walktrap, that was pro-

posed by Pons and Latapy (2005) and is based on the distance between vertices and on a

hierarchical clustering algorithm. Pons and Latapy (2005) have introduced a new measure

of distance, r, between the vertices, which is able to capture the community structure on

84

the graph. The distance is calculated considering the random walks on the graph G of a

given length t. The distance is equal to:

rij =

√∑ (P tik − P tjk)2

d(k)

where:

• k indicates the number of groups in a partition;

• t is the length of the random walk;

• P tij is the probability of going from the vertex i and vertex j through a random walk

of length t;

• P tik is the probability for the vertex i to stay on the partition k;

• d(k) is the degree of vertices.

This distance is small when two vertices belong to the same communities, and large if they

do not [237]. The formula can be generalized considering the community C1 and C2 as:

rC1C2 =

√∑ (P tC1k
− P tC2k

)2

d(k)

The distance between two communities is calculated taking into account the random walk.

Specifically, the starting vertex is chosen randomly and uniformly among the vertices of the

community.

Moreover, the distance is used in the search of the communities in combination with a

hierarchical cluster algorithm. The algorithm is based on an agglomerative approach and

uses the Ward’s method. It starts from a partition P1 = {{v}, v ∈ V } of the graph into n

communities reduced to a single vertex. Then, the distances between all adjacent vertices

are calculated. At each step k, two communities, C1 and C2, in Pk are chosen, where Pk is

a partition of the graph into communities. The algorithm merges together the communities

that minimize the mean σk of the square distance between each vertex and its community.

This is calculated as [237]:

σk =
1

n

∑
C∈Pk

∑
i∈C

r2
iC

For each pair of adjacent communities {C1, C2}, the algorithm computes the variation

∆σ(C1, C2) of σ and it merges together the two communities that give the lowest value

of ∆σ. After merging (C1, C2) in a new community C3, it is created a new partition

Pk+1 = (Pk+1 \ {C1, C2}) ∪ {C3}, which updates the distances between communities. The

85

algorithm stops when it is obtained P1 = {V } after n − 1 steps. In other words, the

algorithm runs out when all communities are merged together. The final output is shown

as a dendrogram.

The last of the above-mentioned algorithms is the Label prop, based on the label propagation

and on the model theorized by Raghavan et al. (2007). The algorithm focuses on the

hypothesis that a node x has as neighbors x1, x2, . . . , xk, and that each neighbor carries

a label denoting the community to which it belongs to. Then, the node x defines its

community based on the labels of its neighbors. Raghavan et al. (2007) have hypothesized

that each node chooses to join the community to which the maximum number of its neighbors

belong to, with ties broken uniformly randomly [247, p. 4]. At the starting point, every

node presents a unique label and the labels propagate through the network. After this

propagation, the group of nodes densely connected share the same label. Nodes that have

the same labels are grouped together as one community. Some labels dominate, other

disappear inside the network. Using this process the communities are defined as groups of

vertices having identical labels at convergence. It is possible to summarize the algorithm in

five steps [247, p. 5]:

1. it is initialized giving labels to all nodes in the network. It is identified a node as x

and a community as C;

2. at every step, each node updates its label based on the labels of its neighbors. The

process is realized iteratively;

3. the nodes are arranged in the network in a random order and set it to X;

4. for each x ∈ X chosen in that specific order, let

Cx(t) = f(Cxi1(t), . . . , Cxim(t), Cxi(m+1)(t− 1), . . . , Cxik(t− 1)).

The function f returns the label occurring with the highest frequency among neighbors

and ties are broken uniformly randomly;

5. finally, if every node has a label that the maximum number of its neighbors have, the

algorithm is stopped. Differently, it is necessary to restart from the third step.

The algorithm converges when a global consensus among groups is reached and the com-

munities are identified. This method has some advantages, as for instance the fact that it

does not need any information about the number and the size of the clusters. Moreover, it

does not need any parameter.

The three over mentioned community detection algorithms have been used within the new

86

semi supervised cluster algorithm presented in the next chapter.

To conclude, the study of networks is fundamental to comprehend the structure and

the characteristics of numerous phenomena. The study of nodes, edges and of the measure

of centrality supports the comprehension of networks. Moreover, the definition of models

defines important tools to comprehend the reality and the complexity of specific phenomena

as the World Wide Web, the social interactions and also the natural events.

Finally, the possibility to identify communities inside networks offers the opportunity to

study thoroughly the existence of different groups. The definition of models able to identify

these communities is fundamental not only in the study of networks, but also in the cluster

analysis. In fact, the community detection models offer a new tool to identify groups that

are homogeneous with respect to their components, and, at the same time, heterogeneous

with respect to the other groups inside the network. New application of these models is

possible, as it will be shown in the following chapter.

87

Chapter 4

A new semi supervised cluster
method

4.1 Abstract

A new semi-supervised clustering method will be proposed in this chapter. The name of

this method is Community Detection Tree-Based Algorithm for Semi-supervised Clustering

(CTSC). As evidenced by the name, different methodologies are used to build the CTSC.

Specifically, tree and community detection algorithms are combined together.

CTSC aims to identify clusters associated with an outcome variable. In other words, the

goal is to define a process to obtain clusters that include internally similar observations

w.r.t. the values of the outcome variable, and, at the same time, groups that differ each

other for the same outcome variable.

This chapter is focused on the presentation of CTSC and is divided into two parts. The first

one is focused on the analysis of the specific procedures and algorithms that are necessary

to build the CTSC. The second one is focused on the presentation of the algorithm and

on its application to simulated datasets and to three real datasets. Finally, the differences

between the proposed algorithm and the traditional cluster methods will be presented.

4.2 CTSC ingredients

We consider a dataset of unlabeled data Xn,p = (xi, yi)i∈[n] composed of p features of which

p − 1 are completely unlabeled whilst yi represents some supervision information. Specifi-

cally, yi represents a primary information that should be considered in the clustering process

and could be either a numerical variable or a categorical one. The goal of our semisupervised

clustering approach is to find a partition of the n instances into k disjoint groups resulting

the most different one form another and, equivalently, the most homogeneous in terms of

88

observations belonging to each individual group. In this setting, between-groups hetero-

geneity or within-groups homogeneity is evaluated with respect to the primary information

yi. The partition Πk into k groups obtained with the proposed approach is:

Πk = (X ,y | θk)

where X is a data matrix composed of the p − 1 “unlabeled” variables and θk is a vector

of parameters to be estimated by the clustering algorithm that allows us to find k clusters

that are the most internally homogeneous and the most externally heterogeneous w.r.t. y.

In other words, θk derives from a set of trees built according to the algorithm described in

Chapter 3 (Paragraph 3.8) that provide the input to the community detection algorithm

used to define the clusters. Since the main interest is finding a partition whose adequacy is

evaluated w.r.t. different values of the primary information variable y, θk corresponds to a

set of split points (s1, . . . , sk) that allow us to partition y into k groups. If one concentrates

on the search of the most internally homogeneous groups. the goal of the method consists in

finding the optimal set of parameters θ∗k, and thus the set of splitting points s∗k = (s∗1, . . . , s
∗
k)

that minimize the loss function:

min
sk
L [(yi, yik) | sk] .

If y is discrete or continuous, minimizing the loss function L(·) corresponds to the mini-

mization of the sum of internal deviances of y:

s∗k = arg min
k

[
n∑
i

k∑
i

(yik − ŷk)2
∣∣∣ sk
]

whilst the minimization of L(·) corresponds to minimizing the Gini impurity:

s∗k = arg min
k

1−
k∑
j

p2
j

∣∣∣ sk


As evidenced before, CTSC is defined taking into account different methodologies.

Tree-based algorithms are the first methodology applied on CTSC. They are a recursive

partitioning of the feature space into regions containing similar observations, as underlined

in Chapter 2.

Two specific approaches are taken into account to theorize the CTSC: the Classification

And Regression Trees (CART) and the Gradient boosting Machine (GBM), which is an en-

semble of prediction models, typically based on decision trees. The CART has been chosen

because it is able to identify partitions such that the observations with similar response

values are joined together in the same group [276]. Moreover, the minimization of the loss

89

function is useful in the definition of similar groups inside a dataset.

Community detection methods are also used in the CTSC, specifically in the clustering

phase. In fact, the CTSC transforms the clustering problem in community detection prob-

lems and the algorithm involves using community detection algorithms to realize the cluster

analysis. This choice has originated by the statement of Arruda et al. (2012). They have

argued that new approaches based on networks are able to detect clusters with higher accu-

racy than classical graph clustering methods [96, p. 6175]. Additionally, other researchers,

as for instance de Oliveira et al. (2008) and Granell et al (2011, 2012), have stressed how

the cluster definition is more accurate when community detection methods are used instead

of the traditional algorithm approach.

Numerous methods have been developed to identify the community detection in complex

networks. As evidenced in the Chapter 3, and following the literature review presented

by Fortunato (2010), it is possible to classify the methods in: traditional and divisive al-

gorithms, modularity-based methods, dynamic methods and other. Numerous algorithms

have been proposed for each different approach. Some methods are implemented in R into

the package igraph [47].

Three specific approaches, Louvain,Walktrap and Label prop, have been chosen for the build-

ing of CTSC. It has been decided to use the Louvain because it defines the communities

taking into account the strength of the relationship between the nodes, and because it joins

together the nodes that improve this relationship. This aspect is fundamental in the defini-

tion of the CTSC, as will be shown later. Equally important for the definition of the CTSC

is the cluster Walktrap. The Walktrap has been chosen because it is based on the r distance

that joins together the nodes, taking into account the probability to belong to a cluster

and the probability to join two different nodes. This aspects is useful in the definition of

the cluster based on the study of the relationship between observations. Moreover, the

Label prop has been chosen because it is supposed that the proximity matrix identifying the

closeness of the observation can be is an important support support for the propagation of

the labels inside the dataset. Consequently, the community detection model can be able to

identify clusters with a similar value for the outcome variable.

Other algorithms, as for instance Cluster Spinglass [226, 251], Cluster Leading Eigen [224]

and Cluster Edge Betweenness [226] are not chosen for different aspects. Specifically, the

Cluster Spinglass involves attributing a weight at each observation in the definition of com-

munity. On the contrary, the proposed algorithm takes into account the weights only in

the first part in the definition of proximity matrix, and not in the second phase when the

community detection algorithm are implemented to identify the cluster. For this reason,

the above mentioned algorithm can not be included on CTST. The Cluster Leading Eigen

90

is based on a matrix defined as difference between the adjacency matrix and the probability

that certain edges are present. Moreover, the Cluster Edge Betweenness is based on the

edge betweenness, the ratio of the number of the shortest paths going through the edge to

the shortest paths of all node pairs [315]. However, the paths are not considered in the

CTSC, but the attention is posed on the presence or not of links and for this reason it is

not included in CTSC.

After the application of the community detection algorithms, two different kinds of test are

realized to define the best partition among the results obtained in the different iterations:

the Tukey Honestly Significant Difference (HSD), used when the outcome variable is quan-

titative, and the Fisher test, used for qualitative outcome variable.

The Tukey Honestly Significant Difference (HSD) test is applied inside the algorithm in

order to define the differences between groups in terms of average value of the outcome

variable. The test, introduced by John Tukey (1949), operates defining the honestly signifi-

cant difference value and comparing it with the difference between the average value of the

groups. The honestly significant difference value is calculated as

HSD = Qα(s, n− s)sd̄

where Qα(s, n− s) is called Studentized rank value and sd̄ is equal to:

sd̄ =

√
MSerror

r

where α defines the significance level, s represents the number of the average values to

compare; and r indicates the number of observations. The test involves comparing all

differences between the average values |yi.− yj.| with the HSD and, if |yi.− yj.| > HSD, it

is possible to state that the difference between i and j is significant.

The Tukey HSD is useful to find out the differences between the groups, taking into account

the average value of the outcome variable.

The Fisher test is used for qualitative variables. It was proposed in the 1930s by Fisher. It

is based on the null hypothesis that it is not possible to identify association between the

rows and columns of the n × n table, as the example in Table 4.1. Established that the

columns represent the study group and the rows represent the outcome, the null hypothesis

explain the probability of having a particular outcome not being influenced by the study

group, and the test evaluates whether the two study groups differ in the proportions with

each outcome. The probability is calculated as

p =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

n!a!b!c!d!

91

where a, b, c, d are the individual frequencies of the 2 × 2 contingency table, and n is the

total frequency. Later, the probability is used to compute Fisher test p-value in order to

reject the null hypothesis.

The Fisher is useful to find out the differences between the groups where the outcome

variable is qualitative and it is not possible to apply a test based on the mean values.

Column 1 Column 2 Total

Row 1 a b a+b
Row 2 c d c+d
Total a+c b+d a+b+c+d

Table 4.1: General form for Fisher Test

4.3 Community Detection Tree-Based Algorithm for Semi-
supervised Clustering (CTSC)

It will be now proposed an iterative approach of semi-supervised clustering. This approach

has been defined as a cluster associated with an outcome variable, classification identified

by Bair (2013), because the partition of the data is realized taking into account a specific

variable, i.e. the outcome variable.

The algorithm is built combining tree based and community detection algorithms. Its aim

is to define an algorithm able to identify a partition in which observations with a similar

value of the outcome variable are joined together in the same group.

CTSC works in three step. The first step is called pre-training phase. Some elements are

taken into account in this phase, specifically:

• the classifier fy;

• the vector of outcome variable, y;

• the column vector of n elements, Z = [z(1), z(2), . . . , z(p)];

• the number of iterations, B;

• the number of iteration in the pre-training phase, Bp, where p is the number of

covariates. It is established that B � p.

A classifier f is trained taking into account: y, the vector of labels of n elements that

identifies the outcome variable, and z, the column vector of n elements that identifies the

covariates xj . The classifier is defined through the tree-based algorithm. This phase is

92

iterative. The tree is trained Bp times. Initially, one covariate is chosen at a time and a

weight w, equal to w = (1/p, 1/p, . . . , 1/p), is attributed to each covariate.

Notation

• Z = [z(1), z(2), . . . , z(p)] a data frame of column vectors z(j) of n elements

• y a vector of labels of n elements

• B � p number of iterations

• 1 as a column vector of p ones

Initialization

• w = (1/p, 1/p, . . . , 1/p) a vector of weights of p elements

• v = (vi = 0) with i = 1, . . . , p

• Mnn = Snn = Qnn = 0

Algorithm 1 Pre-training:

1: for k = 1 to p do
2: ŷ(k) = f̂(y, z(k))

3: vk = Ψ̂[z(k)|ŷ(k)]

4: Mij =

{
0 if y

(k)
i 6= y

(k)
j

1 if y
(k)
i = y

(k)
j

i, j = 1, . . . , n ∧ i 6= j

5: S(k) = S(k−1) + M
6: end for
7: wp = v/(1ᵀv)

Box 4.1: Pre-training phase

A tree is built in each iteration. All terminal nodes of the different trees are analyzed

in order to evaluate how many times one generic observation i is classified with another

generic observation j. Specifically: if i and j are in same node, Mij = 1, otherwise if i and

j are not in same node, Mij = 0

Mij =

{
0 if y

(k)
i 6= y

(k)
j

1 if y
(k)
i = y

(k)
j

i, j = 1, . . . , n ∧ i 6= j

The matrix Mnn is estimated in each iteration. At the end of the pre-training phase, the

matrices obtained by trees in Bp are added together to create the Snn. The total amount

of times that the observations are classified together in the same nodes is measured.

93

It is decided to call the Snn as proximity matrix, because it is a square matrix in which the

entry in cell (i, j) is a measure of the similarity between the observations.

Algorithm 2 Training:

1: for h = p+ 1 to B do
2: sample 1 ≤ δ ≤ p according to w(h−1)

3: ŷ(h) = f̂(y, z(δ))

4: v
(h)
δ = v

(h−1)
δ + Ψ̂[z(δ)|ŷ(h)]

5: w(h) = v(h)/(1ᵀv(h))

6: Mij =

{
0 if y

(h)
i 6= y

(h)
j

1 if y
(h)
i = y

(h)
j

i, j = 1, . . . , n ∧ i 6= j

7: S(h) = S(h−1) + M
8: end for

• u = {∀u ∈ S : ∃!u ∧ ui > ui+1}

• D a matrix of (|u| − 1) column vectors d(r) of n elements

Algorithm 3 Clustering:

1: for r = 1 to (|u| − 1) do

2: Qij =

{
0 if Sij > ur

1 if Sij < ur
3: Set d(r) as the member detected of community(Q)
4: end for
5: d∗ = arg mind∈D [g(y,d)]

Box 4.2: CTSC Algorithm

The pre-training phase is fundamental for two reasons. Firstly, weights for the obser-

vations and for the variables are defined through the tree algorithm: the observations are

weighted taking into account iteratively the heterogeneity of the group they belong to. The

variables are weighted taking into account their variable importance, vk = Ψ̂[z(k)|ŷ(k)]. At

the end of the pre-training phase, the weight of the variable is equal to: wp = v/(1ᵀv).

Secondly, the application of the classifier allows to define the proximity matrix. The prox-

imity matrix has an important role because it gives information about the closeness of the

observations. Specifically, since S indicates how many times two observations are classified

together, a high value inside S indicates that two observations have a similar value of co-

variates and outcome variable. This means that S defines the similarity, i.e. the proximity,

between the observations. In other words, the matrix measures of the relation of closeness

between the observations. The amount of times two observation are classified together pro-

94

vides a value of the strength of the relationship between observations. This means that sij

explains a grade of the vicinity level of two observations.

The pre-training phase stops after Bp iterations. It is followed by a second phase called

training. In this phase, the classifier is trained B − p times. The classifier is trained taking

into account one covariate at a time. It involves considering the weighted variables and the

weighted observations as defined in the first phase. The results of the classifier in the differ-

ent iterations are used to define the matrix M, and the matrix S. The final output of the

training phase is the proximity matrix resulting by the sum of all Mnn defined iteratively.

Finally, in the last phase, called clustering, S becomes the input matrix for the application

of the community detection algorithm and the definition of clusters.

S is transformed into Q. Specifically, in each iteration the value of sij are taken into ac-

count. In the first step, the value 1 is attributed at the highest value of sij , and the value

zero is attributed to the other sij . Consequently, the matrix Q will assume only two value:

one for the highest value of sij and zero for the other value.

Later, on the second iteration, the first two highest values of sij are taken into account and

they assumes value one; on the contrary, the value zero is applied to the other sij . Iteration

by iteration, all values of sij are gradually included in Q. Step by step, this transformation

allows to evidence the high level of similatity between observations and to create a link

between them.

In fact, the proximity matrix S is transformed in the adjacency matrix Q, characterized

by 0/1 value. Q identifies the links between observations. This transformation defines the

input for the third phase of the algorithm and the application of community detection algo-

rithms. The aim is to define the clusters taking into account only the strongest relationships.

In fact, Qij is used to define the strength of the relationship between two observations.

It is important to evidence that, in CTSC, the clustering problem is transformed in a com-

munity detection problem, following the suggestion of Arruda et al. (2012), de Oliveira et

al. (2008), Granell et al (2011, 2012). The community detection algorithm is applied on

Qnn iteratively for B times. Each iteration generates a partition with a specific number of

clusters. For each cluster, if the outcome variable is quantitative, the average value of the

variable outcome is calculated and the Tukey Honestly Significant Difference (HSD) test is

applied in order to define the difference between the average values of the outcome variable

for the identified clusters. On the contrary, if the outcome variable is qualitative, the Fisher

test is applied to evidence differences inside the identified clusters.

At the end, it is chosen firstly the partition with the minimum proportion of p-value higher

95

than a threshold α = 0.01 is chosen at the final partition m∗:

m∗ = min

(
1− number of p-value ≤ α

total number of p-value

)
that defines the partition with the lowest proportion of p-value lower than or equal to α.

m∗ is the best partition, that is partition with groups considered as more different with

respect to the outcome variable. The threshold α is usually lower than 0.01 As previously

seen, the CTSC can be applied taking into account different community detection and tree

based algorithms. CART and GBM have been chosen as classifier and Louvain, Walktrap

and Label prop as cluster algorithms. Six different combinations can be defined:

• the Louvain with CART;

• the Louvain with GBM;

• the Walktrap with CART;

• the Walktrap with GBM;

• the Label prop with CART;

• the Label prop with GBM.

These combinations offer the possibility to take advantage of different algorithms and to

adapt to different datasets.

The proximity matrix defined through CART and GBM can be an important input for the

definition of clusters. Specifically, it is supposed that the proximity matrix representing

the strength of the relationship inside the dataset can become a correct base to identify

clusters through the measure of modularity and of the Louvain algorithm. In fact, the

matrix is able to measure the strength of the links between observations and for this reason

can support correctly the estimation of the modularity. Additionally, it is hypothesized that

the proximity matrix, indicating how many times the observations are classified together,

provides a measure of the possibility that two observations belong to the same cluster.

For this reason, it is also useful to estimate the r distance applied on Walktrap algorithm.

Finally, the proximity matrix, which identifies the closeness between the observations, may

be useful in the definition of the neighbor between observations and it can facilitate the

identification of similar labels and their propagation. Consequently, it can be a correct base

for the application of Label prop.

To conclude, an algorithm is proposed combining two different methods to define a semi-

supervised clustering approach. The final output of the algorithm is a certain/given number

of clusters, that are different between them for the value of the response variable, but similar

96

inside them w.r.t. the outcome variable.

In the following, CTST will be applied to stress its ability to reach the prefixed aims.

4.4 Related algorithms in literature

The CTSC supports the identification of groups inside a dataset. As evidenced before,

CTSC is a semi-supervised clustering method associated with an outcome variable. How-

ever, CTSC differs form three algorithms that have been classified and presented in Chapter

1. CTSC differs from the algorithms theorized by Bair and Tibshirani (2004) and Gaymor

and Bair (2013) because CTSC operates taking into account all features within the dataset

in the whole process. On the contrary, the above mentioned algorithms define a subset of

features highly correlated with the response variable in the starting phase and involve using

only them. The use of a reduced number of features can support the identification of the

groups that are highly correlated with the outcome variable. However, in this way a partial

analysis of the phenomena is offered, reducing the information that can support the study.

At the same time, CTSC differs from the algorithm proposed by Koester et al (2010), be-

cause CTSC does not make assumptions about the form of the distribution, but it starts

defining a function to explain the relationship between the outcome variable and the fea-

tures.

Generally, the cluster algorithms associated with an outcome variable are theorized to

solve problems in the medical domain and, specifically, to identify subgroup of cancers

[24, 137, 171]. The CTSC has not been theorized taking into account only a specific area:

it can be applied on different datasets and on different research domains.

Besides the semi-supervised clustering associated with an outcome variable, CTSC differs

from the other algorithms analyzed in Chapter 2, that combine tree-based methods and

cluster analysis. For instance, CTSC differs from the model proposed by Barros et al.

(2012) called Clustering for improving Decision-Tree Induction (Clus-DTI). In fact, Clus-

DTI uses the cluster to classify the data in sub-groups and, later, applies on them the tree

method. Its goal is to solve a classification problem. Clus-DTI is totally different from

CTSC, because the application of the two methodologies is inverted - the cluster analysis

is applied before the tree - and the aim is different.

In addition, CTSC differs from the Clustering Feature Decision Tree model (CFDT) pro-

posed by Xu et al. (2011). The CFDT starts applying a micro clustering algorithm to

summarize the data and to improve the accuracy for the successive application of decision

tree induction. Although they have in common the aim and the definition of a semi super-

vised method, in fact their frameworks are different.

CTSC differs also from the CLustering based on decision Trees (CLTree) proposed by Liu

97

et al. (2005). In fact, CLTree combines trees and cluster analysis: specifically, it uses the

decision tree to partition the data space into clusters. It involves mainly two steps. Firstly,

a modified decision tree algorithm is used to build a cluster tree with the aim to capture

the natural distribution of the data without making any prior assumption. Later, an inter-

active pruning step is performed to simplify the tree and to find meaningful clusters. The

CLTree is totally different from CTSC not only for the different aim, but also because the

two methodologies are combined and applied in different ways.

Furthermore, the main difference between the CFDT and the other algorithms is based on

the fact that, in order to define the clusters, the CTSC does not use traditional cluster algo-

rithms, but the community detection algorithms. Therefore, CTSC provides an innovative

approach in the definition of the clusters.

To conclude, CTSC has three main advantages. Specifically, the CTSC:

• can be implemented using quantitative and qualitative outcome variables, as well as

quantitative and qualitative covariates. This aspect makes the algorithm an important

tool for the analysis of different datasets and for the definition of clusters;

• uses all covariates included in the dataset, not only a subset, giving consequently the

possibility to consider the whole dataset;

• combines different tree-based and community detection algorithms in a flexible man-

ner. It is therefore more adaptable to the study of different data and phenomena.

4.5 Empirical evidence

CTSC will be now applied on different datasets to evaluate its performance in different

situation.

Two steps will be followed. Firstly, CTSC will be applied on simulated datasets to com-

prehend the capacity of CTSC to identify clusters inside the dataset taking into account

qualitative and quantitative outcome variables, different level of the perturbation and over-

lapping on the data, different number and kinds of covariates, iterations and noise variables.

Moreover, the CTST is applied a small dataset, the UNESCO dataset, in order to fix specific

aspects of the algorithm, as for instance B = 100, and to use only the CART as classifier.

The aim is to comprehend the functionality of the algorithm on a real dataset and w.r.t

qualitative and quantitative outcome variables.

Secondly, the algorithm will be applied on two bigger datasets: the Boston and the rent99

datasets. The number of iterations will be improved until B = 500 and all possible com-

binations of CTSC will be applied. This second phase aims to evaluate the feasibility of

98

the algorithm taking into account wide datasets and the different results deriving from the

application of different combinations.

Finally, the results of CTSC applied on Boston and rent99 will be compared with those

generated by the application of the traditional cluster methods. This comparison aims to

evaluate the existence of differences among the traditional cluster algorithms and the CTSC.

Two aspects will be taken into account:

• the group compositions, to comprehend possible overlaps among the traditional cluster

algorithms and the CTSC;

• the percentage of partitions with a highest proportion of p-values obtained for the

Tukey HSD test in each possible specifications of CTSC, and for different value of B.

The goal here is to evaluate the capacity of the different algorithms to identify groups

that vary significantly one from another.

4.5.1 Simulated data

The simulation data sets have been created in order to comprehend the capacity of CTSC

to identify cluster similar w.r.t. the outcome variables in different situations.

Specific aspects are established for the creation of simulated data. First, it is decided to

create datasets composed by one outcome variable, which can be qualitative or quantitative,

and a number of covariates equal to two, four and six in order to define datasets with

different sizes. Moreover, it is decided to define datasets only with qualitative covariates,

only with quantitative covariates or with both kinds of variables. The different combinations

of qualitative and qualitative variables allow to evaluate the real capacity of the CTSC to

reach the prefixed aim in different situations.

Moreover, other elements are taken into account in the creation of simulated datasets.

Firstly, for qualitative and quantitative variables, it is introduced an overlapping level on

the observations. Two opposed levels of overlapping are fixed: low and high. Secondly, the

number of groups inside the datasets has been fixed equal to two, four and six in order to

identify different level of clustering of the data. Thirdly, the noise variables are introduced

in the model with the aim to introduce uncontrolled factor that adds variation in the data

and to define all possible real situations and to better evaluate the capacity of CTSC to

work on different datasets. Also for this element, the number of noise variables introduced

on the model is fixed firstly to zero, and later to the maximum number of the variables

included in the model. Additionally, only for quantitative variables, the different level of

perturbation are inserted. Data perturbation is a data security technique that adds noise

to databases allowing individual record confidentiality [305, p. 14]. Two different level of

99

perturbation are included on the simulation: low and high perturbation.

Defined the dataset, the CTSC is applied combing the CART with the three community

detection algorithms Louvain,Walktrap and Label prop. It is fixed a number of iterations

equal to 100 and 500 in order to evidence the existence of differences in terms of identified

cluster increasing the number. Finally, in order to evaluate the capacity of CTSC to identify

groups similar to the real hypothesized groups, it is calculate the Rand Index. The indicator

assumes value zero when the partitions identified through the CTSC is totally different by

the partition identified on the simulated data, and value one when the partition are identical.

The CTSC is applied firstly on dataset where the outcome variable is qualitative. Analyzing

the result shown in Appendix A from Table A.4 to A.6 where the number of iterations is

fixed equal to 100, and the Table 4.2 where the number of iterations is equal to 100 and

500, it is possible to state that results suggest that CTSC works better when the number

of observation is low, the number of qualitative covariates is null, the observations are not

overlapped and the number of noise variable is null or low.

Table 4.2: CTST results, Louvain B = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.0001 2 2 0 1.0 100 0.95
0.0001 2 2 0 0.5 100 0.00
0.0001 2 2 0 0.0 100 0.00

0.0001 2 2 2 1.0 100 0.95
0.0001 2 2 2 0.5 100 1.00
0.0001 2 2 2 0.0 100 1.00
0.0001 2 2 4 1.0 100 0.95
0.0001 2 2 4 0.5 100 1.00
0.0001 2 2 4 0.0 100 1.00
0.0001 2 4 0 1.0 100 0.00
0.0001 2 4 0 0.5 100 0.00

0.0001 2 4 0 0.0 100 1.00
0.0001 2 4 2 1.0 100 1.00
0.0001 2 4 2 0.5 100 1.00
0.0001 2 4 2 0.0 100 1.00
0.0001 2 4 4 1.0 100 1.00
0.0001 2 4 4 0.5 100 1.00
0.0001 2 4 4 0.0 100 1.00
0.0001 2 6 0 1.0 100 1.00
0.0001 2 6 0 0.5 100 1.00
0.0001 2 6 0 0.0 100 1.00
0.0001 2 6 2 1.0 100 1.00
0.0001 2 6 2 0.5 100 1.00
0.0001 2 6 2 0.0 100 1.00
0.0001 2 6 4 1.0 100 1.00
0.0001 2 6 4 0.5 100 1.00
0.0001 2 6 4 0.0 100 1.00
0.0001 2 2 0 1.0 500 0.95
0.0001 2 2 0 0.5 500 0.00

100

Table 4.2: CTST results, Louvain B = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.0001 2 2 0 0.0 500 0.00
0.0001 2 2 2 1.0 500 0.95
0.0001 2 2 2 0.5 500 1.00
0.0001 2 2 2 0.0 500 1.00
0.0001 2 2 4 1.0 500 0.95
0.0001 2 2 4 0.5 500 1.00
0.0001 2 2 4 0.0 500 1.00
0.0001 2 4 0 1.0 500 0.00
0.0001 2 4 0 0.5 500 0.00

0.0001 2 4 0 0.0 500 1.00
0.0001 2 4 2 1.0 500 1.00
0.0001 2 4 2 0.5 500 1.00
0.0001 2 4 2 0.0 500 1.00
0.0001 2 4 4 1.0 500 1.00
0.0001 2 4 4 0.5 500 1.00
0.0001 2 4 4 0.0 500 1.00
0.0001 2 6 0 1.0 500 1.00
0.0001 2 6 0 0.5 500 1.00
0.0001 2 6 0 0.0 500 1.00
0.0001 2 6 2 1.0 500 1.00
0.0001 2 6 2 0.5 500 1.00
0.0001 2 6 2 0.0 500 1.00
0.0001 2 6 4 1.0 500 1.00
0.0001 2 6 4 0.5 500 1.00
0.0001 2 6 4 0.0 500 1.00

0.05 2 2 0 1.0 100 0.60
0.05 2 2 0 0.5 100 0.57
0.05 2 2 0 0.0 100 0.92
0.05 2 2 2 1.0 100 0.48
0.05 2 2 2 0.5 100 0.57
0.05 2 2 2 0.0 100 0.22
0.05 2 2 4 1.0 100 0.48
0.05 2 2 4 0.5 100 0.26
0.05 2 2 4 0.0 100 0.12
0.05 2 4 0 1.0 100 0.18
0.05 2 4 0 0.5 100 0.37
0.05 2 4 0 0.0 100 0.84
0.05 2 4 2 1.0 100 0.88
0.05 2 4 2 0.5 100 0.77
0.05 2 4 2 0.0 100 0.77
0.05 2 4 4 1.0 100 0.95
0.05 2 4 4 0.5 100 0.86
0.05 2 4 4 0.0 100 0.64
0.05 2 6 0 1.0 100 0.92
0.05 2 6 0 0.5 100 0.84
0.05 2 6 0 0.0 100 0.82
0.05 2 6 2 1.0 100 0.77
0.05 2 6 2 0.5 100 0.84
0.05 2 6 2 0.0 100 0.82
0.05 2 6 4 1.0 100 0.77

101

Table 4.2: CTST results, Louvain B = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.05 2 6 4 0.5 100 0.82
0.05 2 6 4 0.0 100 0.82
0.05 2 2 0 1.0 500 0.60
0.05 2 2 0 0.5 500 0.57
0.05 2 2 0 0.0 500 0.92
0.05 2 2 2 1.0 500 0.48
0.05 2 2 2 0.5 500 0.57
0.05 2 2 2 0.0 500 0.22
0.05 2 2 4 1.0 500 0.24
0.05 2 2 4 0.5 500 0.22
0.05 2 2 4 0.0 500 0.26
0.05 2 4 0 1.0 500 0.66
0.05 2 4 0 0.5 500 0.84
0.05 2 4 0 0.0 500 0.70
0.05 2 4 2 1.0 500 0.45
0.05 2 4 2 0.5 500 0.76
0.05 2 4 2 0.0 500 0.68
0.05 2 4 4 1.0 500 0.45
0.05 2 4 4 0.5 500 0.86
0.05 2 4 4 0.0 500 0.63
0.05 2 6 0 1.0 500 0.80
0.05 2 6 0 0.5 500 0.92
0.05 2 6 0 0.0 500 0.82
0.05 2 6 2 1.0 500 0.75
0.05 2 6 2 0.5 500 0.92
0.05 2 6 2 0.0 500 0.82
0.05 2 6 4 1.0 500 0.77
0.05 2 6 4 0.5 500 0.75
0.05 2 6 4 0.0 500 0.82

Then, it is applied the CTSC on simulated dataset that includes quantitative outcome

variable. Analyzing the results shown from Table A.4 to A.6 where the number of obser-

vation is fixed equal to B = 100, and the Table 4.3 where B = 100 and B = 500, it is

possible to observe that the value of Rand index decreases when the overlapping value is

high and when the number of noise variable increases. Moreover, the presence of qualitative

covariates does not influence the value of Rand Index.

On the contrary, this value changes taking into account the level of perturbation. Specif-

ically, each combination between covariates, noise variables and qualitative variables are

calculated considering two different levels of perturbation, high and low. The results ev-

idence that the level of perturbation has a direct impact on the value of Rand Index.

Specifically, when the level of perturbation is low, the value of Rand index is higher. This

aspect evidences a difficulty for the CTSC to identify correctly clusters when the level of

perturbation on the data is high.

102

Table 4.3: CTST results quantitative outcome, Louvain n = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.0001 2 2 0 1.0 100 0.96
0.0001 2 2 0 1.0 100 0.96
0.0001 2 2 0 0.5 100 0.31

0.0001 2 2 0 0.5 100 1.00
0.0001 2 2 0 0.0 100 1.00
0.0001 2 2 0 0.0 100 1.00
0.0001 2 2 2 1.0 100 0.96
0.0001 2 2 2 1.0 100 0.96
0.0001 2 2 2 0.5 100 0.31

0.0001 2 2 2 0.5 100 1.00
0.0001 2 2 2 0.0 100 1.00
0.0001 2 2 2 0.0 100 1.00
0.0001 2 2 4 1.0 100 0.96
0.0001 2 2 4 1.0 100 0.96
0.0001 2 2 4 0.5 100 0.96
0.0001 2 2 4 0.5 100 1.00
0.0001 2 2 4 0.0 100 1.00
0.0001 2 2 4 0.0 100 1.00
0.0001 2 4 0 1.0 100 1.00
0.0001 2 4 0 1.0 100 1.00
0.0001 2 4 0 0.5 100 1.00
0.0001 2 4 0 0.5 100 1.00
0.0001 2 4 0 0.0 100 0.96
0.0001 2 4 0 0.0 100 1.00
0.0001 2 4 2 1.0 100 1.00
0.0001 2 4 2 1.0 100 1.00
0.0001 2 4 2 0.5 100 1.00
0.0001 2 4 2 0.5 100 1.00
0.0001 2 4 2 0.0 100 0.92
0.0001 2 4 2 0.0 100 1.00
0.0001 2 4 4 1.0 100 1.00
0.0001 2 4 4 1.0 100 1.00
0.0001 2 4 4 0.5 100 1.00
0.0001 2 4 4 0.5 100 1.00
0.0001 2 4 4 0.0 100 1.00
0.0001 2 4 4 0.0 100 1.00
0.0001 2 6 0 1.0 100 1.00
0.0001 2 6 0 1.0 100 1.00
0.0001 2 6 0 0.5 100 1.00
0.0001 2 6 0 0.5 100 1.00
0.0001 2 6 0 0.0 100 1.00
0.0001 2 6 0 0.0 100 1.00
0.0001 2 6 2 1.0 100 1.00
0.0001 2 6 2 1.0 100 1.00
0.0001 2 6 2 0.5 100 1.00
0.0001 2 6 2 0.5 100 1.00
0.0001 2 6 2 0.0 100 1.00
0.0001 2 6 2 0.0 100 1.00
0.0001 2 6 4 1.0 100 1.00
0.0001 2 6 4 1.0 100 1.00

103

Table 4.3: CTST results quantitative outcome, Louvain n = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.0001 2 6 4 0.5 100 1.00
0.0001 2 6 4 0.5 100 1.00
0.0001 2 6 4 0.0 100 1.00
0.0001 2 6 4 0.0 100 1.00

0.05 2 2 0 1.0 100 0.60
0.05 2 2 0 1.0 100 0.60
0.05 2 2 0 0.5 100 0.38
0.05 2 2 0 0.5 100 0.55
0.05 2 2 0 0.0 100 0.42
0.05 2 2 0 0.0 100 0.57
0.05 2 2 2 1.0 100 0.20
0.05 2 2 2 1.0 100 0.48
0.05 2 2 2 0.5 100 0.57
0.05 2 2 2 0.5 100 0.55
0.05 2 2 2 0.0 100 0.46
0.05 2 2 2 0.0 100 0.64
0.05 2 2 4 1.0 100 0.20
0.05 2 2 4 1.0 100 0.48
0.05 2 2 4 0.5 100 0.60
0.05 2 2 4 0.5 100 0.42
0.05 2 2 4 0.0 100 0.60
0.05 2 2 4 0.0 100 0.74
0.05 2 4 0 1.0 100 0.31
0.05 2 4 0 1.0 100 0.84
0.05 2 4 0 0.5 100 0.54
0.05 2 4 0 0.5 100 0.54
0.05 2 4 0 0.0 100 0.60
0.05 2 4 0 0.0 100 0.88
0.05 2 4 2 1.0 100 0.57
0.05 2 4 2 1.0 100 0.35
0.05 2 4 2 0.5 100 0.30
0.05 2 4 2 0.5 100 0.74
0.05 2 4 2 0.0 100 0.48
0.05 2 4 2 0.0 100 0.81
0.05 2 4 4 1.0 100 0.51
0.05 2 4 4 1.0 100 0.38
0.05 2 4 4 0.5 100 0.43
0.05 2 4 4 0.5 100 0.60
0.05 2 4 4 0.0 100 0.54
0.05 2 4 4 0.0 100 0.81
0.05 2 6 0 1.0 100 0.77
0.05 2 6 0 1.0 100 0.81
0.05 2 6 0 0.5 100 0.43
0.05 2 6 0 0.5 100 0.88
0.05 2 6 0 0.0 100 0.74
0.05 2 6 0 0.0 100 0.62
0.05 2 6 2 1.0 100 0.77
0.05 2 6 2 1.0 100 0.76
0.05 2 6 2 0.5 100 0.57
0.05 2 6 2 0.5 100 0.96

104

Table 4.3: CTST results quantitative outcome, Louvain n = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.05 2 6 2 0.0 100 0.33
0.05 2 6 2 0.0 100 0.88
0.05 2 6 4 1.0 100 0.81
0.05 2 6 4 1.0 100 0.75
0.05 2 6 4 0.5 100 0.81
0.05 2 6 4 0.5 100 0.66
0.05 2 6 4 0.0 100 0.19
0.05 2 6 4 0.0 100 0.95

0.0001 2 2 0 1.0 500 0.96
0.0001 2 2 0 1.0 500 0.96
0.0001 2 2 0 0.5 500 0.31

0.0001 2 2 0 0.5 500 1.00
0.0001 2 2 0 0.0 500 1.00
0.0001 2 2 0 0.0 500 1.00
0.0001 2 2 2 1.0 500 0.96
0.0001 2 2 2 1.0 500 0.96
0.0001 2 2 2 0.5 500 0.31

0.0001 2 2 2 0.5 500 1.00
0.0001 2 2 2 0.0 500 1.00
0.0001 2 2 2 0.0 500 1.00
0.0001 2 2 4 1.0 500 0.96
0.0001 2 2 4 1.0 500 0.96
0.0001 2 2 4 0.5 500 0.96
0.0001 2 2 4 0.5 500 1.00
0.0001 2 2 4 0.0 500 1.00
0.0001 2 2 4 0.0 500 1.00
0.0001 2 4 0 1.0 500 1.00
0.0001 2 4 0 1.0 500 1.00
0.0001 2 4 0 0.5 500 1.00
0.0001 2 4 0 0.5 500 1.00
0.0001 2 4 0 0.0 500 1.00
0.0001 2 4 0 0.0 500 1.00
0.0001 2 4 2 1.0 500 1.00
0.0001 2 4 2 1.0 500 1.00
0.0001 2 4 2 0.5 500 1.00
0.0001 2 4 2 0.5 500 1.00
0.0001 2 4 2 0.0 500 1.00
0.0001 2 4 2 0.0 500 1.00
0.0001 2 4 4 1.0 500 1.00
0.0001 2 4 4 1.0 500 1.00
0.0001 2 4 4 0.5 500 1.00
0.0001 2 4 4 0.5 500 1.00
0.0001 2 4 4 0.0 500 1.00
0.0001 2 4 4 0.0 500 1.00
0.0001 2 6 0 1.0 500 1.00
0.0001 2 6 0 1.0 500 1.00
0.0001 2 6 0 0.5 500 1.00
0.0001 2 6 0 0.5 500 1.00
0.0001 2 6 0 0.0 500 1.00
0.0001 2 6 0 0.0 500 1.00

105

Table 4.3: CTST results quantitative outcome, Louvain n = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.0001 2 6 2 1.0 500 1.00
0.0001 2 6 2 1.0 500 1.00
0.0001 2 6 2 0.5 500 1.00
0.0001 2 6 2 0.5 500 1.00
0.0001 2 6 2 0.0 500 1.00
0.0001 2 6 2 0.0 500 1.00
0.0001 2 6 4 1.0 500 1.00
0.0001 2 6 4 1.0 500 1.00
0.0001 2 6 4 0.5 500 1.00
0.0001 2 6 4 0.5 500 1.00
0.0001 2 6 4 0.0 500 1.00
0.0001 2 6 4 0.0 500 1.00

0.05 2 2 0 1.0 500 0.60
0.05 2 2 0 1.0 500 0.60
0.05 2 2 0 0.5 500 0.38
0.05 2 2 0 0.5 500 0.55
0.05 2 2 0 0.0 500 0.42
0.05 2 2 0 0.0 500 0.57
0.05 2 2 2 1.0 500 0.20
0.05 2 2 2 1.0 500 0.48
0.05 2 2 2 0.5 500 0.57
0.05 2 2 2 0.5 500 0.55
0.05 2 2 2 0.0 500 0.46
0.05 2 2 2 0.0 500 0.64
0.05 2 2 4 1.0 500 0.20
0.05 2 2 4 1.0 500 0.48
0.05 2 2 4 0.5 500 0.60
0.05 2 2 4 0.5 500 0.61
0.05 2 2 4 0.0 500 0.60
0.05 2 2 4 0.0 500 0.60
0.05 2 2 0 0.5 500 0.38
0.05 2 2 0 0.5 500 0.55
0.05 2 2 0 0.0 500 0.42
0.05 2 2 0 0.0 500 0.57
0.05 2 2 2 1.0 500 0.20
0.05 2 2 2 1.0 500 0.48
0.05 2 2 2 0.5 500 0.57
0.05 2 2 2 0.5 500 0.55
0.05 2 2 2 0.0 500 0.46
0.05 2 2 2 0.0 500 0.64
0.05 2 2 4 1.0 500 0.20
0.05 2 2 4 1.0 500 0.48
0.05 2 2 4 0.5 500 0.60
0.05 2 2 4 0.5 500 0.61
0.05 2 2 4 0.0 500 0.60
0.05 2 2 4 0.0 500 0.61
0.05 2 4 0 1.0 500 0.31
0.05 2 4 0 1.0 500 0.84
0.05 2 4 0 0.5 500 0.54
0.05 2 4 0 0.5 500 0.54

106

Table 4.3: CTST results quantitative outcome, Louvain n = 100, 500

overlap group Nvar noise Varqua iteration Rand Index

0.05 2 4 0 0.0 500 0.60
0.05 2 4 0 0.0 500 0.88
0.05 2 4 2 1.0 500 0.51
0.05 2 4 2 1.0 500 0.74
0.05 2 4 2 0.5 500 0.30
0.05 2 4 2 0.5 500 0.74
0.05 2 4 2 0.0 500 0.48
0.05 2 4 2 0.0 500 0.88
0.05 2 4 4 1.0 500 0.70
0.05 2 4 4 1.0 500 0.74
0.05 2 4 4 0.5 500 0.46
0.05 2 4 4 0.5 500 0.74
0.05 2 4 4 0.0 500 0.48
0.05 2 4 4 0.0 500 0.81
0.05 2 6 0 1.0 500 0.77
0.05 2 6 0 1.0 500 0.75
0.05 2 6 0 0.5 500 0.51
0.05 2 6 0 0.5 500 0.88
0.05 2 6 0 0.0 500 0.81
0.05 2 6 0 0.0 500 0.62
0.05 2 6 2 1.0 500 0.77
0.05 2 6 2 1.0 500 0.76
0.05 2 6 2 0.5 500 0.64
0.05 2 6 2 0.5 500 0.96
0.05 2 6 2 0.0 500 0.67
0.05 2 6 2 0.0 500 0.66
0.05 2 6 4 1.0 500 0.77
0.05 2 6 4 1.0 500 0.76
0.05 2 6 4 0.5 500 0.51
0.05 2 6 4 0.5 500 0.84
0.05 2 6 4 0.0 500 0.64
0.05 2 6 4 0.0 500 0.90

To sum up, it is possible to state that the results evidence that the CTSC works better

when:

• the outcome variable is quantitative;

• overlapping is equal to 0.001;

• the number of the noise variables are equal to 2.

Moreover, for quantitative outcome variable, the low perturbation level is another aspect

that can influence the capacity of CTCS to identify clusters. Instead, for the qualitative

variable, the aspect that influence the result is the number of covariates qualitative, a value

equal zero is preferred in clustering phase.

107

The first results evidence the capacity of CTSC to reach the prefixed aim. In the next part

of this chapter, the algorithm is applied on real dataset in order to evaluate the capacity to

work on real dataset.

4.5.2 The Unesco website data

Unesco website Data is a dataset that includes information about Unesco Tourism Websites

(UTWs). In particular, in 2016 it has been created an ad hoc database by manually col-

lecting data from 142 websites dedicated to 137 cultural and natural heritages of UNESCO

located in France (41 UTWs), Italy (52 UTWs) and Spain (49 UTWs). For each UTW,

specific variables have been identified and classified into three main groups. The first one

is composed by 57 binary variables (Tables from A.7 to A.9) that are equal to one if the

specific element is included in a UTW, and to zero otherwise. The second group is com-

posed by the indicators that evaluate the effectiveness of UTWs (Table A.10), defined in

terms of online success (measured by Global Rank and Rank In) and capacity to attract

and to engage online visitors (measured by Bounce Rate, Daily Pageviews per Visitors and

Daily Time on Site). Thirdly, a third group of variables is considered, including 7 quan-

titative variables obtained from the first group (Table A.11). These variables have been

built considering the seven main characteristics of the UTWs and counting, for each one,

the number of related binary variables that are equal to one. Finally, three more variables

are included in this dataset: the first defines the country where the Unesco site is located,

the second identifies the type of Unesco site (cultural, natural or both), and the third the

type of website (destination website or Unesco website). Before applying CTSC on the

Unesco website data, it has been decided to fix B = 100 and to use only CART as classifier,

with the aim to simplify the application and to better understand the implications and the

results.

The variable Age has been chosen as the outcome variable. It has been supposed that

the different life times of Unesco sites can influence the online communication strategies.

Chosen covariates are the country, the type of Unesco site (Cultural, natural or both), the

type of website, the Global Rank, the Daily Pageviews per Visitor and the variables on

Table A.11. CTSC is applied with the aim to identify clusters with similar observation with

respect to the age of sites.

The algorithm is applied in three steps. In the pre-training phase, the classifier is built

iteratively and the number of iteration is equal to the number of covariates, B = 13. Dur-

ing this phase, an initial weight is attributed to the variables, w = 1
13 : this weight changes

in time considering the importance of the covariates. These weights are later used in the

training phase.

108

In the second phase, the training phase, a classifier is built many times B = 100− 13 = 87.

At the end of the two phases, 100 trees are obtained. Both in the pre-training and in the

training phase, the nodes of the trees are analyzed and the amount of times that observa-

tions are classified together in the same node is counted. The identified amounts are later

attributed to the proximity matrix.

The final clustering phase starts when the matrix becomes the input for cluster analysis.

For B = 100 times, the three community detection algorithms are applied

The Louvain algorithm is the first and is repeated iteratively. The central plot in Figure

?? shows how an increase of iterations number determines a reduction of the number of

identified groups. The right box in Figure ?? presents a proportion of p-values lowest than

0.01. The value is estimated for each partition. The value of the proportion of p-value

decreases as well as the number of iterations increases.

The Figure ?? shows the best iteration among the B = 100. It is the 75th iteration. It has

two groups with two different distributions of y. The number of groups has been chosen

automatically taking into account the maximum improvement in modularity.

1 2

0
10

20
30

75

0 20 40 60 80 100

0
2

4
6

8
10

12

Index

ris
.g

ru
pp

i

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e/

(c
ho

os
e(

ris
.g

ru
pp

i,
2)

))

Figure 4.1: Unesco Dataset, Louvain algorithm - 75th iteration

In order to pinpoint the differences between two groups identified applying the Louvain,

the box plots for the quantitative variable and the mosaic plots for the qualitative variable

109

are realized. The box a of the Figure 4.2 shows the box plots of the response variable Age

for the two different groups. The plot suggests that the groups are different and that they

can be classified the first with the label ”the youngest”, the second with the label ”the

oldest”. The analysis of the box plots of the quantitative covariates shows that generally

the distributions of the covariates of the youngest websites are different compare to the

distributions of the oldest. Specifically, the first groups has a greater variability w.r.t. the

variables global rank (plot b Figura 4.2), time on site (plot c Figure 4.2), daily page-views per

visitor (plot d Figure 4.2) and brand (plot f Figure 4.2). Moreover, different distributions

for each group are identified for the covariate contact and support (plot e Figure 4.2), and

for the variable tourism (plot d Figure 4.3), where the oldest group has higher values. This

suggests the presence of information more in these websites w.r.t. the ones that belong

to the the group the youngest. Instead, the two groups have similar distribution for the

covariates other (plot b Figure 4.4) and relational skills (plot cFigure 4.4).

Then, considering the qualitative covariates (Figures 4.4) it is possible to state that a

difference is recorded in the country composition of the groups. There are more French

sites in the second group compared to the first. Moreover, it emerges that generally most

Unesco site are cultural sites, and that hybrid site, i.e. cultural and natural, sites are equally

distributed in the two groups. Finally, the number of Unesco sites that provide information

through an owned website are equal in both groups (Website=yes).

Generally speaking, the results suggest that the oldest Unesco site obtain the best results

both in terms of online success (they have a better Global rank), and in terms of elements

included in their websites. On the contrary, the youngest Unesco sites have better results

in terms of time spent in the website and of the number of visited pages. It is possible to

state that the two groups identified in the partition are different not only for the outcome

variable Age, but also for some above mentioned covariates.

110

1 2

0
10

20
30

Group

A
ge

(a) Age

1 2

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

Group

G
lo

ba
l R

an
k

(b) Global rank

1 2

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Group

T
im

e
on

 s
ite

(c) Time on site

1 2

2
4

6
8

10
12

Group

D
ai

ly
 P

ag
ev

ie
w

s
pe

r
V

is
ito

r

(d) Daily pages per visitors

1 2

3
4

5
6

7
8

9
10

Group

C
on

ta
ct

 a
nd

 s
up

po
rt

(e) Contact and support

1 2

0
1

2
3

4

Group

B
ra

nd

(f) Brand

Figure 4.2: Unesco data, Louvain, comparison between groups

111

1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Group

N
ew

s

(a) News

1 2

0
1

2
3

4
5

6

Group

O
th

er

(b) Other information

1 2

0
1

2
3

4
5

Group

R
el

at
io

na
l S

ki
ll

(c) Relational skills

1 2

5
10

15
20

Group

To
ur

is
m

(d) Tourism

1 2

0
1

2
3

4

Group

E
xt

er
na

l i
nf

or
m

at
io

n

(e) External information

Figure 4.3: Unesco data, Louvain, comparison between groups

112

Group

Ty
pe

 o
f W

eb
si

te

1 2

N
C

N
C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Type of Unesco site (b) Website of Unesco site

Group

C
ou

nt
rie

s

1 2

fr
an

ce
ita

ly
sp

ai
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Countries

Figure 4.4: Unesco data, Louvain, comparison between groups

The application of the second community detection algorithm, the Walktrap, gives dif-

ferent outcomes. Focusing on the cluster step of the algorithm, the results highlight how

the number of groups tends to decrease when the iterations number increases, as shown

in the central plot of Figure 4.5. However, this reduction is less steady than the results

obtained using the Louvain. In addition, some peaks of the groups number are identified.

These peaks correspond to an increase of the proportion of the p-value greater than 0.01.

This bigger instability can be motivated by the fact that the number of iterations is not big

enough to correctly estimate the r distance, or by the size of the dataset that, as evidenced

before, is not so relevant.

In the application of the Walktrap, the best iteration is the 29th (Figure 4.5). The left

plot of Figure 4.5 shows how the two identified groups are totally different in terms of the

distribution of the outcome variable. In fact, the two box plots are not overlapped.

113

1 2

0
10

20
30

29

0 20 40 60 80 100

0
2

4
6

8
10

12

Index

ris
.g

ru
pp

i

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e/
(c

ho
os

e(
ris

.g
ru

pp
i,

2)
))

Figure 4.5: Unesco Dataset, Walktrap algortihm - 29th iteration

To better identify the differences between the first two groups, the distributions of the

outcome variable and the covariates are analyzed. The two box plot in box a Figure 4.6 show

how two totally different groups are identified taking into account the outcome variable Age.

The first group includes the youngest Unesco sites, on the contrary the oldest are contained

in the second group. As evidenced before, the two box plots are totally not overlapped.

The analysis of the covariates distributions highlights a greater variability for the first group.

Specifically, a higher variability is recorded for the covariates: global rank (box b Figura

4.6), brand (box f Figure 4.6) and relational skill (box c Figure 4.7). Moreover, it is possible

to identify higher values in the distribution of the the oldest for the covariates time on site

(plot c Figure 4.6), daily page per visitors (plot d Figure 4.6).

The study of mosaic-plots of the qualitative covariates shows that the hybrid Unesco sites

are included only in the second group (box a Figure 4.8). Moreover, the first group is

composed mainly by the Italian Unesco sites, and the second by Spanish heritage sites (plot

c Figure 4.8).

To sum up, the study of the covariates suggests that the oldest Unesco sites got the best

results in terms of online success and information included in the websites. Additionally,

the oldest sites have better results in terms of time spent on their websites. This result

underlines how the Walktrap joins in the same groups the oldest sites together with the

114

most successful for the online communication.

1 2

0
10

20
30

Group

A
ge

(a) Age

1 2

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

Group

G
lo

ba
l R

an
k

(b) Global rank

1 2

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Group

T
im

e
on

 s
ite

(c) Time on site

1 2

2
4

6
8

10
12

Group

D
ai

ly
 P

ag
ev

ie
w

s
pe

r
V

is
ito

r

(d) Daily pages per visitors

1 2

3
4

5
6

7
8

9
10

Group

C
on

ta
ct

 a
nd

 s
up

po
rt

(e) Contact and support

1 2

0
1

2
3

4

Group

B
ra

nd

(f) Brand

Figure 4.6: Unesco data, Walktrap, comparison between groups

115

1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Group

N
ew

s

(a) News

1 2

0
1

2
3

4
5

6

Group

O
th

er

(b) Other information

1 2

0
1

2
3

4
5

Group

R
el

at
io

na
l S

ki
ll

(c) Relational skills

1 2

5
10

15
20

Group

To
ur

is
m

(d) Tourism

1 2

0
1

2
3

4

Group

E
xt

er
na

l i
nf

or
m

at
io

n

(e) External information

Figure 4.7: Unesco data, Walktrap, comparison between groups

116

Group

Ty
pe

 o
f W

eb
si

te

1 2

N
C

N
C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Type of Unesco site

Group

W
eb

si
te

1 2

N
o

Ye
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Website of Unesco site

Group

C
ou

nt
rie

s

1 2

fr
an

ce
ita

ly
sp

ai
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Countries

Figure 4.8: Unesco data, Walktrap, comparison between groups

Finally, the third community detection algorithm is applied: the Label prop. The Figure

4.9 shows the partition with the lowest percentage of p-value. It is the number 23. In this

case, too, the distributions of the outcome variable for the two groups in the best partition

are different. The two box-plots are not overlapped.

As evidenced before in the application of Louvain and Walktrap, two different groups are

identified. The youngest group has a bigger variability in some covariates, as for instance

global rank (box b Figura 4.10). The oldest group has higher values in terms of time on

site (plot c Figure 4.10). Finally, the first group is composed mainly by the Italian Unesco

sites, and the second by Spanish heritage sites (plot c Figure 4.12).

One more time, the results highlight that two groups can be identified, the youngest and

the oldest sites, and that the oldest Unesco sites are able to create websites with more

information and to get the best results in terms of online success.

117

1 2

0
10

20
30

23

0 20 40 60 80 100

0
5

10
15

20
25

Index

ris
.g

ru
pp

i

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e/
(c

ho
os

e(
ris

.g
ru

pp
i,

2)
))

Figure 4.9: Unesco Dataset, Label prop algorithm - 23th iteration

118

1 2

0
10

20
30

Group

A
ge

(a) Age

1 2

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

Group

G
lo

ba
l R

an
k

(b) Global rank

1 2

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Group

T
im

e
on

 s
ite

(c) Time on site

1 2

2
4

6
8

10
12

Group

D
ai

ly
 P

ag
ev

ie
w

s
pe

r
V

is
ito

r

(d) Daily pages per visitors

1 2

3
4

5
6

7
8

9
10

Group

C
on

ta
ct

 a
nd

 s
up

po
rt

(e) Contact and support

1 2

0
1

2
3

4

Group

B
ra

nd

(f) Brand

Figure 4.10: Unesco data, Label prop, comparison between groups

119

1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Group

N
ew

s

(a) News

1 2

0
1

2
3

4
5

6

Group

O
th

er

(b) Other information

1 2

0
1

2
3

4
5

Group

R
el

at
io

na
l S

ki
ll

(c) Relational skills

1 2

5
10

15
20

Group

To
ur

is
m

(d) Tourism

1 2

0
1

2
3

4

Group

E
xt

er
na

l i
nf

or
m

at
io

n

(e) External information

Figure 4.11: Unesco data, Label prop, comparison between groups

120

Group

Ty
pe

 o
f W

eb
si

te

1 2

N
C

N
C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Type of Unesco site

Group

W
eb

si
te

1 2

N
o

Ye
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Website of Unesco site

Group

C
ou

nt
rie

s

1 2

fr
an

ce
ita

ly
sp

ai
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Countries

Figure 4.12: Unesco data, Label prop, comparison between groups

Moreover, the composition of the different groups obtained applying Louvain, Walktrap

and Label prop is analyzed in order to underline differences. The Adjusted Random Index

(ARI) is estimated. The indicator provides the opportunity to evaluate the groups com-

position of the different partitions and to compare it with the other cluster results. The

Adjusted Rand Index (ARI) is a measure of similarity, ranging from c = 0 when the two

clusterings have no similarities, to c = 1 when the clusterings are in fact identical [248,

p. 847]. It is used to compare the partition pairs. It can be applied only when the number

of groups is the same in the different compared partitions. The Table 4.4 shows as the

partitions obtained through Louvain and Walktrap have a value of ARI close to 1.00: this

means that the partitions have the same observations and the two community detection

algorithms identify a similar result. The comparison between the Label prop and Louvain

and Walktrap defines a very low value of ARI: this means that the outputs of the algorithms

are totally different.

121

Louvain Walktrap Label prop

Louvain 1.00 0.84 0.03
Walktrap 0.84 1.00 0.07

Label prop 0.03 0.07 1.00

Table 4.4: The Adjusted Rand Index - Unesco data

The results of CTSC have been compared with the results of the traditional cluster

methods. Specifically, the K-means and the Hierarchical clustering algorithms are applied

on the Unesco dataset. For the k-means algorithm, it is chosen a value of K = 2 as the

number of group obtained with the CTST (Figure 4.13). The attentions is posed on the

outcome variable Age. Particularly, since the aim of CTSC is to define clusters similar

w.r.t. the outcome variable, the boxplots of the outcome variable of the groups obtained

by CTSC and the K-means are compared. The boxplots in Figure 4.14 evidences how the

groups identified through the Walktrap and Label prop present two distributions character-

ized by median values far more than the groups distributions of the outcome variable in

Louvain and K-means. It means the Walktrap and Label prop are more able to identify

cluster dissimilar w.r.t. the outcome variable.

Moreover, if the CTSC results are compared with the hierarchical cluster and, in particular,

with the Complete algorithm. It is realized the dendrogram labeling the observations w.r.t.

CTSC cluster membership. As shown in Figure 4.15, the clusters identified by hierarchical

clustering algorithm are not able to share the observations of the two groups as done by

the CTSC. In fact, the observations classified in two different groups by CTSC are merged

into different clusters. Moreover, the two groups obtained with Complete Linkage algorithm

totally different for the size: the first includes 114 observations, the second only five obser-

vations. Additionally, the distribution of the outcome variable in the two groups obtained

through Complete Linkage evidences a reduced differences between the median value of the

two distributions, as shown in Figure 4.16.

To sum up, comparing this results of the two methods, it is possible to state that the CTSC

is more able to identify groups inside the data and, specifically, to identify groups different

for the value of the outcome variable. It is possible preliminary to state that the CTSC

reach the prefixed aim operating with quantitative outcome variable.

122

Figure 4.13: Unesco data, K-means

1 2

0
10

20
30

Group

A
ge

(a) CTSC - Louvain

1 2

0
10

20
30

Group

A
ge

(b) CTSC - Walktrap

1 2

0
10

20
30

Group

A
ge

(c) CTSC - Label prop

1 2

0
10

20
30

(d) K-means

Figure 4.14: The boxplots of the outcome variable Age

123

Figure 4.15: Unesco data, Hierarchical cluster Complete

1 2

0
10

20
30

Group

A
ge

(a) CTSC - Louvain

1 2

0
10

20
30

Group

A
ge

(b) CTSC - Walktrap

1 2

0
10

20
30

Group

A
ge

(c) CTSC - Label prop

1 2

0
10

20
30

Hierarchical cluster− Complete

Groups

A
ge

(d) Hierarchical cluster- Complete

Figure 4.16: The boxplots of the outcome variable Age

124

Then, a qualitative outcome variable is chosen to analyze the Unesco data. The variable

Countries has been chosen to understand if there is a specificity related to the single coun-

tries that can influence the online communication strategy of the Unesco heritage sites. It

is applied first the CTSC combining the CART with the three community detection algo-

rithms. The application of Louvain cluster suggests the presence of three different clusters,

as shown in Table 4.5. The results show how the first group is characterized for the presence

of the heritage sites located in Italy, the second groups for the sites located in Spain, the

third for the sites located mainly in France.

It is possible to state that the CTSC (Louvain) is able to identify groups characterized for

a specific geographic area.

France Italy Spain

1 3 19 5
2 4 13 30
3 27 5 13

Table 4.5: Qualitative outcome variable - CTSC ”Louvain”

Later, it is applied the Walktrap on Unesco dataset. The application has allowed to

identify two different groups as evidenced in Table 4.6. The first group includes heritage

sites from Italy and Spain. The second is characterized for the presence mainly of the France

Unesco sites.

In this case, it is not recorded a difference between the Countries, but the existence of a

similarity between Spain and Italy.

France Italy Spain

1 11 29 40
2 23 8 8

Table 4.6: Qualitative outcome variable - CTSC ”Walktrap”

Finally, the application of the Label prop community detection algorithm allow to iden-

tify three groups inside the Unesco dataset, as obtained before for the Louvain (Table 4.7).

However, in this case, the first group includes roughly the same number of sites from the

different countries. The second groups is characterized for the grater presence of the Span-

ish heritage sites. The last groups contains more Italian heritage site.

Also in this case, the difference between the geographic area is less evident that the results

obtained through the Louvain.

125

France Italy Spain

1 17 17 14
2 15 1 25
3 3 19 9

Table 4.7: Qualitative outcome variable - CTSC ”Label prop”

To conclude, the CTSC reaches the goal of identifying different clusters taking into

account a specific variable. The use of different community detection algorithms offers the

possibility to evaluate the different results, and to evidence the differences inside the clusters

taking into account the distribution of the outcome variables.

In the Unesco dataset, the results related to the quantitative outcome variable underline

the presence of two specific groups. The first includes the youngest Unesco site and the

second the oldest. The different combinations of algorithms shows how the oldest Unesco

sites have been able to create successful websites, with more information than the youngest

heritage sites. Moreover, the comparison with the results of traditional cluster algorithms

evidence the capacity of CTSC to better identify cluster where observations within the same

group are very similar to each other and different from observation in other groups. The

same capacity is identified in the application of CTSC with a qualitative outcome variable.

In the end, it is possible to state that the CTSC works well on small dataset, as it is able

to identify groups similar to each other and different from observation in other groups.

4.5.3 Boston data

CTSC will be now applied on two different datasets in order to evaluate the usability and

functionality. In this steps, the number of iterations B will be increased from 50 to 500, and

the GBM will be introduced as a second classifier in the pre-training and in the training

phase.

The Boston data has been created by Harrison and Rubinfeld (1978) and has changed in

time. Actually, it contains 506 rows and 20 columns. The 20 variables are:

• town is a factor with levels given by town names;

• townno is a numeric vector corresponding to the town;

• tract is a numeric vector of tract ID numbers;

• lon is a numeric vector of tract point longitudes in decimal degrees;

• lat is a numeric vector of tract point latitudes in decimal degrees;

126

• medv is a numeric vector of median values of owner-occupied housing in USD 1000;

• cmedv is a numeric vector of corrected median values of owner-occupied housing in

USD 1000;

• crim is a numeric vector of per capita crime;

• zn is a numeric vector of proportions of residential land zoned for lots over 25000 sq.

ft per town;

• indus is a numeric vector of proportions of non-retail business acres per town;

• chas is a factor with levels 1 if tract borders Charles River; 0 otherwise;

• nox is a numeric vector of nitric oxides concentration (parts per 10 million) per town;

• rm is a numeric vector of average numbers of rooms per dwelling;

• age is a numeric vector of proportions of owner-occupied units built prior to 1940;

• dis is a numeric vector of weighted distances to five Boston employment centre;

• rad is a numeric vector of an index of accessibility to radial highways per town;

• tax is a numeric vector full-value property-tax rate per USD 10,000 per town;

• ptratio is a numeric vector of pupil-teacher ratios per town;

• b is a numeric vector of 1000 ∗ (Bk − 0.63)2 where Bk is the proportion of blacks;

• lstat is a numeric vector of percentage values of lower status population.

Median value of owner-occupied homes in USD 1000’s has been chosen as outcome variable,

the other 19 variables as covariates.

Louvain cluster is used as the first algorithm of community detection and is combined with

CART and GBM (Appendix A - A.1 and A.2). B is modified in time and assumes different

values: 50, 100, 200, 300, 400, 500. The first combination of CTSC with CART. Analyzing

the left boxes in Figures A.1 and A.2, which shows the result of the best partitions, it is

evident how the change of B does not modify the number of identified groups in the best

partition. For each iteration, the groups are three. The number of clusters has been deter-

mined automatically by the modularity.

Moreover, the study of the the central boxes shows how the increase of B values determines

a reduction and a major stability in terms of groups number. Finally, the analysis of the

right plot, which represent the partitions with p > 0.01, shows how p-value decreases until

127

one hundred iterations, and then increases. The results suggests that CTSC is able to find

groups inside the dataset with high difference between average values of the outcome also

for lower value of B.

Secondly, GBM is used as classifier. Analyzing the left plot in Figure A.2, it is possible to

state that firstly the distributions of the outcome variable are totally different comparing

groups in each partition; secondly, the two groups identified in each partition are similar to

the other two groups obtained in the other partitions. It means that the algorithm is gen-

erally able to identify groups with totally different median value of owner-occupied homes

in USD 1000’s and the increase of B does not change significantly the composition of the

groups. In fact, the comparison of the different box plots, and for the different iterations,

shows how the increase of B allows to obtain similar outcomes in terms of the number of

groups and distribution of the outcome variable (left boxes in Figures 4.18).

In this case, too, the increase of the iterations number determines a decrease of the groups

number (central boxes in Appendix A - Figure A.2 and 4.18). This decrease becomes steady

when the number of iterations is high. In addition, the value of p-value reduces after the

300th iterations, as show in the right plot in Figure A.2.

128

●

●

●

●

●

●

●

●●● ●●●

●

●

●

1 2 3 4

10

20

30

40

50

Boston_louvain50rpart_choice=42

Group label

y

0 10 20 30 40 50

10

20

30

40

No. of groups

Iteration

0 10 20 30 40 50

0.2

0.4

0.6

0.8

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●●●

●

●●

●

●

●

● ●●

1 2 3

10

20

30

40

50

Boston_louvain500rpart_choice=66

Group label

y

0 100 200 300 400 500

10

20

30

40

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.17: Algorithm applied including CART and Louvain - Best partitions

129

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

1 2 3 4 5 6 7

10

20

30

40

50

Boston_louvain50gbm_choice=29

Group label

y

0 10 20 30 40 50

5

10

15

20

25

30

35

No. of groups

Iteration

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●

●
●

●

●

●

●●

●●●●●

●

●●
●

●●●●●●●●●

●

●●

●

●

1 2 3

10

20

30

40

50

Boston_louvain500gbm_choice=98

Group label

y

0 100 200 300 400 500

10

20

30

40

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.18: Algorithm applied including GBM and Louvain - Best partitions

In a second step, CTSC is applied combining the Walktrap with CART and GBM

algorithms (Appendix A - Figures from A.3 to A.4). The plots in Figures from A.3 to

A.4 shows how the number of groups of the best partition is 3 (left box), the increase of

B determines a relevant decrease of the number of the groups (central box) and p-value

generally decreases when the iterations number increases (right box).

As evidenced before for Louvain, it is possible to state that the algorithm identifies groups

with different mean values of the response variable, and that the best partitions in the

different iterations have overlapped box plots, showing a strong stability in the definition

of the groups.

130

●●●●●

●

●● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

1 2 3 4 5 6

10

20

30

40

50

Boston_walktrap50rpart_choice=33

Group label

y

0 10 20 30 40 50

10

20

30

40

50

No. of groups

Iteration

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

1 2 3

10

20

30

40

50

Boston_walktrap500rpart_choice=53

Group label

y

0 100 200 300 400 500

10

20

30

40

50

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.19: CTST applied on Boston data, CART and Walktrap - Best partitions

131

●

●

●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

10

20

30

40

50

Boston_walktrap50gbm_choice=32

Group label

y

0 10 20 30 40 50

10

20

30

40

50

No. of groups

Iteration

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●
●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

1 2 3

10

20

30

40

50

Boston_walktrap500gbm_choice=82

Group label

y

0 100 200 300 400 500

0

100

200

300

400

500

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.20: Algorithm applied including GBM and Walktrap - Best partitions

Thirdly, the Label Propagation (Label prop) community detection algorithm is applied

(Appendix A - Figures A.5 to A.6) . As evidenced before for the other combinations, the

groups number is equal to 2 or 3 in the best iterations (left box in Figures from A.5 to A.6),

the number of the groups decreases quickly when the number of iterations increases (central

box Figures from A.5 to A.6) and the partition with p > 0.01 decreases in time (right box

in Figures from A.5 to A.6).

Also for this combination of CTSC, the goal of identifying groups that differ for the value

of the outcome variable is reached (right box of Figures 4.21 and 4.22).

132

●

●

●

●

●

●●

●

●

●

● ●●●●●

●

●● ●

●

●

●

1 2 3 4 5 6

10

20

30

40

50

Boston_label_prop50rpart_choice=33

Group label

y

0 10 20 30 40 50

0

20

40

60

80

No. of groups

Iteration

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

1 2

10

20

30

40

50

Boston_label_prop500rpart_choice=47

Group label

y

0 100 200 300 400 500

0

20

40

60

80

100

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.21: Algorithm applied including CART and Label Propagation - Best partitions

133

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6

10

20

30

40

50

Boston_label_prop50gbm_choice=33

Group label

y

0 10 20 30 40 50

20

40

60

80

No. of groups

Iteration

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●

●●

●

●

●

●●

1 2 3

10

20

30

40

50

Boston_label_prop500gbm_choice=78

Group label

y

0 100 200 300 400 500

0

20

40

60

80

100

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.22: Algorithm applied including GBM and Label Propagation - Best partitions

In order to evaluate the ability of the CTSC to identify groups with a significant dif-

ference between the average values, it is calculated the percentage of partitions with the

lowest p-value for each combination of CTSC. The percentage of p-value from 0.05 to 0.0001

is taken into account. The same investigation has been used for the traditional clustering

algorithms, with the aim of comparing the results and evaluating the existence of some

differences.

The Table 4.8 shows the amount of partitions with the lowest p-value. Specifically, a value

equal to 1 indicates that all partitions defined for a specific value of B have a lower p-value,

100% of the partitions. On the contrary, a value of 0 indicates that all partitions have a

lowest p-value. It emerges that the percentage increases when the value of B decreases. Gen-

erally, CTSC has percentages equal to 100%. Only when B = 50 and considering p < 0.01,

134

the results are less than 0.50. This means that an high number of iterations allows to obtain

groups that differ significantly for the differences between the mean. Moreover, it is very

important to notice that some combinations of CTSC have a value equal to 1 for all values

of p-value. The combinations of CART and Louvain and of GBM and Label prop give the

highest possible percentage from the 100th iteration. This shows how some combinations

obtain good results even for low values of B.

The traditional clustering algorithms obtain similar results in terms of the number of iden-

tified groups and high percentage of partitions with low p-value. Only two algorithms, the

mcquitty and the median, obtain a low percentage. It is also interesting to notice how the

single is the only algorithm with the highest percentage for all values of p-value, but the

result is not significant because it identifies only one group inside the dataset. All these

results suggest that the CTSC has good performances in terms of clusters definition, taking

into account the groups number and of the p-value results.

135

Method Groups p.05 p.01 p.001 p.0001 p.00001 Average

walktrap50rpart 6 0.67 0.67 0.53 0.33 0.33 0.51
louvain50rpart 4 0.83 0.83 0.83 0.67 0.67 0.77
label prop50rpart 6 0.73 0.67 0.53 0.47 0.47 0.57
walktrap100rpart 3 1.00 1.00 0.67 0.67 0.67 0.80
louvain100rpart 3 1.00 1.00 1.00 1.00 0.67 0.93
label prop100rpart 1 1.00 1.00 1.00 1.00 1.00 1.00
walktrap200rpart 3 1.00 1.00 0.67 0.67 0.67 0.80
louvain200rpart 3 1.00 1.00 0.67 0.67 0.67 0.80
label prop200rpart 1 1.00 1.00 1.00 1.00 1.00 1.00
walktrap300rpart 3 1.00 1.00 1.00 0.67 0.67 0.87
louvain300rpart 3 1.00 1.00 1.00 1.00 1.00 1.00
label prop300rpart 3 1.00 1.00 0.67 0.67 0.67 0.80
walktrap400rpart 3 1.00 1.00 1.00 1.00 0.67 0.93
louvain400rpart 3 1.00 1.00 0.67 0.67 0.67 0.80
label prop400rpart 3 1.00 1.00 0.67 0.67 0.67 0.80
walktrap500rpart 3 1.00 1.00 1.00 1.00 1.00 1.00
louvain500rpart 3 1.00 1.00 1.00 1.00 1.00 1.00
label prop500rpart 1 1.00 1.00 1.00 1.00 1.00 1.00
walktrap50gbm 5 0.70 0.70 0.60 0.40 0.30 0.54
louvain50gbm 5 0.70 0.70 0.50 0.50 0.50 0.58
label prop50gbm 5 0.70 0.70 0.70 0.70 0.60 0.68
walktrap100gbm 3 1.00 1.00 0.67 0.67 0.67 0.80
louvain100gbm 4 1.00 1.00 0.83 0.67 0.67 0.83
label prop100gbm 3 1.00 1.00 1.00 1.00 1.00 1.00
walktrap200gbm 3 1.00 1.00 0.67 0.67 0.67 0.80
louvain200gbm 3 1.00 1.00 1.00 1.00 1.00 1.00
label prop200gbm 3 1.00 1.00 0.67 0.67 0.67 0.80
walktrap300gbm 3 1.00 1.00 0.67 0.67 0.67 0.80
louvain300gbm 3 1.00 1.00 1.00 1.00 1.00 1.00
label prop300gbm 3 1.00 1.00 1.00 1.00 1.00 1.00
walktrap400gbm 3 1.00 1.00 1.00 1.00 1.00 1.00
louvain400gbm 3 1.00 1.00 1.00 1.00 0.67 0.93
label prop400gbm 3 1.00 1.00 1.00 1.00 1.00 1.00
walktrap500gbm 3 1.00 1.00 0.67 0.67 0.67 0.80
louvain500gbm 3 1.00 1.00 0.67 0.67 0.67 0.80
label prop500gbm 3 1.00 1.00 1.00 0.67 0.67 0.87

ward.D 3 1.00 1.00 0.67 0.67 0.67 0.80
ward.D2 3 1.00 1.00 0.67 0.67 0.67 0.80
single 1 1.00 1.00 1.00 1.00 1.00 1.00
complete 3 1.00 1.00 0.67 0.67 0.67 0.80
average 3 1.00 1.00 0.67 0.67 0.67 0.80
mcquitty 4 0.67 0.33 0.33 0.33 0.33 0.40
median 4 0.67 0.33 0.33 0.33 0.33 0.40
centroid 3 1.00 0.67 0.67 0.67 0.67 0.73
kmeans 4 1.00 0.83 0.67 0.50 0.50 0.70

Table 4.8: Application of different algorithm on Boston dataset

136

Moreover, Table 4.9 shows how the same number of groups are identified for the majority

of CTSC combinations and for the traditional clustering algorithms. This aspect underlines

the necessity to analyze the group composition to identify possible overlapping. The Ad-

justed Rand Index (ARI) is therefore estimated in order to verify the cluster composition of

the groups obtained by CTSC compared with the cluster composition of the groups obtained

by the traditional clustering methods. The indicator offers the opportunity to evaluate the

groups composition of the different partitions and to compare it with the other cluster re-

sults. It is also used to compare the partitions pairs. Since ARI needs the same number

of groups for the two partitions to be compared, solely the algorithms with three optimal

groups were taken into account. From the analysis of the results in Table 4.9, it emerges

how the traditional clustering methods produce partitions very similar to each other. For

instance, ARI presents value equal to 0.9128576 comparing complete to either average or

centroid, value equal to 1 comparing average to centroid. On the other hand, among semi-

supervised method based on network Walktrap and Label prop generated partitions similar

with an ARI equal to 0.7780845, but more different to Louvain algorithm, having an ARI

of 0.4787485 and 0.5014475, respectively. Moreover, extremely different there were the par-

titions between any traditional clustering method and any semi-supervised method based

on networks. The most similar partitions were generated by Walktrap and complete with

an ARI equal to 0.17568721, whereas the most different by Label prop and both average

and centroid with an ARI equal to 0.08023318.

walktrap louvain label prop ward.D ward.D2 complete average centroid

walktrap 1.00 0.48 0.78 0.16 0.16 0.18 0.15 0.15
louvain 0.48 1.00 0.50 0.09 0.09 0.10 0.08 0.08

label prop 0.78 0.50 1.00 0.08 0.08 0.10 0.08 0.08
ward.D 0.16 0.09 0.08 1.00 1.00 0.94 0.97 0.97

ward.D2 0.16 0.09 0.08 1.00 1.00 0.94 0.97 0.97
complete 0.18 0.10 0.10 0.94 0.94 1.00 0.91 0.91

average 0.15 0.08 0.08 0.97 0.97 0.91 1.00 1.00
centroid 0.15 0.08 0.08 0.97 0.97 0.91 1.00 1.00

Table 4.9: Adjusted Rand Index

Finally, the R packege Mclust is applied on Boston data. The package is used for model-

based clustering, classification, and density estimation based on finite normal mixture mod-

eling. It involves assuming a variety of data models and applying the maximum likelihood

estimation and Bayes criteria in order to identify the most likely model and number of

clusters. The application on Boston data is realized with the aim to compare the result

of identification of the best partitions respect to the results obtained through the CTSC.

137

The results evidence the presence of six groups on the Boston data obtained by the VEV

model, as show in Figure 4.23. The same number of clusters has been obtained through

CTSC combined with CART and the two community detection algorithms Walktrap and

Label prop when the number of iterations has been fixed equal to 50.
−

70
00

0
−

60
00

0
−

50
00

0
−

40
00

0
−

30
00

0

Number of components

B
IC

1 2 3 4 5 6 7 8 9

EII

VII

EEI

VEI

EVI

VVI

EEE

EVE

VEE

VVE

EEV

VEV

EVV

VVV

Figure 4.23: Mclust Boston data- BIC

138

crim

zn

cr
im

0 40 80

indus

cr
im

chas

cr
im

0.0 0.4 0.8

nox

cr
im

rm

cr
im

4 6 8

age

cr
im

dis

cr
im

2 6 10

rad

cr
im

tax

cr
im

200 500

ptratio

cr
im

black

cr
im

0 200 400

lstat

cr
im

medv

cr
im

10 30 50

0
40

crim

zn

0
60 zn

indus

zn

chas
zn

nox

zn

rm

zn

age

zn

dis

zn

rad

zn

tax

zn

ptratio

zn

black

zn

lstat

zn

medv

zn

crim

in
du

s

zn

in
du

s

indus

chas

in
du

s

nox

in
du

s

rm

in
du

s

age

in
du

s

dis

in
du

s

rad

in
du

s

tax

in
du

s

ptratio

in
du

s

black

in
du

s

lstat

in
du

s

medv

in
du

s

0
15

crim

ch
as

0.
0

0.
6

zn

ch
as

indus

ch
as chas

nox

ch
as

rm

ch
as

age

ch
as

dis

ch
as

rad

ch
as

tax

ch
as

ptratio

ch
as

black

ch
as

lstat

ch
as

medv

ch
as

crim

no
x

zn

no
x

indus

no
x

chas

no
x nox

rm
no

x
age

no
x

dis

no
x

rad

no
x

tax

no
x

ptratio

no
x

black

no
x

lstat

no
x

medv

no
x

0.
4

0.
7

crim

rm

4
6

8

zn

rm

indus

rm

chas

rm

nox

rm rm

age

rm

dis

rm

rad

rm

tax

rm

ptratio

rm

black

rm

lstat

rm

medv

rm

crim

ag
e

zn

ag
e

indus

ag
e

chas

ag
e

nox

ag
e

rm

ag
e age

dis

ag
e

rad

ag
e

tax

ag
e

ptratio

ag
e

black

ag
e

lstat

ag
e

medv

ag
e

0
60

crim

di
s

2
8

zn

di
s

indus

di
s

chas

di
s

nox

di
s

rm

di
s

age

di
s dis

rad

di
s

tax

di
s

ptratio

di
s

black

di
s

lstat

di
s

medv

di
s

crim

ra
d

zn

ra
d

indus

ra
d

chas

ra
d

nox

ra
d

rm

ra
d

age

ra
d

dis

ra
d rad

tax

ra
d

ptratio

ra
d

black

ra
d

lstat

ra
d

medv

ra
d

5
20

crim

ta
x

20
0

60
0

zn

ta
x

indus

ta
x

chas

ta
x

nox

ta
x

rm

ta
x

age

ta
x

dis

ta
x

rad

ta
x tax

ptratio

ta
x

black

ta
x

lstat

ta
x

medv

ta
x

crim

pt
ra

tio

zn

pt
ra

tio

indus

pt
ra

tio

chas

pt
ra

tio

nox

pt
ra

tio

rm

pt
ra

tio

age

pt
ra

tio

dis

pt
ra

tio

rad

pt
ra

tio

tax
pt

ra
tio ptratio

black

pt
ra

tio

lstat

pt
ra

tio

medv

pt
ra

tio

14
20

crim

bl
ac

k

0
30

0

zn

bl
ac

k

indus

bl
ac

k

chas

bl
ac

k

nox

bl
ac

k

rm

bl
ac

k

age

bl
ac

k

dis

bl
ac

k

rad

bl
ac

k

tax

bl
ac

k

ptratio

bl
ac

k

black

lstat

bl
ac

k

medv

bl
ac

k

crim

ls
ta

t

zn

ls
ta

t

indus

ls
ta

t

chas

ls
ta

t

nox

ls
ta

t

rm

ls
ta

t

age

ls
ta

t

dis

ls
ta

t

rad

ls
ta

t

tax

ls
ta

t

ptratio

ls
ta

t

black

ls
ta

t

lstat

medv

ls
ta

t

10
30

crim

m
ed

v

0 40 80

10
40

zn

m
ed

v

indus

m
ed

v

0 10 20

chas

m
ed

v

nox

m
ed

v

0.4 0.6 0.8

rm

m
ed

v

age

m
ed

v

0 40 80

dis

m
ed

v

rad

m
ed

v

5 15

tax

m
ed

v

ptratio

m
ed

v

14 18 22

black
m

ed
v

lstat

m
ed

v

10 30

medv

Figure 4.24: Mclust Boston data- Classification

To sum up, CTSC obtains goals results operating on this dataset, too. It partitions data

into homogeneous subgroups and reaches the goal of identifying groups where observations

within the same group are very similar to each other and different from observations in

other groups. Moreover, it is demonstrated that high iterations allows obtaining the best

results in terms of difference between means of the groups and of distribution of the not

overlapped outcome variable.

4.5.4 rent99 dataset

The CTSC is now applied on the rent99 dataset. It contains information on the house rentals

in the city of Munich and it has been created in 1999. It is made of 3082 observations and

nine variables. The nine variables are:

• rent, the monthly net rent per month (in Euro);

• rentsqm, the net rent per month per square meter (in Euro);

• area, the living area in square meters;

139

• yearc, the year of construction;

• location, the quality of the location. It is measured through a factor indicating whether

the location is an average location (1), a good location (2) or a top location (3);

• bath, the quality of the bathroom(s). it is defined through a factor indicating whether

the bath facilities are standard (0) or premium (1);

• kitchen, the quality of the kitchen. It is defined through a dichotomous variable equal

to 0 for standard quality or 1 for for premium quality;

• cheating, the central heating. It is another dichotomous variable, equal to 0 if the

house doesn’t have a central heating system, and equal to 1 if, on the other side, the

house has one;

• district, the different districts in Munich.

In a first phase, it has been decided to do not consider the variable district in the model, not

considered relevant for this analysis, and the variable rentsqm, because highly associated

with the outcome variable rent. As made before for the Boston dataset, CTSC is applied

on rent99 using the different values of B and its different combinations of the algorithms.

The number of identified groups decreases when the iterations number decreases (Appendix

A- Figures A.7 to A.12). However, this reduction becomes significant only after the 100th

iteration. At the same time, the value of p-value generally decreases, but not as significant

as for the Boston dataset. In fact, this reduction is not steady and the p-value increases

and decreases continuously in time.

The Louvain community detection algorithm is firstly applied, combined with the CART

and the GBM (Figures Appendix A- from A.7 to A.8, Figures 4.25 and 4.26). In the first

case, the left plot in Figure A.7 shows how the groups number decreases in the best partition

and becomes equal to 3 after the 200th iteration. Moreover, the distributions of the outcome

variables for the different groups and the different partitions are similar only for high values

of B. In fact, the obtained box plots can be overlapped only after B > 400. This result

seems to suggest that it is better to use high values of B, greater than 500, for big datasets.

The same results are obtained with the GBM in Figure 4.26: the groups number decreases

for high values of B, specifically from 10 to 4. Moreover, the distributions of the outcome

variables for each groups are similar in some cases (left box in Figure 4.26), as for instance

for the best partitions in B = 100 and B = 200 and for the best partitions in B = 300 and

B = 400.

Additionally, it is interesting to underline how the combination with CART and Louvain for

140

high levels of iterations gives the best results in terms of a partition with high percentage

of low p-values (right box in Appendix A - Figure A.7) .

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 11 13

0

5

10

15

rent99_louvain50rpart_choice=47

Group label

y

0 10 20 30 40 50

20

30

40

50

60

No. of groups

Iteration

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

1 2 3

0

5

10

15

rent99_louvain500rpart_choice=150

Group label

y

0 100 200 300 400 500

10

20

30

40

50

60

70

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.25: Algorithm applied in rent99 including CART and Louvain - Best partitions

141

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

1 2 3 4 5 6 7 8 9 10

0

5

10

15

rent99_louvain50gbm_choice=47

Group label

y

0 10 20 30 40 50

10

20

30

40

50

60

70

No. of groups

Iteration

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●
●

●

●

●

●

●

●●●
●

●

1 2 3 4

0

5

10

15

rent99_louvain500gbm_choice=454

Group label

y

0 100 200 300 400 500

0

50

100

150

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.26: Algorithm applied on rent99 including GBM and Louvain - Best partitions

Later, Walktrap is applied as a community detection algorithm. It is firstly combined

with CART. Figure 4.27 shows how the identified groups number decreases until 4 after the

300th iteration (central box); the distributions of the outcome variable are roughly equal

in the best iterations (left box); and the percentage of partitions with a p-value greater the

0.01 firstly decreases and, after, increases (right box).

Secondly, the Walktrap is combined with the GBM. The analysis of Figure 4.28 highlights

how the number of groups is generally bigger, compared to the results obtained applying

CART. However, this quantity is steadier when GBM is applied.

142

●

●

●

●●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 3 5 7 9 11 14 17 20 23

0

5

10

15

rent99_walktrap50rpart_choice=32

Group label

y

0 10 20 30 40 50

20

40

60

80

100

No. of groups

Iteration

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●

●
●
●

●

●

●

●

●

●

●
●

1 2 3 4

0

5

10

15

rent99_walktrap500rpart_choice=258

Group label

y

0 100 200 300 400 500

0

50

100

150

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.27: Algorithm applied on rent99 including CART and Walktrap - Best parti-

tions

143

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

1 2 3 4 5 6 7 8 9 10 12

0

5

10

15

rent99_walktrap50gbm_choice=49

Group label

y

0 10 20 30 40 50

50

100

150

200

250

No. of groups

Iteration

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●●●

●

●

●

●

●

●

●
●

●
●

1 2 3 4 5

0

5

10

15

rent99_walktrap500gbm_choice=449

Group label

y

0 100 200 300 400 500

0

50

100

150

200

250

300

350

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.28: Algorithm applied on rent99 including GBM and Walktrap - Best partitions

The Label prop community detection algorithm is now applied and combined with CART

and GBM (Figures 4.29 and 4.30). The results highlight a high instability, taking into

account both the quantity of identified groups and the partition with a lowest p-value (Ap-

pendix A - Figure A.11 to A.12).

Figure A.11 shows the results of the combination with CART: the quantity of groups is

equal to 4 after the 200th iteration (central box), and the distributions of the outcome

variable are partially overlapped (left box). The combination with GBM results in a higher

groups number in the best partition, the amount of groups equal to four is obtained only in

B = 500, as shown in Figure A.12. These results show a less instability in the GBM case.

144

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 4 7 10 13 16 19 22 25 28 31

0

5

10

15

rent99_label_prop50rpart_choice=46

Group label

y

0 10 20 30 40 50

50

100

150

200

No. of groups

Iteration

0 10 20 30 40 50

0.70

0.75

0.80

0.85

0.90

0.95

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

1 2 3 4

0

5

10

15

rent99_label_prop500rpart_choice=330

Group label

y

0 100 200 300 400 500

0

50

100

150

200

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.29: Algorithm applied on rent99 including CART and Label Propagation -

Best partitions

145

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

1 3 5 7 9 11 13 15 17 19

0

5

10

15

rent99_label_prop50gbm_choice=47

Group label

y

0 10 20 30 40 50

50

100

150

200

250

300

No. of groups

Iteration

0 10 20 30 40 50

0.6

0.7

0.8

0.9

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(a) 50 iteration

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

1 2 3 4

0

5

10

15

rent99_label_prop500gbm_choice=398

Group label

y

0 100 200 300 400 500

0

100

200

300

400

No. of groups

Iteration

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

p.
va

lu
e

>
 0

.0
1

(b) 500 iteration

Figure 4.30: Algorithm applied on rent99 including GBM and Label Propagation - Best

partitions

Then, the percentage of partitions with a lowest value of p-value for each combina-

tion of CTSC has been calculated, in oder to evaluate the capacity of the algorithm to

identify significant partitions. It has been studied how many times the partitions have

p-values lower than p = 0.05, 0.01, 0.001, 0.0001, 0.00001. A value of 1 indicates that all

partitions defined for a specific value of B have a lower p-value, 100% of the partitions.

On the contrary, a value of 0 indicates that all partitions have a p-value higher than

p = 0.05, 0.01, 0.001, 0.0001, 0.00001. Table 4.10 shows that high percentages are obtained

only for high values of B. In fact, a value bigger than 0.80 is obtained only after the 300th

iteration.

Generally, the percentage of estimated applying CTSC shows better results compared to

those obtained applying the traditional clustering methods. The Ward.D, the Ward.D2 and

146

the median identify only a unique group inside the dataset and for this reason they can not

be considered as significative. The single, the complete, the average and the mcquitty have

a value of 0.67 for p < 0.05, and a lower value for the other values of p-value. Finally, the

percentage for centroid kmeans is roughly near to zero.

These results suggest that CTSC is able to work with rather larges dataset, obtaining in

some cases better results than the traditional clustering methods.

147

Method Groups p.05 p.01 p.001 p.0001 p.00001 Average

walktrap50rpart 23 0.53 0.49 0.41 0.37 0.33 0.43
louvain50rpart 13 0.65 0.63 0.56 0.54 0.49 0.57
label prop50rpart 31 0.38 0.34 0.29 0.25 0.20 0.29
walktrap100rpart 10 0.64 0.60 0.53 0.49 0.36 0.52
louvain100rpart 8 0.68 0.68 0.57 0.50 0.39 0.56
label prop100rpart 15 0.62 0.57 0.49 0.44 0.42 0.51
walktrap200rpart 8 0.64 0.64 0.61 0.54 0.46 0.58
louvain200rpart 6 0.80 0.80 0.67 0.60 0.53 0.68
label prop200rpart 9 0.69 0.61 0.50 0.47 0.39 0.53
walktrap300rpart 4 1.00 1.00 0.67 0.67 0.67 0.80
louvain300rpart 4 1.00 1.00 0.67 0.50 0.50 0.73
label prop300rpart 4 0.83 0.83 0.83 0.67 0.50 0.73
walktrap400rpart 4 1.00 1.00 0.83 0.83 0.83 0.90
louvain400rpart 3 1.00 1.00 0.67 0.67 0.67 0.80
label prop400rpart 4 1.00 1.00 0.83 0.67 0.67 0.83
walktrap500rpart 4 1.00 1.00 0.67 0.67 0.67 0.80
louvain500rpart 3 1.00 1.00 1.00 0.67 0.67 0.87
label prop500rpart 4 1.00 1.00 0.83 0.67 0.67 0.83
walktrap50gbm 12 0.55 0.48 0.42 0.33 0.27 0.41
louvain50gbm 10 0.62 0.58 0.47 0.38 0.36 0.48
label prop50gbm 19 0.50 0.42 0.37 0.31 0.27 0.37
walktrap100gbm 8 0.79 0.75 0.61 0.54 0.50 0.64
louvain100gbm 6 0.87 0.87 0.80 0.60 0.60 0.75
label prop100gbm 9 0.75 0.69 0.67 0.64 0.61 0.67
walktrap200gbm 8 0.75 0.71 0.64 0.57 0.57 0.65
louvain200gbm 6 0.80 0.80 0.67 0.67 0.60 0.71
label prop200gbm 6 0.80 0.80 0.73 0.67 0.60 0.72
walktrap300gbm 6 0.87 0.87 0.67 0.67 0.60 0.73
louvain300gbm 5 0.90 0.90 0.80 0.80 0.70 0.82
label prop300gbm 5 1.00 1.00 0.80 0.70 0.70 0.84
walktrap400gbm 5 0.90 0.90 0.80 0.80 0.70 0.82
louvain400gbm 5 0.90 0.90 0.80 0.80 0.60 0.80
label prop400gbm 5 1.00 1.00 0.80 0.70 0.70 0.84
walktrap500gbm 5 1.00 1.00 0.70 0.60 0.60 0.78
louvain500gbm 4 1.00 1.00 1.00 0.83 0.67 0.90
label prop500gbm 4 1.00 1.00 1.00 0.83 0.83 0.93

ward.D 1 1.00 1.00 1.00 1.00 0.00 0.80
ward.D2 1 1.00 1.00 1.00 0.00 0.00 0.60
single 3 0.67 0.67 0.33 0.00 0.00 0.33
complete 3 0.67 0.33 0.00 0.00 0.00 0.20
average 3 0.67 0.33 0.33 0.33 0.00 0.33
mcquitty 3 0.67 0.00 0.00 0.00 0.00 0.13
median 1 1.00 1.00 1.00 1.00 0.00 0.80
centroid 14 0.20 0.13 0.13 0.09 0.05 0.12
kmeans 3 0.33 0.00 0.00 0.00 0.00 0.07

Table 4.10: Application of different algorithm on Rent99 dataset

148

The analysis of these results shows how the CTSC has been able to identify specific

partitions inside the rent99 data. The increase of the value of B supports the reduction of

the groups number and of the percentage of partitions with lower value of p-value. CTSC

obtains better results than the traditional clusters, and it is therefore, in most of the cases,

a better clustering method than the traditional ones.

Also in this case, it is applied the R packege Mclust in order to identify the best number of

clusters on rent99 data. The results evidence the presence of the two clusters. The number

is lower than the results obtained by CTSC, as shown in Figure 4.31.

−
35

00
00

−
30

00
00

−
25

00
00

−
20

00
00

−
15

00
00

Number of components

B
IC

1 2 3 4 5 6 7 8 9

EII

VII

EEI

VEI

EVI

VVI

EEE

EVE

VEE

VVE

EEV

VEV

EVV

VVV

Figure 4.31: Mclust on rent99- BIC

149

rent

rentsqm

re
nt

0 5 10 15

area

re
nt

yearc

re
nt

1920 1960 2000

location

re
nt

bath

re
nt

1.0 1.4 1.8

kitchen

re
nt

cheating

re
nt

1.0 1.4 1.8

district

re
nt

0
10

00

rent

re
nt

sq
m

0
5

10 rentsqm

area

re
nt

sq
m

yearc

re
nt

sq
m

location

re
nt

sq
m

bath

re
nt

sq
m

kitchen

re
nt

sq
m

cheating

re
nt

sq
m

district

re
nt

sq
m

rent

ar
ea

rentsqm

ar
ea area

yearc
ar

ea
location

ar
ea

bath

ar
ea

kitchen

ar
ea

cheating

ar
ea

district

ar
ea

20
80

14
0

rent

ye
ar

c

19
20

19
60

20
00

rentsqm

ye
ar

c

area

ye
ar

c

yearc

location

ye
ar

c

bath

ye
ar

c

kitchen

ye
ar

c

cheating

ye
ar

c

district

ye
ar

c

rent

lo
ca

tio
n

rentsqm

lo
ca

tio
n

area

lo
ca

tio
n

yearc

lo
ca

tio
n

location

bath

lo
ca

tio
n

kitchen

lo
ca

tio
n

cheating

lo
ca

tio
n

district

lo
ca

tio
n

1.
0

2.
0

3.
0

rent

ba
th

1.
0

1.
4

1.
8

rentsqm

ba
th

area

ba
th

yearc

ba
th

location

ba
th bath

kitchen

ba
th

cheating

ba
th

district

ba
th

rent

ki
tc

he
n

rentsqm

ki
tc

he
n

area

ki
tc

he
n

yearc

ki
tc

he
n

location

ki
tc

he
n

bath

ki
tc

he
n

kitchen

cheating

ki
tc

he
n

district

ki
tc

he
n

1.
0

1.
4

1.
8

rent

ch
ea

tin
g

1.
0

1.
4

1.
8

rentsqm

ch
ea

tin
g

area

ch
ea

tin
g

yearc

ch
ea

tin
g

location

ch
ea

tin
g

bath

ch
ea

tin
g

kitchen

ch
ea

tin
g

cheating

district

ch
ea

tin
g

rent

di
st

ric
t

0 500 1500

rentsqm

di
st

ric
t

area

di
st

ric
t

20 60 100 140

yearc

di
st

ric
t

location

di
st

ric
t

1.0 1.5 2.0 2.5 3.0

bath

di
st

ric
t

kitchen

di
st

ric
t

1.0 1.4 1.8

cheating
di

st
ric

t

district

500 1500 2500

50
0

20
00

Figure 4.32: Mclust on rent99- Classification

Moreover, the results obtained through CTSC on rent99 are compared with the results

obtain in two different studies realized respectively by Gertheiss and Tutz (2010) and Tutz

and Berger (2018).

The first researchers have proposed a shrinkage methods for categorical predictors. Specifi-

cally, Gertheiss and Tutz (2010) have proposed two L1-penalty based methods to select the

factor and to cluster categories. In the same way, Tutz and Berger (2018) have focus their

attention on the effect of categorical predictors. However, they have proposed a method

based on the tree method to find the cluster of factor levels.

In both studies, the researchers have taken into account categorical predictors as for in-

stance the year of construction, the quality of residential area and the district. They have

identified for each predictors a specific number of clusters and defined the different models

including the clustered categorical predictors.

The same clustered variables are included in the application of CTSC. Specifically, as done

by Gertheiss and Tutz (2010) and Tutz and Berger (2018), the variables the district are

casted in 25 districts taking into account the rent; the variables year of construction is

classified in seven groups respect to the relative decade; finally, the the quality of residential

area presents three specific levels that express the three level: fair, good and excellent.

150

The CTSC is applied taking into account the combination of CART with the community de-

tection algoritms Louvain, Walktrap and Label prop The results of the application of CTSC

on modified rent99 data evidences a reduction of the number of clusters respect the results

obtained with original variables (Figure 4.25, 4.27 and 4.29). Specifically, the number of

clusters is equal to two for all community detection algorithms. However, the reduction de-

termines an overlapping of the distributions of outcome variable. The capacity to identify

clusters similar w.r.t. an outcome variable seems to be reduce using clustered variables. To

sum up, it is possible to state that the use of the variables as defined by Gertheiss and Tutz

(2010) and Tutz and Berger (2018) allows to reduce the number of cluster. However, in the

same times, it determines a reduction of differences among the identified groups.

151

Chapter 5

Conclusions

The aim of this thesis was to define a new semi-supervised cluster algorithm.

To reach this aim, different aspects have been analyzed. Firstly, the researches on semi-

supervised clustering has been studied in order to identify the more suitable framework for

this proposal: this framework has been identified in the approach defined by Bair (2013)

as cluster associated with an outcome variable. Additionally, the different algorithms in-

troduced by other researchers have been analyzed to identify their characteristics, phases,

variables and goals. This first phase has been fundamental to comprehend which elements

had to be included in the algorithm and how to define its structure.

Later, the attention has been focused on the study of two different methodologies: the

tree-based method and the community detection algorithm. The two methodologies have

been analyzed in order to identify statistical elements to support the theorization of the

algorithm. Firstly, the tree-based method has been studied to find useful algorithms to

classify the observations in the same terminal nodes taking into account a specific outcome

variable. Two algorithms were chosen: CART and GBM. CART is useful because it is able

to identify internally homogenous groups through the recursive partitioning of the feature

space and, at the same time, to explain the relationships between the outcome variable and

the covariates. GBM has been chosen because it operates step by step to build the esti-

mated outcome, and also because it uses weighted predictors. These two aspects have been

considered extremely important for the implementation of the first phase of the algorithm.

Secondly, the attention has posed on the study of community detection in networks in order

to evaluate the ability of this algorithm to work as a clustering algorithm. The statement of

Arruda et al. (2012), de Oliveira et al. (2008), Granell et al (2011, 2012) have influenced the

specification of the algorithm and the choice of the community detection algorithm instead

of the traditional clustering methods.

Three specific community detection algorithms have been chosen for their characteristic:

Louvain, Walktrap and Label prop.

152

The different methodologies have been joined together to shape the proposal of this thesis:

an iterative approach of semi-supervised clustering called Community Detection Tree-Based

Algorithm for Semi-supervised Clustering.

Three phases compose the CTSC. The first one is the pre-training phase. In this phase,

the tree classifier is applied as many times as the number of the covariates. Later, the

trees generated after each iteration are used both to attribute the initial weights to the

observations and to the variables, and to define a proximity matrix. This matrix plays a

fundamental role in the CTSC: it indicates how many times one generic observation i is

classified with another generic observation j, and also gives information about the proxim-

ity of the observations providing a measure of the strength of the their relationship. The

second phase is the training phase. As happens in first phase, the trees are iteratively built

and the proximity matrix is defined. The proximity matrix becomes the input of the third

phase: clustering, where the community detection algorithms are implemented.

In order to evaluate the CTSC ability to reach the fixed goals, CTSC has been applied on

simulated data and three different datasets. The simulated data are defined taking into

account different elements as qualitative and quantitative outcome variables, different num-

ber and kinds of covariates, different level of perturbation and overlapping and the presence

of noise variable. The results of the application of CTSC show how the semi supervised

algorithm works better when the outcome variable is quantitative, the variables are not

overlapped and the noise variable are not included in the model. Moreover, the different

level of perturbation can influence the capacity of CTCS to identify clusters in case the for

quantitative outcome variable.

Later, it is considered three real datasets. The first is a small dataset, manually collected in

2016: the Unesco websites dataset. The goal was to understand the capacity of the CTSC

to define correctly the proximity matrix and to identify clusters actually associated with the

quantiative outcome variable Age of websites and the qualitative outcome variable Coun-

tries. The results of the application proved the ability of the CTSC to work as a cluster

algorithm and to identify clusters associated with the outcome variable.

The second dataset is the Boston data. In this case, CTSC has been applied introducing

some new elements: both CART and GBM have been applied. The results of the appli-

cation underline how the algorithm is able to partition the data in groups that are similar

internally w.r.t. the outcome variables.

Later, CTSC has been applied on a third dataset, the rent99. In this case, it has been

more difficult for the CTSC to obtain stable results. The best results in terms of number

of groups and lowest pvalue are obtained only increasing the number of iterations.

153

The results obtained through the CTSC are compared with the results obtained by appli-

cation of traditional cluster algorithms. The comparison evidences a dissimilarity in the

results and, above all, a greater capacity of CTSC to define cluster w.r.t. a specific out-

come variable, reaching the prefixed aim. To sum up, the CTSC demonstrated capable of

identifying the clusters, in general, and the cluster with respect to an outcome variable, in

particular.

Moreover, it is clear how the proximity matrix,and its transformation in adjacency matrix,

is a correct input for the community detection algorithm. The ability to measure the prox-

imity among observations makes the matrix a useful base for the application of modularity,

the estimation of the r distance and the propagation of the labels inside the dataset. The

advantages of the application of CTSC are that:

• it can be implemented using quantitative and qualitative outcome variables, as well as

quantitative and qualitative covariates. This aspect makes the algorithm an important

tool for the analysis of different datasets and for the application on various research

areas;

• it uses all covariates included in the dataset, not only a subset of them, consequently

giving the possibility to consider the whole dataset;

• it combines different trees and community detection algorithms in an adaptive man-

ners.

The CTSC is an innovative semi-supervised clustering method also because it uses a com-

munity detection algorithm instead of the traditional cluster methods. In fact, the cluster

problem is transformed into a community detection problem.

Some drawbacks are identified as for instance the reduced capacity of CTSC to define groups

when the level of perturbation and the overlapping among observations is high and the ne-

cessity to improve the number of iterations for big datasets. These elements evidence the

necessity to improve the algorithm. Moreover, the analysis of the results suggests that some

improvements of CTSC are possible. Firstly, new classifiers, as for instance the random for-

est, could be used to improve the definition of homogenous groups. At the same time, other

community detection algorithms could be considered to provide new combinations, more

adaptable to different phenomena and datasets.

The CTSC could (and should) be adjusted in order to be adapted and applied to specific

topics. For instance, the CTSC could be applied on medical data, like the dataset analyzed

by Bair and Tibshirani (2004), to underline similarities and differences in the results. Also,

154

the number of iterations in the analyses of big dataset could be improved, to better com-

prehend if the change of this parameter could improve the analysis.

155

Appendix A

Tables and graphs

A.1 Simulated data

Table A.1: Simulated data: qualitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 2 2 4 1.0 100 0.95
walktrap 0.0001 2 2 4 0.5 100 1.00
louvain 0.0001 2 2 4 0.5 100 1.00
label prop 0.0001 2 2 4 0.5 100 1.00
walktrap 0.0001 2 2 4 0.0 100 1.00
louvain 0.0001 2 2 4 0.0 100 1.00
label prop 0.0001 2 2 4 0.0 100 1.00
walktrap 0.0001 2 4 0 1.0 100 0.00
louvain 0.0001 2 4 0 1.0 100 0.00
label prop 0.0001 2 4 0 1.0 100 0.00
walktrap 0.0001 2 4 0 0.5 100 0.00
louvain 0.0001 2 4 0 0.5 100 0.00
label prop 0.0001 2 4 0 0.5 100 0.00
walktrap 0.0001 2 4 0 0.0 100 1.00
louvain 0.0001 2 4 0 0.0 100 1.00
label prop 0.0001 2 4 0 0.0 100 1.00
walktrap 0.0001 2 4 2 1.0 100 1.00
louvain 0.0001 2 4 2 1.0 100 1.00
label prop 0.0001 2 4 2 1.0 100 1.00
walktrap 0.0001 2 4 2 0.5 100 1.00
louvain 0.0001 2 4 2 0.5 100 1.00
label prop 0.0001 2 4 2 0.5 100 1.00
walktrap 0.0001 2 4 2 0.0 100 1.00
louvain 0.0001 2 4 2 0.0 100 1.00
label prop 0.0001 2 4 2 0.0 100 1.00
walktrap 0.0001 2 4 4 1.0 100 1.00
louvain 0.0001 2 4 4 1.0 100 1.00
label prop 0.0001 2 4 4 1.0 100 1.00
walktrap 0.0001 2 4 4 0.5 100 1.00
louvain 0.0001 2 4 4 0.5 100 1.00
label prop 0.0001 2 4 4 0.5 100 1.00
walktrap 0.0001 2 4 4 0.0 100 1.00
louvain 0.0001 2 4 4 0.0 100 1.00

156

Table A.1: Simulated data: qualitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 2 4 4 0.0 100 1.00
walktrap 0.0001 2 6 0 1.0 100 1.00
louvain 0.0001 2 6 0 1.0 100 1.00
label prop 0.0001 2 6 0 1.0 100 1.00
walktrap 0.0001 2 6 0 0.5 100 1.00
louvain 0.0001 2 6 0 0.5 100 1.00
label prop 0.0001 2 6 0 0.5 100 1.00
walktrap 0.0001 2 6 0 0.0 100 1.00
louvain 0.0001 2 6 0 0.0 100 1.00
label prop 0.0001 2 6 0 0.0 100 1.00
walktrap 0.0001 2 6 2 1.0 100 1.00
louvain 0.0001 2 6 2 1.0 100 1.00
label prop 0.0001 2 6 2 1.0 100 1.00
walktrap 0.0001 2 6 2 0.5 100 1.00
louvain 0.0001 2 6 2 0.5 100 1.00
label prop 0.0001 2 6 2 0.5 100 1.00
walktrap 0.0001 2 6 2 0.0 100 1.00
louvain 0.0001 2 6 2 0.0 100 1.00
label prop 0.0001 2 6 2 0.0 100 1.00
walktrap 0.0001 2 6 4 1.0 100 1.00
louvain 0.0001 2 6 4 1.0 100 1.00
label prop 0.0001 2 6 4 1.0 100 1.00
walktrap 0.0001 2 6 4 0.5 100 1.00
louvain 0.0001 2 6 4 0.5 100 1.00
label prop 0.0001 2 6 4 0.5 100 1.00
walktrap 0.0001 2 6 4 0.0 100 1.00
louvain 0.0001 2 6 4 0.0 100 1.00
label prop 0.0001 2 6 4 0.0 100 1.00
louvain 0.05 2 4 2 0.5 100 0.77
label prop 0.05 2 4 2 0.5 100 0.81
walktrap 0.05 2 4 2 0.0 100 0.77
louvain 0.05 2 4 2 0.0 100 0.77
label prop 0.05 2 4 2 0.0 100 0.54
walktrap 0.05 2 4 4 1.0 100 0.86
louvain 0.05 2 4 4 1.0 100 0.96
label prop 0.05 2 4 4 1.0 100 0.88
walktrap 0.05 2 4 4 0.5 100 0.84
louvain 0.05 2 4 4 0.5 100 0.86
label prop 0.05 2 4 4 0.5 100 0.84
walktrap 0.05 2 4 4 0.0 100 0.92
louvain 0.05 2 4 4 0.0 100 0.64
label prop 0.05 2 4 4 0.0 100 0.81
walktrap 0.05 2 6 0 1.0 100 0.92
louvain 0.05 2 6 0 1.0 100 0.92
label prop 0.05 2 6 0 1.0 100 0.77
walktrap 0.05 2 6 0 0.5 100 0.83
louvain 0.05 2 6 0 0.5 100 0.84
label prop 0.05 2 6 0 0.5 100 0.84
walktrap 0.05 2 6 0 0.0 100 0.83
louvain 0.05 2 6 0 0.0 100 0.83

157

Table A.1: Simulated data: qualitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.05 2 6 0 0.0 100 0.83
walktrap 0.05 2 6 2 1.0 100 0.75
louvain 0.05 2 6 2 1.0 100 0.77
label prop 0.05 2 6 2 1.0 100 0.75
walktrap 0.05 2 6 2 0.5 100 0.90
louvain 0.05 2 6 2 0.5 100 0.84
label prop 0.05 2 6 2 0.5 100 0.92
walktrap 0.05 2 6 2 0.0 100 0.83
louvain 0.05 2 6 2 0.0 100 0.83
label prop 0.05 2 6 2 0.0 100 0.88
walktrap 0.05 2 6 4 1.0 100 0.77
louvain 0.05 2 6 4 1.0 100 0.77
label prop 0.05 2 6 4 1.0 100 0.70
walktrap 0.05 2 6 4 0.5 100 0.83
louvain 0.05 2 6 4 0.5 100 0.83
label prop 0.05 2 6 4 0.5 100 0.83
walktrap 0.05 2 6 4 0.0 100 0.83
louvain 0.05 2 6 4 0.0 100 0.83
label prop 0.05 2 6 4 0.0 100 0.92

Table A.2: Simulated data: qualitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 2 2 4 1.0 100 0.95
walktrap 0.0001 2 2 4 0.5 100 1.00
louvain 0.0001 2 2 4 0.5 100 1.00
label prop 0.0001 2 2 4 0.5 100 1.00
walktrap 0.0001 2 2 4 0.0 100 1.00
louvain 0.0001 2 2 4 0.0 100 1.00
label prop 0.0001 2 2 4 0.0 100 1.00
walktrap 0.0001 2 4 0 1.0 100 0.00
louvain 0.0001 2 4 0 1.0 100 0.00
label prop 0.0001 2 4 0 1.0 100 0.00
walktrap 0.0001 2 4 0 0.5 100 0.00
louvain 0.0001 2 4 0 0.5 100 0.00
label prop 0.0001 2 4 0 0.5 100 0.00
walktrap 0.0001 2 4 0 0.0 100 1.00
louvain 0.0001 2 4 0 0.0 100 1.00
label prop 0.0001 2 4 0 0.0 100 1.00
walktrap 0.0001 2 4 2 1.0 100 1.00
louvain 0.0001 2 4 2 1.0 100 1.00
label prop 0.0001 2 4 2 1.0 100 1.00
walktrap 0.0001 2 4 2 0.5 100 1.00
louvain 0.0001 2 4 2 0.5 100 1.00
label prop 0.0001 2 4 2 0.5 100 1.00
walktrap 0.0001 2 4 2 0.0 100 1.00
louvain 0.0001 2 4 2 0.0 100 1.00
label prop 0.0001 2 4 2 0.0 100 1.00
walktrap 0.0001 2 4 4 1.0 100 1.00

158

Table A.2: Simulated data: qualitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.0001 2 4 4 1.0 100 1.00
label prop 0.0001 2 4 4 1.0 100 1.00
walktrap 0.0001 2 4 4 0.5 100 1.00
louvain 0.0001 2 4 4 0.5 100 1.00
label prop 0.0001 2 4 4 0.5 100 1.00
walktrap 0.0001 2 4 4 0.0 100 1.00
louvain 0.0001 2 4 4 0.0 100 1.00
label prop 0.001 2 4 4 0.0 100 1.00
walktrap 0.001 2 6 0 1.0 100 1.00
louvain 0.001 2 6 0 1.0 100 1.00
label prop 0.001 2 6 0 1.0 100 1.00
walktrap 0.001 2 6 0 0.5 100 1.00
louvain 0.001 2 6 0 0.5 100 1.00
label prop 0.001 2 6 0 0.5 100 1.00
walktrap 0.001 2 6 0 0.0 100 1.00
louvain 0.001 2 6 0 0.0 100 1.00
label prop 0.001 2 6 0 0.0 100 1.00
walktrap 0.001 2 6 2 1.0 100 1.00
louvain 0.001 2 6 2 1.0 100 1.00
label prop 0.001 2 6 2 1.0 100 1.00
walktrap 0.001 2 6 2 0.5 100 1.00
louvain 0.001 2 6 2 0.5 100 1.00
label prop 0.001 2 6 2 0.5 100 1.00
walktrap 0.001 2 6 2 0.0 100 1.00
louvain 0.001 2 6 2 0.0 100 1.00
label prop 0.001 2 6 2 0.0 100 1.00
walktrap 0.001 2 6 4 1.0 100 1.00
louvain 0.001 2 6 4 1.0 100 1.00
label prop 0.001 2 6 4 1.0 100 1.00
walktrap 0.001 2 6 4 0.5 100 1.00
louvain 0.001 2 6 4 0.5 100 1.00
label prop 0.001 2 6 4 0.5 100 1.00
walktrap 0.001 2 6 4 0.0 100 1.00
louvain 0.001 2 6 4 0.0 100 1.00
label prop 0.001 2 6 4 0.0 100 1.00
louvain 0,0001 4 4 0 1.0 100 0.45
label prop 0,0001 4 4 0 1.0 100 0.45
walktrap 0,0001 4 4 0 0.5 100 0.29
louvain 0,0001 4 4 0 0.5 100 0.29
label prop 0,0001 4 4 0 0.5 100 0.29
walktrap 0,0001 4 4 0 0.0 100 0.29
louvain 0,0001 4 4 0 0.0 100 0.29
label prop 0,0001 4 4 0 0.0 100 0.29
walktrap 0,0001 4 4 2 1.0 100 0.45
louvain 0,0001 4 4 2 1.0 100 0.48
label prop 0,0001 4 4 2 1.0 100 0.45
walktrap 0,0001 4 4 2 0.5 100 0.29
louvain 0,0001 4 4 2 0.5 100 0.41
label prop 0,0001 4 4 2 0.5 100 0.29
walktrap 0,0001 4 4 2 0.0 100 0.29

159

Table A.2: Simulated data: qualitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0,0001 4 4 2 0.0 100 0.29
label prop 0,0001 4 4 2 0.0 100 0.2
walktrap 0,0001 4 4 4 1.0 100 0.45
louvain 0,0001 4 4 4 1.0 100 0.52
label prop 0,0001 4 4 4 1.0 100 0.45
walktrap 0,0001 4 4 4 0.5 100 0.29
louvain 0,0001 4 4 4 0.5 100 0.44
label prop 0,0001 4 4 4 0.5 100 0.29
walktrap 0,0001 4 4 4 0.0 100 0.29
louvain 0,0001 4 4 4 0.0 100 0.29
label prop 0,0001 4 4 4 0.0 100 0.29
walktrap 0,0001 4 6 0 1.0 100 1.00
louvain 0,0001 4 6 0 1.0 100 1.00
label prop 0,0001 4 6 0 1.0 100 1.00
walktrap 0,0001 4 6 0 0.5 100 1.00
louvain 0,0001 4 6 0 0.5 100 1.00
label prop 0,0001 4 6 0 0.5 100 1.00
walktrap 0,0001 4 6 0 0.0 100 1.00
louvain 0,0001 4 6 0 0.0 100 1.00
label prop 0,0001 4 6 0 0.0 100 1.00
walktrap 0,0001 4 6 2 1.0 100 1.00
louvain 0,0001 4 6 2 1.0 100 1.00
label prop 0,0001 4 6 2 1.0 100 1.00
walktrap 0,0001 4 6 2 0.5 100 0.45
louvain 0,0001 4 6 2 0.5 100 0.67
label prop 0,0001 4 6 2 0.5 100 0.45
walktrap 0,0001 4 6 2 0.0 100 1.00
louvain 0,0001 4 6 2 0.0 100 1.00
label prop 0,0001 4 6 2 0.0 100 1.00
walktrap 0,0001 4 6 4 1.0 100 1.00
louvain 0,0001 4 6 4 1.0 100 1.00
label prop 0,0001 4 6 4 1.0 100 1.00
walktrap 0,0001 4 6 4 0.5 100 1.00
louvain 0,0001 4 6 4 0.5 100 1.00
label prop 0,0001 4 6 4 0.5 100 1.00
walktrap 0,0001 4 6 4 0.0 100 1.00
louvain 0,0001 4 6 4 0.0 100 1.00
label prop 0,0001 4 6 4 0.0 100 1.00
louvain 0.05 4 2 0 0.5 100 0.38
label prop 0.05 4 2 0 0.5 100 0.38
walktrap 0.05 4 2 0 0.0 100 0.63
louvain 0.05 4 2 0 0.0 100 0.63
label prop 0.05 4 2 0 0.0 100 0.63
walktrap 0.05 4 2 2 1.0 100 0.47
louvain 0.05 4 2 2 1.0 100 0.47
label prop 0.05 4 2 2 1.0 100 0.29
walktrap 0.05 4 2 2 0.5 100 0.63
louvain 0.05 4 2 2 0.5 100 0.51
label prop 0.05 4 2 2 0.5 100 0.51
walktrap 0.05 4 2 2 0.0 100 0.63

160

Table A.2: Simulated data: qualitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.05 4 2 2 0.0 100 0.63
label prop 0.05 4 2 2 0.0 100 0.63
walktrap 0.05 4 2 4 1.0 100 0.47
louvain 0.05 4 2 4 1.0 100 0.47
label prop 0.05 4 2 4 1.0 100 0.29
walktrap 0.05 4 2 4 0.5 100 0.52
louvain 0.05 4 2 4 0.5 100 0.42
label prop 0.05 4 2 4 0.5 100 0.52
walktrap 0.05 4 2 4 0.0 100 0.36
louvain 0.05 4 2 4 0.0 100 0.41
label prop 0.05 4 2 4 0.0 100 0.47
walktrap 0.05 4 4 0 1.0 100 0.34
louvain 0.05 4 4 0 1.0 100 0.42
label prop 0.05 4 4 0 1.0 100 0.36
walktrap 0.05 4 4 0 0.5 100 0.17
louvain 0.05 4 4 0 0.5 100 0.27
label prop 0.05 4 4 0 0.5 100 0.17
walktrap 0.05 4 4 0 0.0 100 0.23
louvain 0.05 4 4 0 0.0 100 0.49
label prop 0.05 4 4 0 0.0 100 0.21
walktrap 0.05 4 4 2 1.0 100 0.49
louvain 0.05 4 4 2 1.0 100 0.49
label prop 0.05 4 4 2 1.0 100 0.46
walktrap 0.05 4 4 2 0.5 100 0.15
louvain 0.05 4 4 2 0.5 100 0.14
label prop 0.05 4 4 2 0.5 100 0.03
walktrap 0.05 4 4 2 0.0 100 0.14
louvain 0.05 4 4 2 0.0 100 0.25
label prop 0.05 4 4 2 0.0 100 0.17
walktrap 0.05 4 4 4 1.0 100 0.48
louvain 0.05 4 4 4 1.0 100 0.50
label prop 0.05 4 4 4 1.0 100 0.43
walktrap 0.05 4 4 4 0.5 100 0.17
louvain 0.05 4 4 4 0.5 100 0.27
label prop 0.05 4 4 4 0.5 100 0.12
walktrap 0.05 4 4 4 0.0 100 0.24
louvain 0.05 4 4 4 0.0 100 0.30
label prop 0.05 4 4 4 0.0 100 0.15
walktrap 0.05 4 6 0 1.0 100 0.42
louvain 0.05 4 6 0 1.0 100 0.42
label prop 0.05 4 6 0 1.0 100 0.42
walktrap 0.05 4 6 0 0.5 100 0.56
louvain 0.05 4 6 0 0.5 100 0.56
label prop 0.05 4 6 0 0.5 100 0.56
walktrap 0.05 4 6 0 0.0 100 0.33
louvain 0.05 4 6 0 0.0 100 0.44
label prop 0.05 4 6 0 0.0 100 0.45
walktrap 0.05 4 6 2 1.0 100 0.42
louvain 0.05 4 6 2 1.0 100 0.42
label prop 0.05 4 6 2 1.0 100 0.42

161

Table A.2: Simulated data: qualitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.05 4 6 2 0.5 100 0.40
louvain 0.05 4 6 2 0.5 100 0.47
label prop 0.05 4 6 2 0.5 100 0.34
walktrap 0.05 4 6 2 0.0 100 0.41
louvain 0.05 4 6 2 0.0 100 0.42
label prop 0.05 4 6 2 0.0 100 0.28
walktrap 0.05 4 6 4 1.0 100 0.46
louvain 0.05 4 6 4 1.0 100 0.46
label prop 0.05 4 6 4 1.0 100 0.42
walktrap 0.05 4 6 4 0.5 100 0.52
louvain 0.05 4 6 4 0.5 100 0.52
label prop 0.05 4 6 4 0.5 100 0.39
walktrap 0.05 4 6 4 0.0 100 0.43
louvain 0.05 4 6 4 0.0 100 0.34
label prop 0.05 4 6 4 0.0 100 0.40

Table A.3: Simulated data: qualitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 6 2 4 0.0 100 0.23
walktrap 0.0001 6 4 0 1.0 100 0.70
louvain 0.0001 6 4 0 1.0 100 0.70
label prop 0.0001 6 4 0 1.0 100 0.70
walktrap 0.0001 6 4 0 0.5 100 0.22
louvain 0.0001 6 4 0 0.5 100 0.28
label prop 0.0001 6 4 0 0.5 100 0.07
walktrap 0.0001 6 4 0 0.0 100 0.22
louvain 0.0001 6 4 0 0.0 100 0.37
label prop 0.0001 6 4 0 0.0 100 0.11
walktrap 0.0001 6 4 2 1.0 100 0.70
louvain 0.0001 6 4 2 1.0 100 0.70
label prop 0.0001 6 4 2 1.0 100 0.70
walktrap 0.0001 6 4 2 0.5 100 0.05
louvain 0.0001 6 4 2 0.5 100 0.38
label prop 0.0001 6 4 2 0.5 100 0.25
walktrap 0.0001 6 4 2 0.0 100 0.27
louvain 0.0001 6 4 2 0.0 100 0.48
label prop 0.0001 6 4 2 0.0 100 0.27
walktrap 0.0001 6 4 4 1.0 100 0.70
louvain 0.0001 6 4 4 1.0 100 0.73
label prop 0.0001 6 4 4 1.0 100 0.70
walktrap 0.0001 6 4 4 0.5 100 0.25
louvain 0.0001 6 4 4 0.5 100 0.25
label prop 0.0001 6 4 4 0.5 100 0.11
walktrap 0.0001 6 4 4 0.0 100 0.36
louvain 0.0001 6 4 4 0.0 100 0.38
label prop 0.0001 6 4 4 0.0 100 0.25
walktrap 0.0001 6 6 0 1.0 100 1.00
louvain 0.0001 6 6 0 1.0 100 1.00

162

Table A.3: Simulated data: qualitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 6 6 0 1.0 100 1.00
walktrap 0.0001 6 6 0 0.5 100 0.36
louvain 0.0001 6 6 0 0.5 100 0.36
label prop 0.0001 6 6 0 0.5 100 0.36
walktrap 0.0001 6 6 0 0.0 100 0.11
louvain 0.0001 6 6 0 0.0 100 0.20
label prop 0.0001 6 6 0 0.0 100 0.11
walktrap 0.0001 6 6 2 1.0 100 1.00
louvain 0.0001 6 6 2 1.0 100 1.00
label prop 0.0001 6 6 2 1.0 100 1.00
walktrap 0.0001 6 6 2 0.5 100 0.25
louvain 0.0001 6 6 2 0.5 100 0.34
label prop 0.0001 6 6 2 0.5 100 0.25
walktrap 0.0001 6 6 2 0.0 100 0.11
louvain 0.0001 6 6 2 0.0 100 0.18
label prop 0.0001 6 6 2 0.0 100 0.11
walktrap 0.0001 6 6 4 1.0 100 1.00
louvain 0.0001 6 6 4 1.0 100 1.00
label prop 0.0001 6 6 4 1.0 100 0.75
walktrap 0.0001 6 6 4 0.5 100 0.18
louvain 0.0001 6 6 4 0.5 100 0.36
label prop 0.0001 6 6 4 0.5 100 0.25
walktrap 0.0001 6 6 4 0.0 100 0.11
louvain 0.0001 6 6 4 0.0 100 0.20
label prop 0.0001 6 6 4 0.0 100 0.11
walktrap 0.05 6 2 4 0.0 100 0.07
louvain 0.05 6 2 4 0.0 100 0.21
label prop 0.05 6 2 4 0.0 100 0.06
walktrap 0.05 6 4 0 1.0 100 0.35
louvain 0.05 6 4 0 1.0 100 0.45
label prop 0.05 6 4 0 1.0 100 0.36
walktrap 0.05 6 4 0 0.5 100 0.12
louvain 0.05 6 4 0 0.5 100 0.29
label prop 0.05 6 4 0 0.5 100 0.27
walktrap 0.05 6 4 0 0.0 100 0.26
louvain 0.05 6 4 0 0.0 100 0.27
label prop 0.05 6 4 0 0.0 100 0.03
walktrap 0.05 6 4 2 1.0 100 0.31
louvain 0.05 6 4 2 1.0 100 0.36
label prop 0.05 6 4 2 1.0 100 0.27
walktrap 0.05 6 4 2 0.5 100 0.11
louvain 0.05 6 4 2 0.5 100 0.18
label prop 0.05 6 4 2 0.5 100 0.07
walktrap 0.05 6 4 2 0.0 100 0.12
louvain 0.05 6 4 2 0.0 100 0.23
label prop 0.05 6 4 2 0.0 100 0.17
walktrap 0.05 6 4 4 1.0 100 0.35
louvain 0.05 6 4 4 1.0 100 0.46
label prop 0.05 6 4 4 1.0 100 0.46
walktrap 0.05 6 4 4 0.5 100 0.15

163

Table A.3: Simulated data: qualitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.05 6 4 4 0.5 100 0.23
label prop 0.05 6 4 4 0.5 100 0.14
walktrap 0.05 6 4 4 0.0 100 0.16
louvain 0.05 6 4 4 0.0 100 0.32
label prop 0.05 6 4 4 0.0 100 0.20
walktrap 0.05 6 6 0 1.0 100 0.08
louvain 0.05 6 6 0 1.0 100 0.21
label prop 0.05 6 6 0 1.0 100 0.17
walktrap 0.05 6 6 0 0.5 100 0.25
louvain 0.05 6 6 0 0.5 100 0.25
label prop 0.05 6 6 0 0.5 100 0.07
walktrap 0.05 6 6 0 0.0 100 0.28
louvain 0.05 6 6 0 0.0 100 0.19
label prop 0.05 6 6 0 0.0 100 0.15
walktrap 0.05 6 6 2 1.0 100 0.10
louvain 0.05 6 6 2 1.0 100 0.27
label prop 0.05 6 6 2 1.0 100 0.14
walktrap 0.05 6 6 2 0.5 100 0.24
louvain 0.05 6 6 2 0.5 100 0.24
label prop 0.05 6 6 2 0.5 100 0.06
walktrap 0.05 6 6 2 0.0 100 0.18
louvain 0.05 6 6 2 0.0 100 0.26
label prop 0.05 6 6 2 0.0 100 0.09
walktrap 0.05 6 6 4 1.0 100 0.16
louvain 0.05 6 6 4 1.0 100 0.24
label prop 0.05 6 6 4 1.0 100 0.23
walktrap 0.05 6 6 4 0.5 100 0.22
louvain 0.05 6 6 4 0.5 100 0.24
label prop 0.05 6 6 4 0.5 100 0.21
walktrap 0.05 6 6 4 0.0 100 0.24
louvain 0.05 6 6 4 0.0 100 0.25
label prop 0.05 6 6 4 0.0 100 0.15

Table A.4: Simulated data: quantitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 2 2 4 0.5 100 0.96
walktrap 0.0001 2 2 4 0.5 100 1.00
louvain 0.0001 2 2 4 0.5 100 1.00
label prop 0.0001 2 2 4 0.5 100 1.00
walktrap 0.0001 2 2 4 0.0 100 1.00
louvain 0.0001 2 2 4 0.0 100 1.00
label prop 0.0001 2 2 4 0.0 100 1.00
walktrap 0.0001 2 2 4 0.0 100 1.00
louvain 0.0001 2 2 4 0.0 100 1.00
label prop 0.0001 2 2 4 0.0 100 1.00
walktrap 0.0001 2 4 0 1.0 100 1.00
louvain 0.0001 2 4 0 1.0 100 1.00
label prop 0.0001 2 4 0 1.0 100 1.00

164

Table A.4: Simulated data: quantitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.0001 2 4 0 1.0 100 1.00
louvain 0.0001 2 4 0 1.0 100 1.00
label prop 0.0001 2 4 0 1.0 100 1.00
walktrap 0.0001 2 4 0 0.5 100 1.00
louvain 0.0001 2 4 0 0.5 100 1.00
label prop 0.0001 2 4 0 0.5 100 1.00
walktrap 0.0001 2 4 0 0.5 100 1.00
louvain 0.0001 2 4 0 0.5 100 1.00
label prop 0.0001 2 4 0 0.5 100 1.00
walktrap 0.0001 2 4 0 0.0 100 0.92
louvain 0.0001 2 4 0 0.0 100 0.96
label prop 0.0001 2 4 0 0.0 100 1.00
walktrap 0.0001 2 4 0 0.0 100 1.00
louvain 0.0001 2 4 0 0.0 100 1.00
label prop 0.0001 2 4 0 0.0 100 1.00
walktrap 0.0001 2 4 2 1.0 100 1.00
louvain 0.0001 2 4 2 1.0 100 1.00
label prop 0.0001 2 4 2 1.0 100 1.00
walktrap 0.0001 2 4 2 1.0 100 1.00
louvain 0.0001 2 4 2 1.0 100 1.00
label prop 0.0001 2 4 2 1.0 100 1.00
walktrap 0.0001 2 4 2 0.5 100 1.00
louvain 0.0001 2 4 2 0.5 100 1.00
label prop 0.0001 2 4 2 0.5 100 1.00
walktrap 0.0001 2 4 2 0.5 100 1.00
louvain 0.0001 2 4 2 0.5 100 1.00
label prop 0.0001 2 4 2 0.5 100 1.00
walktrap 0.0001 2 4 2 0.0 100 0.92
louvain 0.0001 2 4 2 0.0 100 0.92
label prop 0.0001 2 4 2 0.0 100 1.00
walktrap 0.0001 2 4 2 0.0 100 1.00
louvain 0.0001 2 4 2 0.0 100 1.00
label prop 0.0001 2 4 2 0.0 100 1.00
walktrap 0.0001 2 4 4 1.0 100 1.00
louvain 0.0001 2 4 4 1.0 100 1.00
label prop 0.0001 2 4 4 1.0 100 1.00
walktrap 0.0001 2 4 4 1.0 100 1.00
louvain 0.0001 2 4 4 1.0 100 1.00
label prop 0.0001 2 4 4 1.0 100 1.00
walktrap 0.0001 2 4 4 0.5 100 1.00
louvain 0.0001 2 4 4 0.5 100 1.00
label prop 0.0001 2 4 4 0.5 100 1.00
walktrap 0.0001 2 4 4 0.5 100 1.00
louvain 0.0001 2 4 4 0.5 100 1.00
label prop 0.0001 2 4 4 0.5 100 1.00
walktrap 0.0001 2 4 4 0.0 100 0.92
louvain 0.0001 2 4 4 0.0 100 1.00
label prop 0.0001 2 4 4 0.0 100 1.00
walktrap 0.0001 2 4 4 0.0 100 1.00
louvain 0.0001 2 4 4 0.0 100 1.00

165

Table A.4: Simulated data: quantitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 2 4 4 0.0 100 1.00
louvain 0.0001 2 6 0 1.0 100 1.00
label prop 0.0001 2 6 0 1.0 100 1.00
walktrap 0.0001 2 6 0 0.5 100 1.00
louvain 0.0001 2 6 0 0.5 100 1.00
label prop 0.0001 2 6 0 0.5 100 1.00
walktrap 0.0001 2 6 0 0.5 100 1.00
louvain 0.0001 2 6 0 0.5 100 1.00
label prop 0.0001 2 6 0 0.5 100 1.00
walktrap 0.0001 2 6 0 0.0 100 1.00
louvain 0.0001 2 6 0 0.0 100 1.00
label prop 0.0001 2 6 0 0.0 100 1.00
walktrap 0.0001 2 6 0 0.0 100 1.00
louvain 0.0001 2 6 0 0.0 100 1.00
label prop 0.0001 2 6 0 0.0 100 1.00
walktrap 0.0001 2 6 2 1.0 100 1.00
louvain 0.0001 2 6 2 1.0 100 1.00
label prop 0.0001 2 6 2 1.0 100 1.00
walktrap 0.0001 2 6 2 1.0 100 1.00
louvain 0.0001 2 6 2 1.0 100 1.00
label prop 0.0001 2 6 2 1.0 100 1.00
walktrap 0.0001 2 6 2 0.5 100 1.00
louvain 0.0001 2 6 2 0.5 100 1.00
label prop 0.0001 2 6 2 0.5 100 1.00
walktrap 0.0001 2 6 2 0.5 100 1.00
louvain 0.0001 2 6 2 0.5 100 1.00
label prop 0.0001 2 6 2 0.5 100 1.00
walktrap 0.0001 2 6 2 0.0 100 1.00
louvain 0.0001 2 6 2 0.0 100 1.00
label prop 0.0001 2 6 2 0.0 100 1.00
walktrap 0.0001 2 6 2 0.0 100 1.00
louvain 0.0001 2 6 2 0.0 100 1.00
label prop 0.0001 2 6 2 0.0 100 1.00
walktrap 0.0001 2 6 4 1.0 100 1.00
louvain 0.0001 2 6 4 1.0 100 1.00
label prop 0.0001 2 6 4 1.0 100 1.00
walktrap 0.0001 2 6 4 1.0 100 1.00
louvain 0.0001 2 6 4 1.0 100 1.00
label prop 0.0001 2 6 4 1.0 100 1.00
walktrap 0.0001 2 6 4 0.5 100 1.00
louvain 0.0001 2 6 4 0.5 100 1.00
label prop 0.0001 2 6 4 0.5 100 1.00
walktrap 0.0001 2 6 4 0.5 100 1.00
louvain 0.0001 2 6 4 0.5 100 1.00
label prop 0.0001 2 6 4 0.5 100 1.00
walktrap 0.0001 2 6 4 0.0 100 1.00
louvain 0.0001 2 6 4 0.0 100 1.00
label prop 0.0001 2 6 4 0.0 100 1.00
walktrap 0.0001 2 6 4 0.0 100 1.00
louvain 0.0001 2 6 4 0.0 100 1.00

166

Table A.4: Simulated data: quantitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 2 6 4 0.0 100 1.00
walktrap 0.05 2 2 0 1.0 100 0.60
louvain 0.05 2 2 0 1.0 100 0.60
label prop 0.05 2 2 0 1.0 100 0.60
walktrap 0.05 2 2 0 1.0 100 0.60
louvain 0.05 2 2 0 1.0 100 0.60
label prop 0.05 2 2 0 1.0 100 0.60
walktrap 0.05 2 2 0 0.5 100 0.43
louvain 0.05 2 2 0 0.5 100 0.38
label prop 0.05 2 2 0 0.5 100 0.43
walktrap 0.05 2 2 0 0.5 100 0.55
louvain 0.05 2 2 0 0.5 100 0.55
label prop 0.05 2 2 0 0.5 100 0.55
walktrap 0.05 2 2 0 0.0 100 0.57
louvain 0.05 2 2 0 0.0 100 0.42
label prop 0.05 2 2 0 0.0 100 0.57
walktrap 0.05 2 2 0 0.0 100 0.57
louvain 0.05 2 2 0 0.0 100 0.57
label prop 0.05 2 2 0 0.0 100 0.54
walktrap 0.05 2 2 2 1.0 100 0.20
louvain 0.05 2 2 2 1.0 100 0.20
label prop 0.05 2 2 2 1.0 100 0.20
walktrap 0.05 2 2 2 1.0 100 0.48
louvain 0.05 2 2 2 1.0 100 0.48
label prop 0.05 2 2 2 1.0 100 0.48
walktrap 0.05 2 2 2 0.5 100 0.01
louvain 0.05 2 2 2 0.5 100 0.57
label prop 0.05 2 2 2 0.5 100 0.42
walktrap 0.05 2 2 2 0.5 100 0.05
louvain 0.05 2 2 2 0.5 100 0.55
label prop 0.05 2 2 2 0.5 100 0.55
walktrap 0.05 2 2 2 0.0 100 0.57
louvain 0.05 2 2 2 0.0 100 0.46
label prop 0.05 2 2 2 0.0 100 0.35
walktrap 0.05 2 2 2 0.0 100 0.51
louvain 0.05 2 2 2 0.0 100 0.64
label prop 0.05 2 2 2 0.0 100 0.48
label prop 0.05 2 4 0 0.5 100 0.54
walktrap 0.05 2 4 0 0.5 100 0.54
louvain 0.05 2 4 0 0.5 100 0.54
label prop 0.05 2 4 0 0.5 100 0.84
walktrap 0.05 2 4 0 0.0 100 0.48
louvain 0.05 2 4 0 0.0 100 0.60
label prop 0.05 2 4 0 0.0 100 0.67
walktrap 0.05 2 4 0 0.0 100 0.81
louvain 0.05 2 4 0 0.0 100 0.88
label prop 0.05 2 4 0 0.0 100 0.81
walktrap 0.05 2 4 2 1.0 100 0.70
louvain 0.05 2 4 2 1.0 100 0.57
label prop 0.05 2 4 2 1.0 100 0.70

167

Table A.4: Simulated data: quantitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.05 2 4 2 1.0 100 0.35
louvain 0.05 2 4 2 1.0 100 0.35
label prop 0.05 2 4 2 1.0 100 0.88
walktrap 0.05 2 4 2 0.5 100 0.46
louvain 0.05 2 4 2 0.5 100 0.30
label prop 0.05 2 4 2 0.5 100 0.38
walktrap 0.05 2 4 2 0.5 100 0.74
louvain 0.05 2 4 2 0.5 100 0.74
label prop 0.05 2 4 2 0.5 100 0.74
walktrap 0.05 2 4 2 0.0 100 0.54
louvain 0.05 2 4 2 0.0 100 0.48
label prop 0.05 2 4 2 0.0 100 0.54
walktrap 0.05 2 4 2 0.0 100 0.81
louvain 0.05 2 4 2 0.0 100 0.81
label prop 0.05 2 4 2 0.0 100 0.81
walktrap 0.05 2 4 4 1.0 100 0.67
louvain 0.05 2 4 4 1.0 100 0.51
label prop 0.05 2 4 4 1.0 100 0.77
walktrap 0.05 2 4 4 1.0 100 0.74
louvain 0.05 2 4 4 1.0 100 0.38
label prop 0.05 2 4 4 1.0 100 0.88
walktrap 0.05 2 4 4 0.5 100 0.54
louvain 0.05 2 4 4 0.5 100 0.43
label prop 0.05 2 4 4 0.5 100 0.64
walktrap 0.05 2 4 4 0.5 100 0.83
louvain 0.05 2 4 4 0.5 100 0.60
label prop 0.05 2 4 4 0.5 100 0.77
walktrap 0.05 2 4 4 0.0 100 0.48
louvain 0.05 2 4 4 0.0 100 0.54
label prop 0.05 2 4 4 0.0 100 0.54
walktrap 0.05 2 4 4 0.0 100 0.81
louvain 0.05 2 4 4 0.0 100 0.81
label prop 0.05 2 4 4 0.0 100 0.81
louvain 0.05 2 6 0 0.5 100 0.88
label prop 0.05 2 6 0 0.5 100 0.92
walktrap 0.05 2 6 0 0.0 100 0.70
louvain 0.05 2 6 0 0.0 100 0.74
label prop 0.05 2 6 0 0.0 100 0.70
walktrap 0.05 2 6 0 0.0 100 0.83
louvain 0.05 2 6 0 0.0 100 0.62
label prop 0.05 2 6 0 0.0 100 0.88
walktrap 0.05 2 6 2 1.0 100 0.77
louvain 0.05 2 6 2 1.0 100 0.77
label prop 0.05 2 6 2 1.0 100 0.77
walktrap 0.05 2 6 2 1.0 100 0.76
louvain 0.05 2 6 2 1.0 100 0.76
label prop 0.05 2 6 2 1.0 100 0.76
walktrap 0.05 2 6 2 0.5 100 0.77
louvain 0.05 2 6 2 0.5 100 0.57
label prop 0.05 2 6 2 0.5 100 0.88

168

Table A.4: Simulated data: quantitative outcome, k=2

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.05 2 6 2 0.5 100 0.96
louvain 0.05 2 6 2 0.5 100 0.96
label prop 0.05 2 6 2 0.5 100 0.96
walktrap 0.05 2 6 2 0.0 100 0.46
louvain 0.05 2 6 2 0.0 100 0.33
label prop 0.05 2 6 2 0.0 100 0.48
walktrap 0.05 2 6 2 0.0 100 0.88
louvain 0.05 2 6 2 0.0 100 0.88
label prop 0.05 2 6 2 0.0 100 0.96
walktrap 0.05 2 6 4 1.0 100 0.77
louvain 0.05 2 6 4 1.0 100 0.81
label prop 0.05 2 6 4 1.0 100 0.77
walktrap 0.05 2 6 4 1.0 100 0.75
louvain 0.05 2 6 4 1.0 100 0.75
label prop 0.05 2 6 4 1.0 100 0.75
walktrap 0.05 2 6 4 0.5 100 0.74
louvain 0.05 2 6 4 0.5 100 0.81
label prop 0.05 2 6 4 0.5 100 0.70
walktrap 0.05 2 6 4 0.5 100 0.84
louvain 0.05 2 6 4 0.5 100 0.66
label prop 0.05 2 6 4 0.5 100 1.00
walktrap 0.05 2 6 4 0.0 100 0.38
louvain 0.05 2 6 4 0.0 100 0.19
label prop 0.05 2 6 4 0.0 100 0.67
walktrap 0.05 2 6 4 0.0 100 0.92
louvain 0.05 2 6 4 0.0 100 0.96
label prop 0.05 2 6 4 0.0 100 0.96

Table A.5: Simulated data: quantitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.0001 4 2 0 1.0 100 0,73
label prop 0.0001 4 2 0 1.0 100 0,73
walktrap 0.0001 4 2 0 0.5 100 1,00
louvain 0.0001 4 2 0 0.5 100 1,00
label prop 0.0001 4 2 0 0.5 100 1,00
walktrap 0.0001 4 2 0 0.5 100 1,00
louvain 0.0001 4 2 0 0.5 100 1,00
label prop 0.0001 4 2 0 0.5 100 1,00
walktrap 0.0001 4 2 0 0.0 100 1,00
louvain 0.0001 4 2 0 0.0 100 1,00
label prop 0.0001 4 2 0 0.0 100 1,00
walktrap 0.0001 4 2 0 0.0 100 1,00
louvain 0.0001 4 2 0 0.0 100 1,00
label prop 0.0001 4 2 0 0.0 100 1,00
walktrap 0.0001 4 2 2 1.0 100 0,73
louvain 0.0001 4 2 2 1.0 100 0,73
label prop 0.0001 4 2 2 1.0 100 0,73
walktrap 0.0001 4 2 2 1.0 100 0,73

169

Table A.5: Simulated data: quantitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.0001 4 2 2 1.0 100 0,73
label prop 0.0001 4 2 2 1.0 100 0,73
walktrap 0.0001 4 2 2 0.5 100 0,73
louvain 0.0001 4 2 2 0.5 100 0,95
label prop 0.0001 4 2 2 0.5 100 0,73
walktrap 0.0001 4 2 2 0.5 100 0,73
louvain 0.0001 4 2 2 0.5 100 1,00
label prop 0.0001 4 2 2 0.5 100 0,73
walktrap 0.0001 4 2 2 0.0 100 1,00
louvain 0.0001 4 2 2 0.0 100 1,00
label prop 0.0001 4 2 2 0.0 100 1,00
walktrap 0.0001 4 2 2 0.0 100 1,00
louvain 0.0001 4 2 2 0.0 100 1,00
label prop 0.0001 4 2 2 0.0 100 1,00
walktrap 0.0001 4 2 4 1.0 100 0,73
louvain 0.0001 4 2 4 1.0 100 0,75
label prop 0.0001 4 2 4 1.0 100 0,73
walktrap 0.0001 4 2 4 1.0 100 0,73
louvain 0.0001 4 2 4 1.0 100 0,73
label prop 0.0001 4 2 4 1.0 100 0,73
walktrap 0.0001 4 2 4 0.5 100 1,00
louvain 0.0001 4 2 4 0.5 100 1,00
label prop 0.0001 4 2 4 0.5 100 1,00
walktrap 0.0001 4 2 4 0.5 100 1,00
louvain 0.0001 4 2 4 0.5 100 1,00
label prop 0.0001 4 2 4 0.5 100 1,00
walktrap 0.0001 4 2 4 0.0 100 0,78
louvain 0.0001 4 2 4 0.0 100 0,78
label prop 0.0001 4 2 4 0.0 100 0,71
walktrap 0.0001 4 2 4 0.0 100 1,00
louvain 0.0001 4 2 4 0.0 100 1,00
label prop 0.0001 4 2 4 0.0 100 1,00
walktrap 0.0001 4 4 0 1.0 100 1,00
louvain 0.0001 4 4 0 1.0 100 1,00
label prop 0.0001 4 4 0 1.0 100 1,00
walktrap 0.0001 4 4 0 1.0 100 1,00
louvain 0.0001 4 4 0 1.0 100 1,00
label prop 0.0001 4 4 0 1.0 100 1,00
walktrap 0.0001 4 4 0 0.5 100 0,70
louvain 0.0001 4 4 0 0.5 100 0,90
label prop 0.0001 4 4 0 0.5 100 0,70
walktrap 0.0001 4 4 0 0.5 100 1,00
louvain 0.0001 4 4 0 0.5 100 1,00
label prop 0.0001 4 4 0 0.5 100 1,00
walktrap 0.0001 4 4 0 0.0 100 1,00
louvain 0.0001 4 4 0 0.0 100 1,00
label prop 0.0001 4 4 0 0.0 100 1,00
walktrap 0.0001 4 4 0 0.0 100 1,00
louvain 0.0001 4 4 0 0.0 100 1,00
label prop 0.0001 4 4 0 0.0 100 1,00

170

Table A.5: Simulated data: quantitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.0001 4 4 2 1.0 100 1,00
louvain 0.0001 4 4 2 1.0 100 1,00
label prop 0.0001 4 4 2 1.0 100 1,00
walktrap 0.0001 4 4 2 1.0 100 1,00
louvain 0.0001 4 4 2 1.0 100 1,00
label prop 0.0001 4 4 2 1.0 100 1,00
walktrap 0.0001 4 4 2 0.5 100 1,00
louvain 0.0001 4 4 2 0.5 100 1,00
label prop 0.0001 4 4 2 0.5 100 1,00
walktrap 0.0001 4 4 2 0.5 100 1,00
louvain 0.0001 4 4 2 0.5 100 1,00
label prop 0.0001 4 4 2 0.5 100 1,00
walktrap 0.0001 4 4 2 0.0 100 1,00
louvain 0.0001 4 4 2 0.0 100 1,00
label prop 0.0001 4 4 2 0.0 100 1,00
walktrap 0.0001 4 4 2 0.0 100 1,00
louvain 0.0001 4 4 2 0.0 100 1,00
label prop 0.0001 4 4 2 0.0 100 1,00
walktrap 0.0001 4 4 4 1.0 100 1,00
louvain 0.0001 4 4 4 1.0 100 1,00
label prop 0.0001 4 4 4 1.0 100 1,00
walktrap 0.0001 4 4 4 1.0 100 1,00
louvain 0.0001 4 4 4 1.0 100 1,00
label prop 0.0001 4 4 4 1.0 100 1,00
walktrap 0.0001 4 4 4 0.5 100 1,00
louvain 0.0001 4 4 4 0.5 100 1,00
label prop 0.0001 4 4 4 0.5 100 1,00
walktrap 0.0001 4 4 4 0.5 100 1,00
louvain 0.0001 4 4 4 0.5 100 1,00
label prop 0.0001 4 4 4 0.5 100 1,00
walktrap 0.0001 4 4 4 0.0 100 1,00
louvain 0.0001 4 4 4 0.0 100 1,00
label prop 0.0001 4 4 4 0.0 100 1,00
walktrap 0.0001 4 4 4 0.0 100 1,00
louvain 0.0001 4 4 4 0.0 100 1,00
label prop 0.0001 4 4 4 0.0 100 1,00
walktrap 0.0001 4 6 0 1.0 100 1,00
louvain 0.0001 4 6 0 1.0 100 1,00
label prop 0.0001 4 6 0 1.0 100 1,00
walktrap 0.0001 4 6 0 1.0 100 1,00
louvain 0.0001 4 6 0 1.0 100 1,00
label prop 0.0001 4 6 0 1.0 100 1,00
walktrap 0.0001 4 6 0 0.5 100 1,00
louvain 0.0001 4 6 0 0.5 100 1,00
label prop 0.0001 4 6 0 0.5 100 1,00
walktrap 0.0001 4 6 0 0.5 100 1,00
louvain 0.0001 4 6 0 0.5 100 1,00
label prop 0.0001 4 6 0 0.5 100 1,00
walktrap 0.0001 4 6 0 0.0 100 1,00
louvain 0.0001 4 6 0 0.0 100 1,00

171

Table A.5: Simulated data: quantitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 4 6 0 0.0 100 1,00
walktrap 0.0001 4 6 0 0.0 100 1,00
louvain 0.0001 4 6 0 0.0 100 1,00
label prop 0.0001 4 6 0 0.0 100 1,00
walktrap 0.0001 4 6 2 1.0 100 1,00
louvain 0.0001 4 6 2 1.0 100 1,00
label prop 0.0001 4 6 2 1.0 100 1,00
walktrap 0.0001 4 6 2 1.0 100 1,00
louvain 0.0001 4 6 2 1.0 100 1,00
label prop 0.0001 4 6 2 1.0 100 1,00
walktrap 0.0001 4 6 2 0.5 100 1,00
louvain 0.0001 4 6 2 0.5 100 1,00
label prop 0.0001 4 6 2 0.5 100 1,00
walktrap 0.0001 4 6 2 0.5 100 1,00
louvain 0.0001 4 6 2 0.5 100 1,00
label prop 0.0001 4 6 2 0.5 100 1,00
walktrap 0.0001 4 6 2 0.0 100 1,00
louvain 0.0001 4 6 2 0.0 100 1,00
label prop 0.0001 4 6 2 0.0 100 1,00
walktrap 0.0001 4 6 2 0.0 100 1,00
louvain 0.0001 4 6 2 0.0 100 1,00
label prop 0.0001 4 6 2 0.0 100 1,00
walktrap 0.0001 4 6 4 1.0 100 1,00
louvain 0.0001 4 6 4 1.0 100 1,00
label prop 0.0001 4 6 4 1.0 100 1,00
walktrap 0.0001 4 6 4 1.0 100 1,00
louvain 0.0001 4 6 4 1.0 100 1,00
label prop 0.0001 4 6 4 1.0 100 1,00
walktrap 0.0001 4 6 4 0.5 100 1,00
louvain 0.0001 4 6 4 0.5 100 1,00
label prop 0.0001 4 6 4 0.5 100 1,00
walktrap 0.0001 4 6 4 0.5 100 1,00
louvain 0.0001 4 6 4 0.5 100 1,00
label prop 0.0001 4 6 4 0.5 100 1,00
walktrap 0.0001 4 6 4 0.0 100 1,00
louvain 0.0001 4 6 4 0.0 100 1,00
label prop 0.0001 4 6 4 0.0 100 1,00
walktrap 0.0001 4 6 4 0.0 100 1,00
louvain 0.0001 4 6 4 0.0 100 1,00
label prop 0.0001 4 6 4 0.0 100 1,00
walktrap 0.05 4 2 0 1.0 100 0,13
louvain 0.05 4 2 0 1.0 100 0,38
label prop 0.05 4 2 0 1.0 100 0,46
walktrap 0.05 4 2 0 1.0 100 0,13
louvain 0.05 4 2 0 1.0 100 0,38
label prop 0.05 4 2 0 1.0 100 0,46
walktrap 0.05 4 2 0 0.5 100 0,51
louvain 0.05 4 2 0 0.5 100 0,39
label prop 0.05 4 2 0 0.5 100 0,14
walktrap 0.05 4 2 0 0.5 100 0,48

172

Table A.5: Simulated data: quantitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.05 4 2 0 0.5 100 0,39
label prop 0.05 4 2 0 0.5 100 0,14
walktrap 0.05 4 2 0 0.0 100 0,45
louvain 0.05 4 2 0 0.0 100 0,45
label prop 0.05 4 2 0 0.0 100 0,79
walktrap 0.05 4 2 0 0.0 100 0,80
louvain 0.05 4 2 0 0.0 100 0,80
label prop 0.05 4 2 0 0.0 100 0,80
walktrap 0.05 4 2 2 1.0 100 0,18
louvain 0.05 4 2 2 1.0 100 0,18
label prop 0.05 4 2 2 1.0 100 0,33
walktrap 0.05 4 2 2 1.0 100 0,18
louvain 0.05 4 2 2 1.0 100 0,33
label prop 0.05 4 2 2 1.0 100 0,33
walktrap 0.05 4 2 2 0.5 100 0,68
louvain 0.05 4 2 2 0.5 100 0,15
label prop 0.05 4 2 2 0.5 100 0,80
walktrap 0.05 4 2 2 0.5 100 0,77
louvain 0.05 4 2 2 0.5 100 0,77
label prop 0.05 4 2 2 0.5 100 0,77
walktrap 0.05 4 2 2 0.0 100 0,45
louvain 0.05 4 2 2 0.0 100 0,45
label prop 0.05 4 2 2 0.0 100 0,45
walktrap 0.05 4 2 2 0.0 100 0,80
louvain 0.05 4 2 2 0.0 100 0,80
label prop 0.05 4 2 2 0.0 100 0,80
walktrap 0.05 4 2 4 1.0 100 0,38
louvain 0.05 4 2 4 1.0 100 0,38
label prop 0.05 4 2 4 1.0 100 0,38
walktrap 0.05 4 2 4 1.0 100 0,39
louvain 0.05 4 2 4 1.0 100 0,39
label prop 0.05 4 2 4 1.0 100 0,33
walktrap 0.05 4 2 4 0.5 100 0,15
louvain 0.05 4 2 4 0.5 100 0,22
label prop 0.05 4 2 4 0.5 100 0,20
walktrap 0.05 4 2 4 0.5 100 0,80
louvain 0.05 4 2 4 0.5 100 0,80
label prop 0.05 4 2 4 0.5 100 0,80
walktrap 0.05 4 2 4 0.0 100 0,40
louvain 0.05 4 2 4 0.0 100 0,52
label prop 0.05 4 2 4 0.0 100 0,26
walktrap 0.05 4 2 4 0.0 100 0,80
louvain 0.05 4 2 4 0.0 100 0,80
label prop 0.05 4 2 4 0.0 100 0,80
louvain 0.05 4 2 4 0.5 100 0,80
label prop 0.05 4 2 4 0.5 100 0,80
walktrap 0.05 4 2 4 0.0 100 0,40
louvain 0.05 4 2 4 0.0 100 0,52
label prop 0.05 4 2 4 0.0 100 0,26
walktrap 0.05 4 2 4 0.0 100 0,80

173

Table A.5: Simulated data: quantitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.05 4 2 4 0.0 100 0,80
label prop 0.05 4 2 4 0.0 100 0,80
walktrap 0.05 4 4 0 1.0 100 0,41
louvain 0.05 4 4 0 1.0 100 0,41
label prop 0.05 4 4 0 1.0 100 0,41
walktrap 0.05 4 4 0 1.0 100 0,58
louvain 0.05 4 4 0 1.0 100 0,58
label prop 0.05 4 4 0 1.0 100 0,49
walktrap 0.05 4 4 0 0.5 100 0,33
louvain 0.05 4 4 0 0.5 100 0,36
label prop 0.05 4 4 0 0.5 100 0,41
walktrap 0.05 4 4 0 0.5 100 0,40
louvain 0.05 4 4 0 0.5 100 0,41
label prop 0.05 4 4 0 0.5 100 0,32
walktrap 0.05 4 4 0 0.0 100 0,29
louvain 0.05 4 4 0 0.0 100 0,35
label prop 0.05 4 4 0 0.0 100 0,04
walktrap 0.05 4 4 0 0.0 100 0,26
louvain 0.05 4 4 0 0.0 100 0,48
label prop 0.05 4 4 0 0.0 100 0,24
walktrap 0.05 4 4 2 1.0 100 0,41
louvain 0.05 4 4 2 1.0 100 0,52
label prop 0.05 4 4 2 1.0 100 0,41
walktrap 0.05 4 4 2 1.0 100 0,58
louvain 0.05 4 4 2 1.0 100 0,58
label prop 0.05 4 4 2 1.0 100 0,58
walktrap 0.05 4 4 2 0.5 100 0,27
louvain 0.05 4 4 2 0.5 100 0,35
label prop 0.05 4 4 2 0.5 100 0,32
walktrap 0.05 4 4 2 0.5 100 0,34
louvain 0.05 4 4 2 0.5 100 0,57
label prop 0.05 4 4 2 0.5 100 0,56
walktrap 0.05 4 4 2 0.0 100 0,29
louvain 0.05 4 4 2 0.0 100 0,30
label prop 0.05 4 4 2 0.0 100 0,33
walktrap 0.05 4 4 2 0.0 100 0,29
louvain 0.05 4 4 2 0.0 100 0,41
label prop 0.05 4 4 2 0.0 100 0,23
walktrap 0.05 4 4 4 1.0 100 0,41
louvain 0.05 4 4 4 1.0 100 0,52
label prop 0.05 4 4 4 1.0 100 0,41
walktrap 0.05 4 4 4 1.0 100 0,58
louvain 0.05 4 4 4 1.0 100 0,58
label prop 0.05 4 4 4 1.0 100 0,58
walktrap 0.05 4 4 4 0.5 100 0,31
louvain 0.05 4 4 4 0.5 100 0,50
label prop 0.05 4 4 4 0.5 100 0,33
walktrap 0.05 4 4 4 0.5 100 0,45
louvain 0.05 4 4 4 0.5 100 0,60
label prop 0.05 4 4 4 0.5 100 0,37

174

Table A.5: Simulated data: quantitative outcome, k=4

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.05 4 4 4 0.0 100 0,30
louvain 0.05 4 4 4 0.0 100 0,30
label prop 0.05 4 4 4 0.0 100 0,23
walktrap 0.05 4 4 4 0.0 100 0,37
louvain 0.05 4 4 4 0.0 100 0,38
label prop 0.05 4 4 4 0.0 100 0,18
louvain 0.05 4 6 0 0.5 100 0,37
label prop 0.05 4 6 0 0.5 100 0,29
walktrap 0.05 4 6 0 0.0 100 0,14
louvain 0.05 4 6 0 0.0 100 0,20
label prop 0.05 4 6 0 0.0 100 0,09
walktrap 0.05 4 6 0 0.0 100 0,30
louvain 0.05 4 6 0 0.0 100 0,13
label prop 0.05 4 6 0 0.0 100 0,07
walktrap 0.05 4 6 2 1.0 100 0,30
louvain 0.05 4 6 2 1.0 100 0,41
label prop 0.05 4 6 2 1.0 100 0,06
walktrap 0.05 4 6 2 1.0 100 0,40
louvain 0.05 4 6 2 1.0 100 0,32
label prop 0.05 4 6 2 1.0 100 0,31
walktrap 0.05 4 6 2 0.5 100 0,06
louvain 0.05 4 6 2 0.5 100 0,09
label prop 0.05 4 6 2 0.5 100 0,10
walktrap 0.05 4 6 2 0.5 100 0,19
louvain 0.05 4 6 2 0.5 100 0,21
label prop 0.05 4 6 2 0.5 100 0,07
walktrap 0.05 4 6 2 0.0 100 0,24
louvain 0.05 4 6 2 0.0 100 0,29
label prop 0.05 4 6 2 0.0 100 0,08
walktrap 0.05 4 6 2 0.0 100 0,18
louvain 0.05 4 6 2 0.0 100 0,11
label prop 0.05 4 6 2 0.0 100 0,10
walktrap 0.05 4 6 4 1.0 100 0,33
louvain 0.05 4 6 4 1.0 100 0,36
label prop 0.05 4 6 4 1.0 100 0,25
walktrap 0.05 4 6 4 1.0 100 0,11
louvain 0.05 4 6 4 1.0 100 0,34
label prop 0.05 4 6 4 1.0 100 0,25
walktrap 0.05 4 6 4 0.5 100 0,41
louvain 0.05 4 6 4 0.5 100 0,18
label prop 0.05 4 6 4 0.5 100 0,18
walktrap 0.05 4 6 4 0.5 100 0,19
louvain 0.05 4 6 4 0.5 100 0,21
label prop 0.05 4 6 4 0.5 100 0,26
walktrap 0.05 4 6 4 0.0 100 0,26
louvain 0.05 4 6 4 0.0 100 0,25
label prop 0.05 4 6 4 0.0 100 0,07
walktrap 0.05 4 6 4 0.0 100 0,19
louvain 0.05 4 6 4 0.0 100 0,19
label prop 0.05 4 6 4 0.0 100 0,12

175

Table A.6: Simulated data: quantitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.0001 6 2 0 1.0 100 0.58
walktrap 0.0001 6 2 0 1.0 100 0.58
louvain 0.0001 6 2 0 1.0 100 0.58
label prop 0.0001 6 2 0 1.0 100 0.58
walktrap 0.0001 6 2 0 0.5 100 0.26
louvain 0.0001 6 2 0 0.5 100 0.26
label prop 0.0001 6 2 0 0.5 100 0.26
walktrap 0.0001 6 2 0 0.5 100 0.84
louvain 0.0001 6 2 0 0.5 100 0.84
label prop 0.0001 6 2 0 0.5 100 0.84
walktrap 0.0001 6 2 0 0.0 100 0.40
louvain 0.0001 6 2 0 0.0 100 0.33
label prop 0.0001 6 2 0 0.0 100 0.32
walktrap 0.0001 6 2 0 0.0 100 0.64
louvain 0.0001 6 2 0 0.0 100 0.64
label prop 0.0001 6 2 0 0.0 100 0.64
walktrap 0.0001 6 2 2 1.0 100 0.58
louvain 0.0001 6 2 2 1.0 100 0.58
label prop 0.0001 6 2 2 1.0 100 0.58
walktrap 0.0001 6 2 2 1.0 100 0.58
louvain 0.0001 6 2 2 1.0 100 0.58
label prop 0.0001 6 2 2 1.0 100 0.58
walktrap 0.0001 6 2 2 0.5 100 0.28
louvain 0.0001 6 2 2 0.5 100 0.48
label prop 0.0001 6 2 2 0.5 100 0.28
walktrap 0.0001 6 2 2 0.5 100 0.64
louvain 0.0001 6 2 2 0.5 100 0.64
label prop 0.0001 6 2 2 0.5 100 0.64
walktrap 0.0001 6 2 2 0.0 100 0.36
louvain 0.0001 6 2 2 0.0 100 0.41
label prop 0.0001 6 2 2 0.0 100 0.44
walktrap 0.0001 6 2 2 0.0 100 0.60
louvain 0.0001 6 2 2 0.0 100 0.60
label prop 0.0001 6 2 2 0.0 100 0.60
walktrap 0.0001 6 2 4 1.0 100 0.58
louvain 0.0001 6 2 4 1.0 100 0.58
label prop 0.0001 6 2 4 1.0 100 0.58
walktrap 0.0001 6 2 4 1.0 100 0.58
louvain 0.0001 6 2 4 1.0 100 0.58
label prop 0.0001 6 2 4 1.0 100 0.61
walktrap 0.0001 6 2 4 0.5 100 0.34
louvain 0.0001 6 2 4 0.5 100 0.34
label prop 0.0001 6 2 4 0.5 100 0.34
walktrap 0.0001 6 2 4 0.5 100 0.80
louvain 0.0001 6 2 4 0.5 100 0.80
label prop 0.0001 6 2 4 0.5 100 0.80
walktrap 0.0001 6 2 4 0.0 100 0.38
louvain 0.0001 6 2 4 0.0 100 0.47
label prop 0.0001 6 2 4 0.0 100 0.30
walktrap 0.0001 6 2 4 0.0 100 0.59

176

Table A.6: Simulated data: quantitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.0001 6 2 4 0.0 100 0.59
label prop 0.0001 6 2 4 0.0 100 0.49
walktrap 0.0001 6 2 2 0.0 100 0.36
louvain 0.0001 6 2 2 0.0 100 0.41
label prop 0.0001 6 2 2 0.0 100 0.44
walktrap 0.0001 6 2 2 0.0 100 0.60
louvain 0.0001 6 2 2 0.0 100 0.60
label prop 0.0001 6 2 2 0.0 100 0.60
walktrap 0.0001 6 2 4 1.0 100 0.58
louvain 0.0001 6 2 4 1.0 100 0.58
label prop 0.0001 6 2 4 1.0 100 0.58
walktrap 0.0001 6 2 4 1.0 100 0.58
louvain 0.0001 6 2 4 1.0 100 0.58
label prop 0.0001 6 2 4 1.0 100 0.61
walktrap 0.0001 6 2 4 0.5 100 0.34
louvain 0.0001 6 2 4 0.5 100 0.34
label prop 0.0001 6 2 4 0.5 100 0.34
walktrap 0.0001 6 2 4 0.5 100 0.80
louvain 0.0001 6 2 4 0.5 100 0.80
label prop 0.0001 6 2 4 0.5 100 0.80
walktrap 0.0001 6 2 4 0.0 100 0.38
louvain 0.0001 6 2 4 0.0 100 0.47
label prop 0.0001 6 2 4 0.0 100 0.30
walktrap 0.0001 6 2 4 0.0 100 0.59
louvain 0.0001 6 2 4 0.0 100 0.59
label prop 0.0001 6 2 4 0.0 100 0.49
walktrap 0.0001 6 4 0 1.0 100 0.41
louvain 0.0001 6 4 0 1.0 100 0.41
label prop 0.0001 6 4 0 1.0 100 0.41
walktrap 0.0001 6 4 0 1.0 100 0.41
louvain 0.0001 6 4 0 1.0 100 0.41
label prop 0.0001 6 4 0 1.0 100 0.41
walktrap 0.0001 6 4 0 0.5 100 0.32
louvain 0.0001 6 4 0 0.5 100 0.34
label prop 0.0001 6 4 0 0.5 100 0.32
walktrap 0.0001 6 4 0 0.5 100 0.14
louvain 0.0001 6 4 0 0.5 100 0.52
label prop 0.0001 6 4 0 0.5 100 0.14
walktrap 0.0001 6 4 0 0.0 100 1.00
louvain 0.0001 6 4 0 0.0 100 1.00
label prop 0.0001 6 4 0 0.0 100 0.98
walktrap 0.0001 6 4 0 0.0 100 1.00
louvain 0.0001 6 4 0 0.0 100 1.00
label prop 0.0001 6 4 0 0.0 100 1.00
walktrap 0.0001 6 4 2 1.0 100 0.51
louvain 0.0001 6 4 2 1.0 100 0.51
label prop 0.0001 6 4 2 1.0 100 0.51
walktrap 0.0001 6 4 2 1.0 100 0.51
louvain 0.0001 6 4 2 1.0 100 0.51
label prop 0.0001 6 4 2 1.0 100 0.51

177

Table A.6: Simulated data: quantitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.0001 6 4 2 0.5 100 0.17
louvain 0.0001 6 4 2 0.5 100 0.17
label prop 0.0001 6 4 2 0.5 100 0.13
walktrap 0.0001 6 4 2 0.5 100 0.17
louvain 0.0001 6 4 2 0.5 100 0.17
label prop 0.0001 6 4 2 0.5 100 0.30
walktrap 0.0001 6 4 2 0.0 100 1.00
louvain 0.0001 6 4 2 0.0 100 1.00
label prop 0.0001 6 4 2 0.0 100 1.00
walktrap 0.0001 6 4 2 0.0 100 1.00
louvain 0.0001 6 4 2 0.0 100 1.00
label prop 0.0001 6 4 2 0.0 100 1.00
walktrap 0.0001 6 4 4 1.0 100 0.51
louvain 0.0001 6 4 4 1.0 100 0.51
label prop 0.0001 6 4 4 1.0 100 0.51
walktrap 0.0001 6 4 4 1.0 100 0.51
louvain 0.0001 6 4 4 1.0 100 0.51
label prop 0.0001 6 4 4 1.0 100 0.51
walktrap 0.0001 6 4 4 0.5 100 0.98
louvain 0.0001 6 4 4 0.5 100 0.98
label prop 0.0001 6 4 4 0.5 100 0.98
walktrap 0.0001 6 4 4 0.5 100 1.00
louvain 0.0001 6 4 4 0.5 100 1.00
label prop 0.0001 6 4 4 0.5 100 1.00
walktrap 0.0001 6 4 4 0.0 100 1.00
louvain 0.0001 6 4 4 0.0 100 1.00
label prop 0.0001 6 4 4 0.0 100 1.00
walktrap 0.0001 6 4 4 0.0 100 1.00
louvain 0.0001 6 4 4 0.0 100 1.00
label prop 0.0001 6 4 4 0.0 100 1.00
louvain 0.0001 6 6 0 0.0 100 1.00
label prop 0.0001 6 6 0 0.0 100 1.00
walktrap 0.0001 6 6 2 1.0 100 1.00
louvain 0.0001 6 6 2 1.0 100 1.00
label prop 0.0001 6 6 2 1.0 100 1.00
walktrap 0.0001 6 6 2 1.0 100 1.00
louvain 0.0001 6 6 2 1.0 100 1.00
label prop 0.0001 6 6 2 1.0 100 1.00
walktrap 0.0001 6 6 2 0.5 100 1.00
louvain 0.0001 6 6 2 0.5 100 1.00
label prop 0.0001 6 6 2 0.5 100 1.00
walktrap 0.0001 6 6 2 0.5 100 1.00
louvain 0.0001 6 6 2 0.5 100 1.00
label prop 0.0001 6 6 2 0.5 100 1.00
walktrap 0.0001 6 6 2 0.0 100 1.00
louvain 0.0001 6 6 2 0.0 100 1.00
label prop 0.0001 6 6 2 0.0 100 1.00
walktrap 0.0001 6 6 2 0.0 100 1.00
louvain 0.0001 6 6 2 0.0 100 1.00
label prop 0.0001 6 6 2 0.0 100 1.00

178

Table A.6: Simulated data: quantitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

walktrap 0.0001 6 6 4 1.0 100 1.00
louvain 0.0001 6 6 4 1.0 100 1.00
label prop 0.0001 6 6 4 1.0 100 1.00
walktrap 0.0001 6 6 4 1.0 100 1.00
louvain 0.0001 6 6 4 1.0 100 1.00
label prop 0.0001 6 6 4 1.0 100 1.00
walktrap 0.0001 6 6 4 0.5 100 1.00
louvain 0.0001 6 6 4 0.5 100 1.00
label prop 0.0001 6 6 4 0.5 100 1.00
walktrap 0.0001 6 6 4 0.5 100 1.00
louvain 0.0001 6 6 4 0.5 100 1.00
label prop 0.0001 6 6 4 0.5 100 1.00
walktrap 0.0001 6 6 4 0.0 100 1.00
louvain 0.0001 6 6 4 0.0 100 1.00
label prop 0.0001 6 6 4 0.0 100 1.00
walktrap 0.0001 6 6 4 0.0 100 1.00
louvain 0.0001 6 6 4 0.0 100 1.00
label prop 0.0001 6 6 4 0.0 100 1.00
label prop 0.05 6 2 0 0.5 100 0.28
walktrap 0.05 6 2 0 0.5 100 0.63
louvain 0.05 6 2 0 0.5 100 0.63
label prop 0.05 6 2 0 0.5 100 0.63
walktrap 0.05 6 2 0 0.0 100 0.43
louvain 0.05 6 2 0 0.0 100 0.35
label prop 0.05 6 2 0 0.0 100 0.43
walktrap 0.05 6 2 0 0.0 100 0.39
louvain 0.05 6 2 0 0.0 100 0.23
label prop 0.05 6 2 0 0.0 100 0.30
walktrap 0.05 6 2 2 1.0 100 0.56
louvain 0.05 6 2 2 1.0 100 0.56
label prop 0.05 6 2 2 1.0 100 0.56
walktrap 0.05 6 2 2 1.0 100 0.56
louvain 0.05 6 2 2 1.0 100 0.56
label prop 0.05 6 2 2 1.0 100 0.56
walktrap 0.05 6 2 2 0.5 100 0.47
louvain 0.05 6 2 2 0.5 100 0.48
label prop 0.05 6 2 2 0.5 100 0.48
walktrap 0.05 6 2 2 0.5 100 0.43
louvain 0.05 6 2 2 0.5 100 0.52
label prop 0.05 6 2 2 0.5 100 0.28
walktrap 0.05 6 2 2 0.0 100 0.24
louvain 0.05 6 2 2 0.0 100 0.35
label prop 0.05 6 2 2 0.0 100 0.37
walktrap 0.05 6 2 2 0.0 100 0.41
louvain 0.05 6 2 2 0.0 100 0.41
label prop 0.05 6 2 2 0.0 100 0.23
walktrap 0.05 6 2 4 1.0 100 0.56
louvain 0.05 6 2 4 1.0 100 0.56
label prop 0.05 6 2 4 1.0 100 0.56
walktrap 0.05 6 2 4 1.0 100 0.59

179

Table A.6: Simulated data: quantitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

louvain 0.05 6 2 4 1.0 100 0.59
label prop 0.05 6 2 4 1.0 100 0.59
walktrap 0.05 6 2 4 0.5 100 0.12
louvain 0.05 6 2 4 0.5 100 0.19
label prop 0.05 6 2 4 0.5 100 0.00
walktrap 0.05 6 2 4 0.5 100 0.12
louvain 0.05 6 2 4 0.5 100 0.12
label prop 0.05 6 2 4 0.5 100 0.55
walktrap 0.05 6 2 4 0.0 100 0.33
louvain 0.05 6 2 4 0.0 100 0.38
label prop 0.05 6 2 4 0.0 100 0.33
walktrap 0.05 6 2 4 0.0 100 0.39
louvain 0.05 6 2 4 0.0 100 0.23
label prop 0.05 6 2 4 0.0 100 0.36
label prop 0.05 6 2 4 0.0 100 0.33
walktrap 0.05 6 2 4 0.0 100 0.39
louvain 0.05 6 2 4 0.0 100 0.23
label prop 0.05 6 2 4 0.0 100 0.36
walktrap 0.05 6 4 0 1.0 100 0.22
louvain 0.05 6 4 0 1.0 100 0.35
label prop 0.05 6 4 0 1.0 100 0.22
walktrap 0.05 6 4 0 1.0 100 0.22
louvain 0.05 6 4 0 1.0 100 0.35
label prop 0.05 6 4 0 1.0 100 0.22
walktrap 0.05 6 4 0 0.5 100 0.24
louvain 0.05 6 4 0 0.5 100 0.24
label prop 0.05 6 4 0 0.5 100 0.02
walktrap 0.05 6 4 0 0.5 100 0.08
louvain 0.05 6 4 0 0.5 100 0.17
label prop 0.05 6 4 0 0.5 100 0.09
walktrap 0.05 6 4 0 0.0 100 0.49
louvain 0.05 6 4 0 0.0 100 0.49
label prop 0.05 6 4 0 0.0 100 0.49
walktrap 0.05 6 4 0 0.0 100 0.03
louvain 0.05 6 4 0 0.0 100 0.54
label prop 0.05 6 4 0 0.0 100 0.54
walktrap 0.05 6 4 2 1.0 100 0.24
louvain 0.05 6 4 2 1.0 100 0.34
label prop 0.05 6 4 2 1.0 100 0.24
walktrap 0.05 6 4 2 1.0 100 0.34
louvain 0.05 6 4 2 1.0 100 0.36
label prop 0.05 6 4 2 1.0 100 0.22
walktrap 0.05 6 4 2 0.5 100 0.21
louvain 0.05 6 4 2 0.5 100 0.21
label prop 0.05 6 4 2 0.5 100 0.11
walktrap 0.05 6 4 2 0.5 100 0.21
louvain 0.05 6 4 2 0.5 100 0.20
label prop 0.05 6 4 2 0.5 100 0.10
walktrap 0.05 6 4 2 0.0 100 0.30
louvain 0.05 6 4 2 0.0 100 0.30

180

Table A.6: Simulated data: quantitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.05 6 4 2 0.0 100 0.30
walktrap 0.05 6 4 2 0.0 100 0.08
louvain 0.05 6 4 2 0.0 100 0.30
label prop 0.05 6 4 2 0.0 100 0.26
walktrap 0.05 6 4 4 1.0 100 0.24
louvain 0.05 6 4 4 1.0 100 0.38
label prop 0.05 6 4 4 1.0 100 0.38
walktrap 0.05 6 4 4 1.0 100 0.34
louvain 0.05 6 4 4 1.0 100 0.36
label prop 0.05 6 4 4 1.0 100 0.22
walktrap 0.05 6 4 4 0.5 100 0.21
louvain 0.05 6 4 4 0.5 100 0.21
label prop 0.05 6 4 4 0.5 100 0.13
walktrap 0.05 6 4 4 0.5 100 0.15
louvain 0.05 6 4 4 0.5 100 0.21
label prop 0.05 6 4 4 0.5 100 0.10
walktrap 0.05 6 4 4 0.0 100 0.29
louvain 0.05 6 4 4 0.0 100 0.29
label prop 0.05 6 4 4 0.0 100 0.20
walktrap 0.05 6 4 4 0.0 100 0.08
louvain 0.05 6 4 4 0.0 100 0.13
label prop 0.05 6 4 4 0.0 100 0.11
louvain 0.05 6 4 4 0.0 100 0.13
label prop 0.05 6 4 4 0.0 100 0.11
walktrap 0.05 6 6 0 1.0 100 0.08
louvain 0.05 6 6 0 1.0 100 0.09
label prop 0.05 6 6 0 1.0 100 0.26
walktrap 0.05 6 6 0 1.0 100 0.08
louvain 0.05 6 6 0 1.0 100 0.09
label prop 0.05 6 6 0 1.0 100 0.26
walktrap 0.05 6 6 0 0.5 100 0.17
louvain 0.05 6 6 0 0.5 100 0.18
label prop 0.05 6 6 0 0.5 100 0.09
walktrap 0.05 6 6 0 0.5 100 0.23
louvain 0.05 6 6 0 0.5 100 0.22
label prop 0.05 6 6 0 0.5 100 0.15
walktrap 0.05 6 6 0 0.0 100 0.08
louvain 0.05 6 6 0 0.0 100 0.08
label prop 0.05 6 6 0 0.0 100 0.04
walktrap 0.05 6 6 0 0.0 100 0.20
louvain 0.05 6 6 0 0.0 100 0.20
label prop 0.05 6 6 0 0.0 100 0.06
walktrap 0.05 6 6 2 1.0 100 0.07
louvain 0.05 6 6 2 1.0 100 0.29
label prop 0.05 6 6 2 1.0 100 0.01
walktrap 0.05 6 6 2 1.0 100 0.16
louvain 0.05 6 6 2 1.0 100 0.11
label prop 0.05 6 6 2 1.0 100 0.22
walktrap 0.05 6 6 2 0.5 100 0.09
louvain 0.05 6 6 2 0.5 100 0.10

181

Table A.6: Simulated data: quantitative outcome, k=6

algorithm overlap group Nvar noise Varqua iteration Rand Index

label prop 0.05 6 6 2 0.5 100 0.04
walktrap 0.05 6 6 2 0.5 100 0.18
louvain 0.05 6 6 2 0.5 100 0.13
label prop 0.05 6 6 2 0.5 100 0.25
walktrap 0.05 6 6 2 0.0 100 0.07
louvain 0.05 6 6 2 0.0 100 0.15
label prop 0.05 6 6 2 0.0 100 0.09
walktrap 0.05 6 6 4 1.0 100 0.08
louvain 0.05 6 6 4 1.0 100 0.29
label prop 0.05 6 6 4 1.0 100 0.01
walktrap 0.05 6 6 4 1.0 100 0.16
louvain 0.05 6 6 4 1.0 100 0.16
label prop 0.05 6 6 4 1.0 100 0.00
walktrap 0.05 6 6 4 0.5 100 0.06
louvain 0.05 6 6 4 0.5 100 0.03
label prop 0.05 6 6 4 0.5 100 0.11
walktrap 0.05 6 6 4 0.5 100 0.16
louvain 0.05 6 6 4 0.5 100 0.13
label prop 0.05 6 6 4 0.5 100 0.13
walktrap 0.05 6 6 4 0.0 100 0.11
louvain 0.05 6 6 4 0.0 100 0.14
label prop 0.05 6 6 4 0.0 100 0.06
walktrap 0.05 6 6 4 0.0 100 0.12
louvain 0.05 6 6 4 0.0 100 0.16
label prop 0.05 6 6 4 0.0 100 0.03

182

A.2 Unesco website data

Variable Characteristic

Contact and support Search engine
Site map
Foreign languages
Phone number of information offices
Email address
Links to social networks
Generic application form
F.A.Q.
App for them mobile devices (phone and tablet)

Adequacy of reported information
(Brand)

Specific brand - site of UNESCO

UNESCO’s brand
Brand of countries
Additional brand(s)

Table A.7: Observed characteristic of websites and variable obtained from them

183

Variable Characteristic

Adequacy of reported information
(Tourism)

Download depliant

Page flipper
Gallery images
Video
Web TV
The virtual tour
Tour guides contacts
Webcam live
What to do (activities to be performed)
Events calendar
Events calendar with booking facilities
Information for customers with specific needs
Information for owners of animal
Information on how to get
Information on how to move in the destination - bus
Information on how to move in the destination - car
rental
Information on how to move in the destination - taxi
service
Map(s)
Receptivity - List of accommodation facilities
Receptivity - availability of accommodation
Online booking
Restaurants
Shopping - food and wine products
Shopping - typical handmade products
Shopping - commercial centres
Offers/Last minute promotions
Advice on how designing a trip
Information on local travel agencies

Table A.8: Observed characteristic of websites and variable obtained from them

184

Variable Characteristic

Adequacy of reported informa-
tion(News)

Press releases

Press review
News

Relational Skills Space/wall to share experiences and photos of tourists
Blog
TripAdvisor
Newsletter

Other Information - Internal Com-
munication

Data on tourism

Information about the UNESCO sites
Information on regional policies
News and press releases for tourism operators
Operator training area

Adequacy of reported information
(External Information)

Links to local tourism organizations

Links to municipality sites
Links to sites of the local organization
Links to the sites of other territorial authorities

Table A.9: Observed characteristic of websites and variable obtained from them

Indicator Definition

Global Rank It measures how a website is doing relative to all other sites on
the web over the past 3 months.

Rank In It measures how a website ranks in a particular country relative
to other websites over the past month.

Bounce Rate The percentage of visitors that leave the website after visiting
only one page.

Daily Pageviews per Visitor The average number of pages that are seen by visitor per day.

Daily Time on Site A measure of the time spent by a visitor on the website.

Search traffic (also called
organic search engine traf-
fic)

The percentage of visitors who arrive at a website using search
engines.

Upstream sites The indication of which website people visit before visiting a
specific website.

Table A.10: Alexa Indicators

185

A
re

a
F

o
cu

s
on

N
u

m
b

er
of

b
in

ar
y

va
ri

ab
le

s

C
o
n
ta

ct
an

d
su

p
p

o
rt

P
re

se
n

ce
of

co
n
ta

ct
s

el
em

en
ts

(a
s

p
h

on
e

n
u

m
b

er
an

d
em

ai
l

ad
-

d
re

ss
)

an
d

of
li

n
k
s

to
b

ot
h

ap
p

s
th

at
ca

n
su

p
p

or
t

to
u

ri
st

s
an

d
to

so
ci

a
l

n
et

w
or

k
s.

9

A
d

eq
u

ac
y

o
f

R
ep

o
rt

ed
In

-
fo

rm
a
ti

o
n

-
B

ra
n

d
T

h
e

b
ra

n
d

of
U

N
E

S
C

O
or

ot
h

er
b

ra
n

d
s

u
se

d
in

si
d

e
a

w
eb

si
te

.
4

A
d

eq
u

ac
y

o
f

R
ep

o
rt

ed
In

-
fo

rm
a
ti

o
n

-
T

ou
ri

sm
T

o
u

ri
sm

in
fo

rm
at

io
n

(a
s

ac
co

m
m

o
d

at
io

n
,

av
ai

la
b

il
it

y
of

ac
co

m
-

m
o
d

at
io

n
,

re
st

au
ra

n
t,

to
u

ri
st

ic
ac

ti
v
it

ie
s

an
d

se
rv

ic
es

).
28

A
d

eq
u

ac
y

o
f

R
ep

o
rt

ed
In

-
fo

rm
a
ti

o
n

-
E

x
te

rn
a
l

In
fo

r-
m

at
io

n

L
in

k
s

to
lo

ca
l

to
u

ri
st

in
st

it
u

ti
on

s,
to

u
ri

sm
p

ro
d

u
ct

cl
u

b
s

an
d

o
th

er
p

u
b

li
c

in
st

it
u

ti
on

s.
4

A
d

eq
u

ac
y

o
f

R
ep

o
rt

ed
In

-
fo

rm
a
ti

o
n

-
N

ew
s

N
ew

s
a
n

d
ar

ti
cl

es
in

fo
rm

in
g

v
is

it
or

s
ab

ou
t

ev
en

ts
or

ot
h

er
ac

-
ti

v
it

ie
s

th
at

ta
ke

p
la

ce
in

th
e

cu
lt

u
ra

l
an

d
n

at
u

ra
l

si
te

s.
3

R
el

at
io

n
a
l

S
k
il

ls
C

h
a
t,

p
ag

es
w

h
er

e
to

sh
ar

e
p

h
ot

os
an

d
v
id

eo
s

an
d

w
h

er
e

to
w

ri
te

re
v
ie

w
s.

A
ll

el
em

en
ts

ar
e

u
se

fu
l

in
cr

ea
ti

n
g

re
la

ti
on

sh
ip

s
w

it
h

o
n

li
n

e
v
is

it
or

s.

4

O
th

er
In

fo
rm

at
io

n
/

In
te

r-
n

a
l

C
om

m
u

n
ic

a
ti

o
n

In
fo

rm
a
ti

on
ab

ou
t

th
e

n
u

m
b

er
of

v
is

it
or

s,
th

e
U

N
E

S
C

O
or

ga
-

n
iz

a
ti

o
n

an
d

th
e

h
er

it
ag

e
li

st
,

id
ea

s
fo

r
to

u
ri

sm
d

ev
el

op
m

en
t,

et
c.

5

Table A.11: Counting Variables obtained from the presence/absence of specific character-
istics of observed websites

186

A.3 Boston data

●

●

●

●

●

●

●

●●● ●●●

●

●

●

1 2 3 4

10
20

30
40

50

louvain50rpart

0 10 20 30 40 50

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●●●●●●● ●●

1 2 3

10
20

30
40

50

louvain100rpart

0 20 40 60 80 100

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●●●●

1 2 3

10
20

30
40

50

louvain200rpart

0 50 100 150 200

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

1 2 3

10
20

30
40

50

louvain300rpart

0 50 100 150 200 250 300

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●●●●●●● ●●

1 2 3

10
20

30
40

50

louvain400rpart

0 100 200 300 400

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●●●

●

●●

●

●

●

● ●●

1 2 3

10
20

30
40

50

louvain500rpart

0 100 200 300 400 500

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(f) 500th iteration

Figure A.1: CTSC applied on Boston, CART and Louvain

187

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1 2 3 4 5

10
20

30
40

50

louvain50gbm

0 10 20 30 40 50

5
10

15
20

25
30

35

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●

●

●

●

●
●

●

●●

●●●●●●● ●●

1 2 3 4

10
20

30
40

50

louvain100gbm

0 20 40 60 80 100

5
10

15
20

25
30

35

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●
●

●●●●●●●●●●●

●

●

1 2 3

10
20

30
40

50

louvain200gbm

0 50 100 150 200

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

1 2 3

10
20

30
40

50

louvain300gbm

0 50 100 150 200 250 300

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

1 2 3

10
20

30
40

50

louvain400gbm

0 100 200 300 400

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●

●

●

●

●●●

1 2 3

10
20

30
40

50

louvain500gbm

0 100 200 300 400 500

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.2: CTSC applied on Boston, BGM and Louvain

188

●●●●●

●

●● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

1 2 3 4 5 6

10
20

30
40

50

walktrap50rpart

0 10 20 30 40 50

10
20

30
40

50

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

1 2 3

10
20

30
40

50

walktrap100rpart

0 20 40 60 80 100

10
20

30
40

50
60

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●● ●●

1 2 3

10
20

30
40

50

walktrap200rpart

0 50 100 150 200

0
10

20
30

40
50

60

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

1 2 3

10
20

30
40

50

walktrap300rpart

0 50 100 150 200 250 300

0
10

20
30

40
50

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

1 2 3

10
20

30
40

50

walktrap400rpart

0 100 200 300 400

0
10

20
30

40
50

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

1 2 3

10
20

30
40

50

walktrap500rpart

0 100 200 300 400 500

10
20

30
40

50

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.3: CTSC applied on Boston, CART and Walktrap

189

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

1 2 3 4 5

10
20

30
40

50

walktrap50gbm

0 10 20 30 40 50

10
20

30
40

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●●● ●●●●●●●●●●●●●

●●
●

●

●

●

●

●

●

●

1 2 3

10
20

30
40

50

walktrap100gbm

0 20 40 60 80 100

10
20

30
40

50
60

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●●●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

1 2 3

10
20

30
40

50

walktrap200gbm

0 50 100 150 200

10
20

30
40

50

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●●●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

1 2 3

10
20

30
40

50

walktrap300gbm

0 50 100 150 200 250 300

0
10

20
30

40
50

60

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

1 2 3

10
20

30
40

50

walktrap400gbm

0 100 200 300 400

0
10

20
30

40
50

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●

●

●

●

●

●●

1 2 3

10
20

30
40

50

walktrap500gbm

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.4: CTSC applied on Boston, GBM and Walktrap

190

●

●

●

●

●

●●

●

●
●

● ●●●●●

●

●● ●

●

●

●

1 2 3 4 5 6

10
20

30
40

50

label_prop50rpart

0 10 20 30 40 50

0
20

40
60

80

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●●

1 2

10
20

30
40

50

label_prop100rpart

0 20 40 60 80 100

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●● ●●

1 2

10
20

30
40

50

label_prop200rpart

0 50 100 150 200

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

1 2 3

10
20

30
40

50

label_prop300rpart

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

1 2 3

10
20

30
40

50

label_prop400rpart

0 100 200 300 400

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●●

1 2

10
20

30
40

50

label_prop500rpart

0 100 200 300 400 500

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.5: CTSC applied on Boston, CART and Label Propagation

191

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

1 2 3 4 5

10
20

30
40

50

label_prop50gbm

0 10 20 30 40 50

0
20

40
60

80

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

1 2 3

10
20

30
40

50

label_prop100gbm

0 20 40 60 80 100

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●●●

1 2 3

10
20

30
40

50

label_prop200gbm

0 50 100 150 200

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●●●●●

●

●●

●

●

●

●●

●

●

1 2 3

10
20

30
40

50

label_prop300gbm

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●●●●● ●

1 2 3

10
20

30
40

50

label_prop400gbm

0 100 200 300 400

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

1 2 3

10
20

30
40

50

label_prop500gbm

0 100 200 300 400 500

0
20

40
60

80
10

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.6: CTSC applied on Boston, GBM and Label Propagation

192

A.4 rent99

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 11 13

0
5

10
15

louvain50rpart

0 10 20 30 40 50

20
30

40
50

60

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
4

0.
5

0.
6

0.
7

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

0
5

10
15

louvain100rpart

0 20 40 60 80 100

10
20

30
40

50
60

70

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●

●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

1 2 3 4 5 6

0
5

10
15

louvain200rpart

0 50 100 150 200

10
20

30
40

50
60

70

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●

●
●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

1 2 3 4

0
5

10
15

louvain300rpart

0 50 100 150 200 250 300

10
20

30
40

50
60

70

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

1 2 3

0
5

10
15

louvain400rpart

0 100 200 300 400

10
20

30
40

50
60

70

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

1 2 3

0
5

10
15

louvain500rpart

0 100 200 300 400 500

10
20

30
40

50
60

70

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(f) 500th iteration

Figure A.7: CTSC applied on rent99 including CART and Louvain

193

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

1 2 3 4 5 6 7 8 9 10 12

0
5

10
15

walktrap50gbm

0 10 20 30 40 50

50
10

0
15

0
20

0
25

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

1 2 3 4 5 6 7 8

0
5

10
15

walktrap100gbm

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

1 2 3 4 5 6 7 8

0
5

10
15

walktrap200gbm

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

1 2 3 4 5 6

0
5

10
15

walktrap300gbm

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1 2 3 4 5

0
5

10
15

walktrap400gbm

0 100 200 300 400

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●●●

●

●

●

●

●

●

●
●

●●

1 2 3 4 5

0
5

10
15

walktrap500gbm

0 100 200 300 400 500

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.8: CTSC applied on rent99 including GBM and Louvain

194

●

●

●

●●
●

● ●

●

●

●

●●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 3 5 7 9 11 14 17 20 23

0
5

10
15

walktrap50rpart

0 10 20 30 40 50

20
40

60
80

10
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10

0
5

10
15

walktrap100rpart

0 20 40 60 80 100

20
40

60
80

10
0

12
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●

●●●

●
●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

0
5

10
15

walktrap200rpart

0 50 100 150 200

50
10

0
15

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●

●

●
●●

●

●

●

●

●

●

●
●

1 2 3 4

0
5

10
15

walktrap300rpart

0 50 100 150 200 250 300

0
20

40
60

80
10

0
12

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

1 2 3 4

0
5

10
15

walktrap400rpart

0 100 200 300 400

0
20

40
60

80
10

0
12

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●

●
●●

●

●

●

●

●

●

●
●

1 2 3 4

0
5

10
15

walktrap500rpart

0 100 200 300 400 500

0
50

10
0

15
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.9: CTSC applied on rent99 including CART and Walktrap

195

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

1 2 3 4 5 6 7 8 9 10 12

0
5

10
15

walktrap50gbm

0 10 20 30 40 50

50
10

0
15

0
20

0
25

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

1 2 3 4 5 6 7 8

0
5

10
15

walktrap100gbm

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

1 2 3 4 5 6 7 8

0
5

10
15

walktrap200gbm

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

1 2 3 4 5 6

0
5

10
15

walktrap300gbm

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1 2 3 4 5

0
5

10
15

walktrap400gbm

0 100 200 300 400

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●●●

●

●

●

●

●

●

●
●

●●

1 2 3 4 5

0
5

10
15

walktrap500gbm

0 100 200 300 400 500

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.10: CTSC applied on rent99 including GBM and Walktrap

196

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 4 7 10 13 16 19 22 25 28 31

0
5

10
15

label_prop50rpart

0 10 20 30 40 50

50
10

0
15

0
20

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 11 13 15

0
5

10
15

label_prop100rpart

0 20 40 60 80 100

50
10

0
15

0
20

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9

0
5

10
15

label_prop200rpart

0 50 100 150 200

0
50

10
0

15
0

20
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

1 2 3 4

0
5

10
15

label_prop300rpart

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●
●

●

●

●

●

●●●
●

●

●

●

●
●

1 2 3 4

0
5

10
15

label_prop400rpart

0 100 200 300 400

0
50

10
0

15
0

20
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

1 2 3 4

0
5

10
15

label_prop500rpart

0 100 200 300 400 500

0
50

10
0

15
0

20
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.11: CTSC applied on rent99 including CART and Label Propagation

197

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

1 3 5 7 9 11 13 15 17 19

0
5

10
15

label_prop50gbm

0 10 20 30 40 50

50
10

0
15

0
20

0
25

0
30

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 10 20 30 40 50

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(a) 50th iteration

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9

0
5

10
15

label_prop100gbm

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(b) 100th iteration

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

1 2 3 4 5 6

0
5

10
15

label_prop200gbm

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(c) 200th iteration

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1 2 3 4 5

0
5

10
15

label_prop300gbm

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(d) 300th iteration

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

1 2 3 4 5

0
5

10
15

label_prop400gbm

0 100 200 300 400

0
10

0
20

0
30

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

1
−

 (
ris

.p
va

lu
e[

[m
et

]]/
(c

ho
os

e(
ris

.g
ru

pp
i[[

m
et

]],
 2

))
)

(e) 400th iteration

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

1 2 3 4

0
5

10
15

label_prop500gbm

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0

Index

ris
.g

ru
pp

i[[
m

et
]]

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index
1

−
 (

ris
.p

va
lu

e[
[m

et
]]/

(c
ho

os
e(

ris
.g

ru
pp

i[[
m

et
]],

 2
))

)

(f) 500th iteration

Figure A.12: CTSC applied on rent99 including GBM and Label Propagation

198

Bibliography

[1] Hervé Abdi. The method of least squares. Encyclopedia of Measurement and Statistics.

CA, USA: Thousand Oaks, 2007.

[2] Steven Abney. Semisupervised learning for computational linguistics. CRC Press,

2007.

[3] Gaurav Agarwal and David Kempe. Modularity-maximizing graph communities via

mathematical programming. The European Physical Journal B, 66(3):409–418, 2008.

[4] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,

algorithms, and applications. Prentice hall, 1993.

[5] Richard D Alba. A graph-theoretic definition of a sociometric clique. Journal of

Mathematical Sociology, 3(1):113–126, 1973.

[6] Réka Albert and Albert-László Barabási. Dynamics of complex systems: Scaling laws

for the period of boolean networks. Physical Review Letters, 84(24):5660, 2000.

[7] Réka Albert and Albert-László Barabási. Topology of evolving networks: local events

and universality. Physical review letters, 85(24):5234, 2000.

[8] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.

Reviews of modern physics, 74(1):47, 2002.

[9] Joan M Aldous and Robin J Wilson. Graphs and applications: an introductory ap-

proach, volume 1. Springer Science & Business Media, 2003.

[10] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2014.

[11] Taher Alzahrani and KJ Horadam. Community detection in bipartite networks: Al-

gorithms and case studies. In Complex Systems and Networks, pages 25–50. Springer,

2016.

199

[12] Luıs A Nunes Amaral, Antonio Scala, Marc Barthelemy, and H Eugene Stanley.

Classes of small-world networks. Proceedings of the national academy of sciences,

97(21):11149–11152, 2000.

[13] F Amblard. Which ties to choose? a survey of social networks models for agent-

based social simulations. In Proceedings of the 2002 SCS International Conference

On Artificial Intelligence, Simulation and Planning in High Autonomy Systems, pages

253–258, 2002.

[14] Babak Amiri, Liaquat Hossain, John W Crawford, and Rolf T Wigand. Com-

munity detection in complex networks: Multi–objective enhanced firefly algorithm.

Knowledge-Based Systems, 46:1–11, 2013.

[15] T Antal and PL Krapivsky. Weight-driven growing networks. Physical Review E,

71(2):026103, 2005.

[16] Alex Arenas, Albert Dı́az-Guilera, Jurgen Kurths, Yamir Moreno, and Changsong

Zhou. Synchronization in complex networks. Physics reports, 469(3):93–153, 2008.

[17] Alex Arenas, Albert Diaz-Guilera, and Conrad J Pérez-Vicente. Synchronization

reveals topological scales in complex networks. Physical review letters, 96(11):114102,

2006.

[18] Ery Arias-Castro, Nicolas Verzelen, et al. Community detection in dense random

networks. The Annals of Statistics, 42(3):940–969, 2014.

[19] Martin Atzmueller, Stephan Doerfel, and Folke Mitzlaff. Description-oriented commu-

nity detection using exhaustive subgroup discovery. Information Sciences, 329:965–

984, 2016.

[20] Korinna Bade and Andreas Nürnberger. Creating a cluster hierarchy under constraints

of a partially known hierarchy. In Proceedings of the 2008 SIAM international con-

ference on data mining, pages 13–24. SIAM, 2008.

[21] Bart Baesens, Veronique Van Vlasselaer, and Wouter Verbeke. Fraud analytics using

descriptive, predictive, and social network techniques: a guide to data science for fraud

detection. John Wiley and amp, Sons, 2015.

[22] James P Bagrow and Erik M Bollt. Local method for detecting communities. Physical

Review E, 72(4):046108, 2005.

200

[23] Eric Bair. Semi-supervised clustering methods. Wiley Interdisciplinary Reviews:

Computational Statistics, 5(5):349–361, 2013.

[24] Eric Bair and Robert Tibshirani. Semi-supervised methods to predict patient survival

from gene expression data. PLoS biology, 2(4):e108, 2004.

[25] FA Baker, David L Verbyla, CS Hodges Jr, and EW Ross. Classification and regression

tree analysis for assessing hazard of pine mortality caused by heterobasidion annosum.

Plant Disease, 1993.

[26] VK Balakrishnan. Schaum’s Outline of Graph Theory: Including Hundreds of Solved

Problems. McGraw Hill Professional, 1997.

[27] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall. Learning

distance functions using equivalence relations. In Proceedings of the 20th International

Conference on Machine Learning (ICML-03), pages 11–18, 2003.

[28] Albert-László Barabási. Network science. Phil. Trans. R. Soc. A, 371(1987):20120375,

2013.

[29] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.

science, 286(5439):509–512, 1999.

[30] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Mean-field theory for

scale-free random networks. Physica A: Statistical Mechanics and its Applications,

272(1):173–187, 1999.

[31] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Scale-free characteristics

of random networks: the topology of the world-wide web. Physica A: statistical

mechanics and its applications, 281(1):69–77, 2000.

[32] Albert-Laszlo Barabâsi, Hawoong Jeong, Zoltan Néda, Erzsebet Ravasz, Andras Schu-

bert, and Tamas Vicsek. Evolution of the social network of scientific collaborations.

Physica A: Statistical mechanics and its applications, 311(3):590–614, 2002.

[33] Michael J Barber. Modularity and community detection in bipartite networks. Phys-

ical Review E, 76(6):066102, 2007.

[34] Andrew D Barbour and Gesine Reinert. Small worlds. Random Structures &

Algorithms, 19(1):54–74, 2001.

[35] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on

complex networks. Cambridge university press, 2008.

201

[36] Alain Barrat and Martin Weigt. On the properties of small-world network models. The

European Physical Journal B-Condensed Matter and Complex Systems, 13(3):547–560,

2000.

[37] Rodrigo C Barros, André CPLF de Carvalho, and Alex A Freitas. Automatic design

of decision-tree induction algorithms. Springer, 2015.

[38] Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-supervised clustering

by seeding. In In Proceedings of 19th International Conference on Machine Learning

(ICML-2002. Citeseer, 2002.

[39] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. A probabilistic framework for

semi-supervised clustering. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 59–68. ACM, 2004.

[40] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algo-

rithms: Bagging, boosting, and variants. Machine learning, 36(1-2):105–139, 1999.

[41] Stephen J Beckett. Improved community detection in weighted bipartite networks.

Royal Society open science, 3(1):140536, 2016.

[42] Punam Bedi and Chhavi Sharma. Community detection in social networks. Wi-

ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(3):115–135,

2016.

[43] Johannes Berg and Michael Lässig. Correlated random networks. Physical review

letters, 89(22):228701, 2002.

[44] Ginestra Bianconi and A-L Barabási. Competition and multiscaling in evolving net-

works. EPL (Europhysics Letters), 54(4):436, 2001.

[45] Ginestra Bianconi and Albert-László Barabási. Bose-einstein condensation in complex

networks. Physical review letters, 86(24):5632, 2001.

[46] Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. Integrating constraints and

metric learning in semi-supervised clustering. In Proceedings of the twenty-first inter-

national conference on Machine learning, page 11. ACM, 2004.

[47] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.

Fast unfolding of communities in large networks. Journal of statistical mechanics:

theory and experiment, 2008(10):P10008, 2008.

202

[48] S Boccaletti, M Ivanchenko, V Latora, A Pluchino, and A Rapisarda. Detecting com-

plex network modularity by dynamical clustering. Physical Review E, 75(4):045102,

2007.

[49] Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús

Gómez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massi-

miliano Zanin. The structure and dynamics of multilayer networks. Physics Reports,

544(1):1–122, 2014.

[50] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang.

Complex networks: Structure and dynamics. Physics reports, 424(4):175–308, 2006.

[51] Marián Boguná and Romualdo Pastor-Satorras. Epidemic spreading in correlated

complex networks. Physical Review E, 66(4):047104, 2002.

[52] Marián Boguná, Romualdo Pastor-Satorras, and Alessandro Vespignani. Epidemic

spreading in complex networks with degree correlations. arXiv preprint cond-

mat/0301149, 2003.

[53] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business

Media, 2013.

[54] JA Bondy and US Murty. Graph theory with application, 1976.

[55] Stephen P Borgatti. Centrality and network flow. Social networks, 27(1):55–71, 2005.

[56] Stephen P Borgatti and Daniel S Halgin. On network theory. Organization science,

22(5):1168–1181, 2011.

[57] Simone Borra and Agostino Di Ciaccio. Improving nonparametric regression methods

by bagging and boosting. Computational Statistics & Data Analysis, 38(4):407–

420, 2002.

[58] Elizabeth Bott. Family and social network: Roles. Norms, and External Relationships

in Ordinary Urban Families, London: Tavistock Publications, 1957.

[59] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[60] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[61] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classifi-

cation and regression trees. Wadsworth & Brooks/Cole Advanced Books & Software,

1984.

203

[62] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-

jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in

the web. Computer networks, 33(1):309–320, 2000.

[63] Carla E Brodley and Paul E Utgoff. Multivariate versus univariate decision trees. Uni-

versity of Massachusetts, Department of Computer and Information Science Amherst,

MA, 1992.

[64] Carla E Brodley and Paul E Utgoff. Multivariate decision trees. Machine learning,

19(1):45–77, 1995.

[65] Horst Bunke, Peter J Dickinson, Miro Kraetzl, and Walter D Wallis. A graph-theoretic

approach to enterprise network dynamics, volume 24. Springer Science & Busi-

ness Media, 2007.

[66] Guido Caldarelli, Andrea Capocci, Paolo De Los Rios, and Miguel A Munoz. Scale-free

networks from varying vertex intrinsic fitness. Physical review letters, 89(25):258702,

2002.

[67] Guido Caldarelli, Romualdo Pastor-Satorras, and Alessandro Vespignani. Structure

of cycles and local ordering in complex networks. The European Physical Journal

B-Condensed Matter and Complex Systems, 38(2):183–186, 2004.

[68] Fazli Can, Tansel Özyer, and Faruk Polat. State of the art applications of social

network analysis. Springer, 2014.

[69] R Casey and George Nagy. Decision tree design using a probabilistic model (corresp.).

IEEE Transactions on Information Theory, 30(1):93–99, 1984.

[70] Claudio Castellano, Fabio Cecconi, Vittorio Loreto, Domenico Parisi, and Filippo

Radicchi. Self-contained algorithms to detect communities in networks. The European

Physical Journal B-Condensed Matter and Complex Systems, 38(2):311–319, 2004.

[71] Joe Celko. Joe Celko’s SQL Puzzles and Answers. Morgan Kaufmann, 2006.

[72] B Chandra, Ravi Kothari, and Pallath Paul. A new node splitting measure for decision

tree construction. Pattern Recognition, 43(8):2725–2731, 2010.

[73] Hong Chang and Dit-Yan Yeung. Locally linear metric adaptation for semi-supervised

clustering. In Proceedings of the twenty-first international conference on Machine

learning, page 20. ACM, 2004.

204

[74] O Chapelle, B Schölkopf, and A Zien. Semi-supervised learning, ser. adaptive com-

putation and machine learning, 2006.

[75] Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao Zhou.

Identifying influential nodes in complex networks. Physica a: Statistical mechanics

and its applications, 391(4):1777–1787, 2012.

[76] Pin-Yu Chen and Alfred O Hero. Deep community detection. IEEE Transactions on

Signal Processing, 63(21):5706–5719, 2015.

[77] Tianping Chen, Xiwei Liu, and Wenlian Lu. Pinning complex networks by a single

controller. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6):1317–

1326, 2007.

[78] John Y. Ching, Andrew K. C. Wong, and Keith C. C. Chan. Class-dependent dis-

cretization for inductive learning from continuous and mixed-mode data. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 17(7):641–651, 1995.

[79] Fan Chung and Linyuan Lu. The average distances in random graphs with given

expected degrees. Proceedings of the National Academy of Sciences, 99(25):15879–

15882, 2002.

[80] Fan Chung and Linyuan Lu. Connected components in random graphs with given

expected degree sequences. Annals of combinatorics, 6(2):125–145, 2002.

[81] Fan RK Chung and Ronald L Graham. Erdos on graphs: his legacy of unsolved

problems. AK Peters Wellesley, MA, 1998.

[82] Krzysztof J Cios, Witold Pedrycz, Roman W Swiniarski, and Lukasz Andrzej Kurgan.

Data mining: a knowledge discovery approach. Springer Science & Business

Media, 2007.

[83] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community struc-

ture in very large networks. Physical review E, 70(6):066111, 2004.

[84] Andrea Clementi, Miriam Di Ianni, Giorgio Gambosi, Emanuele Natale, and Riccardo

Silvestri. Distributed community detection in dynamic graphs. Theoretical Computer

Science, 584:19–41, 2015.

[85] Reuven Cohen and Shlomo Havlin. Scale-free networks are ultrasmall. Physical review

letters, 90(5):058701, 2003.

205

[86] David Cohn, Rich Caruana, and Andrew McCallum. Semi-supervised clustering with

user feedback. Constrained Clustering: Advances in Algorithms, Theory, and Appli-

cations, 4(1):17–32, 2003.

[87] National Research Council et al. Applications of social network analysis for building

community disaster resilience: workshop summary. National Academies Press, 2009.

[88] Jan Salomon Cramer. The origins of logistic regression. Timbergen Institute Discus-

sion Paper, 2002.

[89] Nick Crossley, Christina Prell, and John Scott. Social network analysis: introduction

to special edition. Methodological Innovations Online, 4(1):1–5, 2009.

[90] Gábor Csányi and Balázs Szendrői. Fractal–small-world dichotomy in real-world net-

works. Physical Review E, 70(1):016122, 2004.

[91] Peter Csermely. Creative elements: network-based predictions of active centres in

proteins and cellular and social networks. Trends in biochemical sciences, 33(12):569–

576, 2008.

[92] Kolaczyk Eric D and Gábor Csárdi. Statistical analysis of network data with R,

volume 65. Springer, 2014.

[93] Pratap Dangeti. Statistics for Machine Learning. Packt Publishing, 2017.

[94] Jörn Davidsen, Holger Ebel, and Stefan Bornholdt. Emergence of a small world

from local interactions: Modeling acquaintance networks. Physical Review Letters,

88(12):128701, 2002.

[95] Ian Davidson and SS Ravi. Clustering with constraints: Feasibility issues and the k-

means algorithm. In Proceedings of the 2005 SIAM international conference on data

mining, pages 138–149. SIAM, 2005.

[96] Guilherme F de Arruda, Luciano da Fontoura Costa, and Francisco A Rodrigues. A

complex networks approach for data clustering. Physica A: Statistical Mechanics and

its Applications, 391(23):6174–6183, 2012.

[97] Manlio De Domenico, Clara Granell, Mason A Porter, and Alex Arenas. The physics

of spreading processes in multilayer networks. Nature Physics, 12(10):901–906, 2016.

[98] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro Provetti. En-

hancing community detection using a network weighting strategy. Information Sci-

ences, 222:648–668, 2013.

206

[99] JP Marques De Sá, João Gama, Raquel Sebastião, and Lúıs A Alexandre. Decision

trees using the minimum entropy-of-error principle. In International Conference on

Computer Analysis of Images and Patterns, pages 799–807. Springer, 2009.

[100] Glenn De’Ath. Multivariate regression trees: a new technique for modeling species–

environment relationships. Ecology, 83(4):1105–1117, 2002.

[101] Glenn De’ath and Katharina E Fabricius. Classification and regression trees: a pow-

erful yet simple technique for ecological data analysis. Ecology, 81(11):3178–3192,

2000.

[102] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society. Series

B (methodological), pages 1–38, 1977.

[103] Reinhard Diestel. Graph theory. Graduate texts in mathematics. Springer-Verlag

Berlin and Heidelberg GmbH amp, 2000.

[104] Thomas G Dietterich. An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. Machine learning,

40(2):139–157, 2000.

[105] Thang N Dinh and My T Thai. Toward optimal community detection: From trees to

general weighted networks. Internet Mathematics, 11(3):181–200, 2015.

[106] Luca Donetti and Miguel A Munoz. Detecting network communities: a new systematic

and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment,

2004(10):P10012, 2004.

[107] Sergey N Dorogovtsev, Alexander V Goltsev, and José FF Mendes. Critical phenom-

ena in complex networks. Reviews of Modern Physics, 80(4):1275, 2008.

[108] Sergey N Dorogovtsev and JFF Mendes. Accelerated growth of networks. arXiv

preprint cond-mat/0204102, 2002.

[109] Sergey N Dorogovtsev and Jose FF Mendes. Evolution of networks. Advances in

physics, 51(4):1079–1187, 2002.

[110] SN Dorogovtsev and JFF Mendes. Evolution of networks: From biological nets to the

internet and www. Technical report, Oxford University Press, 2003.

207

[111] Bruce A Draper, Carla E Brodley, and Paul E Utgoff. Goal-directed classification

using linear machine decision trees. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 16(9):888–893, 1994.

[112] Haifeng Du, Marcus W Feldman, Shuzhuo Li, and Xiaoyi Jin. An algorithm for detect-

ing community structure of social networks based on prior knowledge and modularity.

Complexity, 12(3):53–60, 2007.

[113] Jennifer A Dunne, Richard J Williams, and Neo D Martinez. Network structure and

biodiversity loss in food webs: robustness increases with connectance. Ecology letters,

5(4):558–567, 2002.

[114] David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a

highly connected world. Cambridge University Press, 2010.

[115] Holger Ebel, Lutz-Ingo Mielsch, and Stefan Bornholdt. Scale-free topology of e-mail

networks. Physical review E, 66(3):035103, 2002.

[116] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden the-

matic layers in the world wide web. Proceedings of the national academy of sciences,

99(9):5825–5829, 2002.

[117] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst.

Hung. Acad. Sci, 5(1):17–60, 1960.

[118] Floriana Esposito, Donato Malerba, Giovanni Semeraro, and J Kay. A comparative

analysis of methods for pruning decision trees. IEEE transactions on pattern analysis

and machine intelligence, 19(5):476–491, 1997.

[119] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based

algorithm for discovering clusters in large spatial databases with noise. In KDD’96

Proceedings of the Second International Conference on Knowledge Discovery and Data

Mining, volume 96, pages 226–231, 1996.

[120] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii

academiae scientiarum Petropolitanae, pages 128–140, 1741.

[121] De Faria et al. Application of information theory to sequential fault diagnosis. IEEE

Transactions on Computers, 100(2):164–170, 1982.

[122] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals

of human genetics, 7(2):179–188, 1936.

208

[123] Ronald A Fisher. The statistical utilization of multiple measurements. Annals of

Human Genetics, 8(4):376–386, 1938.

[124] Gary William Flake, Steve Lawrence, C Lee Giles, and Frans M Coetzee. Self-

organization and identification of web communities. Computer, 35(3):66–70, 2002.

[125] Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75–174,

2010.

[126] Santo Fortunato and Darko Hric. Community detection in networks: A user guide.

Physics Reports, 659:1–44, 2016.

[127] Santo Fortunato, Vito Latora, and Massimo Marchiori. Method to find community

structures based on information centrality. Physical review E, 70(5):056104, 2004.

[128] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,

pages 35–41, 1977.

[129] Jerome H Friedman. A recursive partitioning decision rule for nonparametric classi-

fication. IEEE Transactions on Computers, 4(C-26):404–408, 1977.

[130] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232, 2001.

[131] Jerome H Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning. Springer series in statistics, 2001.

[132] Jing Gao, Pang-Ning Tan, and Haibin Cheng. Semi-supervised clustering with partial

background information. In Proceedings of the 2006 SIAM International Conference

on Data Mining, pages 489–493. SIAM, 2006.

[133] Jose A Garćıa, Rosa Rodriguez-Sánchez, and Joaqúın Fdez-Valdivia. Social impact

of scholarly articles in a citation network. Journal of the Association for Information

Science and Technology, 66(1):117–127, 2015.

[134] Eugene Garfield. Citation indexes for science. Science, 122:108–111, 1955.

[135] Eugene Garfield et al. Science citation index-a new dimension in indexing. Science,

144(3619):649–654, 1964.

[136] Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus conicis solem

ambientium auctore Carolo Friderico Gauss. sumtibus Frid. Perthes et IH Besser,

1809.

209

[137] Sheila Gaynor and Eric Bair. Identification of relevant subtypes via preweighted

sparse clustering. arXiv preprint arXiv:1304.3760, 2013.

[138] Saul B Gelfand, CS Ravishankar, and Edward J Delp. An iterative growing and

pruning algorithm for classification tree design. In Systems, Man and Cybernetics,

1989. Conference Proceedings., IEEE International Conference on, pages 818–823.

IEEE, 1989.

[139] Michelle Girvan and Mark EJ Newman. Community structure in social and biological

networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[140] Inmar Givoni and Brendan Frey. Semi-supervised affinity propagation with instance-

level constraints. In Artificial Intelligence and Statistics, pages 161–168, 2009.

[141] Pablo M Gleiser and Leon Danon. Community structure in jazz. Advances in complex

systems, 6(04):565–573, 2003.

[142] Leo A Goodman and William H Kruskal. Measures of association for cross classifica-

tions. Journal of the American Statistical Association, 49(268):732–764, 1954.

[143] Steve Gregory. An algorithm to find overlapping community structure in networks.

Knowledge discovery in databases: PKDD 2007, pages 91–102, 2007.

[144] Nizar Grira, Michel Crucianu, and Nozha Boujemaa. Unsupervised and semi-

supervised clustering: a brief survey. Review of Machine Learning Techniques for

Processing Multimedia Content, 1:9–16, 2004.

[145] Roger Guimerà, Marta Sales-Pardo, and Lúıs A Nunes Amaral. Module identification

in bipartite and directed networks. Physical Review E, 76(3):036102, 2007.

[146] Wenlong Hang, Kup-Sze Choi, Shitong Wang, and Pengjiang Qian. Semi-supervised

learning using hidden feature augmentation. Applied Soft Computing, 59:448–461,

2017.

[147] C Hartmann, Pramod Varshney, Kishan Mehrotra, and C Gerberich. Application of

information theory to the construction of efficient decision trees. IEEE Transactions

on Information Theory, 28(4):565–577, 1982.

[148] Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical Science,

1(3):297–310, 1986.

[149] David Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision trees.

In IJCAI, volume 1993, pages 1002–1007, 1993.

210

[150] Michaela Hoffman, Douglas Steinley, Kathleen M Gates, Mitchell J Prinstein, and

Michael J Brusco. Detecting clusters/communities in social networks. Multivariate

behavioral research, pages 1–17, 2017.

[151] Petter Holme, Mikael Huss, and Hawoong Jeong. Subnetwork hierarchies of biochem-

ical pathways. Bioinformatics, 19(4):532–538, 2003.

[152] Erik Holmström, Nicolas Bock, and Johan Brännlund. Modularity density of network

community divisions. Physica D: Nonlinear Phenomena, 238(14):1161–1167, 2009.

[153] Xuezhen Hong, Jun Wang, and Guande Qi. Comparison of semi-supervised and

supervised approaches for classification of e-nose datasets: Case studies of tomato

juices. Chemometrics and Intelligent Laboratory Systems, 146:457–463, 2015.

[154] Darko Hric, Richard K Darst, and Santo Fortunato. Community detection in net-

works: Structural communities versus ground truth. Physical Review E, 90(6):062805,

2014.

[155] Andrea Isoni. Machine Learning for the Web. Packt Publishing Ltd, 2016.

[156] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review.

ACM computing surveys (CSUR), 31(3):264–323, 1999.

[157] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction

to statistical learning, volume 112. Springer, 2013.

[158] Lucas GS Jeub, Prakash Balachandran, Mason A Porter, Peter J Mucha, and

Michael W Mahoney. Think locally, act locally: Detection of small, medium-sized,

and large communities in large networks. Physical Review E, 91(1):012821, 2015.

[159] Sanjeev Kumar Jha, Honghan Zhao, Fitsum M Woldemeskel, and Bellie Sivakumar.

Network theory and spatial rainfall connections: An interpretation. Journal of Hy-

drology, 527:13–19, 2015.

[160] Pall F Jonsson, Tamara Cavanna, Daniel Zicha, and Paul A Bates. Cluster analysis of

networks generated through homology: automatic identification of important protein

communities involved in cancer metastasis. BMC bioinformatics, 7(1):2, 2006.

[161] Mihyun Kang and Zdenek Petrávsek. Random graphs: Theory and applications from

nature to society to the brain. Internationale Mathematische Nachrichten, (227):1–24,

2014.

211

[162] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure

in networks. Physical review E, 83(1):016107, 2011.

[163] Gordon V Kass. An exploratory technique for investigating large quantities of cate-

gorical data. Applied statistics, pages 119–127, 1980.

[164] Nancy Katz, David Lazer, Holly Arrow, and Noshir Contractor. Network theory and

small groups. Small group research, 35(3):307–332, 2004.

[165] Dror Y Kenett, Matjaž Perc, and Stefano Boccaletti. Networks of networks-an intro-

duction. Chaos, Solitons & Fractals, 80:1–6, 2015.

[166] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning

graphs. The Bell system technical journal, 49(2):291–307, 1970.

[167] Hans A Kestler, Johann M Kraus, Günther Palm, and Friedhelm Schwenker. On the

effects of constraints in semi-supervised hierarchical clustering. In IAPR Workshop

on Artificial Neural Networks in Pattern Recognition, pages 57–66. Springer, 2006.

[168] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and

Mason A Porter. Multilayer networks. Journal of complex networks, 2(3):203–271,

2014.

[169] Dan Klein, Sepandar D Kamvar, and Christopher D Manning. From instance-level

constraints to space-level constraints: Making the most of prior knowledge in data

clustering. Technical report, Stanford, 2002.

[170] David Knoke and Song Yang. Social network analysis, volume 154. Sage, 2008.

[171] Devin C Koestler, Carmen J Marsit, Brock C Christensen, Margaret R Karagas,

Raphael Bueno, David J Sugarbaker, Karl T Kelsey, and E Andres Houseman. Semi-

supervised recursively partitioned mixture models for identifying cancer subtypes.

Bioinformatics, 26(20):2578–2585, 2010.

[172] ED Kolascyk. Statistical analysis of network data. SAMSI program on Complex

networks. Boston university, 2013.

[173] Jens Krause, DP Croft, and Richard James. Social network theory in the behavioural

sciences: potential applications. Behavioral Ecology and Sociobiology, 62(1):15–27,

2007.

[174] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-supervised

graph clustering: a kernel approach. Machine learning, 74(1):1–22, 2009.

212

[175] David S Lamb, Joni A Downs, and Chanyoung Lee. The network k-function in context:

examining the effects of network structure on the network k-function. Transactions

in GIS, 20(3):448–460, 2016.

[176] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community de-

tection algorithms on directed and weighted graphs with overlapping communities.

Physical Review E, 80(1):016118, 2009.

[177] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a com-

parative analysis. Physical review E, 80(5):056117, 2009.

[178] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for

testing community detection algorithms. Physical review E, 78(4):046110, 2008.

[179] Piotr Lasek. C-nbc: Neighborhood-based clustering with constraints. In CS&P,

pages 113–120. Citeseer, 2014.

[180] Martin HC Law, Alexander Topchy, and Anil K Jain. Model-based clustering with

probabilistic constraints. In Proceedings of the 2005 SIAM international conference

on data mining, pages 641–645. SIAM, 2005.

[181] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des

comètes. F. Didot, 1805.

[182] Sune Lehmann and Lars Kai Hansen. Deterministic modularity optimization. The

European Physical Journal B-Condensed Matter and Complex Systems, 60(1):83–88,

2007.

[183] Elizabeth A Leicht and Mark EJ Newman. Community structure in directed networks.

Physical review letters, 100(11):118703, 2008.

[184] Elizabeth Leon, Olfa Nasraoui, and Jonatan Gomez. Anomaly detection based on

unsupervised niche clustering with application to network intrusion detection. In

Evolutionary Computation, 2004. CEC2004. Congress on, volume 1, pages 502–508.

IEEE, 2004.

[185] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Com-

munity structure in large networks: Natural cluster sizes and the absence of large

well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[186] Cheng Li and Bingyu Wang. Fisher linear discriminant analysis, 2017.

213

[187] Xiang Li, Yao Wu, Martin Ester, Ben Kao, Xin Wang, and Yudian Zheng. Semi-

supervised clustering in attributed heterogeneous information networks. In Proceed-

ings of the 26th International Conference on World Wide Web, pages 1621–1629.

International World Wide Web Conferences Steering Committee, 2017.

[188] Xiaobo Li and Richard C Dubes. Tree classifier design with a permutation statistic.

Pattern Recognition, 19(3):229–235, 1986.

[189] Kung-Yee Liang. Generalized Linear Models Estimating Functions and Multivariate

Extensions. Institude of Statistical Science, Academia Sinica, 1999.

[190] Wei-Yin Loh. Fifty years of classification and regression trees. International Statistical

Review, 82(3):329–348, 2014.

[191] Bo Long, Xiaoyun Xu, Zhongfei Zhang, and S Yu Philip. Community learning by

graph approximation. In Data Mining, 2007. ICDM 2007. Seventh IEEE International

Conference on, pages 232–241. IEEE, 2007.

[192] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica

A: statistical mechanics and its applications, 390(6):1150–1170, 2011.

[193] Zhengdong Lu and Todd K Leen. Semi-supervised clustering with pairwise constraints:

A discriminative approach. Journal of Machine Learning Research, 2:299–306, 2007.

[194] David Lusseau. The emergent properties of a dolphin social network. Proceedings of

the Royal Society of London B: Biological Sciences, 270(Suppl 2):S186–S188, 2003.

[195] Daniel MN Maia, João EM de Oliveira, Marcos G Quiles, and Elbert EN Macau.

Community detection in complex networks via adapted kuramoto dynamics. Com-

munications in Nonlinear Science and Numerical Simulation, 53:130–141, 2017.

[196] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery Handbook.

Springer, 2005.

[197] Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and community detec-

tion in directed networks: A survey. Physics Reports, 533(4):95–142, 2013.

[198] Yohann Mansiaux and Fabrice Carrat. Detection of independent associations in a large

epidemiologic dataset: a comparison of random forests, boosted regression trees, con-

ventional and penalized logistic regression for identifying independent factors associ-

ated with h1n1pdm influenza infections. BMC medical research methodology, 14(1):99,

2014.

214

[199] John J McArdle and Gilbert Ritschard. Contemporary issues in exploratory data

mining in the behavioral sciences. Routledge, 2013.

[200] Volodymyr Melnykov, Igor Melnykov, and Semhar Michael. Semi-supervised model-

based clustering with positive and negative constraints. Advances in data analysis

and classification, 10(3):327–349, 2016.

[201] Mansfield Merriman. On the history of the method of least squares. The Analyst,

4(2):33–36, 1877.

[202] Stanley Milgram. The small world problem. Psychology Today,, pages 60–67, 1967.

[203] John Mingers. An empirical comparison of selection measures for decision-tree induc-

tion. Machine learning, 3(4):319–342, 1989.

[204] Mehdi Rezapoor Mirsaleh and Mohammad Reza Meybodi. A michigan memetic algo-

rithm for solving the community detection problem in complex network. Neurocom-

puting, 214:535–545, 2016.

[205] James Clyde Mitchell. Social networks in urban situations: analyses of personal

relationships in Central African towns. Manchester University Press, 1969.

[206] Sadaaki Miyamoto and Akihisa Terami. Semi-supervised agglomerative hierarchical

clustering algorithms with pairwise constraints. In Fuzzy Systems (FUZZ), 2010 IEEE

International Conference on, pages 1–6. IEEE, 2010.

[207] Francesco Mola and Roberta Siciliano. A fast splitting procedure for classification

trees. Statistics and Computing, 7(3):209–216, 1997.

[208] Seyed Ahmad Moosavi, Mehrdad Jalali, Negin Misaghian, Shahaboddin Shamshir-

band, and Mohammad Hossein Anisi. Community detection in social networks using

user frequent pattern mining. Knowledge and Information Systems, 51(1):159–186,

2017.

[209] Jacob L Moreno. Who shall survive, volume 58. JSTOR, 1934.

[210] James N Morgan. History and potential of binary segmentation for exploratory data

analysis. Journal of Data Science, 3(2):123–136, 2005.

[211] Kevin P MURPHY. Machine learning: a probabilistic perspective, 2012.

[212] Sreerama K Murthy. Automatic construction of decision trees from data: A multi-

disciplinary survey. Data mining and knowledge discovery, 2(4):345–389, 1998.

215

[213] Sreerama K Murthy, Simon Kasif, and Steven Salzberg. A system for induction of

oblique decision trees. Journal of artificial intelligence research, 2:1–32, 1994.

[214] Dávid Natingga. Data Science Algorithms in a Week. Packt Publishing, 2017.

[215] J. A. NELDER and R. W. M. WEDDERBURN. Generalized linear models. Journal

of the Royal Statistical Society. Series A (General), 135(1):370–384, 1972.

[216] Mark Newman. Networks: an introduction. Oxford university press, 2010.

[217] Mark EJ Newman. Clustering and preferential attachment in growing networks. Phys-

ical review E, 64(2):025102, 2001.

[218] Mark EJ Newman. The structure of scientific collaboration networks. Proceedings of

the National Academy of Sciences, 98(2):404–409, 2001.

[219] Mark EJ Newman. The structure and function of complex networks. SIAM review,

45(2):167–256, 2003.

[220] Mark EJ Newman. Analysis of weighted networks. Physical review E, 70(5):056131,

2004.

[221] Mark EJ Newman. Detecting community structure in networks. The European Phys-

ical Journal B-Condensed Matter and Complex Systems, 38(2):321–330, 2004.

[222] Mark EJ Newman. Fast algorithm for detecting community structure in networks.

Physical review E, 69(6):066133, 2004.

[223] Mark EJ Newman. A measure of betweenness centrality based on random walks.

Social networks, 27(1):39–54, 2005.

[224] Mark EJ Newman. Finding community structure in networks using the eigenvectors

of matrices. Physical review E, 74(3):036104, 2006.

[225] Mark EJ Newman. Modularity and community structure in networks. Proceedings of

the national academy of sciences, 103(23):8577–8582, 2006.

[226] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure

in networks. Physical review E, 69(2):026113, 2004.

[227] Nam P Nguyen, Thang N Dinh, Yilin Shen, and My T Thai. Dynamic social com-

munity detection and its applications. PloS one, 9(4):e91431, 2014.

216

[228] Bruno Magalhães Nogueira, Yuri Karan Benevides Tomas, and Ricardo Marcondes

Marcacini. Integrating distance metric learning and cluster-level constraints in semi-

supervised clustering. In Neural Networks (IJCNN), 2017 International Joint Con-

ference on, pages 4118–4125. IEEE, 2017.

[229] Georgios Paliouras, Symeon Papadopoulos, and Dimitrios Vogiatzis. Discovery of

complex user communities. In User Community Discovery, pages 1–22. Springer,

2015.

[230] Georgios Paliouras, Symeon Papadopoulos, Dimitrios Vogiatzis, and Yiannis Kom-

patsiaris. User Community Discovery. Springer, 2015.

[231] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos Spyri-

donos. Community detection in social media. Data Mining and Knowledge Discovery,

24(3):515–554, 2012.

[232] David Papo, Javier M Buldú, Stefano Boccaletti, and Edward T Bullmore. Complex

network theory and the brain, 2014.

[233] DL Passmore. Social network analysis: Theory and applications (2014). Tersedia:

http://code. pediapress. com/[12 Juni 2014], 2016.

[234] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro

Vespignani. Epidemic processes in complex networks. Reviews of modern physics,

87(3):925, 2015.

[235] Romualdo Pastor-Satorras and Alessandro Vespignani. Immunization of complex net-

works. Physical Review E, 65(3):036104, 2002.

[236] Peter Pollner, Gergely Palla, and Tamas Vicsek. Preferential attachment of commu-

nities: The same principle, but a higher level. EPL (Europhysics Letters), 73(3):478,

2005.

[237] Pascal Pons and Matthieu Latapy. Computing communities in large networks using

random walks. In International symposium on computer and information sciences,

pages 284–293. Springer, 2005.

[238] Mason A Porter, Jukka-Pekka Onnela, and Peter J Mucha. Communities in networks.

Notices of the AMS, 56(9):1082–1097, 2009.

[239] Alex Pothen. Graph partitioning algorithms with applications to scientific computing.

ICASE LaRC Interdisciplinary Series in Science and Engineering, 4:323–368, 1997.

217

[240] Josep M Pujol, Javier Béjar, and Jordi Delgado. Clustering algorithm for determining

community structure in large networks. Physical Review E, 74(1):016107, 2006.

[241] Xingqin Qi, Wenliang Tang, Yezhou Wu, Guodong Guo, Eddie Fuller, and Cun-Quan

Zhang. Optimal local community detection in social networks based on density drop

of subgraphs. Pattern Recognition Letters, 36:46–53, 2014.

[242] Guoqi Qian, Yuehua Wu, Davide Ferrari, Puxue Qiao, and Frédéric Hollande. Semisu-

pervised clustering by iterative partition and regression with neuroscience applica-

tions. Computational intelligence and neuroscience, 2016, 2016.

[243] F Questier, R Put, D Coomans, B Walczak, and Y Vander Heyden. The use of cart

and multivariate regression trees for supervised and unsupervised feature selection.

Chemometrics and Intelligent Laboratory Systems, 76(1):45–54, 2005.

[244] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[245] Filippo Radicchi. A paradox in community detection. EPL (Europhysics Letters),

106(3):38001, 2014.

[246] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and

Domenico Parisi. Defining and identifying communities in networks. Proceedings of

the National Academy of Sciences of the United States of America, 101(9):2658–2663,

2004.

[247] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time al-

gorithm to detect community structures in large-scale networks. Physical review E,

76(3):036106, 2007.

[248] William M Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical association, 66(336):846–850, 1971.

[249] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex

networks. Physical Review E, 67(2):026112, 2003.

[250] Erzsébet Ravasz, Anna Lisa Somera, Dale A Mongru, Zoltán N Oltvai, and A-L

Barabási. Hierarchical organization of modularity in metabolic networks. science,

297(5586):1551–1555, 2002.

[251] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection.

Physical Review E, 74(1):016110, 2006.

218

[252] Thomas Richardson, Peter J Mucha, and Mason A Porter. Spectral tripartitioning of

networks. Physical Review E, 80(3):036111, 2009.

[253] Gilbert Ritschard. Chaid and earlier supervised tree methods, 2010.

[254] Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers-a

survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 35(4):476–487, 2005.

[255] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex net-

works reveal community structure. Proceedings of the National Academy of Sciences,

105(4):1118–1123, 2008.

[256] EM Rounds. A combined nonparametric approach to feature selection and binary

decision tree design. Pattern Recognition, 12(5):313–317, 1980.

[257] Carlos Ruiz, Myra Spiliopoulou, and Ernestina Menasalvas. C-dbscan: Density-based

clustering with constraints. In International Workshop on Rough Sets, Fuzzy Sets,

Data Mining, and Granular-Soft Computing, pages 216–223. Springer, 2007.

[258] Mohammad Ebrahim Samie and Ali Hamzeh. Community detection in dynamic so-

cial networks: A local evolutionary approach. Journal of Information Science, page

0165551516657717, 2016.

[259] Bilal Saoud and Abdelouahab Moussaoui. Community detection in networks based

on minimum spanning tree and modularity. Physica A: Statistical Mechanics and its

Applications, 460:230–234, 2016.

[260] Marialisa Scatà, Alessandro Di Stefano, Aurelio La Corte, Pietro Liò, Emanuele Cata-

nia, Ermanno Guardo, and Salvatore Pagano. Combining evolutionary game theory

and network theory to analyze human cooperation patterns. Chaos, Solitons &

Fractals, 91:17–24, 2016.

[261] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

[262] John Scott. Social network analysis. Sage, 2017.

[263] John P Scott. Social Network Analysis: A Handbook. SAGE Publications Sage UK:

London, England, 2000.

[264] Ishwar Krishnan Sethi and GPR Sarvarayudu. Hierarchical classifier design using

mutual information. IEEE Transactions on pattern analysis and machine intelligence,

4(4):441–445, 1982.

219

[265] Ronghua Shang, Jing Bai, Licheng Jiao, and Chao Jin. Community detection based

on modularity and an improved genetic algorithm. Physica A: Statistical Mechanics

and its Applications, 392(5):1215–1231, 2013.

[266] CE Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27(3):379–423, 1948.

[267] Noam Shental, Aharon Bar-Hillel, Tomer Hertz, and Daphna Weinshall. Computing

gaussian mixture models with em using equivalence constraints. In Advances in neural

information processing systems, pages 465–472, 2004.

[268] Chuan Shi, Yanan Cai, Di Fu, Yuxiao Dong, and Bin Wu. A link clustering based

overlapping community detection algorithm. Data & Knowledge Engineering,

87:394–404, 2013.

[269] Thiago Christiano Silva and Liang Zhao. Machine learning in complex networks,

volume 1. Springer, 2016.

[270] Henry Small. Co-citation in the scientific literature: A new measure of the relationship

between two documents. Journal of the Association for Information Science and

Technology, 24(4):265–269, 1973.

[271] Chaoming Song, Shlomo Havlin, and Hernan A Makse. Self-similarity of complex

networks. Nature, 433(7024):392–395, 2005.

[272] Harold W Sorenson. Least-squares estimation: from gauss to kalman. IEEE spectrum,

7(7):63–68, 1970.

[273] Niko Speybroeck. Classification and regression trees. International journal of public

health, 57(1):243–246, 2012.

[274] Dan Steinberg. Cart: classification and regression trees. The top ten algorithms in

data mining, 9:179, 2009.

[275] Stephen M Stigler. Gauss and the invention of least squares. The Annals of Statistics,

pages 465–474, 1981.

[276] Carolin Strobl, James Malley, and Gerhard Tutz. An introduction to recursive par-

titioning: rationale, application, and characteristics of classification and regression

trees, bagging, and random forests. Psychological methods, 14(4):323, 2009.

[277] Steven H Strogatz. Exploring complex networks. Nature, 410(6825):268–276, 2001.

220

[278] Chang Su, Yue Yu, Xianzhong Xie, and Yukun Wang. Data sensitive recommendation

based on community detection. Foundations of Computing and Decision Sciences,

40(2):143–159, 2015.

[279] Peng Gang Sun. Community detection by fuzzy clustering. Physica A: Statistical

Mechanics and its Applications, 419:408–416, 2015.

[280] Peng Gang Sun. Imbalance problem in community detection. Physica A: Statistical

Mechanics and its Applications, 457:364–376, 2016.

[281] Peng Gang Sun and Xiya Sun. Complete graph model for community detection.

Physica A: Statistical Mechanics and its Applications, 471:88–97, 2017.

[282] Zhaocai Sun, Yunming Ye, Xiaofeng Zhang, Zhexue Huang, Shudong Chen, and Zhi

Liu. Batch-mode active learning with semi-supervised cluster tree for text classifica-

tion. In Proceedings of the The 2012 IEEE/WIC/ACM International Joint Confer-

ences on Web Intelligence and Intelligent Agent Technology-Volume 01, pages 388–

395. IEEE Computer Society, 2012.

[283] Clifton D Sutton. Classification and regression trees, bagging, and boosting. Handbook

of statistics, 24:303–329, 2005.

[284] Jan L Talmon. A multiclass nonparametric partitioning algorithm. Pattern Recogni-

tion Letters, 4(1):31–38, 1986.

[285] Wei Tang, Hui Xiong, Shi Zhong, and Jie Wu. Enhancing semi-supervised clustering: a

feature projection perspective. In Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 707–716. ACM, 2007.

[286] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu.

Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceed-

ings of the National Academy of Sciences, 99(10):6567–6572, 2002.

[287] Bojun Tu, Zhihua Zhang, Shusen Wang, and Hui Qian. Making fisher discriminant

analysis scalable. In International Conference on Machine Learning, pages 964–972,

2014.

[288] Paul E Utgo and Carla E Brodley. Linear machine decision trees. Technical report,

Tech. Rep. COINS 91-10, University of Massachusetts, Amherst, MA, USA, 1991.

221

[289] Diego Vallejo-Huanga, Paulina Morillo, and Cesar Ferri. Semi-supervised clustering

algorithms for grouping scientific articles. Procedia Computer Science, 108:325–334,

2017.

[290] Joost van Loon. Network. Theory, Culture Society, 23((2–3)):307–314, 2006.

[291] I Vragović and E Louis. Network community structure and loop coefficient method.

Physical Review E, 74(1):016105, 2006.

[292] Kiri Wagstaff and Claire Cardie. Clustering with instance-level constraints.

AAAI/IAAI, 1097:577–584, 2000.

[293] Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Constrained k-means

clustering with background knowledge. In ICML, volume 1, pages 577–584, 2001.

[294] Ken Wakita and Toshiyuki Tsurumi. Finding community structure in mega-scale

social networks. In Proceedings of the 16th international conference on World Wide

Web, pages 1275–1276. ACM, 2007.

[295] Walter D Wallis. A beginner’s guide to graph theory. Springer Science & Business

Media, 2010.

[296] Gaoxia Wang, Yi Shen, and Ming Ouyang. A vector partitioning approach to detect-

ing community structure in complex networks. Computers & Mathematics with

Applications, 55(12):2746–2752, 2008.

[297] Jiaoe Wang, Huihui Mo, Fahui Wang, and Fengjun Jin. Exploring the network struc-

ture and nodal centrality of china’s air transport network: A complex network ap-

proach. Journal of Transport Geography, 19(4):712–721, 2011.

[298] Meng Wang, Chaokun Wang, Jeffrey Xu Yu, and Jun Zhang. Community detec-

tion in social networks: an in-depth benchmarking study with a procedure-oriented

framework. Proceedings of the VLDB Endowment, 8(10):998–1009, 2015.

[299] Qin Wang, Guangping Zeng, and Xuyan Tu. Information technology project portfolio

implementation process optimization based on complex network theory and entropy.

Entropy, 19(6):287, 2017.

[300] Christopher P Warren, Leonard M Sander, and Igor M Sokolov. Geography in a

scale-free network model. Physical Review E, 66(5):056105, 2002.

[301] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and ap-

plications, volume 8. Cambridge university press, 1994.

222

[302] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks.

nature, 393(6684):440–442, 1998.

[303] Allan P White and Wei Zhong Liu. Bias in information-based measures in decision

tree induction. Machine Learning, 15(3):321–329, 1994.

[304] Leland Wilkinson. Classification and regression trees. 2004.

[305] Rick L Wilson and Peter A Rosen. Protecting data through perturbation techniques:

The impact on knowledge discovery in databases. Journal of Database Management

(JDM), 14(2):14–26, 2003.

[306] Andrew Y Wu, Michael Garland, and Jiawei Han. Mining scale-free networks using

geodesic clustering. In Proceedings of the tenth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 719–724. ACM, 2004.

[307] Biao Xiang, En-Hong Chen, and Tao Zhou. Finding community structure based on

subgraph similarity. Complex Networks, pages 73–81, 2009.

[308] Gao Xiang and Wang Min. Applying semi-supervised cluster algorithm for anomaly

detection. In Information Processing (ISIP), 2010 Third International Symposium

on, pages 43–45. IEEE, 2010.

[309] Shiming Xiang, Feiping Nie, and Changshui Zhang. Learning a mahalanobis distance

metric for data clustering and classification. Pattern Recognition, 41(12):3600–3612,

2008.

[310] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. Overlapping community de-

tection in networks: The state-of-the-art and comparative study. Acm computing

surveys (csur), 45(4):43, 2013.

[311] Zheng Xie, Zhenzheng Ouyang, Pengyuan Zhang, Dongyun Yi, and Dexing Kong.

Modeling the citation network by network cosmology. PloS one, 10(3):e0120687, 2015.

[312] Xin Xin, Chaokun Wang, Xiang Ying, and Boyang Wang. Deep community detec-

tion in topologically incomplete networks. Physica A: Statistical Mechanics and its

Applications, 469:342–352, 2017.

[313] Gang Xu, Sophia Tsoka, and Lazaros G Papageorgiou. Finding community structures

in complex networks using mixed integer optimisation. The European Physical Journal

B-Condensed Matter and Complex Systems, 60(2):231–239, 2007.

223

[314] Hao Xu, Yanli Hu, Zhenwen Wang, Jianwei Ma, and Weidong Xiao. Core-based

dynamic community detection in mobile social networks. Entropy, 15(12):5419–5438,

2013.

[315] Nai-Ru Xu, Jia-Bao Liu, De-Xun Li, and Jun Wang. Research on evolutionary mech-

anism of agile supply chain network via complex network theory. Mathematical Prob-

lems in Engineering, 2016, 2016.

[316] Ramon Xulvi-Brunet and Igor M Sokolov. Reshuffling scale-free networks: From

random to assortative. Physical Review E, 70(6):066102, 2004.

[317] Yang Yang, Peng Gang Sun, Xia Hu, and Zhou Jun Li. Closed walks for community

detection. Physica A: Statistical Mechanics and its Applications, 397:129–143, 2014.

[318] Luh Yen, Francois Fouss, Christine Decaestecker, Pascal Francq, and Marco Saerens.

Graph nodes clustering with the sigmoid commute-time kernel: A comparative study.

Data & Knowledge Engineering, 68(3):338–361, 2009.

[319] Jinfeng Yi, Lijun Zhang, Tianbao Yang, Wei Liu, and Jun Wang. An efficient semi-

supervised clustering algorithm with sequential constraints. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 1405–1414. ACM, 2015.

[320] Yisehac Yohannes and John Hoddinott. Classification and regression trees: an intro-

duction. International Food Policy Research Institute, 2033, 1999.

[321] Soon-Hyung Yook, Hawoong Jeong, A-L Barabási, and Yuhai Tu. Weighted evolving

networks. Physical review letters, 86(25):5835, 2001.

[322] Tetsuya Yoshida. A graph-based approach for semisupervised clustering. Computa-

tional Intelligence, 30(2):263–284, 2014.

[323] Mina Zarei and Keivan Aghababaei Samani. Eigenvectors of network complement

reveal community structure more accurately. Physica A: Statistical Mechanics and its

Applications, 388(8):1721–1730, 2009.

[324] Heping Zhang and Yuanqing Ye. A tree-based method for modeling a multivariate

ordinal response. Statistics and its interface, 1(1):169, 2008.

[325] Peng Zhang, Jinliang Wang, Xiaojia Li, Menghui Li, Zengru Di, and Ying Fan. Clus-

tering coefficient and community structure of bipartite networks. Physica A: Statistical

Mechanics and its Applications, 387(27):6869–6875, 2008.

224

[326] Li Zheng and Tao Li. Semi-supervised hierarchical clustering. In Data Mining

(ICDM), 2011 IEEE 11th International Conference on, pages 982–991. IEEE, 2011.

[327] Haijun Zhou. Distance, dissimilarity index, and network community structure. Phys-

ical review e, 67(6):061901, 2003.

[328] Jiang ZHU, Bai WANG, Bin WU, and Weiyu ZHANG. Emotional community

detection in social network. IEICE Transactions on Information and Systems,

100(10):2515–2525, 2017.

[329] Mu Zhu, Fanrong Meng, and Yong Zhou. Semisupervised clustering for networks based

on fast affinity propagation. Mathematical Problems in Engineering, 2013, 2013.

[330] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Syn-

thesis lectures on artificial intelligence and machine learning, 3(1):1–130, 2009.

225

