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Abstract

Through a little investigation by file types it is possible to easily find that one of the most pop-
ular search engines has in its indexes about 10 billion of images. Even considering that this
data is probably an underestimate of the real number, however, immediately it gives us an
idea of how the images are a key component in human communication. This so exorbitant
number puts us in the face of the enormous difficulties encountered when one has to deal
with them. Until now, the images have always been accompanied by textual data: descrip-
tion, tags, labels, ... which are used to retrieve them from the archives. However it is clear that
their increase, occurred in recent years, does not allow this type cataloguing. Furthermore,
for its own nature, a manual cataloguing is subjective, partial and without doubt subject to
error. To overcome this situation in recent years it has gotten a footing a kind of search based
on the intrinsic characteristics of images such as colors and shapes. This information is then
converted into numerical vectors, and through their comparison it is possible to find images
that have similar characteristics. It is clear that a search, on this level of representation of the
images, is far from the user perception that of the images.

To allow the interaction between users and retrieval systems and improve the perfor-
mance, it has been decided to involve the user in the search allowing to him to give a feed-
back of relevance of the images retrieved so far. In this the kind of image that are interesting
for user can be learnt by the system and an improvement in the next iteration can be ob-
tained. These techniques, although studied for many years, still present open issues. High
dimensional feature spaces, lack of relevant training images, and feature spaces with low dis-
criminative capability are just some of the problems encountered. In this thesis these prob-
lems will be faced by proposing some innovative solutions both to improve performance
obtained by methods proposed in the literature, and to provide to retrieval systems greater
generalization capability. Techniques of data fusion, both at the feature space level and at
the level of different retrieval techniques, will be presented, showing that the former allow
greater discriminative capability while the latter provide more robustness to the system. To
overcome the lack of images of training it will be proposed a method to generate synthetic
patterns allowing in this way a more balanced learning. Finally, new methods to measure
similarity between images and to explore more efficiently the feature space will be proposed.
The presented results show that the proposed approaches are indeed helpful in resolving
some of the main problems in content based image retrieval.
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Chapter 1

Introduction

The growing number of digital data such as text, video, audio, pictures or photos is creating
the need to find ways to quickly and accurately retrieve information from that data. Whereas
the results of traditional text data search methods are quite satisfactory, the same can not be
said for visual or multimedia data.

The most so far common method for image retrieval is predicated on adding meta-data
to the images as keywords, tag, label or short descriptions, so that retrieval can occur through
such remarks. The manual cataloguing of the images, even though it requires expensive
work and a large amount of time, often it is not so effective. Describing a picture in words
is not always easy and the relevance of the description is strictly subjective. Figure 1.1, for
example, could be considered an image depicting a sunset or the sea or even a tower so that
it is impossible to give a unique description.

In addition it is necessary take into account that the use of a limited number of words
does not always allow clearly describe what an image represents and that the same word can
have several meanings. For example, performing a Google search using the word “palm”,
the result could be very different from that expected (Figure 1.2). In fact, as you can see,
only a picture out of twenty is a palm tree (honestly the first thing I thought when I did this
research) and again only one out of twenty is the palm of a hand. To find more palm trees
you need to scroll pages up to the third and for other palms of hands even up to the eighth. It
is surely necessary to say that the Google searches are probably biased by economic factors
or at least that its users seek more likely images of Palm Inc. products, however these small
examples can help to understand the difficulties in describing an image. The multiplicity of
the results of the search is due to the fact that manual indexing of images is independent of
its content because it is not directly related to visual information, but only “connected” to
them by author, subject depicted, the place of representation, etc.

To overcome these drawbacks, over the years several methods have been proposed. They
are predicated on the idea of content based indexing by means the use of low-level features
such as color, texture, shape, etc. and nowadays is a very active research field [94, 62, 24, 105].
Systems that make use of this approaches are called content based image retrieval (CBIR)
systems.

Of course, a description of the images through this kind of features is far from the com-
mon perception that the user has of an image. For a human being indeed an image can
represent many things: it can be fine or nasty, it can be good or bad, can evoke emotions and

1
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Figure 1.1: Beach “La pelosa” - Stintino (SS, Italy)

Figure 1.2: “palm” Google Images search

memories, and can also feel sensations that are not really represented (e.g., see Figure 1.3).
For a computer is simply a set of pixels with different “color” and different intensities. In
the last years there have been many attempts to bridge the gap between the high level fea-
tures, those perceived by human beings which identify the semantic information related to
the images, and the low level ones that are used in the searches. This difference in percep-
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Figure 1.3: “Cold”

tion is widely known in the CBIR field as semantic gap. Among the proposed methods seem
particularly effective retrieving images according to their similarity with respect to an image
given as query (Query by Example) and to refine the search using feedbacks of the user that
judges as relevant or non relevant (Relevance Feedback) the images that the system retrieves
iteration by iteration.

Having said this, it might seem a now solved problem, however, there are still many ob-
stacles to face. As already mentioned the pictures for a computer are sequences of num-
bers, so it is natural that low-level features are represented as vectors of numbers in a N -
dimensional space. One of the first problems to address it is to make sure that relevance
or semantic similarity can be measured and represented in this N -dimensional space. The
problem is aggravated by the fact that, in general, the images that the user is interested in
are just a small part of the totality of the images in the dataset and in addition the size of the
space in which images are represented can be very large. In practice she is facing a search
with a few items, in an very large area, populated mainly by objects in which she is not in-
terested in. Fortunately some techniques from the field of Pattern Recognition and classifi-
cation give us a helping hand, however, they carry with them some solutions as well as some
weaknesses.

1.1 Research Overview

During the three-year period of the Ph.D. my research has been focused mainly on address-
ing some of the open issues concerning the relevance feedback and in general CBIR. In par-
ticular, they have been investigated unbalanced learning, high dimensional feature space,
low informative training set and low discriminative capability of the feature set problems. In
addition some innovative solutions have been developed to evaluate a similarity score be-
tween images.

unbalanced learning: Usually during the first few iterations the number of the images that
the user considers non relevant is much larger than the number of those considered
relevant. This is due mainly to two factors. First of all even if the user was “collabo-
rative” the system can not submit to her an excessive number of images, say no more
than a few dozen. Second, in very large databases the amount of images that interest
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the user, respect to the whole pictures, is usually very limited. Our main contribution
in the unbalanced learning problem concerns a technique, called K-Nearest Neighbors
Directed Pattern Injection (DPI K-NN), that consists of adding to the training set in the
feature space some representations of “synthetic” images.

high dimensional feature space: In order to try to describe accurately the pictures, feature
spaces are becoming larger and larger. This event, if in some ways increases the de-
scriptive capability of feature vectors for other makes them difficult to handle. In addi-
tion, when sizes became very high often it happens to deal with sparse vectors, i.e. with
a lot of components equal to zero, for some queries but not for others. This implies the
need to find ways to reduce the feature spaces maintaining the pattern distribution
or even better, trying to keep the relevant images close each other and far from the
non relevant ones. On this topic, in this thesis, two techniques will be shown. The
first is a preliminary work and consists in reconstructing all the pictures from an N -
dimensional space in M-dimensional and P-dimensional spaces (with M ,P < N ) as a
linear combination of relevant and non relevant images, respectively. It is possible to
evaluate the relevance of each image by the error committed during in the reconstruc-
tion phase.

The second is based on attributing weights to the various components of the feature
vectors. The weight evaluation that will be proposed is performed following two dif-
ferent approaches: the first is founded on the relative distance of images relevant and
not relevant with respect to a certain component of the feature space, the second on
the minimization of the classification error.

low informative training set: In the field of image retrieval usually, the images, which the
user is interested in, belong to the same class but those that are not interesting for her
may belong to many different classes. This behaviour sometimes makes the use of
classifiers based on nearest neighbor not the most effective. Based on the concept that
similar images are located in adjacent areas of space, this type of classifier retrieves
relevant similar images but also non-relevant images similar to each other losing the
generalization capability. In order to address this problem in this thesis it has been
proposed a methodology that provides to combine the nearest neighbor paradigm (Ex-
ploitation) with a phase of exploration of the immediate neighbourhoods of the area
occupied by the relevant images (Exploration). In this way it is possible to properly
choose images that allow a greater ability to generalize instead of choosing only im-
ages that are the most similar to the examples.

low discriminative capability of the feature set: It is possible to extract from an image a huge
quantity of low-level features: color moments, color and edge histogram, directivity
and co-occurrence descriptors, etc. but probably the use of just one of them is not
effective enough to achieve excellent performance. For this reason, very often it has
been tried to combine information from each feature space in order to exploit the dif-
ferent characteristics that they are able to emphasize. The main problem is to find a
way to increase the accuracy in the search but not the processing time. Another way
to make the most of the features that have been extracted is not to combine the de-
scriptors but different classifiers on the same set of features. Our contributions on this
topic is twofold. One is the proposal of an approach that represents the images in a
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“(dis)similarities” space where each component is associated with a different feature
space and that represents a similarity measure of the image with respect to the given
query. In this way it is possible to obtain a space whose dimension is equal to just the
number of spaces to be combined.

The second contribution has been the idea to combine two very different techniques
for image retrieval in order to obtain good results in different datasets and represen-
tations rather than high performance in a specific dataset. The techniques that have
been chosen are a nearest neighbor based approach and the SVM.

relevance evaluation: Finding a method which allows to transform the semantic similarity
between two images into something measurable is a hoary open issue. Over the years
several methods have been proposed that were more or less successful, depending on
the context in which they were used. Under this perspective two new techniques to
assess the similarity between images have been also proposed: one related on graphs
and clustering, the other on on-line learning. In the first the image dataset is rep-
resented as an undirected weighted graph, where the weight of the edge reflects the
similarity between pairs of vertices. In this graph it should be possible form a clus-
ter of relevant images where the nodes are similar among themselves and at the same
time dissimilar from the other nodes that do not belong to the cluster. Starting from
the relevant images chosen by the user and following the concept of Dominant Set it is
possible iteratively to modify the weight of the graph and to find new relevant images.

The other approach proposed on this topic is predicated on the on-line learning. More
specifically the idea consists in exploiting the on-line nature of the relevance feedback
in order to evaluate a classification function from a vector of coefficients. These are
then computed iteratively by paying attention that they do not vary too quickly, stay-
ing in some way “linked” to the value that took in the previous iteration (passive) but
at the same time change proportionally to the earlier committed classification error
(aggressive).

1.2 Organization

The rest of this thesis is structured as follow.
Chapter 2 gives the required background on Content Based Image Retrieval, presents the

widely used evaluation metrics and the most common databases.
Chapter 3 presents an overview of the state of the art of this thesis, showing the most pop-

ular techniques in the field of relevance feedback focusing particularly on those that have
been proposed to address the open issues tackled in my research.

Chapter 4 discusses the solution of he main part of the problem introduced in the pre-
vious chapter that it has been proposed for retrieval techniques working in a single feature
space. For each issue will be described the proposed solution followed by the result obtained
during the experimental phase.

Chapter 5 focuses on two problem whose solutions are in some way related. Both prob-
lems will be faced separately. At the end some interesting result will be compared.

Chapter 6 introduces the purposes behind the idea to combine two different CBIR tech-
niques and show why and how could be a “winning” idea in content based systems that work
with very different databases.
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Finally, Chapter 7 briefly summarizes the topics covered in this thesis and some future
improvements that can extend our work.



Chapter 2

Content Based Image Retrieval

The men, ever since it came on the world, have always used images to communicate, to
report or simply as a form of expression. Cave paintings of tens of thousands of years ago
have even come down to us (Figure 2.1). As time went by men have maintained this way to
communicate gradually finding more and easier ways to make these representations. The
first photo dates back to almost two centuries ago (Figure 2.21) and ever since the spread
has been unstoppable. By now, everyone has a camera in own mobile phone and with the

Figure 2.1: Cro-Magnon, Image of a horse (Upper Paleolithic, 17,000 BC-
15,000 BC, Lascaux caves, Limousin, France)

1View from the window at Le Gras, the first successful permanent photograph (WIKIPEDIA)

7
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Figure 2.2: J. N. Niépce, Vue de la fenêtre du domaine du Gras (1826, Saint-
Loup-de-Varennes, Bourgogne, France)

advent of Internet, social networks and storage space almost “unlimited”, the exchange of
photos and digital images has become frenetic, to say the least. Faced with this new scenario
it has become increasingly urgent need to find a way to manage this heap of data. One needs
only to reflect on the amount of photos brought at home after a short vacation, if you do not
hurry to save them on your computer, taking care to divide them at least by place and date,
very soon by looking them again, “difficult” questions will arise: Where we took this picture?
What building is that?

This is true, without taking care to also consider the persons represented in the images.
In that case, the cataloguing of the photos will take more time than the holiday itself. It is
therefore evident that a manual archiving of all the images that one possesses is to categor-
ically rule out. Everyone has surely needed, for various reasons, to search an image on the
web and has struggled with the inefficiencies of searches by keyword with the consequent
wasting time. For this reason, since the early nineties, the scientific community has inter-
ested in the study of content based image retrieval [94].

In the rest of chapter it will be made a brief treatment on the different levels of meaning
of an image and then it will be described the features that are extracted from the image to
be processed by a retrieval system. In addition it will be described the way used to evaluate
a rough but effective kind of similarity measures. Finally, the chapter will conclude with a
description of the performance measures used in the rest of the thesis and the used dataset.
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Figure 2.3: (Dis)similarity between features

2.1 What is the image content?

The first papers on CBIR are, by now, twenty years old [60] but we are still facing with prob-
lems not yet fully solved. The largest of these is that currently the only way to handle the
“content” of an image is to extract what are called low-level features, i.e. to extract numeri-
cal values of the colors, shapes, edges of the images . This means that when two images are
compared, the related “features” are compared while a human being compare the “concepts”
expressed by them [101]. In the same light it is possible to distinguish between different “lev-
els” [29, 38] of image content retrieval:

Level 1: it is the lowest level and is the one where the comparisons between the images can
be made considering the intrinsic features of an image: find images with round ob-
jects, finds pictures with yellow objects, etc.. Of course, being the one needing less
information has also the lowest effectiveness. For example, if you tried to evaluate the
similarity between a orange and a lemon you might not always be satisfied by the re-
sult [61]. A retrieval system based on this level of content may respond with either a
very high value of similarity or very low. If you look at the Figure 2.3 it is not difficult to
see how a retrieval shape-based would consider the two images as similar, one based
on color does not.

Level 2: it is characterized by the properties derived from objects in the picture. The queries
can be the retrieval of images of specific objects (such as the Colosseum) or a specific
type (like a bicycle). For searches at this level is needed a certain knowledge base, for
example, that a particular building with a certain shape is known as the Colosseum.

Level 3: it is the highest level and requires a good deal of abstraction. At this level the search
aims at concepts that go beyond what is physically represented. These may be partic-
ular events (ceremony of installation of the President of the United States) or feelings
and emotions (cold, joy, etc.) and are definitely the hardest to find so much so that
even a human being may be wrong when dealing with the identification of these con-
cepts.

The most significant difference between levels is surely the one between the first and the
second two (for which we speak of semantic retrieval). In fact it is not uncommon that two
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Figure 2.4: (Dis)similarity between concepts

images, even though similar in terms of colors and shapes, can represent completely differ-
ent objects. An example of this is the Figure 2.4 [7] taken from a dog food advertisement
of a few years ago, although the colors, the background and the shape of the object in the
foreground are almost identical, the semantic difference is considerable. This difference of
similarity perception is called semantic gap.

2.2 Image features

Before to provide a description of the features it is necessary to divide them into two cate-
gories, namely global and those local. Among the first ones those that are widely used are:
color, texture and edges and are extracted from the image in its entirety. The local feature
on the contrary, as the name suggests, are involved in the assessment of the most significant
areas of the image [8, 25].

2.2.1 Color

The color is certainly one of the most important low-level feature for an image, first of all
because marks it out strongly and it is robust with respect to translation and rotation. Sec-
ondly, a picture can be zoomed in or zoomed out without that its color distribution is sig-
nificantly altered. Finally it is immediately perceived by human beings. It is therefore prob-
ably that a similarity between images perceived by the user corresponds to a similarity of
color features. The human visual system is such as the retina is more sensitive to three
particular wavelengths: Red, Green and Blue. This has led to the emerging of trichromatic
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model (RGB), in which all colors can be represented as a combination of the three primary
ones in the right proportions, in the functioning of all the monitors and televisions. To
maintain compatibility between the old black and white monitors and the color ones it
has been preferred, however, encode the RGB information through the YCbCr signal, where
Y = (R+G+B), Cb = (B−Y), and Cr = (R−Y). Another model, closer to human perception of
color, is the HSV model in which the three components represent the Hue, the level of color
purity (Saturation) and the brightness value (Value).

A very simple description of the colors of an image can be done using a vector H =
(h[1], . . . ,h[i ], . . . ,h[N ]) of a vector space of dimension equal to the number N of colors in the
image and where h[i ] is the percentage of pixels in the image of the i-th color. The graphical
representation of the vector H is called color histogram [96]. However, the simplicity of rep-
resentation of color histograms is accompanied by an information lack. In fact, histograms
capture the global color distribution in an image but do not preserve spatial information.,
For example, a red figure on a blue background has the same histogram of one with the
same number of pixels, but random arranged (see Figure 2.5 ). In order to overcome this

Figure 2.5: Indistinguishable figures for a color histogram

drawback is used a “layout version” of the histograms: before to extract the color values, the
images is split in sub-images and for each an histogram is evaluated. Some color histogram
descriptors are included in the standard MPEG-7, which sets the color spaces that can be
used to calculate them. The most common are the Scalable Color Descriptor and the Color
Layout Descriptor [1] The main difference between the two descriptors are that the first is
a color histogram in the HSV color space encoded by Haar Transform, the second is extract
splitting the images in 8×8 sub-images, evaluating the the average color of each sub-image
in the YCbCr color space and transforming them in coefficients by performing a Discrete Co-
sine Transform. In the following of the thesis this feature with the color histogram and color
histogram layout [96] will be used as color descriptors.

2.2.2 Texture

The texture identifies the recurrence of patterns with similar geometric properties. The tech-
niques used for its description are typically statistical and spectral. Spectral methods are
based on the Fourier spectrum analysis of the images in order to identify the recurrence that
are present. These reveal themselves as peaks in the spectrum and carry with them a high
energy content. The statistical methods are used instead to obtain information about the
relative positions of the pixels. These are obtained by considering not only the intensity dis-
tribution but also the position of pixels with identical or very similar intensity values.
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The best known texture feature set is that proposed by Tamura and that is called after
him [97]. The set is composed by coarseness, contrast, directionality, line-likeness, regular-
ity, and roughness and are designed according to human visual perception. Over the years
the first three have been the widely used: the coarseness gives information about the size of
the texture elements, the higher the coarseness value is, the rougher is the texture. The con-
trast is designed to evaluate changing a picture quality, not picture structure, considering
the stretching or the shrinking of its grey scale. The grey level distribution influence also the
sharpness of edges in the images, in fact a higher contrast imply sharper edges. The direc-
tionality measures the presence of orientation in the texture; does not matter the orientation
of the patterns in the figures but, simply, the total degree of directionality; i.e., two patterns
which differ only in orientation should have the same degree of directionality.

Figure 2.6: Examples of different scales textures

In different way works another texture feature, the co-occurrence texture matrix [39].
The entries of this matrix are evaluated counting how often in the image occurs a intensity
variation between two adjacent pixels along a certain direction. This permits to taking in to
account how much and following which orientation the edges change in the picture.

As for the color it is possible to extract a texture histogram, the Edge Histogram Descrip-
tor [1] in fact, represents the spatial distribution of five types of edges: vertical, horizontal,
45◦, 135◦, and non-directional. The feature vector is obtained dividing the image into 16
(4×4) sub-images and generating a 5-bin histogram for each one.

Figure 2.7: Different types of edges represented by the Edge Histogram Descriptor

In order to increase the discriminative capability of the feature it has been proposed to
enclose in a unique vector different type of characteristics. In this light Color and Edge Di-
rectivity Descriptor [13] incorporates, as the name says, color and texture information in
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Figure 2.8: SIFT points

a histogram requiring low computational power for its extraction. The CEDD histogram is
constituted by 6 regions from which the texture features are evaluated and each region is
constituted by 24 individual regions from which the color feature are emanated.

2.2.3 Interest points

In the last few years interest points attracted increasing interest in the scientific commu-
nity. With this term it is indicated a locations that, due to sudden changes in brightness or
because they are on the edges of represented objects in the images, characterizes in a par-
ticular way the image [40]. The advantage of this feature is that it is invariant to changes of
scale, rotation and translation. In fact, considering only the main points of the represented
object it is negligible where they are located in the figure. For this reason from images that
depict similar object it is possible to extract similar interest points. These interest points are
then represented by means of numerical vectors. In the literature have been proposed many
types of descriptors[67, 68], but that has emerged over the years is the Scale-invariant Fea-
ture Transform (SIFT) [65]. In the following the use of expression “local feature” it will be
meant as SIFT descriptors extracted at Harris interest points (see Figure 2.82) [27, 25].

2.3 Metrics

Over the years a large number of different similarity measures have been proposed by the
researcher community. The choice of similarity measure depends on the chosen image de-
scriptor, in fact some of them can be used with “standard” metrics some other requires par-
ticular measures suitably designed. In this section it will be discussed a selection of widely
used “general-purpose” measures and some metrics designed for the feature described above
[86].

A distances (or metric) in a space F is any function

d : F ×F −→ R

x×y 7−→ d(x,y)

such as, ∀ x, y, z in F

2http://lear.inrialpes.fr/people/dorko/downloads.html
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• d(x,y) ≥ 0,

• d(x,y) = 0 ⇐⇒ I1 = I2,

• d(x,y) = d(y,x),

• d(x,y)+d(y,z) ≥ d(x,z).

Given any two images and their representations in a N -dimensional feature space

x = [
x1, . . . , x f , . . . , xN

]
;

y = [
y1, . . . , y f , . . . , yN

]
;

the most common metrics are:

• Euclidean metric (or L2)

d(x,y) =
√√√√ N∑

f =1
(x f − y f )2; (2.1)

• Weighted Euclidean metric

d(x,y) =
√√√√ N∑

f =1
w f (x f − y f )2 (2.2)

where w f weights each component in different way according to its relevance. If w f is
equal to one the distance becomes as Eq. (2.1);

• Generalized Euclidean metric

d(x,y) =
√

(x−y)T W (x−y)2 (2.3)

where W is a N × N correlation matrix. If W is diagonal the distance becomes as
Eq. (2.2), if it is the identity matrix as Eq. (2.1).

These metrics are usually used for Tamura and Co-occurrence Matrix descriptors

• Manhattan metric (or L1)

d(x,y) =
N∑

f =1

∣∣x f − y f
∣∣ ; (2.4)

• Weighted Manhattan metric

d(x,y) =
N∑

f =1
w f

∣∣x f − y f
∣∣ (2.5)

where the weight w f has the same function as in Eq. (2.1).

Manhattan metric is probably the widely used similarity measure, the distances for a lot of
descriptors are evaluated according to it. In particular in this thesis will be used for Color
Histogram, Color Layout Histogram, Scalable Color, and SIFT descriptors.
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• CEDD metric
For the measurement of the distance of CEDD between the images, Tanimoto coeffi-
cient [18] is used [13].

d(x,y) = xT y

xT x+yT y−xT y
(2.6)

In the case absolute congruence of the vectors, the distance takes the value 1, while in
the maximum deviation it tends to zero.

• Color Layout metric
The distance between two Color Layout descriptors is calculated as follows [1, 59]:

d(x,y) =
√ ∑

i∈(Y )
w1i

(
xi − yi

)2 +
√ ∑

i∈(Cb )
w2i

(
xi − yi

)2 +
√ ∑

i∈(Cr )
w3i

(
xi − yi

)2; (2.7)

where Y , Cb , Cr denote the set of elements of the Color Layout vector that are associ-
ated with the Y, Cb, and Cr components, respectively, and w1i , w2i , and w3i are the
weights for the i-th vector’s component.

• Edge Histogram metric
Because the 80 bins may not be sufficient to yield efficient image matching, in order to
evaluate a similarity measure they are generated an additional global edge histogram
and some semi-global edge histograms directly from the original 80 bins. The global
edge histogram has 5 bins and each bin value is obtained by accumulating the bin val-
ues of the corresponding 5 edge types. Similarly, for the semi-global edge histograms,
it is possible to group in some subsets of the original histogram. They are defined 13
different subsets of the image and for each subsets they are extracted the edge distri-
butions for the five different edge types from the 80 histogram bins (see Figure 2.9).
Consequently, there are a total of 150 bins (80 bins (original) + 5 bins (global) + 65 bins
(13×5, semi-global)) for the similarity matching. The distance between two Edge His-
togram descriptors is calculated as follows [1, 115]:

d(x,y) =
79∑

i=0

∣∣∣x local
i − y local

i

∣∣∣+5×
4∑

i=0

∣∣∣xglobal
i − yglobal

i

∣∣∣+ 64∑
i=0

∣∣∣xsemi-global
i − y semi-global

i

∣∣∣ (2.8)

where x local
i represents the i-th component of the original vector of the image x, xglobal

i
represents the i-th component of the global Edge Histogram for the same image, and

finally xsemi-global
i is the i-th bin value for the semi-global edge histograms of image x.

Because the number of bins of the global histogram is relatively smaller with respect
to the local and semi-global a weighting factor of 5 is applied.

2.4 Evaluation

To evaluate CBIR, several performance evaluation measures have been proposed [69]. The
widely used are surely the precision and the recall.

Precision
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edge histogram represents the edge distribution for the whole 

image space. Since there are 5 edge types, the global edge his-

togram has 5 bins and each bin value is obtained by accumulat-

ing and normalizing the dequantized bin values of the corre-

sponding edge type of BinCounts[]. Similarly, for the semi-

global edge histograms, we can group some subsets of Bin-

Counts[](Fig. 8). We define 13 different segments (i.e., 13 dif-

ferent subsets of the image-blocks) and for each segment we 

can generate edge distributions for five different edge types 

from the 80 local histogram bins. Consequently, we have a to-

tal of 150 bins (80 bins (local) + 5 bins (global) + 65 bins 

(13!5, semi-global)) for the similarity matching. 

For the similarity matching, we calculate the distance D(A,B) 

of two image histograms A and B using the following measure: 
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where Local_A[i] represents the reconstructed value of Bin- 

Count[i] of image A obtained by referring to Table 2. Similarly, 

Local_B[i] is the reconstructed value of BinCount[i] of image 

B. Global_A[] and Global_B[] represent the normalized bin 

values for the global edge histograms of image A and image B, 

respectively. Similarly, Semi_Global_A[] and Semi_Global _ B[] 

represent the normalized histogram bin values for the semi-

global edge histograms of image A and B, respectively. Since 

the number of bins of the global histogram is relatively smaller 

than that of local and semi-global histograms, a weighting fac-

tor of 5 is applied in (7). 
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Fig. 8. Segments of sub-images for semi-global histograms. 
 

V. EXPERIMENTS 

For our experiments, we set the total number of image-blocks 

at 1100 and the threshold for edge detection (Tedge) at 11. For all 

our experiments, we used the image data set from the MPEG-7 

Core Experiment (CE) [5], which has 11639 images in the da-

tabase. Most of the images in the database are natural images 

from “Correl One Million Gallery” and others are from images 

provided by the proponents of other image descriptors such as 

color and homogeneous texture descriptors. From 11639 im-

ages, we used 51 images, which were selected by MPEG-7 CE 

participants [5], as query images. The ground truths that we 

used in our experiments were determined by three participants 

of the MPEG-7 CE. Each participant proposed from 3 to 33 

ground truth images for each query image and they were ap-

proved by the other two CE participants [5]. As a measure of re-

trieval accuracy, we used the Average Normalized Modified Re-

trieval Rank (ANMRR) [6]. Precision and Recall are well-

known measures for the retrieval performance. They are basi-

cally a “hit-and-miss” counter. That is, the performance is based 

on the number of retrieved images, which have similarity meas-

ures that are greater than a given threshold. For more specific 

comparisons, however, we also need rank information among 

the retrieved images. ANMRR is the measure that exploits the 

able 3. Retrieval performance (ANMRR). 
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Figure 2.9: Subsets for semi-global histograms

The retrieval precision pq for a given query q is the ratio between the number of relevant
images found by the system at a given iteration i and the total number of images retrieved
in the same iteration.

pq = Number of relevant images retrieved

Total number of images retrieved
(2.9)

As you can see from Eq. (2.9), Pq measures, the capability of correct retrieval of the system in
a single iteration. The mean percentage of the precision on the total number Q of queries is:

p(%) = 1

Q

Q∑
q=1

pq ·100. (2.10)

Recall
The recall rq is instead defined as the ratio between the number of relevant images retrieved
up to a certain iteration i for a query q from the system and the number of relevant images
for the same query that are in the database.

rq = Number of relevant images retrieved

Total number of relevant images
(2.11)

Through r is possible to evaluate the system’s ability to retrieve images relevant to each new
iteration. It is also possible a variation in recall measure obtained changing the denominator
of Eq. (2.11) with the minimum between the number of relevant images in the dataset, and the
total number of images evaluated by the user. In this way it is possible to take into account the
maximum number of relevant images that can be actually retrieved. The mean percentage
of recall on the total number of queries is:

r(%) = 1

Q

Q∑
q=1

rq ·100. (2.12)

F-measure
It is also possible to combine the precision and the recall in a unique performance measure:
the F-measure [51]

F = 2 · p · r

p + r
. (2.13)

Average precision
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The average precision for some aspects summarize the precision and the recall, in fact given
a query q is the mean over the precision after each retrieved relevant image.

APq = 1

NR

NR∑
i=1

p(i ) (2.14)

where NR is the total number of relevant images for the query q . The mean average precision
(MAP) is the mean of the average precision over all queries:

M AP = 1

Q

Q∑
q=1

APq . (2.15)

2.5 Datasets

The technique that will be shown in the following chapter has been tested using several
dataset; in the next subsection they will be presented.

2.5.1 Corel SMALL

It is a subset of the Corel dataset obtained from the UCI KDD repository3. It consists of 19511
images that have been manually subdivided into 42 semantic classes with a large variability
in the size: from 96 to 1544 (see Figure 2.10). Even if the Corel dataset is never used in its en-
tirety, different subsets of the complete stock are very common in the scientific community.

Figure 2.10: Images per class in Corel SMALL datset

3http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html
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2.5.2 WANG dataset

WANG dataset4 is another subset of Corel and consists of a subset of 1000 images of the Corel
stock photo database which have been manually selected and which form 10 classes of 100
images each [112] (see Figure 2.11). The WANG database is usually considered as a easy task
in the Image Retrieval context.

Figure 2.11: Example images from WANG dataset

2.5.3 MSRC dataset

The Microsoft Research Cambridge Object Recognition Image database5 (in the following
referred to as MSRC) contains 3007 images subdivided into 17 “main” classes, each of which
is further subdivided into subclasses, for a total of 33 semantic classes [114]. It is mainly used
in object recognition, in the pictures there is usually one object “captured” from a particular
point of view (front, side, rear, etc.) or at most more object of the same type. An example of
object from different classes coming from two of the “main” classes (car and flower) is given
in Figure 2.12.

Figure 2.12: Example images from MSRC dataset

2.5.4 Caltech-256 dataset

The Caltech-256 dataset, from the California Institute of Technology6 consists of 30607 im-
ages subdivided into 257 semantic classes [37] as MSRC is widely used in object recognition
and it is considered a difficult task. In Figure 2.13 it is possible to see some examples of
difficult classes. In the first row the picture belong to the cactus class, in the second to the
birdbath one. It is possible to see how much, in the same class, the images differ each other.

4http://wang.ist.psu.edu/docs/related.shtml
5 http://research.microsoft.com/downloads
6http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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Figure 2.13: Example images from Caltech-256 dataset

2.5.5 MIRflickr-25000 dataset

The MIRflickr-25000 collection [52] consists of 25000 images downloaded from the social
photography site Flickr through its public API. It is a multi tagged dataset with a average
number of tags per image of 8.94. All images include the tags that the original photographer
has assigned to them and in the collection there are a total of 1386 tags which occur in at least
20 images. Moreover for the images also some manual annotations are available. MIRflickr
has been proposed only few years ago but is enjoying great success by the scientific commu-
nity. Recently it has been proposed an updated dataset with 1,000,000 of images [53].





Chapter 3

Semantic gap and other open
issues

As the years go by, it is ever-easier to have access to a ever-greater amount of electronically
archived images. As a consequence there is an increasing need for tools enabling the seman-
tic search, classification, and retrieval of images. As above-mentioned the use of meta-data
associated to the images solves the problems only partly, as the process of assigning meta
data to images is not trivial, is slow, and closely related to the persons who performed the
task. This is especially true for retrieval tasks in very high dimensional databases, where im-
ages exhibit high variability in semantic. It turns out that the description of image content
tends to be intrinsically subjective and partial, and the search for images based on keywords
may fit users’ needs only partially. The main reason for the difficulty in devising effective
image retrieval and classification tools is caused by the vast amount of information con-
veyed by images, and the related subjectivity of the criteria to be used to assign labels to
images [94, 62, 24, 105].

This kind of problem is called semantic gap and it is precisely due to the different ways
in which human beings and machines interpret the images. For the humans, these arouse
emotions, memories or also reflections; for a computer are simple sets of pixels from which
to extract numerical values. In order to capture such subjectivity, image retrieval tools may
employ the so called relevance feedback [82, 121]. In the relevance feedback techniques the
user is involved in the process of refining the search. In a CBIR task in which the RF is applied
(see Figure 3.1), the users submit to the system a query image, that is an example of the
pictures of interest (Fig. 3.1 (1)); the system starting from the query give to the images in
the database a score related to a similarity measure between the images and the query. A
certain number of best scored images are returned to the users (Fig. 3.1 (2)) that label them
as relevant or not (Fig. 3.1 (3)) and that re-submit these images as new “query” (Fig. 3.1 (4)).
With this new information the system can improve the search and give a more accurate result
in the next iteration.

The main distinctions can be made between different relevance feedback approaches
concern the degree of relevance that the user can express and type of learning system: long
or short-term, and active or passive. Regarding the type of judgement that the user can ex-
press on an image it can be expressed either by assigning a score, i.e. expressing “how much”
a certain image is similar to the one she desire, or by a definite judgement of relevance or non
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Figure 3.1: Relevance Feedback steps: (1) Query by example; (2) Returned best similarity
scored images; (3) User’s judgement; (4) New query examples

relevance. Even if with the latter type of choice all the nuances that the human is able to cap-
ture in the similarity evaluation are inevitably lost, it is the most widely used method. In fact,
it is that allows a reduced complexity in the retrieval systems and requires less work for the
user.

The type of learning, as already mentioned, can be either passive or active type. In the
first case, the system returns to the user the images that “judges” the most relevant, in the
second case, relying on the cooperation of the user, the system returns those on which has
greater uncertainty and therefore that, once assessed by user, get more information. This
second type usually obtains better results but requires a greater effort of the user who almost
never is willing to repeat the evaluation process for more than four or five times. In the
following it will be considered mainly the passive learning. Active learning techniques will
be discussed in Section 3.5.1.

A further distinction in the type of learning is between short and long-term. The first in-
volves that the system, to show to the user the most significant images, takes into account
only the RF iterations just made by that user. The second one takes into account all the
queries of the same type carried out in the past by different users. This second type of learn-
ing, in spite of the potential for better performance, has the disadvantage that, since each
user expresses its judgement in a subjective manner, not always, the opinions given by a
user may then bring a real “help” in a search of another one.

The core of the retrieval systems, obviously, is the algorithm that learns which images in
the database the user is interested in by analysing the query image and any feedback. Some
methods assign directly a relevance score to each image in the database [31], others find an
hyperplane that separates the relevant images from the non relevant ones [118], and others
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map the images as a weighted graph [56] from which extracting a cluster of relevant images.
The methods also can differ in the way they approach the problem of classification (broadly
speaking) of images. In fact from the most common two-class approach, where a model is
built that either classifies an image as positive or as negative, it has been also proposed one-
class approaches, where the model is built only for the relevant class [99]. These techniques
are well known in pattern recognition field, but are not always very suitable in application
for content based image retrieval. Starting from the consideration that “all positive examples
are alike; each negative example is negative in its own way” [120] a (1+x)-class approach has
been proposed.

In the next section will be shown a brief review of some techniques of relevance feedback
at the state of the art as query shifting, support vector machine, (dis)similarity spaces and
nearest neighbor approach. In the following some of the most common problems currently
investigated by the researchers and faced in this thesis will be described. In particular, un-
balanced learning, high dimensional feature space, the low capability to evaluate similarity
between all relevant images, low informative training set and the low discriminative capa-
bility of the feature set problems have been investigated. In addition will be shown some
solutions proposed to resolve them by the scientific community and some our innovative
proposals.

3.1 Relevance Feedback techniques

3.1.1 Query Shifting Techniques

As mentioned in the Chapter 2 the similarity measure can be expressed by means of dis-
tances in the feature space, a family of techniques to improve the performance have adopted
the so called query shifting paradigm. A simple approach to finding more relevant images
from the user’s feedback is based on a well known technique in Information Retrieval: the
Rocchio’s formula [80]. This method, initially developed for the retrieval of text documents
has been then adapted to image retrieval techniques [83]. This technique is based on the
concept that the relevant images and the non relevant ones should form, in the feature space,
distinct group. Then moving the queries in these areas more densely populated by relevant
images should be easier to retrieve them. The approach is based on the minimization of a
function that approximated the relevance of all the images of the database. Given a query q,
the new query q′ is evaluated as

q′ =α ·q+β ·
(

1

r

∑
xi∈R

xi

)
−γ ·

(
1

n

∑
x j∈N

x j

)
(3.1)

where xi and x j represent the images in the set of the relevant (R) and non relevant images
(N ), respectively, that have cardinality equal to r and n, respectively. α, β, and γ are param-
eter to fix.

In [33] the authors proposed a modification of the original approach, they move the
query according to the position of the mean point of the relevant and non relevant images.
Let x and q be two feature vectors representing an image in a d-dimensional feature space
and the initial query provided by the user to perform the k-NN search, respectively. Let
N r (q) and N nr (q) be the sets of relevant and non relevant images, respectively, contained
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in the neighbourhood of q N (q). The mean vectors of relevant and non relevant images of
N (q), mr and mn , can be computed as follows:

mr = 1

r

∑
x∈N r (q)

x, mn = 1

n

∑
x∈N nr (q)

x (3.2)

where r and n are the sizes of relevant and non relevant image sets, respectively (r +n = k).
The two normal distributions of relevant and non-relevant images are characterized with
means mr and mn , respectively, and equal variance σ2 computed as follows:

σ2 = sW · sB (3.3)

where

s2
W = 1

k

(
r

r −1

∑
x∈N r (q)

(x−mr )T (x−mr )+

+ n

n −1

∑
x∈N nr (q)

(x−mn)T (x−mn)

)
(3.4)

s2
B = (mr −mn)T (mr −mn) (3.5)

In other words, σ is computed as the geometric mean of the within-scatter sW and the
between-scatter sB . According to [33] the new “shifted” query can be evaluated as

qBQS = mr + σ2

‖mr −mn‖
(
1− r −n

max(r,n)

)
(mr −mn) (3.6)

In the following, between the different versions of the query shifting approaches that it has
been proposed in the literature, it will be used the BQS, as proposed in our research group.

3.1.2 Support Vector Machines

Differently from the previous methods that are essentially based on the density estimation
there is another family of relevance feedback techniques that is based on discriminative
training, i.e. methods that learn from a set of positive and negative labelled images how
to classify the unlabelled ones. In this family, surely have a leading role the Support Vector
Machines (SVM) [111, 23]. The idea behind the SVM is to find a hyperplane, in the feature
space, that divides it into two subspaces. The first populated by positive samples, the second
one by negative samples. The patterns closest to the hyperplane are called support vectors.
The greater is the distance (margin) between these vectors and the hyperplane the greater
is the reliability of the classifier. Given a set of linear separable training samples xi ∈ Rn , the
general form of linear classification function is

f (x) = w ·x+b (3.7)

which corresponds to a separating hyperplane w ·x+b = 0. Solving a constrained quadratic
programming problem it is possible to find the vector w such that maximize 1

‖w‖ that is the
distance from the closest point to the hyperplane. The solution w has an expansion

∑
i αi xi
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in terms of a subset of patterns that are the nearest to the hyperplane and are called support
vector. The function in the Eq. (3.7) can be now written as

f (x) =∑
i
αi xi ·x+b (3.8)

the sign of this function permits to classify the pattern x. In its “plain” form the SVM is a linear
classifier but can be used also in non linear problem using the so called kernel trick. The
kernel trick permits to transform the feature space to a higher dimensional space through the
function φ(·) [23] and it is so possible to find a hyperplane that separates the patterns [87].
The dot product in Eq. (3.8) can be represented as

φ(xi ) ·φ(x) = K (xi ,x) . (3.9)

Finally, the classification function can be now written as

f (x) =∑
i
αi K (xi ,x)+b (3.10)

The SVM has been widely used in image retrieval [118] also in one-class problems [16]. In
order to address its low performance in case of asymmetric training set it has been also pro-
posed a solution where several classifiers have been learnt with a bag of balanced number of
positive and negative example[98].

3.1.3 Nearest Neighbor Approach

Other approaches estimate the relevance of an image according to the relevant and non-
relevant images in its neighborhood. The use of the nearest neighbor paradigm is motivated
by its use in a number of different pattern recognition fields, where it is difficult to produce a
high-level generalization of a class of objects, but where neighborhood information is avail-
able [3, 28]. In [31] a score is assigned to each image of a database according to its distance
from the nearest image belonging to the target class, and the distance from the nearest im-
age belonging to a different class. This score is further combined to a score related to the
distance of the image from the region of relevant images. The combined score is computed
as follows:

rel(x)st ab =
(

n/t

1+n/t

)
· relBQS(x)+

(
1

1+n/t

)
· relN N (x) (3.11)

where n and t are the number of non-relevant images and the whole number of images
retrieved after the latter iteration, respectively. The two terms relN N and relBQS are computed
as follows:

relN N (x) = ‖x−N N nr (x)‖
‖x−N N r (x)‖+‖x−N N nr (x)‖ (3.12)

where N N r (x) and N N nr (x) denote the relevant and the non relevant nearest neighbor of x,
respectively, and ‖ ·‖ is the metric defined in the feature space at hand,

relBQS(x) = 1−e
1−dBQS(x)

/
max

i
dBQS(xi )

1−e
(3.13)

where e is the Euler’s number, i is the index of all images in the database and dBQS is the
distance of image x from a modified query vector computed according to the Bayes decision
theory (Bayes Query Shifting, BQS) [33] (see Section 3.1.1).
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3.1.4 Some other techniques

Strictly related to the SVM is the on-line binary classification problem, where as classifica-
tion function is used the a vector of weight [9]. On-line learning is particularly suitable for
facing RF problems due to the on-line nature of such a problem. Moreover with the on-line
approach it is possible to obtain a very fast and compact RF method and this property is
very important in a real CBIR scenario. In Section 4.2 will be shown a new application of this
technique proposed in relevance feedback for content based image retrieval field.

Despite its wide use, achieving high performance by SVM can be not easy, in fact it de-
pends on the tuning of a number of parameters that often have been set after a long series of
tests. Rather than splitting the feature space into subspaces populated only by relevant / non
relevant images or find out the distributions of the two images’ “classes”, sometimes what it
is required by a retrieval system is to provide a list of images in order of relevance (passive
learning) or in order of informative capacity (active learning), i.e. according to the impor-
tance assigned them by the user for that specific kind of query [100]. In order to evaluate the
importance it is necessary knowing what the user is looking for and exploit her feedback to
find other “similar” images.

What does “similar” mean? This is a question that only the user can answer and for
this reason over the years a lot of similarity measure have been proposed. As mentioned
in Section 2.3 the easiest way to evaluate the similarity is introducing a metric in the feature
space [86]. The pair-wise distances between patterns have been used in pattern recognition
field also to build a (dis)similarity space [74] where the distances between patterns of the
same class are smaller than those of patterns of different classes. A similar approach has
been proposed [32] and used [70] to exploit relevance feedback in in content based image
retrieval field. Different techniques use the user feedback in order to find a distance metric
such that the distance in low-level features is consistent with the users’ relevance judge-
ments [92]. This metric should try to minimize the distance between similar images and
meanwhile maximize the distance between the feature vectors of dissimilar images.

3.2 Unbalanced learning

3.2.1 Artificial patterns generation

One of the most severe problem in the design of the classifier, is the imbalance between the
number of samples of the class the user is interested in, and all other images of the database
that share some characteristics with that class. In the machine-learning literature the imbal-
ance problem has been widely investigated and solution based either on under-sampling the
majority class, or on over-sampling the minority class have been proposed [41]. However, it
is easy to see that these solutions may produce a distortion of the “real” distribution of the
classes. In the image retrieval domain, some solutions proposed so far involve the reduc-
tion of the set of images that are non-relevant to user’s interest by the creation of bootstrap
samples from the set of non-relevant images [98]. An ensemble of balanced training sets
is thus created, each ensemble being made up of all the available relevant images and one
of the bootstrap samples. This solution is computationally quite expensive, as an ensem-
ble of classifiers has to be created, and the choice of the most appropriate set of parameters
for the various parts of the systems is far from being a trivial task. Recently, some papers
addressed the imbalance problem by proposing the generation of artificial patterns as in
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[107, 106] where the authors propose the generation of synthetic images in the Karhunen-
Loeve Transform feature space (KLT, e.g. [104]). The authors synthesized the images by the
standard method of linear reconstruction using the eigenvectors of the KLT representation
and extracted the low level features of this synthesized images considering the images as any
regular image and applying a common feature extractor. Through these “new” images the
system receives more informative feedback from the user. Others interesting solutions have
been proposed over the years, in [2] the authors suggest to obtain a object-level view of the
query image using image segmentation and permit to the user to selects segment(s) of inter-
est. After this first step a set of modified images is automatically generated by the system and
the initial user perception is learned based on the user feedback on the set of modifications.
In [58] it has been proposed to use the segmentation and assembling all the segmented re-
gions of positive examples together and resizing the regions to emphasize the latest positive
examples, formed a composite image as a new query. In [50] instead the authors increase
the number of relevant and non-relevant samples using a two-stage Bayesian classifier. In
the first step the system eliminate the vast majority of negative example and submit to the
user those that have passed the first selection. When the user labels an image as negative, all
sub-images within that image that passed the first-stage classifier are considered as “new”
negative examples for the second-stage classifier, and any positive regions identified by the
user are used as positive examples for both classifiers. In spite of the previous methods that
propose the generation of synthetic images for the sake of receiving informative feedback
from the user, in [14] it has been proposed a technique (SMOTE) that addresses the imbal-
ance problem by creating new random artificial patterns of the class of interest in the fea-
ture space to improve the performances of learning mechanisms. In Section 4.1 a similar
approach will be proposed, where the creation of new patterns is made by exploiting k-NN
relations and that improve the performance obtained by SMOTE.

3.3 High-dimensional feature spaces

3.3.1 Local manifold

Strictly related to the small sample problem is the so called curse of dimensionality due to
the now ever more common use of high-dimensional feature spaces [10]. In these spaces
the lack of relevant samples is even more felt, in fact usually as the dimensionality increases,
the performance of the retrieval systems drastically decreases. In the literature it is possi-
ble to find a lot of different solutions that address this problem; recently the researchers
focused their attention on methods that reconstruct the data in lower dimensional spaces
while maintaining the patterns’ distribution [89].

In [102, 103] the author assumed that the data lie on an unknown manifold embedded
in the high-dimensional observation space and by means of a procedure, that he called
ISOMAP, generated a mapping function from the observation space to a low-dimensional
Euclidean feature space. This transformation is obtained preserving the distances between
patterns measured along locally shortest paths. This kind of mapping permits that the highly
non-linear paths in the observation space became straight lines in the Euclidean space. The
idea of finding a subspace where the relevant images are close and the non-relevant one are
far away it is further developed over the years, in [81] it has been proposed that each data
point and its neighbors lie on or close to a locally linear patch of a manifold and characterize
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the local geometry of these patches by linear coefficients that reconstruct each data point
from its neighbors. The idea of reconstructing the data with a k-nearest neighbor graph, us-
ing a weight matrix that indicates the weights on each of the edges, has been also adopted in
[63] where a similarity relational graph is constructed by exploring the neighborhood of each
image, and two feedback relational graphs are created to depict the relevant and irrelevant
relations in the feedback.

While the similarity property is used in order to preserve the local geometry, the relevant
and irrelevant feedback information has been used to gathering together the relevant pairs
and keeping away irrelevant ones after the embedding. In [44] the authors propose a method
to learn a manifold when number of sample images is very small exploiting the user’s feed-
back. They use geodesic distances to approximate the distances between image pairs along
the manifold and construct a semantic matrix where the entries are the distances between
images seen by the user. In order to find the semantic representation for each considered
image and preserving the distances, Laplacian Eigenmaps [6] are used. Finally to map from
low-level feature space to semantic space also never seen images, they proposed to exploit
a RBF neural network that approximates the optimal mapping function. In [42] the author
proposed also a semi-supervised learning scheme based on locality preserving projection
(LPP) [45] that could be considered a linear variant of the Laplacian Eigenmaps [6] finding
the optimal linear approximation of the intrinsic data manifold. More recently the same
author in [43], instead, propose to construct a nearest neighbor graph to model the local ge-
ometrical structure of the underlying manifold. This graph is then split into a within-class
graph and a between-class graph by using class information and neighborhood information.
The within-class graph connects two data points with the same label or if they are close to
each other, whereas the between-class graph connects data points having different labels.
In this way is taken in account both of the local geometrical and discriminant structures of
the data manifold. Then, through a linear transformation matrix the images are mapped to
a sub space maximizing the margin between relevant and non relevant images (Maximum
Margin Projection, MMP).

In [7] it has been proposed an algorithm, Biased Discriminant Euclidean Embedding
(BDEE), that exploits also the low-dimensional representation of the unlabelled samples
combining two different linear projection matrices. The first linearly maps the relevant and
non relevant images from the high-dimensional space to a low-dimensional space modelling
both the intraclass geometry and interclass discrimination, the second reconstructs each
unlabelled sample by its neighboring unlabelled samples preserving the local geometry. Ex-
ploiting the idea proposed in [81] it is possible to “reconstruct” a point in a N-dimensional
space through a linear combination of M points (M < N) with a certain reconstruction error
ε.

On this topic in this thesis it has been proposed a new interesting idea: using Relevance
Feedback to obtain a set of relevant images and one of non relevant image and through a
linear combination of both of them reconstruct each image of the dataset. The more an
image is close to its “positive” reconstruction and far from its “negative” reconstruction, the
more that image should be relevant (see Section 4.5).

3.3.2 Global dimensionality reduction approaches

Differently from these new dimensionality reduction algorithms that has been designed for
discovering the local manifold structure, over the years several techniques have been pro-
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posed to reduce high dimensional space taking in account the feature space taken as a whole.
The most popular surely include Principal Component Analysis (PCA) and Linear Discrim-
inant Analysis (LDA) [28]. Both algorithms are well known in pattern recognition field and
have been widely used in content based image retrieval. LDA is a supervised learning algo-
rithm that finds the directions that maximize the ratio of between-class scatter to within-
class scatter. The main issues in the application of this technique are that negative feedback
is treated as belonging to a single class and that the lack of sample has a large effect on the
effectiveness of the algorithm.

In [120] have been faced these problems proposing a Biased Discriminant Analysis. PCA,
on the contrary, is an unsupervised method whose aim is to project the data points into a
lower dimensional subspace, in which the sample variance is maximized. It computes the
eigenvectors of the covariance matrix for the full data set and approximates the original data
by a linear combination of the largest eigenvectors that minimizes the mean sum-squared
error. The problems of PCA are mainly two. The firs is that the dimension of the low sub-
space is beforehand fixed, the second is that is not considered the users’ subjectivity. In [95]
this problem is addressed using different feature spaces and thanks to the user feedback a
goodness measure for each feature type is evaluated. According to this measure a different
number of component in each feature set is determined.

3.3.3 Feature weighting

Instead of transforming the feature space to discover hidden relation between relevant im-
ages, another solution studied by researchers has been the feature selection or more gener-
ally the feature weighting that can be considered to implicitly perform it. In fact, follow-
ing this paradigm, the non-discriminative features will receive a weight near to zero. As
above mentioned the idea comes from the principle that the effectiveness of CBIR tech-
niques strongly depends on the choice of the set of visual features. However, no matter
how suitably for the task at hand the features have been designed, the set of retrieved im-
ages often fits the users needs only partly. This is because in general the exact intent of the
user’s query cannot be fully captured even when multiple images. As a consequence, it is not
possible to choose “a priori” the subset of features that is best suited to a user’s query. The ba-
sic idea behind weighting mechanisms is that the feedback from the user implicitly defines
which images should be considered as neighbors of each other (i.e., the relevant images),
and which images should not (i.e., non-relevant images should not be in the neighborhood
of relevant images).

The majority of the papers proposed about this topic evaluated the weight in “proba-
bilistic” way. In [83] the authors proposed to use simply the inverse of the standard devia-
tion considering that if a certain component of the feature vector assumes similar value for
all relevant images, it means that the component is relevant to the query; on the contrary
if all relevant images have different values for that component, then the component is not
relevant. In [75] it has been instead used as weights a local relevance measure (Probabilistic
Feature Relevance Learning, PFRL) evaluated as least-squares estimation, that is, a certain
feature is more relevant for the query if it contributes more to the reduction in prediction
error. A different approach is used in [116] where have been selected the features with max-
imum balanced information gain obtained from the entropy of the set of labelled images.
The same concept could be clearly used as well to weigh not only the components of a single
feature space but also subsets of components. The idea stems from the fact that the fea-
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ture vectors can be composed of “sub-vectors” each describing a different part of the image
or a specific characteristic. Therefore giving a greater or a lower weight to one of them it is
possible to bring out more clearly what the user is looking for.

In Section 5.1.3 it will be shown, instead, a different point of view from the usual proba-
bilistic way. A different weighting approach will be proposed where the weights associated
to a given feature reflect the capability of representing nearest neighbors relations according
to the user’s choices. This method is tailor-made for retrieval techniques based on nearest
neighbor and as further advantage it is possible to use the same algorithm to weight every
component of one feature space, different subset of the feature space or different feature
spaces. Borrowing the concept of “classification error” and “Area Under the ROC curve”, well
known in pattern recognition, another new different technique provides to iteratively gen-
erate weights that minimize this error using the information provided by the user and that
reward the features that best interpret the will of the user. This technique will be described
in Section 5.2.1.

3.4 Low capability to evaluate similarity between
all relevant images

3.4.1 Graph approaches

Nearest neighbor relations are also used in the clustering and neighborhood graphs do-
main [56]; an interesting proposal that join (co-)clustering and feature selection paradigms
has been done in [15]. In the paper the authors exploit the user’s feedback to improve the the
co-clustering methodology [26] and iteratively determined the optimal features and weights.
Over the years graph-theoretic techniques have been increasingly used for clustering; in fact
it is natural to model the similarity between images by a graph whose vertices correspond to
images and weighted edges give the similarity between vertices.

There is a large body of literature that deals with this topic, a place of respect is certainly
due to k-means [28, 54] that, despite its age, is still very popular today because of its simplic-
ity and speed. In accordance with the algorithm, the feedback images are used as seeds for
the creation of the clusters, with the relevant images forming the “positive” one and the non
relevant images the “negative” one. The main drawback in this approach is that the non rel-
evant images usually does not form unique semantic class so is not suitable modelling them
as a cluster. Could be more useful to locate more then two cluster in order to model a (1+x)
classes problem but is not possible only with the relevance/non relevance judgement of the
user’s feedback.

Another one of the most common clustering algorithms is the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [30] that thanks to the density of the data and
the evaluation of the proximity of the patterns, discovers if an image belong or not to a clus-
ter. In [90] the authors proposed a completely different approach to partition the graph: the
normalized cut method. Once a matrix, whose entries are the measures of the similarity be-
tween the nodes of the graph, has been defined, by means of the use of the eigenvalues of the
similarity matrix the optimal cut is obtained. The cut, unlike the classical min-cut algorithm,
is normalized in order to minimize the disassociation between the groups and maximize the
association within the groups. In similar way worked the authors of [119] that evaluate a
weighting measurement of each image of the database in terms of both relation with respect
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to the query and the non relevant images, as well as pair-wise information with neighbour-
hood images. A cost function is obtained for individual images and images are classified by
applying the max-flow/min-cut algorithm. The min-cut approach has been used also in [85]
but differently from the previous, the authors took into account the unlabelled data in the
learning process. In addition they proposed to show the images to the user in the Relevance
Feedback stage choosing from time to time those that can refine the estimate of the decision
boundary or the ones that lie in a uncharted area that could be more meaningful for the next
iteration.

More recently, in [113] it has been proposed a content based image retrieval system based
on Dominant set clustering [73] that exploits the correspondence between dominant set and
the extrema of a quadratic form over the standard simplex to discover the images belong-
ing to the different clusters. In their approach the authors used the DSC algorithm for a
post-processing step after that a first relevance evaluation has been given to the images by
a SVM. The analogies between the concept of a cluster and that of a dominant set of ver-
tices of a similarity graph it is interesting from different points of view, in fact it is possible to
use them in the image retrieval field not only as post-processing step but as a real retrieval
technique. Following the idea that, if a weight of the cluster node has a small value, then the
corresponding image is weakly associated with the cluster and if it has a large value, then
the image is strongly associated with the cluster, it is possible to use the node weight as rele-
vance measure. A retrieval approach designed according to this paradigm it will be described
in Section 4.4.

3.5 Low informative training images

3.5.1 Active learning

During a query to a database is not uncommon after the first iterations, where the number
of relevant images retrieved increases quickly, that suddenly the system does not get more
new relevant results. The reason lies in the way in which images are presented to the user,
in fact usually they are shown the best ranking images that are returned after each round of
feedback and this implies that the search converges towards a local optimum without con-
sidering the pattern distribution of the surrounding areas. In order to address this kind of
problem it has been proposed a strategy, called active learning [19], that requires the system
chooses the most informative images to show to the user. The key issue is how to choose the
most informative images. Usually this approach has been used in systems based on discrim-
inative functions, i.e. system that builds a decision function which classifies the unlabelled
data.

The simplest method is choosing the patterns closest to the decision boundary as de-
scribed in [109, 49] where SVM based on active learning is used. Differently from the pre-
vious works in [17] the authors proposed to learn two SVM classifiers in two uncorrelated
feature spaces as color and texture. The classifiers have been then used to classify the im-
ages and the unlabelled ones that have been differently classified, have been chosen to show
to the user. Also different criteria have been proposed over the years as the minimization of
expected average precision [35] or the maximization of the entropy [57]. In the latter paper
the authors learned an SVM on the labelled images, mapped the SVM outputs into probabil-
ities and chose the images with the probability to belong to relevant class nearest to 0.5.
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Conventional SVM active learning is designed to select a single example for each learning
iteration but, as suggested in [48], usually in a relevance feedback iteration the user label as
relevant or non relevant image multiple image examples. In this case it is possible the sys-
tem selects similar images to learn the SVM. The authors to address this problem proposed
a Batch Mode Active Learning technique that choose the most suitable unlabelled examples
one at a time by a min-max approach. In [64] the authors, instead of using SVM, proposed a
selective sampling for nearest neighbor classifiers. In order to choose the most informative
patterns they suggest to consider not only the uncertainty of the candidate sample point,
but also the effect of its classification on the remaining unlabelled points. Their lookahead
algorithm for selective sampling considers, for this reason, sampling sequences of neigh-
bouring patterns of length k and selects an example that leads to the best sequence. The
best sequence is that whose samples have the highest conditional class probabilities. Also
in [55] the authors proposed a probabilistic variant of the k-nearest neighbor method for
active learning in multi-class scenarios. After that they defined a probability measure, based
on the pairwise distances between data points, they used the Shannon entropy as “uncer-
tain” measure over the class labels in order to maximize the discriminating capabilities of
the model.

In Section 4.3 an approach based on the nearest neighbor paradigm that follows the ac-
tive learning approach will be proposed. The k-NN is usually used for its simplicity and be-
cause it is not necessary tuning parameters being based on the concept that similar images
are located in adjacent areas of space. One of the main problem with this type of classifier
is that it retrieves relevant similar images but also non-relevant images similar to each other
losing the generalization ability. A solution can come from a methodology that combines the
classical nearest neighbor paradigm (Exploitation) with a phase of exploration of the imme-
diate neighbourhoods of the area occupied by the relevant images (Exploration) through a
max-min approach.

3.6 Low discriminative capability of the feature set

3.6.1 Combining classifiers

For a given image database, a relevance feedback technique that brings the best retrievals to
a certain class of query images may be inferior to other RF approaches for another class of
query images. According to this behaviour in [117] it has been proposed combining multiple
relevance feedback strategies. They proposed a technique that integrates Query Vector Mod-
ification [80], Feature Relevance Estimation [83, 75], and Bayesian Inference [20] and selects
the most appropriate for a particular query or even for a particular iteration. In [47], on the
contrary, the authors proposed to employ the Support Vector Machine ensembles technique
to construct a group-based relevance feedback algorithm. In their paper they suggested to
assume the data come from multiple positive classes and one negative class, i.e. modelled
the problem as a (x+1)-class classification problem. As above mentioned also in [98, 79] it
has been proposed to use a SVM ensemble to address the unbalanced learning, whereas the
authors of [110] suggest to use a set of one-class classifiers based on Information Bottleneck
framework [21]. The main part of works that use a classifier ensemble in content based im-
age retrieval field combine the same approach trained on different classes or on different
bags of relevant/non relevant images.
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In Section 6.1, on the contrary, it will be shown our proposal to combine two very dif-
ferent techniques in order to obtain good results in different datasets and representations
rather than high performance in a specific dataset. The two studied techniques are the Sup-
port Vector Machines and an algorithm nearest neighbor based. The reason for the choice
of these two techniques is that they work well in different feature space and if used with the
same representation retrieve different kind of images.

3.6.2 Representation by multi-feature spaces

Instead of the use of multiple classifiers trained on one set of features, another technique to
improve the discriminating capability of a retrieval system, is to use different sets of features.
In this way it is possible to capture the differences between the images through their differ-
ent characteristics in fact color, shape, texture or edges of the figures, could be selected or
combined in order to have “descriptors” more adaptable to different types of images [82].

In the same spirit, in [108], a large set of highly selective visual features has been used,
where each feature only responded to a small percentage of images and at the same time
only a few features will responded to the relevant images. In this way after that the most
selective feature, for a query, has been chosen, each image in the database can be evalu-
ated very rapidly. In [61] the authors proposed a probabilistic feature set weighting. Their
weights have been evaluated privileging those spaces that maintain the cluster of the rele-
vant images more concentrated or, in terms of probabilities, giving more importance to fea-
tures for which the positive examples have a high likelihood, and less importance to features
for which the positive examples have a low likelihood.

More recently in [4] it has been proposed a different probabilistic strategy to combine
similarity measures. The authors considered a subjective similarity judgement given by
users on a fixed set of image and related it to a measure of similarity, then combined the
different values evaluated in different feature spaces. The different feature representations
can be combined by fusing all the similarity metric through a weighted sum [82, 76]. The
main problem combining features is to find a way to increase the accuracy in the search but
not the processing time.

In order to do this in Section 5.2.2 will be shown how to represent the images in a “(dis)-
similarities” space where each component is associated with a different feature space that
accurately represents a similarity measure of the image with the given user query. In this
way it is possible to obtain a space whose dimension is equal to just the number of spaces to
be combined. Using this technique it has been possible to obtain better performance than
the ones obtained with traditional combination methods, with the further benefit of keeping
the computational time very low.





Chapter 4

Relevance feedback techniques in
individual feature spaces

This chapter focuses on addressing some of the relevance feedback issues described in the
previous chapter with techniques that exploit the characteristics of an individual feature
space. More in detail, in Section 4.1 is faced the unbalanced learning with a technique of
pattern injection. In Section 4.2 will be proposed a on-line approach of a relevance feedback
technique for content based image retrieval. In Section 4.3 the problem of low informative
training images is tackled through the proposal of an nearest neighbor approach based on
active learning. Section 4.4 presents a graph solution against the low capability to evalu-
ate similarity between all relevant images and finally Section 4.5 faces the high-dimensional
feature spaces problem.

4.1 Directed Pattern Injection

One of the most severe problems in the semantic classification and retrieval of images from
very large repositories is the very limited number of elements belonging to each semantic
class compared to the total number of images. As training sets for classification and retrieval
are usually made up of a small fraction of images per semantic class, it turns out that the
learning problems in which elements from different classes are considered, are heavily im-
balanced. Our technique artificially increases the number of examples in the training set
in order to improve the learning capabilities, reducing the imbalance between the seman-
tic class of interest, and all other images. The new points in the feature space depend on
the local distribution of the available patterns of the class of interest, and they are created
using the k-NN paradigm. For this reason, the proposed approach is highly effective for
relevance feedback techniques based on the Nearest-Neighbor (NN) paradigm, as it allows
increasing the generalization capability of NN techniques, and mitigates the risk of classifier
over-training on few patterns. The results on different image datasets show the effectiveness
of the proposed approach. The improvement in precision and recall gained in one feature
space allows also to outperform the improvement in performances attained by combining
different feature spaces [78].

35
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4.1.1 Learning from imbalanced data

As mentioned in Section 3.2, in the machine learning literature, a number of techniques
have been proposed to address the problem of learning from imbalanced data. The aim of
this subsection is not to provide a summary of the literature (see Section 3.2), but rather, be-
fore to present our proposal, to briefly describe another technique that is one of the most
widely known mechanisms to oversample the minority class by generating synthetic pat-
terns: SMOTE. This description it is necessary in order to better understand the difference
between the two techniques and to show how our proposal makes up for some of SMOTE’s
drawback.

SMOTE

For each pattern of the minority class xk , new patterns are generated by taking into account
its k-nearest neighbors in F one at a time. Let xi be one of the the k-nearest neighbors, then
a synthetic pattern xs yn is generated by the following formula

xs yn = xk +α · (xi −xk ) (4.1)

whereα is a random number in the range [0,1]. Typically, the number k of nearest neighbors
is chosen to be larger than the number of points that have to be generated in order to balance
the data set. Thus, the patterns in the neighborhood actually used to generate the synthetic
patterns are usually chosen randomly among the k neighbors.

Directed Pattern Injection

This technique has been originally proposed to inject noisy samples for neural network
learning [93]. Actually, this technique can be used to generate new synthetic samples by
taking into account all the patterns in a local region of the feature space defined by the neigh-
borhood around one reference pattern. The reference pattern is typically chosen among the
points belonging to the minority class. The use of other points as reference, such as the point
computed as the average of the patterns belonging to the minority class has been also con-
sidered [77]. The synthetic patterns are generated by a linear combination of the directions
defined by the reference pattern and its neighbors in F belonging to the minority class, i.e.,

xs yn = xr e f +λ
∑

xi∈N N
(
xr e f

)ξi ·
(
xi −xr e f

)
(4.2)

where the weights ξi are drawn from a normal distribution with zero mean and unit variance,
and λ is a normalization factor. This formula implicitly assume that the combination of di-
rections generated by one point and its neighbors can generate a new pattern belonging to
the class of interest. The validity of this assumption has not been proven formally, and it re-
lies on the observation that if the data of the minority class locally lies on a low-dimensional
manifold of the original feature space, then the generated data will lie on the same manifold.

This line of reasoning is also shared by some techniques aimed at discovering non linear
manifold embeddings [81]. These techniques compute the low-dimensional embedding by
requiring the preservation of local neighboring relations. For a given pattern xk these rela-
tions are represented in terms of the weights of the linear combination of its neighboring
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patterns

xr ec = ∑
xi∈N N (xk )

wi ·xi = xk +
∑

xi∈N N (xk )
wi ·xi −xk =

= xk +
∑

xi∈N N (xk )
wi ·xi −

∑
i

wi ·xk = xk +
∑

xi∈N N (xk )
wi · (xi −xk ) (4.3)

where
∑
i

wi = 1.

The weights are computed so as to minimize the so-called reconstruction error, i.e., the
error occurring if the pattern xk is represented by xr ec , i.e., the linear combination of its
neighbors. It can thus be argued that if a real pattern can be approximated by a combination
of its nearest neighbors, then the combination of the nearest neighbors of a given pattern
can produce synthetic patterns that can be deemed to belong to the minority class with high
probability.

4.1.2 Category Learning with Synthetic Feature Vectors

The new patterns, that it is possible to create using the techniques presented in the previous
sections, are not “real” new images but synthetic samples generated in the feature space
according to the distribution of the available samples. For this reason it has been necessary
to take into account the peculiar characteristics of the task at end, so that the new patterns
can provide additional information that is embedded into the available samples.

In particular, in the case of image retrieval, the generation of synthetic patterns can be
beneficial for relevance feedback techniques, where very often non-relevant images out-
number relevant images. It is worth noting that the choice of the number of artificial pat-
terns to be created is not a trivial task. In fact if the number of them is too large there is the
concrete risk to add noise to the dataset, thus producing a distortion of the “real” distribu-
tion of images. For these reasons, it has been proposed to constrain the generation of new
patterns so that the ratio between images that belong to the class of interest, and those that
do not, is constantly equal to a predefined ratio 1 : m, where m = 2, . . . ,5. In cases when the
ratio in the training set exceeds the above ratio, then the artificial generation of patterns is
not executed at all.

The number of synthetic patterns that can be generated by SMOTE is limited by the num-
ber of available samples. If the number of samples of the minority class is T , then the max-
imum number of synthetic images that can be generated is equal to T 2 − 1. This can be a
limiting factor in cases in which the dataset is heavily unbalanced. For example, if the num-
ber of patterns of the target class is equal to 2, and the number of patterns belonging to other
classes is equal to 20, thus it follows that the total number of synthetic images that can be
generated is equal to 3. If the goal is to generate synthetic patterns so that the ratio between
patterns of the target class and patterns belonging to other classes is equal to 1 : 2, then
SMOTE in its original formulation does not allow attaining this goal.

On the other hand, in the case of DPI, for each xr e f and its k nearest patterns, it is possible
to generate potentially an infinite number of synthetic patterns by varying the coefficients
ξ1, . . . ,ξk . Consequently, it is possible to train a classifier with a number of samples as large
as needed. In addition, these patterns may lie in a region of the feature space defined by the
reference pattern and its k neighbors, rather than being constrained to lie on the segment
connecting to nearest points of the target class. Figure 4.1 shows an example of how the
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proposed technique works, where the grey area indicates where artificial patterns can be
created. Further details on the implementation of the proposed technique will be provided
in the following section.

The value of k, i.e., the number of nearest-neighbors considered for the creation of arti-
ficial patterns, should not be large to avoid taking into account pattern that are actually far
from the reference point [93]. For example, the authors of SMOTE suggests the use of k = 5,
and the patterns actually used to generate the synthetic patterns are drawn randomly from
the neighborhood [14].

The proposed approaches are expected to be quite effective when used with learning
techniques based on the nearest neighbor paradigm. In fact, new patterns are generated ac-
cording to a linear combination of directions depending on the distribution of the k-nearest
neighbors of a reference image, while the coefficients of the combination are random num-
bers. Starting from the assumption that the patterns of the same class lie in a subspace of the
feature space, these techniques permit to identify the subspace determined by the k-nearest
neighbors through the linear combination of known patterns and to generate the new ones
in it.

The DPI technique depends on the values assigned to a number of free parameters, that
are, the image xr e f used as a reference, the number of nearest neighbors considered, the
number of artificial feature vectors that are generated, and the scale factor λ. These values
cannot be “a priori” chosen. On the other hand, tuning all the free parameters in order to find
the optimal configuration is a difficult and computationally expensive search task. These
parameters have been thus selected according to some heuristics that are reported in the
following section.

Figure 4.1: Example of k-NN “synthetic” pattern generation in a two-dimensional feature
space, where k = 2, ξ1 = ξ2 = 0.5 and λ= 0.5.
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4.1.3 Choice of the Parameters for the DPI technique

There are at least two parameters of DPI that need to be properly adjusted: Should the val-
ues of the parameters ξ1, . . . ,ξk be constrained? Which strategy can be used to choose the
reference point xr e f used to generate the artificial patterns?

Let me provide an answer to the first question. While the proposed approach gener-
ates new vectors only in some directions of the feature space (see Eq. (4.2)), the generated
patterns may still lie outside the region explored, i.e., the region defined by the known neigh-
borhood of the reference point. In my opinion, it is too risky to generate pattern outside that
region, as is not possible to have information available about the distribution of images. This
can happen depending on the random values of the coefficients ξ1, . . . ,ξk . To avoid this risk,
it has been proposed to constrain the creation of new patterns in the region delimited by
the nearest and the farthest known image of interest w.r.t. the reference image xr e f used in
equation (4.2). Figure 4.1 shows an example of how the proposed technique works, where
the grey area indicates where synthetic patterns can be created, and the two dashed circles
bound the area where synthetic patterns are accepted. The green ring represents the ref-
erence point, chosen as the mean vector of all the images of the target class, while the red,
green, and black dots represent non-target, target and unlabelled images, respectively. The
green dots pointed by the black arrows represents the two target images nearest to the ref-
erence point, while the green dot drawn with a broken line and pointed by the green arrow,
represents the injected synthetic’ pattern. It is easy to see that the new pattern falls in the
region containing the samples of the target class, thus increasing the density of this area
according to neighborhood information.

Different choices for the reference point can be investigated. Let me recall that the di-
rections used to generate new patterns depends on the choice of reference point, and the
related nearest neighbors. In addition, the choice of the reference point may also depend on
the application at hand. In an image retrieval problem the reference point could be selected
as being the pattern associated to the query image, as the user asked for images similar to
the query. While this can be a reasonable choice, it can also exhibit some drawbacks, as its
representation in the low-level feature space may not reflect its representativeness w.r.t. the
images the user considers as being relevant. In other words, the so-called “semantic gap”
between user perception of similarity and its representation in the low-level feature space
may suggest to use a different point in the feature space as a query vector.

As an alternative, the use of the mean vector of all the known images of the target class
as the reference point has been proposed, thus taking into account the distribution of the
images of the class of interest in the feature space. This choice, with respect to the first one,
takes into account all available information, and thus can be used in different application
scenarios, including classification and retrieval. In addition, this choice allows creating syn-
thetic patterns that lie in the region where the images of interests are actually observed .

Other options could be also investigated such as, the use of each known image of the tar-
get class as a reference image, and the use of a new point computed according to the known
target and non-target images. The first option requires some extra parameter to be set, as the
total number of artificial patterns that needs to be generated can be smaller than the num-
ber of available images, and some target patterns should not participate in the process. The
second option requires defining the new point according to some heuristics, e.g., those used
for performing query movement in image retrieval tasks [62, 94, 121, 33]. In order to keep
the system simple to implement, by reducing the number of parameters which affects the
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final performance of the system, it has been decided to use the mean vector of all images be-
longing to the target class as the reference point. As above-mentioned, the DPI approach can
be effective for techniques based on the nearest neighbor paradigm, in this work it has been
resorted to a technique proposed in [31] where a score is assigned according to Eq. (3.11).

4.1.4 Experimental Results

Datasets

This section describes the experimental results related to the use of the proposed technique
compared with SMOTE. Experiments have been carried out using two datasets, namely the
Caltech-256 dataset and the Microsoft Research Cambridge Object Recognition Image Database
(MSRC) (see Section 2.5). Three different kind of features have been extracted, namely the
Tamura features (18 components), the Scalable Color descriptor (64 components), and the
Color and Edge Directivity Descriptor (Cedd , 144 components) (see Section 2.2). The open
source library LIRE (Lucene Image REtrieval) has been used for feature extraction [66].

Experimental Setup

In order to test the performances, 500 query images have been randomly extracted for each
dataset, covering all the semantic classes. The top twenty best scored images for each query
are returned to the user. Relevance feedback is performed by marking images belonging
to the same class of the query as relevant, and all other images in the top twenty as non-
relevant. It is worth noting that at each round of relevance feedback, the user is asked to
mark twenty brand new images never seen before. Performances are evaluated in terms of
retrieval precision, recall and the F -measure (see Section 2.4).

Precision is measured by taking into account the top twenty best scored images at each
iteration, regardless they have been already labelled by the user. The recall takes into account
all the relevant images retrieved so far, including the images labelled by the user to provid-
ing the feedback to the system. The recall is evaluated against the minimum between the
number of relevant images in the dataset, and the total number of images evaluated by the
user (i.e., the maximum number of relevant images that can be actually retrieved). Finally,
in order to evaluate the improvement attained by the generation of synthetic patterns (DPI
and SMOTE) w.r.t. the nearest neighbor (NN) relevance feedback technique, the following
“improvement measure” has been computed:(

performanceX −performanceN N

)(
performanceN N

) (4.4)

where X is either SMOTE or DPI, and performance is either the precision, the recall or the F
measure.

In order to choose the most suitable values of the parameters discussed in Section 4.1.3,
a number of preliminary experiments have been performed. Accordingly, the normalization
parameter as λ= 1

k

(
ξ2

1 +ξ2
2

)−2
has been computed, and new synthetic patterns at each iter-

ation have been created by taking in account only the information from the last iteration.
However, the relevance feedback mechanism takes into account all the images retrieved so
far, and all the synthetic images generated so far. Synthetic patterns have been created so
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that the final ratio between relevant and non relevant images retrieved at the current itera-
tion is equal to 1 : 2. Thus it means that artificial patterns are generated only in cases of very
imbalanced training sets, and that the number of artificial patterns is kept as small as possi-
ble, so that they can provide useful information rather than adding noise. In order to obtain
this goal, different values of k for the DPI and SMOTE approaches have been chosen. In the
case of DPI, a value of k equal to 2 has been used. In the case of SMOTE, the value of k de-
pends on the number of synthetic patterns needed to attain the ratio between relevant and
non relevant images equal to 1 : 2. For comparison purposes, relevance feedback has been
also computed by a SVM classifier with an RBF kernel. Finally, as the three feature represen-
tations provide complementary information on image semantic, it has been also evaluated
the performances attained by averaging the relevance scores computed separately for each
feature representation by the nearest neighbor technique (referred to as NN-Combination).

Results

Figures 4.2, 4.3, 4.4 and Figures 4.5, 4.6, 4.7 show the performances in terms of precision re-
call and F measure using the two datasets and three feature representations. As expected,
the best performances on both datasets are attained by the Cedd representation, as it allows
to better capture the different semantic of the classes in the dataset. On the other hand, both
the Tamur a, and theScal abl e Color representations allow capturing only partially the se-
mantic of the classes. This behavior can be easily seen by comparing the initial retrieval
results on both datasets without relevance feedback. It can be also observed that the per-
formance attained by the MSRC dataset are usually higher than those of the Caltech dataset.
The reason of this behavior is related to the different semantic of the images contained in
the two datasets, and to their subdivision into classes.

Reported results in Figures 4.2, 4.3, 4.4 and Figures 4.5, 4.6, 4.7, show that the artificial
generation of patterns allows improving the performance of relevance feedback in all the
considered feature spaces, and with respect to the three performance measure. Figures 4.8
and 4.9 shows the average improvements in the three feature sets as described in Eq. (4.4).
It can be seen that both DPI and SMOTE allow improving the performance, the recall, and F
with respect to the “plain” nearest neighbor relevance feedback technique. In addition, it can
be also seen that DPI always outperforms SMOTE. In particular, the main gap between DPI
and SMOTE can be observed in the precision figure, where the difference in improvement
between DPI and SMOTE is equal to 9% for the Caltech dataset, and 4% for the MSRC dataset.
This results can be explained by the different technique employed by DPI and SMOTE in
generating synthetic patterns. DPI generates patterns by exploiting the region defined by the
mean vector of the patterns of the minority class, and its nearest neighbors, whereas SMOTE
generates patterns only on the segment connecting two neighboring patterns. It turns out
that DPI allows for a better exploitation of the available information.

In the case of the Caltech dataset, and the Cedd feature representation, Figures 4.5, 4.6
and 4.7 show that the precision attained by the generation of synthetic patterns improves
the performances attained by the “plain” nearest neighbor relevance feedback technique,
as well as with respect to the use of SVM. In addition, the precision is also higher than that
attained by the combination of the three feature representations, starting from the third it-
eration. At the end of the ninth iteration, the improvement in precision attained by DPI is
nearly equal to 3.5%. Thus it can be concluded that the generation of synthetic patterns in
one feature representation can be more effective than the combination of information from
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different feature spaces, when synthetic patterns are generated in an effective feature space
for the task at hand. This aspect is particularly interesting from the point of view of the com-
putational complexity. It is worth noting that while the combination of complementary fea-
ture representation may allow attaining improvements in performances, the computational
overhead of the combination with respect to the most computational demanding feature
space (i.e., the Cedd representation) is equal to 77%. On the other hand, the overhead of the
proposed techniques based on the synthetic generation of patterns is equal to 15%.

If it is considered the recall and F measures reported in Figures 4.6 and 4.7 , it is possible
to observe a behavior similar to the one seen in the case of the precision, apart that the
performances of DPI and SMOTE are quite similar each other, the DPI performing slightly
better. In particular, significative improvements can be seen since the third iteration.

In the case of the Tamur a, and the Scal able Col or representations, it is possible to ob-
serve a similar trend as far as the comparison of relevance feedback technique that exploit
information on individual feature spaces are concerned. On the other hand, the combina-
tion of the three feature sets outperforms all other techniques, as it exploit the information
from the Cedd representation. Thus, when the feature spaces are not effective for the task
at hand, the generation of synthetic patterns is not competitive with respect to the perfor-
mances attained by the combination different features.

In the case of the MSRC dataset, it can be seen that using the Tamur a, and the Scal abl e
Color representations, the behavior is the same as the one seen in the Caltech dataset. In
particular, the generation of synthetic patterns allows for performance improvements, the
DPI providing the best performances in the precision, and F measures (Figure 4.2 and 4.4)
since the first iteration. In the case of the recall measure (Figure 4.3), the improvement starts
since the fifth iteration, and the performance attained by both DPI and SMOTE reaches the
one attained by the combination of the three feature sets at the ninth iteration. In the Cedd
feature space, differently from that it happens in the Caltech dataset, the precision attained
by generating synthetic patterns is always slightly worse than the one attained by the com-
bination of information from different feature spaces. On the other hand, performances
attained for the recall and F measures shows the effectiveness of the generation of synthetic
patterns with respect to the “plain” nearest neighbor relevance feedback, the SVM, and the
combination of different feature spaces
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Figure 4.2: MicroSoft Research Dataset - Precision for 9 rounds of relevance feedback.
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Figure 4.3: MicroSoft Research Dataset - Recall for 9 rounds of relevance feedback.
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Figure 4.4: MicroSoft Research Dataset - F measure for 9 rounds of relevance feedback.
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Figure 4.5: Caltech-256 Dataset - Precision for 9 rounds of relevance feedback.
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Figure 4.6: Caltech-256 Dataset - Recall for 9 rounds of relevance feedback.
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Figure 4.7: Caltech-256 Dataset - F measure for 9 rounds of relevance feedback.
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Figure 4.8: MicroSoft Research Dataset - Performance Improvements of SMOTE and DPI
against the Nearest-Neighbor technique for relevance feedback, averaged over the three fea-
ture spaces.
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Figure 4.9: Caltech-256 Dataset - Performance Improvements of SMOTE and DPI against the
Nearest-Neighbor technique for relevance feedback, averaged over the three feature spaces.
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4.2 On-line learning

The increasing consultation of digital images has made necessary to develop more effective
systems for their classification and retrieval. The most widely used system for retrieving im-
ages by content, nowadays, are based on the SVM or nearest neighbor approaches. Instead
strengthening these well know techniques it has been proposed to enhance the RF paradigm
by means of some approaches based on on-line learning.

On-line learning is a technique for addressing classification problems [46], binary and
multi-class categorization as well regression and sequence prediction problems [22]. It has
been successfully used also in problems of images ranking from text queries [36] and video
tagging [71]. Our proposal consists in a new application of this technique in the field of
Relevance Feedback (RF) for Content Based Image Retrieval. This approach is particularly
suitable for facing RF problems due to the online nature of such a problem. Moreover with
the proposed on-line approach it has been obtained a very fast and compact RF method,
this property is very important in a real CBIR scenario. Starting from an idea used in im-
ages ranking from text queries problems [36] and in video tagging problem [71], the on-line
learning in the content based image retrieval has been exploited .

The problems of the relevance feedback in CBIR will be faced using three approaches
based on the on-line learning paradigm [22], one related to a linear predictor and two that
extend the the idea through the kernel trick. The reported results show that the proposed al-
gorithm is able to achieve results comparable and in many cases higher than those obtained
with techniques such as SVM and NN based.

4.2.1 On-line approach

In the classic on-line learning algorithms one pattern at time is evaluated and for each one
the algorithm establish if it belongs or not to the class of interest. Every pattern is associated
with a unique label yt ∈ {+1,−1} where {+1} indicates the belonging to a certain class and
{−1} the non belonging. After each judgement the predict class is compared to the true class.
According to how the previous prediction was correct or wrong the algorithm improve its
prediction rule for the next evaluation.

In the on-line binary classification problem one of the simplest classification approach
is the linear classifier [9] where as classification function is used the a vector of weight. Given
a vector w and a pattern x the sign of (w ·x) classify the pattern as belonging to one or the
other class and the magnitude of |w·x| is the degree of confidence in the prediction. It is easy
to expand the above approach for non linear classifiers, in fact it is possible to replace the
product between the two vectors with a Mercer’s kernel.

Linear Model for RF

According to the definition of linear classifier, that has been already provided, it is possible
to give to an image xi a similarity score as follows:

scor e (xi ) = w ·xi , (4.5)

where w is the weight vector to learn. In a CBIR task what a user want is that the relevant
images with the query are shown before than the non relevant, when a score ranking is used
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the desired behaviour is that the first ones have a higher score than the latter, i.e.,

∀xr ∈ R,∀xn ∈ N ,w ·xr > w ·xn , (4.6)

where R and N are the sets of the relevant and non relevant images, respectively. In other
words it is necessary to maximize the following expression:∑

∀xr ∈R

∑
∀xn∈N

w (xr −xn) . (4.7)

Several methods can be applied in order to find a value of w that maximize the Eq. (4.7). Here
it has been followed the same idea proposed in [36] and obtain the weight w using an on-line
iterative algorithm and solving the following equation:

wt = argmin
w

1

2
||wt+1 −wt ||2 +C lt , (4.8)

where t is the iteration and lt is the loss function for the iteration t :

lt =
{

0 if wt (xr −xn) > 1
1−wt (xr −xn) otherwise.

(4.9)

From this equation it is possible to see that when the weighted distance between the consid-
ered images (xr ,xn) is bigger than 1 the loss is equal to zero, but if it is lower the expression
suffers a loss equal to the difference between 1 and the weighted distance. In the Eq. (4.8) it
is also possible to see that the loss is “smoothed” by the parameter C that avoid an excessive
fluctuation of the weight between two iterations in succession. The first term of the expres-
sion 1

2 ||wt+1 −wt ||2 plays an important role as well. In fact it forces the values of the weight
obtained at consecutive iterations to be close to each other in order to take in account all the
information learned in the past iterations. According to [22] the solution of Eq. (4.8) is given
by:

wt+1 = wt +Γt (xr −xn) , (4.10)

where:

Γt = min

{
c,

lt

||xr −xn ||2
}

, (4.11)

In order to complete the analysis of the algorithm it is still necessary to discuss how the
weights are initialized and how the images xr and xn are chosen. The algorithm is performed
in the following steps:

i) The first action that is performed after a user has provided to the system query image
is calculating the distances in the feature space among the input images and all the
images in the database and sorting them from the smallest to the largest;

ii) the first k images are labelled by the user as being relevant or not;

iii) henceforth the on-line learning algorithm begins. The weight vector w0 is initialized
to 0;

iv) the images xr and xn are randomly drawn from the sets of the relevant images (R)
and the set of the non relevant images (N ) respectively. A new random drawing is
performed for each round of updating and the iterative procedure is stopped after a
fixed number of round;
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v) using the update weight vector a score for each images of the database is evaluated in
accordance with the Eq. (4.5);

vi) the images are sorted according to the scores, the first k ones are labelled as in step ii);

vii) a new relevance feedback iteration begins with a new iterative update of the weight w
until the user is not satisfied.

The choice of a predefined number of weight update is motivated chiefly by the number of
the retrieved images, in fact if it was evaluated overall pairs and the numerousness of the two
sets was high, the procedure would be too computationally expensive. On the other hand if
one of the two sets was much smaller than the other (as usual in the relevance feedback field)
the weight would be unbalanced toward the bigger set. Using a fixed number of round, on
the contrary, permits the images of the smaller class are drawn also more than one time. It is
worth noting that the final result is different if the same image is considered at the first up-
date round, or at the second one, or at the last one. In fact the algorithm takes into account,
thanks to the first term of Eq. (4.8), all of the previous updates, and thus the same images is
considered two or three times in the same update, and an improvement in the weight value
can be attained in the same way as considering two or three different images.

Kernel Models for RF

It is possible to easily generalize the algorithm presented in the previous subsection using
the so called kernel trick. In the following they will be presented two forms of kernel method:
a “pure” kernel solution and another solution, called Kernel Pair, that could be viewed as a
middle course between the linear solution and the “pure” kernel solution.

Kernel Trick
In order to better understand the contribution of the kernel in addressing the image retrieval
problem it is probably more useful to consider the actual issue as a classification problem
instead of a ranking problem. Let me assume that every image xi is associated with a unique
label yt ∈ {+1,−1} where {+1} indicates the relevant images and {−1} the non relevant ones.
If it is used the same classification function as described above: the weight w, the sign of
(w ·x) could classify the pattern as belonging to one or the other class and the magnitude of
|w ·x| could be considered as the degree of confidence in the prediction. In this case what is
desirable is not to maximize the distances between relevant and non relevant images but to
maximize the margin in the decision. In order to reflect this change it is possible to modify
the updating expression (4.10) as follows:

wt =
t−1∑
j=0
Γ j y j x j , (4.12)

and therefore

scor et (xi ) = wt ·xi =
t−1∑
j=0
Γ j y j

(
x j ·xi

)
. (4.13)

In order to use the kernel trick it is possible to replace the inner product in the right hand
side at Eq. (4.13) with a kernel expression K

(
x,x′) and obtain

scor et (xi ) =
t−1∑
j=0
Γ j y j K

(
x j ,xi

)
, (4.14)
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where according to [22]:

Γt = min

{
c,

lt

||xt ||2
}

, (4.15)

lt =
{

0 if dt > 1
1−dt otherwise,

(4.16)

dt =
t−1∑
j=0
Γ j y j K

(
x j ,xt

)
, (4.17)

It is interesting to notice that in this approach the vectors xt could be seen as support vectors
as in Support Vector Machine paradigm [23] in fact as in that case the scope is to maximize
the margin between the relevant and the non relevant images. In this approach only one
image per round is randomly drawn from the set of the previous retrieved images and can be
drawn more than once. t indicates the number of updating round executed and obviously
the evaluated images until that moment.

Kernel Pair
Whereas in the linear approach only the weight is evaluated iteratively and the score is com-
puted one time for each relevance feedback iteration at the end of the weight updating, in
the Kernel Pair approach also the score is updated iteratively. For each image xi the score is
evaluated in the following way:

scor et (xi ) =
t−1∑
j=0
Γ j K ((xr −xn) ,xi ) , (4.18)

where: Γ j is evaluated as in Eq. (4.11), the loss lt is obtained as in Eq. (4.9) and the weight
wt+1 is update as in Eq. (4.10). In this case the weight plays a role in the loss function and so
through Γ j influences the score. The distance between the images of the pair (xr ,xn) instead
affects both the weight update and the evaluation of the kernel.

Used Kernels

In this section a briefly review of some of kernels that can be used in the Kernel Pair and in
the “pure” kernel approach will be provided. In particular it will be focused on the RBF kernel,
that has been successfully used in a broad range of pattern recognition applications, and on
the Histogram Intersection [5] and the Generalized Histogram Intersection [11] kernel that
are more suitable for image retrieval.

RBF
The Radial Basis Function is one of the most widespread functions used as kernel and it is
expressed in the following way

KRBF
(
x,x′)= exp

(
−||x−x′||2

σ2

)
. (4.19)

It easy to see how the expression depends on the distance between the two images but even
more it depends on the value of σ that determines the area of influence that the “support
vector” has over the space, the bigger is the value of σ the larger is its area of influence.
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HI
The Histogram Intersection is a technique proposed in [96] for object recognition and it has
been drawn on by Barla in [5] in the image retrieval field. Considering a feature space of
dimension m the feature vector that represent an image in that space will be x = (x1, . . . , xm)
and the expression of the kernel:

KH I
(
x,x′)= m∑

i=1
min

{|xi |, |x′
i |
}

. (4.20)

GHI
In [11] it has been proposed a generalization of the Histogram Intersection kernel that usu-
ally works better in the field of image retrieval. The authors introduce a parameter β greater
than 0 that permit to optimize the performance of the task at hand.

KG H I
(
x,x′)= m∑

i=1
min

{
|xi |β, |x′

i |β
}

with β≥ 0 (4.21)

4.2.2 Experimental Results

Datasets

Experiments have been carried out using three datasets, namely the Caltech-256 dataset,
a subset of the WANG dataset, and a subset of the Microsoft Research Cambridge Object
Recognition Image Database (MSRC) (see Section 2.5). The subset of the WANG dataset (in
the following only referred to as WANG) consists of 700 images out of the 1000 that com-
pose the original one. From Caltech-256 two different kind of features have been extracted,
namely the Edge Histogram descriptor (80 components), and the Color and Edge Directiv-
ity Descriptor (Cedd , 144 components). The open source library LIRE (Lucene Image RE-
trieval) has been used for feature extraction [66]. The images from WANG are represented
by a 512-dimensional colour histogram and a 512-dimensional Tamura texture feature his-
togram concatenated in a unique vector, the images of MSRC instead are represented by a
vector of 4096 components of SIFT descriptors extracted at Harris interest points (see Sec-
tion 2.2).

Experimental Setup

In order to test the performances 500 query images from Caltech-256 dataset have been ran-
domly extracted that cover all the semantic classes. For WANG and MSRC datasets each
image is used as query. The top twenty best scored images for each query are returned to the
user. Relevance feedback is performed by marking images belonging to the same class of the
query as relevant, and all other images in the top twenty as non-relevant. Performances are
evaluated in terms of precision and mean average precision. The first one is evaluated tak-
ing in account the top twenty best scored images at each iteration, in the average precision
evaluation all relevant images have been considered (see Section 2.4).

In order to choose the most suitable values of the parameters discussed in the Section 4.2.1
and 4.2.1, a number of preliminary experiments have been performed. Accordingly, the
number of updating round t has been fixed at 100, the value σ2 in the RBF kernel at 0.1,
and the parameter β in the exponent of the Generalized Histogram Intersection at 2. In the
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Figures from 4.10 to 4.13, in order to make more clear the graphs, it has been reported only
one line for Generalized Histogram Intersection and Histogram Intersection showing only
the best of two kernels. In Section 4.2.2 is reported for every dataset the used values of beta.
Different values between 0.001 to 1000 have benn also tested for the parameter C but in this
case it is strictly related to the considered dataset.

For comparison purposes, relevance feedback has been also computed by a SVM clas-
sifier with an RBF kernel and a nearest neighbor technique based on the computation of a
relevance score for each image according to its distance from the nearest relevant image, and
the distance from the nearest non relevant image [31].

Results

WANG
Figures 4.10(a) and 4.10(b) show the performance of the proposed approaches compared to
the ones obtained by a SVM classifier and a nearest neighbor approach that are the most
widely used techniques in CBIR. In Figure 4.10(a) it easy to see how the proposed method
overcome the SVM and in particular using the Histogram Intersection kernel (β = 1) it has
been obtained the best result. The RBF kernel instead neither with the “pure” kernel nor
the Kernel Pair solution is able to obtain values comparable with the SVM. Also the Kernel
Pair with HI kernel obtains poor result. Regarding the the precision at top 20 images the be-
haviour of the proposed methods is different: RBF both with the “pure” kernel and the Kernel
Pair solution reaches a performance comparable with the nearest-neighbor technique and
the linear approach. The HI kernel, on the contrary, obtains the performance similar to the
ones of the SVM but lower than the other techniques.
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Figure 4.10: WANG Dataset - Average Precision and Precision for 5 rounds of relevance feed-
back.

MSRC
Figures 4.11(a) and 4.11(b) show the results obtained using the MicroSoft Research Dataset.
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In particular Figure 4.11(b) reports the values of the precision at top 20 images and it is pos-
sible to see how the trend is the same that one shown for WANG dataset, the linear approach
outperforms slightly all the other methods, the RBF “pure” kernel obtains performance com-
parable with the nearest neighbor approach but higher that the Pair approach. Finally, the
worst results are attained by the SVM and HI kernel (β= 1). Regarding he average precision
(Figure 4.11(a)) the HI “pure” kernel obtains by far the best performance again, followed
by the nearest neighbor approach and the SVM. On the contrary with respect to the WANG
dataset the linear approach does not overcome the SVM but its performance is higher than
RBF kernel and HI Kernel Pair performances.
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Figure 4.11: MicroSoft Research Dataset - Average Precision and Precision for 5 rounds of
relevance feedback.

Caltech-256
For Caltech-256 the experiments have been carried out using two different sets of feature,
notwithstanding this the obtained performance is not so different. In figures 4.12(a) and 4.13(a)
are reported the results related to the average precision that differently from the perfor-
mance discussed above show how the linear approach of the proposed method overcome
all the other techniques. The second best result is obtained in both the graph by RBF Ker-
nel Pair even if using the Edge Histogram descriptors has a better trend. In the third place
in the rank of the best results it is possible to find find the nearest neighbor technique that
outperforms the two approaches of HI kernel (β= 2 for both descriptors) and the “pure” RBF
kernel. Finally, the worst result is attained by the SVM.

In Figure 4.12(b) are reported the results obtained using Color and Edge Directivity De-
scriptor and it can be easily seen that the highest performances are provided by the linear
approach followed by the SVM. The nearest neighbor approach and the “pure” RBF kernel
obtains similar result but better than HI kernel and RBF Kernel Pair. Reported results in Fig-
ure 4.13(b) show that the precision attained by the linear approach it is also in this case the
highest. The nearest neighbor technique and both the RBF kernel approaches, even if with
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different trend, at the end of the five iterations provide comparable results whereas the worst
results are obtained by the HI kernel and the SVM.
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Figure 4.12: Caltech-256 Dataset - Average Precision and Precision for 5 rounds of relevance
feedback using Color and Edge Directivity Descriptor.
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Figure 4.13: Caltech-256 Dataset - Average Precision and Precision for 5 rounds of relevance
feedback using Edge Histogram Descriptor.

4.3 Exploitation-Exploration

In this section an active learning approach tailored for the nearest neighbor paradigm will
be presented. This approach, over the years, has been widely used with Support Vector Ma-
chine, where the choice of the most informative patterns has been driven by its closeness
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to the decision boundary. The proposed method instead exploits the information obtained
from the relevance score computed by a nearest neighbor approach choosing between the
best scored images those that lie in an area not too far and not too close to the query. In the
following section the proposed method will be presented and some experimental results will
be provided.

4.3.1 MAX-min selection

In the classical score based relevance feedback approach after that the user submit a query,
the system, according to a similarity measure, scores all images in the database and presents
to the user the k best scored ones. This approach could make sure that the system shows
to the user several relevant images ever since the first iterations. One of the problem in this
kind of behaviour is that in the following iterations the search will be driven by the (probably
few) relevant images retrieved and the system could concentrate the search in a limited area
of the feature space. Sometime neither the non relevant images, that are also considered in
the evaluation of the relevance score by now, can help to get out of this situation. In fact
using always the same relevant images iteration by iteration the search can “takes a wrong
way”. In order to face this problem the proposed method, chosen a fixed number of images
that will be the seeds from where it begins the search, selects between a certain number of
best scored images those that are “not to close” to the “classical search area”. What do “not
to close” and “classical search area” mean in the proposed approach will explained in the
following.

Let me define k as the number of the images to return to the user and bk ·αc as the
fixed number of the “seed images”. Let me also define (k −bk ·αc) ·β as the number of im-
ages among which they can be chosen the most informative ones. In the previous formulas
the parameter α can assume values between 1

k and 1, and β ≥ 1. Summing up, with the
Exploitation-Exploration approach k images are shown to the user, the best scored bk ·αc
are selected beforehand and the others (k −bk ·αc) are chosen through a max-min approach
between the (k −bk ·αc) ·β best scored images. It is clear that if α = 1

k all the images, apart
the query, are selected in “active” way, on the contrary when it is equal to 1 they are shown
to the user the best k scored images as in the classical nearest neighbor approach. The same
happens when β = 1, in fact in this situation it will be chosen (k −bk ·αc) images from a set
of (k −bk ·αc) best scored images.

The max-min approach selects an image from a set evaluating all the distances between
the seed images and the images in the set and choosing for each of them the shortest. The
images are then sorted according to these distances and that with the maximum distance it
is selected. To better explain the algorithm, in the Figure 4.14 it is reported an example where
k = 4, α= 0.75, and β= 3

(a) For each images of the database a score is computed according to Eq. (3.11);

(b) the three best scored are used as seems of the search (b4 ·0.75c = 3);

(c) for each of remaining images ((4−b4 ·0.75c) ·3 = 3) the distances with the seem images
are evaluated and the minimum ones are chosen;

(d) the image with the longest minimum distance, the (2), is chosen to be add to the seem
images.
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(a) Considered images (b) bk ·αc best scored images

(c) Evaluation of the all distances (d) Max-min distance (e) New round of selection

Figure 4.14: Esploration-Exploitation algorithm.

(e) in case of different parameter, e.g., k = 5, α = 0.6, and β = 1.5 should be necessary
adding another image to show to the user and the algorithm restart from point (c).

4.3.2 Experimental Results

Datasets

Experiments have been carried out using two datasets, namely the WANG dataset and the
Microsoft Research Cambridge Object Recognition Image Database (MSRC) (see Section 2.5).
The images from WANG are represented by a 512-dimensional colour histogram and a 512-
dimensional Tamura texture feature histogram concatenated in a unique vector, the images
of MSRC instead are represented by a vector of 4096 components of SIFT descriptors ex-
tracted at Harris interest points (see Section 2.2).

Experimental Setup

In order to test the performances each image has been used as query. The top twenty best
scored images for each query are returned to the user. Relevance feedback is performed by
marking images belonging to the same class of the query as relevant, and all other images
in the top twenty as non-relevant. Performances are evaluated in terms of precision and
mean average precision. The first one is evaluated on twenty images taking in account the
top best scored images at each iteration and the relevant images retrieved in the previous
iterations, in the average precision evaluation all relevant images have been considered (see
Section 2.4).

In order to choose the most suitable values of the parameters α and β, a number of pre-
liminary experiments have been performed. Accordingly, it has been fixed the value of β at
10, whereas the different values of α it has been shown for comparison purposes.



4.3. EXPLOITATION-EXPLORATION 57

The relevance score at each image ha been assigned according to Eq. (3.11) and in the
graph it has been referred to as Relevance Score, whereas the case α= 1

k it has been referred
to as a = 0%

Results

Figures 4.15(a) and 4.15(b) show the average precision and the precision rate, respectively,
evaluated using the WANG dataset. Observing the image two images it is immediately clear
how the two graph have an opposite trend, in fact the lower is the value ofα in Figure 4.15(a),
the better is the measured average precision. In the precision graph (Figure 4.15(b)), on the
contrary, the performance is proportional to α.

It is possible to see the same behaviour also in Figures 4.16(a) and 4.16(b). At a first sight
these results could seem odd but probably the reason is due to the different way in the per-
formance evaluation. The precision in fact is calculated as the ratio between the number of
relevant images retrieved and the total number of images retrieved. In these experiments it
has been evaluated on twenty images, so one image less it is enough to obtain a loss of the
5%. The average precision, on the contrary is evaluated on all relevant image, so if few of
them gain even just one position the performance definitely improves. The value of α= 0.75
means that 5 images out of 20 are not chosen between the best scored, so if this choice from
a certain point of view improves the performance in terms of the rank of all relevant images,
on the other hand can cause that the images presented to the user are more informative but
not of the same class of the query.
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Figure 4.15: WANG Dataset - Average Precision and Precision for 5 rounds of relevance feed-
back.
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Figure 4.16: MSRC Dataset - Average Precision and Precision for 5 rounds of relevance feed-
back.
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4.4 Dominant set score ranking

The content based image retrieval systems usually assigns a score to each image in the database
according to the similarities between the query and the images in the database without tak-
ing care the similarities between the images in the database. In order to face this problem it
has been proposed several methods that take in account also these “hidden relations” and
the widely used methods are those based on the idea of clustering and similarity graphs.
Starting from one of these techniques, the Dominant Sets Clustering [73], in this section will
be proposed a preliminary work that exploit some of the concept of this clustering method
in order to develop a innovative relevance feedback method.

4.4.1 Node weighting

Before going deeply into proposed method it is necessary to give before an outline of some
of the concepts on which is based the dominant sets theory. It is possible to represent the
dataset as an undirected edge-weighted graph with no self-loops G = (V ,E , w) [73], where V
is the set of vertex, E is the set of edge, and w is the weight function. Vertices in G correspond
to images, edges represent neighborhood relationships, and edge-weights reflect similarity
between pairs of linked vertices. The weights of the graph can be represented in a matrix A
where ai j = w(i , j ) and ai i = 0. From the complete graph it is possible to extract a subset of
nodes such that the overall similarity among nodes of the subset is higher than that between
external and internal nodes of the subset. More formally it is possible to define a non-empty
subset of nodes S ⊆V such that the weight of i ∈ S with regard to S is

WS(i ) =
 1, se |S| = 1∑

j∈S\{i }

(
ai j −ah j

)
WS\{i }( j ), otherwise. (4.22)

where h is an arbitrary element of S\{i }. The total weight of S is defined as W (S) =∑
i∈S WS(i ).

This allows a sort of indexing of the vertices of the graph, the higher is the value of WS(i )
much more “likely” is that the node i belongs to the cluster. In [73] the authors provide a
formal definition of the concept of a cluster in an edge-weighted graph:

Definition 4.1. A non-empty subset of vertices S ⊆ V such that W (T ) > 0 for any non-empty
T ⊆ S, is said to be dominant if:

1. WS(i ) > 0, for all i ∈ S,

2. WS∪{i }(i ) < 0, for all i ∉ S

4.4.2 Score evaluation

From this definition and Eq. 4.22, it is possible to find a score related to node weight. The
method involves starting from the matrix A whose entries are the distances of each image
in the dataset with all the others. Once it has been selected a query, the k nearest are drawn
and they are judged by the user as relevant or not. Those that have been deemed relevant are
assigned to the cluster S. At this point it is possible to change the matrix A so that the weights
“relevant nodes” will be greater than those of the not relevant ones according to [91]:

Ã = A+max(A) ·Λ (4.23)
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where A is the weighted adjacency matrix, max(A) represents the maximum entry of A and
Λ is a discriminative matrix, whereΛi , j is equalt to 1 if the nodes i and j belong to the same
cluster, 0 otherwise.

According to the new matrix Ã and Eq. (4.22) it is possible to evaluate the node weights
as WS(i ) ∀i ∈ S and WN ( j ) ∀ j ∈ N where S and N are the clusters of the relevant and non rel-
evant nodes, respectively. The total weight are so computed according to W (S) =∑

i∈S WS(i )
and W (N ) = ∑

i∈N WN (i ). In order to evaluate the relevance score all images that are not
judged by the user are before considered as belonging to the cluster S, then as belonging to
the cluster N and the respective weights are computed:

i) WSk =WS∪{k}(k) and WNk =WN∪{k}(k) are evaluated;

ii) the improvements with respect to the total weight of S (W (Sk ) = W (S)+WSk ) and N
(W (Nk ) =W (N )+WNk ) is computed;

iii) the difference between this two weights will be the relevance score for each image;

where k is the index of a generic image.

4.4.3 Experimental Results

Datasets

Experiments have been carried out using a subset of the Corel dataset. It consists of 1290
images that have been manually subdivided into 42 semantic classes with 30 images for each
class. Experiments have been performed using Color Histogram (see Section 2.2).

Experimental Setup

In order to test the performances 50 query images have been randomly extracted. Perfor-
mances are evaluated in terms of precision, recall. The first one is evaluated taking in ac-
count the top ten best scored images at each iteration, regardless they have been already
labelled by the user. The recall takes into account all the relevant images retrieved so far (see
Section 2.4).

For comparison purposes, relevance feedback has been also computed by a SVM classi-
fier with an RBF kernel and with the nearest neighbor relevance score obtained according to
Eq. (3.11).

Results

In the Figures 4.17(a) and 4.17(b) precision and recall of the proposed method are reported
and it is possible to see how the results obtained by the approach based on Dominant Sets
clearly overcome those obtained using SVM and the nearest neighbor approach. These re-
sults even if coming from some preliminary experiments and they are obtained in a small
dataset seem promising. The choice to use a small dataset has been caused by the com-
putational complexity of the evaluation of the weight if the sets S and N became too large.
This computational complexity is due to the recursive form of Eq. (4.22). Anyway the tech-
nique seems interesting and it is worth a widening of the investigation. The next step of this
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research will be find a different way to evaluate the weights and compute the score not con-
sidering the non relevant image as a cluster. It is my opinion that this changes could improve
the performance and solve the computational complexity problem.
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Figure 4.17: Corel SMALL Dataset - Precision & Recall

4.5 Locally Linear Embedding Score

In this section a preliminary work to face, in different way, the problems of high dimensional
feature space will be presented. The idea comes from the well known techniques of Non-
linear Dimensionality Reduction [81]. The proposed approach is based on the concept of
manifold and exploit the property to represent an image as linear combination of its own
neighbor. In the next section it will be proposed an overview of the original techniques and
in the following will be introduced a modification in order to obtain a relevance score from
the image reconstructions.

4.5.1 Reconstruction error evaluation

In [81] the authors compute the low-dimensional embedding by requiring the preservation
of local neighboring relations. They suppose that in a d-dimensional space, each data point
and its neighbors lies on or near to a locally linear patch of a underlying manifold and char-
acterize the local geometry of these patches by a linear combination that reconstructs each
point from its neighbors. Let x be the generic point and η j its generic neighbor, the commit-
ted reconstruction errors can be evaluated as

ε(w) =∑
i

∣∣∣∣∣xi −
k∑

j=1
wi jη j

∣∣∣∣∣
2

(4.24)
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that adds up the squared distances between all the data points and their reconstructions.
The weights that minimize these reconstruction errors can be obtained as [81]

w j =
∑
k

C−1
j k

(
x ·ηk +λ

)
(4.25)

where C−1
j k is the inverse of the neighborhood correlation matrix C j k = η j ·ηk and λ is the

Lagrange multiplier

λ=
1−∑

j k C−1
j k

(
x ·ηk

)
∑

j k C−1
j k

(4.26)

4.5.2 LLE Relevance Score

According to this concept it is possible to generate two reconstructions of each image, one
from the relevant images and one from the non relevant ones. Let r and n two images belong-
ing to the set of relevant (R) and non relevant images (N ), respectively. The reconstructions
of the image x can be formulate as

xr =
|R|∑
j=1

w r
j · r j xn =

|N |∑
j=1

w n
j ·n j (4.27)

where |R| and |N | are the cardinality of the sets of the relevant and non relevant images, re-
spectively, and w r

j and w n
j are the weights that minimize the reconstruction errors using the

relevant and non relevant images, respectively. Finally it is possible to evaluate the relevance
score as

SLLE (x) = d(x,xn)

d(x,xr )
(4.28)

At the moment with this technique, they have not been produced results strong enough to be
presented in this thesis. However from some preliminary experiments it seems a promising
technique, so for this reason it has been proposed as further solution to the high dimensional
feature space problem.



Chapter 5

Relevance feedback techniques in
multiple feature spaces

This chapter focuses on two problems whose solutions, in a certain sense, permeate each
other: high-dimensional feature spaces problem and low discriminative capability of the fea-
ture set. In fact in Section 5.1 it will be presented a way to weight the components of a feature
space in order to only select the most signicative so that reducing the space dimension. An-
other way to do that it could be create a low-dimensional (dis)similarity space from the orig-
inal one [74]. In Section 5.2 it will be shown a new technique that starting from the idea of
(dis)similarity in one space combine multi-feature spaces in order to increase discriminative
capability of the system. As the weighted combination of the feature spaces is a well know
approach to fuse the different kind of information coming from different sources, the prob-
lem of low discriminative capability of the feature set is strictly related also on the solutions
proposed in Section 5.1.

5.1 Weighted Combination

In this section it will be proposed a weighting mechanism based on the capability of feature
space(s) of representing relevant images as nearest neighbors. The approach has a twofold
motivation to be investigated, the first is that by identifying which components of the fea-
ture space are the most significative it is possible to consider (virtually) only those in the
distance evaluations and in this way to overcome the problem of using high-dimensional
spaces. The second is that selecting the most appropriate components the relevant images
can be represented as neighbors of each other, and the non relevant images, on the contrary,
far away from the relevant ones. In the following section they will be outlined the different
ways in which weighted metrics can be formulated and they will be briefly described two
widely used weighting evaluation techniques. After this necessary overview the proposed
technique with its related result will be presented.

63
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5.1.1 Weighted Metrics

Prior to presenting the techniques for estimating the feature weights, let me describe how
weighted metrics can be formulated. This discussion is mainly based on the formulation of
weighted metrics in [84]. Let me point out, however, that the formulation in [84] is related
to the computation of similarities from the query vector, while the following discussion is
related to the computation of similarities from relevant and non-relevant images. An image
x can be represented as x = x (F ), where F is a set of low level features associated with the
image, as color and texture. Each feature fi can be modelled by several representations, e.g.
Color Histogram and Scalable Color are representations of the color feature. Each represen-
tation fi j is itself a vector with multiple components

fi j =
[

fi j 1, . . . , fi j h , . . . , fi j k , . . . , fi j N
]

, (5.1)

where N is the vector length. For each level fi , fi j and fi j k is possible to associate respec-
tively a weight wi , wi j and wi j k . Let me consider a similarity measure M . According to it, is
possible to evaluate the similarity between two generic images in terms of fi j and its weights
wi j k as

S
(

fi j
)= M

(
fi j , wi j k

)
with k = 1. . . N , (5.2)

For example, to compare two images represented by a vector it is possible to use the Minkowski
metric,

d
fi j
p

(
x,y

)= (
N∑

k=1

∣∣x( fi j k )−y( fi j k )
∣∣p

)1/p

, (5.3)

with p > 1. Eq. (5.2) can be rewritten as

S
(

fi j
)= (

N∑
k=1

wi j k
∣∣x( fi j k )−y( fi j k )

∣∣p

)1/p

. (5.4)

Moreover it is possible to define another level between the representation one and the vector
components one to join them together in accordance with the characteristics of the repre-
sentations sets. For example an image in the Color Histogram Layout representation is di-
vided into G sub-images (G/4 horizontal splits and G/4 vertical splits) and each sub-images
is computed in the Color Histogram representation. Therefore the Eq. (5.1) becomes

fi j =
[
gi j 1, . . . , gi j k , . . . , gi jG

]
, (5.5)

and
gi j 1 =

[
fi j 1, . . . , fi j h

]
...

gi jG = [
fi j k , . . . , fi j N

] (5.6)

In the same way as seen before, it is possible to assign a weight wg to the sets of components,
with g = 1. . .G and Eq. (5.2) can be extended, for example, to the case in which weights are
assigned to the G subsets of the Color Histogram Layout representation. In this case Eq. (5.3)
becomes

S
(

fi j
)= G∑

g=1
wg ·d g

p
(
x,y

)
, (5.7)
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where d g
p

(
x,y

)
is the distance between x and y in the g sub-space. Finally, weights can also

be estimated for the similarity measure, at the level of the feature fi

S
(

fi
)=∑

j
wi j S

(
fi j

)
, (5.8)

and furthermore at the highest level

S =∑
i

wi S
(

fi
)

. (5.9)

Instead of a similarity measure, the weights can be used with a score of relevance that ranks
the images as seen in the Eq. (3.11). In particular, weights can be estimated either for com-
bining relevance scores assigned to images for each feature, or for combining scores origi-
nated from feature subsets (Eq. (5.6)). In these case Eq. (5.4) and Eq. (5.7) can be rewritten
as

rel
(
x( fi j )

)= N∑
k=1

wi j k · rel
(
x( fi j k )

)
, (5.10)

rel
(
x( fi j )

)= G∑
g=1

wg · rel
(
x(gi j g )

)
, (5.11)

5.1.2 Estimation of feature relevance

Our research has been mainly focused on the problem of weights assignment to the compo-
nents (or sets of components) of the representation vector and to the relevance scores. The
measures of similarity and relevance has be done considering only one representation at a
time. For these reasons in general the use of word features (or sets of features), it will be meant
the components (or sets of components) of the representation vector, whereas feature space
it will be meant a generic representation. The aim of weighting the features in a similarity
metric is to assign more importance to those features allowing to retrieve a larger number of
relevant images. Typically, the weights assigned to different features are computed by com-
paring the features values of the query vector with the corresponding features of relevant
images.

Inverse of standard deviation

The simplest technique is based on the computation of the standard deviation for each fea-
ture [83], by taking into account relevant images only. Let me consider a R×F feature matrix
I , where R is the number of relevant images and F is the number of features. Each column
of I is a vector composed of the values of the same feature component for all the R relevant
images. If the values of the j -th column vector are similar to each other, it means that the
relevant images have similar values for the feature j , and more over that the feature is closely
related to the query. The larger the similarity between the values, the better the relevance of
that feature, and the larger the weights that can be assigned. Therefore the inverse of the
standard deviation of each value of vector j is a good weight for the feature j

w j = 1

σ j
, (5.12)

where j is the j -th feature and σ j is its standard deviation.
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Probabilistic learning

Another technique to weight the features is based on the error made by predicting the prob-
ability that the value x

(
fi

)
of the i -th feature component of image x is equal to the value z

(
fi

)
of the i -th feature component of the query z [75]. Let me assume that y ∈ {0,1} is the class
label, and x j is the j -th retrieved image, with j = 1. . .K . The measure of relevance of the i -th
feature component for the query z is [75]

ri (z) =

K∑
j=1

y j 1
(∣∣x j

(
fi

)−z
(

fi
)∣∣ 6Ω

)
K∑

j=1
1
(∣∣x j

(
fi

)−z
(

fi
)∣∣ 6Ω

) , (5.13)

where y j can assume value 1 (relevant) or 0 (not relevant) depending on the label assigned
by the user, 1(·) is a function that returns 1 if its argument is true or 0 otherwise. Ω is chosen
such that

K∑
j=1

1
(∣∣x j

(
fi

)−z
(

fi
)∣∣ 6Ω

)=C , (5.14)

where C 6 K is a constant. The weight for the i -th feature component is then given by

wi (z) = e(T ·ri (z))

F∑
l=1

e(T ·rl (z))

, (5.15)

where F is the number of the features and T is a parameter which can be chosen in order to
increase the influence of ri with respect to wi . In fact if T = 0, wi = 1/F for all the features,
on the other hand if T is big, the influence of ri is larger.
The above mentioned weights reflect the relevance that certain features have on the query.
If the weight is small, the feature is not helpful to predict the query, whereas the larger the
weight, the larger its contribution to predict the query. It is worth noting that the weights es-
timated by probabilistic learning are closely related with the position of the query regardless
of the relative position of the relevant and non-relevant images in the feature space.

5.1.3 Neighborhood-Based feature weighting

While in the previous subsections it has been presented some feature weighting techniques
that could be used with nearest-neighbor relevance feedback, in this section a technique
specifically tailored to the nearest neighbor technique will be proposed. The aim is to mod-
ify the distance metric through appropriate weights so that relevant images will be nearer
to each other than non-relevant images to relevant images [76]. This technique is based on
the same rationale behind nearest neighbor relevance computation [31]. Thus, first the “rel-
evance” of different feature space is estimated in terms of their capability of representing
relevant images as nearest neighbors, then the relevance of an image is estimated according
to the relevant and non relevant images in its nearest neighborhood. The degree of relevance
of an image can be computed as follows:

relN N (x) = P (relevant | x) = pr
N N (x)

pr
N N (x)+pnr

N N (x)
= ‖x−N N nr (x)‖

‖x−N N r (x)‖+‖x−N N nr (x)‖ (5.16)
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Figure 5.1: The weights consider the positions that relevant and
not relevant images assume each other

where pN N is defined as follows

pN N (x) = 1/t

V (‖x−N N (x)‖)
(5.17)

where t is the number of images and x is the image considered. N N (x), N N r (x), N N nr (x)
denote the nearest neighbor, the relevant nearest neighbor, and the non relevant nearest
neighbor of x, respectively, and V is the volume of the minimal hypersphere centered in x,
that contains N N (x). The volume V (r ) of hypersphere in a d-dimensional space is expressed

as V (r ) =Vd ·r d where r is the radius of the hypersphere and Vd is a constant equal to πd/2

Γ
(

d
2 +1

)
and Γ (·) is the Gamma function.

According to Eq. (5.16) let me estimate the relevance of feature as

relN N ( fx) = pr
N N

(
fx

)
pr

N N

(
fx

)+pnr
N N

(
fx

) (5.18)

where pr
N N

(
fx

)
and pnr

N N

(
fx

)
it is estimated as follows

pr
N N

(
fx

)= 1/t

V r
N N

(
fx

) pnr
N N

(
fx

)= 1/t

V nr
N N

(
fx

) (5.19)

where t is the number of images. V r
N N

(
fx

)
it is estimated as the average volume around rel-

evant images which contains its nearest relevant image, and V nr
N N

(
fx

)
as the average volume

around relevant images which contains its nearest non-relevant image

V r
N N

(
fx

)= 1

|R|
∑
i∈R

d fx

mi n (xi ,R) (5.20)
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V nr
N N

(
fx

)= 1

|R|
∑
i∈R

d fx

mi n (xi , N ) (5.21)

where R and N are respectively the set of the relevant and non-relevant images. x is a generic

image, d fx

mi n (·) is a function that returns the minimal distance between an image and a set of
images, and |·| is a function that returns the cardinality of the set. This distance is measured
along a component fx of the features space and is computed as

d fx

mi n (xi , M) = min
[

d fx
p (xi ,xk )

]
∀xk ∈ M , (5.22)

where M is a generic image’s set. Summing up, the weights associated to each feature fx can
be computed as follows, according to the above equations:

w fx = relN N ( fx) =

∑
i∈R

d fx

mi n (xi ,R)∑
i∈R

d fx

mi n (xi ,R)+
∑
i∈R

d fx

mi n (xi , N )
(5.23)

The above reasoning can be also used when the relevance of a set of features has to be esti-
mated, according to Section 5.1.1. Features’ relevance has been so far only considered along
one dimension at a time, but the relevance can also be captured by examining several fea-
tures simultaneously. That is, it has been considered that the features were not completely
independent. In accordance with the features sets characteristics, each set has been divided
in three or four sub sets and a weight to each set has been assigned rather than to the singular
features as seen in Section 5.1.1. The Eq. (5.23) can thus be formulated as

wg = relN N (g ) =

∑
i∈R

d g
mi n (xi ,R)∑

i∈R
d g

mi n (xi ,R)+
∑
i∈R

d g
mi n (xi , N )

(5.24)

where, d g
mi n (·) is a function that returns the minimal distance between two images measured

in the g -th feature set of a certain feature space.
In such a way the more each relevant image is far from its closest non-relevant image, and

close to the nearest relevant image, the larger the weight assigned to the feature (or features
set) used to evaluate the distance. In fact the smaller is the distance between two relevant
images (and the larger the distance from non-relevant images) along certain components (or
sets of components) of the feature space, the larger is the probability of finding other relevant
images in its neighborhood along those components (or sets of components). Therefore a
large weight will be assigned to those features (or features sets). It can be easily see that
when the distance between relevant images is large and when the distance between relevant
and not relevant images is small, w fx ≈ 0. On the other hand, when the relevant images are
clustered in a region of the feature space and non-relevant images lie outside the relevant
region, then w fx ≈ 1.

5.1.4 Experimental Results

Datasets

Experiments have been carried out using a subset of the Corel dataset obtained from the
UCI KDD repository (Corel SMALL) (see Section 2.5). Experiments have been performed
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using Color Histogram (see Section 2.2). It measures the density of colors in the entire image
using the HSV color space (8 ranges for H and 4 ranges for S) so, according to Section 5.1.1,
it has been also split into 4 subsets, each subset made up of 8 components.

Experimental Setup

In order to test the performances 500 query images have been randomly extracted. Perfor-
mances are evaluated in terms of precision, recall and the F measure. The first one is eval-
uated taking in account the top twenty best scored images at each iteration, regardless they
have been already labelled by the user. The recall takes into account all the relevant images
retrieved so far (see Section 2.4).

The proposed Feature-Relevance Nearest Neighbor (FR-NN) weighting technique has been
tested in a nearest neighbor technique based on the computation of a relevance score for
each image according to its distance from the nearest relevant image, and the distance from
the nearest non relevant image [31]. This approach has been used both with the weighted
distance measure in Eq. (5.4), where weights are assigned to each feature component, and
with the weighted distance in Eq. (5.7) where weights are assigned to each feature subset
(FR-NN SubFeat). Finally, the performances of FR-NN when used to weight relevance scores
computed in different feature subspaces (Eq. (5.11)), are also shown.

Reported results clearly show that the weighting scheme is effective when used to com-
pute weighted similarities, rather than to combine relevance scores. It is worth noting that
reported experiments are related to the combination of relevance scores computed over each
feature component. Thus, the poor performances simply reflect the fact that individual fea-
ture components are not effective for computing relevance scores. Retrieval performances
have also been compared with the two weighting schemes showed in Section 5.1.2: the Prob-
abilistic Feature Relevance Learning (PFRL) (see Eq. (5.15)), and the method of the inverse of
the standard deviation (DevSt) (see Eq. (5.12)).

For comparison purposes, relevance feedback has been also computed by a SVM classi-
fier with an RBF kernel and with the nearest neighbor approach without weight.

Results

Figures 5.2, 5.3, and 5.4 clearly show that the use of a weighted distance measure in the
framework of the nearest-neighbor relevance feedback improve the performances of the
“pure” nearest neighbor technique. In particular, the precision (Figure 5.2) of the proposed
FR-NN weighting technique depends on the weighting scheme adopted. When weights are
assigned to individual features, the performances decrease with respect to the use of un-
weighted distance measures. On the other hand, the computation of a distance measure as
a weighted combination of distances in different feature subsets, allows attaining the best
performances till the eighth iteration. Thus it can be concluded that the proposed weighted
distance metric allows improving the performances of nearest neighbor relevance feedback
technique, when feature components are grouped according to their meaning.

The results in terms of the Recall measure (Figure 5.3) confirm the effectiveness of the
proposed weighted scheme following the trend of the precision results with the only differ-
ence in the use of FR-NN to weight relevance scores computed in different feature subspaces.
In the precision graph this trend is very low whereas in recall overcome all the other meth-
ods. Finally, the graphs reporting the F -measure (Figure 5.4), which takes into in account
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both the recall and the precision, clearly show that: i) performances of the nearest-neighbor
relevance feedback can be improved by computing the relevance of different feature sub-
spaces, and adopting a weighted distance measure accordingly; ii) the proposed technique
for estimating the weights of the distance measure can provide better results with respect to
other weighting schemes.

It is worth to note how in Figures 5.5 and 5.6 the PRFL precision and recall have a very
different behaviour according to the variation of the parameter T (see Eq. (5.15)). It is possi-
ble to see, for example, that the best value of T for the recall does not correspond to the best
precision. The tuning of this parameter is a long and annoying task and from preliminary
experiments has not been possible find a rule to find the best value. On the contrary, the
Neighborhood-Based feature weighting, that obtained comparable when not better results,
does not need some tuning phase.
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Figure 5.2: Corel SMALL Dataset - Precision for 9 rounds of relevance feedback.
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Figure 5.3: Corel SMALL Dataset - Recall for 9 rounds of relevance feedback.
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Figure 5.5: Corel SMALL Dataset - PFRL Precision for 9 rounds of relevance feedback under
T parameter variation.
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5.2 Space combination

In this section it will be described two different technique to combine several feature spaces.
The first is based on a weighted metric to minimize the nearest neighbor classification error,
the second is a new approach that exploit the concept of (dis)similarity space.

5.2.1 Error minimization

It is well known that nearest neighbor paradigm is based on the assumption that an image
is as much as relevant as much as its dissimilarity from the nearest relevant image is small.
Analogously, an image is as much as non-relevant as much as its dissimilarity from the near-
est non-relevant image is small. In the pattern recognition field it is a well known as well
the combination of several information from different sources technique can improve the
retrieval or classification performance. With this in mind it has been decided to evaluate
a unified distance measure that takes in account different metrics in different feature sets
and that combines them as a weighted sum. The weights are evaluate in order to advantage
those feature space that “draws up” the relevant images each other and that “move” the non
relevant ones away. A way to evaluate some weights for nearest neighbor searches (using
L2-norm) was investigated in [72] where a weight for each component of the feature vectors
of one feature space is evaluated from labelled training-data. In this section will be shown
a modification of this approach where more than one feature space is used and a specific
metric for each feature space is computed and normalized in order to be compared.

Weight evaluation

In Section 5.1.1 it has been shown how it is possible to express the similarity between two im-
age at different levels: component, feature, and representation level. A “composed” distance
can be formulated as

d
(
x,y

)= w1d1
(
x,y

)+w2d2
(
x,y

)+·· ·+wndn
(
x,y

)= n∑
i=1

wi di
(
x,y

)
, (5.25)

where di
(
x,y

)
could be any metric of those described in Section 2.3, n is the number of con-

sidered feature space, and wi is the weight to optimize. According to the nearest neighbor
paradigm the (see Eq. (3.12)) optimal weights should be those that minimize the distance
among the relevant images and maximize the one between relevant and non relevant im-
ages. Proceeding analogously to the procedure proposed in [72] it is possible to couch the
function to optimize as

J (w) = 1

Z

∑
x∈R

∑
x′∈R−{x}

∑
y∈N

step

(
d

(
x,x′)

d
(
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) )
= 1
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∑
x∈R

∑
x′∈R−{x}

∑
y∈N

step


n∑

i=1
wi di

(
x,x′)

n∑
i=1

wi di
(
x,y

)
 (5.26)

where R iand N are the sets of relevant and non relevant images, respectively, step(·) is the
step function, Z = |R| |R −1| |N | and |·| is a function that returns the cardinality of the set. In
order to optimize this function according to a gradient descent approach it is necessary that
it is derivable. To this end the step function is substituted by the sigmoid function

sigmβ (s) = 1

1+e−βs
(5.27)
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and its first derivative is

sigm′
β (s) = βeβ(1−s)(

1+eβ(1−s)
)2 (5.28)

sigm′
β

is a function whose maximum is in s = 1 and in |s −1| À 0 is almost 0. The parameter

β controls the trend of sigm′
β

: when it is small the function is almost a constant for a wide

range of values of z, if it is large sigm′
β

approaches the Dirac delta function (see Figure 5.7).
According to Eq. (5.26) the function gradient is
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Figure 5.7: Sigmoid function
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. (5.29)

For each query the weights wi are initialized to one and the distances d (·) between the query
and all images in the database are evaluated. The twenty nearest images are selected for the
user feedback and according to Eq. (5.29) the function gradient is evaluated. Finally, it is
possible to formulate an iterative algorithm to find the optimum weights. For each feedback
iteration it is fixed a number of rounds of weight updates and after each update Eq. (5.29) is
evaluated again. The weight update is according to

w t+1
i = w t

i −µ
(
∂J (w)

∂wi

)
(5.30)

where t is the round of updating and µ is the learning rate. After that the weight update is
terminated, the distances d (·) between the query and all images in the database are evalu-
ated again and the twenty nearest images are presented to the user for the feedback phase.
It is worth to note that the contribute of the function gradient is as much higher as the ra-
tio, between the distance among the relevant images and the one between relevant and non
relevant images, is equal to one. In other words if a feature space is not able to properly
separate the relevant images from the non relevant ones, that feature space receive a lower
weight.
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Experimental Results

Datasets
Experiments have been carried out using three datasets, namely the Caltech-256 dataset, the
Microsoft Research Cambridge Object Recognition Image Database (MSRC), and a subset
images of the WANG dataset consisting of 700 images (see Section 2.5). From Caltech-256
five different kind of features have been extracted, namely the Color and Edge Directivity
Descriptor, ScalableColor, ColorLayout, Edge Histogram, and Tamura descriptors. The open
source library LIRE (Lucene Image REtrieval) has been used for feature extraction [66]. The
images from WANG amd MSRC are represented by a 512-dimensional colour istogram and a
512-dimensional Tamura texture feature histogram and by a vector of 4096 components of
SIFT descriptors extracted at Harris interest points (see Section 2.2).

Experimental Setup
In order to test the performances 500 query images from Caltech-256 dataset have been ran-
domly extracted , for WANG and MSRC datasets each image is used as query. The top twenty
best scored images for each query are returned to the user. Relevance feedback is performed
by marking images belonging to the same class of the query as relevant, and all other images
in the top twenty as non-relevant. Performances are evaluated in terms of precision and
mean average precision. The first one is evaluated on twenty images taking in account the
top best scored images at each iteration and the relevant images retrieved in the previous
iterations, in the average precision evaluation all relevant images have been considered (see
Section 2.4).

In order to choose the most suitable values of β and µ, a number of preliminary experi-
ments have been performed. Accordingly, the number of updating round t it has been fixed
at 100, the value of µ at 0.001 for all three databases, and the value of β at 10 for WANG and
MSRC and equal to 1 for Caltech-256

For comparison purposes a nearest neighbor technique based on the computation of a
relevance score [31] has been evaluated using both the sum of all distances computed in dif-
ferent feature spaces above mentioned and using each feature space separately. More in de-
tail WANG has been compared separately using a representation of a 512-dimensional colour
histogram and a 512-dimensional Tamura texture histogram concatenated in a unique vec-
tor, MSRC using a vector of 4096 components of SIFT descriptors and Caltech-256 with the
Color and Edge Directivity Descriptor and the Edge Histogram descriptor. Experiments have
been also performed using the other features sets, but they have not been reported as they
obtained worse results.

Results
In Figures 5.8(a) and (b) it is possible to see how much is the improvement obtained com-
bining several feature space, both in precision and in average precision especially in the first
iteration the result of the combined distances overcome considerably the method that uses
only one kind of distance. On the other hand, between the composed distance obtained
through the simply sum of all single distances and that obtained with the Minimization-
Error algorithm there are not a significative differences. A similar behaviour can be also no-
ticed in Figures 5.9(a) in the MSRC dataset and Figures 5.8(b) it is possible even to see a better
result for the sum. This behaviour is at clear odds with the results obtained with Caltech-256
(Figures 5.10(a) and (b)), in fact in the figures it is possible to see not only the improvement
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of the combined method with respect to the performance obtained with CEDD or the Edge
Histogram descriptor, but it is possible to see the better trend of the Minimization-Error al-
gorithm with respect to the sum. These difference can be explained taking in account that
the high dimensional vectors used with WANG and MSRC obtain a very high results even
when used separately and probably do not “catch” different characteristics of the images.
On the contrary, the combined distance used in Caltech-256 is composed by very different
kind of feature descriptors that are better fused with the Minimization-Error algorithm.
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Figure 5.8: WANG Dataset - Average Precision and Precision for 5 rounds of relevance feed-
back.
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Figure 5.9: MicroSoft Research Dataset - Average Precision and Precision for 5 rounds of
relevance feedback.
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Figure 5.10: Caltech-256 Dataset - Average Precision and Precision for 5 rounds of relevance
feedback.
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5.2.2 Dissimilarity representation from multi-feature spaces

In this section will be proposed a novel approach to exploit the information provided by
different feature spaces for image retrieval tasks. The goal of the proposed approach is to
provide an effective way of combining information form multiple high-dimensional spaces,
and reduce the cost of computing similarities. This goal it has been achieved by represent-
ing images in a “dissimilarity space” [74] where each component is associated to one of the
feature spaces, and it is computed as the (dis)similarity of the image with a reference image.
This new representation allows the distances between images belonging to the same class
being smaller than in the original feature spaces. In addition, it allows computing similari-
ties between images by taking into account multiple characteristics of the images and thus
obtaining more accurate retrieval results.

Before entering into the details of the proposed technique, let me recall that the goal
is to produce an effective way of combining different feature representations of images in
the context of a nearest neighbor relevance feedback approach for content-based image re-
trieval. Relevance feedback provides the systems a number of images that are relevant to the
user’s needs at each iteration. It is quite easy to see that if different image representations
is considered, usually different sets of images are found in the nearest-neighborhood of rel-
evant images. Which strategy can be employed to assess which of the images can be con-
sidered as relevant? One solution can be the use of combination mechanisms based on the
weighted fusion of similarity measures computed in different feature spaces. As an alterna-
tive, strategies based on the computation of the max, or the mi n similarity measure can be
employed. Finally, the computation of similarity can be carried out using a vector where the
components from different representations are stacked. The fusion of similarities requires
some heuristics to compute the weights of the combination, while the max and mi n rules
can be more sensitive to “semantic” errors in the evaluation of similarity . Finally, the use of
stacked vectors can be computationally expensive, and can suffer from the so-called curse
of “dimensionality”, as the dimension of the resulting space may be too large compared to
the number of available samples of relevant images.

In order to provide a solution to the computation of the relevance of an image with re-
spect to the user’s goal by exploiting information from different image representations, it
has been proposed to construct a dissimilarity space by computing the dissimilarities from a
single prototype using multiple feature representations. Reported results show that the pro-
posed technique outperforms other combination techniques not only in terms of precision
and recall, but also in terms of the execution time. It is also quite effective when relevance
feedback is exploited. In the following sections it will be before introduced the concept of
dissimilarity space then will be presented a brief overview of some techniques to combine
different feature spaces. Finally, a description of the proposed method and its experimental
results will be provided.

From multi-spaces to dissimilarity spaces

Classic dissimilarity spaces
For a given classification task, P prototypes are chosen, and the distances d (·) between each
pattern and the prototypes are computed. These distances can be computed in a low-level
feature space. Each pattern is then represented in terms of a P-dimensional vector, where
each component is the distance between the pattern itself and one of the P prototypes. Let
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me define
P = {p1, . . . ,pP } (5.31)

the set of prototypes p and let d
(
xi ,p j

)
be the distance between pattern xi and the prototype

p j . Pattern xi in the dissimilarity space will be thus represented as follows:

xP
i = [

d
(
xi ,p1

)
, . . . ,d

(
xi ,pP

)]
. (5.32)

It should be quite clear that the performances depend on the choice of the prototypes, es-
pecially when this technique is used to transform a high-dimensional feature space into a
lower dimensional feature space. The literature clearly shows that the choice of the most
suitable prototypes is not a trivial task [74].

Techniques for Combining Different Feature Spaces
In the introduction of the section a number of techniques that can be used to combine differ-
ent image representations have mentioned. In the following a briefly review of some of them
it will be presented, because they will be used in the experimental section for comparison
purposes. In particular, seven different combination methods will be shown. Four combi-
nation methods aims to combine the relevance scores computed after relevance feedback,
while the other three methods aim at combining distances.

The four techniques used to combine the relevance scores computed separately in each
of the available feature spaces f are the following:

SMAX (xi ) = max
f ∈F

(
S f (xi )

)
(5.33)

Smin (xi ) = min
f ∈F

(
S f (xi )

)
(5.34)

SMean (xi ) =

∑
f ∈F

S f (xi )

|F | (5.35)

where F is the set of the feature spaces and S is the score evaluated according to Eq. (3.11).
RR weight is the weighted sum of the relevance scores, where the Relevance Rank Weights
are obtained as in the following equation [34]

wRR f =

∑
j∈R

1

rank f (x j )∑
f ′∈F

∑
j∈R

1

rank f ′(x j )

(5.36)

and
SRR (xi ) =

∑
f ∈F

wRR f ·S f (xi ) (5.37)

where f ∈ F , and R is the set of the relevant images and rank f (x) is the function that returns
the position of the image x after that all images in the database have been sorted according
to the relevance score evaluated in the feature space f .

The other three combination methods are used to combine the distances computed in
different feature spaces. One method computes the sum of the normalized distances (SUM),
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the second method computes the “Nearest-Based” weighted sum (NBW) where the weights
are computed in a similar way as in Eq. (5.23):

w f =

∑
i∈R

∑
j∈R

d f
(
xi ,x j

)
∑
i∈R

∑
j∈R

d f
(
xi ,x j

)+ ∑
i∈R

∑
h∈N

d f (xi ,xh)
(5.38)

where f ∈ F , d f (·) is a function that returns the distance between two images measured in
the feature space f , and R, and N are respectively the set of the relevant and non-relevant
images.

The third method is that presented in Section 5.2.1 and the weights are obtained accord-
ing to Eq. (5.30)

Dissimilarity representation from multi-feature spaces

In order to formalize the proposed technique, let

F = { f1, . . . , fM } (5.39)

be the set of low-level feature spaces extracted from the images, and let

d fm

(
x fm

i ,x fm

j

)
(5.40)

be the distance between the images xi and x j evaluated in the feature space fm . Given a
reference image q, the new representation of a generic image xi in the dissimilarity multi-
space is

x′
i =

[
d f1

(
q f1 ,x f1

i

)
, . . . ,d fM

(
q fM ,x fM

i

)]
. (5.41)

Summing up, while dissimilarity space are usually constructed by stacking dissimilarities
from multiple prototypes, stacking multiple dissimilarities originated by multiple feature
representations of the same image has been proposed.

Let me have a close look on the choice of the reference image to be used in Eq. (5.41).
When the first round of retrieval is performed, i.e., no feedback is available, the query im-
age as the reference point is used. At each round of relevance feedback, the reference point
is computed according to a “query shifting mechanisms”, i.e., a mechanism designed to ex-
ploit relevance feedback by computing a new query vector in the feature space such that its
neighborhood contains relevant images with high probability [82]. In particular, it has been
used the Bayes Query Shifting (BQS) approach (see Section 3.1.1).

The choice of the query, and the BQS as the reference prototypes is twofold. First of
all, as they have been took into account retrieval tasks in which the user performs a “query
by example” search, the query image, and the BQS are aimed to represent the concept that
the user is searching for by definition. On the other hand, the use of multiple images as
prototypes can introduce some kind of “noise” because not all the images may exhibit the
same “degree” of relevance to the user’s needs. The second reason is that the use of a single
prototype makes the search independent from the number of images in the database that
are relevant to the user’s query.

In the literature of content-based image retrieval, few works addressed the use of dis-
similarity spaces to provide for a more effective representation. Some of the approaches
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proposed so far employed the original definition of dissimilarity space, where dissimilarities
are computed by taking into account multiple prototypes of relevant images [70, 32]. Other
authors have proposed to use the “dissimilarity space” technique for combining different
feature space representations [12]. However, their approach is based on the computation of
dissimilarity relationships between all the patterns in the dataset. Then, a number of pro-
totypes are selected in each feature space, and the resulting dissimilarity spaces are then
combined to attain a new multi-modal dissimilarity space. Thus the components of the re-
sulting space are not related to the number of the original feature spaces, but they are related
to the number of patterns used as prototypes to create the different dissimilarity spaces.

Nearest-Neighbor Relevance Feedback in the Dissimilarity Multi-Space
The generation of the dissimilarity space is strictly related to the use of a nearest neighbor
approach to exploit relevance feedback in multiple feature spaces. In fact, the new space
provides for a compact representation of patterns that ease the computation of nearest-
neighbor relationships in multiple low-level feature representations. The dissimilarity rep-
resentation basically assumes that patterns belonging to the same category are typically rep-
resented as close points in the space made up of dissimilarities computed with respect to a
set of prototypes. Analogously, it is expected that relevant images are represented as close
points in the space made up of dissimilarities computed with respect to the query image
in multiple low-level feature spaces. The nearest neighbor technique employed is the same
used in the other chapters and it is based on the computation of a relevance score for each
image. This score is further combined to a score related to the distance of the image from the
point computed according to the BQS (Eq. (3.6)), that is the likelihood that the image is rele-
vant according to the users’ feedback. The combined relevance score is computed according
to Eq. (3.11).

The dissimilarity multi-space is included in a content-based retrieval system with nearest
neighbor relevance-feedback according to the following algorithm :

i) the user submits a query image q. The distances d fm

(
q fm ,x fm

i

)
, m = 1, . . . , M , and i =

1, . . . N are computed, where M is the number of low-level features used to represent
the images, and N is the number of the images in the database;

ii) these distances are used to create, for each image xi , the new dissimilarity representation
x′

i , i = 1, . . . N , according to Eq. (5.41);

iii) the Euclidean distances d ′ (q′,x′
i

)
between the dissimilarity representation of the query,

and the dissimilarity representation of all the images are computed, and then sorted
from the smallest to the largest;

iv) the first k images are labelled by the user as being relevant or not;

v) after the relevance feedback, the new query point qBQS is calculated according to Eq. (3.6)
in each feature space;

vi) the distances d fm

(
q fm

BQS ,x fm

i

)
are computed in the low-level feature spaces analogously

to steps i) and ii), where the query q is substituted with the new query point qBQS .
These distances are used to create a new dissimilarity representation;
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vii) in this new space, a score for all the images in the dataset is evaluated according to
Eq. (3.11), where all the distances are computed according to the dissimilarity repre-
sentation;

viii) all the images are sorted according to the value of the relevance score, and the first k
images are labelled by the user as in step iv);

ix) the algorithm starts again from step iv) until the user is satisfied.

Experimental Results

Datasets
Experiments have been carried out using the Caltech-256 dataset whence five different fea-
tures have been extracted, namely the Tamura features (18 components), the Scalable Color
(64 components), Edge Histogram (80 components), Color Layout descriptors (12 compo-
nents), and the Color and Edge Directivity Descriptor (CEDD, 144 components). The open
source library LIRE (Lucene Image REtrieval) has been used for feature extraction (see Sec-
tions 2.5 and 2.2).

Experimental Set-up
In order to test the performances, 500 query images have been randomly extracted from the
dataset, covering all the semantic classes. The top twenty best scored images for each query
are returned to the user. Relevance feedback is performed by marking images belonging
to the same class of the query as relevant, and all other images in the top twenty as non-
relevant. Performances are evaluated in terms of retrieval precision, and recall. The first one
is evaluated taking in account the top twenty best scored images at each iteration, regardless
they have been already labelled by the user. The recall takes into account all the relevant
images retrieved so far(see Section 2.4).

In order to evaluate the improvement attained by the proposed method in the next sub-
section, the attained results will be shown separately in each feature space, and the perfor-
mance related to the six combination techniques described in Section 5.2.2.

Results
Figures 5.11 and 5.12 show the performance of the proposed dissimilarity space represen-
tation compared to the seven combination techniques described in Section 5.2.2, and the
performance attained separately in each feature space.

By inspecting the behavior of the precision reported in Figure 5.11, it can be easily seen
that the highest performances are provided by the proposed dissimilarity (DS) based tech-
nique, and by the MEAN of the relevance scores. The combination of the relevance scores by
the MAX and RR Weight rules allows attaining higher precision results than those attained
by four out of the five features considered. This result is quite reasonable as typically the
goal of the combination is to avoid choosing the worst problem formulation. In addition, it
can be seen that the weighted combination (RR Weight) provides a lower result compared to
the arithmetic MEAN, thus confirming the difficulty in providing an effective estimation of
the weights. Finally, the worst result is attained by the MIN rule, that represents the logical
AND function. Thus, it is possible to conclude that, at least for the considered data set, the
fusion of information from multiple feature spaces is more effective than the selection of
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one feature space. In addition, the results attained by the proposed DS space and the MEAN
rule confirm that an unweighted combination can be more effective than weighted combi-
nation or selection. If the three techniques based on the combination of the distances are
considered, namely the SUM rule, the NBW rule, and the Minimization-Error rule (MeW),
it is possible to see that their performances are lower than those of the techniques based on
the combination of scores. In addition, the computational cost of the first two techniques
is quite expensive (Fig. 5.13). This behavior can be explained by the objective difficulties in
combining distances computed in different feature spaces. On the other hand, the fusion
of the relevance scores, or the use of the dissimilarity space approach allows to effectively
combine similarity measures computed in different spaces. It is worth to note that the trend
shown in Figure 5.11 it is much lower than that presented in Figure 5.10(b), the reason is that
in this case the top twenty best scored images at each iteration are evaluated in Section 5.2.1
the precision is evaluated on twenty images taking in account the top best scored images at
each iteration and the relevant images retrieved in the previous iterations so it is easier to
reach higher performance.

If the time complexity of the considered techniques it is took into account, it can be seen
that the speed of the proposed method is also higher than that of individual feature spaces.
This effect can be explained by considering that all the distances from each image to the
query are computed only once, during the first retrieval iteration. All the following iterations
can exploit this result, and all the computation are made in the low-dimensional dissimilar-
ity space.

If the recall it is considered (Figure 5.12), it is possible to see that MEAN rule, and the
DS approaches are still the best technique. It is worth noting that all the combination tech-
niques, except for the MIN, provide an improvement in recall with respect to the perfor-
mance attained in the individual feature spaces. In particular the fusion techniques working
at the distance level provided good results, quite close to those attained by the RR Weight
rule. Thus the proposed DS technique is effective in combining different feature spaces,
both in terms of precision and recall, and in terms of the computational time.
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Figure 5.11: Caltech-256 Dataset - Precision for 5 rounds of relevance feedback.
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Figure 5.12: Caltech-256 Dataset - Recall for 5 rounds of relevance feedback.
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Figure 5.13: Caltech-256 Dataset - Mean execution time for 1 round of relevance feedback.





Chapter 6

Combination of multiple relevance
feedback techniques

One of the peculiarity of content based image retrieval is its applicability in a huge number
of application, in fact it is possible to use it in photography as in the field of the fashion, to
retrieve paintings from a booklet of a picture gallery or a certain kind of images from the net
and the number in growing every day. This peculiarity however is also its weak point in fact is
not possible find a satisfactory and definite answer to the question:“Given an example, how
find the largest number of similar image?”

In a limited domain it is possible to optimize some techniques taking in account the
dataset, the type of the images, the distribution of the patterns and the extracted features
but is almost impossible find a technique that fits itself to every kind of applications. The
aim of this work is combine two very different techniques in order to obtain good results
in different datasets and representations rather than high performance in a specific dataset.
The two used techniques are the Support Vector Machines [118] and an algorithm Nearest
Neighbor based [31]. The reason for the choice of this two techniques is that they work well
in different feature space and if used in the same representation space retrieve different im-
ages. In order to point out these differences a different kind of measure will be proposed:
a diversity measure. The introduction of this measure has been necessary in order to un-
derstand how the two different systems work and how exploit these differences to build a
stronger system.

6.1 Nearest neighbor and SVM scores fusion

In this section a comparison between an SVM classifier with an RBF kernel and a nearest
neighbor approach will be proposed. The two methods have been investigated during a
content based image retrieval task in which the relevance feedback is applied. In both ap-
proaches it has been considered a relevance score obtained by them: the nearest neighbor
relevance score has been obtained according to Eq. (3.11), as SVM score has been used the
evaluated margin provided by the classifier. In the comparison these scores have been com-
pared with those obtained through different kind of score fusion. In the next section a brief
overview of the used fusion method will be given.

87
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6.1.1 Score fusion

In the fusion of the investigated approaches it has been applied the widely used combination
rules: max, min, and mean. In addition as further combination technique has been also
used a weighted sum where the weights have been evaluated as in [34] (see also Eq. (5.36)).
The main difference between the three classic rules and the weighted sum is that in one
case the selection is based on how a certain method has classified the relevant images in the
previous iteration. In other words taking into account, in a certain sense, its history it aim
at predicting the system more effective. The other rules are based on the current relevance
score value. The combination rules can be evaluated according to the following equations:

SMAX (x) = max(SNN (x) ,SSVM (x)) ; (6.1)

Smin (x) = min(SNN (x) ,SSVM (x)) ; (6.2)

SMean (x) = SNN (x)+SSVM (x)

2
. (6.3)

The Relevance Rank score can be formulated as:

SRR (x) = wRRNN ·SNN (x)+wRRSVM ·SSVM (x) ; (6.4)

and the weight wRR for a generic approach M as

wRRM =

|R|∑
i=1

1

rankM (i )

|R|∑
i=1

1

rankM (i )
+

|R|∑
i=1

1

rankX ′(i )

(6.5)

with M 6= M ′ and where R and |R| are the set of the relevant images and its cardinality, re-
spectively.

6.1.2 Diversity measure

In this section will be presented also a measure of diversity that evaluates the percentage of
relevant images retrieved by just one of the two methods with respect to the total number of
relevant images retrieved by both methods, i.e. it measures the ability of each technique to
retrieve different images with respect to those retrieved by the other one. Taking in account
this measure is possible to understand if the set of relevant images retrieved by one method
overlap the same set retrieved by the other and if it could be more or less convenient combine
the two methods. If the diversity is high the combination can work very well because the
two algorithms find completely different images, on the contrary if diversity is low the two
techniques find the same images and in this case the combination in not useful.

D = |RSVM ∪RNN −RSVM ∩RNN|
|RSVM ∪RNN|

(6.6)

where RSVM (RNN) is the set of the relevant images retrieved using the SV M (N N ) method.
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6.1.3 Experimental Results

Datasets

Experiments have been carried out using three datasets, namely Caltech-256 dataset, WANG
dataset, and Microsoft Research Cambridge Object Recognition Image Database (MSRC)
(see Section 2.5). From Caltech-256 two different kind of features have been extracted, namely
the Edge Histogram descriptor (80 components), and the Color and Edge Directivity De-
scriptor (Cedd , 144 components). The open source library LIRE (Lucene Image REtrieval)
has been used for feature extraction. The images from WANG are represented by a 512-
dimensional colour histogram and a 512-dimensional Tamura texture feature histogram con-
catenated in a unique vector. The images of MSRC instead are represented by a vector of 4096
components of SIFT descriptors extracted at Harris interest points and the Color and Edge
Directivity Descriptor (see Section 2.2).

Experimental Setup

In order to test the performances 500 query images from Caltech-256 dataset have been ran-
domly extracted, for WANG and MSRC datasets each image is used as query. The top twenty
best scored images for each query are returned to the user. Performances are evaluated in
terms of precision, recall, relative precision and recall, and diversity. The first one is evalu-
ated taking in account the top twenty best scored images at each iteration, regardless they
have been already labelled by the user. The recall takes into account all the relevant images
retrieved so far (see Section 2.4). The relative precision is the counting of the number of rel-
evant images with respect to the total number of the retrieved images that a method would
find if he had worked alone. The relative recall it is analogously evaluate.

It is worth to note that the relative precision and recall have nothing to do with the learn-
ing process or with the global performance, they are only a measure of how the two system
work in different way and which works better starting from the same “training” set. In fact
in each iteration the two system use the same relevant and non relevant images to be learnt
(those retrieved by the combination) and at the end of each one, before to combine the score,
it is possible to evaluate which images are relevant for each methods. The aim of these mea-
sures is to investigate this aspect.

Experiments have been carried out running a fist iteration in which the images are sorted
from the nearest to the furthest from the query; after the user feedback in the other iterations
the proposed approaches have been used.

Results

In Figures 6.1 and 6.2 are reported the precision and the recall evaluated on MSRC dataset.
It is easy to see from Figures 6.1 that the SVM and the nearest neighbor approach (NN), have
a very different behaviour. The SVM works clearly better with CEDD, whereas the NN with
the SIFT descriptor. It is possible also to see that the combination in both cases works bet-
ter than the two methods. If the recall is considered (Figures 6.2) the best performance are
reached by the NN but also the combination obtain no so bad result. As regards the rel-
ative precision and recall for SIFT descriptor, reported in Figures 6.3, as for precision and
recall separately measured for both retrieval techniques, the trend of the NN overcame that
of SVM. On the contrary in CEDD feature set, the results of relative recall is a little unex-
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pected (Figures 6.4(b)), in fact contrary to the recall of the methods separately considered,
in this case the SVM obtains the best result. In Figure 6.5 it is reported the diversity measure
evaluated according to Eq. (6.6) considering both the different combinations (NN+ SVM)
and the method working separately (NN&SVM). In the fist iteration the value is equal to 0, in
fact all the retrieved images are the same for SVM and NN, from the second to, at least, the
fourth, instead it is possible to see how the number of images retrieved by just one method
is higher when the methods are combined. It is worth to note that this measure does not
evaluate if one method works better or worse than another but counts simply how many
relevant images are retrieved by just one of the two methods without taking care which tech-
nique retrieve more of them. The results obtained con Caltech confirm that the combina-
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Figure 6.1: MicroSoft Research Dataset - Precision using SIFT and CED Descriptor for 9
rounds of relevance feedback.

tion is again the best solution if it is considered the precision. In Figures 6.6(a) and 6.6(b) it
is also possible to see how the two descriptors obtain different performances according to
the different type of approach. CEDD again proves to be more suitable for the SVM, Edge
Histogram instead permits a better nearest neighbor approach. As regards the recall (Fig-
ures 6.7) both the different kind of combinations and retrieval techniques separately con-
sidered work in the same way except for the SVM in EH feature set. This result proves that
the combination is robust even if one of the combined techniques obtain very bad results.
In Figures 6.8(a) and (b) it is possible to observe the differences between the NN and SVM
techniques apart considered the same techniques when they are combined. In Figure 6.6(a)
works better the NN approach, in 6.8(a) works better the SVM. This behaviour can be ex-
plained taking into account that the SVM need more training patterns than NN, so when the
SVM is used in combination with NN, after few iterations it can exploit the higher number
of relevant images obtained by the combination. It is worth to note that in the relative pre-
cision and recall is not important the absolute value of the performance considered but the
difference between two iterations in succession. The diversity is reported in Figure 6.10 and
it shows how in Caltech the two methods, separately considered, are able to retrieve a larger
number of different images contrary to that happens in MSRC where is the combination that
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(a) Recall - SIFT Descriptor
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Figure 6.2: MicroSoft Research Dataset - Recall using SIFT and CED Descriptor for 9 rounds
of relevance feedback.
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(b) Relative Recall

Figure 6.3: MicroSoft Research Dataset - Relative Precision and Relative Recall for 9 rounds
of relevance feedback using SIFT Descriptor.

has a higher trend. This result is a little unexpected, but could be explained with the large dif-
ference of performance between the SVM and NN when are separately considered. The use
of WANG dataset confirm that the use of the combination can be useful also when two kinds
of performance, in this case precision and recall (Figure 6.11), obtain different results ac-
cording to different approaches. From the other graphs it is possible to observe how, again,
the SVM in the relative precision and recall after the first iterations increase more quickly
than the NN (Figure 6.12) and how the combination retrieves diverse images (Figure 6.13).
The proposed results are a selection of a large number of experiments. Besides those that
has been shown in this thesis, experiments with Tamura features, the Scalable Color, Edge
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(b) Relative Recall

Figure 6.4: MicroSoft Research Dataset - Relative Precision and Relative Recall for 9 rounds
of relevance feedback using CED Descriptor.
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(a) Diversity on SIFT feature set
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Figure 6.5: MicroSoft Research Dataset - Diversity measure using SIFT and CED Descriptor
for 9 rounds of relevance feedback.

Histogram, Color Layout descriptors, and the Color and Edge Directivity Descriptor has been
performed using the MSRC and Caltch dataset but they have not been reported in this dis-
sertation, as they do not provide additional information.
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(a) Precision at 20 picture - EH Descriptor
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Figure 6.6: Caltech-256 Dataset - Precision using Edge Histogram and CED Descriptor for 9
rounds of relevance feedback.
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(a) Recall - EH Descriptor
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(b) Recall - CED Descriptor

Figure 6.7: Caltech-256 Dataset - Recall using EH and CED Descriptor for 9 rounds of rele-
vance feedback.
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(a) Relative Precision
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(b) Relative Recall

Figure 6.8: Caltech-256 Dataset - Relative Precision and Relative Recall for 9 rounds of rele-
vance feedback using EH Descriptor.
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Figure 6.9: Caltech-256 Dataset - Relative Precision and Relative Recall for 9 rounds of rele-
vance feedback using CED Descriptor.
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(a) Diversity on EH feature set
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(b) Diversity on CEDD feature set

Figure 6.10: Caltech-256 Dataset - Diversity measure using EH and CED Descriptor for 9
rounds of relevance feedback.
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Figure 6.11: WANG Dataset - Precision and Recall for 9 rounds of relevance feedback.
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Figure 6.12: WANG Dataset - Relative Precision and Relative Recall for 9 rounds of relevance
feedback.
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(a) Diversity measure

Figure 6.13: WANG Dataset - Diversity measure for 9 rounds of
relevance feedback.



Chapter 7

Conclusions and Future Works

Nowadays very large archives of digital images are easily produced thanks to the wide avail-
ability of digital cameras, that are often embedded into a number of portable devices. Each
personal computer, as well as photo-sharing and social-network web sites, are rapidly be-
coming the repository for thousands, or even billions of images. As a consequence there
is an increasing need for tools enabling the semantic search, classification, and retrieval of
images. The use of meta-data associated to the images solves the problems only partly, as
the process of assigning meta data to images is not trivial, is slow, and closely related to
the persons who performed the task. A solution that is imposing itself is the content based
search, i.e. based on intrinsic characteristics of images, such as color distribution, detec-
tion of edges and objects, etc.. Through these characteristics, defined as low-level feature,
the content based retrieval systems evaluates the similarities between the images, submitted
by the user as query, and all those in the database, finding the most alike ones. The search
is then, refined by the system by means of feedbacks of the user that judges as relevant or
non relevant the images that the system retrieves iteration by iteration. Even if the retrieval
systems have been investigated since almost twenty years, they still suffer some not fully
resolved problems as unbalanced learning, high dimensional feature space, low informative
training set and low discriminative capability of the feature set problems.

7.1 Where is the content based image retrieval now?

In this thesis some of the problems that mainly plague the content based retrieval field have
been faced, the relevance feedback demonstrated that it can help to solve some of them but
it is not enough. First of all, it is necessary to ask ourself a question: What am I looking
for? What do I expect to find? As it has been mentioned in Chapter 2 it is possible to dis-
tinguish different levels of research and as it is possible to imagine that not everyone can
be performed in the same way. Relevance feedback techniques certainly allows to perform
searches at Level 1, where the comparisons between the images can be made considering
the intrinsic features of an image. It is possible to find objects, to distinguish different land-
scapes and even, through face recognition techniques, it is possible also to distinguish dif-
ferent people in an image.

On the other hand, what is still very difficult to do is perform searches at the Level 2
and 3, where concepts that go beyond what is physically represented are required. Two
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clear examples are the Figure 2.4 and some classes of Caltech dataset. In the first case even
though the two figures are on the same background and the color and shapes characteris-
tics are very similar, nevertheless they represent completely different concepts. In the case
of Caltech, on the contrary, Figure 2.13 shows examples of images that are very different
from each other but that represent the same concept. It goes without saying that such re-
search can not be based solely on the content. At the present situation, the relevance feed-
back and the CBIR in general, are certainly helpful in searches carried out in a restricted
domain, for example searches of monuments within a regional or national digital library or
searches of clothing in a fashion mail-order catalogue. In these fields one finds oneself deal-
ing with large datasets that although large they are predetermined. In this scenario, the tech-
niques of Directed Pattern Injection, Dominant Set and Locally Linear Embedding, as well as
Exploitation-Exploration certainly offer a great help in improving search and in relating to
each other the similar images.

In higher semantic levels searches or in those performed on the web the information
based only on low-level features is definitely not enough. It is necessary also to derive more
knowledge from the context from whom the image is extrapolated. This type of investiga-
tion, inevitably, involves the combination of information that may be the most disparate:
users’ tag, text descriptions, web site of origin of the image, or also image meta-data as the
time when it was taken or even GPS position. The combination of such diverse data is a
task that must be handled with care. Methods based on weighted combination or based on
(dis)similarity as well as the combination of multiple classifiers can certainly play a key role
in this context. Given the great variability of the images on the web, surely also the differ-
ent approaches have their own influence, very adaptable methods such as those based on
on-line learning, certainly can definitely give a good contribution.

The fact that “pure” relevance feedback techniques are more suitable for searches on a
bounded domain it does not necessarily imply a limited number of applications where this
type of searches can be performed. In addition to purely private uses such as, for example,
the holiday photos cataloguing (see Chapter 2), even in professional field the possible uses
of these techniques are very numerous. The early recognition and the blockage of porno-
graphic images is a problem now increasingly felt, especially by the social networks that, for
obvious reasons, can not manually verify all published material. Even in the legal / judi-
cial field, the analysis of videos and digital photos is a particularly challenging task, a pre-
selection of desired information (objects, faces, people, ...) can be a great help to the police
inspectors. At the end of this study it is my opinion that although the relevance feedback
does not enjoy so much success as several years ago it still has potentials to be expressed.
Clearly it has to be used in appropriate contexts, taking account of its inherent limitations.

7.2 Where are we going?

The reported results show how facing the problems discussed in this thesis, even though
one at a time, can improve the performance of the retrieval systems, in addition the dif-
ferent kind of combination illustrated demonstrate also that the combination of different
approach, different feature set, and different classifiers can produce more improvements.
With this in mind the next step in the research activity will be the combination of different
approaches in order to solve more problems at the same time.

In addition to dealing with solutions to improve well known techniques in the field of
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retrieval systems, certainly the research should also take care of adapting the traditional sys-
tems to innovations that are appearing on the way. In recent years the Internet communities
have got a footing and with them a world of information sharing systems. In the field of
information retrieval this exchange of data can be a valuable instrument if used properly.
For some time the recommendation systems have become popular in the way of advertis-
ing and sales on the Internet. The simple concept that: if you and your “friends” share the
same interests then it is probably that you are interested in the same things, is the principle
upon which is based the modern form of long-term learning. The use of social networks,
from this point of view, is certainly a field to be explored. The sharing of photos, videos and
links in general, for example, is an implicit form of expressing own opinion of relevance, as
well as the famous button “Like”, in the social network facebook, is an explicit assessment
of the considered resource. The interactivity of these platforms from the perspective the
information retrieval researchers, is surely their main strong point. In these communities
occurs spontaneously exactly what a user is not normally inclined to do: tagging, labelling
and commenting. Certainly to be able to intercept these opinions from the users, can find
new outlets for relevance feedback that is just born to to meet the needs of users.

Although the content based image retrieval may seem a difficult challenge, today face-
book receives some 415,000 video uploads per day, with 155,000 of them directly from web-
cams. In the past the researchers tried to borrow the techniques used the image retrieval
field for the video but it soon became clear that it was not enough. The new frontier for
multimedia retrieval is the search by the concept. Covering semantic space from different
perspectives it appears, at the moment, to be the only method by handle the huge amount
of data.
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