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Abstract

Consumer-level devices that track user’s gestures eased the design and the
implementation of interactive applications relying on body movements as
input. Gesture recognition based on computer vision and machine-learning
focuses mainly on accuracy and robustness. The resulting classifiers label
precisely gestures after their performance, but they do not provide inter-
mediate information during their execution. Human-Computer Interaction
research focused instead on providing an easy and effective guidance for
performing and discovering interactive gestures. The compositional ap-
proaches developed for solving such problem provide information on both
the whole gesture and on its sub-parts, but they exploit heuristic tech-
niques that have a low recognition accuracy. In this thesis, we introduce
two methods, DEICTIC and G-Gene, designed for establishing a com-
promise between accuracy and provided information. DEICTIC exploits
a compositional and declarative description for stroke gestures. It uses
basic Hidden Markov Models (HMMs) to recognise meaningful predefined
primitives (gesture sub-parts) and it composes them to recognise complex
gestures. It provides information for supporting gesture guidance and it
reaches an accuracy comparable with state-of-the-art approaches on two
datasets from the literature. Normalization of the gesture samples limits
online recognition in the general case. G-Gene is a method for transforming
compositional stroke gesture definitions into profile Hidden Markov Models
(HMMs), able to provide both a good accuracy and information on gesture
sub-parts. It supports online recognition without using any global feature,
and it updates the information while receiving the input stream, with
an accuracy useful for prototyping the interaction. We evaluated both
approaches in a simplified development task with real developers, showing
that they require less time and an effort comparable to compositional
approaches, while the definition procedure and the perceived recognition
accuracy is comparable to machine learning.
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Introduction 1

Chapter 1

Introduction

Gestures represent an alternative and innovative modality with respect to
traditional interactions e.g., through mouse and keyboard. During the ’90s,
consumer-level tracking technologies and interfaces supporting gestural
input were a niche product, considering the hardware requirements and
their cost. Such pioneering work produced the first gesture recognition
algorithms, trackers, and the first applications exploiting them. In those
years, the research community proposed several solutions that became the
cornerstone of today’s device operation. Their design focused mainly on
hand input. For instance, Zimmerman et al. proposed DataGlove [259]
a lightweight cotton glove allowing users to manipulate three or two-
dimensional objects. It was composed of flex sensors, which measure
finger bending, positioning, and orientation, including tactile feedback
vibrators at the same time. In [117], Kramer and Leifer introduced
Talking Glove, a useful communication aid for the deaf and the deaf-blind,
supporting the verbal interaction with others. More specifically, this device
is bi-directional: it analyses hand inputs to recognise and synthesize the
spelt words and shows the incoming speech on the miniature LCD screen.
Another example is the ALIVE [144] system, which supports full-body
interaction between the user and a virtual environment.

It is worth pointing out that these approaches, in combination with
the new technologies, have led the way to contemporary consumer-level
tracking user’s movements devices. In contrast to earlier systems, current
devices are more precise, pervasive and tiny; they support the adoption of
gestural interaction in different scenarios e.g., exhibitions, museums, and
public spaces and, above all, in the entertainment field. Some examples
are touchscreens, Nintendo Wiimote, Microsoft Kinect (version 1 and 2),
Oculus Touch etc. On the one hand, such availability produced a set of
de-facto standard gestures, for instance, the pinch and the swipe. On
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2 Introduction

Figure 1.1: The virtual world in Alive is composited of image in real-time
of user with computer graphics [144]. The figure shows a virtual dog which
mimics user’s gesture.

the other hand, complex applications relying on full body gestures, touch
interaction and pen strokes require a broader vocabulary, which must be
“revealed” to the user during the interaction [174].

Substantially, the effectiveness of gestural interaction relies on how it
supports the communication between the user and the application. In
such systems, this property depends on two components. The first is an
algorithm for recognizing user movements accurately. The second is the
user’s awareness of which movements are available for communicating with
the system.

Figure 1.2: The use of gestures in augmented and virtual reality can make
the experience more realistic.

Alessandro Carcangiu Combining declarative models and computer vision recognition algorithms for stroke gestures
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Research in computer vision and machine learning focused mainly
on the first problem, that is finding gesture tracking and recognition
algorithms that are robust to noise in the input signal. The recognition
of dynamic gestures (as opposed to static ones, that do not include a
temporal dimension) has been addressed using machine learning techniques
that explicitly consider the temporal dimension, like Hidden Markov
Models (HMM), Dynamic Time Warping (DTW), Time-Delay Neural
Networks (TDNN) and Finite-State Machines (FTM) [46, 156, 190], as
well as traditional supervised classification algorithms like support vector
machines (although they are more suited to static gestures [156]). All
these approaches reached a very high accuracy in recognizing different
gestures, and typically require the user to complete the entire gesture for
recognizing it.

Such assumption does not match with the requirements set by the
research on the second problem, that is making the user aware of which
gestures are available for communicating with the application. In summary,
the interface should provide two pieces of information to the user during
the gestural interaction: feedback and feedforward [233], which may be
designed taking different options into account [56]. The former (feedback)
informs the user about the effects of the actions she has already performed.
The latter (feedforward) provides information prior to any action, i.e.
showing or anticipating the possible future actions. Figure 1.3 shows a
sample visualization for such information considering a stroke gesture on
a touch panel. The visualization both informs the user on her previous
actions and guides her in concluding the interaction correctly.

Figure 1.3: A simple guidance system for stroke gestures for a touch
interface. It shows the previous touch positions with a black line (feedback)
and the possible completions (feedforward). In this example, the system
understands either an N stroke (in red) or M (in green).
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In order to design and implement such guidance, the developer needs
to establish which portion of a gesture has been completed, together with
information on the expected conclusions of the movement, which may be
more than one. The solutions for having a precise recognition and a usable
interface diverge exactly at this point. On the one hand, the classification
approaches require that the user completes the gesture for recognizing it,
providing a very good accuracy. Since a gesture spans over a perceivable
amount of time for the user, the interface (UI) often requires to provide
guidance during such time, and this is not supported by classification
algorithms. On the other hand, different engineering approaches in the
literature model gestures through composition and/or declaration [110,
113,114,199,200,215,216]. They allow receiving events for the recognition
of a whole gesture and its sub-parts, facilitating the reuse of code. These
approaches support effectively the development of guidance systems in
a UI. However, the sub-part identification is currently achieved through
geometric heuristics, which reach a much lower recognition accuracy if
compared with the classification techniques in the state of the art. This
may represent a treat for the UI overall usability when the gesture types
and/or the context of use require a precise recognition.

Figure 1.4: Through declarative methods, we can define the triangle stroke
as sequence of three tilted lines where each line is a primitive.

In this thesis, we propose two methods for filling the gap between these
two fields of research. Both methods accurately recognize gestures relying
on HMM classifiers and compositional models, which represent gestures
as a sequence of sub-movements described through expressions: the first
method maps the composite HMM states to the underlying primitives
which constitute it, the other method translates the input stream into
a string representing the (partial) gesture and aligns it with a set of
reference profiles using a gene-alignment technique. For each sample of
a gesture sequence they identify the most likely list of primitives that
the user already performed (useful for providing feedback in Figure 1.3)
and the most likely primitive that the user will perform in the future).
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We evaluated the proposed approaches with developers in coding the
well-known Octopocus [14] interface (which requires both feedback and
feedforward) against a representative of the many gesture recognition
libraries that provide only the final label. The results show that our
approach required less development time and cognitive load. The gain
provided by having the support for the sub-part identification had exceeded
the cost of modelling the gesture. The thesis is organized as follows:

• The chapter 2 discusses the related work about classification methods
and compositional approaches for gesture recognition and interaction.
Besides, the same chapter summarises the properties characterising
feedback and feedforward and analyses the different guidance systems
for gestural input.
• The chapter 3 describes the concepts we leverage for creating the

models and the recognition techniques proposed in this dissertation.
• The chapter 4 introduces the first proposed method, called DEIC-

TIC (DEclaratIve and ComposiTional Input Classifier). This is a
declarative and compositional approach for describing stroke gestures
according to primitives (ground terms) and a set of compositional
operators (iterative, sequence, parallel and choice). By composing
HMMs recognizing ground terms through a specific topology for each
considered operator, it reaches an accuracy comparable with the
state-of-the-art approaches in gesture recognition while supporting
sub-gesture identification. The main limitation is the use of global
features, which limits the application of DEICTIC in a general case
for online recognition, which would require a prior knowledge of the
gesture bounding box.
• The chapter 5 discusses the second proposed method, called G-

Gene (Gesture-Gene). It addresses the limitations that characterize
DEICTIC by introducing another bridge between a simple gesture
modelling technique, engineered for supporting feedback and feed-
forward systems through the gesture sub-parts definition, and the
construction of a Hidden Markov Model (HMM) classifier that i)
has a reasonable accuracy, ii) supports online recognition and iii)
identifies the sub-parts while the user performs the gesture.
• The chapter 6 analyses the results of a developer evaluation of the

support provided by DEICTIC and G-Gene in different coding tasks.
They consist of defining the gestural interaction support for a simpli-
fied drawing application, which exploits three simple stroke gestures
(rectangle, triangle and delete). We studied the strategy participants
follow, on the one hand, to implement a feedback and a feedforward
system when intermediate gesture recognition information is not
provided directly by the recognition support and, on the other hand,
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to evaluate the information provided by our methods.
• The chapter 7 summarizes the results obtained and describes possible

directions for further research.

The following list contains the peer-reviewed publications that are
connected to the methods presented in this dissertation:

1. Alessandro Carcangiu. 2017. Gesture Recognition through Declara-
tive and Classifier Approach. In Proceedings of the 22nd Interna-
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2. Alessandro Carcangiu, Lucio Davide Spano, Giorgio Fumera and
Fabio Roli. Gesture modelling and recognition by integrating declar-
ative models and pattern recognition algorithms. In Proceedings
of the International Conference on Image Analysis and Processing
(ICIAP 2017), Springer, pp 84-95;

3. Alessandro Carcangiu and Lucio Davide Spano. 2018. G-Gene: A
Gene Alignment Method for Online Partial Stroke Gestures Recog-
nition. Proc. ACM Hum.-Comput. Interact. 2, EICS, Article
13

4. Matteo Serpi, Alessandro Carcangiu, Alessio Murru, and Lucio
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Stud., (122), 113-132.
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Chapter 2

Related Works

Over the last years, the efforts of the research community focused on two
main types of development problems related to gesture interface. The
first is how to recognize gestures with a high accuracy, through algorithms
robust to user’s input variability. The second problem is how to describe
gestures, using an effective and understandable representation for UI
developers. Such description is usually linked to the support for defining
in particular feedback and feedforward. In this chapter, we summarise the
existing solutions in the literature for both problems.

The recognition problem is usually approached using pattern recog-
nition and machine learning algorithms. As summarised in [48], they
provide developers with high recognition accuracy and robustness to noise,
allowing to spot complex gestures. Nevertheless, they typically expect the
entire movement for recognizing it and these methods need many examples
to succeed in the learning phase. Instead, research on gesture description
resulted in different declarative and compositional techniques. On the
one hand, they reduce the workload in the development of gestural User
Interfaces, supporting the definition of feedback and feedforward with
intermediate events between the gesture start and end. On the other hand,
they reach a poor accuracy level, since they use geometric heuristics for
segmenting gestures into sub-parts. In general, these approaches focused
on formalizing gesture definitions and their connection to the application
behaviour, paying less attention to the accuracy level. Different approaches
in the literature [113, 114,200, 215, 216] are used to describe gestural input
through expressions decomposing them in smaller parts, also called primi-
tives. A primitive represents a basic movement which may be part of one
or more gestures.
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8 Related Works

The primary goal of our work is filling the gap between these two fields
of research, defining a model which combines the usability and high level
of declarative methods with the accuracy recognition and robustness of
classification techniques. In the following, we overview the main proposed
approaches for recognizing static and dynamic gestures, pointing out those
able to identify gesture sub-parts and considering that the definition of
gesture sub-part varies in different research field. We introduce the most
relevant classification approaches in section 2.1; after that, in section
2.2 we detail the main approaches based on declarative models. Finally,
in section 2.3 we analyse the approaches which support developers in
building gestural user interfaces.

2.1 Classification Approaches

Vision-based algorithms have proved to be efficient in classification and
recognition of gestures resulting the most used method in tracker devices
and gestural interfaces. Computer Vision researches propose different tools
for gesture recognition, based on the approaches ranging from statistical
models, pattern recognition, image processing, connectionist systems,
etc. [156]. In general, classifiers can be divided into two groups according
to their properties:

Template matching methods , which align the input sequence with a
reference one (template).

Machine learning algorithms , which learn to identify similar patterns
by training and consist of both structures and parameters. They can
be subdivided into two classes, supervised or unsupervised, depending
on how the training phase is performed [206,211].

It is worth pointing out that these methods may be combined with
the aim of improving recognition accuracy. Indeed, each technique has
benefits and drawbacks, and its accuracy is affected by several factors,
e.g., context and scope, user target and recognizable movements. Usually,
such solutions consist of two components, the first one has to represent
the data received from tracker describing the gestures, the other one
has to classify them. The task of the first component is to extract the
features from both the training dataset and the user input, which are both
acquired through different devices (cameras, infrared or depth sensors,
gyroscopes, accelerometers, etc.). The features we can extract from the
input stream depend on the input device we select. The task of the second
component is to use these features for distinguishing gestures during the
classification. In the following, we analyse in more detail the different
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solutions proposed to detect gestures and which belong to both classes.
We start from the template matching approaches, then we summarise
the supervised approaches and finally we describe some unsupervised
approaches applied to gesture recognition.

2.1.1 Template Matching Approaches

In this section, we describe the approaches based on template matching, a
method originally applied in image processing for finding small components
of a figure that match a template image. This concept has been also
extended to pattern recognition, where it is used for determining the
distance, understood as similarity, between a target template with a
predefined template. Substantially, according to the component used in
the matching, we may match images, features (e.g. different properties)
or areas (e.g. size), expressed as matrices. Moreover, template matching
algorithms use a distance metric, such as euclidean distance, Levenshtein
distance or Mahanolobis distance, for measuring the similarity between
two templates.

As an example, we consider spotting 10 unspecified gestures through
a generic template matching classifier. In the beginning, the classifier
extracts predefined templates from training samples, for each recognizable
class. At run-time, user’s movements are converted into a matrix and the
model measures the similarity between this latter one with every predefined
template, returning the one class with the lower distance from the input
template. On the one hand, these algorithms typically need few training
samples, on the other hand, they put a heavy workload on the CPU.

Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm employed to compute the
distance between two temporal sequences which may diversify in speed or
length. According to Myers [167], it consists of three elements:
• a distance metric, utilized to represent the similarity between the

sequences;
• the local and the global continuity constraints, both used for deter-

mining the warping contour;
• an endpoint constraint used to mark both start and and point of the

two sequences;
Differently from other methods, in DTW the alignment is performed with
different restrictions that limit it [164]. This algorithm is widely employed,
particularly in speech and signature recognition systems. In the last few
years, it has also successfully applied in gesture recognition. In this section,
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we describe some methods proposed to recognized gestures using the DTW
algorithm.

In 2003, Zhai and Kristensson presented SHARK, a shorthand-aided
rapid keyboarding system, [121, 255], employing a scale and location
independent method for digital handwriting recognition. Its main design
goal was improving speed-writing on stylus keyboard by shorthand gestures.
They represented a word as a sequence of continuous movements, with
a start and end point, performed without raising either the finger or the
stylus from the keyboard; in other words, every one of these terms is a
2D unistroke, describing the path by which its all letter are connected
sequentially. SHARK employed a single dimension DTW, the classic elastic
matching algorithm [222,223], for recognizing shorthand gestures, through
the alignment of the user input with every defined word’s prototype and
returning the one with the minimum distance. A few years later, Holt
et al. [225] suggested an extended version of DTW for multi-dimensional
time series (MD-DTW) in gesture recognition. Essentially, in that method,
the best alignment is established using all the available dimensions. The
evaluation tests were performed on a Dutch sign language dataset, showing,
on the one hand, a higher robustness to noise and a better performance
compared to original DTW. On the other hand, it required a higher
computational cost.

Jackknife [224] is a general dynamic gesture recognizer. More precisely,
it is a cross-device tool designed to achieve high recognition accuracy
on continuous data, requiring few training samples and working with
different modalities. In Jackknife, gestures are detected by combining
dynamic time warping and a user-independent trajectories representation.
The performance evaluation of Jackknife carried out on different input
modalities and continuous data using: the $1 − GDS pen and touch
dataset [241], a Wii remote dataset recorded by Cheema et al. [43], the
Ellis et al. Kinect dataset [68] and two dataset for acoustic gestures and
continuous movements collected by the authors. The experimental results
showed, on the one hand, that Jackknife is able to reach an accuracy rate
greater than 90% employing only two template samples for each gesture.
On the other hand, they show that it cannot be applied to both static
poses and gestures independent from the direction. For instance, a circle
drawn counterclockwise or clockwise represent two distinct gestures. Such
recognizer inspired the work by Pittman and LaViola in [184], where they
detected complex hand gestures using Jackknife recognizer and multiwaves.

Choi et al. in [47] proposed a method for reducing the computational
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cost in dynamic time warping algorithms. In that system, features and
candidate templates are selected by using an orientation histogram, achiev-
ing an average accuracy of 97.4%. Zhao et al. [258] relied on Kinect data
to detect dynamic hand gestures. The recognition uses DTW, combining
skeleton data and hand contour features, reaching an accuracy of 94%.
Ruan and Tian [194] introduced an improved DTW algorithm to detect
3D dynamic hand gestures, acquiring movements through a Kinect. The
proposed approach represents the user input and gestures with the method
of weighted distance, starting from the received skeleton data. Template
matching and Kinect data were also considered by Hang et al. [85]. They
recognize fingertip unistrokes gestures introducing an improved DTW algo-
rithm that relaxes the endpoint constraint. This solution and the selection
of candidates templates using the LB Keogh lower bound function [107]
allow reducing the computational complexity jointly. The representation
of fingertip trajectories is based on the vector quantization coding for angle
values described in [220]. Another approach focusing on Kinect sensor
data was proposed by Doliotis et al. [63], combining hand shapes and
DTW algorithm for recognizing dynamic hand gestures.

In literature, we can find several other works based on the dynamic
time warping algorithm, designed for hand gesture interaction or action
detection systems in different contexts, for instance [74,95] for sign language
recognition, in wearable devices [93,119,152], in health systems [16,159]
or in-car interaction [69].

Kalman Filter

A Kalman filter [101] is a recursive solution for the discrete-data filtering
problem. In his work, Kalman provides a powerful tool which minimizes the
mean of the squared error in estimating the state of a process [24]. It offers
a valid support in estimating past, present, and future states independently
from the nature of the modelled system. In gesture recognition, the Kalman
filter is widely used for both preprocessing data, i.e., to reduce noise in
tracked trajectories, and predicting the next user’s movements.

For example, Allharbi et al. [2] proposed an extended Kalman filter
for pre-processing data received from Kinect and applied to a TaiChi
rehabilitation system. The Kalman filter is employed to fix incomplete and
inconsistent kinematic sensory data, and Allharbi evaluated its performance
through different classifiers achieving an accuracy above 97.5%. In [157]
Mo et al. introduced a method for segmenting hand gestures based on an
improved Kalman filter and TSL skin colour model. The TSL model is a
feature where a colour is specified as a combination of three components:
i) tint, ii) saturation and iii) luminance.
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2.1.2 The “Dollar” Family

Another recognition approach is the so-called Dollar-family, a set of meth-
ods based on 2D template matching, which usually requires fewer training
samples, but requires the whole input trajectory for the recognition. They
compare distances between corresponding locations of resampled trajec-
tories to measure the gesture differences. The original approach was the
1$ recognizer, designed for touch/stylus applications and introduced by
Wobbrock et al. [241]. This algorithm compares 2D gesture paths, which
are represented as a temporal sequence of points. More precisely, a sin-
gle gesture path is extracted considering the full user input. Thus, the
$1 recognizer can spot only unistroke gestures. Gesture recognition is
accomplished through the following steps:

• The whole user input is resampled in M points, allowing to compare
gesture paths with different movement speeds;
• paths are rotated over the space of possible angles, in order to find

the best alignment between their points;
• the rotated paths are scaled to a reference square and translated in

order to have the centre in the origin;
• finally, the algorithm searches the output class with the best score,

using the Euclidean metric to measure the distances.

Therefore, this method does not depend on the execution velocity, 180◦

rotation, scale, and translation. Wobbrock et al. evaluated the performance
of their method by comparing 1$ with a classic DTW and the Rubine’s
algorithm, using a dataset with 4800 samples for 16 gestures. In their
experimental tests, 1$ achieved an accuracy of 99%, greater than Rubine
algorithm and similarly to DTW algorithm, lowering the processing time.

Through the years, this approach has been improved with various
modifications to the processing steps and resulting in different popular
solution for implementing 2D stroke recognizers. For instance, Li [131]
introduced the Protactor classifier, which is a template-based recognizer
focused on single-stroke gestures. In that classifier, the best path alignment
is found by calculating the optimal angular distances. The evaluation
shows that Protactor outperforms 1$ on accuracy, time and space cost. In
the same year, Anthony and Wobbrock proposed the N$-recognizer [7, 8]
which extends the 1$ for recognizing 2D multistroke gestures. This method
models a multistroke gesture as a set of unistrokes, without assuming any
ordering among them. The N$ recognition is based on bounded rotation
invariance, supporting multistrokes performing in any order and direction:
substantially, the template matching is implemented comparing every
multistroke’s component permutation with the pre-processed tracked tra-
jectories, thus making it invariant to the execution direction. Multistroke
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recognition is also studied in [230, 231]. In these works, Vatavu et al.
presented the P$ recognizer. It aims to extend the N$ recognizing to both
unistroke and multistroke symbols by representing gestures as a cloud of
points. In particular, Vatavu et al. find the lowest distance in a set of point
clouds by coupling the Hungarian algorithm within the Nearest-Neighbor
(NN) classifier. The recognition is expressed as an alignment problem
between two bipartite graphs, that can be resolved by using the Hungarian
algorithm. Instead, the best alignment is found through the NN classifier.
The evaluation tests showed that P$ offers an accuracy of around 99%
with a few training samples. Recently, Vatavu et al. enlarged the $ family
recognizers by presenting Q$ [232]. In contrast to previous works, it is also
designed for wearable and embedded devices, extending and improving the
P$ recognizer. Compared to the latter one, the classification process has
been optimized, allowing to reduce the hardware workload and processing
time.

It is worth pointing out that none of the mentioned “dollar” ap-
proaches was designed for mid-air gestures recognition. Recently, Caputo
et al. [36, 37] introduced the 3Cent recognizer, an improved version of
“dollar” method for recognizing 3D dynamic hand gestures. Shape match-
ing techniques are combined with the tracked skeleton data, namely the
orientation evolution and the fingers description features. This allows de-
tecting gestures with an accuracy of 90% on two recent benchmarks. More
precisely, the hand orientation is characterized by the trajectories of a few
unit vectors defining it. The authors considered a few key points (index,
thumb bases, tips, wrist, and palm), which are assumed to characterize
the gestures of interest and estimated all the unit vectors of the directions
joining them. Finally, they extracted the finger distances according to the
angle related to their movements.

2.1.3 Supervised Algorithms

A classification technique applies a supervised model if it is trained through
ground-truth labelled samples. In other words, the algorithm learns to
associate each example contained in the training dataset to an output
value (a specific class), creating and adjusting an inferred function through
which the classifier maps new examples. Supervised learning can be of
two types, depending on the output required by the modelled system: i)
classification, when the output is a category, otherwise ii) regression, if
the output is a real value.

Supervised classifiers offer different benefits. On the one hand, we know
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the available output classes, therefore their functioning can be evaluated
and analysed, similarly to the template matching methods. On the other
hand, it is worth pointing out that the mapping is determined from
the training dataset, consequently, noisy examples can undermine the
performance of these models. As an example, we can consider recognizing
10 gestures through a generic supervised classifier. At first, the classifier is
trained to recognise these 10 classes; its inner parameters are adjusted using
the labelled samples included in the training dataset, which balance the
tracked feature values. At run-time, the set of features is extracted from the
new gesture samples, which represents the tracked user’s movements and
they are sent to the classifier. The trained model will return one of those
ten classes as output or, more frequently, the probability of belonging to
each of the classes, according to the received input and its inner structure.

Such techniques usually guarantee a high accuracy and robustness to
noise. Therefore, supervised learning classifiers are widely employed in
many pattern recognition fields, for example, speech or action recognition,
spam detection, information retrieval, and so on. A large part of machine
learning classifiers has been addressed on supervised algorithms, like Hidden
Markov Models (HMM), Neural Networks (NN), k-Nearest Neighbor (kNN),
Random Forests (RF), etc.

Finite State Machine and Hidden Markov Model

In this section, we describe first Finite State Machines (FSMs) and then
we discuss Hidden Markov Models (HMMs). The first ones are also called
finite automata and, substantially, they are abstract machines with a
finite number of states, a starting state, and a set of transitions [90]. A
transition, normally, connects a pair of states si and sj , describing the
condition or action that allows moving from si to sj . There are several
typologies of FSM which differ according to the arrangement of transitions;
i.e., in the ergodic model, all states are connected to each other, in the
left-right model we can move forward over the states that compose the
machine and so on. Such methods are efficient to describe discrete and
sequential systems in which the current state depends from previous states.

Hidden Markov models represent an extension of FSMs. They are
also known as Markov sources or probabilistic functions of Markov chains.
They are probabilistic models, including a distribution generated for the
possible observations that depend only on the current state of the Markov
process. In addition, they include a transition probability between states,
but the current one is not observable in such processes (which explains the
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adjective hidden). Researchers employ HMMs for the statistical modelling
of non-stationary signals, i.e., speech recognition or image sequences, or
to represent and analyse discrete and continuous series [67,187,260]. We
considered such structures in our work considering their flexibility in
structure (we manipulate their topology for the composition) and the
existence of well-known algorithms for training, recognition and state
likelihood evaluation. A deeper description of HMMs is included in the
section 3.2.

The first researchers introducing HMMs in gesture and action recogni-
tion were Yamato et al. [245]. They created and trained one HMM for each
available action category, converting time-sequential images in a sequence
of symbols. Each model processes these symbols, returning the likelihood
that the tracked movements belong to the corresponding class.

Starner and Pentland [217] applied HMMs to create a system for
recognizing sentence-level American Sign Language (ASL) in real-time.
In their work, static hand poses are tracked both from solidly coloured
gloves or natural skin tone using a camera. They are represented by
an eight-element feature vector consisting of x and y coordinates, axis
angle of the least inertia and eccentricity of bounding ellipse. Moreover,
they applied a statistical grammar model to enforce the training and the
recognition, achieving an average recognition rate of 91.9%. Static hand
gestures recognition and HMMs are also studied in [197] where Sagayam
and Hemanth applied Artificial Bee Colony (ABC) algorithm to optimize
HMM’s performance: ABC is an optimization algorithm which simulates
foraging behaviour of honey bee swarm proposed by Karaboga [104]. In the
evaluation tests, Sagayam and Hemanth reported an average recognition
rate of 73.59%.

In the literature, we find several works in which HMMs are used for
recognizing dynamic gestures. Lee and Kim [128] proposed an ergodic
threshold model for an HMM that calculates the likelihood of an input
pattern and indicates the matched gesture. In this work, each recognizable
gesture is detected through a simple left-right HMM, representing the
user input by temporal characteristics. In the experimental tests, Lee and
Kim noticed an overall recognition rate of 98.1%. Sezgin and Davis [205]
represented sketches as a sequence of basic strokes which are recognized by
applying an approach similar to the ones we present in this dissertation. On
the one hand, strokes are recognized relying on Hidden Markov models; on
the other hand, compared to our approaches, this method does not: i) avoid
the collection of new samples for each available sketch; ii) generate HMM
as composition of more basic HMMs. User study proves that increasing
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the number of strokes the used method reduces the computational cost of
this solution, contrary to conventional methods. Min et al. [155] codified
user hand input coding eight discrete directions through characters and
representing gestures as string chaining them. They used HMM to recognize
twelve 2D strokes acknowledging an average recognition rate above 90%,
considering complete gestures. We use a similar approach for online
recognition, i.e. iteratively recognizing the most likely gesture during
the performance. Marcel et al. [147] dealt with hand gestures detection
using Input-Output Markov chains, which combine neural networks and
HMMs. Differently to the other Markov sources, in this model every state
is associated with an input and output state neural network. Such solution
relies on HMMs training properties with the discrimination efficiency
offered by Neural Networks. The features applied to IOHMM represent the
skin-colour of the user’s hand and face, extracted from a sequence of video
images. In contrast to the previous methods, which are designed to track
one hand, Kao and Fahn [103] focused on two hand gestures. They defined
five basic strokes, to be performed by any hand, described as a sequence
of centroid points: moving upward, downward, leftward, rightward and
no action; the resulting twenty-four possible combination of gestures are
recognized through HMMs, in which the average recognition rate is more
than 96%. The GestureCommander, proposed by Lucchese et al. [140], is
a touch-based method for mobile devices, designed to predict gestures and
to show feedback. It consists of two connected HMM systems, one for each
task. When the user is performing a gesture, the underlying framework
generates visual feedbacks according to the three most likely predicted
gestures with an average accuracy of 96.5%. The input movements are
described using a subset of the Rubine features, namely direction, curvature
and sine of the initial angle (all of them can be extracted without knowing
the whole input movement).

Deo et al. [60] detected hand gestures by coupling convolutional net-
works and Markov sources. This method, that is designed for in-vehicle
gestural interfaces, employs both a CNN to extract features from videos
and an HMM to label the tracked hand movements. Deo et al. evaluated
their system using the VIVA dataset [71], and achieved an accuracy rate
of 77.5%.

HMMs found an application also in wearable trackers considering
their flexibility, e.g., in [108, 118, 183]. Keskin et al. in [108] proposed a
system able to capture and recognize real-time 3D hand strokes, performed
through coloured gloves. This system used left-right HMMs to model
gestures, and Baum-Welch algorithm to re-estimate its parameters and
deal with segmentation ambiguity. It reached an accuracy above the
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98%. Kratz et al. [118] combined Nintendo Wii controller with HMMs for
recognizing 3D accelerometer gestures, while Park et al. [183] implemented
an energy-efficient gesture recognition system for wearable devices based
on multi-situation HMM models, an extension of HMM able to fit multiple
mobility situations.

Support Vector Machines

In this section, we describe the Support Vector Machine (SVM), a non-
probabilistic supervised learning algorithm widely employed for classifica-
tion and regression analysis. The standard version of SVM [229] allows
binary linear matching, assigning new examples to either one or the other
category: it defines a hyperplane, in high or infinite dimensional space,
to map examples as points in space which are subdivided by a clear gap
that is as wide as possible [218, 226]. Over the years, researchers have
proposed different methods to make SVM applicable in multi-class clas-
sification problems, i.e., one-vs-all, Directed Acyclic Graph (DAG) [185],
error-correcting output codes (ECOC) [62] etc. [73].

SVM-based techniques proved their accuracy in recognizing dynamic or
static gestures. Aoki et al. [9] employed SVM to recognize real-time strokes
for vision-based gesture interfaces (VGI), such as TV menus or similar.
Usually, VGIs recognize both the shape of stroke and the orientation
based on the start position allowing to decrease the number of strokes the
users need to remember. They achieved unistroke recognition combining
SVM and Distance to Border (DtB) features; the latter ones represent
the distance from the edge of the figure to the figure’s bounding box.
The accuracy of the model proposed by Aoki et al. is ranges between
84.57% and 99.43%. Yuan and Barner [253] showed an algorithm to
recognize 9 two-dimensional strokes: it combines PCA and non-linear
SVM using shape and motion figures as features. This work proposed to
extend both multi-class and binary SVM with a hybrid kernel, where the
Euclidean distance is replaced by the weighted sum of the shape distance
and dynamic time warping to measure the similarity between sequences.
Yuan and Barner evaluated the proposed method in three different cases
on 9 different gestures, achieving an accuracy above 90%. Instead, in [239],
SVMs were applied for an offline recognition of 2D strokes. In their work,
Willems et al. proposed eight different configurations of features based on
stroke shape, such as length, the angle of the bounding box, the area and
so on. They compared the performance of the different subsets against
global features using SVM, multi-layered perceptron (MLP) and DTW.
The result was that the combination of shape features and SVM strongly
improves recognition performances compared to global features.
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Gosh and Ari [77] aimed at recognizing hand poses in sign language
applications by using multi-class SVM. The method is robust to illumina-
tion, rotation and position variations, and it represents hand images as a
combination of located contour sequences (LCS) and block-based features.
Three different datasets are employed in experimental tests, with an accu-
racy above the 95%. Another work focused on supporting sign languages
was proposed by Kumar et al. [123]. It recognizes two main components
of sign languages simultaneously, manual signs and finger-spelling. These
components represent, respectively, gestures and words, both consisting
of hand or fingers movements. Kumar et al. proposed a framework ex-
ploiting SVMs for distinguishing between manual signs or fingers-spelling,
Bidirectional Long Short-Term Memory Neural Networks (BLSTM-NN)
classifiers to recognize the distinguished gestures (one for each component)
and the Leap Motion device for tracking the user’s movements.

Various Kinect-based methods employ SVMs to spot hand poses. Do-
minio et al. [64,65] achieved hand static gestures recognition introducing
two new features based on depth data acquired from Kinect. First of all,
they located the user’s hand and its components, namely the fingers and
the palm, from the depth and colour data. These regions were located
using PCA and a circle fitting on the palm. Successively, this model
computes the finger distance from the hand and the curvature of the hand
shape. These features are the input of a multi-class SVM, recognizing 10
hand poses in real time. In the experimental tests, the underlying system
achieved a recognition rate ranged between 95% and 100%. In [148], they
extended the method supporting Leap Motion data. Keskin et al. [109],
recognized hand poses using a random decision forest (RDF) to segment
hand depth map into its different parts, and an SVM to classify the seg-
mented hand parts. That system was evaluated on the America Sign
Language digit dataset, and it achieved an accuracy of 99.96. Okada and
Otsuka [180] proposed a method for associating gesture with words. The
work proposed detects and associates gestures relying on an SVM, repre-
senting the user’s input through three set of features: trajectory signal
feature set, hand motion data and primitive gesture pattern phases. In the
experimental tests, they compared these three sets of features, obtaining
the best accuracy (63.4%) with the gesture phase features.

Moreover, CV and HCI communities apply SVM recognizers in both
action and expression classification. Among these works, some are de-
signed for tangible acoustic interfaces (TAIs). More precisely, TAI is a
particular type of tactile interface, where the interaction between human
and computer is carried out through various acoustic or imaging sensing
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technologies. In other words, user’s gestures are analysed and localised by
exploiting the propagation of sounds and video frames.

Camurri et al. [31] analysed expressive gestures in TAIs studying the
interaction between human and a Google Earth application on tangible
acoustic interfaces. They implemented an SVM-based expression hand
gesture detector for a TAI, combining acoustic and visual data. This
system relies on the EyesWeb Expressive Processing Library [33], a flexible
platform for supporting multimodal and cross-modal processing, used for
both segmenting hand movements from a tactile surface and extracting
expressive features from the acquired trajectory (namely time duration,
peak velocity, impulsiveness, spatial length and directness index). Ex-
pressions gestures are recognized combining two SVMs and the Laban’s
theory. Substantially, according to this theory, there is a relationship
among humans actions, space and time that can be represented through
different binary components. In their work, Camurri et al. focused on two
dimensions: Space, where the motion can be either flexible or direct, and
Time, the action is quick or sustained. The gestures and the interaction
are classified according to these dimensions, using a single SVM with
likelihood estimation for each component.

Among the action recognition works, Ji et al. [97], recognised offline
cooking gestures coupling visual local features, depth image information,
and a multi-class SVM. User actions are tracked through the Kinect
and local features are estimated using an extended FAST detector and
the compact histogram of orientation gradient in spatiotemporal space
(CHOG3D). Such descriptors are employed to detect and describe feature
points in three dimensions.

On the contrary, Schuldt et al. [201] used SVM in action recognition
exploiting local events in videos, such as size, frequency and velocity of
motion patterns, as features. SVM is employed also for low-power classifiers
in wearable devices, resulting suitable for working with different kind of
data: for instance for recognizing real-time gestures through SVMs and
electromyography (EMG) [18], or detecting hand gestures through a first-
person camera [204], exploiting a random forest-based hand segmentation
algorithm to track user movements.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models that vaguely
reproduce working principles of biological neural networks. McCulloch
and Pitts formalized them in [150] as a conceptual model able to perform
computational tasks in the same way as a human brain. The main com-
ponents of the ANN are the neurons. They are equipped with input and
output channels: when a signal is sent, they change their state according
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to their activation function applied to the received data and produce an
output depending on the input and state. Therefore, a stereotypical ANN
is an interconnected system which consists of neurons layers and weighted
edges. The first ones can be distinguished into the input, hidden and the
output layer, while the second ones join neurons to each other conditioning
the final output [17, 23, 83, 192]. The ANNs represent another approach
based on supervised learning algorithm, where weights and activations are
learned during the training phase.

In the literature, we find several variants of ANNs, which differ for
structure, activation function or learning rule. ANNs and their derivative
work, such as Convolutional Neural Network (CNN), Deep Neural Network
(DNN) and Recurrent Neural Network (RNN), are widely used in pattern
recognition and in this section we analyse some of these methods employed
in gesture recognition field.

Recurrent Neural Network A Recurrent Neural Network, or recur-
rent net, is a particular class of artificial neural networks, specialised in
learning sequential or time-varying patterns [145]. Formally, it is a neural
network with feedback connections, namely the edges between nodes de-
scribe a direct graph along a sequence. The arrangement of connections in
recurrent nets affects their properties. The described graph can be either
cyclic or acyclic, corresponding respectively to infinite and finite impulse
networks [151]. The first ones are organized as a fully interconnected
net, allowing to get back in the start state. The other ones consist of a
partially connected net called unrolled graph, where only forward steps
are supported (nodes have no backwards arcs). The engineering commu-
nity proposed several structures suitable to different problems, such as
self-gated recurrent nets (SGRNN), Elman’s network, Jordan’s Network
(JRNN), long-short-term memory network (LSTMN) etc.

Similarly to convolutional nets, recurrent networks have found a wide
use in all pattern recognition applications, in particular, to detect and
recognize user movements and emotions. The state-of-the-art offers various
RNN-based approaches focused on gesture recognition. It is worth pointing
out that most of them are focused on either static or dynamic hand gestures.
In 1991, Murakami and Taguchi were the firsts to apply Elman’s recurrent
net in sign dynamic hand gestures recognition [166]. Their method classifies
sign language movements passing to RNN the angle and the positions
of fingers and hands, acquired by DataGlove. About at the same time,
Cracknell et al. evaluated the performance of three different techniques,
including RNNs, with dynamic 3D gestures [49]. RNN was also exploited
by Muraqa and Abu-Zaiter in [146] for sign language: they compared
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Elman’s recurrent net and a fully connected RNN to detect hand postures.
They used the position of the five fingertips and the wrist extracted from
colour images as features, achieving a recognition rate of 95.11% with the
second proposed method.

Two streams recurrent networks (2S-RNN) are used by Chai et al.
in their framework [42] to detect gestures in a continuous input stream.
Firstly, input images are segmented into separated gestures, locating the
hand by exploiting a fast-CNN detector, and using a particular movement,
the user put hands down, to mark the end of a gesture from the beginning of
the next gesture. Successively, the framework uses the 2 streams networks
for labelling segments with the predefined gesture detected. Neverova et
al. [171] used hand RGB-D images, skeletal motion data, and an audio
stream to detect gestures. The features are extracted using multilayer
perceptrons (MPL), for hands images and skeletal data, and a bag-of-
word (BoW) for the speech input. In more detail, MLP is another kind
of supervised feedforward neural networks based on multiple layers and
non linear activations; multiple and single layer perceptrons represent the
most basic architectures in artificial neural networks. Instead, a BoW is
a vector of occurrence counts of words, namely a sparse histogram over
the vocabulary, that can be applied to image or speech classification by
treating their features as words. After that, these feature sequences are
fed to a recurrent net for the classification. Chen et al. in [45] employed
skeleton data to detect hand gestures: fingers and global motion features
are extracted and sent, along with the skeleton sequence, to a recurrent
network that analyses the received input. A low power system based
on RNNs was introduced by Shin and Sung in [207]. They proposed
two different solutions to achieve dynamic hand gestures classification
with wearable devices: the first one combines convolutional networks and
RNN working on the received video signals, the other one exploits the
acquired accelerometer data through an RNN. In particular, each solution
uses the fixed-point algorithm to optimize the input signals, reducing
the memory storage and thus improving the system performance. There
are several works which detect air-gestures combining wearable devices
and recurrent nets. For instance, in [235] there is a decrease in the CPU
load to detect human movements through wearable devices, employing
a recurrent network. The accelerometer and gyroscope data is fed to a
self-gated RNN to classify human action movements. In the experimental
tests performed on the HTC [252] and the HAPT [191] datasets, the
proposed system reaches an average accuracy rate (93.01%), comparable
to state-of-art techniques but with lower memory requirement and lower
computational cost. Xu and Xue [244] apply inertial data, collected
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through smart-watches, to a long short-term memory (LSTM) in order to
recognize dynamic arm actions, such as time watching or shoulder patting.
LSTM network, introduced by Hochreiter et Schmidbhuber [88], is a special
kind of RNN designed to address the long-term dependency problem in
recurrent terms. Indeed, if on the one hand original RNNs are able to
connect information to the present task, on the other hand the gap between
these information must be small. Xu and Xue achieved a recognition rate
ranged between 99% and 90%, depending on the considered class samples
(faster or lower execution).

Some methods based on recurrent nets are designed for both mobile
and wearable devices. Czuszynski et al. detected hand gestures combining
linear optical data and RNN [51,52]. Li et al. proposed SonicOperator [130],
a system for in-air hand gestures based on ultrasounds. In SonicOperator,
the device’s speaker and microphones are employed to generate and receive
ultrasounds, while features are obtained from the Fast Fourier Transform,
which is applied to reflected waves, and sent to RNN for recognizing hand
movements.

Instead, Naguri and Bunesco [168] compared long short-term memory
(LSTM) and CNN on 3D hand movements tracked by Leap Motion. The
system presented by Naguri and Bunescu is divided into two modules:

• The gesture detector identifies the subsequences of frames that cor-
respond to one of the predefined gesture. They implemented it as
an LSTM operating on post-processed input data;
• The gesture classifier that consists of a mean-pooling layer and a

Softmax model. The former is connected to the output of a gesture
detector and converts input segments in a fixed size input; then the
fixed input is sent to Softmax model for classification.

In [254], Yuan et al. presented a set of command-like multi-touch
gestures for users with limited physical capabilities: a recurrent net is
employed for the recognition, which is applied to the trajectory and the
angle features computed from measured touches. In their work, Yuan et
al. reached an overall accuracy of 96.1% on 10 different gestures.

Convolutional Neural Network The convolutional neural network,
also known as convolutional network, is another extended version of the
ANN. They are designed to process data having a know grid-like topology,
namely vectors in one or two dimensions, such as e.g., time-series or image
data. Differently from the other artificial neuron networks, CNN applies
convolution operation to the input in place of general matrix multiplication
in least one of its layers. More precisely, the convolution is a specialized
kind of linear operation which emulates the response of a neuron to visual
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stimuli [80]. CNN is part of feedfoward artificial neural networks; it means
that in CNNs the inner connections follow a feedforward disposition.

Recent researches introduced CNNs in the gesture recognition field. In
particular, the vast majority of these CNN-based methods has been applied
to either dynamic or static hand gestures. They are diversified according
to both the features applied for representing input data and the devices
used for tracking movements. The first work to explore CNN in gesture
recognition was by Nowlan and Platt in [176]. Given a video sequence, they
determine if the user’s hand is closed or open in real-time employing CNNs:
poses are spotted by locating the hand and using the last three received
frames. The system proposed has an accuracy of 99.1%, demonstrating
that convolutional networks can be used also in gesture recognition. Lin
et al. [133] proposed a framework which accomplishes offline hand poses
recognition without using hand features, such as fingertips or contour, for
describing every gesture. Firstly, this system extracts the user’s hand,
from the received image, using a skin model trained by a Gaussian Mixture
Model (GMM). Then, it calibrates the hand by its position and orientation.
The calibrated images are the input of a CNN trained to recognize seven
different hand poses, achieving an accuracy of 95.96%. Yingxin et al. [250]
introduced an extended version of CNNs for hand static gestures. They
modified the structure and data preprocessing methods used in CNN,
improving its robustness with various illuminations.

Lamar et al. proposed a method of feature extraction based on PCA
for hand postures and used it with a neural network system, called T-
ComboNET [127]. Principal Component Analysis (PCA) was introduced in
1901 by Pearson and developed independently by Hotelling in 1933. It is a
multivariate method which allows reducing the dimensionality of a dataset
formed of a large number of interrelated variables while retaining as much
as possible the variation present in the dataset [99]. In experimental tests,
T-ComboNET achieved a recognition rate of 99.4% with 42 static postures
and 34 hand motions. Moreover, PCA has demonstrated to be useful
tools in feature extraction, several extensions of PCA convolving other
techniques have been proposed over the years, like clustering methods or
neural networks. For example, Shao-Zi et al. in [129] combined sparse
auto-encoder (SAE) and PCA with Convolutional Neural Network (CNN)
to define a learning feature approach for human action recognition. Park
and Cho [182] utilized PCA and a neural network to recognize static
gestures using impulse radio ultra-wideband (IR-UWB). In [22] Birk et
al. proposed an approach which is able to recognize 25 international
hand alphabet gestures in real-time; this technique extracts offline the
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features from training images through PCA and uses them to train a Bayes
classifier, which employs these latter ones to label the incoming images.
The authors noticed an offline recognition rate such around 99%. PCA
was also exploited by Martin and Crowley in [149] where they proposed
a technique which allows the user to interact with a system by hand
gestures and consists of three components: the first tracks the user’s
hand, the second classifies hand postures in a space defined by a PCA,
while the last part determines the gesture in real-time, starting from
the recognized poses. Aleotti et al. [1] acknowledged arm gestures using
functional PCA (FPCA) for both unsupervised clustering of training data
and gesture recognition. Such system is applied in a small humanoid robot
to reproduce the recognized gestures.

Lu and Little in [139] track and recognize athlete’s movements by
applying firstly HOG descriptor to input and then projecting it in a linear
subspace by using PCA. HOG is a feature descriptor that represents an
image, or an image patch, using the distribution of directions of gradients,
namely the derivative X and Y of an image. Such descriptor allows to
highlight edges and corners, regions where the magnitude of gradients
typically is large. Amin and Yan [4] employed PCA to reduce the feature
space obtained from Gabor filters, performing gesture classification with a
method of fuzzy-c-mean clustering. Similarly, [94] and [82] coupled PCA
and Gabor filters to describe user input and classified static hand poses
through support vector machine. Munoz-Salinas et al. in [165] introduced
the concept of depth silhouette in gesture detection, using the principal
component analysis to compress silhouettes and support vector machines
to learn temporal patterns. In another work [243], principal component
analysis was combined with the percentage of cumulative energy to analyse
and spot both static and dynamic hand gestures using inertial data.

In 2017, Amir et al. [5] described a low-power, event-based and on-
line hand gesture recognition system using a deep convolutional network.
Gestural input was tracked through a Dynamic Visions Sensor (DVS),
which sends events only when a pixel value changes its magnitude; these
events are passed to the CNN hosted on TrueNorth, an asynchronous,
lower-power, and neuromorphic processor. The peculiarity of this system
is the high accuracy (96.46%), achieved with low latency and low power
devices.

There are other works focused on hand gesture recognition with low
power consumption. In [54], Dekker et al. combined CNN and frequency-
modulated continuous-waves (FMCW) radar, representing the user’s hand
with spectrograms and supporting low power hand dynamic gesture recog-
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nition for consumer devices. In a similar way, Zhang et al. [257] detected
dynamic hand gestures relying on continuous waves and 3D convolutional
networks. Compared to [55], the system proposed by Zhang et al., called
Latern, involves a recurrent net in order to improve the performance. It
is worth pointing out that FMCW signals are not altered from lighting,
noises or atmospheric conditions contrary to other types of features or
techniques.

Molchanov et al. studied the application of convolutional networks in
drivers’ hand gesture recognition. In 2015, they used colour and depth data
in a 3D CNN classifier, consisting of two components: a high-resolution
and a low-resolution network [160]. This method reached an accuracy of
77.5% on the VIVA challenge dataset [71]. In the next year, they proposed
an extended version of the previous work, which employs recurrent 3D
convolutional networks, embedding RGB-D data, infrared data and optical
flow as features [161].

Several works analysed the use of CNN in detecting and classifying
hand movements. In [61], Devineau et al. suggested a new convolutional
network architecture for 3D dynamic hand gestures relying on hand skeleton
data. In that case, the gestural input is received from an Intel RealSense
camera, which describes the user’s hand through 22 joints: it returns
four joints for each finger, while the others represent the centre of palm
and wrist respectively. The architecture proposed by Devineau et al. is
a multi-channel CNN that processes in parallel these sequences of hand
joints positions, classifying complete hand gestures. They evaluated the
implemented system using the DHG dataset from the SHREC2017 - 3D
Shape Retrieval Contest [153]; the recognition accuracy achieved is 91.28%
in the 14 gesture classes case and 84.35% in the 28 gesture classes case.
Kopiski et al. combined depth data extracted by Time-of-Flight (ToF)
sensor and convolutional networks to detect mid-air hand gestures [116].
The suggested solution relies on a new feature generation technique which
converts the point clouds extracted from depth data in a suitable size for
CNN. Strezoski et al. [219] compared the performance of different types of
CNN on hand gestures using the Marcel dataset [147].

In literature, we can find different works employing waveforms as
features in gesture recognition applications. In the last years, researches
have proposed approaches combining wireless signals and CNN. Kim et
al. [112] tracked the user’s hand movements using impulse-radio (IR)
signals and a wireless sensor. This sensor consists of a transmitter and
a receiver: the former generates the signals while the latter receives the
waveform reflected from the hand. Kim et al. classified waveforms by

Alessandro Carcangiu Combining declarative models and computer vision recognition algorithms for stroke gestures



26 Related Works

CNN, according to their amplitude and phase. In a recent work, Ma
et al. [143] presented SignFi, a sign language recognition system based
on wireless sensors. In this technique, hands input is obtained from
WiFi packets and expressed as Channel State Informations (CSIs): CSI
is utilized in wireless communication to represent the signal propagation
quality, from the transmitter to the receiver, describing scattering, fading
and so on. Once the CSI measurements are received, these are pre-
processed with the aim of removing noise. Finally, SignFi submits them
to a 9-layer CNN for the sign classification. Ma et al. evaluated the
system in three different conditions, reporting an accuracy ranging between
94.81% and 98.01%. The application of convolutional networks in sign
language was studied also by Rakowski and Wandzik [189], who assessed
the performance of three state-of-the-art deep CNN architectures for
recognizing hand signs representing alphabet letters and classifying 60
common signs. The classification tasks are performed respectively on the
American sign language fingerspelling dataset [186], and the 1 Milion hands
dataset [115]. Neverova et al. [171, 172] detected sign language gestures
applying only RGB-D images and upper-body skeletal motion data to
convolutional networks.

In 2013, Ji et al. in [96] applied CNNs in action recognition. This
work proposed a three dimensional CNN for recognising 3D movements.
The novel model is obtained using a 3D kernel, allowing to capture spatial
and temporal features from adjacent frames. Ji et al. compared the
performance of their method with the other state-of-the-art techniques,
achieving an average accuracy of 90.2% with the KTH dataset [201].

Time-Delay Neural Network The Time Delay Neural Network is
another specialised class of neural network, as its name suggests. Compared
to NN, it classifies patterns with shift-invariance, avoiding the need of
segmenting data during training. This type of net models the context at
each layer of the network, receiving inputs from a contextual window
of outputs from the previous layer. It was first designed for speech
recognition [236] and it has found wide employment in other recognizing
temporal patterns, including gesture recognition.

In 2001, Yang and Ahuja proposed a recognition hand gestures algo-
rithm [247] based on trajectories, where the user’s movements are extracted
from video sequences in two phases and recognized by TDNN. In the first
step, they used a multi-scale segmentation method for partitioning ev-
ery frame image into regions; then, consecutive frames are compared,
highlighting the regions with similar pixel correspondences. Moreover,
these pixels are concatenated and grouped based on their 2-view motion
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similarity from which the motion trajectories are extracted. Then, it relies
on a time-delay network to recognize motion patterns from trajectories
and regions, achieving an accuracy of 96.21% with 40 hand gestures from
American Sign Language. The performance and the motion extraction
were further enhanced by Yang, Aruja and Tabb in [248]. These are the
first works where a TDNN is employed in recognizing gestures. Another
work focusing on sign language recognition using time-delay networks is
presented by Bhowmick et al. [20]. In this method, the gestural input is
acquired by webcam, using a skin colour segmentation model to extract
and track user’s hand in the received frames; the authors described the
segmented hand through a set of features that consists of orientation,
gesture trajectory length, velocity, and acceleration. These features are
then applied to an MLP and a TDNN to recognize, respectively, static and
continuous gestures. In experimental tests, they achieved a recognition
rate of 92.5% for static gesture and 87.14% for dynamic movements.

Modler and Myatt, in [158], proposed a gesture-based method for
controlling sound parameters in an interactive music system. In their
method, gestures are defined as a cyclic sequence of two poses, such as
index moves up and down or flat hand moves up and down. The method
obtains left-hand poses from images, extracting the features through 2D
spatial Fourier Transformation and high-cut filtering to reduce and smooth
data. Modler and Myatt employed a time-delay net to recognize the
gestures. TDNNs are also used in low power gesture recognition solutions:
Liu et al. presented Virtual Trackpad [137], an online wireless hand gesture
recognition device based on electromyography signals for tracking hand
movements. It is able to detect 10 common hand gestures, extracting
the features from four differential EMG channels and applying them to
time-delay neural network. The device generates an event when a gesture
is recognized, achieving an accuracy of 94% with low-latency and low
resource consumption.

Random Forest

The Random Forests (RFs) algorithm, or random decision forests, are a
group of supervised ensemble methods which use multiple models with the
aim of improving the prediction in classification, regression or other tasks.
In summary, the basic component of RFs is the decision tree, that is a pre-
dictive model consisting of nodes (decision or end) and edges, represented
by a tree-like graph and organized on multiple layers. In a decision tree,
the predicted value to return is defined according to the reached leaf and
the followed path. There are several versions of random forest, which differ
in optimization, features, classification and in the design of forest [138].
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Breiman wrotes an exhaustive article discussing random forest [29].

We can divide random forests approaches according to both features
used or gesture types recognised, akin to precedent techniques. Liang
et al. [132] developed a gesture recognition system that extracts user’s
hand poses from RGB-D images. Song et al. [213] relied on the ensemble
methods to recognize in-air static hand gestures in real-time from colour
data. Their work is applicable to whichever device equipped with RGB
camera, and the classification consists of three steps, performed by likewise
random forests: First, the hand is classified into three levels of depth, the
next component classifies the hand according to shape, while the other one
detects the location of fingertips and wrist for fine-grained performance.

Different works recognize gestures by using skeleton data in random
forests. Canavan et al. [35], recognize hand static gestures using data
received from a Leap Motion. They described the input through six fea-
tures, such as fingers binary representation and max fingers range, starting
from the joints contained in the received frames. The computed features
are then fed to forests classifiers, achieving an accuracy of 100% with the
University of Padova Microsoft Kinect and Leap Motion dataset [177], and
98.36% with a dataset of static poses created by the authors. Similarly,
Joshi et al. [100] focused on skeleton data, introducing a multi-class RFs-
based framework for continuous gesture detection, in which user input
is represented combining 3D joint position with colour and appearance-
based features. The evaluation of that framework is conducted using
the NATOPS [214] and the ChaLearn [70] datasets, achieving an average
recognition rate respectively of 87, 35% and 88, 91%. The appearance data
and the random forests find application also in [26,106] for detecting static
poses, while [136] recognizes stroke gestures by applying RFs to segmented
trajectories.

Balli Altuglu and Altun [13] evaluated the efficiency and efficacy of ran-
dom forests to classify touch gestures, using different feature sets (gesture
duration, mobility, pressure data, Hurst exponent, touch coordinates etc.).
They evaluated the approach on two datasets: i) Corpus of Social Touch
(CoST) [178] with 14 gestures, and ii) Human-Animal Affective Robot
Touch (HAART) [179] that includes 7 gestures. This system participated
in the Recognition of Social Touch gestures Challenge 2015, achieving an
accuracy of about 50% and 70%, depending on the dimensions of training
and test sets. A similar classifier method is presented by Gaus et al. in [75]
for the same challenge. In that case, the authors coupled random forests
with Boosting methods for labelling the touch gesture classes, using the
Binary Motion History, histograms, and pressure data as features. They
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recorded an accuracy of 67% for HAART dataset and 59% on the CoST
dataset respectively.

The approaches described until now acquired the user movements by
either camera, depth sensor or combined devices like Kinect and Leap
Motion. Various methods based on other sensors exist and they have
been presented in the later years. An example is the system by Zhang et
al. [256], which defined a hand gesture recognition system for wearable
devices, based on an electromyograpich (EMG) armband, a device able to
track the electrical activity produced by skeletal muscles distinguishing
finger configuration, hand shapes and wrist movements. Such approach
is designed to be independent of the wearing position, further improving
sensor’s robustness. Fundamentally, the work suggested by Zhang et al.
is composed of four basic elements: i) the first component filters and
segments received signals by pre-processing; ii) the second decomposes
pre-processed electromyograph data into Intrinsic Mode Functions (IMFs),
(IMF representation allows to extract instantaneous frequencies using the
Hilbert transform); iii) the next part extracts time and frequency domain
from both EMG and IMFs; iv) finally, the last component is the random
forests classifier for predicting the position of the wearable device and to
detect the dynamic hand gesture using position and features. Another
system was proposed by Smith et al. [210] for human-car interfaces. The
input is received using an mm-wave radar sensor, which allows detecting
precise features of fine motion, namely range, acceleration, energy total,
energy moving, velocity, velocity, spatial dispersion, etc. These features
are then applied to an RF classifier, allowing real-time recognition and
achieving an average accuracy of 90%. Normani et al. [175] presented a
low-power, offline, hand gesture recognition system that tracks user input
through Lensless Smart Sensors, combined with infrared filters and five
hand-held LEDs. For each received frame, it computes a set of features
based on the Discrete Fourier Transformation. The system involves a
random forest to recognize gestures, showing an accuracy ranged between
90% and 91%.

In gesture recognition, random forests are not employed only as classi-
fiers. They are applicable even to either segment hand static poses from
depth images, such as [141, 227], or in curve modelling to distinguish
between strokes movements (drawing gestures) and hover movements [25].

2.1.4 Unsupervised Algorithms

In this section, we summarize different approaches which involve unsu-
pervised classifiers in gesture recognition solutions. At the beginning of
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the section about classifiers, we mentioned some peculiarities that concern
unsupervised algorithms. They are characterised by a procedure in which
they autonomously learn to distinguish regular patterns in the training
data. In opposition to supervised algorithms, they are trained using unla-
belled samples, subdividing and structuring data according to common
features, in order to discern more about the samples. In other words, they
learn automatically to distinguish the available classes that compose the
training dataset [87]. Generally, unsupervised learning problems can be
grouped into clustering and association problems: the former is related
to the discovering of the inherent groupings in the data, while the latter
is useful to discover the features that describe large portions of data.
The main approaches are k-means for clustering problems and Apriori
algorithm for association problems.

The unsupervised learning approach is employed either for a complex
classification task that humans would not deal with correctly, or when the
available training datasets are huge and not subdivided into classes, thus
it is expensive to label samples manually. On the one hand, unsupervised
algorithms relieve workload from humans both defining classes and for the
training phase. On the other hand, it is not possible to analyse and evaluate
the produced structure. In addition, the classifier is trained without using
labels, thus there is no simple way for developers or designers to understand
which and how many classes will be recognized, especially when the
contents of the dataset are unknown. Consequently, the uncertainty about
the detectable classes makes the unsupervised classifiers poorly suited for
designing gesture interfaces. It is worth pointing out that a proper user
interface has to know a priori the input vocabulary, and that notion is valid
for both keyboard/mouse input and gestures. Such knowledge supports
the development of guidance systems with the aim of providing feedback
and feedforward, advising the user during the interaction.

Different works have proved the usefulness of unsupervised algorithms
in gesture recognition systems. A vast part of these methods called semi-
supervised algorithm, combine unsupervised and supervised classifiers
trying to mitigate the aforementioned problem. The first ones are em-
ployed to segment both data and received videos or to extract features from
the acquired input; the other ones are applied to the computed features to
recognize gestures. For instance, Ge et al. [76] used a Distributed Locally
Linear Embedding (DLLE) unsupervised algorithm for determining the
inner structure properties of the acquired images. Then, it classifies static
and dynamic hand gestures sending the estimated properties to a proba-
bilistic neural net. Ma et al. [142,221] recognize hand gestures employing
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an extended version of the auto-encoder neural network, extracting edge
features from Kinect images. Simao et al. [208,209] designed a method for
segmenting continuous data stream for finger and arm gesture recognition
systems. For tracking motions through a wearable device, they relied on an
unsupervised approach to divide input stream into either static or dynamic
segments, registering an error rate of 2.70% with a sliding window of 20
frames. Liu et al. in [134] implemented a framework for transferring the
learning based on an unsupervised sequence model: the Markov Random
Field (MRF). They apply it to capture the dependency information be-
tween frames, joining the learned parameters with a Conditional Random
Fields in a gesture recognition system.

Other works applied unsupervised algorithms on action recognition
in different contexts, such as assisted living applications [162], human-
robot interaction [12], or to detect Karate movements [84]. Moreover,
unsupervised methods were also employed by Glowinski et al. to evaluate
expressive motions [78, 79]. Substantially, they aimed to find the minimal
representation necessary for describing affective gestures. Therefore, they
extracted and compared a set of non-verbal gesture features, such as
smoothness, symmetry, head leaning, energy etc. and they determined
the minimal representation using the PCA, reducing features dimensions.
After that, they compared the sets of features for classifying emotions with
a two-steps clustering for classifying emotions.

2.1.5 Classification approaches using primitives

As we already mentioned, machine learning approaches applied the notion
of sub-part definition in different research work. Such solutions are relevant
for our work since they would be useful for designing interfaces. In this
section we discuss them, highlighting their benefits in developing user
interfaces and the differences with respect to our approaches.

Classification methods that identify a set of sub-parts (or primitives)
common to different gestures have been proposed for either increasing
the recognition rate or to reduce the training set size in learning-based
approaches. Consequently, they are not thought to help UI developers.
Primitives can be broadly defined as a set of distinguishable patterns
from which either a whole movement or a part of it can be reconstructed.
Different and specific definitions of “primitive” have been considered in
the literature: they may represent basic movements (e.g., raising a leg,
moving an arm to the left), static poses, or characteristic patterns of
low-level signals like the Fast Fourier Transform. In the following, we give
representative examples of each interpretation of the primitive concept.
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In [249], primitives are identified using a bottom-up clustering approach,
aimed at reducing the training set size and at improving the organisation
of unlabeled datasets for speeding up its processing. Gestures are then
labelled with sequences of primitives, which is close to a representation
useful for building UIs. However, since primitives are identified automati-
cally, they are difficult to understand for designers while creating feedback
and feedforward systems, since they are salient for the recognition but
they may be not for the interaction. In [44] primitives are defined in a
context-grammar established in advance using a top-down approach, which
is more suitable for UI designers since they can select meaningful primitives.
However, such approach is affected by the opposite problem: designers
may not be able to identify those easily distinguishable from each other,
since usually they do not have a clear understanding of the underlying
classification algorithms. Natarajan and Nevatia in [169] used primitives
together with a three-level HMM classifier architecture for recognising i)
the primitives, ii) their composition and iii) the pose or gesture. However,
in this case, unsupervised learning was used for defining both primitives
and their composition, which is not suitable for building UIs.

Vamsikrishna et al. [228] proposed a palm and finger rehabilitation
system which combines discriminant analysis (DA), SVM and HMM.
This system is able to recognize both rehabilitative gesture sequences
and its components, analysing 3D gestural input acquired through Leap
Motion. They employed DA and SVM to recognize isolated gestures, while
gesture sequences are identified through HMMs. The method proposed
by Vamsikrishna takes advantage of sub-parts to provide online feedback,
helping users to perform rehabilitation movements with an average accuracy
of 99.09%. On the one hand, this work shows an example of the potential
of primitives in user interface design. On the other hand, in contrast to
our work, they do not support the composition and the extension of the
gesture dataset. Deng and Tsui [59] proposed a solution for segmenting
isolated gestures in a continuous input stream through HMMs. They are
able to recognize 16 different pre-defined trajectory primitives, expressed
as line with a certain slope, employing a simple left-right Markov chain.
Such an approach was evaluated using 50 samples, each one consisting of
4 distinct strokes, with an accuracy of 94.5%. The idea of representing
a gesture as a sequence of atomic components underpins the solution
proposed by Walter et al. [237]. They proposed a method which is able to
automatically segment and cluster continuous input stream in a sequence
of atomic poses, without using labelled samples. The segmentation and
detection are performed analysing the received trajectories: a sequence of
primitives, namely a gesture, is described through a mixture of Gaussian
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components. They defined a different mixture of components for each
gesture using an unsupervised algorithm. On the one hand, the method
suggested by Walter et al. improves the performances in unsupervised
gesture recognition systems, but on the other hand, it is difficult to apply
in real UIs, considering the limited scope of the vocabulary.

A set of primitives that suits better the designer’s understanding in-
cludes 3D properties of the movement trajectory. For instance, in [170]
primitives are identified in a 2D video and used for classifying 3D move-
ments. The primitives are functions on the 2D features that represent the
user’s state. Yang et al. [246] relied on primitives to detect a 3D motion
trajectory. More in detail, the approach proposed by Yang et al. parses
the whole user input into four types of trajectory primitives, based on
their shapes. The four primitives recognisable are:

1. Primitive type A is a straight line including at least three consecutive
points which are collinear.

2. Primitive type B consists of three or more sequential points which
describe an arc on a plane, namely these points are not collinear but
coplane.

3. Primitive type C consists of four or more points describing a right-
hand helix if they are not coplane and the direction of every four
sequential points is positive.

4. Primitive type D describes a left-hand helix; in contrast to primitive
C, in each one of the four sequential points the direction is negative.

After parsing the trajectory in a sequential series of primitives, such
approach further subdivides parsed primitives into sub-primitives according
to a shape feature that describes the curvature (type B) or the torsion (type
C and D). Then, the sequence of sub-primitives is detected by using trained
HMMs, one for each class recognizable. Our approach G-Gene parses input
user’s movements in a similar way to Yang et al. solution; however, in
contrast to their approach, G-Gene works online and provides a gesture
modelling language supporting the definition of new gestures. Holte et
al. [89] proposed a representation more linked to geometric features in the
3D space for identifying primitives; however, both approaches require the
understanding of the underlying mathematical representation, which is
not feasible for UI designers that usually do not have such skill.

The system proposed by Araga et al. [11] has the peculiarity of de-
composing real-time hand complex gestures in a sequence of poses. More
precisely, that system couples a hand posture classifier with a JRNN: the
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former detects the poses in received video frames using RGB-D data, the
latter assigns a predefined label to poses in the input sequence. They
compared the suggested architecture against conventional methods, and
their results show that the method outperforms the others if movements
are performed slowly. John et al. in [98] labelled gestures using recurrent
networks, while Ng and Ranganath combined radial basis function neural
network and Markov sources to recognize, respectively, poses and complex
gestures [173].

Kratz and Wiese [120] proposed a method to improve gesture segmen-
tation algorithms using gesture execution phases and inertial measurement
units as features. In their work, gestural execution is subdivided into three
distinct phases: start, middle and end. They employed crowd workers to
label these phases recognizing them by SVM classifiers and comparing
the obtained results with heuristic approaches. Gesture segmentation
is a significant issue in user interfaces development. On the one hand,
this approach is helpful in defining more flexible UIs, showing feedback
and feedforward based on the recognised phases. On the other hand, the
approach proposed by Kratz and Wiese does not support the creation and
definition of new recognizable gestures. The approaches discussed in this
dissertation support developers to both define new strokes easily and track
the movements the user has just performed.

To our knowledge, Kim et al. [111] proposed the most similar approach
to the work discussed in this dissertation. It decomposes gestures into
application-specific “primitive strokes”, and uses a distinct HMM for mod-
elling each stroke; each gesture is then modelled by a composite HMM
obtained by concatenating the corresponding stroke models. Similarly
to [122], this technique is valid for describing stroke sequences, which
corresponds to the sequence operator in our proposed model language.
Instead, as we will show in chapter 4, DEICTIC is able to define more
complex composite gestures, including iterations (iterative operator), al-
ternative paths (choice operator) and parallel stroke recognition (parallel
operator). In addition, the method in [111] requires a re-training step with
samples of the complete gesture for avoiding degradation in the recognition
performance.

In this section, we reported and analysed different vision-based methods
for classifying gesture in real-time or offline. If on the one hand they offer
a higher accuracy, on the other hand they are not designed to provide
additional information about the level of completion of gesture; in other
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words, they do not support those feedback and feedforward mechanisms
which help users during tasks. On the contrary, the approaches proposed
in this dissertation support developers to both track the movements the
user has just performed and recognize gestures accurately. In particular,
these methods rely on HMMs to accomplished gesture recognition. In a
HMM, the current state depends only on the probability of being in the
incoming states; experimental tests showed that Markov models allow to
determine the progress of a gesture execution in real-time when they are
applied to local features. A deeper description of HMMs is included in the
section 3.2.

2.2 Gesture Description Models

In this section, we summarise different compositional approaches based
on heuristic gesture recognition. We point out that most of them do not
include a formal evaluation of the recognition accuracy. Declarative models
mainly aim to support developing gestural interfaces in different ways. For
instance, by simplifying the creation of gesture recognizer, introducing a
simple language tool for easily defining gestures, handling and processing
the input received from various kind of devices, splitting a gesture in
more sub-parts, generating events when a gesture and/or its primitives are
recognized, assisting developers to define the interface behaviour according
to the user input, and so on. In other words, description models allow
reducing the developers’ workload in building gesture interfaces. Generally,
in these models, gesture recognition is accomplished employing heuristics
rather classification approaches. On the one hand, this solution is more
appropriate for improving the generation of feedback and feedforward in
gestural interfaces. On the other hand, it lacks in accuracy and robustness.

Declarative approaches allow splitting a gesture into several sub-
components. There are different compositional approaches based on
heuristic gesture recognition. Kammer et al. [102] introduced GeForMT,
a language for formalizing 2D multitouch gesture for filling the gap be-
tween the high-level complex gestures and data from low-level devices.
For instance, the pan gesture, and the low-level device events generated
according to the user input. In GeForMT the gestures are defined using
an Extended Backus-Naur form grammar, and they are represented as
a sequence of touches. The gestures are formalized using five different
components:
• The pose function. In GeForMT, the user input is grouped into

continuous contacts called pose functions, that describe the shape
of the tracked touch. GeForMT is designed for handling finger and
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hand input respectively represented as ’F’ and ’H’.
• The atomic gestures, namely the primitives used to build more

complex gestures. They describe the movements of the tracked touch
and are categorized into point, hold, move, line, circle, and semicircle.
• composition operators, they are used for describing the temporal

evolution of the gesture; Kammer et al. implemented three operators:
sequence(,), parallel(*) and asynchronous (+).
• The current focus, which specifies the object, or objects, connected

to a specific atomic gesture.
• The area constraints, which specify the relative movements among

the different primitives. The possible relations are CROSS, indicates
the overlapping, SYNC, employed when two primitives have to move
in parallel, JOIN, describes a converging motion, and SPREAD,
represents two atomic gestures that depart from each other.

Therefore, gestures are the result of the grammar productions of these
five components. For example, figure 2.5 depicts the creation of the
two fingers rotate gesture. The left part of 2.1 shows the expression
which defines the underlying gesture. The rotate gesture is obtained from
the composition of two different primitives: i) 1F (HOLD(o)), describes
the hold touch on a particular object; and ii) 1F (SEMICIRCLE(o)),
expresses the rotational movement of the other finger. The asynchronous
operator + specifies that the second primitive is performed only while the
first is still in progress. Differently from the approaches presented in this
dissertation, GeForMT does not implement the choice operator, thus it is
not able to describe the same gesture with alternative expressions. In our
approaches, we use a subset of the primitives implemented in GeForMT,
wide enough for defining a large set of different combined stroke gestures.

Figure 2.1: The expression which defines the rotate gesture in
GeForMT [102]

Another approach for multitouch events is proposed by Scholliers et
al. [199]. They defined Midas, an architecture that supports the declarative
definition of gestures using multiple tracking devices. In Midas, gestures
are expressed and recognized according to a set of logical rules. In that
case, a single rule represents a primitive and consists of:
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• A name, which identifies the primitive.
• A prerequisite fact, which defines the input pattern to be recognized

(for example the 2D position, the speed etc.).
• An action, which is the operation performed when the underlying

primitive is detected. It represents the UI behaviour connected to
this primitive.

A rule contains both the definition of a primitive and the UI behaviour.
In addition, this architecture requires the developer to define a priority
level for each rule, in order to avoid the overlapping between gesture with
similar primitives, for instance, the single click and the double click. In
Midas, complex gestures are expressed as the combination of two or more
primitives by using four different types of operators:

• The temporal operator, which describes the time relations among
the primitives, allowing to build complex gestures whose different
components occur with the specified temporal relationship.
• The spatial operator, similarly to the temporal one, defines the

spatial constraints that connect the sub-components.
• The list operator, which allows considering a set of events within a

specific time frame.
• The movement operator, which is used in combination with the list

operator. In summary, it verifies that a certain property is valid for
each list’s component.

Figure 2.2 depicts an example of a right swipe gesture created using
Midas. The right part shows the expression which defines the swipe. It is
expressed as a sequence of cursor events, performed using the same finger,
within a small time interval and in which the user progressively moves the
finger to the right. The approaches described in this dissertation employ
an equivalent set of operators.

Figure 2.2: The swipe right and its related expression defined by using
MIDAS [199].

Inspired by Midas, Hoste et al. proposed Mudra [91], an extension of
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Midas for multimodal interfaces. This architecture is able to unify the input
stream coming from different devices, such as the skeleton data acquired
by Kinect, cross-device multitouch information via TUIO and Midas,
speech, and accelerometer data. Substantially, it can extract meaningful
information from raw data, by processing and encapsulating multiple
feature streams according to the semantic interpretation of high-level
events. In other words, Mudra combines into a single software architecture
the handler of low-level events and the definition of high-levels. When
Mudra receives an input frame from one of the possible trackers, this is
converted into a uniform representation that describes at high-level the
user input. Mudas extends Midas in different ways. First of all, it expands
the rule language by supporting more features, such as speech, hand
movements, and multi-users. The underlying architecture strengthens the
declarative language by providing new operators, for instance, the negation
of an event and new attribute constraints. However, similarly to Midas,
it couples the gesture expressions with the UI behaviour. Compared to
Midas, our approaches are independent of the input stream but, on the
other hand, we do not provide a multimodal interface for handling different
input devices.

Khandkar et al. introduced the Gesture Description Language (GDL) [110]
a flexible and extendible domain-specific language for multitouch appli-
cations, which supports developers in using gestures independently from
the tracking device. Substantially, it allows both to declaratively define
new gestures hiding their low-level implementation, and to use them in
multiple hardware platforms. In GDL, the gesture expressions consist of
three components:

• The name, employed to uniquely identify the gesture within the
application;
• One or more validation blocks, which describe the temporal evolution

of the gesture evaluating the raw data to detect the gestures. Each
block corresponds to a primitive and consists of a simple boolean
function.
• One or more return types, which represent the data notified to the

application logic only when the gesture is entirely recognized. The
returned data is notified using callbacks. It includes different infor-
mation, such as touch positions, the number of touches, directions
and so on.

Figure 2.3 represents the expression for defining a Lasso gesture, which
allows selecting a set of multiple objects (visible in the left part). The
right part depicts the code defining the gesture called Lasso: the gesture
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is performed when a single touch forms a closed loop with the specified
dimensions. GDL is a compositional model that facilitates the reuse of
gesture recognizers for building other expression gestures. Unlike the other
discussed approaches [91, 199], in GDL the gesture definition does not
include the UI behaviour. Compared to our models, it is not able to
generate events when a single block of a gesture is recognized. Therefore
it is not possible to bind a handler to gesture’s sub-parts.

Figure 2.3: A “Lasso” gesture for selecting objects defined using a
GDL [110] expression.

More structured and expressive declarative methods are Proton++ [114]
and GestIT [215, 216], which we consider as two of the most complete
declarative and compositional models for gestures. They clearly separate
the concerns of UI description and behaviour, and they define a set
of operators that are both understandable and effective for designers.
Proton++ is a framework allowing developers to declaratively describe
custom gestures, separating the temporal sequencing of the events from
the code related to the UI behaviour. It aims to recognize multi-touch
gestures in mobile or touch-screen applications. The framework was
designed to reduce developers’ workload in creating and extending the set of
recognizable gestures. On the one hand, Proton++ provides to developers
a graphical editor for building and modifying gesture expressions. On the
other hand, it prevents conflicts between composed gestures, avoiding the
addition of two o more similar gesture definitions. It highlights the common
components between two or more gesture expressions, supporting the
developers to either remove the ambiguous expression or assign a different
probability to similar gestures. The gesture recognition is accomplished
according to the detected touch events. Proton++ converts the acquired
user input in a touch event stream, generating a new event when one of
them is handled by the defined regular expressions. When one or more
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gesture is recognized, this framework invokes their callbacks selecting
those with the highest confidence scores. Gestures are defined as regular
expressions, more specifically as a sequence of multi-touch events, where
literals are identified by a triple composed of:

1. The event type, e.g. 1 touch down, move and up.

2. The touch identifier, e.g. 1 for the first finger, 2 for the second etc.

3. The object hit by the touch, e.g. the background, a particular shape,
a widget, etc.

Proton++ allows developers to declaratively describe custom gestures
through regular expressions, using the concatenation, alternation and
Kleene’s star operators. Figure 2.4 depicts an example of gesture definition
through Proton++. The gesture is a simple two-hand rotate (pan) gesture,
consisting of three different components, namely start, move and end.
Each one corresponds to a different colour in the figure. Developers build
the entire expression by composing different touch events. These latter
ones are represented in the EOT form where: i) E specifies the event type
that can be D for touch down, M for touch move and U for touch up; ii)
the O indicates the touchable objects, s for the triangle shape in the figure
or a for any object; and iii) T is an integer identifying the touch. The
gesture expression is obtain composing such literals through the regular
expression operator. Considering figure 2.4, the red part relates to the
start part of the gesture and describes when the user touches the screen
with two fingers. Then, the user can move iteratively the two fingers,
diverging or converging the hand according to the rotation that she/he
wants to be applied. The green part of figure 2.4 shows that component.
Finally, the gesture is completed when the user raises both fingers from
the screen, represented in the blue part of figure 2.4.

An improved version of the framework, presented in [113], supports
tracking a set of computed attributes associated with an expression literal.
For instance, developers can define a heuristic for validating the on-screen
finger trajectory and bind it to touch move events. The framework raises
the associated events (i.e. it recognises the literal) only if trajectory
is accepted by the heuristic e.g., it moves north, north-west, south etc.
GestIT [215,216] follows a similar approach, including operators for defining
more advanced gestures. As discussed in [216], they are a superset of those
defined by regular expressions. Gestures are modelled through expressions
defining their temporal evolution, combining two main elements: ground
and composite terms. The approaches proposed in this dissertation rely
on GestIT, and its operators, to model complex and basic gestures as
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Figure 2.4: The rotate gesture defined in Proton++ [114].

a combination of small Markov sources. We analyse in more detail its
components in section 3.3.

Another framework which supports developing gestural interface is
GISpL [66]. GISpL is a formal language designed for different interaction
modalities, including multitouch, mouse, tangible tokens, mid-air gestures
and pointable devices. It allows developers to unambiguously describe the
behaviour of gestural interfaces using a JSON-based syntax. In particular,
GISpL represents a high-level interface between a gestural application and
input devices: figure 2.5 shows the processing pipeline in GISpL. This
framework can receive input from different kinds of devices. The user input,
called also input event, is filtered by a list of regions, which are employed
to extract a set of features, namely simple mathematical properties of
the raw input data, such as the count of different object in a region,
the matching accuracy between a predefined path and the one travelled
by a given input object etc. Finally, features are employed in order to
determine if a defined gesture is correctly performed. When a gesture is
recognized, GISpL sends to the target application a specific event. On
the one hand, GISpL supports the reuse of the gesture definition in other
applications and the separation between the gesture recognizers and their
effects on the interface. On the other hand, contrary to Proton++ and
GestIT, GISpL does not define compositional operators, and it does not
support the definition of more complex gestures describing their temporal
evolution. Hoste and Singer [92] provide a useful comparison between
these techniques.

Cuenca et al. proposed Hasselt [50], a declarative language for rapid
prototyping based on finite state machines. It is designed to be an alter-
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Figure 2.5: The processing pipeline which characterized GISpL [66].

native to event-driven languages, such as GestIT or Proton++, avoiding
the ’callback soup’ problem. More specifically, it allows defining gestures
as a combination of one or more events, providing to bind these events to
their handler automatically. Therefore, in Hasselt, each composite event is
handled by generating an FSM. Every node contained in the FSM can be
associated with a certain handler. This solution is suitable for providing
feedback and feedforward in gestural interfaces.

Primitives can be employed to facilitate the definition of complex
gestures. An example is a tool implemented by Krupka et al. in [122].
More specifically, Krupka et al. designed a language, and a set of tools,
supporting developers to build and recognize poses and hand gesture
definitions using a 3D camera. In their language, a gesture is a sequence
of static poses that are characterized, and distinguished from the other,
applying six basic proposition related to the fingers and palm center:

1. The palm and fingers pointing direction, e.g. ’the index finger
point up while the thumb is on pointing left’. The direction of the
object is quantized into: ’Left’, ’Right’, ’Up’, ’Down’, ’Forward’ and
’Backward’.

2. The palm relative orientation, which describes the direction pointing
from the wrist to the base of the middle finger.

3. The finger flexion, open or folded. A finger is considered folded
whether its tip is near the hand.

4. The finger tangency, which expresses the relative distance among a
pair of fingers as either ’touching’ or ’not touching’. For instance,
consider index and thumb fingers: this pair is considered very closed
if their distance is lower than a certain threshold, therefore the
proposition will be ’thumb (or index) is touching index (or thumb)’.
Vice versa, the developer uses the proposition ’is not touching’.
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Figure 2.6: The description of the ’Rotate Right’ gesture using the three
tools designed in [122], respectively: the first part (a) shows the poses
defined using the visual gestural builder; the second (b) is the gesture de-
scription in C# codex; in the third part (c) the same gesture is represented
in the XAML format.

5. The finger relative position. Given a pair of fingers, e.g. a and b, it
defines the direction of a in relation to b.

All the possible propositions, and their combinations, supplies a suitable
and complete language for defining complex gestures. The gesture expres-
sions are saved in XAML format, and this underlying framework provides
to developers three different means for building a gesture, a XAML text in-
terface, a C# interface, and a visual gesture builder. Figure 2.6 shows the
definition of a new gesture by using each solution. The represented gesture
is a simple ’Rotate Right’ that is composed of two poses: i) starting with
the index above the thumb, and ii) ending with the index finger right of the
thumb. A developer defines a gesture using a visual tool, namely modelling
the static poses manually, or the C# syntax and XAML format, specifying
each proposition and connecting the defined poses. The sequence of static
poses is recognized using a set of convolutional table ensembles (CTE)
classifiers trained on a large annotated dataset. In the evaluation tests,
Krupka et al. noticed an average accuracy of 96%. This work is similar
to our approach, allowing to declaratively define a gesture as a sequence
of sub-movements. However, it does not support the definition of more
complex gestures, such as iterating the same sub-component, describing
the same gesture with a different path, and recognizing parallel strokes.

2.3 Gesture Interface Design

Over the last years, gesture interaction has become widely popular since the
introduction of the iPhone in 2007. Compared to canonical input, such as
through mouse or keyboard, a gesture may last for several seconds including
the execution of several and complex movements. Gesture interaction may
require a high cognitive load to both novice and expert users. In particular,
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errors are more likely to happen in absence of a guidance system. Indeed,
in this case, users easily fail in executing or forget a gesture. In this section,
we summarize the frameworks and methods proposed for implementing
guidance systems in gestural UI. These systems rely on feedback and
feedforward for advising and supporting the users during tasks. Different
works proved that they are a strong mechanism for learning gestures and
reducing errors.

An efficient feedback and feedforward mechanism for stroke gestures
may require the recognition of both the whole gesture and also its sub-parts.
On the one hand, the feedback informs the user about the recognition
process and the system’s state, such as status of the executed movement
path, error messages on incorrect movements or the current position on
a correct movement path. In both cases, feedback is displayed during or
after the execution of a gesture. Feedback mechanism is able to convert
low-level information into graphical or text data. According to Bau and
Mackay [14], it consists of three steps:
• Acquire recognition rate for each class from the recognizer; depending

to the classifier, it can return discrete or continuous data;
• Convert and filter data;
• Represent feedback to users;

Through the feedback a user understands whether the performed move-
ments are correct or not, and she may adapt the following actions if
necessary. On the other hand, feedforward mechanism advices the user on
possible continuations for the interaction. It is employed for showing the
association between a particular gesture and the relative system behaviour,
prior to the execution or the completion of the underlying gesture. This
mechanism can also be used for guiding the user in performing tasks, for
instance highlighting the possible ways for concluding the current gesture.
Bau and Mackay [14] subdivides feedforward systems according to:
• Level of detail, which can range from show a minimal hint to describe

the whole gestures.
• Update rate, which is closely linked to the level of detail. Similarly

to feedback, feedforward can be displayed prior to or during the
execution.

Delamare et al. [56,57] proposed a design space which defines and organizes
those design option that can be applied to any dynamic guide for gesture-
based interaction. In their design space, the feedback and feedforward
mechanisms are described along four component groups (axes), which
define the behaviour of a guiding system:

When This group describes the temporal characteristics of feedback and
feedforward mechanisms according to three temporal steps, in which
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they may intervene: i) the beginning, or trigger, related to when
the user starts the gesture; ii) the execution, namely when the user
is performing the gesture; iii) and the end, when the gesture is
performed.

What In this group, Delamare et al. defined the content displayed
through the feedback and feedforward mechanisms. The feedback
mechanism may notify information about the state of the performed
gestures (user’s evaluation) and the gestures that are recognized or
intended (system’s evaluation). The feedforward mechanism guides
the user about the set of gestures managed by the system (providing
information about all the available gestures, a subset of them or only
on one gesture).

How It characterizes the means used for showing the feedback and the
feedforward to the user. They depend on both the sensory input
type used and the visual modality adopted.

Where It describes the spatial relationship between the places where the
user executes the gesture and where the feedback and feedforward
mechanism are displayed.

Different properties characterise deictic and semaphore gestures; on the
one hand the first type is employed mainly to select interface items, on the
other hand, the second type is mostly associated to send commands and
functions. Therefore, these differences are reflected also on the adopted
feedback and feedforward mechanisms. Pointing systems rely on target
expansions techniques to help the user in the selection. According to
Guillon et al. [81], these methods consist of two basic movements:
• The expansion algorithm, which determines how to decompose the

space among the selectable items (an example of expansion algorithm
is the Voronoi tessellation);
• The visual aid displayed, which Guillon et al. [81] described along

three axes:

1. The dynamicity axis, namely the update rate of these aids.
i) static if the target expansion algorithm does not change
the aid during movements; ii) discrete when aid is updated at
prefix points; and iii) continuous if the changes follow the user
movement.

2. The expansion observability axis, this point indicates if the
target expanded area is displayed (explicit) or not (implicit).

3. The augmented element axis, determining which interface item
is expanded (cursor, target item or space).
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One of the first gesture guiding mechanisms was proposed by Kurten-
bach et al. in [125]. In this work, they combined two interactive mecha-
nisms (crib-sheets and contextual animations) helping the user to learn
gesture commands. In more detail, the system proposed by Kuternbach et
al. employs a pop-up cheat sheet to display the list of available functions
and their associated gestures according to the context. The user can see
this graphic component at any time by performing a particular gesture
(press-and-hold gesture). Besides, they coupled the crib-sheet with a series
of animations that the user can visualize by clicking on their icons. These
animations demonstrate how gestures should be performed, enforcing the
learning mechanism. In contrast, this system presents different limitations,
firstly it does not support demonstrations of geometrically parameterized
gestures nor highlights it geometric gesture nuances. In addition, this
solution takes for granted that users know which is the press-and-hold
gesture to bring up the crib sheet.

Bau and Mackay introduced OctoPocus [14], a dynamic guide for con-
tinuously supporting users during the interaction in 2D gestural interfaces.
It helps the user in learning, performing and remembering gesture sets
by combining feedback and feedforward. In this scenario, feedforward
notifies the user’s current options, while the feedback shows how well
the current gesture has been recognized. More precisely, the feedforward
mechanism is implemented using a set of templates for each recognizable
gesture class; the feedback system requires a continuous or discrete value
from the recognition algorithm. Bau and Mackay combined the Rubine’s
algorithm [195] and the incremental turning angle representation to de-
tect gestures and their progress. Substantially, when the user starts the
execution of a command, OctoPocus displays a map of all available paths
(feedforward) that may be followed for completing a correct interaction
near the cursor, or touch, position. In this way the user can see and
understand the correlation between gestures and commands while she is
performing the gesture, facilitating her learning process. Once she starts
to make a gesture, OctoPocus continues updating the dynamic guide: on
the one hand, the less likely gesture paths gradually disappear according
to the gestures detected, on the other hand, it highlights the performed
movement with a black line (feedback). Figure 2.7 shows the underlying
feedback and feedforward mechanism in a three-gestures scenario (cut,
copy and paste). The left part shows the initial state when she starts the
execution and the whole gestures are displayed. Instead, the right part of
figure 2.7 illustrates how OctoPocus updates the dynamic guide varying
the template path’s thickness, indicating the evolution in the recognition It
represents the tracked user trajectory with a black line, while it highlights
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the more likely gestures with a thicker stroke. It is worth pointing out
that the dynamic guide of OctoPocus may be displayed at any time or
only when it notices a hesitation, for example when the user moves either
the cursor or finger slowly. Therefore, it is compatible with both novice or
expert users.

Moreover, in a follow-up work, Bau and Mackay proposed a technique
for detecting the scale factor for a gesture, in order to anticipate the recog-
nition [10], but a general solution is still missing. The works presented
in this dissertation focused on providing such intermediate information
through an automatic classifier generation starting from the gesture defini-
tion, which does not require the developer to understand the recognition
technique.

Bragdon et al. proposed gestureBar [28], a learning multistroke gestures
system for walk-up-and-use systems. It fosters learning of the possible
interactions by exploring them without any prior introduction or training
step, relying on a feedback and feedforward mechanism. Substantially,
gestureBar consists of two components:
• A toolbar, that shows the whole commands and their icons: when

the user clicks on one item, the corresponding commands are not
executed, rather the application opens a new tab, the practice area,
showing in which state the application will be (feedback) and ex-
plaining how to perform the gesture (feedforward).
• The practice area, in which the necessary steps for completing a

Figure 2.7: The evolution of feedback and feedforward guide in Oc-
toPocus [14].
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certain gesture are illustrated. This solution supports the user to
learn the required steps. In this area, the user can also simulate the
execution of a gesture: if the executed gesture matches a gesture,
the application encourages the user. Vice versa, it notifies the wrong
movements.

A similar feedback system is employed by Schwarz et al. in [203].
They proposed an architecture that supports users displaying continuous
feedback about uncertainty for touch interfaces. It aims to avoid the
cases when the user reaches an undesired state after performing the wrong
command since she has misenderstood or missed the correct movement.
The underlying architecture is based on prior work in modelling uncertainty
using Monte Carlo [202] optimization. At run-time, that architecture
tracks all the likely states according to user movements. At the same
time, it reduces the number of alternative interfaces fusing the most likely
interfaces into a single interface that communicates uncertainty and allows
for disambiguation. In other words, the architecture proposed by Schwarz
et al. notifies the user the most likely application’s states in line with
her current input. When the user completes the task, the command that
corresponds to most likely gesture is executed, but the architecture allows
the user to return to the previous state or to select another state.

LightGuide has been proposed by Sodhi et al. in [212]. It is a dynamic
guide for gestural interfaces, similar to OctoPocus. It guides the user
during the interaction in order to accomplish a certain gesture, by using
continuous feedback and feedforward. More precisely, it helps the user in
mid-air gesture by projecting guidance hints on her hand. These hints
are displayed using an overhead projector and reply the movements which
compose the gesture. In their work, Sodhi et al. evaluated different type
of visual hint, including: i) follow spot, a 1D visual arrow which changes
its size according to user movements; ii) hue cue, it uses negative and
positive spatial colouring to indicate direction and the space a user should
occupy; iii) a 3D arrow for visualizing the correct direction; iv) a 3D
pathlet metaphor, which illustrates to user a small segment of the gesture;
it shows the whole movement to perform, notifying the relative position of
the user in the execution of the movement. The feedback and feedforward
system is employed to:

• Show the gesture’s progress state;
• Display the next movement to perform;
• Notify if the movement has been executed correctly, showing the

distance between the performed movement and the right trajectory.
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Inspired by LightGuide and OctoPocus, Alt et al. developed Shape-
lineGuide [3]. Similarly to other dynamic guide analysed up to now, even
ShapelineGuide employs feedback and feedforward on the executed ges-
tures, in order to support the user during the interaction. More precisely,
it combines the advantages of OctoPocus and LightGuide for supporting
mid-air gestures on large display applications. On the one hand, Shape-
lineGuide is designed for 3D gestures, differently from OctoPocus. On the
other hand, compared to LightGuide, it is able to handle multiple gestures
and more than one part of the body. Therefore, the feedforward mechanism
constantly informs the user on the state execution of gestures by visualizing
hints in real-time and displaying a text label to describe the corresponding
action. Akin to OctoPocus, feedforward and feedback mechanism relies on
different colours to notify the gesture progress. When the user starts the
execution of a gesture, it highlights the next partial segment using a light
colour and updating the graphical components, according to the tracked
movements. In particular, that system applies different colours according
to the hand which will be used to accomplish the gesture: i) orange for
the left-hand, ii) green for right-hand, and iii) yellow for multiple gesture
visualization. Besides, ShapelineGuide provides further feedbacks employ-
ing a set of icons to make the user interface comprehensible for people
that are unfamiliar with the commands. In particular, they categorized
icons in two blocks, the first consists of generic commands, such as zoom,
rotation and so on, the other block suggests which hand she has to use to
accomplish the gesture. An example of interaction in ShapelineGuide is
depicted in figure 2.8.

Figure 2.8: An example of gesture guiding in ShapelineGuide [3]: the
hand-icons, located above the smartphone, indicate wich hand the user
has to use; the gesture’s path is described using a sequence of orange circle
subdivided in more segments.
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Guillon et al. [81] presented Expansion Lens, a new target expansion
technique for pointing tasks. This method employs the Voronoi tessellation
as expansion algorithm, and a circular area centred on the cursor through
which the user can see the target expanded area. In another work, [58],
Delamare et al. extended OctoPocus to support 3D gesture guiding
system, showing the set of 3D in-air hand gestures as 3D pipes. Similarly
to ShapelineGuide, this solution helps the user to understand the execution
of a gesture, displaying which movements have been correctly recognised.
A typical problem in 2D-3D guiding systems is finding the best positioning
for the suggestions in the UI layout, in order to avoid the overload of the
scene. In OctoPocus3D, Delemare et al. addressed this problem using
depth cues, that is chosen among a set of the visual cues for 3D space
perception suggested by Ware in [238]. OctoPocus3D relies on depth cues
to show different feedback and feedforward mechanisms. Similarly to the
original OctoPocus, the solutions proposed by Delemare et al. renders
the available paths in two different parts: i) a coloured prefix and a
transparent suffix; besides, when the user completed the gesture, the user
path becomes green if it is right performed or red in the other case. During
the execution, the user can rotate the 3D scene visualizing the 3D gesture
paths which are available in a certain moment. In addition, it provides
a digital representation of the user’s hand as a white sphere, allowing
the user to perceive if she is in front of or behind the path to follow. In
addition, the UI background is designed to support the user by increasing
her linear perspective and the contrast of the 3D scene.

Figure 2.9: The guiding system displayed using OctoPocus3D [58]

Rovelo et al. proposed Gestu-Wan [193], a gesture guidance system
for mid-air gesture in walk-up-and-use displays. In more detail, it aims to
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facilitate the execution of mid-air gestures without prior training. In the
solution presented by Rovelo et al., gestures are described as sequences
of static poses and structured hierarchically. When the user starts the
interaction, the guidance system provides the display of a graphical repre-
sentation of the possible postures. The set of the showed postures depend
on the leaf node reached inside the gesture hierarchy. Once a posture is
matched, the system updates aid which is notified by i) turning in green
the detected posture, and ii) shifting the gesture hierarchy showing the
other available postures until a gesture is not completed.

The mechanism implemented in LightGuide is particularly useful for
programming movements that require accuracy and proper technique. The
problem of learning movements is also addressed by Anderson et al. in
YouMove [6]. This is an architecture which supports users to learn physical
movement sequences with an augmented reality mirror, where the user
movements are acquired through tracking devices such as Kinect, and so
on. First of all, YouMove provides an editing interface through which
trainer can both record the sequence of movements that compose the
training, and define the main poses and their global movement parameters
(joint positions). The learning process is accomplished by guiding the users
on the execution of training exercises, based on the distance between the
tracked user’s joints with those recorded by the trainer. In this case, the
dynamic guide highlights those user’s body parts which are in the wrong
position. Besides, this system advices the user by illustrating those joint
that she needs to move in order to cue upcoming movements. YouMove is
designed to reduce the level of aid according to the expertise acquired by
the user. Figure 2.10 shows an example of the posture guide implemented
in YouMove: the figure illustrates a scenario where the system notifies the
incorrect joint positions (feedback).

Daliri et al. introduced a system [53] that helps users in performing
bend gestures correctly on flexible devices. It relies on a feedback and
feedforward mechanism for advising the user about the correct location,
direction and angle of each available gestures. In addition, the system
proposed by Daliri et al. notifies the user when a gesture is performed
incorrectly and helps her with the aim of correcting the mistake. More
precisely, they implemented three different visual feedback guides:

Central Circle : in this design, the feedforwards are located at the edge
of the circle, and are represented through arrows; each of them
corresponds to a gesture, and its orientation and colour indicate the
gesture’s direction. The feedback is displayed using the empty space
in the middle of a circle to show the state of the gesture.
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Figure 2.10: The feedback and feedforward mechanism employed in
YouMove [6].

Arrows , while the feedforward system is similar to the central design,
the feedback is implemented by using arrows.

Clear Sheet , it combined feedback and feedforward in a single text
menu.

In this section, we described the main approaches for recognizing
gestures based on declarative methods. It is worth pointing out that
declarative models reduce the workload in building gesture interfaces in
different ways, for example by simplifying the creation of gesture recognizer
or the description of new gestures. In particular, declarative methods aim
to support feedback and feedforward mechanism by employing heuristics
rather classification approaches. If on the one hand this solution makes
available the recognition status of gesture and its sub-parts at any time,
on the other hand it offers a lower accuracy than vision-based methods.
The two approaches discussed in this thesis filled the gap between these
techniques, supporting developers by tracking the movements the user
has just performed and recognizing gestures accurately. In particular,
DEICTIC relies on GestIT’s operators to describe stroke gestures and
define HMMs composed; we use GestIT since they are a superset of those
included in Proton++.
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Chapter 3

Background

The goal of the approaches discussed dissertation is supporting the devel-
opment of a gesture guiding system by combining accurate classification
techniques, e.g. HMMs, and GestIT [215,216] operators. On the one hand,
HMMs sono adatte al riconoscimento online, in quanto lo stato attuale
del modello dipende dallo stato precedente; questa soluzione Ã¨ utile per
riconoscere parti di gesture. On the other hand, GestIT provides a set of
operators that are a superset of those included in Proton++[ref].

In this section, we described the main approaches for recognizing
gestures based on declarative methods. It is worth pointing out that
declarative models reduce the workload in building gesture interfaces in
different ways, for example by simplifying the creation of gesture recognizer
or the description of new gestures. In particular, declarative methods aim
to support feedback and feedforward mechanism by employing heuristics
rather classification approaches. If on the one hand this solution makes
available the recognition status of gesture and its sub-parts at any time,
on the other hand it offers a lower accuracy than vision-based methods.
The two approaches discussed in this thesis filled the gap between these
techniques, supporting developers by tracking the movements the user
has just performed and recognizing gestures accurately. In particular,
DEICTIC relies on GestIT’s operators to describe stroke gestures and
define HMMs composed; we use GestIT since its operators are a superset
of those included in Proton++[ref]. In this section, we reported and
analysed different vision-based methods for classifying gesture in real-
time or offline. If on the one hand they offer a higher accuracy, on the
other hand they are not designed to provide additional information about
the level of completion of gesture; in other words, they do not support
those feedback and feedforward mechanisms which help users during tasks.
On the contrary, the approaches proposed in this dissertation support
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developers to both track the movements the user has just performed and
recognize gestures accurately. In particular, these methods rely on HMMs
to accomplished gesture recognition. In a HMM, the current state depends
only on the probability of being in the incoming states; experimental tests
showed that Markov models allow to determine the progress of a gesture
execution in real-time when they are applied to local features. A deeper
description of HMMs is included in the section 3.2.

In this chapter, we first define the concept of interactive gesture. After
that, we summarise the definition of a Hidden Markov Model, in order to
point out the main recognition properties we exploit in our methods and
explain the notation we use dissertation. Finally, we describe GestIT, the
declarative method we used as a starting point for our notation, analysing
its organization and benefits.

3.1 Gesture

According to Kurtenbach and Hulteen [21, 124], a gesture is “a motion
of the body that contains information”. This definition includes speech,
face movements, tactile input, etc. Generally, in the HCI field, gestures
represent an additional input modality allowing users to use movements
for interacting with a system or application. Besides, some research work
relies on movements and expressive gestures to describe, and understand,
emotional aspects of human motion and interaction between other persons
and machines. These works aim to better understand such aspects, in
order to improve the user experiences in interactive multimedia systems.
In [126,234], Laban introduced the theory of effort, where he formalized
the dynamic nature of human movement in different contexts, for instance,
dance and theatre, describing the connections among movements, space and
time. The extraction of expressive gestures from dance, or similar activities,
is also studied by Camurri et al. in [32, 34] by determining the features
characterising the communication in music and dance performance. The
authors presented a unified conceptual framework for analysing expressive
gestures, which is able to automatically extract expressive gestures from
physical movements and sound by adopting a layered approach:

Layer 1 collecting the input data, acquired from different devices and sen-
sors, some techniques for background subtraction, motion detection,
motion tracking and so on;

Layer 2 including several computer vision methods employed in order to
detect movement or trajectory of points;

Layer 3 extracting motion descriptors and expressive cues to represent
human action;
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Layer 4 extracting automatically expressive gestures by means of a se-
ries of supervised algorithms, for example, for classifying human
movements in term of basic emotions.

Over the last years, different gesture classifications have been proposed
to categorize gestures [30,105,163,240].

For our purposes, it is relevant to distinguish gestures according to the
movements they describe: static or dynamic. The former category represent
body postures that are not conditioned from the temporal dimension. In
other words, the user is asked to mimic the requested pose, without taking
into account the movement sequence. They are used, for example, in
sign language recognition systems as shown in figure 4.9(b). Dynamic
gestures define a set of movements that the user must execute accurately
for providing input to a device. Compared to static gestures, they are
characterized by a wider syntax allowing developers to describe more
complex gestures. Therefore, a large part of gestural interfaces exploits
dynamic gestures, for instance in rehabilitative physiotherapy, guiding
the patient to correct the performance of movements, or in video-gaming
environments. Figure 4.9(a) depicts an example of dynamic gesture
performed using hands.

(a) An example of static ges-
ture recognition.

(b) This figure shows an example of in-
teraction through dynamic gesture: a
videogame system convertes into com-
mands the users movements tracked using
a Kinect device.

The approaches proposed dissertation focus on stroke gestures, which
are a particular type of dynamic gestures employed for representing figures
in two or three dimensions. Stroke gestures can be distinguished in two
different classes, depending on the number of movements that compose
them:
• Unistroke gestures, which are performed through a single uninter-

rupted movement without pauses. In order to be recognized, devel-
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opers may enforce the start position (the black dot) and the path
direction (the arrows). An example of unistroke gesture is depicted
in the left part of figure 3.1.
• Multistroke gestures, consisting of multiple separated strokes. In

figure 3.1 each stroke is represented as a segment that starts from
the grey dot.

Figure 3.1: The two types of strokes, unistroke and multistroke.

3.2 Hidden Markov Models

The recognition solutions proposed dissertation rely on HMMs to model
user input, determining the progress of a gesture execution. In this section,
we summarize how they work, showing and describing the main properties
through some examples.

A Hidden Markov Model (HMM) is a probabilistic model that maps
a sequence of observations into a corresponding sequence of labels. It
has been used in the literature for solving various types of pattern recog-
nition problems, due to their effectiveness in modelling the correlations
between adjacent symbols. For instance, HMMs are widely used in speech
recognition [19] for finding the sequence of phonemes which form the
actual uttered sound, or in biological analysis for modelling proteins, DNA
sequencing, and alignment [251]. They represent an extended version of
finite state machines, in other terms, a special case of weighted automata
defined through a finite set of states and a set of transitions with the
associated weights. HMMs satisfy the Markov assumption, stating that
the probability of being in a particular state at the time t depends only
on the probability of being in its incoming states at t− 1. It means that
the model determines the state at the time t according to a finite set
of previous states. The models that satisfy this assumption are called
Markov chains. There are many types of Markov chains, which differ on the
number of considered past states for firing transitions. In the easiest form
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of a Markov chain, the current state depends only from the immediately
previous state 3.1.

P (si|s1, s2, . . . , si−1) = P (si|si−1) (3.1)

(Markov Assumption)

Formally an HMM is a quintuple λ(S, V,A, T,B), that can be defined
by:
• A finite set of states S, including a start and a end state denoted,

respectively, as s0 and sf .
• A vocabulary of values for the observable events V . This vocabulary

can be composed by either discrete (e.g. a finite set of labels) or
continuous values (e.g. a set of real number).
• A transition probability matrix A. Given two states si, sj ∈ S, Ai,j

is the probability of firing the transition from si to sj . Among these
states, we denote the initial state as s0 and the final state as sf .
Obviously, the dimensions of that matrix is connected to the number
of states which compose the HMM (if the HMM has n states, A will
be a square matrix of order n).
• A topology T , which determines the inner structure of the HMMs

conditioning the connections between states.
• A sequence of observation likelihoods B. Given a value v ∈ V , bi(vj)

is the probability of observing the value vj ∈ V being generated from
the state si ∈ S. If the observable events have continuous values,
bi(x) is the probability density function for generating a value from
a state si ∈ S. The probability of observing any value in s0 and sf
is zero.

Each state represents one of the possible events that has an impact
on the modelled environment. These events are hidden i.e., they are not
directly observable in the world. For example, consider an HMM of n states
that is designed to recognize gestures. In a gesture interaction domain
we do not observe the gesture performed by the user, but only the input
device data. scenario, we use these events to represent the recognition
states of a gesture. Therefore, the probability of the state at the time
t will be between the value 0 (the gesture has not been recognised) to
n − 1 (the user has completed the execution of that gesture). Besides,
these events influence the set of observable events. According to this
sentence, the observable events at the time t depend only from the actually
state 3.2. The observable events define the values measurable in the
modelled environment and they can be acquired through different types
of sensors. For instance, in the previous example, the observable events
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at the time t describe the set of features extracted from the user input
as they are tracked by an input device (e.g. a touchscreen or a Microsoft
Kinect).

P (vi|s1, . . . , si, . . . , si+k, v1, . . . , vi, . . . , vi+k) = P (vi|si) (3.2)

(Obvervation independence)

In an HMM, the relationship between an observable event value and
a given internal state is modelled either by probability distribution or a
probability density function, respectively in the discrete and continuous
case 3.3. A probability distribution is also employed for defining both the
prior probability at the time t = 0 (i.e. when we move from the initial
state S0) and the transition probability between two different states. The
weights which characterize an HMM represent these transitions and the
probability of firing them. Therefore, considering a single state, the sum
of the weights on all its transitions to any other state is 1. According to
this properties, the weight matrix satisfies equation 3.3.

f∑
j=0

Aij = 1 ∀i (3.3)

(Outgoing probabilities)

In general, not all states of an HMM are connected. The arrangement
of the transitions depends on the adopted topology, which has an impact on
the HMM effectiveness. There are several types of HMM topologies [242],
each one offering advantages and disadvantages according to the considered
domain. The main topologies are:
• Ergodic topology. It is the most complex structure, in which all states

are fully connected. It can generate any sequence of observations
(figure 3.2(a)).
• Self-loop topology. Each state is connected with both itself and the

next state. It extends the simplest model, the linear chains, where
each state is connected only with the next one (figure 3.2(b)).
• Left-right topology. This model mixes the ergodic and self-loop

topologies. It represents a linear chain where it is not possible to go
back. For example, if at the time t, the model in figure 3.2(c) is in
state S2, in t+ 1 it will be either in S2 or in the next state S3.

HMMs can be used as a supervised classifier, by learning the probability
distributions through a set of labelled samples. More in detail, there are
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(a) Ergodic model

(b) Self-loop model

(c) Left-right model

two algorithms for the training: Baum-Welch [15] or Viterbi learning [188].
In their original form, both methods do not employ labelled samples, thus
they may be used as unsupervised training algorithms. However, they can
be extended in order to assign labels during the training phase. On the one
hand, the Baum-Welch algorithm assigns soft labels by using Expectation
Maximization (EM) [27], and updates the distribution parameters by
employing the Maximum Likelihood Estimation (MLE) [154] method. On
the other hand, Viterbi relies on the Viterbi algorithm [72] for assigning
labels to each sample, updating the distribution according to the assigned
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labels. The Viterbi algorithm is also employed in the evaluation phase.

ALGORITHM 1: Forward-Backward Algorithm [196]

Input: ev, a sequence contains n evidence values - prior, the transitions
propabilities refers to the state s0 (namely A(s0))

Output: sv, a vector of probability distributions

fv, the vector of forward messages for the steps 0, ...n

b, a representation of backward message, initially all ones

sv, a vector of smoothed estimates (it represent the returned vector)

fv[0]← prior

for i = 1 ∈ n do fv[i]←FORWARD(fv[i− 1], ev[i]) (namelyP (si−1|V1:i)) ;

for i = n downto 1 do sv[i]←NORMALITATION(fv[i]× b) ;
b← BACKWARD (b, ev[i]) (namelyP (vi+1:n|si)) ;

return sv

Figure 3.2 shows an example of a simple HMM with three states
(start + two states) and three observable events. At the beginning, we
are in the start state S0. At the time t = 1, there is a high probability
to go in S1, because we have the 68% of possibilities to go in state S1,
and the 32% of probability to move in the other state S2. Supposing
that we have reached the state S1, now the observed value is determined
according to the probabilities in the table “Observation-States”. Following
the likelihoods contained table, the most likely emission is associated to
V2. After determining the observable state at time t = 1, from the current
state, we can either move to the other state S2 (with a probability of
80%) or remain in the same state (20%). scenario, we can determine
the probability that a particular sequence of observations belongs to this
model by using the forward-backward algorithm( 1). For example, the
probability related to sequence (V2, V1) is 14.85%, obtained following the
forward-backward algorithm:

• At the first step, we apply the forward algorithm that returns this
distribution fv = [[0.39, 0.04], [0.0141, 0.1344]];
• Then, the backward algorithm relies on the vector of forward mes-

sages for computing the distributions over past states, returning
[[0.35, 1][0.3, 1]]
• Finally, the probability distributions are mapped to a single value,

that indicates the posterior probabilities of the sequence (V2, V1).

In the literature, it is possible to find different types of specialized
HMMs, which are designed to deal with different types of problems. Some
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Figure 3.2: The inner structure of a simple HMM with three states and
three observable states.

examples are the profile-HMMs, that we rely for supporting G-Gene 5
in measuring the distance between two strings. approach, we achieve a
real-time recognition comparing the strings that represent the user input
with the others that represent one of the correct ways for achieving a
particular gesture. Commonly, profile-HMMs are employed for modelling
character sequence profiles, widely used to model and analysing biological
sequences. They have a strictly acyclic linear left-to-right structure in
their transitions and offer a high effectiveness and robustness to noise in
representing sequence profiles [251]. For these reasons, profile-HMMs are
used for gene sequencing. In our approach, we use them for aligning the
stroke input string representation to the most likely gesture profile. More
in detail, a profile-HMM determines an alignment between two strings
(gestures in our case), finding the most likely correspondence between their
characters. They define the alignment using three operations:

1. A match, representing the correspondence between a character in
the reference and the input string;

2. An insertion, representing an additional character in the input string,
not included in the reference;

3. A delete, expressing that a specific character contained in the refer-
ence is not included in the input string.

A profile-HMM reflects such operations in its structure. For each character
in the profile string, it has three basic hidden states: a match, an inser-
tion, and a delete state. The transitions follow a left-to-right topology,
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Figure 3.3: The inner structure of a profile-HMM. The Mi, Ii and Di
are respectively the match, the insertion and the delete state for the i-th
symbol in the reference string.

connecting all the hidden states representing the three operations of two
adjacent symbols in the profile string.

Figure 3.3 shows a sample inner structure for the profile-HMM de-
scribing a string with 5 characters. The HMM contains a match, an insert
and a delete hidden state for each symbol in the profile, together with the
start and final state. From an operation state corresponding to the i-th
character, the HMM allows firing a transition either to an operation on
the i + 1-th symbol or to insert characters in the i-th position. It does
not allow going back to the i− 1-th symbol (left-to-right topology). The
emission probability is uniform in the insertion and delete states for all
characters, while is forced to 1.0 in the match state for the corresponding
character. We arbitrarily defined the set of the transition probabilities (see
Figure 3.3) from a match to the next delete or insert state (0.05), from the
delete or insert state to the next match (0.15), from a match to the next
match (0.9), from a delete to next match (0.7) and the insert iteration
(0.7).

3.3 GestIT

section we detail the model language GestIT describing its main com-
ponents, both ground and composite terms. Besides, we illustrate some
examples of gesture expressions obtained using GestIT.

GestIT [215, 216] is a framework which is designed to support the
declarative and compositional definition of new gestures, independently
from the devices used to track the user movements (Kinect, Leap Motion,
touch screen, and so on). It defines the temporal evolution of a gesture
through expressions, following an approach similar to Proton++ [113,114].
These expressions are modelled using a set of operators, which represent a
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superset of those included in Proton++ and that are defined by regular
expressions [216]. In other words, in GestIT a gesture is a composition
of primitive gestures, defined combining two main elements: ground and
composite terms.

3.3.1 Ground Terms

A ground term is the smallest block for defining a gesture: it describes an
atomic event which cannot be further decomposed. It is associated with a
value change of a feature, such as the pixel coordinates of a touch on the
screen or the position and rotation of a skeleton joint. The atomic events
are recognized by using heuristics; such solution, on the one hand, supports
the temporal composition of more complex gestures, but on the other hand,
it has lower performance compared to machine learning approaches. In
general, the expressions in GestIT includes three types of ground terms:

Start it is related to the start part of the gesture. It defines the movement
that the user performs to start the gesture. Usually, it is represented
through a static movement or a speech command, minimizing both
the input ambiguity and the continuous input segmentation problems.
At the time t = n, the framework that implements GestIT verifies
the temporal execution of those gestures for which the start term
has been recognized in t = n− 1.

Move this type is employed to describe the movements which compose
gestures. For example, they describe a circular movement of the
right hand or a swipe gesture performed by touch. GestIT supports
different features, allowing to define the movements using temporal
coordinates, direction, covered distance, speed, etc. It is worth
pointing out that if the user misses the correct movement, the
framework generates an error event resetting the gesture in the start
position.

End as its name suggests the end term describes the end part of a gesture.
Similarly to the start term, it represents a static pose or a speech
command. The execution of a gesture is accomplished when all its
components are recognized.

3.3.2 Composite Terms

Composite terms are used for defining more complex gestures by relating
the ground terms through a set of operators:

Iterative g∗, the iterative operator supports the repeated execution of
the gesture g an indefinite number of times. Generally it is combined

Alessandro Carcangiu Combining declarative models and computer vision recognition algorithms for stroke gestures



64 Background

with the disabling operator in order to avoid an infinite gesture
definition.

Sequence g � h, this expression represents a sequence of the movements
that must be executed in the specified order, from left to right: first
g, then h.

Disabling g[> h, it defines a gesture (g) that stops the recognition of
another one (h), for example an iterative movement.

Parallel g × h, the parallel operator describes the execution of two or
more movements at the same time. In that case, the gesture g× h is
recognized if the user performs both movements simultaneously.

Order Independence g| = |h, the order independence is the opposite of
sequence operator, and it is employed when its components can be
performed in any order. When the user completes the two movements,
thus the framework recognizes g| = |h.

Choice g|h, in GestIT the choice operator is used to define a gesture
that can be performed in different ways. case, the gesture g|h is
recognized when the user completes either the first (g) or the second
(h) component.

In DEICTIC we use these operators to define a simple modelling language
for stroke gestures.

We illustrate two simple examples of building gesture expression in
GestIT. The first expression 3.4 defines the gesture for selecting an object
in the user interface. The user can perform the grab gesture by using
either the right or the left hand. Therefore, the gesture definition contains
the choice operator. Regardless from the used hand, the gesture begins
with the closing of the dominant hand sH[closed] (the start term). This
movement defines the object selection. After that, the user can move the
closed hand for e.g., moving the selected object (mH∗)(the move term) and
the gesture terminates (the second static pose) when the user opens the
hand (sH[open]). In the second expression 3.5, we define the pinch gesture
that involves two simultaneous touches. The gesture begins when the
device detects two touches without any order ((sT1[down]| = |sT2[down])).
After that (sequence), the user can move iteratively both fingers on the
screen (mT ∗

1 ×mT ∗
2 ). The two fingers may be moved simultaneously, thus

the sub-gesture includes the parallel operator. Finally, the pinch gesture
is completed when she raises one of the two fingers, disabling the iterative
movement (sT1[up]| = |sT2[up]). The order independence operator ensures
that the user can lift fingers in any order.
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(sHr[closed])� (mH∗
r [> sHr[open])|(sHr[closed])� (mH∗

r [> sHr[open])
(3.4)

(Grab gesture)

(sT1[down]| = |sT2[down])� ((mT ∗
1 ×mT ∗

2 )[> (sT1[up]| = |sT2[up]))
(3.5)

(Pinch gesture)

In the approach discussed dissertation, we start from the modelling
experience we acquired in defining GestIT and we try to fix its main
drawback, which are shared with Proton++: they both use heuristic
recognition approaches for ground terms, which do not guarantee a good
recognition accuracy. We advance the state of the art field by showing that
the modelling technique can be used for automatically creating highly-
accurate HMM classifiers supporting the identification of gesture sub-
parts during the execution and the prediction of the most likely gesture
completion.
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Chapter 4

DEICTIC

Over the years, different machine learning-based solutions have been pro-
posed to detect gestures online; a large part of them supports developers
by providing a high accuracy for different types of gestures. In general, the
recognition process requires the complete gesture sample before recognizing
it. On the one hand, including classifiers techniques solves the accuracy
problem, on the other hand, it does not support guidance systems. In
this chapter, we describe the first method that we proposed for filling
the gap between classifier approaches and declarative techniques. This
method, called DEICTIC (DEclaratIve and ComposiTional Input Classi-
fier), achieved a highly accurate stroke recognition by combining HMMs
and GestIT [215,216] operators independently from the devices employed
to acquire the user input.

We start introducing the definition of the stroke gesture modelling
language in the section 4.1. Then, in section 4.2, we describe the composi-
tion algorithms for building composite HMMs. After that, the section 4.3
summarises the advantages and limitations of DEICTIC for the UI devel-
opment. Finally, in the section 4.4 we describe the experimental tests
performed to measure the accuracy on two stroke gesture datasets.

This chapter is an extended version of the work in [40,41].

4.1 Gesture Description

In this section, we introduce a simple modelling language for stroke ges-
tures that follows an approach similar to other declarative approaches
(e.g., GestIT [215, 216], Proton++ [113, 114], etc.). It starts from the
definition of a ground term set and it obtains more complex gestures
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through composition. We have been inspired by commonly-used UI widget
toolkits, which allow developers to create their interfaces exploiting simple,
general purpose objects that shape complex visualisations through the
composition. The language is both understandable for gesture designers
and supports the automatic classifier generation from gesture models.
We focus on stroke gestures, assuming that the user’s input is expressed
drawing two-dimensional paths on a screen or in mid-air.

In DEICTIC, simple and complex gestures are represented as expres-
sions: literals represent the basic elements (ground terms) that can be
combined for obtaining more complex paths. The temporal evolution is
defined by the composition operators semantics. They allow creating com-
plex gestures defining how a composite gesture evolves. In the following
sections, we define both the ground terms and the composition operators.

4.1.1 Ground terms

The ground terms in DEICTIC are simple building blocks for defining
strokes: points, lines and arcs. On the one hand, they guarantee a good
level of expressiveness, since they allow modelling both linear and curve
paths. On the other hand, they are a simplified representation of 2D paths
that keep the language concise and understandable. We do not consider
this as a limitation since the user’s input has a coarser granularity.

Points They define the starting position of the stroke (e.g., the user
touches the screen) simply specifying x and y coordinates in the plane.
We represent a point with the notation P (x, y). A stroke must always
start with a point, and its coordinates define the current stroke position.
Multi-stroke gestures have multiple point terms in their definition.

Lines They define a linear movement of a specified offset in the x and y
axes, starting from the current stroke position. We represent a line with
the notation L(∆x,∆y).

Arcs They are quarters of a circle, starting from the current stroke
position and finishing at the specified offset, following a clockwise or
counter-clockwise direction. We represent clockwise arcs with the notation
A�(∆x,∆y), and counter-clockwise arcs with A	(∆x,∆y). If |∆x| 6= |∆y|
the arc is resized according to the offset ratio.

Figure 4.1 shows a graphical representation of the four primitives. The
current position is represented by a filled circle, the stroke path with an
arrow. The first defines a stroke starting at (3, 3); the second defines a
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Figure 4.1: DEICTIC sample primitives.

line that, assuming that the current position is (1,2), moves 4 units on the
x and 2 units on the y axis; the third defines an arc that, starting from
the position (2,1) moves 3 unit on both axes, in a clockwise direction; the
fourth defines an arc that, starting from the position (4,1) moves 3 units
on both axes, in a counter-clockwise direction.

4.1.2 Composition operators

Starting from ground terms, we define complex expressions composing
terms through a set of temporal operators, namely iterative, sequence,
parallel and choice.

Iterative Operator E∗ repeats an expression E an indefinite number
of times. In order to maintain the compositional properties of the resulting
gesture classifier, an iterated expression must either start with a Point
ground term, or begin and finish in the same position. We will discuss
such requirement more in deep in Section 4.2.2.

Sequence Operator The expression E1 + E2 + · · ·+ En defines a set
of sub-strokes that must be executed in sequence, from left to right. Each
expression considers as the current point the last position of the previous
one.

Choice Operator The expression E1|E2| . . . |En defines a set of alter-
natives for performing a stroke. The entire expression is completed when
one among the sub-strokes is executed.

In order to maintain the compositional properties of the resulting
gesture classifier, the alternatives must either end their path at the same
point or conclude the stroke. In the first case, the choice expression models
a set of alternative paths for reaching the same point. In the second case,
it either concludes the entire gesture or is followed in sequence by a point
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primitive. We will discuss the technical motivation for this requirement in
Section 4.2.4.

From an expressiveness point of view, if the alternatives must end at
different points, it is still possible to model the stroke with DEICTIC, but
the gesture continuation must be distributed for each alternative. We show
an example in equation 4.1: the two lines in the choice end in different
points. In order to satisfy the requirement, it is sufficient to distribute the
sequence with the arc on both lines.

P (0, 0) + (L(1, 1)|L(−2,−2)) +A	(3, 3) =

P (0, 0) + (L(1, 1) +A	(3, 3)|L(−2,−2) +A	(3, 3)) (4.1)

Parallel Operator The expression E1×E2×· · ·×En represents a set of
strokes that can be performed at the same time. It is useful for modelling
e.g., multitouch gestures, where the user controls more than one stroke
on the same screen. The operator does not fix any particular ordering
between the two gestures but, in order to complete the recognition of the
entire expression, both gestures must be performed.

4.1.3 Modelling examples

We complete the discussion of the description language showing a set
of modelling examples. We refer to the stroke gestures of two well-
known datasets, namely the 1$ gesture dataset [241] and the N$ gesture
dataset [7,8]. They contain respectively different examples of single stroke
and multiple stroke gestures. We used these datasets for evaluating the
performance of our approach in Section 4.4.

The first example we discuss is depicted in Figure 4.2, a multi-stroke
gesture representing a pitchfork (ψ). It consists of two different strokes,
one describing a vertical line, intersected by a counter clock-wise half circle.
For modelling the straight line, it is sufficient to specify the starting point
and a line primitive going in the negative direction along the y-axis (s1).
The half circle consists of a sequence containing a starting point positioned
on the left of the line, and two arc primitives: one moving down-right and
one going up right (s2). The final gesture should not take into account the
stroke order, so we define a choice between s1 followed by s2 or s2 by s1.
The selected points for modelling the gesture are arbitrary, the important
part is the relative size of the primitives since in the recognition process
we centre and normalise the size of both models and samples. Figure 4.2
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shows graphically the resulting ideal definition and a set of real executions
of the considered gesture.

Pitchfork : ψ =s1 + s2 | s2 + s1

s1 =P (0, 4) + L(0,−4)

s2 =P (−2, 4) +A	(2,−2) +A	(2, 2)

Figure 4.2: Modelling the pitchfork (ψ) gesture from the N$-dataset [7, 8]
with a DEICTIC expression. We show a graphical representation of the
ideal model, together with 10 real gesture samples.

We apply the iterative operator for closed paths, for repeating a gesture
an indefinite number of times, or when the stroke begins with a point. As
an example, we consider the circle gesture in Figure 4.3 (©), consisting
of a single stroke containing four consecutive arcs. The repetition of the
entire circle an indefinite number of times requires the user to lift the
finger or the stylus from the screen and put it down again for repeating
the circle, since it contains a point term (P (0, 0)) at the beginning of the
sequence. Instead, if we repeat only the arcs, we can model a repeated
counter-clockwise movement on a closed circular path, that may be used
e.g., as a rewind command (defined as ´in Figure 4.3) in a video player,
mimicking the interaction with a real handle. It is possible to iterate the
sequence of arcs in ´, since the gesture starts and ends at the same point
(the origin).

Finally, we may allow our user to perform the circle gesture with one
hand and the pitchfork with the other one, simply putting them in parallel
(ψ ‖ ©). In this case, the temporal ordering is completely up to the user:
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Circle: © =P (0, 0) +A	(−3,−3) +A	(3,−3) +A	(3, 3) +A	(−3, 3)

Figure 4.3: Modelling a circle gesture from the 1$-dataset [241] with a
DEICTIC expression. We show a graphical representation of the ideal
model, together with 10 real gesture samples.

she may start drawing the circle and then the pitchfork or vice-versa.

4.2 Building HMMs from the gesture defini-
tions

In defining DEICTIC, our objective was to combine the declarative descrip-
tion advantages for UI developers together with the recognition accuracy
and the robustness to input fluctuations of the state-of-the-art classification
techniques. For deriving a classifier from a declarative gesture model, we
use Hidden Markov Models (HMMs), provided their ability to describe
stochastic temporal processes and their internal graph representation of
states.

Differently from the other work in the literature, we do not use HMMs
for recognizing the whole gesture when the user completes the stroke, but
we use them for recognizing also the gesture sub-parts, defined through
a declarative approach by the UI designer. This marks a difference from
the other research on classification based on gesture primitives, which are
usually segmented through an unsupervised learning step and hard to
understand and use for UI designers.

In this section, we discuss how we exploit the definition of HMM (see
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eq. 3.2) for recognising the ground terms (lines and arcs) introduced in the
description language. After that, we describe an algorithm for creating
an HMM associated with a composite term, starting from the ones that
are associated with each operand. Finally, we discuss the algorithm that,
starting from the definition of a gesture and a training set of lines and
arcs, creates an HMM able to recognise complex gestures.

4.2.1 Ground terms

For defining a ground term in DEICTIC, we need to train an HMM able
to recognise a particular segment (e.g., a straight line or an arc). This
requires establishing the set of features that better describe the path and
the set of values they can take. The selected features, according to their
definition domains, fix the possible observations of the resulting HMM.

Besides the observation features, for training the HMM we need to
define its number of states and the transition topology. Temporal processes
like gestures and speech recognition are well suited for the left-to-right (or
Bakis) topology [111,135], which includes arcs between two states si and
sj only if j ≥ i or, equivalently, if the transition probability matrix A is
upper triangular. In this method, we use a Bakis topology for the ground
terms, but the composition works also if different topologies are used (e.g.,
ergodic) [67].

Once the topology and the observation domain are established, the last
step is the HMM training for learning the parameters in A (the transition
probability matrix) and B (the vector of the observation distributions).
The learning phase is performed relying on the well-known algorithms
described in 3.2, such as Viterbi learning [188] or Baum-Welch training [15]
(we use the latter in this work, combined to the EM and MLE algorithms).
The resulting HMM can be used for the recognition of a specific segment
in different gesture definitions.

4.2.2 Iterative operator

The iterative operator allows recognising the same gesture an indefinite
number of times. Starting from an HMM that defines a gesture g, the
HMM for the gesture g∗ can be defined adding a transition from all states
connected with the ending state sf to all states that are connected with
the start state s0, in order to create a loop in the HMM topology. The
observation distribution vector remains the same.
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Figure 4.4 depicts the HMM construction. The states filled in green
(F0 . . . Fn) belong to the forward star of s0, which is the starting state
of the HMM associated with the gesture g. Similarly, the backward star
of the final state is represented by the states filled in red (B0 . . . Bm).
The HMM corresponding to the g∗ gesture is obtained connecting each
red state with each green state, allowing recognition loops. The original
transition probability from a red state to the final state is distributed
uniformly among all the transition to the green states and the final state.
In figure 4.4, the s0 is the starting state with its forward star F0 . . . Fn;
sf is the final state with its backward star B0 . . . Bm; the blue rectangle
represents all the other states. The iterative operator is defined by the red
arcs connecting each Bi with all Fj .

Algorithm 2 defines more in detail how to obtain an HMM for recog-
nising the iteration of a gesture g∗, given the HMM for recognising g. In
the algorithm definition, we distinguish the states and the transitions of
an HMM using a superscript notation (e.g., sg0 is the initial state of the g
HMM, while sif is the final state of the i HMM).
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Figure 4.4: The topology of an HMM for the iterative operator.

ALGORITHM 2: Iterative Gesture HMM

Input: A HMM g(Sg, V g, Ag, Bg) recognising the g gesture
Output: A HMM i(Si, V i, Ai, Bi) recognising the g∗ gesture

i← Clone(g) ;
α← count((sg0, u) ∈ Ag) ;

for (u, sgf ) ∈ A
g, (sg0, v) ∈ Ag do Aiu,v ←

Ai
u,f

α+1
;

for (u, sgf ) ∈ A
g do Aiu,f ←

Ai
u,f

α+1
;

return i

4.2.3 Sequence operator

The sequence operator allows recognising two gestures in the specified order.
If we have an HMM for recognising the gesture g and one for recognising
the gesture h, we define an HMM for g+h simply connecting the end state
of g with the start state of h from the topology point of view. However,
since the starting and the final state in an HMM must be unique, those of
the original models cannot be connected directly. Therefore, the idea is to
bypass the final state of g and the starting state of h, adding a transition
from the backward star of the former to the forward star of the latter. We
delete the arcs in the backward star of sgf and in the forward star of sh0 . Such
operation is depicted in Figure 4.5: the red states represent the backward
star of sgf (Bg0 . . . B

g
m), while the green states represent the forward star

of sh0 (F0 . . . Fn). The sequence g + h is defined connecting each red state
with each green state. More in detail, in figure 4.5, sgf is the final state of

the HMM associated with g, while Bg0 . . . B
g
m is its backward star; sh0 is the

starting state of the HMM associated with h, while Fh0 . . . F
h
n is its forward

star; the blue rectangles represent all the other states of both HMMs. The
sequence operator is defined by the red arcs connecting each Bi with all Fj .
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In the general case, two ground terms may use two different feature
sets. For instance, it is possible that a term considers the 2D position
of the finger on a screen, while another one considers the direction angle.
If the features used by g are different from those used by h, we support
the composition creating a generic observation value for the composite
HMM, which is a vector consisting of the union of all features considered
by both g and h. Each state in the composed model must specify an
emission probability for all features used in both g and h. Since a state
of the composed HMM g + h derives either from g or h, the observation
distribution vector entry corresponding to each state must be “completed”
with the features that were not considered in the original HMM. This can
be achieved adding a uniform distribution across all the possible values of
the features that are not considered in that state.

In the previous example, if g considers the 2D position of the finger
on a screen, while the h considers the direction angle, we must complete
the observation distribution vector in g + h by adding the emission proba-
bility distributions for the direction angle in correspondence of the states
that originally were defined in g, and for the 2D position in correspondence
of the states that belonged to h. In both cases, the HMM should “ignore”
the new features, therefore we add a uniform distribution across all the
possible values for the angles of g and all the positions in h.

Algorithm 3 shows how to define g + h given an HMM recognising g
and one recognising h.

Figure 4.5: The topology of an HMM for the sequence operator.
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ALGORITHM 3: Sequence Gesture HMM

Input: g(Sg, V g, Ag, Bg) and h(Sh, V h, Ah, Bh) recognising respectively
the g and h gesture

Output: s(Ss, V s, As, Bs) recognising the g + h gesture

n← |Sg| − 1; m← |Sh| − 1; ;
s← EmptyHMM(n+m) ;

Ss ← (Sg \ sgf ) ∪ (Sh \ sh0 ); V s ← V g ∪ V h; As ← 0n+m,n+m ;

Bs ← CompleteDistributions (Bg, Bh, V s, V g, V h, n+m);

/* copy the transitions from g */

for (u, v) ∈ Ag, v 6= sgf do Asu,v ← Agu,v ;

/* copy the transitions from h */

for (u, v) ∈ Ah, v 6= sh0 do Asu+n,v+n ← Ahu,v ;

/* connecting the ending states in g with the starting states in

h */

α← count((sh0 , u) ∈ Ah) ;

for (u, v) s.t. Agu,f 6= 0, Ah0,v 6= 0 do Adu,v+n ←
A

g
u,f

α
;

return Ss

function CompleteDistributions (Bg, Bh, V s, V g, V h,n)
B ← EmptyDistributionVector(V s, n) ;
for u ∈ Ag, v ∈ V s do

if v ∈ V g then Bu[v]← Bgu[v] ;
else Bu[v]←unif(v) ;

end

for u ∈ Ah, v ∈ V s do

if v ∈ V h then Bu+n[v]← Bhu [v] ;
else Bu+n[v]←unif(v) ;

end
return B
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4.2.4 Choice operator

The composition of two gestures g and h in choice allows the recognition
of either g or h. In order to build the composite HMM for g|h, we put the
original models in two separate recognition lines: there is no transition
between the states originally belonging to g and the ones belonging to
h. The only contact points are the starting states, which scatter the
recognition lines, and the final state that collects them.

The schema is depicted in Figure 4.6: we connect the starting state
with the forward state of both sg0 and sh0 . We set the transition likelihood
to one-half of the value one in the original HMM, in order to have the two
gestures in choice equally likely. The elements in the backward star of sgf
and shf are connected with the final state, with one-half of the original

transition probability. We remove the arcs in the forward star of sg0 and
sh0 together with those in the backward star of sgf and shf . As happens
for the sequence operator, the observation distribution vector for both
recognition lines must be completed with respect to the features exploited
by the other operand with a uniform distribution over all possible feature
values. In this way, both recognition lines belonging to g and h ignore
the values that were not originally in their own feature set. It is worth
pointing out that composing gestures in choice decreases the probability
assigned by the original HMMs to both g and h instances since it splits
the recognition line for modelling the selection uncertainty. If different
levels of choices are nested, this may degrade the recognition sensibly.

We can apply a simple optimisation in the composition when the choice
is specified at the first level of the expression tree. In this case, an explicit
composition of the choice operands is not needed: we simply select the
operand that assigned the maximum probability to the considered sequence
and we use it for both state labelling and likelihood computation. Since
the complexity of the forward algorithm is quadratic on the number of
hidden states, working on smaller HMMs decreases the recognition time.

Such optimisation is frequent in real-world gestural applications since
many of them support the selection of a gestural command from a given
set. In addition, this would allow also to include garbage models (arbitrary
gestures that the application should ignore) without requiring an explicit
modelling in an interactive recognition scenario.
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Figure 4.6: The topology of an HMM for a choice operator. The two
original HMM are put in two separate recognition lines.

ALGORITHM 4: Choice Gesture HMM

Input: g(Sg, V g, Ag, Bg) and h(Sh, V h, Ah, Bh) recognising respectively
the g and h gesture

Output: c(Sc, V c, Ac, Bc) recognising the g + h gesture

n← |Sg| − 2; m← |Sh| − 2; ;
c← EmptyHMM(n+m+ 2) ;

Sc ← (sc0 ∪ Sg ∪ Sh ∪ scf ) \ {sg0, s
g
f , s

h
0 , s

h
f}; ;

V c ← V g ∪ V h; Ac ← 0n+m+2,n+m+2 ;

Bs ← CompleteDistributions (Bg, Bh, V s, V g, V h, n+m);

/* create the recognition line for g */

for (u, v) ∈ Sg \ {sg0, s
g
f} do Acu,v ← Agu,v ;

/* create the recognition line for h */

for (u, v) ∈ Sh \ {sh0 , shf} do Acu+n,v+n ← Ahu,v ;

/* connect the starting state with the g and h recognition lines

*/

for (sg0, v) s.t. Ag0,v 6= 0 do Ac0,v ← 1
2
·Ag0,v ;

for (sh0 , v) s.t. Ag0,v 6= 0 do Ac0,v+n ← 1
2
·Ah0,v ;

/* connect the g and h recognition lines with the ending state

*/

for (v, sgf ) s.t. Agv,f 6= 0 do Acv,f ← 1
2
·Agv,f ;

for (v, shf ) s.t. Ahv,f 6= 0 do Acv+n,f ← 1
2
·Ahv,f ;

return Sc
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4.2.5 Parallel operator

The parallel operator supports the simultaneous recognition of two gestures,
performed independently. If we consider two gestures g and h, such
independence requires that either g and h have a disjoint set of features
or those in the intersection come from different data sources. For instance,
the definition of two hand trajectories have clearly an intersection in their
feature sets since at least the hand position is considered in both gestures
definition. However, it is possible to compose them in parallel if we assign
the first-hand trajectory to the right hand and the second to the left, or
vice-versa.

Considering the creation of a composite HMM for g × h, the indepen-
dence leads to two important assumptions:

1. A transition event in g is independent from all transitions in h and
vice-versa.

2. The observation of a value in V g is independent from the observation
of a value in V h.

The composite HMM must represent all the possible combinations of
states existing in g and h. Therefore, it contains a state for each pair
(sg, sh). We include a transition between two states in g × h if it is valid
in both g and h. Considering two states (sgi , s

h
j ) and (sgx, s

h
y), we add a

transition between them only if Agi,x 6= 0 and Ahj,y 6= 0. The transition

probability is Agi,x · Ahj,y, since the two events are independent. Finally,
the observable values of g × h are the concatenation of those observable
from g and h and they are independent from each other.

Algorithm 5 summarizes the procedure for building the HMM. Fig-
ure 4.7 shows the topology for the composition of two left-to-right HMMs,
both consisting of 3 states. The state names in the parallel HMM corre-
spond to the pair of states in the original HMM.

We can avoid using a quadratic number of states when the parallel
composition occurs at the first level of the expression tree. In this case,
we maintain separate the two HMMs, providing as state labels the pair
(gi, hi) where gi and hi are respectively the state label assigned by g and
by h to observations in the sequence. The sequence probability, since the
two gestures are independent, is the product of the probability assigned
by g and h.
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Figure 4.7: The topology of an HMM for a parallel operator, considering
two Bakis terms

ALGORITHM 5: Parallel Gesture HMM

Input: g(Sg, V g, Ag, Bg) and h(Sh, V h, Ah, Bh) recognising respectively
the g and h gesture

Output: p(Sp, V p, Ap, Bp) recognising the g ‖ h gesture

n← |Sg| − 2; m← |Sh| − 2; ;
c← EmptyHMM(n×m+ 2) ;

Sp ← (Sg \ {sg0, s
g
f}) ∩ (Sh \ {sh0 , shf}) ;

for u ∈ (Sg \ {sg0, s
g
f}), v ∈ (Sh \ {sg0, s

g
f}) do Bp(u,v) ← indep(Bgu, B

h
v ) ;

/* setting transitions from the starting state */

for (sg0, v) ∈ Ag, (sh0 , u) ∈ Ah do Ap0,(u,v) ← Ag0,u ·Ah0,v ;

/* setting transitions to the final state */

for (v, sgf ) ∈ A
g, (u, shf ) ∈ Ah do Ap(u,v),f ← Agu,f ·A

h
v,f ;

/* parallel transitions in g and h */

for (u, v) ∈ Ag, (x, y) ∈ Ah do Ap(u,x),(v,y) ← Agu,v ·Ahx,y ;
return Sp

4.2.6 Creating an HMM from a gesture description

Having defined the algorithms for composing HMMs according to the
gesture description language, we summarise here how we obtain an HMM
from a gesture expression. We consider as classification features the x and
y position of a stroke over time.

The first step is obtaining the normalised version of the expression:
starting from the description, we calculate a bounding box for the gesture
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definition, we centre it on the origin and we normalise the bounding
box height and width in order to obtain a square enclosing the gesture
definition.

The second step is training the HMMs for the ground terms. We assume
having a training dataset for the left to right lines, one for clockwise arcs
(starting from 0 to π

2 ) and one for counterclockwise arcs (starting from π
2

to 0). All samples are normalised in the same way we described for gesture
descriptions.

For each line or arc term in the gesture expression, we apply to the cor-
responding training dataset a scaling, rotation and translation transform,
in order to match the considered ground term in the normalised gesture
definition. In addition, the raw training data is uniformly resampled in
space (using the same approach described in [241]), which means that
for each sample we use n equidistant samples. In this way, we are able
to train a forward (Bakis) HMM for recognising each ground term in a
complex gesture using the Baum-Welch [15] algorithm. We exploit the
same (transformed) training dataset for each primitive. We establish the
number of states for each HMM considering the relative length of the
ground term in the whole gesture. The generation procedure defines a
parameter representing the number of states per length unit s. Therefore,
if l is the normalised length of the line or arc, the number of states of the
generated HMM is l · s.

After this step, we have an HMM trained for all ground terms included
in the gesture description. In order to obtain the final HMM, we apply
the composition algorithms described in the previous sections.

In the recognition phase, we first apply to each gesture a preprocessing
step, consisting of the same transformations we applied to the gesture
model definition (centring, scaling, translation, rotation and resampling).
Then, the recognition probability is computed through the forward algo-
rithm [187].

4.3 Developing gesture interfaces with DE-
ICTIC

In this section, we discuss a set of properties of the composition algorithms,
which are important for the development of UI requiring feedback and
feedforward, as discussed in the Introduction.

The gesture definition language, together with the HMM generation
procedures are suitable for building a generic gesture library, which enables
interface designers and developers to rapidly create classifiers simply by
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writing an expression. They do not need to provide any training example,
since the primitive dataset may be shipped together with the library
support. We publicly shared a Python reference implementation of the
approach on GitHub [38] that allows writing gesture expressions similar to
the ones reported in this dissertation for building classifiers through the
operator overload. As we better detail in Section 4.4, the resulting HMMs
are robust enough for recognising with high accuracy stroke gestures from
different state-of-the-art datasets.

The composite HMMs support the identification of the ground terms
states inside them, for estimating the completion level of a gesture. This
enables showing which parts have been completed and the possible ways
of completing the gesture. Indeed, we can identify which ground term
is currently handling the values coming from the tracking devices from
the most likely state in the HMM. It is easy to prove by induction on
the composition algorithms that either a state belongs to a single ground
term, or to an n-tuple of ground terms the user is allowed to perform at
the same time. The latter case is related to the composition through a
parallel operator. Therefore, if we are able to find the most likely state
sequence that may produce the tracked feature values, we are also able
to identify which ground terms have been performed or are currently
progressing in the recognition process. This is an instance of the well-
known decoding problem in the HMM theory, which can be solved using
the Viterbi algorithm [72].

Another positive effect in developing gestural UIs derives from the
mapping between states and ground terms. Given an HMM, we can
predict the future distribution of its internal states through the forward
algorithm [187]. Therefore, such mapping allows predicting the ground
terms we will most likely encounter in the future. Such information is
what the designer needs for creating effective feedforward systems.
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Triangle: 4 =P (0, 0) + L(−3,−4) + L(6, 0) + L(−3, 4)

Figure 4.8: Ground term decomposition of a triangle gesture sample from
the 1$-dataset. Each dot corresponds to a set of x, y coordinates of
the sample point list. Points having a different colour corresponding to
different ground terms.

Figure 4.8 shows the ground term segmentation obtained applying the
Viterbi algorithm to a triangle gesture sample in the 1$-dataset, modelled
with the reported DEICTIC expression. For each point of the sequence, the
algorithm assigns the most likely state in the HMM. The point is green if
such state belongs to the first line term, red if it belongs to the second line
term, blue if it belongs to the third one. Such segmentation is promising
for supporting intermediate feedback and feedforward in gestural UIs.

Our approach is currently limited in providing such information in
the general case since the features we use for classifying gestures need
a preprocessing phase for supporting a position and scale independent
recognition, which cannot be executed without tracking the whole stroke.
A solution may be using a representation of the stream that works both
with incremental updates and with different sizes and positions of the same
shape. We will investigate it in future work. However, such preprocessing
phase may be avoided in case the stroke position and the scale are known,
as happens in the interface discussed in section 6.1, where the user may
execute gestures only inside the cells of a grid.

Our approach differs from other composition techniques on HMMs [111]
since we neither retrain nor we fine-tune composite HMMs using samples

Alessandro Carcangiu Combining declarative models and computer vision recognition algorithms for stroke gestures



DEICTIC 85

of the whole gesture. We train only ground terms using primitive samples,
which may be shipped together with the recognition code, independently
from the gesture set. This means that designers who define their own
composite stroke gestures starting from predefined primitives are not
required to collect a training dataset. The evaluation in Section 4.4 shows
that this is possible without a sensible degradation of the recognition
accuracy with respect to other state-of-the-art approaches.

The time spent for recognizing a gesture with a composite HMM
depends on the number of ground terms it contains. The model definition
allows associating a probability to a sequence of feature values, through the
forward algorithm [187]. Its computation complexity is O(N2T ), with N
the number of hidden states and T the sequence length. While T does not
depend on how we create an HMM, the composition has a clear impact on
N . If we assume that all ground terms have a comparable number of states,
N grows linearly with the composition operator count. A special case is
represented by the parallel operator, which squares the number of states.
Overall, this is a limitation in our approach: composing HMM requires
increasing the number of states. Training an HMM directly on complete
gesture samples (which we call ad-hoc HMMs in this method) usually
allows finding a good trade-off between the recognition accuracy and the
number of states, which is connected with the likelihood computation
performance. However, it is worth pointing out that the ad-hoc solution
requires a training set for each composed gesture, while DEICTIC requires
training only the ground terms, and this speeds up the training phase.

4.4 Recognition accuracy evaluation

In this section, we show that DEICTIC achieves a recognition accuracy
comparable with the other state-of-the-art approaches.

We implemented the algorithms described in Section 4.2 in Python,
relying on an existing HMM library called Pomegranate [200] for evaluating
the proposed compositional approach. We published the DEICTIC software
package for creating and composing gesture recognisers on GitHub [38].

In order to recognise ground terms, we collected a set of 14 training
example using a Leap Motion for i) left-to-right lines, ii) clockwise arcs
(from π

2 to 0) and counter counter-clockwise arcs (from 0 to π
2 ). The

samples are shipped with the library and we used them for training the
ground terms HMMs as described in Section 4.2.6.

In order to evaluate the recognition rate of the HMM described with
DEICTIC, we conducted three experiments, starting from two datasets
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from the literature:

1. Recognition of single-stroke gestures. We considered the 1$-
dataset introduced in [241]. It contains 330 repetitions of 16 single
stroke gestures, shown in Figure 4.9, left part. We repeated the
classification task using both DEICTIC and HMMs trained with
samples from the dataset.

2. Recognition of multiple-stroke gestures. We considered the
N$-dataset introduced in [7, 8]. It contains 600 repetitions of 14
multi-stroke gestures, shown in Figure 4.9, right part. We again
repeated the recognition with both DEICTIC and HMMs trained
with samples from the dataset.

3. Recognition of synthetic sequences. In order to test the per-
formance of the composition operators, we created test sequences
composing random sequences from both datasets according to the
operator semantics and we classified them with DEICTIC.

We modelled each gesture in both datasets using a DEICTIC expression
and we generated the corresponding composite HMM. For the sake of
brevity, we report in this section the test results, while we included the
gesture models for single and multiple stroke gestures respectively in
Table 4.4 and Table 4.5, 4.6. Before starting the classification task, we
preprocessed each gesture instance centring it in the origin, normalising
its size and resampling it to 20 samples per unit.

For evaluating the recognition accuracy, we fed each preprocessed
instance to all composite HMMs. The HMM having the highest recognition
probability (computed using the forward algorithm) assigned the label
to the current sample. Table 4.1 shows the results. It is worth pointing
out that none of the instances in both datasets was used for training a
DEICTIC HMM. The recognition rate for both datasets is comparable with
state-of-the-art classification algorithms applied to the same dataset in
the literature. We refer to the rates reported in [231] for user-independent
recognition, shown in Figure 4.10.

Considering the single-stroke gestures in the 1$-dataset, the 1$ algo-
rithm [241] has the best performance (97.1%), followed by the P$ [231]
(96.6%). DEICTIC (96.2%) is positioned immediately after, outperforming
Protractor [131] (95.5%) and N$ [7, 8] (95.2%). Table 4.1 (above part)
shows the DEICTIC confusion matrix on the single-stroke dataset. The
classification performance is robust in all considered gestures, ranging from
the maximum recognition rate (100%) for X, circle, delete and star, to the
minimum (92%) for the rectangle and left brace.
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1$ Dataset

N$ Dataset

Table 4.1: Confusion matrix for the 1$-dollar [241] (above) and the the N$-
dollar [7,8] (down) gesture dataset. Rows represent the ground-truth class, while
the columns represent the class assigned by DEICTIC. Ground terms contained
6 states, working with gestures resampled to 20 samples per normalised unit.
The 1$-dollar contains 330 samples for each one of the 16 gestures (5280 samples
in total). The N$-dataset contains 600 samples for each one of the 14 multistroke
gestures (8400 samples in total).
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Figure 4.9: Gesture sets in the two evaluation datasets. The top part
shows the single stroke gestures (figure taken from [241]), while the other
part shows the multiple stroke gestures (figure taken from [7,8])

Considering the multiple-stroke gestures in the N$-dataset, the best
performance is reached by the P$ algorithm [231] (98.0%), followed by
the N$ [7, 8] (96.4%). DEICTIC (94.0%) outperforms Dynamic Time
Warping [231,241] (93.4%) and approaches based on angular cosine [131]
(91.3%) and Euclidean [121] (91.5%) distances. Table 4.1, down part shows
the confusion matrix for the multi-stroke dataset, which shows again the
robustness of the classification for each gesture, with a recognition rate
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ranging from 99% for the X, to the 87% for the half-note. Some instances
of all two-stroke gestures were confused with X.

Such consistency in the recognition rates shows that DEICTIC has
a comparable accuracy with respect to state-of-the-art approaches in
gesture recognition while maintaining the advantages of declarative and
compositional modelling.

Figure 4.10: Accuracy of state-of-the-art approaches on the 1$-dataset [241]
(top), and on the N$-dataset [7, 8] (bottom).

We added to the approaches from the literature in Figure 4.10 the
recognition results obtained by HMM classification, without applying
our compositional approach for building them (ad-hoc HMMs). This
allows evaluating the impact on the recognition performance introduced
by training only ground terms and applying the composition algorithms,
against training HMMs on whole gesture samples (e.g., training with
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samples of each side of a triangle gesture against providing the entire
triangle stroke). More in detail, for each gesture we created a dedicated
Bakis HMM, having the same number of states with respect to its DEICTIC
counterpart. We run a ten-fold cross-validation for ensuring the relatability
of the results.

Ad-hoc HMMs performed very well on single-stroke gestures, the recog-
nition rate was higher than 99% and having a significant difference with
DEICTIC (t(15) = 3.98, p = .001). Considering this dataset, the composi-
tion technique lowered the recognition level by about 3%.

We did not register the same performance on the N$-dataset: the
mean recognition rate was about 87%. Ad-hoc HMMs had particular
difficulties in distinguishing D strokes from P and many gestures are
confused with the half-note and vice-versa. In contrast, DEICTIC had
a lower recognition rate with respect to the single-stroke dataset (about
94%), but such decrease was not significant (t(22) = 1.76, p = .09). Our
approach performed significantly better than ad-hoc HMMs (t(13) = 2.25,
p = .04), increasing their recognition level by about 7%. The results of the
experiments show again that the proposed composition technique maintain
a good performance if compared with ad-hoc HMMs on single-stroke
gestures, while it increases the recognition rate on multi-stroke ones.

It is worth pointing out the advantages introduced by DEICTIC specif-
ically for the training phase. Ad-hoc HMMs requires complete gesture
samples for learning the emission and transition distributions for all HMM
states. In our experiment, it means using the 90% of the dataset for learn-
ing how to recognize the remaining 10% (297 samples for the 1$-dataset
and 540 for the N$). If the gesture set changes, e.g., by adding a new
gesture, we would need to collect other samples. In contrast, DEICTIC
uses only 14 samples for each one of the ground terms, and they are the
same for both the 1$ and the N$ datasets. No samples from these datasets
were used in the training phase. This means that developers would not
need to collect additional data for supporting different gestures.

In addition, DEICTIC always trains a constant number of states (6
in our experiments). Since the time complexity of the Baum-Welch [15]
algorithm for training is O(D · T ·N2) where D is the number of training
samples, T the sample size and N the number of states in the HMM,
ad-hoc HMMs training requires much more time. In our experiment, we
passed from about 2 minutes for training DEICTIC to one hour for a
single fold for ad-hoc HMMs.
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Synthetic sequences, 1$ Dataset

Table 4.2: Recognition of synthetic sequences

Besides the recognition of gestures in the dataset, we measured the
performance with a set of synthetic sequences, produced in order to test
all composition operators. We randomly selected the gesture pairs (or
single gesture for the iteration) and, according to the operator semantics,
we generated the composed sequence starting from the original data as
follows:
• Iterative. Starting from a single sample, we randomly repeated it

from 1 to 5 times.
• Sequence. We associated each sample of the first gesture to a

randomly selected sample of the second one, without repetitions.
The synthetic sequence is simply the concatenation of the two samples
(in order).
• Choice. Starting from the gesture pair, for each synthetic sequence

we randomly selected one sample either of the first or the second
one, without repetitions.
• Parallel. Starting from the gesture pair, we selected two samples as
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described for the sequence. We juxtaposed them shifting randomly
up or down the rows of the second gesture and filling the blanks with
random values. The latter operation guarantees that the gestures
may start at different times with respect to each other.

After the sequence generation, we created the DEICTIC expression
and we trained the corresponding HMMs. Table 4.2 shows the recognition
performance on single-stroke composite gestures, while Table 4.3 reports
the results on multi-stroke sequences. In both cases, the recognition
performance is good.

In conclusion, the experiment highlighted different results obtained
by our approach. First of all, DEICTIC has been able to recognise new
gestures, significantly different from the samples included in the training
set of each ground term. This is important for interface designers, which
would be able to create gesture recognisers exploiting components, as they
already do with UI widgets. Secondly, they would achieve a recognition
rate comparable to other approaches in the literature.

Finally, considering the properties discussed in Section 4.3, it is possible
to reconstruct the sequence of the most likely ground terms associated
with a particular gestural input. Such information is not trivial when
gestures are composed in choice or parallel since the designer would have
the possibility to associate different feedback and feed-forward reactions
to different ground terms. Such level of granularity is not supported by
other methods used for recognising gestures.
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Syntetic sequences, N$ Dataset

Table 4.3: Recognition of synthetic sequences
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Chapter 5

G-Gene

As illustrated in 4.3, DEICTIC requires a normalization step for dealing
with different scalings of the same shape. Therefore, in the general case,
DEICTIC needs to preprocess the whole input for classifying gestures. In
this chapter, we introduce G-Gene, an online stroke gesture recognizer scale
independent. The proposed method combines a simple gesture modelling
technique, designed for supporting feedback and feedforward mechanisms,
and an HMM classifier. The generated HMM supports online recognition,
without requiring both the whole input and a training phase. It relieves
the developer from the need to collect any gesture sample. It is worth
pointing out that the contribution of this work is not on i) the recognition
accuracy, ii) the gesture modelling itself or iii) the robustness in continuous
gesture recognition, but on establishing a compromise between accuracy
and providing the information needed for feedback and feedforward systems
through the recognition support.

We start with the section 5.1, where we introduce the definition of
G-Gene, illustrating the procedure adopted to create a new profile HMM,
highlighting both benefits and limitations in our work. After that, in
section 5.2, we analyse the accuracy rate obtained in experimental tests.
This chapter is an extended version of the work in [39].

5.1 Method

In this section, we discuss the methodology we applied for creating a profile
HMM, using as input the declarative gesture modelling expression defined
in Section 4.1. The resulting composite HMM has three main properties: i)
it does not require any training sample for recognizing gestures, ii) it does
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not use any global feature in the gesture classification and iii) it allows
recognizing gesture sub-parts, supporting the development of feedback and
feedforward systems.

5.1.1 Building the G-Gene profiles

Starting from an ideal gesture expression model defined through the
modelling language discussed in section 4.1, we derive a set of character
sequences representing the G-Gene target profiles. The characters define a
label for each stroke gesture sub-part, which distinguishes them from each
other according to local features. In particular, we consider:

• The direction of a linear movement transformed to the closest one
in the compass (north, north-west, west etc.). We use the following
characters ↑↗→↘↓↙←↖ for representing these directions.
• The rotation direction of a curve movement, either clockwise (denoted

by the � character) or counterclockwise (denoted by 	).
• The boundary point between two sub-parts of a stroke, denoted by

the · character.

In Figure 5.1, we show an example profile for a D gesture. The stroke
starts at the bottom left corner of the shape, then it goes up (↑), it changes
the subpart (·, which is repeated between each part), it moves right (→),
it makes a clockwise arc movement (�), it moves down (↓), it makes
clockwise arc (�), and finally it moves left (←). We add a boundary
character at the beginning and at the end of the string for obtaining the
final profile.

· ↑ · → · � · ↓ · � · ← ·

Figure 5.1: Sample G-Gene target profile for a D gesture. The stroke
starts from the filled dot. We add a boundary character between each
gesture sub-part (·).

We derive the target profiles with a semi-automatic procedure, consist-
ing of two phases. In the first phase, we associate to each ground term in
the modelling language its corresponding profile character as follows:

Alessandro Carcangiu Combining declarative models and computer vision recognition algorithms for stroke gestures



G-Gene 99

• For each term of point type P (x, y), we associate a boundary point
(·);
• For each term of type line L(∆x,∆y), we associate the closest direc-

tion in the compass, minimising the difference between the vector
angle v(∆x,∆y) and the eight considered directions;
• For each term of type arc A�(∆x,∆y) or A	(∆x,∆y), we associate

the rotation direction (either � or 	);
• We add a boundary character (·) for each sequence operator (the +)

in the expression.
• We add a boundary character (·) at the end of the expression.

The result is a single profile string that represents the ideal stroke
performance in G-Gene. In the second phase, we generate a set of mutated
profile strings from the ideal profile, replacing each line segment with
the two “siblings” compass directions, rotating it ±45o around its end
point. The designer selects the changes that preserve the gesture shape,
according to her own needs. It is worth pointing out that the profiles are
scale independent, since their definition relies only on the ideal movement
direction and not on its size, but not rotation independent.

The process is depicted in Figure 5.2 for an N gesture. It contains
three line segments, highlighted in the second level of the tree. For each
of them, the G-Gene profile generation procedure creates the mutation
selecting the compass direction by rotating the line around the end point.
For instance, considering the first line segment in Figure 5.2 that points
north, the tool generates a north-east and a north-west line segment. The
designer may accept or reject the resulting shapes. We highlight the former
case in green and the latter in red in Figure 5.2. The resulting strokes
that are acceptable as G-Gene profiles are depicted at the bottom. They
are obtained by combining the selected options for all the line segments
(in blue the segments coming from the ideal profile, in green the segments
accepted during the selection process). The process may generate an
exponential number of profiles, but in practice, many intermediate changes
are always rejected (we used no more than 4 mutations for all gestures
discussed in Section 5.2.1).

After completing the two phases, each gesture expression is associated
with a set of profile strings, which we use for gesture recognition.

5.1.2 Building the G-Gene representation of the stroke
input

At runtime, we track the 2D position of the stroke and we incrementally
build its G-Gene representation. We decompose a trajectory in subparts,
corresponding to the characters we introduced in Section 5.1.1. We exploit
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Figure 5.2: Generation of the G-Gene profiles from an N stroke expression.
For each line primitive, we show the shape mutation considering the
direction at ±45o around the line end point. The designer selects the ones
that maintain a reasonable similarity with the desired shape (in green)
and she rejects those that are too different. The bottom part of the figure
shows the generated profiles.

local information for supporting online recognition.

The first and the last character in the input string representation is a
boundary. We generate them respectively when the stroke starts and when
it ends. While the user is performing the gesture, we basically distinguish
between lines and arcs through a collinearity test. We generate a character
each time the collinearity test changes its result.

More formally, we receive from the input device a stream of points,
we denote as xt and the yt the coordinates of the stroke position at the
current time t. In the collinearity test, we start from the first position
in the stream that was aligned with the last input sample, or from the
beginning of the stream. We need at least three points for the test, so if t
is the current stream and s the starting position we have that 0 ≤ s ≤ t−2.
The test is defined in Equation 5.1, where 〈−→v ,−→w 〉 is the inner product
of −→v and −→w and ‖−→v ‖ is the l2 norm. We use an error threshold (ε) that
guarantees robustness to nearly-collinear points, as described in [198]. We
apply a Kalman iterative smoother to the input stream for reducing noise
while preserving the stroke shape and the movement properties.
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Figure 5.3: The G-Gene stroke string generation FSM. It receives the
stroke position sequence as input (P ), together with the start and end
event. The transition labels define the firing condition and the generated
character (if any), separated by a slash.

coll : (〈−→v ,−→w 〉2 ≤ ε · ‖−→v ‖2 · ‖−→w ‖2)→ {0, 1}
−→v = (xb − xa, yb − ya), −→w = (xc − xb, yc,−yb), ∀ a, b, c ∈ [s, t]

(5.1)

Such collinearity test drives the stroke segmentation and labelling
algorithm, represented in Figure 5.3 as a Finite State Machine (FSM). It
starts buffering the first three samples, which is the minimum number for
starting the labelling process (Wait1 and Wait2). After that, it checks if
the samples are aligned or not. The process forks according to the value
obtained by applying the Equation 5.1.
• If true, the FSM moves to the Line state. The transition generates a

character minimising the difference between the vector angle defined
by the current line segment and the eight compass directions. In the
FSM this corresponds to the function dir : (P1, P2, P3)→ λ ∈ {↑,↗
,→,↘, ↓,↙,←,↖}, which assigns one of the direction characters
to the three aligned points. The FSM stays in that state until the
collinearity of the segment holds.
• If false, the FSM moves to the Arc state. We compute the area of

the polygon defined by three buffered points (P1, P2, P3) using the
Shoelace formula1, If the area is greater than zero, then the segment
describes a clockwise trajectory, or counter-clockwise movement oth-
erwise. We generate respectively a � or a 	 character in the former

1https://en.wikipedia.org/wiki/Shoelace_formula
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and in the latter case. In the FSM, we represent such generation
with the function shoe : (P1, P2, P3)→ k ∈ {�,	}. The FSM stays
in Arc state until a collinear segment is spotted.

From both states the FSM goes back to the Wait2 state when the
collinearity test changes its value for the current segment, generating a
boundary (·) character. Finally, it goes to the End state when the stroke
ends. The input representation is scale-independent (it relies on the stroke
direction and not on its size), but not rotation independent.

As we illustrated in Section 3.2 Hidden Markov Models (HMMs) have been
used in the literature for solving and modelling the correlations between
adjacent symbols. In G-Gene, we rely on profile-HMMs for determining
the similarity between two G-Gene profiles; therefore, our approach solves
the gesture recognition problem by finding the most similar gesture string
in the reference G-Gene profiles for a given input.

5.1.3 Limitations

G-Gene uses local features and groups segment samples for splitting
a trajectory in real-time, representing it as a sequence of characters,
corresponding to gesture sub-parts. On the one hand, this allows us to
create profile-HMMs for the recognition, which provide information on the
gesture sub-components. On the other hand, this set some limitations.

First of all, using local features makes the recognition process less robust
to the input noise, since characters are generated on the fly according to a
limited number of samples. Many classification techniques we reported in
the related work section use global features for achieving a higher accuracy.

In addition, the local features we use do not maintain information
about the length of a segment. This makes gestures which differ from the
length of their primitives indistinguishable with our method. An example
may be trying to distinguish a V from a checkmark (X) stroke. We can
describe both of them with the sequence · ↘ · ↗, but we would need to
encode the length of the segment in ↘ for telling them apart.

Finally, the robustness to noise may become a limit when we have
similar profiles: it may be hard for designers to control them given the
generation procedure. As a consequence, we may need to balance the
number of profiles used for each gesture and the accuracy of the recognition.

5.2 Evaluation

In this section we illustrate the experimental tests conducted to evaluate
both accuracy and performance of our methods. In the section 5.2.1, we
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Figure 5.4: The stroke gestures in the 1$-dataset (figure taken from [241])

evaluated the G-Gene recognition rate with the dataset in [241].

5.2.1 Accuracy Evaluation

We implemented the proposed method in Python, on top of the Pomegranate
HMM library [200]. In this section we evaluate the method accuracy, test-
ing it on the 1$-dataset [241]. That dataset contains 330 repetitions of 16
single stroke gestures, performed by 11 different users on a touch surface.
Figure 5.4 shows the set of gestures in the dataset.

We modelled the stroke gestures using the profile sequences described
in section 5.1 experiment. Considering the limitation discussed in Sec-
tion 5.1.3 we excluded the checkmark (X) that is indistinguishable from
the stroke V .

We simulated an online dispatching, feeding the profile HMM with a
single frame at a time (each stroke point in the dataset has an associated
timestamp). We evaluated the accuracy comparing the ground-truth
label with the profile having the highest probability. Figure 5.5 shows
the resulting confusion matrix. The overall accuracy of the proposed
approach is 88.2%, which is good enough for building interface prototypes:
as discussed in [224], the accuracy of a good recogniser is expected to
fall between 88% and 98%. However, it is below the results reported
in the literature for the same dataset: the 1$ algorithm [241] has the
best performance (97.1%), followed by P$ [231] (96.6%), Protractor [131]
(95.5%) and N$ [8] (95.2%). It is worth pointing out that all these
approaches use an offline recognition technique that, as we will discuss in
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GestureIdeal Sequences

4 · ↙ · → · ↖ ·
X · ↘ · ↑ · ↙ ·
2 · ↓ · → · ↑ · ← ·
© · 	 · 	 · 	 · 	 ·
∧ · ↗ · ↘ ·, · ↑ · ↘ ·, · ↗ · ↓ ·, · ↑ · ↓ ·
? ·! ·"·, ·! ·! ·"·
↗ · ↗ · ↙ · → · ↓ ·, · ↗ · ← · → · ↓ ·, · ↗ · ← · → · ↙ ·
[ · ← · ↓ · → ·
] · → · ↓ · ← ·
V · ↘ · ↑ ·, · ↘ · ↗ ·, · ↓ · ↗ ·, · ↓ · ↑ ·

· ↘ · ← · ↗ ·
} · � · 	 · � · 	 · � ·, · � · 	 · 	 · � · 	 · � ·
{ · 	 · � · 	 · � · 	 ·, · 	 · 	 · � · 	 · � · 	 ·
C · ↗ · ↘ · ↖ · → · ↙ ·
` · ↗ · 	 · ↙ ·, · ↗ · 	 ·

Table 5.1: The profile sequences used to describe each gesture in the
1$-dataset.

Section 6.3, creates more difficulties for developers in creating feedback
and feedforward systems.

We identified two groups of gestures in the confusion matrix. The first
includes those gestures having a very high recognition rate, ranging from
the maximum 99% of X, the rectangle and delete, to the 90% for the V
stroke (whose instances were sometimes confused with the delete). The
second group consists of gestures having profiles similar to other ones in
the set, which are much more affected by the lack of precision induced by
local features. The recognition rate, in this case, ranges from 85% for the
left square bracket, to 70%, which is the minimum reached for the question
mark. Some examples of gestures in this group are the pigtail, whose
instances are confused with the arrow, and the circle that is confused with
the left square or curly bracket. Both of them have a 13% of samples
wrongly labelled.
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Figure 5.5: G-Gene confusion matrix on the 1$-dollar [241] gesture dataset.
Rows represent the ground-truth class, while the columns represent the
class assigned by G-Gene. The dataset contains 330 samples for each one
of the 15 gestures (4905 samples in total).
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Chapter 6

Developer Evaluation

In this chapter, we detail the results of a user study for assessing how
the two proposed methods assist the UI developers in creating gestural
interactions. Firstly, we compared DEICTIC recognition support against
heuristic and machine-learning approaches. After that, we assessed the
G-Gene support in creating a well-known interface that requires feedback
and feedforward information against one of the available toolkit discussed
in Section 2.1, which provides information on the final gesture label. In
both cases, our hypothesis is that the modelling effort introduced by our
gesture recognition libraries is balanced by the advantages of receiving
intermediate information.

We start describing the tasks and the partecipants recruited for the
test in section 6.1. Then, we discuss the developer evaluation of DEICTIC
in section 6.2 and finally we illustrate the results obtained with G-Gene in
section 6.3.

6.1 Environment

In this section we detail the environment implemented in order to evaluate
the performance of DEICTIC and G-Gene in creating gesture guiding
systems. Then we describe the participant sample recruited for the tests
(section 6.1.1), we illustrate the development tasks (section 6.1.2) and we
discuss the results (section 6.1.3).
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6.1.1 Partecipants

We recruited a group of 17 developers, 14 males and 3 females for both
experiments. Their education level ranged from the High School Degree
(5), Bachelor Degree (3), Master Degree (5) to PhD (3). Most of them
have a development experience between 1 and 5 years (9), 5 between 6
and 10 years and 3 more than 10 years. All participants are fluent with
Object-Oriented languages such as Java, C++ or C#, about half of them
know Javascript, PHP and PL/SQL, while they are less familiar with the
other ones reported in Figure 6.1, upper part. We asked them to self-
evaluate their experience with a group of development tasks relevant for the
evaluation. They have a mid-level experience in web and UI development,
while they have a low experience with gesture interface development and
in using machine learning techniques. Figure 6.1 shows the details on the
participants’ programming skills.

The recruited participants are a relevant sample considering the devel-
opment of a specific UI whose design was already established by another
team during the development process (e.g., by graphical or user experience
experts). We simulate the existence of different development libraries,
which offer gesture recognition capabilities. In both tests, participants
have to decide which one better suits the UI requirements.
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Figure 6.1: Participants’ experience with programming languages and
development task.

6.1.2 Procedure

We conducted two different experiments, each one to measure the support
provided, respectively, by DEICTIC and G-Gene. We start describing the
development tasks required in DEICTIC; after that, we characterize the
tasks which make up the evaluation of G-Gene.

DEICTIC Development Tasks The evaluation of DEICTIC consisted
in the development of a simple gestural interface for managing a 3×4 grid
(see Figure 6.2, top part). In each cell, the user can put a monster, a
treasure cell, or she can leave it empty. Three simple stroke gestures
support the of control the content of each cell: a monster appears by
drawing a triangle, a treasure box by drawing a square, while an X stroke
clears the cell content. The participants were asked to create two variants
of the same application, which differ with respect to the guidance to be
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provided as feedback while performing these gestures. This corresponds to
having two hypothetical alternative versions requested by the UI design
team.

In the first variant, the application uses a Line Feedback (see Figure 6.2),
which simply draws a red line as the user moves the finger on the screen.
In this configuration, the information required for drawing the line is
simply the sequence of the stroke positions over time. Since there is no
need for intermediate gesture recognition, the classification support is
required only at the end of the stroke. We inserted this task in the test for
evaluating the difficulties in modelling and recognising gestures through a
given technique.

The alternative feedback design is OctoPocus [14], which shows a
dynamic guidance while the user performs the stroke. Figure 6.2, bottom
part, shows the feedback for a triangle gesture. When the stroke starts, it
displays the possible gesture completions using different colours. While the
user performs the stroke, it updates the representation by encoding in the
colour opacity the predicted likelihood (the more opaque the colour, the
more the system is confident that the user is performing the corresponding
gesture). In Figure 6.2 the triangle opacity increases since the user is
following its shape. Finally, when the user lifts the finger from the screen,
the application executes the command associated to the most likely gesture.
OctoPocus is a good benchmark for evaluating the support offered by
different recognition techniques for the UI development. Indeed, OctoPocus
requires information on partially executed gestures, so the participant
needs to invoke the recognition support while the user is performing the
stroke. This task evaluates the ability of the underlying support to provide
information for building feedback and feedforward representations, which
motivated our works.

The participants implemented the two variants of the grid UI using
three different recognition libraries:

1. The first library uses Finite State Machines (FSMs) for recogniz-
ing polyline gestures, according to the movement orientation angle.
A stroke is represented as an FSM having a state for each segment,
defined by the direction in its ideal trajectory. A direction is repre-
sented as through an angle range in the goniometric circle.1 When
the user changes the stroke direction, the machine fires a transition.
It goes to the next state if its corresponding range contains the
new direction angle, or to an error state otherwise. The gesture is

1For instance, considering the four segments of the square stroke in Figure 6.2,
we need four directions: down (270o), right (0o), up (90o) and left (180o). Obviously,
the user’s movements are not perfectly aligned to the ideal direction, so the developer
specifies an interval around the ideal angle (e.g., 270o ± 20o) for the down direction.
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Figure 6.2: Gestural UI developed for the user test (top part). Line
feedback for a square gesture (middle part) OctoPocus [14] feedback for a
triangle gesture (bottom part).

recognised when the stroke ends and the FSM is in its final state.
Such library represents a simplified declarative approach which uses
geometric heuristics for the recognition. It summarises this category
in the evaluation development task: gestures are easy to define (it is
sufficient to declare the parts and their direction angle), it recognises
gestures without training, and it provides information on partial
gesture recognition (in our case, each FSM state corresponds to
one of its sub-parts), but they are not robust to the user’s input
variability (the range definition is critical for a correct recognition).

2. The second library represents the Machine Learning approaches
and it recognizes gestures according to a given set of labelled exam-
ples, which has to be provided by the developer. Such approaches
are robust to the input noise, but they are a black box for developers.
They provide a label for the whole stroke and they do not provide
information on partial gesture recognition. In order to speed-up the

Alessandro Carcangiu Combining declarative models and computer vision recognition algorithms for stroke gestures



112 Developer Evaluation

evaluation procedure while enabling the participants to grasp the im-
portance of the training phase, we used the library presented in [241],
since it requires only a few samples for each gesture, it provides a
JavaScript implementation and the overall development interface is
a good representative for the machine learning approaches.

3. The third library is DEICTIC, the approach described in this work,
which defines gestures through expressions. The recognition does
not require gesture-specific training samples (the dataset for the
ground terms was included in the library) and provides information
on partial gesture recognition as discussed in section 4.3.

Besides the gesture recognition support, we provided the participants
with three other libraries for facilitating the interface development:
• Grid, which draws and manages the grid user interface, including

functions for setting or resetting the cell content.
• Feedback, which provides the implementation of the drawing proce-

dures for the Line and the OctoPocus feedback.
• Input, which masks the differences between mouse and touch events

in the browser for easing the development tasks.
We documented the API of all pieces of software and we provided a

tutorial on each component, including both explanations and sample code
as usual in open-source libraries. We asked the participants to read the
tutorials before starting the implementation tasks. The documentation
material was available for them throughout the test, and they were free to
read it whenever they wanted to. The test description and the documenta-
tion material for the evaluation are available in the DEICTIC source code
distribution [38] 2.

All participants developed the grid interface using all recognition sup-
ports. The six possible orders for executing the development tasks with all
supports were randomly assigned to each participant for counter-balancing
the carry-over effect. The first task is the most critical for each partic-
ipant since s/he has to learn both the gesture recognition support and
the interface management components (grid, feedback and input). In the
other two conditions, s/he can leverage on the grid, feedback and input
components knowledge acquired in the previous tasks.

G-Gene Development Tasks The development task, performed to
evaluated G-Gene, consists of coding the gesture interaction support for
a simplified drawing application. The canvas responds to three simple
stroke gestures: two of them have the effect of drawing the corresponding

2https://github.com/davidespano/deictic/blob/master/user-test/

gesturemap/basic/static/basic/js/lib/out/index.html
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Figure 6.3: The simplified Octopocus [14] feedback for a triangle gesture.

geometric figure (triangle and rectangle) at the stroke position, and one
has the effect of erasing the underlying object (the delete gesture). The
user has to execute all gestures as depicted in Figure 6.3. Similarly to the
development tasks required in the evaluation of DEICTIC, the interface
guides the user during the performance by using a simplified OctoPocus [14]
feedback, represented in Figure 6.3.

We assessed the G-Gene support in creating a well-known interface
that requires feedback and feedforward information against one of the
available toolkit discussed in Section 2 that provide information on the
final gesture label. Our hypothesis is that the modelling effort introduced
by the library is balanced by the advantages of receiving intermediate
information.

The participants were requested to develop the same interface using two
different recognition supports. The first one is the 1$ recognizer [241], which
requires the developer to enter only a few examples for each considered
gesture. It represents the techniques able to provide the label only at
the end of the stroke as we discussed in Section 2.1. The second one is
the G-Gene recognizer. We alternated the starting condition among the
participants for balancing the carry-over effect.

In order to speed-up the development process, we created four JavaScript
libraries that were provided to the test participants together with develop-
ment tutorials and documentation as described in the following list3.
• A Canvas management library. It contains a class representing a 3x4

matrix. Each cell may be empty, or it may contain a triangle or a
square. The developer can sets cell content using the setTriangle,
setSquare and clearCell methods.
• A OctoPocus library, containing a class for managing the stroke input

and displaying the guidance for the considered gestures. The class has
a start and a clear method respectively for showing and hiding the
guidance underneath the current stroke position. At the beginning of
the interaction all gesture guidance paths are considered as equally

3The documentation provided to the test participants is available at the URL:
hhttps://goo.gl/GL7xsT
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likely (see Figure 6.3, first box) The update method changes the
current state of the visual guidance. It receives as parameter an
array that, for each guiding shape, specifies the index of its current
side and its opacity level. For instance, in the third box of Figure 6.3
the array element corresponding to the triangle guidance has 1 as
side index (the second) and nearly 1 as opacity.
• The 1$-recognizer as described in [241]. It requires a training step,

where the developer provides a small (3) number of labelled samples
for each gesture through a dedicated interface. The samples are
stored in a global variable. In the recognition phase, the library
provides a buffer object for storing the stroke points. The object
implementing the recognition algorithm has an eval method that
receives the buffer as input and returns the likelihood of each gesture
in the set, represented as an array of key-value pairs.
• A G-Gene JavaScript wrapper. It requires a modelling phase, where

the developer writes the gesture definition expression and passes it
to the library for initializing the underlying HMMs. This is accom-
plished by invoking the init method and passing a key-value pair
array, containing for each gesture its name and a string represent-
ing the modelling expression as described in Section 5.1.2. Once
the library is initialized, the developer uses the same buffer object
described at the previous point for collecting the user’s input. The
eval method takes the buffer as a parameter and returns an array
containing the likelihood of each gesture and its sub-parts.

6.1.3 Evaluation metrics and success criteria

In both tests, for each task, we collected the time spent and the comple-
tion rate. After finishing a task, the participants filled in questionnaire,
including questions from a NASA-TLX [86], for evaluating a set of relevant
criteria from those proposed for the evaluation of UI toolkits by Olsen [181],
and an open-ended question for collecting their opinions and suggestions
on the evaluated support. Finally, we analysed the developed code for
finding common patterns in their solutions.

At the end of the test, we asked the participants to rank the approaches
on their overall effectiveness, satisfaction and willingness to reuse, together
with the criteria proposed by Olsen [181] for finding possible differences in
the assessment after testing all approaches.

The questions for the selected UI toolkit criteria are the following (1
to 7 Likert scale):

• Effectiveness. Please rate how effective the gesture recognition
support is in your opinion.
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• Perceived accuracy : Please rate how accurate the gesture recognition
support is in your opinion.
• Flexibility. How easily do you think that the current configuration

supports rapid changes for e.g., evaluating them with the end-users?
• Expressive Match. How close the means for expressing the gesture

design are to the problem being solved?
• Inductive Combination. How reusable is the solution you built with

this gesture recognition support? How easily you can take out
components that may be combined for creating other interfaces?
• Overall satisfaction. Please rate your level of satisfaction with respect

to the gesture recognition support.
• Willingness to reuse the approach in the future. If you would need to

implement gestural interfaces in the future, are you willing to reuse
this recognition support?

In our hypothesis, DEICTIC and G-Gene should be able to provide
intermediate feedback information with an effort comparable to heuristic
approaches, with a definition procedure and perceived recognition accu-
racy comparable to machine learning approaches. Achieving such results
constitutes the success criteria for these tests.

6.2 DEICTIC Evaluation

In this section we report the results that DEICTIC achieved in the develop-
ment tasks described in Section 6.1. All tasks were successfully completed
by all the users in all conditions but the OctoPocus feedback with the
Machine Learning approach. In that task, two participants gave-up since
not they were not able to retrieve the information on partially executed
gestures. Other participants found difficulties in identifying a possible
solution (5) and the moderator suggested them that partially executed
gestures may be considered as gestures as well. With such advise, they
added more labels to the set, representing each phase of a stroke execution
(e.g., specifying one label for the first triangle side, another one for the
first plus the second, and finally the complete triangle) and they were able
to complete the task.

We use a one-way ANOVA for repeated measures for comparing the
results across the three conditions: i) Finite State Machines (FSM), ii)
Machine Learning (ML) and iii) DEICTIC (D). The resulting dataset had
homogeneous variance and satisfy the sphericity assumption for all metrics,
therefore no transformation nor correction was needed for running the
one-way ANOVA analysis.

The post-task metrics collected for each task are summarised in Fig-
ure 6.4 (red boxes for the Line version and green boxes for the OctoPocus
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version).

Figure 6.4: Post-task evaluation results. Red boxes correspond to the
line feedback UI variant, while green boxes correspond to the OctoPocus
variant. The first row shows the time on task and the task load (NASA
TLX [86]), the second row shows the selected UI toolkit criteria for the line
feedback, in the third row is depicted the same criteria for the OctoPocus
task. The order for the criteria is the same as in section 6.1.3.
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6.2.1 Line Feedback Task

We found the following significant effect of the recognition library on the
following metrics4:
• Time on task (F (2, 16) = 6.673, p < .004, η2 = 0.29, in minutes,

lower is better). We registered a significant difference between FSM
and D (p < .02, c.i. = [2.9, 31.6] min) and between FSM and ML
(p < .05, c.i. = [4.3, 34.7] min).

• Task load (F (2, 16) = 3.998, p < .03, η2 = 0.20, NASA TLX [86] in
a 0 to 150 scale, lower is better). We registered an almost significant
difference between FSM and D (p < .004, c.i. = [0.7, 27.4]).

• Effectiveness (F (2, 16) = 22.75, p < 10−3, η2 = 0.59, 1 to 7 Likert
scale, higher is better). We registered an almost difference between
ML and FSM (p < .002, c.i. = [0.90, 3.58]) and between D and FSM
(p = .003, c.i. = [1.14, 3.68]).

• Perceived accuracy (F (2, 16) = 40.74, p < 10−3, η2 = 0.71, 1 to 7
Likert scale, higher is better). We registered a significant difference
between ML and FSM (p < 10−4, c.i. = [1.56, 4.00]) and between D
and FSM (p < 10−4, c.i. = [1.75, 4.02]).

• Flexibility (F (2, 16) = 7.944, p < .001, η2 = 0.33, 1 to 7 Likert scale,
higher is better). We registered a significant difference between D
and FSM (p < .007, c.i. = [0.48, 3.16]).

• Expressive Match (F (2, 16) = 7.37, p < .002, η2 = 0.31, 1 to 7 Likert
scale, higher is better). We registered a significant difference between
ML and FSM (p < .01, c.i. = [0.29, 2.65]) and between D and FSM
(p < .02, c.i. = [0.08, 2.62]).

• Inductive Combination (F (2, 16) = 7.29, p < .002, η2 = 0.31, 1 to 7
Likert scale, higher is better). We registered a practical significant
difference between ML and FSM (p < .07, c.i. = [0.15, 2.67]), and a
significant one between D and FSM (p < .01, c.i. = [0.28, 2.77]).

• Overall Satisfaction (F (2, 16) = 21.06, p < 10−6, η2 = 0.57, 1 to 7
Likert scale, higher is better). We registered a significant difference
between ML and FSM (p < 10−3, c.i. = [0.99, 3.83]), and between D
and FSM (p < 10−4, c.i. = [0.99, 3.83]).

4We used a Bonferroni-corrected pairwise comparison for establishing the differences
between the gesture recognition library pairs.
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• Willingness to reuse the approach in the future (F (2, 16) = 22.02,
p < 10−5, η2 = 0.58, 1 to 7 Likert scale, higher is better). We regis-
tered a significant difference between ML and FSM (p < 10−3, c.i. =
[0.85, 4.08]) and between D and FSM (p < 10−4, c.i. = [1.37, 4.39]).

In summary, the collected data confirm our hypothesis for this task:
developers preferred and performed better in defining the gesture set using
the Machine Learning and DEICTIC, which achieved comparable results.
They had more difficulties using FSMs that, according to the comments we
collected, where tedious to tune-up for achieving an acceptable recognition
performance.

6.2.2 OctoPocus feedback task

We found the following significant effect of the recognition library on the
following metrics:
• Time on task (F (2, 16) = 4.838, p < .02, η2 = 0.23, in minutes, lower

is better). We registered a significant difference between ML and D
(p = .05, c.i. = [1.4, 45.0] min).

• Task load (F (2, 16) = 4.011, p < .03, η2 = 0.20, NASA TLX [86] in
a 0 to 150 scale, lower is better). We registered an almost significant
difference between ML and D (p < .08, c.i. = [0.8, 25.8]) and between
ML and FSM (p < .07, c.i. = [0.6, 25.8]).

• Effectiveness (F (2, 16) = 5.738, p < .008, η2 = 0.26, 1 to 7 Likert
scale, higher is better). We registered an almost significant difference
between D and ML (p < .005, c.i. = [0.50, 2.55]) and a significant
difference between D and FSM (p < .07, c.i. = [0.05, 2.18]).

• Perceived accuracy (F (2, 16) = 9.372, p < 10−3, η2 = 0.37, 1 to 7
Likert scale, higher is better). We registered a significant difference
between D and FSM (p < .003, c.i. = [0.72, 2.93]).

• Flexibility (F (2, 16) = 12.07, p < .10−3, η2 = 0.43, 1 to 7 Likert
scale, higher is better). We registered a significant difference between
D and FSM (p < .05, c.i. = [0.37, 3.39]) and between D and ML
(p < 10−3, c.i. = [1.6, 4.18]).

• Expressive Match (F (2, 16) = 4.781, p < .02, η2 = 0.23, 1 to 7 Likert
scale, higher is better). We registered a significant difference between
D and ML (p < .005, c.i. = [0.39, 2.66]).
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• Inductive Combination (F (2, 16) = 7.755, p < .002, η2 = 0.33, 1 to 7
Likert scale, higher is better). We registered a significant difference
between D and ML (p < .002, c.i. = [1.09, 3.50]).

• Overall Satisfaction(F (2, 16) = 10.08, p = 10−3, η2 = 0.38, 1 to 7
Likert scale, higher is better). We registered a significant difference
between D and ML (p < 10−3, c.i. = [1.05, 3.65]) and an almost sig-
nificant difference between D and FSM (p < .08, c.i. = [0.09, 2.61]).

• Willing to reuse the approach in the future (F (2, 16) = 10.93,
p = 10−4, η2 = 0.41, 1 to 7 Likert scale, higher is better). We
registered a significant difference between D and ML (p = 10−3,
c.i. = [1.49, 4.39]) and an almost significant one between D and FSM
(p < .09, c.i. = [0.13, 3.16]).

The results confirm the hypothesis for this task as well: DEICTIC
required a significantly lower time and effort for completing the task
with respect to the Machine Learning approach, and it was consistently
preferred by developers for all the considered criteria. DEICTIC performed
better than the FSM approach considering the task load, showing that
the modelling expressions fit the stroke gestures description better, as
confirmed by the results for the overall satisfaction and willingness to reuse.
The perceived accuracy was higher with respect to FSM as expected.

6.2.3 Post-test results

The post-test results in Figure 6.5 shows an overall preference for the
DEICTIC approach in the development of stroke-based interactions. DE-
ICTIC was considered the best option for all evaluated criteria by a large
majority of the participants (min 12, max 16) and the second one by the
others. In the expressiveness aspect, Machine Learning was considered as
the best approach by 4 participants, that explained their choice by saying
that drawing examples was easier than modelling the gestures. However,
they acknowledged that samples should be collected by more than one
user for reaching a reliable recognition rate.

The second approach in the ranking was Machine Learning. Partici-
pants explained this by saying that they preferred to work with a more
difficult approach that reaches a higher accuracy with the user’s input.
The FSM was ranked third, even if participants acknowledged that it
provided an easy way for accessing to the gesture sub-parts.

In summary, the DEICTIC approach was considered successful in
bridging the two approaches and preserving the strong points from both
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Figure 6.5: Post test evaluation results.

of them.

6.3 G-Gene Evaluation

In this section we report the results obtained by G-Gene in the simplified
development task illustrated in the Section 6.3. All participants concluded
the task with G-Gene, apart for two participants who were not able to
conclude the development task with the 1$-recognizer. The registered time
on task was significantly higher in the 1$ condition (x̄1 = 58.06, s1 = 30.00
VS x̄G = 34.88, sG = 18.40, t(16) = 2.65, p < .02, time in minutes),
consistently with the user self-reported effort (x̄1 = 58.24, s1 = 14.72 VS
x̄G = 34.88, sG = 18.40, t(16) = 2.65, p < .02, in a 1 to 100 scale). This
demonstrates that the G-Gene development does not introduce additional
effort for the modelling phase. In addition, participants spent less time in
developing the interface with G-Gene and it required less effort.

We analysed the code produced during the test, in order to find the
development patterns applied by developers for adapting the information
received from the recognition support to the developed UI. The support
offered by G-Gene was effective for them: they were consistently able to
map the information on the current gesture sub-part and the continuation
likelihood to the parameters requested by the OctoPocus library. None of
them created code for tracking additional information directly from the
input stream.

We registered two main patterns in the UI development with the 1$-
recognizer. First of all, two participants gave up without being able to
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figure out a strategy in a reasonable time (they spent more than one hour
in the task). The majority of them reduced the granularity of the gesture
definition, downgrading the gesture concept from the complete figure to
its parts. In practice, they created a larger gesture set, which included
the complete figures and each one of their subparts. For instance, they
included three gestures for representing the triangle dynamic gesture: the
first side, the first and the second side and then the complete gesture. In
this way, the recognizer would classify the gesture parts considering them
all as complete gestures.

Such approach has two disadvantages. First, it requires much more data for
training the classifier, requiring examples for each gesture part. This may
be solved by either collecting new samples or segmenting the existing ones.
Neither of the solutions is easily practicable for a real dataset like the one
we discussed in Section 5.2.1. The second problem is the representation of
the gesture: the connection among the parts is implicit in the program,
and so is the prediction of the gesture completion, which is completely
hard-coded in the UI. This may result in poorly maintainable code when
the number of gestures increases.

The second approach we registered consisted of using the 1$-recognizer
for the classification at the end of the stroke and applying a developer-
defined algorithm for identifying the parts. Basically, the participants
defined a Finite State Machine (FSM) tracking the different parts of the
gesture according to the movement direction. Such solution requires more
developer effort in defining the heuristic for segmenting the gesture, which
is obviously less accurate than the classification algorithm. In addition,
the recognition at the end of the stroke and the tracking during the per-
formance are not related, and this may surprise the user if the two parts
diverge in labelling the stroke. Indeed, it may happen that e.g., the FSM-
based guidance system helps the user in completing a square that will be
recognized as a triangle by the 1$-recogniser.

In the open-ended questions, we asked the participants to provide feedback
on the strong and weak aspects for both approaches. They acknowl-
edged that providing (a few) examples for the 1$-recognizer is a very easy
modelling technique. However, they considered more difficult tracking
the gesture part when needed by the guidance system. Instead, they
all considered reasonable the effort in modelling gestures with G-Gene
expressions for getting the intermediate guidance information from the
underlying support. They considered also the G-Gene expression a gesture
representation that closely represent the information required for building
a UI. However, 4 of them clearly stated that they would go for the 1$-
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recognizer if the recognition without guidance was sufficient for building
the interface. Therefore, we can conclude that G-Gene supports effectively
the development of gestural UI, but the modelling technique is worth when
the interface requires intermediate feedback and feedforward.
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Chapter 7

Conclusions

7.1 Summary of Contributions

Over the years, different machine learning methods, like Hidden Markov
Models, Dynamic Time Warping, Time-Delay Neural Networks, Finite-
State Machines, Support Vector Machines, have been employed for rec-
ognizing gestures online: a large part of them supports developers by
providing a high accuracy for different types of gestures. Generally, in such
methods, the recognition process requires the complete gesture sample
before recognizing it. Therefore, if on the one hand including classifiers
techniques solve the accuracy problem, on the other hand, they do not
support the generation of feedback and feedforward mechanisms in a guid-
ing system. In gestural interfaces, such mechanism is useful to make the
user aware of which gestures are available for communicating with the
application.

In the literature there are several compositional methods that address
both problems (the second in particular), allowing developers to display
hints which help the user to perform gestures correctly. If on the one hand,
these methods support the development of effective guidance systems,
on the other hand, they rely on heuristics that reduce the recognition
accuracy. In this thesis, we implemented two novel methods for recognizing
stroke gestures, which fill the gap between the high accuracy offered
by classification approaches and the inspection capabilities needed for
providing feedback and feedforward in user interfaces.

In chapter 4 we discussed DEICTIC, a declarative and compositional
description for stroke gestures, based on the composition of a set of basic
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movements (points for starting a stroke, arcs and lines for its continuation)
through a set of operators (iterative, sequence, choice, parallel). We de-
fined a syntax for describing strokes through simple expressions, allowing
to describe both single and multi-stroke gestures. We described a set of
algorithms that, according to the expression definition, create an HMM
that recognises gestures following the temporal composition semantics,
without any additional training. On the one hand, the composed HMMs
have a set of properties that make them suitable for defining user inter-
faces, breaking the single-event notification at the complete recognition of
a gesture, without the need of a specific training set for each composite
gesture. Such HMMs only require a dataset for training the expression
ground terms, reusable across different gesture sets. DEICTIC is able to
provide the most likely sequence of ground terms recognised, together with
information on the most likely completion of the current sequence. The
developer evaluation shows that the information provided by DEICTIC
supports the implementation of feedback and feedforward with an effort
comparable to heuristic approaches, together with a definition procedure
and perceived recognition accuracy comparable to machine learning ap-
proaches. On the other hand, the recognition accuracy of the HMM built
through the composition mechanism is comparable with respect to other
approaches in the literature which is an important improvement if com-
pared with heuristic approaches. We discussed two different experiments
where we show that DEICTIC does not introduce sensible degradation of
the recognition accuracy.

However, DEICTIC exploits a normalisation step for dealing with shape
scaling, that does not allow to use for the online recognition in a general
case. In order to address such limitation, we defined G-Gene, discussed
in chapter 5. G-Gene is a method for representing gestures as character
strings that can be recognized by Hidden Markov Models, by applying a
gene-sequencing technique. More in detail, we employed profile-HMMs, a
specialized type of Markov sources, which are designed for alignment of
sequences. The proposed method preserves the composition information
on gesture parts, in order to support the development of gesture guidance
systems through feedback and feedforward. In addition, it exploits only
local features for enabling the recognition while the user is performing
the gesture. Experimental results on the 1$-dataset [241] show that our
approach preserves a good accuracy, together with the information on
gesture sub-parts. In addition, we evaluated the approach on a gestural UI
development task, which required to include the OctoPocus [14] guidance
system in a simple drawing application, comparing the effort and the
strategies against a recognition support not providing partial gesture
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recognition. The development with G-Gene required both less time and
effort, supporting effectively the creation of the UI prototype without
adding too much complexity in the gesture description.

7.2 Limitations and Future Work

The approaches presented in this dissertation include different limitations
which can be improved. The HMMs generated by our methods do not
support 3D gestures. Therefore, they are unusable in those interfaces
which are designed for 3D manipulation and interaction, for example,
applications based on Hololens or Oculus devices. In the future, we would
like to extend both methods by supporting 3D stroke gestures. After
that, another research direction is to validate the composition approach
for 3D interfaces and investigating the performance of such solutions in
developing 3D guiding systems.

Another common limitation is related to the recognition accuracy of our
approaches, in particular for G-Gene. Despite our experiments demonstrate
an overall good performance, more accurate recognition algorithms exist. It
is worth pointing out that these algorithms rely on other features, not only
touch or joint coordinate spaces. In the future, we would like to experiment
with different sets of features, in order to improve the performance of our
methods. In addition, a new set of features can be useful to overcome
other limitations. On the one hand, the use of other sets of features may
avoid the need of a preprocessing step in the general case, which limits the
DEICTIC scope to applications that know the position and the scaling
of the user’s strokes. On the other hand, experimental tests showed that
the use of local features reduces the robustness of the HMMs generated by
G-Gene, and consequently its recognition accuracy. A new set of features
can reduce the impact of noise or small user errors in the accuracy of
G-Gene.

It is worth pointing out that DEICTIC can work online, namely without
preprocessing the whole user movements, if scale and position of gesture
input are known, as happens for instance in the grid used for the developer
test. A possible method to address this limitation consists of defining a
set of HMMs for each gesture, describing its temporal evolution through
an HMM for each primitive. In more detail, this solution aims to move up
the preprocessing step employing an HMM for recognizing each sequence
of primitives which compose the gesture. In future we would like to extend
DEICTIC, by implementing and evaluating the accuracy of this solution
in online recognition.
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In addition, DEICTIC presents a second limitation which can be
improved. This limitation is related to the number of states in the final
HMMs. The composition approach forces the growth of the number
of states linearly (for sequence and choice) or quadratically (parallel).
Instead, ad-hoc HMMs may be optimised to balance the trade-off between
recognition rate and the number of states. In the implementation phase,
we verified that not all states are always reachable after the training
phase. Therefore, it might be possible to remove these states preserving
the original connection and the recognition rate. In the future, we plan to
address this problem by applying some algorithms which allow improving
efficiency.

Considering G-Gene, it is worth pointing out that such method is not
able to distinguish gestures which differ from the length of their primitives.
Even in this case, that problem is connected to the local features used
to split trajectories in real time. In the future, we would like to extend
G-Gene by characterizing each primitive with its length thus allowing to
distinguish gestures with the same profile but different lengths, such a V
from a checkmark (X) stroke.

In our work, we relied on HMMs, a well-known supervised algorithm
suitable to handle temporal sequences, for recognizing basic movements
(DEICTIC) or aligning string sequences (G-Gene). However, their per-
formances in terms of recognition rate and time are conditioned from
both used features and number of states. In general, the accuracy of
such models can be improved by increasing both the number of states
and/or the involved features. However, these solutions would reduce the
efficiency in our methods, overfitting the models and increasing the time
spent in both training the generated models and evaluating the sequences
extracted from the user input. In the future, we plan to evaluate these
components in order to find a better configuration. In addition, we also
plan to study the properties of other machine learning-based approaches,
such as time delay neural networks and recurrent neural networks. We
aim to determine whether approaches are suitable to be combined with
declarative approaches, as we have already done with HMMs.

Alessandro Carcangiu Combining declarative models and computer vision recognition algorithms for stroke gestures



BIBLIOGRAPHY 127

Bibliography

[1] Aleotti, J., Cionini, A., Fontanili, L., and Caselli, S. Arm
gesture recognition and humanoid imitation using functional princi-
pal component analysis. In Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on (2013), IEEE, pp. 3752–
3758.

[2] Alharbi, N., Liang, Y., and Wu, D. A data preprocessing
technique for gesture recognition based on extended-kalman-filter.
In Proceedings of the Second IEEE/ACM International Conference
on Connected Health: Applications, Systems and Engineering Tech-
nologies (2017), IEEE Press, pp. 77–83.

[3] Alt, F., Geiger, S., and Höhl, W. Shapelineguide: Teaching
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