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Abstract

�is PhD dissertation deals with planning and management of Energy Storage System
(ESS) in power systems. Chapter 1 is devoted to the State of the Art of ESS technologies,
discussing them according to their structure and physical and chemical proprieties. For
each class, the most relevant ESSs are presented and brie�y portrayed, featuring their
main advantages and drawbacks. In this way, a general comparison is performed with
regards of di�erent characterization of ESSs. Chapter 2 refers to planning and manage-
ment of ESSs in a power system and presents the genetic algorithm-based multi-period
optimal power �ow (GA-MPOPF) a management method that includes degradation costs
in the economic optimization of ESS. �e GA-MPOPF includes complex aging function
taking into account cycle and calendar degradation costs. �is is still an open issue,
mainly due to the di�cult estimation of cycle aging in presence of high penetration of
intermi�ent Renewable Energy Sources (RESs). �e proposed method has been exploited
in two di�erent microgrid applications based on real load and generation data: (1) plan-
ning of the optimal position of a Li-ion ba�ery ESS (BESS) in the standard 69 IEEE bus
network with high RES penetration; (2) the economic management of BESS including
cycle and calendar costs. Results demonstrate that GA-MPOPF can optimize the BESS
use for one month, notwithstanding the complex operative costs functions, guarantee-
ing in the meantime excellent convergence properties. Chapter 3 deals with Real-Time
planning and management of ESSs in the power systems. �e presented GA-MPOPF has
been extended to the case of Real-Time aging cost management by including a prediction
algorithm based on system identi�cation methods.Two main goals are considered: �rst,
to have a correct BESS size within planning approach; real-time management of the BESS
State of Charge (SoC) by taking into account the its degradation costs minimizing the to-
tal costs for the whole microgrid. Results show that the accuracy of cost optimization in
real time is comparable with the ideal case of a perfect knowledge of the future (i.e. using
for Real-Time optimization the actual data). Results also con�rm that the method is able
to optimize complex cost functions highlighting that a careful sizing of BESS is need to
avoid economic losses due to BESS aging costs. Chapter 4 introduces a criterion for the
optimal placement of active and reactive power compensator (i.e. ESS) based on complex
networks centrality metrics aiming at voltage regulation. �e chapter shows the rela-
tion between centrality measures and voltage �uctuations in power networks with high
penetration of RESs and ESSs. In fact, the correlation between network node centrality
(namely Eigenvector, Closeness, Pagerank, Betweenness) and voltage �uctuations is sta-



iv

tistically signi�cant implying that the topological characteristics of the power networks
are enough to �nd the optimal positioning of active and reactive power compensators.
�e results demonstrate that eigenvector centrality shows a statistically signi�cant ex-
ponential correlation as the voltage stability increases. �is �nding provides a quick
and easy way to position reactive power compensators in complex networks without
the need to compute the traditional Optimal Power Flow (OPF).
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Introduction

Recently, power systems are transformed in new concept because of wide usage of RESs.
RESs experienced a quick development in recent decades because of technological en-
hancements that have continuously decreased their capital expenses and expanded their
e�ectiveness in the meantime. However, RESs challenge the power system stability due
to their intermi�ent nature. Indeed, RESs utilization in power systems requires an accu-
rate planning and real-time control strategies, which need to deal with estimating errors
and energy market necessities. In the meantime, ESSs grab the distribution system op-
erators a�ention because of their ability to moderate power systems issues caused by
RESs such as frequency and voltage instabilities. In fact, ESSs can be used as RES en-
ergy market bu�ers, thus, storing energy when the price of energy is low and delivering
it when the price is high. Along these lines, ESSs ought to be appropriately sized and
managed with the speci�c end goal to accomplish an ideal balance between increased
performances and operational and capital expenses.

�e present PhD dissertation deals with planning and management of ESSs in mi-
crogrids. Chapter 1 is a review covering the State of the Art of ESS and their applica-
tions: here di�erent technical and market characteristic of ESSs are discussed showing
their most important advantages and drawbacks. Chapter 2 presents the GA-MPOPF
method, a novel multi-period OPF methodology based on Genetic Algorithm (GA) and
traditional OPF. GA-MPOPF considers a complex cost functions de�ned over an arbi-
trary time period (e.g. the ESS operative costs), considering the ESSs degradation as an
optimization item, likewise recognizing the optimal usage strategy of ESSs in a power
system from the cost point of view. �e GA-MPOPF procedure can enhance both plan-
ning and unit-commitment issues in presence of di�erent types of RES and Fossil-Fuel
generators, loads and ESSs. As test case, the GA-MPOPF method has been applied to a
Virtual Power Planet (VPP) following a speci�c power pro�le during the 24 hours and
a deviation from such pro�le implies an extra cost for the VPP aggregator under the
form of a �ne. �e role of installed ESS in VPP is to mitigate the VPP �uctuations in
order to reduce the total �nes in a speci�c timeframe. �e proposed method is applied
from both management and planning viewpoint while management consists in the op-
timization of ESS by reducing the operational costs considering both cycle and calendar
aging costs, tested on a monthly timeframe. �e planning process consists in �nding the
optimal position of the ESS from electric perspective. Chapter 3 deals with Real-Time
planning and management of ESS in microgrids.An improved version of the GA-MPOPF



method presented and called Real-Time GA-MPOPF. �e Real-Time GA-MPOPF allows
for the optimization of complex cost functions over an extend time period considering
ESS degradation costs and optimizing its usage in the power system taking into account
energy market costs. Real-time optimization requires an optimization in each phase of
real-time step and must be performed over an extended time period. �e Real-Time GA-
MPOPF method is able to optimize both Multi-Period and real-time aging costs of ESS.
As test the ESS is installed in a VPP whose goal in each real time interval is to follow
a speci�c power pro�le de�ned for the next 24 hours. Any aberration from such pro-
�le produces an extra cost for the VPP aggregator under the form of a �ne. Chapter
4 presents a novel criterion for the optimal placement of ESS based on complex net-
work theory, �nding a statistically signi�cant correlation between the node eigenvector
centrality and the optimal position of ESS, with a positive impacts on their voltage reg-
ulation abilities, and a overall reduction of the voltage �uctuations by a value up to 50%,
signi�cantly increasing the power quality. Each section is categorized by introduction,
methods and study case, results and conclusions.

�is work was developed within the project NET�cient, Energy and Economic E�-
ciency for Today’s Smart Communities through Integrated Multi Storage Technologies.
�is project has received funding from the European Union�s Horizon 2020 research
and innovation programme under grant agreement No. 646463.



Chapter 1

Applications of Energy Storage
Systems

�e storage of energy sources has been a common pa�ern in human history. �e ability
to master and store ready-to-use energy sources for needing times has been proven to
be a valuable resource for human survival. In recent times, due to spread of usage of
Renewable Energies Sources (RES) in the power networks, the importance of Energy
Storage Systems (ESS) is growing [7, 8].

ESSs are seen as a solution to the above mentioned challenge by facilitating the in-
crease in the penetration of renewable energy sources, reducing the load curve [9, 10],
helping to control the frequency [11, 12, 13], reducing voltage �uctuations [14, 15, 16],
improving the quality of power [17, 18] reliability [18, 19]and delaying the development
of transmission lines [20].

Currently, more than 176 GWh of large scale ESSs are installed on power systems
around the world. �e vast majority (96%) of this capacity includes pumped hydroelectric
energy storage (PHES). �e other 4% includes a combination of ba�ery technologies with
1.9 GWh (1.1%) , thermal storage with 3.3 GWh (1.9%) and other mechanical storage with
1.6 GWh (0.9%) [21]. Fig. 1.1 shows the shared installed capacities of ESSs around the
world [21].

�is Chapter presents a short overview of the most important ESSs mentioned in
the literature. In section 1.1 most important application of ESSs is described. Di�erent
type of ESSs and subsequently, their technical and market characteristic and their most
important advantages and disadvantages has been presented in section 1.2.
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Figure 1.1: Di�erent installed ESS around the world.

1.1 Applications of energy storage
�e value of energy storage technologies is to provide di�erent services in energy sys-
tems, providing infrastructure services in the supply, transmission, distribution and con-
sumption parts of energy systems. �ese technologies are used in heat and cooling units,
some other non-electric appliance applications, as well as electricity distribution and
transmission systems.

By extending the usage of RESs in the power systems the role of ESSs are more impor-
tant than before, due to their application to cope the unexpected �uctuations generated
by RESs. Large-scale electrical energy storage technologies have many applications. In
fact, di�erent ESSs can be used for di�erent applications, regarding of their energy and
power density, response time. For example, for applications of power system stabiliza-
tion such as power quality and emergency power resources, they can provide non-stop
energy with ability of the depletion of energy in a fraction of a second, energy stabiliza-
tion applications like energy storing with ability of providing energy within a minute
(short-term), around an hour (medium-term) and days (long-term) for the aim of energy
management, load curve balancing and peak shaving. Here some key applications of
ESSs are mentioned;

• Seasonal Storage;
�e ability of storing energy for the duration of day, week, month in order to
compensate the de�ciencies in the long-term supply of electricity and/or the sea-
sonal variation which can be happen in supply and demand of the energy systems
[22, 23].

• Arbitrage - Energy Trades;
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In this case, cheap energy is stored during a period in which demand is low prices
and then sold at a time when demand is high prices. Generally, this type of en-
ergy trade has been expressed between two di�erent energy markets. However,
it sometimes is energy trade between costumers and energy providers within the
concept of the smart grid [24, 25].

• Frequency Regulation;
In the power systems, consumption and generation of energy must be in balance
amid all circumstances. �e frequency of system is a value which can be used as a
measurement option to check if the consumption and generation are equal. When
the supply is more than consumption, the frequency goes higher, and when the
consumption is more than supply, the frequency goes lower. ESSs are o�en used
to provide �exibility to the network by acting as a bu�er, when ESSs start to be
charged the demand is rising and when ESSs start to be discharged the supply is
increasing. In this manner ESSs can adjust demand and supply which is a way to
control frequency [26, 27].

• Load Following Power Planets;
�e load following power planets commonly are keep running amid the day and
early evening. �ey either shut down or enormously diminish to supply energy
amid the night and early morning, when the demand for power is low. Nowadays,
ESSs modify the output of the load following power planets. �is is obtained by
properly managing ESSs charge and discharge properties in order to reduce the
unbalanced peaks [28].

• Voltage Regulation;
Supporting the voltage, injecting, or absorbing reactive power to maintain the
voltage levels of the transmission and distribution system in normal conditions,
Especially, regulating the voltage for system with high penetration of RESs is nec-
essary. By using both active and reactive power control, it is possible to have a
regular voltage pro�le [29, 30]. Since, ESSs can provide active and reactive power,
they are used for reducing the voltage �uctuations [31, 32].

• Deferral Transmission and Distribution Infrastructure Investment;
Energy storage technologies are being used widely to eliminate congestions in
transmission and distribution networks and postponing the need for large invest-
ments in the infrastructure of transmission and distribution networks [33, 8].

• Peak Shaving;
In order to match demand and supply of electricity, and to help integrate various
RESs to the power systems, energy demand can be transferred and shi�ed. ESSs
have a signi�cant role to facilitate performing of peak demand shi� [34, 35].

• O�-the-Grid;
�e application of ESSs, increase the reliability of energy supply for self consumer
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power grids and support to increase of usage of local resources. ESSs �ll the gap be-
tween diverse supply and demand. Recently, optimal and simultaneous placement
of distributed generators (DG) and the role ESSs in stand-alone power systems is
one of the most important issues in power system studies [36, 37].

• Variable RES Integration to Power Systems;
�e use of ESSs bring big opportunity to employ various RESs to the power sys-
tems. ESSs are used to encounter uncertainties which are provided by RESs. �ey
reduce the rapid and seasonal output of RESs, and they help to decrease geograph-
ical and time gap between both demand and supply in order to increase the quality
and quantity of supply [38, 4].

1.1.1 Characteristic of ESS
Here the parameter of ESSs is shortly described. �ese characteristics are di�erent for
each ESS. So, for special application of power system, ESS should be selected with suit-
able characteristic. Since, investors are looking for economical and technical advantage
of usage of ESSs, it is important to have a ESS with suitable properties. �ese parameters
are Energy (E), Power (P), Energy to power ratio, Energy density, Power density, Storage
capacity, Depth of Discharge (DoD), State of Charge (SoC), E�ciency (ζ), Self-Discharge,
Full Cycle, Cycle Life and Calendar Life [39, 40, 41].

• Energy (E)
Energy is basis element of power systems. Electrical energy can be generated in
conversion of other kind of energies such as chemical, thermal, mechanical and
nuclear. Energy unit is joule (J ). In place of storage systems the energy concept
can be described as capacity or the quantity of energy when it is charging into
storage or when it is discharging from the storage. �e common unit of energy
for ESSs is Wa�-hour (Wh).

• Power (P)
�e rate of energy in unit of time is the electric power. In the case of ESSs,
power meaning is the amount of energy which can be supplied from ESS or can be
charged into ESS in a unit of a time. For example, an ESS with high power capa-
bility can be charged or discharged the amount of energy in shorter time and an
ESS with low power can be charged or discharged the amount of energy in longer
time. �e unit of power is Wa� (W ).

• Energy to power ratio
Energy to power ratio is a common term for ESSs and it shows the rate of installed
capacity in means of energy to installed power. An ESS with small energy to power
rate can deliver power for shorter time than an ESS with high energy to power rate
which it can provide power for long time[39, 40, 41].
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• Energy density;
�e rate of installed energy capacity of ESS to its volume is energy density and
the common used unit is kWh/liter or kWh/m3 or speci�c energy density can
be described as rate of installed energy capacity of ESS to its weight with unit of
kWh/kg. Lower energy density means the ESS installation space is bigger and
high energy density occupies less space for its installation [39, 40, 41].

• Power density;
�e rate of power delivered by ESS to its volume is power density and the common
unit is kW/liter or kW/m3 or speci�c power density can be described as rate of
power delivered by ESS to its weight with unit of kW/kg. Lower power density
means the ESS installation space is bigger and heavier than high power density
which it has low wight and volume [39, 40, 41].

• Depth of Discharge (DoD);
DoD is the quantity of discharged energy in comparison to the nominal capacity
of storage. ESSs can be totally discharged which it is called 100% DoD matching
to a full energy delivered by ESS or completely discharged. Some ESSs have own
limits and they do not have 100% DoD capability regarding of their technologies.

• State of Charge (SoC) ;
SoC is the ratio of remaining amount of energy from total capacity of ESS in per-
centage. When the ESS is fully charged the SoC corresponding 100% and when the
ESS is completely discharged, SoC is 0% [39, 40, 41].

• E�ciency (ζ);
E�ciency is the rate of discharged energy to the charged energy. In the ESS with
high e�ciency, the loss of energy is low. In particular, an ESS with high e�ciency
is important for a system with high �uctuations since for balancing of �uctuations,
the ESS needs more cycles. [39, 40, 41].

• Self-Discharge;
Self-discharge is the loss of energy due to internal technology of ESS. Self-
discharge depends on ESS type can be e�ected with SoC, ambient temperature,
internal structure, chemical reaction and other factors. For example, for the bat-
teries the internal chemical reaction is the reason of the reduction of connectivity
of the electrodes and this causes to faster self-discharge [39, 40, 41].

• Full Cycle;
Full cycle for an ESS is called when an ESS fully charged and then fully discharged
between its available capacity [42].

• Cycle Life;
Cycle life for an ESS described as number of full cycles which can be performed



8 CHAPTER 1. APPLICATIONS OF ENERGY STORAGE SYSTEMS

before the available capacity of ESS reaches to below of 80% of its nominal capacity
[42].

• Calendar Life;
Calendar life can be called the life time for an ESS. All the ESSs have their own
lifetime and even if they are not active a�er some times, they will be degraded.
For example in case of ba�eries when the capacity rate reaches to below 80% of its
nominal capacity the so-called ba�ery is degraded. It is noted that the usage of an
ESS (cycle life) consequently e�ects the calendar life negatively and it causes the
ESS degrade earlier [42]. For example, a ba�ery life time is 10 years or 6000 cycles
and it is introduced by manufacturer considering the 6000 cycles can be done in an
earlier period than 10 years. On the other hand, if the 6000 cycles is not performed
within 10 years again it will be degraded a�er 10 years because of the calendar life
of the ba�ery.

1.2 Di�erent type of energy storage systems

ESSs can be categorized based on their technologies and the common classi�cation of
ESSs can be described as Electrical, Mechanical, �ermal and Chemical. Fig. 1.2 demon-
strates an order of various ESS technologies arranged by their work basis and ordinary
time scale of application [1]. �e time scale demonstrates the regular ratio of energy to
power of each type of ESS and also coincides to the regular time of charge and discharge.

A smooth review on the fundamental characteristics and speci�cs of the various ESSs
is introduced in the accompanying subsections. In the following section, the character-
istics of advanced storage technology such as Compressed Air Energy Storage (CAES),
Pumped Hydro Storage (PHS), Flywheel Energy Storage (FES), Lead-acid ba�ery, NaS
ba�ery, Li-ion ba�ery, Flow ba�ery, Super-Capacitor, and Superconductive Magnet Coil
Energy Storage(SMES). For each ESS the advantage and disadvantages has been intro-
duced. �e properties of each of them has been given in a table which is taken from
available data in 2016 and an estimation of possible development in 2030 [21].

1.2.1 Mechanical Energy Storage

Mechanical ESSs store energy in type of mechanical then this energy, depends on type of
storage system, can be used as mechanical energy or conversed energy such as electrical
energy, heat energy or both as hybrid energy. �e mechanical energy storage systems
which are commonly used in power system applications are Pumped Hydroelectric Stor-
age (PHS), Compressed Air Energy Storage (CAES) and Flywheel Energy Storage (FES)
[1, 43].
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Figure 1.2: ESS category and some example of each technology [1].

1.2.1.1 Pumped Hydroelectric Storage (PHS)

A pumped hydro energy storage system includes of two interconnected water supplies
situated at various heights, for example, a mountain and a valley reservoirs. An electric
pump draw up water from the lower to the upper water deposits amid the charging
procedure and a water turbine is fueled by releasing water from top to down reservoir
amid the discharging procedure. Fig.1.3 originally reported in [1] shows a typical layout
of a PHS. �is water, when demand is high or there is needed for stored electricity, is
injected into the rotating turbines in order to generate the needed power [1, 44, 45, 43].

�e stored energy capacity relies upon the height distinction between the two water
deposits and the volume of stored water at each reservoir [1, 46, 47, 44]. �e power rate
of PHS plants depends on the pressure of water and water �ow rate among the turbines
and power rate of the pump-turbine and generator-engine units [48]. PHS is the world
leading storage innovation and has been utilized since the mid twentieth century [49]
with in excess of 150 Gwh installed capacity till end of 2016 [21].

�e most particular advantages and disadvantages of PHSs can be categorized as
following [50, 49, 51, 43, 44].

• Advantages;

– Established technology
– Very long life-time
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Figure 1.3: A PHS layout. Originally reported in [1].

Table 1.1: PHS properties in 2016 and 2030

Parameters for PHS 2016 2030

Energy density (Wh/L) 0− 2 0− 2
Energy installation cost (USD/kWh) 5− 100 5− 100
Cycle life (equivalent full-cycles) 12000− 100000 12000− 100000
Calendar life (years) 30− 100 30− 100
Depth of discharge (%) 80− 100 80− 100
Round-trip e�ciency (%) 80 80

– Low self-discharge

– Good e�ciency

• Disadvantages;

– Low energy density

– Geographical restriction

– High investment costs

– Long return of investment

– Only large units connected to the transmission grid are economical

Table 1.1 describes some important properties of PHS in 2016 and 2030 [21].
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1.2.1.2 Compressed Air Energy Storage (CAES)

A CAES has an electric motor which compresses the air and stores energy by means of
compacted air. Usually, the air is stored in natural or arti�cial caverns. �e compressing
procedure is done in the least demand periods. A�er that the air is pressurized to around
75 bar. In case of need of electricity , the air is expelled from the cavern. Primary heating
procedure is done by the recuperator then again recuperator uses the energy from the
coolers of compressor. Small amount of gas is injected to the hot air in the combustor
then they are burnt inside of the combustor. A�er that, the mixed hot gas and air pass
through turbine to produce electricity . In the other word, when the load demand is
higher than generation, the compressed air is discharged. A�er heating and compressing
procedure, the energy is converted to electricity by turbine [2, 1, 43]. Fig. 1.4 illustrates
a CAES reported in [2].

�e �rst CAES plant in large scale was in the Huntorf-Germany control plant, in
1978. �is planet is used to bring facilities such as; black-start power for power planet,
back-up to the regional utilities and producing additional energy to balance demand and
generation [52].

In principle, diabatic CAES method are essentially just conventional gas turbines,
but where the compression of the combustion air is separated from and independent to
the actual gas turbine process. �is gives rise to the two main bene�ts of this method.
Because the compression stage normally uses up about 2/3 of the turbine capacity, the
CAES turbine unhindered by the compression work can generate 3 times the output for
the same natural gas input. �is reduces the speci�c gas consumption and slashes the
associated CO2 emissions by around 40 to 60%, depending on whether the waste heat is
used to warm up the air in a recuperator. �e power-to-power e�ciency is approx. 42%
without, and 55% with waste heat utilization [53].

Adiabatic method a much higher e�ciency of up to 70% can be achieved if the heat
of compression is recovered and used to reheat the compressed air during turbine op-
erations because there is no longer any need to burn extra natural gas to warm up the
decompressed air. An international consortium headed by the German energy company
RWE is currently working on the development of the necessary components and the
heat storage. �e pilot plant is scheduled to start operations in 2018. �ermal oil and
molten salt storage is being investigated in the US [53].

�e most signi�cant advantages and disadvantages of CAESs is described as follow-
ing [50, 4, 54, 55, 43, 56, 1, 44].

• Advantages;

– Relatively low cost for the energy storage (caverns)
– Small footprint on surface due to underground storage
– Long life of the air reservoir (cavern) and the power systems (compressors,

turbine)
– Low self-discharge of compressed air
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Figure 1.4: A CAES schematic Diagram. Original layout in [2].

• Disadvantages;

– Certain geological restrictions necessary (pressure-tight cavern)
– Geographical restriction
– High investment costs
– Only two (and old) diabatic pilot plants, no adiabatic power plants available

yet
– �ermal storage for adiabatic CAES not yet demonstrated in full scale
– High self-discharge of the thermal storage
– Low e�ciency for diabatic CAES (less 55%)
– Long return of investment (bigger 30 years)
– Only large units connected to the transmission grid are economical

Table 1.2 describes some important properties of CAES in 2016 and 2030 [21].

1.2.1.3 Flywheel Energy Storage (FES)

FES saves electric energy through the conversion of kinetic energy. �is is done by
increasing the speed of a rotor and keeping the energy in form of rotational energy.
�e rotor speed increases when it takes energy and decreases when it gives energy. �e
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Table 1.2: CAES properties in 2016 and 2030

Parameters for CAES 2016 2030

Energy density (Wh/L) 2− 6 2− 6
Energy installation cost (USD/kWh) 2− 84 2− 71
Cycle life (equivalent full-cycles) 10000− 100000 10000− 100000
Calendar life (years) 20− 100 20− 100
Depth of discharge (%) 35− 50 35− 50
Round-trip e�ciency (%) 60 ∼ 70

main components of �ywheel storage systems are included of motor/generator, �ywheel,
bearings, vacuum chamber and power electronic control system. Fig. 1.5 shows simple
structure of a Flywheel reported in [1]. Although, the starting point of research and
proposal of usage of FES coming back to Early twentieth century [57], but the most
e�ective event happened amid the mid 1970’s when FES was proposed as an essential
target for electric vehicles (EV) and Back up of stationary power [1, 58, 43].

Figure 1.5: A Flywheel Diagram. Original schematic in [1].

�e system, in non-peak hours, takes energy from the grid and uses that energy for
its own motor to rotate the �ywheel and in peak hours, the grid uses this kinetic energy.
�e kinetic energy stored by the FES is re-transformed and send back to the grid. Since,
the stored energy inside �ywheel are directly related to its square rotational velocity
and this causes an increase for its rotational speed in order to increase the stored energy
in the �ywheel. �e stored energy will then be wasted a�er some times because of
aberration, and a�er that, the rotor will stop its moving and practically FES can not be
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Table 1.3: Flywheel properties in 2016 and 2030

Parameters for Flywheel 2016 2030

Energy density (Wh/L) 20− 200 20− 200
Energy installation cost (USD/kWh) 1500− 6000 979− 3917
Cycle life (equivalent full-cycles) 105 − 106 151259 − 1.5 ×

106

Calendar life (years) 15− 25 23− 38
Depth of discharge (%) 75− 90 75− 90
Round-trip e�ciency (%) 84 87

used. �erefore, �ywheels are suitable for short time and high power demands. �ey
are utilized, for instance, for network adjustment purposes for underground trains and
trams [1, 43, 59, 44].

�e most signi�cant advantages and disadvantages of FES is classi�ed as following
[50, 60, 61, 43, 56, 1, 44].

• Advantages;

– Fast charge capability

– Low maintenance requirements

– Long life time

– Be�er composite materials may allow higher rotational speed and therefore
an increased energy density

• Disadvantages;

– Low energy density

– Vacuum chamber needed (complicated and expensive technology)

– High investment costs

– Safety reasons; crack occur due to dynamic loads, bearing failure on the sup-
ports, external shocks

– Cooling system for superconducting bearings

– Very high self-discharge

Table 1.3 describes some important properties of CAES in 2016 and 2030 [21].



1.2. DIFFERENT TYPE OF ENERGY STORAGE SYSTEMS 15

1.2.2 Electrical Energy Storage Systems
Electrical energy storage systems store energy in form of electromagnetic energy in
the type of an electric �eld or a magnetic �eld, the second one commonly created by a
current-carrying coil. �e common types of electrical energy storage in power system
applications are Super-Capacitor Energy Storage and Superconductive Magnetic Energy
Storage (SMES) [50, 1].

1.2.2.1 Super-Capacitor Energy Storage

A super-capacitor stores electrical energy in the static electric �eld among the electrodes
(ordinarily made of metal foils) and the ions in the electrolyte (regularly made of glass,
ceramic or a plastic �lm) [1, 4, 2]. �e ions go from one electrode to the other amid
charging and discharging procedure. �e basic super-capacitor is shown in Fig. 1.6
originally reported in [3].

Figure 1.6: Schematic diagram of a super-capacitor. Original schematic is from [3].

Generally, super-capacitors have bigger power density in comparison with classical
capacitors, however, energy density of them is less than ba�eries. Contrasted with bat-
teries, they have a high cycle life and power density but a much lower energy density
[1, 62].

One of the most widely utilization of super-capacitors is for applications with high
power storage systems in a short timeframe. �ey are additionally utilized as a part
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Table 1.4: Super-Capacitor properties

Parameters for Super-Capacitor Values

Energy density (Wh/Kg) 0.5− 5
Energy installation cost (Euro/kWh) 691− 856
Cycle life (equivalent full-cycles) 50000
Calendar life (years) 5− 8
Round-trip e�ciency (%) 60− 65

of hybrid storage systems with ba�eries to expand their lifetime. Other application of
super-capacitors with regarding of their properties are; improvement of power quality,
voltage and frequency regulation in transient mode and correction of power output of
generators [63, 4, 43, 44].

�e most signi�cant advantages and disadvantages of super-capacitors are classi�ed
as following [50, 43, 56, 44].

• Advantages;

– Very fast charge discharge capability
– High e�ciency
– Long life time
– High power capability

• Disadvantages;

– Low energy density
– High costs per installed energy
– High self-discharge
– Low voltage cells; to get higher voltages, serial connections are required.

1.4 describes some important properties of super-capacitor which is reported in [64].

1.2.2.2 Superconductive Magnetic Energy Storage (SMES)

�e main components of SMES consist of a superconducting coil, power condition-
ing system and cryogenically cooled refrigerator with vacuum subsystem. Amid the
charging procedure the superconducting coil is charged with direct current from the
power conditioning system. A direct electric current from the power conditioning sys-
tem makes an invariable inductive magnetic �eld in superconducting coil part which has
the capability to store the energy [1]. �e SMES system structure has been described in
Fig. 1.7 originally is from [1].
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Figure 1.7: Simple layout of a SMES. Original layout is from [1].

In order to have the capacity to utilize the superconducting properties of the coil
(make losses zero), it must be put e.g. in �uid helium to ensure temperatures under -
260C. �e discharging procedure starts with interfacing the coil to an outside load by
the power conditioning system. �e energy is then provided by the magnetic �eld which
produces a current. �e magnetic energy and the current are reduced amid releasing
[65, 4, 1, 66, 43, 3].

Energy density of SMES are very low because of this reason they are categorized in
short term energy storage and application of them are mostly for supplying of power in
short period of time. Since, they need to be maintained in cool condition, their standby
losses are very high. However, SMES systems have been in the consideration of both
the military and electric utilities because of their quick response and high e�ciency (ef-
�ciency of charge discharge is above 95%). SMES can be used for voltage and frequency
regulation, transient stability, improvement of power quality, load levelling, black-start
and etc [67, 68].

�e most signi�cant advantages and disadvantages of SMES are classi�ed as follow-
ing [68, 1, 50, 43, 56].

• Advantages;

– Very fast charge capability
– High e�ciency
– High cycle life
– High power capability

• Disadvantages;

– Low energy density
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Table 1.5: SMES Properties

Parameters for SMES values

Energy density (Wh/Kg) 0.5− 5
Energy installation cost (Euro/kWh) 5310− 6870
Cycle life (equivalent full-cycles) ∼ 100000
Calendar life (years) 15− 20
Round-trip e�ciency (%) 95− 98

– High cooling demand
– Expensive raw materials for superconductors
– Complicated inverter design and measurement circuits

Table 1.5 describes some important properties of SMES reported in [69].

1.2.3 Chemical Storage Systems
Chemical energy storage systems store energy in the form of chemical energy and it
is converted to electrical and other type of energies. Chemical energy storage can be
named as electrochemical energy storage since the wide practical applications of them
is in the form of ba�eries which supply many a�itudes of the present and future needs
for electrical energy storage. �e di�erent type of ba�eries which are commonly used in
power system applications can be mentioned as: Flow Ba�ery, Lead-Acid Ba�ery, NaS
Ba�ery and Lithium-ion (Li-ion) Ba�ery [50, 1].

1.2.3.1 Flow Battery

�e use of �ow ba�eries is a low-cost and e�cient way to save energy produced in
sources such as solar and wind power plants. �ese ba�eries are structurally similar to
acid ba�eries, with the di�erence that electrolyte material is stored in an external reser-
voir. Flow ba�eries are a kind of rechargeable ba�ery in which two di�erent electrically-
charged liquids (called the electrolyte) exchange ions with each other and the ions ex-
change produce electrical energy. �e electrolytes are disposed separately from each
other inside the two large compartments. �e �ow ba�ery schematic has been illustrated
in Fig. 1.8 originally is from [4]. �e electrolytes is pumped into these compartments
according to their needs. In this way, changing the amount of electrolyte can control
the produced electrical energy and change the output of these ba�eries from several
kilowa�s to several megawa�s [70, 71, 1, 4].

�e Vanadium Redox-Flow ba�ery (VRFB) is one of the most important commercially
available sort of �ow ba�eries. �e VRFBs have very fast responses (less than 0.001 s).
�eir e�ciencies is comparatively high, more than 85% . VRFBs can be used in a wide
area of applications, above all they can be used for improving power quality, enhancing
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Figure 1.8: Simple schematic of a �ow ba�ery. Original layout is from [4].

load levelling, utilized for continuous electricity applications, power transient stability,
voltage and frequency regulation [72, 73, 74, 43].

Zinc-Bromine �ow ba�eries (ZnBrFB) are another sort of �ow ba�ery. A electrolyte
of zinc bromide is stored in two reservoirs. During charge or discharge the electrolytes
are pumped through a reactor stack and back into the reservoirs. �ere are two tanks
which one of them reserves the electrolyte for positive electrode another one reserves
the electrolyte for negative electrode. �e most available application for ZnBr ba�eries
is for load levelling. �is ba�ery compose is for instance available from Cellstrom (Aus-
tria) and Judicious Energy (USA) with various measured accessible capacities. A various
locals with this technology exist, especially, in Japan which are mainly used for load
leveling purposes in the scope of a few 100 kW [75, 1, 76, 44].

Table 1.6 describes some important properties of ZnBrFB in 2016 and 2030 [21].
�e most signi�cant advantages and disadvantages of �ow ba�eries are classi�ed as

following [44, 50, 56, 1, 70, 4, 74].

• Advantages;

– Energy and power independently scalable
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Table 1.6: ZnBrFB properties in 2016 and 2030

Parameters for ZnBrFB 2016 2030

Energy density (Wh/L) 20− 70 20− 70
Energy installation cost (USD/kWh) 525− 1680 180− 576
Cycle life (equivalent full-cycles) 12000− 14000 12000− 14000
Calendar life (years) 5− 20 8− 32
Depth of discharge (%) 100 100
Round-trip e�ciency (%) 70 78

Table 1.7: VRFB properties in 2016 and 2030

Parameters for VRFB 2016 2030

Energy density (Wh/L) 15− 70 15− 70
Energy installation cost (USD/kWh) 315− 1050 108− 360
Cycle life (equivalent full-cycles) 12000− 14000 12000− 14000
Calendar life (years) 5− 20 8− 32
Depth of discharge (%) 100 100
Round-trip e�ciency (%) 70 78

– High cycle life
– Variety of possible redox couples possible
– Fast response time

• Disadvantages;

– Leakage caused by acidic �uids
– Large size applications
– Costs for vanadium-based redox electrolyte is too high
– Pumps and valves are prone to errors and costly maintenance
– Complexity (various components required)

Table 1.7 describes some important properties of VRFB in 2016 and 2030 [21].

1.2.3.2 Lead-Acid Battery

Lead-acid ba�eries are one of the most developed and oldest ba�ery technologies, which
are predominantly utilized as a short-term and medium-term ESSs [1, 50]. If two non-
homonym metals (electrodes) are placed in an acidic liquid (electrolyte), there will be a
�ow between the two electrodes. PbO2, Pb, H2SO4 are the main material of cathode,
anode and electrolyte respectively. �e positive electrode absorbs the ions and combines
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it with the positive electron, which results in the creation of electrical potential in ba�ery
negative and positive poles [5, 4]. �e structure of lead-acid ba�ery has been shown in
Fig. 1.9 originally reported in [5].

Figure 1.9: Simple layout of a lead-acid ba�ery. Original layout is from [5].

At the time of charging and in the positive pole, lead sulfate PbSO4 combined with
water and produces hydrogen ions H+ and lead oxide PbO2. �e produced hydrogen
by the positive electrode reacts with lead sulfate and produces hydrogen sulfate HSO4

ions which this chemical reaction is exactly the opposite, at the time of discharging
[77, 5, 1, 4].

Many manufacturers produce lead-acid ba�eries. Because of the con�nements in
the accessibility and the toxicity of lead, reusing of these ba�eries has important sig-
ni�cance for both user and producer. However, Lead-acid ba�eries are used mostly in
automotive industry and UPS systems for telecommunications and they are also widely
used for application such as; spinning reserve, frequency control, load leveling, Enhanc-
ing stabilization of island grid, power management, load �rming, grid integration and
Solving intermi�ency issues of wind energy [1, 78, 4].

�e most signi�cant advantages and disadvantages of lead-acid ba�eries are diveded
as following [4, 1, 79, 5, 56, 50].

• Advantages;

– Acceptable energy and power density for stationary applications
– Inherent safety by controlled overcharge reaction
– No complex cell management needed
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Table 1.8: Lead-Acid properties in 2016 and 2030

Parameters for Lead-Acid 2016 2030

Energy density (Wh/L) 50− 100 50− 100
Energy installation cost (USD/kWh) 105− 473 53− 237
Cycle life (equivalent full-cycles) 250− 2500 538− 5375
Calendar life (years) 3− 15 4− 21
Depth of discharge (%) 50− 60 50− 60
Round-trip e�ciency (%) 82 85

– Experience with large storage
– Short amortization period and relatively low initial investment
– Today already high number of items (High penetration)

• Disadvantages;

– Charging and discharging ability are not symmetrical
– Ventilation requirement
– Restrictions to the location of the ba�ery system
– Limited cycle life
– Industrial ba�eries are still not built with fully automatic systems

Table 1.8 describes some important properties of Lead-Acid in 2016 and 2030 [21].

1.2.3.3 NaS Battery

A NaS ba�ery utilizes liquid sodium and liquid sulfur as the two terminals, and uti-
lizes beta alumina as the solid electrolyte. �e NaS simple layout is shown in Fig. 1.10
originally reported in [6]. �e temperature of 574 - 624 K is typically a requirement to
guarantee that the electrodes are in �uid states in which prompts a high reactivity. �e
a�ractive highlights of NaS ba�eries incorporate moderately high energy densities (150
to 300Wh/L), daily self-discharge is around zero , higher nominal capacity than di�erent
sorts of ba�eries (up to 244.8 MWh) [66, 80].

�ese types of ba�eries, in addition, are able to meet the demand of energy at peak
times of consuming and also delivering electricity to areas that have previously been
subject to shortcomings due to transmission and distribution constraints. �ey can be
used as a source for protection against electrical disturbances. �eir energy density is
three times larger than ordinary acid and lead ba�eries, and energy can be stored in 8
hours and discharge it at the same time. �e use of NaS ba�eries stabilizes the demand
for electricity, especially for networks which have signi�cant �uctuations between day
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Figure 1.10: Simple layout of a NaS ba�ery. Original layout is from [6].

and night, as result they make energy costs lower for customers. NaS ba�eries utilizes
economical materials which they have a high capability to be recycled [1, 81, 43].

�e NaS ba�ery is considered as a standout amongst the most encouraging contender
for high power ESS applications. some application of the Nas has been considered such
as; Refueling the �xed route vehicles, Wind power �uctuation mitigation, Load levelling
and support the autonomous power systems with wind & solar production RESs [1, 4, 44].

�e most signi�cant advantages and disadvantages of NaS ba�eries are considered
as following [1, 56, 50, 4, 44].

• Advantages;

– Acceptable energy and power density for stationary applications
– High speci�c energy
– High cycle and calendar lifetime
– Cheap raw materials (NaS)
– Many stationary plants existing (NaS)

• Disadvantages;

– High thermal standby losses
– Hazard potential due to high operating temperature
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Table 1.9: NaS properties in 2016 and 2030

Parameters for NaS 2016 2030

Energy density (Wh/L) 140− 300 140− 300
Energy installation cost (USD/kWh) 263− 735 116− 324
Cycle life (equivalent full-cycles) 1000− 10000 1500− 15000
Calendar life (years) 10− 25 14− 36
Depth of discharge (%) 100 100
Round-trip e�ciency (%) 80 85

– High cost for Nickel-material in Zebra-ba�eries

Table 1.9 describes some important properties of NaS in 2016 and 2030 [21].

1.2.3.4 Lithium-ion (Li-ion) Battery

Lithium ba�eries were introduced by British chemist M Stanley Whi�ingham in 1970.
He used titanium sul�de (TiS2) and l Li as electrodes. But, this rechargeable lithium
ba�ery would never be made down in practical. TiS2 was a poor choice, since it has
to be synthesized under completely sealed conditions, also being quite expensive [82].
From innovation date of the lithium bu�eries till nowadays, they have been undergone
changes and they have been considered for researchers as a hot topic.

In 1973, the lithium thionyl chloride ba�ery Li − Tc is proposed by Adam Heller,
it is still used in defense industry and embedded medical equipments [83]. Samar
Basu developed electrochemical lithium intercalation in graphite in 1973 [84, 85]. In
1979, N.A.Godshall and in 1980 ,John Goodenough and Koichi Mizushima, introduced a
rechargeable lithium cell with range of 4 volt using lithium cobalt oxide LiCoO2 as the
positive electrode and lithium metalLi as the negative electrode. �is advancement gave
the positive electrode material that brought possibility to made lithium ba�eries indus-
trially. LiCoO2 is a steady positive electrode material which reacts as a giver of lithium
ions and it can be utilized not only lithium metal but also other material as negative elec-
trode [86, 87]. Alongside with LiCoO2, the other compounds like LiMn2O4, Li2MnO3,
LiMnO2, LiFeO2, LiFe5O8, and LiFe5O4 were proposed for positive electrode [88].

Rachid Yazami discovered the double-faced electrochemical lithium intercalation in
graphite in 1980 [89]. It can be said that current generation of lithium-ion ba�ery tied to
the name of Akira Yoshino. In 1985, he used carbonaceous material inside lithium ions
as one of the electrodes and LiCoO2 as another one. Since, non metallic lithium had
been used the safety of the ba�ery was drastically made strides [90].

Two primary pa�erns were in the development of electrode materials for Li-ion
rechargeable ba�eries. One was electrochemistry approach related graphite interca-
lation compounds [91] and the other one was in the �eld of new nano-carbonaceous
materials [92]. �e negative electrode of current Li-ion rechargeable ba�eries identi�ed
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by Tokio Yamabe and a�er that by Shjzukuni Yata which has the originate in polyacenic
semiconductive material in the early 1980s [93, 94, 95, 92]. Later, Hideki Shirakawa in-
troduced conductive polymers materials [96] which it can be said the starting point of
the polyacetylene lithium ion ba�ery developed by Alan MacDiarmid and Alan J. Heeger
et al [97].

In general, each ba�ery consists of three parts: cathode, anode and electrolytes. In
rechargeable lithium-ion ba�eries, a positive electrode is made up of a lithium compound
such as LiCoO2, a negative electrode is made up of carbon graphite C and a separating
layer is among them [1, 98, 44]. �e Li-ion simple layout has been shown in Fig. 1.11
originally reported in [5].

�e electrolyte in lithium ba�eries is also sourced from lithium salts in an organic
solvent. �e use of organic solvents in the electrolyte due to �ammability requires some
safety measures. �e electrolyte in these ba�eries is made up of a set of materials that
each have their own speci�c task. Failure in the performance of each electrolyte com-
ponent causes a malfunction in overall performance of the ba�ery. Lithium-ion ba�er-
ies are equipped with protective electronic circuits and fuses for protecting of polariza-
tion, excessive voltage, overheating and other safety issues [66, 99, 100, 98, 44]. Amid
the charging procedure ions of lithium move from the positive to the negative elec-
trode and are accommodate into the carbon layers. Amid discharge the ions of lithium
move to the positive electrode, where they are accommodated into the crystal structure
[101, 5, 4, 1, 98, 44].

Figure 1.11: Components of a Li-ion ba�ery. Original layout is from [5].

Li-ion ba�eries are chie�y utilized as medium-term ESSs, however can likewise be
utilized as short-term ESSs. Recently, have turned into the most essential storage tech-
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nology in the area of portable devices such as laptop, cellphones and etc. Also, in elec-
tric vehicles EV, mostly Li-ion ba�eries are used. In power system applications, they
are interested. Several projects with Li-ion ba�eries already used around the world
[43, 102, 1, 2, 66].

�e most signi�cant advantages and disadvantages of Li-ion ba�eries are ordered as
following [4, 1, 101, 56, 103, 44, 98, 44].

• Advantages;

– High energy density
– High power density
– Long lifetime
– High performance
– Very fast charging and discharging capability

• Disadvantages;

– Sophisticated ba�ery management system required (single cell monitoring)
– Packaging and cooling costly depending on the cell shape
– High cost
– No inherent security (thermal runaway)

Recently, the key technological improvements and material developments for an
expansive scope of Li-ion ba�ery electrodes has been considered as hot topic for re-
searchers and manufacturers. �e intercalation materials like lithium nickel cobalt alu-
minum oxide (NCA), lithium nickel cobalt manganese oxide (NCM or NMC), Lithium
Manganese Dioxide (LMO) lithium iron phosphate (LFP) and lithium titanium oxide
(LTO), share a broad amount of commercial market of Li-ion ba�eries [101].

NCA cathode has been shared almost a broad commercial use, for instance, in Pana-
sonic ba�eries for Tesla Electrical vehicles [101, 104]. �e key properties of NCA chem-
istry Li-ion ba�eries is long calendar life and higher usable capacity of discharge con-
trasted with ordinary Co-based oxide cathode [6]. Table 1.10 describes some important
properties of NCA chemistry Li-ion Ba�eries in 2016 and 2030 [21].

LMO can likewise be used since that Mn is considerably less expensive and less toxic
contrast with Co or Ni [101, 105]. Energy density of LMO chemistry Li-ion ba�eries is
shorter but these kind of ba�eries have long life time and less probability of deplorable
occasions such as �ring, blast and so on. �ese ba�eries are broadly utilized for electric
devices and medical tools. �e properties of NMC chemistry Li-ion ba�eries is similar
with LMO chemistry Li-ion ba�eries [101, 104]. Table 1.11 describes some important
properties of di�erent chemistry Li-ion Ba�eries (LFP Chemistry) in 2016 and 2030 [21].

LFP chemistry Li-ion is used for electrode material of Li-ion ba�eries and it is rel-
atively new technology [104]. Since, this kind of Li-ion ba�ery is cheaper with longer
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Table 1.10: Li-ion Ba�ery (NCA Chemistry) properties in 2016 and 2030

Parameters for NCA Li-ion 2016 2030

Energy density (Wh/L) 200− 620 200− 620
Energy installation cost (USD/kWh) 200− 840 82− 347
Cycle life (equivalent full-cycles) 500− 2000 955− 3819
Calendar life (years) 5− 20 8− 31
Depth of discharge (%) 85− 95 85− 95
Round-trip e�ciency (%) 95 97

Table 1.11: Li-ion Ba�ery (NMC/LMO Chemistry) properties in 2016 and 2030

Parameters for NMC/LMO Li-ion 2016 2030

Energy density (Wh/L) 200− 735 200− 735
Energy installation cost (USD/kWh) 200− 840 79− 335
Cycle life (equivalent full-cycles) 500− 4000 955− 7639
Calendar life (years) 5− 20 8− 31
Depth of discharge (%) 84− 100 84− 100
Round-trip e�ciency (%) 95 97

life time and lower toxicity in comparison of ordinary Li-ion ba�eries and it is found
for di�erent application such as EVs and backup power of household [101, 106]. Table
1.12 describes some important properties of chemistry Li-ion Ba�eries (LFP Chemistry)
in 2016 and 2030 [21].

Fast charging, high power thermally stable cells with high cycle life are the most
signi�cant properties and it helped these kind of ba�eries to be commercialized [107,
108]. Due to its high level of safety, LTO chemistery Li-ion ba�ery is now being utilized
in mobile medical equipment. Because of their fast charging capability, it is starting to
be used in EV especially transportation EVs [109]. Table 1.13 describes some important
properties of chemistry Li-ion Ba�eries (LTO Chemistry) in 2016 and 2030 [21]

Table 1.12: Li-ion Ba�ery (LFP Chemistry) properties in 2016 and 2030

Parameters for LFP Li-ion 2016 2030

Energy density (Wh/L) 200− 620 200− 620
Energy installation cost (USD/kWh) 200− 840 77− 326
Cycle life (equivalent full-cycles) 1000− 10000 1910− 19097
Calendar life (years) 5− 20 8− 31
Depth of discharge (%) 84− 100 84− 100
Round-trip e�ciency (%) 92 94
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Table 1.13: Li-ion Ba�ery (LTO Chemistry) properties in 2016 and 2030

Parameters for LTO Li-ion 2016 2030

Energy density (Wh/L) 200− 620 200− 620
Energy installation cost (USD/kWh) 473− 1260 215− 574
Cycle life (equivalent full-cycles) 5000− 20000 9549− 38194
Calendar life (years) 10− 20 15− 31
Depth of discharge (%) 84− 100 84− 100
Round-trip e�ciency (%) 96 98



Chapter 2

Aging Cost Optimization of Energy
Storage Systems in Microgrids

2.1 Introduction

�e high penetration of Distributed Generation (DG) is bringing new concept for the
control of transmission and distribution systems of power systems [110]. In partic-
ular, the discontinuous nature of the power delivered by Renewable Energy Sources
(RES) is undermining the steadiness of power systems, expanding the risk of fail-
ures and inconsistencies. So as to beat this issue, di�erent studies have projected
for the use of ESSs technologies for the management of power systems �uctuations
[111, 112, 113, 114, 115, 116]. �e suggested solutions include the use of ESSs for the
provision of frequency and voltage stability, spinning reserve, load following, and peak
shaving. Despite the great advantages related to the wide adoption of ESS technologies,
there are still open issues with respect to their modeling in unit commitment problems,
particularly while including the ESSs aging costs.

Actually, the ability of ESS to supply services to the power systems is emphatically
time subordinated, and cannot be decoupled from their past and future use. Hence,
the authoritative single time frame optimization approaches such as Optimal Power
Flow (OPF) do not appropriately �t the time-dependence a�ributes required for the
management and control of ESSs in power networks. To beat this limitation, di�er-
ent studies addressed to this issue by proposing Multi-Period Optimal Power Flow
(MPOPF) procedures [117, 118, 119, 120, 121, 122]. �e current MPOPF solving tech-
niques include robust optimization techniques [120], Semide�nite Programming (SDP)
approaches [117, 118, 119], distributed solving algorithms[122] and non-linear program-
ming methods [121]. However, these methodologies fail to address the issue of including
the ESSs aging costs in the optimization procedure, particularly in the case of Ba�ery
ESSs (BESSs) which are portrayed by signi�cant non-linear aging behavior [42]. �e
degradation of electrochemical storage can be divided in two aging factors: the calendar
aging, strictly relying upon time, and the cycle aging, depending on the usage pa�erns
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of the BESS [42]. Since the utilization of the BESS brings degradation, this results in a
devaluation cost of the ba�ery for the end user. �is degradation additionally demon-
strates a strong non-linear dependence on the SoC of BESS of the performed cycles and
temperature [42]. �ese factors depend on the power pro�le of the ba�ery amid an ex-
panded timeframe. Subsequently, if the use of the BESS is not regular, as it occurs in
presence of discontinuous RES power generation, it is di�cult to recognize the BESS
aging without considering the time progress of SoC and temperature of the BESS.

Given these necessities, this chapter presents a novel multi-period OPF methodology
based on Genetic Algorithms (GA) [123, 124], called GA-MPOPF. �e proposed method-
ology considers complex cost functions characterized over a time period, like the oper-
ative costs of BESS, allowing to consider the ESSs degradation as an optimization item,
likewise identifying the ideal usage strategy of ESSs in a power system from a cost point
of view. Moreover, the particular form of the proposed methodology allows for the veri-
�cation of the correct operative state of the system during the considered time interval,
by taking into account the technical constraints of system.

�e GA-MPOPF method is able to enhance both planning and unit-commitment is-
sues in presence of a mix of RES and Fossil-Fuel based generators, loads and ESSs. In
order to test these highlights, it has been applied to the standard 69 bus IEEE PG & E
network, in a�endance of a high penetration of various RESs and Li-ion BESSs. �e
studied network has been designed as a Virtual Power Plant (VPP) whose goal is to fol-
low a particular power pro�le amid the day. Any deviation from such pro�le creates
an extra cost for the VPP aggregator under the form of a �ne. In this work, the role of
the BESS is to counteract the VPP �uctuations with a speci�c end goal of minimization
of the total amount of the �nes in a timeframe of one month. To legitimately assess
the amortization costs of the Li-ion BESS, a novel time-dependent cost function based
on the Ba�ery Degradation Model (BDM) presented in [42] is proposed. �e proposed
method is applied to the test network from both a management and planning viewpoint.
�e management or operative analysis consists of the identi�cation of the optimized
management of the BESS during the tested monthly time frame. �e planning process
consists of the identi�cation of the optimal position of the BESS from electric perspec-
tive. �is allows for the identi�cation of the correct location of the BESS on the base of
the evaluation of the system electrical parameters amid a broadened time frame.

Furthermore, in order to test the response of system to various types of �nes, the
outcomes are assessed with linear, quadratic, and cubic cost functions [125]. Also, an
exponential cost function is presented and examined as a limit case of high degree cost
functions. Results demonstrate excellent convergence features for all the mentioned
cost functions, and highlight the important role of ESS aging costs in both economically
optimized and system limits unit commitment issues. Moreover, results additionally
recommend to use of the GA-MPOPF technique for optimization problems at time scales
bigger than the ones found in the present writing (1 day - multi week), pushing as far as
possible to the month time scale.

�is chapter is organized as follows: In section 2.2 the GA-MPOPF is depicted, to-
gether with the proposed Li-ion time-dependent cost function. Section 2.3 depicts the
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case study and the �ne systems related to the power �uctuations of the studied VPP. In
section 2.4 the results of the optimization technique are presented. In section 2.5 a par-
ticularized discussion is accorded and also the outcomes of this study is compared with
the other works. At the end, in section 2.5 conclusions and future work are discussed.

2.2 Methods

�e point of the proposed approach is the optimization of the usage pro�les of ESSs
and Controllable Generators (CG) in a power system. �e optimization is asked for
meeting the equality and inequality operative imperatives depicted by a multi-period
model of the system. Equality constraints describe the se�led parameters of the model.
�ey portray the power network topology and the power pro�les of DGs and loads amid
time. On the other hand, the optimization imperatives are given according to inequality
relations. �ese include the static and dynamic power imperatives of CGs and ESSs,
together with the voltage phasors, and in addition thermal limits of transmission lines.
A detailed de�nition of the inputs of the proposed methodology is given in subsec. 2.2.1.
In addition, the optimization technique itself, together with its output is depicted in detail
in subsec. 2.2.2. At long last, subsec. 2.2.3 characterizes the Li-ion Ba�ery Degradation
Costs Model (BDCM) used in this chapter for the meaning of the cost pro�le of the BESS.

2.2.1 Inputs and constraints of the model
�e optimization procedure depends on a time-dependent model of the power system,
which is given as far as equality and inequality limitations. �e equality constraints
characterize: the power of the loads Ln(t) for each bus n of the grid and per each time
t of the considered time interim; the DG generation DGn(t), on each considered node
n and for each considered time t; the resistance Rij and reactance Xij of the electrical
lines between buses i and j. On the other hand, the inequality constraints set the opti-
mization limits. �is includes voltage phasors imperatives, including their magnitudes
V min
n , V max

n and, if needed in the particular application, their phases ϕminn and ϕmaxn , as
detailed in (2.1) and (2.2), for each node n and each time t.

V min
n ≤ Vn(t) ≤ V max

n (2.1)

ϕminn ≤ ϕn(t) ≤ ϕmaxn (2.2)

Additionally, transmission lines thermal limits STij are considered, as characterized in
(2.3), where Sij(t) is the apparent power �owing through buses i and j at time t. �ese
limits must be satis�ed per each time t. In the general design of the proposed model,
the quantities Vn(t), ϕn(t) and Sij(t) can in principle be evaluated per each time t by
means of any current (or future technique) able to perform their estimation, without
losing the viability of the optimization. In this work, backward/forward sweep AC Power
Flow (ACPF) solver has been used, and the set of input data required for the proper
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performance of this calculation has been considered [125, 126]. �is speci�c solver has
been picked in view of its performance for radial networks with high R/X ratio.

| Sij(t) |≤ STij (2.3)

Ordering each CG as g, their static and dynamic operative inequality imperatives are
characterized as follows: the generator’s minimum and maximum power output limita-
tions are given by (2.4). �e ramping limits of the generators P down

ramp and P up
ramp (se�ing

the maximum variety of power that every generator g can achieve amid an interim of
time ∆t) are described by (2.5) and (2.6). �e inequalities ought to be satis�ed per each
time t, and Sming and Smaxg are the CGs minimum and maximum power power outputs,
accordingly. Sg(t) is the power output pro�le of the generator g amid time t, which is
the optimization variable. In addition, each generator g is portrayed by a cost function
Cg. In general, if the value Sming is not zero, the generator can be turned o� with a spe-
ci�c end goal to give an null power yield. In general, if the value Sming is not zero, the
generator can be turned o� with a speci�c end goal of providing a null power output.
For this situation, on/o� switching of the generator g must be considered as an operative
cost that ought to be included into the cost function Cg.

Sming ≤ Sg(t) ≤ Smaxg (2.4)

Sg(t+ 1) ≤ Sg(t) + P up
ramp (2.5)

Sg(t+ 1) ≥ Sg(t)− P down
ramp (2.6)

�e constraints of ESS are described in (2.7) and (2.8). Each ESS, characterized by
index e, is depicted by its energy capacity ENom

e , and by its rating power Smaxe and
Smine . �e energy stored in the ESS at time t is Ee(t), and is updated according to (2.9).
ηce and ηde are the ESS charging and discharging e�ciencies, and Pe(t) is the active power
provided by the ESS e at time t. In general, a cost function Ce is related to each ESS e of
the system, depending both on its aging and operative costs:

0.1× ENom
e ≤ Ee(t) ≤ 0.9× ENom

e (2.7)

Smine ≤ Se(t) ≤ Smaxe (2.8)

Ee(t) =

{
Ee(t− 1) + ηc

∫
Pe(t)dt, if charging

Ee(t− 1) + 1
ηd

∫
Pe(t)dt, if discharging

(2.9)

2.2.2 Optimization procedure and outputs
GA-MPOPF is based on the GA-based heuristic optimization of the global system cost
function

Cf =
∑
g

Cg +
∑
e

Ce. (2.10)
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�e Genetic Algorithm (GA) approach has been presented by Holland [123] as a
part of the computational methods created in the �eld of Arti�cial Life and complex
systems[127]. �e idea behind the GA is to produce excellent answers for optimization
and search problems by applying bio-inspired operators, like mutation, crossover, and
selection to a population of randomly created solutions object to the evolutionary pres-
sure represented by a �tness function, i.e. a functional measuring the ability of each
component of the population to solve the problem. �e optimal solution is �gured by
iterating the calculation until the value of �tness function converges to a equilibrium
value (usually 30-100 iterations). GAs have been e�ectively applied to a scope of various
�elds, the most important of which are: neural networks, control engineering, bioinfor-
matics, and medicine [124]. GAs additionally discovered applications in power systems
such as: network recon�guration to minimize losses [128], network recon�guration in
case of failures [129] and optimal DG placement [130].

Start

Convergence

End

Initialize Population 

No

Fitness Function Calculation

Crossover

Mutation

Yes

Selection 

Figure 2.1: �e �owchart of the genetic algorithm

�e proposed optimization method is presented in the �owchart in Fig. 2.1. �e opti-
mization technique starts with the generation of a numberNpop of initial matrices M. M
is a T ×Gmatrix, where T is the number of considered time interims, andG is the num-
ber of generators including both ESSs and CGs. Each line of the matrix is indicated by
the CGg(t) and ESSe(t), the power pro�les of the considered CGs and ESSs amid time,
developed by following the constraints given in subsec. 2.2.1. Starting from this initial
population, the GA is then applied to the initial population a�er satisfying a conver-
gence criteria. Each GA iteration is sorted out as follows: the cost function Cf is �gured
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per every component of the populace. At that point, selection, crossover, and mutation
operators [123] are applied. In this work, the convergence is accomplished when a vari-
ability edge of 1% or a maximum number of iterations Imax = 100 is considered. �e
crossover has been set to C = 0.8, while mutation has been set to M = 0.2. At long
last, when the convergence criteria are satis�ed, the optimized CGg(t) and ESSe(t) are
extracted from the obtained M, and are selected as result of the optimization procedure.

2.2.3 Battery cost model
�e estimation of ba�ery operative costs depends on the Ba�ery Degradation Model
(BDM) proposed by Xu et al. in [42]. �e BDM depends on (2.11), relating the ba�ery
life L with a ba�ery degradation function fd. �e ba�ery life is described as L = 1−D,
where D is the remaining of the capacity of the BESS, normalized to 1. �e relation
among L and fd is non-linear, and consists impacts proper of the Li-ion BESSs, like the
initial Solid Electrolyte Inter-phase (SEI) �lm formation by means of parameters αsei and
βsei, as given in equation (2.11).

L = 1− αseie−βseifd − (1− αsei)e−fd (2.11)
�e ba�ery degradation function fd relies upon the sum of a cycle aging function fc

and calendar aging function ft, as given in (2.12). �e number of performed cycles is N .

fd(t, δ, σ, TC) = ft(tuse, σ̄, T̄c) +
N∑
n

fc(δ, σ, Tc) (2.12)

Both calendar and cycling aging functions demonstrate a reliance on the time evo-
lution of the operative parameters of the BESS. �ese are the BESS utilization time tuse,
its SoC σ, the Depth of Discharge (DoD) of its performed cycles δ, and its temperature
Tc. Speci�cally, the δ parameter can be go�en from the time development of the ba�ery
SoC by by means the rain�ow algorithm[42].

�e calendar aging function ft(tuse, σ̄, T̄c) depends on the utilization time tuse and
on average SoC σ̄ and temperature T̄c amid the considered time interim. Equation (2.13)
shows the dependence from these parameters. St, Sσ and STC are depicted in (2.14),
(2.15) and (2.16) separately. Tref , kT , kσ, and σref indicate the aging parameters of Li-ion
BESS tested and investigated in [42].

ft(t, σ, TC) = St(t) · Sσ(σ) · STC (TC) (2.13)
St(t) = ktt (2.14)

Sσ(σ) = ekσ(σ−σref ) (2.15)

STC (TC) = e
−kT (TC−Tref ) Tc

Tref (2.16)
In addition, cycle aging function fc(δ, σ, Tc) demonstrates a direct reliance on the

ba�ery cycling: It relies upon δ, average σ, and average temperature Tc of the considered
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cycle. �e expressions of fc(δ, σ, Tc) is given in (2.17). �e expressions of Sδ , Sσ and STC
are given in (2.18), (2.15) and (2.16), respectively. �e parameters kδ1, kδ2 and kδ3 are
go�en from [42].

fc(δ, σ, TC) = Sδ(δ) · Sσ(σ) · STC (TC) (2.17)

Sδ(δ) = (kδ1δ
kδ2 + kδ3)−1 (2.18)

�e de�nition of calendar and cycle aging functions takes into consideration the
separate assessment of the two ba�ery amortization phenomena. Since the calendar
aging function embeds the averaging of σ and TC , the exactness of the estimation of
this phenomenon is improved by computing the ft over ν sub-interims of time length
∆t, each called f ν∆t. �en, the aggregate calendar aging for a time interim ∆τ has been
calculated as f∆τ

t =
∑

ν∈∆τ f
ν
∆t. With regards to the cycle aging, the e�ect of each cycle

cyc has been independently computed as f cycc . To calculate the cycling pa�ern amid the
same timeframe of the calendar one, it is important to run the rain�ow calculation on
the same considered time interim ∆τ . However, given the speci�c type of the rain�ow
algorithm [42], the computed cycling pa�erns of at least two continuous time interims
can di�er if considered separated or as a whole, since the cycles spanning in excess of one
interval can be truncated and not appropriately calculated if the interims are considered
separately. �us, it is advisable to consider a large enough time interval ∆τ amid this
calculation, in order to decrease the truncation error in the cycle evaluation. According
to this assumption, the resulting e�ect of the cycles performed amid the time interim
∆τ can be go�en as f∆τ

c =
∑

cyc∈∆τ f
cyc
c . �usly, the aging experienced by the BESS

amid a time interim ∆τ is computed as (2.19).

f∆τ
d = f∆τ

t + f∆τ
c (2.19)

�e BDM detailing in [42] has been extended in this work with the description of
a Ba�ery Degradation Cost Model (BDCM). �e goal has been to interface the ba�ery
degradation properties with its amortization costs. Since the ba�ery is considered as
degraded when it reaches a capacity D equivalent to 80% of its nominal capacity, it is
conceivable to identify f ∗d = f−1

d (0.2), i.e. the value of the degradation function at which
the ba�ery is accounted as degraded. �e novel concept introduced in this work is to
consider fd as a linear indication of the condition of degradation of the BESS, which
can be directly lined to a cost function. Considering that fd the range of values extend
between 0 for a brand new ba�ery and f ∗d for a degraded ba�ery, it is possible to identify
the BESS degradation amid a time interim ∆τ in means of fractions of f ∗d as described
in (2.20).

d∆τ =
f∆τ
d

f ∗d
=

∑τ
ν f

ν
∆t +

∑
cyc∈∆τ f

cyc
c

f ∗d
(2.20)

Given this amount, the BESS degradation amid each considered time interim ∆τ can
be related to a degradation cost C∆τ

d . �is is carried out by linking the amortization
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costs amid the considered time interim with its associated degradation function f∆τ
d .

Describing the total life costs identi�ed with the BESS as C∗B , it is possible to assume the
full amortization of this expenses for a value of fd = f ∗d . Given the linear connection
between f∆τ

d and f ∗d , it is then possible to interface f∆τ
d and C∆τ

d by means of (2.21):

C∆τ
d =

f∆τ
d

f ∗d
· C∗B = d∆τ · C∗B (2.21)

Interfacing the aging of a Li-ion BESS amid a time interim with its amortization costs.

2.3 Case study
�e GA-MPOPF optimization method has been designed to achieve high adaptability,
and can be applied to a wide range of applications. In this chapter, it has been applied to
the planning and management strategy of a Li-ion BESS in a VPP environment. As case
study the IEEE PG & E Medium Voltage (MV) grid, portrayed in detail in subsec. 2.3.1,
has been chosen. �e motivation behind the VPP aggregator is to deal with the power
output at the Point of Common Coupling (PCC) of the network. �is is performed by
utilizing the support of the BESS providing a daily active power pro�le P ∗(t). if this is
not obtained, the VPP aggregator is asked for to pay a �ne based on the di�erence from
the expected pro�le. To do this, the PCC of the tested network has been considered as
a in�nite generator. Along these lines, the values Sming and Smaxg have been set to −∞
and +∞ respectively, and because of this reason no on and o� switching expenses of
the generator have been considered. Its cost function is as a steady part, contingent
upon the pro�le P ∗(t), and a �ne part depending on the �uctuations around this value
as following equation:

Cf (P ) = F (P ∗(t)) +R(|P (t)− P ∗(t)|). (2.22)

�e �x cost function F (P ∗(t)) follows the day-ahead market prices, and the �nes cost
functionsR(|P (t)−P ∗(t)|) are selected between the ones demonstrated in subsec. 2.3.2.

2.3.1 �e test grid
�e standard PG & E 69-bus radial distribution network utilized in [131] is chosen and
shown in Fig. 2.2. �e data with respect to DG has been taken from [132, 133], where
the authors optimized DG position and nominal power stabilizing the system by using
a heuristic, Tabu-Search based method. �e load data has been go�en by using the
approach depicted in [134], where the consumption pro�les of Medium Voltage (MV)
buses are aggregated randomly, beginning from a set of consumption time series of single
households obtained from [134]. Following this method, the load pro�le of each bus of
the system has been assessed, with a hourly sampling and for a timeframe of a month.
�e pro�les of the DG production in this work have been gathered from the site of IESO,
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Figure 2.2: �e used IEEE PG& E 69 bus network.

the Power System Operator located in Ontario (Canada) [135]. �e studied Li-ion BESS
has a capacity of 300 kWh and a rated power of 300 kW . All the datasets used in this
study cover the period from April to May 2016.

2.3.2 Cost functions
�e optimization methodology proposed in sec. 2.2 has been tested by four unique kinds
of �nes cost functions R(P ): linear, quadratic, cubic, and exponential, portrayed sepa-
rately in (2.23), (2.24), (2.25), and (2.26). �e �rst three of them have been selected as
representative cost functions in power generation [125].�e exponential one has been
proposed in this chapter as a limit case for testing the method reaction for cost func-
tions of higher grade. �e strength of the �nes is tuned by the parameter β, which is
di�erent per each cost function, and characterized in order to get an average �ne of
Pav = 150Euro/MWh.

Rl(P (t)) = βl|P (t)− P ∗(t)| (2.23)

Rq(P (t)) = βq(P (t)− P ∗(t))2 (2.24)

Rc(P (t)) = βc(|P (t)− P ∗(t)|)3 (2.25)
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Re(P (t)) = βee
|P (t)−P ∗(t)| (2.26)

Fig. 2.3 shows the shape of the studied cost functions. Besides, the proposed cost
functions are compared with the histogram of the power �uctuations measured in the
PCC with regards to the power pro�le P ∗(t). Fluctuations are distributed around the
interim (−200, 200) kW, with some outrageous values among 200 and 300 kW.

Figure 2.3: �e used cost functions, and the histogram of the power �uctuations at the
network PCC.

2.4 Results

�e GA-MPOPF method is used to optimize the usage of a BESS in a VPP, as de�ned in
detail in subsec. 2.3.

Aim of the optimization is to choose the best choice between the usage (and causing
degradation) of the BESS and the installment of the �nes because of the VPP power
�uctuations around the selected equilibrium value P ∗(t). �e proposed method will
select the best combinations of these two components from an economic perspective
and amid a broadened timeframe, guaranteeing that the electrical constraints of the grid
are satis�ed amid the full time interim. In the tested case, P ∗(t) has been selected as
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a daily �at value, equivalent to the average balance of the system amid the day. �e
results have been go�en by se�ing the total life costs identi�ed with the BESS as C∗B =
ENom
e ·Cinst, where ENom

e is the nominal size of the BESS, and Cinst = 1000Eur/kWh
are the BESS overnight costs per unit of capacity. �e average �nes costs has been set
to Pav = 150Eur/MWh.

�e proposed technique has been applied for the planning step including the correct
positioning of the BESS. �en, the impacts of the tested BESS have been assessed by
simulating the presence of the optimized BESS in one node of the network. �e method-
ology has been replicated per each bus of the grid, comparing the e�ect of the BESS
position on the operating parameters. As �rst outcome, it has been discovered that all
the network constraints given in sec. 2.2 are met for each considered time interim and
for each position of the BESS. �is high stability of the system is because of two factors:
the nearness of household users, and the optimal location of DGs performed in [132].
�us, no considerations with respect to the system voltage phasors and thermal limits
ought to be taken for characterizing the correct position of the BESS. However, the pro-
posed technique would be able to include these parameters in the planning step in case
of potentially unstable grids.

Besides, the GA-MPOPF took into account the estimation of the network losses for
the di�erent positioning of the BESS. �e outcomes of this technique are given in Fig.
2.4 and Fig. 2.5. �e values related to each bus n demonstrate the monthly losses of the
system when the BESS is located on the bus itself. Values are given in kWh. �e best
position of the BESS has been observed to be at hub 11.
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Figure 2.4: Monthly energy losses for di�erent positioning of the BESS.

Once identi�ed the best position of the BESS, it is possible to assess the economic
e�ect of the BESS on the network. Fig. 2.6 and Fig. 2.7 demonstrate the optimization
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Figure 2.5: Monthly energy losses associated to each di�erent location of BESS. �e
losses are given by means of a color code, described in the legend.

results for the considered month, considering quadratic cost �nes, and for the position
of the BESS on bus 11. Additionally, Fig. 2.6 demonstrates the power output at the PCC
of the VPP. �is result is demonstrated both with and without the BESS for the quadratic
cost function. Fig. 2.7 demonstrates the SoC pro�le of the BESS amid the studied month.
Figures indicate how, depending on the speci�c shape of the system power �uctuations,
the optimized number of daily full cycles is somewhere in the range of zero and two,
with the general BESS micro cycles. Furthermore, Fig. 2.8 demonstrates the daily costs
for the studied moth. More in detail, the black line demonstrates the reference �nes cost
value of the system without the BESS, the green line demonstrates the system �nes in
nearness of the BESS, and the orange and red lines demonstrate the cumulative cost of
�nes and calendar aging, and the cumulative cost of �nes, calendar and cycle aging re-
spectively. �e last one shows the aggregated cost of the considered system in nearness
of the BESS. �ese costs have been computed over the monthly optimization by follow-
ing the technique given in Sec. 2.2. �e calendar aging impact has been calculated by
se�ing a time window ∆τ per each day, while the daily cycling aging impact has been
computed by considering all the cycles performed in the day.In the case in which one
or more considered cycles crossed over one day, the amortization cost of the cycle has
been divided among the days accordingly, to the proportion between the time that the
cycle spanned amid the days and the aggregate cycle length. Also, the result with re-
gards to the system costs accumulated on a monthly base is given in table 2.1, while the
aggregated monthly �uctuations

∫
|P (t)− P ∗(t)|dt at PCC are given in table 2.2.

�us, the optimized utilization of the BESS demonstrates a decrease in the �nes cost
between 30 and 60% on a daily basis, if compared with the �nes cost without the BESS.
A similar results calculated on a monthly basis leads a �nes cost decrease of 50%. Since
both the BESS calendar and cycle aging demonstrated daily amortization cost ranging
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between 10% and 15% of the daily �nes without the BESS, this interpreted in a reduction
of the system amortization costs in the range of 10 and 25%. A same quantity computed
on a monthly basis demonstrated a decrease in the system total costs of 18%.

Table 2.1: Comparison of monthly costs with and without BESS

Monthly considered costs Costs (Euro) Cumulative Costs (Euro)

Fines with BESS 5’200 5’200
Calendar aging 1’800 7’000
Cycling aging 1’700 8’700

Fines w/o BESS 10’500 10’500

Table 2.2: Comparison of monthly energy �uctuations
∫
|P (t) − P ∗(t)|dt at PCC level

with and without BESS

Type Energy (MWh)

With BESS 49.7

Without BESS 70.2
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Figure 2.6: �e power pro�le at the PCC of the considered VPP, in both presence and
absence of the BESS.

In particular, the results shown in �g. 2.9 highlight that all the cost functions show a
relative convergence error under 1.5%. Cubic and exponential cost functions show even
be�er convergence properties, of the order of 0.2% and 0.1%, respectively. �is is due
to the particular shape of the cost functions, depicted in �g. 2.3. In fact, both the cubic
and the exponential cost functions show a �at cost for small power �uctuations. For this
reason, the usage of the ba�ery in the �at area is not economically advantageous. Since
the usage of the BESS is economically forbidden in this areas for cubic and exponential
cost functions, the optimization easier to achieve.
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Figure 2.7: �e time evolution of the energy stored in the considered BESS.
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Figure 2.8: �e daily cost of the system. �e �nes cost and the BESS calendar and cycling
aging amortization costs are given as a sum. Also, the daily �nes cost of the system
without the BESS is given as a reference.
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Regarding the algorithm’s performance, �gures 2.9 and 2.10 demonstrate the con-
vergence properties of the proposed GA-MPOPF. Since the GA method includes random
sampling of the given space, the results of various optimization runs performed on a
same system con�guration can di�er, providing di�erent results in regards to the �nal
optimized �tness function and the running time. To distinguish the e�ect of this ran-
dom sampling and estimate the convergence properties of this stochastic procedure, the
optimization method has been repeated for 1000 times in a same time interim. At that
point, the achieved daily optimal costs and running times are shown as histograms. Fig.
2.9 demonstrates the histograms of the optimal costs and Fig. 2.10 demonstrates the his-
tograms of the running time. In order to examine the di�erent convergence properties
of the method for various sorts of cost functions, a similar strategy has been applied for
the cost functions depicted in sec. 2.3. �e outcomes shown in Fig. 2.9 feature that all
the cost functions demonstrate a relative convergence error under 1.5%. Cubic and ex-
ponential cost capacities demonstrate far be�er convergence properties around 0.2 and
0.1 %, respectively. �is is because of the speci�c shape of the cost functions, portrayed
in Fig. 2.3. Indeed, both the cubic and the exponential cost functions demonstrate a �at
cost for li�le power �uctuations. �us, the use of the BESS in the �at area isn’t �nan-
cially valuable. Since the use of the BESS is economically forbidden around there for
cubic and exponential cost functions, the optimization easier to obtain.

As results, the algorithm shows excellent convergence properties for all types of cost
functions.
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(b) �adratic cost function
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(d) Linear cost function

Figure 2.9: Histograms of the convergence of the total cost considering the four di�erent
tested cost functions.
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(a) Cubic cost function
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(b) �adratic cost function
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(c) Exponential cost function
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Figure 2.10: Histograms of the running time for di�erent cost functions.
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2.5 Discussion & Conclusions

�e results regarding the BESS positioning are given in Fig. 2.4 and Fig. 2.5. �e �gures
show how the correct positioning of the BESS in this framework can set aside to 10%
losses. From a systemic point of view, the best location of the BESS with respect to sys-
tem loss minimization, has been observed to be in the topological center of the network,
in node 11. As demonstrated in Fig. 2.5, the location of the BESS on the encompassing
buses has been turned out to be a decent decision.

About the results of the optimization given in Figs. 2.6, 2.7 and 2.8, the algorithm
has been observed to be solid in restricting high power �uctuations, demonstrating non-
trivial management choices in the case of �uctuations over timeframes of di�erent hours,
potentially prompting a high �ne for the aggregator. In order to lessen these �nes, the
algorithm chose to aplit the accessible energy capacity of the BESS amid the full interim.
In addition, it is imperative to see how small �uctuations are not compensated by the
utilization of the BESS, since the �nes related to them are lower than the cycling aging
expenses of the BESS. �is impact is clear when Figs. 2.6, 2.7 and 2.8 are compared:
the days described by small power �uctuations indicate wasted BESS capacity and low
cycling costs, because of the restricted usage of the BESS.

At long last, taking into account the behavior of the system in nearness of relevant
power peaks, it is possible to see how the BESS energy is almost used for diminishing
the high peaks of �uctuation. �is is because of the quadratic shape of the �ne cost
function, which forces the algorithm to give priority to high �uctuations. �e power
requested at PCC level in presence of the highest peaks is decreased in the range of 30
and 50%. �e impact of this decrease clearly impacts on the daily system costs. �is is
obvious when comparing Figs. 2.6 and 2.8 in the days in which the highest �uctuations
are happened around the mean value. In particular, these are the days 2, 5, 8, 10, 15,
22 and 26. Particularly on days 2, 8 and 26, it is clearly obvious how the �ne cost is
decreased by around 60% by using the BESS. By comparing this values in details, such
a major reduction in �nes costs is legitimate of the days in which it is possible to see
steady �uctuations in power, which does not keep going for more than two-three hours.
If they last longer, considering the day 8, the reduction in the �nes costs because of the
presence of the BESS is decreased to a value around 30%.

�e cost results of the optimization are compared with the available literature, and
especially with papers which evaluate the cost e�ect of ESSs using MPOPF strategies and
quadratic cost functions for the balancing generation [120, 117]. �e subsequent cost
reduction achieved in [120] in the range of 40 and 50%, regarding the cost of the system
without ESS. In the study performed in [117], the authors identi�ed an improvement
around 10% in the cost with respect to the case without ESS. �e two papers did not
determine the type of considered ESS, and did not consider any aging cost for them. In
any case, it is possible to compare their outcomes and the ones displayed here, without
considering the BESS aging costs. In this speci�c case, the �ndings of this work concur
with the ones in [120], and in addition indicating be�er cost improvements over the ones
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found in [117].
�is chapter also introduced a Multi-Period Optimal Power Flow technique based

on Genetic Algorithms. �e proposed method is intended for the optimization of both
planning and unit-commitment issues in presence of ESSs and �uctuations actuated by
distributed RESs, and can consider the costs identi�ed with the aging of the ESSs. As a
test case, it has been applied to an IEEE prototypical test network aiming to work as a
VPP by means of the application of a Li-ion ba�ery. �e proposed methodology has been
utilized for two di�erent applications: a �rst, planning one, including the meaning of the
correct positioning of the BESS in the grid; and a second, operative one, including the
meaning of the correct management strategy of ESS. In addition, a convergence analysis
of the proposed technique is introduced. Four cost function models (linear, exponential,
quadratic, and cubic) have been considered for this analysis.

Results con�rm the signi�cance of the GA-based multi-period optimization method
when dealing with ESSs. �e proposed methodology has been observed to be able to
manage complex choice decision criteria with respect to the optimal management of
both the cycle aging costs and the SoC pro�le of the BESS. Additionally, the proposed
method is able to manage longer time ranges regarding the methodologies proposed in
literature, going beyond the common time scales between one day and on week, proving
to be able to optimize dataset even monthly time scales. �is allowed its application for
planning strategies. Also, a comparison of the results of the proposed approach with sim-
ilar ones present in literature, highlights the signi�cance in considering the ESS aging
costs amid the economic optimization. In particular, results demonstrate that includ-
ing aging expenses can fundamentally change the quantitative results of the economic
evaluation. Since the amortization costs because of BESS aging indicate a portion some-
where in the range of 40 and 60% of the total system costs, neglecting to consider them
can prompt a critical underestimation of the costs. On the other hand, the analysis per-
formed in this work a�rmed the economic advantages related to the installation of a
BESS, for the investigated purposes.

Additionally, a convergence analysis of the proposed GA-MPOPF indicated excellent
convergence properties when converging to the optimal cost, even in the extraordinary
instance of the exponential cost function (i.e. when using ESS is not ideal due to the
lower cost of the �ne). �is allowed the identi�cation of the di�erent response of BESS
for various �ne systems.

In general, the use of genetic algorithms provides the user with the advantage of an
adaptable and completely con�gurable device both under the technical and economic
perspective. �is is featured by the results with respect to the algorithm convergence
properties, which have indicated incredible and quick convergence even on account of
nonlinear limitations and nonlinear objective functions.





Chapter 3

Real-Time Planning and Management
of Storage Systems Considering Cycle
and Calender Aging Costs

3.1 Introduction

Many studies have been performed for the management and planning of ESSs [111, 112,
113, 114, 115, 116]. Although the usage of ESSs bring many advantages for the power
systems but modeling of them still have own issues, particularly when including the
amortization costs in the model. Actually, the performance of ESSs are highly depended
on a period of time, and can not be separated from their past, present and future uti-
lization. �erefore, for the optimization of ESSs multi-period optimization techniques
[117, 118, 119, 120, 121, 122] should be considered and single period optimization tech-
niques do not meet the realities of the management and control of ESSs. Moreover, the
multi-period optimization techniques must model the ESS aging costs in the optimiza-
tion procedure, exclusively for electrochemical ESSs such as ba�ery. �e BESSs aging
models have considerable non-linear behaviour and can be characterized by the calendar
aging which depends on time and cycle aging which depends on the usage way of the
BESS [42].

On the other hand, another major problem for managing and controlling of the ESSs
is the Real-Time control and management of them. In real cases, the model of the usage
of ESSs must be addressed in the Real-Time applications, otherwise the planning and
management of them fail to be applicable. As mentioned above, for optimal management
and control of ESSs two factors must be considered: (1) Multi-Period optimization; (2)
Including the aging costs during the optimization procedure. �ese factors should be
considered in the Real-Time optimization techniques. �ere are some studies about Real-
Time optimization of ESSs in the power systems [136, 137, 138, 139, 140]. However, they
are failed to address the multi-period optimization and including the aging costs in the
real-time optimization procedure.
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By considering the real-time optimization requirements, this study proposes a novel
multi-period OPF method real timely, called Real-Time GA-MPOPF. �e GA-MPOPF has
been described in details in[141]. �e Real-Time GA-MPOPF allows an optimization of
complex cost functions during a lengthened time period considering BESS degradation
costs and optimize the usage of it in the power system taking into account energy market
costs. Additionally, the system constraints and technical parameters has been considered
in the optimization procedure by using the power �ows calculation for each time step.

�e origin of real-time optimization requires the optimization for each real-time step.
However, as previously mentioned, the BESS aging costs optimization must be done for
an extended time period. For this reason, in the proposed methodology the data has been
characterized as historical power and predicted power. In fact, by passing the time, the
name of actual data can be turned to historical data. �e historical (actual) power which
is known from the name of it, the power from past to present and the predicted power
is the power from present to future. Knowing that the real-time optimization must be
done for the present time, the novelty of this work is that the present time optimization
is performed by considering both historical(actual) and predicted power (Multi-Period)
to have more reliable calculation for including of the BESS aging costs.

�e Real-Time GA-MPOPF method is able to optimize both Multi-Period and includ-
ing aging costs of BESS real-timely. In order to test these highlights, it has been employed
into the standard 69 bus IEEE PG & E grid, in a�endance of a high penetration of RES
DGs and Li-ion BESS. For testing the proposed approach the grid has been designed as
a Virtual Power Plant (VPP) whose goal for each real-time interval is to follow a par-
ticular power pro�le amid the day. Any deviation from such pro�le produces an extra
cost for the VPP aggregator under the type of a �ne. In this work, the BESS is used to
balance the VPP �uctuations with a speci�c end goal to reduce the aggregate sum of the
�nes in a period of one year. To appropriately assess the amortization expenses of the
Li-ion BESS, a novel time subordinate cost function is proposed in view of the Ba�ery
Degradation Model (BDM) presented in [42]. �e used power pro�le in this study is for
one year, sampled at one hour time intervals for a total of 8761 time steps. �e power
pro�le of �rst week (168 time sample) has been used for producing the predicted power
for each time sample. �e predicted power pro�le is estimated for 6 hours in forward
for each time sample. �en, the total predicted power which is processed for the entire
year is included (8761 − 168) × 6 = 51558 time samples. �e Real-Time GAMPOPF
method is used for each time interval, the 18 hours historical power pro�le and 6 hours
predicted power pro�le.

�e proposed procedure is applied to the test grid from both a planning and a man-
agement perspective. �e planning procedure consists in the identi�cation of the opti-
mal size of the BESS. �e operative analysis consists in the identi�cation of the optimized
management of the BESS for each time step and ful�lling the optimization procedure for
the entire year.
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3.2 Methods

�e objective of the proposed Real-Time method is the optimization of ESSs and Control-
lable Generators (CG) in a power system in the form of real time. First of all, the feasible
area for optimization process must be described for the method. For this reason, the
optimization has to satisfy the system constraints. �is constraints can be described in
means of equality and inequality constraints. A detail of the inputs of the proposed pro-
cedure is described in subsec. 2.2.1. Additionally, the real-Time optimization procedure
with its outputs is de�ned in detail in subsec. 3.2.2. �e analysis of data for providing
the predicted or estimated data, aiming the usage of them for real-time applications has
been de�ned in subsec. 3.2.1. Furthermore, the cost function Cf has been described in
subsec. 2.3.2. At long last, subsec. 2.2.3 characterizes the Li-ion Ba�ery Degradation
Costs Model (BDCM) utilized as a part of this study for the meaning of the cost pro�le
of the BESS.

3.2.1 Exponential smoothing and ARMAmodel

�e time series associated to the �uctuations are indicated with y. Each time series
is composed by 8761 samples (hourly sample for the studied year). Referring to the
literature [142], two time scales can be identi�ed: a slow one, corresponding to scales
over the daily oscillations, and a faster one, corresponding to the hourly �uctuations.
To separate the two time scales a baseline ybl is estimated by means of an exponential
smoothing method described in [143].

Figure 3.1 shows an example of baseline estimation from the �uctuation of microgrid.
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Figure 3.1: Exponential smoothing used to estimate the baseline
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Given a time series y = [y1, y2, . . . , yN ], the baseline at each time step k is estimated
by referring to the same time of the week before, assuming that load pro�les are strongly
conditioned by the speci�c day of the week (i.e. Mondays are similar to successive Mon-
days, and di�erent from Sundays), [142]:

yibl(k) = βyi(k −∆) + (1− β)yibl(k −∆), (3.1)

where k is the current time step and ∆ is a delay of 168 time steps, corresponding to
exactly seven days, while the smoothing parameter β is selected in order to minimize
the root mean squared error of the residuals r:

ri(k) = yi(k)− yibl(k) (3.2)

�e residuals ri can be further modeled by means of a ARMA model of the type:

ri(k) =
C(q)

A(q)
e(k) (3.3)

where e(k) is a zero-mean white stochastic process and C(q), A(q) are polynomials in
q−1:

A(q) = 1 + c1q
−1 + c2q

−2 + · · ·+ cNq
−N (3.4)

C(q) = 1 + a1q
−1 + a2q

−2 + · · ·+ aNq
−N (3.5)

3.2.2 Optimization Procedure and Outputs
�e details of GA-MPOPF based optimization procedure has been described in subsec.
2.2.2. �e GA-MPOPF is used for the proposed real-time method optimization procedure.

Fig. 3.2 shows the time-line (the way data are used) for the Real-Time GA-MPOPF
method. �e predicted power pro�le Pp(t) is obtained by the method mentioned in sub-
sec. 3.2.1. P h

r (t) indicates the historical �rst week data which the reason of usage of
them has been described in subsec. 3.2.1. �e historical (actual) power Pr(t) is a power
pro�le which is considered as real-time power pro�le obtaining from online data center
at PCC. �is real-time power is also can be said the actual power of the system. �e
corresponding of this data for optimization procedure as real-time is necessarily impor-
tant. �e Real-Time method uses historical power pro�le from P h

r (tk−m) to P h
r (tk−1)

in order to estimate the power level at PCC for each time tk+1 . . . tk+n. Making it more
clear, again from Fig. 3.2 can be seen, when the real-time is at tk, the real-time power
level is updated by its actual value (from online data center) and the model estimates the
power pro�le for next i time intervals in forward till tk+i, and then when the real-time
is at tk+1, the power estimator predicts the power for next i time intervals in forward till
tk+1+i, and this mode will continue for the all real-time intervals tk+2, tk+3, . . . .

As it is mentioned in subsec. 2.2.2 the cost functionCf = C∆τ
f +Cf (P ) has two parts:

C∆τ
f is the aging cost function of BESS, and Cf (P ) is �ne cost function. �e calendar
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Figure 3.2: Data-set used as Real-Time

and cycle aging is belong to C∆τ
f . So, in optimization procedure of C∆τ

f , it should be
considered as multi-period optimization. In particular, when the multi-period optimiza-
tion has been considered with prediction of some times in forward, Ba�ery Management
Systems BMS can decide whether to charge or discharge or neither charge or discharge
of BESS based on aging costs optimization. In details, SoC of BESS for the some next
times can be estimated, by knowing the level of requested energy for those times. In this
way the aging costs of BESS are included in the calculations considering multi-period
optimization. Simultaneously, Cf (P ) should also be optimized in the procedure of BESS
costs optimization. �e BESS cost model has been described in subsec. 2.2.3. For pro-
viding the data in multi-period way and using that data for real-time purposes, the data
are used as they are shown in Fig. 3.2.

Fig. 3.3 shows how the historical and predicted power pro�les contribute in the Real-
Time multi-period optimization of BESS. To obtain optimized power of BESS PBESS at
time tk+1 the historical power pro�le Pr(tk−m), . . . , Pr(tk) has been used for 2 goals;
�rst of all, to use them for generation of predicted (estimated) powers (subsec. 3.2.1).
Secondly, to use them for multi-period optimization purposes. Once the estimator fore-
casts predicted power pro�le Pp(tk+1), . . . , Pp(tk+1+i), the BESS power pro�le can be
obtained by using Real-Time GA-MPOPF method shown in Fig. 3.4 for the period of
time tk−m, . . . , tk+1+i, which from time tk−m to time tk, thePBESS(tk−m), . . . , PBESS(tk)
are historical optimized power pro�le of BESS and from time tk+1 to time tk+1+i,
PBESS(tk+1), . . . , PBESS(tk+1+i) are predicted optimized power pro�le of BESS. When
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the online time step will be updated to tk+1, the real power of PCC will be up-
dated by its actual value Pr(tk+1) (real-time data is coming from online data center),
and this value will be used for the estimation of predicted power for next time step,
Pp(tk+2), . . . , Pp(tk+2+i). So, Real-Time GA-MPOPF method can optimize the power
pro�le of the BESS PBESS(tk+2), . . . , PBESS(tk+2+i) for the next time steps from tk+2

to tk+2+i. �is procedure will continue for the next time intervals in this way. It
should be noted that the calculation of cost function Cf (P ) for time tk+1 will be
Pr(tk+1) + PBESS(tk+1) and for tk+2 will be Pr(tk+2) + PBESS(tk+2) and so on.
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Figure 3.3: �e procedure of analysis of the historical and predicted power in ordered to
obtain optimized BESS power pro�le PBESS(tk+1) at real-time interval tk+1

Although, power pro�le of BESS is optimized for historical and predicted powers
PBESS(tk−m), . . . , PBESS(tk), PBESS(tk+1), . . . , PBESS(tk+1+i), but for the calculation
of C∆τ

f for each real-time step, the real-time value of PBESS(t) must be used. For ex-
ample when the real-time is at tk+1, the optimization of BESS power is performed for
PBESS(tk−m), . . . , PBESS(tk+1), PBESS(tk+2), . . . , PBESS(tk+2+i), but for calculation of
C∆τ
f must be used just PBESS(tk+1). �is procedures are clearly described in Fig. 3.3,

illustrating the procedure just for 2 time intervals and the procedure for the next time
steps is the same.

�e proposed Real-Time GA-MPOPF optimization method which is shown in the
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�owchart in Fig. 3.4 describes the real-time optimization procedure. �e online data is
sent from online measurement center (SCADA), the real-time power is updated for each
time interval which can be named historical(actual) power pro�le and these historical
(actual) power pro�les are simultaneously used for generating of predicted power pro-
�les. Both of them are sent to GA-MPOPF (well described in subsec. 2.2.2) to analysis
and provides the optimal power pro�le of BESS PBESS(t) for each time interval, and it
is considered for ge�ing optimal power pro�le of BESS PBESS(t), the cost function Cf
must be optimized.

It should be noted that the process time of GA-MPOPF tGA−MPOPF for �nding the
best solution must be well below the real time steps because to have ability of providing
the PBESS(t) for the next real-time step, for example the real-time step is passing from
tk+1 to tk+2, the time of analysis of GA-MPOPF must be tGA−MPOPF <<< |tk+2−tk+1|.

Historical/Actual 

Power Profile

1( ), ( ), , ( )r k m r k m r kP t P t P t− − +

Estimated Power 

Profile

1 2( ), ( ), , ( )P k p k p k iP t P t P t+ + +

( )
r k

P t

Online Data 

for Time 

Counter (k)
PF

Power Profile of BESS

1( ), ( ), , ( )BESS k m BESS k m BESS k iP t P t P t− − + +

(P)
f d f

C C C= +
Calculate

Convergence

GA

GA-MPOPF

NO

YES

Save Power 

Profile of 

BESS

Figure 3.4: Real-Time GA-MPOPF �owchart

In this study, as �rst step, historical data of one year has been used to provide the
predicted data using the method in subsection 3.2.1 and those predicted data has been
used in the Real-Time GA-MPOPF optimization procedure, secondly, for evaluation of
the proposed method, the historical power pro�le are used as actual data. For this reason,
actual data are arranged in the same way that the predicted data pro�le are used (perfect
knowledge of future).
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3.3 Case Study

�e Real-Time GA-MPOPF optimization method in this study has been applied to the
real-time controlling and planning and sizing of a Li-ion BESS in a VPP. �e Real-Time
GA-MPOPF method goal is to provide a condition for VPP to manage the power output
of it at PCC for each real time step. To obtain this goal, the VPP aggregator, has been
supported by using of BESS. �e details of the operation of the VPP and the cost function
Cf (P ) has been described in sec. 2.3.

Moreover, for the Real-Time GA-MPOPF optimization method, the cost function is
described in 3.6:

Cf (P ) = F (P ∗(t)) +R(|P (t)− P ∗(t)|) (3.6)

As it is mentioned in sec. 2.3, the constant cost function F (P ∗(t)) follows the day-
ahead market prices, and the �nes cost function β(P (t)− P ∗(t))2 has been selected for
R(|P (t) − P ∗(t)|). For the proposed method, P ∗(t) or target power pro�le has been
chosen as a daily �at value, equal to the average predicted baseline power of network
during the day. �e coe�cient β is de�ned in order to get an average �ne of Pav =
150Euro/MWh. To obtain this, the average predicted baseline power of the network
for the studied year has been applied. P (t) is the power of PCC with BESS Ppcc(t) +
PBESS(t). In subsec. 3.2.2 is hinted that the proposed Real-Time method output is the
optimized of P (t) which it should make the cost function Cf minimum.

�e IEEE 69 node PG & E Medium Voltage (MV) radial network has been chosen as
case study, and the details of the network has been described in subsec. 2.3.1. However,
in the subsec. 2.3.1 one size of BESS with 300 kWh is tested. In this chapter, di�erent
sizes of BESS 200, 300, 400, 500, 600 and 700 kWh has been also considered.

�e analyzed timeline power data which is explained in subsec. 3.2.2. �e data
is sampled hourly for one year and totally 8761 hours of data has been analyzed in
this work. �e analyzed power pro�le of PCC Ppcc, is included of two parts; actual
Pr(t) power (by passing the time is changing the status to historical power) and pre-
dicted Pp(t) power. In this case study, the historical (actual) power pro�le Pr(t) and
predicted power pro�le Pp(t) for each day in the optimization procedure has been
considered 18 hours and 6 hours, respectively. In this regard, from Fig. 3.2 and
Fig. 3.3 for analysis of the real-time t0, the historical power pro�le can be wri�en as
Pr(t−17), Pr(t−16), . . . , Pr(t−1), Pr(t0). Consequently, for the predicted power pro�le
for the real-time t0, Pp(t1), Pp(t2), . . . , Pp(t5), Pp(t6). For the next time steps by moving
window of one hour (duration of each time step) and total cots of system is minimized
for the whole year.

3.4 Results

�e Real-Time GA-MPOPF method is used to optimize the usage of a BESS in a VPP, as
described in detail in sec. 3.3.
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�e goal of the optimization is to choose the best choice between the use of the BESS
(with consequent of degradation) and the installment of the �nes because of the VPP
power oscillation around the selected balance value P ∗(t) with a Real-Time approach. In
the best possible way, the proposed technique will select the best combinations of these
two aspects from an economic perspective and amid a broadened timeframes, guaran-
teeing that the electrical requirements of the network described in sec.2.2 are satis�ed
amid the whole time interim. In this study, P ∗(t) has been selected as a daily value,
equivalent to the average of predicted baseline power value of the network amid the
day. �e following results have been obtained by se�ing the total life costs identi�ed
with the BESS as C∗B = ENom

e · Cinst, where ENom
e is the nominal capacity of the BESS,

and Cinst considered 1000 €/kWh, 800€/kWh and 600€/kWh, is the BESS installation
costs per kWh. �e average �nes costs has been set to Pav = 150Eur/MWh.

�e proposed approach has been applied for the Real-time planning procedure in-
cluding the sizing of the BESS. �e procedure has been performed for di�erent size of
BESS, in order to obtain the best size of BESS on the operating parameters and minimiz-
ing the cost function Cf . As �rst outcome, it has been discovered that all the system
constraints given in sec.2.2 are met for each considered time interim and for each size
of the BESS. �is high stability of the system is due to two factors: �rst, the demands of
the tested network are household users only which the industrial loads of the network
have been eliminated in [132], and second, the the optimal positioning of DG performed
in [132]. In this regard, the tested network parameters allows for employing of di�erent
size of BESS. However, the system constraints have been considered as limits in power
�ow calculations. Hence, the proposed methodology can also be used in the planning
procedure in case of potentially unstable grids.

�e sec. 3.3 reminds that the predicted power for each time interval has been pro-
vided 6 hours in forward as an estimation of power pro�le at PCC. Whereas the historical
power are considered as 18 hours in the past (each time step is one hour). In this way,
historical and predicted power both used in means of Real-Time optimization approach
considering a multi-period optimization of SoC of BESS taking into account BESS ag-
ing cots and market energy prices. �e used power pro�le in this study is for one year,
sampled at one hour time intervals for a total of 8761 time steps. It is also hinted in the
subsec. 3.2.2 that the historical power pro�le are used as actual power to examine the
predicted power exactness. For this reason, actual power are arranged in the same way
that the predicted power pro�le are used (perfect knowledge of 6 hours in forward).

Fig. 3.5 shows the optimization results for the entire year, in the case of quadratic
cost �nes, and for both historical (actual) and predicted power for di�erent BESS sizes
and installation costs. In details, from Fig. 3.5 the green line is the reagent of total
yearly cost of system in presence of BESS with 600 €/kWh installation cost and it shows
when the BESS size is between 500 kWh and 700 kWh, the system cost is least. For
800 €/kWh installation cost of BESS which is indicated by orange line, when the BESS
size is between 300 kWh and 500 kWh, the yearly �ne cost of the system with BESS
aging is minimum. Moreover, the red line is the green line is the reagent of total yearly
cost of system in presence of BESS with 1000 €/kWh installation cost when the BESS
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size is between 200 kWh and 300 kWh the system total cost is minimum. �e dot lines
are indicators of the yearly cost of the system with BESS 600, 800 and 1000 €/kWh
installation cost considering the historical (actual) power pro�le. As it can be seen from
Fig. 3.5, the results of historical (actual) and predicted power are almost similar for the
BESS with same installation costs. It should be noted that the error of the estimation of
the predicted power leads the di�erences between them and this di�erence is acceptable.
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Figure 3.5: �e Yearly cost of the system with di�erent size of BESS and 600, 800 and
1000 €/kWh installation cost considering both historical and predicted power. �e �ne
cost and the total BESS aging costs are given as a sum for the year. Also, the sum of
yearly �ne cost of the system without the BESS is given as a reference.

Fig. 3.6 shows separately the yearly costs of BESS for historical (actual) and pre-
dicted power for di�erent BESS size and installation costs. In particular, the black line
demonstrates the yearly reference �nes cost value of the system without the BESS, the
green lines demonstrate the system yearly sum �nes with the BESSs, the orange lines
illustrate the cumulative cost of yearly sum �nes and calendar aging, and red lines show
the cumulative cost of yearly sum �nes, calendar and cycle aging. �e last one describes
the aggregate cost of the contemplated system in presence of the BESS. �e red line in
Fig. 3.6e is crossed the black line when the BESS size is around 700 kWh and as well as
in Fig. 3.6f, the red line is passed the black line when the BESS size is around 500 kwh.
�ose characteristics show that the system with BESS 1000 €/kWh installation cost and
those nominal capacities can not make economic pro�ts and even it makes economic
losses.

Also, the results regarding the system yearly pro�t with di�erent installation costs
and capacities of BESS are given in the tables 3.1, 3.2 and 3.3 for both historical and
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(a) Historical power, Installation cost 600 €/kWh
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(b) Predicted power, Installation cost 600 €/kWh
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(c) Historical power, Installation cost 800 €/kWh
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(d) Predicted power, Installation cost 800 €/kWh
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(e) Historical power, Installation cost 1000 €/kWh
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Figure 3.6: �e Yearly cost of the system with di�erent size of BESS and 600, 800 and
1000 €/kWh installation costs considering both historical and predicted power. �e total
�ne cost and the BESS calendar and cycling aging amortization costs are given as a sum
for the year. Also, the sum of yearly �ne cost of the system without the BESS is given as
a reference.
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Table 3.1: Pro�t with 1000 €/kWh Installation Cost of BESS

1000 €/kWh Installation Cost of BESS
BESS Size [kWh] Yearly Pro�t [Historical power] Yearly Pro�t [Predicted power]

700 €-628.26 [-0.30%] €-8251.2 [-3.94%]
600 €4293.11 [2.05%] €-3434.5 [-1.64%]
500 €8167.38 [3.9%] €1863.8 [0.89%]
400 €10680.42 [5.1%] €4104.6 [1.96%]
300 €11560 [5.52%] €6115.1 [2.92%]
200 €9968.39 [4.76%] €5361.2 [2.56%]

predicted power. From table 3.1, it can be seen, the yearly pro�t of the BESS 700 kWh
capacity analysis with historical (actual) power is €-628.26 which means the system has
an economic losses, and the system biggest gain is 5.5% with 300 kWh BESS size. Where,
with predicted power the system with BESS size 600 kWh su�ers economic losses more
than 1.6%, and biggest pro�t is €6115 in presence of BESS size 300 kWh. As it is pre-
viously mentioned, the di�erences between historical (actual, best knowledge of future
power) and predicted power are because of the error of estimation of the predicted power.

Table 3.2 shows that the system with 800 €/kWh installation cost considering both
historical (actual) and predicted power does not make any economic losses for the vari-
ous BESS capacities and the system biggest pro�t 10% with historical power is with BESS
size 500 kWh. While, for the predicted power, 6.79% is the biggest pro�t of the system
with the 400 kWh BESS nominal capacity but the system pro�t with 500 kWh is 6.28%
which is close to 500 kWh BESS size pro�t.

Table 3.3 illustrates the system pro�t considering 600 €/kWh installation cost of BESS
for historical (actual) and predicted power. In regards to predicted power the system
makes yearly pro�t around €26470 (12.64%) and €25884 (12.36%) with BESS size 600 kWh
and 500 kWh, respectively. While, considering the results with historical (actual) power,
the system pro�t with BESS 500 kWh and 600 kWh are around €34554 (16.50%) and
€34072 (16.27%) respectively. Furthermore, the tables 3.1, 3.2 and 3.3 show the system
behaviour in presence of the BESS di�erent capacities for the same installation costs
for historical (actual) and predicted power is almost same. It means that the proposed
Real-Time method which should work with predictive data has acceptable performance
in comparison with its pro�ciency by using actual data. Also, it can be seen from those
tables if the appropriate ba�ery size is chosen, the system would have acceptable pro�t
for the di�erent BESS installation costs.

Moreover, Fig. 3.7 shows the monthly �ne cost of the system in presence and absence
of BESS, cumulative cost of �nes and calendar aging and cumulative cost of �nes and
calendar and cycle aging for 600 €/kWh installation costs of BESS with 500 kWh size,
800 €/kWh installation costs of BESS with 500 kWh size and 1000 €/kWh installation
costs of BESS with 300 kWh size. In particular, the black signs show the sum �ne costs
of system for each month in absence of BESS, the green signs show the system �nes
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Table 3.2: Pro�t with 800 €/kWh Installation Cost of BESS

800 €/kWh Installation Cost of BESS
BESS Size [kWh] Yearly Pro�t [Historical power] Yearly Pro�t [Predicted power]

700 €17004.904 [8.12%] €7937.018 [3.79%]
600 €18973.452 [9.06%] €11559.984 [5.52%]
500 €20983.884 [10.02%] €13151.576 [6.28%]
400 €20753.522 [9.91%] €14219.618 [6.79%]
300 €19182.872 [9.16%] €12942.156 [6.18%]
200 €15392.37 [7.35%] €10114.986 [4.83%]

Table 3.3: Pro�t with 600 €/kWh Installation Cost of BESS

600 €/kWh Installation Cost of BESS
BESS Size [kWh] Yearly Pro�t [Historical power] Yearly Pro�t [Predicted power]

700 €33779.446 [16.13%] €25193.226 [12.03%]
600 €34072.634 [16.27%] €26470.688 [12.64%]
500 €34554.3 [16.50%] €25884.312 [12.36%]
400 €31287.348 [14.94%] €24041.416 [11.48%]
300 €27140.832 [12.96%] €20565.044 [9.82%]
200 €21046.71 [10.05%] €15434.254 [7.37%]

in presence of the BESS for each month, the orange signs show the cumulative cost of
�nes and calendar aging for each month and red signs show the cumulative cost of �nes,
calendar and cycle aging for each month. �e red signs represent the total cost of the
system in the presence of the BESS for each month.

�e quadratic �ne cost function which is described in subsec. 2.3.2 has been calcu-
lated based on yearly average of baseline of power Pb(t) �uctuation and the parameter
β de�ned in order to obtain an average �ne of Pav = 150Euro/MWh. It can clearly
be seen from Fig. 3.7a and Fig. 3.7b, for the months 1, 11 and 12 the �ne cost of system
without BESS and the �ne cost of system with total cost of BESS are too close. Since, in
those months the power magnitude |P (t)| is too small, therefore, 500 kWh BESS usage
provides cycle and calendar costs. It should be noted that by decreasing the size of BESS,
the system total �ne cost with BESS can be improved for those months while it causes
the less improvement for the other months especially months 9 and 10. Since, the cal-
culation of the �ne cost function is yearly, so that, the e�ect of those months on order
to minimize the total costs of system, is more than the months 1, 11 and 12. More in
details, tables 3.4 and 3.5 which describe the total cost of the system with BESS for each
month and 200, 300, 400, 500, 600 and 700 kWh BESS sizes for historical and predicted
power, respectively, can prove the above mentioned fact. According to the predicted
power analysis in table 3.5, for example, for month 11, with 200, 300 and 400 kWh BESS
capacities the total costs are €10445, €10334 and €10350, respectively, and those costs are
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(c) Historical power, Installation cost 800 €/kWh
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Figure 3.7: �e monthly cost of the system with BESS 500 kWh and 600 €/kWh instal-
lation cost, 500 kWh and 800 €/kWh installation cost and 300 kWh and 1000 €/kWh
installation cost for both historical and predicted power. �e total �ne cost with and
without BESS and also the BESS calendar and cycle aging amortization costs are given
as a sum for each month.
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Table 3.4: Total cost of system in the presence of the BESSs with 600 €/kWh installation
cost for each month [Historical power]

600 €/kWh Installation Cost of BESS [Historical power]
PPPPPPPPPMonth

BESS [kWh] 0 200 300 400 500 600 700

1 12186 10791 10532 10406 10417 10664 10890
2 14921 13388 13008 12776 12707 12829 12754
3 22369 19963 19209 18624 18221 17919 17556
4 16010 13807 13087 12533 12173 11887 11690
5 18002 16194 15745 15386 15304 15605 16039
6 10565 9277 9039 8906 8939 9118 9351
7 13124 11749 11334 11078 10956 10932 11137
8 22510 20497 19796 19256 18734 18265 17976
9 31854 29051 27960 26997 26153 25479 24870
10 27105 25181 24513 23990 23723 23718 23702
11 10998 9924 9742 9992 10269 10560 11106
12 9779 8546 8312 8196 8206 8375 8574

less than the cost with 500 kWh BESS size which is €10499. Whereas, for the month 9,
the costs with 200, 300 and 400 kWh BESS capacities are €29582, €28649 and €27788, re-
spectively, which those costs are greater than the cost with 500 kWh BESS size which is
€27078. Table 3.5 proves that the yearly Real-Time optimization of system with 500, 600
and 700 kWh BESS sizes for each month are more and less similar with historical (actual)
power. It is clear from Fig.3.5 and table 3.3 the best size is 600 kWh which makes more
pro�t for the system but because of the historical (actual) power optimized BESS size is
500 kWh for comparison 500 kWh BESS size has been selected for predicted power as
well. On the other hand the di�erences between them is not too much. �is predicted
power has been provided for the real application of proposed Real-Time method, and
historical (actual) power is only used to realize the method performance.

Fig. 3.7c and Fig. 3.7d belong to monthly costs for 500 kWh BESS with 800 €/kWh
installation cost for historical (actual) and predicted power, respectively. �e total �ne
costs with BESS for months 1, 6, 11 and 12 are too close to the �ne cost without BESS
even for month 11 the BESS usage caused an economic losses. Fig. 3.7d shows monthly
real-time optimization results for the predicted power analysis, and it can be seen in the
months 1 and 11, the usage of BESS causes economic losses. Table 3.7 shows that these
costs are €12441 and €11479 for month 1 and 11, respectively. While, the costs without
BESS for month 1 is €12186 and for month 11 is €10998 which are less than the costs
in presence of 500 kWh BESS size. However, as above mentioned the optimization is
done for the entire year and the BESS 500 kWh size is selected as almost the best size
for 800 €/kWh installation cost for comparison with the historical (actual) power output
BESS best size. It is clear from table 3.7 that by decreasing the size of BESS, the total
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Table 3.5: Total cost of system in the presence of the BESSs with 600 €/kWh installation
cost for each month [Predicted power]

600 €/kWh Installation Cost of BESS [Predictio Data]
PPPPPPPPPMonth

BESS [kWh] 0 200 300 400 500 600 700

1 12186 11362 11190 11219 11490 11449 11882
2 14921 13763 13475 13286 13288 13335 13506
3 22369 20561 19870 19379 19061 18882 18719
4 16010 14301 13650 13111 12614 12321 12041
5 18002 16627 16242 16164 16198 16472 16859
6 10565 9705 9454 9297 9254 9429 9828
7 13124 12051 11722 11498 11381 11452 11576
8 22510 20834 20241 19808 19457 19119 19164
9 31854 29582 28649 27788 27078 26438 25998
10 27105 25803 25288 24917 24564 24451 24273
11 10998 10445 10334 10350 10499 10797 11260
12 9779 8957 8738 8567 8649 8798 9131

�ne cost with BESS is improved for those months while the costs improved less for the
other months. It can be seen from table 3.2 and Fig. 3.5 the system cost is decreased with
400 kWh BESS size more than other sizes of BESS for the optimization with predicted
power.

Fig. 3.7e and Fig. 3.7f belong to monthly costs for 300 kWh BESS with 1000 €/kWh
installation cost for historical and predicted power, respectively. Particularly, from 3.7f
the months 1, 6 and 11 the costs with BESS is more than the costs without BESS. In
more details, from table 3.9 the costs for months 1, 6 and 11 are €12522, €10713 and
€11506, respectively. While the cots for those months without BESS are €12186, €10565
and €10998, respectively. However, as it is mentioned before the aim of the proposed
Real-Time method is yearly optimization and the 300 kWh BESS size all in all for the
entire year is improved more than other BESS sizes (table 3.1). If the proposed Real-Time
method performs for the monthly optimization purposes the system performance with
regards of the �ne costs should be improved for each month not yearly and it is not
applicable in the real cases whereas distribution operators consider for the planning and
its energy markets yearly or seasonally. On the other hands, the BESS installation goal
is not only making pro�t but also tolerate the system demand and response su�ciently.
For example, if the planning be applied monthly, the months which consumption is less,
BESS size should be smaller than the months with higher consumption which BESS size
should be bigger, and this approach causes the BESS unuseful in some months and in this
way the system can not make an economic pro�t for long term planning approaches.

Fig. 3.8 and Fig. 3.9 show the optimization results for each month, in the case of
quadratic cost �nes, and for historical (actual) and predicted power with 500 kWh BESS
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Table 3.6: Total cost of system in the presence of the BESSs with 800 €/kWh installation
cost for each month [Historical power]

800 €/kWh Installation Cost of BESS [Historical power]
PPPPPPPPPMonth

BESS [kWh] 0 200 300 400 500 600 700

1 12186 11270 11128 11172 11452 11864 12085
2 14921 13862 13634 13571 13629 13848 13916
3 22369 20470 19942 19552 19239 18952 18925
4 16010 14314 13862 13531 13259 13193 13047
5 18002 16644 16395 16312 16482 17046 17046
6 10565 9785 9687 9854 9922 10261 11028
7 13124 12185 11971 11969 11896 12105 12310
8 22510 20997 20463 20029 19752 19328 19365
9 31854 29553 28669 27932 27278 26885 26455
10 27105 25661 25124 24986 24992 25264 25332
11 10998 10323 10423 10856 11346 12200 13018
12 9779 8956 8949 8901 9189 9493 9900

Table 3.7: Total cost of system in the presence of the BESSs with 800 €/kWh installation
cost for each month [Predicted power]

800 €/kWh Installation Cost of BESS [Predicted power]
PPPPPPPPPMonth

BESS [kWh] 0 200 300 400 500 600 700

1 12186 11764 11803 12006 12441 12799 13170
2 14921 14206 14126 14081 14248 14173 14543
3 22369 20990 20542 20158 20031 20037 20001
4 16010 14773 14326 13947 13629 13510 13524
5 18002 17092 16944 17122 17540 17927 18699
6 10565 10167 10125 10115 10340 10648 11089
7 13124 12445 12230 12188 12386 12622 13118
8 22510 21316 20939 20631 20461 20417 20600
9 31854 30068 29363 28653 28275 27900 27504
10 27105 26253 25906 25779 25852 25844 25907
11 10998 10902 10936 11122 11479 12149 12923
12 9779 9322 9246 9403 9580 9834 10402



66 CHAPTER 3. REAL-TIME PLANNING AND MANAGEMENT OF BESS

Table 3.8: Total cost of system in the presence of the BESSs with 1000 €/kWh installation
cost for each month [Historical power]

1000 €/kWh Installation Cost of BESS [Historical power]
PPPPPPPPPMonth

BESS [kWh] 0 200 300 400 500 600 700

1 12186 11717 11782 12002 12451 12977 13524
2 14921 14278 14218 14382 14670 14976 14936
3 22369 20951 20565 20373 20125 20135 20251
4 16010 14821 14539 14428 14210 14206 14252
5 18002 17123 17081 17192 17788 18559 19405
6 10565 10323 10227 10563 11090 11681 12372
7 13124 12612 12548 12682 12776 13211 13595
8 22510 21388 20987 20716 20502 20572 20871
9 31854 30031 29380 28855 28458 28111 28000
10 27105 26154 25910 25865 26309 26614 27169
11 10998 10746 11171 11956 12829 13551 14655
12 9779 9318 9451 9731 10055 10540 11001

Table 3.9: Total cost of system in the presence of the BESSs with 1000 €/kWh installation
cost for each month [predicted power]

1000 €/kWh Installation Cost of BESS [predicted power]
PPPPPPPPPMonth

BESS [kWh] 0 200 300 400 500 600 700

1 12186 12189 12522 13051 13477 14145 14857
2 14921 14618 14596 14801 14908 15217 15482
3 22369 21421 21048 20937 20970 21126 21370
4 16010 15185 14884 14769 14582 14669 14590
5 18002 17487 17585 18134 18659 19497 20276
6 10565 10572 10713 10902 11207 11870 12467
7 13124 12822 12781 12990 13296 13806 14422
8 22510 21731 21396 21443 21370 21622 21697
9 31854 30448 29989 29513 29192 29057 29060
10 27105 26614 26565 26759 26682 27168 27631
11 10998 11277 11506 11919 12808 13680 14259
12 9779 9702 9718 10109 10414 11002 11560
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size and 600 €/kWh installation cost. �e �gures show the power output at the PCC of
the tested VPP. �is result is shown both in presence and in absence of the BESS for the
quadratic cost function. Also, Fig. 3.10 shows the SOC pro�le of the BESS for each month
with historical and predicted power. In a glance, it can be understood the full cycles for
24 hours is between zero and two with some smaller cycles provided with BESS and
also clearly can be seen from the �gures the dependency of stored energy with power
�uctuation. In particular, Real-Time method makes decisions smartly between the usage
of BESS which provides cycle and calendar aging costs and not using the BESS which
the system has to pay the �nes. In the other word, the optimization process includes two
kind of decisions; or to pay the �ne or to use the BESS, decision about both cases should
be in a smart way. It should be noted that if the usage of BESS not be in a smart way,
it will be degraded faster and it means the investment cost for BESS does not bring the
pro�t for the systems. So, the charge and discharge of BESS should be control in a smart
way and at the same time for having reasonable pro�t for the system above mentioned
decision criteria should be considered for all systems include BESS.

�e total yearly energy �uctuations
∫
|P (t) − P ∗(t)|dt at PCC level are given in

tables 3.10, 3.11 and 3.10 in means of historical (actual) and predicted power with 200,
300, 400, 500, 600 and 700 kWh BESS sizes and 1000, 800 and 600 €/kWh installation
costs, respectively. As a result, the reduction of total yearly energy

∫
|P (t) − P ∗(t)|dt

in presence of BESS with greater capacity for all installation costs for both historical
(actual) and predicted power is higher. In details, from table 3.10 the saved yearly energy∫
|P (t) − P ∗(t)|dt with 300 kWh BESS size which is the most pro�table size for the

1000 €/kWh installation cost, is more than 130MWh for the processed predicted power
optimization. For 800 €/kWh installation cost and with 400 kWh BESS size in table 3.11,
the reduction of total yearly energy is more than 171 MWh for the processed predicted
power optimization. Finally, 600 €/kWh installation cost and with 600 kWh BESS size
(most pro�table size) in table 3.11, the saved total yearly energy is more than 240 MWh
for the processed predicted power optimization. Tables 3.10, 3.11 and 3.10 show that the
both historical and predicted power have a same behaviour (the energy consumption
reduced more with the bigger BESS size for both historical (actual) and predicted power)
and also the optimization results show that the gap between processed historical (actual)
and predicted power for each size of BESS is acceptable.

Figs. 3.11, 3.12 and 3.13, shows the histogram of power |P (t)− P ∗(t)| for the tested
year with historical (actual) and predicted power for 200, 300, 400, 500, 600 and 700 kWh
BESS sizes and 600, 800 and 1000 €/kWh installation costs. It can be seen the usage of
BESS how reduced the power |P (t) − P ∗(t)|, especially, the shaved peaks bigger than
200 kW are more in presence of BESS. Also, it is clear that the bigger size of BESS causes
more peaks to be shaved. Here again, it can be seen the optimization results for historical
and predicted power are similar which this proves the strength of proposed Real-Time
method.
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Figure 3.8: �e power pro�le at the PCC with and without BESS from month 1 to 12 with
Installation Cost=600 €/kWh and BESS Size=500 kWh with Historical power
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Figure 3.9: �e power pro�le at the PCC with and without BESS from month 1 to 12 with
Installation Cost=600 €/kWh and BESS Size=500 kWh with predicted power
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Figure 3.10: �e time evolution of the energy stored in the BESS from month 1 to 12
with Installation Cost=600 €/kWh and BESS Size=500 kWh with historical and predicted
power
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Table 3.10: Comparison of yearly energy �uctuations
∫
|P (t)−P ∗(t)|dt at PCC level in

presence of di�erent sizes of BESS and 1000 €/kWh installation cost with historical and
predicted power

1000 [€/kWh] Installation Cost of BESS
BESS Size [kWh] Yearly energy [GWh]

[Historical power]
Yearly energy [GWh]
[Predicted power]

0 1.203026 1.203026
200 1.092586 1.106842
300 1.055141 1.070124
400 1.025270 1.039989
500 1.004100 1.015750
600 0.985346 0.998989
700 0.976871 0.985569

Table 3.11: Comparison of yearly energy �uctuations
∫
|P (t)−P ∗(t)|dt at PCC level in

presence of di�erent sizes of BESS and 800 €/kWh installation cost with historical and
predicted power

800 [€/kWh] Installation Cost of BESS
BESS Size [kWh] Yearly energy [GWh]

[Historical power]
Yearly energy [GWh]
[Predicted power]

0 1.203026 1.203026
200 1.088876 1.103080
300 1.045974 1.063954
400 1.013052 1.028799
500 0.983644 1.001962
600 0.963696 0.978161
700 0.949247 0.961812
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(b) Predicted power, BESS Size 200 kWh
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(c) Historical power, BESS Size 300 kWh
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(d) Predicted power, BESS Size 300 kWh
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(e) Historical power, BESS Size 400 kWh
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(f) Predicted power, BESS Size 400 kWh

Power [kW]
0 100 200 300 400 500 600 700 800 900

N
u

m
b

er
 o

f 
O

cc
u

ra
n

ce

0

50

100

150

200

250

300
Installation Cost=600 EUR/kWh with BESS Size =500 kWh, [Real Data]

Power with BESS
Power without BESS

(g) Historical power, BESS Size 500 kWh
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Table 3.12: Comparison of yearly energy �uctuations
∫
|P (t)−P ∗(t)|dt at PCC level in

presence of di�erent sizes of BESS and 600 €/kWh installation cost with historical and
predicted power

600 [€/kWh] Installation Cost of BESS
BESS Size [kWh] Yearly energy [GWh]

[Historical power]
Yearly energy [GWh]
[Predicted power]

0 1.203026 1.203026
200 1.085537 1.100168
300 1.040785 1.057152
400 1.001683 1.018352
500 0.968927 0.985831
600 0.944830 0.957995
700 0.924741 0.936956
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(i) Historical power, BESS Size 600 kWh
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(j) Predicted power, BESS Size 600 kWh

Power [kW]
0 100 200 300 400 500 600 700 800 900

N
u

m
b

er
 o

f 
O

cc
u

ra
n

ce

0

50

100

150

200

250

300

350
Installation Cost=600 EUR/kWh with BESS Size =700 kWh, [Real Data]

Power with BESS
Power without BESS

(k) Historical power, BESS Size 700 kWh
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Figure 3.11: Histograms of the absolute value of all powers from target power with and
without BESS [historical and predicted power] with 600€/kWh installation cost
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(a) Historical power, BESS Size 200 kWh
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(b) Predicted power, BESS Size 200 kWh
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(c) Historical power, BESS Size 300 kWh
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(d) Predicted power, BESS Size 300 kWh
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(e) Historical power, BESS Size 400 kWh
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(f) Predicted power, BESS Size 400 kWh

Power [kW]
0 100 200 300 400 500 600 700 800 900

N
u

m
b

er
 o

f 
O

cc
u

ra
n

ce

0

50

100

150

200

250

300
Installation Cost=800 EUR/kWh with BESS Size =500 kWh, [Real Data]

Power with BESS
Power without BESS

(g) Historical power, BESS Size 500 kWh
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(i) Historical power, BESS Size 600 kWh
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(j) Predicted power, BESS Size 600 kWh
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(k) Historical power, BESS Size 700 kWh
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Figure 3.12: Histograms of the absolute value of all powers from target power with and
without BESS [historical and predicted power] with 800€/kWh installation cost
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(a) Historical power, BESS Size 200 kWh
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(b) Predicted power, BESS Size 200 kWh
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(c) Historical power, BESS Size 300 kWh
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(d) Predicted power, BESS Size 300 kWh
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(e) Historical power, BESS Size 400 kWh
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(f) Predicted power, BESS Size 400 kWh
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(g) Historical power, BESS Size 500 kWh
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(i) Historical power, BESS Size 600 kWh
Power [kW]

0 100 200 300 400 500 600 700 800 900

N
u

m
b

er
 o

f 
O

cc
u

ra
n

ce

0

50

100

150

200

250

300
Installation Cost=1000 EUR/kWh with BESS Size =600 kWh, [Prediction Data]

Power with BESS
Power without BESS

(j) Predicted power, BESS Size 600 kWh
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(k) Historical power, BESS Size 700 kWh
Power [kW]

0 100 200 300 400 500 600 700 800 900

N
u

m
b

er
 o

f 
O

cc
u

ra
n

ce

0

50

100

150

200

250

300
Installation Cost=1000 EUR/kWh with BESS Size =700 kWh, [Prediction Data]

Power with BESS
Power without BESS

(l) Predicted power, BESS Size 700 kWh

Figure 3.13: Histograms of the absolute value of all powers from target power with and
without BESS [historical and predicted power] with 1000€/kWh installation cost
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3.5 Conclusions
�is chapter described a Real-Time extension of the methodology proposed in chapter
2. �is approach is signi�cative because during the optimization procedure, the BESS
aging costs is considered as an optimization criteria. �e optimization procedure has
been performed on real historical data spanning for one year, and predicted data are
computed by means of system identi�cation methods. Real-Time GA-MPOPF optimized
the SoC of BESS based on 18 hours of historical data and 6 hours of predicted data with
a moving window of one hour (duration of each time step) and total cots of system is
minimized for the whole year. �e performance of the optimization performed with
predicted data is evaluated considering the actual data (i.e perfect knowledge of the
future), leading to similar results. Furthermore, a sizing of BESS has been performed
during the optimization procedure in order to obtain the most economical capacity of
installed BESS. Under the point of view of pro�t, values in a range between 2.9% and
12.64% are found in the case of predicted data, while the results with actual data improved
total system pro�t in a range between 5.5% and 16.5%. It is also observed that if the size
of the BESS is not chosen correctly, pro�ts are signi�cantly reduced and in some cases
turn into losses. With regards to energy saving, di�erent BESS sizes and installation
costs con�rmed that the proposed method produced very good outcomes with most of
load peaks shaved especially when considering lower BESS installation cost (as expected
in the future BESS market).





Chapter 4

Optimal Positioning of Storage
Systems in Microgrids Based on
Complex Networks Centrality
Measures aiming Voltage Regulation

4.1 Overview of Complex Networks

In the recent years, thanks also to the access to large datasets, there has been an explosion
of network models and analysis for the systems that are at the hearth of our society [144].
At the hearth of such models is the old an beautiful �eld of graph theory. �e �rst paper
of graph theory was wri�en by Leonhard Euler and goes back by 1736 [145]; however,
the �rst textbook on graph theory is only in 1936, by Dnes Kőnig [146].

Formally, a graph is an ordered pair G = (V,E) where V is the set of vertices (also
called nodes) andE ⊆ V ×V is the set of edges (also called arcs or lines). Hence, to each
edge e ∈ E corresponds an ordered couple of vertices (u, v) ∈ V × V . In the following,
it will be considered the case of undirected graphs, i.e. (u, v) ∈ E → (v, u) ∈ E; in such
a case, an edge can be represented as an unordered pair of vertices e = {u, v}. Notice
that in our notation it is impossible to have multiple edges, i.e. it is not considering the
case of multigraphs.

�e vertices belonging to an edge are called the ends or end vertices of the edge. A
vertex may exist in a graph and not belong to an edge. �e order of a graph is its number
of vertices |V |; the size of a graph is its number of edges |E|. �e degree d (i) of a vertex
i is the number of incident edges; self edges (i.e. edges of the form {v, v}) are counted
twice.

A graph is called simple when it contains no multi–edges and no self–loops. A graph
is complete if there exists one and only one edge between every pair of distinct nodes; is
k–regular if all its nodes have the same degree (k) . An undirected graph is connected
if every node can be reached from every other node. Finally, a graph G′ = (V ′, E ′) is a
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subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.
A very convenient representation of a graph in terms of characteristic matrices asso-

ciated with the graph. �e most immediate representation of a graph G is its adjacency
matrix A, i.e. a matrix whose ijth element is 1 if there exists an edge between the ithand
the jth vertices of G (�g.4.2). Notice that the degree of a node i can be de�ned in terms
of the adjacency matrix as d (i) =

∑
j Aij .

A powerful alternative for the matrix representation of the graph G = (V,E) is
given by its |E| × |V | incidence matrix B. To de�ne B, let consider any the edges of
G: let e = (u, v) be the kthedge, v the ith vertex and u the jth vertex with i < j. �en,
Bki = 1, Bkj = −1 and all the other elements of the kth row are zero. Notice that the
incidence matrix B is the network equivalent of the gradient operator ∇ in continuous
spaces: given a vector {si} of scalar quantities associated with the nodes, the di�erence
su − sv of such scalar at the extremes of the kthedge e = (u, v) is

∑
iBkisi = su − sv,

i.e.

Figure 4.1: Graphical representation of an (undirected) graph. In the following, it will be
considered simple graphs, i.e. graphs with no loops or multiple edges.
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su − sv = (Bs)e (4.1)
�e incidence matrixB is very used in the engineering sciences to describe the topol-

ogy of networks; by multiplying B by its transpose, another very important represen-
tation of a graph G is obtained, i.e. its Laplacian L = BTB. Notice that, like in the
continuous case where the Laplacian is de�ned as∇2, the network Laplacian is also de-
�ned as the “square” of the gradient operator B. By explicitly calculating the elements
of BTB, it can be seen that the Lij = −1 if there is an edge between the ithand the jth
vertices, Lij is equal to the degree of the ith node if i = j and is Lij = 0 otherwise.

Figure 4.2: A graph G can be represented by its adjacency matrix A, i.e. a matrix whose
ijth element is 1 if there exists an edge between the ithand the jth vertices of G, 0 oth-
erwise.

Figure 4.3: An alternative representation of a graph G = (V,E) is given by its |E| × |V |
incidence matrix B. Let e = (u, v) be the kthedge, v the ith vertex and u the jth vertex
with i < j. �en, Bki = 1, Bkj = −1 and all the other elements of the kth row are zero.
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Hence, if it is de�ned by D the diagonal matrix whose iithelement is equal to the degree
d(i) of the ith node, it can also be wri�en the Laplacian in terms of the degree matrix
D and the adjacency matrix A as L = D − A. Notice that the Laplacian matrix is o�en
related to the dynamic properties of systems whose topology can be described as a graph
[147].

Figure 4.4: �e ijth element of the Laplacian matrix associated to a graphG is−1 if there
is an edge between the ithand the jth vertices, it is equal to the degree of the ith node if
i = j and is 0 otherwise.

4.1.1 Weighted Graphs
When graphs describe real systems, it is usual to associate quantities to the edges; in
such a case, it is indicated of a weighted graph, i.e. a triplet G = (V,E,W ) where W
is a set of quantities associated to the edges E. For an edge e = (ij), let we = wij the
associated weight. �e matrix representation of a weighted graph G is consequently
modi�ed: in the case of the adjacency matrix, the weighted adjacency matrix becomes

Aij =

{
wij if e = (i, j) ∈ E
0 otherwise

and the degree of a node becomes the sum of the weights d (i) =
∑

j Aij of the incident
edges. Hence, the Laplacian matrix associated to a weighted graph keeps the form

L = D − A (4.2)

where D is now the diagonal matrix whose iithelement is equal to the weighted degree
of the ith node, i.e.

Dij =

{ ∑
k wik if i = j
0 otherwise

.
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In the incidence matrix representation, it is custom NOT to rede�ne the incidence
matrix B, but to describe the system by the couple of matrices (B, Y ) where Y is a
diagonal |E| × |E| matrix whose eethelement is equal to the weight of the eth edge, i.e.

Yef =

{
we if e = f
0 otherwise

In the incidence matrix representation, the weighted Laplacian has the form

L = BTY B (4.3)

4.1.2 Networks
While the word graph is associated to a very speci�c concept in mathematics linked
to the very well assessed branch of graph theory, the word network has been come to
assume a di�erent nuance since the birth of of the so called network science. Network
science takes birth just before the year 2000, �rst with the paper of Wa�s and Strogatz
[148] and then with the paper of Barabasi and Albert [149]. Wa�s and Strogatz, to explain
several apparently di�erent systems, introduced a stochastic model for a class of graphs
– Small World Networks – showing that by adding few random links it is possible to
deeply change the properties of the network. Subsequently, Barabasi and Albert showed
that a very simple mechanism of growth – preferential a�achment – introduced another
class of random graphs called Scale Free Networks that are characterized by a power
law probability distribution of the degrees. Hence, year 2000 was the birth of Complex
Networks, a �eld where Statistical Physics was applied to describe as statistical ensembles
systems described by large datasets that could be mapped in a network.

4.2 Introduction and Problem Statement
Recently, energy production is encountering a change in outlook towards all the more
clean and stable RESs. Photovoltaic and wind generators will share a large portion of
RESs with regards of technical and strategy perspective [110, 150]. Undoubtedly, RESs
provide obvious advantages as far as clean energy, energy accessibility, and easiness in
the organization of energy generation facilities. Considering these favorable circum-
stances, this kind of energy sources introduce some drawbacks with respect to discon-
tinuity and uncertainty of power generation, demonstrating di�culties for the common
power networks which are based on large fossil-fueled power plants. Moreover, such
vulnerability may challenge power quality control, bringing instability in power sys-
tems both regarding frequency and voltage stability [151]. Also, uncertainties are raised
when the penetration of RESs are more in the power systems [152].

To overcome these issues, two methodologies are proposed: the control of power
�ows and loads by active approach, and improvement of the grid resilience by passive
way [153]. According to the �rst approach, power systems are encountering massive
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technical progress prompting to a smart and online management and control of their
working conditions. �e developing of the load control characteristics using smart me-
ters, and the online monitoring of the system according of SCADA systems, and growing
of the usage of the ESS in the power systems is empowering a high quality control for
these systems [154]. ESSs are viewed as essential for the full deployment of RES, due
to their ability to mitigate unbalances of grids created by �uctuating RES. On the other
hand, the planning of the power networks by considering of passive oriented approaches
gets power system planners a�ention, and, especially in recent years, the complex net-
works techniques is considered as a strong framework for catching and depicting com-
plex phenomena in the power networks [155, 152, 156]. In particular, complex systems
demonstrated how the topology of power networks signi�cantly impacts on the sys-
tem resilience to outbreaks and failures [157, 158, 153], to the network synchronization
[159], to its general voltage stability [152], and to its appropriateness with electric mo-
bility energy requirements[160]. �is is in turn showed how the correct planning of
power grid topology can improve the system resilience, reducing in this way the costly
implementation and maintenance of active control systems.

As indicated by the literature, heuristic approaches for �nding the optimal position-
ing of ESSs in the networks with respects to voltage stability, have been proposed by
[161, 162, 32], however, such techniques are limited by the size and topology of the net-
works, leading to results referred to particular case of studies, and there is the require-
ment for a strategy able to adapt to complex and large topologies, and to decrease com-
putational time, and bringing more exactness. In this sense, utilizing a multi-disciplinary
technique connecting complex networks science and electrical engineering gives o� an
impression of being promising.

In this study, centrality measure of power network nodes (i.e. measures referring
to structure of power network) is proposed and presented how centrality of the power
network nodes can be utilized as a model for the optimal location of ESS. Firstly, the
method of sec. 2.2 is used for optimization of the active power of the ESS, and then, it is
improved with a novel step for the reactive power optimization. �e output of the ESS
in terms of optimized reactive power pro�le has been used for enhancing voltage �uc-
tuation, and then, the relation of the centrality measures with optimal placement of the
ESS are investigated. �e results show that there is a statistically signi�cant correlation
between the optimal location of ESS and eigenvector centrality, with a positive impacts
on their voltage regulation abilities, and an overall reduction of the voltage �uctuations
by a value up to 50%, signi�cantly increasing the power quality.

4.3 Methods

�e proposed method is based on the de�nition of the optimal usage of ESS for active
and reactive power control. In particular, ESS is is used for optimizing the system from
both technical and economical viewpoint. To achieve this goal, OPF methods widely
are used for optimization of power systems in presence of generation facilities [163].
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However, the OPF are used mostly for the single period optimization approaches and
those methods are not suitable for the optimization of power system including ESS as
mentioned in subsec. 3.2, the nature of energy availability of ESS is signi�cantly time
dependent and the past and future ESS usage cannot be separated from the real-time
optimization. �erefore, MPOPF methods have been presented for the optimization of
usage of ESS, and in [164] di�erent type of MPOPF is reviewed. �e outcome of the
analysis includes the de�nition of the optimal usage of the generators and ESS of the
investigated systems both from economic and technical point of view. Also, this leads to
the de�nition of the system operative parameters such as power �ows, losses, and node
voltages in the optimal con�guration.

GA-MPOPF is used for calculation of voltage distributions and it is described in sub-
sec. 2.2. In this work, a further step of reactive power optimization is added to GA-
MPOPF method, for observing the e�ect of ESS on voltage stability when located on
di�erent nodes of the network.

Node centrality
In complex networks science, centrality is a cencept related to the importance that a
given node has in the network. �ere are a number of characteristics, not necessarily
correlated, which can be used in determining the importance of a node. �ese include
its ability to communicate directly with other nodes, its closeness to many other nodes,
and its indispensability to act as a communicator between di�erent parts of a network.
Considering each of these characteristics in turn leads to di�erent centrality measures.
For an extensive description of the centrality measures the reader is referred to [165].

�e outcomes of the GA-MPOPF have been used to �nd the optimized reactive power
of BESS, and then those reactive power used for �nding the best location of the BESS
with regards to the voltage regulation. Finally, the correlation of node centrality measure
of the network and best location of BESS has been studied from a complex networks per-
spective. In fact, centrality is an outstanding concept in complex networks hypothesis,
and it depends on the meaning of the measures for the quanti�cation of the signi�cance
of nodes (or edges) into a given graph. Since the signi�cance of the nodes in a graph
is subject to the type of network they belong, di�erent centrality measures have been
proposed before. Among them, the most essential centrality measures are the between-
ness centrality, the eigenvector centrality and the closeness centrality. �ese measures
have been turned out to be important in a considerable assortment of networks, cover-
ing diverse �elds like economics and �nance, physics, sociology [165]. Likewise, they
have been appeared to be imperative measures of signi�cance in di�erent utilizations
of complex systems hypothesis to power systems [152], particularly they are considered
when their electric correspondents characterized on the base of electric distances.

�e proposed optimization process is shown in the �owchart in Fig. 4.6 and it de-
scribes the steps of calculation of the correlation between the voltage distributions V (n)
and centrality metrics of the tested networks. �e �owchart is made by two principle
parts. �e �rst part, depicts how the centrality measures are processed beginning from
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Table 4.1: Values of the Eigenvector centrality for each node of the IEEE 33 bus network
considering the di�erent weights used to model the network

Eigenvector Centrality
Nodes 1/|R +X| 1/R 1/X W/o

2 0.40681 0.39342 0.40679 0.10004
3 0.07698 0.07617 0.07697 0.11439
4 0.01786 0.022601 0.01786 0.08411
5 0.00130 0.010768 0.00134 0.07198
6 0.00025 0.001352 0.00026 0.07541
7 3.39E-05 0.000146 3.39E-05 0.04757
8 2.65E-05 6.90E-05 2.65E-05 0.03001
9 9.15E-06 1.63E-05 9.15E-06 0.01893
10 3.56E-07 9.99E-07 3.56E-07 0.01194
11 2.26E-08 1.66E-07 2.26E-08 0.00753
12 1.93E-09 2.50E-08 1.93E-09 0.00474
13 1.59E-10 2.95E-09 1.59E-10 0.00298
14 4.17E-12 2.05E-10 4.17E-12 0.00187
15 3.54E-13 3.46E-11 3.54E-13 0.00116
16 1.02E-13 1.86E-11 1.02E-13 0.00071
17 3.39E-15 1.14E-12 3.39E-15 0.00039
18 3.20E-16 2.44E-13 3.20E-16 0.00018
19 0.09799 0.095891 0.09798 0.06214
20 0.00478 0.012351 0.00478 0.03768
21 0.00071 0.002432 0.00069 0.02135
22 4.41E-05 0.000237 4.41E-05 0.00963
23 0.00490 0.008265 0.00491 0.06935
24 0.00038 0.000996 0.00038 0.03930
25 0.00016 0.000431 0.00016 0.01773
26 1.73E-05 0.000126 1.73E-05 0.04755
27 5.38E-06 3.91E-05 5.38E-06 0.02997
28 2.59E-07 3.29E-06 2.59E-07 0.01886
29 1.71E-08 3.70E-07 1.71E-08 0.01182
30 2.97E-09 6.46E-08 2.97E-09 0.00734
31 1.40E-10 6.37E-09 1.40E-10 0.00445
32 1.75E-11 1.93E-09 1.75E-11 0.00252
33 1.48E-12 4.96E-10 1.48E-12 0.00113
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the power network topology: the network is transformed into a graph with weight which
the nodes (1, ..., N) serve as the loads and generators of the power grid, as long as the
borders demonstrate the electric power transmission lines between two nodes i and j,
weighted by the following models:

1. Inverse of reactance (susceptance) weight: wij = 1/Xij

2. Inverse of resistence (conductance) weight: wij = 1/Rij

3. Absolute value of the inverse of impedance (admi�ance) weight: wij = 1/||Rij +
jXij||

4. No weight: wij = 1 if i, j are connected, otherwise Wij = 0.

By considering these weights for each node the following centrality measures are
calculated: (1) Closeness, (2) Betweenness, (3) Eigenvector, (4) Pagerank.

�e second part of the �owchart, encased in the red box, calculates the V (n), i.e. the
distribution of all the voltage values recorded in each bus (1, ..., N) between time t0 and
tfin when the ESS is set in bus n considering a sampling time of one hour. �e V (n) is
an indicator of the overall quality of voltage in the studied power grids. In this study, the
best voltage quality of the system has been considered as 1.0 p.u. and 5% the deviation
from 1.0 p.u. positively and negatively V ∈ (0.95, 1.05) is described as an acceptable
quality in means of lower and upper bounds.

�e power �ow optimization for reactive power Q is the starting point of the pro-
cedure. �e optimal capacity of ESS in terms of reactive power Q∗(t) for the voltage
regulation analysis is the outcome of this step and available capacity of ESS in terms of
reactive power Q is calculated from equation 4.4.

Q(t) = ±
√
S2 − P 2(t) (4.4)

Figure 4.5: �e IEEE standard networks used in this work (a) IEEE 33 Bus; (b) IEEE 69
Bus. For both networks the position of loads and generators refers to one of the randomly
generated con�gurations. All power values are given in kW.



98 CHAPTER 4. OPTIMAL POSITIONING OF ESS IN MICROGRIDS

S tart

Optimized A c tive 
P ower of B E S S  P ower F low B as ed 

Optimization of  
R eac tive P ower (Q)

F ind B es t R egulated 
V oltage for T =[t0,tfin],  with 
B E S S  P os ition at node n.

C ompute V (n) 
dis tribution

n=N

Network 
T opology

C ompute the different 
c entralities

C ompute p values
and validate the 

c orrelations

No Y es
s et n=n+1

P lace battery in node
n=1

s et time T=t0

C ompute the 
c orrelations

for eac h c entrality  
meas ure

S tore
V (n) 

Dis tribution

Figure 4.6: Flowchart describing how the computation procedure described in this study
works, including the computation of inter-quantile di�erences ∆q and the centrality
metrics �e improved GA-MPOPF method is enclosed in the red box.

Where S is the ESS nominal power, P (t) is optimal active power of ESS and Q(t) is
available reactive power of ESS for each time step t. �en for each time t = [t0, ..., tend]
and each node n = [1, ...N ] the matrix of the voltage distribution is computed from
equation 4.5.

V =

v1(t0) · · · v1(tend)
... . . . ...

vN(t0) · · · vN(tend)

 (4.5)

�e optimization goal is that to get the optimal reactive power of ESSQ∗with regards
to voltage regulation. �e optimization of value of Q∗ has been performed based on
characteristic of a the hierarchical rules described in equation 4.6. Where Vmin and Vmax
are lower and upper bound of the voltage of the grid, #() is the counting operator and
σ() calculates the experimental standard deviation of the sample. �e min values have
been considered on the full time steps t0 ≤ t ≤ tend.

1) min #(V > Vmax||V < Vmin)

2) min #(max(|1− V |))
3) min(σ(|1− V |)

(4.6)

By using the hierarchical rules of equation 4.6, the optimal reactive power of ESS Q∗p
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is obtained for all times t0, . . . , tend and all node 1, . . . , N . Equation 4.7 describes the
obtained matrix of Q∗p.

Q∗p =

Qp
1(t0) · · · Qp

1(tend)
... . . . ...

Qp
N(t0) · · · Qp

N(tend)

 (4.7)

Consequently, a set of n matrix V p de�ned in equation 4.8 will be obtained for each
location of ESS.

V p =

vp1(t0) · · · vp1(tend)
... . . . ...

vpN(t0) · · · vpN(tend)

 (4.8)

where p = 1, ..., N are the location of the BESS, and vpi (tk) = f(Q∗p(tk)).
For each position of the ESS the correlation is calculated starting from the vector of

the di�erences between the 75-th and 25-th quantiles of the V (n) considered as ∆n
q =(

∆1
q, ...,∆

N
q

)
and the vector of the centrality measures of each node Cn

∗ = (C1
∗ , ..., C

n
∗ )

�gured out for the selected matrix ∗ = C,B,E, P (Closeness, Betweenness, Eigenvec-
tor, Pagerank). Correlations are accredit by calculating the p-value and rejecting all the
correlations with p-values above 10−3.

�e IEEE standard power networks used for this work and they are illustrated in Fig.
4.5, where panel (a) adverts to the 33 bus power network and panel (b) adverts to the
69 bus power grid. Full description of the networks regarding of their parameters and
properties can be found in [166, 167]. �e generation and consumption data is provided
according to subsec. 2.3.

4.4 Results

�e examination has been carried out on two prototypical IEEE 33 and 69 Bus medium
voltage (MV) networks usually used as a reference in power system studies [166, 134,
167, 168] (see sec. 4.3 and Fig. 4.5 for additional information).

Considering an ESS supplying both active and reactive power, and starting from
real generation and consumption data sampled every one hour (for a total length of
720 samples, for a be�er description of the dataset the reader is referred to 2.3), it has
produced for each network 100 random con�gurations shu�ing the loads and generators
of each node of the network. �is produces di�erent temporal and spatial loads and at
the same time keeps constant the total power produced and consumed by the network.
�e dimension of the ESS has been computed following [168], and is kept constant in all
the generated con�gurations. �is progression allows to cover as much as possible the
possibility to discover signi�cant loads or generators in various nodes of the grids. �e
goal has been to ensure the homogeneity of the conceivable power setups both in the
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33 and 69 bus networks. In this way, the e�ects of the factors that are not related to the
topology of the network are excluded.

For every setup it is then calculated the optimized e�ect of the ESS on the voltage
regulation of the system according to a novel Genetic Algorithm-based Multi-period
Optimal Power Flow (GA-MPOPF) described in sec. 2.2, improved with a reactive power
optimization technique introduced in sec.4.3. �e impact of the ESS location has been
performed by pu�ing it in all the networks buses.

�us and so, the optimal active and reactive power of the ESS has been calculated
for each location. A�er this progression, the set of observed voltages is computed for
the networks amid a whole month, per each possible place of the ESS. At that point,
the amplitude of voltage �uctuations amid the tested month have been compared with
di�erent centrality metrics (betweenness , eigenvector , closeness and pagerank) of the
network nodes. Particularly, the correlation properties are examined between the cal-
culated nodes centrality and the interquartile di�erence ∆q of the voltage �uctuation
go�en by placing the ESS in each bus (see sec. 4.3 for further details).

Eigenvector centrality is in this way exponentially correlated with the situation of
the ESS that maximizes the voltage quality, and this demonstrates the impact of the
ESS position on the voltage regulation, demonstrating that situating the ESS in the less
central nodes enhances the voltage quality.

Considering the voltage �uctuations and Figure 4.7 reports the histogram of the volt-
age �uctuation without ESS for the 69 IEEE network, and shows how they are distributed
in the range [0.94, 1.1]. By using the ESS in the optimal position, the voltage �uctuation
are found in the narrower, be�er range [0.97, 1.02], as showed in �gure 4.8. �is last
�gure also shows that even in non optimal positions (node 2), the ESS still positively
a�ects the voltage quality. In fact, voltage �uctuations are found in the interval [0.97,
1.07].

Table 4.1 illustrates the values of the Eigenvector centrality for the nodes of the 33
bus network for all the weighting models considered in this work. As it can be seen,
there is an arrangement of nodes whose centrality is low (e.g. hubs 25 to 33) while the
centrality of some nodes (e.g. nodes 2,3 23, 24) are higher. Taking a gander at the voltage
distribution in Fig. 4.8 the histogram of the voltage conveyance when the ESS is set in
node 2 (higher centrality values) and in node 27 (lower centrality values). Placing the
ESS in bus 2 leads to a non ideal selection, since the voltage distribution distributed over
the interim [0.97,1.07]. �is shows a critically particularly for those qualities going more
than 1.05, i.e. the quality upper bound generally considered by the voltage regulation
authorities. On the other hand, while considering the ESS is located in node 27, it is
found that the location is ideal since the histogram of the voltage distribution contracts
inside the interim [0.95,1.02], a�rming a signi�cant increase of the voltage quality.

Fig. 4.9 demonstrates the correlation analysis results that carried out on both the
IEEE 69 and 33 networks. With regards of the IEEE 33 Bus, panel (a) of Fig. 4.9 shows
the boxpolt of correlation between exponential centrality of betweenness , eigenvector ,
closeness and pagerank for all the weighting models of the network (see sec. 4.3 for the
weight de�nition), and the interquartile di�erence ∆q of the voltage �uctuation go�en
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Figure 4.7: Histogram of Voltage �uctuations in case of the system without ESS
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Figure 4.8: Comparison of histograms of voltage �uctuations in case of optimal (i.e. lower
centrality) and non optimal (i.e. higher centrality) position of the ESS
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Figure 4.9: Values of correlation functions for the IEEE 33 and 69 bus. (a),(c) IEEE 33 Bus
correlations and p-values; (b),(d) IEEE 69 Bus correlations and p-values

by pu�ing the BESS in each bus. While, panel (c) communicates to the p-values whose
calculated for validation of the correlations. Results demonstrate that correlation values
range from 0.7 to 0.8 on account of Eigenvector centrality, while other measures indicate
lower correlations than Eigenvector centrality. With reference to validation from panel
(c) that the only suggestive correlation is with Eigenvector centrality, it can be seen the
other correlations are rejected under the statistical point of view. A comparable out-
come is discovered while examining the outcomes for the IEEE 69 Bus: the Eigenvector
correlations are weaker (∼0.6) and the p-values are under the 10−3 threshold. �e other
centrality measures do not give o� an impression of being correlated with the quality of
the voltage ∆q.

4.5 Conclusions

Finding a statistically strong correlation between the place of ESS and the node central-
ity of a power network recommends a simple and signi�cant criterion for the e�cient
and strong planning of power networks in nearness of �uctuating RES. Since a similar
correlation values were discovered considering various weighting strategies, including
the unweighted case, one may consider about that the optimal location of ESS (or more
generally of active and reactive power compensator) signi�cantly relies upon the topo-
logical characteristics of the network. Another important outcome is that when man-
aging voltage �uctuations in power networks, the eigenvector centrality ought to be
favored among the available centrality measures.

�e �ndings presents a criterion that is independent from the exact position of loads
and generators in the system. Subsequently the outcomes might be valuable amid the



planning procedure of newly or existing power networks, including those for which a
further expansion process as far as users and distributed generation is expected. Be-
sides, the outcomes a�rm the basic specialized practice to put active and reactive power
compensator near or in the end nodes to decrease voltage �uctuations. Future e�orts
will be dedicated to consist the �nding of this work in a bigger structure aiming the
passive optimization and resilience of microgrids considering a scenario of full deployed
distributed energy sources and microgrids.





Conclusions

�is PhD dissertation showed a set of di�erent methods developed for management and
planning of power systems with particular a�ention to microgrids and renewable en-
ergy sources (RESs). Chapter 1 presented the State of the Art of Energy Storage System
(ESS) technologies; their properties are compared discussing advantages and drawbacks
in power system applications. In chapter 2 a novel Multi-Period Optimal Power Flow
technique based on Genetic Algorithm, called GA-MPOPF has been presented for the op-
timization of both management and planning of power systems in presence of Ba�ery
ESS (BESS) and high penetration of RESs.�e presented method introduced a strategy
having the capacity to manage complex choice criteria with respect to the optimal man-
agement of the cycle aging costs and the State of Charge (SoC) pro�le of BESS. Results
showed the importance of the proposed method when dealing with aging costs during
the optimization procedure. In particular, the results demonstrated that including ag-
ing costs fundamentally changed the quantitative results of the economic evaluation.
In fact, the amortization costs due to BESS aging has been computed in the range be-
tween 40 and 60% of the aggregate system costs. Not considering them caused a critical
underestimation of the costs.

Chapter 3 described a Real-Time extension of the methodology proposed in chapter
2. �is approach is signi�cative because during the optimization procedure, the BESS
aging costs is considered as an optimization criteria. �e optimization procedure has
been performed on real historical data spanning for one year, and predicted data are
computed by means of system identi�cation methods. GA-MPOPF optimized the SoC of
BESS based on 18 hours of historical data and 6 hours of predicted data with a moving
window of one hour (duration of each time step) and total cots of system is minimized
for the whole year. �e performance of the optimization performed with predicted data
is evaluated considering the actual data (i.e perfect knowledge of the future), leading to
similar results. Furthermore, a sizing of BESS has been performed during the optimiza-
tion procedure in order to obtain the most economical capacity of installed BESS. Under
the point of view of pro�t, values in a range between 2.9% and 12.64% are found in the
case of predicted data, while the results with actual data improved total system pro�t
in a range between 5.5% and 16.5%. It is also observed that if the size of the BESS is
not chosen correctly, pro�ts are signi�cantly reduced and in some cases turn into losses.
With regards to energy saving, di�erent BESS sizes and installation costs con�rmed that
the proposed method produced very good outcomes with most of load peaks shaved es-



pecially when considering lower BESS installation cost (as expected in the future BESS
market).

Chapter 4 showed a statistical correlation between the location of the ESS used as
reactive power compensator and the network centrality measures of the power system
nodes. �is correlation suggests a simple and criterion basis for planning of power net-
works in nearness of �uctuating RES. �e �nding of the methodology showed that the
optimal position of BESS (or more generally of active and reactive power compensator)
strongly depend on the topological characteristic of the network. In particular, the eigen-
vector centrality should be favored among the available centrality measures. �e results
also showed that the correct position of the active and reactive power compensator does
not depend on the position of generators and loads. �is �ndings can be useful during
the planning procedure of power systems, as calculation of networks nodes centralities
is a simple and faster procedure in comparison with traditional methods based on power
�ow calculations.
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