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Abstract
In this thesis, the multivariable modelling and control of con-
tinuous processes is discussed. Two main lines of research were
followed: the multivariable system identification for processes
subjected to disturbances and the multivariable modelling and
control of a continuous production of complex fluids.

For the first topic, wastewater treatment plants were used
as case study. The goal of the work was to develop a method
to implement multivariable variations of the manipulated inputs
chosen for the identification phase, in order to obtain as much
information as possible on the system in the shortest time. Signals
for manipulated inputs were randomly generated according to
the Generalized Binary Noise approach and inputs combinations
were selected on the basis of the D-Optimal Design criterion. The
Benchmark Simulation Model No. 1 was used as process simula-
tor. Non-linear autoregressive neural networks were implemented
to evaluate transfer functions of linear models. The procedure
allowed to obtain good results as regards the estimation of gain
constants of such models.

For the second topic, the production of non-Newtonian water-
free detergents was considered as case study, with the goal to
develop control strategies for such process. Rheological character-
ization of the product was addressed by means of rheometers and
a viscometer. The Carreau model was chosen for the description
of the rheological behaviour. The process was first modelled re-
lating the parameters of the Carreau model with the mass flow
rate of one ingredient. A single-input single-output feedback
Proportional-Integral controller was designed with the purpose to
control a point on the viscosity curve of the product. The main
outcome was that a viscosity curve was controllable with such
control configuration, but the selection of the right controlled
variable needs particular care. A second modelling attempt was
made exploiting a multi-input multi-output control configuration.
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Abstract

A process simulator based on a non-linear neural network was
built. A double feedback controller was implemented with the
objective to control two separate points of the viscosity curve
using two manipulated variables. A Model Predictive Control was
designed with the purpose to control more than two points on the
viscosity curve using the same manipulated variables. The second
controller returned faster responses in terms of dynamics with
respect to the double feedback controller. Finally, the possibility
to control the detergent production process by using an on-line
ultrasound rheological sensor was explored. A data-driven ap-
proach was applied by means of Partial Least Squares technique
and neural networks, in order to obtain a model capable to relate
ultrasound variables with off-line rheological measurements of
viscosities of the product. Fittings of experimental data by the
neural network were better than those obtained with the Partial
Least Squares model. A "smart operator" action was implemented
as a control system, by means of a second neural network model.
Thus, the control system was based on two data-driven models
based on neural networks. Simulated tests of this control algo-
rithm returned satisfactory results, proving the possibility of a
real-time control of the viscosity curve of a complex fluid during
its continuous production.
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CHAPTER 1
Introduction

In this chapter the motivations behind the work done during the
Ph.D. are explained and an overview of the thesis is proposed.
Then a system identification problem for systems subjected to
disturbances is introduced. Next, the modelling and control of
non-Newtonian fluids production process is presented, followed
by a description of the state of the art control for complex fluids
production. Afterwards, a brief introduction to rheology is given.
Finally, contributions to the literature derived from this work are
mentioned.

1.1 Motivations and overview of the
thesis

The work done during the Ph.D. and this thesis concern about
the multivariable system identification, modelling and control
of chemical processes. Two main lines of research were tackled:
the multivariable system identification for processes subjected to
disturbances and the multivariable modelling and control of a
continuous production process of complex fluids.

With this regard, it is important to underline that system
identification is the basis for the development of any control
systems. Indeed, the control of the studied production process
of complex fluids required the identification of the proper input-
output relations of the system. The process was affected by
non constant disturbances. This motivated to study the issue
of the system identification even by resorting to other dynamic
systems. For such purposes, techniques aimed to properly address
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Chapter 1

system identification were firstly investigated on a complex case
consisting of a wastewater treatment plant. This choice was justify
by the fact that this type of plants, subjected to persistent and
variable disturbances, are well-known and studied in the scientific
literature and because a process simulator was already available.
The objective was to develop identification techniques on this
process and then extend them to other sectors and to the complex
fluids production process.

The first part of the work dealt with the system identification
for systems subjected to disturbances and wastewater treatment
plants were used as case study. In this type of systems a wastewa-
ter is treated through physical, biological and chemical processes
to obtain a clear water. The efficiency of this kind of plants can
definitely improve by using advanced controllers (Hreiz, Latifi, and
Roche [1]). On the other hand, the system identification phase,
that is strictly necessary for the control design, is quite difficult
because of the numerous unmeasurable disturbances entering the
system. Hence the need to study and improve the techniques for
the identification phase is required.

Further details are reported in Paragraph 1.2 and a full treat-
ment about the work is reported in Chapter 2.

The other part of the work was carried out as a part of the
CONSENS (Integrated Control and Sensing for Sustainable Oper-
ation of Flexible Intensified Processes) European project funded
by the European Union through the Horizon 2020 Framework
Programme for Research and Innovation ([2], [3] and [4]). The
project, which took place for three years since 2015 to 2018, had
as goal the improvement of continuous production processes of
high value products. Three case studies were part of the project
and University of Cagliari (UNICA) was involved in the third one
with the task of developing innovative techniques to monitor and
control a continuous production process of a water-free detergent.
Other two partners worked on the same case study: consumer
goods multinational producer Procter & Gamble, who provided
materials and experimental set-ups, and TNO, a Dutch research
institute who worked on an innovative rheological sensor.

During the project, the development of the on-line rheological
sensor by TNO proceeded in parallel with the study and the design
of possible control strategies for this kind of processes performed
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1.2 Multivariable modelling of a process subjected to disturbances

by UNICA. Because of the temporary unavailability of the sensor,
developed controllers where tested through simulations.

Further details are reported in Paragraphs 1.3, 1.3.2 and
1.3.1. Then, Chapter 3 deals with the process description, the
experimental tests and the modelling of the process. Next, in
Chapter 4, a punctual control system applicable to the water-free
detergent production is described. In Chapter 5 a multivariable
control system is designed for controlling the process. In Chapter
6 the on-line rheological sensor was finally implemented for process
control.

1.2 Multivariable modelling of a process
subjected to disturbances

Nowadays process control is a crucial part of all industrial plants in
order to ensure observance of safety and environmental regulatory
and to achieve the required results in terms of specifications and
quality. However, the development of advanced control systems
needs for mathematical models describing the processes involved.
These models can be obtained either through a first principles
approach or through black-box identification. The latter case
requires a huge number of experimental trials during which the
normal functioning of the plant is interrupted. The costs related
to this experimental tests can be significant, because usually the
time needed is high. For example, in recent literature (Darby and
Nikolaou [5]) is reported that for designing a special kind of ad-
vanced controllers like Model Predictive Controls, half the time of
the whole project is needed for plant tests and subsequent identifi-
cation phase. The need of time is caused by the way in which the
system identification is performed: in fact, the classical approach
is based on appropriate variations of each manipulated input one
at the time (and by the following analysis of the responses of
the system). When dealing with large industrial systems, where
several inputs and outputs are present, the identification phase
can last a lot. A multivariable system identification, meaning a
simultaneous variations of manipulated inputs, can help to cut
down the amount of time needed for this phase and, as a result,
reduces costs.
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Chapter 1

When system identification is performed on system subjected
to disturbances, it becomes more difficult. In fact disturbances
are un-manipulated and usually un-measured inputs which enter
the system and influence the behaviour of outputs without the
possibility to separate in an immediate way the contribute on the
outputs given by them from the one given by manipulated inputs.

In the first part of this work, the possibility to carry out
a multivariable system identification in presence of disturbance
has been addressed using as case study wastewater treatment
plants. For this purpose, a simulation environment for wastewater
treatment plants composed of five biological reactors and one
settler was used. Special attention was given to the manipulated
inputs variation program in order to minimize the time needed for
the identification phase. Then, simulations have been executed
and the results were analysed to obtain process models suitable
for controllers.

1.3 Multivariable modelling and control
of a non-Newtonian fluid continu-
ous production process

As introduced in Paragraph 1.1, the CONSENS European project
had the objective to improve continuous production processes
of high quality and high value products through flexibility and
intensification. Considering the whole European industry, the
main expected impacts of intensification in continuous processes
are:

• financial savings;
• reduction of CO2 emissions;
• reduction of usage of non-renewable raw materials;
• improvements on the development of new products.

The advantages of continuous production processes with re-
spect to batch processes are various including a better uniformity
for the final products and an important reduction of consumption
of both energy and raw materials, with a consequent positive
impact on costs both for producers and consumers. However, to
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1.3 Multivariable modelling and control of a non-Newtonian fluid
continuous production process

perform an effective control on a continuous process, fast sensors
and well designed closed loop controllers are strictly necessary.
Furthermore, it is important to have a clear understanding of the
process and to develop models of it.

To deal with the third case study, a good understanding of
rheology and of complex fluids production industry is necessary.

1.3.1 A brief introduction to rheology

In the previous paragraphs the concept of complex fluids was
introduced. For the purpose of better understanding the meaning
of complex fluids, a brief introduction to rheology is necessary.

Rheology studies the deformations of the matter (solids and
fluids) when it is subjected to stress. It plays a key role in many
areas including food industry, biology, construction, personal care
products, hygiene products, sludge treatment, and so on.

When introducing rheology, the basic concepts are represented
by ideal solids and ideal fluids (Macosko [6]).

We talk about ideal solids when the matter reacts to a shear
stress in an elastic way with a reversible deformation. This be-
haviour is mathematically described by Equation 1.1 where τ is
the shear stress, L is the longitudinal length of the deformation, l
is the initial length of the solid and G is the shear modulus which
represents the resistance to deformation. The larger G is, the
smaller the deformation for the same shear stress is. The defor-
mation is reversible: when the stress is removed, the deformation
is cancelled.

τ = G · dL
dl

(1.1)

G depends mainly on the chemical-physical nature of the mate-
rial. For example, for a gum-like material the shear modulus is
approximately equal to 0.01 GPa, while for steel is about 200
GPa.

Ideal fluids react to a shear stress in a viscous way (they
flow) with an irreversible deformation. The behaviour is described
by Equation 1.2. τ is the shear stress. dϕ

dρ
is the velocity gradient

(also called shear rate and indicated with γ̇). ϕ is the velocity
profile. ρ is the perpendicular direction with respect to the flow. µ
is the dynamic viscosity which represents the resistance to flowing.
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The larger µ is, the smaller the flow of the fluid for the same shear
stress is. The deformation is irreversible: the energy transmitted
with the shear stress is dissipated by the flowing and a part is
lost as heat.

τ = µ · dϕ
dρ

= µ · γ̇ (1.2)

Viscosity can depend on several factors:

• chemical-physical nature of the material;
• pressure;
• temperature;
• shear rate;
• time.

When dealing with non-ideal materials, it is common to en-
counter substances with a mixed behaviour both of ideal solids
and ideal fluids. These compounds are called viscoelastic ma-
terials and they show both viscous and elastic characteristics.
A simplified model, the Maxwell model, describes viscoelastic
materials summing the two contributions of the elastic and the
viscous deformations (Equation 1.3). However, the mathematical
description for this kind of materials is usually more complicated
and this goes beyond the scope of this work.

γ̇ =
τ̇

G
+
τ

µ
(1.3)

For all fluids, the shear stress can depend on multiple factors.
On the basis of these dependencies, fluids can be classified in
different ways. Typical classifications take into account the de-
pendence between shear stress and shear rate and between shear
stress and time. These classifications are treated in the following
sub-paragraphs.

Fluids with a shear rate-dependent shear stress

A simplified, though effective, way to characterize the complex
nature of fluids is to describe the dependence of the shear stress
on the shear rate. Fluids can be classified in two main categories
on the basis of this dependency:

• linear dependency: Newtonian fluids;

18



1.3 Multivariable modelling and control of a non-Newtonian fluid
continuous production process

• non-linear dependency: non-Newtonian fluids.

In Newtonian fluids (Figure 1.1) the dependence between
shear stress and the shear rate is linear and the viscosity is
constant as shear rate varies. Typical examples of Newtonian
fluids are water, air, milk, honey, blood plasma ([7]). They are
mathematically described by Equation 1.4, and, as it can be
seen, they show a ideal fluid behaviour. When talking about
complex fluids one refers to fluids with a behaviour different from
Newtonian fluids.

τ = µ · γ̇ (1.4)

𝜇 =
𝜏

ሶ𝛾

ሶ𝛾

𝜏

ሶ𝛾

Figure 1.1: Example of viscosity curve for Newtonian fluids

For non-Newtonian fluids, the dependence between shear
stress and the shear rate is non-linear and the apparent viscosity
varies with the shear rate. They are mathematically described by
Equation 1.5 where µa is the apparent viscosity.

τ = µa(γ̇) · γ̇ (1.5)

On the basis of the dependence of viscosity on shear rate, non-
Newtonian fluids are further classified in (see also Figure 1.2):

• shear thinning fluids: the apparent viscosity decreases
when shear rate increases therefore the resistance to flow is
larger for low values of γ̇. This is due to the microscopical
structure of the material: products who seem homogeneous
are in fact composed of particles with irregular shapes, or
they consist of solutions of long chain molecules polymers,
or they are drops of liquid dispersed in another liquid.
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Chapter 1

• shear thickening fluids: the apparent viscosity increases
when shear rate increases, therefore the resistance to flow is
larger for high values of γ̇. As an example, this behaviour is
typical for high concentrated suspension of a solid material
in a liquid. At rest, intra particles forces are dominating.
When the stress increases, particles bend together.

ሶ𝛾

𝜇

Figure 1.2: Examples of viscosity curves for non-Newtonian fluids: shear
thinning fluids (dashed line) and shear thickening fluids (dash-dot line)

Fluids with a time-dependent shear stress

The dependence of the shear stress on the time classifies fluids in:

• thixotropic fluids;
• rheopectic fluids.

When thixotropic fluids are subjected to a shear stress, their
viscosity decreases with time. For a constant shear rate, it needs
a finite time to achieve the so called equilibrium viscosity (which
is lower than the initial one). This behaviour is also shown in
Figure 1.3.

Rheopectic fluids show a behaviour (Figure 1.4) which is
opposite to thixotropic fluids (and for this they are also called
anti-thixotropic fluids.) Their viscosity increases with time and
the equilibrium viscosity reached with a constant shear rate in a
finite time is larger than the initial one.

20
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𝜇

ሶ𝛾

I

II

Constant

shear rate

𝜇

𝑡

No shear

Figure 1.3: Viscosity curves for thixotropic fluids

II

I

𝜇

𝑡

Constant

shear rate
No shear

𝜇

ሶ𝛾

Figure 1.4: Viscosity curves for rheopectic fluids

Rheometry

With the term rheometry one refers to all the techniques used to
measure rheological properties of a material. Measuring instru-
ments are basically divided in:

• viscometers;
• rheometers.

Viscometers are usually used to measure the viscosity of fluids
at precise conditions of the flow. Famous examples of such in-
struments are falling sphere viscometers and U-tube viscometers.
Rheometers are used for more complete measurements of the
rheology of fluids and they can also explore the viscosity of fluids
when forces applied and flow conditions vary.

Another convenient classification for rheometers divides them
in two groups: drag flows rheometers, in which shear is generated
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between a fixed surface and a moving surface, and pressure-driven
flows, in which shear is generated by a pressure difference (Macosko
[6]). Drag flows rheometers mainly consist of sliding plates and
rotational geometry rheometers. In the first type, the fluid is
positioned between two plates and one of them slides to generate
the shear. In the second type, the fluid is positioned between
two concentric elements and one of them rotates to generate the
shear. Typical geometries for rotational rheometers are concentric
cylinders, cone and plate and parallel plates (Figure 1.5).

fluid

Parallel plates

Cone and plate

Concentric cylinders

(Couette) 

Concentric cylinders

(Searle) 

Figure 1.5: Typical geometries for rotational rheometers

Rotational rheometers basically consist of an electric motor
which generates a torque on the shaft, which in turn is responsible
for the rotation of the mobile element. This kind of rheometers
can provide a controlled stress input (and measure the shear rate,
mainly on the rotor axis) or a controlled shear rate (and measure
the shear stress, on the rotor axis or through the non-rotating
element). The first ones are called controlled stress rheometers
(or CS-rheometers), the second ones controlled rate rheometers
(or CR-rheometers) (Schramm [7]).

Rheometers may be equipped with devices for an accurate
control of temperature, and many accessories are available in
order to test different kinds of materials and investigate different
kinds of properties.
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1.3.2 State of the art process control in com-
plex fluids production

In the previous paragraph, complex fluids have been defined as
fluids which behave differently with respect to Newtonian fluids,
that is with a viscosity which varies with the shear rate.

Industrial continuous production processes of complex fluids
still suffer of problems related to the monitoring and control
quality of products. Rheological properties and parameters, such
as shear rate dependent viscosity, which deeply affect the quality
of products are measured and verified only when the production
is finished. This is typically done with random checks and off-
line measurements. This can lead to production batches out
of specifications, especially when used ingredients are not the
same as in the original formulation. If this happens, products
could be no more suitable for commercialization or their use in
successive phases of the production chain. Because of that, it may
be necessary to throw large quantities of products, with important
economic losses.

The main reason behind the difficulty to apply a rigorous
quality control during production is the absence of sensors able
to provide real-time information about the various rheological
properties of the complex fluids during the production. Thus,
up to our knowledge, a real-time process monitoring is not pos-
sible. Furthermore, it is difficult to perform a proper system
identification, which is necessary to obtain optimal information to
describe relations between inputs (both manipulated inputs and
disturbances) and the rheological behaviour of the process. In
the industry there are just few applications of on-line viscometers.
But such sensors are able to measure only a point value of viscosity
corresponding to a certain shear rate value. Thus, basically there
are no feasible solutions for non-Newtonian fluids. In addition,
traditional measurement methods, like off-line rotational rheome-
ters, cannot be used for automatic control because they are not
capable to provide real time measurements.

In recent years many studies have been accomplished in order
to investigate the problem and try to design and develop sensors
able to measure rheological properties of non-Newtonian fluids in
real-time and non invasive techniques represent a line of research
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very promising.
For example, Kotzé et al. ([8], [9] and [10]) worked on a

methodology based on ultrasonic velocity profiling (UVP) with
which an instantaneous velocity profile of a fluid containing parti-
cles is measured across the ultrasonic beam axis. This technique
combines the ultrasonic velocity profiling with the measurement
of pressure difference. In addition it is non invasive, that is it
does not interfere with the flow. It could be used to monitor
concentrated and opaque suspensions. Results obtained with
concentrated cement pastes showed that UVP is a promising
technique for the characterization of the flow of viscous fluids.

Meacci et al. [11] worked on an industrial system for on-
line analysis of various opaque and non-Newtonian fluids. They
named this system Flow-Viz and it uses ultrasounds to estimate
the velocity profile of the flow moving along a pipe.

Yoshida et al. [12] presented a sensor based on ultrasonic
spinning rheometry (USR) which is expected to provide various
rheological information. The sensor was tested for thixotropic
fluids, shear thinning fluids, and multiphase fluids.

All these promising results about novel sensors for on-line rhe-
ological measurements foster the developing of control strategies
based on the rheological characteristics of products. In fact when
such technologies will become mature and available on the market,
a real-time control of viscosity curve could be implemented in
production plants, in order to control the rheological properties
of the product during production.

1.4 Contributions

The topics discussed in this thesis were also used as contributions
for the following journal papers and conference participations.

Roberto Mei, Massimiliano Grosso, Roberto Baratti and Ste-
fania Tronci. "On-line control of the rheological properties for
a continuous production of a non-Newtonian fluid". Poster pre-
sented at the EuroPACT 2017 - 4 rd European Conference on
Process Analytics and Control Technology, Potsdam, Germany,
May 10-12, 2017.
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Roberto Mei, Massimiliano Grosso, Stefania Tronci, Roberto
Baratti and Francesc Corominas. "Real-Time Control of Viscosity
Curve for a Continuous Production Process of a Non-Newtonian
Fluid". In: Chemical Engineering Transactions, 57 (2017), pp.
1099-1104. DOI: 10.3303/cet1757184.

Roberto Mei, Massimiliano Grosso, Francesc Corominas, Roberto
Baratti and Stefania Tronci. "Multivariable Real-Time Control
of Viscosity Curve for a Continuous Production Process of a
Non-Newtonian Fluid". In: Processes, 6(2, 2018), 12. DOI:
10.3390/pr6020012.

Alessandra Taris, Roberto Mei, Massimiliano Grosso, Stefa-
nia Tronci, Francesc Corominas, Erwin Giling and Paul Van Neer.
"Data driven calibration of in line ultrasound rheological sensors".
AERC 2018 - 12 th Annual European Rheology Conference, Sor-
rento, Italy, April 17-20, 2018.

Roberto Mei, Massimiliano Grosso, Federico Desotgiu and Ste-
fania Tronci. "System identification for a system subjected to
persistent disturbances". In: Computer Aided Chemical Engineer-
ing, 43 (2018), pp. 1183-1188. DOI: 10.1016/B978-0-444-64235-
6.50206-0.
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CHAPTER 2
System identification for a

system subjected to disturbances
In this chapter the problem of system identification in systems
subjected to disturbances is presented. The particular case of
wastewater treatment plants is then introduced, followed by a full
description of the used simulation environment. Eventually, a
strategy for manipulated inputs generation is proposed. The results
of simulations are then presented and a multivariable identification
by processing the obtained data through non-linear neural networks
is performed. Finally, results obtained by system identifications
are presented.

2.1 Case study: wastewater treatment
plants

As introduced in Paragraphs 1.1 and 1.2, system identification is
a crucial aspect for modern industries in order to obtain reliable
empirical input-output models which are suitable to their usage
in the design of advanced control systems. The economic and
time efforts related to this phase are generally significant and
this makes necessary to improve it and optimize it as much as
possible.

In this regard, the work presented in this Chapter aims to
address the possibility to perform a multivariable system identifi-
cation in systems subjected to continuous disturbances, with the
goal to reduce the amount of time needed for the identification
phase. This work demonstrated to give useful insights for the
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development of the proper system identification for the complex
fluids production process. The problem was firstly studied and
analysed on a complex case, well-known and described in the lit-
erature and with an available process simulator. At this purpose,
civil wastewater treatment plants were used as case study since
they represent a perfect case of multi-input multi-output systems
with continuous variable disturbances.

Civil WasteWater Treatment Plants (WWTPs) are plants in
which a wastewater coming from urban sewer is treated through
chemical, biological and physical processes in order to obtain a
clear water. This effluent, which must contain low levels of water
pollutants according to local regulations, can be re-introduced in
the environment to close the water cycle previously interrupted
by human activities (Tchobanoglous et al. [13]).

In the first half of the 20th century wastewater treatment
systems like trickling filters have been gradually replaced by more
efficient activated sludge processes (Vismara and Butelli [14]).

Such WWTPs are generally composed by various units to
accomplish different functions, as listed below:

• screening, to separate coarse refuses from wastewater;
• separation of sands and oils;
• sedimentation, to separate suspended solids from water;
• biological reactions, to remove biological pollutants, mainly
ammonia and nitrate nitrogen from the wastewater; these
reactions take place in activated sludge reactors which can
be of two types:
– anoxic/anaerobic biological reactors;
– aerobic biological reactors;

• secondary sedimentation, to separate biological sludges from
water;

• disinfection, to kill pathogen micro-organisms.

Furthermore, an equalization tank is usually present in the plant
to equalize, as much as possible, the flow rate of the processed
water and avoid peaks of contaminants in the system.

The sludges coming from primary and secondary sedimentation
are then processed through sludge digestion, in order to stabilize
them. The obtained material can be sent to disposal or, if suitable,
can be used as fertilizer or even to produce biogas and then energy.
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To study the best methodology to perform a system identifi-
cation in such plants, it was chosen to proceed using a simulation
environment with the idea to develop techniques for the identifi-
cation applicable, in the future, to a real plant.

2.2 Benchmark Simulation Model no. 1

The Benchmark Simulation Model no. 1 (hereafter referred as
BSM1) is a simulation environment for activated sludge WWTPs
currently developed by International Water Association (IWA)
through IWA Task Group on Benchmarking of Control Strategies
for WWTPs (on Benchmarking of Control Stategies for WWTPs
[15]). This study group continues works done in the past by
Working Groups of COST Action 682 and 624 (Alex et al. [16]).

The Benchmark provides all the tools to simulate a typical
activated sludge WWTP defining the plant layout, simulation
models and influent loads.

The plant is composed of five activated sludge reactors con-
nected in series. The first two are anoxic environments while the
following three are aerobic reactors. This configuration combines
nitrification and denitrification reactions, as often happens in
reality. The reactors are followed by a settler. The wastewater
enters in the first reactor along with two recycle streams, go
through all the reactors and arrives to the settler. Here, treated
water is separated from the sludge and then sent to disinfection.
In Figure 2.1 a schematic representation of the plant layout is
reported.

The benchmark is based mainly on two mathematical models:
the Activated Sludge Model No.1 (Henze et al. [17]), or ASM1,
as regards the biological part of the plant and the Takàcs model
(Takács, Patry, and Nolasco [18]) as regards the settler.

The ASM1 describes the biological activities taking place in
the plant by using eight processes:

• aerobic growth of heterotrophs;
• anoxic growth of heterotrophs;
• aerobic growth of autotrophs;
• decay of heterotrophs;
• decay of autotrophs;
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Figure 2.1: Plant layout of the BSM1

• ammonification of soluble organic nitrogen;
• hydrolysis of entrapped organics;
• hydrolysis of entrapped organic nitrogen.

For further details about the BSM1, one can refer to the
manual of the Benchmark ([15]). The influent data used in this
work are provided by the Benchmark study group (data can be
downloaded from their website [19]) and they were originally
proposed by Vanhooren et al. [20]. They consist of a long-term
time series of 16 variables describing typical dynamic variations
for a wastewater inlet flow covering a total time of 609 days,
with samples every 15 minutes. These influent data represent
the disturbances entering the system and they are treated as
unmeasurable inputs.

For the control of oxygen concentration in the biological reac-
tors, PI controllers have been designed to act on the transfer rate
of oxygen in each aerated reactor. The plant configuration was
modified with respect to the Benchmark to have also the reactor
2 oxygenated. Constant flow rate values for both external recycle
and wastage flow were set, respectively equal to 18446 and 385
m3/d.
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2.3 System identification

2.3.1 Introduction to identification techniques

In order to design process control in industrial systems, models
of the process are needed. When first principles modelling is not
applicable due to the complexity and the uncertainties of the
system, black box modelling is used. In this case, the system
is excited by input variations and the obtained input-output
responses are then analysed (Ogunnaike and Ray [21]).

Basic techniques for system identification consist of varying
singularly each manipulable input according to step functions or
sine wave functions.

2.3.2 Goal of the system identification

The system identification performed here focused only on the
biological part of the plant (activate sludge reactors and their
outputs), whereas the sedimentation phase has not been modelled.

This was an attempt to improve the identification strategy
implemented by Foscoliano et al. [22] and it was partially based
on the work by Darby and Nikolaou [5]. As previously introduced,
in that work ([22]) the authors designed linear model predictive
controllers in order to control the concentration of nitrate and
ammonia nitrogen in activate sludge reactors simulated through
the BSM1. The controlled variables of a particular configuration
of this study were nitrate nitrogen concentration in reactor 2 and
ammonia nitrogen concentration in reactor 5. Oxygen concen-
trations in reactor 2, 3, 4 and 5 and the flow rate of internal
recycle were chosen as manipulated variables. Therefore, the sys-
tem identification carried out before the control designing phase
was performed in order to establish the relationships between
the two controlled variables (considered as outputs) and the five
manipulated variables (considered as inputs). The approach for
the identification was to vary each manipulated variable one at
the time, according to step functions. This procedure took a total
time of more than 100 days.

The main goal of the work described in this part of the thesis
was to address a new approach, which will be demonstrated to
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allow a reduction of the time required for the identification. In
particular the attention focused on multivariable system identifi-
cation, which provides for simultaneously variations of all inputs
to obtain as much information as possible on the system in the
shortest time.

2.3.3 Multivariable system identification

A system like the one in hand is a multi-input and multi-output
(MIMO) system composed of g = 2 outputs and h = 5 inputs.
Mathematically, it can be described by Equation 2.1 ([5]), where
y(t) is the vector containing the outputs values at the time t,
u(t) is the vector containing the manipulated input values at the
time t. K is the matrix of the gains and eN(t) is the vector
of measurements noise (assumed uncorrelated and distributed
according to a Gaussian distribution of mean equal to zero and
variance equal to σ2).

y(t) = K · u(t) + eN (t) (2.1)

Assuming Y and U as two matrices containing, respectively,
all the values of the g outputs and of the h inputs for each
sampling time, if the number of samples for outputs and inputs
is equal to N , the matrices Y and U can be written as reported
in Equation 2.2 and Equation 2.3. In these Equations, yg, with
g which varies from 1 to 2, are the time vectors representing
the evolutions of the two outputs, nitrate nitrogen concentration
in reactor 2 and ammonia nitrogen concentration in reactor 5,
respectively. uh, with h which varies from 1 to 5, are the vectors
representing the time evolutions of the five manipulated inputs.
They are oxygen concentrations in reactor 2, 3, 4 and 5 and the
flow of internal recycle, respectively.

Y =

 y1(1) · · · yg(1)
... . . . ...

y1(N) · · · yg(N)

 (2.2)

U =

 u1(1) · · · uh(1)
... . . . ...

u1(N) · · · uh(N)

 (2.3)
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If outputs and inputs are known, it is possible to estimate
the gains matrix K. For example, applying the least squares
method it is possible to define K̂, estimator of K, as reported in
Equation 2.4, defining also the information matrix X, as reported
in Equation 2.5.

K̂T = (UTU )−1UTY = (X)−1UTY (2.4)

X = UTU (2.5)

It is clear from Equation 2.4 that the estimation of the gains
matrix, which is the purpose of a system identification, and its
accuracy can be improved by a proper selection of the inputs.
This will lead to maximize the information on the system obtained
by experiments. This can be accomplished through Design of
Experiments (Goodwin and Payne [23]). A particular class of
DoE is composed by Optimal Design and for the case in hand, the
D-optimal design was chosen. This is a design method based on
the maximization of the determinant of the information matrix
X ([24]). As indicated by [23], if N is large, it is possible to
approximate the covariance matrix of inputs Cm with the average
information matrix, calculated as reported in Equation 2.6.

Cm =
X

N
(2.6)

Thus, maximizing the determinant of the Cm is equivalent
to maximize the determinant of the information matrix X. If
the determinant of Cm is maximized (in case of dealing with
standardized variables this implies that its value is close to 1),
this means that the determinant of the information matrix is
maximized and that the chosen inputs are uncorrelated. Therefore,
the found combination of inputs is suitable for identification.

Acting on the system with inputs generated to satisfy the
conditions such that the determinant of the information matrix
X is maximized, leads to estimate the gains matrix K in a most
accurate way.
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2.3.4 Generalized Binary Noise

For the choice of the variations program of each manipulated
input, it was chosen to rely on the Generalized Binary Noise
(GBN) approach described by Tulleken [25].

Conventional Binary Noise (BN) is a system identification
technique in which inputs are excited with binary noise signals,
meaning that inputs are subjected to positive and negative am-
plitude variations around their stationary values. The inputs
can assume only two fixed values, an upper level variation and
a lower level variation. Thus, variables vary only according to
step functions. When applying the BN, the probability that a
variable assumes, at each switching time, the value opposite to
the previous one is fixed and equal to 50%. In the GBN approach,
this probability can be between 0 and 1.

It is demonstrated that the GBN approach ensures obtaining
input-output data that allow accurate identification results. This
is mainly due to the fact that, in the BN technique, the frequency
spectrum of the switchings is more or less flat, while in the
GBN approach, the spectrum can be manipulated, giving more
importance to the lower and middle frequencies.

2.3.5 Inputs generation

In order to apply what discussed so far, inputs used for identifica-
tion were generated through the following iterative procedure:

• a combination of inputs was randomly and independently
generated. For each manipulated input, a binary signal was
generated according to the GBN technique:

– inputs can vary only according to step functions;
– inputs can assume only their minimal or maximum

value, as reported in Table 2.1;
– the probability has a value different from 0.5.

• then the determinant of Cm is evaluated:

– if the value of the determinant is almost 1 (in this case a
value equal or larger than 0.95 was considered fair) then
the determinant of the information matrix considered
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is maximized and the corresponding combination of
inputs is suitable for identification;

– if the value of the determinant is far from 1 (lower than
0.95, in this case), the procedure starts over.

Inputs Units Min Max

Oxygen in reactor 2 mgO2/L 0.25 0.75
Oxygen in reactor 3 mgO2/L 1.50 2.50
Oxygen in reactor 4 mgO2/L 1.75 2.25
Oxygen in reactor 5 mgO2/L 1.25 1.75
Internal recycle m3/d 49804.2 60871.8

Table 2.1: Minimal and maximum values for manipulated inputs

Due to uncertainty regarding the characteristic times of the
system, it was important to avoid variations with a too much high
frequency but also to avoid waste of time in steps that last too
long. To explore these aspects, three parameters were set: the
total time, representing the duration of the test (that is, the time
required for the system identification in the actual plant); the step
time, representing the smallest duration of a step; the switching
frequency, which is the probability of a switch at the end of the
step. A total of seven experimental set-ups were designed and
tested, where these parameters were mixed-up, as reported in
Table 2.2.

Set-up number Total time [d] Step time [d]

1 60 1
2 60 2
3 60 0.5
4 30 1
5 30 0.5
6 90 1
7 90 2

Table 2.2: Parameters for the experimental set-ups
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For all the experiments, the switching frequency was assumed
equal to 0.2. This choice was based on the fact that a value
of switching frequency between 0 and 0.5 can excite, with more
emphasis, the lower frequencies. This improves the system identi-
fication (Tulleken [25]). In Figure 2.2, a generated manipulated
input relative to oxygen concentration in reactor 3 is shown as
example. The corresponding frequency spectrum is also reported.
As can be seen, the lower frequency were favoured, with the range
of frequencies between 0 and 15 d-1 resulting as the most excited.

Figure 2.2: Scheme of an input function and its spectrum

2.4 Results

In order to simulate the responses of a real plant when the multi-
variable system identification is performed in reality, the BSM1
was stressed with manipulated inputs generated as explained in
Paragraph 2.3.2 and, simultaneously, with an inlet flow represent-
ing the wastewater entering the system. This flow is described by
16 different time varying parameters, to mimic typical dynamic
variations for a civil wastewater flow.

For its resolution, the system was initialized for a simulated
time of 15 days with a constant inlet flow and constant values
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for the five manipulated inputs. For further 15 days, the variable
inlet flow was used. Finally, for a period of time depending on the
tested set-up, simulations were performed using the variable inlet
flow and variable manipulated inputs. This last period of time is
the parameter of interest because it represents the time needed if
the multivariable identification is performed in a real plant. The
first two periods of time were needed in the simulations just for
the initialization of the solving algorithms.

Among all the set-ups tested, the set-up number 2 was the one
who returned the better outcomes. In fact, set-ups providing for a
total time of 120 days gave not good results whereas set-ups with
a total time of 30 days were considered not enough informative. In
the following, obtained results from set-up number 2 are discussed.

Figure 2.3 reports the disturbances as applied to the simulation
for set-up number 2.

Figure 2.3: Evolution of disturbances

Variables are: inlet flow rate (a), temperature (b), inlet am-

39



Chapter 2

monia concentration (c), parameters describing soluble matter
(d) and other parameters describing particulate (e). As can be
seen variations are significant. The temperature is an example of
variable which varies during the day but also during seasons.

In Figure 2.4 manipulated inputs are reported. Oxygen con-
centrations (SP − SOx, where x indicates the reactor number)
show fluctuations due to the fact that they are controlled variables,
and of course the controllers are affected by the fluctuations en-
tering the system with the disturbances. The flow of the internal
recycle (Qa) looks not affected by noise because in this case it
was simulated as a fixed value without a control system. Actually
it should show fluctuations as well.

Figure 2.4: Evolution of manipulated inputs

In Figure 2.5 the results regarding the two outputs (SNO−R2
for nitrate nitrogen concentration in reactor 2 and SNH − R5
for ammonia nitrogen concentration in reactor 5), which will be
controlled variables, are reported. Both outputs show highly
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non-linear responses.

Figure 2.5: Evolution of the two outputs

2.5 Multivariable identification results

As showed in Figure 2.5, the process shows highly non-linear
responses for both nitrate nitrogen concentration in reactor 2 and
ammonia nitrogen concentration in reactor 5.

Similar results would be obtained if input variations were
performed in a real plant. The procedures discussed from now on
are applicable in the same way with data coming from real plants.

First, because linear controllers will be finally applied on the
process, system identification by means of linear models was
tested but it ended up with negative outcomes. Because of that,
system identification using non-linear models was performed. At
this purpose, non-linear autoregressive with exogenous inputs
(NARX) neural networks were chosen. These neural networks
were composed of two layers of neurons (a hidden layer and an
output layer), with one input signal and one feedback signal
entering the hidden layer (Figure 2.6) with a certain delay. To
perform the identification, 10 NARX neural networks were trained
and validated, one for each time series input-output pair using
the simulated input and the corresponding output and with a
sampling time of 15 minutes (Figure 2.7).

In order to evaluate the goodness of a trained neural network,
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Figure 2.6: NARX neural network structure
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Figure 2.7: Flowsheet of NARX neural networks training

each of them was considered suited to describe the process if it
was able to satisfy three conditions:

• the sign of the estimated gain constants must be coherent
with the physics of the process;

• the magnitude of the responses for positive input variations
(starting from nominal conditions) must be comparable to
the magnitude of the responses for negative input variations,
taking in to account the non-linearity of the process;

• the order of magnitude of the found gain constants must
be consistent with the process in ideal situation of constant
inlet flow conditions.

At this point, transfer functions of linear models were evaluated
using the trained neural networks. In the case under study, the
identification was performed before the implementation of linear
control systems. Due to this fact, linear models describing the
input-output relationship are needed.

To this purpose, each trained and validated neural network
was stressed with positive and negative step variations of the
corresponding input (Figure 2.8). Obtained responses were non-
linear. Despite that, two transfer functions of a first order plus
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dead time (FOPDT) model were evaluated for each input-output
pair. One for the positive input variation, and one for the negative
one. Couples of parameters obtained for each input-output pair
were then used to calculate mean values.

NARX

INPUT OUTPUT

Prediction

1

2

1
2

Figure 2.8: Flowsheet for the evaluation of a transfer function of a linear
model

The evaluation of gain constants returned reliable values, but
this procedure did not allow to obtain realistic values for time
constants. This is probably due to fact that the complexity of
the input signals is not trivial, to the dynamics of the states of
the system and to the fact that all the disturbances entering the
system have different periodicity. Further and more refined studies
are needed to address the evaluation of time constants in a proper
way. As regards the results concerning gain constants, values
obtained with set-up 2 are reported in Table 2.3 and Table 2.4
compared to the one obtain by Foscoliano et al. [22] where single
step identification was used.

SNO-R2

Multivariable Single step
Manipulated identification identification

input Set-up 2 (60 d) 105 d

Oxygen in reactor 2 0.360 0.647
Oxygen in reactor 3 0.273 0.200
Oxygen in reactor 4 0.673 0.608
Oxygen in reactor 5 0.196 0.365
Internal recycle 0.25·10-4 0.28·10-4

Table 2.3: Comparison between gain constants for nitrate nitrogen concen-
tration in reactor 2 obtained trough multivariable identification and single
step identification [output per unit of input]
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SNH-R2

Multivariable Single step
Manipulated identification identification

input Set-up 2 (60 d) 105 d

Oxygen in reactor 2 -1.208 -1.178
Oxygen in reactor 3 -0.142 -0.780
Oxygen in reactor 4 -0.860 -0.776
Oxygen in reactor 5 -1.277 -0.195
Internal recycle 0.19·10-4 0.13·10-4

Table 2.4: Comparison between gain constants for ammonia nitrogen concen-
tration in reactor 5 obtained trough multivariable identification and single
step identification [output per unit of input]

As can be seen, the sign of constant gains can be considered
correct for each multivariable identification. Even the absolute
values were generally correct, but in some cases there was one order
of magnitude of difference with respect to the values obtained
with the identification performed singularly. Most important,
these results were obtained with a system identification phase
that lasted 60 days, almost half the time needed in the cited work.

2.6 Conclusions

Multivariable system identification in a process continuously
stressed by varying disturbances has been studied as a strategy
to speed up the procedure of system identification with respect
to classical approach like single step identification. In literature
there are no cases of such complex system identifications with
non constant disturbances. The Benchmark Simulation Model no.
1 was used as simulator. The optimal design of experiments was
used to program simultaneously variations of manipulated inputs.
Non-linear autoregressive with exogenous inputs neural networks
were implemented to evaluate transfer functions of linear models.
This choice is coherent with the literature, since it is basically a
black-box modelling that can be applied to any non-linearity. The
procedure allowed to obtain good results as regards the estima-
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tion of gain constants of such models. Both sign and magnitude
were generally correct. However, further work is necessary to
obtain more reliable results for time constants, which were not
estimated correctly. The reason could lie in the complexity of the
input signals and in the dynamics of the states of the system. A
possible improvement for the estimation of time constants could
be to analyse the disturbances entering the system in case their
measurements are available in the plant.
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CHAPTER 3
Rheological characterization of

the product
In this chapter water-free detergents and issues related to their
production are presented. Next the production process and the
pilot plant used for experimental tests are described. Then, the
results obtained through off-line experimental tests are presented.
Afterwards, the on-line behaviour of the system is analysed. Fi-
nally some attempts of modelling the system are discussed. A
more detailed discussion is postponed to the following chapters.

3.1 Water-free detergents

Since invention of washing machines and their massive intro-
duction in consumer houses, laundry detergents have assumed
increasing importance and the research by production companies
is constant. Typically, laundry detergents are composed of several
ingredients necessary for the cleaning procedure. Some of these
ingredients are, for example:

• surfactants, for lowering surface tension;
• disinfectants, to deactivate pathogen micro-organisms;
• scents, to ensure a pleasant smell to laundry;
• rheological modifiers, to stabilize rheological properties;
• anti corrosive substances, to protect washing machines mech-

anisms.

In traditional detergents, all these elements are generally dispersed
in a water solution. Water-free detergents instead, are composed
of single concentrated doses in form of pouches which contain

49



Chapter 3

all the compounds needed for the cleaning process but no water,
which is added in the process by the final consumer.

In fact, the presence of water in traditional detergents shows
some draw backs. First of all, when products are transported
from the factory to retailers, a big part of the load is effectively
water. This means that transportation costs are larger. But
there are also consequences on the environment, due to bigger
consumption of fuel that leads also to an increased production
of CO2. Thus, behind the production of water-free products
for household hygiene there are economical and environmental
reasons. In fact, one of the objective of water-free detergents is to
reduce the mass to transport. Furthermore, another problem of
traditional detergents is represented by capability to use the right
dosage. In many cases the quantities used by final consumers are
excessive and this causes wastes and, as a consequence, possible
water pollution mainly by phosphorus compounds. For all these
reasons, the need of single doses (in form of pouches) of water-free
detergents arises. This ensures lower costs of transportation, lower
air pollution, right detergent dosage, lower water pollution and
better cleaned laundry.

But, while detergents diluted in water have a Newtonian rhe-
ological behaviour, water-free detergents may show a complex
rheological behaviour, with an apparent viscosity drastically vary-
ing during the process. This have consequence both during the
production and the consumption phases. During production, is-
sues may arise due to the fact that, during manufacturing, shear
rate conditions may be really high. If the product has a too much
high viscosity, the nozzles injecting the product in the pouches
can get stuck and the production must be suspended, with sig-
nificant time and economic losses. Also, if the viscosity of the
final product is not correct, the cleaning process can fail because
of a product which is not uniformly spread in the laundry. And
this is cause of badly cleaned laundry and therefore unsatisfied
consumers.

For all these reasons is necessary to monitor and control in real
time the continuous production process of this kind of products
to ensure the required achievements in terms of quality of the
product.
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3.2 Process and pilot plant description

To the purpose of study the process of the continuous production
of water-free detergents, experimental tests were carried out in
a pilot plant, located at the facilities of the Brussels Innovation
Center (BIC) in Belgium, by Procter & Gamble, partner of the
CONSENS project.

The pilot plant consisted basically of a series of tank contain-
ing the ingredients for the production and a main pipe. Each
ingredient was pumped from the tank to the main pipe through
secondary lines and with a certain mass flow rate. Each injec-
tion point in the main pipe was separated from the others. The
different ingredients moved along the pipe because of a pressure
differential and they were mixed up by means of static mixers
positioned between inlets.

The ingredients used in this phase to simulate the produc-
tion were four and they were representative of a very simplified
formulation of this type of product. They were:

• a base (hereafter refereed as ingredient A);
• a solvent (ingredient B);
• perfumes (ingredient C );
• a rheological modifier (ingredient D).

The precise nature of the compounds cannot be disclosed for con-
fidentiality reasons. This does not affect the purpose of this work
since what it was studied and developed here was the methodology
to monitor and control processes like the one treated.

Along the pipe different sensors of pressure, flow rate, and
temperature were placed. Their presence and position, as well as
the length of the pipes, depended on the specific design tested,
which varied during the study. Additionally, in some cases, on-
line viscometers were used to measure the on-line viscosity of the
product.

The product was finally collected in a tank where samples are
taken for the off-line rheological measurements performed with a
rheometer.

A simplified scheme of the pilot plant is reported in Figure 3.1.
The design of the plant is repaired by Patent N. US 2013/0225468
A1. For further details see Corominas, Beelen, and Akalay [26].
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Figure 3.1: Simplified scheme of the pilot plant

3.2.1 Experimental campaigns

Various typologies of tests have been conducted in order to anal-
yse the rheological and dynamic behaviour of the product when
different combinations of ingredients were used and also under-
standing the impact of each ingredient on the rheology of the
detergent. Particular attention was given to ingredients B and D
influences on viscosity. In all the trials the system was initialized
with a start up phase which led the process to nominal condition
in terms of mass flow rates. When stationary conditions were
reached, positive and negative step variations were applied to the
mass flow rates of ingredients in order to perform on-line system
identification and to study the effects on rheology.

Off-line rheological analyses were conducted, at the BIC by
Procter & Gamble, using an AR 2000 rotational rheometer by TA
Instruments ([27]), equipped with a 40 mm parallel plate and a
Peltier plate, and an Anton Paar HTR 301 automated rheometer
([28]), equipped with a 40 mm cone and plate measuring system,
a Peltier hood and a Peltier chamber. Measurements were cross-
validated, at University of Cagliari, with an Anton Paar MCR 102
rotational rheometer ([29]), equipped with 25 mm and 50 mm
parallel plates and a Peltier plate.
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In some of these tests, an Endress-Hauser Proline Promass 83I
Coriolis flow-meter was used, positioned in the main pipe, after
the last static mixer. For further details about the viscometer,
one can refer to the technical documents present on the producer
website ([30]). This measurement instrument is capable to provide
measurements of flow, density and temperature but also an on-line
viscosity measurement. The measuring principle for viscosity is
the Coriolis effect, applied by inducing an oscillation into the
measuring pipe (in which the fluid flows) trough an oscillating
mass. This generates a shear force which is used to calculate
viscosity. But the on-line viscosity value returned by the Promass
is a measurement that can be related to a point estimation of the
viscosity. This means that this type of instrument is suitable for
Newtonian fluids, but not for non-Newtonian fluids, because it
is not capable to describe changes of the apparent viscosity with
the shear rate. Despite that, this viscometer can surely provide
effective information regarding the dynamic of the system.

An ultrasound rheological sensor prototype was also used in
some cases. Further details about this sensor are reported in
Chapter 6.

Table 3.1 reports a summary of performed experimental tests
and corresponding used sensors and instruments. A first set of
samples, produced with positive and negative variations of mass
flow rate of ingredients B and D, was analysed through off-line
rheological measurements by means of the AR 2000 rheometer
and cross-validated with the MCR 102 rheometer. The Promass
83I viscometer was also installed in the pilot plant, thus dynamic
information were available. With the same samples, temperature
variations analyses were performed by means of the MCR 102
rheometer. More details regarding these experiments are reported
in the following paragraphs and in Chapters 4 and 5.

A second set of samples, again produced with positive and
negative variations of mass flow rate of ingredients B and D, were
analysed through off-line rheological measurements by means of
the HTR rheometer. In this case, the pilot plant was equipped
with the ultrasound rheological sensor. More details are reported
in Chapter 6.
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Run I × × × × ×
Run II × × × ×

Table 3.1: Summary of experimental campaigns

3.3 Rheological behaviour of
the product

3.3.1 Off-line rheological behaviour

Performed analyses consisted mainly of measurements of viscosity
when shear rate varied. First, the temperature of the Peltier
plate of the rheometer was set, then the sample was placed on it,
and the measurement plate was lowered to the defined gap. A
pre-shear treatment was carried out in order to stress samples
with a constant shear rate value (typically, 0.01 s-1 or 0.1 s-1) for
a time that depended on the specific test. This phase at constant
shear rate was important to remove possible history effects on the
product. In fact, as explained in Paragraph 1.3.1, many materials
have rheological properties which depend on their previous history.
The pre-shear phase helps to cancel these effects. This needs to
be performed for each measurements and it contributes also to
make the various experimental tests comparable. Furthermore,
the pre-shear phase is crucial to mitigate temperature gradient,
especially when measurements are performed at a temperature
which is different from the temperature of the product. When the
pre-shear phase was concluded, a variation of shear rate according
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3.3 Rheological behaviour of the product

to a logarithmic ramp was performed, starting from the pre-shear
value and arriving typically to a shear rate value equal to 1200
s-1.

Many of these experimental trials have been conducted in
this way, testing hundreds of samples taken at many different
conditions. From the results of these test, the off-line rheological
behaviour of the product turned out to be as non-Newtonian shear-
thinning fluids, with a viscosity that decreases when shear rate
increases. In Figure 3.2 an example of such experimental viscosity
curve for a sample of product, obtained in Run I, is reported.
As can be seen, the fluid clearly shows a shear-thinning fluid
behaviour. It appears to be a power law relationship between
viscosity and shear rate for intermediate values of shear rate.
Furthermore, viscosity decreases according to a plateau for high
values of shear rate.

Figure 3.2: Example of an experimental viscosity curve of the studied product

For these reasons, in order to describe the dependence of
viscosity on the shear rate, a Carreau model was chosen (Bird
and Carreau [31] and Carreau, MacDonald, and Bird [32]). This
model describes a shear-thinning fluid which shows constant value
of viscosities (µ) for low and for high values of shear rate (γ̇),
and a variable viscosity according to a power law for intermediate
values of shear rate. The model is reported in Equation 3.1, where
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µ0 is the viscosity for shear rate equal to 0, µ∞ is the viscosity
for high values of shear rate, the reciprocal of λ represents the
shear rate value in correspondence of which the behaviour change
from Newtonian to power law and finally ν = 1 + arctan(α)
where α is the slope of the power law. In Figure 3.3 a schematic
representation of the Carreau model is reported.

µ = µ∞ +
µ0 − µ∞

[1 + (λ · γ̇)2]
ν
2

(3.1)

ሶ𝛾

𝜇

𝜇0

𝜇∞

1

𝜆

𝛼

Figure 3.3: Description of the Carreau model

The chosen model was able to capture the viscosity curves of
the product under investigation. In Figure 3.4 is reported, as ex-
ample, a non-linear regression performed with the Carreau model
over the example curve of Figure 3.2. With such regression, the
four parameters of the Carreau model were estimated. However,
the Newtonian zone at low shear rate was not appreciable in this
curve because the experimental test started at 0.1 s-1. This might
cause an inaccurate estimation of η0 and λ parameters. This made
tests done starting from a shear rate equal to 0.01 s-1 probably
more reliable in terms of good estimation of these two parameters.
However, measurements at very low shear rate could be strongly
affected by measurement errors.
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3.3 Rheological behaviour of the product

Figure 3.4: Example of a non-linear regression with Carreau model overlying
experimental points

3.3.2 On-line rheological behaviour

Figure 3.5 reports the on-line information returned by some sensors
present in a typical trial when positive and negative variations
of mass flow rate of ingredient D were applied. The same is
reported in Figure 3.6 as regards ingredient B. These data were
obtained in Run I. As can be seen by these results, the on-line
viscosity, measured by the Promass 83I viscometer, appears to
be negatively correlated to the amount of ingredient B and to
the amount of ingredient D: when increasing ingredients D or
B mass flow rates, on-line viscosity decreases, and vice versa.
Also, non-linear responses are appreciable. Indeed, amplitudes of
responses for positive variations of mass flow rates are different
from amplitudes of responses for negative variations of mass flow
rates. Regarding dynamics, the effects of ingredient B on viscosity
appears to be more rapid and almost immediate with a negligible
time constant. This is not true for ingredient D, which surely
shows a not negligible time constant, with seemingly first-order like
dynamics. For what concerns delay times, they are mainly related
to the length of pipes, and it is appropriate to consider them as
adjustable parameters according to the used configuration.
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Figure 3.5: On-line data obtained for variations of ingredient D

Figure 3.6: On-line data obtained for variations of ingredient B
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3.3 Rheological behaviour of the product

As previously said, these tests were not informative on the
whole rheology of the product. The results were mostly useful to
obtain details regarding the characteristic times of the process. It
was assumed that characteristic times found in this way were valid
for viscosities in the entire range of shear rate values investigated.
In order to estimate them, system identifications with different
kind of transfer function models were tested. On-line viscosity was
used as output and mass flow rate of ingredient B and ingredient
D are used as inputs. The best results were returned by first
order plus dead time (FOPDT) models. Because of the non-linear
responses of the system, constant gains will not be considered here,
and their analysis and estimations are addressed in next chapters.
As regards the identification of characteristic times, in Figure 3.7
is reported an example of on-line viscosity response following mass
flow variations of ingredient D and the corresponding obtained
FOPDT model.

Figure 3.7: Transfer function fitting measured on-line viscosity

Because of the different actual temperatures of the ingredients
(mainly due to the different specific heats and the different stor-
age temperatures), it is necessary to filter out the effects of the
temperature on the measured viscosity. To do that, even a term
for the dependence between on-line viscosity and temperature
measured in correspondence of the viscometer was added to the
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model as measurable disturbance. As can be seen, the matching of
the model is quite good and similar results have been obtained for
different conditions and for both ingredients. Using this strategy,
time constants and dead times have been calculated to describe
the dependency between the on-line viscosity and ingredient B
and D for different conditions. Numerical details are discussed in
next chapters and they are reported in Paragraphs 4.2 and 5.2
for the corresponding cases.

3.3.3 Effects of ingredients on rheology

The results returned by the Promass 83I viscometer, described
previously in Paragraph 3.3.2, suggest that on-line viscosity is
negatively correlated to the amount of ingredient B and to the
amount of ingredient D, meaning that when the amounts of these
ingredients in the mixture increase, the on-line viscosity value
decreases and vice versa. But these experiments can not be
considered informative on the whole rheology of the product,
since the on-line viscometer is only capable to perform a point
estimation of the viscosity. Thus, data obtained by the Promass
were considered useful only to estimate delay times and time
constants of the system.

Real rheological effects of ingredients on the product rheology
can be investigated analysing outcomes returned by the more
reliable off-line rheological measurements. These measurements
showed that when the amount of ingredient D in the blend in-
creases, viscosities at low shear rates increase while viscosities at
high shear rates decrease. The opposite happens when the flow
rate of ingredient D decreases. The viscosity curve experiences
some sort of rotation with a pivot at intermediate shear rate. The
inversion point occurs in a range of shear rate between, more or
less, 500 s-1 and 650 s-1. This described behaviour of the off-line
viscosity is showed in Figure 3.8 for ingredient D variations. As
can been seen, for the same variation of flow rate of ingredient D,
both in positive and negative directions, the effects on viscosity
are extremely non-linear.
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3.3 Rheological behaviour of the product

Figure 3.8: Impact of ingredient D on viscosity curve

As regards ingredient B, the behaviour is less complex. In
fact, there is a sort of simple dilution effect: when the amount of
ingredient B in the recipe increases, viscosities increase and vice
versa. Even in this case, the response is non-linear.

In Chapter 4, a more detailed modelling of the process is
addressed with the purpose to design single-input single-output
control system, while in Chapter 5 the process is modelled by
means of a neural network to design a multi-input multi-output
controller.
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CHAPTER 4
SISO control system

In this Chapter the development of a one-point control system
for the control of a viscosity curve is addressed. A stationary
model is built from off-line rheological measurements of viscosity
against shear rate. A dynamic part is then added to the model by
exploiting on-line viscosity measurements. A PI control system
is then designed and tuned. Afterwards, analysis of different
configurations of the control system are carried out in order to
study the performances of the controller. Finally, results are
presented.

4.1 Introduction

As introduced in Paragraph 1.3.2, industrial continuous produc-
tion processes of complex fluids can not rely in reliable real-time
control systems of the rheological properties due to the lack in the
current market of instruments capable to provide reliable on-line
rheological information for non-Newtonian fluids. Research in
this field is active, first results are promising and some solutions
are emerging. In this Chapter, a preliminary analysis of control
problems for these kinds of processes is addressed and a con-
trol strategy applicable in the future, when such measurements
instruments will become available, is developed.

As explained in Paragraph 3.1, when dealing with the produc-
tion of complex fluids like water-free detergents, viscosity values
measured at low and high shear rate are both very important
production parameters and they need to be carefully checked and
verified in order to ensure that the production proceeds without
any inconveniences and to obtain a product which respects speci-
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fications. In future implementations of control systems applied to
cases like this one, a specific range of values of viscosity against
shear rate may be indicated as specification, as reported for exam-
ple in Figure 4.1, where the target range is represented by the dark
area bounded by the dotted lines. A controller should be capable
to maintain the entire viscosity curve of the product (solid line
curve in the Figure), measured on-line during production, inside
the desired range of viscosities, acting on manipulated inputs.
The viscosity curve could go out of specifications for different
reasons. For example, if suppliers provide raw materials with
changes in recipes or if changes in process parameters occur. Such
inconveniences could lead to out-of-specifications viscosity curves
that could lie totally or partially (dashed line curves in Figure 4.1)
outside the target range.

Figure 4.1: Target range of viscosity (darker area bounded by dotted lines)
represented together with an example of an in-control viscosity curve (solid
line) and examples of out-of-control viscosity curves (dashed lines)

The main objective of the strategy implemented and discussed
in this Chapter was to maintain an entire viscosity curve close to a
target curve as much as possible as a disturbance moved away the
system from nominal conditions. In the treated case the distur-
bance consisted in a change of temperature of the product during
production. It was assumed that only one manipulated variable
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4.2 Process modelling and system identification

was available. In particular, the mass flow rate of ingredient D
was chosen as manipulated input.

Due to the lack of available real-time rheological sensors, the
control system has been designed simulating the production pro-
cess of the detergent. A model was built from off-line rheological
data and with dynamic information obtained by the Promass 83I
viscometer. This model relates viscosities of the final product to
the quantity of a specific ingredient used during the production.

4.2 Process modelling and system
identification

The water-free detergent is a shear-thinning non-Newtonian fluid
and for its mathematical description, the Carreau model was
chosen (see Chapter 3). In order to build a model capable to
simulate the process, it was decided to relate the viscosity curve of
the final product to the quantity of ingredients. To this purpose,
empirical relationships between the four parameters of the Carreau
model and the amount of ingredient D used during production
were studied.

First, a reference recipe has been defined with the mass flow
rates of ingredients reported in Table 4.1. Then, different batches
of product have been produced in the pilot plant: the reference
recipe and recipes where the amount of ingredient D was increased
by 19.25%, 31.75%, 42.50% and 73.75% and decreased by 21%,
31.75%, 42.5% and 73.75%, for a total of 9 different combinations
of ingredients. Changes in ingredient D during production were
accomplished according to step variations of the flow rate. Time

Ingredient Flow rate [kg/h]

A 83
B 10
C 3
D 4

Table 4.1: Amount of ingredients in the reference recipe
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was given to ensure that the new stationary state was reached.
Samples of the nine different products were taken from the end
of the main pipe of the plant.

4.2.1 Stationary model

Off-line measurements of viscosity against shear rate have been
carried out. Measurements have been accomplished according to
the following program:

• pre-shear phase with a constant shear rate value of 0.05 s-1
for 3 minutes;

• variable shear rate phase with variations of shear rate ac-
cording to a logarithmic ramp from 0.05 s-1 to 1200 s-1 in 3
minutes and with 32 experimental points for decades;

• temperature equal to 20°C.

Figure 4.2 shows results of these measurements: viscosity curves
are reported for each of the nine different batches. The curve
relative to the reference recipe (dashed line) is reported together
with curves representing recipes with an increasing amount of
ingredient D (solid lines) and with curves representing recipes
with a lower amount of ingredient D (dashed-dotted lines).

Figure 4.2: Experimental viscosity curves for batches of product with different
amounts of ingredient D

As can be seen, QD variations have more influence in the left
part of viscosity curves, in correspondence to low values of shear
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4.2 Process modelling and system identification

rate. The influence decreases when the shear rate increases. For
low values of shear rate, viscosity increases when QD increases.
For high values of shear rate (more or less above 400 s-1), the
behaviour is opposite, with the viscosity that decreases when QD

increases.
With the purpose to obtain an estimation of the four pa-

rameters of the Carreau model (µ0, µ∞, λ and n, as illustrated
in Paragraph 3.3.1) for each experimental curve, non-linear re-
gression of the model have been performed. For the parameters
estimation, iterative least squares technique was used. Results
are reported in Table 4.2, where QD is the mass flow rate of
ingredient D.

The parameter µ0 increases with the amount of ingredient D.
Instead, the parameter µ∞ decreases its value as ingredient D
increases. These results correspond with the general characteri-
zation of the fluid. The two parameters λ and ν do not seem to
depend on the amount of ingredient D.

At this point, linear regressions have been performed in order
to better understand if significant dependences between each
of these four parameters and the amount of ingredient D were
present. Table 4.3 reports the R2 statistic and the p− value of
the F-statistic for the four regressions. As regards µ0 and µ∞, R2

QD[kg/h] ∆ µ0 µ∞ λ ν

1.05 -73.75% 7.5019 0.4622 13.1799 0.7591
2.30 -42.50% 26.5819 0.4601 16.038 0.8103
2.73 -31.75% 28.9572 0.4303 19.5065 0.7488
3.16 -21.00% 29.9716 0.4187 14.5125 0.7423
4 - 39.0804 0.413 12.9359 0.7563

4.77 +19.25% 44.9615 0.3603 12.9979 0.7341
5.27 +31.75% 51.7496 0.361 13.5853 0.7327
5.70 +42.50% 61.6792 0.3917 16.2601 0.7593
6.95 +73.75% 71.98 0.3563 14.6509 0.7637

Table 4.2: Parameters of the Carreau model obtained from non-linear regres-
sions of the viscosity curves representing recipes with different amounts of
ingredient D
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values are close to one while p− values are lower than the typical
significance level (0.05). For λ and ν, R2 values are close to zero
and p− values are greater than 0.05.

µ0 µ∞ λ ν

R2 0.9819 0.8353 0.0153 0.0823
p− value 0.0000 0.0006 0.7512 0.4542

Table 4.3: R2 and p − value statistics for the four regression of Carreau
model parameters

Because of these reasons, for µ0 and µ∞ linear models have
been chosen. On the other hand, one can conjecture that λ and
ν do not depend on the ingredient D flow rate and they can be
considered as constant. Figure 4.3 shows the evolution of the four
parameters with the variation of flow rate of ingredient D and the
corresponding models.

Figure 4.3: Relationships between the four parameters of Carreau model and
amount of ingredient D

Equations 4.1-4.4 report the definitive models that were adopted
to relate the dependence of the parameters on QD.
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µ0(QD) = 10.5052 ·QD − 1.6653 (4.1)

µ∞(QD) = −0.0203 ·QD + 0.487 (4.2)

λ = 14.8519 (4.3)

ν = 0.7563 (4.4)

Eventually, the empirical model describing the dependence
between viscosity and ingredient D is reported in Equation 4.5.
Figure 4.4 reports the performance of the built model when
compared to the experimental curves.

µ(γ̇, QD) = µ∞(QD) +
µ0(QD)− µ∞(QD)

[1 + (λ · γ̇)2]
ν
2

(4.5)

Figure 4.4: Performance of the model
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4.2.2 Dynamic model

A dynamic part was then added to the stationary model in Equa-
tion 4.5, exploiting a dynamic characterization of the process
by means of the data collected with the on-line viscometer Pro-
mass 83I. On-line viscosities recorded by the Promass during step
variations of ingredient D were used to perform a system iden-
tification. This was due to the fact that it was the only on-line
reliable measurement available for characteristic time. Behaviours
of on-line viscosities, similar to the one reported in Figure 3.5
sub-plot e, were approximated according to first order plus dead
time models. Results regarding gain constants were discarded,
while results obtained for dead times and time constants were
used to calculate two mean values of these parameters. For the
dead time a value of 16.5 seconds was calculated, while for the
time constant, 16.63 seconds was obtained. These values, ob-
tained with the on-line viscometer, were assumed as a reasonable
estimation of the characteristics times of the entire range of shear
rate of interest.

Thus, the final dynamic model describing the dependence of
the viscosity from the shear rate and the amount of ingredient D
present in the mixture was a FOPDT model composed of a
stationary part with the purpose to calculate constant gains,
and a dynamic part accounting for the characteristic times of the
process. The model is eventually reported in Equation 4.6, where
kp is the gain constant, τp is the time constant and td is the dead
time. Figure 4.5 reports a scheme of the model.

∆µ(γ̇)

∆QD

=
kp(γ̇, QD)

τps+ 1
e−tds (4.6)

𝑜(𝑡)
𝜇( ሶ𝛾, 𝑄𝐷)

𝑧(𝑡) 𝑥(𝑡)
𝜇 ሶ𝛾 =

𝑘𝑝 𝛾, 𝑄𝐷

𝜏𝑝𝑠 + 1
𝑒−𝑡𝑑𝑠

Figure 4.5: Block diagram of the applied model

This model was validated with the following procedure. Start-
ing from nominal condition of production (amounts of ingredients
as the reference recipe), a step variation of 20% of the flow rate of
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ingredient D was given. During this, samples of the product were
collected during the transient phase. With these samples, off-line
measurements of viscosity against shear rate were accomplished.
Results of these experiments were compared to the performance of
the model. The outcome was quite satisfactory. Figure 4.6 shows
the evolution of the model, reported along with experimental
points.

Figure 4.6: Validation of the dynamic model

Finally, the dependence of the viscosity on the temperature
was taken into account and modelled. Off-line measurements of
viscosity were accomplished according to the program previously
illustrated but with different temperatures (from 15°C to 30°C,
one for sample and with an interval of 2.5°C). Then, viscosities at
γ̇=0.1 s-1, 1 s-1, 10 s-1, 100 s-1 and 1000 s-1 were extracted from
these data. Dependences of these viscosities with respect to the
temperature were evaluated. Results are reported in Figure 4.7.
As can been seen, for each value of shear rate explored, viscosity
decreases with the increasing of temperature. Viscosity data at
γ̇=0.1 s-1 are quite scattered. The scattering decreases when
the shear rate increases. To describe the viscosity-temperature
dependence, an exponential functionality was assumed (see Equa-
tion 4.7).

µ = ed1+d2T (4.7)

Values of d1 and d2 are reported in Table 4.4, together with
respective Mean Square Error (MSE) values.

71



Chapter 4

Figure 4.7: Viscosity dependence from temperature

d1 d2 MSE

µ0.1s−1 10.7946 -0.0233 12.6442
µ1s−1 9.0462 -0.0236 0.2488
µ10s−1 4.9336 -0.0151 0.0037
µ100s−1 3.7975 -0.0150 0.27532·10-4

µ1000s−1 -0.4715 -0.0018 0.15988·10-6

Table 4.4: Parameters for the dependence of viscosity on temperature
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4.3 Control design and results

The goal of the control system was to keep the viscosity curve
of the product near a target viscosity curve as much as possible
when disturbances entering the process moved away the curve
from nominal conditions (see Figure 4.1). The biggest challenge
was to do that by using only one manipulated input (in this case,
ingredient D flow rate), because possible controllable outputs were
in principle infinite. The choice of the controlled output became
then crucial. In practice, a shear rate value has to be selected,
where the corresponding viscosity has to be controlled. The
controller should be able to mitigate the effects of perturbations
for viscosities at any shear rate value. If these condition can be
respected, a single input - single output (SISO) controller was
implementable.

Because the analysis of viscosity curves of the product shows
that variations of ingredient D affect mostly the viscosities corre-
sponding to low shear rate values, this part of the viscosity curve
was probably most suitable to be controlled. A PI feedback con-
troller (see Ogunnaike and Ray [21] for more details) was designed
to act on the flow rate of ingredient D, when a step variation of
temperature enters the process as a disturbance and perturbs the
system. Different controllable points on the viscosity curve have
been chosen as controlled outputs and tested. The performances
of the controller in the different implementations have been eval-
uated by the Mean Square Error (MSE, Equation 4.8) and the
load on the manipulated input (Equation 4.9). nd indicates the
total number of points in which the viscosity curve is discretized
while the index i is the i-th of these points. nd is equal to 100 and
i varies from 10-1 to 103. The points are logarithmically spaced.
µ(γ̇i)target and µ(γ̇i) are respectively the i-th viscosity of the target
curve and the i-th viscosity of the actual curve.

MSE =
1

nd

nd∑
i=1

[µ(γ̇i)target − µ(γ̇i)]
2 (4.8)

load =
max(∆QD)

∆T
(4.9)

During simulations the dynamics of sensors and actuators were
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neglected. Results are reported in Table 4.5.

γ̇[s−1] Load MSE

0.1 0.1234 0.25218
0.17 0.1515 0.12882
0.25 0.1763 0.15174
0.5 0.2198 0.48892
1 0.2478 0.90507
5 0.2364 0.71567
10 0.2170 0.4559
100 0.2292 0.6121

Table 4.5: Values of load and MSE for different controlled points

As can be seen, the minimum distance between the controlled
curve and the target curve was obtained when the system was
controlled at 0.17 s-1, with a low load on the manipulated variable.
It should be remarked that this value was the best one for this
case under study but it may be different when treating other
processes and other non-Newtonian fluids.

Figure 4.8 shows a summary of the controlled system with
the control applied at γ̇=0.17 s-1, together with the evolution
of the system when there was no control system acting and the
evolution of the system when the controlled point was set to be at
γ̇=500 s-1. In sub-plot a the disturbance in terms of temperature
variations is reported, with a temperature increase of 5°C occurring
at t=100 s. In response of that (sub-plot b), the control at
γ̇=0.17 s-1 increases the amount of ingredient D to counteract
the effect of temperature (dashed line, IV), while the control at
γ̇=500 s-1 behaves in opposite way, decreasing the quantity of the
manipulated variable (dotted-dashed line, II).

The effects of these actions can be seen in sub-plots c and d
where the viscosities at γ̇=0.17 s-1 and γ̇=500 s-1 are, respectively,
reported. For both cases, controllers act well for their respective
controlled outputs but move away the curve from the target
curve (solid line, I) for the other case, more than in the case of
uncontrolled viscosity (dotted line, III). Notice that the effects on
the overall curve are different: a change in ingredient D amount
has more significant effects for viscosities at low shear rate values.
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(II)

(III)

(IV)

(I)

Figure 4.8: Summary of the controlled system for the different control actions
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Consequently, the control applied at γ̇=500 s-1 does not give
satisfactory results as regards the whole viscosity curve, but rather
it gives opposite results. This is easily seen in sub-plot e where
the controlled curve with the control applied at γ̇=500 s-1 is more
distant from the target curve than in the case that there was no
control (dotted line, III).

All these considerations show clearly that the choice of the
most suitable point to control is a crucial part of designing a SISO
control system in systems like the one treated here. A poor choice
could even bring the system in the opposite direction with respect
to the desired one.

4.4 Conclusions

In this Chapter a possible strategy to face real-time control of
viscosity curves during the continuous production process of non-
Newtonian fluids was presented.

The production process of water-free detergents was used as
case study. Data were collected from a pilot plant where the
production was accomplished by mixing four different ingredients.

A simulation model was built with the purpose to mimic the
evolution of the process when production was running, with the
purpose to study and develop control strategies. This model
relates the viscosity curve of the final product to the amount
of a specific ingredient used as manipulated input. A dynamic
characterization was included in the model. The dependence
between the viscosity and the temperature was also considered.
With this simple model, issues related to the control of the viscosity
curve during production have been studied.

A one-point control of the viscosity curve of a non-Newtonian
fluid was implemented with the goal to maintain the viscosity
curve as close as possible to the target curve. Analysis were
performed in order to understand how the choice of different shear
rates where viscosity is evaluated affected the curve. In particular
the controller was designed to act when a disturbance perturbed
the system. In this case the disturbance was represented by a
step variation of temperature.

The obtained outcomes showed that in similar cases an analysis
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of the best point suited for the control is needed. This is especially
true when having only one manipulated input at disposal. An
understanding of the effects of this variable on the viscosity curve is
necessary. In cases like the one here presented, a poor selection of
the controlled point on the viscosity curve could lead to undesired
results, with the controlled curve moving away from the target
curve.

In the future these control strategies may be easily imple-
mented for similar processes when on-line rheological sensors will
become available and reliable. However, although a one-point con-
trol is possible for this particular case, it should be not applicable
for other kinds of processes.
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CHAPTER 5
MIMO control systems

In this Chapter the possibility to implement a multivariable control
system in continuous production process of water-free detergents
is addressed. First, a process simulator is built by exploiting
non-linear neural networks. Then, different multivariable control
systems are implemented with the purpose to control different se-
lected outputs on the viscosity curve. Results are finally presented.

5.1 Introduction

In Chapter 4, a one-point control of the viscosity curve for a
continuous production process of water-free detergents has been
designed and tested with the purpose to maintain the viscosity
curve of the product as close as possible to the target curve, when
the system was perturbed by disturbances. Results showed that,
at least for the case at hand, it was possible to use only one point
on the viscosity curve as controlled output. It was also found that
a poor choice of this output may be counterproductive., bringing
the system to an opposite direction with respect to the wanted
one. Furthermore, a SISO control system, as the one designed,
was not adequate if specifications are more severe and require
to control, with high precision, viscosities both at low and high
shear rate values. For all these reasons, different approaches are
needed.

At this purpose, a multi-input multi-output (MIMO) control
approach can surely ensure a more efficient way to control such a
process. For example, a double feedback control system may be
applied to control, separately, two different points on the viscosity
curve using two different ingredients mass flow rates. Another
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solution could be the use of a Model Predictive Control (MPC)
(Ogunnaike and Ray [21]), which can handle non-square system.
In this way two manipulated variables can be used to control more
than two points of the viscosity curve. A MPC is also effective
when dealing with systems with high time delay like the one
addressed.

To design and test multivariable control systems, a process
simulator was built exploiting a data-driven based approach. The
simulator was based on off-line rheological measurements of vis-
cosity against shear rate and on the dynamic characterization
cited in Paragraph 3.3.2. Then, two control configurations have
been implemented and analysed: a double feedback control sys-
tem and a MPC control algorithm, both for set-point tracking
and disturbance rejection and with two manipulated variables at
disposal.

5.2 Process simulator

The role of the process simulator was to provide dynamic viscosity
responses, taking as inputs the amounts of ingredients. The
simulator was designed to mimic a process including a rheological
sensor.

A first principle description of the system was not considered
due to the high complexity of the system. Because of that, efforts
focused on data-driven modelling. As in the previously described
implementation of a control system (see Chapter 4), on-line com-
plete information about rheological properties of the product were
not available due to the lack of reliable sensors. Thus, off-line
rheological measurements, obtained with rheometers, were used
to build a static model. Dynamics were later added exploiting
data gathered by the Promass viscometer, as previously done.

To relate off-line viscosities measurements at different values
of shear rate with the amounts of ingredients, a non-linear neu-
ral network was designed and trained. Figure 5.1 reports the
structure of it. The four inputs entering the neural network are
the amounts of ingredients in terms of mass fractions. The four
outputs were chosen on the basis of the work carried out for the
SISO control system and they are the viscosities at 0.1 s-1, 1 s-1,
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10 s-1 and 1100 s-1. After some attempts, it was chosen to rely
on a single hidden layer consisting of six neurons and an output
layer consisting of four neurons. One hidden layer was considered
sufficient. For both the hidden and output layers, a sigmoidal
activation function was used.

Ingredient A

Ingredient B

Ingredient C

Ingredient D

Viscosity at

ሶ𝛾 = 0.1 𝑠−1

INPUT LAYER OUTPUT LAYERHIDDEN LAYER

Viscosity at

ሶ𝛾 = 1 𝑠−1

Viscosity at

ሶ𝛾 = 10 𝑠−1

Viscosity at

ሶ𝛾 = 1100 𝑠−1

Figure 5.1: Structure of the designed and trained neural network

Experimental tests were carried out varying the amounts of
ingredients, exploring 27 different conditions shown in Figure 5.2,
with ranges of ingredients mass fractions as reported in Table 5.1.
A total of 171 viscosity curves (viscosity against shear rate) were
collected. The neural network was trained according to the Lev-
enberg–Marquardt algorithm and using 70% of data for training,
15% for validation and 15% for test.

The performances of the neural network were evaluated by
means of the parameters R2 (Equation 5.1) and Mean Absolute
Deviation (MAD, Equation 5.2). In these equations, µi is the
measured viscosity, µ̄ is the mean viscosity, N is the number of

A B C D

Min 0.730 0.072 0.000 0.012
Max 0.880 0.250 0.039 0.066

Table 5.1: Minimum and maximum values for ingredient mass fractions
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Figure 5.2: The 27 different combinations of ingredients investigated. Ingre-
dient C mass fraction can be calculated by subtraction

experimental points and µ̂i is the estimated viscosity.

R2 = 1−

N∑
i=1

(µi − µ̂i)2

N∑
i=1

(µi − µ̄)2
(5.1)

MAD =
1

N

N∑
i=1

∣∣∣∣µi − µ̂iµi

∣∣∣∣ (5.2)

The trained neural network was capable to predict viscosities
with satisfying results (Table 5.2). R2 coefficients are relatively
high, indicating a good prediction. Only at 1100 s-1 the R2 is
relatively low (0.937), probably due to the fact that viscosity
variations in this range of shear rate are small in terms of absolute
values. As regarding MADs, values are always lower than 10%.

Figure 5.3 reports measured viscosities against predicted vis-
cosities. The circles represent data used for training and validation,
while diamonds are data used for test. Predictions are satisfying.
However, at 1100 s-1 there are some uncertainties in the prediction.
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γ̇(s−1) R2 MAD(%)

0.1 0.97597 8.6
1 0.96732 7.0
10 0.98126 4.0
1100 0.93699 3.7

Table 5.2: Performances of the neural network

Figure 5.3: Measured viscosities against predicted viscosities

Figure 5.4 reports standard residuals against predicted viscosi-
ties. Residuals ri are defined as reported in Equation 5.3, where i
indicates the i -th observation, vi is the measured value and v̂i is
the predicted value. They represent the part of the observation
that the model is unable to describe. They should behave as
random numbers.

ri = vi − v̂i (5.3)

It is common to use the definition of standard residuals rstdi , as
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reported in Equation 5.4 where MSE is the mean square error.

rstdi =
ri√
MSE

(5.4)

As shown in Figure 5.4, calculated standard residuals do not show
a deterministic structure, confirming that the model seems to
correctly describe the observations.

Figure 5.4: Standard residuals for the four predicted viscosities

The built neural network describes stationary relationships
between viscosities and amount of ingredients. A continuous-time
description of the process was obtained by exploiting Hammerstein
models (Daniel-Berhe and Unbehauen [33]), which are models
that describe dynamic processes using non-linear blocks coupled
together with a linear block (Figure 5.5). The trained neural
network was included in the Hammerstein-like model as a non-
linear memory gain (first block) (Tronci et al. [34] and Tronci
and Baratti [35]), then a simple linear dynamic is added (second
block).
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5.2 Process simulator

The obtained model can be described by Equation 5.5, where
x represents the n-dimensional state vector, o represents the m-
dimensional inputs vector, AM is a constant matrix and fNN is
the memoryless model consisting of the neural network.

ẋ(t) = AMx(t) + fNN(o) (5.5)

𝑜(𝑡)
𝑓𝑁𝑁

𝑧(𝑡) 𝑥(𝑡)
ሶ𝑥 𝑡 = 𝐴𝑀𝑥 𝑡 + 𝑧(𝑡)

Figure 5.5: Block diagram of the applied Hammerstein model

As previously accomplished, dynamic data were obtained with
Promass viscometer. Due to the fact that a first order plus
dead time model seems to be sufficient to describe the dynamic
behaviour of the system (Figure 5.6), mean values for the time
delay and the time constant were calculated with data coming
from different plant configuration and assumed valid for the entire
range of explored shear rate. The time delay was set equal to 8 s
and the time constant was set equal to 20 s.

Figure 5.6: First order plus delay model (solid line) compared to experimental
points (circles) of on-line viscosity for a step variation of mass flow ingredient
D

Equation 5.6 reports the model of the process simulator, where
µi are the calculated viscosity at each control loop, µNNi are the
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viscosity calculated with the neural network, µPi are the calculated
viscosity at the previous control loop, td is the time delay of the
process, τp is time constant of the process, i is the i-th viscosity.

µi = (µNNi − µPi ) ·H(t− td) · (1− e
− t−td

τp ) + µPi (5.6)

5.3 Double feedback control

A double feedback control system was designed and tested exploit-
ing two separate feedback controllers implemented with propor-
tional and integral actions (hereafter referred as PI controllers).
The control system will act as a double SISO with two manipulated
variables and two controlled variables.

The configuration was the following: the process simulator
provides some points of the rheological curve corresponding to the
actual situation of the process. Random noise was then added to
this curve in order to simulate the measurement noise. Then two
points of the curve, one at low shear rate (0.1 s-1) and the other
at high shear rate (1100 s-1), are extracted and sent separately to
the PI controllers for comparison with targets.

The separation was possible because a Relative Gain Array
(RGA) analysis (Bristol [36]) showed decoupled variables. The
differences between targets and measured values represent the
errors of the system and the two controllers act separately on
the two manipulated variables. In more detail, one PI controller
receives the error at low shear rate and acts on the mass flow of
the ingredient D while the other PI controller receives the error
at high shear rate and acts on the mass flow of the ingredient
B. This choice was due to the fact that ingredient B affected the
whole rheological curve, with negative gain constants describing
the relationship between ingredient B flow rate and viscosities
at the different values of shear rate investigated. On the other
hand, ingredient D had much more influence on the rheological
curve in the low shear rate region and lower influence on high
shear rate region. Furthermore, positive gain constants described
the relationship between ingredient D flow rate and viscosities in
correspondence of low shear rate values, negative gain constants
described the relationship between ingredient D flow rate and
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viscosities in correspondence of high shear rate values. A schematic
representation of the control loop is reported in Figure 5.7.

Other

ingredients

Ingredient B Ingredient D

Process simulator

PI PI

Noise

+
+

Figure 5.7: Schematic representation of the control loop with two feedback
controllers

Time intervals for control action and sampling, time constants
and time delays for simulator and tuning parameters for the
two PI controllers are reported in Table 5.3. The measurements
noise was applied as random noise of about ±2% of the nominal
viscosities values, in more detail: -0.2 Pa·s<random noise<+0.2
Pa·s for µ0.1s−1 and -0.003 Pa·s<random noise<+0.003 Pa·s for
µ1100s−1 .

Parameter Value

Time interval for control action 10 s
Measurement delay 30 s

Time constants for simulator1 20 s, 20 s
Time delays for simulator1 8 s, 8 s

KC
1 0.006, -2

τI
1 40, 8

1values for each controlled viscosity, respectively µ0.1s−1 , µ1100s−1

Table 5.3: Simulation parameters for the double feedback control system

Despite the two controllers work as two separate SISO and
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the variables are decoupled, it is important to underline the fact
that, in the real process, variations of ingredient D have an effect,
even if minimal, also on high shear-rates. Analogously, variations
on ingredient B affect viscosity at low shear-rates. The process
simulator correctly describes this aspect.

In Figure 5.8 the response of the system to a step variation of
the target is reported, confirming the goodness of the controller.
In this case the goal of the controlling action was a decrease of
the rheological response at any shear rate, in order to obtain a
product with a lower viscosity for both high shear rate and low
shear rate values.

Figure 5.8: Behaviour of the system for set-point tracking

Nevertheless, the tested control system showed clearly two
main issues. The first one is that the responses are slow in terms
of dynamics. In fact, more than ten minutes are necessary to
bring the two controlled variables to the new set-point values.
The second problem is that there is no control at all for viscosities
at intermediate shear rate values. This means that target values
could not be guaranteed for the entire rheological curve.
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For these reasons, a control system capable of faster responses
and able to control a wider range of viscosities is necessary. A
Model Predictive control was then chosen.

5.4 Model Predictive Control

A Model Predictive Control was designed and tested in its Dy-
namic Matrix Control (DMC) formulation. In this type of con-
trollers, models of the process are used to predict the future
responses of the system. New control actions are then calculated
with the goal to satisfy a given objective function (for example
the minimization of the distance between a target value and a
measured value for a variable) (Ogunnaike and Ray [21]).

The configuration of the developed controller was the following:
the process simulator provided the chosen points of the rheolog-
ical curve corresponding to the actual situation of the process.
Random noise was then added to these values in order to simulate
the measurement noise. The MPC algorithm used the differences
with targets and modelling errors to calculate the future control
actions needed to minimize the distances between the targets
and the future predicted evolution of the system. New control
actions were then sent to the simulated process and the control
loop started again. A schematic representation of the control loop
is reported in Figure 5.9.

Other

ingredients

Ingredient B Ingredient D

Process simulator

MPC
Noise

+
+

Figure 5.9: Schematic representation of the control loop for the MPC
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Mass flow rates of ingredient B and D have been chosen as
manipulated inputs. Because small variations that occured at
γ̇ = 1100s−1 may create problems regarding the robustness of
the controller (Cogoni et al. [37]), only the other three viscosities
(at γ̇ = 0.1 s-1, 1 s-1 and 10 s-1) have been chosen as controlled
outputs.

Equation 5.7 reports the objective function O used by the MPC
algorithm to calculate control actions. F represents the dynamic
matrix, W is a weighting matrix whose elements are used as
tuning parameters, K is a diagonal matrix used for penalizations
of control actions, eP (k + 1) represents the difference between
current outputs, predicted as no further control actions were
applied, and wanted outputs, ∆u represents the future variations
of control actions, Hp is the prediction horizon and Hu is the
control horizon.

O = [(eP (k+1)−F∆u)TW (eP (k+1)−F∆u)]+[∆u]TK[∆u] (5.7)

The weighting matrix W is a (3×Hp)×(3×Hp) diagonal ma-
trix, composed of three diagonal matrices, one for each output,
which have dimension HpxHp. The elements on the diagonals of
these matrices are positive weights for each specific output. The
structure is reported in Equation 5.8.

W =

diag(w1) 0 0
0 diag(w2) 0
0 0 diag(w3)

 (5.8)

The matrix S is a (2×Hu)×(3×Hu) diagonal matrix, composed
of two diagonal matrices, one for each input, which have dimension
HuxHu. The elements on the diagonals of these matrices are
penalizations for each specific input. The structure is reported in
Equation 5.9.

S =

[
diag(s1) 0

0 diag(s2)

]
(5.9)

To implement the DMC, a linear predictive model is required.
In order to obtain this model, the simulator was stressed with
step inputs variations and the recorded responses were used to
build the F matrix ([21]). Starting from reference conditions,
step changes of different amplitude were applied to manipulated
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inputs (Foscoliano et al. [22], Mulas et al. [38]), and then the
coefficients for the dynamic matrix were calculated by averaging
the obtained results.

To assess the performance of this control strategy, various tests
were carried out. The main objective of the work is to understand
how some aspects of on-line measurements, like sampling delay and
noise, can affect the control of the viscosity curve of the product,
in view of future implementations of continuous monitoring and
control of rheological properties. With this regard, ultrasound
sensors are the most promising technologies in terms of future
implementations. But information like reliability, repeatability
and measurements noise are not available at this day. It may be
useful for the future to know and understand, for example, what
occurs if the time delay between the moment of the measurements
and the moment in which the measurement is deployed is greater
than the characteristic time of the process.

5.4.1 Set-point tracking

In the development of the MPC, parameters like control and
prediction horizons, simulation time and weights, were found by
tuning after various analysis of dynamic responses. The following
parameters were chosen: the control action was applied every 10
seconds, the prediction horizon Hp was set equal to 16, the control
horizon Hu was set equal to 4, and only the first control action
was applied at each control loop. In Table 5.4 are reported other
simulations parameters for a reference case. The measurements
noise was applied as random noise of about ±2% of the nominal
viscosities values, in more detail: -0.2 Pa·s<random noise<+0.2
Pa·s for µ0.1s−1 , -0.05 Pa·s<random noise<+0.05 Pa·s for µ1s−1

and -0.02 Pa·s<random noise<+0.02 Pa·s for µ10s−1 .
Figure 5.10 shows the dynamic behaviour of the system in

response to step variations of set-points for the three controlled
viscosities. In this case a simulated sampling time of 30 seconds
was chosen. As can be seen, the controller is capable to bring
the controlled viscosities to desired value in short time. To avoid
excessive overshoots, the action on the manipulated inputs were
penalized.
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Parameter Value

Time interval for control action 10 s
Measurement delay 30 s

Time constants for simulator1 20 s, 20 s, 20 s
Time delays for simulator1 8 s, 8 s, 8 s

Weights1 w1=1, w2=12, w3=40
Penalization2 s1=3.5 x104, s2=3.0 x102

1values for each controlled viscosity, respectively µ0.1s−1 , µ1s−1 , µ10s−1

2values for each manipulated input, respectively ingredient D and B

Table 5.4: Simulation parameters for the reference case

Figure 5.10: Behaviour of the system for set-point tracking with a simulated
sampling time of 30 s

In Figure 5.11 and in Figure 5.12 the behaviour of the same
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Figure 5.11: Behaviour of the system for set-point tracking with a simulated
sampling time of 60 s

system in cases of measurements available, respectively, every 60
seconds (Hp=19) and 180 seconds (Hp=31) are reported. As can
be seen, also in these cases the controller was capable to bring
the system to desired values but slower responses with respect to
the previous case were obtained. This was due to the fact that
during the interval of time necessary between two consecutive
samplings, the evolution of the system was unknown and this
forced to tune the controller in a very conservative way. Because
of that, high penalizations were applied to control actions, causing
slow responses.
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Figure 5.12: Behaviour of the system for set-point tracking with a simulated
sampling time of 180 s

5.4.2 Disturbance rejection

To study the performances of the controller when various batches
of ingredients are used for the production, a test with a different
type of ingredient B has been designed. A second neural network
with the same structure of the previous one has been trained
with data collected when a different type of ingredient B was
used in the production. This new model was used to simulate a
disturbance entering the process. In fact, at a certain point of
this simulation (t=500 s), the neural network used for the process
simulator was replaced by the new model. It is important to
underline that only the simulator was affected by this change.
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The dynamic matrix F of the control algorithm did not change.
In this way, a sudden change of a batch of ingredient, which has
different rheological properties, was simulated. The simulation
was carried out with the same parameters reported in Table 5.4.

Figure 5.13 reports the response of the system to this simulated
sudden change of ingredient. As shown by the figure, the controller
was capable to bring back the controlled viscosities (dashed lines)
to target values (solid lines) after the perturbation of the system.
In the figure also the responses in an open loop configuration
are reported (dotted lines). The viscosity at 1100 s-1 was not

Figure 5.13: Behaviour of the system when subjected to a disturbance

controlled, but the difference between target and actual value was
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reducing nevertheless.

5.5 Conclusions

In this Chapter multivariable control strategies were investigated
in order to control multiple points on the viscosity curve of a
non-Newtonian product.

A process simulator, based on a non-linear neural network,
was built in order to provide dynamic responses of viscosities.
The neural network relates viscosities at different values of shear
rate to the amount of ingredients. A dynamic characterization
was included in the model.

A double feedback controller was implemented with the goal
to control, separately, two different point of the viscosity curve
using two manipulated variables. The obtained outcomes showed
that a double feedback control system was capable to control two
points on the viscosity curve of the investigated product. However
responses are relatively slow and with only two manipulated
variables at disposal there is no way to control viscosities at
intermediate values of shear rate.

Then, a model predictive control algorithm was applied with
the purpose to control more than two points on the viscosity
curve using the same manipulated variables. The obtained results
showed that a model predictive control is capable to control
various point of the viscosity curve both for set-point tracking and
disturbance rejection. For the same sampling frequency, the MPC
controller is faster than the two PI controllers. This is due to
the control algorithm used by the MPC, which foreseeing future
responses of the system, it is able to calculate proper control
actions. The investigation regarding the sampling time led to
the conclusion that high sampling time had the consequence to
slow the response of the controller. It was evaluated that, for
this industrial application, a proper sampling time should not be
greater than about 60 seconds.
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Implementation of an on-line

ultrasound rheological sensor for
process control

In this Chapter, a brief summary on the previously designed
and tested control systems is reported. An on-line ultrasound
rheological sensor is then introduced. Data-driven models needed
for the on-line based controller are developed. Finally, a control
system which exploits the raw signals provided by the ultrasound
rheological sensor is designed and tested.

6.1 Summary on designed and tested
control systems

As discussed in Chapter 1, the development of an on-line rheolog-
ical sensor proceeded in parallel with the modelling of the process
and the analysis of control systems applicable to the continuous
production of non-Newtonian fluids.

Because of the temporary unavailability of the rheological
sensors, controllers have been studied and designed throughout
simulations in which the sensor was replaced by a process simu-
lator. Such simulator was designed to give as outputs viscosity
values, taking as inputs ingredients amounts. The developed con-
trol systems had the goal to control different points in viscosity
curves by acting on flow rates of ingredients.

All the discussed control systems revealed to be capable to
control viscosity curves. In more detail, results obtained with the
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double feedback controller implemented with PI actions (presented
in Paragraph 5.3) were satisfactory and the design phase was
simple but system responses obtained with such control system
were relatively slow in terms of dynamics. The Model Predictive
Control, presented in Paragraph 5.4, was able to control the
viscosity curve ensuring faster dynamic responses than the two
feedback controllers. Furthermore, it was capable of control more
than two outputs using only two manipulated inputs. However,
the design phase revealed to be definitely more complex.

Another important outcome obtained by these simulations
was that, for both control systems, high sampling time and high
measurement noise may cause control issues in terms of responses
velocity and stability.

6.2 On-line ultrasound rheological
sensor

6.2.1 Working principle of the sensor

In Paragraph 1.3.2, the motivations behind the need of on-line
rheological sensors for monitoring and control industrial processes
were explained and the most promising technologies were pre-
sented. One of these technologies consists of non-invasive mea-
surements of rheological properties by means of ultrasound signals.
This technique is the one of interest for the following discussion.

In fact, the on-line rheological sensor developed by CONSENS
project partner TNO, is based on tomographic ultrasonic velocity
technology. The measurement system is basically composed of
a number of piezoelectric transducers positioned on the exter-
nal side of a pipe, around the circumference. Inside the pipe,
fluid flows without obstacles with a fully developed laminar flow.
Each piezoelectric transducer is capable to transmit and receive
ultrasound signals. A total of 36 transmission-reception pairs
are possible. Each transducer emits, one at the time, an ultra-
sound signal which is received by the other transducers and then
recorded. This cycle is repeated multiple times for each sample.

From the analysis of the raw ultrasound signals recorded, it
is possible to extract some meaningful variables. The most im-
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portant variables are the upstream-downstream time delays ∆Γij
and the average arrival times Γij. ∆Γij represent the differences
between the time that the signal, emitted by the i-th transducer,
spends to travel to the j-th transducer (Γi→j) and the time that
the signal, emitted by the j-th transducer, spends to travel to
the i-th transducer (Γj→i). Upstream-downstream time delays
are function of the velocity flow field and they are calculated as
reported in Equation 6.1.

∆Γij = Γi→j − Γj→i (6.1)

Γij, calculated as reported in Equation 6.2, are a function of
the medium stiffness.

Γij =
Γi→j + Γj→i

2
(6.2)

From these measurements (36 values of ∆Γij and 36 values
of Γij, two values for each transmission-reception pair) and from
values of pressure drop (∆P ) measured by a differential pressure
sensor provided by Krohne, it is theoretically possible to infer
rheological properties. In fact, the concept behind the discussed
ultrasound sensor is to estimate the velocity profile of the fluid
inside the pipe and then the viscosity curve of the product by
exploiting ∆Γij and ∆P values through the resolution of an
inverse problem. With such sensor, it is not necessary to work
with opaque fluids. Figure 6.1 shows a simplified scheme of the
functioning of the sensor.

1

2

3

56

7
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4

9

j-th transducer

i-th transducer

Γj→i

Γi→j

velocity (radius)

(a) (b)

Figure 6.1: Simplified scheme of the function of the ultrasound sensor: (a)
side view, (b) front view
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More details regarding the geometry and the functioning of
the sensor can not be disclosed for confidentiality reasons.

6.2.2 Test of the prototype

During the last phase of the project, on-line rheological mea-
surements were finally performed in the pilot plant by means of
the prototype of the sensor with the purpose to assess its per-
formances. Unfortunately, the time required for the sampling
and the resolution of the inverse problem, necessary to obtain
the viscosity curve of the tested fluid, was too high to address a
prompt control action.

This motivated a different strategy, based on an alternative
data-driven approach, in order to exploit data coming from the
sensor and use them together with black-box models, built with
off-line rheological measurements, to perform the controlling of
the system. The basic idea was to relate raw variables coming
from the sensor, such as ∆Γij and Γij, to off-line rheological
measurements of viscosity performed on selected samples. This
strategy is presented in the following paragraphs.

6.3 Data driven models

6.3.1 Design of experiments

The data-based approach consisted of relating ultrasound signals
with rheological properties of the product. More in details, the
objective was to find data-driven relationships between off-line
viscosities measured in correspondence of shear rate values equal
to 0.1, 1, 10, 100 and 1000 s-1, and both upstream-downstream
time delays and arrival times. In this way, viscosity measurements
issues of the prototype may be partially reduced because the
resolution of the inverse problem was replaced by the data-driven
modelling. Nevertheless, real on-line data coming from the sensor
were used.

The model was calibrated using data of experimental cam-
paigns already discussed in the previous sections. Different exper-
imental conditions, with changes in ingredients B and D amounts,
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were considered. Figure 6.2 shows a summary of the explored
ingredients combinations.
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Figure 6.2: Summary of the explored ingredients combinations

6.3.2 Partial Least Squares regression

Introduction to Partial Least Squares regression tech-
nique

The Partial Least Squares regression (PLS-R) is a multiple linear
regression technique which allows to find a correlation between
process variables (inputs) and quality variables (outputs). Vari-
ables are projected into a lower dimensional sub-space, thus the
amount of data considered is reduced. It is a very useful technique,
especially for all those cases in which the amount of measurements
available to predict quality variables is large (Wold, Sjöström, and
Eriksson [39], Meng, Pan, and Jiang [40] and Godoy, Vega, and
Marchetti [41]). However, one should remark that , when regressor
variables are irrelevant, large variations on the prediction may
occur and the regression algorithm may not find the correct sub-
space (Helland [42]). The proper selection of regressor variables
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may improve the model performance and find a more suitable
relationship between a reduced number of regressor variables and
quality variables. To this purpose, a popular filtration method
is represented by the Variable Importance in Projections (VIP)
(Wold, Johansson, and Cocchi [43], Andersen and Bro [44], Wang,
He, and Wang [45], Song et al. [46] and Liu [47]).

PLS-R algorithm

Assuming XP (with dimension I × J , where I represents the
number of experimental points and J represents the number
of regressor variables) as the predictions matrix containing, in
this case, ultrasound data and assuming YP (with dimension
I ×M , where M represents the number of quality variables) as
the responses matrix containing rheological data, PLS-R projects
XP and YP into a low-dimensional sub-space, decomposing the
matrices in scores and loadings variables. This sub-space is defined
by a smaller number of latent variables A (Li, Qin, and Zhou
[48]), with A < J . The choice of the number of latent variables A
is a crucial aspect in order to describe data adequately. Assuming
TA as the orthonormal score matrix, PA as the loading matrix
for XP , QA as the loading matrix for YP , EX and EY as the
residuals matrices, XP and YP are decomposed as reported in
Equations 6.3 and 6.4

XP
I×J

= TA
I×A
· P T

A
A×J

+EX
I×J

(6.3)

YP
I×M

= TA
I×A
· QT

A
A×M

+ EY
I×M

(6.4)

The PLS factors are generally found solving a maximization
problem. To this purpose, the SIMPLS algorithm (de Jong [49])
was used in this case.

When the decomposition is completed, the obtained PLS-R
model can predict the k-th quality variable ŷk from the corre-
sponding regressor vector xk as expressed in Equation 6.5. In
this equation, B is the regression coefficients matrix and it is
estimated through Equation 6.6 where R is the pseudo-inverse
matrix of the PA matrix.
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ŷk
1×M

= xk
1×J
· B
J×M

(6.5)

B
J×M

= R
J×A
· QT

A
A×M

(6.6)

Prediction abilities for PLS-R can be evaluated through the
Root Mean Square Error of Calibration (RMSEC) and through the
Root Mean Square Error of Prediction (RMSEP) for the training
set and the prediction set, respectively. RMSEC and RMSEP
are calculated as reported in Equations 6.7 and 6.8, where NT

and NP are the number of samples in the training set and in the
prediction set, respectively, vi is the observed value and v̂i is the
predicted value.

RMSEC =

√∑NT
i=1(vi − v̂i)2

NT

(6.7)

RMSEP =

√∑NP
i=1(vi − v̂i)2

NP

(6.8)

Finally, a Variable Importance in Projection (VIP) analysis
was addressed. This is a useful technique to evaluate which
variables in the XP matrix mostly contribute to quality variables
variations (Geladi and Kowalski [50] and Mehmood et al. [51]).
VIP is applied after that loadings, weights and scores of the
PLS-R have been determined. The VIP for the j-th variable is
defined, in the form developed by Wold, Johansson, and Cocchi
[43], in Equation 6.9. SSYa is the sum of squares explained by
the a-th component of the PLS and it is calculated as reported
in Equation 6.10, where qA and tA are vectors of QA and TA

matrices. The term (
wa,j
||wa||)

2 measures the importance of the j-th
variable, where wa is the loading vector for the a-th component
and wa,j is the loading for the a-th component relative to the j-th
variable. Thus, the VIP analysis determines the contribution of
each variable according to the variance explained by each PLS
component. The j-th variable is considered significant if its VIP
value exceeds a threshold. The selection criterion generally used
is V IPj > 1 (Chong and Jun [52] and Gosselin, Rodrigue, and
Duchesne [53]).
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V IPj =

√√√√J

∑A
a=1(

wa,j
||wa||)

2SSYa∑A
a=1 SSYa

(6.9)

SSYa = q2At
T
AtA (6.10)

To perform the PLS regressions and analyses, the libPLS
library was used (Li, Xu, and Liang [54]).

Model calibration

A model calibration was addressed exploiting PLS-R and cor-
relating output variables, which were viscosities for shear rate
values equal to 0.1, 1, 10, 100 and 1000 s-1, with upstream and
downstream time delays, arrival times, temperature and pressure
drop. Assuming N as the number of experimental points, the
final matrix of the outputs XP had dimension N × 74 (36 values
of upstream and downstream time delays, 36 values of arrival
times, 1 value for temperature and 1 value for pressure drop) and
the quality matrix YP had dimension N × 5 (one value for each
viscosity).

Each column of the quality matrix YP was modelled sepa-
rately. Before implementing the algorithm, both matrices were
pre-processed to have zero mean and unity variance. The loga-
rithm of YP was also considered. The number of latent variables
A was chosen, for each column of the YP matrix, in order to mini-
mize the Mean Square Error of Cross Validation (MSECV). Then,
a leave-one-out procedure was implemented with the purpose to
assess the capabilities of the PLS-R model to predict the viscosity
of the observations left out.

The goodness of the fit was evaluated by means of the correla-
tion coefficient R2

pred,m, calculated as reported in Equation 6.11.
In this equation, PRESSi,m is the Predicted Residual Error Sum
of Squares, while SStot,m is the total Sum of Squares. They are
determined as reported in Equations 6.12 and 6.13, where µi,m
is the viscosity of the i-th sample measured in correspondence
of the m-th shear rate, with m=1, 2, 3, 4 and 5 that correspond
to 0.1, 1, 10, 100 and 1000 s-1, µ̂i,m is the predicted value of the
same variable and µ̄m is the mean value of viscosity for the m-th
shear rate.
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R2
pred,m = 1−

∑N
i=1 PRESSi,m
SStot,m

(6.11)

PRESSi,m = (µi,m − µ̂i,m)2 (6.12)

SStot,m =
N∑
i=1

(µi,m − µ̄m)2 (6.13)

Then, VIP analysis was performed in order to investigate and
select the most significant regressor variables. Results are shown
from Figure 6.3 to Figure 6.7. In these Figures, darker bars
indicate VIP values larger than 1. As can be seen, VIP evaluation
for upstream-downstream time delays is generally lower than 1,
meaning that these variables have less influence than arrival times
(for which most of the VIP values are larger than 1), in particular
for viscosities at high shear rate values. This result means that
even average arrival times, and not only upstream and downstream
time delays, are informative about rheological properties of the
fluid. The pressure drop was significant for all the shear rates.
The VIP evaluation for temperature was never greater than 1.
Thus, Γij and pressure drop can be consider important variables.

Figure 6.3: VIP analysis for viscosity at 0.1 s-1
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Figure 6.4: VIP analysis for viscosity at 1 s-1

Figure 6.5: VIP analysis for viscosity at 10 s-1
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Figure 6.6: VIP analysis for viscosity at 100 s-1

Figure 6.7: VIP analysis for viscosity at 1000 s-1

The model was then updated by considering only the pressure
drop and only ultrasound variables corresponding to transmission-
receptions pairs with VIP values greater than 1. The number of
variables in the XP matrix was then reduced from 74 to 31 for
viscosities at a shear rate values equal to 0.1 s-1 and 10 s-1, to
25 for viscosities at 1 s-1 and 1000 s-1 and to 29 for viscosities at
100 s-1. The matrices were, again, pre-processed and the number
of latent variables A was chosen according to the MSECV criterion.
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The leave-one-out procedure was implemented. Predicted values
versus experimental viscosities at 0.1, 1, 10, 100 and 1000 s-1 are
reported in Figure 6.8.

Viscosity at 0.1 s-1

R2
pred=75.1%

Viscosity at 100 s-1

R2
pred=95.3%

Viscosity at 1000 s-1
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pred=94.7%

Viscosity at 10 s-1

R2
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Figure 6.8: PLS-R: predicted viscosities vs experimental viscosities

As shown in Figure 6.8, there was a good agreement between
predicted values and experimental data. Table 6.1 reports a
summary of the performances obtained before and after the VIP
procedure in terms of r, together with the number of latent
variables A used.

Shear rate A R2
pred A R2

pred

s-1 (no VIP) (no VIP) (VIP) (VIP)

0.1 8 70.7 5 75.1
1 8 62.1 4 68.0
10 8 84.1 5 84.8
100 4 89.4 6 95.3
1000 4 87.8 5 94.7

Table 6.1: PLS-R: summary of the performances of the model

Despite the fact that PLS-R gave good results in terms of
prediction of experimental data, it was chosen to improve the
modelling by means of non-linear models. To this purpose, non-
linear neural network models were chosen.
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6.3.3 Neural network modelling

A non-linear neural network was designed with the purpose to
relate the same input-output variables chosen for the PLS regres-
sion. Output variables consisted of viscosities for shear rate values
equal to 0.1, 1, 10, 100 and 1000 s-1. Input variables consisted
of average arrival times (provided by the ultrasound sensor) and
pressure drop values.

The vector containing arrival times values calculated by the
sensor was a 36-dimensional vector. It was decided to rely on
a neural network with 3 layers. Assuming n1, n2 and n3 as the
number of neurons in the input layer, hidden layer and output
layer respectively, the total number of parameters of the model is
equal to (n1 + 1) · n2 + (n2 + 1) · n3.

To avoid the use of correlated inputs variables, Principal
Component Analysis (PCA) was used to reduce the vector dimen-
sionality with a fixed 95% threshold value for describing the input
variance.

Different models were investigated to describe the rheological
behaviour, differing in terms of number of principal components
and number of hidden neurons and output neurons for the neural
network. The model finally selected exploited 7 latent variables
of the arrival times and pressure difference measurements. The
neural network is therefore constituted of 8 inputs, 3 hidden
neurons and 5 output neurons corresponding to the 5 viscosities
values. A scheme of the designed neural network is reported in
Figure 6.9.

𝜇1000 𝑠−1

INPUT

LAYER

OUTPUT

LAYER

HIDDEN

LAYER

PCA
Ultrasound

sensor

dP sensor

Scores

Raw

signals

𝜇100 𝑠−1

𝜇10 𝑠−1

𝜇1 𝑠−1

𝜇0.1 𝑠−1

Figure 6.9: Scheme of the designed neural network
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The model performances are reported in Table 6.2. It was
found that the neural network model fitted experimental results
better than the PLS model (see again Table 6.1 for a comparison).

µ0.1s−1 µ1s−1 µ10s−1 µ100s−1 µ1000s−1

R2 (training set) 0.71 0.73 0.83 0.96 0.94

Prediction
confidence interval 0.268 0.081 0.056 0.023 0.009

(training set)

R2 (test set) 0.83 0.88 0.86 0.95 0.86

RMSE (test set) 3.8 0.79 0.22 0.096 0.11

Table 6.2: Neural network: summary of the performances of the model

6.4 Control system

Despite accuracy issues of the sensor in measuring viscosity curves,
the alternative modelling strategy presented was capable to ex-
ploit on-line data provided by the sensor. Nevertheless, due to
the large value of the sampling time of the ultrasound sensor,
transient behaviours were most likely missed by the sensor. It
is highly likely that the information on the system are sampled
only when new steady state conditions are reached. In these con-
ditions, traditional control systems like feedback controllers and
Model Predictive Controllers are not capable to control the sys-
tem properly. This is due to the fact that, as showed in previous
chapters, in these situations controllers actions need to be heavily
penalized to guarantee the stability of the system. Because of
this, controllers may need even a couple of hours to bring the
system to set-points.

In order to address this issue, a control algorithm which mimics
a "smart operator" action was implemented. In fact, experienced
operator interventions are often required in plants to compensate
the differences between targets values and measured variables
when operating in open-loop mode. In this case this action is
implemented by means of a neural network model. This model is
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capable to provide ingredient B and ingredient D mass flow rates
when a viscosity profile is given.

This neural network model is used together with the neural
network described in Paragraph 6.3.3. Therefore, two data-driven
models based on neural networks are implemented: one model
relates the ultrasound signals to the off-line rheological mea-
surements, providing on-line information on the rheology of the
product, and the other model relates the viscosity curve at a given
shear rate to the percentage of ingredient B and D flow rates.
The control loop functioning is the following. A target viscosity
value is assumed as set-point. Mass flow rate of ingredients B
and D are calculated by the novel neural network model. Then,
the viscosity is measured by exploiting ultrasound signals and
the first neural network model. If the error between the target
and the measured viscosities is greater than 0, a new set-point
viscosity value is computed and the loop starts again. The control
loop is also reported in Figure 6.10.

The control algorithm was tested on synthetic data, assuming
target viscosities equal to 7.29, 2.59, 0.943, 0.537 and 0.431 Pa·s
in correspondence of shear rate values equal to 0.1, 1, 10, 100 and
1000 s-1 respectively. A perturbation from the nominal conditions
has been simulated leading to a measured viscosity respectively
equal to 2.771, 1.358, 0.741, 0.504 and 0.427 Pa·s. The controller
constants KC were set equal to 0, 0.1, 0.1, 0 and 0.1 respectively.
They were not consider for shear rate values of 0.1 s-1 and 100 s-1
because the corresponding neural network estimations demon-
strated to be quite noisy. The first two iterations of the control
algorithm are reported in Table 6.3.

Target Init. condition 1st iteration 2nd iteration

% B 9 10.2764 10.27
% D 2.5 2.7227 2.7118

µ0.1s−1 7.29 2.7708 6.6341 6.5607
µ1s−1 2.59 1.3578 2.5332 2.5133
µ10s−1 0.943 0.7407 0.991 0.9874
µ100s−1 0.537 0.5041 0.5721 0.5712
µ1000s−1 0.431 0.4269 0.4572 0.4568

Table 6.3: Results of the control algorithm
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Assign 𝜇𝑡𝑎𝑟𝑔𝑒𝑡
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Figure 6.10: Scheme of the implemented control loop
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In Figure 6.11, viscosity values for initial conditions, target
values and the two iterations are reported against shear rate. It
is clear that, although the target values (triangles) are quite far
from the initial conditions (diamonds), after few iterations the
system almost reached target conditions (circles).

Figure 6.11: Results of the control algorithm

6.5 Conclusions

In this Chapter, the possibilities to control the detergent produc-
tion process by using an on-line rheological sensor were explored.
The sensor was developed by TNO and tested in its prototype
stage. It consists of piezoelectric transducers placed around the
external circumference of a pipe. These transducers emitted and
received ultrasound signals which travelled through the flowing
product. Raw ultrasound signals were exploited to calculate vari-
ables like upstream-downstream delays and arrival times. The
concept behind the design of the ultrasound sensor was to resolve
an inverse problem exploiting these variables and measurements
of pressure drop. The goal was to obtain a velocity profile of the
fluid flowing inside the pipe and then a viscosity curve of the
product in real time. However, measurements performed by the
prototype revealed to be not enough accurate and the sensor had
a sampling time larger than three minutes. For these reasons, an
alternative data-based approach was addressed with the purpose
to control the process properly.

First, a data-driven modelling of the process by means of
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Partial Least Squares technique was addressed in order to obtain
a model capable to relate upstream-downstream delays and ar-
rival times with off-line rheological measurements of viscosities
of the product. The PLS modelling demonstrated that the idea
to infer the rheology of the product by means of ultrasound data
was valid. Furthermore, the PLS algorithm, coupled with the
VIP technique, allowed the detection of the sensor combinations
which appeared to be more informative for the rheological char-
acterization. Nevertheless, it was chosen to resort to non-linear
modelling to improve the performance of the black-box modelling.
To this purpose, neural networks modelling was chosen. The
trained neural network took as inputs the data coming from the
ultrasound sensor and the pressure drop. It was found that the
neural network model fitted experimental results better than the
PLS model.

Finally, a control system was designed. Because of the large
sampling time of the sensor, a "smart operator" action was imple-
mented by means of a second neural network model. This neural
network provided for ingredient B and D mass flow rates when a
viscosity profile was given. This action had the goal to act like an
experienced operator who compensates differences between tar-
gets values and measured variables operating in open-loop mode.
Therefore, the control algorithm was based on two data-driven
models, both of them based on neural networks: one model relat-
ing ultrasound signals to off-line rheological measurements and
the other relating viscosity curve to the percentage of ingredient
B and D.

Simulated tests of this control loop returned satisfactory re-
sults. Indeed, the novel control approach, based on data driven
models, was capable to resolve the issues related to the prototype
of the sensor and guarantee a proper control action. Therefore,
the incorporation of this approach in the final control procedure
is required.
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This thesis dealt with the multivariable modelling and control of
continuous industrial processes. Two main topics were analysed:
the multivariable modelling, for control purpose, of a system sub-
jected to persistent disturbances and the multivariable modelling
and control of a continuous production process of complex fluids.

In the first part of the thesis, the multivariable system iden-
tification of a process subjected to disturbances was addressed
exploiting wastewater treatment plants as case study. This type of
plants need proper control systems to improve their efficiency and
comply with the increasingly severe environmental regulations.
The design of such controllers needs for process models, typi-
cally obtained through black box modelling. Therefore, dedicated
experimental tests are needed. During these experiments, the
normal functioning of the plant is suspended and this requires
time and money. Furthermore, due to the persistent disturbances
afflicting these plants, the system identification phase may last
long and be quite problematic. In this work, a modelling strategy
consisting of multivariable system identification was presented.
The goal of the work was to develop a method to implement
multivariable variations of manipulated inputs chosen for the
identification phase, in order to obtain as much information as
possible on the system in the shortest time. First, signals for
manipulated inputs were randomly generated according to the
Generalized Binary Noise approach with the purpose to generate
a combination of input signals suited for identification. The gen-
erated combinations were selected on the basis of the D-Optimal
Design criterion. The Benchmark Simulation Model No. 1 was
used as process simulator for the wastewater treatment plant. It
was configured as a plant operating with a series of activated
sludge reactors and a settler. The system was then excited with
the generated inputs and responses were analysed. In particular,
the investigation was focused on the behaviour of two variables
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chosen as outputs: nitrate nitrogen concentration in the second
biological reactor of the plant and ammonia nitrogen concentra-
tion in the fifth biological reactor. A first attempt to model the
input-output relationships of the system was made exploiting
linear models. This attempt failed, probably due to the highly
non-linear behaviour of the process. Thus, a non-linear modelling
approach by means of neural networks was addressed. In par-
ticular, Non-linear Auto Regressive Neural Networks were used.
Results were satisfactory, and all the input-output pairs were
modelled correctly. Because the final goal of the work was to
model the process for the application of linear control systems,
a second modelling phase followed. Each neural network was
excited with positive and negative variations of the corresponding
inputs with the purpose to find linear, first order, transfer func-
tions describing the input-output relationships. The procedure
gave good results as regards the estimation of gain constants,
but did not allow a reliable estimations of the time constants.
The total simulated time needed for the experiments in the plant
was estimated to be equal to 60 days. This value represents an
improvement with respect to the results obtained in other studies
where singular inputs variations were applied. This demonstrates
that a multivariable identification approach, designed according
to the D-Optimal Design criterion and applying the Generalized
Binary Noise technique, can help to reduce the amount of time
needed for system identifications and therefore reduce costs.

The second part of the thesis, concerned with the multivariable
modelling and control of a continuous production process of a
non-Newtonian fluid. In fact, during continuous production, the
viscosity of the final product may go out of specifications for
different reasons. Therefore, a precise control of the viscosity
of the product during the manufacturing is necessary if a high
degree compliance of specifications is required. In order to do that,
on-line viscosity measuring instruments are required. Nowadays,
there are no solutions in the market for on-line measurements
of viscosity for non-Newtonian fluids. An ultrasound rheological
sensor developed by a third party was used in its prototype stage.
Water-free detergents production was considered as case study.
They are composed of single concentrated doses of detergent, in
form of pouches, which contain all the compounds needed for the
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cleaning process but no water.
The study was conducted at pilot plant scale in Procter &

Gamble research facilities in Belgium. The plant consisted of a
main pipe in which ingredients, coming separately from a series
of tanks, were mixed through static mixers. Off-line rheological
characterization of the product was addressed exploiting off-line
rheological measurements. In particular, measurements of viscos-
ity curves (viscosity against shear rate) were investigated. The
product was classified as a non-Newtonian shear-thinning fluid,
with a viscosity that decreased with the shear rate. For the de-
scription of the rheological behaviour of the fluid, the Carreau
model was chosen. Regarding the influence of ingredients on
the viscosity, the focus went on the investigation of the effects
of the solvent and of the rheological modifier. An on-line rheo-
logical characterization of the product was addressed by means
of a Promass 83I viscometer positioned at the final part of the
main pipe. This instrument was capable to return only a point
viscosity of the fluid. Nevertheless, dynamic information obtained
with this instrument, in terms of time constants and dead times,
were considered reliable and were exploited for modelling the
process. Retaining the rheological characterization of the fluid,
a Carreau model was adopted to describe the off-line measure-
ments. A first attempt to model the process was made relating
the four parameters of the Carreau model, estimated by means of
non-linear regressions on various experimental off-line rheological
data, with the different amounts of rheological modifier used in
the production of those samples. This model, consisting of sta-
tionary data, was completed with a dynamic part built with data
obtained by the on-line viscometer and validated. This model
was used also as a simulator of the process, in order to design
the controller. Following, a single-input single-output feedback
Proportional-Integral controller was designed with the purpose to
control a point on the viscosity curve of the product, using the
flow rate of the rheological modifier as manipulated variable. The
correct selection of the point to control revealed to be a crucial
aspect for the right working of the controller. With the purpose
to analyse this, different configurations were simulated and tested,
each of them with a different shear rate value in which control the
corresponding viscosity. The main outcome was that the designed

117



Conclusions

controller was capable to control the viscosity curve and bring
it close to a target curve, when the system was perturbed by a
disturbance. This was true for cases in which the viscosity was
controlled at low shear rate values. In fact, in configurations with
viscosity controlled in correspondence of high shear rate values,
the controller minimized the distance between actual and tar-
get viscosity in the controlled point but doing that, moved away
most of the viscosity curve from the target. This demonstrated
the importance of the selection of the point to control. Thus, a
viscosity curve is controllable with a single-input single-output
control configuration, but the design of the control system and
the selection of the right controlled variable needs particular care.

A second attempt to model and control the process was made
exploiting a multi-input multi-output control configuration. First,
a process simulator, based on non-linear neural networks, was built
to provide dynamic responses of viscosities. This neural network
related off-line measured viscosities, at different values of shear
rate, to the amount of ingredients used during manufacturing.
The model was completed with a dynamic characterization that
exploited data collected with the on-line Promass viscometer.
Then, a double feedback controller was implemented with the
objective to control two separate points of the viscosity curve
using two manipulated variables. Results showed that such control
system was capable to control two points on the viscosity curve.
However, responses were relatively slow in terms of dynamics.
Furthermore, only two controlled variables at disposal did not
guarantee the control of the viscosity at intermediate values of
shear rate. Thus, to improve the controllability of the process,
a Model Predictive Control was designed with the purpose to
control more than two points on the viscosity curve using the
same manipulated variables. Results showed that such controller
was capable to control various points of the viscosity curve, both
for set-point tracking and disturbance rejection. Moreover, the
Model Predictive Control returned faster responses in terms of
dynamics with respect to the double feedback controller.

Finally, the possibility to control the detergent production
process by using an on-line ultrasound rheological sensor devel-
oped by TNO was explored. The sensor consisted of piezoelectric
transducers, placed around the external circumference of a pipe,
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capable to emit and receive ultrasound signals. Variables like
upstream-downstream delays and arrival times were calculated
from raw ultrasound signals. The sensor resolved an inverse
problem, calculating the velocity profile of the fluid in real-time
and then its viscosity curve, exploiting ultrasound variables and
measurements of pressure drop. However, experimental tests per-
formed with the prototype revealed that the time required for the
sampling and the resolution of the inverse problem was too high
in order to address a prompt control action. For these reasons,
an alternative data-driven approach was applied. The process
was modelled by means of Partial Least Squares technique, in
order to obtain a model capable to relate upstream-downstream
delays and arrival times with off-line rheological measurements
of viscosities of the product. The Partial Least Squares algo-
rithm was coupled with the Variable Importance in Projection
technique to detect the more informative variables. Despite the
good results obtained, it was chosen to resort to non-linear neural
networks modelling to improve the performance of the data-driven
modelling. The trained neural network received, as inputs, data
coming from the ultrasound sensor and values of pressure drop.
Fittings of experimental data by the neural network were better
than those obtained with the Partial Least Squares model. A
"smart operator" action was implemented as a control system, by
means of a second neural network model. This network provided
for ingredient B and D mass flow rates for a given viscosity pro-
file, acting like an experienced operator operating in open-loop
mode. Thus, the control system was based on two data-driven
models based on neural networks. Simulated tests of this control
algorithm returned satisfactory results, proving the possibility of
a real-time control of the viscosity curve of a complex fluid during
its continuous production.
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Roman symbols

Symbol Description
A Number of latent variables
AM Constant matrix of the MPC algorithm
B Regression coefficients matrix
Cm Covariance matrix
d1 Parameter for viscosity dependence on tempera-

ture
d2 Parameter of function for viscosity dependence

on temperature
eN Measurements noise vector
eP Difference between predicted and wanted outputs

in the MPC algorithm
eT Difference between µtarget and µmeas
EX Residuals matrix for X matrix
EY Residuals matrix for Y matrix
fNN Memoryless model
F Dynamic matrix of the MPC algorithm
g Number of output variables
G Shear modulus
h Number of input variables
Hp Prediction horizon of the MPC algorithm
Hu Control horizon of the MPC algorithm
I Number of experimental points
J Number of regressor variables
kp Constant gain of the process
K Matrix of gains
K̂ Estimator of the matrix of gains
KC Proportional gain of the PI controller
l Initial length of the solid
L Longitudinal length of the deformation
M Number of quality variables

continued on next page
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Nomenclature

continued from previous page
Symbol Description

n1 Number of elements in the input layer of the
neural network

n2 Number of elements in the hidden layer of the
neural network

n3 Number of elements in the output layer of the
neural network

nd Number of points for viscosity curves discretiza-
tion

N Number of samples
NP Number of samples in prediction set
NT Number of samples in training set
o Inputs vector
O Objective function of the MPC algorithm
P Pressure
PA Loading matrix for X matrix
qA Vector of Q matrix
QA Loading matrix for Y matrix
QB Mass flow rate of ingredient B
QD Mass flow rate of ingredient D
r Residuals
rstd Standard residuals
R Pseudo-inverse matrix of the PA matrix
s1, s2 Penalization values of the MPC algorithm for

ingredient D and B respectively
S Penalization matrix of the MPC algorithm
t Time
tA Vector of TA matrix
td Dead time of the process
T Temperature
TA Orthonormal score matrix of the PLS-R
u Manipulated inputs vector
U Manipulated inputs matrix
v Observed/measured value
v̂ Predicted value
w1, w2, w3 Weights of the MPC algorithm for µ0.1s−1 , µ1s−1

and µ10s−1 respectively
wa Loading vector for the a-th component
wa,j Loading for the a-th component relative to the

j-th variable
continued on next page
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Nomenclature

continued from previous page
Symbol Description

W Weighting matrix of the MPC algorithm
x State vector
ẋ State vector rate
xk k-th regressor vector
X Information matrix
XP Predictions matrix of the PLS-R
y Outputs vector
ŷk Predicted k-th quality variable
Y Outputs matrix
YP Response matrix of the PLS-R
z Output of the first block

Greek symbols

Symbol Description
α Slope of the power law in the Carreau model
γ̇ Shear rate
Γi→j Average arrival times between i-th and j-th trans-

ducers
Γj→i Average arrival times between j-th and i-th trans-

ducers
∆P Pressure drop
∆u Control actions of the MPC algorithm
∆Γij Upstream-downstream time delays
λ Parameter of the Carreau model
µ Viscosity
µ Average viscosity
µ̂ Estimated viscosity
µ0 Viscosity at shear rate 0
µ∞ Viscosity at shear rate ∞
µa Apparent viscosity
µmeas Measured viscosity
µNN Viscosity calculated with neural network
µP Viscosity calculated with neural network at the

previous control loop
µSP Set-point viscosity

continued on next page
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Nomenclature

continued from previous page
Symbol Description

µtarget Target viscosity
ν Parameter of the Carreau model
ρ Perpendicular direction with respect to the flow
τ Shear stress
τ̇ Shear stress rate
τI Integral time of the PI controller
τp Time constant of the process
ϕ Velocity profile
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