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Università degli Studi di Cagliari, Italy

Supervisor: Prof. Mariano Cadoni
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Abstract

The relationship between Bekenstein-Hawking and entanglement entropy is one
of the most intriguing problems of black hole and theoretical physics. Although
both entropies have the same geometric characterization (they scale as an area),
they have a different origin. The Bekenstein-Hawking entropy has it’s roots in
the thermal correlations whereas the entanglement entropy describes the quan-
tum correlations. In this thesis we address this problem from a holographic
perspective, making large use of the AdS/CFT correspondence.

We first look at the BTZ black hole in which case the black hole horizon and
the conical singularity are related to each other. Using the modular transfor-
mations of the dual 2D CFT, we first obtain an expression of the holographic
entanglement entropy for the Euclidean BTZ black hole, AdS3 vacua and conical
singularity and then analyse the behaviour of the leading terms in the expan-
sions of the holographic entanglement entropy for the BTZ black hole and the
conical singularity. From these calculations, we have extracted the “signatures”
through which entanglement entropy differentiates between the horizon and the
conical singularity. When we deal with CFT at a finite temperature then it is
well known that, entanglement entropy fails as a measure and hence it is replaced
by entanglement negativity which is able to separate the thermal/classical cor-
relations from the quantum correlations thereby capturing “distillable” entan-
glement. We address the problem of finding a suitable holographic prescription
to calculate the entanglement negativity for two adjacent intervals when the
CFT is at a finite temperature and in turn dual to a black hole in the bulk.
We first propose a conjecture for the holographic entanglement negativity for
two adjacent intervals in the AdS3/CFT2 setup and perform calculations in the
various cases to support this conjecture. We further push forward the validity of
this conjecture by calculating the holographic entanglement negativity for two
adjacent subsystems when we have RN-AdS black holes in the bulk which in
turn are dual to CFT with a conserved charge.
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Introduction

In recent years the issue of quantum entanglement has attracted intense inter-
est leading to exciting insights in an expansive list of phenomena from quantum
gravity to quantum computers. Generally, quantum entanglement is described
by entanglement entropy which is expressed as the the von Neumann entropy
of the reduced density matrix for a given bipartite quantum system. Recently,
research dealing with the connection between entanglement and gravity has re-
ceived considerable attention for example one of the ideas is that the spacetime
geometry and gravity emerge as a result of an entanglement process present in
an underlying microscopic theory [1–9]. Most of these calculations involve the
setup of AdS/CFT duality as it permits the well defined calculation of the en-
tanglement entropy connecting both the gravitational and field theoretic back-
grounds and opening new ways for the emergent gravity/spacetime scenario.
Holographic entanglement entropy seems closely related with the Bekenstein-
Hawking entropy [10, 11]. The fact that even the entanglement entropy scales
as an area has given birth to the idea of spacetime being a network of tensors [1].
Further, it has been noted that the emergence of bulk locality and quantum er-
ror correction can be seen related in the AdS/CFT setup [12, 13]. Also, it has
been shown that the spacetime connectivity can be related to entanglement [2].
The development of this concept has lead to a better understanding of aspects
of quantum gravity [14, 15] and of the information puzzle in the black hole
evaporation process [16–18]. In a parallel devellopment, connections between
entanglement and Einstein’s equations have also been explored in [4,9,19]. Re-
cently in [7] it was shown that the emergent nature of space time, entanglement,
dark energy and aspects of dark matter, in de Sitter space can be correlated.

This research activity which involves the exploration of the connection be-
tween entanglement and the spacetime structure and dynamics was stimulated
by the ideas like interplay between thermodynamics and black hole physics
[20–22], microscopic origin of the Bekenstein-Hawking entropy [23], AdS/CFT
correspondence [24], holographic entanglement entropy [25, 26], black hole in-
formation problems [15,16,27].

A related area where we can explore the connection between entanglement
and gravity and which has received considerable attention is the relation between
the black hole entropy and the entanglement entropy. This thesis is devoted to
the investigation of relationship between the black hole entropy and the entan-
glement entropy from a holographic perspective. In fact we will make large use
of the AdS/CFT correspondence and of the Ryu-Takayanagi proposal, which
allows us to compute the entanglement entropy in a dual QFT in terms of geo-
metric quantities in the bulk gravity theory. Research into the area of the black
hole entropy and entanglement entropy led to the indications of the connection
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between these two types of entropies for example when people studied entan-
glement entropy in quantum field theories and found it proportional to area of
the boundary separating accessible from inaccessible regions [28]. Calculation
of the entanglement entropy for a quantum field in the background of the black
hole was performed in [29] and it was found to be proportional to the area of the
black hole horizon. Also it was shown in [30, 31] that quantum corrections to
the black hole entropy can be seen as entanglement entropy. A further step to-
wards a better understanding of this relation under the holographic setting was
done in [25, 32] where the duality between the thermal entropy obtained from
the high temperature limit of the entanglement entropy for a thermal CFT was
shown to be dual to the black hole entropy. The issue of the relation between
the Bekenstein-Hawking and entanglement entropy in the simplified context on
3D AdS gravity has been addressed in [33]. In the 3D case the AdS/CFT cor-
respondence is well understood. Moreover, one can make use of the modular
transformations of the dual 2D CFT, which will allow us to relate the 3D AdS,
BTZ black hole to conical singularities of the 3D AdS spacetime. These calcula-
tions stimulates the question about the links between the entanglement entropy
associated to conical singularities and black holes. This issue will be discussed
in Chapter 6. Essentially, in this chapter we study how the entanglement en-
tropy differentiates between black hole horizon and conical singularity as both
of these are related to each other for the case of 3D AdS gravity.

Entanglement entropy in conformal field theories is computed using the
replica method [34, 35]. It was also shown that the entanglement entropy for
a given two-dimensional conformal field theory has a logarithmic behaviour
[34–37]. Entanglement entropy has also been shown to be related to the quan-
tum phase transitions [38–40], c-theorem [41]. Further, using the AdS/CFT cor-
respondence a holographic method to calculate the entanglement entropy was
proposed by Ryu-Takayanagi [25,26,42] which involved the computation of the
area of the bulk co-dimension two static minimal surfaces. Later, this method
was further generalized for time dependent scenario in [43]. The holographic
entanglement entropy led to a considerable research in the holographic aspect
of entanglement entropy [42, 44–49]. Also, the proof for the Ryu-Takayanagi
conjecture has received considerable attention [10,11,50–53].

When we deal with the holographic entanglement entropy for a black hole
then the dual CFT is at a finite temperature and the computation of the holo-
graphic entanglement entropy in the high temperature limit shows presence of
thermal entropy which indicates that we have “Mixed State”. Since the en-
tanglement entropy fails to differentiate between classical and quantum corre-
lations, it can no longer be considered as a measure of entanglement for mixed
state. The solution to this problem was given by Vidal and Werner [54] who
proposed “Entanglement Negativity” as a measure of “distillable” quantum en-
tanglement as it essentially captures only the quantum correlations in a mixed
state and removes the thermal contributions. The non-convex and monotone
nature of the entanglement negativity was shown in [55]. Using a modified ver-
sion of the replica technique entanglement negativity has also been calculated
for conformal field theories [56–58]. As entanglement entropy can be calculated
holographically, in [59, 60] attempts were made to extract entanglement nega-
tivity holographically. Recently, a clear solution was put forth in [61,62] where
the entanglement negativity has been computed in a holographic fashion for a
single interval on the boundary CFT. The authors in [61,62] have calculated the
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holographic entanglement negativity for a single interval first in the AdS3/CFT2

setup and then also for a generalized AdSd+1/CFTd scenario. A covariant calcu-
lation for the holographic entanglement negativity for a single interval was given
in [63]. These calculations for the holographic entanglement negativity involved
an algebraic combination of the areas of the bulk co-dimension two extremal
surfaces and the holographic results were able to reproduce the corresponding
CFT results in the large central charge limit, thus giving a strong support to
the conjecture. This conjecture for a single interval was further strengthened
in [64].

Entanglement Negativity for two adjacent intervals has been calculated for
conformal field theories [56]. Since entanglement entropy and entanglement neg-
ativity for a single interval has a holographic counterpart, in this thesis we will
addrress the question about the possibility to express entanglement negativity
for two adjacent intervals in a holographic manner. The issue of the holographic
entanglement negativity for two adjacent intervals will be discussed in Chapter
7. Essentially, in this chapter we use the holographic setup of AdS3/CFT2 to
formulate the conjecture for the holographic entanglement negativity for the
mixed states of two adjacent intervals lying on the 2D boundary CFT.

The calculations for the holographic entanglement negativity for two adja-
cent subsystems in the generalized AdSd+1/CFTd scenario was done in [65].
The calculations were done for the finite temperature case which is dual to the
AdSd+1-Schwarzschild black hole. It was noticed that in the high tempera-
ture limit, the volume terms representing thermal correlations were completely
eliminated and as a result the holographic entanglement negativity scales as
area. This area dependence for the entanglement negativity has also been seen
in [66, 67]. A covariant calculation for the holographic entanglement negativity
for two adjacent subsystems was given in [68].

Apart from the BTZ and AdSd+1-Schwarzschild black hole, another class
of black holes that are very intersesting from the entanglement entropy point
of view are the charged AdS black holes [69–72]. In [70] the authors have
studied the holographic entanglement entropy for the RN-AdSd+1 black hole.
Aspects of entanglement thermodynamics for a boundary field theory at a finite
temperature and charge were studied in [46, 73, 74]. In [49] the authors have
used the setup of [47] to analyse the temperature and charge dependence of the
holographic entanglement entropy for the RN-AdS4/CFT3 scenario where the
boundary subsystem has a strip like geometry and also studied the entangle-
ment thermodynamics for the same. Motivated by these investigations, we will
address in this thesis the question about the holographic entanglement negativ-
ity in case of the charged AdS black holes. In chapter 8, we will further apply
the conjecture for the holographic entanglement negativity for two adjacent sub-
systems when the dual CFT carries a conserved charge. In this case, the bulk
configuration is the RN-AdS black hole. We consider both the extremal and the
non-extremal cases. We will first deal with the RN-AdS4/CFT3 setup followed
by RN-AdSd+1/CFTd case.

This thesis is structured as follows. We begin the thesis with essential ingre-
dients of the background material, from chapter 1 to 5 as required to understand
the results in the chapters 6,7 and 8. In chapter 1, we talk about the essen-
tials about AdS space followed by basics of conformal field theory in chapter 2.
In chapter 3, we give a brief review of the AdS/CFT correspondence followed
by basics of entanglement entropy in chapter 4 and entanglement negativity
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in chapter 5. We begin with the research work presented through this thesis
with chapter 6, where we investigate how entanglement entropy differentiates
between black holes and conical singularities. In chapter 7, we study the holo-
graphic entanglement negativity conjecture for two adjacent intervals for the
AdS3/CFT2 case and subsequently for the RN-AdS black holes in chapter 8.
Towards the end we summarize and dicuss the results in the conclusion section.
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Chapter 1

AdS space

In this chapter, we will review some aspects of AdS spacetime which are relevant
for the chapters ahead.

The geometrical properties of AdS space time plays an important role in the
AdS/CFT correspondence. Here, we will review some features of AdS space
time relevant to this correspondence. Einstein’s equations with a negative cos-
mological constant

Rµν −
1

2
Rgµν + Λgµν = 0, (1.1)

where Rµν is the Ricci tensor, R is the scalar curvature, Λ is the cosmological
constant and gµν is the metric of the spacetime.
Hyperboloid space is the maximally symmetric solution for the above equation.
A d-dimensional hyperboloid space is given as

−X2
−1 +X2

1 + ...+X2
d = −R2. (1.2)

When we turn to the Minkowski space, we get the d- dimensional Anti de Sitter
space (AdS).

−X2
−1 −X2

0 +X2
1 + ...+X2

d−1 = −R2. (1.3)

We can see clearly now that it has d(d+1)/2 Killing vectors and so AdSd is
invariant under the group SO(d-1,2) which is isomorphic to the conformal group
in d-1 dimensions SO(d-1,2). This AdSd is embedded in the d+ 1 dimensional
flat space with the metric

ds2 = −dX2
−1 − dX2

0 + dX2
1 + ...+ dX2

d−1. (1.4)

1.1 COORDINATES FOR AdS

If we take the following parametrization for the AdSd coordinates :-

X−1 = R cosh ρ cos τ,
X0 = R cosh ρ sin τ,

Xi = R sinh ρ Ωi ,
d−1∑
i=1

Ω2
i = 1,

(1.5)
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where Ωi can be expressed in terms of the d−2 angular coordinates of the d−2
sphere Sd−2, we obtain the metric for AdSd

ds2 = R2(− cosh2 ρdτ2 + dρ2 + sinh2 ρ dΩ2
d−2), (1.6)

where dΩ2
d−2 is the metric on Sd−2. These coordinates cover the entire AdS

with (ρ ≥ 0, 0 ≤ τ ≤ 2π) and are called as global coordinates. When we unroll
the periodic coordinate τ such that τ ∈ (−∞,∞) we get the universal cover for
the AdS.
We can also parametrize AdS in terms of Poincaré coordinates which are given
as

X−1 = 1
2z (z2 +R2 + x2 − t2),

X0 = Rt
z ,

Xi = Rxi

z , i = 1, ...., d− 2,
Xd−1 = 1

2z (z2 −R2 + x2 − t2).

(1.7)

In terms of the Poincaré coordinates the AdS metric is

ds2 =
R2

z2
(−dt2 + dz2 +

d−2∑
i=1

dx2
i ). (1.8)

Here, both t, x lie in the interval −∞ < t, x <∞. The coordinate z behaves as
a radial coordinate lying in the interval 0 ≤ z <∞ and dividing the entire AdS
into two regions corresponding to z > 0 and z < 0. Poincaré coordinates cover,
therefore, only a part of the entire AdS.
Another important coordinate system for AdS is the conformal coordinates
which we get by taking sinh ρ = tan θ in eq. (1.6). We then get the follow-
ing metric

ds2 =
R2

cos2 θ
(−dτ2 + dθ2 + sin2 θ dΩ2

d−2). (1.9)

Here , θ lies between −π2 ≤ θ ≤ π
2 . In this case, the AdS has a boundary at

θ = ±π2 .

1.2 CONFORMAL COMPACTIFICATION OF
AdS

It so happens that sometimes in order to understand a particular phenomenon,
we need to know it’s asymptotic behaviour. In our case, we are interested in
in the global, causal, structure of the spacetime, in particular of AdS. In order
to describe globally the spacetime we need, in particular, to have under control
the asymptotical properties of the spacetime. Owing to the non-compactness of
AdS, it is not easy to understand what is going on “asymptotically” but fortu-
nately Penrose invented a technique called conformal compactification of space-
time which essentially defines an equivalence class of metrics gab = Ω2(x)gab
where Ω(x) is a positive scalar function of spacetime that modifies the distance
scale but leaves invariant the causal structure of the spacetime making the

16



asymptotics of the physical metric accessible to study so that one can describe
the global, causal, structure of the spacetime. Often in this procedure, it will
be useful to employ the Penrose diagrams also called as Conformal Diagrams
which are 2 dimensional representations of spacetime which preserve the causal
nature of space-time. In this case, infinity in its three different, causal, versions
(timelike, spacelike and null) is represented as part of the boundary of the dia-
gram.
We need to understand the conformal structure of AdS as it is one of it’s impor-
tant aspects [75] which shows causal and geometric relation with the conformal
structure of the flat space.
The AdS/CFT correspondence employs the idea of the holographic principle,
which states that a (d + 1)-dimensional gravitational theory can be described
by a dual d-dimensional boundary field theory. To better understand this con-
nection between the gravity and conformal field theories, we need to understand
how AdS behaves both in the bulk and at the boundary, where the conformal
field theory lives.
Thus the asymptotic/boundary behaviour of AdS spacetime is important to
understand the boundary on which the CFT lives.

1.2.1 Conformal structure of 2D Minkowski space

So, let us begin by looking at the conformal structure of flat space. We start
with the 2 dimensional Minkowski space R1,1 whose metric is given as

ds2 = −dt2 + dx2, (1.10)

where −∞ < t, x <∞.
Using lightcone coordinates u± = t± x we get the metric as

ds2 = −du+du−. (1.11)

We use the following transformations to make them finite

u± = tan ũ±, (1.12)

where ũ± = τ±θ
2 .

As a result of these new coordinates, the metric is

ds2 =
1

4 cos2 ũ+ cos2 ũ−
(−dτ2 + dθ2). (1.13)

Taking hints from eq. (1.13) using a conformal transformation (Weyl rescaling)
of the metric, which preserves the causal structure of the spacetime if we drop
the conformal factor, then we have a flat 2 dimensional space which is finite in
nature as |ũ±| ≤ π/2 because |τ ± θ| ≤ π and this results in a diamond shaped
penrose diagram [75] as depicted in Fig. 1.
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Figure 1: Penrose diagram of 2D Minkowski space. (τ, θ) = (0,±π) correspond
to the spatial infinities x = ±∞.

Since, after conformal compactification the boundary nature is that of flat space,
hence this space-time is called as asymptotically flat.

1.2.2 Conformal structure of higher dimensional Minkowski
space

We will now try to analyse the conformal structure for a higher dimensional
Minkowski space R1,d−1 whose metric is given as

ds2 = −dt2 + dr2 + r2dΩ2
d−2, (1.14)

where dΩ2
d−2 is the metric on the unit sphere Sd−2. We also see that there is

an additional radial coordinate r which is defined in the range r ≥ 0. Using the
same transformations, as we had used for 2D Minkowski space, we arrive at the
following form of the metric

ds2 =
1

4 cos2 ũ+ cos2 ũ−
(−dτ2 + dθ2 + sin2 θdΩ2

d−2). (1.15)

From the above eq. (1.15) if we drop the conformal factor, we get a space-time
whose geometry is R × Sd−1 which is also the geometry of the Einstein Static
Universe.

1.2.3 Conformal structure of AdSd+1

To look at the conformal structure of AdSd+1 we start with eq. (1.9)

ds2 =
R2

cos2 θ
(−dτ2 + dθ2 + sin2 θ dΩ2

d−1). (1.16)

After a conformal rescaling, the above metric can be written as

ds2 = −dτ2 + dθ2 + sin2 θ dΩ2
d−1. (1.17)
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The penrose diagram in this case is a solid cylinder as shown in Fig. 2 with r be-
ing the radial coordinate and τ,Ω on the surface [76]. The penrose diagram for
the Poincaré patch of AdS is a triangle as shown in Fig. 3 [77]. The boundary
is timelike and it so happens that the massless particles can reach the boundary
in finite time whereas the massive particles never reach the boundary. We see
here that the above metric dictates a space-time whose geometry is R × Sd−1

which is again that of Einstein Static Universe with 0 ≤ θ < π/2. Therefore, we
can say that the conformal compactification of AdSd+1 results in the boundary
structure which resembles half of Einstein static Universe. Now, if a space-time
can be conformally compactified in such a way that the boundary structure
corresponds to half of Einstein Static Universe then such a space-time is called
asymptotically AdS. So we see here that after conformal compactification the
boundary of AdSd+1 is R×Sd−1 which is same as that of conformally compact-
ified Minkowski space on R1,d−1.
Also, it can be shown that the Euclidean AdSd+1 can be conformally compact-
ified into a d+1 dimensional disk.

Figure 2 : Penrose diagram for AdSd+1 which is a cylinder.

Figure 3 : Penrose diagram for Poincaré patch of AdS which is a triangle.

19



1.3 Conformal Group

As we have already seen that the boundary of conformally compactified AdSd+1

space coincides with the boundary of conformally compactified Minkwoski space
on R1,d−1, it becomes interesting to see if the isometry group of AdSd+1 is
isomorphic to that of the boundary of AdSd+1 and how is it related to the
group structure of the Minkowskian space. To begin our analysis, we will start
by looking at the group structure of conformally compactified d- dimensional
Minkowskian space and then the group structure of conformally compactified
AdSd+1 space.

1.3.1 Group structure for Minkowskian space and it’s bound-
ary

We begin with the metric of the d-dimensional Minkowskian space

ds2 = −dt2 + dr2 + r2dΩ2
d−2. (1.18)

For a d-dimensional Minkowski space, there is a d-dimensional conformal group
[78, 79]. Conformal transformations are those transformations which preserve
the angle between the two lines. In the context of general relativity they preserve
the metric upto a scale factor as they preserve the causal structure of space-
time and are given as gab = Ω2(x)gab where Ω(x) is a positive function which
is smooth everywhere. By conformal group we also have the following set of
transformations [80]

Translations : x′µ = xµ + aµ,
Rotations : x′µ = Mµ

ν x
ν ,

Dilations : x′µ = αxµ,

Special conformal transformations : x′µ = xµ−(x.x)bµ

1−2(b.x)+(b.b)(x.x) .

(1.19)

This statement implies that the metric is invariant under Poincaré transfor-
mations. Apart from the Poincaré transformations, the metric is rescaled by a
conformal factor under the action of dilations and special conformal transforma-
tions which acts on it’s conformal boundary. This follows simply from the fact
that the conformal boundary is defined up to a conformal rescaling of the metric.
Thus, conformal transformations acting on the boundary do not change the bulk
metric. The boundary of conformally compactified d-dimensional Minkowski
space is invariant under the action of the Lie algebra for infinitesimal - Poincaré
transformations, scaling and special conformal transformations. Hence, we see
that the boundary of conformally compactified d-dimensional Minkowski space
is invariant under the action of the Lie algebra of SO(d,2) and because of this,
we say that the boundary of conformally compactified d-dimensional Minkowski
space is invariant under the conformal group SO(d,2).

1.3.2 Group structure for AdS and it’s boundary

We begin with the metric for AdSd+1 space which is embedded in (2,d)-dimensional
Minkowski space [78]

ds2 = −dX2
0 − dX2

d+1 +

d∑
i=1

dX2
i . (1.20)
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Since, in the bulk AdSd+1 is a maximally symmetric space and has therefore
(d+1)(d+2)/2 Killing vectors. Its isometry group is inherited by the embedding
in (2,d)-dimensional Minkowski space and is therefore SO(d,2). Next, we look at
the invariance group of the conformal boundary. After conformal compactifica-
tion one can find out the killing vectors acting on the boundary and it so happens
that this group includes dilations and special conformal transformations apart
from the Poincaré transformations. Thus at the conformal boundary, we have
the same invariance group given by the conformal group SO(d,2).

So, we see that the conformal group SO(d,2) is the symmetry group of both
the bulk and at the boundary of AdSd+1 This result also dictates that the the
conformal boundary of AdSd+1 has the same conformal group i.e. SO(d,2), just
like the conformal boundary of d-dimensional Minkowski space.
Hence, the conformal symmetries of the boundary of AdS permits a conformal
field theory living on the AdS boundary and as a result there is a correspondence
between the bulk and the boundary as the symmetries of the group structure is
same.

1.4 BTZ black hole

We will now briefly review an important part of 3D AdS space which is the
BTZ black hole. Einstein’s equations in 3 dimensions with negative cosmological
constant has the BTZ black hole solution which is given by [81–83]

ds2 = −N2dt2 +N−2dr2 + r2(Nφdt+ dφ)2, (1.21)

where N2(r) = −8GM + r2

l2 + 16G2J2

r2 and Nφ(r) = −4GJ
r2 . J is the angular

momentum and M is the mass of the BTZ black hole. The horizons are given
by the condition N2(r) = 0,

r2
± = 4GMl2

{
1±

[
1−

( J

Ml

)2
]1/2}

, (1.22)

where M =
r2
++r2

−
8Gl2 and J = r+r−

4Gl . From the above expression, we have the
conditions M > 0, |J | ≤ Ml for the existence of the horizon. It showcases the
property of a true black hole having an event horizon at r+ and in the rotating
case, a Cauchy horizon at r−.

The BTZ black hole is asymptotically anti-de Sitter, having no curvature
singularity but rather possessing a conical singularity. Because of the constant
curvature, the BTZ black hole is locally isometric to anti-de Sitter space but
globally they are inequivalent. In the global case, BTZ black hole can be iden-
tified in AdS3 by a discrete subgroup of its isometry group. Also it has been
shown that it can occur as the final state of collapsing matter and can have

thermodynamic properties having a Hawking Temperature T =
~(r2

+−r
2
−)

2πl2r+
and

entropy S = 2πr+
4~G .
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Chapter 2

Conformal Field Theory

When we work with quantum field theories, symmetry plays an important role
[75, 84]. Apart from the usual Poincaré invariance, sometimes it is also useful
to hunt for scale invariance to understand physics pertaining to quantum field
theories at different scales. This typically happens when the physical system has
no intrinsic scale, like e.g a mass or a coupling constant with length dimensions.
Examples are free-field theories of massless fields and thermodynamical systems
at the critical point.

Often the scale invariance is broken at the quantum level even though it
might be present at the classical level because of generation of the renormal-
ization scale for instance as a result from a conformal anomaly. Renormaliza-
tion involves a cutoff ε, bare coupling constant λ0, bare mass m0, renormal-
ization scale µ and from these quatities we calculate the renormalized coupling
λ = λ(λ0,m0, ε, µ). The β function which furnishes information about the run-
ning of the coupling constant is given as

β(λ, ε) = µ
dλ

dµ
|λ0,m0,ε. (2.1)

If we say a quantum field theory is scale invariant it means λ in the eq. (2.1)
is µ independent which in turn would lead to vanishing of the β function. This
means that scale invariance is related at the quantum level with the appearance
of fixed points, i.e to points in which the renormalized couplings do not flow.

The breaking of scale invariance in a theory can lead to renormalization
group flows. Research in quantum field theories has lead to the fact that there
may exist field theories which have renormalization group flows from a UV
fixed point to an IR fixed point. To have scale invariance in the context of
renormalization i.e. β = 0, we have two possible scenarios :-

• To have β = 0 everywhere implies a trivial QFT, i.e a theory for which there
is no renormalization group flow.

OR

• If β is not identically zero and hence the QFT is nontrivial, then it needs to
have a zero(fixed point) away from λ = 0 where a nontrivial theory will emerge
i.e. - non-trivial CONFORMAL FIELD THEORY.

As stated earlier even though scale invariance is broken at the quantum me-
chanical level, conformal invariance can be still respected as a local symmetry
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near to a fixed point and therefore we also tend to seek for conformal invariant
theories at the quantum scale. It is also been shown that unitary scale-invariant
theories are also conformally invariant i.e the space–time symmetry group en-
larges from the Poincaré to the conformal group of symmetries. So, we see that
study of conformal field theories can be fruitful in various physical situations
and the leading reason for us is the AdS/CFT correspondence as we need to
understand how the conformal field theory on the “boundary” of AdS is related
to the quantities inside the “bulk” of AdS.

2.1 Conformal Group and Algebra

Conformal group transformations are those transformations which preserve the
form of the metric upto a scale factor gab = Ω2(x)gab where Ω(x) is a positive
function [75]. The conformal group is an extension of Poincaré group which
involves the following transfromations [80]:-

Translations : x′µ = xµ + aµ,
Rotations : x′µ = Mµ

ν x
ν ,

Dilations : x′µ = αxµ,

Special conformal transformations : x′µ = xµ−(x.x)bµ

1−2(b.x)+(b.b)(x.x) .

and the corresponding generators are

Translations : Pµ = −i∂µ,
Rotations : Lµν = i(xµ∂ν − xν∂µ),
Dilations : D = −ixµ∂µ,
Special conformal transformations : Kµ = −i(2xµxν∂ν − (x.x)∂µ).

These generators obey the conformal algebra [75]

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ),

[Mµν ,Kρ] = −i(ηµρKν − ηνρKµ),

[Mµν ,Mρσ] = −iηµρMνσ ± permutations,
[Mµν , D] = 0,

[D,Kµ] = iKµ,

[D,Pµ] = −iPµ,
[Pµ,Kν ] = 2iMµν − 2iηµνD.

The rest of the commutators vanish.
This algebra can be shown to be ismorphic to SO(d,2) when we use the signature
(-, +, +, · · · , +,-) with generators Jµν = (µ, ν = −1, 0, 1, · · · , d − 1) and
obtaining the following [80]

Jµν = Mµν ,

J−1,0 = D,

J−1,µ =
1

2
(Pµ −Kµ),

J0,µ =
1

2
(Pµ +Kµ).
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It is worth noting here that for d=2, the conformal group becomes the two-
dimensional diffeorphim group it has therefore infinite generators which closes
in two copies of the Virasoro algebra, hence it is infinite dimensional.

2.2 Primary Operators

The representations of the conformal group have operators φ which are eigen-
functions of the scaling operator D with eigenvalue -i∆ where ∆ is called the
scaling dimension of the operator [75]. This implies that under a scaling trans-
formation they transform as φ(x)→ φ′(x) = λ∆φ(λx). Now, from the commu-
tation relation [77]

[D,Pµ] = −iPµ ⇒ D(Pµφ) = Pµ(Dφ)− iPµφ = −i(∆ + 1)(Pµφ), (2.2)

we can see that Pµ raises the scaling dimension of the operator by 1 whereas
Kµ lowers it by 1 as we have

[D,Kµ] = iKµ. (2.3)

So we see that Pµ acts as a creation operator whereas Kµ acts as an annihilation
operator with respect to the eigenstates of D.

Unitarity conditions puts a lower bound on the dimensions of the operators,
particularly in the case of scalar fields it is ∆ ≥ (d−2)/2 where the equality is for
free fields. Because of such a lower bound, the representation of the conformal
group has an operator of the lowest dimension and which is annihilated by Kµ

at the origin i.e. at x = 0 and such an operator is called as the primary operator.
They have the following commutation relations :-

[Pµ, φ(x)] = i∂µφ(x),

[Mµν , φ(x)] = [i(xµ∂ν − xν∂µ) + Σµν ]φ(x),

[D,φ(x)] = i(−∆ + xµ∂µ)φ(x),

[Kµ, φ(x)] = [i(x2∂µ − 2xµx
ν∂ν + 2xµ∆)− 2xνΣµν ]φ(x).

Here, Σµν are matrices for the representations of the Lorentz group. The repre-
sentation for the conformal group in case of the primary operator is character-
ized by the Lorentz group and the scaling dimension ∆. Apart from the primary
operator, the descendant operators are generated by acting on the primary op-
erator with Pµ. In case of conformal group, we use the eigenfunctions of D and
not the eigenfunctions of the Hamiltonian P0 or M2 = −PµPµ.
An important characterization of the conformal group SO(d,2) is in terms of
the maximally compact subgroup SO(d)×SO(2). Here, the generator for SO(2)
is J0(d+1) = 1

2 (K0 + P0). This subsgroup is important when we do the radial

quantization of the conformal field theory on Sd−1 × R which is related to the
AdS space when the metric is written in terms of global coordinates.
When we do radial quantization [84] in Euclidean space then the spin of the
field is given in terms of the SO(d) subgroup whereas the charge in the SO(2)
subgroup is the scaling dimension ∆ of the field. In case of radial quantization,
the Euclidean Rd is foliated by (d-1) spheres, Sd−1, concentric at the origin and
this configuration defines the Hilbert space for the CFT states at a radial slice.
The operator D is the evolution generator of the states from one radial slice to
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another. This is how we see that there is a state-operator correspondence in the
Hilbert space.
Now, if we define |0〉 as the conformal vacuum, then each operator φ(x) can
define a state at the origin by φ(0)|0〉. In the context of radial quantization, by
virtue of scale invariance this will also represent a state of any size Sd−1 around
the origin. On the other hand, using the same scale invariance we can also move
a state at a given radius to the origin by contracting the sphere.
To shed more light on this state-operator correspondence, we see that [75] time
acts as a radial direction in R and the origin corresponds to the past infinity,
using the operator J−1,0 as the Hamiltonian we can map the opeartor O to the
state as |O〉 = limx→0O(x)|0〉. So, when we insert the operator at the origin
then the state cooresponding to it is a functional integral on a ball around the
origin. On the other hand, when we want to map state to an operator then we
take the state as a functional of values of field on a ball around the origin, next
shrink this ball to size zero using conformal invariance, this act is equivalent to
insertion of some local operator.

2.3 Correlation Functions

The symmetries of the conformal group puts restrictions on the correlation
functions of primary fields [75, 84] in terms of their scaling dimensions and
spin. It has been shown that the Euclidean correlation functions are also valid
for Minkowski space-time. Correlation functions of descendant fields can be
obtained by taking the derivative of the primary fields.
For a scalar field, where both the operators have the same scaling dimension
∆1 = ∆2 = ∆, we have the following form of a two point function:-

〈O(x1)O(x2)〉 =
c12

|x1 − x2|2∆
, (2.4)

where c12 is the structure constant.
The three point function is given as

〈O(x1)O(x2)O(x3)〉 =
C123

|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1
,

(2.5)
where C123 is the structure constant.
The four point function is given as

〈O(x1)O(x2)O(x3)O(x4)〉 = c1234(u, v)

4∏
i<j

|xij |
1
3 ∆−∆i−∆j , (2.6)

where c1234(u, v) is now a function of the 2 independent cross-ratios u, v which
are conformally invariant and are given as

u =
|x12||x34|
|x13||x24|

, v =
|x14||x23|
|x13||x24|

. (2.7)

Now, these conformal invariants increase with the increment in the insertion
points, so the higher n-point functions will have more of these independent
invariants as the constraints imposed by conformal symmetry will be less.
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In the case of conformal algebra, the scaling dimension of only two operators are
determined by the conformal group, the first is the energy-momentum tensor
Tµν which is an operator of dimension ∆ = d and the second is the conserved
current Jµ which is an operator of dimension ∆ = d− 1.

2.4 Operator Product Expansion

One of the aspects of field theory is the operator product expansion which says
that as we bring two operators O1(x) and O2(y) close enough to each other such
that x → y i.e. they start acting at the same point, then this act results in a
generation of a local disturbance at that point which in turn can be written as
the sum of local operators whose action is on that same point.
Generally, OPE are written as O1(x)O2(y) →

∑
n
Cn12(x − y)On(y). When it

comes to conformal field theory [84], for two scalar primaries we have the fol-
lowing form

O∆i
(x)O∆j

(0) =
∑
k

cijk|x|−∆i−∆j+∆k(O∆k
(0) + descendants), (2.8)

where the sum extends over all primaries and their descendants. The coefficients
for the decendants for each primary is determined by the conformal invariance.
It is also interesting to see that the coefficients cijk in front of the primaries are
similar to the coefficients for the case of three point functions.
So we see that in general any n point correlation can be extracted by using
operator product expansion. Using OPE for any two adjacent points we can
subsitute n point correlators by an infinite sum of n− 1 point function.
Generally using the information related to primary fields like scaling dimension
∆, coefficients cijk etc we can extract a lot of details about the CFT but then
we have non-trivial relations arising out of unitarity and crossing symmetry of
OPE’s which will serve as a hindrance to a proper understanding of the CFT as
these conditions are very difficult to tackle. Because of this problem, we look for
alternative approaches for CFT and one such way is AdS/CFT correspondence
in which the correlation function is expressed in terms of the partition function
of the bulk gravity theory in the following manner

Z[φ∆i ] ≡
〈

exp
(∫

ddx φ∆i(x)O∆i(x)
)〉

CFT
. (2.9)

Here, φ∆i(x) are classical sources associated with each operator and when we
take derivative of Z w.r.t these sources we get the correlation functions as follows

〈O∆1(x1)O∆2(x2).....〉 =
∂nZ[φ∆i

]

∂φ∆1
(x1)∂φ∆2

(x2)....
|φ∆i

=0. (2.10)

When the correlators are conformally invariant, the partion function is also
conformally invariant. For example under the scaling transformation we have∫

ddx φ∆(x)O∆(x) =

∫
dd(λx) φ∆(λx)O∆(λx) = λd−∆

∫
dd(x) φ∆(λx)O∆(x),

(2.11)
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which implies invariance of Z when the source undergoes a scaling transforma-
tion as follows

φ∆(x)→ λd−∆φ∆(λx). (2.12)

So we see that even when the source undergoes a transformation of the conformal
group, Z still remains an invariant of the conformal group.
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Chapter 3

AdS/CFT Correspondence

One of the intriguing aspects of theoretical physics are dualities which have
revolutionized perspectives of physics at the fundamental level. Dualities relate
two different facets and thus they leads to an enhanced understanding of physics.
Implication of this duality is that the mathematical structure of the two theories
maybe identical but there may be differences from a physical standpoint. One of
the interesting dualities that we will talk about in this chapter is the AdS/CFT
correspondence which connects conformal field theory on a flat space-time to
string theory. This is interesting because string theory, is a theoretical setup for
quantum gravity whereas quantum field theory is not. Now, even though these
two theories are different, AdS/CFT correspondence assumes the existence of a
correspondence between the two theories and this is one of the most attractive
features of this duality, which pushes research for it’s deeper understanding and
possible applications.

Another interesting feature of AdS/CFT correspondence is the fact that it
is a realization of the holographic principle. The holographic principle says that
for a gravitational theory the number of degrees of freedom for a given volume
V scales as the surface area ∂V of that volume. This holographic principle
has it’s roots in the Bekenstein bound which states that the maximum entropy
for a given volume V is given by S ≤ 2πER

~c where E is the mass-energy of
the system, R is the radius of the sphere inside which the system fits [85]. In
case of AdS/CFT correspondence the quantum gravity theory/string theory is
defined on a manifold, which has the form AdS ×X, where AdS is the Anti-de
Sitter space which holds the gravitational theory and X is a compact space and
the “holographically dual” field theory exists on the conformal boundary this
Anti-de Sitter space.

A further rich aspect of AdS/CFT correspondence is that in a certain limit
of string theory it exhibits features of strong-weak coupling duality which means
that when the boundary field theory is strongly coupled, the dual bulk gravi-
tational theory is weakly curved, thus classical gravitational tools become valid
here. The validity of the classical gravity theory further prompts research into
the area of understanding of strongly coupled boundary field theory using clas-
sical gravitational setup.
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3.1 Aspects related to the AdS/CFT correspon-
dence

Before proceeding with the AdS/CFT correspondence, it is worthy to look at
few concepts of physics which are closely related to it and which will be helpful
in understanding the correspondence itself.

3.1.1 Holography

The first important idea that is closely related to the above mentioned corre-
spondence is that of Holography. The idea of holography was motivated by
the result that the entropy of a black hole is propotional to area of the hori-
zon. Before we go ahead, it is important to go through few notions related
to entropy itself. We will essentially talk about Thermodynamic entropy and
Shannon Entropy.

Thermodynamic Entropy, S, in its statistical mechanics interpretation tells
us how many possible microstates are there for a given macrostate and it is
formally given as

dS =
∆Q

T
, (3.1)

whereQ is heat and T is the temperature. In some sense, it measures the amount
of disorder in a system. On the other hand Shannon Entropy was proposed by
a mathematician as a measure of information content and it essentially gives a
measure of no. of bits required for a particular process or a configuration. It
uses bits as it’s unit which are dimensionless.

Generally, it so happens that the thermodynamic entropy is much greater
than Shannon entropy as because the degrees of freedom in both cases are
different. In the first case we deal with atoms, electrons etc, in the later case
we simply deal with electronic stuff. But, for same degrees of freedom they will
be same , so now, we raise 2 questions :-
First- What are the elementary degrees of freedom?
Second - How much information can be there per unit of the elementary degree
of freedom so as to calculate total information/entropy for a given configuration?

The answers to the above two questions are closely related to the idea of
holography. In 1970’s it was proposed that the area of the event horizon never
decreases and using this as a clue Bekenstein proposed that even black holes
have entropy to solve the entropy problem related to the black holes at that
time. Before Bekenstein’s proposal it was believed that black holes have no
entropy and if one throws some matter inside the black hole then it disappears as
because we dont’t know what happens inside a blackhole. As a result, violation
of second law of thermodynamics takes place. Bekenstein’s idea was that the
increase in the black hole entropy compensates more or in same amount for the
loss of matter entropy and this preserves then the 2nd law of thermodynamics.
In generalised fashion, this statement would mean that the black hole entropy
along with the entropy of material outside the black hole never decreases and
this statement is called Generalised Second Law of Thermodynamics. This
law is preserved when Hawking predicted that black holes need to radiated if
they carry entropy and in this case the entropy of thermal radiation more than
compensates for the loss due to black hole entropy.
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Next step was taken by Sorkin who related black hole entropy with the area
of the horizon. But, there came another problem-that of black hole information
paradox - loss of information of the material going inside the black hole and in
order to resolve this issue the idea of Holography was proposed which said that
the information content of the infalling material is encoded in fluctuations of
the horizon. Hence, effectively one can say that information/entropy of a given
region of space time depends on its surface area.

We now return to the previous two questions, the answer to the first is maybe
that the elementary degrees of freedom are strings as it was in the context of
string theory that a proposal for solving this paradox has been elaborated and
the maximum information can be known from what is called as Bousso Bound.
Thus we see how Holography nicely explains two very important aspects of
physics finally leading to the idea that quantum gravity in a given d dimensional
spacetime can be described by a theory on it’s d-1 dimensional boundary having
less than one degree of freedom per planck area.

3.1.2 Large N expansion

The large N expansion is the domain where physicists saw initial glimpses of
relation between string theory and gauge theory [86].

String Theory was originally developed to explain strong interactions but
later on it was realised that it was QCD that could describe the strong interac-
tions. However, QCD is not helpful enough to study strong interactions in the
low energy limit and it is here that the concept of “Duality” becomes important,
in particular to study the strongly coupled low energy regime of gauge theory
one can expect a dual description of QCD which will be weakly coupled. There
are indications that this weakly coupled candidate might be string theory and
’t Hooft’s large N expansion was one these indications. At low energies, QCD
is a confining theory, in the sense, there are only bound states, i.e mesons and
baryons and no free quarks or gluons and there exists a linear potential between
quark and an antiquark at large distance between them and the flux lines are
confined to a flux tube or string.

It is difficult to explain the low energy regime, as the QCD coupling constant
is not a good expansion parameter, so in a hope to simplify the theory, it was
proposed by ’t Hooft to generalize SU(3) to SU(N) so that we have N colours
instead of 3 and then do perturbation in terms of parameter 1/N. Introducing
the ’t Hooft coupling which is λ = g2

YMN in which λ is held fixed as N is taken
to infinity (This limit is called ’Hooft limit) and scaling the fields we see that
the entire Lagrangian is

L =
1

g2
YM

Tr(F 2
µν + ...) =

N

λ
Tr(F 2

µν + ...). (3.2)

As a result each vertex will carry a factor propotional to N
λ and for each prop-

agator λ
N .

One can use the pictorial representation of Feynman graphs in what is called
as the “Double Line Notation” . In this, the fields in the fundamental represen-
tation of the SU(N) group are represented by qi and fields in the antifundamental
representation of the SU(N) group are represented qī where the bar is used as
the distinguishing factor and i, ī = 1...N . The fields in the adjoint representa-
tion of the SU(N) group are writen using branching rules as hermitian matrices,
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as a direct product of fundamental and antifundamental fields. Using the Feyn-
man graph notation, the oriented lines are represented using indices i, j̄ and this
enables us to write the propagators as a double line. So, Feynamn diagrams for
adjoint fields can be represented in terms of Double Lines. On analysing such
diagrams one can think of them in the following manner:-

The Propagators as the edges of some polyhedron(E)

The vertices as the vertices of this polyhedron(V)

The region bounded by the polyhedron (or closed loops) as the face of the poly-
hedron(F)
As a result each Feynman diagram will carry a factor given as

NV−E+FλE−V = NχλE−V , (3.3)

where χ = 2 − 2g is Euler characteristic for the surface corresponding to the
diagram, g being the genus of the surface. Thus we see that the ’t Hooft
expansion organizes graphs according to their topology and the perturbative
expansion of the free energy is of the form

F =

∞∑
0

N2−2gfg(λ). (3.4)

In the large N limit , it will turn out that only planar diagrams will give a
contribution of order N2 while all other diagrams gets suppressed by a factor

1
N2 .

This expansion turns out to be similar to the closed string perturbative
expansion in string theory which is [87]

Z =
∑
g≥0

g2g−2
s Zg, (3.5)

if we identify gs with 1/N.
Thus, we see how string theory might be related to gauge theory.

3.1.3 D-brane

In this section we will look at D-branes which are one of the important ingre-
dients of the AdS/CFT correspondence. They play a role in both open string
and closed string scenario.

D - branes in open string setup

In string theory, open strings are allowed for two kinds of boundary conditions -
Neumann and Dirichlet. [77,88]. Neumann boundary conditions imply the end-
points of the string is free where as the Dirichlet boundary conditions imply that
the endpoints are fixed. Now, we can have p+1 Neumann boundary conditions
where there are p spatial dimensions or d-p-1 Dirichlet boundary conditions
which imply that the endpoints are fixed on p+1 dimensional membrane called
as D-p-brane where p denotes the spatial dimensional extension. So accord-
ingly we have, p=0 called as a point like object, p=1 as string and p=2 as a
membrane. These D-p brane or D-brane (D stands for Dirichlet) are dynamical

31



in nature, having degrees of freedom on it. Now, in the regime of small string
coupling constant that is gs � 1 when we consider low energy spectrum that
is neglecting massive string excitations, then the open string spectrum corre-
sponds to a supersymmetric gauge theory living on the D-Brane. Open string
excitations which are parallel to the D-brane correspond to the gauge field while
the transverse are related to the scalar fields. Now, if we have N coincident D-
branes then the gauge group is U(N) and the coupling constant is now gsN .
Hence this N D-brane setup is valid for gsN � 1.

D - branes in closed string setup

When we generalize black hole solutions in higher dimensions allowing for some
flat directions, we call them as p - branes [77, 89, 90]. If there exists a p-brane
solution without charge then it is a Schwarzschild black hole extended on a
flat torus. If they carry charge (extremal/non-extremal) then they extend in
p spatial dimensions and they carry charge due to p + 1-form antisymmetric
tensor field and the metric is dictated by harmonic functions. As these black
branes can live in various dimensions, there can be various names for them
depending on the horizon topology. So for example, p = 0 corresponding to a
horizon is a black hole, p = 1 is called a black string and p = 2 is called a black
membrane.

Now, when we study these p - brane solutions in supergravity setup, then
these solutions turned out to be the alternative description of what is called as
D - Branes. In closed string perspective, D-branes are looked upon as solitonic
solutions in the low energy limit of SUGRA. They are then considered as sources
of gravitational field, bending the spacetime around them. This scenario works
when there is a weak curvature implying the characteristic length scale of AdS

space L to be large. Since in this case we have L4

α′2 ∝ gsN , where α′ = l2s , ls
being the string length we have the validity condition for a stack of N D-Branes
as gsN � 1.

3.1.4 Greybody factor

Another important aspect that is closely related to AdS/CFT is the calculation
of the greybody factors for black holes in the setup of D-branes [75]. Now,
generally when one calculates the differential rate of spontaneous emission of
particles from black holes, it so turns out that the absortion cross section for a
particle which is coming in form infinity does not remains constant but rather
varies. Hence, this variational nature of absorption cross section has lead to it’s
name as the greybody factor.

It was observed that the Hawking radiation can also be explained as two
open strings colliding on a D-brane and then forming a closed string which then
propagates in the bulk and that the D-Brane setup can explain the microscopic
aspects of the black hole thermodynamics which can explain these greybody
factor calculations in a neat manner.

This cross section was calculated at the tree level using D3 branes on which
lives the gauge theory and also in the supergravity context. In the both these
setups, the calculations were in agreement with each other. This beautiful
result - that green’s functions for a gauge theory can be calculated using tools
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of supergravity further boosted the research arena to better understand the
connections between gauge theory and string theory.

3.2 AdS5/CFT4 correspondence

The bouquet of ideas presented in the above section were put together beauti-
fully by Maldacena in what is now known as AdS/CFT Correspondence [75].

We consider D3 branes in 10 dimensional spacetime on which open strings
end. We consider two types of perturbative excitations in this case. The first
one is that of closed string excitations corresponding to that of excitations of
empty space and in the low energy limit, only the massless states are excited
hence the associated action would be that of supergravity.

Next, there will be open string excitations on the D brane which again in
the low energy limit would correspond to excitations of D brane itself and the
associated action in this case would be that of N = 4 U(N) supersymmteric
Yang-Mills Theory.

There would be another action term which would correspond to interaction
between the brane and bulk. Therefore the complete effective action of the
massless modes (only massless modes, as we are considering low energy,energies
lower than the string scale 1/ls) is

S = Sbulk + Sbrane + Sint, (3.6)

where Sbulk corresponds to the action related to supergravity, Sbrane corresponds
to N = 4 SYM on D3 brane and Sint corresponds to the interaction between
the bulk modes and the brane modes. Now, the Sint has terms proportional to
κ which goes as gsα

′2 → 0 as we take the low energy limit by keeping energy
fixed and taking ls → 0 or α′ → 0. So we see that in the low energy limit Sint
goes to zero and we are left with two decoupled systems - supergravity in the
bulk and SYM theory on the D3 brane.

Now, another aspect D3-branes is that they also behave like solitons in string
theory as mentioned above and it has been shown that they satisfy extremal
solution of supergravity, in the strong string coupling regime. Looking at the
metric of black brane which is

ds2 = f−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) + f1/2(dr2 + r2dΩ2

5),

F5 = (1 + ∗)dtdx1dx2dx3df
−1,

f = 1 + R4

r4 , R4 = 4πgsNα
′2.

(3.7)

Here, again we have two types of excitations in the low energy regime (from
the perpective of an observer at infinity), massless particles in the bulk and
excitations near r = 0. But in the low energy regime, because the absorption
cross section goes as ω3, these two types of excitations decouple from each
other. This decoupling can be understood as a result of the fact the wavelength
of the particle in the bulk becomes greater than that of brane and excitations
near r = 0 find it difficlut to cross the gravitational barrier and escape to the
asymptotic region. Hence, we have two decoupled regions - supergravity in the
bulk and the near horizon geometry region.
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In the near horizon case when r � R we get,

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +R2 dr
2

r2
+ r2dΩ2

5. (3.8)

From the above metric we see that the first two terms are that of AdS5 metric
while the last term is that of S5. Therefore the near horizon geometry turns
out to be that of AdS5 × S5 while asmptotically it is flat.

Now when we compare these two forms of decoupled systems and noticing
that there are free closed strings propagating in the bulk in both cases (or
supergravity), we are led to the conclusion that the N = 4 U(N) SYM field
theory in 3+1 dimensions is dual to type IIB superstring on AdS5 × S5.

Matching of Symmetries

Another piece of supporting evidence for this duality comes from matching the
symmetries from both the sides.

Now, looking at the metric for AdS5, we can see that the isometry group for
AdS5 is SO(4, 2) whereas the isometry group for S5 is SO(6). Therefore the
full symmetry group for AdS5 × S5 is SO(4, 2) × SO(6). On the field theory
side we have the conformal group in 4 dimensions. Also, the global internal
symmetry for N = 4 SYM is SU(4) is related to the SO(6) R symmetry, so the
full symmetry group on the field theory side is SO(4, 2)×SO(6) which coincides
with the symmetry group of the string theory on AdS5 × S5.

Limits and Validity

Now we will analyze the validity of the above correspondence.
A perturbative analysis for Yang-Mills theory is valid when

g2
YMN ∼ gsN ∼

R4

l4s
� 1. (3.9)

On the other side, the supergravity regime is valid when the AdS radius R is
large compared to the string length and this implies

R4

l4s
∼ gsN ∼ g2

YMN � 1. (3.10)

We also require N to be large in the supergravity regime.
So, we see that the correspondence is valid in both the cases for different

strenghths of coupling. It relates the weakly coupled field theory to the strongly
coupled gravity or vice-versa. Hence, we have “duality” here.

There are also various forms of this correspondence, which are :-

• Weak form: Correspondence is valid for large gsN , thus it is valid in the
supergravity regime but the full string theory might not be mapped to the field
theory.

•Mid-way form: Correspondence is valid for finite gsN , we can take the ’t Hooft
limit here, by keeping λ = gsN fixed and taking N →∞ limit.

• Strong form: Correspondence is valid for all values of gs and N .
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The Field-Operator Correspondence

This duality, which has been described above, becomes useful if we know how
to setup a map between String Theory or in the large N limit AdS gravity and
Field Theory.

In the bulk, in the large N limit we have the SUGRA fields and their dy-
namics is dictated by the action Ssugra[φ]. Solving their equation of motions
require the boundary value of fields φi. The classical on-shell action for SUGRA
is then given as a functional of φi. Another way to look at these φi will be as
external sources for operators Oi of the CFT. So, we see that there is a one to
one correspondence between the bulk SUGRA fields φi and the boundary CFT
operators Oi. In the general case we will see that the,
String theory partition function

Zstring(φi) =

∫
Φi|boundary=φi

DΦi e
−Sstring(φi), (3.11)

and CFT partition function〈
exp(

∫
d4x φiOi)

〉
CFT

= e−W (φi) = ZCFT (φi), (3.12)

are related as∫
Φi|boundary=φi

DΦi e
−Sstring(φi) =

〈
exp(

∫
d4x φiOi)

〉
CFT

. (3.13)

When the SUGRA approximation holds we have

e−Ssugra(φi)
∣∣∣
δSsugra=0,Φi|boundary=φi

= ZCFT (φi). (3.14)

It is to be noted that on the r.h.s, the required limit for CFT is N → ∞ and
λ→∞.

Using this relation between boundary and bulk, we can calculate correlation
functions for the field theory.

UV-IR relation

Another interesting feature of this correspondence is the scale/radius relation
also known as the UV/IR duality. Now, by analyzing the conformal transfor-
mations on the Poincaré coordinates, we can see that the radial direction in the
bulk corresponds to an energy scale in the boundary field theory. This implies
that high energy(short distance/UV) on the boundary will correspond to large
radius(IR) in the bulk, further, if we have a UV cutoff for the boundary field
theory, then it will map to an IR cutoff in the bulk. This can be seen as follows.

Now, in the case of N = 4 SYM on a unit radius S3, the number of degrees
of freedom scales as

S ∼ N2δ−3, (3.15)

where δ is the UV cutoff.
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In case of gravity, when we measure the area in terms of planck units, then
we have

Area

4GN
=
VS5R3δ−3

4GN
∼ N2δ−3, (3.16)

here, δ is related to the radial coordinate r as r = 1 − δ and since the area is
given for δ � 1, it means large radius cutoff/IR cutoff in the bulk.

The above physics relating UV parameter of the field theory to the IR of
the bulk, also showcased the underlying holographic nature of the AdS5/CFT4

correspondence explicitly.
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Chapter 4

Entanglement Entropy

In this chapter, we will look at the entanglement entropy starting from its
basic, quantum mechanical, meaning and then extending it to various setups
like QFT,CFT and also in the AdS/CFT context.

4.1 Basic concepts

We will start with the review of basic concepts of the entanglement entropy and
it’s related relevant properties [26].

4.1.1 Definition

We consider a quantum mechanical system at zero temperature and divide it
into two parts A and B such that the total Hilbert space can be written as the
direct product of the two subspaces as Htot = HA⊗HB where HA corresponds
to the subsystem A and HB corresponds to the subsystem B. Next, we consider
an observer, who has access through measurement only to the subsystem A, such
a quantum system is described by the reduced density matrix ρA as

ρA = TrBρtot, (4.1)

where ρtot = |Ψ〉〈Ψ| is the density matrix for the ground state and the trace is
only over HB .

Next, we use the von Neumann entropy of the reduced density matrix ρA
to define the the entanglement entropy of the subsystem A with respect to the
subsystem B where the DOF have been traced out, as follows

SA = −TrAρA log ρA. (4.2)

The above equation called as the “Entanglement Entropy” , which is an aspect
of the “Quantum” world, gives us a measure of the “entanglement” between the
two subsystems A and B.

Also, closely related to the von Neumann entropy is the Rényi entropy given
as

S
(n)
A =

1

1− n
ln TrρnA. (4.3)
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The two above stated entropies are related as follows

SA = lim
n→1

S
(n)
A . (4.4)

Renyi entropy is very useful for calculating the entanglement entropy.
If we want to define entanglement entropy for a system at finite temperature

where T = β−1 then we need to use the thermal density matrix ρthermal = e−βH ,
H being the total Hamiltonian of the system. It is important to stress that for
systems at finite temperature entanglement entropy contains contributions both
from quantum correlations (“quantum entanglement”) and thermal correlations.
An important point, which we will discuss in this thesis is the possibility to distill
quantum correlations out of the entanglement entropy for thermal states.

4.1.2 Properties

Some of the useful and important properties of the entanglement entropy are :-

1. When we consider the density matrix at zero temperature and bipartition of
the system is such that B is the complement of A then we have the following
condition

SA = SB . (4.5)

The above condition holds true for Rényi entropy also as we have S
(n)
A = S

(n)
B .

This condition showcases the fact the entanglement entropy is “not” an extensive
quantity hence this condition is violated at the finite temperature when the
entanglement entropy contains extensive thermal contributions.

2. If we divide the system A into two subsystems A1 and A2, which do not
intersect each other then we have the following subadditivity relation

SA1
+ SA2

≥ SA. (4.6)

The above relation can be used to define mutual information I(A1, A2) as

I(A1, A2) = SA1 + SA2 − SA ≥ 0. (4.7)

This mutual information can also be written in terms of Rényi entropy as follows

I(n)(A1, A2) = S
(n)
A1

+ S
(n)
A2
− S(n)

A ≥ 0. (4.8)

In case, they do intersect, then we have

SA1
+ SA2

≥ SA1∪A2
+ SA1∩A2

. (4.9)

3. If we have three subsystems A,B,C which do not intersect each other, then
we have the following strong subadditivity inequality

SA+B+C + SB ≤ SA+B + SB+C . (4.10)

SA + SC ≤ SA+B + SB+C . (4.11)
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4.2 Entanglement Entropy in QFT

The features discussed in the previous section holds for a generic quantum sys-
tem. In this section we consider the specific case of a quantum field theory
(QFT). We consider a quantum field theory on a manifold which has d+1 di-
mensions and has the form R × N where R corresponds to the time direction
and N corresponds to the d-dimensional space-like manifold. We then define
the subsystem A, at a fixed time t = t0, as a d-dimensional submanifold of N ,
i.e A ⊂ N and next we define submanifold B as the complement of A. So,
effectively we have the boundary of A, denoted by ∂A, dividing the manifold
N into two submanifolds A and B. Now, using eq.(4.2) we define, SA, the
entanglement entropy for the subsystem A. As this entanglement entropy has
divergent contributions in the UV, due to the short distance correlations, we
introduce an UV cutoff a. In the expression for the SA, it was found that the
leading term is proportional to the area of the boundary of A, that is ∂A [28,29]

SA = γ.
Area(∂A)

ad−1
+ subleading terms, (4.12)

where γ is a constant, depending on the system in consideration. This expression
for SA is better known as the “Area Law” and it can be interpreted by arguing
that the area between the region A and B give a measure of the correlations
which have been traced out. Since, this expression for SA is dependent on the
geometry of the submanifold A, it is also called as the geometric entropy.

It is worthy to note here that the area law has a strong resemblance to
the Bekenstein-Hawking thermodynamical entropy or the Black Hole entropy
denoted as SBH . The area law, has it’s motivational roots in the Bekenstein-
Hawking entropy which in turn is proportional to the area of the event horizon
and is given as

SBH =
Area of horizon

4GN
, (4.13)

where GN is the Newton constant.

The analogy between eqs. (4.12) and (4.13) has inspired several attempts
to give an interpretation of the Bekenstein Hawking entropy in terms of en-
tanglement of quantum fields in the black hole geometry [28, 29]. For instance,
if we say that let the subsystem B correspond to the region inside the black
hole horizon and A outside the horizon, then SBH can be looked upon as the
entanglement entropy for an observer who has access only to the region A and
traces over the DOF localized in the region B as it is inside the horizon.

However, there are differences between the Bekenstein-Hawking entropy and
the entanglement entropy. The main difference is that differently from the
entanglement entropy black hole entropy is universal. The entanglement entropy
is proportional to the number of matter fields which is not the case for the black
hole entropy. Also, the entanglement entropy includes the UV divergences which
is again not the case for the black hole entropy. One promising direction for
trying to understand the relationship between Bekenstein-Hawking entropy and
entanglement entropy is to consider entanglement entropy as originated not from
matter fields but from gravitational DOF, like e.g in the framework of induced
gravity. [30,31,91–94].
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4.3 Entanglement Entropy in two dimensional
CFT

In the previous section we saw the area law for entanglement entropy in a quan-
tum field theory, in d+1 dimensions. An important particular case of that we
obtain for d = 1. In this case the boundary between the region A and B are two
isolated points for which one cannot define an area. One can show that in the
particular case of 2D CFT’s the entanglement entropy scales logarithmically as
the length l of the subsystem A and is given as SA = c

3 log l
a , where c is the

central charge for the corresponding CFT. In order to better understand the
entanglement entropy for 2D CFT’s, it is also required to properly comprehend
the calculational mechanism for entanglement entropy in conformal field theo-
ries. So, we now move to the calculational tools for entanglement entropy in
two-dimensional CFT.

4.3.1 Replica trick

In case of two-dimensional CFT’s, entanglement entropy is calculated using the
replica trick [35].

The replica method starts by considering a lattice quantum field theory in
1 space and 1 time dimension. The lattice sites are denoted by x, which is a
discrete variable and a denotes the lattice spacing. Observables are given by
φ̂(x), eigenstates are given by |φ(x)〉 which spans the basis of the Hilbert space
and the corresponding eigenvalues are given by φ(x). H being the Hamiltonian
of the theory, the partition function at an inverse temperature β is described by
Z(β) = Tr e−βH . Next, we work in the Euclidean space and write the thermal
density matrix elements as a path integral on the imaginary time interval (0, β)
as follows

ρ(φx|φ′x′) = Z−1

∫
[dφ(y, τ)]

∏
x′

δ(φ(y, 0)−φ′x′)
∏
x

δ(φ(y, β)−φx)e−SE , (4.14)

where SE is the euclidean action.
When we normalize the above equation, in path integral framework it means

we are joining the two edges along τ = 0 and τ = β and this results in a cylinder
whose circumference is β.

We now consider a subsystem A whose points x lies in the disjoint interval
(u1, v1)....(uN , vN ). We obtain the reduced density matrix ρA by joining points
which do lie in A. As a result of this action, we will end up with an open cut for
each interval on the cylinder. Next, we take n copies of this cylinder and join
all these cylinders along the open cuts in a cyclic fashion, this entire exercise
now gives us TrρnA which can be written as

TrρnA =
Zn(A)

Zn
, (4.15)

where Zn(A) is the partition function on this n copies of cylinder. We now move
from the lattice setup to a continuum setup by letting a→ 0. When we move to
the continuum limit, we end up with fields φ(x, τ), the points can now take real
values and the cuts ui, vi now represent branch points and these n cylinders are
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now n sheeted Riemann surface. This n sheeted Riemann surface is denoted by
Rn,N where there are 2N branch points.

It so turns out, that calculating partition functions on this n sheeted Rie-
mann surfaces is not easy, hence we move the calculations to the complex plane
C as follows

ZR =

∫
Cu1,v1

[dϕ1.....dϕn] exp

[
−
∫
C

dxdτ
(
L[ϕ1](x, τ) + ....+ L[ϕn](x, τ)

)]
,

(4.16)
where

∫
Cu1,v1

means “restricted” path integral having conditions

ϕi(x, 0
+) = ϕi+1(x, 0−), x ∈ [u1, v1], i = 1....n, (4.17)

where we have n+ i ≡ i.
The lagrangian density of the multi-copy model on the complex plane
L(n)[ϕ1....ϕn](x, τ) is now expressed as a sum of lagrangian’s of the individual
n copies and is written as

L(n)[ϕ1....ϕn](x, τ) = L[ϕ1](x, τ) + ....+ L[ϕn](x, τ). (4.18)

As a result of eq.(4.16) we have local fields at (ui, 0), (vi, 0) which are called as
“Twist” fields Tn / “Anti-twist” fields T̃n. The twist field is associated with
permutation symmetry i 7→ i + 1 whereas the anti-twist field T̃n is associated
with i + 1 7→ i. These fields reflect the symmetry under the exchange of the
individual copies.
So finally, we can write the partition function in terms of these fields as

ZRn,N ∝ 〈Tn(u1, 0)T̃n(v1, 0)...Tn(uN , 0)T̃n(vN , 0)〉L(n),C. (4.19)

More importantly, we have for correlation functions on Rn,1

〈O(x, τ ; sheet i).....〉L,Rn,1 =
〈Tn(u1, 0)T̃n(v1, 0)O(x, τ)...〉L(n),C

〈Tn(u1, 0)T̃n(v1, 0)〉L(n),C

, (4.20)

where O is a field in the multi-copy model L(n), representing L on the ith sheet.
The above expression takes care of the proportionality constants and the same
will be valid in the case of Rn,N , with added products of twist/anti-twist fields.

Going ahead further, we can define ϕ̃k =
n∑
j=1

e2πi kn jϕj , k = 0, 1, .., n − 1

which diagonalize the twist/anti-twist operator as follows

Tnϕ̃k = e2πi kn ϕ̃k, (4.21)

T̃nϕ̃k = e−2πi kn ϕ̃k. (4.22)

When the various values of k decouple, then the total partition function can be
written as a product of partition function of individual k

ZR =

n−1∏
k=0

〈Tk,n(u1, 0)T̃k,n(v1, 0)....〉L(n),C, (4.23)
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where we now have Tk,nϕ̃k = e2πi kn ϕ̃k, T̃k,nϕ̃k = e−2πi kn ϕ̃k and

Tn =

n−1∏
k=0

Tk,n, T̃n =

n−1∏
k=0

T̃k,n. (4.24)

After calculating TrρnA for positive integral n, using twist/anti-twist operators,
the final step to calculate the entanglement entropy SA, now involves taking the
derivative of TrρnA w.r.t n and then take the limit n→ 1 and is given as follows

SA = − lim
n→1

∂

∂n
TrρnA = lim

n→1
S

(n)
A , (4.25)

where S
(n)
A is the Rényi entropy.

4.3.2 Entanglement entropy for a single interval

We first consider N = 1 and a two dimensional euclidean space with a planar
topology implying that there is a single interval [u, v] of length l ≡ |u− v| [35].
This interval lies on an infinitely long one dimensional quantum system at zero
temperature and one can use w, w̄ as the complex coordinate on this system in
the following manner : w = x+ iτ , w̄ = x− iτ . So, this system is the n-sheeted
Riemann surface Rn,1 and next, we will map this system on the complex plane
C where the coordinates are z, z̄.

We start this mapping by considering the holomorphic component of the
stress tensor and the relation is

T (w) =
( dz
dw

)2

T (z) +
c

12
{z, w}, (4.26)

where {z, w} is the Schwarzian derivative.
Next, we proceed with the expectation value of this stress tensor and using the
above relation we get

〈T (w)〉Rn,1 =
c

12
{z, w} =

c(n2 − 1)

24n2

(v − u)2

(w − u)2(w − v)2
, (4.27)

as 〈T (z)〉C = 0 because of translation and rotation invariance.
Now, using eq. (4.20), the expectation value of the stress tensor is mapped to
the z-plane C where we have n copies of 〈T (w)〉 and we get

〈Tn(u, 0)T̃n(v, 0)T (n)(w)〉L(n),C

〈Tn(u, 0)T̃n(v, 0)〉L(n),C

=
c(n2 − 1)

24n

(v − u)2

(w − u)2(w − v)2
, (4.28)

where we have multiplied the r.h.s of the above equation by n.
Next, on comparing eq. (4.28) with the conformal Ward identity, we will see
that the correlation function of twist/anti-twist fields 〈Tn(u, 0)T̃n(v, 0)〉L(n),C

behaves like a two point function of the primary operators

〈Tn(u, 0)T̃n(v, 0)〉L(n),C = |u− v|−2dn , (4.29)

where dn is the scaling dimension and is given as dn = c
12

(
n− 1

n

)
.

Now, using eqs. (4.15),(4.19) and the above stated behaviour, we get

TrρnA = cn

(
v − u
a

)−c(n−1/n)/6

, (4.30)

42



where a has been used to make the results dimensionless and cn are constants.
We use eq. (4.3) along with (4.30) to compute the Rényi entropy which is as
follows

S
(n)
A =

c

6

(
1 +

1

n

)
log

l

a
+ c′n, (4.31)

where c′n ≡
log cn
1−n .

Finally, taking the limit n → 1, as given in eq. (4.4), we get the entanglement
entropy

SA =
c

3
log

l

a
+ c′1 (4.32)

Finite temperature

We can go ahead further and extend this result obtained in the zero temperature
case for a single interval to the case of finite temperature [35]. To do so, we will
now consider a 2D Euclidean space having the toplogy of an infinite cylinder,
with compact euclidean time dimension of circumference β and take the single
interval along the axis of this infinite cylinder of circumference β, which means
the system has periodic boundary conditions for the temporal axis. Here, β also
stands for the inverse temperature. To map coordinates from the cylindrical
geometry to the complex plane, we will use the conformal map

w = (β/2π) log z, (4.33)

where w lies on the cylinder and z on the plane. This will map the interval
“along the axis” of the cylinder.
To map the two point function we will use the following relation

〈Tn(z1, z̄1)T̃n(z2, z̄2)〉 = |w′(z1)w′(z2)|dn〈Tn(w1, w̄1)T̃n(w2, w̄2)〉. (4.34)

Using eqs. (4.33),(4.34) we can extract TrρnA in a thermal mixed state existing
at a finite temperature β−1 and consequently SA as

SA =
c

3
log

(
β

πa
sinh

πl

β

)
+ c′1. (4.35)

For low temperature regime, when l � β eq. (4.35) can be approximated and
we have

SA =
c

3
log

l

a
+ c′1. (4.36)

On the other hand, for large temperature regime, when l� β, from eq. (4.35),
we have

SA =
πcl

3β
+ c′1. (4.37)

So, we see that at high temperatures thermal correlations dominates over quan-
tum correlations and von Neumann entropy converts into the expected (exten-
sive) form of Gibbs thermal entropy for a 2D QFT.
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Finite size

Let us now consider the case in which the 2D euclidean space has cylindric
toplogy but with a compact “space” dimension and the single interval lies along
the circumference of this infinite cylinder. In this case, the circumference is
denoted by Lcir and β is now aligned along the axis of the cylinder. So, now we
have an interval of length l on a finite 1D system whose length is Lcir and this
system has periodic boundary conditions for the spatial axis. Physically, this
means that the subsystem A is at zero temperature and has a finite size since
the interval lies along the circumference.
In this case we have to use the following conformal map

w = (iLcir/2π) log z, (4.38)

where w lies on the cylinder and z on the plane.
Using eq. (4.34) and (4.38), we get SA as

SA =
c

3
log

(
Lcir
πa

sin
πl

Lcir

)
+ c′1. (4.39)

Notice, that eq. (4.39) is symmetric under the exchange of l → Lcir − l, which
is expected, as this is a pure state and must respect SA = SB where B in this
case would be the system with length Lcir − l. We also see from (4.39) that the
entanglement entropy is maximal when l = Lcir

2 and reduces to eq. (4.32) when
we take Lcir →∞.

Finite temperature and Finite size

Let us now consider the case in which we have a 2D CFT at a finite temperature
and size. If, we want the underlying geometry of the total system to be finite in
extent and also at finite temperature, then we need to have periodic boundary
conditions for both spatial and temporal axis. This action of imposing periodic
boundary conditions on both space and time means we have the topology of
the torus. Now, differently from the cylinder case correlation function on torus
are not universal, as they depend on the full operator content of the conformal
field theory. Moreover, we don’t have any maps to move from plane to torus
so calculation of correlation function on torus is of non-trivial nature. The
computation has therefore to be performed case by case.

In [32], the authors have calculated the entanglement entropy on a torus for
the case of massless Dirac fermion where β is the periodicity for the compact
temporal direction and the total/finite length for the non-compact spatial direc-
tion is taken to be 1. The single interval of length L lies along the non-compact
spatial direction. For their calculations, the authors have used the following
relation

TrρnA =

n−1∏
k=0

〈Tn,k(z, z̄)T̃n,k(0, 0)〉. (4.40)

This is the representation of the partition function that we had initially seen in
(4.23).
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The form of the two point function is

〈Tn,k(l)T̃n,k(0)〉 =

∣∣∣∣∣2πη(τ)3

θ1(L|τ)

∣∣∣∣∣
2k2

n2 |θν(kLn |τ)|2

|θν(0|τ)|2
, (4.41)

where θ is the Jacobi theta function and η is the Dedekind eta function. This
relation is valid for ν = 2, 3, 4 fermionic sector. We see that as k enters in the
argument of the theta function, the analytic continuation is difficult and so we
can obtain closed expressions in high and low temperature expansions only. In
case of high temperature expansion for ν = 3 we have

SA = 1
3 log

[
β
πa sinh πL

β

]
+ 1

3

∞∑
m=1

log (1−e2πL/βe−2πm/β)(1−e−2πL/βe−2πm/β)
(1−e−2πm/β)2

+2
∞∑
l=1

(−1)l

l

πLl
β coth

(
πLl
β

)
−1

sinh

(
πl
β

) .

(4.42)
If we take an infinite spatial extent, then we move from torus to an infinite
cylinder and accordingly from eq. (4.42) we will get the leading term for SA as

SA =
1

3
log

[
β

πa
sinh

πL

β

]
. (4.43)

which as expected coincides with the result (4.35). When we try to extract
the finite piece for SA then as expected, the leading term turns out to be the
thermal entropy π

3β .
In case of low temperature expansion for ν = 3 we have

SA = 1
3 log

[
1
πa sin(πL)

]
+ 1

3

∞∑
m=1

log (1−e2πiLe−2πβm)(1−e−2πiLe−2πβm)
(1−e−2πβm)2

+2
∞∑
l=1

(−1)l−1

l
1−πlL cotπlL

sinh(πlβ) .

(4.44)

and at zero temperature, eq. (4.44) reduces to

SA =
1

3
log

[
1

πa
sin(πL)

]
. (4.45)

which as expected coincides with the result (4.39).

4.4 Holographic Entanglement Entropy

In the previous sections, we came across entanglement entropy in QFT’s and also
in the context of CFT’s, we now move on to understand entanglement entropy
in the the context of the AdS/CFT correspondence. The holographic setup
for calculations of the entanglement entropy is very useful from two different
perspectives. First, one can use the bulk gravitational theory to calculate the
entanglement entropy of the dual QFT living in the boundary. As we will see
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this is a very powerful tool, which allows entanglement entropy computations
in terms of bulk geometric quantities. Second, one can use the holographic
correspondence in the other direction. One can try to understand quantum
entanglement in the bulk gravitational background by using the dual QFT.
This approach is particularly useful for tackling difficult problems suach as the
above-mentioned problem of the realtionship between entanglement entropy and
Bekenstein-Hawking entropy for black holes.

Using the AdS/CFT duality, the idea to calculate entanglement entropy for a
given CFT using gravitational tools was originally proposed by Ryu-Takayanagi
[25]. According to their proposal, the entanglement entropy SA for a subsystem
A on d+ 1 dimensional CFT is given as

SA =
Area(γA)

4G
(d+2)
N

, (4.46)

where γA is a d dimensional spacelike surface having minimal surface area in
the bulk AdSd+2 and γA is constructed in such a way that, if it’s boundary is
denoted by ∂γA then we have ∂γA = ∂A, where ∂A is the d − 1 dimensional

boundary of subsystem A lying on the boundary CFT and G
(d+2)
N is the d + 2

dimensional Newton constant.
As an explanation of eq. (4.46) we note that on the CFTd+1, we divide

the system into two parts A,B. SA then stands for the entanglement entropy
relative to the observer in A for whom the region B is inaccessible as it’s degrees
of freedom have been traced over. The boundary ∂A is then extended inside
the bulk such that we have a manifold γA satisfying ∂γA = ∂A and whose
surface area picks up the minimal value. On the bulk gravity side, γA serves as
a holographic screen which covers the region B, inside the AdS space. The idea
of saturation of the entropy bound is reflected in the fact that the eq. (4.46)
picks the surface which has the minimal area [26].

4.4.1 Holographic Entanglement Entropy in AdS3/CFT2

We consider AdS3/CFT2 as it is one of the simple and well-understood setups for
calculating the holographic entanglement entropy [25,26,42]. Also, AdS3/CFT2

has the advantage that the holographic results can be cross-checked against the
2D CFT results which we have discussed in the previous section. Going by the
AdS/CFT correspondence, the central charge of the 2D CFT is related to R,
the radius of AdS3 [95] as

c =
3R

2G
(3)
N

, (4.47)

where G
(3)
N is the three dimensional Newton constant.

At the AdS3 boundary, the metric is divergent, so we need to introduce a
cutoff ρ0 for regularization purpose. This means that our physical space is now
restricted as we have ρ ≤ ρ0. According to the IR/UV relation discussed in the
previous section, this procedure of introducing cutoff in the bulk corresponds
to having a UV cutoff for the dual CFT [96, 97]. If L is the total length of the
system and a is the UV cutoff in the dual CFT then we have

eρ0 ∼ L/a. (4.48)
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We have seen in chapter 1. that 3D gravity with a negative cosmological
constant allows for three different classes of solutions namely pure AdS3 in
Poincaré and global coordinates and the BTZ black hole. To these different bulk
solutions there will correspond a dual 2D CFT living on different boundaries.
The use of the Ryu-Takayanagi formula (4.46) will therefore produce a different
result for the three cases. In case of pure AdS3, the dual 2D CFT lives on an
infinite cylinder with compact dimension along the spacelike direction. Infinite
plane corresponds to a 2D CFT at zero temperature with infinite spacelike
direction. In the case of the AdS3 black hole, the dual CFT lives on an infinite
cylinder with compact dimension along the time-like direction. This corresponds
to a 2D CFT at a finite temperature with infinite spacelike direction. In all of
these cases the minimal surface γA turns out to be one dimensional spacelike
geodesic connecting the two points on the boundary. So, in order to calculate
SA we simply need to calculate the length of this spacelike geodesic and use this
length as the Area(γA) in eq. (4.46) and later make use of eqs. (4.47),(4.48) to
match it against the CFT results. We will discuss the three cases separately.

Zero Temperature - Poincaré Coordinates

We now proceed to calculate the holographic entanglement entropy at zero tem-
perature when the dual boundary CFT lies on a plane, hence we use the Poincaré
metric for AdS3

ds2 =
R2

z2
(−dt2 + dz2 + dx2). (4.49)

Here, the space is spanned by (t, x) and x lies in the range −∞ < x < ∞.
The subsystem A has length l and it’s endpoints are (x1, z) = (−l/2, a) and
(x2, z) = (l/2, a). The geodesic between these two points is given by the half
circle

(x, z) =
l

2
(cos s, sin s), (ε ≤ s ≤ π − ε), (4.50)

where ε = 2a
l and the length of the geodesic is given as

Length(γA) = 2R

π/2∫
ε

ds

sin s
= −2R log(ε/2) = 2R log

l

a
. (4.51)

The holographic entanglement entropy is given as

SA =
Length(γA)

4G
(3)
N

=
c

3
log

l

a
(4.52)

We see that the above eq. (4.52) matches with the CFT result as obtained in
(4.32).

Zero Temperature - Global Coordinates

Moving on, we will now calculate the holographic entanglement entropy at zero
temperature when the dual boundary CFT lies on an infinite cylinder with
compact space-like direction, hence we use the AdS3 metric in global coordinates

ds2 = R2(− cosh ρ2dt2 + dρ2 + sinh ρ2dθ2). (4.53)
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Here, cylinder is spanned by (t, θ) at the boundary ρ = ρ0. The subsystem A
has length l and the total length of the system is L. The endpoints of A are
θ = 0 and θ = 2πl

L . The length of the geodesic LγA is given as

cosh

(
LγA
R

)
= 1 + 2 sinh ρ2

0 sin2
(πl
L

)
. (4.54)

Considering large UV cutoff, we have eρ0 � 1 and consequently, the holographic
entanglement entropy is given as

SA '
R

4G
(3)
N

log

(
e2ρ0 sin2

(πl
L

))
=
c

3
log

(
eρ0 sin

(πl
L

))
. (4.55)

Next, using eq. (4.48), finally we can have

SA =
c

3
log

(
L

πa
sin
(πl
L

))
. (4.56)

We see that the above eq. (4.56) matches with the CFT results as obtained in
(4.39).

Finite Temperature - Global Coordinates

We now move on to calculate holographic entanglement entropy at finite tem-
perature when the dual boundary CFT lies on a cylinder of circumference β and
the length of the total system L is infinite such that β/L � 1. At such high
temperature, the bulk configuration corresponds to the Euclidean BTZ black
hole [81] as discussed in chapter 1, whose metric is

ds2 = (r2 − r2
+)dτ2 +

R2

(r2 − r2
+)
dr2 + r2dϕ2, (4.57)

where ϕ has the periodicity ϕ ∼ ϕ+ 2π and to obtain a smooth geometry, the
Euclidean time is compactified as τ ∼ τ + 2πR

r+
. When we take the boundary

limit r →∞, we get the relation between the boundary CFT and the bulk BTZ
black hole

β

L
=

R

r+
� 1. (4.58)

The subsystem A has endpoints ϕ = 0 and ϕ = 2πl
L . Now, to find the geodesic

distance we notice that the Euclidean BTZ black hole at a temperature T is
dual to a thermal AdS3 at a temperature 1/T , this duality can be achieved
through a modular transformation on the CFT side [98]. Next, we define new
coordinates

r = r+ cosh ρ, r+τ = Rθ, r+ϕ = Rt, (4.59)

such that eq. (4.57) becomes the Euclidean version of the AdS3 metric (4.53).
Using this Euclidean version of AdS3 metric, the geodesic length LγA is given
as

cosh

(
LγA
R

)
= 1 + 2 cosh ρ2

0 sinh2
(πl
β

)
, (4.60)
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where we have eρ0 ∼ β/a.
Using (4.46), the holographic entanglement entropy is now given as

SA(β) =
c

3
log

(
β

πa
sinh

(πl
β

))
. (4.61)

We see that the above eq. (4.61) matches with the CFT results as obtained in
(4.35). The geodesic for various lengths of A takes shape [42] as shown in
Fig. 4(a) when it coincides with that of normal AdS3. If the subsystem length
becomes very large, then eventually the geodesic will cover a part of the horizon.
When this happens, we start seeing a thermal extensive behaviour because now
l/β � 1. So, we see that under AdS/CFT duality the thermal entropy for a
boundary CFT is dual to the black hole entropy in the bulk gravity. When there
is a horizon, then geodesics corresponding to SA and SB (B is the complement
of A) cover different parts of the horizon, so then, SA is no longer equal to SB
as shown in Fig. 4(b). This violation of SA = SB is expected as the system
is now composed of mixed states. Also, when the length of A becomes large
enough, such that it equals the total system length then γA will break into two
pieces, one will wrap the horizon completely and the other will be hinged at the
boundary as shown in Fig. 4(c).

Figure 4 : Geodesic nature for various lengths of A.
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Chapter 5

Entanglement Negativity

When we consider entanglement for a quantum system which is in pure state
then the von Neumann entropy or the entanglement entropy serves as a good
measure to capture entanglement. But when we consider mixed state, then
the entanglement entropy contains an extensive thermal entropy term and fails
to give an appropriate measure of quantum correlations [56, 59]. Also, it has
been shown by Werner in [99] that mixed states do no always violate Bell’s
inequality. Because of these issues, there is the need to define a new measure
to characterize entanglement for mixed states and this new measure called as
negativity was provided by Vidal and Werner [54]. We will discuss entanglement
negativity in various setups in this chapter.

5.1 Basic concepts

The starting point for entanglement negativity is the identification of a pa-
rameter analogous to the Bell’s inequality through which we can characterize
quantum entanglement in mixed states. To detect whether a given state is en-
tangled or not, we need a separability criterion and for mixed states we use
positive partial transpose criterion also known as PPT.

For PPT, we consider a bipartite system whose Hilbert space is written as
a tensor product HL ⊗HR [59]. The basis for HR is |τa〉 where
a ∈ {1, 2..,dim(HR)} and basis for for HL is |eα〉 where α ∈ {1, 2..,dim(HL)}.
The matrix elements for a density matrix ρ, in this basis can be written as

ρaα,bβ = 〈τaeα|ρ|τbeβ〉. (5.1)

We define the partial transpose of the density matrix, ρΓ, with respect to the
left subsystem as

ρΓ
aα,bβ = ρaβ,bα = 〈τaeβ |ρ|τbeα〉. (5.2)

If ρΓ has non-negative eigenvalues, then ρ has positive partial transpose (PPT).
Then, as put forth by Peres [100] we have that when ρ has PPT, then ρ is
separable.

To understand the Peres criterion better, we start with the fact that the
density matrix ρ and it’s transpose will have the same non-negative eigenvalues.
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Let us now write a two particle state, which is separable, as a tensor product of
two single particles

ρ12 =
∑
n

pn ρ1n ⊗ ρ2n. (5.3)

Now, as the single particle states have non-negative eigenvalues, we expect that
the two particle state density matrix ρ12 must also have all non-negative eigen-
values.

We now consider another density matrix σ which is built by taking partial
transpose of only a single particle state in the two particle state density matrix
ρ12

σ12 =
∑
n

pn (ρ1n)T ⊗ ρ2n. (5.4)

Recalling, now that the (ρ1n)T has the same non-negative eigenvalues as ρ1n,
we expect that σ12 will also possess all non-negative eigenvalues and in case it
has a negative eigenvalue then σ12 is not separable. Thus, we see that if ρ has
PPT then it is considered separable.

Another property associated with the PPT criterion is that ρ is undistillable
if ρ has PPT [101]. “Undistillable” here means that it is not possible to extract
any pure entanglement, in case we are able to extract, then we have “distillable”
entanglement and the measure of this “distillable” entanglement is called as
negativity. So, entanglement negativity can be seen a measure of the amount of
violation of the PPT criterion and it is defined as

N (ρ) =
‖ρΓ‖ − 1

2
, (5.5)

where ‖ρΓ‖ is the trace norm and represents sum of the absolute values of the
eigenvalues of ‖ρΓ‖ i.e. ‖ρΓ‖ = Tr|ρΓ|. So, if we have

Tr(ρΓ) =
∑
i

λ
(+)
i +

∑
j

λ
(−)
j ≡ 1 = Tr(ρ), (5.6)

then going by the definition of negativity we have,

N (ρ) =
1

2

(∑
i

|λ(+)
i |+

∑
j

|λ(−)
j | − 1

)
=
∑
j

|λ(−)
j |, (5.7)

implying negativity is the sum of the absolute values of the negative eigenvalues
of ρ.

We also have logarithmic negativity which is defined as

E(ρ) = log ‖ρΓ‖, (5.8)

which gives an upper bound of the distillable entanglement. Further, we have

E(ψmax) = S(ρR,Lmax), (5.9)

implying that for a maximally entangled state ψmax present in a bipartite sys-
tem, the logarithmic negativity is equal to the entanglement entropy of the
reduced density matrix ρR,Lmax of one of the subsystems.
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5.2 Entanglement Negativity in CFT

In the previous chapter, we have described the replica trick which is used to
calculate the entanglement entropy in CFT’s. In this section we will see how
to compute the entanglement negativity using a modified version of this replica
trick as in the case of entanglement negativity we have the notion of partial
transpose which is absent for entanglement entropy [56].

5.2.1 E and parity of n

To begin with, we consider a density matrix ρ for a bipartite system whose

Hilbert space is written as H = H1⊗H2 and |e(1)
i 〉 and |e(2)

j 〉 are the correspond-
ing bases for each of the Hilbert space. We next define the partial transpose of
ρ with respect to the second Hilbert space as follows

〈e(1)
i e

(2)
j |ρ

T2 |e(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρ|e

(1)
k e

(2)
j 〉. (5.10)

Let us consider the trace of (ρT2)n in terms of the parity of n, as follows

Tr(ρT2)ne =
∑
i

λnei =
∑
λi>0

|λi|ne +
∑
λi<0

|λi|ne ,

Tr(ρT2)no =
∑
i

λnoi =
∑
λi>0

|λi|no −
∑
λi<0

|λi|no ,
(5.11)

where ne stands for even n and no stands for odd n. If we put no = 1 in the
above equation, we get the normalization Tr(ρT2) = 1 and we put ne = 1, then
we have

Tr(ρT2) =
∑
λi>0

|λi|+
∑
λi<0

|λi| =
∑
i

|λi| = Tr|ρT2 |. (5.12)

Using the analytic continuation for even n i.e ne → 1, we can get

E = lim
ne→1

ln Tr(ρT2)ne . (5.13)

The above equation tells us that only even n needs to be considered for calcu-
lating E .

Moving on, we consider the case of a pure state |ψ〉, which in terms of the
bases is given as

|ψ〉 =
∑
j

cj |e(1)
j e

(2)
j 〉, (5.14)

where the coefficient cj ∈ [0, 1]. The density matrix ρ = |ψ〉〈ψ| is given as

ρ =
∑
i,j

cicj |e(1)
j e

(2)
j 〉〈e

(1)
i e

(2)
i |, (5.15)

and it’s partial transpose with respect to the second space is

ρT2 =
∑
i,j

cicj |e(1)
j e

(2)
i 〉〈e

(1)
i e

(2)
j |. (5.16)
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The n-th power of ρT2 is

(ρT2)n =


∑
i1,j1

cnoi1 c
no
j1
|e(2)
i1
e

(1)
j1
〉〈e(2)

j1
e

(1)
i1
|, n = no odd,

∑
i1,j1

cnei1 c
ne
j1
|e(2)
i1
e

(1)
j1
〉〈e(2)

i1
e

(1)
j1
|, n = ne even,

(5.17)

and the resulting trace is

Tr(ρT2)n =


∑
r
c2nor = Trρno2 , n = no odd,

[∑
r
cner

]2
=
(

Trρ
ne/2
2

)2

, n = ne even,

(5.18)

where ρ2 = Tr1(ρ) =
∑
j

c2i |e
(2)
i 〉〈e

(2)
i |.

If, we now do the analytic continuation for odd n i.e no → 1, we have the
normalization Tr(ρT2) = Trρ2 = 1.
For ne → 1, we have the following result for the pure state

E = 2 ln Trρ
1/2
2 = S

(1/2)
A2

. (5.19)

The above equation says that for a pure state the entanglement negativity is
equal to the Rényi entropy of order 1/2 and thus we see a confirmation of the
statement conveyed through eq. (5.9).

5.2.2 Partial Transpose

We move on with the calculation of entanglement negativity for a ground state
in a one dimensional system when we have the tripartition of the system into
A1, A2 and B as shown in Fig. 5 below [56].

Figure 5 : Tripartition of the system into A1, A2 and B.

We consider the entanglement between A1 and A2 whose union is A i.e. A1 ∪
A2 = [u1, v1]∪ [u2, v2] = A and the complementary is B. We have the following
reduced density matrix

ρ1 ≡ ρA1 = TrA2(ρA) = TrB∪A2(ρ),
ρ2 ≡ ρA2

= TrA1
(ρA) = TrB∪A1

(ρ).
(5.20)

We denote the form of the reduced denisty matrix after partial transpose with
respect to A1 degree of freedom as

ρ
TA1

A = ρT1

A , (5.21)
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and with respect to A2 degree of freedom as

ρ
TA2

A = ρT2

A . (5.22)

If we use the replica trick as mentioned previously for calculating entanglement
entropy, for two disjoint intervals we have

TrρnA = 〈Tn(u1)T n(v1)Tn(u2)T n(v2)〉C. (5.23)

In order to obtain partial transpose we need to interchange the upper edge with
the lower edge of the second cut as shown in the middle of Fig. 6 [56]. If we
now join cyclically n copies of such interchanged edges, i.e ρT2

A , we will have an
n sheeted Riemann surface which will have reversed order of row and column
indices as compared to the initial one, this problem is solved by again reversing
the order of row and column indices in A2 as shown in the bottom of Fig. 6.
This is now called as reversed partial transpose ρC2

A and it’s relation with the

partial transpose is ρC2

A = CρT2

A C where C will reverse the order of indices either
on the upper or on the lower edge and C2 = 1.

Figure 6: Top: The reduced density matrix ρA for 2 disjoint intervals.
Middle: The partial transpose with respect to the second interval ρT2

A .

Bottom: The reversed partial transpose ρC2

A .

As Tr(ρT2

A )n = Tr(ρC2

A )n, we can join cyclically n of ρC2

A , to get Tr(ρT2

A )n as
the partition function on this n sheeted Riemann surface as shown in
Fig. 7 [56].
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Figure 7: Tr(ρT2

A )n = Tr(ρC2

A )n for n = 3.

Finally, the four point function of the twist/anti-twist fields can now be written
as

Tr(ρT2

A )n = Tr(ρC2

A )n = 〈Tn(u1)T n(v1)T n(u2)Tn(v2)〉C. (5.24)

We see that as compared to eq. (5.23), the act of partial transpose exchanges
the twist with the anti-twist field for the second interval. For n = 2, we have
T2 = T 2, hence Trρ2

A = Tr(ρT2

A )2.

5.2.3 Single Interval - Pure state

To move from two disjoint intervals to a single interval for a pure state we let
B → ∅ as we consider u2 → v1 and v2 → u1 which results in

Tr(ρT2

A )n = 〈T 2
n (u2)T 2

n(v2)〉. (5.25)

The above equation is dependent on the parity on n as T 2
n connects the

(i)-th sheet with (i+ 2)-th one. So for the even case i.e n = ne, the ne sheeted
Riemann surface decouples into two independent ne/2 sheeted Riemann surface
while for the odd case, finally, we have no sheeted Riemann surface as shown in
Fig. 8 [56].
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Figure 8 : Left is for even, where we see decoupling. Right is for odd, where
we see reshuffling.

As a result of this parity dependence, we have

Tr(ρT2

A )ne = (〈Tne/2(u2)T ne/2(v2)〉)2 = (Trρ
ne/2
A2

)2,

Tr(ρT2

A )no = 〈Tno(u2)T no(v2)〉 = TrρnoA2
,

(5.26)

which matches with the results in eq. (5.18). It is worthy to note here that
the above result was obtained in a field theoretic context, showing the relation
between the Riemann surface and the parity of n.
Next, we put l = v2 − u2 and use

TrρnA = 〈Tn(u)T n(v)〉 = cn

( l
a

)−c/6(n−1/n)

, (5.27)

where cn are constants to have

Tr(ρT2

A )ne = (〈Tne/2(u2)T ne/2(v2)〉)2 = (Trρ
ne/2
A2

)2 = c2ne/2
(
l
a

)− c3 (ne/2−2/ne)
,

Tr(ρT2

A )no = 〈Tno(u2)T no(v2)〉 = TrρnoA2
= cno

(
l
a

)− c6 (no−1/no)
,

(5.28)
where we have used the fact that the conformal dimensions have the following
form

For n = ne, even, T 2
ne and T 2

nehave dimensions
∆T 2

ne
= ∆T 2

ne

= c
6

(
ne
2 −

2
ne

)
,

For n = no, odd, Tno and T nohave dimensions
∆Tno = ∆T no

= c
12

(
no − 1

no

)
.

(5.29)

We do the analytic continuation for even n i.e. ne → 1 to have

‖ρT2

A ‖ = lim
ne→1

Tr(ρT2

A )ne = c21/2

( l
a

) c
2 ⇒ E =

c

2
ln
( l
a

)
+ 2 ln c1/2. (5.30)
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The Rényi entropy is

TrρnA2
= cn

(
l
a

)−c/6(n−1/n)

and for n = 1/2,we have

Trρ
(1/2)
A2

= c1/2

(
l
a

)−c/6(1/2−2)

,

So, 2 ln Trρ
(1/2)
A2

= S
(1/2)
A2

= c
2 ln

(
l
a

)
+ 2 ln c1/2.

(5.31)

By looking at the eqs. (5.30),(5.31), we see that for the pure states the loga-
rithmic negativity E matches with the Rényi entropy of order 1/2, which is the
same result we had obtained earlier in eq. (5.19).

If we do the analytic continuation for odd n i.e. no → 1, we get the normal-
ization TrρT2

A = 1.

5.2.4 Single Interval - Mixed state

Let us now consider the case of a single interval for a CFT at finite temperature,
we therefore consider the mixed state. We take a bipartite system, A having
finite interval and B being rest of the system. We will evaluate the correlation

function, 〈Tn(−L)T 2

n(−l)T 2
n (0)T n(L)〉 on an infnite cylinder of circumference

β = 1/T , along the imaginary time axis [58]. To move from the complex plane
to the cylinder we use the map

z → w = (
β

2π
) ln z, (5.32)

where z is the coordinate on the complex plane and w is the coordinate on the
cylinder. Under the map (5.32), the correlation function transform as

〈Φ1(z1, z̄1)Φ2(z2, z̄2)...〉 =
∏
j

|w′(zj)|∆j 〈Φ1(w1, w̄1)Φ2(w2, w̄2)...〉. (5.33)

So, effectively our correlation function is

〈Tn(−L)T 2

n(−l)T 2
n (0)T n(L)〉β

=
(2π

β

)2∆n+∆(2)
n 〈Tn(e−2πL/β)T 2

n(e−2πl/β)T 2
n (1)T n(e2πL/β)〉C

e2π∆
(2)
n l/β

.
(5.34)

Now, using the properties of OPE’s one can also have the following form for a
four point function

〈Tn(z1)T 2

n(z2)T 2
n (z3)T n(z4)〉 =

cnc
(2)
n

z2∆n
14 z2∆

(2)
n

23

Fn(x)

x∆
(2)
n

, (5.35)

where zij = |zi − zj | and x is the cross ratio, given as x ≡ z12z34

z13z24
. Using eqs.

(5.34) and (5.35), we have the following

〈Tn(e−2πL/β)T 2

n(e−2πl/β)T 2
n (1)T n(e2πL/β)〉C

=
cnc

(2)
n

(2 sinh(2πL/β))2∆n(1− e−2πl/β)2∆
(2)
n

Fn(x)

x∆
(2)
n

.
(5.36)
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Finally, using eqs. (5.36) and (5.34), we have

〈Tn(−L)T 2

n(−l)T 2
n (0)T n(L)〉β

= cnc
(2)
n

[
β

π
sinh

(
πl

β

)]−2∆(2)
n
[
β

π
sinh

(
2πL

β

)]−2∆n

Fn(x)

x∆
(2)
n

.
(5.37)

We now take the replica limit

lim
ne→1

ln[〈Tn(−L)T 2

n(−l)T 2
n (0)T n(L)〉β ]

=
c

2
ln

[
β

πa
sinh

(
πl

β

)]
+
c

4
ln(x) + f(x) + constants,

(5.38)

where we have introduced the UV cutoff a and f(x) = lim
ne→1

ln[Fne(x)]. Also,

for the above equation, we have used the fact that in the replica limit ne → 1,

∆ne → 0 and ∆
(2)
ne → − c

4 . If we now take the limit L → ∞ for eq. (5.38), we
have

E =
c

2
ln

[
β

πa
sinh

(
πl

β

)]
− πcl

2β
+ f(e−2πl/β) + constants, (5.39)

where we have lim
L→∞

x = e−2πl/β . The above equation maybe rewritten as

E =
3

2

[
SA − SthA

]
+ f(e−2πl/β) + constants, (5.40)

where SA = c
3 ln

[
β
πa sinh

(
πl
β

)]
is the entanglement entropy and SthA = πcl

3β

is the thermal entropy. So, we see that at finite temperature E separates out
the quantum and the classical thermal correlations as expected. Also, at large
temperature, as the first two terms cancel each other, we will be left with no
quantum correlations, hence E = 0.

5.2.5 Holographic Entanglement Negativity for Single In-
terval - Mixed State

Recently, a holographic form for the single interval entanglement negativity
in a 2D CFT at mixed state has been proposed in [61, 62]. Similarly to the
Ryu-Takayanagi proposal this conjecture allows us to compute entanglement
negativity for intervals in the dual CFT in terms of geodesic lenghts in the bulk
gravity theory. In this section, we will describe their conjecture and review the
holographic calculations for AdS3/CFT2 which reproduces the leading term in
eq. (5.40) in the large central charge limit.

Conjecture

On the boundary CFT2, we consider the partition of the system into spacelike
slices A and Ac = B. We have B1 and B2, such that B = B1 ∪ B2. These are
two finite intervals, present on the two sides of A as shown in Fig. 9 [61].
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Figure 9 : Partitioning of the system alongwith the corresponding geodesics.

Now, the two point function in terms of twist fields can be expressed as

〈Tne(zi)T ne(zj)〉C =
cne

z
∆ne
ij

. (5.41)

Using the AdS/CFT correspondence, we can relate the two point function in
the above equation with the length of the geodesic Lij in the bulk AdS3 whose
endpoints are (zi, zj) on the boundary CFT as follows

〈Tne(zi)T ne(zj)〉C ∼ e
−∆neLij

R . (5.42)

Looking at Fig. 9, we have

L12 = LB1 ,
L23 = LA,
L34 = LB2

,
L13 = LA∪B1

,
L24 = LA∪B2

,
L14 = LA∪B .

(5.43)

Using eqs. (5.35),(5.42) and (5.43), we obtain

〈Tne(z1)T 2

ne(z2)T 2
ne(z3)T ne(z4)〉C ∼ e

−∆neLA∪B
R e

−∆
(2)
ne LA
R

1

x∆
(2)
ne

, (5.44)

where we have neglected in the large central charge limit, the subleading terms

like the constants and Fne(x) and where x∆(2)
ne is

x∆(2)
ne = e

∆
(2)
ne (LB1

+LB2
−LA∪B1

−LA∪B2
)

2R . (5.45)

We now take the replica limit ne → 1 of eq. (5.44), to obtain

lim
ne→1

〈Tne(z1)T 2

ne(z2)T 2
ne(z3)T ne(z4)〉C ∼ e

c(2LA+LB1
+LB2

−LA∪B1
−LA∪B2

)

8R ,

(5.46)
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where we have used the fact, that when ne → 1, ∆ne → 0 and ∆
(2)
ne → −c

4 .

Using the Brown-Henneaux formula c = 3R
2G3

N
where G3

N is the three dimensional

gravitational constant [95] and taking the limit B → Ac (L → ∞) implying
B1, B2 →∞ for the eq. (5.46), we have E as

E = lim
B→Ac

[ 3

16G3
N

(2LA + LB1
+ LB2

− LA∪B1
− LA∪B2

)
]
. (5.47)

Using the Ryu-Takayanagi formula (4.46), we can express the above equation
as

E = lim
B→Ac

[
3

4

(
I(A,B1) + I(A,B2)

)]
, (5.48)

where I is the holographic mutual information and is given as

I(A,B1) = SA + SB1
− SA∪B1

= 1
4G3

N
(LA + LB1

− LA∪B1
),

I(A,B2) = SA + SB2
− SA∪B2

= 1
4G3

N
(LA + LB2

− LA∪B2
).

(5.49)

Eq. (5.48) gives a general expression for entanglement negativity of a 2D bound-
ary CFT in the case of a tripartite system and single interval, in terms of geodesic
lengths in the bulk .

Holographic Entanglement Negativity in AdS3/CFT2 for a Single In-
terval - Mixed State

We will now review the calculation of holographic entanglement negativity for a
single interval at mixed state in the setup of AdS3/CFT2 as considered in [61,62].
According to the AdS/CFT duality, 2D CFT at a finite temperature (T = β−1)
is dual to an Euclidean BTZ black hole having the same Hawking temperature.
The metric for the Euclidean BTZ black hole is

ds2 = (r2 − r2
h)dτ2

E +
R2

(r2 − r2
h)
dr2 + r2dφ2, (5.50)

where the periodic Euclidean time τE satisfies τE ∼ τE+ 2πR
rh

and the coordinate
φ is also periodic. The length of the geodesic for an interval of length lγ on the
boundary is Lγ and is given as

Lγ = 2R ln
[ β
πa

sinh(
πlγ
β

)
]
, (5.51)

where a is the UV cutoff and R is the AdS3 radius.
Now, using eqs. (5.43),(5.47),(5.51), we have

E = lim
L→∞

[
3R

4G
ln

[
β

πa

sinh(
π(L−l2 )

β ) sinh(πlβ )

sinh(
π(L+ l

2 )

β )

]]
. (5.52)

Finally, after taking the limit L→∞, for the above equation, we have

E =
c

2
ln

[
β

πa
sinh

(πl
β

)]
− πcl

2β
. (5.53)
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Comparing the above equation (5.53) with eq. (5.39), we see that the holo-
graphic entanglement negativity quite remarkably reproduces the leading terms
in the large central charge limit. We can re-express the above equation as

E =
3

2

[
SA − SthA

]
, (5.54)

where SA, S
th
A is the same as expressed in eq. (5.40).

We see that even the holographic entanglement negativity separates out clas-
sical and quantum correlations as expected, capturing the distillable quantum
entanglement.
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Chapter 6

How is the Presence of
Horizons and Localised
Matter Encoded in the
Entanglement Entropy?

Our theoretical knowledge of black holes is incomplete without understand-
ing the various aspects of black hole entropy like the microscopic origin of the
Bekenstein-Hawking entropy [23, 102], information puzzle aspects like firewalls
and complementarity [15, 27]. In this context, one of the most intense areas of
research, nowadays, is to explore the relation between entanglement entropy and
black hole entropy as it has been found that both these two types of entropies
might be connected [25,33,91,103–107].

Research along this line is very promising because entanglement is a quantum
phenomenon while black hole entropy has thermal nature.
So, it is important to understand in a deeper manner that how is entanglement
related to the black hole entropy. To hunt answers, we begin with the question:
How does entanglement entropy differentiates between black hole horizon and
conical singularity? [108].

We will begin this chapter by reviewing some features of AdS3 which are
relevant for our purposes and then modular transformations of the dual 2D CFT.
Next, we will see how to use the modular transformation on the torus to obtain
entanglement entropy for various configurations of the boundary 2D CFT which
lies on the cylinder and are dual to the bulk gravity configurations like black
holes, AdS space and spacetimes with conical singularities. Moving on, we will
discuss the holographic entanglement entropy for the same boundary 2D CFT
configurations and the leading terms in this holographic entanglement entropy.
We will then extend the discussion to the 3D gravity bulk configurations. Next,
we will also see aspects of entanglement entropy in Minkowski spacetime and
issues related to causality of holographic entanglement entropy. Finally, we will
end this chapter trying to answer the question: How does entanglement entropy
differentiates between black hole horizon and conical singularity? [108].
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6.1 3D AdS gravity

3D AdS gravity is described by the action

A =
1

16πG3

∫
d3x
√
−g
(
R+

2

L2

)
, (6.1)

where L is the radius of the anti-de Sitter space and G3 is 3D Newton con-
stant. All the solutions of this action are locally equivalent to 3d AdS spacetime
(AdS3).

As governed by the AdS3/CFT2 correspondence [24], in the large N limit,
3D AdS gravity is dual to the two dimensional conformal field theory on the
boundary, so we have [95]

c = c̄ =
3L

2G3
� 1, (6.2)

where c, c̄ are the central charges for the corresponding CFT2.
3D AdS gravity has no propagating degrees of freedom and in the absence

of matter sources, the spacetime appears locally equivalent to AdS3. The global
properties of the solutions of the action (6.1) are affected by the localized matter.
For AdS3, there are three types of geometries on the basis of the orbits (elliptic,
hyperbolic, parabolic) of the SL(2, R) group manifold [81–83]. The first of
these three types of geometries is the BTZ black hole which gives the positive
mass excitations. This geometry is asymptotically AdS having an event horizon,
positive mass and is at finite temperature T . The second geometry pertains to
the vacuum, having zero mass and in our case we consider the AdS3 vacua in
Poincaré coordinates as there two possible representations for the vacua, the
other being in the global coordinates. The third geometry is that of conical
singularity which separates these two vacuum solutions. This geometry has
pointlike particles of positive mass as its source. In our case, we consider conical
singularity in both space and time.
So, we will now have a look at all the four possible geometries.

• AdS3 vacua
AdS3 has two vacua, one represented in global coordinates, the other in
the Poincaré coordinates. In global coordinates it is given as

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 +
r2

L2
dφ2, (6.3)

where the coordinates range are t ∈ [−∞,∞], φ ∈ [0, 2πL], r ∈ [0,∞).

When we restrict t ∈ [0, β] we have AdS3 at finite temperature T = 1/β.
This bulk configuration is dual to a CFT having the same temperature.
This boundary CFT lives on the torus T (β, 2πL), where β and 2πL are
periodicities for the time and space direction respectively.

If we take the limit r → ∞ in eq. (6.3), then we the AdS3 vacua in the
Poincaré coordinates.

ds2 = −
(
r2

L2

)
dt2 +

(
r2

L2

)−1

dr2 +
r2

L2
dφ2, (6.4)
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where we don’t have a periodic φ, as φ ∈ [−∞,∞], t ∈ [−∞,∞]. The
CFT dual to this configuration lives on a plane.

For our case, the physical vacuum is AdS3 in the Poincaré coordinates as
it is continuously connected with both the BTZ black hole and conical
singularities. Hence, we can take into account the thermal excitations of
the vacuum produced by the black hole with positive mass and also conical
singularities which are sourced by pointlike masses.

• BTZ black hole
The BTZ black hole is a solution of the action (6.1) and is given by the
metric

ds2 = − 1

L2

(
r2 − r2

+

)
dt2 +

(
r2 − r2

+

)−1
L2dr2 +

r2

L2
dφ2, (6.5)

where r+ is the horizon radius. The inverse Hawking temperature (βH),
mass and the Bekenstein-Hawking entropy given by

βH =
1

TH
=

2πL2

r+
, M =

r2
+

8G3L2
, SBH =

A
4G3

=
πr+

2G3
. (6.6)

This bulk configuration has a compactified t direction and for general val-
ues of the periodicity it possess a conical singularity along this t direction.
This conical defect is eliminated when β = βH , resulting in a dual CFT
at a finite temperature which lives on the torus T (βH , 2πL) having cycles
βH , 2πL.

The ground state of this BTZ black hole, which has r+ = 0, M = 0 and
TH = 0 is represented by the Poincaré patch of AdS3.

• AdS3 with conical singularity in space
When we rescale the coordinates in eq. (6.3) as follows

t→ Γt, φ→ Γφ and r → r/Γ, where Γ =
r+

L
, (6.7)

we get the following metric:

ds2 = −
(

Γ2 +
r2

L2

)
dt2 +

(
Γ2 +

r2

L2

)−1

dr2 +
r2

L2
dφ2, (6.8)

where the range of the coordinates is t ∈ [0,∞], φ ∈ [0, 2πL], r ∈ [0,∞].
The parameter Γ ranges from 0 ≤ Γ ≤ 1 where physically it means from
Poincaré AdS (Γ = 0) to global AdS (Γ = 1). When Γ 6= 1, 0, then the
spatial φ direction, is compactified in nature. If the periodicity of φ is
restricted as 0 ≤ φ ≤ 2πΓL where Γ = r+/L, then we have a conical
singularity in the spatial direction where the deficit angle is given as
δφ = 2π(1− Γ) = 2π(1− r+/L) = 2π(1− 2πL/βcon). Here, we have βcon
which is similar to the inverse Hawking temperature and is given as

βcon ≡
2πL2

r+
= βH . (6.9)

Now, whenever we restrict the coordinates as t ∈ [0,Γβcon = 2πL], φ ∈
[0, 2πΓL], r ∈ [0,∞), we obtain AdS3 with a conical singularity whose
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conformal boundary is the torus T (Γβcon, 2πΓL). Accordingly, we also
have a dual CFT which lives on the this torus.

Whenever, Γ 6= 0, 1, we have a conical singularity which is like a geometric
distortion produced by the pointlike particle of mass m = (1 − Γ)/4G3

[95, 109, 110]. Indeed, if we have a stress tensor for a a pointlike mass m,
then the eq. (6.8) serves as a solution for the Einstein equations in 3D.
It is worthy to note here that our physical vacua of the theory - AdS3

in the Poincaré coordinates can be extracted from AdS3 with a conical
singularity by putting Γ = 0, which in turn would imply that βcon = ∞
as we have decompactified the φ direction.

• AdS3 with conical singularity in time

When we have a Euclidean version of the eq. (6.5), then for the peri-
odicities other than βH , we will have a conical singularity in the time
direction. Here, the conical singularity in time is similar to the one in
space as we simply exchange the temporal and the spatial direction by
having t ∈ [0, 2πr+ = 2πΓL]. The conformal boundary of this space is
the torus T (2πΓL,Γβcon), which we obatin when we exchange the cycles
for the torus related to the conical singularity in space. Accordingly, this
spacetime, which is AdS3 with conical singularity in time also has a dual
CFT living on the associated torus.

6.2 Modular transformations

When dealing with 2D CFT lying on the torus, one of the important aspects
is invariance of the partition function under the modular transformations [111,
112].

The important part for this modular invariance is the modular parameter
τ = ω2/ω1 where ω1,2 are cycles of the torus. Using this modular parameter
τ , we can obtain the various modular transformations, which when combined
together, define the modular group PSL(2,Z) : τ → (aτ + b)/(cτ + d) with
ad− bc = 1.

The three kinds of modular transformations are [111,112]

T : τ → τ + 1,
S : τ → − 1

τ ,
U : τ → τ

τ+1 .
(6.10)

We can also have the above transformations by using compositions as follows

T = USU ,
U = T ST ,
S = UT −1U ,
(ST )

3
= S2 = 1.

(6.11)

One can also use the lattice representation for the modular transformations.
In this representation, the torus is represented using vectors in the complex plane
(ω1,2) and the modular parameter in this representation is τ = ω2

ω1
= τ1 + iτ2. If

we now consider the action of the modular transformation on a unit cell, then
for the purpose of simplification we can have ω2 = τ and ω1 = 1.
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Out of all these transformations, it is the modular S transformation which
is important for us and which acts on the complex coordinate present on the
torus, z = tE + ixE (where xE , tE are Euclidean space and time) and on τ ,
which is the modular parameter for the torus, as follows

z → z′ =
z

τ
, τ → τ ′ = −1

τ
. (6.12)

This S transformation has been used in the AdS3/CFT2 correspondence to
show that the modular parameter τAdS corresponding to the 2D CFT dual to the
thermal AdS3 is associated with the modular parameter τBTZ corresponding to
the 2D CFT dual to the BTZ black hole as τAdS = −1/τBTZ [75,113]. Further,
it has also been shown that the modular parameter τcon corresponding to the
2D CFT dual to the AdS3 with spatial conical singularities is also related to
τBTZ as τcon = −1/τBTZ [33, 45].

If we look at the 2D CFT, living on the boundary torus, dual to the AdS
space with spatial conical singularity T (Γβcon, 2πΓL) and with the temporal
conical singularity T (2πΓL, Γβcon), then we can see clearly that as their cycles
are exchanged, they are related to each other by the modular transformation,
S. As we now know that the boundary tori for the various configurations of 2D
CFT dual to the AdS3 space are related to each other by the S transformation,
we can conclude that apart from the vacua, the other four configurations i.e
AdS3 at finite temperature, BTZ black hole, AdS3 with conical singularities
in space, AdS3 with conical singularities in time need to be in the physical
AdS3 spectrum. This is a non-trivial statement as because generally, AdS3 with
spatial/temporal conical singularity are not included in the spectrum.

When we consider the entanglement entropy for a given subsystem on the
torus, as in our case, then we need to consider the action of the S transformation
eq. (6.12) not only on τ but also on z. This happens, because in our case, as
dictated by the von Neumann entropy, the accessible subsystem, given by the
length l can be either along the spatial or the temporal direction and so, the
partition function depends on both τ and z. Infact, using the S transformation
we can exchange the accessible slice l either along the space or the time direc-
tion. This happens because, this modular transformation S, when acting upon
complex coordinate z can exchange the real with the imaginary part. So, if we
take ω1 = 1, τ = ω2 = iα (where α is a real number) and z = l along Euclidean
time direction, then by using eq. (6.12), we have

z′ = − il
α
, τ ′ =

i

α
. (6.13)

So, we see by using S transformation, we can move from real to the imaginary
part of z, hence we can move from Euclidean time to Euclidean space direction
and vice-versa. It is possible to have l possessing both real and imaginary part
but for simplification purpose, we choose l having either real or imaginary part,
meaning it will have either spatial or temporal part.

6.3 Modular transformations for Boundary Cylin-
ders

We start this section by considering the cylinder approximation for the torus
T (β, α) (where β is the length of the temporal cycle and α is the length of
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the spatial cycle), such that either of the two cycles decompactifies. We do so,
because entanglement entropy for CFT on torus does not has a universal form
as it depends on the field content of the underlying theory but on the other hand
if the CFT lies on an infinite cylinder, then we can have a universal expression
for the corresponding entanglement entropy.

This cylinder approximation can be done in the following two ways.

1. When β � α, then the cycle representing the time direction decompactifies
leading to the cylinder C(α). This cylinder, has a compactified space direction
whose length is α and a noncompactified time direction.

2. When α� β, then the cycle representing the space direction decompactifies
leading to the cylinder C(β). This cylinder, has a compactified time direction
whose length is β and a noncompactified space direction.

We will now proceed to the see how the S transformation can be applied to
the above obtained cylinders. When we use eq. (6.12) for the torus T (β, α),
then we get the modular parameter as τ ′ = iβ/α, hence the result is the torus
T (α, β).

1. In the first case, when we apply the limit β � α, then the S will take us
from C(α)→ C(α).

2. In the second case, when we apply the limit α � β, then the S will take us
from C(β)→ C(β).

Hence, we see that in the cylinder approximation, the modular transformation
S exchanges the compact with the non compact direction.

As the periodicity of the compact euclidean time direction β gives the inverse
temperature for the thermal correlations β = 1/T , we can say that analogously
the periodicity of the compact euclidean space direction α gives the inverse
temperature for the quantum correlations α = 1/TQ.

It is worthy to note here the physical relevance of the action of the modular
transformation on the cylinders. The map C(α)→ C(α) takes us from T << TQ
where we have the domination of quantum correlations to T >> TQ where we
have the domination of the thermal correlations and vice-versa for the map
C(β)→ C(β).

Now, when we use the S transformation for the cylinders, like C(β) into C(β)
then it is important to see that this transformation also maps the inaccessible
region B from the “compact ” space to the “compact ” time direction whereas the
vice-versa is true for the other mapping. Here, the inaccessible region remains
in the compact/non-compact direction.
But, if we want to move the inaccessible region from the compact to the non-
compact direction, then we first need to use the modular S transformation on
the torus and then take the appropriate limit. The cylinders in this case are not
connected by the S transformation.

6.4 Entanglement entropy for CFT on the infi-
nite cylinder

We will now proceed to calculate the entanglement entropy when the boundary
CFT lies on the infinite cylinder. We will calculate the entanglement entropy
for four different cases as we put the slice in both the Euclidean space and the

67



Euclidean time direction along both compact and non-compact direction. As
stated earlier, we consider the infinite cylinder as results have a universal form
unlike the torus where the results depend on the field content of the theory.

To begin with the calculations, we consider the case of free Dirac fermion on
the torus and use the S1 term in the entanglement entropy expression as given
in [32]. We consider the S1 term because when we take the limit for the infinite
cylinder, then this term gives us the leading universal contribution. Next, we
will use the modular S transformation to obtain the four different configurations
of the slice and the corresponding entanglement entropy on the cylinder.

To obtain the entanglement entropy, we use the von Neumann entropy for-
mula which is obtained by splitting the region of degrees of freedom into two
disconnected parts A and B. We then obtain the reduced density matrix for the
subsystem A from ρ, which is the density matrix for the entire system by tracing
the degrees of freedom in B as ρA = TrBρ. Entanglement entropy is then given
by the von Neumann entropy as SE = −Tr(ρAlogρA) [34, 35]. For our case, we
start by considering the S1 term as given in [32] to extract the leading universal
term, when we take the limit for the infinite cylinder.

S1 =
c

3
log

∣∣∣∣∣ θ1(z|τ)

2πη(τ)3

∣∣∣∣∣, (6.14)

where (z = tE + ixE = itM + ixM ) is the complex coordinate for the subsystem
A (tE , xE denotes the Euclidean coordinates, tM , xM denotes the Minkowskian
coordinates) and (τ = β + iα) is the modular parameter for the torus. It is
important to note here that our z is defined as (z = tE + ixE) compared to
it’s definition in [32] which is (z = xE + itE). The periodicities of tE is β
and for xE , it is α respectively. By θ, we mean the theta function and the
Dedekind eta function is given by η. Below, in the figures, when we use the
lattice representation for the torus, then the vertical axis gives the real axis and
the horizontal axis represents the imaginary axis. It is worth mentioning here,
that we are using the formula for the entanglement entropy as given in [32] for
both space and time coordinates as compared to it’s use in [32] which is only
for spatial coordinates.

• Single interval along the compact time direction

We consider a single interval of length lt along the compact time direction.
So, as a result we have z = lt, β = 1 and τ = iα. Hence, the value of q
and y for the purpose of the theta function is now given as

q = e2πiτ = e−2πα,
y = e2πiz = e2πilt .

(6.15)

The pictorial representation of this configuration is

lt
(β)

(iα)

where the symbol stands for a single interval.
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Now, making use of the above stated values of q and y, we obtain S1 as

S1 =
c

3
log

∣∣∣∣∣ 1π sin(πlt)

∞∏
m=1

(1− yqm)(1− y−1qm)

(1− qm)2

∣∣∣∣∣. (6.16)

We now take the limit α >> 1 for the eq. (6.16). Physically, this corre-
sponds to T >> TQ and the infinite cylinder configuration after the limit
is C(β). The entanglement entropy for the CFT on this cylinder C(β) is
now given as

S(tc) =
c

3
log

∣∣∣∣∣ βaπ sin

(
πlt
β

)∣∣∣∣∣, (6.17)

where a is the UV cutoff and we have restored β as the periodicity for tE .
The above equation gives the entanglement entropy for a single interval
along the compact time direction on an infinite cylinder.

• Single interval along the noncompact space direction

Applying the modular transformation S on the above values of z and τ ,
we get z′ and τ ′ as

z′ = z
τ = − ilsα ,

τ ′ = − 1
τ = i

α ,
(6.18)

where there has been a change in the subscript from lt to ls as the interval
is now along the spatial direction.
We now have the new values of q and y as:

q = e2πiτ = e−2π/α,
y = e2πiz = e2πls/α.

(6.19)

As the the S transformation has moved the interval from real axis to
imaginary axis, the pictorial representation of this configuration is

(α)

ils
(iβ)

As a result of this modular transformation, the expression for S1 is now
given as

S1 =
c

3
log

∣∣∣∣∣απ e−πl2α sinh(
πls
α

)

∞∏
m=1

(1− yqm)(1− y−1qm)

(1− qm)2

∣∣∣∣∣. (6.20)

We now take the limit α << 1 for the eq. (6.20). Physically, this corre-
sponds to T >> TQ and the infinite cylinder configuration after the limit
is C(α). The entanglement entropy for the CFT on this cylinder C(α) is
now given as

S(snc) =
c

3
log

∣∣∣∣∣ αaπ sinh

(
πls
α

)∣∣∣∣∣. (6.21)
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The above equation gives the entanglement entropy for a single interval
along the non-compact space direction on an infinite cylinder.

• Single interval along the compact space direction

We now use the modular transformation S to move from the cylinder
C(β) where the interval is along the compact time direction, to go to the
cylinder C(β) where the interval is along the compact space direction.
This new configuration looks like

ils
(iβ)

(α)

where, in this new configuration we have ls instead of lt.
This cylinder configuration is true for α� β which physically means
T � TQ. The eq. (6.17) remains invariant under the modular map
C(β) → C(β) and as a result we obtain the entanglement entropy for
a single interval along the compact space direction as

S(sc) =
c

3
log

∣∣∣∣∣ βaπ sin

(
πls
β

)∣∣∣∣∣. (6.22)

• Single interval along the noncompact time direction

We now use the modular transformation S to move from the cylinder C(α)
where the interval is along the non-compact space direction, to go to the
cylinder C(α) where the interval is along the non-compact time direction.
This new configuration looks like

(iα)

lt
(β)

where, in this new configuration we have lt instead of ls.
This cylinder configuration is true for β � α which physically means
T � TQ. The eq. (6.21) remains invariant under the modular map
C(α) → C(α) and as a result we obtain the entanglement entropy for
a single interval along the non-compact time direction as

S(tnc) =
c

3
log

∣∣∣∣∣ αaπ sinh

(
πlt
α

)∣∣∣∣∣. (6.23)
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The expressions for the entanglement entropy for the four different cases
i.e (6.17),(6.21),(6.22),(6.23) are universal in nature [34–36]. It is important
to note here that the eqs. (6.17),(6.21) represent entanglement in time and
space respectively, being valid at large temperature when there is domination
of the thermal correlations. On the other hand, eqs. (6.22),(6.23) represent
entanglement in space and time respectively, being valid at small temperature
when there is domination of the quantum correlations

6.4.1 Planar approximation

We can obtain the planar limit, which describes CFT on a plane, for the the
above four cases as follows. For eqs. (6.17),(6.22), we take the limit lt,s << β
and for eqs. (6.21),(6.23), we take the limit lt,s << α. After taking the limit, in
all the four cases, we obtain the same expression for the entanglement entropy
which is

S(pl) =
c

3
log

∣∣∣∣∣ ls,ta
∣∣∣∣∣. (6.24)

The above eq. gives the entanglement entropy for a single interval of length
ls/lt at zero temperature having non-compact space direction.

6.5 Holographic entanglement entropy for the
various AdS3 configurations

In the previous section we have calculated the entanglement entropy of the 2D
CFT on the cylinder dual to different 3D bulk configurations for different posi-
tions of the interval. In the 2D CFT the information about the actual 3D gravity
bulk configuration is just encoded in the position of the interval (along spacelike
or timelike direction) and the topology of the spacelike and timelike directions.
Our goal is now to associate an entanglement entropy to the bulk gravity config-
urations. There have been some attempts to calculate the entanglement entropy
using holographic methods for various gravitational configurations, but it seems,
that there have always been some issues when they are being reduced to the
dual CFT calculations [32, 33, 42, 44, 45, 49, 62, 114–116]. To deal with the issue
of holographic aspect of entanglement entropy, we will use the results of the
previous section, i.e using the entanglement entropy from the CFT perspective,
we will associate the holographic entanglement entropy to the dual bulk AdS3

configurations. To do so, we use the AdS/CFT correspondence, which states
that in the large c limit, the 2D CFT is dual to 3D AdS gravity. Using the
dual 2D CFT for calculating the entanglement entropy for bulk AdS3 configu-
rations has advantages over the other methods, for example when entanglement
entropy for black holes is calculated using quantum fields in the background of
the classical gravity [117,118], then these results does not seem to be universal
but are dependent on the matter fields and the UV cutoff. On the other hand,
our holographic method is free from this dependency as central charge c (6.2)
of the CFT fixes the number of quantum fields and the UV/IR relation resolves
the UV cutoff problem fixing the UV cutoff a of the CFT in terms of the IR
cutoff of the AdS spacetime [33,45]

Λ = 4π2L2/a. (6.25)
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The AdS/CFT correspondence can be used for calculating the entanglement
entropy of bulk gravity configurations as the holographic entanglement entropy
in two ways. First, we use the entanglement entropy of CFT on an infinite
cylinder, as the results are universal and then use the AdS/CFT dictionary
to extract the holographic entanglement entropy for the corresponding bulk
configuration. The second method, which we will use in the later section is to
use the gravitational tools to extract the holographic entanglement entropy for
the various AdS3 configurations [25,26,119,120].

When we use the CFT results to calculate the holographic entanglement
entropy by simply identifying the suitable equations corresponding to the bulk
AdS3 configurations ((6.17),(6.21),(6.22),(6.23)), we encounter the problem of
fixing the arbitrary parameters lt, ls because correlations in the 3D bulk side
are mapped in a non-local fashion onto the boundary CFT and we do no know
of any standard way to fix the values of lt, ls with reference to the bulk AdS3

parameters.
A possible solution to this problem was proposed in [33, 45], where the au-

thors had conjectured ls = 2πL for the BTZ black hole, using the UV/IR rela-
tion. We will now validate this conjecture not only for the BTZ black hole but
for also for other configurations when we calculate the holographic entanglement
entropy below.

• AdS3 with conical singularity in space

The solution describing AdS3 with conical singularity in space is given
by the metric (6.8). It’s dual CFT lies on the torus T (2πL, 2πr+). We
can say here, that for r+ < L, the conical defect is a result of having an
accessible interval of length (2πr+) in the spatial cycle, when the total
length of the spatial cycle is (2πL) for the torus T (2πr+, 2πL). It is to
be noted that T (2πr+, 2πL) is obtained by modular transformation of the
original torus. Here, the conical singularity is removed when r+ = 0, on
the bulk side it pertains to the AdS3 vacua in the Poincaré coordinates as
it corresponds to T = 0 state on the boundary CFT.

We can obtain the torus T cs(2πL, βcon), when we rescale the lenghts by
L/r+. Further, for r+ << L, we get the cylinder Ccs(βcon) with the
interval length now being ls = 2πL. Now, using (6.22), we can have the
holographic entanglement entropy for AdS3 with the conical singularity in
space, as

S(cs) =
c

3
log

∣∣∣∣∣βconaπ
sin

(
2π2L)

βcon

)∣∣∣∣∣, (6.26)

where we have used β = βcon = 2πL2/r+ and ls = 2πL.
As expected, this result is true for small temperatures i.e for
T = 1/βcon << TQ = 1/(2πL).

• AdS3 with conical singularity in time

When we apply the modular S transformation to T cs(2πL, βcon), having
interval of length ls = 2πL, we obtain T ct(βcon, 2πL) having interval
of length lt = 2πL. This torus T ct(βcon, 2πL) is related to the bulk
configuration of AdS3 with conical singularity in time. Also, in the limit
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L >> r+, the cylinder Ccs(βcon) having interval of length ls = 2πL related
to AdS3 with conical singularity in space, under S transformation maps to,
Cct(βcon) having interval of length lt = 2πL, associated with AdS3 with
conical singularity in time. Now, using (6.17), we can have the holographic
entanglement entropy for AdS3 with the conical singularity in time, as

S(ct) =
c

3
log

∣∣∣∣∣βconaπ
sin

(
2π2Lt
βcon

)∣∣∣∣∣, (6.27)

where Lt ≡ L as we now have Lt as the length for the euclidean time
cycle. This result is valid for T >> TQ.

It is to be noted that even though for the Euclidean case, Lt = L and
the expression for the holographic entanglement entropy for AdS3 with
conical singularity in space is same as for AdS3 with conical singularity in
time, their physical meaning is different. The holographic entanglement
entropy for AdS3 with conical singularity in space given by the eq. (6.26)
is true when the quantum correlations dominate whereas the holographic
entanglement entropy for AdS3 with conical singularity in time given by
the eq. (6.27) is true when the thermal correlations dominate.

• BTZ black hole

The boundary torus associated with AdS3 with a conical singularity in
space, T cs(2πL, βcon) is related by the modular S transformation with
T BTZ(βH , 2πL), which is the boundary torus associated with the BTZ
black hole [33, 45]. In the limit, r+ >> L and using the modular S
transformation we can have the map Ccs(βcon)→ CBTZ(βH), where each
of the cylinders have an interval of length 2πL along the compact space
and non-compact space respectively. Now, using (6.21), with α = βH and
ls = 2πL, we can have the holographic entanglement entropy for the BTZ
black hole, as

S(BTZ) =
c

3
log

∣∣∣∣∣βHaπ sinh

(
2π2L

βH

)∣∣∣∣∣. (6.28)

This result is true for T >> TQ and matches with the result obtained
in [33,45].

Next, we again use the modular transformation to move from CBTZ(βH)
which has the interval along the non compact space direction to CBTZ(βH)
which has the interval along the the noncompact time direction. Now,
using (6.23), with α = βH and lt = 2πL, we have

S
(BTZ)
ET =

c

3
log

∣∣∣∣∣βHaπ sinh(
2π2Lt
βH

)

∣∣∣∣∣. (6.29)

This result which is valid for T << TQ gives the holographic entanglement
entropy for the BTZ black hole for the Euclidean time correlations.

Here, also Lt ≡ L for we now have a euclidean time cycle. It is wor-
thy note here that eq. (6.28) gives the holographic entanglement entropy
of the BTZ black hole for spatial correlations, when thermal correlations
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dominate whereas eq. (6.29) gives the holographic entanglement entropy
of the BTZ black hole for temporal correlations, when quantum correla-
tions dominate.

• AdS3 vacuum

For the holographic entanglement entropy for the AdS3 vacua we take the
limit (r+ << L) in eqs. (6.26) and in (6.29) and use (6.25) to get

Svac =
c

3
log

(
2πL

a

)
=
c

3
log

(
Λ

L

)
. (6.30)

Another way to get the above result is to put ls,t = 2πL in the eq. (6.24)
and then use (6.25). It is to be noted that we cannot get this result from
(6.27) or (6.28) as they are valid in the large temperature limit (r+ >> L).

Summarising the results of this section we can state that from the entanglement
entropy point of view, taking into account modular symmetry of the boundary
CFT, the bulk configurations can be reduced to only three configurations :-
1. Spacetime with an event horizon - BTZ black hole
2. Spacetime with a conical singularity
3. AdS vacuum

When we extract the values for the holographic entanglement entropy for the
above two configurations, we have the following results :-

1. The 2D CFT’s which are dual to the spacetime with an event horizon,
live on the infinite cylinder, in which case the inaccessible region belongs to the
non-compact direction and the corresponding holographic entanglement entropy
(6.28),(6.29) behaves exponentially.
2. The 2D CFT’s which are dual to the spacetime with a conical singularity,
live on the infinite cylinder, in which case the inaccessible region belongs to
the compact direction and the corresponding holographic entanglement entropy
(6.26),(6.27) behaves periodically.
3. The 2D CFT which are dual to the AdS vacuum live on a plane and the
inaccessible region belongs to the non compact dimension. The corresponding
holographic entanglement entropy (6.30) scales logarithmically.

6.6 Holographic entanglement entropy using grav-
itational tools

As mentioned in the previous section, we can also obtain the holographic entan-
glement entropy for the various AdS3 configurations using direct gravitational
tools and the AdS/CFT dictionary. So, in this section, we will explore the
gravitational route by using various methods so as to cross-check the results
of the previous section. The first of these methods is the Ryu-Takayanagi pre-
scription [25, 26]. The Ryu-Takayanagi formula affirms that the holographic
entanglement entropy for a subsystem A belonging to a d-dimensional CFT, is
given by the minimal area of γA which is a d−1 dimensional surface in the bulk
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in AdSd+1

SA =
Area(γA)

4Gd+1
N

, (6.31)

where γA is defined such that A has a d − 2 dimensional boundary ∂A which
coincides with the boundary of γA given by ∂γA. The other methods are the
extensions/modifications of this Ryu-Takayanagi formula like differential en-
tropy [119] and complexified geodesics [120]. Let us now calculate the entangle-
ment entropy for the CFT’s dual to the various 3D bulk configurations, using
the different holographic methods.

• BTZ black hole

The holographic entanglement entropy for the CFT dual to the BTZ
black hole has already been calculated, using the Ryu-Takayanagi pre-
scription [32]. Here, the minimal area Area(γA) is the length of the
geodesic between the two ends of the one dimensional interval ls lying
on the boundary. It was noted that in this case, when the interval length
ls is large, the subsystem A spreads large enough to almost cover the con-
formal boundary. As a result, the geodesic breaks into two disjoint parts,
one piece warps around the black hole and is of finite nature, the other
piece which is ∝ c

3 log(ε/a) is close to the boundary and diverges. The
term which represents the geodesic wrapping around the horizon gives the
holographic entanglement entropy of the BTZ black hole and the other
term gives the holographic entanglement entropy for the AdS3 vacuum
(6.30).

In our case for the cylinder approximation, in the limit β << 2πL, φ
can be seen as a coordinate on the universal cover of S1, so the geodesic
wrapping around the horizon corresponds to ls = 2πL. Using this value
of ls = 2πL and α = βH in the eq. (6.21), we get the holographic entan-
glement entropy for the BTZ black hole as obtained in eq. (6.28).

• AdS3 with conical singularity in space

The holographic entanglement entropy for CFT dual to AdS3 with conical
singularity in space has already been calculated in [119]. Considering a
system of size R, we have a subsystem whose size in terms of angular
coordinates is Γφ and whose holographic entanglement entropy is

Scon =
c

3
log

∣∣∣∣∣ R

π(Γµ)
sin(Γφ)

∣∣∣∣∣, (6.32)

where µ is the UV cutoff.

Previously, we saw that when we take the limit r+ << L in the cylinder
approximation, conical singularity is the outcome of having an accessible
length 2πr+ from the total length 2πL.
So, if we put R = 2πL, Γφ = πr+/L, Γµ = ar+/L in eq. (6.32) and
use the expression for βcon as given in (6.9), then we recover the result as
given in the eq. (6.26).
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• AdS3 with conical singularity in time

In the AdS space, it is a well known fact that the timelike geodesics do not
reach the boundary. So, as our interval on the boundary is now having
timelike separated endpoints, we will use the approach of complexified
geodesics [120] to calculate the holographic entanglement entropy.

We consider an interval ∆tE (tE stands for Euclidean time) in the back-
ground of BTZ black hole, the complexified, renormalized, geodesic length
for this interval is then given as

L = 2 ln

[
2L

r+
sin(

r+∆tE
2L2

)

]
, (6.33)

where 2π is the periodicities for the Euclidean time cycle.
The expression in the eq. (6.33) is true for two cases, first is the regular
Euclidean manifold, i.e the case without the conical defects and after we
rescale tE , the expression is valid for the second case which is the manifold
with the conical singularity.

Now, if we use ∆tE = 2πL and a suitable UV cutoff a in the eq. (6.33),
then we recover the result as given in eq. (6.27).

6.7 Leading and sub-leading terms in the entan-
glement entropy expansion

As previously shown, the holographic entanglement entropy for AdS3 can be
categorized in three classes including the vacuum. So, in this section we will
analyse the leading and sub-leading terms in the entanglement entropy expan-
sion for the two types of solutions.

We start with the BTZ black hole case, whose holographic entanglement
entropy is given by Eqs. (6.28). Using the limit r+/L >> 1 in the eq. (6.28),
we get

∆S ≡ SBTZ − Svac =
πr+

2G3
− L

2G3
ln
πr+

L
+O(1) = SBH −

L

2G3
lnSBH +O(1).

(6.34)
In the above expression, we have already removed the contribution from the
AdS3 vacua Svac (6.30) and SBH stands for the Bekenstein-Hawking entropy of
the BTZ black hole.

The above equation showcases the large T behaviour when there is the dom-
ination of the thermal correlations over the quantum correlations. The leading
term which is the measure of the thermal entropy and the subleading lnSBH
term are as expected [118,121,122].

From the gravitational perspective, the leading term in eq. (6.34) is positive,
scales like an area term and satisfies the area law for the black hole. Therefore,
we can say that the existence of the horizon in the gravitational configuration
increases the entanglement entropy of the vacua and possess a holographic na-
ture.

From the CFT perspective, using eq. (6.21), we have the regulated, leading
term in the large T regime as

Ssnc − Svac =
c

3

πls
β
. (6.35)
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Now, if we put ls = 2πL in the above equation, we will obtain the Gibbs
entropy SGibbs = (2/3)cπ2LT . So, we see that the leading term in this case, has
an extensive, thermal nature. Further, if we put β = βH , then we recover the
Bekenstein-Hawking entropy for the BTZ black hole.

We now consider the second class of solution, i.e the holographic entangle-
ment entropy for AdS3 with a conical singularity in space which is given by the
(6.26). Here, we consider the limit r+/L << 1, which is below the Hawking-
Page phase transition, where the thermal AdS3 is preferred for stability issues.
As we are focussing on conical singularities, we disregard the stability aspect.
So, using the limit r+/L << 1 in the eq. (6.26), we get

∆S = −c π
2

18
Γ2 = − π2

12G3

r2
+

L
. (6.36)

The above equation showcases the small T behaviour when there is the domi-
nation of the spatial quantum correlations over the thermal correlations.

From the gravitational perspective, the leading term in eq. (6.36) is neg-
ative, scales like a volume term. Therefore, we can say that the existence of
the spatial conical singularity in the gravitational configuration reduces the en-
tanglement entropy of the vacua by contribution a volume term and possess
a holographic nature. This reduction of the entanglement entropy because of
matter contribution has been mentioned in [7]. Further, it has also been seen
that the entanglement entropy can also scale as volume when the subsystem
size is very small in [123].

From the CFT perspective, using eq. (6.22) we have the leading term as

∆S = − c

18

(
πls
β

)2

= − c

18
π2l2sT

2
Q, (6.37)

where TQ = 1/β is the “quantum” temperature, as previously introduced.
So, we see that the leading term in this case, has a super-extensive scaling
nature.

For timelike correlations, when we use the limit r+/L >> 1 for the case
considered in the eq. (6.29) and the limit r+/L << 1 for the case considered in
the eq. (6.27), we have non-trivial results, hence discussed in the next section.

6.8 Aspects of the entanglement entropy in the
Minkowski space

As seen previously, we have used the Euclidean time for the calculation of the
holographic entanglement entropy, now we will analyze the effects of the Wick
rotation (tE = it), i.e. when we move from the Euclidean to the Minkowski
space.

When we consider the interval in terms of the spatial coordinates, then the
eqs. (6.21), (6.22), (6.26), (6.28) remain invariant under the Wick rotation. The
physical interpretation of such a result is that we are considering correlations in
an equilibrium thermal CFT.

But the situation is different, when we consider the interval in terms of
the temporal coordinates, then the eqs. (6.17), (6.23), (6.27), (6.29) do not
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remain invariant under the Wick rotation. When we are only dealing with the
Euclidean variables where space xE and time tE are looked upon in the same
fashion, then on interchanging (tE ↔ xE), the eqs. having temporal coordinates
are easily related to the ones having spatial coordinates i.e. eqs. (6.21), (6.22),
(6.26), (6.28). When, we are dealing with the Minkowskian variables, then the
Wick rotation (lt → ilt) and (Lt → iLt) affects the equations in the following
manner. When applied to the eqs. (6.17) and (6.27), their original periodic
nature in the Euclidean spacetime changes to the exponential nature in the
Minkowskian spacetime. The physical interpretation of such a situation can be
that after applying the Wick rotation, the eqs. (6.17) and (6.27) are expressing
correlations in a non-equilibrium thermal QFT, wherein there is the domination
of thermal correlations. This result for the entanglement entropy seems to be
similar to the calculation of the two-point function for the timelike separated
interval [120].

Next, when we apply the Wick rotation to the eqs. (6.23), (6.29), their
original exponential nature in the Euclidean spacetime changes to the periodic
nature in the Minkowskian spacetime. We do not have an explicit physical
interpretation for this case as the eqs. are valid for T << TQ wherein there is
the domination of the quantum correlations and thermal description will not be
applicable. It seems that in this case, we might be looking at “entanglement in
time” as also discussed in [124,125]. This aspect requires further study.

6.9 Aspects of causality related to the holographic
entanglement entropy

Calculation of the entanglement entropy in the CFT framework, i.e using the
replica trick ensures locality and causality on the boundary CFT but the same is
not true when we use the Ryu-Takayangi prescription for the calculation of the
holographic entanglement entropy. In the Ryu-Takayanagi picture, the mecha-
nism through which the bulk information is captured by the minimal surfaces
and codified on the boundary is not explicit. An attempt to investigate this
issue was made by the authors in [126]. They constructed the causal informa-
tion surface whose proper area gives the causal holographic information, in a
manner similar to the Ryu-Takayanagi method. It so happens that for two of
the configurations that we are dealing with, in this chapter, i.e the Global AdS3

and the BTZ black hole, the causal holographic information matches with the
holographic entanglement entropy. Hence, we are assured of the preservation of
the causality for these two cases as obtained in our results (6.30), (6.28), where
the result in eq. (6.30) is related to the Global AdS3 by rescaling and planar
approximation.

Going ahead, the authors in [127] have put forward the idea of differential
entropy which combines this proposal of the causal holographic information
with the bulk configuration of a hole in AdS. Further, this differential entropy
method has also been used to calculate the holographic entanglement entropy for
AdS3 with a conical singularity in space in [127]. Since, the differential entropy
method takes into account the causal aspects for the holographic entanglement
entropy for conical singularity in space and it matches with our results (6.26),
hence for this configuration also, we are assured of the causality aspects for our
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result.
However, when we consider the holographic entanglement entropy in terms

of the temporal correlations, as given in the eqs. (6.27) and (6.29), then these
causality aspects are not completely clear. The authors in [128] have presented
the doubtful picture of causality associated with the approach of the complexi-
fied geodesics as this method does not assures an explicit causal relation between
the bulk and the boundary. So, as a result this approach of the complexified
geodesics, presently, can be considered just as a mathematical way for the cal-
culation of the holographic entanglement entropy in terms of the temporal cor-
relations. Another method to calculate the temporal holographic entanglement
entropy can be the image prescription [128] but unfortunately in this case also,
causality is not inherently present as the method of image prescription is modi-
fied to incorporate causality. It has been put forward that to explore the regime
of physics untouched by the minimal geodesics, for example the interior region
of the black holes, one can use the idea of entwinement as proposed in [119].
While considering the idea of the temporal entanglement entropy, one possibil-
ity is that, it can be seen as a result of entwinement, wherein the embedding
space for AdS may give birth to the internal degree of freedom. This possible
relation between the temporal entanglement entropy and entwinement needs
further investigation.

6.10 Conclusion

In this chapter, which is based on [108], we have explained the mechanism
through which one can make use of the AdS/CFT correspondence and modular
transformations of the torus to calculate first the universal form of the holo-
graphic entanglement entropy for the various bulk AdS3 configurations wherein
the boundary torus was approximated to the cylinder configuration by taking
the appropriate limits. The solutions for the various bulk configurations can be
classified into three main types : One for the BTZ black hole/bulk gravity hav-
ing a horizon, a second for AdS3 with a conical singularity/bulk gravity having
localised matter and finally a third for the AdS3 vacuum.

When one considers the bulk gravity solutions with a horizon, then from the
expression of the holographic entanglement entropy, we can extract the following
information:

1. The region which is not accessible to the observer lies along the non-compact
direction of the boundary cylinder.
2. The holographic entanglement entropy has an exponential behaviour.
3. Leading term in the expansion of the holographic entanglement entropy is
positive and scales as area and correponds to an extensive, thermal piece on the
boundary CFT.
4. Presence of the horizon in the bulk enhances the holographic entanglement
entropy of the AdS3 Poincaré vacuum.

On the other hand, when we consider the bulk gravity with localized mat-
ter, then from the expression of the holographic entanglement entropy, we can
extract the following information:

1. The region which is not accessible to the observer lies along the compact
direction of the boundary cylinder.
2. The holographic entanglement entropy has a periodic behaviour.
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3. Leading term in the expansion of the holographic entanglement entropy is
negative and scales as volume and corresponds to a super-extensive term on the
boundary CFT.
4. Presence of the localised matter in the bulk reduces the holographic entan-
glement entropy of the AdS3 Poincaré vacuum.

It is to be noted here that we have chosen the physical vacuum of the theory
to be AdS3 in the Poincaré patch as because, unlike the vacua in global coordi-
nates, it is continuously related to the BTZ black hole spectrum and also with
the spectrum of the conical singularity.

Also, another aspect which is worth noting here is related to the Hawking-
Page phase transition which occurs at the critical point r+ ∼ L. It is well
known, that below this critical point the gravitational configuration of the BTZ
black hole becomes unstable, hence thermal AdS3 is preferred. Now, the two
limits, i.e r+ >> L and r+ << L, that we use for the cylinder approximation,
are away from the previously mentioned critical point r+ ∼ L. So, even though
the physics for the limit r+ >> L is clear, as it is dominated by the BTZ black
hole, the physics for the other limit r+ << L is not completely understood.
This lack of clarity for the physics in the limit r+ << L, is due to the fact
that generally conical singularities are not considered as possible candidates for
the Euclidean quantum gravity partition function. Also, it is not possible to
describe conical singularities in a regular geometric description for spacetime.

As a future development of our investigations, one can analyze the general-
ization from 3D to four or higher dimensions. It would be interesting to see, for
example, how our derivation is affected when we have in 4D naked curvature
singularity produced by the localized sources which have negative mass. We
expect this aspect to be non-trivial as in 3D gravity itself, we have used specific
features for our calculations.
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Chapter 7

Holographic entanglement
negativity conjecture for
adjacent intervals in
AdS3/CFT2

Recently, quantum entanglement has been used in various aspects of theoretical
physics ranging from condensed matter physics to quantum gravity [1, 2, 8, 15,
129]. One of the key features of the quantum entanglement is the entanglement
entropy. If we have a bipartite quantum system in a pure state then the en-
tanglement entropy is given by the von Neumann entropy for the corresponding
reduced density matrix. This entanglement entropy for a 2D CFT has been
calculated by Calabrese et al using the replica trick [34, 35]. Futher, it was
put forward by Ryu-Takayanagi that the universal term in the expression for
the entanglement entropy for a CFT can also be obtained using the AdS/CFT
correspondence [25,26,42].

Unfortunately, entanglement entropy fails as a measure of entanglement
when we consider mixed states. In case of mixed states, entanglement entropy
contains information both on thermal and quantum corelations. Therefore a
new quantity is required to have an appropriate measure for the distillable en-
tanglement. To solve this issue, the authors in [54] proposed “entanglement
negativity” which could serve as a measure for the distillable entanglement.
The non convex property for the entanglement negativity was given by Ple-
nio [55]. Entanglement negativity for CFT has been calculated by Calabrese
et al, where they used a modified version of the replica trick. The holographic
version of the entanglement negativity was put forth in [61–63], wherein the
authors have proposed a conjecture for a single interval on the boundary CFT.
This holographic entanglement negativity turns out to be proportional to sum
of the holographic mutual information for the corresponding partitioning of the
system.

Motivated by the holographic entanglement negativity conjecture for a single
interval, we consider here a distinct configuration of two adjacent intervals. Note
that the entanglement negativity for the single interval configuration character-
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izes the entanglement of the interval with the rest of the system and describes
a pure state at zero temperature and a mixed state at finite temperature. In
contrast the entanglement negativity for the adjacent intervals characterizes the
entanglement between the two intervals and describes a mixed state even at zero
temperature due to the information about the rest of the system being traced
over. This makes it an interesting configuration to investigate both at zero and
finite temperatures. Hence the holographic entanglement negativity conjecture
for two adjacent intervals has no advantage or improvement over the single inter-
val conjecture as these two conjectures are dealing with two completely distinct
configurations

In this chapter, which is based on the ref. [130], we will discuss the holo-
graphic entanglement negativity for two adjacent intervals on the boundary
CFT, for various cases. We will start this chapter by reviewing entanglement
negativity for two adjacent intervals in the CFT perspective and then discuss
the holographic entanglement negativity for two adjacent intervals in the back-
ground of AdS3/CFT2, finally we will end this chapter with the summary and
some discussion related to our results.

7.1 Entanglement Negativity

We start this section by reviewing the definition of the logarithmic negativity
as presented in [54]. For furture purpose we will use the term “entanglement
negativity” in place of “logarithmic negativity”. We start by considering tri-
partition of a system as A1, A2 and B where A = A1 ∪ A2 and B = Ac is
the remaining part of the system. The Hilbert space H for the subsystem A
is given as H = H1 ⊗ H2, where H1,H2 are the Hilbert spaces for A1 and A2

respectively. Moving on, we define the partial transpose of the reduced density
matrix ρA = TrAc(ρ) as

〈e(1)
i e

(2)
j |ρ

T2

A |e
(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA|e

(1)
k e

(2)
j 〉, (7.1)

where |e(1)
i 〉 and |e(2)

j 〉 are the bases for the Hilbert spaces H1 and H2 respec-
tively. We can now define the entanglement negativity between the two subsys-
tems A1 and A2 as

E = ln Tr|ρT2

A |, (7.2)

where Tr|ρT2

A | is the trace norm and is defined as the sum of absolute eigenvalues

of ρT2

A .

7.1.1 Entanglement negativity in 2D CFT

We will now present the calculation of the entanglement negativity for mixed
states in 2D CFT when the configuration is of two disjoint intervals [56,57]. We
consider the tripartition of the system as given earlier and represented by the
Fig. 10 below :
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Figure 10 : Schematic of two disjoint intervals A1 and A2 in a
(1+1)-dimensional CFT .

In the above configuration, A1 has length l1 and is given as (A1 ∈ [u1, v1])
and A2 has length l2 and is given as (A2 ∈ [u2, v2]). The remaining system is
given as B = Ac. To calculate the entanglement negativity through the replica
method, we need Tr(ρT2

A )ne which is given in terms of the twist/anti-twist fields
as follows

Tr(ρT2

A )ne = 〈Tne(u1)T ne(v1)T ne(u2)Tne(v2)〉C, (7.3)

where the four point function is on the complex plane.
Now, considering the analytic continuation ne → 1 for the above equation, we
can now define the entanglement negativity as

E = lim
ne→1

ln Tr(ρT2

A )ne . (7.4)

It is worthy to note here that this analytic continuation is an involved calculation
and is till date possible for some simplified models of conformal field theories
[51,58,131,132].

7.1.2 Two adjacent intervals in the vacuum

To calculate the entanglement negativity for mixed states having the configura-
tion of two adjacent intervals in vacuum [56, 57], we begin by taking the limit
v1 → u2 in the Fig. 10 to obtain the desired configuration in Fig. 11 below :

Figure 11 : Schematic of two adjacent intervals A1 and A2 in a
(1+1)-dimensional CFT .

In the limit v1 → u2, Tr(ρT2

A )ne (7.3) can now be written as a three point
function of the twist/anti-twist fields as follows

Tr(ρT2

A )ne = 〈Tne(−l1)T 2

ne(0)Tne(l2)〉. (7.5)

We now make use of the eqs. (7.4) and (7.5) to extract the desired entanglement
negativity as

E =
c

4
ln

[
l1l2

(l1 + l2)a

]
+ const, (7.6)
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where a is the UV cut off and c is the central charge for the corresponding CFT.
It is worthy to note here that the first term is universal in nature whereas the
‘const ’ term depends on the operator content of the theory.

7.1.3 Two adjacent intervals in vacuum - Finite Size

We now proceed to calculate the entanglement negativity for mixed states which
are at zero temperature and having the configuration of two adjacent intervals
when the system is finite and has periodic boundary conditions [56]. For the
calculation of the entanglement negativity, we need the three point function
(7.5) on a system which has finite length L. To realize this configuration, we
use the conformal map z → w = iL

2π ln z, which takes us from the complex plane,
where we have the coordinates labelled by z to the cylinder having circumference
L, on which the coordinates are labelled by w. Using this map and eq. (7.4),
we can now obtain the entanglement negativity as

E =
c

4
ln

[( L
πa

) sin(πl1L ) sin(πl2L )

sin π(l1+l2)
L

]
+ const, (7.7)

where the first term is of universal nature and the ‘const ’ term is of non-universal
nature.

7.1.4 Two adjacent intervals - Finite Temperature

We can extend the above analysis to calculate the entanglement negativity for
two adjacent intervals for mixed states which are at finite temperature. For
the calculation of the entanglement negativity at a finite temperature, we need
the three point function (7.5) on a cylinder, having the circumference β, where
β = 1

T gives the inverse temperature. To realize this configuration, we use the

conformal map z → w = β
2π ln z, which takes us from the complex plane, where

we have the coordinates labelled by z to the cylinder having circumference β,
on which the coordinates are labelled by w. Using this map and eq. (7.4), we
can now obtain the entanglement negativity as

E =
c

4
ln

[( β
πa

) sinh(πl1β ) sinh(πl2β )

sinh π(l1+l2)
β

]
+ const, (7.8)

where the first term is of universal nature and the ‘const ’ term is of non-universal
nature.

7.1.5 Entanglement negativity behaviour in the large cen-
tral charge limit

The AdS3/CFT2 correspondence, tells us that when we take the large central
limit i.e. c → ∞ for the 2D boundary CFT, then this limit corresponds to the
semiclassical regime of the dual bulk gravity i.e we have the Newton’s constant

G
(3)
N → 0. This happens because of the connection between the central charge c

and the Newton’s constant G
(3)
N which is given by the Brown-Henneaux formula

as c = 3R

2G
(3)
N

Note that henceforth R stands for the AdS3 radius as compared to

L previously.
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Using the monodromy method, the authors in [133] analysed the large central
charge behaviour of the four point function as given in the eq. (7.3), to ascertain
the conformal blocks that provided the dominant contribution. Their analysis
led to the result that in the case of the two adjacent intervals corresponding to
the limit v1 → u2, as shown in the Fig. 11, the four point function as given
in the eq. (7.3) receives the dominant contribution from the conformal block

related to the intermediate operator T 2
. Hence, in the limit of the large central

charge, the expression for the entanglement negativity can be given as

E =
c

4
ln
[ l1l2

(l1 + l2)a

]
. (7.9)

We see that the above result matches with the universal term for the entangle-
ment negativity as given in the eq. (7.6).

Also, it was shown that the entanglement negativity goes to zero, as the
disjoint intervals move away from each other. In the next section, we will
talk about the holographic entanglement negativity conjecture for two adjacent
intervals and show that it matches with the CFT results in the large central
charge limit.

It is interesting to note here that the monodromy method has also been
used previously to study the large central charge behaviour of the entanglement
entropy for the case of multiple disjoint intervals in [52](using a different method
in [51]). The analysis led to the result that in the large central charge limit,
the entanglement entropy has a universal nature and matches with the results
of the holographic entanglement entropy conjecture given by Ryu-Takayanagi.

7.2 Holographic entanglement negativity conjec-
ture for two adjacent intervals in AdS3/CFT2

As we had indicated in the earlier section, in the limit of the large central charge,
it is possible to have a holographic description of the entanglement negativity
using the AdS/CFT correspondence. So to begin with, we consider the mixed
state configuration of A1 ∪ A2 as shown in the Fig. 11, where we have the two
adjacent intervals A1 and A2, having lengths l1 and l2 respectively. It is already
known that in this case we need the three point correlation function (7.5) whose
conformally invariant form is as follows

〈Tne(z1)T 2

ne(z2)Tne(z3)〉 =
c2n CTneT

2
ne
Tne

|z12|
∆T 2

ne |z23|
∆T 2

ne |z13|
2∆Tne−∆T 2

ne

, (7.10)

where the normalization constants are given by cn and the structure constant
pertaining to the given OPE is CTneT

2
ne
Tne

. Also, ∆Tne and ∆T 2
ne

represent

the scaling dimensions for the twist operators Tne and T 2
ne respectively and are

given as

∆Tne =
c

12

(
ne −

1

ne

)
,

∆T 2
ne

= 2∆Tne
2

=
c

6

(ne
2
− 2

ne

)
.

(7.11)
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We can now write the leading universal term for the expression given in the eq.
(7.10) as

〈Tne(z1)T 2

ne(z2)Tne(z3)〉 =

〈
Tne(z1)T ne(z3)

〉〈
Tne

2
(z1)T ne

2
(z2)

〉〈
Tne

2
(z2)T ne

2
(z3)

〉〈
Tne

2
(z1)T ne

2
(z3)

〉 +O[
1

c
],

(7.12)

where we have used the following equation as given in [56,57]

〈T 2
ne(u)T 2

ne(v)〉C =
〈
Tne

2
(zi)T ne

2
(zj)

〉2
C (7.13)

and ignored the contribution from the non-universal terms as we are considering
the large central charge limit.

Using the AdS3/CFT2 dictionary, we can now correlate the two point func-
tion in terms of the twist fields at zi, zj pertaining to the boundary CFT with
the geodesic length in the bulk, Lij whose end points are also anchored at zi, zj
at the boundary, as follows〈

Tne(zk)T ne(zl)
〉
C ∼ e

−∆neLkl
R , (7.14)〈

Tne
2

(zi)T ne
2

(zj)
〉
C ∼ e

−
∆ne

2
Lij

R . (7.15)

Next, we use eqs. (7.14) and eq. (7.15) in eq. (7.12), to rewrite the the three
point correlation function as

〈Tne(z1)T 2

ne(z2)Tne(z3)〉 = exp

[−∆TneL13 −∆Tne
2

(L12 + L23 − L13)

R

]
,

(7.16)

where we have (z1 = −l1, z2 = 0, z3 = l2).
Before proceeding ahead with the replica limit, it is important to mention

here that first, one needs to consider the large central charge limit, as we have
already done and then only consider the replica limit. As seen earlier, the replica
limit is similar to the concept of analytic continuation.

Next, when we consider the replica limit (ne → 1), the scaling dimensions
take up the values as ∆Tne → 0 and ∆Tne

2

→ − c
8 . Using the above values,

we can now obtain the holographic entanglement negativity for the mixed state
configuration of the two adjacent intervals as

E =
3

16G3
N

(L12 + L23 − L13), (7.17)

wherein we have made use of the Brown-Henneaux formula c = 3R
2G3

N
[95]. Since

the above expression is written in terms of the geodesic lengths, we now use the
Ryu-Takayanagi conjecture [25] which states that the holographic entanglement
entropy SA for a subsystem A in a dual CFTd+1 is given as

SA =
Area(γA)

4G
(d+2)
N

. (7.18)

In the above expression γA is a co-dimension two space like static minimal

surface in the bulk AdSd+2 homologous to the subsystem A and G
(d+2)
N is the

86



d+ 2 dimensional Newton constant. Using the Ryu-Takayanagi conjecture, we
can re-express equation (7.17) as

E =
3

4
(SA1 + SA2 − SA1∪A2) =

3

4
I(A1, A2), (7.19)

where we have identified the labels 12 with interval A1, 23 with interval A2 and
13 with A1 ∪ A2 and I(A1, A2) represents the holographic mutual information
between the two adjacent intervals. This is depicted pictorially in Fig. 12 below:

Figure 12 : Schematic of bulk geodesics anchored on the subsystems A1 , A2

and A1 ∪A2 in a (1+1)-dimensional boundary CFT .

Note here that whereas the mutual information gives the upper bound on the
total correlation existing in a bipartite system, the entanglement negativity
gives the upper bound on the distillable entanglement. However, for the given
case, in the large central charge limit the universal terms from both of these
two quantities turns to be the same. Also, this kind of similarity has also been
seen in the cases of local and global quench problems in [134,135]

This entire exercise clearly shows that in the setup of AdS3/CFT2, we can
have a holographic representation of the entanglement negativity for the given
mixed state configuration of the two adjacent intervals. We will now move on
to calculate the holographic entanglement negativity for various scenarios.

7.2.1 Two adjacent intervals in the vacuum

Using the conjecture as proposed above, we will now calculate the holographic
entanglement negativity for the mixed states at zero temperature having the
configuration of two adjacent intervals on the boundary 2D CFT. As dictated
by the AdS3/CFT2 correspondence, in this case, the bulk configuration is the
AdS3 vacuum which is described in the Poincaré coordinates as follows

ds2 = −
(
r2

R2

)
dt2 +

(
r2

R2

)−1

dr2 +
r2

R2
dx2, (7.20)

where the AdS3 radius is given by R and for the coordinate x, we have the
condition x ∈ R. For the boundary interval γ, whose length is lγ on the 2D
CFT, we have the corresponding geodesic whose length Lγ in the bulk AdS3,
given as [25,26,33,45]

Lγ = 2R ln
lγ
a
, (7.21)
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where the UV cut off is denoted by a.
Using eq. (7.19), we can now obtain the holographic entanglement negativity
as

E =
3R

8G3
N

ln

[
l1l2

(l1 + l2)a

]
. (7.22)

After using the Brown-Henneaux formula in the above equation, the result for
the holographic entanglement negativity matches with the CFT result in the
large central charge limit (7.6), hence validating the conjecture in this case.

7.2.2 Two adjacent intervals in vacuum - Finite Size

We will now move on with the calculation of the holographic entanglement neg-
ativity for the mixed states at zero temperature when the system is of finite size
of length L. This pertains to the configuration of two adjacent intervals on the
boundary 2D CFT which lies on an infinite cylinder having the circumference
L. As dictated by the AdS3/CFT2 correspondence, in this case, the bulk con-
figuration is the AdS3 vacuum which is now described by the global coordinates
as follows [25,26,33,45]

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdφ2), (7.23)

where the coordinate φ is periodic in nature having a periodicity of 2π. In
this case for the boundary interval γ, whose length is lγ on the 2D CFT, the
corresponding geodesic length Lγ in the bulk AdS3, is given as [25,26,33,45]

Lγ = 2R ln
( L
πa

sin
πlγ
L

)
. (7.24)

Using the expression for the geodesic length as given by the eq. (7.24) in the
eq. (7.17), we can now obtain the holographic entanglement negativity as

E =
3R

8G3
N

ln

[( L
πa

) sin(πl1L ) sin(πl2L )

sin π(l1+l2)
L

]
. (7.25)

In this case also, after using the Brown-Henneaux formula in the above equation,
the result for the holographic entanglement negativity matches with the CFT
result in the large central charge limit (7.7), hence validating the conjecture in
this case also.

7.2.3 Two adjacent intervals - Finite Temperature

We will now proceed with the calculation of the holographic entanglement nega-
tivity for the mixed states at finite temperature. This pertains to the configura-
tion of two adjacent intervals on the boundary 2D CFT which lies on a cylinder
whose spatial direction is non-compactified and infinite in range whereas the
temporal direction which is Euclidean in nature lies along the compactified cir-
cle whose circumference is β. As dictated by the AdS3/CFT2 correspondence,
in this case, the bulk configuration is the (uncharged, non-rotating) Euclidean
BTZ black hole which is at the Hawking temperature T = 1

β and the corre-

sponding metric is given as [25,26,33,45]

ds2 =

(
r2 − r2

h

)
R2

dτ2 +
R2

(r2 − r2
h)
dr2 +

r2

R2
dφ2, (7.26)
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where τ stands for the Euclidean time and the the event horizon is denoted
by r = rh. In this case for the boundary interval γ, whose length is lγ on
the 2D CFT, the corresponding geodesic length Lγ in the bulk AdS3, is given
as [25,26,33,45]

Lγ = 2R ln
( β
πa

sinh
πlγ
β

)
, (7.27)

where β = 2πR2/rh denotes the inverse Hawking temperature. Using the ex-
pression for the geodesic length as given by the eq. (7.27) in the eq. (7.17), we
can now obtain the holographic entanglement negativity as

E =
3R

8G3
N

ln

[( β
πa

) sinh(πl1β ) sinh(πl2β )

sinh π(l1+l2)
β

]
. (7.28)

In this case of finite temperature, after using the Brown-Henneaux formula
in the above equation, the result for the holographic entanglement negativity
matches with the CFT result in the large central charge limit (7.8). Hence we
get a validation of the conjecture in the case of finite temperature also.

7.3 Conclusion

In this chapter, which is based on the Ref. [130], we have used the AdS3/CFT2

correspondence to establish a holographic prescription for the calculation of
the entanglement negativity for the mixed state configuration of two adjacent
intervals for both zero and at finite temperature. In this case, the entanglement
is between the two adjacent intervals as the degrees of freedom pertaining to
the remaining system is traced over. The holographic prescription makes use
of the lengths of the geodesics in the bulk AdS3 whose endpoints are anchored
on two adjacent intervals lying on the boundary 2D CFT and as a result the
holographic entanglement negativity can also be expressed as the holographic
mutual information between the two adjacent intervals.

The calculation for the holographic entanglement negativity is done for 3
cases :-
1. First, when the boundary CFT is at zero temperature and lies on an infinite
plane then the corresponding bulk configuration is the AdS3 vacuum in the
Poincaré patch.
2. Second, when the boundary CFT is at zero temperature and lies on an infinite
cylinder having the circumference L as it’s spatial direction is compactified and
finite in length. This is the case when the system is at zero temperature and
has finite size. The corresponding bulk configuration is the AdS3 vacuum in the
global coordinates.
3. Third, when the boundary CFT is at finite temperature and lies on an infinite
cylinder having the circumference β as it’s (Euclidean) temporal direction is
compactified and the spatial direction is infinite in length. The corresponding
bulk configuration is the Euclidean BTZ black hole.
In all the above 3 cases, the holographic results matches with the CFT results
in the large central charge limit.

The holographic entanglement negativity conjecture as proposed in [130] can
be generalized to the AdSd+1/CFTd case. In this case, then we will have two ad-
jacent subsystems on the boundary d-dimensional CFT. The holographic entan-
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glement negativity in this case will now involve an algebraic combination of the
areas of the co-dimension two minimal surfaces residing in the bulk and whose
endpoints are anchored on the two boundary subsystems. In this case also, the
holographic entanglement negativity can be expressed as the holographic mutual
information between the two adjacent subsystems in the following fashion

E =
3

16G
(d+1)
N

(
A1 +A2 −A12

)
=

3

4
I(A1, A2). (7.29)

However, this generalization needs to be validated and maybe one can use the
reasonings similar to [11].

This conjecture for the AdS3/CFT2 setup furnishes a neat way to calculate
the holographic entanglement negativity for two adjacent intervals for both zero
and finite temperature scenarios. This holographic entanglement negativity can
be applied to various fields like condensed matter physics, topological phases,
quantum phase transitions, quantum gravity etc. These applications constitute
an interesting future research arena.
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Chapter 8

Holographic Entanglement
Negativity for Conformal
Field Theories with a
Conserved Charge

Currently, quantum entanglement is playing a major role in many fields of
physics like many body theory, quantum gravity, black hole physics. Quantum
entanglement for pure states is characterized by the measure called entangle-
ment entropy. In quantum information theory, entanglement entropy is given by
the von Neumann entropy of the corresponding reduced density matrix. In con-
formal field theory, entanglement entropy has been calculated using the replica
trick [34, 35]. Using the AdS/CFT correspondence, Ryu and Takayanagi had
proposed the holographic entanglement entropy [25, 26, 42] which makes use of
the area of the bulk co dimension two minimal surface.

However, entanglement entropy fails as a measure when we deal with the
mixed state configurations. To solve this problem, Vidal and Werner [54] pro-
posed the measure called as entanglement negativity which serves as an upper
bound on the distillable entanglement and this measure was capable to capture
entanglement in a given mixed state. The non-convexity of the entanglement
negativity and it’s monotone nature was shown in [55]. Also, entanglement neg-
ativity has been calculated for conformal field theories using a modified version
of the replica trick [56–58].

As it was already known that the entanglement entropy has a holographic
counterpart, so attempts were made to extract a holographic counterpart for
the entanglement negativity as well [59, 60]. A clear solution to this issue was
given in [61–63] where the authors had proposed the holographic entanglement
negativity conjecture for a given single interval on the boundary CFT. Compared
to the holographic entanglement entropy, this conjecture for the holographic
entanglement negativity involved an algebraic combination of the areas of the
bulk co-dimension two minimal surfaces. The results from this conjecture agreed
with the universal term for the corresponding CFT results in the large central
charge limit, further the reasonings for this conjecture was given a firmer footing
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in [64].

Recently, another conjecture for the holographic entanglement negativity
was proposed in [130]. This conjecture dealt with the case of two adjacent
intervals on the boundary CFT as compared to the single interval case in the
previously stated conjecture. This conjecture for two adjacent intervals involved
lengths of the bulk geodesics and as a result the holographic entanglement neg-
ativity could be expressed as the holographic mutual information between the
two adjacent intervals. Interestingly, this relation between the universal piece of
the entanglement negativity and the corresponding mutual information for the
case of two adjacent intervals has also been noticed in [134,135]. Similar to the
previous conjecture for a single interval, in this case of two adjacent intervals
also, the holographic result agreed with the universal term of the CFT results
in the large central charge limit.

The generalization for the conjecture of two adjacent intervals to the case
of AdSd+1/CFTd was put forth in [65]. This generalization involved areas of
co-dimension two bulk minimal surfaces whose endpoints were anchored on the
corresponding subsystem residing on the boundary d-dimensional CFT. The
calculations were done for pure AdSd+1 and AdSd+1-Schwarzschild black hole. It
was noticed that in the finite temperature case which correponds to the AdSd+1-
Schwarzschild black hole in the bulk, in the high temperature approximation, the
volume/thermal terms are cancelled out leaving behind area dependent terms.
Hence, it was concluded that the holographic entanglement negativity scales as
the area and not volume compared to the entanglement entropy [47]. This area
law for the case of entanglement negativity has also been noticed in [66, 67].
Further, a covariant version for the holographic entanglement negativity for two
adjacent intervals was put forth in [68].

In this chapter, which is based on [136], we will study the application of the
AdSd+1/CFTd version of the holographic entanglement negativity conjecture
for two adjacent intervals to the case of RN-AdS black holes. The dual CFT’s
which correspond to the RN-AdS black hole in the bulk have a conserved charge.
We will begin this chapter with a review of the AdSd+1/CFTd version of the
holographic entanglement negativity conjecture. We will then move to study
the holographic entanglement negativity for two adjacent intervals for various
configurations of RN-AdS4/CFT3 setup followed by RN-AdSd+1/CFTd setup.
Finally, we will end this chapter with some discussion on the results.

8.1 Holographic entanglement negativity conjec-
ture for two adjacent intervals

In this section, we will review the holographic entanglement negativity conjec-
ture for two adjacent intervals. We will first begin with AdS3/CFT2 case as
described in [130] and then describe the AdSd+1/CFTd version [65].

In case of conformal field theories, entanglement negativity is calculated us-
ing a modified version of the replica trick [56–58]. We start by considering
tripartition of the system in A1, A2, A

c where A = A1 ∪ A2 and the remain-
ing part of the system is Ac = (A1 ∪ A2)c. We then define the entanglement
negativity as follows

E = lim
ne→1

ln Tr(ρT2

A )ne , (8.1)
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where the partial transpose of the reduced density matrix ρA with respect to
the interval A2 is given as ρT2

A . Further, ne → 1 is the replica limit, wherein we
consider the analytic continuation for even n i.e. ne.

In the above equation, Tr(ρT2

A )ne is a three point correlation function which
is given as

Tr(ρT2

A )ne = 〈Tne(z1)T 2

ne(z2)Tne(z3)〉 = c2n
CTnT

2
nTn

|z12|
∆T 2

ne |z23|
∆T 2

ne |z13|
2∆Tne−∆T 2

ne

,

(8.2)
where |zij | = |zi − zj | and the scaling dimension for τ2

ne , τne is ∆τ2
ne

and ∆τne
respectively.

Now, using the fact that in the setup of AdS3/CFT2 correspondence and
in the large central charge limit the above three point function of twist fields
(8.2) residing on the CFT can be alternatively expressed in terms of the bulk
geodesics whose endpoints are anchored on the intervals, we get [130]

〈Tne(z1)T 2

ne(z2)Tne(z3)〉 = exp

[−∆TneL13 −∆Tne
2

(L12 + L23 − L13)

R

]
, (8.3)

here the endpoints of the adjacent intervals are (z1 = −l1, z2 = 0, z3 = l2). Now,
after making use of the Brown-Henneaux formula c = 3R

2G3
N

[95], the holographic

entanglement negativity can be written as

E =
3

16G3
N

(L12 + L23 − L13), (8.4)

In the case of AdSd+1/CFTd, holographic entanglement negativity will in-
volve Ai which is the area of bulk co-dimension 2 static minimal surface and
can be expressed as [65]

E =
3

16G
(d+1)
N

(
A1 +A2 −A12

)
(8.5)

Now, applying the Ryu-Takayanagi conjecture [25] to the above eqs (8.4),
(8.5) we can finally express the holographic entanglement negativity for two
adjacent subsystems as

E =
3

4
(SA1 + SA2 − SA1∪A2) =

3

4
[I(A1, A2)], (8.6)

where SAi is the holographic entanglement entropy of the subsystem Ai. The
expression I(A1, A2) in the above (8.6) is the holographic mutual information
between the two adjacent subsystems. Next, we will use this holographic con-
jecture to evaluate the entanglement negativity for two adjacent subsystems in
the subsequent sections.

8.2 Holographic entanglement negativity in the
setup of RN-AdS4/CFT3

In this section we will study the holographic entanglement negativity for two
adjacent subsystems when we have mixed state configuration in the form of
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rectangular strip geometry on the boundary 3 dimensional CFT (having a con-
served charge) which is dual to the RN-AdS4 black holes in the bulk. We will
consider both extremal and non-extremal cases.

8.2.1 Area of the minimal surface for RN-AdS4 black holes

In this subsection, we will review the perturbative method of calculation of
the area of the bulk co-dimension two static minimal surface in the case of
RN-AdS4 black hole [47, 49] as it is pertinent to the calculation of holographic
entanglement negativity later.

The metric for the RN-AdS4 black hole having a planar horizon is

ds2 = −r2f(r)dt2 +
1

r2f(r)
dr2 + r2(dx2 + dy2), (8.7)

f(r) = 1− M

r3
+
Q2

r4
, (8.8)

where the AdS radius R = 1.
The lapse function vanishes at the horizon (r = rh) and we get the following
relation between mass, charge and horizon radius

f(rh) = 0⇒M =
r4
h +Q2

rh
. (8.9)

Effectively, we can now re-express the lapse function (8.8) as

f(r) = 1− r3
h

r3
− Q2

r3rh
+
Q2

r4
. (8.10)

The Hawking temperature in the case of RN-AdS4 black hole is given as

T =
f ′(r)

4π

∣∣∣∣
r=rh

=
3rh
4π

(1− Q2

3r4
h

). (8.11)

and when T = 0, we have what is called as an extremal black hole characterized
by the extremality condition

rh =

√
Q

3
1
4

. (8.12)

We will now move towards the calculation for the area of the bulk co-
dimension two static minimal surface. The endpoints of these surfaces are an-
chored on the boundary 3D CFT which is dual to the RN-AdS4 black hole in
the bulk. The subsystems A on the boundary CFT3 have a rectangular strip
geometry and is described as

x ∈ [− l
2
,
l

2
], y ∈ [−L

2
,
L

2
]. (8.13)

The area AA of the bulk co-dimension two bulk static minimal surface is then
given as

AA = 2L

∫ ∞
rc

dr√
f(r)(1− r4

c

r4 )
. (8.14)
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where rc is a constant of integration and defines the turning point of the minimal
surface in the bulk and it can be obtained by inverting the equation of motion
which is

l

2
=

∫ ∞
rc

r2
cdr

r4

√
f(r)(1− r4

c

r4 )
, (8.15)

where l is the length of the rectangular strip along the x direction.
Once we have the value of rc from (8.15), we subsitute it in (8.14) to obtain the
area of the extremal surface. This is the outline of the method to obtain the
area.

Now, for the purpose of the perturbative analysis, using the fact that the
lapse function vanishes at the horizon, we can use (8.10) instead of (8.8) in
(8.14). To solve the above integrals, we change the coordinate from r to u = rc

r ,
to get the following expressions

f(u) = 1− rh
3u3

rc3
− Q2u3

rc3rh
+
Q2u4

rc4
, (8.16)

l =
2

rc

∫ 1

0

u2f(u)−
1
2

√
1− u4

du, (8.17)

AA = 2Lrc

∫ 1

0

f(u)−
1
2

u2
√

1− u4
du, (8.18)

The required area of the minimal surface can now be obtained by using the
above equations and doing a perturbative analysis in the various limits of the
charge Q and the temperature T .

In the following section, we will calculate the holographic entanglement neg-
ativity for two adjacent subsystems having a mixed state configuration for the
RN-AdS4/CFT3 scenario. The two adjacent subsystems A1, A2 have a rectan-
gular strip geometry and are described as

x ∈ [− l12 ,
l1
2 ], y ∈ [−L2 ,

L
2 ], (8.19)

x ∈ [− l22 ,
l2
2 ], y ∈ [−L2 ,

L
2 ], (8.20)

respectively. This configuration is depicted below in the Fig. 13.
In this case of two adjacent subsystems, one can now obtain the turning point
by using l1 and l2 instead of l in the eq. (8.17) and finally obtain the area by
then making using of the eq. (8.18).
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Figure 13 : Schematic of the bulk static minimal surfaces that are anchored
on the subsystems A1 , A2 and A1 ∪A2 on the boundary CFT3 dual to the

RN-AdS4 black hole.

8.2.2 Non-extremal RN-AdS4 black holes

We will first consider the case of the non-extremal RN-AdS4 black hole which
means that the black hole is at a finite, non-vanishing temperature. At the
boundary CFT3 which is dual to the RN-AdS4 black hole, we will consider the
mixed state configuration of the two adjacent subsystems having rectangular
strip geometries as shown in the Fig. 13. We first use a perturbative method
to calculate the area of the static minimal surface in the bulk and then use the
conjecture to calculate the holographic entanglement negativity. In the following
subsections, we will perform this exercise in the various limits of the charge and
temperature.

Small charge and low temperature

In this scenario we consider the case when the black hole has a small charge and
is at low temperature. In this case rh can be given as

rh ≥
√
Q

3
1
4

. (8.21)

In this case, because both the charge and the temperature are small, Q/r2
h ∼ 1

and using the fact that rh << rc we can do a Taylor expansion for f(u)−
1
2

around rh
rc

= 0 to the leading order in O[( rhrc u)3]. The approximated form of
the lapse function (8.16) is [49]

f(u)−
1
2 ≈ 1 +

1 + α

2

(
rh
rc

)3

u3, (8.22)

where α = Q2

r4
h

.

Now, using (8.22), (8.17), (8.18) we get the following expression for the area of
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the bulk co-dimension two static minimal surface [49]

AA = AdivA +AfiniteA , (8.23)

where the AdivA is the divergent part and AfiniteA is the finite part of AA given
as

AdivA = 2
(L
a

)
, (8.24)

AfiniteA = k1
L

l
+ k2r

3
h(1 + α)l2 +O(r4

hl
3). (8.25)

The constants k1, k2 in the above equation are expressed as

k1 = −
4πΓ( 3

4 )2

Γ( 1
4 )2

, (8.26)

k2 =
Γ( 1

4 )2

32Γ( 3
4 )2

. (8.27)

Next, using the conjecture (8.5), we can now obtain the holographic entan-
glement negativity as

E =
3

16G3+1
N

[(2L

a

)
+ k1(

L

l1
+
L

l2
− L

l1 + l2
)− 2k2ML l1l2

]
+ . . . , (8.28)

where M = r3
h(1 + α) = r3

h(1 + Q2

r4
h

) and the ellipses denotes sub leading correc-

tions for the given case.
In the above equation, the first term gives the divergent piece for the holo-
graphic entanglement negativity, the second term gives the finite term for the
holographic entanglement negativity at zero temperature for the given mixed
state configuration of two adjacent subsystems on the CFT3, which corresponds
to the geometry of pure AdS4 in the bulk. The third term gives the corrections
due to the presence of charge and the temperature. We see here, that as the
temperature was low, there seems to be no thermal contribution towards the
holographic entanglement entropy, hence the holographic entanglement nega-
tivity in this case does not exhibits thermal piece separation.

Small charge and high temperature

In this case we consider the scenario when the black hole has a small charge
and is at high temperature. Now, as rh >> 1, we have Q√

3r2
h

<< 1 and using

this fact we can do a Taylor expansion of f(u)−
1
2 around δ = 0 where δ = Q√

3r2
h

.

The approximated form of the lapse function [49] is

f(u)−
1
2 ≈ 1√

1− rh3u3

rc3

+
3

2

(
rh
rc

)3 δ2u3(1− rhu
rc

)

(1− rh3u3

rc3 )3/2)
. (8.29)

Now using the eqs. (8.29),(8.17) and (8.18) we get the following expression for
the finite term of the area as [49]

AfiniteA = Llr2
h +Lrh(k1 + δ2k2) +Lrhε

[
k3 + δ2(k4 + k5 log ε)

]
+O[ε2], (8.30)
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where the value of the constants k1, k2, k3, k4 and k5 for the above equation are
given in the Appendix (A.1) in the eqs. labelled as (A.1), (A.2), (A.3), (A.4)
and (A.5) respectively. The parameter ε appearing in the eq. (8.30) is expressed
as

ε =
1

3
exp

(
−
√

3(lrh − c1 − c2δ2)
)
, (8.31)

where the constants c1, c2 for the above equation are given in the Appendix (A.1)
in eqs. labelled as (A.6) and (A.7) respectively. Now, using the conjecture, we
obtain the holographic entanglement negativity for the given case as

E =
3

16G3+1
N

[
2L

a
+ Lrh

{
(k1 + δ2k2) + k3(ε1 + ε2 − ε12)

+δ2k4(ε1 + ε2 − ε12) + δ2k5

(
log ε1 + log ε2 − log ε12

)}]
+ ...(8.32)

where ε1, ε2, ε12 corresponds to the subsystems A1, A2 and A1∪A2 respectively.

We see that in the above equation the holographic entanglement negativity
depends on a single parameter L, which is the length common to both the two
adjacent subsystems on the boundary CFT. On the bulk side this L turns out
to be the area of the minimal surface which in the given case of RN-AdS4/CFT3

turns out to be the length. It is interesting to compare this to the holographic
entanglement entropy which scales as the volume for the given limit (area in
the case of RN-AdS4/CFT3) [49] whereas holographic entanglement negativity
scales as the area for the given limit (length in the case of RN-AdS4/CFT3). In
the case of holographic entanglement negativity, as the temperature is high, even
though the volume terms which represent thermal correlations are present, they
are cancelled out and so we are left with only area dependent terms (length in the
case of RN-AdS4/CFT3). This conforms to the expectations coming from the
domain of quatum information theory. This elimination of the thermal terms is
similar to the AdS3/CFT2 scenario [61,130] suggesting that maybe the absence
of the thermal terms is an universal aspect of the holographic entanglement
negativity.

Large charge and high temperature

We now consider the case when the black hole has a large charge and is at high
temperature. Now, in this case the turning point of the minimal surface in the
bulk is close to the horizon so we have rc ∼ rh, u0 = rc

rh
∼ 1 and using this fact

we can do a Taylor expansion of f(u)−
1
2 around u0. The approximated form of

the lapse function is [49]

f(u) ≈
(

3− Q2

r4
h

)(
1− rh

rc
u
)
. (8.33)

Now, using the eqs. (8.33), (8.17), (8.18) we get the following expression for the
finite term of the area as [49]

AfiniteA = Llr2
h +

Lrh

2
√
δ

[
K ′1 +K ′2ε+O(ε2)

]
, (8.34)
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where ε is as given in the eq. ((8.31)) and the constants K ′1 and K ′2 in the above
equation are given in the Appendix (A.2) in the eqs. labelled as (A.8) and (A.9)
respectively.

Using the holographic entanglement negativity conjecture, we obtain

E =
3

8G3+1
N

[(L
a

)
+
Lrh√
δ

{
K ′1 +K ′2(ε1 + ε2 − ε12)

}]
+ . . . , (8.35)

where ε1, ε2, ε12 corresponds to the subsystems A1, A2 and A1∪A2 respectively.
In this case also even though because of the high temperature, thermal

contributions from the holographic entanglement entropy are present, they are
removed by the holographic entanglement negativity and the resulting holo-
graphic entanglement negativity then scales as the area (length in the case of
RN-AdS4/CFT3) of the minimal surface conforming to the expectations from
quantum information theory. As a result we again witness the similarity of
the elimination of the thermal terms between this case and the AdS3/CFT2

scenario, receiving hints that maybe removal of the thermal contribution is an
universal aspect of the holographic entanglement negativity.

8.2.3 Extremal RN-AdS4 black holes

We now move on towards the calculation of the holographic entanglement nega-
tivity of mixed states at zero temperature. We consider the configuration of the
two adjacent subsystems having rectangular strip geometries and residing on
the boundary CFT3 dual to the extremal RN-AdS4 black hole in the bulk. We
will perform calculations in a pertubative method for both the limits of small
charge and large charge.

Small charge

In this case we consider the scenario when the black hole has a small charge and
is at zero temperature. We use equation (8.12) in the lapse function (8.16) and
then observing the fact that for a small rh, we can do the Taylor expansion of
the f(u)−

1
2 around rh

rc
= 0, we get the approximated form for the lapse function

in the leading order in O[( rhrc u)3] as follows [49]

f(u)−
1
2 ≈ 1 + 2

r3
h

r3
c

u3, (8.36)

Using the eqs. (8.36), (8.17), (8.18) leads to the following expression for the
finite part of the area as [49]

AfiniteA = k1
L

l
+ k2r

3
hLl

2 +O(r4
hl

3), (8.37)

where the constants k1, k2 appearing in the above equation are given as

k1 = −
4πΓ( 3

4 )2

4Γ( 1
4 )2

,

k2 =
4Γ( 1

4 )2

32Γ( 3
4 )2

.
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Using the holographic entanglement negativity conjecture, we obtain

E =
3

16G3+1
N

[(2L

a

)
+ k1(

L

l1
+
L

l2
− L

l1 + l2
)− 2k2r

3
hLl1l2

]
+ . . . . (8.38)

In this case, since the black hole is at zero temperature, no thermal contributions
are present in the holographic entanglement entropy and this fact is clearly re-
flected in the holographic entanglement negativity which shows no thermal piece
separation. The second term in the above equation expresses the finite piece
of the holographic entanglement negativity for mixed state at zero temperature
having the configuration of two adjacent subsystems on the boundary CFT3

which is dual to the pure AdS4 in the bulk. The third term gives the correction
due to the presence of the conserved charge of the extremal RN-AdS4 black
hole.

Large charge

In this case we consider the situation when the black hole has a large charge
and is at zero temperature. Now, as rc ∼ rh, we have u0 = rc

rh
∼ 1 and using

this fact we can do a Taylor expansion of f(u)−
1
2 around u0. The approximated

form of the lapse function is [49]

f(u) ≈ 6
(

1− rh
rc
u
)2

. (8.39)

Now using the eqs. (8.39), (8.17) and (8.18), we get the following expression for
the finite term of the area as [49]

AfiniteA = Llr2
h + Lrh

(
K1 +K2

√
ε+K3ε+O(ε

3
2 )
)
, (8.40)

where the constants K1, K2 and K3 in the above equation are given in the
Appendix (A.3) in the eqs. labelled as (A.10), (A.11) and (A.12) respectively.

Now, using the holographic entanglement negativity conjecture, we obtain

E =
3

16G3+1
N

[(2L

a

)
+Lrh

{
K1+K2(

√
ε1+
√
ε2−
√
ε12)+K3(ε1+ε2−ε12)

}]
+. . . ,

(8.41)
where ε1, ε2, ε12 corresponds to the subsystems A1, A2 and A1∪A2 respectively.

In this case as the black hole is at zero temperature, the volume contribution
(area in the RN-AdS4/CFT3 scenario) to the holographic entanglement entropy
comes from the degeneracy of the ground state and finally gets removed by the
holographic entanglement negativity. Hence, the holographic entanglement neg-
ativity scales as the area (length in the RN-AdS4/CFT3 scenario). conforming
to the expectations from quantum information theory.

8.3 Holographic entanglement negativity in the
setup of RN-AdSd+1/CFTd

In the previous section, we saw that the holographic entaglement negativity con-
jecture in the case of RN−AdS4 produces results as expected i.e. whenever the
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holographic entanglement entropy has thermal contributions for non-extremal
cases, thermal contributions are separated from quantum correlations which in
turn are described by the holographic entanglement negativity. It is interest-
ing to note that the holographic entanglement negativity can also differentiate
between quantum and “unreal” thermal contributions for extremal large charge
case. This separation makes it evident that the CFT dual to extremal black
hole is in a mixed state even though it is at zero temperature. It is the large
charge of the black hole that leads to a large radius of horizon, finally resulting
in an extensive thermal-like term which reflects the fact that the black hole
has an effective thermal-like temperature. The exercise in the previous section
strengthens the validity of the conjecture for RN-AdS4/CFT3 even when the
black hole carries charge and is static. Now, as the authors in [65] have already
proved the validity of the conjecture for the case of AdSd+1 − Schwarzschild, it
becomes important to investigate if this conjecture still holds for charged and
static black holes in AdSd+1 and produces results similar to RN-AdS4.

In this section we will proceed towards the calculation of the holographic
entanglement negativity for mixed states having the configuration of the two
adjacent subsystems on the boundary CFTd dual to the RN-AdSd+1 black
hole in the bulk. The boundary subsystems have a rectangular strip geome-
try. This scenario requires a perturbative calculation of the the area of the bulk
co-dimension two static minimal surface in the various limits of the temperature
T and the chemical potential µ related to the charge Q of the RN-AdSd+1 black
hole. However, it turns out that in the RN-AdSd+1/CFTd setup it is suitable
to express the holographic entanglement negativity in terms of another set of
parameters called as effective temperature Teff and a dimensionless energy pa-
rameter ε. Both these parameters Teff and ε are functions of the temperature
and chemical potential. The parameter Teff counts the number of microstates
of the system for a specific temperature and chemical potential whereas the
parameter ε is a dimensionless measure for the energy of the system [137].

8.3.1 Area of the minimal surface for RN-AdSd+1 black
holes

We will start with the metric for the RN-AdSd+1 (d ≥ 3) black hole which is

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ d~x2

)
,

f(z) =1−Mzd +
(d− 2)Q2

(d− 1)
z2(d−1),

At =Q(zd−2
H − zd−2),

(8.42)

where the AdS radius R = 1 and zH is the location of the horizon, given by
the smallest real root when the lapse function vanishes f(z) = 0. Q,M are the
charge and the mass of the black hole respectively. The chemical potential is
given by

µ ≡ lim
z→0

At(z) = Qzd−2
H , (8.43)

and the Hawking temperature is given as

T = − 1

4π

d

dz
f(z)

∣∣∣∣
zH

=
d

4πzH

(
1−

(d− 2)2Q2z
2(d−1)
H

d(d− 1)

)
. (8.44)
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Next, the lapse function, chemical potential and temperature can be rewritten
as

f(z) = 1− ε
(
z

zH

)d
+ (ε− 1)

(
z

zH

)2(d−1)

, (8.45)

µ =
1

zH

√
(d− 1)

(d− 2)
(ε− 1), (8.46)

T =
2(d− 1)− (d− 2)ε

4πzH
. (8.47)

Here, ε having limits 1 ≥ ε ≥ 2(d−1)
d−2 is a dimensionless quantity, which repre-

sents energy of the system and is given as [137]

ε(T, µ) = b0 −
2n

1 +

√
1 + d2

2π2b0b1

(
µ2

T 2

) , (8.48)

Here b0, b1 are constants which depend on spacetime dimensions and are given
as

b0 =
2(d− 1)

d− 2
, b1 =

d

d− 2
. (8.49)

The effective temperature Teff defined earlier is given as [137]

Teff(T, µ) ≡ d

4πzH
=
T

2

[
1 +

√
1 +

d2

2π2b0b1

(
µ2

T 2

)]
. (8.50)

In order to calculate the area of the bulk co-dimension two static minimal
surface we consider a rectangular strip geometry for the subsystems on the
boundary CFT which is defined as

x ≡ x1 ∈
[
− l

2
,
l

2

]
, xi ∈

[
−L

2
,
L

2

]
, i = 2, ..., d− 2, (8.51)

where L→∞. The radial U.V. cutoff a is given as z(±`/2) = a.
In the first step, we need to find the turning point z∗ of the minimal surface in
the bulk from the following equation

l

2
=

∫ z∗

0

dz√
f(z)[(z∗/z)2(d−1) − 1]

, (8.52)

where we see the relation between the turning point z∗ of the minimal surface
in the bulk and l, the length of the strip in the x1 direction.
We now use the value of the turning point z∗ in the following expression to
obtain the area of the extremal surface.

A = 2Ld−2zd−1
∗

∫ l/2

0

dx

z(x)2(d−1)
= 2Ld−2zd−1

∗

∫ z∗

a

dz

zd−1

√
f(z)[z

2(d−1)
∗ − z2(d−1)]

,

(8.53)
where the UV cutoff is denoted by a.
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Alternatively, we can also express eq. (8.52) as a double sum [137]

l =
z∗

d− 1

∞∑
n=0

n∑
k=0

Γ
[

1
2 + n

]
Γ
[
d(n+k+1)−2k

2(d−1)

]
εn−k(1− ε)k

Γ[1 + n− k]Γ[k + 1]Γ
[
d(n+k+2)−2k−1

2(d−1)

] ( z∗
zH

)nd+k(d−2)

.

(8.54)

and as a result we can also express the eq. for the area (8.53) as a double
sum [137]

A =
2

d− 2

(
L

a

)d−2

+ 2
Ld−2

zd−2
∗

 √πΓ
(
− d−2

2(d−1)

)
2(d− 1)Γ

(
1

2(d−1)

)
 (8.55)

+
Ld−2

(d− 1)zd−2
∗

 ∞∑
n=1

n∑
k=0

Γ
[

1
2 + n

]
Γ
[
d(n+k−1)−2k+2

2(d−1)

]
εn−k(1− ε)k

Γ[1 + n− k]Γ[k + 1]Γ
[
d(n+k)−2k+1

2(d−1)

] (
z∗
zH

)nd+k(d−2)
 .

As a result of the above two eqs. (8.54), (8.55), we will now be able to perform
the pertubative analysis in the various limits of the temperature T and the
chemical potential µ to extract the turning point and the area in terms of the
parameters Teff and ε.

We will now move on towards the calculation of the holographic entangle-
ment negativity for the two adjacent subsystems having a mixed state config-
uration for the RN-AdSd+1/CFTd scenario. For this purpose, we shall use the
above stated perturbative method for the turning point and the area. The two
adjacent subsystems A1, A2 have a rectangular strip geometry and are described
as

x1 ∈ [− l12 ,
l1
2 ], xi ∈ [−L2 ,

L
2 ], (8.56)

x1 ∈ [− l22 ,
l2
2 ], xi ∈ [−L2 ,

L
2 ], (8.57)

respectively. This configuration is as depicted in the Fig. 13 where in this case
the length L is the length of the strip geometry in the other (d− 2) directions.
In this case of two adjacent subsystems, one can now obtain the turning point
by using l1 and l2 instead of l in the eq. (8.52) and finally obtain the area by
then making using of the eq. (8.53).

8.3.2 Non-extremal RN-AdSd+1 black holes

We will first consider the case of the non-extremal RN-AdSd+1 black hole which
means that the black hole is at a finite temperature. At the boundary CFTd
which is dual to the RN-AdSd+1 black hole, we will consider the mixed state
configuration of the two adjacent subsystems having rectangular strip geometries
as shown in the Fig. 13. We first use a perturbative method to calculate the
area of the static minimal surface in the bulk and then use the conjecture to
calculate the holographic entanglement negativity. In the following subsections,
we will perform this exercise in the various limits of the chemical potential µ
and the temperature T .
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Small chemical potential and low temperature

The case of small chemical potential and low temperature is governed by the
limits µl � 1 and T l � 1 respectively. Now, it so happens that the area of
the bulk minimal surface is also affected by the length of the strip in the x1

direction wherein the lengths in the remaining xi directions is a constant L. As
a result, we need to modify the limits for the case of small chemical potential
and low temperature as T � µ or T � µ [137] and hence we will calculate the
holographic entanglement negativity for both these two limits.

(i) T l � µl � 1

We will first consider the case in which T l � 1, µl � 1 and T � µ or alterna-
tively these limits can be combined and re-expressed as T l� µl� 1.
When T � µ, one can use the Taylor expansion for the Teff(T, µ) (8.50) and
ε(T, µ) (8.48) around T

µ = 0 and obtain the following expression in the leading

order [137]

Teff ≈
1

2

(
µd

π
√

2b0b1
+ T

)
, (8.58)

ε ≈ b0 −
2nπ
√

2b0b1
d

(
T

µ

)
. (8.59)

From the two limits T l � 1 and µl � 1 one can infer that the turning point
of the entangling surface in the bulk is faraway from the horizon i.e z∗ � zH .
Hence, it is now possible to perform an expansion for the eq. (8.54) in the
leading order in ( l

zH
)d to obtain the turning point as

z∗ =
l Γ
[

1
2(d−1)

]
2
√
πΓ
[

d
2(d−1)

]
1− 1

2(d+ 1)

2
1
d−1−dΓ

(
1 + 1

2(d−1)

)
Γ
(

1
2(d−1)

)d+1

π
d+1

2 Γ
(

1
2 + 1

d−1

)
Γ
(

d
2(d−1)

)d ε

(
l

zH

)d

+O
(

l

zH

)2(d−1)
]
.

(8.60)

Subsequently, one can perform an expansion for the eq. (8.55) in the leading
order in ( l

zH
)d to obtain the area and then re-express it in terms of Teff and ε

as follows [137]

AA =

[
2

d− 2

(
L

a

)d−2

+S0

(
L

l

)d−2

+εS0S1

(
4πTeff

d

)d
Ld−2l2

]
+O

(
Teff l

)2(d−1)

.

(8.61)
Using the holographic entanglement negativity conjecture, we obtain

E =
3

16Gd+1
N

[
2

d− 2

(
L

a

)d−2

+ S0L
d−2

(
1

ld−2
1

+
1

ld−2
2

− 1

(l1 + l2)d−2

)
−εS0S1

(
4πTeff

d

)d
Ld−22l1l2

]
+ . . . . (8.62)
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The above equation gives the holographic entanglement negativity for mixed
state at a finite temperature. Note that in the above equation the first two
terms pertain to the holographic entanglement negativity for the mixed state
at zero temperature on the boundary CFTd which in turn is dual to the pure
AdSd+1 in the bulk. The third term gives the corrections arising out of the
chemical potential and the temperature of the black hole.

(ii) µl � T l � 1

We will now consider the second case in which T l � 1 , µl � 1 and T � µ or
alternatively these limits can be combined and re-expressed as µl� T l� 1.
When T � µ one can use the Taylor expansion for the Teff(T, µ) (8.50) and
ε(T, µ) (8.48) around µ

T = 0 and obtain the following expression in the leading
order [137]

Teff = T

[
1 +

d(d− 2)2

16π2(d− 1)

(µ
T

)2

+O
(µ
T

)4
]
, (8.63)

ε = 1 +
d2(d− 2)

16π2(d− 1)

(µ
T

)2

+O
(µ
T

)4

. (8.64)

As in this case also, we have T l� 1 and µl� 1 one can infer that the turning
point of the entangling surface in the bulk is faraway from the horizon i.e z∗ �
zH . Hence, it is possible to perform an expansion for the eq. (8.54) to the
leading order in ( l

zH
)d to obtain the turning point which turns out to be the

same expression as given in the eq. eq.(8.60).
Subsequently, one can perform an expansion for the eq. (8.55) in the leading

order in ( l
zH

)d to obtain the area and then re-express it in terms of Teff and ε
as follows [137]

AA =
[ 2

d− 2

(
L

a

)d−2

+S0

(
L

l

)d−2

+εS0S1

(
4πTeff

d

)d
Ld−2l2

]
+O

(
Teff l

)2(d−1)

,

(8.65)
where the value of the numerical constants S0 and S1 is given in the Appendix
(B.1) in the eqs. labelled as (B.1) and (B.2) respectively.
It is important to note here that even though the expression for the area (8.65)
in this case of µl � T l � 1 is similar to the above case of T l � µl � 1 (8.61),
the expression for Teff and ε is different in both the cases.

Now, using the conjecture, we obtain the holographic entanglement negativ-
ity for the given case as

E =
3

16Gd+1
N

[ 2

d− 2

(
L

a

)d−2

+ S0L
d−2

(
1

ld−2
1

+
1

ld−2
2

− 1

(l1 + l2)d−2

)
−εS0S1

(
4πTeff

d

)d
Ld−22l1l2

]
+ . . . . (8.66)

The above equation gives the holographic entanglement negativity for mixed
state at a finite temperature. Note that in the above equation the first two
terms pertain to the holographic entanglement negativity for the mixed state
at zero temperature on the boundary CFTd which in turn is dual to the pure
AdSd+1 in the bulk. The third term gives the corrections arising out of the
chemical potential and the temperature of the black hole.
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Small chemical potential and high temperature

The case of small chemical potential and high temperature is governed by the
limits µ � T and T l � 1 as given in [137]. When µ � T one can use the
Taylor expansion for the Teff(T, µ) (8.50) and ε(T, µ) (8.48) around µ

T = 0 and
obtain the same expression for Teff (8.63) and ε (8.64) in the leading order in
µ
T as given in the previous case [137].

However, as compared to the previous case, the limit T l � 1 dictates the
fact that the turning point of the entangling surface in the bulk is near the
horizon i.e z∗ ∼ zH . Hence, in this case one can do a perturbative expansion of
the eq. (8.55) around z∗

zH
= 1 and obtain the area as

AA =
[ 2

d− 2

(
L

a

)d−2

+V

(
4πTeff

d

)d−1

+Ld−2

(
4πTeff

d

)d−2

γd

(µ
T

) ]
, (8.67)

where V = Ld−2l gives the volume of the strip and γd

(
µ
T

)
is a perturbative

expression in terms of µ
T as stated in the Appendix (B.2) in the eq. labelled as

(B.3).

Now, using the conjecture, we obtain the holographic entanglement negativ-
ity for the given case as

E =
3

16Gd+1
N

[ 2

d− 2

(
L

a

)d−2

+ Ld−2

(
4πTeff

d

)d−2

γd

(µ
T

) ]
. (8.68)

In this case, when the temperature is high, mixed state behaviour comes into
play and thermal contributions are reflected in the holographic entanglement
entropy in the form of volume term which gets removed by the holographic
entanglement negativity. Hence, the leading term in the above eq. for the
holographic entanglement negativity is an area term. This exercise reproduces
the result of the RN-AdS4/CFT3 scenario conforming to the expectations of the
quantum information theory.

Large chemical potential and low temperature

The case of large chemical potential and low temperature is governed by the
limits µl � 1 and T � µ. When T � µ, one can use the Taylor expansion
for the Teff(T, µ) (8.50) and ε(T, µ) (8.48) around T

µ = 0 and obtain the same

expression in the leading order as given by the eq.(8.58) and eq.(8.59) respec-
tively. [137]. Using the limit µl � 1, we can infer that the turning point of the
entangling surface in the bulk is near the horizon i.e z∗ ∼ zH . Hence, in this
case one can do a perturbative expansion of the eq. (8.55) around z∗

zH
= 1 and

obtain the area as [137]

AA =
[ 2

d− 2

(
L

a

)d−2

+V

(
4πTeff

d

)d−1

+Ld−2

(
4πTeff

d

)d−2 (
N0+N1(b0−ε)

)
+O

(
T

µ

)]
,

(8.69)
where V = Ld−2l gives the volume of the strip and the value of the numerical
constants appearing in the above equation N0 and N1 are given in the Appendix
(B.3) in the eqs. labelled as (B.5) and (B.6) respectively.
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Now, using the conjecture, we obtain the holographic entanglement negativ-
ity for the given case as

E =
3

16Gd+1
N

[ 2

d− 2

(
L

a

)d−2

+ Ld−2

(
4πTeff

d

)d−2 (
N0 +N1(b0 − ε)

)]
+ . . . .

(8.70)
The above equation gives the holographic entanglement negativity for mixed
state at a finite temperature. We see that in this case also thermal correlations
are contributing towards the holographic entanglement entropy which gets can-
celled out by the holographic entanglement negativity. Hence, the holographic
entanglement negativity depends on the area term. This exercise reproduces
the result of the RN-AdS4/CFT3 scenario conforming to the expectations of
the quantum information theory.

8.3.3 Extremal RN-AdSd+1 black holes

In the previous subsection we calculated the holographic entanglement negativ-
ity for the mixed states which were at a finite temperature on the boundary
CFTd which in turn was dual to the non-extremal RN-AdSd+1 black hole in the
bulk. We now move towards the computation of the holographic entanglement
negativity for the mixed states which were at zero temperature on the boundary
CFTd which in turn is dual to the extremal RN-AdSd+1 black hole in the bulk
which implies we have the following parameters [137]

Q2 =d(d− 1)L2/(d− 2)2z
2(d−1)
H , (8.71)

ε =b1, (8.72)

µ =
1

zH

√
b0b1

2
=

1

zH

√
d(d− 1)

(d− 2)2
, (8.73)

Teff =
µd

2π
√

2b0b1
, (8.74)

where Q is the charge of the extremal RN-AdSd+1 black hole Teff represents
the effective temperature as described previously. In the case of extremal RN-
AdSd+1 black hole we consider the boundary subsystem having a rectangular
strip geometry. Using the above mentioned parameters we will first calculate
the area of the bulk co-dimension two static minimal surface in a perturbative
fashion and then make use of the conjecture to obtain the corresponding holo-
graphic entanglement negativity. We will do these calculations for the both the
limits of small and large chemical potential.

Small chemical potential

The case of small chemical potential for extremal RN-AdSd+1 black hole is
governed by the limit µl� 1. In this limit, the turning point of the entangling
surface in the bulk is faraway from the horizon i.e z∗ � zH . Hence, we can do a
perturbative expansion for the eq. (8.54) in the leading order in ( l

zH
)d to obtain

the turning point as previously obtained in the eq. (8.60) [137].
Hence, in this case to obtain the area one can do a perturbative expansion

of the eq. (8.55) to the leading order in (l/zH)d and then re-express it in terms
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of µ as given in [137]

AA =
[ 2

d− 2

(
L

a

)d−2

+S0

(
L

l

)d−2

+S0S1
2(d− 1)

d− 2

(
(d− 2)µ√
d(d− 1)

)d
Ld−2l2+O[(µl)2(d−1)]

]
,

(8.75)
where the value of the numerical constants S0, S1 in the above equation is the
same as given in the Appendix (B.1) in the eqs. labelled as (B.1) and (B.2)
respectively.

Now, using the conjecture, we obtain the holographic entanglement negativ-
ity for the given case as

E =
3

16Gd+1
N

[ 2

d− 2

(
L

a

)d−2

+ S0L
d−2

(
1

ld−2
1

+
1

ld−2
2

− 1

(l1 + l2)d−2

)

−S0S1
2(d− 1)

d− 2

(
(d− 2)µ√
d(d− 1)

)d
Ld−22l1l2

]
+ . . . .

(8.76)

Note that the first two terms in the above equation pertain to the holographic
entanglement negativity for the mixed state at zero temperature on the bound-
ary CFTd which in turn is dual to the pure AdSd+1 in the bulk. The third term
gives the corrections arising out of the chemical potential of the black hole.

Large chemical potential

The case of large chemical potential for extremal RN-AdSd+1 black hole is gov-
erned by the limit µl � 1. Hence, from the eq. (8.71) we can infer that the
value of the horizon radius is large and so the turning point of the entangling
surface in the bulk is near the horizon i.e z∗ → zH . Hence, in this case one can
do a perturbative expansion of the eq. (8.55) around z∗/zH = 1 and obtain the
area as

AA =
[ 2

d− 2

(
L

a

)d−2

+V µd−1

(
d− 2√
d(d− 1)

)d−1

+Ld−2N(b0)

(
d− 2√
d(d− 1)

)d−2

µd−2
]
,

(8.77)
where V = Ld−2l gives the volume of the strip and N(b0) gives the value of
N(ε) when ε = b0.

Now, using the conjecture, we obtain the holographic entanglement negativ-
ity for the given case as

E =
3

16Gd+1
N

[ 2

d− 2

(
L

a

)d−2

+ Ld−2N(b0)

(
d− 2√
d(d− 1)

)d−2

µd−2
]
. (8.78)

In this case as the black hole is at zero temperature, the volume contribution
towards the holographic entanglement entropy comes from the degeneracy of
the ground state and finally gets removed by the holographic entanglement neg-
ativity. Hence, the holographic entanglement negativity scales as an area term.
This exercise reproduces the result of the RN-AdS4/CFT3 scenario conforming
to the expectations of the quantum information theory.
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8.4 Summary and Conclusion

In this chapter, which is based on [136], we have used the conjecture as given
in [65,130] to calculate the holographic entanglement negativity for mixed state
having the configuration of the two adjacent subsystems on the boundary CFT
which are dual to the RN-AdS black hole in the bulk. We have considered
both the non-extremal and the extremal RN-AdS black hole. The configura-
tion of the two adjacent subsystems on the boundary is considered to have a
rectangular strip geometry. The calculations are first performed for the case
of RN-AdS4/CFT3 and then for a general RN-AdSd+1/CFTd setup. This ex-
ercise showcases the non trivial nature of the perturbative calculation of the
holographic entanglement negativity in the various relevant limits.

In the first case of the RN-AdS4/CFT3 scenario, we can summarize the results
as follows :-

1. When we have the mixed state at a finite temperature on the boundary CFT3

dual to the non-extremal RN-AdS4 black hole, then we perform the calculations
for various limits of the charge and the temperature of the black hole.

a. When we have the limit of small charge and low temperature, then the leading
contribution to the holographic entanglement negativity comes from the mixed
state at zero temperature on the boundary CFT3 which in turn is dual to the
pure AdS4 in the bulk. The subleading term represents the corrections due to
the charge and the temperature of the black hole. This reflects the fact that
in this case the entangling surface in the bulk is faraway from the black hole
horizon, so the leading contributing comes from the near boundary pure AdS4

configuration.

b. When we encounter limits having large charge and/or large temperature,
then the leading contribution to the holographic entanglement negativity scales
as an area (length in the case of RN-AdS4/CFT3) as the volume terms (area in
the case of RN-AdS4/CFT3) are completely eliminated. This reflects the fact
that in this case the entangling surface in the bulk is near the black hole horizon,
so the leading contributing comes from the degrees of freedom of the entangling
surface which is shared between the two adjacent subsystems.

2. When we have the mixed state at zero temperature on the boundary CFT3

dual to the extremal RN-AdS4 black hole, then we perform the calculations for
various limits of the charge of the black hole.

a. In the case of small charge, the leading contribution to the holographic en-
tanglement negativity comes from the mixed state at zero temperature on the
boundary CFT3 which in turn is dual to the pure AdS4 in the bulk. The sub-
leading term represents the corrections due to the charge of the black hole.

b. In the case of large charge, the leading contribution towards the holographic
entanglement negativity scales as an area (length in the case of RN-AdS4/CFT3)
as the volume terms (area in the case of RN-AdS4/CFT3) arising out of the vac-
uum degeneracy are completely eliminated.

In the second case of the RN-AdSd+1/CFTd scenario, another set of parameters
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called as effective temperature Teff and a dimensionless energy parameter ε were
introduced. We can summarize the results as follows :-

1. When we have the mixed state at a finite temperature on the boundary
CFTd dual to the non-extremal RN-AdSd+1 black hole, then we perform the
calculations for various limits of the chemical potential and the temperature of
the black hole.

a. When we have the limit of small chemical potential and low temperature,
then the leading contribution to the holographic entanglement negativity comes
from the mixed state at zero temperature on the boundary CFTd which in turn
is dual to the pure AdSd+1 in the bulk. The subleading term represents the
corrections due to the chemical potential and the temperature of the black hole.
This reflects the fact that in this case the entangling surface in the bulk is far-
away from the black hole horizon, so the leading contributing comes from the
near boundary pure AdSd+1 configuration.

b. When we encounter limits having large chemical potential and/or large tem-
perature, then the leading contribution to the holographic entanglement nega-
tivity scales as an area as the volume terms are completely eliminated. This
reflects the fact that in this case the entangling surface in the bulk is near
the black hole horizon, so the leading contributing comes from the degrees of
freedom of the entangling surface which is shared between the two adjacent
subsystems.

2. When we have the mixed state at the zero temperature on the boundary
CFTd dual to the extremal RN-AdSd+1 black hole, then we perform the calcu-
lations for various limits of the chemical potential of the black hole.

a. In the case of small chemical potential, the leading contribution towards the
holographic entanglement negativity comes from the mixed state at zero tem-
perature on the boundary CFTd which in turn is dual to the pure AdSd+1 in
the bulk. The subleading term represents the corrections due to the chemical
potential of the black hole.

b. In the case of large chemical potential, the leading contribution towards the
holographic entanglement negativity scales as an area as the volume terms aris-
ing out of the vacuum degeneracy are completely eliminated.

We see that in the case of RN-AdS black hole when the leading term for the
holographic entanglement entropy is a volume term then in the case of the holo-
graphic entanglement negativity the leading term is an area term. This discrep-
ancy between the leading terms is due to the fact that in the case of the holo-
graphic entanglement negativity the volume terms are completely eliminated
due to the specific algebraic combination of the involved holographic entangle-
ment entropies. This dominance of the area term in case of the holographic
entanglement negativity justifies the expectations from the quatum information
theory. Also, it is worth noting that this elimination of the volume terms in the
holographic entanglement negativity is also observed in the AdS3/CFT2 scenario
and so we may think of this “removal of volume terms” from the holographic
entanglement negativity as an universal aspect.

It is interesting to note that even when the black hole is at zero temperature,
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the dual CFT exhibits mixed state nature and this happens only for extremal-
large charge case. The holographic entanglement negativity is able to detect
this mixed state nature for extremal case also as it removes the volume term
from the corresponding holographic entanglement entropy. This extremal state
result holds not just for RN−AdS4 but also for RN−AdSd+1 as demonstrated
in this paper. In the future, it would be further interesting to understand
how entanglement negativity is able to differentiate between extensive and non-
extensive terms for the extremal-large charge case as both the terms are facets
of quantum correlations.

This entire exercise further pushes the credibility of our conjecture [65,130]
for a charged, static black hole. In the future, it would be interesting to in-
vestigate the proof for this conjecture similar to the [11] and study further
applications of this conjecture.
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Conclusion

In this thesis we have addressed from a holographic perspective and making large
use of the AdS/CFT correspondence, the problem of the relationship between
thermality and quantum entanglement for a large class of AdS black holes. This
is a crucial issue for understanding many hot open problems in black hole physics
and quantum gravity, such as the microscopic origin of black hole entropy, the
loss of information in the black hole evaporation and the emergence of spacetime
out of an underlying microscopic quantum theory of gravity. The concepts that
are relevant in this framework are those of thermal and entanglement entropy,
entanglement negativity (the amount of distillable quantum information in a
mixed state) and their relationship to spacetime structures like horizons and
minimal surfaces. In our thesis we have investigated these concepts and their
relationship with spacetime structures for the case of 3D AdS gravity (the BTZ
black hole), 4D AdS gravity (RN-AdS4 black hole) and also D+1-dimensional
AdS Gravity (RN-AdSd+1 black hole).

In the case of BTZ black hole, it has been shown that the horizon and the
conical singularity are related to each other [33]. Hence, it becomes important
to understand how the entanglement entropy differentiates between horizon and
conical singularity and this issue has been dealt in chapter 6. Using the modular
symmetries of the boundary 2D CFT we have extracted the universal part of
the entanglement entropy for the CFT on the torus and we have identified it
as the entanglement entropy of the relevant 3D bulk configurations (the BTZ
black hole and 3D spacetime with conical singularities). We have seen that the
entanglement entropy keeps information of the spacetime structure of the bulk
theory. More precisely, in the black hole case :-
(i) The inaccessible region lies along the non-compact direction of the boundary
cylinder.
(ii) The holographic entanglement entropy shows an exponential behaviour.
(iii) The leading term in the expansion is positive and scales as an area term.
(iv) Enhancement of the holographic entanglement entropy of the AdS3 Poincaré
vacuum.

In case of the conical singularity :-
(i) The inaccessible region lies along the compact direction of the boundary
cylinder.
(ii) The holographic entanglement entropy shows a periodic behaviour.
(iii) The leading term in the expansion is negative and scales as a volume term.
(iv) Reduction of the holographic entanglement entropy of the AdS3 Poincaré
vacuum.

When we deal with the entanglement for conformal field theories at a finite
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temperature dual to a black hole in the bulk, then it turns out that the “entan-
glement entropy” is not the correct measure as it fails to separate classical and
quantum correlations. It was shown that the correct measure is “entanglement
negativity” which serves as an upper bound on the distillable entanglement and
can separate classical and quantum correlations. The holographic version of
this entanglement negavtivity for two adjacent intervals has been the subject
for the chapter 7. We have used the AdS3/CFT2 setup to put forth a con-
jecture for the holographic entanglement negativity for two adjacent intervals
and performed calculations for various scenarios to validate the conjecture. In
this case, the entanglement is between the two adjacent intervals as we trace
over the degrees of freedom for the remaining part of the system. The holo-
graphic prescription involves the lengths of the geodesics present in the bulk
AdS3 wherein the endpoints of these geodesics are anchored on the two adja-
cent intervals lying on the boundary 2D CFT and as a result we can express the
holographic entanglement negativity for the case of two adjacent intervals as
the holographic mutual information between these two adjacent intervals. The
calculations have been performed for 3 cases (i) Mixed state at zero temperature
dual to the AdS3 vacua in Poincaré coordinates (ii) Mixed state at zero tem-
perature dual to the AdS3 vacua in global coordinates (iii) Mixed state at finite
temperature dual to the Euclidean BTZ black hole. We have shown that in all
the three cases the holographic results match with the corresponding CFT re-
sults in the large central charge limit, thereby providing a strong support for our
conjecture. We have also generalized the conjecture for the AdSd+1/CFTd sce-
nario wherein we have two adjacent subsystems on the boundary d-dimensional
CFT and which now involves the areas of the bulk co-dimension two static min-
imal surfaces instead of the lengths of the geodesics as considered previously
for the case of AdS3/CFT2. In this case, we now express the holographic en-
tanglement negativity as the holographic mutual information between the two
adjacent subsystems.

We have generalised the results for the entanglement negativity to the case
of RN-AdS black holes in four and generic D+1 dimensions. We have consid-
ered both the extremal and the non-extremal black holes. We first deal with
the RN-AdS4/CFT3 case and then with the generalized RN-AdSd+1/CFTd case
wherein both the cases the two adjacent subsystems on the boundary have a
rectangular strip geometry. The calculation in both the RN-AdS4/CFT3 and
RN-AdSd+1/CFTd scenarios involves non trivial perturbative expansion of the
holographic entanglement negativity in different limits of the relevant parame-
ters. In the case of RN-AdS4/CFT3, the parameters involved in the perturba-
tive expansion are the charge and the temperature of the black hole whereas
in the case of RN-AdSd+1/CFTd, the parameters involved in the perturbative
expansion are the chemical potential and the temperature of the black hole.

1. For the case of the non-extremal black hole, when the mixed states are
at a finite temperature on the boundary CFT, we have the following results :-
a. In the limit of small charge/small chemical potential and low temperature, the
dominant contribution for the holographic entanglement negativity is governed
by the mixed state at zero temperature dual to the pure AdS bulk configuration.
The subleading terms represents the corrections due to the charge/chemical po-
tential and the temperature of the black hole. The physical interpretation of
this result is that the minimal surface in the bulk is far from the horizon there-
fore the dominant contributions are given by the near boundary pure AdS bulk
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configuration.
b. In the limit of large charge/chemical potential and/or high temperature,
the dominant contribution for the holographic entanglement negativity scales
as area as the volume terms are completely cancelled out. The physical interpre-
tation of this result is that the minimal surface in the bulk is near the horizon
therefore the dominant contributions are given by the degrees of freedom of the
minimal surface shared between the two adjacent subsystems.

2. For the case of the extremal black hole, when the mixed states are at a
zero temperature on the boundary CFT, we have the following results :-
a. In the limit of small charge/small chemical potential, the dominant contribu-
tion for the holographic entanglement negativity is governed by the mixed state
at zero temperature dual to the pure AdS bulk configuration. The subleading
terms represents the corrections due to the charge/chemical potential of the
black hole.
b. In the limit of large charge/large chemical potential, the dominant contribu-
tion for the holographic entanglement negativity scales as area as the volume
terms coming from the vacuum degeneracy are completely cancelled out.

The cancellation of the volume terms representing thermal correlations ob-
served for the RN-AdS black holes has also been noticed in the AdS3/CFT2

scenario and is result of the specific algebraic combination of the involved holo-
graphic entangle- ment entropies. The dominant contribution for the holo-
graphic entanglement negativity for two adjacent intervals scales as area con-
forms to the quantum information theory expectations and stimulates the fact
that this elimination of volume terms might be a universal feature of the holo-
graphic entanglement negativity for two adjacent intervals. This entire exercise
further provides support to the conjecture for the holographic entanglement
negativity for two adjacent intervals when we have a charged, static black hole.

As a plan for future research one can use the results from the chapter 6 to
better understand the aspects related to the Hawking-Page phase transition,
entanglement in time, holographic entanglement entropy of conical singularity
in higher dimensions, entwinement, the leading term in the expansion of the
holographic entanglement entropy for conical singularity being negative, scal-
ing as volume and showing super-extensive behaviour, “quantum” temperature,
βcon. The results from the chapters 7 and 8 can be used in the future to better
understand the aspects related to the holographic entanglement negativity in
the case of extremal black holes, bulk proof of the conjecture whose reasoning
is similar to [11], checking the validity of the conjecture when the CFT lives on
a torus, entanglement negativity for AdS3 with a conical singularity.
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Appendix A

Non-extremal and extremal
RN-AdS4

A.1 Non-extremal RN-AdS4 (Small charge - high
temperature)

The constants k1, k2, k3, k4 and k5 in the eq. (8.30) are given as follows
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k4 =
2√
3
− 2√

3
log[3] +

3
√
πΓ( 3

2 )Γ( 7
4 )

Γ( 9
4 )

, (A.4)

k5 =
−2√
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. (A.5)

The constants c1 and c2 appearing in the eq. (8.31) are given as follows

c1 =
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A.2 Non-extremal RN-AdS4 (Large charge - high
temperature)

The constants K ′1 and K ′2 in the eq. (8.34) are given as follows
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A.3 Extremal RN-AdS4 (Large charge)

The constants K1, K2 and K3 in the eq. (8.40) are given as follows
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Appendix B

Non-extremal and extremal
RN-AdSd+1

B.1 Non-extremal RN-AdSd+1 (Small chemical
potential - low temperature)

The constants S0 and S1 appearing in the eq. (8.65) are given as follows
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B.2 Non-extremal RN-AdSd+1 (Small chemical
potential - high temperature)

The function γd

(
µ
T

)
appearing in the eq. (8.67) is given as follows
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where the numerical constant N(ε) is given as
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B.3 Non-extremal RN-AdSd+1(Large chemical po-
tential - low temperature)

The numerical constants N0, N1 in the eq. (8.69) are given as follows
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