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Introduction  

 

 

Recent years have been characterized by an incredible growth in computing power and 

storage capabilities, communication speed and bandwidth availability, either for desktop 

platform or mobile device. The combination of these factors have led to a new era of 

multimedia applications: browsing of huge image archives, consultation of online video 

databases, location based services and many other. Multimedia is almost everywhere 

and requires high quality data, easy retrieval of multimedia contents, increase in 

network access capacity and bandwidth per user. 

To meet all the mentioned requirements many efforts have to be made in various 

research areas, ranging from signal processing, image and video analysis, 

communication protocols, etc.  

 The research activity developed during these three years concerns the field of 

multimedia signal processing, with particular attention to image and video analysis and 

processing. Two main topics have been faced: the first is  relating to image and video 

reconstruction/restoration (using super resolution techniques) in web based application 

for multimedia contents' fruition; the second is relating to image analysis for location 

based systems in indoor scenario.  

  

 The first topic is  relating to image and video processing, in particular the focus has 

been put on the development of algorithm for super resolution reconstruction of image 

and video sequences in order to make easier the fruition of multimedia data over the 

web. On one hand, latest years have been characterized by an incredible proliferation 

and surprising success of user generated multimedia contents, and also distributed and 

collaborative multimedia database over the web. This brought to serious issues related 

to their management and maintenance: bandwidth limitation and service costs are 

important factors when dealing with mobile multimedia contents’ fruition. On the other 

hand, the current multimedia consumer market has been characterized by the advent of 

cheap but rather high-quality high definition displays. However, this trend is only 

partially supported by the deployment of high-resolution multimedia services, thus the 

resulting disparity between content and display formats have to be addressed and older 



productions need to be either re-mastered or post-processed in order to be broadcasted 

for HD exploitation. In the presented scenario, super-resolution reconstruction 

represents a major solution. Image or video super resolution techniques allow restoring 

the original spatial resolution from low-resolution compressed data. In this way, both 

content and service providers, not to tell the final users, are relieved from the burden of 

providing and supporting large multimedia data transfer. In this context three works 

have been proposed. The first one is focused on super resolution techniques applied to 

huge database image browsing over the web. The proposed solution allows  significant 

improvements of the service interactivity by increasing the image spatial resolution so 

that only thumbnail version of the images can be sent over the network. In the proposed 

work, the low-resolution image is first analyzed to identify several features that are 

significant for visual rendering and scene understanding. Such a classification is based 

on local frequency composition: uniform regions, edges and textures. The identified 

regions are then treated differently depending on the relative visual significance. Each 

region is further analyzed and a different interpolation approach is adopted, ranging 

from plain linear interpolation for homogeneous areas to edge area analysis and 

selective anisotropic interpolation. The combination of image region classification and 

adaptive-anisotropic interpolation is the main innovation of the proposed approach. The 

other two works deals with super-resolution applied to video sequences. The first 

solution is based on back projection and motion estimation. In particular, the high- 

resolution video sequence is reconstructed through iterative processing of inter-frame 

information and interpolative techniques. Resolution enhancement is based on iterative 

update of the high-resolution image estimate through motion and scene change 

detection. The second solution resorts to the use of the bilateral filtering.  The proposed 

algorithm extends the use of the bilateral filter, traditionally used for still pictures, 

through the exploitation of the space-time domain and the development of edge-based 

samples estimation. 

  

 The second topic addressed during my Phd research activity is related to the 

implementation of an image based positioning system for an indoor navigator.  As 

modern mobile device become faster, classical signal processing is suggested to be used 

for new applications, such location based service. The exponential growth of wearable 

devices, such as smartphone and PDA in general, equipped with embedded motion 



(accelerometers) and rotation (gyroscopes) sensors, Internet connection and high-

resolution cameras makes it ideal for INS (Inertial Navigation System) applications 

aiming to support the localization/navigation of objects and/or users in an indoor 

environment where common localization systems, such as GPS (Global Positioning 

System), fail. Thus the need to use alternative positioning techniques.  

In this context some image based positioning techniques have been investigated: the 

first one is based on plane homography and affine transformation while the second one 

is based on SURF. In the first case  the considered scenario includes the presence of 

geo-referenced 2D-tags placed in some known, key positions of the site to be visited. 

By taking a photo of the tags, the system is able to initialize and subsequently re-

calibrate the location data. To improve the calibration accuracy, the focus has been put 

on computing the exact position of the user (based on the known position of the tag) in 

terms of orientation and distance from the reference point using plane homography and 

affine transformation. This allows to correct perspective and projective distortion from 

the taken photo and derive information about the viewing angle (the user’s orientation) 

and distance between camera and object. In the second work the smartphone’s 

videocamera is used to identify known keypoints, named anchors previously identified 

and geo-referenced in the building map. For a periodic position fix, an image-based 

localization system is employed. By developing local feature detection, description and 

matching between a query image, acquired by the user with the built-in camera of the 

smartphone, and a database containing a collection of geo-referenced images related to 

the chosen environment, the user’s position can be accurately fixed. The proposed 

solution is based on the SURF (Speed-up robust features), which allows for a quick and 

effective detection of image features without being affected by the user’s viewpoint. 
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Chapter 1 Image and Video Processing 
Techniques  

 

 

 

This section provides an overview of current technologies related to Image and Video 

Processing. Image processing is any form of signal processing for which the input is an 

image, such as photos or frames extracted from a video sequence; the output of image 

processing can be either an image or a set of characteristics or parameters related to the 

image. Usually the image is treated as a two-dimensional signal and standard signal-

processing techniques is applied to it. Video processing is a particular case of signal 

processing: the input and the output signals are video sequence. Image and Video 

processing techniques are used  in many science application: including medical 

imaging, satellite imaging, and video applications. Synthetic zooming of region of 

interest (ROI) is an important application in surveillance, forensic, scientific, medical, 

and satellite imaging. Another application is conversion from an NTSC video signal to 

an HDTV signal since there is a clear and present need to display a SDTV signal on the 

HDTV without visual artifacts.  

In the following a description of the most common and used image and video 

processing techniques. 
 

 

1.1 Reconstruction Techniques 
 

 

The continuous development of image processing applications has increased the 

demand of high resolution images since they are not only more pleasant to look at, but 

they do provide a number of additional details that are important for the analysis of the 

images in a variety of applications. In fact, in most applications for image processing 

the high resolution (HR) is not only desired, but often necessary. 

The term "Super Resolution" refers to the process by which it is possible to obtain a 

high-resolution image (HR) starting from one or more lower-resolution images (LR). 



Super-resolution, also spelled as super resolution and superresolution, is a term for a set 

of methods of upscaling images or video.  

The resolution of an image provides a measure of the quality of the image itself. 

The higher the resolution the greater the density of pixels (elementary points) that form 

the image, and then the more detailed that it contains. In the last twenty years there have 

been proposed many methods for super-resolution digital images. They are classified 

according to the number of LR images on which they work, thus we deals with Single-

Frame and Multi-Frame super-resolution techniques. Most super-resolution techniques 

are based on the same idea: using information from several different images to create 

one upsized image. Algorithms try to extract details from every image in a sequence to 

reconstruct other frames. This multiframe approach differs significantly from 

sophisticated image (Single Input Single Output) upsizing methods which try to 

synthesize artificial details. The first infact, integrate information coming from frame 

slightly shifted in the same scene, while the latter (SISO) are essentially based on the 

process of interpolation of the pixels of the original image. A further distinction 

between Multi Frame techniques is related to the fact that we work on static images 

(Multiple Input Single Output) or video clips (Multiple Input Multiple Output). In both 

cases the improvement of the resolution takes place thanks to the fusion of the 

information contained in different frames of lower resolution and requires an accurate 

estimate of the relative motion between the latter and the frame taken as reference. 

About single frame techniques (Single Input Single Output), only few approaches have 

been proposed over the last few years. In these cases the improvement of the resolution 

takes place with or without the help of one or a set of training images extrapolated from 

scenes of the same type or of different type. 

First work on this topic was published in 1984 [1] and the term "Super-resolution" itself 

appeared at around 1990 [2].  

Methods usually discussed in scientific literature try to reproduce process of losing 

quality when shooting image/video with low-resolution cameras and then solve inverse 

problem of finding image/video which being downsized with that process gives us 

known low-resolution material. This is an ill-posed inverse problem which doesn't have 

straightforward solution and usually requires some additional regularization (applying 

some artificial constraints) and huge CPU time to check an awful lot of variants. 

Modern signal processing techniques, such as super resolution, are usually simpler but 



still effective. The major advantage of the signal processing approach is that it may cost 

less and the existing LR imaging systems can be still utilized.  

Super-resolution (SR) works effectively when several low resolution images contain 

slightly different perspectives of the same object. Then total information about the 

object exceeds information from any single frame. The best case is when an object 

moves in the video. Motion detection and tracking are then employed to benefit 

upscaling. If an object doesn't move at all and is identical in all frames, no extra 

information can be collected. If it moves or transforms too fast then it looks very 

different in different frames and it's too hard to use information from one frame in 

reconstructing the other.  

 

 1.1.1  Super-resolution approaches 
 

 

This section illustrates the main approaches that have been taken on to address the 

issue of image super-resolution. In the following, LR and HR refer to low-resolution 

and high-resolution images, respectively. The former represents the starting point of the 

signal processing procedure, whereas the latter is its output. The input LR image can be 

original image itself or a sub-sampled representation of the original image. 
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Fig. 1.1 Approaches to SuperResolution 

 



The main classification of super-resolution approaches is based on the number of input 

images, so that we have Multi-Frame and Single-Frame techniques. In the first case, 

information coming from more frames is exploited whereas in the second case the 

output HR image is obtained from a single LR image. Multiframe techniques differ on 

the basis of whether the input data are static images (MISO - Multiple Input Single 

Output) or motion pictures (MIMO - Multiple Input Multiple Output). In both cases, the 

resolution improvement is obtained through the fusion of information coming from 

different frames at low resolution and requires accurate motion estimation operations. 

 

 

1.1.1.1 Single Input Single Output Techniques 

 

 

As to the techniques based on single-frame information (Single Input Single Output), 

image magnification is often obtained from one or more sets of training images coming 

from either similar or different scene kinds. The most common interpolation methods, 

such as bi-cubic and spline, estimate a continuous function that approximates the image 

signal on the basis of a set of local functions; the resulting function can then be 

resampled at the desired resolution. Some works propose the adoption of image 

sharpening operators to improve the image clarity at the expenses of additional artifacts 

[3]. To avoid such side effects, as jagged contours, [4] proposes a method attempting to 

produce smooth reconstructions of the image level curves while still preserving image 

fidelity. This is similar to other iterative reconstruction algorithms and to Bayesian 

restoration techniques, but instead of assuming smoothness prior for the underlying 

intensity function, it assumes smoothness of the level curves. 

In [5], Schultz and Stevenson at first show that the image super-resolution problem is 

ill-posed and give a new definition. The problem is then solved by means of a 

Maximum A Posteriori (MAP) technique. Two techniques are presented: a constrained 

optimization approach for noise-free images and images affected by Gaussian noise. 

The image is described by means of a statistical model which includes the Huber 

convex function. In [6], the authors propose the use of the Markov Random Fields 

(MRF) to obtain the Bayes estimates; as a result, they obtain a model of realistic borders 

which is, at the same time, a viable MAP stable solution. 



The method proposed in [7] suggests adopting different strategies for interpolation 

according to the characteristics of the region to be processed. The image is divided in 

blocks, which are then grouped to have uniform regions. On the basis of this 

classification, the algorithm applies either a multidirectional interpolation or a simple 

weighted average. The basic idea is to perform a weighted interpolation on the basis of 

the image gradient. The weight assigned to each pixel is set according to the following 

objectives: in the regions with sharp edges, the interpolation is performed parallel to the 

border direction; in flat regions the adjacent weights are quite similar so that the 

resulting effect is a simple moving average; in regions with mild edges the interpolator 

provides results in the middle with respect to the previous cases. A similar approach is 

proposed in [8]: the information about the discontinuity and the luminance variance 

drive the application of multidirectional interpolative techniques. More recently, a new 

approach bringing to learning-based methods has been proposed. It makes use of 

training sets analysis to acquire details of LR images. Afterwards, the learnt relations 

are used to predict realistic details in other images [9, 10]. Graphic models have also 

been proposed to obtain super-resolution images [11]. The flexibility of the proposed 

models incorporates the features of the natural images to define the compatibility of the 

HR image pixels that have to be estimated. Battiato et al [12] propose a method that 

takes into account information about discontinuities or sharp luminance variations while 

doubling the input picture. This is realized by a nonlinear iterative procedure of the 

zoomed image and could hence be implemented with limited computational resources. 

The algorithm works on monochromatic images and RGB color pictures. 

In the last years, several works have been developed which use the gradient 

information to apply the best mask to each pixel being processed. For example, 

Rodrigues et al. [13] have proposed an adaptive edge-preserving algorithm which 

improves the level of the details and edges in the zoomed image through local threshold 

computation. Fu et al. [14] present a unified bidirectional flow process, where an 

inverse diffusion is performed to enhance edges along their normal directions, while a 

normal diffusion is performed with respect to the other directions. Martin et al. [15] 

apply the full color image reconstruction based on color filter array (CFA) zooming, 

CFA interpolation. Finally, Yan et al. [16] use a classical zooming algorithm based on 

gradient analysis of the input image only exploiting horizontal and vertical direction. 

All these approaches do not reduce the blurring effect and often present high 



computational complexity. In [17], Battiato et al. propose a gradient analysis algorithm 

that extends in some sense the original work they proposed in [12]. More precisely, they 

take into account the information about discontinuities or sharp luminance variations 

while increasing the input picture. 

A novel algorithm that integrates bilateral filtering and back-projection is presented in 

[17]. The former achieves edge-preserving image smoothing while the latter minimizes 

the reconstruction error with an edge-based iterative procedure. In [18], the authors find 

the connection between the soft edge smoothness and a soft cut metric through a 

generalization of the Geocuts method. This term is incorporated into an objective 

function to produce smooth soft edges and it is applied on alpha channel. 

 

 

1.1.1.2 Multiple Input Single Output Techniques  

 

 

This section provides an overview of MISO (Multiple Input Single Output) 

techniques. The input data are multiple static images and the output is an image of 

higher resolution.  

 

 1.1.1.2.1 Interpolation Approach 

 

 

The easy way for reconstructing an high resolution image from a set of low-resolution 

images is to use an interpolation-based approach. It allows for reconstructing a high-

resolution image by projecting all the acquired low-resolution  images to the reference 

image, then all the information available from each image are fused. Once an HR image 

is obtained by interpolation, the restoration problem have to be addressed by removing 

blur and noise. 

 The super resolution problem cannot be solved well only adopting single image 

interpolation algorithm. In fact, during the image acquisition process some high-

frequency components are irrimediably lost, thus the quality of the resulting image is 

related to the amount of data available in the image. Three stages are performed 



succesively in this approach: first the relative motion is calculated, then interpolation on 

an high resolution grid is performed in order to produce an improved resolution image, 

finally restoration for blur and noise removal is performed.  

Ur and Gross [19] performed a nonuniform interpolation of an ensemble of spatially 

shifted LR images by utilizing the generalized multichannel sampling theorem of 

Papoulis [20] and Brown [21]. The interpolation is followed by a deblurring process, 

and the relative shifts are assumed to be known precisely here. Komatsu et al. [22] 

proposed a technique for estimating a high resolution image, with reduced aliasing, 

from a sequence of undersampled frames by applying the Landweber algorithm [23]. In 

order to measure the relative shift of the cameras the authors proposed a block matching 

technique. To overcome the problem relating to cameras with the same aperture, they 

used multiple cameras with different apertures [24]. In [25]  Hardie et al. proposed a 

gradient-based registration algorithm for estimating the shifts between the acquired 

frames then a weighted nearest-neighbor approach for placing the frames onto a 

uniform grid to form a final high-resolution image is presented. To reduce effects of 

blurring and noise caused by the system the authors proposed the application of the 

Wiener filter, designed using the modulation transfer function (MTF) of the imaging 

system, to the high-resolution image. In [26] Shah and Zakhor propose a new SR color 

multiframe algorithm to enhance the spatial resolution of frames in video sequences, 

using both luminance and chrominance information to estimate the motion field. They 

also consider the inaccuracy of the registration algorithm by finding a set of candidate 

motion estimates instead of a single motion vector for each pixel. Nguyen and Milanfar 

[27] proposed an efficient wavelet-based SR reconstruction algorithm. They exploit the 

interlacing structure of the sampling grid in SR and derive a computationally efficient 

wavelet interpolation for interlaced two-dimensional (2-D) data. 

The advantage of the non uniform interpolation approach is that it takes relatively low 

computational load and makes real-time applications possible. However, in this 

approach, degradation models are limited (they are only applicable when the blur and 

the noise characteristics are the same for all LR images). Additionally, the optimality of 

the whole reconstruction algorithm is not guaranteed, since the restoration step ignores 

the errors that occur in the interpolation stage. 

 

 



1.1.1.2.2 Frequency Domain Approach 

 

 

The frequency domain approach makes explicit use of the aliasing that exists in each 

LR image to reconstruct an HR image. The frequency domain approach is based on the 

following three principles: i) the shifting property of the Fourier transform, ii) the 

aliasing relationship between the continuous Fourier transform (CFT) of an original HR 

image and the discrete Fourier transform (DFT) of observed LR images, iii) and the 

assumption that an original HR image is band limited.  

Tsai and Huang. [1] present an algorithm that improves the resolution of Landsat image 

data. Landsat acquires several images of partially overlapping areas of the earth in the 

course of its orbits, thus producing a sequence of similar, but not identical images. 

Observed images are modeled as under-sampled versions of an unchanging scene 

undergoing global translational motion. In [28] a frequency domain formulation is 

proposed, based on the shift and aliasing properties of the continuous and discrete 

Fourier transforms for the reconstruction of a band-limited image from a set under-

sampled, and therefore aliased, observations. Several limitations of the Tsai-Huang 

method are addressed by Tekalp, Ozkan and Sezan in [29]. The authors propose a 

frequency domain approach which extends [1] by including the effects of a LSI PSF as 

well as observation noise. An extension of this approach for a blurred and noisy image 

was provided Kim, Bose and Valenzuela [30]. They exploit the frequency domain 

theoretical framework and the global translation observation model proposed in [1] and 

consider observation noise as well as the effects of spatial blurring.. This method was 

further refined by Kim and Su [31] to consider different blurs for each LR image. Here, 

the Tikhonov regularization method is adopted to overcome the ill-posed problem 

resulting from blur operator. 

 Periodic sampling is still assumed and a translation-only motion model is used. 

Theoretical simplicity is a major advantage of the frequency domain approach. That is, 

the relationship between LR images and the HR image is clearly demonstrated in the 

frequency domain. The frequency method is also convenient for parallel implementation 

capable of reducing hardware complexity. However, the observation model is restricted 

to only global translational motion and LSI blur. 

 



1.1.1.2.3 Spatial Domain Approach 

 

 

Among spatial domain methods, Keren, Peleg and Brada [32] propose an approach to 

image registration based on a global translation and rotation model, as well as a two 

stage approach to super-resolution reconstruction. The first stage is a simple 

interpolation technique and the second consists in a motion estimation algorithm. An 

interpolation based technique is proposed by Aizawa, Komatsu and Saito [33]. They 

examine the problem of acquiring high-resolution imagery from stereo cameras. By 

considering the possibility of sampling at spatial positions between the array pixels, it is 

demonstrated that the effective frequency response of the combined (double image) 

system is increased. In [34] the idea of super-resolution reconstruction from a set of 

globally translated images of an unchanging 2D scene is considered and compared to a 

global translation and rotation model used in [32]. A dynamic super-resolution sequence 

reconstruction from a lower resolution sequence containing sub-pixel shifts is presented 

in [35]. The main features of this work are related to: the local motion estimation 

performed using the group delays of local adaptive linear prediction filters, in order to 

obtain a motion vector for each pixel in the image; and the application of the super-

resolution improvement to the sequence images rather than to a prototype image. 

Their advantages include a great flexibility in the choice of motion model, motion blur 

and optical blur, and the sampling process. Another important factor is that the 

constraints are much easier to formulate. 

  

1.1.1.2.6 Iterative Back-Projection Approach  

 

 

The first approach to super-resolution based on the iterated process of backprojecting 

the error between the estimated LR images and the observed data was proposed in [36] 

and further extended in [37-39]. The algorithm performs an initial estimate of the high 

resolution image; then, the subsampling/degradation process is simulated in order to 

deduce the set of LR frames which correspond to the observed input images. The 

difference (error) between the simulated and the observed frames is computed in order 

to update the initial HR frame estimate through the error backprojection. The process is 



iterated in accordance to an error minimization criterion. Only translation and rotation 

were considered for modeling the HR estimate and LR subsampling. 

The relative displacements of the input images at subpixel accuracy are computed and 

an iterative refinement is adopted to improve accuracy. It is assumed that the imaging 

process for the observed image sequence (LR) is modeled by: 
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The iterative update scheme to estimate the HR image f  is then: 
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The error function to be minimized is: 
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Since the choice of the initial estimate does not influence the performance of the 

algorithm, the average of the LR frames is used as ( )0

if ; then, it is assumed that 

PSFBP
h=h . 



The advantage of IBP is that it is understood intuitively and easily. However, this 

method has no unique solution due to the ill-posed nature of the inverse problem. 

 

1.1.1.3 Multiple Input Multiple Output Techniques 

 

 

This section provides an overview of MIMO (Multiple Input Multiple Output) 

techniques. The input data are motion pictures and the output is a video sequence of 

higher resolution. The SR video approaches reconstruct an image sequence with a 

higher resolution from a group of adjacent lower-resolution uncompressed image 

frames or compressed image frames. 

 

1.1.1.3.1 Sliding-window-based SR video approach 

 

 

The sliding-window-based approach [40–43] is the most commonly-used and direct 

approach to conduct SR video. The sliding window selects a set of consecutive low-

resolution frames for producing one high-resolution image frame; that is, the window is 

moved across the input frames to produce successive high-resolution frames 

sequentially. The major drawback of this approach is that the temporal correlations 

among the consecutively reconstructed high-resolution images are not considered. 

 

1.1.1.3.2 Sequential SR video approach 

 

 

The major challenge in the SR video problem is how to exploit the temporally 

correlated information provided by the established high-resolution images and available 

temporally-correlated low-resolution images respectively to improve the quality of the 

desired high-resolution images. Elad et al. [44–46] proposed an SR image sequence 

algorithm based on adaptive filtering theory, which exploits the correlation information 

among the high-resolution images. However, the information provided by the 

previously observed low-resolution images is neglected; that is, only a single low-



resolution image is used to compute the least-squares estimation for producing one 

high-resolution image. 

 

 

1.2. Registration Techniques 
 

 

Image registration is the process of transforming different sets of data into one 

coordinate system. It is used to match two or more pictures taken, for example, at 

different times, from different sensors, or from different viewpoints. Image registration 

has a lot of applications: matching stereo images to detect object/recognize particular 

location in navigation system, finding the optimal match for the template in a image and 

many other.  The images need to be aligned each other so that differences can be 

detected, thus a transformation must be found so that the points in one image can be 

related to their corresponding points in the other. Image registration algorithms can be 

classified according to the transformation models they use to relate the target image 

space to the reference image space. In the following a brief overview of some spacial 

transformation techniques. 

 

 

 1.2.1  Spatial Transformations 
 

 

 

The most common spatial transformations, such as scaling, rotating, skewing, and 

perspective distortion, are implemented as linear transformation. These kind of 

transformation can be classified in affine and projective and are usually implemented in 

a matrix form: 

  

where 

•  is a rotation matrix   



•  is a translation vector   

•  is a projection vector 

 

The transformation between two point is defined by: 

 

where x' and y' are the coordinates of the transformed point.  

 

 

1.2.1.1 Affine Transformations 

 

 

Affine transformations map straight lines into straight lines, thus it preserves 

parallelism. The affine transformation is used for scaling, skewing and rotation.  

For affine transformations the first two elements in the last line of the transformation 

matrix mentioned before should be zeros. Affine transformation is also indicated as a  

transformation of a triangle: since the last row of a matrix is zeroed, three points are 

enough. The general 2D affine transformation form is: 
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General spatial distortions can occur, such as skew and changes in aspect ratio. The first 

take into account  the distortion of pixel along one or both axis while the second refers 

to the relative scale between the x and y axes.  

The skew components of an affine transformation is represented by: 









=

10

1 a
S x    and   








=

1

01

b
S y  

This component is represented by: 
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1.2.1.2 Projective Transformations 

 

 

 

The projective transformation shows how the perceived objects change when the view 

point of the observer changes. It accounts for the distortion which occurs when a 3D 

scene is projected in a 2D plane. This transformation allows creating perspective 

distortion. In the projective space, a 3D point is described using a 4-element vector 

T

432 )X,X,X,(X 1
 such that 

;XX=Z;XX=Y;XX=X 321 444 ///  

where 04 ≠X . More generally, in n-dimensional space we have: 

 

( X1 ,X 2 , . .. .. .. . .. ,Xn )
T →( λX1 ,λX2 , .. .. .. . .. . ,λXn ,λ )T

�
EuclideanSpace

�
HomogeneousSpace

 

 

where 0≠λ corresponds to the so called homogeneous free scaling parameter. 

 

1.2.1.2.1 The Projection Matrix 

 

 

To understand how vision might be modeled computationally and replicated on a 

computer, we need to understand the image acquisition process. The role of the camera 

in machine vision is analogous to that of the eye in biological systems. 

The drop from three-dimensional world to a two-dimensional image is a projection 

process in which we lose one dimension. The usual way of modeling this process is by 

central projection in which a ray from a point in space is drawn from a 3D world point 

through a fixed point in space, the centre of projection. This ray will intersect a specific 



plane in space chosen as the image plane. The intersection of the ray with the image 

plane represents the image of the point. 

The pinhole camera is the simplest, and the ideal, model of camera function. It performs 

a central projection of point T
Z)Y,(X,=P  in the scene onto the plane Z = f, being f the 

focal distance or distance from projection center to the projection plane.  

 

 

 

 

The mapping is: 

( X,Y,Z )T →( f
X

Z
,f

Y

Z
)  

 

Dealing with the projection of a 3D point onto an image plane, three different 

coordinate system are involved: image, world and camera coordinate system. 

Let 3ΡZ)Y,(X, ∈  be a point in the world coordinate system, 2Ρy)(x, ∈ a point in the 

image coordinate system and )y,(x cc a point in the camera coordinate system. 

 

1.2.1.2.2 Camera Coordinate System 

 

 

The mapping between a 3D point (in the world coordinate system) into a 2D point (in 

the camera coordinate system) is describe by the following relation: 
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where 
cZf /=λ  

In homogeneous coordinates and up to a scale factor, the previous relation can be 

written as a linear mapping in the following form: 
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The 43x  matrix represents the so called projection matrix which allow for a mapping 

from a 3D to a 2D point. 

 

1.2.1.2.3 Image Coordinate System 

 

 

If we consider a point in the image plane, we have the following relationship:   

 

 

 

with 0uuxk cu −=  and vvyk cv −= 0  and the units of k are [pixel/length]. 

The relation between a point in the image plane and a ray in Euclidean 3-space is 

described by: 
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The 33x  upper triangular matrix is called the camera calibration matrix and contain the 

intrinsic camera’s parameters.. It can be rewritten as: 
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where uα  and vα  are the scaling in the image x  and y  directions, ),( 00 vu  is the 

principal point at which the optic axis intersects the image plane. The aspect-ratio is 

uv αα / . 

 

1.2.1.2.4 World Coordinate System 

 

 

The Euclidean transformation between the camera and world coordinates is generally 

obtain by a rotation and a translation.  

 

 

 

In matrix form we have: 
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where R is a rotation and T a translation. 



Finally, by combining the three matrices we obtain the transformation between a 3D 

point into a 2D point: 
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where [ ][ ]T|RK=P  defines the 3x4  projection matrix from Euclidean 3-space to an 

image. 

 

 

1.3 Rectification Techniques 
 

 

 

In a central projection camera model, a three-dimensional point in space is projected 

onto the image plane by means of straight visual rays from the point in space to the 

optical centre. Mathematically this process can be described using a 4x3  projection 

matrix P , which takes a point in 3-D space in homogeneous coordinates 

TZYX )1,,,( and transforms it into a point on the 2-D image plane 
T

yx )1,,( .  
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The projection matrix P  can be computed from the internal and external camera 

parameters:  

 

[ ]TRKP |=    (2) 

 

where K  is a 3 x 3 upper triangular matrix, called the  camera calibration matrix, 

including the intrinsic camera parameters (focal length, aspect ratio and skew)  and 



[ ]TR |  defines the Euclidean transformation between camera and world coordinates (in 

general rotations followed by translations), including the external camera parameters, 

i.e. its position and orientation.  

 

 

1.3.1 Plane to Plane Homography 

 

In the case where planar surfaces are imaged ( 0=Z ), the transformation is called  

plane-to-plane homography: 
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The 3x3  transformation matrix, usually called the homography matrix H , has a simpler 

form than P , but it can be also reduce to:  
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where K  is the camera’s matrix, 1r  and  2r  are the correspondent columns of the 

rotation matrix R  and RC−=t  with C  the camera center. 

For this particular case we are dealing with the acquisition of a planar surface. Fig. 1.2 

shows the mapping between a 2-D point '
x  in the object plane 'π  into a 2-D point x in 

the image plane π .  

 



 
Figure 1.2 Mapping between planes 

 

 

This process can be described mathematically by a homography matrix H : 

 

ii HPP ='           (5) 

 

where P  and 'P  are 3 x 1 vectors that could correspond to the images of the same 

points, the former in the plane of the tag and the latter in the plane of the image, while 

H  is the transformation matrix.   

If the homography between a plane in the scene and the plane of the image is known, 

then the image of the planar surface can be rectified into a front-on view. Given four 

points on the scene plane, with no more than any 2 points collinear, and their 

corresponding positions in the image (8 equations), H  is uniquely determined.  

 

1.3.1.1 The Homography Matrix 

  

 

The mapping between two planes can be described mathematically by an Homography 

matrix H : 
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where P   and 'P  are 3x1 vectors that could correspond to the images of same points, 

in two different plane, while H is the transformation matrix.   



The 3x3  transformation matrix can be easily reduce to:  

 

[ ]trr 21  

 

where K  is the matrix’s camera, 1r  and  2r  are the correspondent columns of the 

rotation matrix R  and RC=t −  with C  the camera center. 

 

1.3.1.2 Scaling factor’s computation 

 

 

There are two methods of dealing with the unknown scale factor λ  in a homogeneous 

matrix:  

• choose one of the matrix elements to have a certain value. For example, 133 =h  

• Solve for the matrix up to scale 

If the homography between a plane in the scene and the plane of the image is known, 

then the image of the planar surface can be rectified into a front-on view. Given four 

points on the scene plane, with no more than any 2 points collinear, and their 

corresponding positions in the image (8 equations), H  is uniquely determined. 

Let )y',(x'P 11

'

1 , )y',(x'P 22

'

2 , )y',(x'P 33

'

3 and )y',(x'P 44

'

4 be the four corner points of the 

rectangular object and )y,(xP 111 , )y,(xP 222 , )y,(xP 333
and )y,(xP 444

 their projections 

obtained using a plane homography transformation, as shown in Fig.1.3.  

 

 

 

 



Fig 1.3. The plane homography transformation: on the left the image plane, on the right 

the rectified frontal view 

 

Corresponding points in two images related by homography are then: 
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In order to remove affine and projective components firstly identify the four corners in 

the the image, then, using plane homography transformation, map each vertex of the 

quadrilateral to the corresponding vertex in the known rectangle. Using the previous 

equations, find the coefficients of the homography matrix H  and finally rectify the 

image to the frontal view. Once the frontal view is recovered from the knowledge of the 

calculated homography’s matrix coefficients, the H  matrix can be decomposed by 

factorization, in its orthogonal [ ]trr 21  and upper triangular matrix [ ]K . From the 

knowledge of the orthogonal matrix the tilt angle φ  (rotation around the x -axis), the 

roll angle ψ (rotation around the y -axis), the pan angle θ  (rotation around the z -axis) 

and the translation along the three axis can be determined, thus the orientation and 

position of camera in the scene. From [ ]K , given the focal length of the camera, the 

other internal camera parameters can be deduced. 

 

  

1.4 Image Analysis 
 

 

 

The task of finding similarity correspondences between two images of the same scene or 

object has a great importance. Image analysis refers to the extrapolation of meaningful 

information from images, called feature, in order to simplify the amount of resources 

required to describe a large set of data accurately. A feature is defined as an 



"interesting" part of an image, and represents the starting point for every image analysis 

algorithm. 

In the following a brief overview of the most important feature detectors: Scale 

Invariant Feature Transform (SIFT) and Speeded up Robust Features (SURF) will be 

presented. 

 

 

1.4.1  Feature Detection Description and Matching 
 

 

SIFT and SURF are the two most famous algorithms for feature detection and 

description. They are able to detect and describe local features in images. For any object 

in an image, interesting points on the object can be extracted to provide a "feature 

description" of the object. This description, extracted from a training image, can then be 

used to identify the object when attempting to locate the object in a test image 

containing many other objects. To perform reliable recognition, it is important that the 

features extracted from the training image be detectable even under changes in image 

scale, noise and illumination.  

 

1.4.1.1 SIFT 

 

 

The SIFT descriptor [47] provide a set of features of an object that are not affected by 

many of the image transformations like image rotation, scale illumination and are 

shown to provide robust matching across a substantial range of affine distortion, change 

in 3D viewpoint, addition of noise, and change in illumination.  

The cost of extracting these features is minimized by taking a cascade filtering 

approach, in which the more expensive operations are applied only at locations that pass 

an initial test. The algorithm consist of four step: 

 

Scale-space extrema detection 

 

The first stage of computation searches over all scales and image locations. This can be 

efficiently achieved using a "scale space" function based on the Gaussian function, that 



is a convolution between a variable-scale Gaussian ( )σyxG ,, and the input image 

( )yxI , :  

 

( ) ( ) ( )yxIσyxGσyxL ,*,,,, =  

 

In order to detect stable keypoint locations in the scale-space, difference of Gaussians is 

used. It can locate scale-space extrema by computing the difference between two 

images, one with scale k  times the other. ( )σyxD ,,  is then given by: 

 

( ) ( ) ( )σyxLkσyxLσyxD ,,,,,, −=  

 

To detect the local maxima and minima of ( )σyxD ,, each point is compared with its 

8 neighbors at the same scale, and its 9 neighbors up and down one scale. If this value is 

the minimum or maximum of all these points then this point is an extrema. 

 

Keypoint localization 

 

At each candidate location, a detailed model is fit to determine location and scale. 

Keypoints are selected based on measures of their stability. This is achieved by 

calculating the Laplacian value for each keypoint found in the previous step. The 

location of extremum, z, is given by: 
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If the function value at z is below a threshold value then this point is excluded. 

 

Orientation assignment  

 

One or more orientations are assigned to each keypoint location based on local image 

gradient directions. All future operations are performed on image data that has been 

transformed relative to the assigned orientation, scale, and location for each feature, 

thereby providing invariance to these transformations.  



In order to find an orientation: 

• Use the keypoints scale to select the Gaussian smoothed image L, from above 

• Compute gradient magnitude:  

22 ))1,()1,(()),1(),1((),( −−+++−+= yxLyxLyxLyxLyxm  

• Compute orientation  

))),1(),1(/())1,()1,((((tan),( 1 yxLyxLyxLyxLyx +−+−−+= −θ  

• Form an orientation histogram from gradient orientations of sample points 

• Locate the highest peak in the histogram. Use this peak and any other local peak 

within 80% of the height of this peak to create a keypoint with that orientation 

• Some points will be assigned multiple orientations 

• Fit a parabola to the 3 histogram values closest to each peak to interpolate the 

peaks position 

 

Keypoint descriptor  

 

The local image gradients are measured at the selected scale in the region around each 

keypoint and used to create keypoint descriptors. The contribution of each gradient 

orientation in its histogram is weighted by its gradient magnitude and by a Gaussian 

weighting function with σ equal to one half the width of the normalized image patch. 

Keypoint descriptors typically uses a set of 16 histograms, aligned in a 4x4 grid, each 

with 8 orientation, thus, the resulting descriptor is of dimension 128.  

 

1.4.1.2 SURF  

 

 

SURF [48,49] is an efficient scale and rotation invariant interest point detector and 

descriptor. It allows for quick and effective feature detection even against different 

image transformations like image rotation, scale illumination and small viewpoint 

changes. 

Much of the performance increase can be attributed to the use of an intermediate image 

representation, known as the Integral Image that can be rapidly computed from an input 

image [50]. In the following a brief summary of its construction process. 



 

Interest point detection 

 

SURF is a Hessian matrix based interest point detector. It searches for blob-like 

structure at locations where the determinant of this matrix is maximal. Given a point 

( )yx,=X  in an image ( )yx,I , the Hessian matrix ( )σX,=H , as function of both space 

X  and scale σ , is defined as follows: 
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where ( )σX,Lxx  refers to the convolution of the second order Gaussian derivative 

( )
2
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σg

 with the image at point ( )yx,=X  and similarly for ( )σX,Lyy   and ( )σX,Lxy . 

These derivatives are known as Laplacian of Gaussians. The approximated determinant 

of the Hessian represents the blob responses at location ( )yx,=X  in the image. In order 

to detect interest points over different scale a non maxima suppression in a 3 x 3 x 3 

neighbourhood is applied. To do this each pixel in the scale-space is compared to its 26 

neighbours, comprised of the 8 points in the native scale and the 9 in each of the scales 

above and below. Finally the maxima of the determinant of the Hessian matrix are then 

interpolated in both space and scale to sub-pixel accuracy. 

 

Interest point descriptor 

 

The SURF descriptor describes the distribution of pixel intensities within a scale 

dependent neighbourhood of each interest point detected by the Fast-Hessian. Integral 

images in conjunction with Haar wavelets are used in order to increase robustness and 

decrease computation time. Haar wavelets are used to find gradients in the x and y 

directions. The first step in descriptor’s extraction consists of fixing a reproducible 

orientation based on information from a circular region around the interest point. Then, 

a scale dependent window aligned to the selected orientation is constructed and a 64-

dimensional vector (SURF descriptor) is extracted from it. The dominant orientation is 



estimated by calculating the sum of all responses within a circle segment covering an 

angle of 3/π  around the origin. At each position, the two summed x and y responses are 

used to form a new vector. 

The longest vector defines the orientation of the interest point. The first step for the 

extraction of the descriptor is to construct a square region aligned with the selected 

orientation around the interest point. It contains the pixels which will form entries in the 

descriptor vector and is of size 20σ , where σ refers to the detected scale. A further 

division into 4x4  regular sub regions is performed within each Haar wavelets of size 

2σ , calculated for 5x5  regularly spaced sample points. Hence, each sub-region has a 

four dimensional descriptor vector, thus concatenating this for all 4 x4  sub-regions a 

descriptor vector of length 64, invariant to different image transformation is obtained.  

 

 



Chapter 2 Client-Side Super Resolution Image 

Presentation  

 

 

 

2.1 Introduction 
 

 

Latest years have been characterized by the surprising success of distributed and 

collaboratively created multimedia databases over the web for a great variety of 

purposes: from scientific to commercial, from educational to entertainment. The end-

users are taking more and more an active part in content generation, which is the main 

cause of the impressive growth of the multimedia data volume. Not only do they 

collaborate to the generation of the content, but they also contribute to the storage and 

distribution, exploiting the great potentials of peer-to-peer networks. To enable an 

efficient and fast browsing of such huge amounts of multimedia data, it is important to 

develop tools for analyzing and describing the content, handle queries from the end-

users, and provide the results. Accordingly, a procedure for data analysis, indexing and 

presentation has become a requirement for efficient content management and search. It 

mainly requires the accomplishment of the following tasks: feature extraction, structure 

analysis, abstraction and indexing. The first task is aimed at providing the major 

characteristics of the multimedia data (such as color, texture, shape, structure, layout, 

and motion) that can be converted into semantic concepts. Data structure parsing is the 

next step in overall multimedia-content analysis and is the process of extracting spatial 

and temporal structural information. Multimedia data abstraction is the process of 

creating a glance of the multimedia information, such as sub-sampled version in case of 

still picture browsing. Based on the output of the previous tasks, video indices are built 

so as to enable a fast browsing of the visual content. The quality of experience in 

database browsing is then enhanced by integrating such features and tools at the server 

side with appropriate services at the client side that improve the presentation of the 

multimedia data. For instance, spatial details are predicted from low-resolution images 

to obtain super-resolution images with respect to the provided thumbnails. 



Within the described context, this chapter addresses the problem of multimedia data 

presentation by proposing a client-side super-resolution approach. The considered 

scenario is that of a user browsing the information in a huge database of images 

transmitted at low spatial resolution (thumbnails), which are then enhanced by 

increasing the image resolution with adaptive image interpolation. The aim is to provide 

the user with additional details that improve the quality of database browsing requiring 

no additional transmission overhead. In the proposed approach, the low-definition 

image is first analyzed in order to identify several features that are significant for visual 

rendering and scene understanding. Such segmentation is based on local frequency 

composition: uniform regions, edges and textures. The identified regions are then 

treated differently depending on the relative visual significance. Each region is further 

analyzed and a different interpolation approach is adopted, ranging from plain linear 

interpolation for homogeneous areas to edge area analysis and selective anisotropic 

interpolation.  

 

 

2.2 Image Super Resolution with adaptive interpolation    
 

 

 

The proposed technique pursues the ambition of making the image subsampling 

process visually reversible by reconstructing a high-definition image from a single low-

resolution sample. The process is based on region-of-interest (ROI) segmentation. The 

LR image is first analyzed in order to identify the features that are significant for visual 

rendering and scene understanding. Such segmentation is based on local frequency 

content and is used to discriminate between three principal signal behaviors: smooth 

regions, textures, and edges with relevant surrounding areas (Fig. 1).  
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Fig. 2.1. Exploited features (LF = Low frequency, HF = High frequency) 

 

The identified regions are then treated differently depending on the their visual 

significance. In particular, an adaptive interpolation approach is adopted, ranging from 

plain linear interpolation for homogeneous areas to edge area analysis and selective 

anisotropic interpolation. 

In the following paragraphs, the proposed algorithm is described is terms of features 

extraction, needed for determining the regions of interest, and region processing. 

The feature extraction and region processing procedure is performed on the HR scale. 

A bilinear oversampled version of the LR image is assumed as starting model. In this 

way, while the feature-map is defined at full-resolution, all processing is carried out 

based on currently known or reconstructed pixels. 

 

 

2.1.1  Feature extraction 
 

 

Feature extraction is performed to identify the regions of interest and to produce the 

corresponding ROI map. It must be noted that the synthetic information produced 

during this process, such as background extension or the quantity and characteristics of 

edges and textures can be easily used for low-level image classification. In the context 

of content-based image indexing the low-level features represent a useful output for 

further integration, which is not addressed in this work. 

 



2.1.1.1 Edges 

 

 

Edges comprise a fundamental role in scene representation and understanding. Their 

correct reconstruction is then essential for reliable high-definition reproduction. 

Edge detection is performed through a Canny-like filter processing. The first Gaussian 

derivative is computed both in magnitude and phase to determine local maxima in each 

edge direction. Although the proposed work relies on a simplified implementation that 

does not guarantee single edge detection, the resulting edge maps proved to be accurate 

enough for the following processing. 

 

2.1.1.2 Edge area 

 

 

The areas surrounding the edges are critical for the rescaling operators as much as the 

edge themselves. In fact, since edges represent an abrupt change in signal amplitude, 

two conditions are likely to happen: 

1. the surrounding areas presents a considerable gradient in the edge normal direction 

and/or 

2. the average signal behavior differs significantly between the areas surrounding the 

edge in the opposite sides 

The edge area is simply obtained as the difference between the edge map and its 

morphological dilation with circular structural elements. Further analysis is performed 

during the feature processing phase (Section 2.1.2.3). 

 

2.1.1.3 Textures 

 

 

In order to extract relevant textural features, two conditions are considered:  

• textured areas should have a statistically relevant high-frequency content and 

• they should show some structure regularity. 



Such characteristics allow us to distinguish between plain edges, which are locally 

isolated and don’t present any significant specific structure, and complex edge patterns 

that generally indicate statistical textures. The proposed approach suits well with the 

given general-purpose requirement. 

Sobel magnitude and phase are first considered for texture segmentation. Through an 

overlapping block analysis, the texture requirements are translated in terms of average 

edge magnitude and direction. 

The Sobel magnitude is first thresholded in order to reduce noise and weak edges 

contribution. A candidate block is further considered if its average edge magnitude is 

greater than half of the maximum signal strength. The resulting edge map is then 

analyzed for structure. The Sobel phase is quantized to 8 principal directions, as shown 

in Table I. 

 

Table I. Quantization of the Sobel phase. 

Θ ∆Θ sym

b. 

Θ ∆Θ symb. 

0 337.5 : 22.5 30 
18

0 

157.5 : 

202.5 
150 

45 22.5 : 67.5 60 
22

5 

202.5 : 

247.5 
180 

90 67.5 : 112.5 90 
27

0 

247.5 : 

292.5 
210 

13

5 
112.5 : 157.5 120 

31

5 

292.5 

337.5 
240 

 

 

The histogram of the candidate block is then produced to analyze its structural content 

(Fig. 2.2). Given the eight quantized directions, a probability threshold of 0.125 is set to 

look for relevant phase components. If the block is found to include at least two 

opposite directions greater than the designed threshold, then the corresponding 

neighborhood is tagged as textured area. 
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Fig. 2.2 Texture analysis from Sobel phase. From left: quantized Sobel phase, detail and 

block histogram, result of final segmentation. 

 

 

Selectivity may be increased by limiting the number of allowed peaks in the direction 

distribution to 2/3 or redefining the direction quantization by narrowing the fan angle. 

 

2.1.1.4 Background 

 

 

The background area is simply what is left from all other processing. 

 

 

2.1.2  Region processing 
 

 

Region processing is performed in inverse order with respect to feature extraction. In 

this way, the proposed method first attempts to solve the approximation of simple 

regions and then to serially recover crucial missing information. 

 

2.1.2.1 Background 

 

 

Background reconstruction is performed through simple bilinear interpolation. Such a 

choice represents a good tradeoff between performance and low computational 

complexity in regions that present no particular challenges. In fact, background pixels 

have very small high-frequency content and the addition of slowly-varying artificial 

gradients does not decrease the visual quality. It has to be noted that, on average, 



background pixels are the most numerous, so that a good portion of the high-resolution 

signal is reconstructed in this first step very easily.  

Linear pixel reconstruction is performed with a block-based scan of the low-resolution 

image and the feature-map in parallel (Fig. 2.3). 
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Fig. 2.3. Background interpolation 

 

 

2.1.2.2 Textures 

 

 

Textured areas represent regions with relevant high frequency content arranged in a 

structured pattern which cannot be treated either with bilinear interpolation or contour-

based reconstruction techniques. In fact, bilinear interpolation does not perform 

properly with high-frequency components, introducing strong blurring artifacts. 

Besides, edge preserving approaches, such as the one described in the following section, 

do not cope well with complex edge structures. Then, we propose the use of bicubic 

interpolation to approximate these regions. Such choice suits the general-purpose 

requirement, since it does not address any specific textural structure, and provides better 

results than the bilinear interpolation with reduced jagged artifacts. 

 

2.1.2.3 Edge area 

 

 



The edge neighborhoods are reconstructed through local anisotropic approximation. At 

each iteration, the edge map is analyzed for connected component labeling in order to 

distinguish between regions belonging to either side of each edge, referred to as A and 

B, as shown in Fig. 2.4. 
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Fig. 2.4. Segmentation and edge areas labeling. From left: original feature-map, result 

of labeling, region weighting for the considered area 

 

 

When processing a pixel belonging to region A, only A neighbors are considered, so 

that statistics from the other side of the edge do no influence the local restoration. With 

reference to Fig. 2.4, A pixels are split into two classes: A1, A pixels belonging to the 

edge area, and A2, A pixels belonging to the nearby background that are also considered 

for the local reconstruction. The interpolation is based on bilateral filtering [51], which 

relies on dynamic FIR (finite impulse response) kernels built from known pixels 

through three weighting contributions: 
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In (1), ( )ji,  is the kernel center in respect of the original image I , ( )yx,d  is the 

Euclidean distance function and 2

Sσ  is the spatial variance. In (2), Î  is the average 



signal amplitude in the surrounding of the kernel center, ( )yx,I  is the signal amplitude 

at yx,p  and 2

Rσ  is the amplitude variance. The coefficients 1α  and 2α  are inversely 

proportional to the number of pixels belonging to the smooth and textured regions 

whose values have already been estimated. Finally, each kernel coefficient is computed 

as: 
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Fig. 2.5 illustrates the three weighting contributions and the final kernel, W. 
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Fig. 2.5. Edge area pixel reconstruction. 

 

 

2.1.2.4 Edges 

 

 

Edge pixels are reconstructed through median filtering of a small neighborhood of 

known pixels. Such solution combines low computational cost with the preservation of 

edge sharpness. 

 



    
 

     

Fig. 2.6. Complete processing; above: feature-map, below: reconstructed image; from 

left: background, textured area, edge area and edges. 

 

 

2.3 Experimental Results 
 

 

The proposed method has been evaluated with a test set of 20 images @24bpp, chosen 

among the Kodak [52] and Canon [53] databases and other classical image processing 

test sets [54]. The test images have been selected with the purpose of presenting a broad 

range of signal behaviors, in terms of high frequency content and textures. 

To provide objective results, the testing procedure consisted in preliminary 

subsampling the original image at a given zoom factor and reconstructing the signal 

with several interpolative methods. Then, PSNR was computed between the original 

and the reconstructed signal (Fig. 2.7). Subsampling is executed through block average. 

The proposed method (SR) is compared with the nearest neighbor (NN), bilinear (BL) 

bicubic (BC) and bilateral filter (BF) interpolation. Results are expressed in terms of 

average PSNR (Fig. 2.8) and PSNR standard deviation (Fig. 2.9) among the complete 

test set. 
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Fig. 2.7. Evaluation of the objective results. 

 

 



As expected, reconstruction quality decreases significantly as the zoom factor 

increases. Such behaviour characterizes all methods and derives from the increasing 

lack of information. In fact, the subsampled image constitutes the only piece of 

information for all reconstruction methods. 
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Fig. 2.8. Objective results: average PSNR 

 

 

Objective results show that the proposed method results lies between the bicubic and 

the bilinear interpolation, whereas the bilateral filtering interpolation provides the worst 

results. The apparently unpredicted performance of the nearest neighbour interpolation 

is easily explained. Since subsampling is carried out through block averaging, nearest 

neighbour substitution simply assigns the local average to unknown pixels, thus 

approximating their value with the best esteem in terms of mean square error, thus 

PSNR. 

From the previous considerations, PSNR is apparently inadequate in providing a 

reliable quality index. It is a measure that provides only a rough performance indication 

and cannot be considered as an accurate indication of reconstruction quality. An 

interesting utilization of the PSNR is the computation of the standard deviation, which 

is always lower for the proposed method than for bilinear or bicubic interpolation. Such 

index gives us a measure of dispersion, thus unreliability of the method. 
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Fig. 2.9. Objective results: PSNR standard deviation 

 

 

Average SSIM [55] results are also provided in Fig. 2.10 for three zoom factors (2, 4 

and 8). The index measures the comparative image quality in a range 0÷1 based on the 

degradation of structural information, providing a better visual quality esteem than 

PSNR. In this case, SR outperforms BL and is very close to BC. However, since NN 

still prevails on other methods, SSIM cannot still be taken as a perfect indication. 

Visual results are provided in Figs. 2.11, 2.12 and 2.13 in order to subjectively 

evaluate the proposed method. The original image detail (OR) is compared with the 

proposed method and all those used in the objective evaluation. The proposed method 

results appear visually more pleasant than the competitors. 
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Fig. 2.10. Objective results: average SSIM 

 



   
 

   

OR SR BC 

BF BL NN 

 

Fig. 2.11. Visual results: “kodim07” at 2× zoom factor 
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Fig. 2.12. Visual results: “kodim23” at 4× zoom factor 
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Fig. 2.13. Visual results: “kodim10” at 6× zoom factor 

 



 

2.4 Conclusions 
 

 

In this work we presented an adaptive technique aimed at reconstructing high-

definition images from low-resolution data, as resulting from sub-sampling or 

thumbnailing. The proposed algorithm is based on a composite interpolative approach. 

A feature-map is first computed from the original image. Features include edges, edge 

area, texture and background. Different interpolation methods are then applied to the 

recognized areas. Reconstruction methods range from bilinear to ad-hoc anisotropic 

interpolation. Results are promising, especially when considering visual quality rather 

than PSNR-based objective evaluation. Future developments comprise the assimilation 

of edge features to edge areas and further customization for textured regions. 

 



Chapter 3  Video Super-Resolution 

Reconstruction 

 

 

 

3.1 Introduction 
 

 

On one hand, latest years have been characterized by an incredible proliferation and 

surprising success of user generated multimedia contents, distributed and collaborative 

multimedia database over the web. This brought to serious issues related to their 

management and maintenance: bandwidth limitation and service costs are important 

factors when dealing with mobile multimedia contents’ fruition. On the other hand, the 

current multimedia consumer market is characterized by the advent of cheap but rather 

high-quality high definition displays. However, this trend is only partially supported by 

the deployment of high-resolution multimedia services, thus the resulting disparity 

between content and display formats have to be addressed and older productions need to 

be either re-mastered or post-processed in order to be broadcasted for HD exploitation. 

In the presented scenario, super-resolution reconstruction represents a major solution. 

Image or video super resolution techniques allow for restoring the original spatial 

resolution from low-resolution compressed data. In this way, both content and service 

providers, not to tell the final users, are relieved from the burden of providing and 

supporting large multimedia data transfer. 

 

 

3.2 Video Super Resolution based on back projection and motion 
estimation  

 

 

 

Bandwidth limitation and service costs are important factors when dealing with mobile 

multimedia contents’ fruition. Super-resolution reconstruction might be a relevant 



solution, since it allows for restoring the original spatial resolution from low-resolution 

compressed data. In this way, both content and service providers, not to tell the final 

users, are relieved from the burden of providing and supporting large multimedia data 

transfer. Nowadays, the incredible production of user-generated multimedia contents is 

leading to serious issues related to their management and maintenance. The 

combination of increasing bandwidth availability and the development of software 

technologies allowing for the distributed and collaborative creation of multimedia 

objects has led to the proliferation of user-generated video communities and, more 

generally, multimedia information sharing. The massive production and distribution of 

multimedia data is already a relevant issue for service providers, device designers and 

software developers: the former are requested to satisfy the ever-growing bandwidth 

demand; device designers must face the challenge of developing more powerful and 

compact devices; the latter have to provide better applications and programming 

frameworks. A fourth category comprises image processing and compression standards 

professionals, who try to develop better algorithms for coding and 

reconstructing/recovering the multimedia signals. 

Given such scenario, the archetypal use case is that of a user browsing through a huge 

video database. In order to minimize the bandwidth requirement and the latency, the 

video streams should be efficiently coded and transmitted at low spatial resolution. 

Then, the idea is to increase the video stream resolution through super-resolution 

reconstruction in order to provide the user with additional details that enhance the 

quality of multimedia browsing, preventing the transmission of additional overhead. 

Within the devised context, this chapter addresses the problem of super-resolution 

restoration of video sequences by proposing an approach based on back projection and 

motion estimation. The resolution enhancement is performed from multiple under-

sampled and degraded frames by taking advantage of the additional spatio-temporal 

data available in the image sequence. In particular, the motion of both scene and camera 

is the cause for contiguous frames containing similar, but not identical information. The 

reconstruction of visually superior frames at higher resolution is then based on the 

exploitation of such inter-frame information. 

Given the observer’s motion, each frame shows further details if compared to adjacent 

frames. Then, resolution enhancement can be achieved by identifying the corresponding 

image portions through motion estimation and combining the information from a 



limited number of frames. Although the provided example constitutes an ideal case 

since the observer’s motion results in the natural zooming of the scene, similar 

considerations are also possible when dealing with different motion models and sub-

pixel reconstruction. 

The proposed technique is aimed at reconstructing a high-definition video from a 

limited number of frames extracted from a low-resolution sequence, without any 

preliminary knowledge of the high-definition data. The process is based on 

backprojection and motion estimation. For any given frame, a sliding window 

determines the set of low resolution frames to be processed in order to produce the 

output stream. The window is shifted forward to produce successive super-resolution 

frames of the output sequence, as shown in Fig. 3.1 
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Fig. 3.1 Super-resolution video enhancement from a LR image sequence. 

 

 

The main idea is that each pixel in a LR frame is a “projection” of a region in the scene. 

The HR image is constructed using an approach similar to the back projection method 

used in CAT (Computed Aided Tomography). Accurate knowledge of the relative scene 

locations sensed by each pixel in the observed images (LR) is necessary for super-

resolution. This information is available in image regions where local deformation can 

be described by some parametric functions. 

In the following paragraphs, the proposed algorithm is described is terms of imaging 

process, super-resolution and motion estimation in order to achieve the reconstruction 

of higher resolution frame which approximates the original one as accurately as 

possible. 

 

 



3.2.1. Background Theory 
 

 

The first approach to super-resolution based on the iterated process of backprojecting 

the error between the estimated LR images and the observed data was proposed in [37] 

and further extended in [38-39]. The algorithm performs an initial estimate of the high 

resolution image; then, the subsampling/degradation process is simulated in order to 

deduce the set of LR frames which correspond to the observed input images. The 

difference (error) between the simulated and the observed frames is computed in order 

to update the initial HR frame estimate through the error backprojection. The process is 

iterated in accordance to an error minimization criterion. Only translation and rotation 

were considered for modeling the HR estimate and LR subsampling. 

The relative displacements of the input images at subpixel accuracy are computed and 

an iterative refinement is adopted to improve accuracy. It is assumed that the imaging 

process for the observed image sequence (LR) is modeled by: 

 

( ) ( )
)zx(h)x(f=)y(g y

PSF

x

nn r

r

rrrr
−⋅∑  (1) 
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The iterative update scheme to estimate the HR image f  is then: 
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The error function to be minimized is: 
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Since the choice of the initial estimate does not influence the performance of the 

algorithm, the average of the LR frames is used as ( )0
if ; then, it is assumed that 

PSFBP
h=h . 

 

 

3.2.2. Super-Resolution Approach 
 

 

Starting from the devised scheme, the proposed work introduces several changes in 

order to outperform alternative techniques. 

Let if  denote the target frame to be reconstructed through the super-resolution 

method; we then extract k  frames from the original LR video sequence: ( ) 2/1−k  past 

and ( ) 2/1−k  future frames. Differently from Peleg and Irani’s method, the initial 

estimate for the high-resolution frame ( 0=n ) is a linear interpolation of the low-

resolution one, ig . The blocks of the neighboring LR frames which are found to be 

significantly similar to those of the reference frame are merged into the HR 

approximation. Such process resembles a projection, and is done according to the zoom 

factor and the estimated motion, in order to reconstruct the high-definition data. The 

block-based motion estimation is described in detail in Section 3.2.3. Residual 

information is restored through linear interpolation.  

Such process is repeated for each of the k  LR frames in order to obtain an 

approximation of k  HR frames. They are then subsampled with the PSF
h filter to obtain 

the simulated LR frame sequence ( )( ) ( )( )
(n)

21k+i

(n)
i

(n)

ki
g,,g,,g

/2/1
...... −−− . The difference between 

simulated and reconstructed LR frames are computed and the error is backprojected into 

the HR estimate in order to refine the restoration process. 



The procedure is iterated until the error becomes appreciably small or a maximum 

number of iterations, n , is reached. Finally the reconstructed frame, ( )n
if , is assumed as 

high-resolution approximation of ig , ( )
i

n
i ff ≅ . 
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Fig. 3.2. Block scheme of the proposed method. 

 

 

3.2.3. Motion Estimation 
 

 

Motion estimation plays an important role in the video super-resolution reconstruction. 

Among motion estimation techniques, [56] and [57] have been considered, in which a 

three-step search algorithm is proposed. It employs a center-biased checking point 

pattern in the first step, which is derived by making the search adaptive to the motion 

vector distribution, and a halfway-stop technique to reduce the computational cost. In 

details, by considering a block of size NN × , the block motion estimation searches for a 

motion vector in a previous frame that yields the minimum block distortion 



measurement (BDM) in the scanning area. To do this, a multiple stage search is 

implemented: 

 

1. the central point, the 8 points at 2/p  in the scanning area ( pp × ) and 8 extra 

neighbors points at 3-pixel distance are checked; 

2. a halfway stop technique is used to estimate the stationary or quasistationary 

block’s motion: 

a. if the minimum BDM in step 1 occurs at the search windows center, stop the 

search (first step stop); 

b. if the minimum BDM point in step 1 is one of the 8 neighbors of the window 

center, the search is performed for the 8 neighboring points of the minimum only 

(second step stop). 

 

A complete three step search is only performed when the minimum BDM point at the 

first step is not the window center, nor any of its 8 neighbors. 

 

 

3.2.4. Method’s parameters 
 

 

In this section an overview of the method’s main parameters is given. In particular: 

• ( )0
if  is the initial HR frame estimate. It is computed as linear interpolation of the 

corresponding LR frame only, ig . 

• PSF
h  is the point spread function of the imaging system. In this implementation it 

represents a Gaussian filter. 

• For each HR frame, 5=k  LR frames are considered for processing. 

• A number of 5=n  maximum iterations is imposed. 

• The zoom factor tested are ×4  and ×8 . The blocks are 44×  and 88 ×  pixel wide 

respectively. 

• The scanning area is 1616×  pixel. 

• The mean square error is considered for BDM. 

 



 

3.2.5 Experimental Results 
 

 

The proposed method has been evaluated with a test set of 7 video sequences in the 

4:2:0 YUV format, chosen among classical video processing test sets [58]. The test 

video sequences have been selected with the purpose of presenting a broad range of 

signal behaviors, in terms of different motion. 

To provide objective results, a subsampled video sequence is preliminarily produced 

(LR) from the original video (OR) and used as input sequence for the devised algorithm 

at any given zoom factor. Then, PSNR is computed between the original and the 

reconstructed (HR) signal (Fig. 3.3). 
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Fig. 3.3. Evaluation of the objective results. 

 

 

The proposed method (SR) is computed for two different parameters sets (SR_A: 

0.110 =c;=σ , SR_B: 0.52 =c;=σ ) and is compared with the nearest neighbor (NN) and 

bilinear (BL) interpolation. Results are expressed in terms of overall average PSNR 

among the complete test set, at 4 and 8× zoom factor (Fig. 3.4 and 3.5 respectively). 

 



 

Fig. 3.4. Average PSNR results, 4× zoom factor. 

 

 

Fig. 3.5. Average PSNR results, 8× zoom factor. 

 

 

As expected, reconstruction quality decreases as the zoom factor increases. Such 

behaviour characterizes all methods and derives from the increasing lack of 

information. In fact, the subsampled frames constitute the only piece of known 

information for all reconstruction methods. 

Objective results show that the proposed method lies between the nearest neighbour 

and the bilinear interpolation. The superior performance of the nearest neighbour 

interpolation is easily explained. Since subsampling is carried out through block 

averaging, nearest neighbour substitution simply assigns the local average to unknown 



pixels, thus approximating their value with the best estimation in terms of mean square 

error, thus PSNR.  

Then, the proposed method outperforms bilinear interpolation by 0.65dB at 4× zoom 

factor and 0.89dB at 8× zoom factor on average. It must be observed that the proposed 

method’s performance increases at higher zoom factors if compared to bilinear 

interpolation. 

The results for two sequences are reported in Fig. 3.6 and 3.7.  

As previously noticed, nearest neighbor generally outperforms any competing method. 

Then, PSNR is not fully adequate in providing a reliable quality index. It is a measure 

that provides an approximate performance indication and cannot be considered as an 

accurate indication of reconstruction quality. In fact, it does not take into account the 

issues related to the human visual system and subjective scene interpretation. 

Visual results are provided in Figs. 3.8 and 3.9 in order to subjectively evaluate the 

proposed method. The proposed method results appear visually more pleasant than the 

competitors. In particular, a detail of the Y component of the “Bus” sequence is 

reconstructed through NN, SR and BL and is shown in Fig. 3.8 for comparison. The SR 

reconstruction appears sharper and more defined than the competing techniques. 

 

 

Fig. 3.6. PSNR results for the sequence “Silent” at 4× zoom factor. 



 

Fig. 3.7. PSNR results for the sequence “Highway” at 8× zoom factor. 

 

 

     
 

      

Fig. 3.8. A detail from the sequence “Bus” at 4× zoom factor; from left: NN, SR, BL. 

 

 

 



 

Fig. 3.9. Visual results for the sequence “mobile” at 8× zoom factor. 

 

3.2.6  Conclusions 
 

 

In this work, an iterative technique for high-resolution reconstruction of low-resolution 

video sequences has been presented. The proposed algorithm is developed from Peleg 

and Irani’s works with the generalization of the motion estimation model and 

modifications to the system architecture. The proposed reconstruction method uses 

block-based motion estimation and backprojection of the error between the restored 

frame and the simulated one. Results are promising, especially when considering high 

zoom factors. Future developments may exploit different motion models and investigate 

the integration of novel human visual system-based techniques.



 

 

3.3 Video  Super-Resolution  with Adaptive Bilateral Filtering  
 

 

 

The current multimedia consumer market is characterized by the advent of cheap but 

rather high-quality high definition displays, mostly for home theater applications. This 

trend is only partially supported by the deployment of high-resolution multimedia 

services, either over the Internet or through satellite channels. To address the resulting 

disparity between content and display formats, video super-resolution techniques 

represent a major solution. This subject is addressed in this paper, by exploiting the use 

of the bilateral filtering. This is a spatial filtering operator that relies on dynamically 

calculating a FIR kernel which has the major advantages of video content adaptability 

and edge preserving.  

During the last couple of years, the multimedia consumer market has been characterized 

by the advent of cheap but rather high-quality HD (High Definition) displays, mostly 

for home theater applications. This process is bound to continue at least in the near 

future, with the introduction of displays of even higher spatial resolution formats, such 

as DigitalCinema or UHD/UHDTV (Ultra High Definition). This phenomenon is only 

partially supported by the deployment of high-resolution (spatial and temporal) 

multimedia services, either over the Internet or through satellite channels. Indeed, the 

content generation and distribution sector seems not to be able to keep pace with the 

display technology, which is characterized by a significant decrease of the cost per 

pixel. Conversely, the cost of transmitting one bit of video information is not going to 

decrease, at least when sending it at the quality of service level required by the 

streaming applications. The advances in the video compression domain, which proceeds 

by roughly doubling the compression rate every 5 years, do not allow for decreasing 

such cost significantly. Moreover, older productions need to be either re-mastered or 

post-processed in order to be broadcasted for HD exploitation. The decoding of low-

resolution multimedia content then thwarts the benefits of high-resolution displays and 

involves the use of appropriate signal processing procedures. Low resolution frames 

then need to be enlarged through super-resolution techniques, with zooming factors that 

may increase considerably during the next few years. 

The present paper focuses on this problem by proposing a solution which resorts on the 

use of the bilateral filtering [51]. This is a spatial filtering operator that relies on 



 

 

dynamically calculating a FIR kernel. Edge preserving nature and adaptability are the 

main advantages of this kind of filter. Whereas it has already been adopted to address 

the super-resolution problem, its application has been mostly restricted to the case of 

still-pictures. Herein, we propose its use to tackle the video sequences super-resolution 

problem and, accordingly, we propose several changes in its use. The first change is 

related to its extension to the time domain through the use of a group of frames when 

estimating the super-resolution version of each frame. This operation goes in the 

direction of both strengthening the local visual information sketch and compensating 

(thus reducing) the local noise in the current frame with that of previous ones. It may be 

argued that using frames other than the one to be processed may introduce some 

distortions due to differences between adjacent frames. However, given an adequately 

small time window, these differences do not modify significantly the local visual 

structure, as shown by the high correlation between adjacent frames in Fig. 3.10. This 

graph plots the average interframe correlation of 10 CIF (Common Intermediate 

Format, 352×288 pixels, 29fps) test sequences with no less than 300 frames, computed 

for a window of 31 frames. The correlation curve shows that on average 3 consecutive 

frames have a correlation higher than 0.9 and 5 consecutive frames are correlated as 

much as 0.85. 

 

 

 

Fig. 3.10. Average interframe correlation. 

 

 

Instead of relying on a classical motion compensation algorithms, the proposed method 

implements a 3D sample estimation and filtering.  



 

 

A second major change we propose is related to the preliminary estimation of the 

pixel that are added to increase the resolution. While the procedure itself is aimed at 

estimating these values, these are needed to bootstrap the bilateral interpolation when 

computing the filter kernels. To address this problem we make use of a gradient based 

edge-preserving interpolation. 

The proposed technique is aimed at reconstructing each HR frame from a limited 

number of frames extracted from a LR sequence, without any preliminary knowledge of 

the high-definition data. For any given frame, a sliding time-window determines the set 

of LR frames (from 2 to N ) to be processed in order to produce the output stream. The 

window is shifted forward to produce successive HR frames of the output sequence, as 

shown in Fig. 3.11. 
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Fig. 3.11. Sliding time-window. 

 

 

Not to delay the display of the frames, each HR is generated by considering only 

previous frames. A space-time 3D filter is then applied to such partitioning of the 

original signal; the filter is developed from the bilateral filter solution with the 

introduction of sample estimation through local analysis, involving smooth and edge 

area classification and exploitation. 

 

 

3.3.1   Background Theory 
 

 



 

 

 

The proposed interpolation is based on bilateral filtering [51], which relies on 

dynamically calculating a FIR kernel from known pixels through spatial distance ( SW ) 

and amplitude distance ( RW ) weighting contributions:  
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where: ( )ji,  denotes the kernel center; ( )yx,I  is the signal amplitude at coordinates yx,p ; 

( )yx,d  is the  Euclidean distance function; 2
Sσ  and 2

Rσ  are the spatial and the amplitude 

variance, respectively. The kernel coefficients are then computed as follows: 
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where K represent the set of pixels belonging to the filtering kernel. Fig. 3 illustrates the 

two weighting contributions and the final kernel shape W . It can be seen that the SW  

contribution has a symmetric shape depending only on the distance from the kernel 

center, while the RW  contribution is modeled by the amplitude distance from the central 

sample. 
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Fig. 3.12 Filter kernel shape related to an edge area. 

 

 

3.3.2   Super resolution with tridimensional bilateral filter 
 

 

 

In the proposed technique, we extend the bidimensional bilateral filter described in the 

previous section into a tridimensional filter adding the temporal axis. Additionally, we 



 

 

make use of kernel with three equal edges. Given the size of the sliding time-window, 

N , the linear size of the LR kernel, Ws , and the linear zoom factor, zf , the cubic filter 

kernel will entail a local lattice with size: 

 

2
W zfsN ⋅⋅ 2  (3) 

 

It can be observed (Fig. 3.13) that only 2
WsN ⋅  samples are known from the original 

signal. The bilateral interpolation then consists in reconstructing the current (unknown) 

sample through the bilateral formulation.  
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Fig. 3.13. HR image lattice for the kernel support. 

 

 

However, while the spatial term, SW , can be easily computed by considering the spatial 

distances in the HR lattice, the amplitude term, RW , lacks the definition of the sample 

value itself. In order to process the signal, such value must be estimated. Given Î , the 

amplitude estimate, ( )tj,i,  spatial (intra-frame) and temporal (inter-frame) dimensions 

respectively, (1) becomes: 
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In order to estimate the current sample value, a local analysis is performed, based on the 

LR edge map. The process is graphically described in Fig. 3.14. Both edge magnitude 

and orientation are firstly computed through a gradient operator. Only strong edges are 

considered by applying a threshold to the edge magnitude values. For each 

neighborhood, a linear edge model is derived through the computation of the local edge 

center of mass and the average edge normal angle: 
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with cc j,i  coordinates of the edge center of mass, cθ  average edge angle, 
kh,

p
kh,

p k,h  

coordinates of edge pixels, 
kh,

pθ  edge pixel angle and 
kh,

pN  number of edge pixels. 
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Fig. 3.14. Local neighborhood analysis. 

 

Known samples are then classified as belonging to either the same (SS) or the other side 

of the edge line (OS) in comparison with the current sample, according to the following 

rule: 
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Once all known samples are classified, the current sample value is computed as the 

distance-weighted average among the samples from the same class. Notice that the 

complete process is applied to a time neighborhood of N  frames (Fig. 3.15). 
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Fig. 3.15. Local neighborhood analysis; space-time structure. 

 

 

3.3.3 Experimental Results 
 

 

 

The proposed method has been evaluated on 12 1280×720 and 1920×1080 4:2:0 YUV 

video sequences, provided by [59]. The test sequences have been selected with the 

purpose of presenting a broad range of signal behaviors, in terms of different motion 

and scene complexity. A subsampled video sequence (Gaussian local filtering) is 

preliminarily produced from the original video and is used as input sequence for the 

devised algorithm at any given zoom factor. Test parameters: 3=N , 10=σ S  and 

2=σ R . A visual comparison between bicubic interpolation (left) and the proposed 

method (right) is provided in Fig. 3.16 for three different samples. The proposed 

algorithm shows a good behavior in both strong and weak edge regions, while highly 

textured areas are still challenging. Further developments are ongoing in order to deal 

with such problem through the exploitation of a more precise edge model. 



 

 

 

   
 

   
 

   

tractor, 3× 

mobcal, 3× 

sunflower, 4× 
 

Fig. 3.16. Visual comparison. 

 

3.3.4  Conclusions 
 

 

 

A technique for high-resolution reconstruction of low-resolution video sequences has 

been presented. The proposed algorithm extends the use of the bilateral filter through 

the exploitation of the space-time domain and the development of edge-based samples 

estimation, achieving promising results.  

 

 

 



 

 

Chapter 4 Image Based Positioning System 

 

 

 

 

4.1 Introduction 
 

 

In recent years the mobile telephony market has been characterized by an exponential 

growth of wearable devices, such as smartphone and PDA in general, equipped with 

embedded motion (accelerometers) and rotation (gyroscopes) sensors, Internet 

connection and high-resolution cameras. All the sensing and computing technologies 

available in a common smartphone makes it ideal for INS (Inertial Navigation System) 

applications aiming at supporting the navigation of objects and/or users in an indoor 

environment where common localization systems, such as GPS (Global Positioning 

System), fail due to severely attenuation or obscuration of the satellite’s signal. In fact, 

the GPS solution is suitable only if at least  three satellites are in the line of sight, in the 

other cases, such as indoor application or urban “canyon”, we need to use alternative 

positioning techniques. 

In inertial navigation systems, localization/orientation estimation is source-independent. 

The user’s position is calculated in relation to a known starting position using a dead 

reckoning algorithm. The whole system makes use of the before mentioned sensors: 

accelerometers are used to calculate the distance travelled and the gyroscopes/magnetic 

compass to determine the direction. The uncertainty in the estimated position grows 

with time from the initial known starting position since the errors introduced by 

estimating the user/object movements are additive, increasing the total inaccuracy. This 

demands for a periodic recalibration of the system to reduce the cumulative error. In the 

following two different approaches are presented. The first one is based on plane 

homography and affine transformation while the second one is based on SURF. In the 

first case  the considered scenario includes the presence of geo-referenced 2D-tags 

placed in some known, key positions of the site to be visited. By taking a photo of the 

tags, the system is able to initialize and subsequently re-calibrate the location data. To 



 

 

improve the calibration accuracy, the focus has been put on computing the exact 

position of the user (based on the known position of the tag) in terms of orientation and 

distance from the reference point using plane homography and affine transformation. 

This allows to correct perspective and projective distortion from the taken photo and 

derive information about the viewing angle (the user’s orientation) and distance 

between camera and object. In the second work the smartphone’s videocamera is used 

to identify known keypoints, named anchors previously identified and geo-referenced in 

the building map. For a periodic position fix, an image-based localization system 

making use of the built-in camera is employed. By developing local feature detection, 

description and matching between a query image, acquired by the user, and a database 

containing a collection of geo-referenced images related to the chosen environment, the 

user’s position can be accurately fixed. The proposed solution is based on the SURF 

(Speed-up robust features), which allows for a quick and effective detection of image 

features without being affected by the user’s viewpoint. 

 

 

4.2 Inertial Navigation System's Architecture 
 

 

 

The considered system is solely based on the capabilities of a common modern 

smartphone. The data read from the phone’s sensors, combined with a reference map of 

the place and a known starting point, gives the actual position of the user. Hence, there 

is no need to connect to any external or pre-installed positioning system such as GPS, 

RFID, or to use WiFi trilateration; solely the dead reckoning technique is used instead. 

Dead reckoning is the process of estimating the current position of an user based upon a 

previously known position, upgrading this position upon measured or estimated speeds 

over elapsed time and course.  

The prototype of the proposed system uses the data from the motion sensors embedded 

in the smartphone to compute the correct position of the user based on a known initial 

location. The smartphone application is presented in Figure 4.1.  

 



 

 

 

Figure 4.1. Screen of the application with a pedestrian route example. 

 

 

The initial position of the user, the only certain information on which the system relies 

on for further calculation, is retrieved using the integrated photo camera of the 

smartphone scanning and decoding a datamatrix (2D barcode) placed aside the map of 

the floor (see figure 4.2)[60].  

Based on the URL encoded in the datamatrix, the application downloads from a 

dedicated server the indoor vector map for the specific floor together with the initial 

position of the user on the map (corresponding to the point where the user stands when 

scanning the datamatrix). 

 



 

 

 

Figure 4.2. User reads a  2D datamatrix to download the map and his starting position. 
 

 

When the user starts walking, the application draws step by step the position of the user, 

as a continuous line, over the downloaded map of the building floor.   

The application tracks the number of steps taken by the user based on the linear 

numerical values returned by the smartphone’s accelerometers. The acceleration value 

is the module of the accelerations registered in the x, y and z-axes. One step is detected 

when this module is above a high threshold (Th_high) and successively is below a 

Th_low value. The following figure is an example graph of the accelerometer’s 

measurement for a step length of 70cm, having the absolute values 109=Thhigh and 

97=Thlow .  

 

 



 

 

Figure 4.3. Normalized Acceleration 
 

 

The current orientation of the user is measured by the smartphone’s digital compass (the 

parameter 'Orientation' in Figure 4.1). The initial orientation, in this implementation, is 

set when the user scans the 2D barcode, being perpendicular (within a certain angle) to 

the floor plan. The relative position of the device with respect to the user (e.g. in a 

pocket) does not influence the dead reckoning estimation. If the device is held in front 

of the user, the magnetic compass provides the step-by-step heading improving the 

overall accuracy of the positioning method. This approach does not consider the user’s 

distance from the object, therefore it’s not too accurate. As showed by first experimental 

results, before starting the application, the compass needs an accurate recalibration. This 

recalibration is necessary because the compass is subject to several errors: initially it has 

an inaccuracy of maximum 5 degrees, depending also on the used device and on the 

presence of electromagnetic interferences. 

The step counter module based on the accelerometer data was tested and validated after 

thorough tests, performed in an indoor environment using both men and women with 

different physical features. The mean placement error was 3,8% on a series of 20 runs 

consisting of an average step count of 40 steps. In order to better estimate the user 

position the investigated technique based on plane homography is presented in the 

following section.  

 

 

4.2.1  Calibration of  Inertial Navigation System  
 

 

In order to reduce the cumulative error an early development of an Indoor Navigation 

System based solely on the capabilities of a typical modern smartphone equipped with 

accelerometers, compass, camera and Internet connectivity has been proposed. The user 

initially takes a photo of a geo-referenced 2D-bar code in order to acquire the map of 

the building and the initial position. The system then estimates the movement 

calculating the number of user’s steps from the starting point using the accelerometers 

and the direction using the compass. The considered scenario includes the presence of 

geo-referenced 2D-tags placed in some known, key positions of the site to be visited. 

By taking a photograph of the tags, the system is able to initialize and subsequently re-



 

 

calibrate the location data. To improve the calibration accuracy, we have focused on the 

problem of computing the exact position of the user (based on the known position of the 

tag) in terms of orientation and distance from the reference point using plane 

homography and affine transformation [61]. This allows us to correct perspective and 

projective distortion from the taken photo and derive information about the viewing 

angle (the user’s orientation) and distance between camera and object.  

Inertial Navigation System are used in many different kind of application involving 

moving objects, including vehicles, such as for example aircraft and submarines for 

navigation purpose. Recently, some research has proposed its use as assistive mobility 

technology for people with some kind of disabilities. Furthermore, indoor navigation 

can support commercial activities such as the retrieval of products in a large mall, but 

can also be deployed for security reasons: evacuation of complex buildings, route 

identification for visitors etc. 

Based on the first experimental results presented in the previous paragraph, we 

identified the need to correct the data returned by the smartphone’s sensors, and also to 

point more precisely the user’s initial position. 

Therefore, in this section we present the technique that we are investigating for 

improving the calibration of the system while acquiring the image of the 2D tags 

mentioned before. The problem we are focusing on is determining the user’s position 

relative to the 2D tags in terms of the precise distance and orientation angle.  

We are making use of plane homography techniques: in a central projection camera 

model, a three-dimensional point in space is projected onto the image plane by means of 

straight visual rays from the point in space to the optical centre. Mathematically this 

process can be described using a 3x4  projection matrix P , which takes a point in 3-D 

space in homogeneous coordinates T
)Z,Y,(X, 1 and transforms it into a point on the 2-D 

image plane T
)y,(x, 1 .  
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The projection matrix P  can be computed from the internal and external camera 

parameters:  

 

P=K [R∣T ]
   (2) 

 

where K  is a 3x3  upper triangular matrix, called the  camera calibration matrix, 

including the intrinsic camera parameters (focal length, aspect ratio and skew)  and 

[ ]T|R  defines the Euclidean transformation between camera and world coordinates (in 

general rotations followed by translations), including the external camera parameters, 

i.e. its position and orientation. In the case where planar surfaces are imaged ( 0=Z ), 

the transformation is called a plane-to-plane homography: 
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The 3x3  transformation matrix, usually called the homography matrix H , has a simpler 

form than P , but it can be also reduce to:  

 

H=[h11
h

12
h

13

h21 h22 h23

h
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h
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33
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2

t ]  (4) 

 

where K is the camera’s matrix, 1r  and  2r  are the correspondent columns of the 

rotation matrix R  and RC=t −  with C  the camera center. 

For this particular case we are dealing with the acquisition of a planar surface. Figure 

4.4 shows the mapping between a 2-D point '
x  in the object plane 'π  where the tag lies 

into a 2-D point x  in the image plane π  that represents the image acquired by the 

camera.  

 



 

 

 

Figure 4.4. Mapping between planes 

 
 

 

This process can be described mathematically by a homography matrix H : 

 

i

'

i HP=P           (5) 

 

where P   and '
P  are 13x  vectors that could correspond to the images of the same 

points, the former in the plane of the tag and the latter in the plane of the image, while 

H is the transformation matrix.   

If the homography between a plane in the scene and the plane of the image is known, 

then the image of the planar surface can be rectified into a front-on view. Given four 

points on the scene plane, with no more than any 2 points collinear, and their 

corresponding positions in the image (8 equations), H  is uniquely determined. Let 
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'

333
and )y',(x'P

'

444 be the four corner points of the 

rectangular object and )y,(xP 111 , )y,(xP 222 , )y,(xP 333 and )y,(xP 444 their projections 

obtained using a plane homography transformation.  

Corresponding points in two images related by homography are then: 
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Our objective is to remove affine and projective components in order to obtain a 

similarity transformed such for example a rotated, scaled and/or translated version of 

the original image.  

To do this, we firstly have to identify the four corners in the taken photo, then, using 

plane homography transformation, map each vertex of the quadrilateral to the 

corresponding vertex in the known rectangle. Using equations (6) we can find the 

coefficients of the homography matrix H  and finally rectify the image to the frontal 

view. Once the frontal view is recovered from the knowledge of the calculated 

homography’s matrix coefficients, we can decompose the H  matrix, using QR 

Factorization, in its orthogonal ([ ]trr 21 ) and upper triangular matrix [ ]K .  

From the knowledge of the orthogonal matrix we can determine the tilt angle φ  

(rotation around the x -axis), the roll angle ψ (rotation around the y -axis), the pan 

angle θ  (rotation around the z -axis) and the translation along the three axes, thus the 

orientation and position of user/camera in the scene. From [ ]K , given the focal length of 

the camera embedded in the smartphone, and given the real dimensions of the 2D 

datamatrix, we can calculate the distance from the datamatrix.  

Using the results of the calculus, the initial position of the user and his orientation 

relative to the scanned 2D datamatrix can be more precisely computed, as being of 

crucial importance for the correct evaluation of the data subsequently generated by the 

smartphone’s sensors, especially in terms of orientation.  

 

    

4.2.2  Conclusions 
 

 

 

The presented solution for a pedestrian indoor navigation system has been developed on 

a modern Smartphone and was tested in a real indoor environment, measuring the 

encountered errors. The application of the plane homography technique to the indoor 

navigation problem has been investigated in order to derive additional information 

about the relative orientation and distance of the user to the reference point. Based on 

this supplementary data we are trying to reduce the inherent errors of the dead-

reckoning technique. 

 



 

 

4.3 An Image based positioning system using SURF  
 

 

 

Among the wide number of indoor navigation solutions, we propose a system capable to 

localize a user on the basis of the capabilities of a modern smartphone equipped with 

camera, digital compass, accelerometer and WiFi connection. The only external 

infrastructure is given by some 2-dimensional barcodes positioned in key points. 

In a typical scenario a user needs to move from place A to place B in an unknown 

indoor environment. The initial position of the user is retrieved by scanning and 

decoding a geo-referenced datamatrix (2D barcode) placed aside the map of the floor 

with the embedded phone’s camera. The maps with the barcode are assumed to be 

hanged on the wall at the interest points. Based on the URL encoded in the datamatrix, 

the application downloads from a dedicated server the digital indoor vector map for the 

specific floor together with the initial position of the user on the map (corresponding to 

the point where the user stands when scanning the datamatrix). The user’s initial 

position is more precisely defined in term of distance and orientation angle from the 

reference QR code using plane homographic techniques. When the user starts walking, 

the application draws step by step the position of the user, as a continuous line, over the 

downloaded map of the building floor. The application tracks the number of steps taken 

by the user based on the numerical values returned by the smartphone’s accelerometers 

as described in Section 4.2.1.  

The heading is retrieved by considering the output of the magnetometer. Taking in 

consideration that the magnetometer retrieves the magnetic north with respect to the 

phone’s current orientation which might be diverse form the walking direction of the 

user, the need for a compensation of the heading arises. This compensation is performed 

by analyzing the position of the phone with respect to the user starting from an initial 

known position. 

On the basis of the corrected heading and the number of steps taken, the application 

deduces that user is near to some anchor points and suggests him to recalibrate the 

system in order to reduce the position error. Thus the user takes a photo of the closest 

anchor point, sends it to the server and waits for the response that will show the most 

probable position in the map building on the phone’s display. 



 

 

By developing local feature detection, description and matching between a query image, 

acquired by the user, and a database containing a collection of geo-referenced images 

related to the chosen environment, the user’s position can be accurately fixed. 

The proposed solution is based on the SURF (Speed-up robust features), which allows 

for a quick and effective detection of image features without being affected by the 

user’s viewpoint. The INS system can be recalibrated (position fix) by taking photo of 

anchor points (nodes with a known position) present in the indoor environment. 

 

 

4.3.1  Background Theory 
 

 

4.3.1.1 Acceleration Sensors 

 

 

 

The integrated accelerometers in modern smartphones are tri-axial devices which allow 

the detection of accelerations forces in 2/ sm  along the X, Y and Z axes. The values of 

the acceleration are positive or negative based on the direction in which the phone is 

moving and based on the position of the phone. When the device is lying still in a flat 

position, the accelerations on the three axes are: 
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where g is the earth’s gravitation. In fact, using the presence of gravity distributed on 

the three axes, the orientation of the device can be calculated using the modulus of the 

accelerations |am| given by 
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zyxm a+a+a=a ,  (8) 

 

and the following equations:  
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The angles α and β are the angles which the device is forming with the X and Y axes. 

The scaled values of α and β give the angles for roll and pitch, as illustrated in Fig 4.5. 

For the smartphone lying still along the Y axis on a flat horizontal surface, the pitch and 

roll are equal to zero, changing when moving from 0° to 360°. 

 

 

 

Fig.  4.5.  Axes and rotation angles of a smartphone 

 

 

4.3.1.2 Magnetic Sensor 

 

 

The azimuth γ from figure 1 represents the angle between the magnetic north and the Y 

axis of the smartphone with the display heading up. Just like a digital compass, the 

values for the azimuth are between 0° and 359°, with 0° for the magnetic north, 90° for 

east and so on. The azimuth value returned by the magnetic sensor of a smartphone is 

highly susceptible to electromagnetic interference and is also quite instable for typical 

devices, emerging the need for a periodic recalibration, which can be performed by 

rotating the smartphone in a 8-like pattern [62]. 



 

 

 

4.3.1.3  SURF 

 

 

SURF is an efficient scale and rotation invariant interest point detector and descriptor. 

It allows for quick and effective feature detection even against different image 

transformations like image rotation, scale illumination and small viewpoint changes. 

Much of the performance increase can be attributed to the use of an intermediate 

image representation, known as the Integral Image that can be rapidly computed from 

an input image [50]. This section shows a brief summary of its construction process. 

 

a. Interest point detection 

 

SURF is a Hessian matrix based interest point detector. It searches for blob-like 

structure at locations where the determinant of this matrix is maximal. Given a point 

 in an image , the Hessian matrix , as function of both space  

and scale , is defined as follows: 

 

  (4) 

 

where  refers to the convolution of the second order Gaussian derivative  

with the image at point  and similarly for   and . These 

derivatives are known as Laplacian of Gaussians. The approximated determinant of the 

Hessian represents the blob responses at location  in the image. In order to 

detect interest points over different scale a non maxima suppression in a 3 x 3 x 3 

neighbourhood is applied. To do this each pixel in the scale-space is compared to its 26 

neighbours, comprised of the 8 points in the native scale and the 9 in each of the scales 

above and below. Finally the maxima of the determinant of the Hessian matrix are then 

interpolated in both space and scale to sub-pixel accuracy. 

 

b. Interest point descriptor 

- 



 

 

 

The SURF descriptor describes the distribution of pixel intensities within a scale 

dependent neighbourhood of each interest point detected by the Fast-Hessian. Integral 

images in conjunction with Haar wavelets are used in order to increase robustness and 

decrease computation time. Haar wavelets are used to find gradients in the x and y 

directions. The first step in descriptor’s extraction consists of fixing a reproducible 

orientation based on information from a circular region around the interest point. Then, 

a scale dependent window aligned to the selected orientation is constructed and a 64-

dimensional vector (SURF descriptor) is extracted from it. The dominant orientation is 

estimated by calculating the sum of all responses within a circle segment covering an 

angle of  around the origin. At each position, the two summed x and y responses are 

used to form a new vector. 

The longest vector defines the orientation of the interest point. The first step for the 

extraction of the descriptor is to construct a square region aligned with the selected 

orientation around the interest point. It contains the pixels which will form entries in the 

descriptor vector and is of size , where σ refers to the detected scale. A further 

division into  regular sub regions is performed within each Haar wavelets of size , 

calculated for  regularly spaced sample points. Hence, each sub-region has a four 

dimensional descriptor vector, thus concatenating this for all 4  sub-regions a 

descriptor vector of length 64, invariant to different image transformation is obtained.  

 

 

c. Descriptor Matching 
 

The descriptor matching is performed by implementing the so called One to One 

algorithm [63]. Given two sets of descriptors {P}  and {Q }  extracted from a pair of 

images
(I 1, I 2) , it returns pairs of closest descriptors using an Euclidean metric ρ (P , Q ) . 

 

  

4.3.2  Heading correction 
 

 

 



 

 

While the step counter presented in Section 4.2.1. and based on the modulus of the 

output of the tri axial accelerometer produces satisfactory results, problems arise for 

accurately determining the heading of the user. These problems arise due to the fact that 

the output of the magnetic sensor is related to a smartphone in a flat position, heading in 

the same direction as the user. If the smartphone gets in a different position, for example 

used for talking on the phone or placed in a pocket, the change in position will be 

erroneously intended as a heading change. 

To compensate the heading of the smartphone for position changes relative to the user, 

we developed a position classifier based on the interpretation of the pitch, roll and 

relative azimuth values as defined in the third section. For simplifying the classifier, we 

assumed only 90° rotations for each of the three axes, resulting in 8 possible positions 

for each axe (4 for the positive values and 4 for the negative values), for a total of 24 

positions. The classification is based on the values of pitch and roll, with a tolerance of 

+/- 30°. An excerpt of the 24 positions is presented in table 1, for a smartphone held 

with the screen vertically in front of a standing user, vertically on the left and right side 

and laterally rotated. 

 

 

TABLE I 
EXCEPT FOR THE SMARTPHONE POSITIONS BASED ON THE PHONE’S ANGLES WITH THE THREE AXES 

 

Pos. α β γ 

 
60°< α <120° 330°< β < 30° γref+330°< γ < γref+30° 

 
150°< α <210° 330°< β < 30° γref+120°< γ < γref+60° 

 
330°< α <30° 330°< β < 30° γref -120°< γ < γref -60° 

 
150°< α <210° 60°< β < 120° γref+120°< γ < γref+60° 

 

 

 



 

 

 

The reference azimuth γref is recorded in the moment when the user is initially scanning 

the geo-referenced datamatrix and is presumed known, taking into consideration that the 

user has to stand in front of the data matrix to perform the scan.  

Starting from this point, the heading of the user is calculated based on the actual 

azimuth values given by the smartphone magnetometer corrected by values 

corresponding to the calculated position of the smartphone. 

 

 

4.3.3  Position Fix Using Anchor Points 
 

 

The periodic position fix is addressed by developing a local feature detection, a 

description and a matching algorithm between a query image (acquired in real time by 

the user) and a database containing a collection of geo-localized images. The entire 

process can be basically divided in offline and online phases. 

The offline phase, specific to each building, has to be executed only once (or when new 

anchor points need to be introduced in the indoor environment), resulting in the creation 

of a database. The data acquisition block can be seen as a sort of calibration: a certain 

amount of anchor points/locations will be chosen, depending on the size and layout of 

the building. At each of these locations, a subset of n  photos from fix distance and 

different direction is taken in order to maximize the probability to have a true match. 

Once collected, every image is process with the SURF algorithm to extract significant 

features, which are then coded in a descriptor vector. The created database represents a 

collection of anchor points at different locations in the building, taken under various 

illumination condition (light on/off) and from different viewpoints (frontal or lateral 

view). In particular we choose as anchor point internal/external door and gate, lighting 

system and air conditioning system.   

 



 

 

 

 

Fig. 4.6.  Estimating position using anchor points 

 

 

During the online phase, as shown in Fig. 4.6, a user who wants to know his current 

position collects an image of his surrounding on the basis of the anchor points proposed 

by the system and sends the captured query image to the database for localization upon 

the map. To perform positioning, the algorithm investigates how similar the query 

image is to each image in the database by extracting and comparing its features with 

those of other images in the database. Finally, the application returns the image of the 

most probable location fixes the user position on the display. 

 

 

4.3.4  Experimental Results 
 

 

 

The proposed algorithm was tested on an iPhone 3 GS with a 600 MHz ARM cortex 

Processor and a 3Mp built-in camera. The feature extraction functionalities have been 

implemented making use of the the OpenCV library. All tests were run on an Apple 

Mac Book Pro Intel Core 2 Duo machine with 2.4 GHz, 4 GB. 

The tests for evaluating the feasibility of the position model and the corrections on the 

heading were performed using a reference circular path. This known path was run ten 

times holding the smartphone with its Y axis straight towards the walking direction . 



 

 

For a number of 16 points on this path, the azimuth was calculated as the mean azimuth 

from the 10 runs. 

Subsequently, the known path was covered in a similar manner but moving the 

smartphone with respect to the user’s body in a series of 5 previously known typical 

positions: front chest pocket, side pocket, rear trouser pocket, left ear, right ear. The 

changes in position of the smartphone were performed at known instants of time, in 

order to be able to synchronize the values with the test runs. The known path was 

covered performing the same position changes for 10 consecutive times. 

Table 2 shows the mean azimuth errors in degrees for the 16 known points on the path. 

The 5 grayed columns represent the points where the position changes took place. The 

azimuth values in these columns are the corrected ones based on the method presented 

in the fourth section.  

 

 

 

TABLE II 

AZIMUTH ERRORS FOR A KNOWN PATH 

Point 1 2 3 4 5 6 7 8 

Error 

(°) 
5 10 18.2 7.5 20 6.2 5.5 13.4 

         

Point 9 10 11 12 13 14 15 16 

Error 

(°) 
7.2 15.6 4.3 8.9 12.2 18.1 8.3 11.4 

 

 

As it can be noticed the azimuth errors for the points with no smartphone position 

change are less than 10°, while the errors for position changes are higher, but still in an 

acceptable range, not more than 18°. 

We performed the tests in a building of the Campus of the University of Cagliari, where 

35 anchor points have been chosen. For each of these anchors we captured 3 photos, at a 

distance of around 3 meters and with 3 different viewpoints: 0° (frontal view), + 45° 

and – 45°. Thus we have a database made of a total of 105 images. The number of 

features could vary a lot among images, from several hundreds to few thousands, as 

shown in the following test images. 



 

 

The first test was carried out on an image with 65 features belonging to air conditioning 

system category as shown in Fig. 4.7. 

 

Query Img Image n°61 Image n°62 Image n°63 

    

 

Fig. 4.7 Query image (left) and selected images from the DB. 

 

 

The graph in Fig. 4.8 shows the number of features that match between the query image 

and each photo in the entire database.  

The blue line shows the results when no threshold value in the One to One algorithm is 

applied. The yellow, green and red lines correspond respectively to Th=0.5, Th=0.7 and 

Th=0.9. As it can be noted, if we consider as query image a generic view of image n° 63 

(with 65 features), the highest number of correct matching feature has been obtained for 

Th=0.5 and Th=0.7. For the mentioned threshold values, we find three maxima in 

correspondence of images n° 61, n° 62 and n° 63 in the DB. The graph in Fig. 4.8 shows 

how the algorithm correctly selects the references image and finally identifies the most 

matched image as the query image (n°63). 

 

 

 

Fig.  4.8  Correct match 

 



 

 

 
4.3.5  Conclusions 
 

 

In this paper we presented an indoor localization solution that use only the capabilities 

of a modern PDA equipped with a high resolution built-in camera, internet connection, 

motion and magnetic sensors, an image recognition system and a map with several geo 

localized images of the building. The proposed prototype is based on SURF algorithm 

for feature extraction and description, the One to One algorithm for descriptors 

matching and on processing of accelerometer and magnetometer data for counting steps 

and calculating heading. Several tests were carried out and the results are promising. To 

ameliorate the real time of the entire project, future developments will consist in the 

integration of a plane homographic technique. This will allow for a better estimation of 

the user position in terms of view angle and distance from anchor point. In addition, 

more refined processing techniques for motion and heading data will be employed. 



 

 

Conclusions 
 

 

 

The research developed during these three years has concerned the field of signal 

processing, with particular attention to image and video analysis. The continuous 

development in signal processing techniques and the amazing growth in computing 

power have led to an incredible proliferation of applications based on the use of 

multimedia data, such as image and video, both for desktop platforms and wearable 

devices.  

In this thesis, two main issues have been addressed: the first one has concerned image 

and video reconstruction/restoration for multimedia data fruition over the web while the 

second one was related to image analysis for location-based systems in an indoor 

scenario. 

In the context of multimedia data fruition, many important factors had to be considered, 

such as bandwidth limitation, availability and easy retrieval of high quality data, service 

interactivity, etc. In our opinion and to the best of our knowledge, modern signal 

processing techniques, such as super resolution, can represent the most effective 

solution, since it allows for restoring the original spatial resolution from low-resolution 

compressed data. In this scenario, different solutions have been presented both for 

image and video sequences.  

The proposed super resolution techniques were compared with classical interpolation 

method using objective metrics (PSNR), subjective metrics (SSIM) and providing visual 

results. As regards of image reconstruction solution, objective results (PSNR) showed 

that it was comparable with classical interpolation techniques, such as bicubic and 

bilinear interpolation, whereas it was able to outperform the bilateral filtering 

interpolation. As regards of video reconstruction solutions, the experimental results have 

shown good behavior in both strong and weak edge regions, especially when 

considering high zoom factors, while highly textured areas were still challenging. In all 

tests carried out we have noticed an apparently unpredicted performance of the nearest 

neighbour interpolation. It was easily explained: since subsampling was carried out 

through block averaging, nearest neighbour substitution simply assigned the local 



 

 

average to unknown pixels, thus approximating their value with the best esteem in terms 

of mean square error, thus PSNR. From the previous considerations, PSNR seemed 

apparently inadequate in providing a reliable quality index. It is a measure that provides 

only a rough performance indication and cannot be considered as an accurate indication 

of reconstruction quality. For these reasons we have also investigated the use of a 

subjective metrics (SSIM) that take into account the image quality on the basis of the 

degradation of structural information, providing a better visual quality esteem than 

PSNR. However, also SSIM cannot still be taken as a perfect indication of the 

reconstruction quality process. The investigated super resolution techniques, both for 

image and video sequences, have been proved to be able to meet the requirements of 

bandwidth limitation, service interactivity etc. Thanks to the reconstruction process we 

will able to sent over the network only thumbnail version of the images or video frames, 

thus reduce bandwidth usage and ensure high quality data at the receiver side. 

The second topic was related to the implementation of an image based positioning 

system for an indoor navigator. As it is known, common localization systems, such as 

GPS (Global Positioning System), fail in indoor environment, thus the need to 

investigate alternative positioning techniques Typical approaches are commonly based 

on the use of external infrastructure such as RFID, WiFi etc These solutions offers very 

high precision but are affected by high costs, thus the need to investigate the use of 

alternative techniques, such as image based solutions. In this research activity the focus 

has been put on the use of image analysis techniques for localization purposes, with 

main attention to image rectification methods and image recognition using the SURF 

(Speed-up robust features) algorithm.  

We have considered a scenario in which a user needs to move from place A to place B 

in an unknown indoor environment. In the developed system, the initial position of the 

user is retrieved by scanning and decoding with the embedded phone’s camera a geo-

referenced datamatrix (2D barcode) placed aside the map of the floor. In the proposed 

solution, the user’s initial position was more precisely defined in term of distance and 

orientation angle from the reference QR code.  Using plane homographic techniques we 

were able to derive information about the viewing angle (the user’s orientation) and 

distance between camera and object. A series of intensive tests have been carried out in 

a real indoor environment, taking into account codes of different sizes (both in terms of 

different amount of encoded data and in terms of physical dimension) acquired from 



 

 

different viewpoints and distance. The tests have shown how the proposed algorithm 

can correctly identify the viewing angle of the user and the distance from the acquired 

QrCode in all cases where the inclination is not too accentuated for the proper 

identification of the code itself. 

In a later work, we dealt with the problem of fixing the position of the user by 

developing a local feature detection, description and matching algorithm between a 

query image, acquired by the user, and a database containing a collection of geo-

referenced images (anchor points with known position) related to the chosen 

environment. The proposed solution has been evaluated considering a large database of 

images characterized by a fair number of features, taken from different viewpoints and 

representing different subject. The tests have shown how the algorithm, once the correct 

threshold for the matching phase was established, is able to recognize the correct image 

in most cases. The processing time was proved to be crucial for real time applications. It 

depends strongly on the database dimension, thus we have to significantly reduce the 

search during the matching phase in order to avoid query on the entire image’s database. 

To face the problem, each image in the database has been selected in order to be as 

different as possible in the feature space, although representing a similar subject (e.g., 

doors in the same building are usually quite similar). and generic elements around the 

principal subject (e.g., plates, cabinets, air conditioners) in a photo were used to further 

distinguish them. In addition, images in the database have been catalogued as belonging 

to predefined categories in order to restrict the search to a smaller number of images. 

In conclusion, the research carried out has shown how modern signal processing 

techniques can be successfully applied in different scenarios, from image and video 

enhancement up to image recognition for localization purpose, providing low costs 

solutions and ensuring real-time performance. 
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