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Abstract 

A large number of flows encountered in nature and in many industrial processes are 

intrinsically multiphase flows. The efficiency and the effectiveness of multiphase flow 

processes strongly depend on the ability to model the fluid flow behaviour. Thus, a 

robust and accurate description of multiphase flow can lead to an increase in 

performance, a reduction in cost, and an improvement in safety for engineering 

systems. In recent years, Computational Fluid Dynamics (CFD) has become an 

indispensable predictive tool for gathering information to be used for design and 

optimization for fluid systems. 

In this thesis the hydrodynamics of two bubbly flow systems, a bubble column and a 

waterjet - agitated flotation cell (Hydrojet cell), were studied by means of numerical 

simulations. In order to validate the bubble column CFD simulations Particle Image 

Velocimetry (PIV) was used. An experimental investigation about bubble size 

distribution (BSD) along a water jet was carried out by means of image analysis. 

Because of high gas fraction and high velocity of the air/water streams used to agitate 

the Hydrojet cell, with the available equipment, no experimental measurements could 

be done to evaluate the velocity field of the cell.  

The thesis consists of three parts: theoretical part, bubble column study and Hydrojet 

cell study. 

In the theoretical part, first, a summary of fluid dynamics principles and an overview of 

the principal issues related to multiphase flow modelling were presented. Then a brief 

introduction to PIV and its application to two phase bubbly flow were given. Finally a 

review of the principle of the flotation process and its modelling were done in order to 

highlight the reasons for the low recovery of fine particles. Then the potentialities 

offered by the use of waterjets to fine particles flotation were presented. 

In the second part experimental and numerical studies of a bubble column were 

presented. PIV technique was used to determine the velocity field of a laboratory 

bubble column. A separation method for multiphase PIV was developed and tested. By 

means of the proposed method, the acquired mixed-fluid images were processed to 

obtain two sets of single phase images before PIV analysis. The velocity field was 

determined using a multi-pass cross-correlation. Following three-dimensional time-

dependent CFD simulations of a lab-scale bubble column were presented. The 

simulations were carried out using the Euler - Euler approach. Two different 

multiphase turbulence models, Shear Stress Transport (SST) and Large Eddy 

Simulation (LES), were tested, and different interfacial closure models reported in the 

literature were examined. When LES were used to model the turbulence instead of the 

SST model, much better agreement with the experimental data was found, provided 

that the drag, lift and virtual mass forces were taken into account. 

In the third part a preliminary experimental study, carried out in a rectangular flat cell, 

was presented. It was carried out to investigate the size distribution of bubbles 
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generated by a moderate pressure water jet, by means of image analysis. This study 

showed the ability of water jets at moderate pressure to break an air stream into small 

bubbles. Increasing the pressure of the pump, smaller and more uniform bubbles were 

obtained. 

Then three-dimensional CFD simulations of the Hydrojet cell are presented. The 

Hydrojet cell, due to the exceeding computational burden, was simulated as a two-

phase (gas-liquid) system, although actually it is a three-phase (gas-liquid-solid) 

system. Also in this case simulations were carried out using the Euler - Euler approach. 

The turbulence of the liquid phase was modelled with the SST model. The single 

reference frame technique was used to describe the movement of the waterjet lance. To 

achieve a homogeneous aeration in the region near the inlets different inlet velocity and 

rotational speed were tested.  

The results gave useful indications about the role of the four principal operating 

parameters: nozzles diameter, velocity of rotation of the lance, speed of the water jets 

and then pressure of the pump and inlet air flow rate. What emerges is the need of high 

rotational speed of the waterjet lance in order to ensure an uniform gas distribution 

within the mixing zone. This is not possible with the current apparatus. Thus in order 

to make the system suitable to produce an appropriate environment for the full 

development of the flotation process it is necessary to modify the system.  
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Chapter 1 Introduction 

A large number of flows encountered in nature and in many industrial processes are 

intrinsically multiphase flows. The term multiphase flow is used to refer to any fluid 

flow consisting of more than one phase or component. It's possible to classify them 

according to the state of the different phases or components and therefore refers to 

gas/solids flows, or liquid/solids flows or gas/particle flows or bubbly flows and so on. 

Also two general topologies of multiphase flow can be usefully identified at the outset, 

namely disperse flows and separated flows. By disperse flows we mean those consisting 

of finite particles, drops or bubbles (the disperse phase) distributed in a connected 

volume of the continuous phase. On the other hand separated flows consist of two or 

more continuous streams of different fluids separated by interfaces.  

The efficiency and the effectiveness of multiphase flow processes strongly depend on 

the ability to model and thus to predict the fluid flow behaviour. There are three ways 

in which such models are investigated: experimentally, through laboratory-sized 

models equipped with appropriate instrumentation, theoretically, using mathematical 

equations and models for the flow, and computationally, using the power and size of 

modern computers to address the complexity of the flow. 

In this thesis the hydrodynamics of two dispersed bubbly flow systems, a bubble 

column and the Hydrojet cell, are investigated through numerical simulations and 

experiments. Both will be introduce in the following sections. 

A bubble column is a vertical column of liquid with gas introduced continuously at the 

bottom through a sparger. Bubbles form and travel upwards through the column due to 

the inlet gas velocity and buoyancy. Because of their simple construction and operation, 

bubble columns are widely used in process industries. Due to their industrial 

importance and wide application area, the design and scale-up of bubble column 

reactors, investigation of important hydrodynamic and operational parameters 

characterizing their operation have gained considerable attention during the past 20 

years. 

The Hydrojet cell is a waterjet-agitated flotation cell which has been designed and built 

at the DIGITA Laboratories of the University of Cagliari. A detailed description of this 

system will be given in Chapter 9. 

1.1 Numerical simulations 

Computational fluid dynamics (CFD) is one of the tools (in addition to experimental 

and theoretical methods) available to solve fluid-dynamic problems.  

Fluid motion is governed by the Navier-Stokes equations, a set of coupled and 

nonlinear partial differential equations (PDE) derived from the basic laws of 

conservation of mass, momentum and energy. The analytical solution of these 

equations is practically impossible save for the simplest of flows.  
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CFD is the art of replacing such PDE systems by a set of algebraic equations which can 

be solved using digital computers. The central process in CFD is the process of 

discretization, i.e. the process of taking differential equations with an infinite number 

of degrees of freedom, and reducing it to a system of finite degrees of freedom. Hence, 

instead of determining the solution everywhere and for all times, we will be satisfied 

with its calculation at a finite number of locations and at specified time intervals. The 

partial differential equations are then reduced to a system of algebraic equations that 

can be solved on a computer. 

The fundamental elements of any CFD simulation are (Apsley 2013): 

• the flow field is discretized; i.e. field variables (½ , u, v, w, p, etc) are 

approximated by their values at a finite number of nodes; 

• the equations of motion are discretized (approximated in terms of values at 

nodes) by means of numerical methods to obtain a system of algebraic 

equations; 

• the resulting system of algebraic equations is solved to give values at the nodes. 

The main stages in a CFD simulation are: 

1. pre-processing: 

• formulation of the problem (governing equations, boundary conditions, initial 

conditions, fluid(s) properties): mathematical model; 

• definition of the geometry of the region of interest: computational domain; 

• grid generation - construction of a computational mesh (set of control volumes). 

2. solving: 

• discretization of the governing equations; 

• solution of the resulting algebraic equations. Discretization yields a large 

number of algebraic equations (one set for each cell). These equations are then 

generally solved using an iterative method, starting with a first guess value for 

all variables and completing a computational cycle. Error or residual values are 

computed from the discretized equations and the calculations repeated many 

times, reducing the residual values, until a sufficiently converged solution is 

judged to have been reached. 

3. post-processing: 

• visualization (graphs and plots of the solution); 

• analysis of results (calculation of derived quantities: forces, flow rates, etc. ). 

While CFD models are fairly well-establish for single phase flow, the physical modelling 

and the numerical computation of multiphase flows pose great challenges. In all 

multiphase models, the main difficulties are due to the interfaces between the phases 

and the discontinuities associate to them (Ishii & Mishimam 1984). The formulation of 

the constitutive equations is the greatest difficulty when developing a multiphase model 

for a practical application (Drew & Lahey 1979). As a result, the constitutive equations 

applied still include considerable uncertainties. Empirical information thus forms an 

essential part of the model (Manninen & Taivassalo 1996). 

Multiphase flow approaches include a wide variety of approaches such as variations in 

reference frame representation (Eulerian or Lagrangian), phase coupling (intra-phase 

and/or inter-phase coupling), and particle/flow detail (e.g., high resolution around a 
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single particle or bulk description of thousands or millions of particles). These different 

approaches are associated with large variations in computer usage and predictive 

fidelity. Thus, simulation of dispersed multiphase flow requires careful consideration of 

both the flow regimes and the relevant numerical approaches. An overview of the 

methods used to simulate such flow problems numerically is given in Chapter 3. 

1.2 Experiments 

In order to make certain the computational results of a particular numerical model is 

reliable and consistent with the flow physics under investigation, capabilities of this 

numerical model for predicting realistic physical processes and phenomena have to be 

confirmed before the model is accepted and applied to simulating real world problems 

(Jia & Wang 2005). Many different measurement techniques are available for this 

purpose. The most frequently used methods is the Particle Image Velocimetry (PIV). 

PIV is the newest entrant to the field of fluid flow measurement and provides 

instantaneous velocity fields over global domains. This technique records the position 

over time of small tracer particles introduced into the flow to extract the local fluid 

velocity.  

The main disadvantage of optical imaging techniques is their need for undisturbed 

visibility to the measurement volume. In a multiphase flow, visibility is hampered by 

the dispersed particles located on the optical path from the focal plane (i.e., 

measurement volume) to the camera. The limit of the gas fraction in PIV 

measurements in dispersed gas-liquid flows is discuss in Chapter 4. Using PIV, whole 

field information of the mean and fluctuating velocities of both phases can be 

determine, which are typically the quantities of interest for the validation of CFD 

results. 

PIV technique was used to validate the results of the bubble column simulations, while 

it was not possible, with the available equipment, to do PIV measurements of the 

Hydrojet cell, due to the high gas fraction and the strong turbulence that characterized 

the area surrounding the two inlet nozzles.  

1.3 Objectives  

The objectives of the first part of this study were to determine the flow pattern in a 

square bubble column experimentally and computationally, and to compare the 

computations with the experimental data. The experimental results are obtained by PIV 

measurements. The challenge in applying PIV to multiphase flows is in separating the 

tracer particles tracking the entrained continuous phase from the dispersed phase. Up 

to the present no comprehensive method for discerning the phases of multiphase flows 

has been developed, although optical separation methods have proven to be the most 

reliable(Deen et al. 2001, Bröder & Sommerfeld 2002). However it is desired to have a 

cheaper and easier method to avoid the complex and expensive set-up for the optical 

separation methods. With this aim a simple, inexpensive method of phase separation is 

proposed. 

The aim of the second part of this thesis is to investigate about the feasibility of 

applying water jet to flotation process, developing a numerical model of a waterjet-

agitated cell, through which to obtain useful information about the design of the 
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Hydrojet system. A proper numerical model of the cell would be able to reduce scale-up 

problems, highlighting the role of each operating parameter. 
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Chapter 2 Fluid Dynamics 

2.1 Introduction 

The starting point of any numerical simulation is the governing equations of the 

physics of the problem to be solved. These equations together with boundary 

conditions, initial conditions and the fluid(s) properties defined the mathematical 

model. In this chapter all the elements constituent the mathematical model (governing 

equations, turbulence models and boundary conditions) for a single phase flow and the 

approaches to multiphase modelling are briefly presented.  

2.2 Governing equations 

The governing equations of fluid flow represent mathematical statements of the 

conservation laws of physics: 

1. the mass of fluid is conserved; 

2. the rate of change of momentum equals the sum of the forces on a fluid particle 

(Newton’s second law); 

3. the rate of change of energy is equal to the sum of the rate of heat addition to 

and the rate of work done on a fluid particle (first law of thermodynamics). 

In the following, the fluid is assumed to be incompressible (½  = cost) and isothermal. 

Therefore the energy equation are not required to solve the problem. 

2.2.1 Continuity equation 

For a stationary differential control volume, application of law of conservation of mass 

yields the continuity equation in differential form. It is given by 

  (2.1) 

where  is the velocity vector containing the u, v  and w  velocity components in the x , y  

and z  directions and ½  is the density per unit mass. 

For incompressible flows (½  = cost), the continuity equation (Equation (2.1)) reduces to 

  (2.2) 

2.2.2 Momentum equation 

Application of the law of conservation of momentum yields a basic set of equations 

governing the motion of fluids, which are used to calculate velocity and pressure fields.  

Cauchy’s equation is obtained by considering the equation of motion (‘sum of all forces 

= mass times acceleration’) of an infinitesimal volume of fluid. For a fluid which is 

subject to body forces , Cauchy’s equation is given by 

  (2.3) 
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where  is the stress tensor, and  contains all of the body forces per unit volume (often 

simply density times gravity).  is the velocity vector field, which depends on time and 

space. 

That Cauchy’s equation is valid for any continuum provided its deformation is 

described by an Eulerian approach. 

The stress tensor can be split into two contributes: 

  (2.4) 

where  is the pressure,  is the 3x3 identity matrix and  the deviatoric stress tensor. 

In Equation (2.3) the first term is the rate of increase in momentum per unit volume; 

the second term represents change in momentum per unit volume, caused by 

convection; the third term, which include pressure and viscous forces per unit volume, 

represents molecular contributions, the fourth term represents the gravitational force 

per unit volume and any other external force, if present.  

In order to use these general momentum conservation equations to calculate the 

velocity field, it is necessary to express viscous stress terms in terms of the velocity 

field. The equations which relate the stress tensor to the motion of the continuous fluid 

are called constitutive equations or rheological equations of state. Although the 

governing momentum conservation equations are valid for all fluids, the constitutive 

equations, in general, vary from one fluid material to another and possibly also from 

one type of flow to another. 

2.2.3 Constitutive equations 

The constitutive equations provide the missing link between the rate of deformation 

and the resulting stresses in the fluid. The surface stresses ¹¹¾ on any element arise from 

a combination of pressure p and viscous friction, as prescribed by the constitutive 

relations: 

  (2.5) 

where  and  are the coefficients of dynamic and bulk viscosity respectively. These 

expressions assume that the relationship between stress and velocity gradients is 

• linear (which is valid for Newtonian fluids) and 

• isotropic (i.e., the intrinsic properties of the fluid have no preferred direction). 

2.2.4 Incompressible Navier-Stokes equations 

Fluids, which follow Newton’s law of viscosity (although it is referred to as a law, it is 

just an empirical proposition) are called Newtonian fluids. For such fluids, the viscous 

stress at a point is linearly dependent on the rates of strain (deformation), as already 

mentioned in the previous section.  
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For incompressible flow (Equation (2.2)) and Newtonian fluids the constitutive 

relations then reduce to 

  (2.6) 

where  is the Kronecker delta. 

Substitution of the constitutive equations (2.6) for an incompressible Newtonian fluid 

into Cauchy's equations (Equation (2.3)), gives the incompressible Navier–Stokes (N–

S) equations: 

  (2.7) 

In combination with the equation of continuity (Equation (2.2)) the three momentum 

equations form a system of four coupled nonlinear, partial differential equations 

(second order in space and first order in time) for the three velocity components ui and 

the pressure . 

This system is mathematically closed, i.e. it can be solved provided that suitable 

auxiliary conditions, initial and boundary conditions, are supplied. 

2.3 Boundary conditions 

In order to solve the closed set of governing model equations, it is necessary to specify 

appropriate initial conditions and boundary conditions. For any reactor engineering 

problem, it will be necessary to select an appropriate solution domain, which is an 

important step in model formulation. The solution domain isolates the system being 

modelled from the surrounding environment. The influence of the environment on the 

flow processes of interest within the solution domain is represented by suitable 

formulations of boundary conditions.  

The form of the boundary conditions that is required by any partial differential 

equation depends on the equation itself and the way that it has been discretize. 

Common boundary conditions are classified either in terms of the numerical values 

that have to be set or in terms of the physical type of the boundary condition. For 

steady state problems there are three types of spatial boundary conditions that can be 

specified as follows (Renade 2002):  

1. Dirichlet boundary condition:    (2.8) 

Here the values of the variable  on the boundary are known constants . This allows a 

simple substitution to be made to fix the boundary value. For example, if  is the flow 

velocity, its value may be fixed at the boundary of the domain. For instance, for no-slip 

and no-penetration conditions on the solid walls, the fluid velocity is the same as the 

velocity of the wall.  

2. Neuman boundary condition:   (2.9) 

Here the derivatives of the variable  on the boundary are known , and this gives an 

extra equation, which can be used to find the value at the boundary. For example, if the 

velocity does not change downstream of the flow, we can assume that the derivative of 

 is zero at that boundary. 
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3. Mixed type boundary condition:   (2.10) 

The physical boundary conditions that are commonly observed in fluid problems are 

briefly presented here (Ashgriz & Mostaghimi 2002). 

Solid walls 

Many boundaries within a fluid flow domain will be solid walls, and these can be either 

stationary or moving walls. If the flow is laminar then the velocity components can be 

set to be the velocity of the wall. When the flow is turbulent, however, the situation is 

more complex. 

Inlets 

At an inlet, fluid enters the domain and, therefore, its fluid velocity or pressure, or the 

mass flow rate may be known. Also, the fluid may have certain characteristics, such as 

the turbulence characterizes which needs to be specified. 

Symmetry boundaries 

When the flow is symmetrical about some plane there is no flow through the boundary 

and the derivatives of the variables normal to the boundary are zero. 

Cyclic or periodic boundaries 

These boundaries come in pairs and are used to specify that the flow has the same 

values of the variables at equivalent positions on both of the boundaries. 

Pressure boundary conditions 

The ability to specify a pressure condition at one or more boundaries of a 

computational region is an important and useful computational tool. Pressure 

boundaries represent such things as confined reservoirs of fluid, ambient laboratory 

conditions and applied pressures arising from mechanical devices. Generally, a 

pressure condition cannot be used at a boundary where velocities are also specified, 

because velocities are influenced by pressure gradients. The only exception is when 

pressures are necessary to specify the fluid properties, e.g., density crossing a boundary 

through an equation of state. 

In contrast, a stagnation pressure condition assumes stagnation conditions outside the 

boundary so that the velocity at the boundary is zero. This assumption requires a 

pressure drop across the boundary for flow to enter the computational region. Since the 

static pressure condition says nothing about fluid velocities outside the boundary (i.e., 

other than it is supposed to be the same as the velocity inside the boundary) it is less 

specific than the stagnation pressure condition. In this sense the stagnation pressure 

condition is generally more physical and is recommended for most applications.  

Outflow boundary conditions 

In many simulations there is a need to have fluid flow out of one or more boundaries of 

the computational region. At such "outflow" boundaries there arises the question of 

what constitutes a good boundary condition. 

In compressible flows, when the flow speed at the outflow boundary is supersonic, it 

makes little difference how the boundary conditions are specified since flow 

disturbances cannot propagate upstream. In low speed and incompressible flows, 
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however, disturbances introduced at an outflow boundary can have an effect on the 

entire computational region.  

The simplest and most commonly used outflow condition is that of a “continuative" 

boundary. Continuative boundary conditions consist of zero normal derivatives at the 

boundary for all quantities. The zero-derivative condition is intended to represent a 

smooth continuation of the flow through the boundary. 

It must be stressed that the continuative boundary condition has no physical basis, 

rather it is a mathematical statement that may or may not provide the desired flow 

behavior. In particular, if flow is observed to enter the computational region across 

such a boundary, then the computations may be wrong because nothing has been 

specified about flow conditions existing outside the boundary. 

As a general rule, a physically meaningful boundary condition, such as a specified 

pressure condition, should be used at out flow boundaries whenever possible. When a 

continuative condition is used it should be placed as far from the main flow region as is 

practical so that any adverse influence on the main flow will be minimal. 

Opening boundary bonditions 

If the fluid flow crosses the boundary surface in either directions an opening boundary 

condition needs to be utilized. All of the fluid might flow out of the domain, or into the 

domain, or a combination of the two might happen. 

Free surfaces and interfaces 

If the fluid has a free surface, then the surface tension forces need to be considered. 

This requires utilization of the Laplace's equation which specifies the surface tension-

induced jump in the normal stress ps across the interface: 

  (2.11) 

where  represents the liquid-air surface tension and  the total curvature of the 

interface. A boundary condition is required at the contact line, the line at which the 

solid, liquid and gas phases meet. It is this boundary condition which introduces into 

the model information regarding the wettability of the solid surface. 

The solution domain, the co-ordinate system used to formulate the governing equations 

and the characteristics of the governing equations determine the boundary conditions 

requirements.. 

2.4 Turbulence 

2.4.1 Introduction 

In general Newtonian fluid flow in motion can manifest itself in three states. In the first 

state the flow is smooth and regular, which is known as ”laminar”. The flow moves in 

layers and there are no fluctuations of the physical properties. In the second state there 

can locally be small fluctuations in the flow field and the flow is called ”transitional”. It 

means that the flow is between laminar and the third and final state which is called 

”turbulent”. In this turbulent state physical properties like e.g. the velocity and pressure 

fluctuate in both time and space. The chaotic state of fluid motion arises when the 

speed of the fluid exceeds a specific threshold, below which viscous forces damp out the 

chaotic behaviour. Perhaps the simplest way to define turbulence is by reference to the 
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Reynolds number, a parameter that characterizes a flow. Named after the British 

engineer Osborne Reynolds, this number indicates the ratio, or relative importance, of 

the flow’s inertial and viscous forces: 

  (2.12) 

where  and  are characteristic velocity and length scales of the flow and  is the 

kinematic viscosity. If the Reynolds number is low, viscous forces damp out any 

fluctuation and the flow remains smooth and stable. If the Reynolds number is 

increased inertial forces start to dominate the viscous forces and eventually the flow 

becomes irregular and chaotic and we end up with what we call a turbulent flow (Drew 

& Lahey 1979). In turbulent flow it is usual to divide the velocities in one time-averaged 

part , which is independent of time (when the mean flow is steady), and one 

fluctuating part  so that . 

2.4.2 Characteristics of turbulent flow 

There is no definition on turbulent flow, but it has a number of characteristic features 

(Tennekes & Lumley 1972) such as: 

1. Irregularity. Turbulent flow is irregular and chaotic (they may seem random, 

but they are governed by Navier-Stokes equation, Equation (2.7)). The flow 

consists of a spectrum of different scales (eddy sizes). We do not have any exact 

definition of a turbulent eddy, but we suppose that it exists in a certain region in 

space for a certain turbulent time and that it is subsequently destroyed (by the 

cascade process or by dissipation, see below). It has a characteristic velocity and 

length (called a velocity and length scale). The region covered by a large eddy 

may well enclose also smaller eddies. The largest eddies are of the order of the 

flow geometry (i.e. boundary layer thickness, jet width, etc). At the other end of 

the spectra we have the smallest eddies which are dissipated by viscous forces 

(stresses) into thermal energy resulting in a temperature increase. Even though 

turbulence is chaotic it is deterministic and is described by the Navier-Stokes 

equations. 

2. Diffusivity. In turbulent flow the diffusivity increases. This means that the 

spreading rate of boundary layers, jets, etc. increases as the flow becomes 

turbulent. The turbulence increases the exchange of momentum in e.g. 

boundary layers and reduces or delays thereby separation at bluff bodies such as 

cylinders, airfoils and cars. The increased diffusivity also increases the 

resistance (wall friction) in internal flows such as in channels and pipes. 

3. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.  

4. Three-Dimensional. Turbulent flow is always three-dimensional. However, 

when the equations are time averaged we can treat the flow as two-dimensional 

(if the geometry is two-dimensional). 

5. Dissipation. Turbulent flow is dissipative, which means that kinetic energy in 

the small (dissipative) eddies are transformed into internal energy. The small 

eddies receive the kinetic energy from slightly larger eddies. The slightly larger 

eddies receive their energy from even larger eddies and so on. The largest eddies 

extract their energy from the mean flow. This process of transferred energy 
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from the largest turbulent scales (eddies) to the smallest is called cascade 

process. 

6. Continuum. Even though we have small turbulent scales in the flow they are 

process much larger than the molecular scale and we can treat the flow as a 

continuum. 

2.4.3 Turbulence scales 

In turbulent flow a wide range of scales are present. The largest scales are of the order 

of the flow geometry (the boundary layer thickness, for example), with length scale  

and velocity scale . These scales extract kinetic energy from the mean flow which has 

a time scale comparable to the large scales, i.e. 

  (2.13) 

Part of the kinetic energy of the large scales is lost to slightly smaller scales with which 

the large scales interact. Through the cascade process, kinetic energy is in this way 

transferred from the largest scale to the smallest scales. At the smallest scales the 

frictional forces (viscous stresses) become large and the kinetic energy is transformed 

(dissipated) into thermal energy. The kinetic energy transferred from eddy-to-eddy 

(from an eddy to a slightly smaller eddy) is the same per unit time for each eddy size. 

The dissipation is denoted by "  which is energy per unit time and unit mass 

(" = [m2=s3]). The dissipation is proportional to the kinematic viscosity, º, times the 

fluctuating velocity gradient up to the power of two. The friction forces exist of course 

at all scales, but they are largest at the smallest eddies. In reality a small fraction is 

dissipated at all scales. However it is assumed that most of the energy that goes into the 

large scales per unit time (say 90%) is finally dissipated at the smallest (dissipative) 

scales. 

The smallest scales where dissipation occurs are called the Kolmogorov scales whose 

velocity scale is denoted by v´, length scale by `´ and time scale by ¿´. We assume that 

these scales are determined by : 

• viscosity, º: since the kinetic energy is destroyed by viscous forces it is natural 

to assume that viscosity plays a part in determining these scales; the larger 

viscosity, the larger scales;  

• dissipation ": the amount of energy that is to be dissipated is " . The more 

energy that is to be transformed from kinetic energy to thermal energy, the 

larger the velocity gradients must be. 

Having assumed that, we can express v´, `´ and ¿´ in º  and " using dimensional 

analysis. 

vº = ºa "b 

 [m=s] = [m2=s][m2=s3] (2.14) 

where below each variable its dimensions are given. The dimensions of the left and the 

right side must be the same. We get two equations, one for meters [m] 

 1 = 2a+2b (2.15) 

and one for seconds [s] 
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 ¡1 =¡a¡ 3b (2.16) 

which give a = b = 1=4. In the same way we obtain the expressions for `´ and ¿´  so that 

 n´ = (º")
1

4 ; `´ =

µ

º3

"

¶

1

4

; ¿´ =
³º

²

´
1

2

: (2.17) 

2.4.4 Energy spectrum 

The turbulent scales are distributed over a range of scales which extends from the 

largest scales which interact with the mean flow to the smallest scales where dissipation 

occurs. In wave number space the energy of eddies from · to ·+ d· can be expressed as 

 E(·)d· (2.18) 

where Equation (2.18) expresses the contribution from the scales with wave number 

between · and ·+ d· to the turbulent kinetic energy ·. The dimension of wave number 

is one over length; thus we can think of wave number as proportional to the inverse of 

an eddy’s radius, i.e ·/ 1=r. The total turbulent kinetic energy is obtained by 

integrating over the whole wave number space i.e. 

 k =

Z

1

0

E(·)d·: (2.19) 

The kinetic energy is the sum of the kinetic energy of the three fluctuating velocity 

components, i.e. 

 k =
1

2
(u02 + v02 + w02) =

1

2
u0iu

0

i: (2.20) 

The spectrum of E is shown in Figure 2.1. We find regions I, II and III which 

correspond to: 

I. in this region we have the large eddies which carry most of the energy. These 

eddies interact with the mean flow and extract energy from the mean flow. Their 

energy is passed on to slightly smaller scales. The eddies’ velocity and length scales 

are U  and `, respectively; 

III. dissipation range. The eddies are small and isotropic and it is here that the 

dissipation occurs. The scales of the eddies are described by the Kolmogorov scales 

(see Equation (2.17)) 

II. inertial sub-range. The existence of this region requires that the Reynolds number 

is high (fully turbulent flow). The eddies in this region represent the mid-region. 

This region is a “transport” region in the cascade process. Energy per time unit (") 

is coming from the large eddies at the lower part of this range and is given off to 

the dissipation range at the higher part. The eddies in this region are independent 

of both the large, energy containing eddies and the eddies in the dissipation range. 

One can argue that the eddies in this region should be characterized by the flow of 

energy (") and the size of the eddies 1=·: 

Dimensional reasoning gives 

 E(·) = const:"
2

3·¡
5

3 : (2.21) 

This is a very important law (Kolmogorov spectrum law or the ¡5=3 law) which states 

that, if the flow is fully turbulent (high Reynolds number), the energy spectra should 

exhibit a ¡5=3-decay.  
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Figure 2.1: Spectrum for k . I: Range for the large, energy containing eddies. II: The inertial sub-range. III: 

Range for small, isotropic scales (Davidson 2012) 

2.5 Turbulence modelling 

The solution of the governing equations does not raise any fundamental difficulties in 

the case of inviscid or laminar flows. The simulation of turbulent flows, however, 

presents a significant problem. Despite the performance of modern supercomputers, a 

direct simulation of turbulence by the time-dependent Navier-Stokes equations, called 

Direct Numerical Simulation (DNS), is still possible only for rather simple flow cases at 

low Reynolds numbers. The restrictions of the DNS become quite obvious when 

recalling that the number of grid points needed for sufficient spatial resolution scales as 

and the CPU-time as Re3. This does not mean that DNS is completely useless. It is an 

important tool for understanding the turbulent structures and the laminar turbulent 

transition. DNS also plays a vital role in the development and calibration of new or 

improved turbulence models. However, in engineering applications, the effects of 

turbulence can be taken into account only approximately, using models of various 

complexities. 

The first level of approximation is reached for the Large-Eddy Simulation (LES) 

approach. The development of LES is founded on the observation that the small scales 

of turbulent motion posses a more universal character than the large scales, which 

transport the turbulent energy. Thus, the idea is to resolve only the large eddies 

accurately and to approximate the effects of the small scales by relatively simple 

subgrid-scale model. Since LES requires significantly less grid points than DNS, the 

investigation of turbulent flows at much higher Reynolds numbers becomes feasible. 

But because LES is inherently three-dimensional and unsteady, it remains 

computationally still very demanding. LES models are discussed in more detail in 

Section 2.7. 

The next level of approximation is represented by the so-called Reynolds-Averaged 

Navier-Stokes equations (RANS). This approach, which was presented by Reynolds in 

1895, is based on the decomposition of the flow variables into mean and fluctuating 

parts followed by time or ensemble averaging (Reynolds 1895). In cases where the 

density is not constant, it is advisable to apply the density (mass) weighted or Favre 

decomposition (Favre 1965a) to the velocity components. Otherwise, the averaged 
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governing equations would become considerably more complicated due to additional 

correlations involving density fluctuations.  

By inserting the decomposed variables into the Navier-Stokes equations and averaging, 

we obtain formally the same equations for the mean variables with the exception of 

additional one term (for isothermal condition): the Reynolds stress tensor (see next 

section). Thus the solution of the Reynolds-Averaged Navier-Stokes equations requires 

the modelling of the Reynolds stresses. A large variety of turbulence models was 

devised to close the RANS equations and the research still continues. Some of them are 

discussed in more detail in Section 2.6. 

The advantages of this approach are that considerably coarser grids can be used 

compared to LES, and that stationary mean solution can be assumed (at least for 

attached or moderately separated flows). Clearly, both features significantly reduce the 

computational effort in comparison to LES or even DNS. Therefore, the RANS 

approach is very popular in engineering applications. Of course, because of the 

averaging procedure, no detailed information can be obtained about turbulent 

structures. 

2.6 Turbulence models based on RANS 

2.6.1 Reynolds-Averaged Navier-Stokes (RANS) equations and the closure 

problem 

As previously mentioned the main idea behind Reynolds time-averaging is to express 

any variable, , which is a function of time and space, as the sum of a mean,  and 

a fluctuating component, Á0, commonly called Reynolds’ decomposition, as given by 

 Á(x; t) = ©(x) +Á0(x; t): (2.22) 

The time averaged quantity is defined as: 

 © =
1

¢t

Z t+¢t

t
Ádt: (2.23) 

The Reynolds averaging obeys the following property: 

 ¹© = © ¹Á0 = 0: (2.24) 

Equation (2.22) is substituted in the basic governing equations for Á and these are then 
time averaged to yield the governing equations for mean quantities (using Equation 
(2.24)).  

Inserting the Reynolds’ decomposition of velocity  and pressure 

 into the continuity equation (2.1) and the Navier-Stokes equation (2.7) we 
obtain the Reynolds-averaged form of the conservation equations of mass (overall) and 
momentum for an incompressible (constant density) fluid:  
 r ¢ (½U) = 0 (2.25) 

 
@(½U)

@t
+r ¢ (½UU + ½u0u0) = ¡rP ¡r ¢ ¹¿ + ½¹f  (2.26) 

where the capital letters indicates a time-averaged value, u0 is the fluctuating velocity. 

The terms appearing in Equation (2.26) resemble those in Equation (2.7) except for an 

additional term appearing on the left-hand side. This extra term acts as apparent 
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stresses due to turbulent motions and are called Reynolds stress tensor or turbulent 

stress tensor and defined as: 

 ¿ij = ½u0iu
0

j : (2.27) 

The Reynolds-averaged form of conservation equation for a general variable Á can be 

written as: 

 
@(½©)

@t
+ r ¢ (½U© + ½u0Á0) = ¡r ¢ (jÁ) + ¹Sk (2.28) 

where the additional term appearing on the left-hand side represents turbulent 

transport of Á. 

The Reynolds tensor is symmetric and it represents correlations between fluctuating 

velocities. It is an additional stress term due to turbulence (fluctuating velocities) and it 

is unknown. This is called the closure problem: the number of unknowns (ten: three 

mean velocities, mean pressure and six Reynolds stresses) is larger than the number of 

equations problem (four: the continuity equation and three components of the Navier-

Stokes equations). Similarly, for a general scalar variable, Á, there is one conservation 

equation and four unknowns (mean value of general variable, © , and three turbulent 

fluxes u0Á0). 

A turbulence model is a set of equations which express relations between unknown 

terms appearing in Reynolds-averaged governing equations with known quantities. 

2.6.2 Turbulence models for RANS 

RANS-based turbulence models can be grouped into three classes: one which uses the 

concept of turbulent or eddy viscosity and another two which do not. Models pertaining 

to these classes are: 

• Eddy-viscosity models (EVM): 

o Algebraic models or zero-equation turbulence models; 

o One equation models; 

o Two equation models; 

• Non-linear eddy-viscosity models (NLEVM); 

• Differential stress models (DSM). 

2.6.3 Eddy viscosity models 

The Eddy Viscosity/Diffusivity Models (EVM) are based on the Boussinesq (1877) 

assumption that the turbulent stress tensor can be expressed in terms of the mean rate 

of strain in the same way as viscous stress for Newtonian isotropic fluid, except that the 

coefficient of the molecular viscosity is replaced by eddy viscosity. Thus: 

 ¡½u0iu0j = ¹T

µ

@Ui
@xj

+
@Uj
@xi

¶

¡ 2

3
±ij

µ

¹T
@Uk
@xk

+ ½k

¶

: (2.29) 

Here ¹T  is referred to as turbulent or eddy viscosity, which, in contrast to molecular 

viscosity, is not a fluid property but depends on the local state of flow or turbulence. It 

is assumed to be a scalar and may vary significantly within the flow domain. While k is 

the turbulent kinetic energy (normal turbulent stresses) and can be expressed as 
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 k =
1

2
u0iu

0

i =
1

2
(u0u0 + v0v0 + w0w0): (2.30) 

Substitution of Equation (2.29) in the Reynolds-averaged momentum conservation 

equations (Equation (2.26)) leads to a closed set, provided the turbulent viscosity is 

known. The form of the Reynolds-averaged momentum equations remain identical to 

the form of the laminar momentum equations (Equation (2.7)) except that molecular 

viscosity is replaced by an effective viscosity, ¹ef f : 

 ¹eff = ¹+¹T : (2.31) 

This approach is computationally very convenient since the same algorithm and 

computational code can be used for both laminar and turbulent transport phenomena 

without having to make any modification. The problem of closure remains, however, 

except that now it is reduced to define the eddy viscosity and diffusivity coefficients. 

By analogy with the kinetic theory of gases, turbulent viscosity may be related to the 

characteristic velocity and length scales of turbulence (uT  and lT respectively): 

 ¹T / ½uT lT : (2.32) 

The turbulence models then attempt to develop suitable methods/equations to estimate 

these characteristic length and velocity scales to close the set of equations. 

Several different models have been developed. Excellent reviews describing the relative 

merits and demerits of models pertaining to this class are available (Launder & 

Spalding 1972, Rodi 1984, Markatos 1986, Nallaswamy 1987). 

Most simple models, called zero equation models, estimate characteristic length and 

velocity scales by algebraic equations. Prandtl (1925) proposed a mixing length 

hypothesis for two-dimensional boundary layer flows which relates turbulent viscosity 

to velocity gradient: 

 ¹T = ½l2
¯

¯

¯

¯

@U

@y

¯

¯

¯

¯

: (2.33) 

This hypothesis works surprisingly well for many boundary layer flows. Prandtl 

suggested the estimation of characteristic length (mixing length) of turbulence (l) by 

postulating it to be proportional to the distance from the nearest wall.  

Various modifications of the mixing length definition have been proposed in the past to 

account for pressure gradient, wall suction and blowing, flow curvature and rotation, 

but each was tuned for a specific application. 

The mixing length theory assumes that the turbulent transport processes can be 

described in terms of only one parameter, the mixing length, which is defined solely in 

terms of flow geometry and takes no account of the turbulence intensity, nor of eddy 

size and structure. However, the turbulence is not a local phenomenon, but evolves in 

time and depends on the boundary conditions. 

It should be noted that the mixing length theory provides a very simple and 

computationally convenient way of closing the turbulence problem. However, as it was 

shown in a few very simple flow examples, each problem requires a different empirical 

coefficient, which has to be determined from experiment. Besides, in more complex 

flows it is practically impossible to define in a unique manner the variation of the 

mixing length. This, and a lack of physical foundation (turbulence eddy structure is 
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very different from the molecular structure of a gas) has lead to the abandonment of the 

mixing length concept in practical computation. 

An obvious choice for defining uT  is to use the turbulent kinetic energy k (Equation 

(2.30)) (Kolmogorov 1941, Prandtl 1942), so that 

 ¹T = k1=2: (2.34) 

It is noted that k1=2 =
q

1
2
(u02 + v02 +w02) is used as a measure of the averaged 

turbulence intensity. A transport equation for k can easily be derived, the unknown 

terms need to be modelled, but the equation remains relatively simple and easy to 

resolve. Defining and providing adequate length scale lT is more difficult and uncertain. 

While all models use k1=2 as a velocity scale, many variants of models can be found in 

literature differing in lT. 

Two basic classes of differential EVMs can be distinguishes, depending on how many 

differential equation need to be solved to provide eddy viscosity ºT: 

• One-equation models (only the differential transport equation for k is solved, 

whereas lT is defined algebraically, usually in terms of flow geometrical 

parameters, in a similar manner as mixing length); 

• Two-equations models: in addition to k-equation, another differential transport 

equation is solved which provides the characteristic turbulence length scale lT, 

either directly, or in combination with k. 

One-equation models have been popular in some branches of engineering, primarily in 

aeronautics for computing the flows around aircraft wings, fuselage, and even around 

the complete airplane. The best known one-equation models are Cebeci and Smith 

(1967), Baldwin and Lomax (1978), Norris and Reynolds (1975) and more recently 

Spalart and Almares (1992). 

Along with the Spalart-Allmaras model, two-equation models make up the bulk of the 

turbulence models used for production CFD.  

There are several different two-equation models proposed in the literature. The most 

popular are the k¡ " model, the k¡! model and the SST model. The latter is briefly 

presented in the next section and it is the one used in this work. 

2.6.4 SST model 

The SST (Shear Stress Transport) model of Menter (1994) is an eddy-viscosity model 

which includes two main novelties: 

1. it is combination of a k¡ " model (in the inner boundary layer) and k¡! model 

(in the outer region of and outside of the boundary layer). A blending function is 

adopted to bridge these two models; 

2. a limitation of the shear stress in adverse pressure gradient regions is 

introduced. 

The k¡ " model is based on the solution of equations for the turbulent kinetic energy, k

, and the turbulent dissipation rate, �. It has two main weaknesses: it over-predicts the 

shear stress in adverse pressure gradient flows because of too large length scale (due to 



FLUID DYNAMICS 

 

18 
 

18 

too low dissipation) and it requires near-wall modification (i.e. low-Re number 

damping functions/terms). 

The k¡! model is based on the solution of equations for the turbulent kinetic energy, k

, and the specific dissipation rate, �. It is better at predicting adverse pressure gradient 

flow and the standard model of Wilcox (1988) does not use any damping functions. 

However, the disadvantage of the standard k¡! model is that it is dependent on the 

free-stream value of !  (Menter 1992).  

In order to improve both k¡ " and k¡! model, Menter (1994) suggested to combine 

the two models. The equations of the Wilcox k¡! model are multiplied by a blending 

function f1, and the transformed k¡ " equations are multiplied by the function 1-f1. 

Then the corresponding turbulent kinetic energy k  equation and the turbulent 

frequency ! equation are obtained to form the SST model: 
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 (2.36) 

where ρ is the density of fluid, k and ω are the turbulent kinetic energy and its 

dissipation frequency, respectively. The terms on the right-hand side of Equation (2.36) 

represent conservative diffusion, eddy-viscosity production and dissipation, 

respectively. Furthermore, the last term in the !-equation describes the cross diffusion.  

The turbulent eddy viscosity in Equations (2.35) and (2.36) is obtained from  

 ¹T =
a1½k

max(a1!; f2jjcurlujj2)
: (2.37) 

This definition of the turbulent viscosity guarantees that in an adverse pressure 

gradient boundary layer, where the production of k  is larger than its dissipation ! 

(hence a1!<jjcurlujj2), Bradshaw's assumption, i.e., ¿ = a1½k (shear stress proportional 

to turbulent kinetic energy) is satisfied. 

The function f1 in Equation (2.36), which blends the model coefficients of the k¡! 

model in boundary layers with the transformed k¡ " model in free-shear layers and 

freestream zones, is defined as 

 f1 = tanh(arg4
1) (2.38) 

 arg1 = min

·

max

µ

k0:5

0:09!d
;
500¹L
½!d2

¶

;
4½¾!2k

CDk!
d2

¸

 (2.39) 

where d stands for the distance to the nearest wall and CDk!, is the positive part of the 

cross-diffusion term in Equation (2.36), i.e., 

 CDk!
=max

µ

2½
¾!2

!

@k

@xi

@!

@xi
; 10¡20

¶

: (2.40) 

The auxiliary function f2 in Equation (2.37) is given by 

 f2 = tanh(arg2
2) (2.41) 
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 arg2
2 = max

Ã

2
p
k

0:09!d
;
500¹L
½!d2

!

: (2.42) 

The model constants are as follows 

 a1 = 0:31; ¯¤ = 0:09; · = 0:41: (2.43) 

Finally, the coefficients of the SST turbulence model ¯;C!; ¾k, and ¾!  are obtained by 

blending the coefficients of the k¡! model, denotes as Á1, with those of the 

transformed k¡ " model (Á2). The corresponding relation reads 

 Á= f1Á1 +(1¡ f1)Á2: (2.44) 

The coefficients of the inner model (k¡!) are given by 

 ¾k1 = 0:85; ¾!1
= 0:5; ¯1 = 0:075; C!1 = ¯1=¯

¤ ¡ ¾!1·
2=

p

¯¤ = 0:533: (2.45) 

The coefficients of the outer model (k¡ ") are defined as 

 ¾k2 = 1:0; ¾!2
= 0:856; ¯2 = 0:0828; C!2 = ¯2=¯

¤ ¡ ¾!2·
2=

p

¯¤ = 0:440: (2.46) 

The boundary conditions for the kinetic turbulent energy and the specific dissipation at 

solid walls are 

 k = 0 and ! = 10
6¹L

½¯1(d1)2
 (2.47) 

with d1 being the distance of the first node (cell centroid) from the wall. The grid has to 

be refined such that y+ < 3. 

2.7 LES turbulence models 

Large Eddy Simulation (LES), originally proposed in 1963 for modelling of atmospheric 

flows (Smagorinsky 1963), was for the first time successfully applied to industrial flows 

as early as in 1970 (Deardorff 1970). LES provides a compromise between DNS, where 

al scales of turbulence are computed directly from the Navier-Stokes equations, and 

RANS equations, where all scales of turbulence must be modelled. The basic 

assumption of the LES method is separation of the continuous spectrum of eddy scales 

into resolved (i.e. computed) and modelled scales. It means that turbulent flow 

quantities like velocity, pressure, etc. are computed for scales comparable to the mesh 

size of the computational grid, while the same quantities resulting from scales smaller 

than the mesh size are being modelled. This assumption correctly reflects one of the 

basic features of turbulence, i.e. the tendency towards isotropy in small scales, which 

allows one to expect a much better chance for reliable modelling within this range of 

scales. On the other hand, the anisotropy, which prevails in larger scales, may properly 

be resolved in LES computed solutions, provided of course that a properly universal 

subgrid turbulence model may be found. 

The separation of scales is achieved by filtration performed with the use of G(x) filter, 

that allows one to transform an arbitrary flow-field quantity F (x) to its filtered form 

F(x), which is then being resolved numerically. The filtration procedure may be written 

as a convolution, which, for a simple one-dimensional case, may be written as 

 F(x) = G(x) ¤ F(x) =

Z +1

0

G(x¡ »)F(»)d» (2.48) 
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where the symbols ( ¢ ) and ¤  denote the result of the filtration and convolution 

operators, respectively. 

Application of the above filtration procedure to N-S equations transforms them into the 

following from 
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 (2.49) 

where one may notice the appearance of the so-called sub-grid stress tensor ¿ij which is 

given by the formula 

 ¿ij = uiuj ¡ ui ¢ uj : (2.50) 

Various subgrid-scale models were proposed in the past and the research still 

continues. The majority of the present models is based on the eddy-viscosity concept. 

The viscosity-based models utilise the Boussinesq (Lesieur & Metais 1996) concept, 

transformed as follows 

 ¿ij = ºtSij +
1

3
¿llSij (2.51) 

where ¿ij denotes the subgrid stress tensor given by Equation (2.50), ºt is the subgrid 

eddy viscosity coefficient, while the expression 

 Sij =
@ui
@xj

+
@uj
@xi

 (2.52) 

is the rate of the strain tensor of the filtered flow field. The first subgrid closure was 

proposed by Smagorinsky (1963), who developed a subgrid analogy to the mixing 

length model, given by the following formula 

 ºt = (Cs¢)2jSj (2.53) 

where ¢ denotes the characteristic subgrid length scale (or filter width), Cs is a constant 

adjusted arbitrarily for a given flow type (solution), while the absolute measure of local 

strain is given by the formula 

 jSj =
p

2SijSij  (2.54) 

2.8 Multiphase flows 

2.8.1 Introduction 

A multiphase fluid is composed of two or more distinct components or ’phases’ which 

themselves may be fluids or solids, and has the characteristic properties of a fluid. 

Within the discipline of multiphase flow dynamics the present status is quite different 

from that of the single phase flows. The theoretical background of the single phase 

flows is well established (the core of the theory being the Navier-Stokes equations as 

the previous section showed) and apparently the only outstanding practical problem 

that still remains unsolved is turbulence, or perhaps more generally, problems 

associated with flow stability. While it is rather straightforward to derive the equations 

of the conservation of mass, momentum and energy for an arbitrary mixture, no 

general counterpart of the Navier-Stokes equations for multiphase flows have been 

found (Hiltunen et al. 2009). Using a proper averaging procedure it is however quite 

possible to derive a set of ”equations of multiphase flows” which in principle correctly 
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describes the dynamics of any multiphase system and is subject only to very general 

assumptions. The drawback is that this set of equations invariably includes more 

unknown variables than independent equations, and can thus not be solved. In order to 

close this set of equations, additional system dependent constitutive relations and 

material laws are needed. Considering the many forms of industrial multiphase flows, 

such as flow in a fluidized bed, bubbly flow in nuclear reactors, gas-particle flow in 

combustion reactors and fiber suspension flows within pulp and paper industry, it 

seems virtually impossible to deduce constitutive laws that would correctly describe 

interactions and material properties of the various phases involved, and that would be 

common even for these few systems. Furthermore, even in a laminar flow of, e.g., 

liquid-particle suspensions, the presence of particles induces fluctuating motion of both 

particles and fluid. Analogously to the Reynolds stresses that arise from time averaging 

the turbulent motion of a single phase fluid, averaging over this ”pseudo-turbulent” 

motion in multiphase systems leads to additional correlation terms that are unknown a 

priori. For genuinely turbulent multiphase flows, the dynamics of the turbulence and 

the interaction between various phases are problems that presumably will elude 

general and practical solution for decades to come. A direct consequence of the 

complexity and diversity of these flows is that the discipline of multiphase fluid 

dynamics is and may long remain a prominently experimental branch of fluid 

mechanics.  

2.8.2 Fundamental forces in multiphase flow 

Any fluid motion origins from forces acting on fluid elements. In general, forces can be 

classified in three different categories. Volume forces (also called body forces) act on a 

volume element of size �∝L3 , surface forces act on a surface or area element of a size 

	∝L, and line forces act on a curve element of size �∝L, where L is a linear dimension. 

The pressure force acts on area o surface elements and tends to accelerate the fluid in 

direction of the pressure gradient. The inertial force is a volume force and tends to 

retain the actual direction and magnitude of the motion unchanged. The viscous force 

acts on a surface or area element and tends to make the flow field uniform and thus to 

diminish velocity differences. The gravity force tends to accelerate the fluid in direction 

of the gravity vector. Related to the gravity force is the buoyancy force, which is the 

difference between the gravity when the density is non-uniform. In two-phase flow the 

non-uniform density is due to the presence of different phases. The surface tension 

force acts on a line or curve element and tends to minimize the surface area of the 

interface. The surface tension is specific to gas-liquid or liquid-liquid two-phase flows 

(Wörner 2003). 

2.8.3 Dispersed bubbly flows 

The description of bubbly flows involves modelling of a deformable (gas-liquid) 

interface separating the phases; discontinuities of properties across the phase interface; 

the exchange between the phase; and turbulence modelling.  

Most of the dispersed flow models are based on the concept of a domain in the static 

(Eulerian) reference frame for description of the continuous phase, with addition of a 

reference frame for the description of the dispersed phase. The dispersed phase may be 
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described in the same static reference frame as the continuous, leading to the Eulerian-

Eulerian (EE) approach; or in a dynamic (Lagrangian) reference frame, leading to the 

Eulerian-Lagrangian (EL) approach. Multiphase modelling approaches are discussed in 

the next section. 

2.8.4 Modelling approaches 

The models for solving multiphase flow can generally be divided into three classes: 

• Interphase tracking models; 

• Eulerian-Lagrangian models; 

• Eulerian-Eulerian models.  

The interphase tracking models include among others level-set methods and Volume Of 

Fluid (VOF) methods. These methods accurately describe the interface between two 

phases, which is important for properly modeling for example the change in the shape 

of a rising bubble in quiescent liquid. The drawback is however that these methods 

require a high level of resolution both in grid and modeling in order to describe the 

interface properly, which requires large computational efforts. These methods are 

therefore not suitable for solving dispersed bubbly flows. 

In the Euler-Lagrange approach, also called discrete bubble model (DBM), the fluid 

phase is treated as a continuum by solving the time-averaged Navier-Stokes equations, 

whereas the dispersed phase is solved by numerically integrating the equations of 

motion for the dispersed phase, i.e. computing the trajectories of a large number of 

particles or droplets through the calculated flow field. The dispersed phase consists of 

spherical particles that can exchange mass, momentum and energy with the fluid 

phase. Although the continuous phase acts on the dispersed phase through drag and 

turbulence while vice versa can be neglected, the coupling between the discrete and 

continuous phase can be included. The drawback is that the computational effort 

increases as the total number of particles to be tracked increases. This method is 

therefore only suited for solving dilute flows. 

In the Eulerian-Eulerian approach, also called two-fluid model, the different phases are 

treated mathematically as interpenetrating continua. Since the volume of a phase 

cannot be occupied by the other phases, the concept of phasic volume fraction is 

introduced. These volume fractions are assumed to be continuous functions of space 

and time and their sum is equal to one. Conservation equations for each phase are 

derived to obtain a set of equations, which have similar structure for all phases. These 

equations are closed by providing constitutive relations that are obtained from 

empirical information. 

Within the Eulerian-Eulerian approach, there are three methods: volume of fluid, 

mixture, and Eulerian. The volume of fluid model solves a single set of momentum 

equations for two or more fluids and tracks the volume fraction of each fluid 

throughout the domain. The mixture model solves for the momentum equation of the 

mixture and prescribes relative velocities to describe the dispersed phases. The 

Eulerian model solves momentum and continuity equations for each of the phases, and 

the equations are coupled through pressure and exchange coefficients. 
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In the present work, the flow in the simulated systems was modelled using the Eulerian 

approach due to its computational appropriateness at high dispersed phase contents. 

2.8.5 Eulerian multiphase model 

As already mentioned, in the Eulerian approach, the dispersed and continuous phases 

are assumed to be interpenetrating continua and for each phase a complete set of 

Navier-Stokes equations has to be solved.  

For single-phase flows, rigorous basic transport equations are given in the form of 

mass, momentum and energy conservation (see Section 2.2). These equations are local, 

instantaneous equations and can be applied to all the volume and time domains under 

consideration. For multiphase flow processes, such local instantaneous field equations 

cannot be formulated without appropriate averaging. Several different averaging 

methods have been used. For example, Ishii (1975) and Drew (1983) used time 

averaging while Harlow and Amsden (1975), Rietema and van den Akker (1983) and 

Ahmedi (1987) used a volume averaging method. Besnard and Harlow (1988), Kataoka 

and Serizawa (1989) and Lahey and Drew (1989), among others, discussed various 

issues involved in the formulation of governing equations for multiphase flow 

processes. Recently, Enwald et al. (1996) discussed in detail the rigorous formulation of 

two-fluid model equations based on averaging techniques and corresponding closure 

laws.  

2.8.5.1 Governing equations  

In this section, the governing equations used in the numerical simulations, are 

presented without going into details of their derivation. As in the previous sections, the 

fluid in each phase is assumed to be incompressible and isothermal. Therefore energy 

balances are not required. Also the interfacial mass transfer between the water and gas 

phase is zero. 

Phasic volume fractions describe the region occupied by each phase and are 

incorporated into the conservation equations for mass and momentum. The phasic 

volume fraction ® must satisfy the relation: 

  (2.55) 

where k is the total number of phases.  

The conservation equations are written by performing an ensemble average of the local 

instantaneous balance for each phase (i.e. liquid and gas). The liquid is modelled as the 

continuous (primary) phase and the gas is modelled as the dispersed (secondary) 

phase. 

The continuity equation for phase k is: 

  (2.56) 

where ½ is the density and u is the velocity field. The right hand side is zero because 

applications in this research do not involve mass transfer or reactions. 

The momentum equation for phase k is given by: 
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  (2.57) 

where p is the pressure shared for all phases, g is the gravity,  is the stress tensor for 

phase k and the term MI;k describes the interfacial forces. The interface term will be 

discussed later on. 

The velocities in Equations (2.56) and (2.57) are defined as follows: 

  (2.58) 

Here, uk  is the part of the velocity for phase k that will be resolved in the numerical 

simulations, ¹uk  is the instantaneous velocity and u 0

k  is the unresolved part of the 

numerical simulations. The interpretation of the terms uk  and u 0

k  depends on the 

method of derivation. When Equations (2.56) and (2.57) are obtained through 

ensemble averaging, then uk  and u 0

k  represent the mean velocity and the fluctuating 

velocity. When Equations (2.56) and (2.57) are obtained through a filtering operation, 

these terms are respectively the grid scale (GS) and the sub-grid scale (SGS) velocities 

(Deen 2001). When either ensemble averaging or filtering is used, unclosed parts occur 

in the stress term and in the interface forces. In this thesis, the unclosed part of the 

interface forces will be neglected.  

The stress term of phase k is described as follows: 

 ¹¹¿k = ¡¹eff;k(ruk + (ruk)
T ¡ 2

3
Ir ¢ uk) (2.59) 

where ¹eff;k is the effective viscosity of phase k and I is the unit tensor. 

2.8.5.2 Turbulence closure 

The effective viscosity of the liquid phase ¹ef f;L is modelled with three contributions as 

in the work of Deen (2001), molecular viscosity ¹L;lam, shear-induced turbulent 

viscosity ¹L;T ur and an extra term due to bubble induced turbulence ¹L;BIT : 

 ¹eff;L = ¹L;lam+¹L;Tur +¹L;BIT : (2.60) 

The effective viscosity of the gas phase is calculated as follows according to Jakobsen et 

al. (1997): 

 ¹eff;G =
½G
½L
¹eff;L: (2.61) 

The turbulence induced by the movement of the bubbles is modelled as proposed by 

Sato & Sekoguchi (1975): 

 ¹L;BIT = ½LC¹;BIT ®GdB j uG ¡ uL j (2.62) 

where dB is the bubbles diameter and C¹;BIT  is a model constant which is equal to 0.6.  

The shear-induced turbulent viscosity in the liquid phase, ¹L;T urb is calculated using 

the chosen turbulence model. In this thesis two different models to calculate the 

turbulent viscosity are used: the LES model and the SST model.  

When the SST model is used, the shear-induced turbulent viscosity in the liquid phase 

is formulated as follows: 

 ¹L;Tur = C¹½L
k2
L

"L
: (2.63) 
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The turbulent kinetic energy k and its energy dissipation rate "  are calculated from 

their conservation equations( Equations (2.35) and (2.36)). 

When the LES is used, the model proposed by Smagorinsky (1963) is used to calculate 

the turbulent viscosity ¹L;T ur  

 ¹L;Tur = ½L(Cs¢)2jSj (2.64) 

where Cs is a model constant with a value of 0.1 and S is the characteristic filtered rate 

of strain and ¢ is the filter width. 

2.8.5.3 Interfacial forces 

Interfacial force closure is one of the central topics in Eulerian multiphase flow 

modelling.  

The motion of a single bubble with constant mass can be written according to Newton’s 

second law: 

 mb
du

dt
=

X

F: (2.65) 

The bubble dynamics are described by incorporating all relevant forces acting on a 

bubble rising in a liquid. It is assumed that the total force, 
P

F is composed of separate 

and uncoupled contributions originating from pressure, gravity, drag, lift, virtual mass 

and turbulent dispersion: 

 
X

F = FP + FG + FD + FL + FV M + FTD + FWL + FWD : (2.66) 

For each force the analytical expression or a semi-empirical model is used, based on 

bubble behaviour observed in experiment or in DNS. 

In this work the interface forces take into consideration, as in the work of Deen (2001), 

are drag, lift and virtual mass forces. Thus the term MI;k in Equation (2.57), for the 

liquid (L) phase and the gas (G) phase is given as follows: 

 MI;L = ¡MI;G = MD;L + ML;L + MV M;L: (2.67) 

For an extensive discussion of these forces the reader is referred to the works of 

Jakobsen et al. (1997) and Delnoij et al. (1997).  

The drag force is originated by the differences in velocities between the phases and is 

expected to have the largest influence in the momentum transfer between the gas and 

liquid phases. The drag force is given as: 

 MD;L = ¡3

4
®G½L

CD
dB
juG ¡ uLj(uG ¡ uL): (2.68) 

Ishii & Zuber (1979) gave the following expression for the drag coefficient CD in the 

case of distorted bubbles: 

 CD =
2

3
EÄo1=2 (2.69) 

where EÄo is the dimensionless Eötvös number (EÄo = g¢½d2
B=¾).  

In this thesis, in bubble column simulations, a bubble size of 4.0 mm is used, unless 

otherwise mentioned. This gives EÄo= 2:2 and CD = 1:0. The bubble size was chosen 

based on the PIV observations of Deen et al. (2001). 
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The effect of shearing motion in the liquid phase on the movement of the gas-phase is 

modeled through the lift force: 

 ML;L = ®G½LCL(uG ¡ uL) £ r £ uL (2.70) 

where CL is a model constant, which is set to 0.5. 

The acceleration of the liquid in the wake of the bubble is taken into account through 

the virtual mass force, which is given by: 

 MVM;L = ®G½LCVM

µ

DuG

Dt
¡ DuL

Dt

¶

: (2.71) 

With CVM a model constant with a value of 0.5. The D=Dt operators denote the 

substantial derivatives in the two phases. 
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Chapter 3 Numerical Methods 

3.1 Overview  

Mathematical models of flow processes, presented in Chapter 2, are non-linear, 

coupled partial differential equations (PDEs). Because of the coupled nature of the 

equations and the presence of non-linear terms, the fluid flow equations are generally 

not amenable to analytical method of obtaining the solution. In general, closed form 

analytical solutions are possible only if these PDEs can be made linear, either because 

non-linear terms naturally drop out (as in the case of parallel flows or flows that are 

inviscid and irrotational everywhere) or because the nonlinear terms are small 

compared to other terms so that they can be neglected (e.g., creeping flows, small 

amplitude sloshing of liquid etc.). If the non-linearities in the governing PDEs cannot 

be neglected, which is often the case for most engineering flows, one normally has to 

resort to numerical methods to obtain solutions. 

An analytical solution to a partial differential equation gives the value of Á as a function 

of the independent variables (x; y; z; t). The numerical solution, on the other hand, aims 

to provide us with values of Á at a discrete number of points in the domain. The process 

of converting governing transport equations into a set of equations for the discrete 

values of Á is called discretization process and the specific methods employed to bring 

about this conversion are called discretization methods. 

The discrete values of Á are typically described by algebraic equations relating the 

values at grid points to each other. The development of numerical methods focuses on 

both the derivation of the discrete set of algebraic equations, as well as a method for 

their solution. In arriving at these discrete equations for Á we will be required to 

assume how Á varies between grid points i.e., to make profile assumptions. Most widely 

used methods for discretization require local profile assumptions. That is, we prescribe 

how Á varies in the local neighbourhood surrounding a grid point, but not over the 

entire domain. 

The conversion of a differential equation into a set of discrete algebraic equations 

requires the discretization of space. This is accomplished by means of mesh generation. 

Mesh generation divides the domain of interest into elements or cells, and associates 

with each element or cell one or more discrete values of Á. It is these values  we wish 

to compute. 

We should also distinguish between the discretized equations and the methods 

employed to solve them. For our purposes, let us say that the accuracy of the numerical 

solution, i.e., its closeness to the exact solution, depends only on the discretization 

process, and not on the methods employed to solve the discrete set (i.e., the path to 

solution). The path to solution determines whether we are successful in obtaining a 

solution, and how much time and effort it will cost us. But it does not determine the 

final answer.  
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Since we wish to get an answer to the original differential equation, it is appropriate to 

ask whether our algebraic equation set really gives us this. When the number of grid 

points is small, the departure of the discrete solution from the exact solution is 

expected to be large. A well-behaved numerical scheme will tend to the exact solution 

as the number of grid points is increased. The rate at which it tends to the exact 

solution depends on the type of profile assumptions made in obtaining the 

discretization. No matter what discretization method is employed, all well-behaved 

discretization methods should tend to the exact solution when a large enough number 

of grid points is employed. 

This chapter reviews the operations required to achieve a numerical solution: 

1. discretization of the domain;  

2. from PDEs to discrete algebraic equations: spatial and temporal discretization;  

3. from coupled unknowns to uncoupled unknowns: uncoupling; 

4. from (huge) linear equation systems to their solution: linear solvers. 

3.2 Discretization of the Domain: Grid Generation 

The first step of every numerical simulations is the grid generation: the space, where 

the flow is to be computed – the physical space, is divided into a set of discrete sub-

domains, or computational cells, or control volumes called grid or mesh. 

The fundamental unit of the mesh is the cell (sometimes called the element). 

Associated with each cell is the cell centroid. A cell is surrounded by faces, which meet 

at nodes or vertices. In three dimensions, the face is a surface surrounded by edges. In 

two dimensions, faces and edges are the same. A variety of mesh types are encountered 

in practice which are briefly presented below. 

3.2.1 Regular and Body-fitted Meshes 

In many cases, our interest lies in analyzing domains which are regular in shape: 

rectangles, cubes, cylinders, spheres. These shapes can be meshed by regular grids, as 

shown in Figure 3.1(a). The grid lines are orthogonal to each other, and conform to the 

boundaries of the domain. These meshes are also sometimes called orthogonal meshes. 

For many practical problems, however, the domains of interest are irregularly shaped 

and regular meshes may not suffice. An example is shown in Figure 3.1(b). Here, grid 

lines are not necessarily orthogonal to each other, and curve to conform to the irregular 

geometry.  
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Figure 3.1: Regular and Body-Fitted Meshes 

3.2.2 Structured, Block Structured, and Unstructured Meshes 

The meshes shown in Figure 3.1 are examples of structured meshes. Here, every 

interior vertex in the domain is connected to the same number of neighbour vertices. 

Figure 3.2a shows a block-structured mesh. Here, the mesh is divided into blocks, and 

the mesh within each block is structured. However, the arrangement of the blocks 

themselves is not necessarily structured. Figure 3.2b shows an unstructured mesh. 

Here, each vertex is connected to an arbitrary number of neighbour vertices. 

Unstructured meshes impose fewer topological restrictions on the user, and as a result, 

make it easier to mesh very complex geometries. 

 

 

Figure 3.2: a) Block-Structured Mesh, b) Unstructured Mesh 

3.2.3 Conformal and Non-Conformal Meshes 

An example of a non-conformal mesh is shown in Figure 3.3. Here, the vertices of a cell 

or element may fall on the faces of neighbouring cells or elements. In contrast, the 

meshes in Figure 3.1 and Figure 3.2 are conformal meshes. 

a)                                                                                        b) 
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Figure 3.3: Non-Conformal Mesh 

3.2.4 Cell Shapes 

Meshes may be constructed using a variety of cell shapes. The most widely used are 

quadrilaterals and hexahedra. Methods for generating good-quality structured meshes 

for quadrilaterals and hexahedra have existed for some time now. Though mesh 

structure imposes restrictions, structured quadrilaterals and hexahedra are well-suited 

for flows with a dominant direction, such as boundary-layer flows. More recently, as 

computational fluid dynamics is becoming more widely used for analyzing industrial 

flows, unstructured meshes are becoming necessary to handle complex geometries. 

Here, triangles and tetrahedral are increasingly being used, and mesh generation 

techniques for their generation are rapidly reaching maturity. Another recent trend is 

the use of hybrid meshes. 

3.3 Convection-Diffusion equation 

Instead of considering the spatial and temporal discretization of each Navier-Stokes 

equations separately, it is useful to express each of them as a particular case of generic 

convection-diffusion equation. In three-dimensional Cartesian co-ordinates the 

convection-diffusion equation has the following expression: 

  (3.1) 

The use of a generic convection-diffusion equation is not only useful to simplify the 

distretization, but also provides information about the physical mining of the terms in 

the model. It is used to model the transport of a generic physic magnitude (momentum, 

energy or mass depending on the equation) in a continuous fluid medium with a 

velocity field , that in this point is assumed to be know. The changes in this 

generic magnitude are described in terms of , the unknown of the equation. It can 

stand for a variety of different quantities such as mass fraction or a velocity component. 
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None of the terms of the equation has a meaning in absence of the others. However, if 

they could be isolate, their role in the transport and generation of Á in a infinitesimally 

small control volume would be (using the energy equation as an example): 

• the source term describe the generation of energy in the control volume; 

• the transient term describe the energy accumulated; 

• the convection term describe the flux of energy leaving the control volume due 

to the velocity  of the fluid medium; 

• the diffusion term describe the energy flux leaving the control volume due to 

molecular diffusion. This process transports energy from point of higher energy 

to point of lower energy concentration, independently of the velocity . 

Thus Equation (3.1) is simply a balance between the generation, accumulation and 

transport of a generic variable . The transport can be due to convection (associated to 

a macroscopic movement of the medium) or to diffusion (due to molecular diffusion). 

The terms ,  and  (generic unknown, generalized diffusion coefficient and source 

term) are to be changed depending on the equation, according to the Table 1 

Table 1: Terms of the generic convection-diffusion equation 

Equation φ ΓΓΓΓ
 S 

Mass conservation 1 0 0 

 momentum conservation    

 momentum conservation    

 momentum conservation    

 

If ,  and  are independent of the transported variable , Equation (3.1) is a linear 

PDE. 

This is not the case of any the governing flow equation. In fact momentum equations 

 are clearly non-linear due to convective terms that for this case become 

. We may think of momentum equations as convection-diffusion 

equations in which the components of the velocity themselves are being transported.  

is also non-linear, as pressure gradient terms depend on  and buoyancy terms on T 

(coupled with ). 

The use of a generic expression for all the scalar equations, is a first step towards the 

numerical solution of the set. However, due to a number of reasons, such the use of 

staggered grids, in many CFD codes the discretization of each of the equations is 

implement in a separate function. Additionally, the mass conservation equation, (a first 

order and non-transient equation) is quite artificially expressed in terms of the general 

convection diffusion equation (second order and transient). 

3.4 Spatial discretization  

Several methods have been employed over the years to solve the Navier-Stokes 

equations numerically, including the finite difference (FDM), finite element (FEM), 
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spectral element, and finite volume (FVM) methods. The most common in 

commercially available CFD programs are: FVM (~80%) and FEM (~15%). 

Only the finite control volume method will be considered in this work. 

3.4.1 Finite Volume Method 

In the FVM, discretized equations are obtained by integrating the governing transport 

equations over a finite control volume (CV).  

There are several possibilities of defining the shape and position of the control volume 

with respect to the grid. Two basic approaches can be distinguished: 

• cell-centred scheme (Figure 3.4a) - here the flow quantities are stored at the 

centroids of the grid cells. Thus, the control volumes are identical to the grid 

cells. 

• cell-vertex scheme (Figure 3.4b) - here the flow variables are stored at the grid 

points. The control volume can then either be the union of all cells sharing the 

grid point, or some volume centred around the grid point. In the former case we 

speak of overlapping control volumes, in the second case of dual control 

volumes. 

 

 

Figure 3.4: Cell-Centred and Vertex-Centre scheme 

Before beginning the discretization, the generic convection-diffusion equation will be 

expressed in terms of a flux vector . Equation (3.1) can be expressed using vectorial 

operators as: 

  (3.2) 

The total flux vector  is defined as 

  (3.3) 

It is decomposed into a convective  plus a diffusive  fluxes: 

  (3.4) 

  (3.5) 

Flux vector allows us to express Equation (3.2) as 

  (3.6) 

Considering a cell-centre scheme, the approximated value of  is evaluated for every 

node located inside each CV. Thus an algebraic, linear discretization equation will be 

obtained for each of the control volumes. 

a)                                                                                     b) 
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Figure 3.5: Fragment of a Cartesian structured two-dimensional mesh 

The global set of linear equation will allow us to solve for each of the nodes. To do so, 

Equation (3.6), is integrated in each CV. For instance, considering a generic control 

volume filled in the Cartesian mesh shown in Figure 3.5 

  (3.7) 

At this point,  denotes the spatial region covered by the control volume. Using 

divergence theorem on the left hand side and expressing the right hand side in terms of 

the average of the source term, we obtain: 

  (3.8) 

where  is the integrated volume,  the outer surface of the control volume and  a 

unit vector normal to it. The left hand-side integral can be expressed as a sum of the 

contributions on each face. Assuming for simplicity a two-dimensional domain, 

 Je ¡ Jw + Jn ¡ Js = ¹SVP  (3.9) 

where Jf is the integral of the convective-diffusive flux of Á across cell face f (f = e, w, 

n or s). For instance, 

 Je =

Z

e
J ¢ n ds = JCe + JDe  (3.10) 

and ¹S the averaged source term, 

 ¹S =
1

Vp

Z

Vp

Sdv (3.11) 

No approximations have been made so far. Equation (3.8) is still exactly equivalent to 

the set of integral equations over all the control volumes. The integral expressions (3.9) 

are conservative: they express the conservation principle for the unknown variable Á in 

the CV considered, as the differential equation expresses it for an infinitesimal CV. For 

any group of control volumes, including the whole computational domain, an integral 

conservation of quantities such as mass and momentum is satisfied even for coarse 

meshes. Thus, FVM is said to be conservative. 
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Next step is to express integral Equation (3.9) in terms of the unknown nodal values ÁE
, ÁU , ÁN, ÁS, ÁP . to do this, two approximations are made: 

1. consider flux vector  as a constant along each face and equal to the value at the 

central point of the face. 

2. use a function profile to approximate the values of the flux vectors  at the 

central points of the interface as a function of the nodal values. 

In order to preserve the conservative property of the method, the discretization has to 

be consistent, i.e., exactly the same expression has to be used to evaluate the convective 

and diffusive fluxes at the control volumes sharing an interface. Otherwise, a flux 

balance will be satisfied only in each CV but neither in groups of CVs nor in all the 

domain. It is convenient to treat convective and diffusive terms of  separately. using as 

an example the  face we proceed as follows: 

• Diffusive terms are approximated using a second-order central difference 

scheme: 

 

Z

e
JD ¢ nds =

Z

e
¡¡rÁ ¢ nds =

Z

e
¡¡

@Á

@x
ds ¼

¡¡

µ

@Á

@x

¶

e

Se ¼ ¡¡Se
ÁE ¡ ÁP
@xe

= De(ÁP ¡ ÁE)

: (3.12) 

Here the sub-index e  denotes the central point of the east interface and De =
¡eSe

±e . This 

central-difference approximation, involving the central node ÁP  plus four neighbours is 

second order accurate (if the interface is located midway of the discretization nodes). If 

the generalized diffusion coefficient ¡ depends on the position, the value ¡e has to be 

interpolated from the neighbouring values ¡E and ¡P . This can be either be due to non-

homogeneous domains or to non-constant physical properties.  

• Convective terms are approximated as: 

 JCe =

Z

e
JC ¢ nds =

Z

e
½uÁ ¢ nds = ½

Z

e
ueÁds ¼ ½ueÁeSe = FeÁe (3.13) 

where ue is the component of u normal to the e  face, evaluated in its central point, Se is 

the surface of the e  face and Fe = ½ueSe is the mass flow rate at the e  face. In general, 

an interpolation has to done to evaluate Fe but this is not the critical point. The main 

problem is the evaluation of Áe. It is considered to be a function of ÁP  and its 

neighbouring nodes. For orthogonal meshes the values at the face are usually 

considered to be a function of the neighbours at the same axis, i.e. 

 ÁE = f(ÁWW ; ÁW ; ÁP ; ÁE; ÁEE) (3.14) 

To avoid physically unrealistic flows, the function f  has to be bounded by the node 

values used in its interpolation. Many differencing schemes are available, but the more 

accurate schemes tend to be less robust or slower. Three of the differencing schemes 

offered by the most common CFD software are described in the next section, of which 

the last two are used in this work. 

• The source term ¹S can be approximated in different ways. The most simple is to 

assume that the nodal value prevails over all the control volume, 

 ¹S = SP : (3.15) 



CHAPTER 3 

35 
 

35 

In many case, the source term depends on Á. It is therefore beneficial to make the term 

'at least nominally linear' (Patankar 1980) by expressing it as: 

 ¹SÁ¢V = (SÁC
+ SÁP

ÁP )¢V: (3.16) 

The values of SÁC
 and SÁP

 should be chosen very carefully if the solution procedure is to 

succeed (see the four rules of Patankar (1980)). The most important point to note is 

that SÁP
 should be non-positive. 

 

Combining the previous expressions, the discretized flux conservation equation can be 

written as: 

 (JDe + FeÁe) ¡ (JDw + FwÁw) + (JDn + FnÁn) ¡ (JDs + FsÁs) = SPV  (3.17) 

that can be expressed as a linear relation between ÁP  and its neighbours: 

 aPÁP =
X

nb

anbÁnb + b: (3.18) 

However, direct expansion of Equation (3.17) does not necessarily lead to acceptable 

coefficients for Equation (3.18).  

The behaviour of numerical methods depends on the source term linearization 

employed and interpolation practices. Before discussing in more details some of the 

available discretization methods, a brief discussion of the desired characteristics of 

these methods will be useful. The most important properties of the discretization 

method are: 

1. Conservativeness: To ensure the overall conservation of Á, the flux of Á leaving 

a CV across a given face, must be equal to the flux of Á entering the adjacent CV 

through the same face. Therefore, the flux through the common face must be 

represented by one and the same expression in adjacent CVs. 

2. Boundedness: Numerical solution methods must respect the physically 

consistent bounds on variable values (bounded by minimum and maximum 

boundary values when there is no source). An essential requirement of 

boundedness is that all the coefficients of the discretized equation should be of 

the same sign and (usually) positive. If this condition is not satisfied, it is 

possible to observe unphysical ‘wiggles’ in the solution. It must also be noted 

that source term linearization practices (Equation (3.16)) should ensure that 

SÁP
 is always negative in order to possess the boundedness property (otherwise 

the value of aP  may become negative). Diagonal dominance of the discretized 

equations is a desirable feature for satisfying the ‘boundedness’ criterion. 

Scarborough (1958) gave a sufficient condition for diagonally dominant set of 

equations as: 

 

P

janbj
aP

(

· 1 at all nodes

< 1 at least at one node
 (3.19) 

Diagonal dominance and all positive coefficients ensure boundedness. Special 

procedures are invoked to ensure the boundedness of many higher order 

schemes, which otherwise, may produce wiggles and unbounded solutions. 

Some of these methods are discussed in the following. 
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3. Transportiveness: Transportiveness can be illustrated by considering the 

distribution of Á in the vicinity of its source. The contours of constant Á are 

shown in Figure 3.6 for different values of Peclet number (ratio of strengths of 

convection and diffusion, Pe = F=D). For a process with zero Peclet number 

(pure diffusion), contours of constant Á are circular and therefore conditions at 

node P will be influenced not only by upstream conditions at W but also by all 

the conditions further downstream (node E). As the value of Peclet number 

increases (more convection), directionality of influence becomes increasingly 

biased towards the upstream direction. This means that conditions at node E 

are strongly influenced by those at P but conditions at P will experience only a 

weak influence from those at node E. At the extreme case of infinite Peclet 

number, the constant Á contours are completely stretched in the direction of 

flow and conditions at node E will not influence those at node P. Discretization 

schemes must respect the transportiveness properties (directionality of 

influence) of flow processes. 

 

 
Figure 3.6: Distribution of  around its source (Versteef & Malaalasekara 1995) 

3.4.2 Discretization Schemes for convective terms  

As introduced above, the accuracy, numerical stability and the boundness of the 

solution depend on the numerical scheme used to discretize convective terms. The 

central issue is the specification of an appropriate relationship between the convected 

variable, stored at the cell centre and its value at each of the cell faces. Among the 

numerous possible schemes, we will only consider three of them, which are simple and 

commonly used. Further information can be found in the specialized texts on finite 

volume methods. 

As in the previous section, the methods of interpolation will be introduced using the 

two-dimensional Cartesian grid shown in Figure 3.5. 

Central Differencing Scheme (CDS) 

This is probably the most natural approach but is not very robust. The value of Á at a 

face is calculated from the mean of the values at the grid nodes on each side of the face. 

In terms of our example illustrated in Figure 3.5, this means: 

 Áe =
ÁP + ÁE

2
 (3.20) 

This scheme is 2nd-order accurate, but is unbounded so that unphysical oscillations 

appear in regions of strong convection and also in the presence of discontinuities such 
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as shocks. One way to reduce these errors is to use a refined grid, but the best way is to 

use another differencing scheme.  

There is one exception to this rule. Central differencing is the preferred discretization 

scheme when the LES turbulence model is used as was done during this research. 

Upwind Differencing Scheme (UDS) 

In this scheme, the value of Á at a face takes the value of Á at the upstream node. In our 

example, this means approximating by either ÁP  or ÁE. In the upwind interpolation, 

the choice, P or E, is dictatedby the direction of the flow 

Áe =

(

ÁP if (V ¢ n)e > 0

ÁE if (V ¢ n)e < 0
: (3.21) 

The UDS is unconditionally bounded and highly stable, but it is only 1st-order accurate 

in terms of truncation error and may produce severe numerical diffusion. The scheme 

is therefore highly diffusive when the flow direction is skewed relative to the grid lines. 

Hybrid Differencing 

This is a combination of upwind and central differencing, and is the most robust of the 

schemes described here. The scheme used depends on the relative magnitudes of 

convection and diffusion, given by the Peclet number for the face, Pef: 

 Pef =
Cf
Df

 (3.22) 

where: Cf  is the convection coefficient at face f ; Df  is the diffusion coefficient at face f

; and f = n; s; e;w. 

If jPef j > 2, convection dominates diffusion and upwind differencing is used, and when 

jPef j · 2, diffusion becomes important and central differencing is used. 

Hybrid differencing was used during this research when the RANS turbulence model is 

used. 

3.4.3 Implementation of Boundary Conditions 

Near the boundary of the computational domain, the boundary conditions should be 

incorporated into the integral balance equations for the cells and, thus, into the finite 

volume discretization. The special treatment concerns only the surface integrals over 

the faces lying on the boundary. The cumulative (convective plus diffusive) flux should 

be determined on the basis of the boundary conditions. 

Let us consider the two-dimensional example shown in. One face lying on the boundary 

is e . We have to replace the surface integrals ¡
R

e ½uÁ ¢ nds+
R

e ¡rÁ ¢ nds by an integral 

that gives the flux due to the boundary conditions. For the Neumann condition, when 

the normal component of the boundary flux q  is prescribed, this can be done in a 

straightforward manner. We simply replace the surface integrals by 

 ¡
Z

e
(q ¢ n)ds = ¡

Z

e
qnds ¼ ¡qneSe: (3.23) 

For the Dirichlet and mixed conditions, the flux is unknown and has to be 

approximated using the boundary conditions and values of Á at interior points. 



NUMERICAL METHODS 

 

38 
 

38 38 

For example, in the case of the Dirichlet condition, when Á at the Face e  is prescribed, 

we assume that the flux is provided by a diffusive mechanism activated by the gradient 

of Á at the boundary. The boundary flux is 

 

Z

e
(q ¢ n)ds = ¡

Z

e
¡rÁ ¢ nds ¼ ¡¡

µ

@Á

@n

¶

e

Se: (3.24) 

To approximate the gradient of Á we can use the scheme of the first order 

 

µ

@Á

@n

¶

e

¼ Áe ¡ Áp
jPej  (3.25) 

or the interpolation of higher order, which uses values of Á at more than one interior 

grid points. 

3.5 Time discretization 

After discretizing the spatial derivatives in the governing PDE's (such as the Navier- 

Stokes equations), we obtain a coupled system of nonlinear ODE's in the form 

 
du

dt
= F(u; t): (3.26) 

These can be integrated in time using a time-marching method to obtain a time-

accurate solution to an unsteady flow problem. For a steady flow problem, spatial 

discretization leads to a coupled system of nonlinear algebraic equations in the form 

 F(u) = 0: (3.27) 

As a result of the nonlinearity of these equations, some sort of iterative method is 

required to obtain a solution. The major difference in the space and time co-ordinates 

lies in the direction of influence. In unsteady flows, there is no backward influence. The 

governing equations for unsteady flows are, thus, parabolic in time. Therefore, 

essentially all the numerical methods advance in time, in a step-by-step or ‘marching’ 

approach.  

The methods for integration in time can be grouped into two major categories: 

• explicit methods, which calculate the solution at the new time step by using only 

the variable values from previous steps; 

• implicit methods, which use in the evaluation of the integral the unknown new 

values and thus require the solution of an equation system. 

The explicit methods are thus much simpler and they require less storage and 

computing time per time step than the implicit methods. However, explicit methods 

suffer from instability if the time step is larger than a certain limit. Thus, they are not 

suitable for problem which do not require small time steps. 

The most widely used methods for discretization of time derivatives are two-level 

methods. In order to facilitate further discussion, it is convenient to rewrite the basic 

governing equation as an ordinary differential equation with respect to time by 

employing the spatial discretization schemes discussed earlier: 

 
dÁ

dt
= f (t; Á): (3.28) 

By integrating with respect to time between two grid points, one obtains: 
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Z n+1

n

dÁ

dt
dt = Án+1 ¡ Án =

Z n+1

n
f (t; Á)dt: (3.29) 

Since the variation of Á with time is not known, some approximations are necessary to 

evaluate the integration of the function. Four commonly used approximations are 

detailed below. 

Explicit Euler: Integral is evaluated using the value of Á available at the previous node: 

 

Z n+1

n
f (t; Á)dt = ¢t f (tn; Án): (3.30) 

Implicit Euler: Integral is evaluated using the value of Á available at the next node: 

 

Z n+1

n
f (t; Á)dt = ¢t f (tn+1; Án+1): (3.31) 

Mid-point rule: Integral is evaluated using the value of Á available at the midpoint: 

 

Z n+1

n
f (t; Á)dt = ¢t f (tn+ 1

2

; Án+ 1

2

): (3.32) 

Trapezoid rule: Integral is evaluated using linear interpolation: 

 

Z n+1

n
f (t; Á)dt = ¢t

1

2
[f (tn; Án) + f (tn+1; Án+1): (3.33) 

The first method is an explicit method while the remaining three are implicit methods 

(to varying degree). The Euler explicit and implicit methods are first-order accurate 

(errors are proportional to ¢t) while the remaining two methods are second-order 

accurate (errors are proportional to ¢t2). Explicit methods have minimum 

requirements for memory and computations but are unstable at larger time steps. 

Implicit methods may require an iterative solution (and more memory) to obtain the 

values at the new time step but are much more stable. Apart from the two-level 

methods discussed here, there are multi-level methods such as the Runge–Kutta 

methods and Adams methods. Detailed discussion of these methods can be found in 

Press et al. (1992). For computational flow modelling, if the spatial discretization is 

second-order accurate, two-level methods for integration with respect to time will 

generally be sufficient, and are widely used. For special purposes, when higher order 

spatial discretization is used (for example, in large eddy simulations), higher order 

schemes can be used. 

Here we discuss application of two-level methods to solve the generic unsteady 

transport equation (Equation (3.1)). 

Integration of the transient term in Equation (3.1) over a computational cell and over a 

time interval can be written as: 

 

Z Z

V

@(½Á)

@t
dV dt = (Án+1

P ¡ ÁnP )½¢V: (3.34) 

The procedure for evaluating integrals of the remaining terms of Equation (3.1) over a 

control volume remain the same as discussed earlier. To evaluate integration with 

respect to time, it will be necessary to employ one of the two-level methods discussed 

above. As mentioned earlier, generally all the terms appearing in Equation (3.1) are 

linearized when carrying out discretization. Linearization simplifies the task of time 
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integration. Integration of Á with respect to time can then be written (considering the 

example of a term containing ÁE): 

 
Z

aEÁEdt = aE [µÁn+1
E + (1 ¡ µ)ÁnE ]¢t (3.35) 

where µ is a parameter controlling the degree of implicitness. Zero implies an explicit 

scheme, and one implies a fully implicit scheme (0.5 corresponds to the Crank– 

Nicholson scheme). Carrying out such a procedure for all terms of the governing 

transport equation, a discretized equation is obtained for the unsteady simulations: 

 

aPÁ
n+1
P =

X

nb

anb[µÁ
n+1
nb + (1¡ µ)Ánnb]

+

Ã

a0
P ¡

X

nb

(1¡ µ)anb + (1¡ µ)SP

!

ÁnP + SCÁ

 (3.36) 

where 

 aP = µ
X

nb

anb + a0
P ¡ µSPÁ a0

P = ½
¢V

¢t
: (3.37) 

For physically realistic and bounded results, it is necessary to ensure that all the 

coefficients of the discretization equation are positive. This requirement imposes 

restrictions on the time step that can be used with different values of µ. It can be seen 

that a fully implicit method with µ equal to unity is unconditionally stable. Detailed 

stability analysis is rather complex when both convection and diffusion are present. In 

general, simplified criteria may be used when an explicit method is used in practical 

simulations: 

 ¢t <
¢xi
ui

or
¢x2

2¡Á
: (3.38) 

These criteria can be interpreted as no fluid particle (information) can propagate more 

than one grid length in a single time step. If the details of development from the initial 

guess to the final steady state are not important and only the final steady state is of 

interest, such a restriction on the time step may limit the rate of convergence. In such a 

case, implicit methods are advantageous. Since implicit methods are unconditionally 

stable, large time steps can be used and it might suffice to do a single iteration per time 

step. Such a pseudo-time-marching approach can be conveniently used to obtain steady 

state solutions to complex flow problems. Pseudo-time-marching is analogous to 

employing an under-relaxation. Pseudo-time-marching uses the same time step for all 

CVs, which is equivalent to using a different under-relaxation factor for each CV; use of 

a constant under-relaxation factor for all CVs is equivalent to applying a different time 

step for each CV. 

3.6 Coupling 

The discussion in the previous sections assumed that the velocity field required to 

calculate the necessary coefficients of the discretized equations was somehow known. 

However, generally, the velocity field needs to be calculated as part of the overall 

solution procedure by solving momentum conservation equations. The governing 

equations are discussed in Chapters 2. The basic momentum transport equations 
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governing laminar flow are considered here to illustrate the application of the finite 

volume method to calculation of the flow field. The governing equations can be written: 

 
@

@t
(½u) +r ¢ (½uu) = ¡rp+r ¢

µ

¹(ru+ruT ) +
µ

·¡ 2

3
¹

¶

±ij

¶

+ ½g: (3.39) 

It can be seen that since momentum equations are vector equations, the convective and 

diffusive terms in the equations appear more complicated than the generic transport 

equations discussed in the previous section. The convective terms are non-linear and 

the viscous terms contain more than one term. However, all of these terms can be 

discretized using the methods discussed in the previous section. All the extra non-zero 

terms not conforming to the generic equations are usually combined in the form of a 

source term. It must also be noted that all the three momentum equations are strongly 

coupled because each velocity component appears in all three momentum equations. 

This coupling can also be handled by the techniques of iterative solution discussed 

earlier. The unique feature of momentum equations, which distinguish them from the 

generic transport equation discussed earlier, is the role played by the pressure. The 

pressure gradients appear in the source terms of the momentum equations but there is 

no obvious equation to obtain the pressure. The pressure field is indirectly specified via 

the continuity equation. It is, therefore, necessary to calculate the pressure field in such 

a way that the resulting velocity field satisfies the continuity equation. Special 

treatments are needed to convert the indirect information in the continuity equation 

into a direct algorithm to calculate pressure (algorithms to treat pressure–velocity 

coupling). Some widely used algorithms are discussed in this subsection. Since the 

principal variable in momentum equations is a vector, it allows more freedom in the 

choice of variable arrangements on the grid. 

3.6.1 Co-located and Staggered Grid Arrangement 

Basic features of grids used for numerical solution are discussed in Section 3.2. When 

all the variables are stored at the same set of grid nodes, the arrangement is termed as 

‘colocated’. It is, however, not necessary that all the variables share the same grid. It is 

possible, and sometimes advantageous, to use different locations for storing values of 

different velocity components and pressure (staggered grid). The two types of grid 

arrangement are shown in Figure 3.7. ‘Co-located’ seems to be an obvious choice, which 

has significant advantages in complicated solution domains. However, straightforward 

application of the finite volume method discussed earlier for momentum equations 

using the co-located grid fails to recognize the difference between a checkerboard 

pattern and uniform pressure fields. The staggered grid arrangement is proposed to 

suit the natural coupling of pressure and velocity. In this arrangement, the velocity field 

is stored at the faces of CV around a pressure node. In such an arrangement, the 

pressure and diffusion terms are very naturally approximated by a central difference 

approximation without interpolation. Also the evaluation of mass fluxes in the 

continuity equation (on the faces of a pressure CV) is straightforward. With a staggered 

grid arrangement, the natural coupling between pressure and velocity fields helps to 

avoid some types of convergence problems and oscillations in the pressure field. 

Because of these advantages, the staggered grid arrangement has been used extensively 

to solve momentum equations. In recent years, more and more problems with complex 
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geometry have been tackled using non-orthogonal grids. The staggered grid 

arrangement for equations in generalized coordinates is complicated because it 

introduces additional curvature terms, which are difficult to treat numerically. Thus, 

improved pressure–velocity coupling algorithms were developed which enable the use 

of co-located grids to solve momentum equations. Most commercial CFD codes now 

use co-located arrangements. 

 
Figure 3.7: (a) Co-located and (b) Staggered grid arrangements (Renade 2002) 

3.6.2 Algorithms to Treat Pressure–Velocity Coupling 

The momentum and continuity equations can be combined to derive an equation for 

pressure. For example, for constant density and viscosity fluid, the continuity equation 

can be used to simplify the divergence of the momentum equation (Equation (3.39)) to 

yield an equation for pressure: 

 
@
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@xi

¶

= ¡ @
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·

@(½uiuj)
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¸

: (3.40) 

This elliptic pressure equation can be solved by the methods discussed earlier. It is 

important to note that the numerical approximations of this equation must be 

consistent with the approximations used in discretizing the original momentum and 
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continuity equations. For example, the outer derivative of pressure in Eq. (3.40) comes 

from the continuity equation, while the inner derivative arises from momentum 

equations. These outer and inner derivatives must be discretized using the 

corresponding schemes used for discretizing the continuity and momentum equations, 

respectively. Violation of this constraint may lead to incorrect solution of the continuity 

equation. To maintain consistency, generally the pressure equation is derived directly 

from the discretized momentum and continuity equations rather than approximating 

Equation (3.40). Several methods have been proposed to estimate the pressure field. 

The most widely used methods for incompressible flows, which are relevant to reactor 

engineering applications, are implicit or semi-implicit pressure correction methods. In 

these methods, pressure or pressure correction (or both) equations are derived from 

the discretized momentum and continuity equations, and used to enforce mass 

conservation at each iteration (or time step).  

Here we will only discuss the SIMPLE (Semi-Implicit Pressure Linked Equations) 

algorithm, proposed by Patankar and Spalding (1972), which is one of the most 

common algorithms for the incompressible flow calculations. In this method, 

discretized momentum equations are solved using the guessed pressure field. The 

discretized form of the momentum equations can be written: 

 aPu
¤

iP =
X

anbu
¤

inb + S¤ui
¡ VPi

µ

±p¤

±xi

¶

 (3.41) 

where (±=±xi) indicates a discretized version of spatial derivative and ¤  indicates the 

guess value or the value obtained from the previous iteration. VPi is the volume of CV 

around the node P. The velocity values obtained by solving these equations will not 

satisfy the continuity equation since the correct pressure field will not be known 

beforehand. In order to correct the fields obtained, SIMPLE proposes corrections of the 

form: 

 uiP = u¤iP + u0iP p = p¤ + p0: (3.42) 

The discretized versions of the momentum equations and Equation (3.42) lead to 

discretized equations in terms of velocity and pressure correction: 

 aPu
0

iP =
X

anbu
0

inb ¡ VPi

µ

±p0

±xi

¶

: (3.43) 

The corrected velocities are assumed to satisfy continuity equations. If the corrected 

velocity expressions (Equation (3.42)) are substituted in the discretized continuity 

equation, pressure correction equations can be derived. However, velocity corrections 

as given by Equation (3.43) involve velocity corrections at neighbouring nodes and 

unless some approximations are made, it is not possible to obtain the desired pressure 

correction equations. In SIMPLE algorithm, the first term comprising velocity 

corrections at the neighbouring nodes is neglected to yield a simplified expression for 

velocity corrections: 

 u0iP = ¡VP i
aP

µ

±p0

±xi

¶

: (3.44) 

For a staggered grid arrangement, velocity correction can be related to pressure 

corrections at the two nodes around it: 
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 u0e =

µ

VP
aP±xi

¶

(p0P ¡ p0E): (3.45) 

Substitution of this velocity correction into the discretized form of the continuity 
equation then leads to a pressure correction equation of the following form: 

 aP p
0

P =
X

anbp
0

nb + S¤M  (3.46) 

where SM  is the mass imbalance and ¤  indicates the value obtained from the currently 

available values of variables. The coefficients of this discretized equation, aP  and anb, 

can be obtained with the help of Equation (3.44). Equation (3.46) can be solved to 

obtain the pressure correction field. Once the pressure correction field is known, 

Equation (3.44) can be used to obtain velocity corrections. Equation (3.43) can then be 

used to obtain the corrected pressure and velocity field. The gross assumption of 

neglecting velocity corrections at the neighbouring nodes (first term of Equation 

((3.43)), however, has detrimental consequences on the overall performance of the 

algorithm. The corrected pressure and velocity fields need to be under-relaxed in order 

to maintain the stability of the algorithm. Under-relaxation is a way to control the 

change in the variable values during the iterative processes. Such under-relaxation for 

the pressure and velocity field may considerably reduce the rate of convergence. 

The SIMPLER (SIMPLE Revised) algorithm of Patankar (1980) is an improved version 

of SIMPLE. In this algorithm the discretized continuity equation is used to derive a 

discretized equation for pressure, instead of a pressure correction equation as in 

SIMPLE. Thus the intermediate pressure field is obtained directly without the use of a 

correction. Velocities are, however, still obtained through the velocity corrections of 

SIMPLE. 

Van Doormal and Raithby (1984) proposed another variation of SIMPLE, called 

SIMPLEC (SIMPLE consistent). This method follows the same steps as the SIMPLE 

algorithm, with the difference that the momentum equations are manipulated so that 

the SIMPLEC velocity correction equations omit terms that are less significant than 

those omitted in SIMPLE. 

The PISO algorithm, which stands for Pressure Implicit with Splitting of Operators, of 

Issa (1989) is a pressure-velocity calculation procedure developed originally for non-

iterative computation of unsteady state problems. PISO involves one predictor step and 

two corrector steps and may be seen as an extension of SIMPLE, with a further 

corrector step to enhance it. Details of the derivation of this second correction equation 

may be found in Issa (1986) and Versteeg and Malalasekara (1995). 

It must be noted that there is no single algorithm, which may be identified as the best 

algorithm for all types of problems. The performance of any algorithm depends on the 

flow conditions, the degree of coupling between various equations, the amount of 

under-relaxation used and sometimes, also on details of the numerical technique used 

to solve the algebraic equations (direction of sweeps and so on). 

The solution algorithm for this class of methods can be summarized as follows: 

1. Momentum equations are solved using the guessed (or available from the 

previous iteration) velocity and pressure field. 

2. The pressure correction equation is solved and the velocity field is corrected 

using the derived pressure correction field. For PISO, a second pressure 
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correction equation is solved to correct the pressure and velocities again. For 

SIMPLER, the pressure equation is solved based on the updated velocity field. 

3. Scalar equations (if any) are then solved using the corrected velocity field (for 

example, k and "  equations when solving the k¡ " model of turbulence or the 

enthalpy equation when solving non-isothermal flows). 

4. Fluid properties are updated (if not constants). 

5. Return to step 1 until a converged solution is obtained. 

The algorithms discussed so far can be applied directly when staggered grids are used. 

For the co-located grid, however, some modifications to these algorithms are required 

to avoid oscillations in the pressure field. Although these oscillations can be filtered out 

(van der Wijngaart 1990), to devise a compact pressure correction equation similar to 

those discussed earlier, it is necessary to consider corrections to cell face velocities 

rather that node velocities (where the values are naturally available in co-located grids). 

The corrections to cell face velocities can be derived following the methods discussed 

earlier, the only difference is that the coefficients aP  in Equation (3.44) are not the 

nodal values, as in the staggered arrangement, but are interpolated cell centre values. 

This procedure may appear unnatural compared to direct application of the staggered 

arrangement, however, as already mentioned a co-located grid arrangement is 

preferable for flow simulations in complex geometry. Details of the derivation of 

pressure correction equations and application of SIMPLE-like algorithms to co-located 

grids may be found in Lilek and Peric (1995) and Ferziger and Peric (1995) among 

others. 

3.7 Numerical solution to Algebraic Equations 

Various discretization methods for partial differential equations have been described. 

Through this process, we obtain a system of linear or non-linear algebraic equations 

that need to be solve by some numerical methods. The complexity and size of this set of 

equations depend on the dimensionality and geometry of the physical problem. 

Whether the equations are linear or nonlinear, efficient and robust numerical methods 

are required to solve the system. There are essentially two families of numerical 

methods: direct methods and iterative methods. 

Direct methods of solution of linear algebraic equations are essentially matrix inversion 

algorithms (Gauss elimination, LU decomposition etc. Details of these methods can be 

found in Press et al. 1992). These methods have large memory requirements and are 

computationally expensive for a large number of equations. These methods become 

especially inefficient when solving linearized non-linear equations.  

Iterative methods are based on repeated application of a relatively simple algorithm (a 

Jacobi point by point method or line by line methods) leading to eventual convergence. 

If each iteration is inexpensive and the required number of iterations is small, an 

iterative method will be more efficient than the direct method. For many CFD 

problems, this is usually the case. The other advantage of iterative methods is that only 

non-zero coefficients of the equations need to be stored in core memory. In the next 

section only a brief overview of some of iterative methods is given. 
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3.7.1 Iterative methods 

Iterative methods are the most widely used solution methods in computational fluid 

dynamics. These methods employ a guess-and-correct philosophy which progressively 

improves the guessed solution by repeated application of the discrete equations. Let us 

consider an extremely simple iterative method, the Gauss-Seidel method. The overall 

solution loop for the Gauss-Seidel method may be written as follows: 

1. Guess the discrete values of Á at all grid points in the domain. 

2. Visit each grid point in turn. Update  using 

  (3.47) 

The neighbour values,  and   are required for the update of . These are 

assumed known at prevailing values. Thus, points which have already been visited 

will have recently updated values of  and those that have not will have old values. 

3. Sweep the domain until all grid points are covered. This completes one 

iteration. 

4. Check if an appropriate convergence criterion is met. We may, for example, 

require that the maximum change in the grid-point values of  be less than 0..1 

%. If the criterion is met, stop. Else, go to step 2. 

The iteration procedure described here is not guaranteed to converge to a solution for 

arbitrary combinations of aP , aE  and aW . Convergence of the process is guaranteed for 

linear problems if the Scarborough criterion is satisfied.  

We note that direct methods do not require the Scarborough criterion to be satisfied to 

obtain a solution; we can always obtain a solution to our linear set of equations as long 

as our coefficient matrix is not singular.  

The Gauss-Seidel scheme can be implemented with very little storage. All that is 

required is storage for the discrete values of  at the grid points. The coefficients ,  

,  and  can be computed on the fly if desired, since the entire coefficient matrix for 

the domain is not required when updating the value of  at any grid point. Also, the 

iterative nature of the scheme makes it particularly suitable for non-linear problems. If 

the coefficients depend on , they may be updated using prevailing values of  as the 

iterations proceed. 

Nevertheless, the Gauss-Seidel scheme is rarely used in practice for solving the systems 

encountered in CFD. The rate of convergence of the scheme decreases to unacceptably 

low levels if the system of equations is large. Most of the common CFD software use a 

multigrid method to accelerate the rate of convergence of this scheme and make it 

usable as a practical tool.  

It was developed in the 1960’s in Russia by Fedorenko (1962) and Bakhvalov (1966). 

They applied multigrid for the solution of elliptic boundary-value problems. The 

methodology was further developed and promoted by Brandt (1977, 1981). The idea of 

multigrid is based on the observation that iterative schemes usually eliminate high-

frequency errors in the solution (i.e., oscillations between the grid nodes) very 

effectively. On the other hand, they perform quite poor in reducing low-frequency (i.e., 

global) solution errors. Therefore, after advancing the solution on a given grid, it is 
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transferred to a coarser grid, where the low frequency errors become partly high-

frequency ones and where they are again effectively damped by an iterative solver. The 

procedure is repeated recursively on a sequence of progressively coarser grids, where 

each multigrid level helps to annihilate a certain bandwidth of error frequencies. After 

the coarsest grid is reached, the solution corrections are successively collected and 

interpolated back to the initial fine grid, where the solution is then updated. This 

complete multigrid cycle is repeated until the solution changes less than a given 

threshold. In order to accelerate the convergence even further, it is possible to start the 

multigrid process on a coarse grid, carry out a number of cycle and then to transfer the 

solution to a finer grid, where the multigrid cycles are performed again. The procedure 

is then successively repeated until the finest grid is reached. This methodology is 

known as Full Multigrid (FMG)(Brandt 1981). 

3.8 Boundary and initial conditions  

To allow for a numerical treatment, first of all the domain has to be discretized, as 

explained above. After that, a PDE is solved over the domain with the use of a 

numerical method. An unambiguous solution of the PDEs is only possible provided that 

boundary conditions are specified. For an unsteady problem, in addition to the 

boundary conditions, also boundary conditions in time, i.e. the initial conditions have 

to be specified.  

The numerical solution of the problem is significantly influenced by boundary and 

initial conditions, respectively. Even the best numerical algorithm will not help much, 

when boundary conditions are not specified appropriately, because they influence the 

solution at the boundary and often even deep into the computational domain. In so-

called blind tests, which are contests where numerical modellers calculate flow 

problems without knowledge of the measured data, using the same program, typically 

very different correspondence with reality was achieved, depending on the ability of the 

modeller to set the boundary conditions adequately.  

As for the initial conditions, the situation is somewhat different. Obviously, they have to 

be specified correctly, especially when the temporal evolution of the flow has to be 

correct from the beginning. However, the flow “forgets” the initial condition after some 

time. Often, the initial condition is of secondary importance, because only a final steady 

situation is of interest. In this case it is important to set physically meaningful initial 

conditions, so that the solution does converge, especially for the case of nonlinear flow 

problems. Often it is then meaningful to start from a known initial condition, which can 

for example be a flow at rest. 
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Chapter 4 Particle Image Velocimetry 

4.1 Introduction 

Experimental fluid mechanics has for a long time been used to visualize flow 

phenomenon. An early pioneer was Ludwig Prandtl who used aluminium particles in 

water flumes to describe the flow in a qualitative manner. In line with the rapid 

development of Computational Fluid Dynamics, CFD, the need for new validation tools 

has increased. By combining Prandtls attempt to trace particles and contemporary tools 

in laser and computer technologies a quantitative non intrusive whole field technique, 

so called Particle Image Velocity (PIV) has been developed. The PIV technique has been 

improved and grown in popularity through recent decades with the increase in 

computer capacity and it has rapidly spread in the world being recognized as the most 

advanced whole-flow-field-technique because of its strong merits. Its application 

ranges have been expanding to measure turbulent flow, multiphase flow, internal flow 

of fluid machines, bioengineering, medical engineering, environmental engineering, 

energy engineering, development of new materials, sports science, life science, robotics 

and so on. In this chapter an introduction of the PIV principles and the application of 

this method to two phase bubbly flow are given.  

4.2 Principle of operation 

The working principle of 2D PIV is quite simple and it is schematically described in 

Figure 4.1. The flow is seeded with light reflecting particles (tracer particles) which 

accurately follow the fluid motion and do not alter the fluid properties or flow 

characteristics. The tracer particles are illuminated by means of a thin light sheet 

generated from a pulsed light source (usually a double-head pulsed laser). The light 

scattered by them is recorded “via a high quality lens” either on a single frame (e.g. on a 

high-resolution digital or film camera) or on two separate frames on special cross-

correlation digital cameras. Double frame mode is more commonly used and the 

remaining part of this introduction will deal with this acquisition method. The output 

of the digital sensor is transferred to the memory of a computer directly. 

For the evaluation two subsequent images of the flow are divided into small subareas 

called “interrogation areas”. It is assumed that all particles within one interrogation 

area have moved homogeneously between the two illuminations. The volume-averaged 

displacement sD(x; t) of the particle images between the interrogation area in the first 

image and the interrogation area in the second image is determined by means of a 

cross-correlation analysis.  
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Figure 4.1: Experimental arrangement for PIV 

When the interrogation areas contain a sufficient number of particle images, the cross-

correlation consists of a dominant correlation peak embedded in a background of noise 

peaks, as illustrated in Figure 4.2. 

The location of the tall peak, referred to as the displacement-correlation peak, 

corresponds to the particle-image displacement. The projection of the vector of the 

velocity in the interrogation area (two-component velocity vector), , is then 

determined by dividing the measured displacement by the image magnification  and 

the time delay : 

  (4.1) 

The process of interrogation is repeated for all interrogation areas of the PIV recording. 

 
Figure 4.2: Graphical representation of the PIV process on a single interrogation area 

4.3 Basic elements 

4.3.1 Seeding 

Seeding the flow with light reflecting particles is necessary in order to image the flow 

field. The tracer particles form the basis of the velocity measurement in PIV. The 

particles should be as small as possible so that they are able to closely follow the flow. 

However on the other hand, they may not be too small, because then they will not 

scatter enough light, and hence produce too weak images. Any particle that follows the 

flow satisfactorily and scatters enough light to be captured by the camera can be used. 

The number of particles in the flow is of importance in obtaining a good signal peak in 
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the cross-correlation. A good rule of thumb is that around ten particles should be 

correlated for each measured velocity vector. 

4.3.2 Density of tracer particle images 

Qualitatively three different types of image density can be distinguished (Adrian 1991). 

In the case of low image density, the images of individual particles can be detected and 

images corresponding to the same particle originating from different illuminations can 

be identified. Low image density requires tracking methods for evaluation. Therefore, 

this situation is referred to as “Particle Tracking Velocimetry”, abbreviated “PTV”. In 

the case of medium image density, the images of individual particles can be detected as 

well. However, it is no longer possible to identify image pairs by visual inspection of the 

recording. Medium image density is required to apply the standard statistical PIV 

evaluation techniques. In the case of high image density , it is not even possible to 

detect individual images as they overlap in most cases and form speckles. This situation 

is called “Laser Speckle Velocimetry” (LSV), a term which has been used at the 

beginning of the nineteen-eighties for the medium image density case as well, as the 

(optical) evaluation techniques were quite similar for both situations. 

The working range of PIV can be distinguished from that of PTV and LSV through two 

parameters: the source density Ns and the image density NI (Westerweel 1993; Adrian 

& Yao 1984). The source density indicates whether the image consists of individual 

particle images (i.e.Ns¿ 1), or that particle images overlap (i.e.NsÀ 1). The source 

density is defined as follows: 

 NS = C¢z0
¼d2

¿

4M 2
0

 (4.2) 

where C is the trace particle concentration [m-3], ¢z0 [m] the light-sheet thickness, M0 

the image magnification and d¿ [m] the particle image size.  

The image density is the average number of particle images per interrogation area. The 

image density is given as: 

 NI = C¢z0
¼D2

I

M2
0

 (4.3) 

where DI  [m] is the interrogation size. PIV, PTV, LSV each have their own working 

ranges, which are given in Table 2. 

Table 2: Working ranges for optical measurement techniques 

PTV PIV LSV 

Ns¿ 1, NI ¿ 1 Ns¿ 1, NI À 1 NsÀ 1, NI À 1 

 

4.3.3 Illumination  

The illumination system of a PIV is always composed of light source and optics to shape 

the light source beam into a planar sheet to illuminate the flow field. 

Light source  
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The particle tracers need to be illuminated and observed twice within the time 

separation. The first requirement for a light source suited for PIV experiments is a 

short duration of illumination ±t. A practical criterion for the choice of the maximum 

duration of each illumination pulse is that particle images do not appear as streaks but 

rather as a circular dots. This is obtained when the (imaged) particle displacement 

within the pulse duration is significantly smaller than the size of the particle image 

itself: 

 ±t ¿ d¿

vM
: (4.4) 

The second requirement is that the illuminated particles are distributed within a thin 

sheet such that they can be imaged in focus and their position in depth is dictated by 

the laser sheet. A third requirement is that the intensity of the light source must allow 

the scattered light from the seeding particles to be detected by digital imaging devices. 

The required pulse energy E is proportional to the linear dimension L of the area of 

interest.  

Lasers are widely used in PIV, because of their ability to emit monochromatic light with 

high energy density which can easily be bundled into thin light sheet for illuminating 

and recording tracer particles without chromatic aberrations.  

Double-pulsed illumination is the current norm in PIV. The intensity of illumination 

required to form visible images of micrometer-sized particles usually requires the use 

of pulsed solid-state laser sources emitting pulses with energy between 5 and 500 mJ. 

The energy needed is closely coupled with the scattering properties of the particles. 

Currently, solid-state Nd:YAG (Neodymium Yttrium Aluminum Garnet)(Figure 4.3) 

laser using frequency-doubling crystals to produce pulses at 532 nm are the most used. 

It produces pulse energies ranging between 10mJ and 1J. With its very short pulse 

duration (5-15 ns) this instrument is practically suited to illuminate flows without any 

limit on the flow speed. 

The standard architecture of a PIV laser consists of two separate lasers firing 

independently at the required pulse separation. Therefore the time separation can be 

freely optimized for the experimental condition, primarily the flow speed and the 

imaging magnification. 

 

 
Figure 4.3: Double cavity Nd:YAG PIV-laser 
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Light sheet formation optics 

The circular-cross-section beam delivery by the light source is shaped into a thin sheet 

by means of cylindrical and spherical lenses. Common arrangements are illustrate in 

Figure 4.4. 

 
Figure 4.4: PIV optical configuration 

4.3.4 Imaging 

A schematic of the PIV optical configuration is shown in Figure 4.4. The light sheet has 

a finite thickness ¢z0 and is assumed to be uniform along the x and y directions. An 

image of the tracer particles in the light sheet is formed by means of a lens on the 

surface of an image sensor (usually a CCD or CMOS sensor array). We assume that the 

system consists of an aberration-free, thin circular lens, characterizes by its focal length 

f , aperture number f# (given by the focal length divided by the aperture diameter ), 

and image magnification M0, defined as the ratio of the image distance Z0 and object 

distance z0. The diameter d¿ of the image of a small tracer particle with diameter dp in 

the light sheet (with wavelength ¸) is given by: 

 d¿ »= (d2 +M2
0d

2
p)

1=2 (4.5) 

with 

 ds = 2:44(1 +M0)f
#¸ (4.6) 

where ds is the diffraction-limited spot diameter and M0dp the geometric image 

diameter. The diffraction-limited spot results from the finite resolution for optical 

system due to diffraction effects; for a point source (dp ! 0) or distant object M0 ! 0 

the light captured by the objective is spread over a small spot also known as the Airy 

disc, with diameter ds, surrounded by diffraction rings of decreasing brightness (Raffel 

et al. 1998). For all practical porpoises in PIV, the light distribution in the Airy disc is 

well approximated by a Gaussian intensity with an e2 diameter of . The expression 

in (4.5) would be exact when the diffraction-limited spot and geometrical-optics 

particle image follow a Gaussian intensity distribution. 
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Figure 4.5: Schematic representation of imaging set-up in PIV 

The particle-image diameter follows (4.5) for particle image in focus, i.e., when the light 

sheet thickness  is smaller than the focal depth  of the optical system (Figure 4.5) 

given by (Adrian 1991) 

  (4.7) 

4.3.5 Solid-state cameras 

The popular trend nowadays is to use solid-state cameras, called digital cameras, as 

image recording media. These cameras record images on an electronic image sensor. 

Recent advances in electronic imaging have provided an attractive alternative to the 

photographic methods of PIV recording. Immediate image availability and thus 

feedback during recording as well as a complete avoidance of photochemical processing 

are a few of the apparent advantages brought about with electronic imaging. 

Solid-state image sensors capture two-dimensional images on a planar, rectangular 

array of sensors, each sensor converting light energy to electrical energy and, 

ultimately, a digital word. Each sensor and its associated storage or electronics is called 

a pixel. For PIV, square pixels are preferred. The most common solid state sensor used 

in PIV are Charge Coupled Devices, or CCD, and Complementary Metaloxide 

Semiconductor (CMOS) devices.  

4.3.6 Digital image processing 

Digital image processing encompasses all computer operation on digital images. For a 

full account of all possible methods one is referred to the many text books that have 

been written on this subject (Gonzalez & Woods 2008, Pratt 2001, Castleman 1996). In 

general two approaches are distinguished in image processing (Tropea et al. 2007): 

1. image restoration attempts to repair undesirable effects (e.g., perspective 

distortion, image blur due to defocusing); 

2. image enhancement accentuates certain image feature (e.g., improvement of 

image contras, suppression of background illumination). 



PARTICLE IMAGE VELOCIMETRY 

 

54 
 

54 54 

The interrogation analysis of PIV images by means of spatial correlation is based on the 

requirement that the image statistical properties are homogeneous, i.e., the image 

mean standard deviation are spatially uniform and the spatial correlation is a function 

of the difference of two spatial location. This implies: 

1. homogeneous seeding; 

2. uniform illumination; 

3. uniform image background. 

In many practical situation these requirements may not be fully met and some of these 

non-ideal aspects in PIV images can be compensated by means of image-processing 

methods. 

4.4 Digital PIV evaluation 

As mentioned above, the essential principle of PIV is to illuminate a seeded flow-field 

with two pulses of laser light and record the particle images. Traditionally, both 

exposures have been recorded on a single frame, creating a "double exposure." The 

double exposed frame is then processed using auto-correlation techniques. However, 

this leads to a directional ambiguity arising because the double exposed frame contains 

no information about which set of particle images were recorded from the first laser 

pulse, and which from the second. Image shifting using a rotating or spinning mirror 

can be used to overcome this ambiguity, but does increase experimental complexity. 

A better alternative when using digital cameras is to record each of the two exposures 

on separate frames, followed by analysis based on cross-correlation of the two frames. 

Recording on separate frames preserves the time sequence of the pulses so no 

directional ambiguity occurs. Also, cross-correlation processing provides improved 

dynamic range for velocity compared with auto-correlation of double exposures. 

4.4.1 Cross-correlation 

The aim of the cross-correlation is to find the distance that the particle pattern has 

moved during the inter image time and translate this into a velocity measure. 

From a signal (Figure 4.6) processing point of view, the first image may be considered 

the input to a system whose output produces the second image of the pair. The system’s 

transfer function, , converts the input image I to the output image I’ and is comprised 

of the displacement function  and an additive noise process, . The function of 

interest is a shift by the vector  as it is responsible for displacing the particle images 

from one image to the next. 
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Figure 4.6: Idealize linear digital signal processing model describing the functional relationship between 

two successively recorded particle image frames (Reffael et al. 1998) 

This function can be described, for instance, by a convolution with . The 

additive noise, , models effects due to recording noise and three-dimensional flow 

among other things. If both  and uk are known, it should be possible to use them as 

transfer function for the input image I to produce the output image I'. With both 

images I and I' known the aim is to estimate the displacement field  while excluding 

the effects of the noise process . The fact that the signals (i.e. images) are not 

continuous, that is, the dark background cannot provided any displacement 

information, makes it necessary to estimate the displacement field  using a statistical 

approach based on localized interrogation windows.  

Rather than estimate the displacement field  analytically the method of choice is to 

locally find the best match between the images in a statistical sense. This is 

accomplished through the use of the discrete cross-correlation function, whose integral 

formulation is given by: 

  (4.8) 

The variables I and I' are the sample (e.g. intensity values) as extracted from the images 

where I' is larger than the template I. Essentially the template I is linearly "shifted" 

around in the sample I' without extending over edge of I'. For each choice of sample 

shift (x,y), the sum of the products of all overlapping pixel intensities produces one 

cross-correlation value . By applying this operation for a range of shifts 

 a correlation plane the size of  is 

formed. This is shown graphically in Figure 4.7.  

For shift values at which the samples' particle image align each other, the sum of the 

product of pixel intensities will be larger than elsewhere, resulting in a high cross-

correlation value  at this position. Essentially cross-correlation function statistically 

measures the degree of match between the two samples for a given shift. The highest 

value in the correlation plane can then used as a direct estimate of the particle image 

displacement. 

4.4.2 Cross-correlation function via finite Fourier transforms 

The direct method to compute the cross-correlation quickly becomes very heavy to 

apply when larger data-sets are to be analyzed. A more efficient way to estimate cross-

correlation functions is use fast Fourier transforms (FFTs). This reduces the 
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computation from  operations to  operations in the case of a two-

dimensional correlation. When Fourier transforms are used one takes advantage of the 

correlation theorem (see e.g. Bendat & Piersol 1986) which states that the cross-

correlation of two functions is equivalent to a complex conjugate multiplication of their 

Fourier transforms: 

  (4.9) 

Where  and  are the Fourier transforms of  and , respectively and  represents 

the complex conjugate of . 

In practice two real-to-complex, two-dimensional FFT's and one complex-to-real 

inverse, two dimensional FFT are needed each of which requires approximatively half 

of the computation time of standard FFT's (Figure 4.7). 

 
Figure 4.7: Implementation of cross-correlation using fast Fourier transforms 

Using FFTs means treating the data as if it is periodic. The periodicity can give rise to 

aliasing if the particles have moved a distance larger than half the size of the 

interrogation area. The solution to aliasing problems is to either increase the 

interrogation area size or reduce the inter image time . A maybe more serious 

problem with the FFTs is that bias errors occur if these are not accounted for. Due to 

the finite size of the interrogation areas the overlap of the images becomes smaller with 

increasing displacement. This bias results in an underestimation of the peak magnitude 

for all displacements other than zero. A weighting function should be applied to the 

cross-correlation function to avoid this bias. This weighting function is found by 

convoluting the sample weighting functions (which should be equal to one for all points 

in the image and zero elsewhere). The bias is removed by dividing the correlation 

function with the effective weighting function which will have a pyramid shape. 

4.4.3 Advanced digital interrogation techniques 

The data yield in the interrogation process can be significantly increased by using a 

window offset equal to the local integer displacement in a second interrogation pass 

(Westerweel et al., 1997). By offsetting the interrogation windows the fraction of 

matched particles images to unmatched particle images is increased, thereby increasing 

the signal-to-noise ration of the correlation peak. 

4.4.4 Peak detection and subpixel interpolation 

When the cross-correlation has been performed a measure of the displacement is found 

by detecting the location of the highest correlation peak. Just detecting the peak will 
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result in an uncertainty of ±1/2 pixel in the peak location. However, the accuracy can be 

increased substantially by curve fitting and interpolation. 

The use of curve fitting on the correlation peak to obtain subpixel resolution was the 

critical step that allowed for a digital implementation of PIV. The measurement 

resolution of displacement estimations changed from ± 1/2 pixel to 1/100th of a pixel 

upon the implementation of a sub-pixel estimator. Generally, the subpixel fit is taken 

over the primary correlation value and the neighbouring pixel on either side. 

In commercial codes, the subpixel location of the correlation peak in both the x- and y-

directions is determined using the five central points of the correlation peak (Fore 

2010); the four adjacent points in the x- and y-directions and the central correlation 

peak value. Although many sub-pixel estimators are available the three most commonly 

used are the centroid estimator, the parabolic estimator and the Gaussian estimator 

(Willert & Gharib 1991).  

When the maximum peak has been detected at [ ], the neighbouring values are used 

to fit a function to the peak. In the case of a Gaussian peak fit when the peak is assumed 

to have the shape , the displacement are found by: 

  (4.10) 

Westerweel (1993) stated that the Gaussian estimator is superior to both the centroid 

and parabolic estimators as it produces the lowest measurement errors of the three 

sub-pixel estimators examined. The Gaussian estimator is generally accepted as being 

the standard estimator when processing with the standard cross-correlation 

algorithms.  

4.4.5 Measurement accuracy and valid vector detection probability 

The measurement accuracy of the DPIV processing algorithm can be defined by 

three metrics: the valid vector detection (VVD) probability, biases, and RMS errors. 

The most crucial factor in designing a digital algorithm is the VVD probability 

(Adrian 2005) which is a direct reflection of the signal strength. The VVD 

probability should be on the order of 90-100% to provide an accurate measurement 

(Westerweel et al. 2005). The major factors responsible for invalid measurement, so-

called outliers or spurious vectors, are an insufficient number of particles being 

present in the interrogation areas, strong velocity gradients and strong three-

dimensional flow motions. It is inherent to their nature that the outliers usually appear 

randomly both in direction and in amplitude. Usually these errors are larger than one 

pixel and are therefore easy to detect. The erroneous vectors are removed through the 

process of validation (see Section 4.5.1).  

Provided the measurement is valid, the accuracy is then described by bias and RMS 

errors. Given a unique displacement applied to all particles, the particle displacements 

obtained with PIV at various interrogation locations can be different. Suppose that the 

actual particle displacement is  and  displacements  ( = 1, 2, 3... ) have been 
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evaluated. The difference between the actual displacement  and the mean of these 

displacements, 

  (4.11) 

is the means-bias error  

  (4.12) 

The random error is used to determine the deviation of measured displacements for 

each realization from the mean measured displacement. This is termed the root mean 

square (RMS) error or σ, and is defined as: 

  (4.13) 

which reflects the deviation of the particle displacements from their mean. 

The measurement RMS is a reflection of the noise floor, which is clearly related to the 

image noise and signal density. Several sources of bias error can exist within the 

measurement. 

The loss of correlation bias is a result of the decreased energy density at higher image 

shifts. As a result, the correlation peak is biased to lower image displacements (Raffel at 

al. 1998). Peak-locking is a discretization error in which measurements are biased 

toward integer pixel values (Raffel at al. 1998). The bias errors (‘peak locking’) decrease 

with increasing diameter of the particle images, whereas the random errors increase 

proportionally to the particle-image diameter. Consequently, there exists an optimum 

for which the total error is minimal. Typical values for the optimal particle-image 

diameter is 2-4 pixels, with an error of 0.10 to 0.15 pixels. 

Fluid acceleration can introduce a bias due to the assumption of constant velocity 

between image pairs. Similarly, shear and rotation within the velocity field can lead to 

large biases due to the assumption of constant displacement over the window domain. 

Iterative correlation methods described above have shown substantial capabilities to 

minimize these errors.  

While erroneous vectors and RMS are relatively easy to detect through a visual 

inspection of the vector fields, these bias errors can be more subtle. Therefore, it is 

important to quantify these errors and to remove them when possible. 

4.4.6 Iterative correlation methods 

As the displacement between regions increases, the number of particle images that 

contribute to the correlation peak decreases and is referred to as the out-of-pattern 

effect. Concerns were raised that the loss of signal would increase measurement errors 

and therefore investigations proceeded to minimise this effect. One solution to 

increase measurement accuracy is through the use of iterative correlation methods. 

One of the simplest iterative methods is discrete window shifting (DWS) (Westerweel et 

al. 1997). This method estimates the shift required by the first region by estimating the 

displacement from an initial cross-correlation. After the shift, a second cross-
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correlation provides a sub-pixel displacement where the out-of-pattern effect has less of 

an influence on measurements. 

An extension to the DWS is continuous window shifting. After an initial displacement 

estimation this process uses bi-linear image interpolation before a second cross-

correlation provides the sub-pixel displacement. Advances in this technique have lead 

to the development of higher order interpolation functions being developed including 

the sinc function (Lourenco & Krothapalli 1995 and Roesgen 2003) and a Gaussian 

function (Nobach et al. 2004) and also the Particle Image Distortion (PID) technique 

(Huang et al. 1993a). This process manipulates the interrogation region shape before a 

final displacement estimate is determined. 

Although these methods have been shown to have a substantially better estimate 

over the standard DWO, they are substantially more computationally expensive and 

are heavily dependent upon the interpolation scheme used to return to a rectilinear 

grid. 

4.5 Post-processing data 

4.5.1 Data validation.  

After automatic evaluation of the PIV recordings a certain number of incorrectly 

velocity vectors (so-called outliers) can usually be found by visual inspection of the raw 

data. These vectors deviate unphysically in magnitude and direction from nearby 

"valid" vectors, and are often the result of insufficient particle images, large in-plane or 

out-plane displacements, or high spatial gradients of the velocity; other causes can be a 

strong background image or light-sheet inhomogeneity. In practice the number of 

spurious vectors in a PIV data set is relative low (typically less than 5%). However, their 

occurrence is more or less inevitable.  

Methods to reduce or remove the outliers have been discussed in many publications 

(Keane & Adrian 1990, Willert 1992, Huang et al. 1993a, 1993b, Westerweel 1993) 

Generally, PIV measurement data are subjected to a post-interrogation procedure in 

which spurious vectors are identified and subsequently discarded from the data set. 

For automated validation there are generally two approaches, which are based on: 

1. correlation signal quality; 

2. local coherence of the vector map, i.e., a comparison of each vector with 

measurement displacements in adjacent interrogation regions. 

In general methods based on correlation signal quality are not very robust and the 

evaluation based on coherence appears to be much more efficient. 

The effectiveness of several validation techniques based on local coherence of the vector 

map has previously been discussed by Westerweel (1994). Three different tests, based 

on the global-mean, the local-mean and the local-median estimators have been 

compared. Westerweel (1994) found that a local median test is the most effective. 

4.5.2 Replacement of incorrect data. 

After having validated all PIV data it is possible to fill in the missing data using, for 

instance, bilinear interpolation. According to Westerweel (1994) the probability that 
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there is another spurious vector in the direct neighborhood of a spurious vector is given 

by a binomial distribution. For istance if the data contains 5% spurious vectors, more 

than 80% of the data can be recovered by a straight bilinear interpolation from the four 

valid neighboring vectors. The remaining missing data can be estimated by using some 

sort of weighted average of the surrounding data, such as the adaptive Gaussian 

window technique proposed by Agüi & Jiménes (1987).  

Some post-processing methods also required smoothing of the data. The reason is that 

the experimental data are affected by noise in contrast to numerical data. A simple 

convolution of data with a 2 x 2, 3 x 3 or larger smoothing karnel (with equal weights) is 

generally sufficient for this purpose. 

4.6 Multi phase flows 

Initially applied only to single phase flows, PIV has been adapted to measure the in-

plane velocity field of multiphase flows. There are many different implementations of 

PIV for two-phase flows, which have been reviewed extensively by Brücker (2000), 

Deen et al. (2002) and Seol and Socolovsky (2008), among others. 

The difficulty in dealing with multiphase flows lies in the fact that the bubble phase and 

liquid phase exist together in the flow. Thus, the challenge in applying PIV to 

multiphase flows is in separating the tracer particles tracking the entrained continuous 

phase from the dispersed phase particles, droplets, or bubbles. There are several 

methods available to discriminate and separate the information of the phases present 

in the flow, which have been reviewed by Brücker (2000). 

Broadly speaking, these methods can be classified into the following three main groups:  

• Optical method: two separate images are generated for bubbles and tracer 

particles by means of optical filters, two-camera system and fluorescent tracer 

particles (Sridhar et al. 1991; Hilgers et al. 1995; Deen 2001);  

• Image processing techniques: the phases are separated into two images before 

PIV analysis (Gui & Merzkirch 1996, Gui et al. 1997; Delnoij et al. 1999, Brücker 

2000, Grota & Strauß 2000, Kiger & Pan 2000, Deen et al. 2002) or after 

processing the mixed-fluid PIV images (Seol et al. 2007);  

• Ensemble correlation technique: the phases are discriminated on basis of the 

slip velocity between the bubbles and the surrounding liquid (Delnoij et al. 

1999, Deen 2001).  

Although the optical separation methods have proven to be the most reliable (Deen 

2001, Bröder & Sommerfeld 2002), it is desired to have a cheaper and easier method to 

avoid the complex and expensive setup for the optical separation methods.  

In this thesis, a simple, inexpensive method of phase separation is tested. This method 

uses standard tools available in most image analysis software and PIV software. 

Starting from an original image which contains both phases, by means of image 

processing techniques, it’s possible to obtain a mask in which seed particles and 

bubbles are separated. This is attained by taking advantage of the difference in size and 

intensity between bubbles and trace particles. When this mask is subtracted from the 

raw image ones obtains an image that contains only trace particles. Then subtracting 
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the trace particle image from the original image an image of bubbles is obtained. A 

more detailed description of the method is presented in Chapter 5. 
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Chapter 5 Flotation Modelling 

5.1 Introduction 

Froth flotation is a highly versatile method for physically separating particles based on 

differences in the ability of air bubbles to selectively adhere to specific mineral surfaces 

in a mineral/water slurry. The particles with attached air bubbles are then carried to 

the surface and removed, while the particles that remain completely wetted stay in the 

liquid phase. Froth flotation has been used in the mineral industry since early 19th 

century and it has been proved to be a cost effective beneficiation process for several 

minerals. Since then, there has been a steady progress and development in flotation 

process and nowadays it is widely used throughout the mining industry as well as the 

chemical, and petroleum industries.  

Although froth flotation is the dominating mineral beneficiation technique, its high 

process efficiency is often limited to a narrow particle size range of approximately 10–

100 µm(Tao 2005). This is in contrast with the progressive reduction of grade mineral 

deposits that leads to the production of ultrafine particles in order to liberate mineral 

particles from the ore. Therefore, to exploit economically complex low-grade mineral 

deposits, it is crucial improving the flotation efficiency of fine particles.  

The problem (very old) of processing by flotation, the fine and ultrafine mineral 

particles continues to be one of the major technical challenges in the area of mineral 

processing (Trahar 1981, Sivamohan, 1990, Collins & Read 1971). 

In this chapter a review of the principle of the flotation process and its modelling are 

done in order to highlight the reasons for the low recovery of fine particles. Then the 

potentialities offered by the use of waterjets to fine particles flotation are presented.  

5.2 Principle of flotation 

Flotation is a physico-chemical separation process that utilizes the difference in surface 

properties of the valuable minerals and the unwanted gangue minerals. In general, the 

substances to be separated are crushed until their individual components are present 

"liberated". This mixture, the feed, is suspended in an aqueous, not too thick pulp (or 

gangue) which has to be properly stirred in order to maintain the state of suspension. 

To selectively separate the valuable component from the others (the tailings), gas 

bubbles are dispersed to which the valuable component is selectively attached whereas 

the other components remain in the pulp. The attachment of particles to gas bubbles 

result in aggregates of lower density which rise (float) to the pulp surface. Thus, 

basically, a separation takes place according to density, but the separating 

characteristic is the attachability to gas bubbles. At the pulp surface the rising bubbles 

form a froth layers in which the particles attached to them gather. This froth layer can 

be removed mechanically from the surface (Shulze 1984).  
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The process of material being recovered by flotation from the pulp comprise three 

mechanisms: 

1. selective attachment to air bubbles (or "true flotation"); 

2. entrainment in the water which passes through the froth; 

3. physical entrapment between particles in the froth attaches to air bubbles 

(often referred to as "aggregation"). 

Although the degree of entrainment and the physical entrapment also influence the 

separation efficiency between the valuable mineral and gangue, true flotation is the 

dominant mechanism for the recovery. So we will focus only on this mechanism. 

As already mentioned, in true flotation the mineral particles can only attach to the air 

bubbles if they are hydrophobic. Particles can either be naturally hydrophobic, or the 

hydrophobicity can be induced by chemical treatments. Naturally hydrophobic 

materials include hydrocarbons, and non-polar solids such as elemental sulfur. Coal is 

a good example of a material that is typically naturally hydrophobic, because it is 

mostly composed of hydrocarbons. 

The attachment of the bubbles to the surface is determined by the interfacial energies 

between the solid, liquid, and gas phases. This is determined by the Young/Dupre 

Equation, 

  (5.1) 

where  is the surface energy of the liquid/vapor interface,  is the surface energy 

of the solid/vapour interface,  is the surface energy of the solid/liquid interface, and 

 is the “contact angle”, the angle formed at the junction between vapor, solid, and 

liquid phases, as shown in Figure 5.1. If the contact angle is very small, then the bubble 

does not attach to the surface, while a very large contact angle results in very strong 

bubble attachment. A contact angle near 90° is sufficient for effective froth flotation in 

most cases. 

 
Figure 5.1: Contact angle between and air bubble and a solid surface immersed in liquid. 

5.3 Flotation kinetics and modelling 

Flotation kinetics studies the variation of floated mineral mass according to flotation 

time. If all operational variables are kept constant, the algebraic relationship between 

the parameters mentioned above is a flotation rate equation. By analogy with chemical 

kinetics, the equation representing flotation kinetics may be expressed by the following 

equation (Derjaguin & Dukhin 1961, Sutherland 1948): 

 (5.2) 



FLOTATION MODELLING 

 

64 
 

64 64 

The model directly predicts the change in particle concentration, , with respect to 

time, , as a function of a certain concentration(s), , and rate constant(s), . The 

negative sign indicates that the concentration is diminishing due to the loss of particles 

being floated. The exponents  and  signify the order of the process. 

Most researchers believe that flotation is a first order process and a function of only the 

particle concentration and a rate constant (Sutherland 1948, Jameson et al. 1977): 

  (5.3) 

where  is the flotation rate constant and  is the flotation time. 

The rate constant, , within this equation conveys how rapidly one species floats. A 

high rate constant indicates that certain species floats quickly while a low rate constant 

indicates slow flotation.  

If the initial number of particles is  at , Equation (5.3) can be integrated to yield 

  (5.4) 

The recovery of the particles, , is defined by 

  (5.5) 

In terms of the recovery, Equation (5.5) becomes: 

  (5.6) 

where  represents the fractional recovery of the floatable species after time ;  is 

the maximum theoretical flotation recovery, i.e. after infinite time; and  is mean 

residence time of particles in the cell. 

For the case of a perfectly mixed reactor design, fractional recovery derived from 

Equation (5.3), is given by:  

  (5.7) 

This model has been typically used for calculation of the fractional recovery of particles 

in the pulp phase of a single flotation cell (Lynch 1981). 

In a simple batch flotation case where mixing is not involved (Jameson et al. 1977, Yoon 

& Mao 1996), the flotation rate constant is 

  (5.8) 

where  is the bubble diameter,  is the bubble–particle collection efficiency and  is 

the superficial gas velocity, defined as volumetric gas flow rate divided by the cross-

sectional area of the flotation column. 

According to Sutherland, flotation rate can be expressed as a product of collision 

frequency between particles and bubbles ( ) and probability of flotation ( ) as 

presented here (Sutherland 1948): 

  (5.9) 

 is related to the particle–bubble collision frequency dependent on the size of the 

particles and bubbles, and hydrodynamics of the flotation pulp. 
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As previously mentioned, the capture of a particle and a bubble is generally divided into 

three separate process (Derjaguin & Dukhin 1961): collision, attachment and 

detachment.  

The bubble–particle collection or capture efficiency, , can be defined as a product of 

bubble–particle collision, , attachment, , and stability, , efficiencies, since these 

processes, all of which are probabilities, are independent of each other. This dissection 

was formally proposed by Derjaguin and Dukhin (1961): 

  (5.10) 

The probability of attachment depends mostly on the surface characteristics of the 

mineral, the degree of collector adsorption on the mineral surface, and the induction 

time required for attaching the hydrophobic particle to the bubble. The probability of a 

particle remaining attached to the bubble depends on the turbulence level in the cell as 

well as size of particle.  

Numerous models have been proposed for the evaluation of the collision, attachment 

and stability efficiencies. Some of these models will be presented later on. 

 

Assuming independence of particle velocities from fluid flow, Abrahamson derived a 

turbulent collision model whose simplistic form is presented here (Abrahamson 1975): 

  (5.11) 

where  is a number of particles,  is a number of bubbles,  is collision diameter 

or sum of radii of one bubble and one particle,  is the RMS velocity of particles, and  

is the RMS velocity of bubbles. 

Based on work of Abrahamson (1975), Schubert and Bischofberger (1979) have 

proposed the following equation for the number of particle–bubble collisions per unit 

time and volume in mineral flotation where inertial effects are the primary cause of 

collisions: 

  (5.12) 

where  is the particle diameter and   is the bubble diameter,  is the turbulent 

(rms) fluctuating velocity of the particle relative to the fluid, and  is the turbulent 

(rms) fluctuating velocity of the bubble relative to the fluid. In typical flotation 

processes, these velocities ( ) are a function of the local turbulent 

dissipation rate as follows (Schubert & Bischofberger 1979): 

  (5.13) 

where  is the turbulent dissipation rate per unit mass,  is the kinematic viscosity,  is 

the fluid density, and  is the density of the particle (p) or bubble (b). The condition for 

use of the above model with independent velocities is that the diameter of the particle 

or bubble must be greater than the critical diameter,  in the following equation: 

  (5.14) 
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where  is the fluid viscosity and  is the mean fluid velocity deviation. Otherwise, the 

collision equation by Saffman and Turner (1956) is applicable for fine particles and 

bubbles confined within eddies in low turbulent dissipation regions as follows: 

  (5.15) 

The most recent general turbulent flotation rate model was given by Pyke, Fornasiero, 

and Ralston (2003): 

  (5.16) 

In Equation (5.16), , , , are the efficiencies of collision, attachment and stability 

respectively. The remainder of the equation is the collision frequency. The true number 

of collisions, that may or may not become attached, results from the combination of the 

collision efficiency and collision frequency. The collision frequency shown in Equation 

(5.16) is a modified equation given by Abrahamson (1975) that is divided by the number 

density of particles.  

Equation (5.16) provides a model of the flotation process based upon turbulent 

characteristics of the flow as well as hydrodynamic forces. What the model does not 

account for is the effects of surface forces. 

5.3.1 Bubble-particle collision 

The first step involved in flotation is the process of particle–bubble collision during 

which a particle collides with a bubble as a result of a sufficiently close encounter. This 

process is primarily determined by hydrodynamics of the flotation environment. 

Among the three successive subprocesses of particle-bubble interaction, the collision 

subprocess has been investigated the most extensively and numerous models have been 

proposed for the evaluation of the collision efficiency. Due to the complexity of the 

collision subprocess, a simplified picture of the system has frequently been adopted. As 

a result, though all of these  models are based on a hydrodynamic analysis of the 

particle-bubble system, they are different because of the various simplifications and 

assumptions made in each case. A detailed review of bubble–particle collision models 

has been given by Dai et al. (2000). 

The Stokes number ( ) and the bubble Reynolds number ( ) are critical in defining 

the flow parameters that characterize .  

The Stokes number represents a ratio of inertia to drag forces and is defined as 

  (5.17) 

where  is the bubble rise velocity ,  is the dynamic viscosity of the fluid,  is the 

bubble diameter, and  and  are the density and the diameter of the particle, 

respectively.  

This dimensionless number can be used to characterize the shape of the particle 

trajectory in the fluid flow and the interactions between the particle and bubble 

surfaces (Ralston et al., 2002). For conditions where: 
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• : inertial forces have practically no effect on the motion of the particles, 

which can be considered as inertia-free. 

• : ‘‘negative” inertial forces can impede particle deposition on a bubble 

(Dai et al. 1998). 

• : an inelastic inertial impact of particles on a bubble surface is 

characteristic of this regime and a major portion of the kinetic energy of the 

particles is lost both during the approach to the bubble and at the impact itself, 

when a liquid layer is formed between the surfaces of a particle and a bubble. 

• : the trajectory of a particle deviates very slightly from a straight line and 

the energy of the particle, as it approaches the bubble and on collision, changes 

so little that the impact can be considered as being quasi-elastic, i.e. the particle 

bounces away from the bubble surface at almost the same speed as it 

approaches the bubble surface. 

The Reynolds number is the ratio of the inertial forces to the viscous forces of the fluid 

and is defined as: 

  (5.18) 

where  is the density of the fluid. 

The first model of bubble–particle collision was proposed by Sutherland (1949) for the 

condition of potential flow. In this model, Sutherland assumed that firstly, particle 

inertia can be neglected and thus particles follow the streamlines of the fluid, so that 

the particle trajectories and thus the collision efficiency can be determined from the 

streamlines of the fluid; secondly, the bubble surface is completely unretarded, or 

mobile; and thirdly the fluid flow regime at the bubble surface is potential, i.e. the 

Reynolds number of the bubble is very large ( ). 

Using the Ramsey equation for the streamlines of a fluid moving past a sphere, 

Sutherland derived an equation for the distance . of a critical stream-line from the 

line of motion of the bubble (Figure 5.2).  

 
Figure 5.2: Schematic representation of the grazing trajectory of a particle around a bubble (Dai et al. 

2000) 
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This critical streamline is defined as the fluid streamline where a particle, moving along 

it, just touches the bubble surface. The particle trajectory which coincides with this 

critical streamline is also called the grazing trajectory, or limiting trajectory, and  is 

also referred as the collision radius. The collision radius,  , is expressed as 

  (5.19) 

According to Sutherland, all particles lying within the collision radius will collide with 

the bubble and therefore the collision efficiency, , is determined by the ratio of the 

cross-sectional area of the stream tube ( ) to the projected area of the 

bubble ( ), i.e. 

  (5.20) 

where  is the bubble size and  the particle size. This model is valid only when 

bubbles are very large and water in a flotation cell is nonviscous, neither of which is 

realistic. As a result, it cannot be used to accurately describe the flotation process. 

Gaudin (1957), assuming a Stokes flow regime around the bubble surface and ignored 

the inertial force of the particles, used the following equation to express the collision 

efficiency 

  (5.21) 

Yoon (1991) compared the Gaudin model prediction with experimental data and 

concluded that the model is useful for bubbles smaller than approximately 100 µm in 

diameter. This is expected, since for bubbles in this size range, the assumption of 

Stokes flow is valid ( ). 

Neither Sutherland’s nor Gaudin’s model can be applied to flotation processes in most 

industrial flotation cells where the bubble size falls between these two extreme cases.  

Weber and Paddock (1988) proposed a model for the collision of spherical particles 

with spherical collectors. In their model, they assumed that the particles were very 

small, the hydrodynamic interaction between the particles and the fluid was negligible, 

the streamlines of the fluid could be characterized by the Stokes stream function and 

that these stream functions could be approximated by a Taylor series. The collision 

efficiency was express as 

  (5.22) 

which was the first collision model to apply for wide ranges of particle and bubble sizes. 

Yoon-Luttrell (1989) developed a new stream function valid for intermediate Reynolds 

numbers by combining the Stokes and potential stream functions. Through this stream 

function, a formula for collision efficiency under intermediate Reynolds numbers was 

derived 

  (5.23) 
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The equation is valid for particles smaller than 100 µm and bubbles smaller than 1 mm 

with immobile surfaces due to adsorbed surfactants. Equation (5.23) shows that the 

collision efficiency increases with the square of particle size to bubble size ratio, but is 

also a function of the bubble Reynolds number. 

This model is more general than the Sutherland collision model since it considers 

different flow conditions at the bubble surface and, correspondingly, different stream 

functions are used to characterize the respective streamlines trajectories.  

All the abovementioned models are based on the interceptional collision model that 

neglects particle inertial forces, since particle mass density is often low.  

A more comprehensive collision model was proposed by Schulze (1989) who considers 

that the overall collision probability  is the sum of three different effects, i.e., 

interceptional ( ), gravitational ( ), and inertial ( ): 

  (5.24) 

Schulze suggested that the interceptional and gravitational collision probabilities be 

determined using the Weber–Paddock collision model (Equation (5.22)) and the 

inertial probability, ( ), using the Plate model (Tao, 2005): 

  (5.25) 

where  is the Stokes number,  is the rising velocity of the bubble,  is the settling 

velocity of the particle, and the constants  and  are Reynolds number-dependent 

coefficients whose values are shown in Table 3. 

Table 3: Values of a and b (Schulze 1989) 

 >500 250-500 100-250 50-100 25-50 5-25 <5 

a 0.5 0.6 0.8 1.12 2.06 2.48 1.3 

b 2 2 2 1.84 2.06 1.95 3.7 

 

There are a number of other models that describe particle–bubble collision in flotation. 

A thorough review of these models is provided by Dai et al. (2000). 

By incorporating the influence of particle inertial forces, the Schulze model is superior 

to most other collision models. However, the collision efficiencies calculated with this 

model are too high because the negative effect of the inertial forces is neglected. 

5.3.2 Bubble-particle attachment 

The attachment of solid particles to air bubbles determines the selective separation 

between hydrophobic and hydrophilic particles in a flotation process. Thus this sub-

process constitutes the most important act of a flotation. 

The attachment process requires significantly more complex modelling than the 

collision process which, as shown in the previous section, is governed primarily by the 
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fluid dynamics close to the bubble. The attachment process is governed by 

hydrodynamic and chemical factors which interact in complex ways that ultimately 

determine whether a particle will attach to the bubble or not. 

For a successful particle-bubble attachment, three steps have to take place (after 

particle collision): 

• thinning of the intervening liquid film to a thickness  where the film ruptures 

(also called critical thickness), 

• rupture of the intervening liquid film and formation of a "hole" of the three-

phase contact (TPC) (a hole of a critical wetting radius ), and 

• expansion of the "hole" and formation of the perimeter of the three phase 

contact assuring stability of the bubble-particle aggregate. 

The time taken from the instant of collision to the establishment of a stable three-phase 

contact is called the induction time which will be represented by . The induction 

time for a particle is determined primarily by its contact angle but the particle size and 

shape are also important.  Other chemical factors such as the concentration of 

surfactants at the bubble surface and the interaction between collector adsorbed on the 

solid and frother on the bubble surface also play a role. 

While the film thinning, film rupture and receding three-phase contact line are 

proceeding another, purely physical, process is occurring. The particle is being carried 

downward over the surface of the bubble by the water as it moves past the bubble 

surface. If a stable three-phase contact has been established before the fluid stream 

lines start to diverge from the bubble, successful attachment is achieved. Particles that 

have not formed a stable three-phase contact by the time the streamlines start to 

diverge from the bubble surface at the equator are pulled away from the bubble surface 

and they do not attach. The time taken by a particle to slide over the bubble surface 

from its point of collision to the point of divergence is called the sliding time, . 

Another mechanism for particle adsorption is also possible. The particle may directly 

impact the bubble surface. As the particle strikes the bubble, the bubble is deformed. If 

a stable contact is achieved before the particle is repulsed by the reformation of the 

bubble surface, adsorption will occur. 

The contact time is considered to be the time for which a particle and a bubble are in 

contact after their collision. In the case of particle rebound from the bubble surface, the 

only component in the contact time is the impact time. If particle sliding occurs after 

the bubble–particle impact, the contact time is the sum of the impact time and the 

sliding time. 

Particles with diameters less than about 100 µm only impact and slide on the bubble 

surface, for their collision kinetic energy is too small to distort the bubble surface 

(Dobby & Finch 1987). There is no rebound without bubble surface deformation. 

Typically, the contact times are very short, about 10 ms or less (Schulze 1984). 

Considering only particle attachment by sliding, the probability of attachment by 

sliding,  can be defined as the fraction of particles in the path of the bubble that 

actually adheres, compared to the maximum possible. Referring to Figure 5.3 this 

should be the ratio of the area inscribed by the limiting radius , the radius from the 

stagnation line to the line corresponding to the touching angle associated with , to 
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the area inscribed by the sum of the bubble, particle, and critical film thickness (

). Since we can expect , it is common to write  as 

  (5.26) 

Relating  to , Equation (5.26)can be written as 

  (5.27) 

 
Figure 5.3: Schematic representation of Pa 

The critical angle  is extremely difficult to measure experimentally. Bloom and 

Heindel (1997) describe a process to calculate the angle by integrating the sum of the 

forces acting on the particle over time. The behaviour of the thin film between the 

bubble and the particle is modelled to yield an expression relating the critical film 

thickness to the maximum of the critical angle. This is only useful if experimental data 

is available for the critical film thickness, which is as difficult to observe as the critical 

angle. 

Another possible approach is to modelled the probability of attachment in terms of 

contact time and induction time. If the sliding time is longer than the induction time, 

adhesion is likely. Yoon and Luttrell (1989) derived an expression for the adhesion 

probability dependent on the particle and bubble sizes, the bubble Reynolds number 

and the induction time as follows: 

  (5.28) 

where  is the bubble relative velocity.  

The induction time is a function of the particle size and contact angle which can be 

determined by experiment and correlated in the form 

  (5.29) 

where parameters A and B are independent of particle size. 

Once the thin film has ruptured, three-phase contact points must form between the 

bubble, particle, and liquid. A contact point must form quickly to prevent the particle 

from immediately detaching from the surface. This aggregate formation is 
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schematically represented in Figure 5.4, where  represents the contact angle measured 

in the liquid. 

 
Figure 5.4: The three-phase contact between the bubble, particle, and liquid regions 

Schulze (1984) proposes that the turbulent vortices in the cell are the main source of 

disruption of this formation and that for formation to occur, the time needed to form 

the three-phase contact, , must be less than the average lifetime of the turbulent 

vortices, . He proposes that the probability of this formation has the form 

  (5.30) 

Schulze also shows that this probability is equal to 1 for many particles sizes. Indeed, 

most authors neglect this probability in their models (Heindel & Bloom 1997, Dai et al. 

2000, Yoon 1991). 

5.3.3 Probability of Attachment Stability 

Once a bubble-particle aggregate forms, it must remain stable on its journey to the 

froth layer to be removed from the system. It has generally been accepted (Schulze 

1984, Hou at al. 1993, Bloom at al. 1997) that bubble-particle stability can be 

determined by performing a force balance on the particle attached to the bubble. Figure 

5.5 summarizes these forces (Heindel 1999). 
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Figure 5.5: Forces that act on a bubble-particle aggregate 

Assuming spherical particles, the gravitational force (Figure 5.5a) is specified by 

  (5.31) 

where  is the particle density, and  is the acceleration due to the gravity. The static 

buoyancy force that acts on the particle (Figure 5.5b), assuming that the entire particles 

is immersed in the liquid, is 

  (5.32) 

with  the liquid density. The buoyant and gravitational force can be combined to 

obtain an expression for the apparent particle weight 

  (5.33) 

For the detaching force due to fluid drag (Figure 5.5c), 

  (5.34) 

where expressions for the fluid acceleration,  depend on both the structure and 

intensity of the turbulence within the flotation cell. For aggregates where the particle 

size is smaller than the bubble size, it has been determined that the fluid acceleration 

can be related to the energy dissipation in the tank by (Schulze 1993) 

  (5.35) 
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where  is the turbulent energy density. The force generated by the capillary pressure in 

the gas bubble that acts on the contact area of the attached particle (Figure 5.5d) is 

given by 

  (5.36) 

where  is the surface tension, and  is the angle specified inFigure 5.4. The capillary 

force exerted on the three-phase contact in the z-direction (Figure 5.5e) is 

  (5.37) 

where  is the contact angle. Finally, the hydrostatic pressure force (Figure 5.5f) of the 

liquid of height  above the contact area of radius  (=  in Figure 5.4) is 

  (5.38) 

Therefore, the net detachment force which acts on a bubble-particle aggregate is 

  (5.39) 

and the net attachment force is given by 

  (5.40) 

The stability of bubble-particle aggregates is then characterized by comparing the net 

detachment force to the net attachment force by the following dimensionless 

parameter, with  and  replaced by the maximum capillary force  

(Schulze 1993), 

  (5.41) 

where 

 (5.42) 

and 

  (5.43) 

As cited in Schulze (1993), taking into account the experimental results of Plate, a 

reasonable form for  is 

  (5.44) 

5.3.4 Conclusions 

Using CFD it is possible to determine the hydrodynamics within a flotation system 

from which local turbulent dissipation rates and local collision rates can be obtained. 

Thus, CFD is potentially capable of relating flotation performance to cell design and 

operation. CFD modelling, has been used by Koh and Schwarz (2000, 2003, 2005) to 

simulate various types of flotation cell, including Metso, Denver and Outokumpu 

designs. Bubble-particle collision rates and efficiencies in different parts of the cell have 

been calculated from the local turbulent velocities, and the size and number 

concentrations of bubbles and particles obtained from CFD modelling. 
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5.4 Fine particle flotation 

5.4.1 Reasons for low recovery of fine particles 

The size at which a particle becomes a "fine particle" is defined as the size finer than the 

minimum for optimal flotation recovery (Subrahmanyam & Forssberg 1990). 

The reasons for the low performance of flotation on fine particles are usually explained 

by the three distinct characteristics related to their small size: small mass, high specific 

surface area and high surface energy (Soto & Barbery 1988, Subrahmanyam & 

Forssberg 1990).  

The small mass of the particles causes a low flotation rate because of the lower 

probability of particle bubble collision and adhesion (Soto & Barbery 1988, Lange et al. 

1997, Feng & Aldrich 1999, Liu et al. 2002, Pyke et al. 2003). In fact all particle–bubble 

collision models described previously show that  decreases with decreasing particle 

size and increasing bubble size. Fine particles have low probability of collision with 

bubbles and are thus difficult to catch by bubbles, particularly by large bubbles. Dai et 

al. (1998)  and Ralston et al. (1999a, 1999b) studied the effect of particle size on 

attachment efficiency both experimentally and analytically. They found that  

decreases with increasing particle size and increases with increasing particle 

hydrophobicity. Yoon and Luttrell (1989) showed that  increases with decreasing 

induction time and decreasing particle size;  also increases with decreasing bubble 

size until the bubble size becomes too small. These conclusions are in agreement with 

Equation (5.28).  

The high surface energy and high surface area result in high non specific reagent 

consumption, enhanced surface oxidation and solubility, which decrease selectivity 

(Soto & Barbery 1988, Gorman & Smith 1991, Lange et al. 1997, Song et al. 2001). 

Among these factors, it is generally accepted that the main reason for the low flotation 

response of fine particles is the low probability of collision between particles and 

bubbles. This due to the tendency of fine particles to follow the liquid streamlines 

around the bubble (Yoon & Luttrell 1989, Matis et al. 1993, Ityokumbul et al. 2000, 

Mileva & Nikolov 2003) as a result of their low inertia. 

A mineral particle will follow the liquid streamlines for a given bubble size if 

(Ityokumbul et al. 2000): 

  (5.45) 

Where  is the particle density,  the particle diameter,  the bubble rise velocity,  

the slutty viscosity, and  the bubble diameter. Therefore, fine particles will be able to 

collide with small bubbles only. Thus the use of small bubbles improves the flotation 

recovery since it increases the probability of collision between the particles and the 

bubbles.  

 

In conventional flotation cells, only “macrobubbles” (600-2000 m) are produced, to 

enhance the true flotation of fine mineral particles, small or mid size bubbles are 

required (40-600 µm). 
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5.4.2 Methods to improve fine particle recovery 

Two main approaches have been used to achieve an improvement in fine particle 

flotation (Song et al., 2001): 

• decrease the bubble size; 

• increase the apparent particle size. 

Several flotation technologies have been developed to achieve these two points. The 

latest point is obtained through several aggregation methods and the aggregated 

particles are then floated, a process known as floc flotation. Examples of technologies 

based on the use of small bubbles are dissolved air flotation, electro-flotation, and 

turbulent microflotation among others.  

In this area, the chances offered by the use of waterjet, to both pulp agitation and 

bubbles generation, seem very attractive (Carbini et al. 1996, 1998, 2001, 2007; 

Chudacek et al. 1997).  

In fact waterjet potential in flotation can be summarize as follows: 

• capability of generating a high velocity water streams at least one order of 

magnitude higher than with mechanical impellers, even at relatively low 

pressures. This lead to an enhancement of aeration pulp. In fact it has been 

experimentally proven that the degree of aeration of the pulp in the form of 

small bubbles increases linearly with the relative velocity of the two interacting 

fluids (air and water) (Ciccu & Kursun, 2010); 

• generation of small initial bubbles; 

• even distribution of the bubbles into the vessel;  

• generation of high turbulence into the vessel due to the feasibility of producing 

a number of superimposing whirls by suitably modifying the arrangement of the 

nozzles. 

5.4.3 Previous works of waterjet-agitated cell 

Experimental studies on the possibility of using high velocity water jets to create more 

suitable conditions in order to enhance the collection and separation mechanisms of a 

flotation process have been carried out since 1996 at the DIGITA Laboratories of the 

University of Cagliari.  

In 1998 a first prototype of a waterjet-agitated flotation cell, named Hydrojet cell, was 

built. It consists of a cylindrical vessel, 200 mm in diameter and 400 mm high (total 

free volume 10.2 litres), provided with a hemispherical bottom screen for the discharge 

of the reject through a central outlet. Froths are skimmed out through a chute in the 

upper section of the cylindrical body. 

The Hydrojet cell was tested on barite and zinc sulphide ore and on coal. Parallel series 

of flotation tests were carried out with waterjet and with a conventional impeller 

(Minemet), using the same cell and under common experimental conditions for the 

unbiased comparison of the results. Table 6 shows some of the experimental setting 

used. 

The use of water jets for pulp stirring and bubbles generation produced: 

• an improvement in the quality of the floated products; 
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• a higher recovery. This is probably due to an increase of bubble-particle 

collision probability enhanced by the presence of bubbles which are smaller 

(and hence much higher in number for a given overall air flow), faster and 

better distributed in the cell than in the case of mechanical agitation; 

• a shorter flotation time to achieve a given recovery level due to a faster 

development of collection mechanism; 

• a decrease in energy consumption. 

In conclusion the application of water jets to flotation process appears corroborated by 

the experimental tests carried out on sulphide ores, coal and industrial minerals.  

Table 4: Experimental setting Hydrojet cell (Carbini et al. 1998a, 1998b, 2001, 2007) 

Pressure 
[MPa] 

Nozzle 
diameter 
[mm] 

Air flow rate 

[Nl/min] 

Rotational 
speed 
[rpm] 

Optimum 
pressure 
value 
[MPa] 

Ore tested 

From 4 to 14 0.3 mm From 2.55 to 10.2 2000 9  
Coal, Barite ore, 
Zinc sulphide 

ore 

 

5.5 Waterjets 

A water jet is formed as the high pressure fluid exits through a small opening called 

nozzle into a region of less pressure. Assuming the fluid jet exiting the nozzle as in the 

ideal case, there is a rotationally symmetric flow with a constant speed over the cross 

sectional of pipe. This simplification will neglect the pipe and nozzle friction for an 

incompressible flow. Therefore the exit velocity v2 can be estimated. According to the 

Bernoulli equation, the equilibrium equation (the inlet is indexed as 1, and the outlet 

side is 2) can be established as in 

 p1 + ½1gh1 +
1

2
½1v

2
1 = p2 + ½2gh2 +

1

2
½2v

2
2 + ¢p (5.46) 

where ¢p is a pressure loss in the nozzle (energy that is lost because of friction in the 

nozzle). In order to calculate the theoretical maximum possible energy conversion in 

the nozzle, the pressure drop is neglected as in ideal case, i.e. ¢p ≈ 0. The height 

difference between inlet and outlet is negligible especially in horizontal arrangement, 

i.e.h1 = h2. Let p2 → 0 and v1→ 0, then simplification of Equation (5.46) becomes 

Equation (5.47) below: 

 p1 =
1

2
½v2

2 (5.47) 

After rearranging the Equation(5.47), it will give the exit velocity, v2 as in Equation 

(5.48). 

 v2;th =

µ

2p1

½w

¶0:5

 (5.48) 

Where the subscript th represents the theoretical value of the jet exit velocity. 

So the velocity of the water at the exit of the nozzle does not depend on the geometrical 

characteristics of the nozzle. 
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In practice the jet velocity is somewhat less that the theoretical value because wall 

friction, fluid flow disturbances, etc. Therefore the actual jet speed is a fraction of the 

theoretical: 

 v2 = »

µ

2p1

½w

¶0:5

 (5.49) 

The values for », called speed point, are given in the literature from 0.95 to 0.99.  

Furthermore the jet contraction should be taken into account. It is described by the 

contraction number ¹ defined as the ratio between the minimum beam cross-sectional 

area after leaving the nozzle to the nozzle cross-sectional area itself: 

 ¹ =
Amin
A0

 (5.50) 

Often ¹and » are used together to calculate the coefficient of discharge: 

 CD = ¹» (5.51) 
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Chapter 6 PIV Bubble Column  

6.1 Introduction 

In this chapter the results of the PIV measurements in a bubble column are presented. 

The measurements reported were supported by the Laboratory of the Multiphase 

Reactors Group (SMR) at the Technical University of Eindhoven in the Netherlands.  

The challenge in applying PIV to multiphase flows is in separating the tracer particles 

tracking the entrained continuous phase from the dispersed phase. Up to the present 

no comprehensive method for discerning the phases of multiphase flows has been 

developed.   

During the period spent at the University of Eindhoven, the main purpose was to 

develop a simple method of phase-separation based on standard image analysis tools. 

This methods will be presented in this chapter.  

6.2 Experimental procedure 

Measurements were done on a glass bubble column with dimensions 0.15 × 0.15 × 1 m3 

filled with water to a height of 0.45 m. The air was injected from a perforate plate with 

9 holes with diameter of 1 mm at a square pitch of 6.25 mm which were positioned in 

the middle of the column. The airflow rates in the experiments were 12.5 L/min at 

standard temperature and pressure. The water flow was seeded with polystyrene 

particles with a diameter of 50 µm and a density of 1030 kg/m3. 

The experimental setup was a LaVision FlowMaster PIV system which consists of a 

Double pulsed Q-switched Nd: YAG laser (wavelength 532 nm, 320 mJ/pulse), an 

HighSpeedStar CMOS camera (1024 x 1024 pixel resolution), a HighSpeed Controller, a 

DaVis FlowMaster software and a PC. A beam expanding lens was used to create a 

lightsheet with a thickness of around 3 mm.  

The field of view of the camera was 15 x 15 cm. The PIV measurements were performed 

on the first 15th centimetres of the column. Velocity fields are obtained for entrained 

fluid and bubbles in double-frame model. The time interval between image pairs was 

equal to 1 ms. 

6.3 Phase separation method 

The phase separation method developed uses standard tools available in most image 

analysis software. In this work ImageJ was used. It is a public domain Java image 

processing program. 

Starting from the original image it’s possible to obtain a mask in which seed particles 

and bubbles are separated by means of image processing techniques. This is achieved 

by taking advantage of the difference in size and intensity between bubbles and tracer 

particles. Whenever this mask is subtracted from the original image one obtains an 
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image that contains only tracer particles. Then, subtracting the tracer particle image 

from the original image one obtains an image that contains only bubbles. 

The procedure that leads to the definition of the mask consists of six steps: 

1 Median filter; 

2 Subtract background from the original image; 

3 Canny-Deriche edge detection;  

4 Binarize image; 

5 Removal of outliers, 

6 Morphological filters. 

The first step involves the use of a 2D-median filter in order to remove, from the raw 

image (Figure 6.1-a), the tracer particles signal that can be considered an image noise. 

In fact a median filtering is a nonlinear process useful in reducing impulsive, or salt-

and-pepper noise. It is also useful in preserving edges in an image while reducing 

random noise. In a median filter, a window slides along the image, and the median 

intensity value of the pixels within the window becomes the output intensity of the pixel 

being processed. An important parameter in using a median filter is the size of the 

window. For the image shown in Figure 6.1-b a 4x4 pixels window size was used, based 

on the tracer particle size. 

 

   
                                                   a)                                                                                                  b) 

Figure 6.1: a) Original image b) Filtered image  

The aim of the second step is to correct uneven illuminated background by using a 

“rolling ball” algorithm. A local background value is determined for every pixel by 

averaging over a very large ball around the pixel. Thereafter this value is subtracted 

from the original image, so as to remove large spatial variation of the background 

intensities. The input parameter is the ball radius. This value should, at least, equal to 

the size of the largest object that is not part of the background. For the images shown in 

Figure 6.2 it was used a radius equal to 20 pixel. 
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                                                   a)                                                                                                  b) 

Figure 6.2: a) Background image b) Image after background subtraction 

The third step consists of applying the Canny-Deriche edge detector, which was derived 

from similar mathematical criteria as the Canny edge detector, though starting from a 

discrete viewpoint and then leading to a set of recursive filters for image smoothing 

instead of exponential filters or Gaussian filters. 

The ImegeJ plugin calculates and shows both the raw Deriche norm (smoothed 

gradient) and the non-maximum suppressed norm. A parameter, (alpha), controls the 

degree of smoothing applied and its value can be chosen between 0 and 1; whilst 

greater values imply less smoothing but more accurate detection, the lower values 

imply more smoothing but less accurate detection. The raw Deriche norm has been 

used to perform the following step. 

For the images shown in Figure 6.3 an alpha value equal to 0.5 was used. 

 

   
                                                   a)                                                                                                  b) 

Figure 6.3: Image after application of Canny-Deriche filter: a) raw Deriche norm, b) non-maximum 
suppressed norm 
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The fourth step converts the grey scale image into a binary image. This is achieved by 

comparing the intensity (named, grey value) of each pixel with a given threshold value; 

all pixels with a grey scale value above the threshold value are considered to be part of 

an object, and so their intensity value is set equal to 1. Whereas all pixels with a grey 

value below the threshold value are part of the image background and so their intensity 

value is set equal to 0. In digital image processing, there are several methods available 

that yield a threshold level on the basis of histogram information.  

In the proposed method a semi-automatic process is used to determine the threshold 

which uses the histogram of the initial image after applying the first two steps. The 

optimal threshold value is quantified as the intensity value corresponding to a 

percentage of this histogram area. This percentage is chosen on the basis of visual 

evaluation. 

Once this value is determined for a time series, the threshold value is calculated for 

each image based on its histogram. For the image shown in Figure 6.4-a a threshold 

value correspond to 90% of the histogram area was used. As shown Figure 6.4-a the 

binary image contains not so well defined bubble edges. However, due to the 

impossibility of eliminating completely the uneven illumination, it also contains 

typically small size contours which don’t correspond to bubbles, that are characterized 

by small size. In order to eliminate them a second median filter, with the same size 

window of the previous one, is applied (Figure 6.5-b).  

 

   
                                                   a)                                                                                                  b) 

Figure 6.4: a) Binary Image obtained by segmentation b) Result after median filtering  

As mention before, the bubbles contours are not well defined. For this reason two 

morphological filters are applied. 

In an image the dilatation filter adds pixels to the boundaries of objects. The number of 

pixels added from the objects in an image depends on the size and shape of the 

structuring element used to process the image. In the example in Figure 6.5 a 4x4 

pixels circle structuring element was used. During the morphological dilatation, the 

state of any given pixel in the output image is determined by applying a rule to the 
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corresponding pixel and its neighbours in the input image. The value of the output pixel 

is the maximum value of all the pixels in the neighbourhood of the input pixel.; if, in a 

binary image, the value of any of pixels is set to 1, so is the value of the output pixel.  

The close filter fills gaps and enlarges protrusions so as to connect objects that are close 

to each other. In the example in Figure 6.5-a 10x10 pixels circle structuring element 

was used. 

 

 
Figure 6.5: Image after applying morphological filters 

The resulting mask (Figure 6.5) subtracted from the original image gives an image 

which contains only tracer particles (Figure 6.5-a). Subsequently subtracting this image 

from the original one, an image is obtained in which the bubbles are present (Figure 

6.6-b). 

 

   
                                                   a)                                                                                                  b) 

Figure 6.6: a) Tracer particles image b) Bubbles image  
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An ImageJ macro has been written to perform automatically the steps previously 

described.  

After being acquired, the images are extracted from DaVis 8.0 creating a time series.  

The necessary parameters are chosen on the basis of size and intensity characteristics 

of bubbles and tracer particles (window’s size of median filter, ball’s radius, alpha 

parameter, percentage threshold histogram and morphological filters’ dimension). By 

running the ImageJ macro two time series are obtained and then imported in Davis 8.0 

for processing. 

6.4 Data Analysis 

The two sets of single-phase images obtained were processed using Davis 8.0 software 

where a multi-pass cross-correlation was used to determinate the displacement 

(velocity) vectors.  

An interrogation window size of 32 x 32 pixels with 0% overlap was used to process the 

bubble images, while an interrogation window size of 32 x 32 pixels with 50% overlap 

was used to process the tracer particles images.  

The obtained results were subjected to a post-interrogation procedure, median filter, in 

which spurious vectors were identified and subsequently discarded from the data set. 

Instantaneous flow fields of both phases are showed in Figure 6.7. 

 

 
Figure 6.7: Instantaneous velocity vector plots of liquid (left) phase and the gas (right) 

The resulting averaged radial velocity profiles of the gas and the liquid phase are shown 

in Figure 6.8. This figure shows the capability of the separation method to discriminate 

between the bubble plume and the continuous phase. The slip velocity measured is 

higher than the expected slip velocity of around 0.2 m/s. Which is probably a result of 

an insufficient acquisition time. 

6.5 Conclusions 

The phase separation method proposed is not meant to be better than the other phase 

separation methods but a simple end effective alternative to obtain the mean flow 

characteristics of a bubble plume. 
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Figure 6.8: Axial velocity profiles at a height of y/H = 0.2 and a depth z/W= 0.50 of the gas and liquid 

phase. 

The described technique leads to a digital mask by which a mixed-fluid image can be 

separate into two single-phase images. The mask relies on the existence of a significant 

difference in size and intensity of the particles constituent the two phases. Application 

of the mask was demonstrated with a test case performed in a square bubble column. 

The acquired images were pre-processed to obtain the singe-phase images. The two sets 

of images were processed using a standard PIV method and then time-averaged to 

obtain the average velocity field data for the bubbles and the liquid phase. The 

measured liquid velocities in the central part of the cell are significantly lower than 

those of the gas phase, this demonstrate the capacity of the method to discriminate 

between the two phases. Slip velocity values higher than those expected are thought to 

be due to a too short acquisition time which does not allow to calculate a steady time 

average (i.e. free from wiggles). For this reason the PIV measurements could not be 

used to validate the numerical simulations. Instead the simulations were compared 

with the available experimental PIV data of Deen (2001). 
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Chapter 7 Numerical Simulations of Flow in a 

Bubble Column  

7.1 Introduction 

In this chapter the 3D transient numerical simulations of the flow pattern in a square 

bubble column are presented. The geometry of the bubble column simulated is equal to 

the one used during the experimental part, with the exception of the gas inlet, which is 

a perforated distributor plate having 7 x 7 (49) holes with a diameter of 1 mm and a 

pitch length of 6.75 mm, positioned in the middle of the column, as in the work of Deen 

(2001). The solver that was used is based on the finite volume method, and the Euler 

model was adopted to simulate the gas-liquid flow. Two different models to calculate 

the turbulent viscosity were used: LES and SST model. Various closure models were 

examined in order to study the effect of the interface forces on gas-liquid flow 

behaviour. The simulation settings will be presented before discussing the results. 

7.2 Simulation settings 

The flow was simulated using the governing equations presented in Chapter 2. LES 

model and  SST model were used to modelled the turbulent viscosity. Different 

interfacial closure models reported in the literature (Section 2.8.5.3) were examined 

along with the LES model. A summary of the different settings which were used is 

reported in Table 5. 

Table 5: Overview of models 

Case ∆t µeff MI Model 

1 0.0025 s LES, BIT MD Ishii & Zuber (1979)  

2 0.0025 s LES, BIT 
MD 

MVM 

Ishii & Zuber (1979) 

CVM=0.5 

3 0.0025 s LES, BIT 
MD 

ML 

Ishii & Zuber (1979) 

CD=0.5 

4 0.0025 s LES, BIT 

MD 

ML 

MVM 

Ishii & Zuber (1979) 

CD=0.5 

CVM=0.5 

5 0.005 s SST, BIT 

MD 

ML 

MVM 

Ishii & Zuber (1979) 

CD=0.5 

CVM=0.5 
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The total domain was subdivided into uniform computational grid cells with 

. 

When SST model was used, a column height of 1 m with a water level of 0.45 m was 

simulated, which gives a total of 18000 hexahedral cells. While, when LES model was 

used, due to difficulties in convergence, a column height of 0.45 m was simulated, thus 

a total of 81000 hexahedral cells form the computational domain. 

The inlet of the bubble column was modelled as a fully open inlet, as in the work of 

Deen (2001), in a central area of 6 × 6 grid cells, which gives an inlet area 

 m2. 

The inlet boundary condition was modelled as a velocity inlet, in which the velocity and 

volume fraction of the fluid were specified. The velocity value normal to the inlet was 

calculated as follows 

  (7.1) 

where  is the superficial gas velocity,  is the cross sectional area of the 

column (0.15 ×0.15 m2), and  is the gas volume fraction. 

For a superficial gas velocity of 4.9 mm/s, as in the PIV experiments (Deen 2001), and 

a gas volume fraction of 1.0, the gas velocity at the inlet becomes 0.12 m/s. 

The diameter of gas bubbles was set to 4 mm as in the work by Deen (2001). 

An opening boundary condition and a gas volume fraction of 1.0 were applied at the 

outlet and no slip boundary conditions were applied for both phases along the walls. 

In the simulations, to discretize the convection terms two schemes were used: 

• high resolution scheme along with the SST turbulence model; 

• central different scheme along with the LES turbulence model. 

The flow was simulated for a period of 120 s. The data was time averaged over the last 

110 s. For the LES, the simulations took about 6 days real time using a 3.4 GHz Intel(R) 

Core(TM) i7-2600 CPU PC with 15.9 GB of RAM. 

7.3 Results 

7.3.1 Turbulence models 

As mentioned before, two different turbulence models were used: SST model and LES 

model. To evaluate the effect of the turbulence model, the two simulations that include 

all interface forces were compared (Cases 4 and 5). In Figure 7.1 and in Figure 7.2 

snapshots of gas fraction iso-surfaces and liquid velocity fields are displayed for case 4 

and 5. While Figure 7.3 and Figure 7.4 show, for the two cases, a time series of contour 

plots showing instantaneous gas volume fraction in a diagonal cut plane.  
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Figure 7.1: Snapshots of the instantaneous liquid velocity fields and iso-surfaces of ®G =0.04 at 5s 

intervals from 100s to 115s - Case 4 (LES) 



CHAPTER 7 

 

89 
 

89 

 
Figure 7.2: Snapshots of the instantaneous liquid velocity fields and iso-surfaces of ®G =0.04 at 5s 

intervals from 100s to 115s - Case 5 (SST) 
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Figure 7.3: Contour plots of the instantaneous volume fraction of gas in a diagonal cut plane at 5s intervals 

from 100s to 120s. Case 4 (LES) 

 

 

 
Figure 7.4: Contour plots of the instantaneous volume fraction of gas in a diagonal cut plane at 5s intervals 

from 100s to 120s. Case 5 (SST) 
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These figures show the capability of both models of simulating the bubble plume 

oscillations. The substantial difference lies on the level of detail with which the flow is 

resolved. In fact the LES model has the capacity of simulating the flow in detail 

simulating the fluctuations of the bubble plume. Along the plume several larger and 

smaller vortices coexist, which stagger on each other and change their size, shape and 

position with time. The velocity vectors exhibit a high degree of randomness, in 

agreement with experimental observations. 

Conversely the SST model has not the capacity to capture in detail these fluctuations. 

Big liquid vortices which move downwards on the lefthand and righthand sides of the 

column are responsible for the oscillatory motion of the bubble swarm. This because of 

the averaging procedure on which the method is based on, thus all small-scale velocity 

fluctuations are enclosed in the turbulent kinetic energy , leading to a smooth 

meandering plume.  

A better comparison between the two models, can be done comparing the velocity 

fields. Figure 7.5 and Figure 7.6 show the average axial velocity profiles at a height of 25 

cm and at a half of the depth for liquid and gas. The figures also illustrate the 

experimental profiles obtained from PIV experiments (Deen, 2001). It can be see that 

the SST gives asymmetrical profiles, though in the right order of magnitude. For both 

phases, the maximum average velocity predicted is higher than the one experimental 

measured. While the LES gives a more symmetrical velocity profiles and shows good 

agreement with the PIV data. The difference in velocity between liquid and gas phase, 

known as slip velocity, is about 22 cm/s for both turbulence models, close to that 

expected (20 cm/s). 

 

 
Figure 7.5: Comparison of simulated and experimental profiles of the axial liquid velocity (Cases 4 and 5)  
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Figure 7.6: Comparison of simulated and experimental profiles of the axial gas velocity (Cases 4 and 5) 

 

A further comparison can be made by means of the velocity fluctuations. In the SST 

model the velocity fluctuations are not resolved but contained in the turbulent kinetic 

energy, k (Deen, 2001). Assuming local isotropy of the turbulence, the velocity 

fluctuations in each direction can be derived as follows: 

 u02L = v02L =
2

3
k (7.2) 

In the LES the velocity fluctuations can be derived from Statistical Reynolds Stresses. A 

Reynolds Stress component can be evaluated using the difference between the running 

arithmetic average of the instantaneous velocity correlation and the running arithmetic 

average of the instantaneous velocities as: 

��
���

������� � ��������� �  ������ (7.3) 

Figure 7.7 and Figure 7.8 show the profiles of the radial and axial fluctuations of the 

liquid velocity. It is clear that the that the assumption of isotropy is not valid. The SST 

predicts to low axial fluctuations velocity. While the axial fluctuations velocity profile 

predicted by the LES fits well the PIV data. The radial fluctuations velocity profiles of 

both models don't agree so well with the experimental data, although in the right order 

of magnitude.  
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Figure 7.7: Comparison of simulated and experimental profiles of the axial liquid velocity fluctuations 

(Cases 4 and 5) 

 
Figure 7.8: Comparison of simulated and experimental profiles of the radial liquid velocity fluctuations 

(Cases 4 and 5) 

7.3.2 Interface models 

To show the effect of the different interface forces for the LES the profiles of time 

averaged simulated axial liquid velocity at a height of 25 cm and a depth of 7.5 cm are 

show in Figure 7.9. 
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Figure 7.9: Comparison of simulated and experimental profiles of the axial liquid velocity for different 

interfacial forces (Cases 1,2,3 and 4) 

 

From this figure it is clear that when only the drag force is included no radial 

fluctuation of the bubble plume is predicted. The plume rise straight to the top of the 

column, without transversal spreading. Thus the liquid velocity profile presents a 

strong peak in the centre, where the gas is rising and moderate downflow alongside the 

plume. There are not substantial differences in this behaviour when the virtual mass 

force is also considered. It can be see only a reduction of the peak in the centre of the 

column. So the influence of the virtual mass force is small.  

When the drag and the lift forces are included, fluctuations of the bubble plume in the 

radial direction are predicted. Thus the lift force is responsible for transient spreading 

of the bubble plume across the cell. The predicted velocity profile match well the PIV 

data. Addition of the virtual mass force yield only to a simulated velocity a little bit 

lower in correspondence to the centre. So it is evident that the core velocity is simulated 

suitably with drag force and lift force. However, when only these two forces are 

incorporated the predicted profile of axial liquid velocity fluctuations (Figure 7.10) 

presents higher values than expected close to the centre of the column. This behaviour 

does not occur when the virtual mass force is included. In this case simulated and 

experimental profiles are in good agreement. The incorporation of the virtual mass 

force does not produce a big change in radial velocity fluctuations. Both profiles (Figure 

7.11) show the same trend, with values slightly higher than those measured. 
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Figure 7.10: Comparison of simulated and experimental profiles of the axial liquid velocity fluctuations 

(Cases 3 and 4) 

 
Figure 7.11: Comparison of simulated and experimental profiles of the radial liquid velocity fluctuations 

(Cases 3 and 4) 
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7.4 Conclusions 

In this chapter a bubble plume in a rectangular bubble columns has been modelled with 

two different turbulence models along with different interfacial forces. 

It has been shown that the SST turbulence model cannot reproduce all the complex 

turbulence characteristics of bubble column, as is instead able to do the LES model. 

The velocities and the velocity fluctuations simulated by the SST are anyway in the right 

order of magnitude. The simulations with LES model give velocity profiles and axial 

velocity fluctuations in good agreement with experimental data of Deen (2001), while 

the radial velocity fluctuation predicted are slightly higher than the PIV data. 

The transient behaviour of the bubble plume can be modelled adequately by LES 

turbulence model, drag model by Ishii and Zuber (1979), a constant lift force with 

CL = 0:5 and a bubble induced turbulence (BIT) as proposed by Sato and Sekoguchi 

(1975). The virtual mass force does not produce a substantial behaviour modification.  
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Chapter 8 Bubble Size Distribution in a 

Rectangular Cell 

8.1 Introduction 

It is clear, from what it was said in Chapter 5, the importance of the bubble size on 

flotation efficiency. One of the potentials offered by the use of the water-jet to improve 

the performance of the flotation process is the ability to generate bubbles of small 

diameter. To investigate this aspect, an experimentation was carried out in order to 

determinate the bubble size distribution (BSD) along the jet by the optical method.  

In this chapter, the results from this experimentation will be presented along with the 

experimental set-up and the experimental procedure. 

8.2 Experimental apparatus and procedures 

Figure 8.1 shows a schematic diagram of the experimental set-up which consists of a 

rectangular cell, a high pressure plunger pump connected with a waterjet lance , and a 

compressed air duct. The cell is made of perspex and has a dimension of 50£5£50 cm3. 

The waterjet lance is about 20 cm long and it ends with a calibrate nozzle with 0.5 mm 

diameter. It is powered by a Pratissoli high-pressure pump. The lance is housed in a 

flange which is connected with the cell. Along this flange, downstream the nozzle, is 

located a duct through which the air is injected. 

 
Figure 8.1: Schematic diagram of the experimental set-up 

The measurements were performed using a SouthernVision Inc. MemView high speed 

camera positioned perpendicular to the jet axis. The back lighting method for 

measuring the sizes of bubbles was used The measurement area was illuminated with a 

halogen lamp (500 W) located behind the vessel. With this illumination apparatus only 
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low pressure waterjet could be tested, because an increase of the jet velocity requires a 

progressive reduction of the acquisition time and thus an increase in the light is 

required. Also due to the reduction of the light intensity by the light scattering from 

bubbles, it was not possible to perform measurement at the beginning of the jet. This 

area contains a very high concentration of bubbles, so it becomes too opaque to detect 

the bubble shadows among the background noise of the image. 

Measurements were performed, for three pressure values 3, 4 and 5 MPa, in two axial 

locations A and B, positioned at 6.75 cm and 17.55 cm from the edge of the cell 

respectively.  

 

 
Figure 8.2: Air-Water jet generated at different pressures (3, 4 and 5 MPa) 

In these tests the air flow was not imposed, but is the one that is dragged by the water 

jet. An overview of the experimental settings is given in Table 6. The measurements 

were done with a small camera aperture, so that the depth of field of the image is big. 

Only the bubbles in the measurement plane are in focus (Figure 8.3), i.e., they have 

sharp edges. Other bubbles generate out-of-focus images that disturb the 

measurement. The bubbles are distinguished as shadows, so that the pixel of the bubble 

image has much smaller brightness than the pixels representing the background.  
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Figure 8.3: Example of acquired image 

Table 6: Overview of the experimental settings 

Pressure of 
pump [MPa] 

Outlet velocity 
[m/s] 

Nozzle 
diameter [mm] 

coefficient of 
discharge 

Water flow rate 
[l/min] 

Air flow rate 
[nl/min] 

3 77.5 0.5 0.63 0.58 4.2 

4 89.4 0.5 0.63 0.66 4.4 

5 100 0.5 0.63 0.74 4.6 

 

Due to the continuous light source it was not possible to record sequential images with 

a short enough time delay. Since the recordings do not consist of image pairs, but of 

single images, the bubble velocities remain unknown. The bubbles were detected using 

a semi automatic detection method based on the differences in brightness between 

bubbles and background. 

8.3 Results 

For each experimental setting 50 samples were used to obtain statistics. 

Figure 8.4 and Figure 8.5 show the histograms of the bubble size distribution relative to 

the positions A and B for the three pressure values tested. In Table 7 the descriptive 

statistics of the data are reported. 
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Figure 8.4: Frequency histograms of bubble size distribution at the location A 

 

 
Figure 8.5: Frequency histograms of bubble size distribution at the location B 
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Table 7: Descriptive statistics of the data  

 3 Mpa 4 MPa 5 MPa 

 Position A Position B Position A Position B Position A Position B 

Min 0.11 0.15 0.10 0.10 0.07 0.15 

Max 0.82 1.27 0.58 1.06 0.49 1.06 

Mean 0.35 0.60 0.26 0.45 0.23 0.42 

Range 0.73 1.18 0.48 0.94 0.42 0.91 

Standard 
error 

7.28E-03 1.63E-02 5.07E-03 8.17E-03 4.18E-03 7.99E-03 

Standard 
deviation 

1.35E-01 2.62E-01 8.64E-02 1.59E-01 7.62E-02 1.42E-01 

Variance 1.82E-02 6.84E-02 7.47E-03 2.54E-02 5.80E-03 2.03E-02 

Kurtosis 0.136 -0.522 0.533 0.090 0.707 1.469 

Skewness 0.482 0.313 0.838 0.283 0.867 0.853 

 

It is seen that the bubble sizes in the location B are greater than in location A, and in all 

cases, the bubble size distribution was not symmetrical (normal distribution). The 

coalesced bubbles of location A go ahead and accumulate in the location B. This results 

in the wider bubble size distribution in the location B compared to location A.  

The higher is the pressure, and thus the velocity of the jet, the higher is the air 

entrainment by the jet. Furthermore, an increase in pressure produces a reduction of 

the bubble size due to an higher momentum of the liquid jet  

8.4 Conclusions 

This experimentation shows the capability of water jets at moderate pressure to break 

an air stream into small bubbles. Increasing the pressure of the pump, smaller and 

more uniform bubbles were obtained. Also using moderate pressure, the dimensions of 

the generated bubbles were smaller than those generated by a traditional mechanical 

impeller in a flotation system. 
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Chapter 9 Numerical Simulations of Flow in the 

Hydrojet Cell 

9.1 Introduction 

In this chapter the steady numerical simulations of the Hydrojet cell are presented. The 

solver that was used is based on the finite volume method, and the Euler model was 

adopted to simulate the gas-liquid flow. To calculate the turbulent viscosity, the SST 

model was used. To simulate the rotation of the waterjet lance, a single reference of 

frame was used. The geometry of the experimental setup will be presented before 

discussing the numerical model and its results. 

9.2 Hydrojet cell 

In light of the promising results presented in Section 5.4.3, it was decided to scale up 

the Hydrojet system. Figure 9.1 shows a sketch of the laboratory plan and a sketch of 

the waterjet lance. 

               

 

Figure 9.1: a) Sketch of the laboratory plan, b) Sketch of the waterjet lance 

The new experimental apparatus consists of a waterjet lance connected to a plunger 

pump, to a compressed air system, and to a supporting and guiding structure. A 

cylindrical vessel with a hemispherical bottom, 50 cm in diameter and 100 cm high, 

made of perspex, is located at the base of the supporting system. This system is 

equipped with a windlass and three electrical motors which permit the rotation as well 

a)                                                                                  b) 



CHAPTER 9 

 

103 
 

103 

as the horizontal and the vertical translations of the lance, thus the lance positioning 

within the cell (Figure 9.2).  

 

 
Figure 9.2: Details of the guiding structure 

 
Figure 9.3: Details of the waterjet lance head 

Translations and rotation of the lance are controlled by means of a control panel. The 

waterjet lance has a diameter of 8 cm. Pressurized water generated by the pump comes 

into the lance from the top by means of a swivel which connects a flexible high pressure 

pipe to the lance, while air is injected through a nozzle positioned in the upper part of 

1 

2 
3 

1 - Vertical translation 

2 - Rotation 

3 - Horizontal translation 
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the lance. Pipes convey water and air to the bottom of the lance. A section of the lance 

head is presented in Figure 9.3. The transformation of the pressure energy into kinetics 

energy is obtained by means of calibrated nozzles positioned on the head of the lance. 

Several nozzles are contained in the lance head, in this work only the two positioned 

perpendicularly to the lance's rotation axis were used.  

9.3 Numerical model 

9.3.1 Numerical implementation 

Modelling of the gas–liquid flow was carried out using an Eulerian two-fluid model. 

The flow was simulated using the governing equations, presented in Chapter 2.  

Turbulence was solved using the SST model for the continuous phase and Dispersed 

Phase Zero-Equation model for the bubbles. Sato Enhanced Eddy Viscosity was used 

for turbulence transfer between the phases. The bubble–liquid interphase forces 

included were the drag force, lift force and virtual mass force. The Ishii-Zuber drag 

model was used to determine the draft coefficient of the liquid phase. The coefficients 

for both the lift and virtual mass force were set equal to a value of 0.5. The high 

resolution scheme was used to discretize the convection terms in the equations. 

There are several modelling approaches for moving domains. The equations of fluid 

flow can be solved in a rotating reference frame by considering additional acceleration 

terms to the momentum equations. Thus solutions become steady with respect to the 

rotating reference frame. Due to the simple geometry of the Hydrojet cell, the entire 

computational domain was referred to a single moving reference frame. Single Frame 

of Reference (SFR) assumes all domain rotate with a constant speed with respect to a 

single specified axis. 

A cylindrical vessel, 50 cm in diameter and 100 cm high, with hemispherical bottom, 

was modelled. The geometry included, in axial position, a cylindrical tube with 

diameter of 8 cm and 100 cm high. Two circular inlets were positioned at a distance of 

5 cm from the bottom of the tube. Two inlet sizes were simulated: 10 mm and 2 mm. 

For the first configuration the whole cell was modelled. The relative computational grid 

is shown in Figure 9.4. While for the second configuration only 180° of the cell was 

modelled and the relative computational grid is shown in Figure 9.5. Table 8 reports 

some of the properties of the two grids. 
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Figure 9.4: Computational grid - 360° 

 
Figure 9.5: Computational grid - 180° 

Table 8: Meshes composition 

 
N. of 

Elements 
Tetrahedral Pyramids Wedges Hexahedra 

Max 
Edge 

Length 
Ratio 

Skewness 
(average) 

Aspect 
ratio 

(average) 

Volume 

[m3] 

Mesh 
1 

1780653 1138393 - 642260 - 43.31 0.18 5.6 0.22 

Mesh 
2 

175921 13678 23618 2102 136523 23.70 0.22 2.6 0.11 
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9.3.2 Simulations  

In the first two simulations the nozzles through which water and air flow into the cell 

were modelled as round orifices with a diameter of 10 mm. A bubble size of 0.5 mm was 

used. The inlet boundary conditions were modelled as a velocity inlet where the velocity 

and volume fraction of the fluid are to be specified. For both inlets ,the velocity was set 

equal to 100 m/s, which corresponds to a pump pressure of about 5 MPa. The gas 

volume fraction ®G;in was set equal to 0.13. The outlet, positioned at the bottom of the 

cell, was modelled as a pressure outlet where the air volume fraction is specified to be 

zero and the walls are modelled as no-slip boundaries for both phases. The liquid 

surface was modelled as a degassing boundary condition, which is used to model a free 

surface from which dispersed bubbles are permitted to escape, but the liquid phase is 

not. The rpm for the rotating domains was set at 60 and 120. 

Figure 9.6 shows the volume fraction of gas in a horizontal plane passing through the 

axis of the nozzles obtained from simulations under the two different rotational speeds. 

 
Figure 9.6: Gas volume fraction distribution in a horizontal plane passing through the axis of the nozzles 

(Cases 1 and 2) 

In both cases the jets remain coherent till they intercept the cell wall where the bubbles 

tend to gather and rise to the top. This behaviour was also observed experimentally in a 

qualitative way. A rotational speed of 60 rpm is insufficient to ensure the spread of the 

bubbles across the whole cell section. A double rotational speed improves the mixing 

conditions but the gas fraction distribution is still concentrated along the wall of the 

cell.  

To reduce the length of the area in which the beam is consistent, it is possible to use a 

nozzle with a smaller diameter. With this aim a new geometry having two inlets with 

diameter of 2 mm was adopted. The inlet boundary conditions were modelled again as 

a velocity inlet, different values of velocity and volume fraction were simulated. An 

overview of the simulations is shown in Table 9.  

 

  Case 1                                                                            Case 2 
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Table 9: Overview of simulations settings 

 φnozzle [mm] vinlet [m/s] αG ω [rpm] 

Case 1 10 100 0.13 60 

Case 2 10 100 0.13 120 

Case 3 2 100 0.13 120 

Case 4 2 200 0.13 120 

Case 5 2 200 0.50 120 

Case 6 2 300 0.50 120 

Case 7 2 300 0.50 240 
 

Figure 9.7 shows the volume fraction of gas in a horizontal plane passing through the 

axis of the nozzles resulting from the aforementioned cases.  

 

 

 

 

                     

Figure 9.7: Gas volume fraction distribution in a horizontal plane passing through the axis of the nozzles 
(Cases 3, 4, 5, 6 and 7) 

Case 3                                                                                Case 4 

Case 5                                                                                Case 6 

Case 7 
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With a diameter equal to a quarter of the previous one under the same operating 

condition (which implies a reduction of sixteen times of the inlet mass flow), the area 

affected by the dispersion of the gas is approximately half of the entire section. With a 

velocity inlet equal to 100 m/s, the bubbles are spread across a circular area with a 

radius of about half of the radius of the cell. Increasing the inlet velocity up to 200 m/s 

(Case 4), and thus duplicating air and water inlet mass flow, the radius of influence 

increase of about 16%. A further increase of the air mass flow, set equal to 0.5 at the 

inlets in Case 5, does not increase the area affected by the dispersion of the gas. There 

is, however, an increase of the gas volume fraction in a narrow annular section at the 

boundary of the area. It is clear that the amplitude of the area affected by a higher value 

of gas increases as the input flow rate, as shown the comparison between Case 5 and 

Case 6. However the radial spreading of the gas phase is still non uniform. A more 

uniform distribution is obtained by increasing the rotational speed of the lance, which 

in Case 7 was set equal to 240 rpm. 

9.4 Conclusions 

The influence of the four main parameters that control the hydrodynamics of the 

process, nozzles diameter, speed of rotation of the lance, speed of generation of the jet, 

and then the pressure of the pump and inlet air flow rate, can be inferred from the 

simulations done. Among all parameters, it was found that the rotational speed of the 

lance plays a key role to ensure a uniform dispersion of the bubbles within the cell. At 

present this appears to be the weak point of the experimental apparatus which allows 

low rotation speeds, which are not able to ensure adequate dispersion. It was also 

observed that the nozzle diameter should be chosen carefully because too large 

diameters generated jets which stay coherent until impacting the cell wall, where the 

bubbles gather and rise to the top. As regards to the other parameters the existing 

equipment does not pose any limitation ensuring a wide range of variation. After 

choosing a suitable nozzle diameter, the inlet velocity and the inlet gas fraction should 

be selected to ensure a proper gas dispersion in the nozzles region.  

At this stage of the study, focus on enhancing the Hydrojet system design setup, the 

results of the simulations have given important information about the performance 

required for the system to be capable of creating suitable conditions for an efficient 

flotation process. Future experimental measurements will allow an improvement of the 

numerical model, relating especially to the inlet condition settings, as well as its 

validation.  
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Chapter 10 Conclusions and Future Work 

10.1  Bubble column 

PIV measurements were performed in a square bubble column. A separation method 

was developed and tested. The proposed method leads to a digital mask by which a 

mixed-fluid image can be separated into two single-phase images. The mask relies on 

the existence of a significant difference in size and intensity of the particles that 

constitut the two phases. 

The slip velocity measured is higher than the expected slip velocity of about 0.2 m/s. It 

is believed that this is the result of an insufficient acquisition time. Moreover, due to a 

no longer enough acquisition time a steady time average (i.e., free from wiggles) could 

not be calculated. So the PIV measurements could not be used to validate the numerical 

simulations. Instead the simulations were compared with the available experimental 

PIV data of Deen (2001). 

Transient simulations of a bubble column were performed using the Eulerian approach, 

thus the dispersed and continuous phases are assumed to be interpenetrating continua 

and for each phase a complete set of Navier-Stokes equations are solved. Coupling 

between the momentum equations of the phases is achieved by implementing 

interphase momentum exchange terms into the respective phase's momentum balance 

equations.  

For the continuous liquid phase, two different turbulence models were used: the Shear 

Stress Transport (SST) and the Large Eddy Simulation (LES). For the dispersed gas 

phase, the zero equation model was used. It was shown that the SST turbulence model 

cannot reproduce all the complex turbulence characteristics of the bubble column, as it 

is instead able to do the LES model. The velocity and the velocity fluctuations simulated 

by the SST are anyway in the right order of magnitude. The simulations with LES 

model gave velocity profiles and axial velocity fluctuations in good agreement with 

experimental data (Deen, 2001), while the radial velocity fluctuations predicted are 

slightly higher than the PIV data.  

To conclude, the transient behaviour of the bubble plume can be modelled adequately 

by LES turbulence model, drag model by Ishii & Zuber (1979), a constant lift force with 

 and a bubble induced turbulence (BIT) as proposed by Sato and Sekoguchi 

(1975). The virtual mass force does not produce a substantial behaviour modification.  

10.2  Hydrojet cell 

Experimental measurements were performed in order to determinate the bubble size 

distribution (BSD) along the axis of a air-water jet. The high-velocity stream of water 

and air was generated by an high-pressure pump by means of a calibrated nozzle. The 

measures were performed via a photographic method at two positions along the jet axis 

and for three different pressure values. This experimentation showed the capability of 
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water jets at moderate pressure to break an air stream into small bubbles. Increasing 

the pressure of the pump, smaller and more uniform bubbles were obtained. The 

dimensions of the bubbles were smaller than those generated by a traditional 

mechanical impeller in a flotation system. 

Steady simulations of the Hydrojet cell were carried out using the Eulerian approach. 

For the continuous liquid phase, the Shear Stress Transport (SST) turbulence models 

were used. For the dispersed gas phase, the zero equation model was used. Drag, lift 

and virtual mass forces were included in the simulations. A single frame of reference 

was used to simulate the rotation of the lance.  

The results gave useful indications about the role of the four principal operating 

parameters: nozzles diameter, velocity of rotation of the lance, speed of the water jets 

and then pressure of the pump and inlet air flow rate. What emerges is the need of high 

rotational speed of the waterjet lance in order to ensure an uniform gas distribution 

within the mixing zone. This is not possible with the current apparatus. Thus in order 

to make the system suitable to produce an appropriate environment for the full 

development of the flotation process it is necessary to modify the system.  

This confirms the importance of CFD as a powerful tool to improve the design of 

flotation system and to reduce scale-up problems. 

10.2.1 Future work  

On the basis of the conclusions drawn, some future work considerations are presented 

in the following. 

Experimental work 

Future experimental measurements are essential to improve the numerical model, 

especially regarding the more appropriate conditions to model the two inlet nozzles. 

Moreover, experimental measurements are crucial for the validation of the model. 

There is no safe procedure to judge CFD results without validation. It is therefore 

essential for a future development of the Hydrojet numerical model to carry out 

experimental measurements in order to determine turbulence velocity field in the cell 

as well as the bubble size distribution. The most frequently used methods to determine 

velocity field in gas-liquid system are laser-based, while the most frequently used 

bubble size measurement technique are based on image analysis. PIV technique would 

be an obvious choice, since the technique is able to investigate flow fields, turbulence 

quantities in gas–liquid systems and bubble size as well.  

Numerical work 

The main weak point of the proposed numerical model of the Hydrojet cell is the 

assumption of constant diameter of the bubbles. Actually after the bubbles are 

introduced into the cell, they are further broken under the turbulent conditions in the 

mixing region and are then dispersed throughout the cell by the pumping action of the 

jets. Bubbles in this region may collide and coalesce. The equilibrium bubble size 

distribution in the cell is dictated by all the events taking place in the cell, in particular 

by the relative rates of bubble breakage and bubble coalescence in the cell. Thus in 

order to determine the bubble-particle collection and flotation rate in the Hydrojet cell, 

by means of the models presented in Section 5.3, it is necessary to compute not only 
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three-dimensional distributions of the turbulence dissipation rates, turbulence kinetic 

energies and volume fractions of air but also bubble size distributions. Thus a 

considerable improvement of the model would be obtained coupling a population 

balance model with the multi-phase modelling. Population balance is a well-established 

method in computing the size distribution of the bubbles and accounting for the 

breakage and coalescence effects in bubbly flows. Lo (2000) formulated the MUSIG 

model which involved discretization of the size distribution to size fractions, and this 

methodology has been introduced into the flotation model. Another method, suggested 

by Kocamustafaogullari and Ishii (1995), uses a balance equation for the interfacial area 

concentration and a similar method based on bubble number density was implemented 

into a CFD model by Lane et al. (2002). 
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