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A mia Mamma,
donna straordinaria





Some folks hide, and some folks seek, and seeking, when it’s mindless, neurotic,

desperate, or pusillanimous can be a form of hiding. But there are folks who want to

know and aren’t afraid to look and won’t turn tail should they find it - and if they never

do, they’ll have a good time anyway because nothing, neither the terrible truth nor the

absence of it, is going to cheat them out of one honest breath of Earth’s sweet gas.

Tom Robbins - Still Life with Woodpecker

Les questions les plus intéressantes restent des questions. Elles enveloppent un

mystére. A chaque réponse, on doit joindre un "peut-être". Il n’y a que les questions

sans intérêt qui ont une réponse définitive.

Eric-Emmanuel Schmitt - Oscar et la Dame Rose





Abstract

In this thesis we study the problem of selecting a set of regressors when

the response variable follows a parametric model (such as Weibull or log-

normal) and observations are right censored. Under a Bayesian approach,

the most widely used tools are the Bayes Factors (BFs) which are, however,

undefined when using improper priors. Some commonly used tools in liter-

ature, which solve the problem of indeterminacy in model selection, are the

Intrinsic Bayes factor (IBF) and the Fractional Bayes factor (FBF). The two

proposals are not actual Bayes factors but it can be shown that they asymp-

totically tend to actual BFs calculated over particular priors called intrinsic

and fractional priors, respectively. Each of them depends on the size of a

minimal training sample (MTS) and, in particular, the IBF also depends

on the MTSs used. When working with censored data, it is not immediate

to define a suitable MTS because the sample space of response variables

must be fully explored when drawing MTSs, but only uncensored data are

actually relevant to train the improper prior into a proper posterior. In

fact, an unweighted MTS consisting only of uncensored data may produce a

serious bias in model selection. In order to overcome this problem, a sequen-

tial MTS (SMTS) is used, leading to an increase in the number of possible

MTSs as each one has random size. This prevents the use of the IBF for

exploring large model spaces. In order to decrease the computational cost,

while maintaining a behavior comparable to that of the IBF, we provide a

suitable definition of the FBF that gives results similar to the ones of the

IBF calculated over the SMTSs. We first define the conditional FBF on a

fraction proportional to the MTS size and, then, we show that the marginal

FBF (mFBF), obtained by averaging the conditional FBFs with respect to

the probability distribution of the fraction, is consistent and provides also

good results. Next, we recall the definition of intrinsic prior for the case



of the IBF and the definition of the fractional prior for the FBF and we

calculate them in the case of the exponential model for right censored data.

In general, when the censoring mechanism is unknown, it is not possible to

obtain these priors.

Also another approach to the choice of the MTS, which consists in weighting

the MTS by a suitable set of weights, is presented. In fact, we define the

Kaplan-Meier minimal training sample (KMMTS) which depends on the

Kaplan-Meier estimator of the survival function and which contains only

suitable weighted uncensored observations. This new proposal could be use-

ful when the censoring percentage is not very high, and it allows faster

computations when the predictive distributions, calculated only over uncen-

sored observations, can be obtained in closed-form.

The new methodologies are validated by means of simulation studies and

applications to real data.
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Preface

The aim of survival analysis is to explain and predict the survival, usually defined along

the time domain. In this work we study it by means of regression models (see Klein

and Moeschberger (2003), Ibrahim et al. (2001), Cox and Oakes (1984), Kalbfleisch and

Prentice (2002), Therneau and Grambsch (2000) and Hosmer and Lemeshow (1999) for

a complete discussion).

In statistical data analysis it is common to consider the regression set up in which a

given response variable depends on some factors and/or covariates. The model selection

problem mainly consists in choosing the covariates which better explain the dependent

variable in a precise and hopefully fast manner. This process usually has several steps:

the first one is to collect considerations from an expert about the set of covariates, then

the statistician derives a prior on model parameters and constructs a tool to solve the

model selection problem. We consider the model selection problem in survival analy-

sis when the response variable is the time to event. Different terminal events can be

considered, depending on the purposes of the analysis: deaths, failures in mechanical

systems, divorces, discharges from hospital and so on. Survival studies include clinical

trials, cohort studies (prospective and retrospective), etc.

The main problem in survival data is that terminal events are not fully observable, in

this case we say that data are censored. Obviously, censored data are more difficult to

handle than complete data and, hence, the statistician must pay attention to the choice

of the most appropriate model selection tool tailored from these data.

Example 1. (Larynx dataset) We present the larynx dataset introduced by Kardaun

(1983) and described in Klein and Moeschberger (2003), which we study in detail in

Chapter 5. The dataset contains the survival times of n = 90 patients suffering from

larynx cancer of which ncens = 40 are censored. The corresponding variables are:

v



0. PREFACE

• time: survival times (in months)

• delta: censoring indicator (0=alive, 1=dead)

The dataset has 2 predictors, namely:

• stage: the stage of the disease based on the T.N.M. (primary tumor (T), nodal

involvement (N) and distant metastasis (M) grading) classification used by the

American Joint Committee for Cancer Staging in 1972. The stages are ordered

from least serious to most serious (1=stage 1, 2=stage 2, 3=stage 3, 4=stage 4)

• age: the age at diagnosis (in years)

The goal is to choose the optimal set of predictors for survival times from all possible

models, in this case 22 = 4 models, when considering linear models with only additive

effects

• M0 : Yi = µ+ σWi

• M1 : Yi = µ+ γ1 · stage+ σWi

• M2 : Yi = µ+ γ2 · age+ σWi

• M3 : Yi = µ+ γ1 · stage+ γ2 · age+ σWi

In real applications, it is typical to consider a response variable depending on a large

number of covariates and, in many cases, the “true” model can be sparse, i.e. only a

small number of covariates is related to the response (e.g. a small number of genes in

the genome). In order to solve such a practical problem, we need a tool to select the

most suitable model. We also pretend that such tool leads to a fast and accurate model

selection procedure. Two are the main Bayesian approaches to variable selection: sub-

jective and objective. Under a subjective point of view, the idea is to calculate a Bayes

factor (BF) over a proper informative prior provided by an expert. However, in order to

calculate BFs we need to specify a prior distribution πk(θk) separately for each model

and this can be complicated, because one often initially entertains K models leading to

the impossibility of careful subjective prior elicitation. For this purpose, Bayesian model

selection is usually done by means of default methods. When an objective approach

is adopted, minimal non-informative priors, and often improper priors (i.e. priors that

do not integrate over the parameter space), are used and so one has to reconsider the

vi



concept of BF in order to obtain a good tool for model selection (see Berger et al. (2001)

for more details).

The main default Bayesian procedures considered in this thesis are the Intrinsic Bayes

factor (IBF), the Fractional Bayes factor (FBF), the Bayesian information criterion

(BIC) and a new version of the FBF, called marginal Fractional Bayes factor (mFBF).

In this work it is illustrated how to adapt the four criteria (with their variations) when

censored data are available, using theoretical arguments, simulations and applications

to real datasets, as the larynx dataset illustrated above.

In Chapter 1 the different censoring mechanisms and the most common survival regres-

sion models are presented. In Chapter 2 the general variable selection problem without

censoring is shown, along with the description of the IBF, the FBF and the BIC. Then

in Chapter 3 and Chapter 4, which are the heart of the thesis, the objective Bayesian

procedures for model selection under censoring are presented. In particular, in Chap-

ter 3 it is introduced the variable selection under censoring using sequential minimal

training samples. The calculus of the IBF, FBF, a new tool called mFBF and BIC are

provided, jointly with some theoretical results and exemplifications. Also a simulation

study is considered. In Chapter 4, the weighted Kaplan-Meier minimal training sample

(KMMTS) is introduced, and its behavior is evaluated in a simulation study. In Chap-

ter 5 applications to four real datasets are considered. Finally, in Chapter 6, some final

remarks and observations, jointly with future work, are included.
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Survival Regression Models

1.1 Introduction

In this chapter the main parametric regression models used to describe survival data

are introduced. First we present the censoring mechanism (see Klein and Moeschberger

(2003) for details) and, after that, a review of the main parametric models is done. The

Weibull and log-normal models are presented more in detail in the following subsections.

Finally, for completeness, a summary of semiparametric and nonparametric models is

included in Subsection 1.3.2 and Subsection 1.3.3.

1.2 Censoring types

When working with survival data, we have to take into account that some data are not

completely observable. This could be the case of an observational study in a limited

time period. When not all the units or individuals under study fall or experience the

terminal event, within the period of study, we say that data are censored.

There are several types of censoring, here we discuss the most common ones:

1. Type I censoring

2. Type II censoring

3. random censoring:

(a) right censoring

(b) left censoring

1



1. SURVIVAL REGRESSION MODELS

(c) interval censoring

4. truncation

We now give some details.

1. Type I censoring: this case occurs when an experiment has a certain number of

subjects and it stops at a fixed pre-assigned censoring time tc. Instead of observing

the times to event, or lifetimes, T1, . . . , Tn, we observe Z1, . . . , Zn, where

Zi =

{
Ti if Ti 6 tc,

tc otherwise.

2. Type II censoring: when an experiment has a certain number n of subjects and

it continues until the failure of a fixed number of subjects is observed.

3. Random censoring: it occurs when each individual has a censoring time which

is statistically independent of the failure time. This is the most common case of

censoring.

(a) Right censoring: when an individual’s lifetime is above a certain value but

we don’t know by how much. We denote by Ci the censoring time and by Ti

the survival time. We observe the couples (Zi, δi), where

Zi = min(Ti, Ci)

δi =

{
1 if Ti 6 Ci,

0 otherwise.

If Ti > Ci the individual is a survivor and the event time is censored at Ci.

Here δi denotes whether the lifetime Ti corresponds to an event (δ = 1) or is

censored (δ = 0).

(b) Left censoring: as right censoring, except that

Zi = max(Ti, Ci)

δi =

{
1 if Ti > Ci,

0 otherwise.

2



1.2 Censoring types

(c) Interval censoring: this is the case when a lifetime is on an interval between

two fixed values, [Li, Ui]. This is the combination of right censoring and left

censoring.

4. Truncation: it is due to the structure of the study. In this case only those

individuals whose event time is smaller (right truncation) and/or greater (left

truncation) than a particular truncation threshold are observed. So if the variable

of interest falls outside the range, it is not recorded and no information on this

subject is available.

In Figures 1.1, 1.2 and 1.3 three different types of censoring are shown: right cen-

soring, interval censoring and left censoring, respectively, for n = 4 lifetimes.

Figure 1.1: Example of right censored data.

In many real datasets, the censoring plan is a mixing of random and Type I cen-

soring, because some patients are randomly censored when, for example, they die or

they move from the center of the study, while others are Type I censored when the fixed

study period ends. In this thesis we work with Type I censoring or with the combination

of random and Type I censoring. Other types of censoring are possible, but they just

complicate the exposition and calculus, while, for our purpose, a type of censoring and

a corresponding random mechanism must be assumed.

3
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1. SURVIVAL REGRESSION MODELS

Figure 1.2: Example of interval censored data.

Figure 1.3: Example of left censored data.

1.3 Main survival models

In survival analysis different classes of models are used. It is common to divide them

into: parametric, semiparametric and nonparametric models. In this section a review

of the main models of each type is presented.

We recall that the distribution function of a random variable T with continuous density

f(t) is

F (t) = Pr(T 6 t) =

∫ t

0
f(z)dz,

4
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1.3 Main survival models

the survival function is defined as the complement of the distribution function

S(t) = Pr(T > t) = 1 − F (t)

and the hazard function is given by

h(t) = lim
dt→0

Pr(t < T 6 t+ dt|T > t)

dt
=
f(t)

S(t)
.

1.3.1 Parametric Models

The most interesting feature of parametric models is that they easily describe the nature

of some functions related to the survival distribution, in particular the hazard rate,

using parametric functions. Some of the most important parametric models include

the exponential, Weibull, gamma, log-normal, log-logistic, normal, Gompertz, inverse

Gaussian, Pareto and the generalized gamma distribution.

1.3.1.1 Exponential model

The exponential model is a fundamental parametric model in survival analysis because

of its historical significance, calculation simplicity and important properties. Its survival

function is

S(t) = exp(−λt), λ > 0, t > 0.

The density function is

f(t) = λ exp(−λt)

and it is characterized by a constant hazard function

h(t) = λ.

One important characteristic of the exponential distribution is the lack of memory

property

Pr(T > t+ z | T > t) = Pr(T > z).

It follows that the mean residual life, that is the conditional expected life at time t,

is constant

E(T − t|T > t) = E(T ) =
1

λ
.

The fact that the exponential distribution has a constant hazard rate leads to a very

restrictive assumption in many applications.

5



1. SURVIVAL REGRESSION MODELS

1.3.1.2 Weibull model

One of the most widely used parametric models is the Weibull one. Its density function

f(t), survival function S(t) and hazard rate h(t), for the time T ≥ 0 to the terminal

event, are

f(t) = αλtα−1 exp(−λtα)

S(t) = exp(−λtα)

h(t) = αλtα−1

with α, λ > 0, t > 0. The parameters of the distribution, α and λ, are the shape and

scale parameters, respectively. Note that the exponential distribution is a special case

of the Weibull distribution with α = 1.

The distribution is named after Ernst Hjalmar Waloddi Weibull (1887-1979) who pub-

lished his first paper about this distribution (Weibull (1939)).

The Weibull distribution is commonly used in industrial and biomedical applications,

for reliability engineering to describe time to failure in electronic and mechanical sys-

tems and for the analysis of time to failure data after the application of stress. It is also

widely used for modelling survival data (see Klein and Moeschberger (2003), Hamada

et al. (2008), Kalbfleisch and Prentice (2002) and Rausand and Hoyland (2004)).

This distribution is widely used because of its flexibility: it is possible to have increasing

(α > 1), decreasing (α < 1) and constant hazard rates (α = 1). In Figure 1.4 three

hazard functions for different values of the parameters are shown.

Its flexible form and the model’s simple survival, hazard and probability density function

have made it a very popular parametric model.

Some authors, like Pike (1966) and Peto and Lee (1973) state that the Weibull

model can be used to model the time to appearance of certain phenomena, like the

time to appearence of a disease or the time until death. Other authors, like Lee and

O’Neill (1971) and Doll (1971), claim that the Weibull model fits data describing time

to appearance of tumors in animals and humans.

More details about the Weibull survival model are given in Section 1.4.

6



1.3 Main survival models

Figure 1.4: Hazard functions for the Weibull model.

1.3.1.3 Log-normal model

The log-normal model is another well known parametric model. The density function,

the survival function and the hazard rate of a log-normal variable T are

f(t) =
1√

2πσt
exp

(
− 1

2σ2
(log(t) − µ)2

)

S(t) = 1 − Φ

(
log t− µ

σ

)

h(t) =
f(t)

S(t)

where Φ(t) is the distribution function of a standard normal variable, µ ∈ R, σ > 0 and

t > 0. The hazard rate of the log-normal at 0 is zero, it increases to a maximum and then

decreases to 0 as t approaches infinity. In Figure 1.5 three different hazard functions

for different values of the parameters are shown. Observe that the log-normal model

is not ideal to describe the lifetime distribution, because the hazard, as t increases, is

a decreasing function. This fact does not seem reasonable, except in special cases in

which larger values of t are not considered.

7
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1. SURVIVAL REGRESSION MODELS

Some authors, like Feinleib (1960) and Horner (1987), have used this distribution in the

context of survival analysis.

Figure 1.5: Hazard functions for the log-normal model.

More details about the log-normal model can be found in Section 1.5.

1.3.1.4 Log-logistic model

A variable T is said to follow the log-logistic distribution if its logarithm Y = log(T )

follows the logistic distribution with density

f(y) =
exp

(y−µ
σ

)

σ
(
1 + exp

(y−µ
σ

))2 , −∞ < y <∞

where µ and σ2 are the location and scale parameters of Y , respectively. The hazard

rate for the log-logistic distribution is

h(t) =
αλtα−1

1 + λtα

and the survival function is

S(t) =
1

1 + λtα
,

8
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1.3 Main survival models

where α = 1/σ > 0 and λ = exp (−µ/σ). The numerator of the hazard function is

the same as the Weibull hazard but the entire hazard has the following characteristics:

monotone decreasing for α 6 1, while for α > 1 the hazard rate increases initially

to a maximum at time ((α− 1)/λ)1/α and then decreases to zero as time approaches

infinity. This distribution has simple expressions for the hazard and survival functions,

as well as the Weibull and exponential models. Note that its hazard rate is similar to

the log-normal one, except in the extreme tail of the distribution (see Bennett (1983)

and Gupta et al. (1999)). For this reason, it presents the same problems of the log-

normal model in practical applications. In Figure 1.6 three different hazard functions

for different values of the parameters are shown.

Figure 1.6: Hazard functions for the log-logistic model.

1.3.1.5 Gamma model

The gamma distribution has similar properties to the Weibull one except its mathemat-

ical tractability. Its density function is:

f(t) =
λβ

Γ(β)
tβ−1 exp(−λt)

where λ > 0 is the scale parameter, β > 0 is the shape parameter, t > 0 and Γ(·) is the

gamma function. This distribution, like the Weibull one, includes the exponential as a

9
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1. SURVIVAL REGRESSION MODELS

special case (for β = 1) and it approaches a normal distribution as β tends to infinity.

The hazard function for the gamma distribution is monotone increasing for β > 1, with

h(0) = 0 and h(t) → λ as t → ∞, and monotone decreasing for β < 1, with h(0) → ∞
and h(t) → λ as t→ ∞. When β > 1 the mode is at t = (β−1)/λ. Its survival function

is

S(t) =

∫∞
z λ(λz)β−1 exp(−λz)dz

Γ(β)

and its hazard function is

h(t) = λ(λt)n−1

(
(n− 1)!

n−1∑

k=0

(λt)k

k!

)−1

.

A more useful distribution is the generalized gamma, which has the following form:

f(t) =
αλβ

Γ(β)
tαβ−1 exp(−λtα).

Other distributions can be obtained as special cases: Weibull (if β = 1), exponential

(if α = β = 1) and log-normal (if β → ∞). For this reason, the generalized gamma

distribution is often used to choose the most adequate parametric model for survival

data.

Figure 1.7 shows three different hazard functions for the gamma model and for different

values of the parameters.

1.3.2 Semiparametric models

For completeness of exposition of the subject, in this subsection and in the following

one we will recall some classes of semiparametric and nonparametric models that will

not be used further in the thesis.

Semiparametric methods have been studied in the context of Bayesian survival analy-

sis. The different approaches can be distiguished by the stochastic process used as prior

distribution for the nonparametric part of the model. One of the most popular semi-

parametric models is the Cox proportional hazards model (Cox (1972)). Let S(t | x)

be the survival function of the time T given a vector of covariates x, and let h(t | x) be

the corresponding hazard function

h(t | x) = h0(t) exp(γTx)

10



1.3 Main survival models

Figure 1.7: Hazard functions for the gamma model.

where h0(t) is an unspecified baseline hazard function and γ is the vector of regression

coefficients. In this model, h0(·) is the nonparametric part and the function containing

the regression coefficients is the parametric part. Usually γ is supposed to be constant

over time, but when γ is function of t there is a time-varying covariate effect and when

x is a function of t there is a time-dependent covariate effect.

Suppose to have a partition of the time axis

0 < a1 < a2 < . . . < aJ .

So there are J intervals I1 = (0, a1], I2 = (a1, a2], . . ., IJ = (aJ−1, aJ ]. Two are the

possible cases:

• if the survival function is absolutely continuous, then an ordinary Cox model is

assumed

S(t | x) = exp
(
−H0(t) exp(γTx)

)

where H0(t) =
∫ t
0 h(u)du is the cumulative baseline hazard function and γ and x

are constant over time

11
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1. SURVIVAL REGRESSION MODELS

• if the survival function is not absolutely continuous, then the discretized version

of the Cox model is used

S(αj | γ,x) =

j∏

k=1

(1 − αk)
exp(γTx) j = 1, . . . , J,

where αk = Pr(ak−1 6 T < ak | T > ak−1) is the discretized baseline hazard rate

for the interval Ik.

For this model different nonparametric priors have been considered, leading to dif-

ferent models. In the following we summarize some of the most commonly used ones.

The piecewise constant hazard model. In the j-th interval suppose to have a constant

baseline hazard h0(t) = λj for t ∈ Ij = (aj−1, aj] and let D = (n, t,X , δ) be the

observed data, where t = (t1, t2, . . . , tn)T, δ = (δ1, δ2, . . . , δn)T with δi = 1 if the i-th

subject uncensored and 0 otherwise, and X is the n× r matrix of covariates with i-th

row xi
T. Letting λ = (λ1, λ2, . . . , λJ)T, then the likelihood function of (γ,λ) for the n

subjects can be written as

L(γ,λ | D) =

n∏

i=1

J∏

j=1

(
λj exp(γTX)

)νijδi

×

× exp


−νij


λj(ti − aj−1) +

j−1∑

g=1

λg(ag − ag−1)


 exp(γTX)




where νij = 1 if the i-th subject uncensored or was censored in the j-th interval, and 0

otherwise.

This model is also known as piecewise exponential model. A common prior for the

baseline hazard λ is the independent gamma prior λj ∼ Ga(α0j , λ0j), j = 1, 2, . . . , J ,

where α0j and λ0j are prior parameters which regulate the prior mean and variance of

λj .

Another nonparametric prior process used for the Cox model is the gamma process. Let

Ga(α, λ) be the gamma distribution where α > 0 is the shape parameter and λ > 0 is

the scale parameter, α(t) for t > 0, an increasing left-continuous function, with α(0) = 0

and Z(t) a stochastic process where

(i) Z(0) = 0;

(ii) Z(t) has independent increments in disjoint intervals;

12



1.3 Main survival models

(iii) Z(t) − Z(s) ∼ Ga(c(α(t) − α(s)), c), for t > s.

Then {Z(t) : t > 0} is called a gamma process

Z(t) ∼ GP(cα(t), c)

where α(t) is the mean of the process and c is a weight or confidence parameter about

the mean.

The gamma process can be used as a prior on the cumulative or baseline hazard.

Here we recall its use when modelling the cumulative hazard that is most common. For

more details about the specification of a gamma process on the baseline hazard rate see

Chapter 3 of Ibrahim et al. (2001).

The gamma process on cumulative hazard. The probability distribution of survival of n

subjects given X under the Cox model is

Pr(T > t | γ,X,H0) = exp


−

n∑

j=1

exp(γTxj)H0(tj)


 .

The gamma process is often used as a prior for the cumulative baseline hazard function

H0(t):

H0 ∼ GP(c0H
∗, c0).

H∗(t) can be chosen to be Weibull distributed, for example, where H∗(t) is an

increasing nonparametric function with H∗(0) = 0 and β0 is the vector of hyperparam-

eters. Then we have H∗(t) = η0t
k0 , where β0 = (η0, k0)

T.

Then, the marginal survival function is

Pr(T > t | γ,X ,β0, c0) =

n∏

j=1

[Φ(iVj)]
c0(H∗(t(j))−H∗(t(j−1))) (1.1)

where Vj =
∑

l∈Rj
exp(γTxl) and Rj is the risk set at time t(j). The corresponding

likelihood can be obtained by differentiating (1.1). For more details about the use of the

gamma process and the Cox model, see Ibrahim et al. (2001), Kalbfleisch (1978) and

Clayton (1991). Other priors used jointly with the semiparametric Cox model are the

Beta process (Section 3.5 of Ibrahim et al. (2001)) and the Dirichlet process (Section

3.7 of Ibrahim et al. (2001)).

13
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1.3.3 Nonparametric models

The Bayesian nonparametric approach to survival analysis consists in finding a specific

functional form for the survival distribution conditional on the sample and in providing

suitable priors for the corresponding space of random functions. The first works are

mostly based on the Dirichlet process, introduced by Ferguson (1973), which is a class of

random probability measures. Given a partition B = {B1, . . . , Bk} of the sample space

Ω, then a stochastic process P on (Ω, B) is said to be a Dirichlet process if the vector

(P (B1), . . . , P (Bk)) follows a Dirichlet distribution with parameters (α(B1), . . . , α(Bk)),

for all the partitions of Ω. In Susarla and Van Ryzin (1976), for example, the Dirichlet

process is used to make point estimation of the survival curve.

Let T be a continuous random variable in (0,∞), then F (t) = P ((−∞, t]) and the

process P are said neutral to the right if the normalized increments

F (t1), [F (t2) − F (t1)]/[1 − F (t1)], . . . , [F (tk+1) − F (tk)]/[1 − F (tk)]

are independent for all t1 < t2 < . . . < tk+1. In Doksum (1974) the independent

increment processes (or Levy processes) are used to construct the neutral to the right

processes and it is shown that the posterior distribution of a random probability neutral

to the right is also neutral to the right. In Doksum (1974) it is also observed that, in

this kind of models, the survival function is discrete with probability 1. In Ferguson

and Phadia (1979) Bayesian nonparametric survival models are studied in the case of

uncensored and censored data and then, the Dirichlet process, the simple homogeneous

process and the gamma process are considered. Other works on nonparametric models

are Hjort (1990), Doss (1994), based on Dirichlet process mixtures of Antoniak (1974),

Muliere and Walker (1997), based on Polya tree priors of Ferguson (1974) and Lavine

(1992), and Walker and Damien (1998), based on the beta-Stacy process priors of Walker

and Muliere (1997). In Kim (1999) independent increment processes are taken as prior

distributions for the cumulative intensity function of multiplicative counting processes.

Dykstra and Laud (1981) describe a method to solve the problem of the discreteness of

the survival function by modelling the hazard rate function by means of an independent

increment process, obtaining continuous survival and cumulative hazard functions. A

drawback of this technique is that the hazard rate function must be monotone. So

in Arjas and Gasbarra (1994) it is suggested to use a Markov jump process with a
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1.4 Weibull model

martingale structure. In order to overcome the problem of the monotony and the

difficulty of this last structure, in Nieto-Barajas and Walker (2004) it has been proposed

a piecewise continuous Markov process to model the hazard rate function and, then, the

survival and cumulative hazard functions are modeled by means of a continuous process.

In Kottas (2006) a computational method to calculate the posterior distribution of

different functionals of a Weibull Dirichlet process mixture is presented. The idea is to

model the survival function with a flexible Dirichlet process mixture having a Weibull

kernel. This eliminates the problem of making full posterior inference in survival analysis

for the different functionals of interest. For more details see Ibrahim et al. (2001),

De Blasi (2006) and Kottas (2006).

1.4 Weibull model

We now provide more details about the Weibull model, introduced in Subsection 1.3.1.2,

expecially in the context of regression as this will be a reference model for the rest of

the thesis.

It is sometimes useful to work with the logarithm of lifetimes in order to convert positive

values to observations on the entire real line.

Suppose T = (T1, . . . , Tn) denotes lifetimes or censored times. We consider

Yi = log(Ti), i = 1, . . . , n

where Ti ∼Weibull(α, λi). Then Yi has the density function

fY (yi | α, λi) = α exp

[
α

(
yi −

(
− log(λi)

α

))
− e

α
“

yi−
“

− log(λi)

α

””

]
(1.2)

where −∞ < yi < +∞.

In survival analysis one of the most interesting problems is to ascertain the relation-

ship between the failure time, T , and one or more covariates in order, for example, to

determine the prognosis of a patient with various characteristics. Consider m covari-

ates associated with a vector of times T , which may include quantitative, categorical

and/or time dependent variables. We choose an approach similar to the classical linear

regression, assuming a linear model for Y

Yi = µ+ γTxi + σWi

15



1. SURVIVAL REGRESSION MODELS

where Wi follows a standard Gumbel distribution (which is obtained as the distribution

of the logarithm of a Weibull variable), with the following density function

fW (w) = exp(w − exp(w)) (1.3)

for −∞ < w < +∞. X = (x1, . . . ,xn)T denotes the fixed design matrix with the

observed covariates in the n subjects, where xi = (xi1, . . . , xim) are the values of the m

covariates in the i− th subject. We mainly operate under the following parametrization

α = 1/σ, λi = exp
{
−(µ+ γTxi)/σ

}
where γT = (γ1, . . . , γm) is a vector of regression

coefficients.

The Gumbel distribution1 is used to model the distribution of the maximum (or min-

imum) of a number of samples of various distributions belonging to the exponential

family. In fact it is useful in predicting the chance that an extreme event will occur.

The potential applicability of this distribution to represent the distribution of maxima

(or minima) relates to extreme values of the normal or exponential type (see Gumbel

(1958)).

The Weibull model is also called the accelerated failure-time model. Let S0(t) denote

the survival function when x is 0, that is, S0(t) is the survival of exp(µ + σW ), then

for another subject with regressor values x we have

Pr(T > t) = Pr(Y > log(t)) = Pr(µ+ σW > log(t) − γTx)

= Pr(exp(µ+ σW ) > t exp(−γTx))

= S0(t exp(−γTx)).

Observe that the effect of the covariates in the original time scale is to change the

time scale by a factor exp(−γTx). Depending on the sign of −γTx the time can be

incremented or decremented by a constant factor.

This model is also a multiplicative hazard rates model. The hazard rate of an individual

with a covariate vector x for this class of models is related to a baseline hazard rate h0

and a non-negative function of the covariates by

h(t | x) = αλtα−1 exp

(
−γT

σ
x

)

= h0(t) exp

(
−γT

σ
x

)
,

1Emile Julius Gumbel, 1891-1966
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1.4 Weibull model

where h0(t) = αλtα−1.

When all the covariates are fixed at time zero, the hazard rates of two individuals with

distinct values of x are proportional. To see this, consider two individuals with covariate

values x1 and x2

h(t | x1)

h(t | x2)
=
h0(t) exp(−γT

σ x1)

h0(t) exp(−γT

σ x2)

which is constant over time.

Observe that the Weibull is the only parametric model which has the property of being

both an accelerated failure-time model and a multiplicative hazards model.

In the context of survival analysis, a common feature of datasets is that they contain

censored or truncated observations; this leads to a certain structure in the likelihood.

In the following, we introduce the necessary inferential tools which allow us to work

with incomplete data.

1.4.1 Inference

In this section we present the likelihood function, our choice for the prior distribution

and the approximation of the corresponding posterior distribution for the parameters.

Model selection is performed under such likelihood and prior.

1.4.1.1 Likelihood function

The likelihood for a vector of observations y has the following form

L(y | θ,X) =

n∏

i=1

fY (yi)
δi [SY (yi)]

(1−δi)

=

n∏

i=1

[
1

σ
fW

(
yi − (µ+ γTxi)

σ

)]δi
[
SW

(
yi − (µ+ γTxi)

σ

)](1−δi)
(1.4)

where fY is given in (1.2), SY is the corresponding survival function, fW is given in

(1.3), SW is the associated survival function and δi = 0 if observation i is censored and

1 otherwise.
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1. SURVIVAL REGRESSION MODELS

1.4.1.2 Prior distribution

In order to make inference about parameters in our model from a Bayesian perspective,

it is necessary to specify a prior distribution for the parameters. In model selection

problems, it is quite difficult to elicitate a prior on the parameters of each model,

especially when the number of models is large. For the case of location-scale models,

as the Weibull model, the usual default prior is the Jeffrey’s one (see Yang and Berger

(1998))

π(µ,γ, σ) ∝ 1

σ
for µ ∈ R, γ ∈ R

dim(γ), σ ∈ R
+.

This prior has been proposed in Evans and Nigm (1980) and also used in Albert

(2009) and leads to a proper posterior distribution when calculated over a sample con-

taining a number of uncensored observations equal to the number of parameters in the

model (in this case dim(γ) + 2).

1.4.1.3 Posterior distribution

The corresponding unnormalized kernel of the posterior distribution can be written as

π(µ,γ, σ | y,XXX) ∝ π(µ,γ, σ)L(µ,γ, σ | y,X)

=
1

σ

n∏

i=1

(
1

σ
fW

(
yi − (µ+ γTxi)

σ

))δi
(
SW

(
yi − (µ+ γTxi)

σ

))(1−δi)

=
1

σ

n∏

i=1

[
1

σ
exp

((
yi − (µ+ γTxi)

σ

)
− exp

(
yi − (µ+ γTxi)

σ

))]δi

×

×
[
exp

(
− exp

(
yi − (µ+ γTxi)

σ

))](1−δi)

.

Approximation of the posterior distribution

The posterior distribution has not a closed-form and it has been approximated by using

Markov Chain Monte Carlo simulation methods (MCMC), in particular a random walk

Metropolis-Hastings (MH) for θ = (µ,γ, log(σ)) with a multivariate normal distribution

as proposal (see Chib and Jeliazkov (2001)). Algorithm 1 contains the pseudocode of

the method proposed in Albert (2009). Firstly a Laplace approximation is run with the

maximum likelihood estimator of the regression model (in particular, we have used the

function survreg of the library survival in R). The Random Walk MH algorithm is
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1.5 Log-normal model

used with a proposal having the Laplace approximation’s variance and a multiplicative

factor of the Metropolis scale factor.

Algorithm 1 Random Walk Metropolis to approximate the posterior distribution.

Require: N, number of RW-MH MCMC steps;

Data D(y,X);

π(θ|D) posterior kernel of the regression model M ;

θ∗ = θ(1) initial value of the parameters vector of length s;

Σ̂ the variance-covariance matrix of the proposal distribution:

τ fixed scale factor;

1: Calculate the posterior distribution at θ∗, π = π(θ∗|D);

2: for i=2 to N do

3: Generate vvv = (v1, . . . , vs)
T, where vi ∼ N(0, 1), for i = 1, . . . , s, and calculate the

posterior probability at ζζζ = θ∗ + τ Σ̂vvv, π∗ = π(ζζζ∗|D);

4: Generate u ∼ U(0, 1);

5: if u < π∗/π then

6: π = π∗;

7: θ∗ = ζζζ

8: end if

9: θ(i) = θ∗

10: end for

11: return (θ(1), . . . ,θ(N))

1.5 Log-normal model

We now provide more details about the log-normal model, expecially in the context of

regression, as this will be another reference model for the rest of the thesis. Suppose

that the time to the event is log-normal distributed, then Yi = log(Ti) follows a normal

distribution. In the context of regression analysis it is possible to express Yi as

Yi = log(Ti) = µ+ γTxi + σWi

where X = (x1, . . . ,xn)T denotes the observed covariates in the n subjects, with xi =

(xi1, . . . ,xim) the covariates for each subject i, and Wi ∼ N(0, 1).

19



1. SURVIVAL REGRESSION MODELS

1.5.1 Inference

In this section the likelihood function of the censored log-normal model, a choice for

the prior distribution and the corresponding posterior distribution are shown.

1.5.1.1 Likelihood function

For right censored data the likelihood has the form

L(y | θ,X) =

n∏

i=1

fY (yi)
δi [SY (yi)]

(1−δi)

=

n∏

i=1

[
1√
2πσ

exp

(
−1

2

(
yi − (µ+ γTxi)

σ

)2
)]δi

×

×
[
1 − Φ

(
yi − (µ+ γTxi)

σ

)](1−δi)

.

1.5.1.2 Prior distribution

In order to avoid elicitation of a proper prior for each possible model, default methods

are considered. For this model the Reference, Jeffreys and location-scale priors agree

and are given by

π(µ,γ, σ) ∝ 1

σ
, µ ∈ R,γ ∈ R

dim(γ), σ ∈ R
+.

As in the case of the Weibull model, in order to obtain a proper posterior, it is necessary

to calculate it over a sample containing a number of uncensored observations equal to

the number of parameters in the model (in this case too the number is dim(γ) + 2).

1.5.1.3 Posterior distribution

The corresponding posterior distribution takes the form

π(µ,γ, σ | y,XXX) ∝ π(µ,γ, σ)L(µ,γ, σ | y,X)

In Chapter 4 we present a technique to calculate Bayes factors which involves the

expressions of the marginal distributions when we have uncensored samples and also

when censored data are present in the samples. In order to calculate the marginal

distributions, here we introduce the calculations of the posterior distribution in two

cases:
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1.5 Log-normal model

(i) all the data are uncensored observations;

(ii) part of the data are censored and the remaining part is uncensored.

In case (i) we rewrite the model as

y = Zβ + ǫǫǫ,

where y = (y1, . . . , yn) are uncensored observations, ǫǫǫ = (ǫ1, . . . , ǫn) are normally dis-

tributed, ǫi ∼ N(0, σ), β = (µ,γ) and Z = (1,X) is the covariate matrix with first

column of ones and with rank r. Then we obtain

f(y | β, σ2) =

(
1√
2πσ

)n

exp

(
− 1

2σ2
(y − Zβ)T(y − Zβ)

)

=

(
1√
2πσ

)n

exp

[
− 1

2σ2

(
(y − ŷ)T(y − ŷ) + (β − β̂)TZTZ(β − β̂)

)]
,

where β̂ = (ZTZ)−1ZTy and ŷ = Zβ̂.

Observe that β̂ is a sufficient statistic for β when σ2 is known. So

β̂ | σ2 ∼ Nr(β, σ
2(ZTZ)−1).

The posterior distribution is

π(β, σ2 | y) = π(β | β̂, σ2)π(σ2 | (y − ŷ)T(y − ŷ)),

where

π(β | β̂, σ2) ∼ Nr(β̂, σ
2(ZTZ)−1)

and

π(σ2 | (y − ŷ)T(y − ŷ)) ∼ Invχ2
n−r

with scale factor (y − ŷ)T(y − ŷ)/n − r.

The marginal posterior distribution for β is:

π(β | y) =
Γ(n

2 ) | ZTZ |1/2 s−r
var

Γ(1
2 )rΓ(n−r

2 )
√
n− r

r

[
1 +

(β − β̂)TZTZ(β − β̂)

(n− r)s2var

]−n
2

,

where s2var = (y − ŷ)T(y − ŷ)/(n − r) is the sample variance.
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1. SURVIVAL REGRESSION MODELS

In case (ii) the kernel of the posterior distribution can be written as

π(µ,γ, σ | y,XXX) ∝ 1

σ

n∏

i=1

[
1√
2πσ

exp

(
− 1

2σ2

(
yi − (µ+ γTxi)

σ

)2
)]δi

×

×
[
1 − Φ

(
yi − (µ+ γTxi)

σ

)](1−δi)

which doesn’t have a closed-form. Again, we need to use a MCMC simulation in order

to approximate the distribution and we run the Algorithm 1.

1.5.1.4 Marginal predictive distribution

In case (i) the marginal distribution has the form

m(y) =
Γ(1

2)rΓ(n−r
2 )

Γ(n
2 ) | ZTZ |1/2 ((y − ŷ)T(y − ŷ))

(n−r)/2
. (1.5)

More details on the calculation of the marginal predictive distribution can be found

in Chapter 8 of Ghosh et al. (2006) and in Section 2 of Berger and Pericchi (1997).

In case (ii) we need to approximate the marginal distribution with MCMC methods.
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2

Variable Selection

2.1 Bayesian Formulation

In Statistics it is often required to summarise and represent a random phenomena by

means of a statistical model. For this reason, one important issue is to choose the best

model that may represent the behavior of the quantity of interest. Suppose we want

to describe the survival of a group of patients suffering from a particular disease. It is,

then, fundamental to discover which factors are correlated with the patient’s survival

and how survival could be predicted.

We represent the data, y, by a statistical model, which usually depends on some un-

known parameters, θ, and which specify a particular probability distribution for y,

f(yyy | θθθ).
The model space, i.e. the family of all possible models, is denoted by M

M = {M0, . . . ,MK}.

In our case each model has the form

Mk : yi = βk
Txk,i + σkǫi,

where X is a fixed design matrix with r columns, that is r covariates including the

intercept (r = m + 1, where m is the number of independent quantitative covariates),

k ∈ {0, 2, . . . ,K = 2r − 1} indicates the model index with the corresponding design

matrix

Xk = (xk,1, . . . ,xk,n)T ∈ R
n×rk and model vector parameters θk = (βk, σk) ∈ Θk =
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R
rk × R

+ and ǫi is the error term.

The aim of model selection is to select a model, among those in the model space, M,

which better describes the phenomenon under study. A particular case of model selec-

tion which we study in this thesis is the variable selection problem.

Variable selection is a common problem in regression. Its goal is to explain a response

variable, Y , using a set of covariates {X1, . . . ,Xm} related to Y . Our aim is to find out

which variables, from the given set, are relevant to explain Y . In this model selection

problem each entertained model Mi corresponds to a particular subset of covariates.

The Bayesian approach to model selection or hypothesis testing was developed by Jef-

freys, whose solution was based on posterior odds probabilities or, equivalently, on BFs

(see Kass and Raftery (1995)). This approach to model selection also arises formally

in decision theory frameworks, given a certain loss function. In this work we show

some model selection procedures based on Jeffreys’ proposal, which are also based on

the Neyman-Pearson-Wald Lemma (see DeGroot (1975) and Pereira et al. (2008)) and

which involve posterior probabilities and BFs.

2.2 Bayes Factors and Posterior Model Probabilities

In this section we propose some model selection techniques based on hypothesis testing.

Suppose we are comparing K models, in our case K = 2r − 1

y | θi ∼ fi(y | θi)

considering only additive effects of r covariates (X1, . . . ,Xr), including the intercept,

then our hypotheses are

Hi : θ = θi ∈ Θi (the true model is Mi)

Hj : θ = θj ∈ Θj (the true model is Mj) i 6= j = 0, . . . ,K.

Assuming πi(θi), i = 1, . . . ,K, prior distributions for the unknown parameters, the

marginal or predictive density of y is

mi(y) =

∫

Θi

fi(y | θi)πi(θi)dθi.
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Definition 1. (Bayes factor) Given two models, Mi and Mj , the Bayes factor (BF)

in favor of Mi and against Mj is given by

Bij =
mi(y)

mj(y)
(2.1)

where mi(y) and mj(y) are the marginal distributions of the models Mi and Mj , re-

spectively.

The BF can also be defined as the quantity which updates the prior odds producing

the posterior odds, that is

Pr(Mj | y)

Pr(Mi | y)
=

Pr(Mj)

Pr(Mi)
Bji (2.2)

The posterior probability of model Mj in function of BFs is

Pr(Mj | y) =
Pr(Mj)mj(y)

∑K
k=0 Pr(Mk)mk(y)

=

{
1 +

∑

k 6=j

Bkj
Pr(Mk)

Pr(Mj)

}−1

. (2.3)

In Table 2.1 we show the BF interpretation of Jeffreys (1961), who considers both

the BF value and its logarithm, log10, called the weight of evidence.

log10(Bij) Bij Evidence against Mj

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive

Table 2.1: Bayes factors interpretation.

Under the perspective of decision theory, the action space is M and we indicate an

action with “a”. Our model selection problem is a finite action problem, because we

have to choose the best model among a finite number of proposed models, K + 1. Let

{a0, . . . , aK} be all the available actions, with

ai = choice of the model Mi

and l(θ, ai) the corresponding losses, i = 0, . . . ,K. The Bayes action is that one which

minimizes the posterior expected loss

Eθ|y[l(θ, ai)].
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In our case the actions of interest are ai, i = 0, . . . ,K. If we choose the “0− ki” loss

function

l(θ, ai) =

{
0, if θ ∈ Θi

ki, if θ ∈ Θc
i

we obtain

Eθ|y[l(θ, ai)] =

∫
l(θ, ai)π(θ | y)dθ =

=

∫

Θc
i

kiπ(θ | y)dθ = ki(1 − Pr(Θi | y)) = ki(1 − Pr(Mi | y)).

The Bayes decision is that one corresponding to the smallest posterior expected loss.

We can also define the Bayes action in terms of posterior probabilities and BFs

Eθ|y[l(θ, ai)]

Eθ|y[l(θ, aj)]
=
ki

kj

(1 − Pr(Mi | y))

(1 − Pr(Mj | y))
.

Hence, if all the kj are equal, the Bayes decision corresponds to choose the model

with the largest posterior probability. There are several advantages in choosing a

Bayesian approach to model selection. The first one is that BFs are easy to be co-

municated due to their interpretation as odds. Another one is that Bayesian model

selection is consistent : if one of the entertained models is actually the true model, or

the most similar model to the true one, then Bayesian model selection will guarantee

selection of such model if enough data is observed, while other selection tools such as

p-values and AIC or likelihood ratios based methods may not guarantee consistency.

Even when the true model is not among those being considered, results in Berk (1966)

and Dmochowski (1994) show that, asymptotically and under mild conditions, Bayesian

model selection will choose the model, between all the considered, that is closest to the

true one in terms of Kulback-Leibler divergence.

Bayesian model selection procedures are automatic Ockham’s razors (Berger et al.

(2001)), favoring simpler models over more complex ones. We observe that this ap-

proach does not require nested models or regular asymptotics and can account for

model uncertainty, while selecting a model on the basis of data, and then using the

same data to estimate model parameters or make predictions based upon the model,

often yields overoptimistic estimates of accuracy in the choice of the right model. In

the classical approach it is recommended to use part of the data to select a model and

the remaining part of the data for estimation and prediction but, when limited data is

26
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available, this can be difficult. A flaw of this approach is that it ignores the fact that

the selected model might be wrong, so that predictions based on assuming the model

as true could be excessively optimistic. Moreover, under a strict prediction approach,

all models could be left in the analysis with prediction being done using a weighted

average of the predictive distributions from each model, and the weights determined

from posterior probabilities or BFs. This is known as Bayesian model averaging and it

is widely used today as the basic methodology of accounting for model uncertainty and

particularly suited for prediction of Y . See Draper (1995), Raftery et al. (1997), and

Clyde (1999) for details. In this thesis we mainly focus on Bayesian model selection,

rather than prediction and, hence, Bayesian model averaging.

2.3 Objective Variable Selection

Before calculating the BFs, it is necessary to choose the prior distribution, πi(θi), i =

0, . . . ,K, for the model parameters. Under a Bayesian approach, there are two possible

choices: the subjective, or informative, approach when an expert elicits a prior distri-

bution πi(θi) based on some prior considerations and the objective, or non-informative,

approach when expert prior informations are not available or are not convenient to be

used. In this latter case, priors are derived from formal rules.

The subjective Bayesian variable selection has a long history, having been considered

by Atkinson (1978), Smith and Spiegelhalter (1980), Pericchi (1984), Poirier (1985),

Box and Meyer (1986), George and McCulloch (1993), George and McCulloch (1995),

George and McCulloch (1997), Clyde et al. (1996), Geweke (1996), Smith and Kohn

(1996), among others. In linear regression the proposed prior distributions on the regres-

sion coefficients and the error variance within each model are typically either conjugate

priors or closely related distributions. For example, for the regression coefficients multi-

variate normal distributions (typically centered at 0) and inverse gammas for the error

variances are usually considered as the posterior has a closed-form expression. The

covariance matrices and the hyperparameters in the inverse gamma are often fixed with

the help of some subjective criteria or by empirical Bayesian methods.

The first attempts at solving the problem in a form as “objective as possible” can be

found in Mitchell and Beauchamp (1988) and Spiegelhalter and Smith (1982). The ob-

jective Bayesians argue that a subjective Bayesian analysis is frequently not a realistic
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possibility, especially in model selection problems when the number of models is quite

large, because it is difficult to elicit a prior for each subset of parameters under each

model. The thesis is focused on the objective Bayesian methods for assessing prior dis-

tributions in variable selection problems. A more complete discussion about objective

Bayesian techniques can be found in Berger et al. (2001) and Berger (2006).

As stated in Berger et al. (2001), the choice of a suitable prior distribution is a delicate

issue, due to the following main problems:

• Sensitivity of Bayes factors: the influence of prior distributions on the BFs remains

even asymptotically (see Kass (1993) and Kass and Raftery (1995)).

• Computational difficulties: BFs can be very difficult to obtain when the parameter

spaces are high dimensional and the total number of models under consideration

is large (see Carlin and Chib (1995), Kass and Raftery (1995), Verdinelli and

Wasserman (1995) and Raftery et al. (1997)).

• Indeterminacy of Bayes factors: when we use improper non-informative priors and

when models have different parameter spaces of different dimensions, the BFs are

undefined. Let πN
i (θi) and πN

j (θj) be two improper priors for two competing mod-

elsMi andMj, respectively. We can use ciπN
i (θi) and cjπN

j (θj) as non-informative

priors, because the priors are improper and the BF becomes (cj/ci)Bji. Notice

that the choice of cj/ci is arbitrary, so the BF is undetermined. Choosing ci = cj

is accepted when θi and θj have similar parameter spaces, in the sense that the

dimensions are equal (see Berger et al. (1998)).

• Use of “vague proper priors” does not solve the difficulties arising with improper

priors: as shown in Berger et al. (2001), the resulting BF could depend on the

choice of the prior and we can conclude that using a vague proper prior is never

better than using an improper prior. This is also called the Bartlett’s paradox,

which states that in model selection a posterior distribution is acceptable even if

the prior is broad and quite non-informative, but when the variance of the prior

tends to large values, the BF tends to prefer the null model, regardless of the

given information (see Bartlett (1957), Jeffreys (1961) and Liang et al. (2008) for

more details).
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When there are more than two models or the models are non-nested, some of the BFs

we are going to introduce could have the undesirable feature of violating one of the

coherence conditions of BFs

Bjk = BjiBik,

where i, j and k are indexes of three models.

In order to avoid this problem, we adopt the encompassing approach, where each

submodel, Mi, is compared to the encompassing or reference model, MR. In this way,

it is possible to obtain the pairwise BFs, BRi, i = 0, . . . ,K. The BFs of Mi to Mj is

then defined as

Bij =
BRj

BRi
.

There are different possible choices for the reference model introduced by Moreno

and Girón (2008) and Casella et al. (2009): the first proposal is to use the most com-

plex model (the one containing all the covariates) and, then, to do pairwise comparison

between that model and the others. This approach is called pairwise comparison from

above. The second approach consists in using the simplest model M0, the null one, and

this is called pairwise comparison from below. In Moreno and Girón (2008) the two

methods, in the case of linear regression and when using intrinsic priors, are compared.

The two procedures can lead to different orderings in the space of the models and it is

not clear which one is to be preferred. The variable selection from above is based on

multiple pairwise comparison, which consists in comparing two models at a time. So

model posterior probabilities are calculated and compared. This approach could not

be coherent, due to the fact that the model posterior probabilities come from different

probability spaces. The ordering of the models produced by the model comparison from

below is equivalent to ordering the models according to the model posterior probabil-

ities computed in the space of all models. Both methods work similarly, although the

encompassing from below has more appealing theoretical properties. The most impor-

tant property is that the from below procedure provides model posterior probabilities

in the space of all models, M, being the set of posterior probabilities coherent. Another

important fact, highlighted by Moreno and Girón (2008), is that when the number

of covariates is bigger than the sample size n, the posterior probability of any model

having a number of covariates bigger than n is less than 1/2 and this penalizes the

complex models. Furthermore, in the from below encompassing procedure the number
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of regressors does not need to be specified from the beginning and it produces coherent

posterior probabilities in the set of all the models under study, while in the from above

encompassing procedure the full model needs to be fixed in advance. In Moreno and

Girón (2008) it is observed that it seems preferable the from above procedure when

dealing with complex models, while the from below procedure seems to perform better

for smaller models. Finally, there is no conclusive evidence for deciding which one of

the two criteria is best. For more details and tests see Moreno and Girón (2008).

We choose to work with the null modelM0 as reference model doing pairwise comparison

from below between models

M0 : Y = µ0 + σ0W (2.4)

Mk : Y = µk + γk
TX̃k + σkW , (2.5)

where X̃k is the design matrix for model k.

As M0 is nested in Mk, parameters µk and σk can be considered as common to both

models, so the new parameters will be γk, k = 0, . . . ,K. Without loss of generality we

can write the prior as

πk(γk, µ0, σ0) = πk(γk | µ0, σ0)πk(µ0, σ0).

Other choices for the reference model are proposed and discussed in Perez (2000), Casella

and Moreno (2006) and Liang et al. (2008).

2.3.1 Conventional priors

We review some of the main choices for the prior distributions. Such functions are

viewed as objective priors with a wide consensus in the objective Bayesian community.

Often in Bayesian analysis, one can use non-informative or default priors. Common

choices are the uniform prior πU
k (θθθk) = 1, the Jeffreys’ prior πJ

k (θk) = (det(Ik(θk)))
1/2

(where Ik(θk) is the expected Fisher information matrix corresponding to the model

Mk) and the Reference prior πR
k (θk) whose definitions can be found in Bernardo (1979),

Berger et al. (1992) and Berger et al. (2009). The use of conventional proper priors for

model selection and hypothesis testing has been introduced in Jeffreys (1961). The

idea is to assign a proper prior distribution for the new parameters conditional on the

old parameters, πk(γk | µ0, σ0) and a non-informative, usually improper, prior for the
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old parameters, πk(µ0, σ0). As prior distributions for common parameters, Jeffreys

(1961) and Zellner and Siow (1980) use the Reference or independent Jeffreys’ prior

πk(µ0, σ0) = 1/σ0 under each model Mk, k = 0, . . . ,K. One of the most popular

conventional priors is the g-prior introduced by Zellner (1986)

π(γk|µ0, σ0) = N(0, gσ0(X̃k
TX̃k)

−1),

that ensures closed-form expressions for the BFs when working with linear models. The

main issue is the calibration of g. The original idea of Zellner (1986) was to place a prior

over g and, then, to integrate over g. Several other proposals are present in literature:

George and Foster (2000) propose to choose g by means of model selection criteria, as

AIC and BIC, George and Foster (2000) and Clyde and George (2000) use empirical

Bayes (EB) methods to make a global estimation of g, which is however a criticized

approach because of its non formal Bayesian calculation. Hansen and Yu (2000) propose

to make a local estimation of g. An interesting approach, presented in Liang et al.

(2008), consists in considering a mixture of g-priors which simplifies the calculation of

the corresponding marginal distributions. In particular, they define the hyper -g prior

family, which is a family of priors for g based on the Gaussian hypergeometric function.

In Zellner and Siow (1980) the following prior is proposed

πZS
k (γk|µ0, σ0) = Cark

(γk|0, nσ2
0(V k

TV k)
−1), (2.6)

which is a multivariate Cauchy distribution, where X̃k is the design matrix correspond-

ing to the vector γk of length k, rk = rank(X̃k) and V k = (In−P0)X̃k is the design ma-

trix corresponding to the orthogonal parametrization, where P0 = X0(X0
TX0)

−1X0
T

and X0 = (1, . . . , 1)T of length n. The Zellner-Siow prior can be viewed as a special

case of mixtures of g-priors, where the prior over g is the InvGa(1/2, n/2).

An adaptation of Berger’s robust priors is proposed in Bayarri et al. (2012), which fol-

lows the spirit of conventional priors, and which also can be expressed as a scale mixture

of normals.

In this work we choose as starting prior the non-informative prior, obtaining the so

called default Bayes factors, such as the Fractional Bayes Factor (FBF) introduced by

O’Hagan (1995) and the Intrinsic Bayes Factor (IBF) developed by Berger and Pericchi

(1996). Notice that these are not actual Bayes factors, but the IBFs and FBFs can be

shown to correspond asymptotically to BFs arising from proper priors called intrinsic
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prior and fractional prior, which are the actual default priors used in the model selection

procedure.

2.3.2 IBF

Suppose that non-informative (usually improper) priors πN
k (θk), k = 0, . . . ,K, are

available for the K+1 models: M0, . . . ,MK . The corresponding marginal or predictive

densities of YYY are

mN
k (y) =

∫
fk(y | θk)π

N
k (θk)dθk.

In order to define the IBF, we now introduce the notion of proper minimal training

sample (MTS) which is a particular subset of the entire data y. We consider a variety

of training samples and we index them by l.

Definition 2. (Minimal Training Sample) A training sample y(l) is a subset of

the set y of all the observations. It is called proper if 0 < mN
k (y(l)) < +∞ for all

Mk, k = 0, . . . ,K, and is called minimal if it is proper and no subset is proper.

The minimal dimension of a training sample for a model with s parameters is s.

When we compare two models, Mi and Mj, we choose the dimension of the MTS as the

number of parameters of the most complex model.

The role of the training sample is to convert the improper prior πN
k (θk) into a proper

posterior, that is

πk(θk | y(l)) =
fk(y(l) | θk)π

N
k (θk)

mN
k (y(l))

and then use the latter to define the BFs for the remaining data y(−l).

BFij(l) =
mi(y(−l) | y(l))

mj(y(−l) | y(l))
. (2.7)

The following Proposition 1 can be found in Berger and Pericchi (1996).

Proposition 1. Given two models Mi and Mj and assuming that the posterior distri-

butions πi(θi|y(l)) and πj(θj|y(l)) are proper, the expression of the BF of Mi to Mj is

BFij(l) = BN
ij (y)BN

ji (y(l)), (2.8)

where

BN
ji (y(l)) =

mN
j (y(l))

mN
i (y(l))

.
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Proof. Result follows from (2.7)

BFij(l) =
mi(y(−l) | y(l))

mj(y(−l) | y(l))

=

∫
fi(y(−l) | θi)πi(θi | y(l))dθi∫
fj(y(−l) | θj)πj(θj | y(l))dθj

=

∫
fi(y(−l) | θi)fi(y(l) | θi)π

N
i (θi)/m

N
i (y(l))dθi∫

fj(y(−l) | θj)fj(y(l) | θj)πN
j (θj)/mN

j (y(l))dθj

= BN
ij (y)BN

ji (y(l)).

Clearly in (2.8) the arbitrariness in the choice of constants that multiply πN
i and

πN
j is removed. Observe that the BF conditional on y(l) depends on the specific train-

ing sample and this would lead to an indeterminacy. There are several techniques to

avoid this dependence and to increase stability. One idea, firstly proposed by Berger

and Pericchi (1996), is to consider BN
ij (yyy(l)) over all possible minimal training samples

yyy(l), l = 1, . . . , L, and we choose two approaches to express this:

• arithmetic intrinsic Bayes factor (AIBF). The IBF is calculated over the arith-

metic mean of the BN
ji (y(l))

BFAI
ij = BN

ij (y)
1

L

L∑

l=1

BN
ji (y(l)) (2.9)

• median intrinsic Bayes factor (MIBF). The IBF is calculated over the median of

the BN
ji (y(l))

BFMI
ij = BN

ij (y) Median
l=1,...,L

BN
ji (y(l)) (2.10)

Example 2. (Exponential vs. Weibull) Suppose we want to compare the exponential

model with the Weibull one

M0 : f0(y | λ) = λ exp(−λy)
M1 : f1(y | α, β) = αβyα−1 exp(−βyα).

M1 is the most complex model, having two parameters, so a MTS is a set containing

two observations {yi, yj}, yi 6= yj ∈ {y1, . . . , yn}.
The Jeffreys prior for the first model M0 is

π(λ) ∝ 1

λ
,
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and the corresponding marginal distribution for the entire sample takes the form

mN
0 (y) =

Γ(n)

(
∑n

i=1 yi)n
,

then the marginal distribution calculated over the MTS is

mN
0 (y(l)) =

1

(yi + yj)2
.

For model M1 the Jeffreys prior, according to Yang and Berger (1998), is

π1(α, β) ∝ 1

αβ

while the marginal distribution m1(y) cannot be obtained in a closed-form (see Berger

and Pericchi (1996) for details), the marginal distribution over a MTS, as shown in

Berger and Pericchi (1996), is

mN
1 (y(l)) =

1

2yiyj

∣∣∣log( yi

yj
)
∣∣∣
.

The AIBF has the following form

BFAI
10 =

∫
1

αβα
nβn

∏n
i=1 y

α−1
i exp(−β∑n

i=1 y
α
i )dαdβ

Γ(n)/(
∑n

i=1 yi)n
1

L

∑

i<j

2yiyj

∣∣∣log( yi

yj
)
∣∣∣

(yi + yj)2
(2.11)

and the MIBF is

BFMI
10 =

∫
1

αβα
nβn

∏n
i=1 y

α−1
i exp(−β∑n

i=1 y
α
i )dαdβ

Γ(n)/(
∑n

i=1 yi)n
Median

i<j

2yiyj

∣∣∣log( yi

yj
)
∣∣∣

(yi + yj)2
, (2.12)

where L = #{i < j} = n(n− 1)/2.

An important point noted in Berger and Pericchi (1998) is that for the AIBF it is

typically necessary to place the more complex model in the numerator, i.e., to let Mj be

the more complex model and then define BAI
ij = 1/BAI

ji , because in general the AIBF

does not satisfy the reciprocity condition. In fact, O’Hagan (1997) observes: “Not only

would the arithmetic IBF then violate a natural coherence condition that ordinary Bayes

factors satisfy automatically, but we would be in the embarrassing position of having two

BFs for comparing Mi with Mj instead of just one”.

These IBFs along with alternate versions, like the expected IBF of Berger and Pericchi

(1996) are useful in certain scenarios, such as when nested models are compared and

when the sample size is small. In this last case, the two correction factors in (2.9) and

(2.10) may have large variances and this would lead to unstable IBFs. In Berger et al.

(2001) it is observed that the MIBF is often to be preferred and widely applicable due

to its robustness with respect to outliers and it is considered the simplest default model

selection tool altough it is not optimal.
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2.3.3 FBF

O’Hagan (1995) introduces the FBF in order “to avoid the arbitrariness of choosing a

particular training sample, or having to consider all possible subsets of a given size”.

The basic idea is very similar to the one behind the IBF but, instead of using a part

of the data to turn non-informative priors into proper priors, it uses a fraction b of the

likelihood Lk(θθθk) = fk(y | θk). The remaining 1 − b part of the likelihood function is

used for model discrimination.

Let b be a suitable constant, the FBF is defined as

BFF,b
ij =BN

ij (y)

∫
Lb

j(θj)π
N
j (θj)dθj∫

Lb
i(θi)πN

i (θi)dθi

= BN
ij (y)

∫
fj(y | θj)

bπN
j (θj)dθj∫

fi(y | θi)bπ
N
i (θi)dθi

= BN
ij (y)

mb(y |Mj)

mb(y |Mi)

= BN
ij (y)

mj,b(y)

mi,b(y)
.

(2.13)

We denote by Bb
ij(y) the correction factor of the FBF.

An important issue is how to choose the fraction b. In O’Hagan (1995) it is observed

that the FBF is strictly bounded, because b is varied from s/n, where s is the MTS

size, to 1. Furthermore, in the case of nested models, b should tend to 0 as n → ∞,

to achieve consistent model choice. In O’Hagan (1995) it is stated that the FBF is

consistent for b of order 1/n. This criterion is satisfied by the minimal value b = s/n.

Among the different possibilities, O’Hagan (1995) proposes three ways to set b:

(i) b = s
n , when robustness with respect to the prior distribution or to the models is

not a concern;

(ii) b = 1
nmax{s,

√
n}, when robustness is a serious concern;

(iii) b = 1
nmax{s, log(n)}, as an intermediate option

and modifies the (ii) and (iii) choices by taking:

(iibis) b =
√

s
n ;

(iiibis) b = s log(n)

so that b = 1 when s = n.
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Example 3. (Example 2 continued) For the calculation of the FBF we choose b = s/n,

where s, the MTS size, is equal to 2.

So the FBF takes the form

BF,b
10 =

∫
1

αβα
nβn

∏n
i=1 y

α−1
i exp(−β∑n

i=1 y
α
i )dαdβ

Γ(n)/(
∑n

i=1 yi)n

∫
1
λ (f0(y | λ))2/ndλ∫

1
αβ (f1(y | αβ))2/ndαdβ

=

∫
1

αβα
nβn

∏n
i=1 y

α−1
i exp(−β∑n

i=1 y
α
i )dαdβ

Γ(n)/(
∑n

i=1 yi)n

n2

4(
Pn

i=1 yi)
2

∫
αβ(

∏n
i=1 y

α−1
i )

2
n exp(−2β

n

∑n
i=1 y

α
i )dαdβ

which doesn’t have a closed-form.

2.3.4 BIC

We have already observed that the BF requires the specification of proper priors that

may be seen as subjective or ad hoc. The Schwarz criterion Schwarz (1978), based on

the first order asymptotic Laplace approximation of the marginal densities mi and mj,

provides a very simple approximation to the BF when comparing model j and model i

BICS
ji = −2

(
lj(θ̂j) − li(θ̂i)

)
+ (kj − ki) log(n) (2.14)

where ki and kj are the dimensions of θi and θj, respectively, and lj(θ̂θθj) and li(θ̂θθi) are

the logarithms of the likelihood calculated over the MLEs, θ̂j and θ̂i, under the two

models Mj and Mi, respectively. Notice that n represents the effective sample size that

must be determined carefully (see Volinsky and Raftery (2000)). BICS
ji is a function of

the likelihood ratio test statistic and priors do not appear in its formula as the posterior

is asymptotically likelihood dominated. Observe that the smaller is the BIC, the more

we can state that the true model is Mj . This criterion is quite well established in

the model selection literature (see Smith and Spiegelhalter (1980) for details) and it

is asymptotically consistent (that is, it tends to an actual BF). Note that the Schwarz

criterion is an approximately Bayesian testing procedure and it is easy to compute. So

we can say that the Schwarz criterion is a useful automatic Bayesian testing procedure

for nested models. However it requires standard regularity conditions for asymptotic

expansions and there are some restrictions. In Kass and Wasserman (1995) and Berger

and Pericchi (1997) it is observed that the BIC is inconsistent when applied to models

with irregular asymptotics and in cases in which the likelihood can be concentrated at

the boundary of the parameter space for one of the models.

Example 4. (Example 2 continued) In this case the BIC takes the form

BICS
10 = −2

(
l1(α̂, β̂) − l0(λ̂)

)
+ log(n),
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where (α̂, β̂) are the maximum likelihood estimators for the Weibull likelihood function

l1(α, β | y) and λ̂ = n/ȳ is the maximum likelihood estimator for the exponential likeli-

hood function l0(λ | y).

2.4 Intrinsic and fractional prior

Default BFs, as the IBF and the FBF, are not actual BFs, for this reason it is necessary to

study their behavior. One way to do that is analyzing if they asymptotically correspond

to BFs obtained from reasonable default prior distributions.

2.4.1 Intrinsic prior

In Berger and Pericchi (1996) the intrinsic prior is defined as a prior distribution that

would produce the same default BF with a large amount of data. As Berger and

Pericchi (1996) point out, the intrinsic prior exists when the correction factor of the

IBF converges to a positive number as the sample size goes to infinity. The special case

of intrinsic priors considered in this thesis is the one in which there are two models, Mi

and Mj , with Mj nested in Mi. Under the following conditions and using the notation

given in Bertolino et al. (2000):

• fj(y | θj) is nested in fi(y | θi)

• πN
i (θi) is an improper prior and πj(θj) is a proper prior

• the likelihood fi(y | θi), for a given sample size n, is integrable with respect to

the prior πN
i (θi)

the intrinsic priors corresponding to BFAI
ij defined in (3.3) exist and are given by

πI
j (θj) = πj(θj), πI

i (θi) = πN
i (θi)E

Mi

θi
(BN

ji (y(l))) (2.15)

where EMi

θi
(BN

ji (y(l))) is the expectation of the correction factor with respect to the

density of y(l) under the model Mi.

More details on the calculation of the intrinsic prior can be found in the sequel of this

thesis, in Berger and Pericchi (1996) and in Appendix 1 of Berger et al. (2001).
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2.4.2 Fractional prior

In De Santis and Spezzaferri (1997) it is shown that, following the approach of Berger

and Pericchi (1996), the FBF asymptotically corresponds to a real BF calculated over

suitable fractional priors. Let b = s/n be the generic fraction of the likelihood function

for a fixed MTS, and denoting by Bb
ji(y) =

R

fj(y|θj)
bπN

j (θj)dθj
R

fi(y|θi)bπN
i (θi)dθi

the correction factor of

(2.21), the FBF is

BF,b
ij = BN

ij (y)Bb
ji(y).

It can be observed that BF,b
ij corresponds asymptotically to an actual BF if

πi(θ̂i)π
N
j (θ̂j)

πN
i (θ̂i)πj(θ̂j)

+ op(1) =
1

Bb
ij(y)

,

where θ̂i and θ̂j are the maximum likelihood estimators for the two models Mi and Mj ,

respectively, and for some priors πi(·) and πj(·).
The equation which defines the fractional prior for the FBF is

πFI
i (θi)π

N
j (ψj(θi))

πN
i (θi)π

FI
j (ψj(θi))

= B∗
i (θi), (2.16)

where B∗
i (θi) is the limit, as n goes to infinity, of 1

Bb
ij

(y)
and ψj(θi) is the limit of θ̂j

under model Mi.

Then, the two fractional priors are

πFI
j (θj) = πN

j (θj)u(θj)

πFI
i (θi) = πN

i (θi)u(ψj(θi))B
∗
i (θi),

(2.17)

where u(·) is a continuous non negative function.

As observed by De Santis and Spezzaferri (1997), under some general conditions (see

Theorem 2.1 in De Santis and Spezzaferri (1997)) B∗
i (θi) can be obtained from BN

ij (y)

by replacing n with s and the maximum likelihood estimators θ̂i and θ̂j with their

limits under the model Mi.

2.5 Approximation methods for predictive distributions

As marginal likelihoods are the key ingredients in all versions of the BFs, in this section

we show a method proposed in Chib and Jeliazkov (2001) to calculate these quantities

using a MCMC algorithm. We choose to use a Random Walk Metropolis algorithm
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(described in Algorithm 1).

From Bayes theorem we have

πk(θk | y) =
πk(θk)fk(y | θk)

mk(y)
, k = 0, . . . ,K.

It follows that mk(y) is the normalizing constant of the posterior distribution

mk(y) =
fk(y | θk)πk(θk)

πk(θk | y)
.

This expression, called basic marginal likelihood identity, is evaluated on a given

arbitrary point θ∗. In particular we calculate its logarithm

logmk(y) = log fk(y | θ∗
k) + log πk(θ

∗
k) − log πk(θ

∗
k | y). (2.18)

This expression says that it suffices to approximate the posterior distribution in a

point θ∗. Then, using (2.1), the BFij is calculated as

BFij = exp (log(mi(y)) − log(mj(y))) .

Finally, the IBFs for a given number L of training samples and the FBF are approx-

imated using definitions in (2.9), (2.10) and (2.13) by

BFAI
ij = exp (log(mi(y)) − log(mj(y)))×

× 1

L

L∑

l=1

exp (log(mj(y(l))) − log(mi(y(l))))
(2.19)

for the arithmetic mean and

BFMI
ij = exp (log(mi(y)) − log(mj(y)))×

×MedianL
l=1 (exp (log(mj(y(l))) − log(mi(y(l)))))

(2.20)

for the median and

BFF,b
ij = exp (log(mi(y)) − log(mj(y)))×

× exp (log(mj,b(y)) − log(mi,b(y)))
(2.21)

for the FBF.
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Approximation of expression given in equation (2.18)

As already mentioned in Subsection 1.4.1.3, the posterior distribution is approximated

by simulation, using a random walk MH algorithm. The goal is to estimate the posterior

distribution π(θ∗ | y) in θ∗, given the posterior sample (θ(1), . . . ,θ(N)) (in each case

from the involved full posterior, trained posterior or fractional one). Here we illustrate

the algorithm proposed by Chib and Jeliazkov (2001).

Let q(θ,θ′ | y) denote the proposal density for the transition from θ to θ′, and

α(θ,θ′ | y) = min
{

1,
π(θ′)f(y | θ′)q(θ′,θ | y)

π(θ)f(y | θ)q(θ,θ′ | y)

}
.

If we write

p(θ,θ′ | y) = α(θ,θ′ | y)q(θ,θ′ | y),

from reversibility it is possible to obtain, for any point θ∗

p(θ,θ∗ | y)π(θ | y) = π(θ∗ | y)p(θ∗,θ | y).

Integrating both sides over θ, we have

π(θ∗ | y) =

∫
p(θ,θ∗ | y)π(θ | y)dθ∫

p(θ∗,θ | y)dθ

=

∫
α(θ,θ∗ | y)q(θ,θ∗ | y)π(θ | y)dθ∫

α(θ∗,θ | y)q(θ∗,θ | y)dθ

and so

π̂(θ∗ | y) =
1
M

∑M
g=1 α(θ(g),θ∗ | y)q(θ(g),θ∗ | y)

1
J

∑J
j=1 α(θ∗,θ(j) | y)

,

where {θ(g)} are draws from the posterior distribution and {θ(j)} are draws from the

proposal q(θ∗,θ | y).

Then substituting π̂(θ∗ | y) in the logarithm of the marginal likelihood identity we

obtain

log(m̂(y)) = log(f(y | θ∗)) + log(π(θ∗)) − log(π̂(θ∗ | y)).

Using this methodology we estimate different BFs given in equations (2.19), (2.20)

and (2.21).

Observe that θ∗ must be chosen between values of high posterior density.

In Algorithm 2 the calculation of a generic Bayes factor is shown. In our simulation

studies, approximations of BFs have been done using 104 MCMC samples and taking

θ∗ equal to the posterior median.

Another method to approximate BFs can be the Laplace approximation, described

in Lewis and Raftery (1997).
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2.5 Approximation methods for predictive distributions

Algorithm 2 Approximation of the Bij(y)

Require: N , number of RW-MH MCMC steps; τ , fixed scale factor for k = i, j; Dk =

(y,Xk) data; πk(θk|Dk) posterior kernel of Mk; α(θ,θ′|Dk) probability of moving

from θ to θ′ and its corresponding proposal density q(θ,θ′|Dk); fk(Dk|θk) likelihood

function.

1: Do for k = i, j;

2: Calculate MLE, θ̂k, and the observed information matrix Σ̂−1
k ;

3: Generate θ
(1,...,N)
k ∼ πk(θk|Dk) by a RW-MH using a normal proposal with covari-

ance τ Σ̂k;

4: Generate θ̃
(1,...,N)

k from the normal proposal;

5: Approximate the posterior median of πk(θk|Dk) by θ∗k = Median(θ
(1,...,N)
k );

6: Approximate the posterior density, by

π̂k(θ
∗
k|Dk) =

N∑

n=1

α(θ
(n)
k , θ∗k|Dk)q(θ

(n)
k , θ∗k|Dk)/

N∑

n=1

α(θ∗k, θ̃
(n)

k |Dk);

7: Approximate the predictive density at θ∗k by m̂k(θ
∗
k) = fk(Dk|θ∗k)πk(θ

∗
k)/π̂k(θ

∗
k|Dk);

8: return Approximation of the Bij(y) as m̂i(θ
∗
i )/m̂j(θ

∗
j ).
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2. VARIABLE SELECTION

2.6 Highest Posterior Probability Model and Median Prob-

ability Model

Once we have calculated the IBFs, the FBFs and the BICs, it is necessary to rank all the

considered models. Here we present two different techniques proposed in the literature.

In the space of all models the posterior probability of each one is computed and by

doing this for each Mk, k = 0, . . . ,K, we obtain an ordering in M.

One common choice for the prior probability of the models is the discrete uniform

distribution, so that each model has the same initial probability. In Spiegelhalter et al.

(1993) and Lauritzen et al. (1994) the benefits of using informative prior distributions

are analysed. Another approach, presented in Raftery et al. (1999), consists in choosing

as prior distribution for model Mj

Pr(Mj) =

p∏

k=1

π
δjk

k (1 − πk)
1−δjk

where πk ∈ [0, 1] is the prior probability that the vector of regression coefficients is

different from the null one in model Mj , and δjk is an indicator of whether or not

variable k is included in model Mj . If we choose πk = 0.5, for all k, then the prior is

a uniform distribution. Choosing πk < 0.5 gives a penalty for large models, while if we

put πk = 1, then it ensures that the variable k is included in each model (more details

on this approach can be found in George and McCulloch (1993)).

Models analysed here are not sparse and hence we use the uniform prior

Pr(Mk) =
1

K + 1
, k = 0, . . . ,K.

If one deals with sparse models, we recommend to use other prior specification ap-

proaches as discussed in Scott and Berger (2010).

Highest Posterior Probability Model (HPPM)

Recalling the equation in (2.3), jointly with the uniform prior over the space of models,

we obtain

Pr(Mj | yyy) =

{
K∑

k=0

Bkj
Pr(Mk)

Pr(Mj)

}−1

=

{
K∑

k=0

Bkj

}−1

=
1

∑K
k=0Bkj

=
Bj0∑K

k=0Bk0
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2.6 Highest Posterior Probability Model and Median Probability Model

or, equivalently

Pr(Mj | y) =
Bj0

B00 +
∑K

k=1Bk0

=
Bj0

1 +
∑K

k=1Bk0

.

More specifically, for the null model we have

Pr(M0 | y) =
B00

1 +
∑K

k=1Bk0

=
1

1 +
∑K

k=1Bk0

.

Once we have obtained all the posterior probabilities, the models can be ordered

according to these values and we choose the one having the highest posterior probability.

Median Posterior Probability Model (MPPM)

Another approach, introduced by Barbieri and Berger (2004) and called the median

probability model method, consists in choosing the model containing those variables

which have overall posterior probability at least 1/2 of being included along all the

considered models.

Let h be the set of indexes of all the models containing a given variable. The following

definition introduces the concept of inclusion probability of a variable.

Definition 3. (Posterior inclusion probability) The posterior inclusion probability

for a variable i is

di =
∑

h∈h

Pr(Mh | y)

that is, the overall posterior probability that the variable i is in the model.

If it exists, the median probability model Mh∗ is the model consisting of those vari-

ables whose posterior inclusion probability is greater than or equal to 1/2.

If we define h∗ = (h∗1, . . . , h
∗
m), then

h∗i =





1, if di >
1
2

0, otherwise

for i = 1, . . . ,m. Sometimes it may happen that the median model does not exist: this

is the case when the set of covariates defined by h∗ does not correspond to a model

under consideration. For more details see Barbieri and Berger (2004).
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3

Variable Selection under Censoring

using Sequential Minimal Training

Samples

3.1 Introduction

In problems of reliability and survival analysis we often have to deal with censored data.

In this case, as already seen in 1.4.1.1 and 1.5.1.1, the likelihood functions for survival

models contain the censoring indicator δδδ = (δ1, . . . , δn).

In the remainder of this thesis we will consider the right censoring case, already intro-

duced in Chapter 1 (see Section 1.2 for more details).

In general, let (ti, δi,xi) be the survival time, censoring indicator and covariates, re-

spectively for individual i = 1, . . . , n, where δi = 0 if right censored and 1 if uncensored.

Consider yi = log(ti) and the following regression model Mk with a set of covariates

denoted by xk,i

Mk : yi = βk
Txk,i + σkǫi,

where X is a fixed design matrix with r columns, including the intercept, and ǫi is

the error term with d.f. f(ǫ). Then, denoting by θk = (βk, σk), the corresponding

likelihood function for right censored data has the following form

L(y | θk,X) =
n∏

i=1

fY (yi)
δi [SY (yi)]

(1−δi)

=

n∏

i=1

[
1

σk
fǫ

(
yi − βk

Txk,i

σk

)]δi
[
Sǫ

(
yi − βk

Txk,i

σk

)](1−δi)

.
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3. VARIABLE SELECTION UNDER CENSORING USING
SEQUENTIAL MINIMAL TRAINING SAMPLES

In this setting, it is necessary to redefine the concepts of IBF, FBF and BIC when data

are censored and, hence, observations are not iid.

In Chapter 2 the concepts of training samples and minimal training samples have been

introduced, they are used to convert improper priors into the proper distributions needed

for model selection. However, when some observations in the set y are censored, it is

important to reformulate the concept of MTS. We recall that in the uncensored case the

minimal dimension of the MTS is equal to the number of parameters s in the model. In

Berger and Pericchi (2004) the hypothetical sampling space of proper training samples,

XI , obtained when it is assumed that an infinite amount of data is available, is intro-

duced. It is required that, in drawing MTSs, the space of all possible MTSs should be

fully explorable, that is, for each model the sampling mechanism of the MTS must cover

the space of all the MTSs with probability 1 (this is stated in the following Assumption

0 of Berger and Pericchi (2004)):

Assumption 0: PrMi

θi
(XI) = 1, for i = 0, . . . ,K.

In situations involving censoring, this assumption can be violated.

We now give an example of such situation already presented in Berger and Pericchi

(2004).

Example 5. (Right censored exponential) Suppose that data y1, y2, . . . , yn are a random

sample from the right censored exponential distribution, with censoring time ρ. Thus if

yi < ρ, then the density is f(yi | θ) = θ exp(−θyi), while if the data are censored, the

density is Pr(Yi = ρ | θ) = exp(−ρθ). We are interested in testing the two hypotheses

M0 : θ = θ0 vs M1 : θ 6= θ0.

We choose the usual default prior for the exponential model, πN (θ) = 1/θ. It can be seen

that one single uncensored observation is sufficient to obtain a proper posterior, while

no censored observation can achieve this. So the imaginary set of minimal training

samples consists of single uncensored observations. Denoting the sampling space of

training samples of the form (0, ρ) with XMI , we can prove that the Assumption 0 is

violated, in fact

PrMi

θi
(XMI) = PrMi

θi
(Y < ρ) = 1 − exp(−ρθi) < 1, i = 0, 1.

Observe that an enumeration of all possible MTSs that jointly satisfy Assumption

0 may not be feasible in general. For this reason Berger and Pericchi (2004) propose a

sequential minimal training sample scheme which satisfies Assumption 0 in the context
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3.2 Sequential Minimal Training Sample

of censored data (see Appendix A for a proof in the case of the right exponential

distribution in Example 5).

3.2 Sequential Minimal Training Sample

The following definition plays a central role in the sequel:

Definition 4. (Sequential Minimal Training Sample (SMTS)) Suppose we have

s parameters in the model, then the SMTS is constructed drawing observations, without

replacement, from y stopping when s uncensored observations are obtained. The SMTS

induces a TS of the form

y(l) = { . . .︸ ︷︷ ︸
s − 1 uncensored and Nt − s censored observations

, ys(l)},

with random size Nt ≥ s and ys(l) the s− th uncensored observation.

Note that y(l) is not, in general, a MTS because it contains censored observations

that can be removed but it is minimal in the sense that the last uncensored observation

cannot be removed from the sample.

Observe that in this case the dimension of the SMTS is random. For our purposes, it

is useful to obtain the probability distribution of the SMTS size that is derived in the

following proposition.

Proposition 2. Let y be the set of independent observations of size n, y(l) a SMTS,

s the number of parameters in the model under study (i.e. for model Mk, s = rk + 1),

ncens = n −∑n
i=1 δi the number of censored observations and Nt be the SMTS size.

Then the probability distribution of Nt is

PrNt(Nt = nt) =

(ncens

nt−s

)(n−ncens−1
s−1

)
(nt − 1)!(n − ncens)

Dn,nt

, (3.1)

where Nt ∈ {s, . . . , ncens + s} and Dn,nt = n!
(n−nt)!

.

Proof. As each observation, censored or uncensored, has the same probability to be

extracted, it can be used the classical definition of probability of the event Nt = nt

Pr(Nt = nt) =
favorable cases
possible cases

.

For the denominator, observe that this is the number of all possible ways in which

Nt elements can be chosen out of a set of n. When repetitions are not allowed, this
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3. VARIABLE SELECTION UNDER CENSORING USING
SEQUENTIAL MINIMAL TRAINING SAMPLES

number is given by the dispositions of n elements of class nt

Dn,nt =
n!

(n− nt)!
.

For the numerator, we have to sample without replacement until we reach s uncen-

sored observations. The sample takes the form

SMTS of size Nt = nt :





(nt − 1) observations of which





(s− 1) uncensored

(nt − 1) − (s− 1) censored

1 uncensored observation

The (s − 1) uncensored observations can be chosen in
(n−ncens−1

s−1

)
ways and the

(nt − 1) − (s − 1) censored observations in
(
ncens

nt−s

)
ways. All these can be permuted

in (nt − 1)! ways. For the last observation, we have to take into account how many

uncensored observations are contained in the sample, (n−ncens). So the final probability

is the one given in (3.1).

In the case of the Weibull and log-normal models, the smallest model to be considered

along the thesis has two parameters, so s > 2 and Nt > 2.

Figure 3.1 illustrates the probability distribution of the SMTS size for s = 3, different

sample sizes (n = 10, n = 50 and n = 100) and different censoring percentages (30%

and 50%). As we can see, in all these settings the distribution of Nt is asymmetric,

having a long right tail, as the percentage of censoring grows or n grows, there are more

possible values for Nt resulting in a more diffuse distribution of Nt.

Example 6. (Probability distribution of Nt) Suppose to have n = 6 observations of

which 3 are uncensored and where the number of parameters in the model is s = 2. So

Nt ∈ {2, 3, 4, 5}.

In this case we have to sample until we reach 2 uncensored observations. There are

four possible ways:

1. Nt = 2Nt = 2Nt = 2

• Favorable cases: the only case is when there are two uncensored observa-

tions from the three possible ones D3,2 = 6.

• Possible cases: D6,2 = 30.
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3.2 Sequential Minimal Training Sample

So

Pr(Nt = 2) =
6

30
=

1

5
.

2. Nt = 3Nt = 3Nt = 3

• Favorable cases: we can choose three censored observations in groups of

one, two uncensored observations in groups of one and then we take into

account all the possible permutations, 2!. For the last observation there are

three possible choices among the three uncensored observations. This number

is
(3
1

)(2
1

)
2! 3.

• Possible cases: D6,3 = 120.

So

Pr(Nt = 3) =

(3
1

)(2
1

)
2! 3

D6,3
=

3

10
.

3. Nt = 4Nt = 4Nt = 4

• Favorable cases: here we have to choose three censored observations in

groups of two and two uncensored observations in groups of one, then there

are 3! possible permutations of them. For the last observation, again, there

are three possible choices among the three uncensored observations. This

number is
(
3
2

)(
2
1

)
3! 3.

• Possible cases: D6,4 = 360.

So

Pr(Nt = 4) =

(3
2

)(2
1

)
3! 3

D6,4
=

3

10
.

4. Nt = 5Nt = 5Nt = 5

• Favorable cases: in this case we have to choose three censored observations

in groups of three and then two uncensored observations in groups of one, so

there are 4! possible permutations. For the last observation there are three

possible choices among the three uncensored observations. This number is(
3
3

)(
2
1

)
4! 3.

• Possible cases: D6,5 = 720.
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So

Pr(Nt = 5) =

(3
3

)(2
1

)
4! 3

D6,5
=

1

5
.

It is straightforward to check that

Pr(Nt = 2) + Pr(Nt = 3) + Pr(Nt = 4) + Pr(Nt = 5) = 1.
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Figure 3.1: Probability distribution of Nt for samples of sizes 10, 50 and 100, for 30%

and 50% of censoring with s = 3.

3.3 IBF under Censoring

The calculation of the IBF is computationally demanding because it is necessary to

sum over l = 1, . . . , L, where L is the number of all possible SMTSs, and this can be an

important number. The natural solution would be to sum over all possible outcomes of

the SMTS, but this may be unfeasible even in very simple situations with small samples

and simple models. This is partially accomplished by the solution to sum over a subset
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3.3 IBF under Censoring

of SMTSs. In fact, as mentioned in Section 2 of Berger and Pericchi (2004) and in Var-

shavsky (1995), it is often sufficient to randomly choose L = n× nt, with replacement,

where n is the sample size and nt is the training sample size. However, in the case of

SMTS, nt is replaced by its random counterpart Nt and, hence, L becomes a random

quantity.

It would be too costly to evaluate the IBF at each value of L unless the number of

possible outcomes of the SMTS were small enough with respect to the available com-

putational resources. We instead consider the two following definitions of L:

Lmode = n× mode{Nt}
Lmedian = n× [median{Nt}]

where Nt is the SMTS size that is random with distribution given by (3.1), and [x]

denotes the integer part of x.

Recalling Section 2.3, the idea is to compare each model Mi with the encompassing

model M0, the null one, through pairwise comparison from below. However, it is worth

noting that using the encompassing from below approach, the analyst is forced to use

a common number of uncensored observations, namely s for the full model, and if s

is large (≈ n − ncens), then the induced intrinsic and fractional priors can be quite

informative. This problem is also common to a setup without censoring, then it may be

viewed as a downfall of the encompassing from below procedure and not of the discussed

versions of the BFs for censored data.

Distribution 3.1 can be further employed for implementing a stratified SMTS sampling

so that the distribution of sample sizes follows 3.1. This would require to enumerate all

the possible L SMTSs, which may be unfeasible for large sample sizes. Another way to

introduce distribution 3.1 is to use it in reweighting the Monte Carlo samples of SMTSs

according to their sizes. For purposes of comparisons with the actual version of the

SMTS, this latter strategy would not be further pursued in this work. For each SMTS,

y(l), we obtain

BN
0j(y(l))

and, after that, we calculate

BFAI
j0 = BN

j0(y)
1

L

L∑

l=1

BN
0j(y(l))

and

BMI
j0 = BN

j0(y) Median
l=1,...,L

BN
0j(y(l)).
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The values of Lmode and Lmedian are obtained considering the most complex model

Mi, that is the one in which all the covariates are included. Using this rule, the number of

random SMTSs used to approximate BFAI
j0 and BFMI

j0 is the same for each j = 1, . . . ,K.

For the practical calculation of the IBFs, L SMTSs are calculated in order to compute

the mean and the median of the correction factor. As L is large, we resort to parallel

computation because the evaluation of the different BFijs is performed independently:

we assign a certain number of partial BFs, BN
ij (yyy(l)), to different processors using the

functions of the library Rmpi 1 in R. This allows us to speed up the computations, but

even with this the IBF is still long to be computed.

Example 7. (Example 2 continued) We calculate the IBF in the case of right censored

data. The SMTS is constructed by randomly sampling from the entire set of observa-

tions and stopping when 2 uncensored observations are obtained. The SMTS size has

probability given in (3.1), where s = 2.

The expressions of the AIBF and MIBF are analogous to the ones of the (2.11) and

(2.12) where the y(l) now has a different form.

With an abuse of notation we are denoting with yi both censored and uncensored ob-

servations as these can be clearly recognized taking into account the index of the sums.

Denoting by nu the number of uncensored observations and by T =
∑n

i=1 yi the sum of

all the observations, we obtain the expressions of the two marginal distributions

mN
0 (y) =

∫ ∞

0

1

λ

(
λnu exp

(
−λ

nu∑

i

yi

))(
exp

(
−λ

ncens∑

i

yi

))
dλ =

Γ(nu)

T nu

and

mN
1 (y) =

∫ ∞

0

∫ ∞

0

1

αβ
αnuβnu

nu∏

i

yα−1
i exp

(
−β

nu∑

i

yα
i

)
exp

(
−β

ncens∑

i

yα
i

)
dαdβ

= Γ(nu)

∫ ∞

0

αnu−1

(
∑n

i=1 y
α
i )nu

nu∏

i

yα−1
i dα.

Each SMTS contains two uncensored observations, yh and yk, and a random number

of censored observations, say j, with ρ denoting the right censoring time, then marginal

distributions for both models calculated in a SMTS y(l) are:

mN
0 (y(l)) =

1

(yh + yk + ρj)2

and

mN
1 (y(l)) =

∫ ∞

0

α(yhyk)
α−1

(yα
h + yα

k + jρα)2
dα.

1Package “Rmpi”
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The corresponding IBFs are

BFAI
10 = T nu

∫ ∞

0

αnu−1

(
∑n

i=1 y
α
i )nu

nu∏

i

yα−1
i dα

1

L

∑

D

(yh + yk + ρj)−2

∫∞
0

α(yhyk)α−1

(yα
h
+yα

k
+jρα)2

dα
(3.2)

and

BFMI
10 = T nu

∫ ∞

0

αnu−1

(
∑n

i=1 y
α
i )nu

nu∏

i

yα−1
i dα Median

D

(yh + yk + ρj)−2

∫∞
0

α(yhyk)α−1

(yα
h
+yα

k
+jρα)2

dα
(3.3)

where D = {h < k} × {j|j = 0, . . . , ncens} and

L =

(
nu

2

) ncens∑

j=0

(
ncens

j

)
=
nu(nu − 1)

2

ncens∑

j=0

(
ncens

j

)
.

These two Bayes Factors must be approximated numerically.

3.3.1 Intrinsic Prior for the IBF

An essential point in our discussion is the intrinsic prior, either intrinsic to the IBF or to

the FBF. If we were able to derive such a prior, we could state that the versions of the

considered BFs are actually real BFs in an asymptotic sense. In the case of censored data

the calculation tends to be more difficult than in the case of all uncensored observations.

Recalling the definition of intrinsic prior given in Subsection 2.4.1, we now show the

following toy example from Berger and Pericchi (2004) which contains details about the

calculation of the intrinsic prior in the case of censored data in the right exponential

model.

Example 8. (Example 5 continued) Suppose we want to test the following hypotheses

for the right exponential model

M0 : θ = θ0

M1 : θ 6= θ0

and let y be the sample of observations. If we choose the usual default prior for this

model πN (θ) = 1/θ, we obtain

BN
10(y) =

mN
1 (y)

mN
0 (y)

=

∫
θnu−1 exp (−θ∑n

i=1 yi) dθ

θnu

0 exp (−θ0
∑n

i=1 yi)
= Γ(nu)

(
θ0

n∑

i=1

yi

)−nu

exp

(
θ0

n∑

i=1

yi

)
.

If we denote by y(l) the SMTS, let p(θ) = Pr(Y > ρ|θ) = exp(−θρ), Nc the number of

censored observations in y(l) and y(l) the single uncensored observation in the SMTS,
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then Pr(Nc = j|θ) = (1 − p(θ))p(θ)j and f(y(l)|θ) = p(θ)jθ exp(−θy(l)).
So the correction factor of the IBF is:

BN
01(y(l)) =

mN
0 (y(l))

mN
1 (y(l))

= θ0 (Ncρ+ y(l)) exp (−(Ncρ+ y(l))θ0) .

From (2.15) the intrinsic prior is

πI(θ) = πN (θ)EM1
θ

[
BN

01(y(l))
]

=
1

θ

∞∑

j=0

∫ ρ

0
θ0(jρ+ y) exp (−(jρ+ y)θ0) p(θ)

jθ exp(−θρ)dy

=
θ0

(θ + θ0)2
.

As noted in Berger and Pericchi (2004) this prior is proper and has median equal to

θ0. It agrees with the intrinsic prior for the exponential model without censoring when

using an ordinary MTS (see Pericchi et al. (1993)).

We consider an example in which we derive the intrinsic prior when comparing two

Weibull models.

Example 9. (Weibull vs. Weibull) Suppose we want to compare two Weibull models,

the first one with known parameter β = β0 and the second one with unknown parameter

β

M0 : f0(y | α, β0) = αβ0y
α−1 exp(−β0y

α)

M1 : f1(y | α, β) = αβyα−1 exp(−βyα).

The intrinsic prior in the case of right censored data, with ρ denoting the right

censoring time, has the form of the (2.15), where πN
j (θj) is the Jeffreys’ prior under

the model M1, that is π(α, β) ∝ 1/αβ.

Let yh and yk be the two uncensored observations in the SMTS and j the number of

censored observations in the SMTS, then the two marginal distributions calculated over

the SMTS are

mN
0 (y(l)) = β2

0

∫ ∞

0
α(yhyk)

α−1 exp (−β0(y
α
h + yα

k + jρα)) dα

and

mN
1 (y(l)) =

∫ ∞

0

α(yhyk)
α−1

(yα
h + yα

k + jρα)2
dα.

So we have

BN
01(y(l)) =

mN
0 (y(l))

mN
1 (y(l))

=
β2

0

∫∞
0 α(yhyk)

α−1 exp (−β0(y
α
h + yα

k + jρα)) dα
∫∞
0

α(yhyk)α−1

(yα
h
+yα

k
+jρα)2

dα
.

54



3.4 FBF under Censoring

Using the notation introduced in Example 8, we now calculate the intrinsic prior for

right censored data, where p(α, β) = Pr(Y > ρ|α, β) = 1 − exp(−βρα)

πI
1(α, β) =

1

αβ

∞∑

j=0

∫ ρ

0
BN

01(y(l))f(y(l)|α, β)dy(l)

= β2
0

∞∑

j=0

∫ ρ

0

∫ ρ

0

∫∞
0 α(yhyk)

α−1 exp (−β0(y
α
h + yα

k + jρα)) dα
∫∞
0

α(yhyk)α−1

(yα
h
+yα

k
+jρα)2

dα
×

× p(α, β)jαβ(yhyk)
α−1 exp (−β(yα

h + yα
k )) dyhdyk

which does not have a closed-form.

As pointed out by Berger and Pericchi (2004), the intrinsic prior cannot be obtained

when the censoring mechanism in unknown. The type of censoring may induce compli-

cations and difficulties in the calculation of the intrinsic prior. In particular, for Type II

censoring there exists a deterministic stopping rule which further complicates the likeli-

hood. Finally, random censoring implies that the stopping time ρ ∈ T becomes random

and this induces a space of possible MTSs which is also random and Assumption 0

should be regarded as marginal to the probability distribution of R = ρ, namely HR(ρ).

The analysis may proceed in two steps: first obtaining the intrinsic prior conditioning at

R = ρ and then marginalizing it with respect to HR(ρ). This implies that the random

censoring mechanism, represented by model HR(ρ), should be fully known.

The use of IBF and intrinsic priors in problems with censored or truncated data mod-

eled through the Weibull distribution can be found in Lingham and Sivaganesan (1999)

and Kim and Sun (2000).

3.4 FBF under Censoring

The calculation of the FBF is less computational demanding than that of the IBF

because we do not have to calculate it over MTSs or SMTSs: the partial information

on the data is provided by the fraction b of the likelihood which only depends on the

size of the training sample.

Remind that O’Hagan (1995) suggests to take b = nt/n, where nt is the MTS size and

n is the full sample size.

Again, in the case of censored data nt is random, so we propose three different strategies:

1. Mode: we take nt = mode{Nt}. In other words, we choose the most probable
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value of the SMTS size, and

b =
mode{Nt}

n
. (3.4)

2. Median: we choose the median of the SMTS size distribution

b =
median{Nt}

n
. (3.5)

3. Marginalization: considering that Nt is random, we define B as a random

variable

B =
Nt

n
, (3.6)

where Nt takes values in {s, s + 1, . . . , s+ ncens} with probability given in (3.1).

Finally, we define our proposal for the FBF.

Definition 5. (Marginal Fractional Bayes Factor) Let Nt be the SMTS size

with probability (3.1), then the marginal FBF, mFBF, is given by

mFBFij =

(s+ncens)/n∑

b=s/n

BF,b
ij PrB (B = b) =

(s+ncens)/n∑

b=s/n

BF,b
ij PrNt(Nt = bn). (3.7)

The practical calculation of mFBF can be done using parallel computation as each

BF,b
ij (y) is obtained using a different processor, in total ncens+1, and finally the weighted

mean is obtained. In cases of mode and median the FBF is a particular case of one of

the ncens +1 BFs previously calculated. The different BFs are compared in a simulation

study that appears in Section 3.6, also the computational cost needed to calculate the

IBFs and the FBFs are analyzed in Subsection 3.6.1.

We now give some results on the consistency of the FBF and mFBF, which means that

the BF in favor of the true model tends to infinity as the sample size infinitely grows.

We first consider the consistency of the mFBF which depends on the fraction B = Nt

n

and on its probability distribution PrB(B = b).

Lemma 1. Let nu = n − ncens the number of uncensored observations, assuming that

the number of uncensored observations is proportional to the sample size, nu = [w× n],

where w is the proportion of uncensored observations, then for n → ∞ we have that

Nt
d−→ Ñt ∼ NegBinomial(s,w) with E(Ñt) = s/w and V ar(Ñt) = s(1 − w)/w2,

being s the number of parameters for the assumed model.
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Proof. The result descends from the definition of the Negative Binomial random vari-

able. In fact, the size Nt of the MTS from a SMTS, is the total number of trials, from

an infinite population, with probability of success w and we stop until we obtain s

successes, namely s uncensored observations.

We recall that O’Hagan (1995) stated that the FBF is consistent if the fraction b→ 0

for n → ∞. The following Proposition 3 states that also all the proposed versions of

the FBF, which depend on a particular fraction B, are consistent.

Proposition 3. Let B = Nt/n, for B ∈ {s/n, . . . , (ncens + s)/n}, and assuming that

w is a fixed proportion of uncensored observations, then as n→ ∞, B
d−→ 0.

Proof. From Lemma 1 we know that Nt
d−→ Ñt, then E(B) = E(Ñt/n) → 0 and

V ar(B) = V ar(Ñt/n) → 0 because are fixed constants with respect to n.

Example 10. (Example 2 continued) We now calculate the FBF for the Weibull vs

Exponential model in presence of right censored data. This time we have to choose the

fraction b between the different proposals in (3.4), (3.5) or (3.6).

The corresponding marginal fractional distributions are

mN
b (y |M0) =

Γ(bnu)

(bT )bnu

and

mN
b (y |M1) = Γ(bnu)

∫ ∞

0

αbnu−1

(b
∑n

i=1 y
α
i )bnu

nu∏

i

y
b(α−1)
i dα.

The corresponding FBF can be calculated but, again, it does not have a closed-form

BF,b
10 = T nu

∫ ∞

0

αnu−1

(
∑n

i=1 y
α
i )nu

nu∏

i

yα−1
i dα

1

(T )bnu
∫∞
0

αbnu−1

(
Pn

i=1 yα
i )bnu

∏nu

i y
b(α−1)
i dα

for (3.4) and (3.5), and

mFBF10 =T nu

∫ ∞

0

αnu−1

(
∑n

i=1 y
α
i )nu

nu∏

i

yα−1
i dα

(2+ncens)/n∑

b=2/n

PrB(B = b)×

× 1

(T )bnu
∫∞
0

αbnu−1

(
Pn

i=1 yα
i )bnu

∏nu

i y
b(α−1)
i dα

.
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3.4.1 Fractional Prior for the FBF

Recalling the definition of fractional prior given in 2.4.2, we now give the following

proposition.

Proposition 4. Suppose we want to test the following hypotheses for the right expo-

nential model

M0 : θ = θ0

M1 : θ 6= θ0

and let y be the sample of observations. The corresponding fractional prior for a fixed

nt is

πFI,nt(θ) =
(θ0ntw)ntw

Γ(ntw)
θ−ntw−1 exp

(
−θ0ntw

θ

)
∼ InvGamma(α = ntw, β = θ0ntw)

(3.8)

and the marginal fractional prior is

πFI
1 (θ) =

∞∑

nt=1

w(1 − w)nt−1 (ntwθ0)
ntw

Γ(ntw)
θ−ntw−1 exp

(
−ntwθ0

θ

)
, (3.9)

which is a mixture of Inverse Gamma distributions, with parameters α = ntw and

β = ntwθ0.

Proof. A complete proof can be found in Appendix C.

Note 1. Observe that the prior for the mFBF results in a mixture of fractional priors

obtained for each FBF in equation (C.1), with weights given by PrNt(Nt = nt). Note that

this prior is not a unit information one, i.e. a prior that provides as much information

as one observation, as shown in Appendix C.

In Figure 3.2 and 3.3 we compare the intrinsic prior obtained by Berger and Pericchi

(2004), the fractional prior for the FBF in Example 3.3.1, for same values of B, that is

some fixed values of Nt, and the fractional prior for the mFBF here obtained. We have

also included in these figures the probability mass function for Nt in order to interpret

the most probable values in each case. It can be observed that, for a fixed censoring

percentage, the fractional prior corresponding to a fixed nt tends to be less dispersed as

nt grows and, as the censoring percentage increases, all the prior distributions become

more vague. It is important to notice that the fractional prior for the mFBF is close

to the intrinsic prior of Berger and Pericchi (2004) in the tails and it agrees with the

fractional prior when calculated over the mode of Nt for smaller censoring percentages.

This is due to the fact that, in this case, the mass function of Nt is concentrated on
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its mode. While for greater censoring percentages, as the mass of Nt is more spread,

the fractional prior for the mFBF is very close to the intrinsic prior and very different

from the fractional under the mode of Nt. Summarizing, the election of Nt = mode

could result in a poor prior depending on the percentage of censoring, while it seems

that the fractional prior for the mFBF behaves better independently of the censoring

percentage. Finally, the fact that the fractional prior exists also assures the existence of

the corresponding BF.

Again, observe that in the case of an unknown censoring mechanism, the fractional

prior for the Weibull model corresponding to the FBF cannot be obtained.

3.5 BIC under Censoring

In Volinsky and Raftery (2000) it is proposed a version of BIC in case of censored

survival models in which the sample size is replaced by an estimation of the effective

sample size. In presence of censored data the sample size n cannot be used in the penalty

term such as in (2.14), but we have to take into account the presence of censoring.

The proposal of Volinsky and Raftery (2000) is to replace n with the number, nu, of

uncensored observations because this is the rate at which the Hessian matrix of the

log-likelihood function grows. We adopt this definition of BIC

BICS
ji = −2

(
lj(θ̂j) − li(θ̂i)

)
+ (kj − ki) log(nu) (3.10)

As observed by Volinsky and Raftery (2000), this criterion still has the asymptotic

properties derived in Kass and Wasserman (1995).

Example 11. (Example 2 continued) In the case of the comparison between the expo-

nential and Weibull models with right censored data, the BIC takes the form

BICS
10 = −2

(
α̂nu β̂nu

nu∏

i

yα̂−1
i exp(−β̂

n∑

i=1

yα̂
i ) − λ̂nu exp(−λ̂

n∑

i=1

yi)

)
+ log(nu),

where (α̂, β̂) are the maximum likelihood estimators for the Weibull model and λ̂ is

the maximum likelihood estimator for the exponential model.

An example of the use of the BIC for right censored data when working in a real

application with the Weibull regression model can be found in Armero et al. (2012).

59



3. VARIABLE SELECTION UNDER CENSORING USING
SEQUENTIAL MINIMAL TRAINING SAMPLES

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

Comparison between
 instrinsic priors,

 p.cens=5%

theta

In
tr

in
si

c 
pr

io
r

Fractional prior for mFBF
Intrinsic prior (Berger−Pericchi 2004)
Intrinsic prior for fixed nt=1 (mode) (b=0.01)
Intrinsic prior for fixed nt=5 (b=0.05)
Intrinsic prior for fixed nt=10 (b=0.1)

1 2 3 4 5 6

Probability distribution
 of N_t, p.cens=5%

N_t

P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

Comparison between
 instrinsic priors,

 p.cens=30%

theta

In
tr

in
si

c 
pr

io
r

Fractional prior for mFBF
Intrinsic prior (Berger−Pericchi 2004)
Intrinsic prior for fixed nt=1 (mode) (b=0.01)
Intrinsic prior for fixed nt=5 (b=0.05)
Intrinsic prior for fixed nt=10 (b=0.1)

1 6 12 19 26

Probability distribution
 of N_t, p.cens=30%

N_t

P
ro

ba
bi

lit
y

0.
0

0.
4

0.
8

Figure 3.2: Comparison of different intrinsic and fractional priors for θ0 = 3, n = 100,

s = 1, for different censoring percentages: 5% and 30% and corresponding mass function

of Nt.
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Figure 3.3: Comparison of different intrinsic and fractional priors for θ0 = 3, n = 100,

s = 1, for different censoring percentages: 70% and 95% and corresponding mass function

of Nt.
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3.6 Simulation Study

In this section we present results of an ample simulation study in which we investigate

and compare the performance of IBFs, FBFs and BIC defined in Sections 3.3, 3.4 and

3.5. All the simulations, calculations and graphics have been made using the statistical

software R1.

Our aim is to provide evidence against any significant difference between the FBF, in

particular the mFBF, and the IBF which is more costly to compute.

We present results comparing the behavior of the IBFs, the FBFs and BIC over a set of

simulated data from the Weibull and log-normal regression models.

First of all we simulate n observations from Y following a Weibull or log-normal distri-

bution, with Weibull or log-normal censoring times, respectively, obtained as described

in Appendix B and with two different censoring percentages: 10% and 30%.

In all cases the regression model from which data are simulated has the form

Yi = log(Ti) = µ+ γ1xi1 + γ2xi2 + γ3xi3 + σWi i = 1, . . . , n

where Wi ∼ fW (w) = exp(w − exp(w)) in the case of the Weibull model and Wi ∼
N(0, 1) in the case of the log-normal model, with w ∈ R.

The values of µ and σ are fixed to 0 and 1, respectively, for the four different models

used to simulate data. In particular n observations have been drawn from the following

four models:

M0=Null model: (γ1, γ2, γ3) = (0, 0, 0).

M1=Model with 1 covariate: (γ1, γ2, γ3) = (1, 0, 0).

M2=Model with 2 covariates: (γ1, γ2, γ3) = (1, 1, 0).

M3=Model with 3 covariates: (γ1, γ2, γ3) = (1, 1, 1).

Finally, two different sample sizes have been used, n = 50 and n = 100, and the

covariates X1, X2 and X3 are independent, distributed according to a multivariate stan-

dard normal distribution.

For each model we have calculated all versions of IBF and FBF discussed above

along with the version of BIC for censored data introduced in Subsection 3.5. Ac-

ceptance proportions are used to select the model along the 8 possible models in each

1The R Project for Statistical Computing
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case. Results are based on 100 replications for each combination of simulation scenarios.

Each replication of the dataset leads to an estimation of the distribution of the pos-

terior probability for each possible model using 8 different tools for the Weibull case:

BFAI
Lmo

, BFMI
Lmo

, BFAI
Lme

, BFMI
Lme

, FBFmo, FBFme, mFBF , BIC. We observe that the

calculation of the IBF is computationally demanding, even using parallelism, and that,

as we can see from the Weibull simulation study, the B·
Lmo

and the B·
Lme

lead to similar

results (where the “ ·” stays for AI or MI), so for the log-normal regression model we

simply calculate the B·
Lmo

and the FBFmo.

In order to analyse all these results we first applied an ANOVA analysis with the logit

of the acceptance proportion of the true model as response variable, in order to esti-

mate the main effects of: scenarios, BFs, selection criteria and type of models along

with their possible interactions. From this analysis we observe that the most significant

effects for the Weibull regression model are: the number n of observations, the type of

true model and the type of BF. In particular, the full model, the mFBF , the BFMI
Lme

,

the BFMI
Lmo

have positive effects, which means that all the posterior probabilities grow,

while the censoring percentage has a negative effect. For the log-normal model the most

significant effects are: the number n of observations, the true model equal to the one

with two covariates and the full one, the BFMI
Lmo

(all of them with positive effects) and

the BFAI
Lmo

(with negative effect).

Figure 3.4 and Figure 3.5 provide an overview of the acceptance proportion of the

true model, Weibull and log-normal respectively, marginally to all BFs and selection

strategies. In fact, the considered BFs are consistent and the increasing proportion of

censored observations complicates the model selection procedure.

Figures 3.6 and 3.7 show that there is no significant difference between the considered

BFs marginally to all scenarios, although the BFAI
Lmo

has more difficulties in selecting

the true model in the case of the log-normal regression.

The dotcharts in Figures 3.8, 3.9, 3.10, 3.11 show the behavior of the considered

BFs in two different scenarios: 30% and 10% of censoring. We have that p̃, which is

the acceptance proportion of the true model, decreases when the percentage of censored

data increases, while it increases when the sample size increases. We denote by se(p̃)

the standard deviation of p̃ and we also show ±se(p̃) in the dotcharts. A general idea

about the behavior of all considered BFs can be obtained from Figures 3.8 and 3.9 at a

specified scenario, namely 30% of censored observations. Considering p̃± se(p̃) we can

see that:

i) BMI
· provides the best results along all the true models;
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Figure 3.4: Conditional distributions of the acceptance proportion of the true Weibull

model for the different simulated scenarios and marginally to the scenarios not mentioned

in the corresponding Box-Plot. Values are based on all versions of BFs as well as all model

selection strategies.

ii) BIC behaves similarly to the other BFs;

iii) BAI
· has a worse behavior compared to BMI

· , FBF· and mFBF and, in the case

of the log-normal regression, behaves worse than the BIC. This behavior is due

to the instability of this measure, and it has also been noted in Berger et al. (2001)

that the AIBF is less robust than the MIBF;

iv) mFBF behaves similarly to FBF·. Both have similar results to BMI
· for n = 100,

while for n = 50, and the Weibull model, the acceptance proportion of the true

model using mFBF and FBFmo decreases a little for the null and the full model.

For the log-normal model this occurs in the null and 1 covariate scenario. Globally,

mFBF and FBF· are the second best tools to select the correct model in the

simulated scenarios, as shown in Figures 3.6 and 3.7.
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Figure 3.5: Conditional distributions of the acceptance proportion of the true log-normal

model for the different simulated scenarios and marginally to the scenarios not mentioned

in the corresponding Box-Plot. Values are based on all versions of BFs as well as all model

selection strategies.

Finally, we have calculated the posterior expected model size for each BF and for

each simulation scenario. In Figures 3.12, 3.13, 3.14 and 3.15 the boxplots of the poste-

rior expected model size for the 100 replications for the Weibull models are represented,

for n = 50 and n = 100 and for the two censoring percentages, 10% and 30 %. Analo-

gous plots are presented in Figures 3.16, 3.17, 3.18 and 3.19 for the log-normal models.

All these figures confirm the results of the previous dotcharts, in particular we can

observe that the BMI
Lmo

and the BMI
Lme

are more precise in estimating the true model

size, specially in the case of the null model. Also it can be seen that in the case of the

Weibull model, BIC selects models with a model size, in mean, greater than the rest of

the tools, while for the log-normal scenario it works similarly to the rest.
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Figure 3.6: Conditional distributions of the acceptance proportion of the true Weibull

model for the 8 different tools.

3.6.1 Computational cost

In this chapter we have considered the calculation of IBFs using SMTS, but these

quantities are very computational demanding.

Observe that for the calculation of the IBF it is necessary to approximate 2(L∗ +1)

integrals, where L∗ stays for Lmode or Lmedian. While in order to obtain the mFBF

it is necessary to approximate 2(ncens + 2) integrals. The computational cost and

the elaboration time can be compared in terms of the number of integrals needed to

calculate the IBF and the mFBF when, for instance, L∗ = Lmode. Figure 3.20 illustrates

the difference in the number of integrals (we use the logarithmic scale for simplicity) to

be approximated for different sample sizes, with s = 5 and 30% of censored observations.

As it can be observed, IBF is much more expensive to compute than mFBF, and this

cost grows quickly as n increases, being 1202 integrals for IBF and n = 100, while this

number is 64 for mFBF and for the same sample size.

The calculation of the BIC is quite immediate but, as it can be seen, it has a worse

behavior than the other BFs when the Laplace approximation does not perform very
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Figure 3.7: Conditional distributions of the acceptance proportion of the true log-normal

model for the 5 different tools.

well, as in the Weibull case.
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Figure 3.8: Values of p̃± se(p̃) for Weibull model, different BFs with: 30% of censored

data and two sample sizes.
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Figure 3.9: Values of p̃±se(p̃) for log-normal model, different BFs with: 30% of censored

data and two sample sizes.
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Figure 3.10: Values of p̃± se(p̃) for Weibull model, different BFs with: 10% of censored

data and two sample sizes.
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Figure 3.11: Values of p̃±se(p̃) for log-normal model, different BFs with: 10% of censored

data and two sample sizes.
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Figure 3.12: Distribution of the posterior expected model size for the Weibull model,

different BFs with: 10% of censored data and n = 50.
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Figure 3.13: Distribution of the posterior expected model size for the Weibull model,

different BFs with: 10% of censored data and n = 100.
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Figure 3.14: Distribution of the posterior expected model size for the Weibull model,

different BFs with: 30% of censored data and n = 50.
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Figure 3.15: Distribution of the posterior expected model size for the Weibull model,

different BFs with: 30% of censored data and n = 100.
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Figure 3.16: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 10% of censored data and n = 50.
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Figure 3.17: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 10% of censored data and n = 100.
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Figure 3.18: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 30% of censored data and n = 50.

78

4/figures/pems50_30_log_paper.ps


3.6 Simulation Study

0
1

2
3

4

Posterior expected model size, 30% cens, n=100

0
1

2
3

0 (null) 1 cov. 2 cov. 3 cov.

B
M

I
L

m
o

B
M

I
L

m
o

B
M

I
L

m
o

B
M

I
L

m
o

F
B
F

m
o

F
B
F

m
o

F
B
F

m
o

F
B
F

m
o

B
A

I
L

m
o

B
A

I
L

m
o

B
A

I
L

m
o

B
A

I
L

m
o

m
F
B
F

m
F
B
F

m
F
B
F

m
F
B
F

B
I
C

B
I
C

B
I
C

B
I
C

Figure 3.19: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 30% of censored data and n = 100.
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4

Construction of Minimal Training

Samples under censoring using the

Kaplan-Meier estimator

4.1 Introduction

In the previous Chapter we have introduced a method to obtain IBFs and FBFs based

on the SMTS scheme in presence of censoring. As it has been analyzed in Subsection

3.6.1, the computational cost to approximate IBFs based on SMTSs is very high re-

sulting in very long computation times, especially for large datasets or problems with

a moderate or large number of involved variables. Along the present Chapter we will

discuss a different approach to define MTSs in presence of censored data. This new

strategy is very useful when it is possible to obtain closed-form expressions for the pre-

dictive distributions when samples do not contain censored data. In particular this is

true for the log-normal model as it is shown in Subsection 1.5.1.4.

The new approach may be viewed as a reweighting of the usual MTS extraction mech-

anism, in order to verify the Assumption 0 introduced in Chapter 3, when working

with censored data. In particular, we introduce a class of training samples, defined by

Berger and Pericchi (2004), useful when the information in each observation of the TS

is different and when Assumption 0 is violated.

Definition 6. (Randomized training sample) A randomized training sample with

sampling mechanism uuu = (u1, . . . , uLU
), where uuu is a probability vector, is obtained by

drawing a training sample from XU , the space of all training samples, according to uuu.

In this context, the training samples can be considered to be weighted training samples
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with weights ui.

The SMTS scheme introduced in Chapter 3 can be viewed as a particular method to

construct randomized training samples, where the probabilities ui are the probability of

drawing the i-th SMTS from all the possible SMTSs when sampling without replacement

from the data. Our proposal is to obtain weights in the randomized training samples

through the reweighting of observations in the sample via a nonparametric estimator

of the distribution function under the null model. In particular, we have used the

Kaplan-Meier estimator.

4.1.1 MTS based on the Kaplan-Meier estimator

Let Oi be the number of individuals that are still alive at time ti or experience the event

of interest at ti and di be the number of events that occur at that time. The quantity

di/Oi is an empirical estimate of the conditional probability that an individual, who

survives just prior to ti, experiences the event at time ti. This is the base from which the

estimation of the survival function is constructed. Observe that the empirical version

of the survival function S(t) is

Ŝ(t) =
number of individuals surviving longer than t

total number of individuals under study
.

Definition 7. (Kaplan-Meier estimator) The Kaplan-Meier estimator, also known

as the product-limit estimator, was introduced by Kaplan and Meier (1958). It is an

estimator of the survival function having the following form

ŜKM(t) =
∏

ti6t

(
Oi − di

Oi

)
=
∏

ti6t

(
1 − di

Oi

)

where (1 − di

Oi
) is the conditional probability that an individual survives at the end of

a time interval, under the condition that the individual was present at the start of the

time interval.

Note that ŜKM(t) is not well defined for values of t beyond the largest observation,

in fact if the largest study time corresponds to a death, then the estimated survival

curve is zero after this time. If the largest study time is censored, the survival ŜKM(t)

beyond this point will be undetermined because we do not know what would have been

the time to the death if the survivor had not been censored. In order to avoid this

problem, we adopt the convention proposed by Efron (1967). It consists in fixing the

value of the Kaplan-Meier estimator, ŜKM(t), equal to 0 beyond the largest study time.

This means that the survivor with the largest time on study has died immediately after
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the survivor’s censoring time.

Another proposal in Gill (1980) is to define Ŝ(t) as Ŝ(tmax) for t > tmax, this corre-

sponds to assume that this individual would die at infinity, and it leads to an estimator

which is positively biased. Both techniques, the one of Efron (1967) and that of Gill

(1980), correspond to the two most radical situations that can be found. Both estima-

tors have the same large-sample properties and converge to the true survival function

for large samples. Other works as Brown et al. (1974) or Moeschberger and Klein (1985)

use parametric models as the exponential or the Weibull distributions to estimate the

tail of S(t).

The Kaplan-Meier estimator is based on an assumption of non-informative censoring,

this means that knowledge about a censoring time for an individual does not provide

further information about this person’s likelihood of survival. This means, for example,

that censoring times do not depend on covariates. When this assumption can be vio-

lated, F̂KM estimates the wrong distribution function. When there are suspects that

censoring could depend on some covariates in the study, Kaplan-Meier estimators con-

ditional to these covariates can be considered instead of the proposal used here. The

rest of calculations shown here are not affected for the estimator used to construct the

MTS, if the resulting MTS is formed by uncensored observations.

Once it is obtained the estimator of the survival function ŜKM(t) = 1 − F̂KM (t), the

estimation of the cumulative distribution function F̂KM(t) can be defined.

Definition 8. (KMMTS) A Kaplan-Meier minimal training sample (KMMTS) is a

training sample obtained by sampling without replacement s (the number of parame-

ters in a given model) observations from the observed data according to the following

probability mass function

f̂KM(t) = F̂KM (ti) − F̂KM (ti−1)

=





F̂KM(t1) if t 6 t1

F̂KM(ti) − F̂KM (ti−1) if ti−1 < t 6 ti, i = 2, . . . , n− 1

1 − F̂KM (tn−1) if tn−1 < t 6 tn.

(4.1)

The Kaplan-Meier estimator of F results in a step function in which the mass func-

tion is defined only in values corresponding to uncensored observations, while the mass

function estimated via the F̂KM in a censored observation is 0. As a consequence of

this definition, a KMMTS contains only uncensored observations.
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Example 12. (Calculation of the Kaplan-Meier estimator) We consider a simulated

dataset based on the 6-mercaptopurine (6-MP) dataset introduced by Freireich et al.

(1963). It consists in results from a clinical trial of the drug 6-MP versus a placebo in

patients suffering from acute leukemia. Data about the survival times for the treatment

group jointly with the censoring indicator are reported in Table 4.1.

Lifetime 6 6 6 6 7 9 10 10 11 13 16 17 19 20 22 23 25

(months)

Censoring 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0

Table 4.1: Simulated data from the treatment group in the 6-MP dataset.

For the calculation of the Kaplan-Meier estimator we only consider the time to

relapse and the corresponding censoring indicator. By applying Definition 8 we obtain

the results shown in Table 4.2.

Time ti Number of events di Number at risk Oi Kaplan-Meier estimator

ŜKM(t) =
∏

ti6t

(
1 − di

Oi

)

6 3 17
(
1 − 3

17

)
= 0.824

7 1 13 0.824
(
1 − 1

13

)
= 0.760

10 1 11 0.760
(
1 − 1

11

)
= 0.691

13 1 8 0.691
(
1 − 1

8

)
= 0.605

16 1 7 0.605
(
1 − 1

7

)
= 0.518

22 1 3 0.518
(
1 − 1

3

)
= 0.346

23 1 2 0.346
(
1 − 1

2

)
= 0.173

Table 4.2: Kaplan-Meier estimator for the simulated dataset.

In Figure 4.1 it is represented the Kaplan-Meier survival curve along with its 95%

confidence interval.

Suppose we want to extract two different KMMTSs of length 3. We observe that each

KMMTS has a different probability of being sampled. For example, the two KMMTSs

consisting in lifetimes {16, 7, 22} and {6, 16, 22} have probabilities:

Pr({16, 7, 22}) =
1

7
· 0.087 +

1

6
· 0.064 +

1

5
· 0.172 = 0.057

Pr({6, 16, 22}) =
1

7
· 0.176 +

1

6
· 0.087 +

1

5
· 0.172 = 0.074.

In Algorithm 3 it is presented the pseudo-code to obtain a KMMTS.
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for the simulated dataset

Figure 4.1: Kaplan-Meier survival curve and 95% confidence interval for the 6-MP

dataset.

As seen in Section 1.5.1, the marginal distribution for the log-normal model in the

case of uncensored data is expressed in closed-form. For this reason, the definition of

the KMMTS results a suitable choice, in fact it allows a simpler expression of the BF

and, indeed, faster computations.

Example 13. (Example 5 continued) For the right censored exponential model, as the

censoring time ρ is fixed, the Assumption 0 introduced in Section 3.1 is not verified

using the KMMTS. So, in this example, one must use the strategy introduced in Section

3.1. But, if a random censoring time, ρ, is considered, results in Efron (1967) assure

that ŜKM converges to the true survival function, so F̂KM converges to F . This means

that with probability 1 all the possible samples of one uncensored observation distributed

accordingly to F are recovered simulating from F̂KM .

4.2 IBF based on the KMMTS

The AIBF and MIBF for randomized training samples are defined as:
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Algorithm 3 Kaplan-Meier Minimal Training Sample.

Require: D, the data ordered by increasing lifetime;

s, the number of parameters of the most complicated model

1: Calculate the Kaplan-Meier estimator ŜKM for each individual in D;

2: Create a vector of cumulated probabilities F̂KM = 1 − ŜKM ;

3: Calculate the vector f̂KM of point mass at each observation from F̂KM ;

4: Sample s observations, without replacement, from D with the corresponding prob-

abilities f̂KM ;

5: return the Kaplan-Meier training sample.

BFAI
ij = BN

ij (y)

LU∑

l=1

ulB
N
ji (y(l))

BFMI
ij = BN

ij (y) Median
u1,...,uLU

BN
ji (y(l)),

where the last expression means that the median of BN
ji (y(l)) is calculated with respect

to the probability distribution of the training samples (u1, . . . , uLU
).

The calculation of all possible training samples jointly with their weights is in almost all

the cases prohibitive, because of the large number of training samples. For this reason,

these theoretical quantities are approximated using L draws of training samples and

calculating:

BFAI
ij = BN

ij (y)

L∑

l=1

BN
ji (y(l))

BFMI
ij = BN

ij (y) Median
1,...,L

BN
ji (y(l)).

(4.2)

In particular, suppose we want to compare the following two log-normal models,

where Yi is the logarithm of the lifetime of the i-th subject

M0 : Yi = µ+ σWi

Mi : Yi = µ+ γTxi + σWi

where Wi are standard normal independent error terms. The two models can be written

in the following form, as seen in Subsection 1.5.1.3

M0 : Y = Z0β0 + ǫǫǫ0

Mi : Y = Ziβi + ǫǫǫi.
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The corresponding Kaplan-Meier AIBF (KMAIBF) and Kaplan-Meier MIBF (KM-

MIBF) can be obtained from (4.2).

In this case we choose L = n× s, where s is the number of parameters of the full model

under study.

In particular, we have to calculate the BN
0i (y(l)) over the KMMTS, which does not

contain censored data and it can be obtained in closed-form, while BN
i0 (y) is calculated

over the full data and must be approximated as there is not a closed-form expression

for it. In order to approximate the last quantity, it is necessary to approximate the cor-

responding marginal distributions, as described in Subsection 1.5.1.3 and in Subsection

1.5.1.4.

Let r0 and ri be the ranks of the design matrices Z0 and Zi, respectively. For simplic-

ity, we denote by Z0(l) and Zi(l) the covariate matrices obtained by taking the rows

corresponding to the KMMTSs’ observations and the columns corresponding to models

M0 and Mi, respectively, from the full matrix Z. Using the expression of the predictive

distribution given in (1.5), we have

BN
0i (y(l)) =

Γ(s−r0
2 )Γ(1

2 )r0 | Zi(l)
TZi(l) |1/2

[
(y(l) − ŷi(l))

T(y(l) − ŷi(l))
](s−ri)/2

Γ(1
2)riΓ(s−ri

2 ) | Z0(l)TZ0(l) |1/2 [(y(l) − ŷ0(l))
T(y(l) − ŷ0(l))]

(s−r0)/2
,

with

ŷi(l) = Zi(l)β̂i, where β̂i = (Zi(l)
TZi(l))

−1Zi(l)
Ty(l)

ŷ0(l) = Z0(l)β̂0, where β̂0 = (Z0(l)
TZ0(l))

−1Z0(l)
Ty(l).

Example 14. (Example 1 continued) We now present the results of the calculation of

the BAI and BMI for the larynx cancer dataset presented in Example 1.

We compute the KMAIBF and the KMMIBF and we compare them with the AIBF,

MIBF, FBF (all of them calculated only over Lmode, because the mode and the median

of Nt are equal), mFBF, all using the SMTS strategy, and the BIC for this dataset doing

a pairwise comparison from below. The possible models, containing only additive effects,

are listed in Example 1.

In particular, we adopt a log-normal regression model. Next we use the two strategies,

HPPM and MPPM, to select among the models and in Table 4.3 we report the values

for HPPM only, since they are not different from the MPPM ones.

As we can see BMI
KM is close to BMI

Lmo and agrees with the rest of BFs in choosing the

model containing stage as the most probable one. The behavior of BAI
Lmo

is not desirable

because it concentrates all the probability in one model. As we will see in Chapter 5
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k Model BAI
KM BMI

KM BAI
Lmo

BMI
Lmo

FBFmo mFBF BIC

0 Null 0.001 0.001 0.000 0.002 0.001 0.001 0.002

1 stage 0.599 0.756 1.000 0.813 0.692 0.663 0.949

2 age 0.001 0.001 0.000 0.001 0.001 0.001 0.001

3 age+stage 0.399 0.242 0.000 0.184 0.306 0.335 0.048

Table 4.3: Comparison of the posterior probabilities of the different BFs for the Larynx

dataset.

this is very common and it is due to the instability of this measure. This behavior is

mitigated when using KMMTS to calculate the AIBF.

4.3 Zellner and Siow prior for the log-normal model

In this section we consider the use of a conventional prior. As we are taking into

account the log-normal distribution, which corresponds to normal data when working

with the logarithm, there is a great consensus in the conventional prior to be used. For

the simulation study we present below, we have used the one introduced in Subsection

2.3.1. Following the definition of effective sample size used in Section 3.5, we use nu,

that is the number of uncensored observations, instead of n in the definition of the prior

πZS(γk|µ0, σ0) = Cark
(γk|0, nuσ

2
0(V k

TV k)
−1), (4.3)

which is a multivariate Cauchy distribution, where X̃k is the design matrix corre-

sponding to the vector γk, without including the intercept, rk = rank(X̃k) and V k =

(In − P0)X̃k is the design matrix corresponding to the orthogonal parametrization,

where P0 = X0(X0
TX0)

−1X0
T and X0 = (1, . . . , 1)T is a vector of length n.

The corresponding posterior distribution is

π(µ0,γk, σ0 | y, X̃XXk) ∝ π(µ0,γk, σ0)L(µ0,γk, σ0 | y, X̃XXk)

∝ Cark
(γk|0, nuσ

2
0(V k

TV k)
−1)×

×
n∏

i=1

[
1√

2πσ0

exp

(
−1

2

(
yi − (µ0 + γk

Tx̃k,i)

σ0

)2
)]δi

×

×
[
1 − Φ

(
yi − (µ0 + γk

Tx̃k,i)

σ0

)](1−δi)
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which does not have a closed-form, due to the presence of censoring. In order to calculate

the BFs, the corresponding marginal distribution has been approximated using the

algorithm of Chib and Jeliazkov (2001) as in Chapter 3.

4.4 Simulation Study

In this section we present results of a simulation study in order to compare the perfor-

mances of the IBFs calculated over the KMMTS with the rest of the tools introduced in

Chapter 3. In particular we have used: the IBFs calculated over the SMTS, the mFBF,

the BIC, the BF calculated over the Zellner and Siow prior defined in (4.3) and we have

calculated the FBFmo and the FBFme and here we only consider the FBFmo because

there are no significative differences between the two tools. The goal is to show that

the IBFs calculated over the KMMTS work not worse than the mFBF and the IBFs

calculated over the SMTS.

Data have been simulated from a log-normal distribution, as we work with the loga-

rithm of the times this means to simulate data from a normal regression model. The

censoring indicator has been simulated as described in Appendix B, considering two

different censoring percentages, 10% and 30%.

The log-normal regression model from which data are simulated takes the form

Yi = log(Ti) = µ+ γ1xi1 + γ2xi2 + γ3xi3 + σWi i = 1, . . . , n

where Wi ∼ N(0, 1).

The parameters µ and σ are fixed to 0 and 1, respectively, for all the considered models.

As in the simulation study presented in Section 3.6, we have drawn data from the

following models:

M0=Null model: (γ1, γ2, γ3) = (0, 0, 0).

M1=Model with 1 covariate: (γ1, γ2, γ3) = (1, 0, 0).

M2=Model with 2 covariates: (γ1, γ2, γ3) = (1, 1, 0).

M3=Model with 3 covariates: (γ1, γ2, γ3) = (1, 1, 1).

Two sample sizes, n = 50 and n = 100, have been used, while the covariates have

been simulated independently from standard normal distributions. As already done in

Section 3.6, we use the Jeffreys’ prior introduced in Subsection 1.5.1 to select the best

model among the 8 possible models for each simulation scenario. All the results are
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based on 100 replications for each combination of simulation scenarios. We denote by

BFAI
KM and BFMI

KM the AIBF and the MIBF calculated over the KMMTS, respectively.

As in Section 3.6, we use an ANOVA analysis where the logit of the acceptance propor-

tion of the true model as response variable, with respect to the main effects of scenarios,

BFs, selection criteria and models along with all possible interactions. From the ANOVA

analysis it can be seen that the most significative covariates without interactions are:

the number of observations n, the true model (1, 1, 0), the (1, 1, 1) (all of these with

positive effects, which means that these factors make the posterior probability grow)

and the BFAI
Lmo

(with negative effect).
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Figure 4.2: Conditional distributions of the acceptance proportion of the true log-normal

model for the different simulated scenarios and marginally to the scenarios not mentioned

in the corresponding Box-Plot. Values are based on all versions of BFs as well as all model

selection strategies.

Figure 4.2 provides an overview of the acceptance proportion of the true model

marginally to all BFs and selection strategies. Observe that BFs seem to be consistent,

that the increasing censoring proportion slightly complicates the model selection proce-

dure and that models with less covariates are in general more difficult to be detected.

Figure 4.3 shows that there is no significative difference between the considered BFs
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Figure 4.3: Conditional distributions of the acceptance proportion of the true log-normal

model for the 9 different tools.

marginally to all scenarios, considering that their performance is consistent with the

behavior of the real BF and it can be observed that the BFAI
Lmo

has a great variability

so it is less precise than the others.

In Figure 4.4 it appears the mean of the acceptance proportion of the true model

calculated over 100 replications, p̃, using each considered tool, sample sizes 50 and 100

with 30% of missing data, jointly with its standard deviation, se(p̃). The same plot

appears in Figure 4.5 where the percentage of missing data is 10%.

As it can be seen in these graphics, p̃ decreases when the percentage of censored

data grows, while it increases with the sample size. A general idea about the behavior

of all considered BFs can be obtained from Figure 4.4 at a specified scenario, namely

30% of censored observations. Considering p̃± se(p̃) we can see that:

i) BMI
Lmo

provides best results along all the true models;

ii) BMI
KM has a similar behavior to BMI

Lmo
, with some differences only under the null

model;
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iii) BAI
KM and BAI

Lmo
have a worse behavior compared to the other BFs, especially for

simpler models;

iv) BFZS has a good behavior in general, in particular it produces very good results

when the null model is the true one. This is due to the fact that the Zellner-Siow

prior is centered at 0;

iv) mFBF behaves similarly to FBFmo and to BFZS and gives similar results to

BMI
Lmo

, especially for complex models;

v) BIC works well in this case in all the scenarios, this could be due to the normal

distribution of errors as BIC is based on Laplace approximations.

We can observe that the new tools introduced in this Section, BMI
KM and the Zellner-

Siow BF, BFZS, work well in all the considered scenarios. However, it is necessary to

explore more deeply the behavior of BMI
KM when considering data in which the censoring

depends on covariates, because in the definition of the KMMTS the estimation of the

mass function is done through F̂KM estimated with the marginal distribution of y

and, hence, without taking into account the effect of covariates. This could result in

a poor behavior of BKM when censoring depends on some covariates, as pointed out

in Subsection 4.1.1. In these cases it would be necessary to use the estimator F̂KM

conditional to covariates influencing censoring. Again, averaging over all values of Nt

produces good results.

Next, as done in Section 3.6, we have calculated the posterior expected model size for

each BF and for each simulation scenario. In Figures 4.6, 4.7, 4.8 and 4.9 the boxplots

of the posterior expected model size for the 100 replications for the log-normal models

are represented, for n = 50 and n = 100 and for the two censoring percentages, 10% and

30 %. The figures confirm the results previously obtained by means of the acceptance

proportion, in particular we can observe that the BMI
Lmo

is more precise in estimating

the true model size.
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Figure 4.4: Values of p̃±se(p̃) for log-normal model, different BFs with: 30% of censored

data and two sample sizes.
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Figure 4.5: Values of p̃±se(p̃) for log-normal model, different BFs with: 10% of censored

data and two sample sizes.
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Figure 4.6: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 10% of censored data and n = 50.
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Figure 4.7: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 10% of censored data and n = 100.
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Figure 4.8: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 30% of censored data and n = 50.

97

5/figures/pems50_30_log.ps


4. CONSTRUCTION OF MINIMAL TRAINING SAMPLES UNDER
CENSORING USING THE KAPLAN-MEIER ESTIMATOR
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Figure 4.9: Distribution of the posterior expected model size for the log-normal model,

different BFs with: 30% of censored data and n = 100.
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5

Applications

5.1 NSCLC Dataset

The first application contains the NSCLC (non-small cells lung cancer) dataset, which

we have analysed during the research project “Treatment optimization of the non-small

cells lung cancer by means of a characterization of a Bayesian network and development

of a decision making system: modelling, simulation and validation”, at the Infanta

Cristina Hospital, Parla, Madrid.

This dataset contains the survival times for 35 patients at the fourth stage of the

NSCLC, of which 19 are censored. In the original dataset there are two different types

of survival times: the overall survival, which is the time from the entrance in the

study until death and the progression-free survival, which is the time until the cancer

progresses. In this thesis we only consider as response variable the overall survival.

There are 14 predictive variables present in the study:

• age: patient’s age expressed in years

• sex: patient’s gender

• smoking habit: categorical (no smoker or ex smoker/smoker)

• bmi: body mass index, numerical

• basal ecog: categorical measure about patients’ general well-being (0−1, 2 or

NA)

• localization: categorical variable denoting the area of the body where the tumor

is located (hilar mass, peripheral mass or multi-nodural)
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5. APPLICATIONS

Median Range

Body Mass Index (Bmi) 24.8 17.3 - 30.1

Albumin 3.5 2.1 - 4.6

Carcinoembryonic antigen (Cea) 2.9 0.5 - 8357.4

Lactate dehydrogenase (Ldh) 298.0 147 - 2744

Calcaemia 9.6 8.8 - 10.8

Table 5.1: Median and range of the continuous covariates for the 35 patients in the study.

• number of organs: number of affected organs (1, 2 or 3)

• ldh: value of lactate dehydrogenase (U/l)

• calcaemia: value of calcaemia (mg/dl)

• anaemia: value of anemia (g/dl)

• cea: value of carcinoembryonic antigen (ng/ml)

• albumin: value of albumin (g/dl)

• histological type: hystological type of cancer, with three values: adenocarci-

noma, squamous or undetermined

• complications: number of complications (none, one or more).

As the sample size is relatively small and there is a 74% of censoring, we have

considered only five possible predictive variables indicated by the oncologist. These

variables are albumin, bmi, cea, ldh and calcaemia and are summarized in Table 5.1.

To avoid the effect of extreme observations cea, ldh and bmi have been discretized

following medical indications. The discretized variables appear in Table 5.2.

We have considered the Weibull model because of the flexibility of its hazard ratio

to represent the behavior of the survival in this type of study. The potential models

are 25 = 32, for each of them the BFs presented in Chapter 3 are approximated, taking

into account that Lmode = Lmedian in this case.

We use the two strategies, HPPM and MPPM, to select models.

Results corresponding to the posterior probability calculated with HPPM appear in

Table 5.3, MPPM produces the same ordering across models.

From the table, we observe that all BFs, except BMI
Lmo

, agree in choosing the model

calcaemia as the most probable one, in particular the BIC assigns a considerable
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5.2 Larynx Dataset

N. of patients %

bmi

0: 18≤ bmi≤ 25 16 46

1: bmi< 18 or bmi> 25 19 54

cea

0: cea≤ 30 32 91

1: cea> 30 3 9

ldh

0: ldh≤ 250 18 51

1: 250< ldh≤ 400 10 29

2: ldh> 400 7 20

Table 5.2: Discretized variables for the NSCLC dataset.

probability to this model, while the other BFs, in particular the BMI
Lmo

, tend to assign

non negligible probability to the null model. Based on simulation results reported in

Section 3.6, the MIBF produces best results, which means that in this application it is

expected a sparse model, that could be the null or the one with calcaemia. In order to

make predictions it would be appropriate to use Bayesian model averaging to take into

account all models with non-negligible probability.

Then, we have calculated the posterior expected model size for each BF, results

appear in Table 5.4. Observe that the BMI
Lmo

has the lowest posterior expected model

size and the BIC has the largest posterior expected model size, as supposed.

5.2 Larynx Dataset

In this Section we present results obtained working on the larynx dataset introduced

in Example 1, but using a Weibull model. This dataset describes the survival times

of n = 90 male patients suffering from larynx cancer of which ncens = 40 are censored

during the time period 1970−1978. As suggested by Klein and Moeschberger (2003),

we adopt a Weibull regression model using the main effects of variables age and stage

in Table 5.5.

All measures introduced in Chaper 3 have been computed, taking into account that

Lmode = Lmedian. The possible models, containing only additive effects, are listed in

Example 14.

In Table 5.6 posterior probabilities of models calculated via HPPM are presented,
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5. APPLICATIONS

k Model BAI
Lmo

BMI
Lmo

FBFmo mFBF BIC

1 calcaemia 0.421 0.365 0.425 0.325 0.386

2 Null 0.191 0.367 0.271 0.181 0.043

3 bmi-calcaemia 0.128 0.074 0.002 0.057 0.099

4 cea 0.062 0.044 0.013 0.017 0.011

5 albumin-calcaemia 0.047 0.060 0.099 0.076 0.102

6 cea-calcaemia 0.035 0.000 0.080 0.074 0.140

7 albumin 0.024 0.041 0.043 0.037 0.022

8 albumin-bmi-calcaemia 0.018 0.011 0.000 0.021 0.027

9 albumin-cea-calcaemia 0.016 0.000 0.021 0.018 0.035

10 bmi 0.013 0.018 0.016 0.020 0.011

11 cea-bmi-calcaemia 0.013 0.001 0.015 0.017 0.037

12 albumin-bmi 0.008 0.007 0.004 0.008 0.007

13 ldh-calcaemia 0.005 0.008 0.000 0.006 0.025

14 ldh 0.003 0.000 0.004 0.003 0.003

15 albumin-cea-bmi 0.002 0.002 0.001 0.003 0.002

Table 5.3: 15 highest posterior probabilities, according to the BAI
Lmo

, of the models for

the NSCLC dataset.

BF Posterior expected model size

BAI
Lmo

1.159

BMI
Lmo

0.815

FBFmo 0.995

mFBF 1.534

BIC 1.637

Table 5.4: Posterior expected model sizes for the NSCLC dataset.

MPPM produces similar results.

We can see from Table 5.6 that all BFs agree that survival is mostly related to the

stage of the disease. It is worth noting that, in this case, the BIC agrees with the other

BFs in that it assigns the largest probability to stage.

The posterior expected model sizes obtained for each BF appear in Table 5.7. Again,

the BMI
Lmo

has the lowest posterior expected model size, while the other BFs have similar

values.
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5.3 Veteran’s Administration Lung Cancer Dataset (VA)

N. of patients %

stage

1: 33 37

2: 17 19

3: 27 30

4: 13 14

Median Range

age 65.00 41.00 - 86.00

Table 5.5: Summary statistics for the covariates of the larynx dataset.

k Model BAI
Lmo

BMI
Lmo

FBFmo mFBF BIC

0 Null 0.036 0.080 0.011 0.013 0.040

1 stage 0.642 0.720 0.744 0.744 0.679

2 age 0.021 0.012 0.005 0.007 0.023

3 age+stage 0.301 0.188 0.240 0.236 0.257

Table 5.6: Posterior probabilites of the 4 possible models for the Larynx dataset.

BF Posterior expected model size

BAI
Lmo

1.265

BMI
Lmo

1.108

FBFmo 1.230

mFBF 1.223

BIC 1.217

Table 5.7: Posterior expected model sizes for the Larynx dataset.

5.3 Veteran’s Administration Lung Cancer Dataset (VA)

In this section we present the Veteran’s Administration Lung Cancer dataset firstly

presented by Prentice (1973) and analysed by Volinsky (1997). This dataset reports

data from a randomized clinical trial to assess a test chemotherapy. It describes the

survival times and conditions of 137 individuals suffering from advanced lung cancer, of

which 9 are censored. The dataset contains 5 independent variables:

• treat: treatment (standard or test)
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N. of patients %

cell

type 1 35 25

type 2 48 35

type 3 27 20

type 4 27 20

treat

standard 69 50

test 68 50

prior

no 97 71

yes 40 29

Table 5.8: Categorical variables for the VA dataset.

• age: patient’s age expressed in years

• Karn: Karnofsky score of patient’s performance on a scale of 0 to 100

• cell: type of cells in the tumor, with four categories: squamous, small cell, large

cell and adeno

• prior: prior therapy (yes/no)

whose descriptive statistics can be found in Tables 5.8 and 5.9.

mean median sd q0.025 q0.975

age 58.31 62.00 10.54 51.00 66.00

Karn 58.57 60.00 20.04 40.00 75.00

Table 5.9: Summary statistics for the continuous variables for the VA dataset.

As stated by Prentice (1973) and Kalbfleisch and Prentice (1980) and discussed in

Volinsky (1997), the data fit an exponential model. So we adopt this model, which is

a particular case of the Weibull one, and we use the techniques shown in Chapter 3 to

calculate the FBF over the mode of Nt (because, also in this case, the median of Nt

is equal to the mode), mFBF and BIC. We do not calculate the two versions of IBF

because they are computationally expensive.
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5.4 Primary Biliary Cirrhosis (PBC) Dataset

k Model FBFmo

0 Karn-cell 0.707

1 Karn 0.093

2 Karn-cell-prior 0.056

3 treat-Karn-cell 0.052

4 age-Karn-cell 0.031

5 Karn-prior 0.019

6 treat-Karn 0.017

7 age-Karn 0.014

8 age-Karn-prior 0.003

9 treat-Karn-prior 0.03

Table 5.10: 10 highest posterior probabilities of models for the VA dataset according to

FBFmo.

In Tables 5.10, 5.11 and 5.12 we present results of the posterior probabilities of models,

calculated via HPPM, between the 25 possible models. In particular, for each BF

we have reported the 10 probability models with highest posterior probability. The

FBF, mFBF and BIC select the model Karn-cell to be the most probable one and the

model with only Karn the second most probable. FBF and mFBF give around 70% of

probability to the model Karn-cell and around 9% to the model with Karn and BIC

gives a comparable probability, being around 63%, for the Karn-cell model.

These results are in line with those obtained in Volinsky (1997), and as it is observed

also in that work, we can state that the variable treat is not significantly effective.

Finally, we have calculated the posterior expected model size for each BF, results

appear in Table 5.13. In this case, as in the case of the NSCLC dataset, the BIC has

the largest posterior expected model size.

5.4 Primary Biliary Cirrhosis (PBC) Dataset

In this section we consider the PBC data collected by the Mayo Clinic of Rochester

(Minnesota, US) from 1974 to 1984 to compare the effect of the drug DPCA with a

placebo in the treatment of primary biliary cirrhosis of the liver (PBC).

The dataset was analysed by Dickson et al. (1985), Grambsch et al. (1989), Markus

et al. (1989) and Fleming and Harrington (1991). Fleming and Harrington (1991), in

particular, observed that the data fit a Cox regression model and they considered all
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k Model mFBF

0 Karn-cell 0.740

1 Karn 0.091

2 age-Karn-cell 0.046

3 treat-Karn-cell 0.035

4 Karn-cell-prior 0.032

5 treat-Karn 0.016

6 age-Karn 0.015

7 Karn-prior 0.013

8 treat-Karn-cell-prior 0.005

9 treat-Karn-prior 0.002

Table 5.11: 10 highest posterior probabilities of models for the VA dataset according to

mFBF .

k Model BIC

0 Karn-cell 0.625

1 Karn 0.099

2 treat-Karn-cell 0.095

3 age-Karn-cell 0.062

4 Karn-cell-prior 0.060

5 treat-Karn 0.011

6 treat-age-Karn-cell 0.011

7 Karn-prior 0.009

8 treat-Karn-cell-prior 0.009

9 age-Karn 0.009

Table 5.12: 10 highest posterior probabilities of models for the VA dataset according to

BIC.
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BF Posterior expected model size

FBFmo 2.059

mFBF 2.041

BIC 2.175

Table 5.13: Posterior expected model sizes for the VA dataset.

the 14 covariates and, then, Volinsky (1997) reduced the analysis to 8 covariates, due

to the fact that 6 of them have no effect. The dataset contains 312 patients, 2 of them

containing missing data, so we reduce the dataset to 310 patients, of which 186 are

censored.

The considered covariates are:

• age: age expressed in years

• albumin: serum albumin (g/dl)

• bili: serum bilirubin (mg/dl)

• copper: urine copper (ug/day)

• edema: categorical (no edema, untreated or successfully treated, edema despite

diuretic therapy)

• stage: categorical, histological stage of disease (needs biopsy) with 4 categories

• ast: aspartate aminotransferase, also called SGOT (U/ml)

• protime: standardised blood clotting time.

The descriptive statistics are presented in Tables 5.14 and 5.15.

As in Volinsky (1997), we consider the logarithm of bili, albumin and protime

and analyse the data with the Weibull model. BFs introduced in Chapter 3 have been

calculated, except for the IBFs which are very expensive to be obtained, as already

observed in Section 5.3. Results using the posterior probabilities appear in Tables 5.16,

5.17, 5.18 and 5.19.

There are some differences in the models with highest posterior probabilities chosen

using one or another tool, and there is substantial model uncertainty in the poste-

rior probabilities of models. Using FBF (mode, median and marginalized) there is

substantial uncertainty in the posterior probabilities of models, being the maximum
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N. of patients %

edema

no edema 262 85

untreated or successfully treated 28 9

edema despite diuretic therapy 20 6

stage

1 16 5

2 66 21

3 120 39

4 108 35

Table 5.14: Categorical variables for the PBC dataset.

mean median sd q0.025 q0.975

age 49.95 49.71 10.57 42.05 56.68

bili 0.58 0.34 1.03 -0.22 1.25

albumin 1.25 1.27 0.13 1.20 1.34

copper 97.65 73.00 85.61 41.25 123.00

ast 122.40 114.10 56.83 80.60 151.90

protime 2.37 2.36 0.09 2.30 2.41

Table 5.15: Summary statistics for the continuous variables for the PBC dataset.

probability only around 20%. For all these tools the four most probable models are age-

edema-bili-albumin-copper-protime, age-bili-albumin-copper-protime, age-edema-

bili-albumin-protime and age-bili-albumin-protime, all of them having probabili-

ties between 10%-20%. Also BIC selects these four models as the most probable ones

and again, as in the VA dataset, it gives a comparable probability to the most com-

plex model between these four, that is age-edema-bili-albumin-copper-protime with

around a 20% of probability. These results are in line with findings in Volinsky (1997),

in fact in that work it is proposed to use Bayesian model averaging to take into account

model uncertainty.

These results are quite in agreement with the ones obtained in Volinsky (1997).

Dickson et al. (1985) show that the test drug, DPCA, has not a significative effect in

the treatment of the cirrhosis.
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k Model FBFmo

1 age-edema-bili-albumin-copper-protime 0.234

2 age-bili-albumin-copper-protime 0.213

3 age-edema-bili-albumin-protime 0.205

4 age-bili-albumin-protime 0.118

5 age-bili-albumin-ast-protime 0.059

6 age-bili-albumin-copper-ast-protime 0.040

7 age-edema-bili-albumin-copper 0.036

8 age-edema-bili-albumin 0.017

9 bili-albumin-copper-protime 0.015

10 age-edema-bili-albumin-ast-protime 0.014

Table 5.16: 10 highest posterior probabilities of models for the PBC dataset according

to FBFmo.

k Model FBFme

1 age-bili-albumin-copper-protime 0.229

2 age-edema-bili-albumin-copper-protime 0.134

3 age-edema-bili-albumin-protime 0.117

4 age-bili-albumin-protime 0.106

5 age-bili-albumin-copper-ast-protime 0.095

6 age-edema-bili-albumin-copper-ast-protime 0.073

7 age-bili-albumin-ast-protime 0.068

8 age-edema-bili-albumin-copper 0.049

9 age-edema-bili-albumin 0.044

10 age-edema-bili-albumin-ast-protime 0.016

Table 5.17: 10 highest posterior probabilities of models for the PBC dataset according

to FBFme.

109



5. APPLICATIONS

k Model mFBF

1 age-bili-albumin-copper-protime 0.237

2 age-edema-bili-albumin-protime 0.160

3 age-bili-albumin-protime 0.152

4 age-edema-bili-albumin-copper-protime 0.148

5 age-edema-bili-albumin-copper 0.058

6 age-bili-albumin-ast-protime 0.050

7 age-edema-bili-albumin 0.049

8 age-bili-albumin-copper-ast-protime 0.049

9 age-edema-bili-albumin-ast-protime 0.028

10 bili-albumin-copper-protime 0.023

Table 5.18: 10 highest posterior probabilities of models for the PBC dataset according

to mFBF .

k Model BIC

1 age-edema-bili-albumin-copper-protime 0.239

2 age-edema-bili-albumin-protime 0.180

3 age-bili-albumin-copper-protime 0.174

4 age-bili-albumin-protime 0.106

5 age-edema-bili-albumin-ast-protime 0.052

6 age-edema-bili-albumin-copper 0.049

7 age-edema-bili-albumin-copper-ast-protime 0.049

8 age-bili-albumin-copper-ast-protime 0.034

9 age-edema-bili-albumin 0.033

10 age-bili-albumin-ast-protime 0.029

Table 5.19: 10 highest posterior probabilities of models for the PBC dataset according

to BIC.
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In Table 5.20 the posterior expected model sizes obtained for each BF appear. In

this case, the mFBF has the lowest posterior expected model size, while the other BFs

have similar values. In this case the BIC has the largest posterior expected model size.

BF Posterior expected model size

FBFmo 5.153

FBFme 5.236

mFBF 5.001

BIC 5.290

Table 5.20: Posterior expected model sizes for the PBC dataset.
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Conclusions and Future Work

6.1 Summary and Conclusions

In this work we have studied the main approaches to the model selection problem for

censored data under an objective Bayesian point of view, in which only non-informative

priors are used. In particular, we have discussed the best known tools: the IBF, the

FBF and the BIC. It is observed that, when working with censored data it is necessary

to adapt the definitions of the usual BFs for improper priors. When using the definition

of SMTS of Berger and Pericchi (2004), the probability distribution of the random

size of the SMTS, which is crucial in the expression of the IBF and FBF, has been

calculated. Then, we have noticed that the IBF, along with its variants, is very slow

to be calculated and it requires uncommon tools (i.e a great number of processors),

so we have introduced another variation of the FBF, the mFBF. The main advantage

of this tool is that it requires less time to be computed, it takes into account all the

possible values of the fraction of the likelihood along with its probability function and it

produces a good approximation to the IBF in many of the analysed cases. Next, relying

on the definitions of IBF and mFBF, we have recalled the definitions of intrinsic and

fractional priors and we have obtained them for the exponential right censored model,

showing that for this case, the fractional prior corresponding to the mFBF is a mixture

of the fractional priors (i.e. inverse gamma distributions) corresponding to each FBF

with the appropriate fraction b.

We have also introduced a new way of obtaining a MTS, called the KMMTS, which

is based on the reweighting of the usual MTS extraction mechanism. In particular,

the Kaplan-Meier estimator of the distribution function is used to draw observations

from the sample, leading to a MTS that only contains uncensored observations. This
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procedure does not require the sampling mechanism of the SMTS that would take a

large amount of time, and it is suitable to be used when the BFs have closed-form

expressions.

Finally, it is presented a comparison of the BFs by means of two simulation studies and

the analysis of four real datasets. The main results are summarized below:

• the mFBF has the advantage that we do not need to specify a particular fraction

of the likelihood function;

• the MIBF is computationally expensive, but it provides the best results;

• the AIBF is unstable, due to the presence of outliers in the data;

• BIC tends to select the most complex models especially when Laplace approxi-

mation results not adequate because of lack of symmetry and of normality, as in

the case of the Weibull regression.

Based on these results, we can state that the proposed mFBF performs as the second

best tool, compensating a small decrease in precision in model selection with a quicker

answer.

6.2 Future work

There are many topics to be investigated to continue this work. Some of them are:

• Reweighting of IBF using the weights defined by the distribution of Nt. In rela-

tion to the IBF calculated on SMTSs in Section 3.3, one possibility could be to

study the definition of the IBF considering the reweighting induced by the prob-

ability distribution of Nt. We have already observed that this is computationally

expensive, but it would lead to a more precise and reliable IBF.

• Investigating the behavior of IBF based on KMMTS when censoring depends on

covariates. In Subsection 4.1.1 we have noticed that when the assumption of

non-informative censoring is violated, the Kaplan-Meier estimator of the F̂KM

estimates the wrong distribution function. Then, another choice could be to ex-

plore more in detail the behavior of IBFs calculated over the KMMTS, focusing

in particular on how they behave when the censoring depends on some covariates.
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6.2 Future work

• Exploring more general definitions of the Kaplan-Meier estimator. It would be

useful to explore other more general definitions of the Kaplan-Meier estimator in

the tail. Following the idea of Brown et al. (1974), which propose to complete the

tail by an exponential curve chosen to give the same value of S(tmax), we would

try to adopt again a Weibull model for the tail.

• Analysing more deeply the use of conventional priors. It would be interesting

to study the behavior of the conventional priors for regression models and in

particular for the Weibull model.

• Studying the behavior of the BFs for different types of censoring. Another possi-

bility could be to explore the behavior of the BFs for different types of censoring.

In particular, it would be useful to consider the Type II censoring characterized

by a deterministic stopping rule which, as already observed in Subsection 3.3.1,

complicates the likelihood.
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Appendix A

In Section 3.1 the Assumption 0 of Berger and Pericchi (2004) is introduced and it is

observed that, in some cases, it is not possible to satisfy that. In this Appendix we show

that for the case of the right censored exponential model the training sample introduced

in 3.1 satisfies this assumption.

A.1 Assumption 0 and SMTS

Consider the case of data (y1, . . . , yn) following the right censored exponential distribu-

tion Exp(θ). Suppose to test

M0 : θ = θ0 vs M1 : θ 6= θ0.

As seen in Example 5, the probability of the imaginary space of MTSs is less than 1

PrMi

θi

(
XMTS

)
= PrMi

θi
(X < ρ) = 1 − exp(−ρθi) < 1, i = 0, 1.

Now we study the case of the SMTS. We want to prove the following:

Proposition 5. Given a SMTS (Definition 4), then

PrMi

θi

(
XSMTS

)
= 1, i = 0, 1,

where XSMTS is the space of all possible sequential minimal training samples.

Proof. Let ncens denote the number of censored observations, nu the number of uncen-

sored observations and ti denote the first uncensored observation which we encounter

when sampling from the entire dataset. The possible SMTSs are:
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A.

SMTS Probability of the SMTS in the actual space

{ti} 1 − pi

{t∗1, ti} (1 − pi)pi

{t∗1, t∗2, ti} (1 − pi)p
2
i

...
...

{t∗1, t∗2, . . . , t∗ncens
, ti} (1 − pi)p

ncens

i

where pi = exp(−ρθi).

So the probability under each model Mi of the SMTS space becomes

PrMi

θi

(
XSMTS

)
= (1 − pi) + (1 − pi)pi + . . .+ (1 − pi)p

ncens

i

= (1 − pi)
[
1 + pi + p2

i + . . . + pncens

i

]
.

As n → ∞, the expression in square brackets is a geometric series with common

ratio pi and the number of censored observations ncens tends to n exp(−ρθi) = npi.

Recalling that, for a geometric series of common ratio φ

∞∑

j=0

φj =
1

1 − φ
,

then

PrMi

θi

(
XSMTS

)
→ (1 − pi)

1

(1 − pi)
= 1,

where φ = pi.
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Appendix B

When working with simulated data following a given distribution, it is interesting to see

how censoring times, following the same distribution (with different parameters), can

be obtained.

Here we show how this can be obtained in the case of the Weibull and log-normal

models.

B.1 Weibull censoring times

Suppose to have survival times following a Weibull distribution, Yi ∼ Weibull(α, λi),

for i = 1, . . . , n, and to assign a Weibull distribution to the censoring times Ci ∼
Weibull(α, βi). The question is how to choose βi depending on α and λi, given a

censoring percentage pcens.

pcens = Pr(Y > C) =

∫ ∞

0
Pr(Y > c)f(c)dc

=

∫ ∞

0
(1 − (1 − exp(−λic

α)))βiαc
α−1 exp(−βic

α)dc

=

∫ ∞

0
exp(−λic

α)βiαc
α−1 exp(−βic

α)dc

=
βi

βi + λi

∫ ∞

0
(βi + λi)αc

α−1 exp(−(βi + λi)c
α)dc.

Then, we obtain

pcens =
βi

βi + λi

so

βi =
λipcens

1 − pcens
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B.

B.2 Normal censoring times

We now consider survival times following a normal distribution, Yi ∼ N(µ1, σ
2
1), for

i = 1, . . . , n, and we assign a normal distribution to the censoring times Ci ∼ N(µ2, σ
2
2).

For simplicity, we consider σ2 = σ1. In order to obtain the mean µ2 of the censoring

times Ci, we refer to the theory of stress-strength models (see Weerahandi and Johnson

(1992) for details) in which a unit of strength Y is subject to a stress C. In our

simulation study, we have µ1 = µ+ γTxi (see Section 1.5.1) and σ1 = σ2 = 1.

Then we obtain

pcens = Pr(Y > C) = Φ

(
µ1 − µ2√
σ2

1 + σ2
2

)
,

pcens = Φ

(
µ1 − µ2√

2

)

and

µ2 = µ1 −
√

2Φ−1(pcens).

So we construct the variable C which follows a normal distribution N(µ2, σ2). Yi is

simulated from a N(µ1, σ1) and it is labelled as censored if Yi > Ci.
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Appendix C

C.1 Proof of Proposition 4

We now give the proof of Proposition 4.

Proof. The marginal fractional distributions for the two models are

mN
0,b(y) =

(
θnu

0 exp

(
−θ0

n∑

i=1

yi

))nt/n

= θ
ntnu

n

0 exp

(
−θ0

ntnu

nθ̂

)

and

mN
1,b(y) =

∫ ∞

0

1

θ

(
θnu exp

(
−θ

n∑

i=1

yi

))nt/n

dθ =

∫ ∞

0
θ

ntnu
n

−1 exp

(
−θntnu

nθ̂

)
dθ =

Γ(ntnu

n )
(

ntnu

nθ̂

)ntnu
n

,

where θ̂ denotes the maximum likelihood estimator under the exponential model M1.

The two marginal distributions are

mN
0 (y) = θnu

0 exp

(
−θ0

nu

θ̂

)

and

mN
1 (y) =

∫ ∞

0

1

θ
θnu exp

(
−θnu

θ̂

)
dθ =

Γ(nu)

(nu

θ̂
)nu

The fractional part of the FBF is

Bb
10(y) =

Γ(ntnu

n )
(

ntnu

nθ̂

)ntnu
n

1

θ
ntnu

n

0 exp
(
−θ0 ntnu

nθ̂

)

while the BN
10(y) calculated over the entire likelihood is

BN
10(y) =

Γ(nu)(
nu

θ̂

)nu

1

θnu

0 exp
(
−θ0 nu

θ̂

) ,
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C.

where nu = n× w with w = 1 − pcens.

Then, by applying the (2.17) we obtain the fractional prior for a fixed nt

πFI,nt(θ) =
(θ0ntw)ntw

Γ(ntw)
θ−ntw−1 exp

(
−θ0ntw

θ

)
∼ InvGamma(α = ntw, β = θ0ntw).

(C.1)

If we want to calculate the fractional prior for the mFBF, let

BF,b
10 = BN

10(y)CF01(y) = BN
10(y)

s+ncens∑

nt=s

PrNt(Nt = nt)B
b
01(y) (C.2)

be the mFBF, where CF01(y) is the correction factor.

From Lemma 1, follows

lim
n→∞

PrNt(Nt = nt)B
b
01(y) =

(
nt − 1

s− 1

)
ws(1 − w)nt−s lim

n→∞
Bb

01(y)

=

(
nt − 1

s− 1

)
ws(1 −w)nt−s (ntwθ0)

ntw

Γ(ntw)
θ−ntw exp

(
−ntwθ0

θ

)
.

(C.3)

Then we obtain the fractional prior for the mFBF according to the (2.16), (2.17)

and (C.3)

πFI
1 (θ) =

1

θ
B∗

1(θ)

=
1

θ
lim

n→∞
1

CF10(y)

=
1

θ
lim

n→∞
CF01(y)

=
1

θ
lim

n→∞

s+ncens∑

nt=s

PrNt(Nt = nt)B
b
01(y)

=
1

θ

∞∑

nt=s

(
nt − 1

s− 1

)
ws(1 − w)nt−s (ntwθ0)

ntw

Γ(ntw)
θ−ntw exp

(
−ntwθ0

θ

)

=
∞∑

nt=s

(
nt − 1

s− 1

)
ws(1 − w)nt−s (ntwθ0)

ntw

Γ(ntw)
θ−ntw−1 exp

(
−ntwθ0

θ

)
.

(C.4)

In the case of the exponential model, the number of parameters s is equal to 1 and

the marginal fractional prior is

πFI
1 (θ) =

∞∑

nt=1

w(1 − w)nt−1 (ntwθ0)
ntw

Γ(ntw)
θ−ntw−1 exp

(
−ntwθ0

θ

)
, (C.5)

which is a mixture of Inverse Gamma distributions, with parameters α = ntw and

β = ntwθ0.
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C.2 Fractional prior and unit information

C.2 Fractional prior and unit information

In this section we show that the fractional prior calculated in Proposition 4 is not a

unit information prior.

In Kass and Wasserman (1995) it is defined the unit information prior as a prior hav-

ing information about parameters θ equal to the amount of information about these

parameters in one observation.

Definition 9. (Unit information prior) Let Y = (Y1, . . . , Yn) be iid observations

coming from a family parametrized by θ = (β, σ). Suppose we want to test two hypothesis

H0 : θ ∈ Θ0

H1 : θ ∈ Θc
0.

(C.6)

The prior distribution on θ under the alternative hypothesis H1, p(θ) is called a unit

information prior if its variance satisfies the following

|Σθ|−1 =
∣∣I(θ)

∣∣
∣∣∣∣
θ∈Θ0

,

where I(θ) is the Fisher information matrix.

We now prove that the fractional prior for the mFBF introduced in Proposition 4

is not a unit information prior.

Recall that we want to compare the two exponential models

M0 : θ = θ0

M1 : θ 6= θ0.

The Fisher information for a generic distribution f(y|θ) is

I(θ) = −E
[
d2

dθ2
logL(y|θ)

]
,

where L(y|θ) is the likelihood function. The likelihood for the right censored exponential

model is

L(y|θ) = f(y|θ)δ(y)S(y|θ)1−δ(y)

= (θ exp(−θy))δ(y) (exp(−θy))1−δ(y)

so the log-likelihood is

l(y|θ) = logL(y|θ) = δ(y)(log θ − θy) + (1 − δ(y))(−θy) = δ(y) log θ − θy.
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C.

Then, the first derivative of the log-likelihood with respect to the parameter θ is

dl(y|θ)
dθ

=
δ(y)

θ
− y

and the second derivative is
d2l(y|θ)
dθ2

= −δ(y)
θ2

.

We obtain

−E
[
d2

dθ2
logL(y|θ)

]
= E

(
δ(y)

θ2

)
=

1

θ2
E(δ(y)) =

w

θ2
,

where w = 1 − pcens, and

Σ(θ) =
θ2

w

∣∣∣∣
θ=θ0

=
θ2
0

w
.

Next, we calculate the mean and the variance of the fractional prior (C.5). If ntw > 1

for each nt, then

EπF I
1

(θ) =

∞∑

nt=1

w(1 − w)nt−1EInvGa(θ) =

∞∑

nt=1

w(1 − w)nt−1 ntwθ0
ntw − 1

. (C.7)

If ntw > 2 for each nt, then

V arπF I
1

(θ) = EπF I
1

(θ2) −
(
EπF I

1
(θ)
)2

=

∞∑

nt=1

w(1 − w)nt−1 n2
tw

2θ2
0

(ntw − 1)(ntw − 2)
−
( ∞∑

nt=1

w(1 − w)nt−1 ntwθ0
ntw − 1

)2

.

(C.8)

Observe that when ntw is small, in particular if ntw < 2, the variance of this prior,

also called marginal prior, does not exist. Unfortunately, this is the most probable case,

because the smallest values of nt are usually the most probable (see Figure 3.1). So,

we can conclude that the marginal prior is a vague prior and, clearly, it is not a unit

information prior.
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