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Abstract

In order to evaluate the effects of any policy or answer economic relevant questions

it is of primary importance to accurately quantify the variables and the parameters

that may be involved with the policy or the questions. Since production functions

are a fundamental components of all economics, in most of the cases answering those

questions requires to estimate production function parameters. Nonetheless, produc-

tion function estimation is challenging since optimal input choices are correlated with

firm-specific unobserved productivity shocks. In this contribution I apply a structural

framework for estimating production function coefficients explicitly controlling for pro-

ductivity through an observable proxy (investment or intermediate inputs) using a rich

panel dataset of Mexican manufacturing firms between 1984 and 1990. I further derive

firm-level markup estimates and use these estimates to evaluate the impact of the dra-

matic trade liberalization that took place in Mexico during the sample period on the

profitability of domestic firms and exporters. My findings emphasize the importance of

obtaining consistent estimates in order to correctly assess differences in technologies,

productivity, and market power among the Mexican firms.
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1 Introduction

In order to evaluate the effects of any policy or answer economic relevant questions it is of

primary importance to accurately quantify the variables and the parameters that may be

involved with the policy or the questions. Since production functions are a fundamental

component of all economics, oftentimes it is hard even to formulate a question appropriately

without considering production functions and embedding them in the framework. This is

because much of economic theory provides testable implications that are directly related

to technology and optimizing behavior. Production functions relate productive inputs to

outputs and applied economists started to worry since the early 1940s about the issues

confronting their estimation because of the potential correlation between optimal input

choices and unobserved firm-specific determinants of production. The rationale behind

this concern is intuitive. Firms that experience higher productivity shocks are likely to

respond increasing their input usage, therefore classical estimation methods as, for example,

ordinary least squares (OLS) will yield biased coefficient estimates and biased estimates

of productivity. Consequently, any further analysis or evaluation based on those biased

estimates will be necessarily unreliable.

In the literature many alternatives to OLS have been proposed, from relatively sim-

ple instrumental variables and fixed effects solutions to more complex and sophisticated

techniques like dynamic panel data estimators and structural empirical models. In this

contribution I rely on the original insight of Olley and Pakes (1996) and the successive

extension by Levinson and Petrin (2003) and attempt to correctly estimate production

function parameters and productivity with a structural procedure using an observable

proxy, either investment or intermediate inputs, to control for the correlation between in-

put levels and the unobserved productivity shock. The essential assumption for successfully

applying this methodology is that productivity and investment (or intermediate inputs) are

linked through a unique monotonic relation so that observed investment (or intermediate

inputs) choices contain valuable information about the productivity shock and can be used

to consistently estimate production function coefficients. I take this empirical framework

to a rich panel dataset including information on production and trade characteristics for

over 2,000 Mexican manufacturing firms between 1984 and 1990.

With the unbiased production function estimates in hand, I further derive firm-level

price-cost margins relying on a structural approach in which markups are given by the

wedge between the cost share of factors of production and their revenue share. This
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approach has the advantage of being very general and flexible as it does not impose any

strong restrictions on the underlying production function and it does not require to specify

how firms compete in the market. I then compare these plant-level markup estimates

with industry-level markups obtained through a simpler dual approach in order to verify

the extent to which using micro-level information and directly controlling for unobserved

firm-level productivity is important in correctly evaluating market power.

During the period covered in the data the Mexican economy tried to find its way out

of a deep recession undergoing major structural reforms such as reduction in government

expenditure, privatization of state-owned companies, elimination of subsidies, deregulation

of financial markets, liberalization of foreign investment, and a dramatic re-orientation of

trade policy. The trade policy reforms were perhaps the most striking leading Mexico to

become one of the most open economy in the world in less than a decade. Therefore,

the Mexican economic environment in those years is particularly suitable to analyze the

effects of trade exposure on the Mexican manufacturing firms. More specifically, in order

to investigate whether the outward looking trade reforms lowered the profitability of the

domestic firms by boosting competition, I test the relation between markups and measures

of import liberalization in a regression framework. In addition, I combine the markups

and the productivity estimates to verify the prediction of several recent international trade

models that exporters are more productive and thus able to charge higher markups.

The main findings of my contribution can be summarized as follows. First, controlling

for unobserved productivity with the investment proxy successfully corrects the simultane-

ity bias in the production function parameter estimates. Second, the markups estimated

at the firm level are more reasonable and significantly higher than the ones estimated at

the industry level demonstrating that exploiting micro-level data and taking into account

differences in productivity is important to assess the extent of market power. Third, the

industry-level analysis on the impact of trade liberalization on the profitability of the Mex-

ican manufacturing industries provides some evidence of import discipline but this result

is not confirmed at the plant level. Lastly, the markup premium for exporters is significant

only for ”intensive” exporters, i.e. firms exporting a high percentage of their output.

The reminder of the work is organized as follows. Section 2 provides a review of the main

issues and contributions in the literature regarding production function estimation. Section

3 includes the details of the empirical methodology used to estimate the production function

parameters as well as the markups. Section 4 briefly characterizes the main features of the

Mexican trade liberalization and illustrates some simple models suitable to relate markups
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and trade exposure. The data and the sample selection criteria are described in Section 5.

Sections 6 and 7 present the results on the production function estimation and price-cost

margins analysis, respectively. Section 8 concludes.
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2 Literature Overview on Production Functions Estimation

2.1 Basic endogeneity issues

Production functions are an essential component in both theoretical and empirical economic

models and their estimation has a long history in applied economics, starting in 1800.

However, researchers are actually interested in estimating production functions because, in

most cases, it is a tool for answering other questions, only partially related to the production

function itself. Oftentimes it is hard even to formulate a question appropriately without

considering production functions and embedding them in the framework. For example, a

researcher may be interested in the presence of economies of scale in production, in whether

productivity differences depend upon differences in the quality of labor or differences in

R&D, in whether the marginal product of factors are equal to factor prices, in what is the

market structure in different industries and how this is related to the profitability of the

firms. All these questions require reliable estimates of cost or production functions and

are so important and interesting in economics that it is worth trying to answer them, even

though the estimation framework used for these purposes may be quite problematic.

Econometric production functions, as we know them today, essentially relate productive

inputs (e.g. capital and labor) to outputs and have their roots in the work of Cobb

and Douglas (1928) who proposed production function estimation as a tool for testing

hypotheses on marginal productivity and competitiveness in labor markets. Criticism to

their approach came very soon as Mendershausen (1938) argued that the data used by

Douglas were too multi-collinear to allow for a credible determination of the production

function coefficients. Marshack and Andrews (1944) were the first to explicitly state one

of the main reasons why production function estimation is problematic.

”Can the economist measure the effect of changing amounts of labor and capital on

the firm’s output - the ”production function” - in the same way in which the agricultural

research worker measures the effect of changing amounts of fertilizers on the plot’s yield?

He cannot because the manpower and capital used by each firm is determined by the firm, not

by the economist. This determination is expressed by a system of functional relationships;

the production function, in which the economist happens to be interested, is but one of

them.”
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To illustrate the issue consider the Cobb-Douglas production function technology

Yj = AjK
βk
j Lβlj

with one output Yj and two inputs: capital Kj and labor Lj . Aj is the Hicks-neutral

efficiency level of firm j, that is unobservable by the econometrician. Taking natural logs

the previous relation becomes linear

yj = β0 + βkkj + βllj + εj (2.1)

where lowercase letters express natural logarithms of the variables, (e.g. ln(Kj) = kj) and

ln(Aj) = β0+εj . The constant term β0 can be view as the mean efficiency level across firms,

while εj is the deviation from that mean for each firm j. εj represents all other disturbances,

left out the factors, such as firm-specific technology, efficiency, or management differences,

functional form discrepancies, measurement errors in output, or unobserved sources of

variation in output. The observation made by Marshack and Andrews is that, since the

right-hand-side variables are chosen by the firm is some optimal or behavioral fashion, they

cannot really be treated as independent. In fact, if the firm knows its εj , or some part of

it, when making input choices, these choices will likely be correlated with εj . One could

argue that capital can be considered a fixed input, as it is usually predetermined for the

duration of the relevant observation period, and it is therefore orthogonal with respect to

the disturbance term. The same argument, however, will not apply to labor, even if we are

willing to make the quite strong assumption that firms operate in perfectly competitive

input and output markets and treat capital as a fixed input. If firms perfectly or imperfectly

observe εj before choosing the optimal amount of labor to utilize in production, their choice

will necessarily depend on εj and the usual exogeneity assumptions that are required for

unbiasedness and consistency of OLS are unlikely to hold. Empirical results have actually

shown that both capital and labor are usually correlated with the error term but most

often the bias in the labor coefficient is larger than the bias on the capital coefficient. This

is consistent with the view that labor is more easily adjustable than capital, this more

variable, and therefore more highly correlated with εj .

Marshack and Andrews introduced a simultaneous equations methodology to produc-

tion function estimation that can be exposed using a simple profit maximizing model of

the joint determination of output and labor, given capital, output price (assuming, for
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simplicity that the price of output is the same across firms and it is normalized to 1) and

input prices. In this context the marginal productivity condition, which is also the variable

input demand function, is given by:

yj = lj + wj − ln(βl) + νj (2.2)

where w is the natural logarithm of the price of labor and νj is a term representing all

the deviations from the assumed conditions of perfect competition, absence of risk aversion

and uncertainty, and possible measurement errors in yj , lj , and wj . Equations (2.1) and

(2.2) constitute a system of two structural equations whose reduced form is given by:

lj =

(
1

1− βl

)
[β0 + ln(βl) + βkkj − (wj + νj) + εj ] (2.3)

yj =

(
1

1− βl

)
[β0 + βl(βo + ln(βl)) + βkkj − βl(wj + νj) + εj ] (2.4)

Thus the simple message of the Marshack and Andrews’ contribution is that if labor is

chosen even approxmately optimally, the production function disturbance is ”transmitted”

to the decision equation and lj is a function of it. Simple OLS estimates of the production

function coefficients will be biased and will not have the desired structural interpretation.

There is a second problem, perhaps less emphasized and documented in the literature,

embedded in the OLS estimation of (2.1). Firm-level dataset are usually characterized by a

significant level of attrition, i.e. firms entering and exiting but, obviously, researches have

only data on firms prior to exiting. Assume firms can observe εj , then decide whether to

exit or not, and choose labor and level of production optimally if they decided not to exit.

Abstracting from dynamics implications, assume also that firms deciding to exit receive a

non-negative remuneration equal to their sell-off value, thus firms will exit if the variable

profits are lower than the sell-off value. The problem here is that this exit condition will

generate correlation between εj and Kj , conditional on continuing to be in the dataset, i.e.

continuing to produce. This is because, if firms know their εj when they have to decide

whether to exit or stay, firms continuing to produce will have εj drawn from a selected

sample and the selection will be partially dependent on the fixed input Kj . In other

words, as firms with higher fixed capital are able to afford lower εj without having to exit,

the sample selection of the firms remaining in business will generate negative correlation
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between εj and Kj . Once again, the orthogonality conditions for OLS estimation would

be violated.

2.2 Traditional solutions: instrumental variables and fixed effects

The earliest responses to the concerns about the necessity of considering the endogeneity

issues in production functions estimation came through the increasing availability of panel

data and developed, traditionally, along two main directions: instrumental variables and

fixed effects.

2.2.1 Fixed effects

Hoch and Mundlak were the pioneers in introducing the fixed effects methodology in eco-

nomics in the context of production functions estimation. To understand the essence of

this approach consider a modified formulation of (2.1)

yjt = β0 + βkkjt + βlljt + ωj + ηjt (2.5)

where ηjt is not observed by the firm before any production decision (input choice or exit)

so that this term is not correlated with the firm’s optimal choices. Conversely firms have

knowledge of ωj when they make input and exit choices. Intuitively, ωj can represent en-

trepreneurial ability, labor quality, or any other factor affecting the production that firm

can observe or predict and it is usually defined as the firms’ unobserved (by the econo-

metrician) productivity. ηjt, on the other hand, represents deviations from the expected

values of these factors and can be also thought as the conventional measurement error in yjt

that is uncorrelated with input and exit decisions. Clearly the endogeneity issues concern

only ωj and not ηjt. The fact that ωj is assumed to be constant over time, or at least

over the length of the available panel, is the basic premise behind fixed effects estimation

and allows for consistent estimation of production function coefficients using differencing,

or least squares dummy variables estimation techniques. In general this implies that (2.5)

can be consistently estimated via OLS specifying

(yjt − yjt̄) = βk(kjt − kjt̄) + βl(ljt − ljt̄) + (ηjt − ηjt̄) (2.6)
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where the notation (xjt − xjt̄) represents averaging over the time dimension for each indi-

vidual firm1.

This approach is first stated briefly in Hoch (1955) and fully developed in Hoch (1962).

In this latter contribution, Hoch makes use of combined time-series and cross-section data

in the estimation of production function parameters for a sample of 63 Minnesota farms

over a six-year period from 1946 to 1951. The main goal of the study is to estimate the

elasticity of output with respect to inputs in order to draw inferences regarding the allo-

cation of resources by the economic units of the sample. A Cobb-Douglas specification is

used to derive a condition stating that firms equate the value of the marginal product of

each input to its price multiplied by some constant. This constant represents the elasticity

of output with respect to that input and can be interpreted as returns to scale. If firms are

in fact profit maximizers, the value of the constant should be one as optimality requires the

value of the marginal product to be the same as the price of the factor. Hoch argues that

rationalizing the use of single equation estimates of the production function parameters

is possible if one is willing to assume that firms maximize by differentiating anticipated

output with respect to current input so that the observed input choices are not correlated

with the disturbance term. The extent to which this assumption can be supported depends

on the characteristics of the industry where the firms operates. In the case of agriculture,

for example, it seems reasonable to believe that the term εj includes the effects of weather

variability which do not affect the optimal choice of inputs. In this context a single equa-

tion estimation is justifiable. There are, however, other differences between firms, such as

difference in technical efficiency, that will influence both output and inputs. Hoch points

out that if there are differences in technical efficiency between firms, i.e. ωj in (2.5) varies

substantially across firms, firms that are more efficient will be able to produce more out-

put for a given level of inputs and, by profit maximization, they will tend to have higher

levels on inputs, thus the optimal choice of factors will depend on ωj . A similar problem

arises if productivity increases over time. As a way out of this difficulty, Hoch uses the

analysis of covariance exploiting the time-series and cross-sectional dimensions of his data

and estimating a system of equations similar to (2.3) and (2.4) including firm-specific and

time-specific fixed effects in the production function equation. Since differences between

firms and time periods affecting both output and input choices are accounted for these

fixed effects, he argues that his model does not suffer from simultaneous equations bias.

1In the case of first-differencing (2.6) would be (yjt−yjt−1) = βk(kjt−kjt−1)+βl(ljt−ljt−1)+(ηjt−ηjt−1).

11



Despite the innovative approach, Hoch’s results are not very encouraging. Moving from

time correction estimates, where only time effects are included, to analysis of covariance

estimates where also farm effects are considered, there is a significant drop in the estimated

sum of elasticities, from almost 1 to approximately 0.75 which, in turn, generates unrea-

sonably low estimated marginal returns (around 0.20) to labor. These figures force him

to (questionably) interpret the shortfall as reflecting the fact that efficiency may increase

with scale and that there may be returns to the unmeasured, fixed entrepreneurial factor.

Mundlak further exploits the fixed effect approach in his 1961 contribution with the

scope of obtaining unbiased production function estimates in the presence of unobserved

managerial ability. He notes that, instead of trying to rationalize the concept and the

meaning of managerial capacity in order to include some index of management in the pro-

duction function, one should assume that, whatever management is, it does not change

substantially over time and, for at least a two year period, it can assumed to remain con-

stant. Mundlak assumes a Cobb-Douglas specification very similar to (2.5) apart from the

fact that the management variable is included among the inputs and has its own (con-

stant) coefficient to be estimated. However, since management is not directly observable,

the specification taken to the data is exactly the same as (2.5) with ωj = cmj being firm’s j

fixed effect, mj being management, and c being the constant multiplicative term associated

with it. If the production function is fully specified and the assumption of the classical

regression model hold, unbiased and efficient estimates can be obtained using the analysis

of covariance. Moreover, imposing the additional restrictions that management is the only

fixed input for all firms, for at least a two year period, and that there are constant returns

to scale, unbiased estimates of c and Mj (where Mj = exp(mj)) can also be recovered.

Mundlak’s results, obtained using a sample of 66 family farms in Israel from 1954 to 1958,

show that management is positively correlated with most of the inputs and that the firm

fixed effects are significantly different from zero, suggesting that the estimates obtained

adopting a specification that does not include them are likely to be biased. However, the

elasticity of output is fairly close to one when only time effects are considered, but drops to

0.87 when only firm fixed effects are present, and to 0.79 when both year and firm effects

are included. Moreover, the ”unbiased” model (where unbiased is the model including both

year and firm effects which are found to be significant) delivers, again, an unrealistically

low elasticity labor of 0.11 demonstrating that controlling explicitly for management bias

does not necessarily improves on the credibility of the results.

The unsatisfactory results - low and often insignificant capital coefficients and unreason-
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ably low returns to scale - obtained in the literature prove that the fixed effects framework,

valid in theory, is not particularly successful in solving the endogeneity problem in prac-

tice. There are a number of reasons why this is the case. First, in order for the fixed

effects methodology to be applicable, one needs to rely on the rather strong assumption

that the unobserved productivity term ωj is constant over time. This assumption is be-

coming less justifiable now that longer panel datasets are more easily available. Moreover,

researchers are usually interested in studying major changes in the economic environment

and, since significant changes are likely to affect different firms’ productivity differently,

firms are likely to adjust their optimal decision accordingly. If this is the case ωj will

obviously not be constant over time anymore. Second, when there is measurement error in

inputs, the within transformation of the data through differencing may actually aggravate

this problem and the estimates obtained with fixed effects are actually even less reliable

than the OLS estimates. Nonetheless we can see the fixed effects approach as a useful and

simple reduced-form way of exploring the data by decomposing the firms’ heterogeneity

into within and between effects.

2.2.2 Instrumental variables

The second classical solution to the endogeneity issue proposed in the literature is the use

of instrumental variables. Consider a slight modification of (2.5)

yjt = β0 + βkkjt + βlljt + ωjt + ηjt (2.7)

where now the term ωjt is allowed to change by firm and over time. Valid instruments

would be variables that are correlated with the endogenous explanatory variables, in this

case inputs, but do not enter the production function explicitly and are not correlated

with the production function residuals. The theory of production provides some indication

regarding natural candidates to be valid instruments: input prices. Input prices certainly

influence input choices, as they are part of the input demand functions, but do not directly

enter the production function. Moreover, input prices need to be uncorrelated with ωj and

this will depend on the nature of competition in the input market. Specifically, if input

markets are perfectly competitive, firms take input prices as given, thus input prices are

appropriate instruments. Other possible instruments would be output prices, once again

under the condition that output markets are competitive, or any other variable that shifts

either the demand for output or the supply of inputs. Nevertheless input prices are usually
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the most popular instruments because perfect competition is a more plausible assumption

in input markets than in output markets.

In the wake of the ”duality” revolution in production function theory, Nerlove (1963)

is one of the very few successful contributions in the literature making use of input prices

as instruments. His investigation on the returns to scale in electricity supply relays on

several characteristics that render the U.S. electric power industry unique. Power cannot

be stored in large quantities and must be supplied on demand; revenues from the sale of

power by private companies depend primarily on rates set by public regulatory bodies; the

input markets in this industry can be reasonably assumed to be competitive since fuel used

in power production is purchased under long-term contracts at set prices, the industry is

heavily unionized, and capital markets for utility companies are highly competitive. These

features describe an industry where the output of a firm and the prices it pays for the

production factors can be regarded as exogenous, even if the industry does not operate

in perfectly competitive markets. Thus, the problem of the individual firm appears to be

that of minimizing the total cost of production of output, subject to the given production

function technology and factor prices. Specifically, if the production function is assumed

to be a generalized Cobb-Douglas of the form:

Yj = AjK
βk
j Lβlj F

βf
j Uj (2.8)

where capital K, labor L, and fuel F are the inputs of production and U is a residual

expressing neutral variations in efficiency among firms, the problem of each firm j consists

of minimizing the cost of production

min
K,L,F

Cj = pkjKj + pljLj + pfjFj (2.9)

subject to (2.8). The marginal productivity conditions associated with this problem are

given by:

pkjKj

βk
=
pljLj
βl

=
pfjFj
βf

(2.10)

If the efficiency among firms varies neutrally, as indicated by the error term in (2.8), and

the factor prices vary across firms, the input choices are not independent, but determined

jointly by firm’s efficiency, level of output and factor prices and the system of structural
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relations (2.8) and (2.10) suffers from simultaneity bias. However, if factor price data are

available and factor prices do not move proportionally, it is possible to express the cost

function as a reduced form of the system of equations (2.8) and (2.10)

cj = kj +
1

γ
yj +

βk
γ

ln(pkj) +
βl
γ

ln(plj) +
βf
γ

ln(pfj) + vj (2.11)

where lowercase letters denote natural logarithms and γj = βk+βl+βf . Assuming constant

returns to scale, (2.11) can be rewritten as:

cj − ln(pfj) = kj +
1

γ
yj +

βk
γ

[ln(pkj)− ln(pfj)] +
βl
γ

[ln(plj)− ln(pfj)] + vj (2.12)

The fundamental duality between cost and production function, demonstrated by Shephard

(1953), guarantees that the relation between the cost function empirically estimated and

the underlying production function is unique. In other words, under the cost minimization

assumption, cost functions and production functions are simply two different but equivalent

ways of looking at the same concept.

Nerlove estimates (2.12) using data on 145 privately owned electrical utilities in 1955 and

his main findings can be summarized as follows. There is substantial evidence of increasing

returns to scale, but the degree of returns to scale varies inversely with output, especially

for larger firms. The scale of operation affects the degree of returns to scale, but is does

not significantly affect the marginal rate of substitution between factors of productions for

given factor ratios. The elasticities of output with respect to labor and fuel are positive

and of a plausible magnitude, while the elasticity of output with respect to capital is often

very small and in some cases even negative.

Despite being a remarkable and innovative contribution, the peculiar environment and

data used in Nerlove’s study demonstrates why the instrumental variables approach, even

if theoretically sound, may be challenging to apply in practice. First, firms do not usually

report input prices and when they do, especially in the case of labor costs, they tend to

report average wage per worker or per hour of labor. Ideally, the cost of labor should

measure exogenous differences in labor market conditions, but it often capture also some

component of unmeasured worker quality. It is very possible, for example, that firms

employing higher quality workers will pay higher average wages. In this case the cost

of labor will be correlated with the production function residuals and its validity as an

instrument will be compromised. Second, the use of input prices an instruments requires
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that these variables have sufficient variation to identify production function coefficients.

While input prices clearly change over time, they usually do not vary significantly across

firms as inputs market conditions tend to be fairly national in scope. If input prices do not

differ enough across firms in the data, or if the observed differences reflect unobserved input

quality and not exogenous input market characteristics, the instrumental variable approach

is not applicable. A third issue arises because the instrumental variables framework relies

on the strong assumption that the term ωjt in (2.7) evolves independently from input

choices over time, thus firms cannot affect the evolution of ωjt through input decisions.

If this assumption does not hold, i.e. if the evolution in ωjt is correlated with some

inputs, finding valid instruments would require to identify variables that affect only those

input choices without simultaneously affecting other input choices. Since individual input

choices most likely depend on the prices of all inputs of production, the task to select valid

instruments in such a context appears extremely challenging. Finally, the instrumental

variables approach only addresses the endogeneity of input choice, not the endogeneity

of firms’ exit. If exit is endogenous, it will possibly depend, in part, on input prices so

that firms facing higher input prices will be more likely to exit. This generates correlation

between input prices, used as instruments, and the residuals in the production function

rendering the instruments invalid.

2.3 Structural solutions

In the last twenty years, the increasing availability of firm-level data opened the door to

more structural approaches to identifying production function coefficients controlling for

simultaneity and selection problems.

2.3.1 The Olley and Pakes approach

Olley and Pakes, henceforth OP, in their 1996 contribution propose an innovative empirical

framework with the goal of quantifying the impact of deregulation on measures of plant-

level productivity in the U.S. telecommunication equipment industry between 1974 and

1987. Considering firms operating through discrete time, making production decisions to

maximize the present discounted value of current and future profits, OP make use of the

following assumptions. First, the production function is given by:

yjt = β0 + βkkjt + βaajt + βlljt + ωjt + ηjt (2.13)
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where ajt is the age (in years) of the plant expressed in natural logarithms. The motiva-

tion for introducing plant’s age as an additional input is to analyze the impact of age on

productivity.

Second, the unobserved productivity ωjt evolves exogenously following a first-order Markov

process of the form:

p(ωjt+1|{ωiτ}tτ=0}, Ijt) = p(ωjt+1|ωjt) (2.14)

where Ijt is firm j’s information set at time t, and current and past realization of ω, i.e.

{ωjt, · · ·ωj0} are assumed to be part of Ijt. This is simultaneously an econometric assump-

tion on the statistical properties of the unobservable term ωjt and economic assumption

on the way firms form their expectations on the evolution of their productivity over time.

Specifically, at time t + 1 these expectations depend only on the realization occurred at

time t. Moreover the first-order Markov process is assumed to be stochastically increasing

over time, i.e. a firm with a higher ωjt today expects to have a better distribution of ωjt+1

tomorrow.

Third, capital is accumulated by firms through a deterministic dynamic investment process

specified as:

kjt = (1− δ)kjt−1 + ijt−1 (2.15)

This formulation implies that the firm’s capital stock at period t was actually decided,

through investment, at period t− 1. Finally, the per-period profit function is given by:

π(kjt, ajt, ωjt,∆t)− c(ijt,∆t) (2.16)

Note that labor ljt does not explicitly enter the profit function as it is considered a vari-

able, non-dynamic input. Labor is variable in the sense that it is chosen and utilized

in production in the same period and it is non-dynamic, unlike capital, because current

labor decision do not impact future profits, i.e. labor is not a state variable. Therefore

π(kjt, ajt, ωjt,∆t) can be thought as a conditional profit function, where the conditioning

is on the optimal static choice of labor input. Note also that both π(·) and c(·) depend on

∆t which represents the economic environment where firms operate in a specific period.

∆ is allowed to change overtime but, in a given time period, is considered to be constant

across firms.
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The firm maximization problem can be described by the following Bellman equation:

Vt(kjt, ajt, ωjt,∆t) = max {Φ, sup
ijt≥0

π(kjt, ajt, ωjt,∆t)− c(ijt,∆t)

+βE[Vt+1(kjt+1, ajt+1, ωjt+1,∆t+1)|Ijt]} (2.17)

where Φ represents the sell-off value of the firm, and Ijt is, once again, the information

available to the firm at time t, i.e. (kjt, ajt, ωjt,∆t, ijt). The Bellman equation specifies

that each firm compares its sell-off value and the expected discounted returns of staying

in business. If the current state variables (kjt, ajt, ωjt,∆t) indicate that continuing in

operation is not profitable, the firm will exit, while, in the opposite case it will choose an

optimal, positive, investment level. Under the appropriate assumptions that an equilibrium

exists and the difference in profits between continuing and exiting is increasing in ωjt, i.e.

firms with higher ωjt are more likely to realize higher profits and thus decide to stay

in business, the solution to the control problem in (2.17) generates an exit rule and an

investment demand function. Defining χjt as the indicator function that takes the value of

zero when the firm decides to exit we have that the exit decision rule and the investment

demand function are written, respectively, as:

χjt =

{
1 if ωjt ≥ ω̄jt(kjt, ajt,∆t) = ω̄t(kjt, ajt)

0 otherwise
(2.18)

and

ijt = i(kjt, ajt, ωjt,∆t) = it(kjt, ajt, ωjt) (2.19)

Investment is assumed to be strictly monotonic in ω as, conditional on kjt and ajt, firms

with higher ωjt will optimally invest more.

As long investment as is positive, since (2.19) is strictly monotonic in ωjt, it is possible

to invert it and generate

ωjt = ht(kjt, ajt, ijt) (2.20)

which simply implies that, given a firm’s levels of kjt and ajt, the investment demand ijt

provides sufficient information about ωjt. This is because OP makes a scalar unobserv-

able assumption, i.e. they assume that ωjt is the only unobservable in the investment
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demand and there are no other unobservable (by the econometrician) variables that affect

investment but not production.

Substituting (2.20) into (2.13) yields

yjt = βlljk + φt(kjt, ajt, ijt) + ηjt (2.21)

where φt(kjt, ajt, ijt) = β0 + βkkjt + βaajt + ht(kjt, ajt, ijt). Equation (2.21) is taken to the

data in a first stage regression to recover an estimate of the labor coefficient. This is possible

because the monotonicity and scalar unobservable assumption allows for ”observing” the

unobservable ω through investment eliminating the endogeneity problem for the labor

coefficient. In this first stage of the estimation, however, the coefficients on capital and age

are not identified because in (2.20) it is not possible to separate the effect of capital and

age on the investment decision from their effect on output.

Rewriting (2.13) taking the term βlljt to the left-hand-side and taking expectation of

both sides results in

E[yjt − βlljt|Ijt−1, χjt = 1] = E[β0 + βkkjt + βaajt + ωjt + ηjt]

= β0 + βkkjt + βaajt + E[ωjt|Ijt−1, χjt = 1] (2.22)

The second line comes from the fact that kjt and ajt are known at time t− 1 and ηjt is, by

definition, uncorrelated with Ijt−1 and exit. The last term of (2.22) can be expanded as:

E[ωjt|Ijt−1, χjt = 1] = E[ωjt|Ijt−1, ωjt ≥ ω̄t(kjt, ajt) (2.23)

=

∫ ∞
ω̄t(kjt,ajt)

ωjt
p(ωjt|ωjt−1)∫∞

ω̄t(kjt,ajt)
p(ωjt|ωjt−1)

dωjt

= g(ωjt−1, ω̄t(kjt, ajt))

where the first equality depends on the exit rule expressed in (2.18) and the last two lines

from the exogenous first-order Markos process assumption on ωjt.

While it is possible to estimate ωjt−1 since, from (2.21), for a given set of parameters

(β0, βk, βa), ω̂jt−1(β0, βk, βa) = φ̂jt−1−β0−βkkjt−1−βaajt−1, there is not direct knowledge

of ω̄t(kjt, ajt). OP try to control for ω̄ using data on observed exit. In fact, the probability

of continuing operating at period t, conditional on the information available in the previous
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period is

Pr(χjt = 1|It−1) = Pr(ωjt ≥ ω̄t(kjt, ajt)|Ijt−1) (2.24)

= Pr(χjt = 1|ωjt, ω̄t(kjt, ajt))

= ϕ̃t(ωjt−1, kjt, ajt)

= ϕt(ijt−1, kjt−1, ajt−1)

= Pjt

where the first equality comes, again, form the exit rule (2.18) and the remaining equalities

come from (2.20) and the fact that kjt and ajt are deterministic functions of ijt−1, kjt−1,

and ajt−1. OP obtain an estimate of P̂jt, i.e. the probability of firm j surviving to period

t, through non-parametric methods.

Equation (2.24) also implies that ω̄t(kjt, ajt) is a function of ωjt−1 and Pjt. Thus (2.22)

becomes

E[yjt − βlljt|Ijt−1, χjt = 1] = β0 + βkkjt + βaajt + g(ωjt−1, f(ωjt−1, Pjt)) (2.25)

= β0 + βkkjt + βaajt + g′(ωjt−1, Pjt)

= β0 + βkkjt + βaajt + g′(φjt−1 − β0 − βkkjt−1 − βaajt−1, Pjt)

The second stage in OP estimation requires to take to the data the following expression:

yjt − βlljt = βkkjt + βaajt + g̃′(φjt−1 − βkkjt−1 − βaajt−1, Pjt) + ξjt + ηjt (2.26)

where the function g̃′ includes the constant term β0, and ξjt represents the innovation in

productivity with ξjt = ωjt − E[ωjt|ωjt−1, χjt = 1]. Substituting P̂jt, φ̂jt, and β̂l, (2.26)

can be estimated approximating the g̃′ function with polynomial or kernel methods. The

coefficients associated with capital and age, βk and βa, can be identified in (2.26) because,

given the information structure, the innovation in productivity is uncorrelated with kjt

and ajt since these two variables are only function of the information at t − 1, so that

the orthogonality condition E[ξjt + ηjt|Ijt−1, χjt = 1] = 0 holds. On the other hand, the

labor input at time t is plausibly correlated with ξjt since it is free to adjust to shocks

in productivity, thus the first stage of the estimation is needed to identify βl. Finally, in

(2.26) βk and βa are identified making use of the cross-sectional variation in kjt and ajt for

firms with the same ωjt−1 and Pjt and the time variation in input usage across firms that

20



have the same ωjt−1 and Pjt.

Olley and Pakes’ findings demonstrate how important the bias created by not control-

ling for productivity and endogenous exit can be. Comparing the results obtained with

their alternative method and the more classical OLS and fixed effect approaches, for both

a balanced panel and the full sample (constructed be including exiting and entering firms),

they find remarkable differences. Specifically, under OLS and fixed effects the coefficient on

labor is overestimated and the coefficient on capital is heavily underestimated with respect

to the OP approach and the differences are even larger when considering the balanced

panel instead of the full sample. Qualitatively, the results show that changes in the regula-

tory structure of the telecommunication industry were followed by an increase in industry

productivity generated, mainly, by a reallocation of capital and a shift in production to-

wards more productive plants. Significant entry and exit appear to have facilitated this

reallocation process.

2.3.2 The Levinson and Petrin approach

Levinson and Petrin (2003), LP henceforth, take a similar approach to Olley and Pakes for

conditioning out serially correlated unobserved shocks in production function estimation.

The key difference in their contribution is that they use an intermediate input demand

function as a proxy for productivity instead of the investment demand function. The

rationale behind this choice is that the OP procedure requires the investment function

to be strictly monotonic in ωjt in order to be inverted. Formally, the inversion can be

done also in the presence of zero or lumpy investment levels, but zero or lumpy investment

levels cast doubt on the strict monotonicity assumption on investment. On the other hand,

restricting the sample to the sole observations for which ijt > 0 could create a significant

loss in efficiency. Specifically, LP observe that in the Chilean manufacturing dataset from

1979 to 1986 they use in their study more than fifty percent of the plant-year observations

have zero investment level. Discarding these observations would imply loosing more than

half of the sample with an obvious efficiency loss. In addition, LP note that investment is

a control on a state variable that, by definition, may be costly to adjust. If investment is

subject to non-convex adjustment costs, the investment function may present kinks that

affect the reaction of investment to the transmitted productivity shock. In this case, the

error term ηjt in (2.21) will be correlated with ljt and the identification assumption on βl

would not hold.
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To avoid the issues related to potentially large efficiency loss and adjustment cost non-

convexities while using investment, LP suggest using intermediate inputs choices (energy

or materials) to proxy for ωjt as these variables are rarely zero and do not suffer from

significant adjustment cost, thus the strict monotonicity assumption is more easily satisfied.

They consider the production function

yjt = β0 + βkkjt + βlljt + βmmjt + ωjt + ηjt (2.27)

where mjt (intermediate input) is an additional input in production that, like labor, is

assumed to be variable and non-dynamic. The intermediate input demand equation is

specified as:

mjt = mt(kjt, ωjt) (2.28)

with the subscript t indicating that factors like input prices, market structure, or demand

condition that can influence the demand for materials, are allowed to vary across time but

not across firms. Note that (2.28) implies specific timing assumptions regarding the choice

of mjt. First, the intermediate input in period t is a function of ωjt, i.e. it is chosen at

the time production takes place. Second, labor does not enter (2.28) meaning that labor

is chosen at the same time as intermediate inputs and, therefore, ljt has no impact on the

optimal choice of mjt.

Assuming monotonicity of the intermediate input demand in ωjt, analogously to OP, (2.28)

is inverted to generate

ωjt = ht(kjt,mjt) (2.29)

Then, substituting (2.29) into (2.27) yields

yjt = βlljt + φt(kjt,mjt) + ht(kjt,mjt) + ηjt (2.30)

The first stage of the LP procedure involves obtaining an estimate for βl and φt(kjt,mjt) =

β0 + βkkjt + βmmjt + ht(kjt,mjt) treating ht non-parametrically. Note that βk and βm are

not separately identified from the non-parametric function in this first stage. The second
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stage of LP consists of estimating

yjt − βlljt = βkkjt + βmmjt + g̃′(φjt−1 − βkkjt−1 − βmmjt−1) + ξjt + ηjt (2.31)

Since kjt is assumed to be decided at period t− 1 it is orthogonal to the residual ξjt + ηjt.

However, since mjt is a variable input, it is certainly not orthogonal to the innovation

component of productivity, ξjt, as ωjt is observed at the time the intermediate input is

chosen. Thus LP use its lag, mjt−1, as an instrument for mjt, such that the orthogonality

condition E[ξjt + ηjt|Ijt−1] = 0 is satisfied for both kjt−1 and mjt−1.

Levinson and Petrin find that using materials or electricity as a proxy for the unobserved

productivity yields statistically significant estimates of the production function parameters

for the Chilean manufacturing industry. Moreover, in line with Olley and Pakes, they also

observe that, comparing their estimates with estimates obtained using OLS, the coeffi-

cient on labor is consistently upward biased and the opposite is true for the coefficient

on capital. A final comparison between estimates obtained using the investment as proxy

(OP method) and estimates using the intermediate input demand (LP method) delivers

also higher coefficients on labor and lower coefficients on capital under the OP method

suggesting that, at least in the case of the Chilean plants, the intermediate input seems to

respond more fully to the productivity shock than investment.

2.3.3 The Ackerberg, Caves, and Frazer approach

Both OP and LP procedures rely on a crucial assumption regarding the nature of the

labor decision, i.e. labor is not a state variable and, therefore, does not have implication

in the firm’s dynamic optimization problem. Nonetheless, Ackerberg, Caves, and Frazer,

henceforth ACF, (2006) note that, if there are significant hiring or firing costs, or if a firm is

highly unionized so that labor contracts are long term, current labor choices have dynamic

implications and labor becomes a state variable.

In this case (2.20) and (2.29) become ωjt = ht(kjt, ljt, ajt, ijt) and ωjt = ht(kjt, ljt,mjt),

respectively, and the labor coefficient βl cannot be identified from the first stage in neither

OP or LP estimation because it is not possible to separate the impact of labor on the

production from its impact on the non-parametric ht(·) function. In other words, if the

optimal labor choice is determined according to ljt = ft(ωjt, kjt) = ft(ht(·), kjt), it is

not feasible to simultaneously estimate a fully non-parametric, time-varying function of

(kjt, ωjt) along with a coefficient associated with a variable, ljt, that is merely a time-varying
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function of those same variables (kjt, ωjt). ACF further argue that the collinearity problem

that prevents identification of βl in the first stage is more serious and less easy to overcome

in the LP approach than in the OP one. This is because the former method uses a proxy for

productivity, the intermediate input demand, that is chosen in period t simultaneously with

labor and production level after observing ωjt, while the latter method relies on investment

as a proxy that, by definition, is not directly linked to period t outcomes.

ACF suggest an alternative estimation procedure that avoids the collinearity problems

arising in the estimation of the labor coefficient adopting a mild modification on the timing

assumption for input choices. The main difference between their approach and OP and

LP is that in the first stage no coefficient is estimated, instead the first stage serves the

purpose of netting out the error from the production function ηjt.

More specifically, in the case of the intermediate input demand, with a production function

specified as in (2.7), ACF assume that labor ljt is chosen by firms at time t − b, with

(0 < b < 1), after capital kjt was chosen at or before t− 1 but prior to mjt being chosen at

t. The productivity process is assumed to evolve according to a first-order Markov process

between the sub-periods t− 1 and t− b, i.e.

p(ωjt|Ijt−b) = p(ωjt|ωjt−b) and p(ωjt−b|Ijt−1) = p(ωjt−b|ωjt−1) (2.32)

(2.32) simply implies that labor and intermediates are both variable inputs with labor

being ”less variable” than intermediates. Also labor is not a function of ωjt, but of ωjt−b.

With these timing assumption the demand for intermediate input and labor, respectively,

are given by:

mjt = mt(kjt, ljt, ωjt) (2.33)

ljt = ft(kjt, ωjt−b) (2.34)

and the collinearity problem has been solved as mjt is now a function of (kjt, ωjt−b, ωjt).

Substituting into the production function, the first stage estimating equation in the ACF

is given by:

yjt = β0 + βkkjt + βlljt + ht(kjt, ljt,mjt) + ηjt (2.35)

where ht(·) is, once again, the inverse of (2.33) used as proxi for ωjt. As mentioned before,

ACF run the first stage just to obtain an estimate of φt(kjt, ljt,mjt) = β0 + βkkjt + βlljt +
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ht(kjt, ljt,mjt) in order to isolate ηjt and proceed to the second stage to estimate both

βk and βl. This now requires two independent moment conditions for identification. The

Markov process assumption on ωjt implies that ωjt = E[ωjt|Ijt−1]+ξjt = E[wjt|ωjt−1]+ξjt

so that ξjt is mean-independent of all the information known at t− 1. Since kjt is decided

at t− 1 and lt−1 is decided at t− b− 1, both kjt and lt−1 are included in the information

set It−1 so the orthogonality conditions required to identify βk and βl are

E

[
ξjt

∣∣∣∣∣ kjtljt−1

]
= 0 (2.36)

For a given set of parameters (βk, βl), ACF compute the implied value of ω̂jt(βk, βl) =

φ̂jt − βkkjt − βlljt, then non-parametrically regress ω̂jt on ω̂jt−1 to obtain x̂ijt(βk, βl), and

finally form the sample analogue

1

T

1

N

∑
t

∑
n

ξjt(βk, βl)

(
kjt

ljt−1

)
(2.37)

estimating (βk, βl) by minimizing (2.37).

In the case of the investment demand used as a proxy for ωjt the ACF procedure is analo-

gous as the procedure just described with the exception of (2.33) becoming

ijt = ht(kjt, ljt, ωjt) (2.38)

and (2.35) becoming

yjt = β0 + βkkjt + βlljt + ht(kjt, ljt, ijt) + ηjt (2.39)

Once again ht(·) is the inverse of (2.38) and φt(kjt, ljt, ijt) = β0+βkkjt+βlljt+ht(kjt, ljt, ijt).

ACF assert that their framework is completely consistent with labor choices having

dynamic implications and with other unobservables (eg. input prices shocks or dynamic

adjustment costs) impacting firm’s choices of capital and labor. The results, obtained using

the same Chilean manufacturing data as Levinson and Petrin, show how the estimates,

obtained with their alternative procedure, differs significantly from both the classical OLS

and LP methods. Specifically, the returns to scale estimated under OLS are higher than

under ACF and this is mainly due to the fact that, as expected, the coefficient on labor

is upward biased when not controlling for productivity shocks. Comparing ACF with LP
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estimates, they find that the coefficients are generally different in magnitude, with LP

estimates of the labor coefficient being more often smaller than their ACF counterparts,

suggesting that β̂l, which comes from the first stage in LP, may be downward biased because

of the discussed collinearity issue.

2.4 Alternative solutions: dynamic panel models and endogenous pro-

ductivity

2.4.1 Dynamic panel data methods

An alternative response to the simultaneity issues in production function estimation came

from the dynamic panel data literature starting with Chamberlain (1982). Dynamic panel

methods essentially extend the fixed effect framework allowing for a more sophisticated

error structure and combine it with instrumental variables to control for collinearity. To

see how this approach is developed consider the production function

yjt = βkkjt + βlljt + (αj + ωjt + ηjt) (2.40)

= βkkjt + βlljt + ψjt (2.41)

where the composite error term ψjt is the sum of all three error components, i.e. the un-

observed, time-invariant firm-specific effect αj , the productivity shock ωjt, and the serially

uncorrelated residual term ηjt.

The dynamic panel methodology relies on specific assumptions regarding the evolution

of the error components αj , ωjt, and ηjt, and the correlation structure between these

error components and the explanatory variables kjt and ljt. Given these assumptions, the

estimation procedure requires finding functions of the aggregated error term ψjt that are

uncorrelated with past, present, or future values of the explanatory variables. Commonly

the imposed assumptions are as follows. First, the time invariant error component αj

may be correlated with capital and labor. Second, the term ηjt is i.i.d. over time and

uncorrelated with capital and labor in every period. Third, the productivity process is

usually modeled as a first-order linear autoregressive process of the form ωjt = ρωjt−1 +ξjt.

Lastly, while ωjt is likely to be correlated with kjt and ljt, the innovation on ωjt between

t− 1 and t, ξjt, is uncorrelated with all the input choices prior to period t. This is because

the innovation in ωjt is observed by the firm after period t − 1 so that ξjt is uncorrelated

with input chosen at t− 1 or earlier. Note that the rationale behind this last assumption
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is similar to that behind the second stage identification conditions in OP, LP, and ACF.

Given that ωjt is AR(1), (2.40) has the dynamic common factor representation

yjt = βkkjt − ρβkkjt−1 + βlljt − ρβlljt−1

+ ρyjt−1 + ((1− ρ)αj + ξjt + ηjt − ρηjt−1) (2.42)

and given the definitions of ψjt and ωjt the following function of ψjt can be specified:

(ψjt − ρψjt−1)− (ψjt−1 − ρψjt−2) = ξjt − ξjt−1 + (ηjt − ρηjt−1)− (ηjt−1 − ρηjt−2) (2.43)

Note that (2.43) contains only ηjt and the innovation in productivity, as the terms con-

taining αj have been differenced out. Moreover, since ξjt and ξjt−1 have been assumed to

be uncorrelated with the input choices prior to t − 1 and ηjt is always uncorrelated with

the the input choices, an appropriate moment condition for estimating βk, βl, and ρ would

be

E

(ψjt − ρψjt−1)− (ψjt−1 − ρψjt−2)

∣∣∣∣∣∣
{

kjτ

ljτ

}t−2

τ=1

 = 0 (2.44)

(2.44) can be easily used to construct a sample analogue since (2.41) implies that, for

given values of the parameter (βk, βl) any ψjt is observable. If the assumption that ηjt is

uncorrelated with kjt and ljt in all time periods appears too strong, it can be substituted

with the weaker assumption that ηjt is sequentially exogenous, i.e. uncorrelated with all

inputs chosen prior to t. In this case, (2.44) does not hold anymore but can be substituted

with

E

(ψjt − ρψjt−1)− (ψjt−1 − ρψjt−2)

∣∣∣∣∣∣
{

kjτ

ljτ

}t−3

τ=1

 = 0 (2.45)

because, while ηt−2 is potentially correlated with kjt−2 and ljt−2, it is uncorrelated with

capital and labor decision prior to t− 2.

(2.44) and (2.45) summarize the essence of the dynamic panel methodology, i.e. GMM

estimators, which take first differences to eliminate firm-specific effects (αj) and use lagged

instruments to correct for simultaneity in the first-differenced equations, can be applied to

estimate production function coefficients.
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Blundell and Bond (2000), however, comment that the methodology described above

tends to produce unsatisfactory results in the context of production function estimation.

They mainly attribute this poor performance to the weak correlations that exist between

the current growth rates of capital and labor and the lagged levels of these variables which

result in weak instruments in the first-differenced GMM estimation procedure.

Using a panel of R&D performing US manufacturing firms between 1982 and 1989, Blundell

and Bond propose to estimate (2.41) making use of (2.45) together with the following

additional moment condition:

E

 kjτ − kjτ−1

ljτ − ljτ−1

}t−3

τ=2

∣∣∣∣∣∣ψjt
 = 0 (2.46)

The moment condition in (2.45) allow the use of appropriately lagged levels of the variables

as instruments in the first-differenced production function equation, while the moment

condition in (2.46) allows the use of appropriately lagged first differences of the variables as

instruments for the production function equation in levels. Both sets of moment conditions

can be exploited as a linear GMM estimator in a system containing both first-differenced

and levels equations. Their coefficient estimates obtained via the system GMM estimator

are much more reasonable than the ones obtained under simple OLS, fixed effects, or the

first-differenced GMM estimator with only the moment condition in (2.45). More precisely,

the results show that the capital coefficient is higher and strongly significant, the additional

instruments used in the system GMM are valid, and the hypothesis of constant returns to

scale cannot be rejected in the data.

2.4.2 Estimating endogenous productivity

In all the frameworks presented so far the productivity process has been considered con-

stant over a given period of time (fixed effects), or exogenous (structural approaches and

dynamic panel methods), in the sense that firms’ optimal decision do not affect the evolu-

tion in productivity. This modeling choice is mainly driven by the fact that endogenizing

this process is problematic in the context of standard estimation procedures.

Nonetheless, it seems very reasonable to assume that firms can optimally choose to under-

take activities to increment their productivity. A straightforward example is investment in

R&D which generates knowledge-based assets accumulation, just like investment if physical

capital, changing the firm’s relative position with respect to other firms.
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Doraszelski and Jaumandreu, DJ henceforth, in their very recent 2013 contribution

develop a dynamic model of endogenous productivity change where firms carry out two

types of investment, one if physical capital and another in knowledge through R&D expen-

diture. Firms operate through discrete time and make production decisions with the goal

of maximizing the present discounted value of current and future profits. Each firm face a

Cobb-Douglas production function of the form:

yjt = β0 + βkkjt + βlljt + ωjt + ηjt (2.47)

Capital accumulation follows the investment process described in (2.15) and the usual

i.i.d. across time and across firms assumption on ηjt holds. However, the key difference

in this model is that the evolution of firm-level productivity over time is endogenized and

productivity is assumed to be governed by a controlled first-order Markov process

p(ωjt|ωjt−1, rjt−1) (2.48)

with rjt being R&D expenditure expressed in natural logarithms. The firm’s dynamic

maximization problem is summarized by the Bellman equation

Vt(kjtωjt) = max
ijt,rjt

π(kjtωjt)− Ci(ijt)− Cr(rjt) + βE[Vt+1(kjt+1, ωjt+1)|Ijt] (2.49)

where π(·) denotes per-period profits, Ci(·) and Cr(·) are cost functions for investment

and R&D, respectively, and Ijt represent the information set at time t that includes

(kjt, ωjt, ijt, rjt). The solution to (2.49) generates two policy function it(kjt, ωjt) and

rt(kjt, ωjt) for investment in physical capital and knowledge. The firms anticipates the

effect of R&D on ωt when making decisions about investment in knowledge in period t−1,

thus the Markov process assumption yields

ωjt = E[ωjt|ωjt−1, rjt−1] + ξjt = g(ωjt−1, rjt−1) + ξjt (2.50)

(2.50) shows that the productivity at period t, ωjt can be decomposed into expected pro-

ductivity g(·) and a random shock ξjt. While the expected productivity depends on R&D

expenditure, the innovation in productivity ξjt does not. The term ξjt generally captures

factors that persistently influence productivity such as absorption of techniques, modifica-

tion of production precesses, fluctuations due to changes in labor composition and man-
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agerial ability but, when firms engage in R&D the innovation in productivity also captures

the uncertainties inherent in the knowledge accumulation process such as the chance of

discovery, or the success in implementation. The timing structure behind firms’ behavior

is also emphasized in (2.50), i.e. in period t − 1, when the optimal level of investment in

knowledge rjt−1 is decided, the firm can only form an expectation regarding the impact of

R&D on ωjt, but the actual impact depend on the realization of ξjt that occurs only after

the investment has been completely carried out.

The estimation of an endogenous productivity process is challenging when data on R&D

are not available because the estimation procedures analyzed so far do not apply for the fol-

lowing reasons. First, input prices are invalid instruments because, when the productivity

process is not exogenous, the transitions from current to future productivity are affected

by the choice of the additional unobserved R&D input, whose optimal choice depends on

the prices of all the other inputs. Second, the scalar unobservable assumption necessary for

a structural estimation like OP, LP, or ACF is violated in this context because rjt and ωjt

are both unobservable and recovering the productivity process using capital, investment,

or intermediate input demand may not be possible. Furthermore, even when data on R&D

are available, there may still be problems with identification as noted by Buettener (2005).

DJ estimation procedure relies on R&D data and builds on the LP insight that, since

static inputs like labor and material are chosen once the current productivity realization is

known, they contain useful information about it. More specifically, given the production

function in (2.48), assuming that labor is a static input implies that the optimal demand

for labor is given by:

ljt =
1

1− βl
(β0 + ln(βl) + µ+ βkkjt + ωjt − (wjt − pjt)) (2.51)

where µ = lnE[exp(ηjt)] and (wjt− pjt) is the real wage. Solving for ωjt, the inverse labor

demand function is

ωjt = ht(kjt, ljt, (wjt − pjt)) = −β0 − ln(βl)− µ+ (1− βl)ljt − βkkjt + (wjt − pjt) (2.52)

Lagging (2.52) yields ωjt−1 = ht−1(kjt−1, ljt−1, (wjt−1 − pjt−1)) thus, substituting ht−1 for

ωjt−1 into (2.50) and using it in the production function, JD take to the data the following
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estimating equation:

yjt = β0 + βkkjt + g(ht−1(kjt−1, ljt−1, (wjt−1 − pjt−1), rjt−1) + ξjt + ηjt (2.53)

Note that in the above expression kjt, whose value is determined in period t − 1 through

ijt−1 and rjt−1 is uncorrelated with ξjt, but the same is not true for ljt. However, non-linear

functions of the other variables, as well as lagged values of ljt can be used as instruments

for labor.

Applying a non-linear GMM technique, Doraszelski and Jaumandreu estimate (2.53) us-

ing an unbalanced panel of Spanish manufacturing firms during the 1990s. Their findings

confirm the well established empirical pattern that, compated to OLS estimates, the labor

coefficient labor decreases and the capital coefficient considerably increases when control-

ling for exogenous productivity. This result is even stronger when the productivity process

is endogenized through R&D. Moreover, there is evidence of complementarities and increas-

ing return to R&D, but the R&D process shows significant non-linearity and uncertainty.

The returns to R&D are considerably higher than the returns to physical capital and the

expected productivity of firms that engage in R&D is systematically more favorable com-

pared to that of firms not performing R&D. Finally, R&D expenditures are found to be

the primary source of productivity growth in the Spanish manufacturing sector, as firms

investing in R&D contribute 65 to 85 percent to the productivity growth in the industries

with intermediate or highly innovative activities.

2.5 Concluding remark

This survey has demonstrated that, even if production function estimation is challenging

because of the possibility of simultaneity and selection bias, to obtain realistic and reliable

estimates of production function coefficients, is the first step to answering more complex

and interesting economic questions.

Since firms’ responses to changes in the operating environment typically depend on how

these changes affect their productivity, to separate the evolution in productivity from the

variation in input choices, which also react to changes in the environment, requires an

explicit model describing how firms’ optimal choices are made. The appropriateness of

different models and assumptions remains an empirical issue that needs to be addressed in

each specific case, given the environment and the available data.

The literature has suggested a considerable variety of alternatives, nonetheless the com-
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mon message emphasized in all the proposed approaches is that productivity studies must

explicitly take into account the fact that changes in productivity are the main determinant

of firms’ response to the changes being analyzed, therefore, changes in productivity cannot

be ignored in any estimation procedure.
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3 Empirical Methodology

3.1 A structural framework to estimate production function coefficients

My first empirical goal is to obtain estimates of production function parameters. However,

as well documented in the literature, this is not a simple task since, while firms’ productivity

is not directly observable, optimal input decisions are based on it. The fact that differences

in productivity are known to firms when they choose their inputs and, for a given firm,

productivity is usually highly correlated over time generates the classic simultaneity bias.

3.1.1 The empirical model

To address the simultaneity problem I rely on the insight of Olley and Pakes (1996), who

propose to include directly in the estimation a proxy for productivity. This proxy is derived

from a structural dynamic model of firm behavior that allows for firm-specific productivity

differences, characterized by idiosyncratic changes over time, and specifies the information

available to the firms when input decisions are made. Specifically, consider a firm j in

industry i at time t (to simplify notation the industry subscript is omitted) producing

output Qjt according to the production function technology

Qjt = F (Xjt,Kjt, β) exp(ωjt) (3.1)

where Xjt is a set of variable inputs, Kjt is capital stock, and β is a common set of

technology parameters that governs the transformation of inputs to units of output in

industry i. ωjt is a firm-specific, Hicks neutral productivity shock.

Define value added as Yjt = Qjt−Mjt, with Mjt being intermediate inputs such as material

and energy. Allowing for measurement error and for unanticipated shocks to production,

the observed value added is given by Yjtηjt and the value added industry-specific production

function is

yjt = βlljt + βkkjt + βlll
2
jt + βkkk

2
jt + βlklitkjt + ωjt + ηjt (3.2)

where lower cases denote natural logarithms of the variables. Capital is a state variable ac-

cumulated accordingly to the deterministic dynamic investment process kjt = (1−δ)kjt−1+

ijt−1. Note that this particular formulation of the capital accumulation process implies that

period t capital stock was actually determined at time t− 1. On the other hand, labor is
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assumed to be a perfectly variable input decided either at time t, when production takes

place, or at time t− b, after capital but before production decisions occur. The importance

of these assumption regarding the timing of input choices is related to identification and

will become clear shortly. The error in (3.2) is assumed to be additively separable in the

transmitted productivity component ωjt and in the i.i.d. component ηjt. The main differ-

ence between these two components is that the former is assumed to be known by the firm

when making optimal input choices while the latter is not so that ηjt simply represents a

random optimization error. Note also that (3.2) is a translog production function but it

easily allows to recover the Cobb-Douglas specification by dropping the higher order terms

(βlll
2
jt, βkkk

2
jt) and the interaction term (βlkljtkjt).

In order to obtain consistent estimates of the production function coefficients, I directly

control for unobserved productivity shocks, which are potentially correlated with labor and

capital choices, adopting, again, the approach proposed by Olley and Pakes. Specifically, I

use the investment function to proxy for productivity under the assumption that a firm’s

optimal investment demand, ijt = ht(kjt, ωjt), is a strictly increasing function of its current

productivity. The investment demand function contains all current state variables for the

optimizing firm, i.e. its current level of capital and its current productivity. Conversely,

labor does not enter the state space because it is a non-dynamic input and values of ωjt

prior to period t do not enter the state space either because the evolution of ωjt is assumed

to be governed by a first-order Markov process of the form p(ωjt|ωjt−1). Furthermore, the

h function is only indexed by t (and not jt) since variables such as input prices and demand

shifters, which may be also part of the state space, are allowed to vary only across time but

not across firms as it is plausible to assume that firms operate in the same inputs market

and under the same demand conditions. Given that the investment function is strictly

monotonic in ωjt, it can be inverted to obtain

ωjt = h−1
t (kjt, ijt) (3.3)

Following the same reasoning and maintaining the same assumptions on the evolution

of the productivity process and the static/dynamic nature of the inputs, I also use the

approach suggested by Levinson-Petrin (2003). They observe that investment levels are, in

many cases, zero or very lumpy and propose to control for unobserved productivity using

the intermediate input demand function as a proxy. In this case, if the optimal expenditure

level in intermediates, mjt = ft(kjt, ωjt), is assumed to be a strictly increasing function of
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the current productivity, it can be inverted to generate

ωjt = f−1
t (kjt,mjt) (3.4)

3.1.2 Estimation procedure

Equations (3.3) and (3.4) show that investment or, alternatively, intermediate input de-

mand can be substituted into the production function as a proxy for the unobserved pro-

ductivity term ωjt, so that the estimating equation in (3.2) becomes

yjt = βlljt + βkkjt + βlll
2
jt + βkkk

2
jt + βlkljtkjt + h−1

t (kjt, ijt) + ηjt (3.5)

or

yjt = βlljt + βkkjt + βlll
2
jt + βkkk

2
jt + βlkljtkjt + f−1

t (kjt,mjt) + ηjt (3.6)

The estimation of (3.5) or (3.6) consists of two stages. The first stage serves the purpose

of obtaining an estimate of the expected value added φjt and an estimate of ηjt alternatively

running the following regressions:

yjt = φt(ljt, kjt, ijt) + ηjt (3.7)

or

yjt = φt(ljt, kjt,mjt) + ηjt (3.8)

where in (3.7) φjt = φt(ljt, kjt, ijt) = βlljt +βkkjt +βlll
2
jt +βkkk

2
jt +βlkljtkjt +h−1

t (kjt, ijt),

while in (3.8) φjt = φt(ljt, kjt,mjt) = βlljt+βkkjt+βlll
2
jt+βkkk

2
jt+βlkljtkjt+f

−1
t (kjt,mjt).

In addition, the functions h−1
t in (3.5) and f−1

t in (3.6), are given by:

h−1
t (kjt, ijt) = β̄kkjt + βiijt + β̄kkk

2
jt + βiii

2
jt + βkikjtijt (3.9)

and

f−1
t (kjt,mjt) = β̄kkjt + βmmjt + β̄kkk

2
jt + βmmm

2
jt + βkmkjtmjt (3.10)

Note that, due to the specification of (3.9) and (3.10), in the first stage the coefficients

associated with capital and capital squared in (3.5) and (3.6), respectively, are not identi-

fied. These coefficients will be identified only in the second stage of the estimation using

an appropriate set of moment conditions.

Moreover, under the Cobb-Douglas specification, i.e. yjt = βlljt+βkkjt+h−1
t (kjt, ijt) +ηjt
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with the investment demand, or yjt = βlljt+βkkjt+f−1
t (kjt,mjt)+ηjt with the intermedi-

ate input demand, the coefficient associated with labor, βl, can be identified and estimated

in the first stage as well.

In the second stage the (remaining) production function coefficients can be obtained

relying on the Markov process assumption and the law of motion for productivity. More

specifically, I model the productivity process non parametrically as a third degree polyno-

mial of lagged productivity in the following way:

ωjt = γ0 + γ1ωjt−1 + γ2ω
2
jt−1 + γ3ω

3
jt−1 + ξjt (3.11)

Using the estimated φ̂jt from the first stage, the value of productivity for any given vector

of β, where β = (βl, βk, βll, βkk, βlk), can be computed as:

ωjt(β) = φ̂jt − βlljt − βkkjt − βlll2jt − βkkk2
jt − βlkljtkjt (3.12)

By regressing ωjt(β) on its lag ωjt−1(β) it is possible to recover the innovation in produc-

tivity given by ξjt(β). Specifically, denote βZjt = βlljt + βkkjt + βlll
2
jt + βkkk

2
jt + βlkljtkjt,

then the productivity process in (3.14) can simply be rewritten as ωjt(β) = φ̂jt− βZjt and

the term ξjt in (3.13) is given by:

ξjt(β) =φ̂jt − βZjt − γ0 − γ1(φ̂jt−1 − βZjt−1)− (3.13)

γ2(φ̂jt−1 − βZjt−1)2 − γ3(φ̂jt−1 − βZjt−1)3

Equation (3.31) allows for calculating a ξjt(β) term for every firm and every period which

can be used in a GMM context to form appropriate moments in order to finally obtain

estimates of the production function parameters.

More precisely, for the Cobb-Douglas specification, I carry on the estimate for βl from the

first stage and identify βk using the moment condition on current capital

E[ξjt(β)kjt] = 0 (3.14)

The rationale behind the validity of this moment comes from the assumptions on the timing

of input choices discussed above. Assuming that the optimal level of ljt is chosen at time t,

when also the innovation in productivity is known to the firm, implies that ljt is correlated

with ξjt and the coefficient on labor βl needs to be identified in the first stage. Conversely,
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the optimal level of kjt is assumed to be chosen at time t − 1, thus kjt is not correlated

with ξjt and the moment condition in (3.14) identifies the coefficient on capital βk in the

second stage of the estimation.

Regarding the translog production function I estimate the whole set of coefficients in the

second stage relying on the moment conditions

E

ξjt(β)


ljt−1

kjt

l2jt−1

kjt2

ljt−1kjt



 = 0 (3.15)

These moments exploit the following assumptions on the timing of input choices. Once

again, current capital is assumed to be decided one period ahead therefore, at time t, kjt is

not correlated with the innovation in productivity ξjt. Lagged labor is used to identify the

coefficient on labor if current labor, ljt, is expected to react to shocks to productivity and

hence E[ξjt(β)ljt] is expected to be different from zero. Thus, the moment conditions in

(3.15) identify the whole set of coefficients (βl, βk, βll, βkk, βlk) in the translog production

function. The standard errors of the estimated coefficients are obtained by block-bootstrap

which is a special bootstrap technique designed to maintain the structure of the panel.

Specifically, I bootstrap along the firm dimension, i.e. I randomly sample with replacement

a number of firms equal to the number of firms present in each industry 400 times.

Two remarks regarding the estimation procedure are needed. First, I do not explicitly

model entry and exit. This is because the panel I use is essentially closed given that, when

a firm exited the sample, it was replaced by a similar firm and this new firm was assigned

the same identifier as the exiting one. Consequently, it is not possible to keep track of

entry and exit patterns and focus on selection issues. However, as Griliches and Mairesse

(1998) and Levinson and Petrin (2003) note, the selection correction seems to make little

difference once the simultaneity correction is in place. Second, I observe revenue instead

of physical output, hence I actually estimate ”revenue” production function parameters

deflating the sales with an industry-wide price index. This is an imperfect solution since,

if the unobserved firm-specific output price index substantially differs from the industry

price index, I am actually introducing a price error. Furthermore, if input decisions are

correlated with the price error, the estimated coefficients of the production function may
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be biased downward because, as mentioned in the original contribution by Klette and

Griliches (1996), more inputs will lead to higher output and decrease prices, ceteris paribus.

Nonetheless, this imperfect solution appears to be the best possible solution, given the

limitations in the available data

3.2 A structural approach to derive firm-level markups

My second empirical goal is to derive markup estimates at the firm-level. To achieve this

goal I follow the approach proposed by De Loecker and Warzynski (2012), which has the

advantage of not depending on the availability of very detailed data. The data require-

ments, indeed, are limited to total expenditure on variable inputs (labor and materials),

capital, investment and output at the firm-level. This approach is fairly direct from an

economic theory perspective, since it relies on standard optimal input demand conditions

that can be obtained from standard cost minimization. Moreover, it is straightforward to

implement empirically, since the estimation is simply based on the insight that the cost

share of factors of production are not equal to their output revenue share when markets are

not perfectly competitive, so that the estimated markups can be interpreted as a measure

of market power. Finally, this approach is flexible as it can be applied to a wide range of

production functions and it is able to correct the markup bias by directly controlling for

the firm-specific unobserved productivity.

To derive an expression for markups consider, once again, a firm j in industry i at

time t (the industry subscript is again omitted for simplicity) producing output Qjt using

variable inputs (X1
jt, . . . , X

V
jt), which may include labor, materials, and energy, and capital

Kjt as factors of production, and with productivity level ωjt. This firm aims to minimize

its cost of production by solving the problem

min
Xjt,Kjt

V∑
v=1

PX
v

jt X
v
jt + rjtKjt (3.16)

s.t. Qjt = Qjt(X
1
jt, . . . , X

V
jt ,Kjt, ωjt)

where PX
v

jt denotes the price of any variable input and rjt denotes the price of capital.

The technology constraint takes a very general form and the only restriction imposed on

Qjt(·) is that it is continuous and twice differentiable with respect to its argument. The
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Lagrangian associated with the minimization problem in (3.16) is given by:

L(Xjt,Kjt, λjt) =
V∑
v=1

PX
v

jt X
v
jt + rjtKjt + λjt(Qjt −Qjt(·)) (3.17)

with the first order condition with respect to each variable input being

∂L
∂Xv

jt

= PX
v

jt − λjt
∂Qjt(·)
∂Xv

jt

= 0 (3.18)

The Lagrange multiplier λjt, in this context, measures the marginal cost of production since
∂L
∂Qjt

= λjt. This is because, formally, λjt represents the shadow value of the constraint,

i.e. the increase in cost generated by a marginal expansion in output.

Rearranging terms, multiplying both sides of (3.18) by Xjt/Qjt, and dividing by λjt yields

∂Qjt(·)
∂Xv

jt

Xv
jt

Qjt
=

1

λjt

PX
v

jt X
v
jt

Qjt
(3.19)

(3.19) simply states that cost minimization requires the optimal input demand being satis-

fied when a firm equalizes the output elasticity of input Xv
jt to 1

λjt

PXv

jt Xv
jt

Qjt
. Note that, in the

special case of constant marginal cost, given the interpretation of the Lagrange multiplier,

(3.19) implies that, at the optimum a firm equalizes the output elasticity of any variable

input to its cost share.

Defining µjt as the the markup, implies that µjt =
Pjt

λjt
or, in a more compact way,

µjt =
θXv

jt

αXv
jt

(3.20)

where θXv
jt

is the output elasticity with respect to the variable input Xv
jt and αXv

jt
is the

share of Xv
jt’s expenditure in total revenue.

As mentioned before, the technology constraint in (3.16) is very general and can easily

encompass different specifications. Assuming that the technology takes the form of the

value added production function in (3.2) (where labor is the only variable input) and

estimating the production function parameters following the procedure illustrated in the

previous section, the estimated output elasticity of labor is given by θ̂Ljt = β̂l+2β̂lllit+β̂lkkit

under the translog, and by θ̂Ljt = β̂l under the Cobb-Douglas specification. Additionally,
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the expenditure share is αLjt = exp(η̂jt)
PLjt

Ljt

PjtỸjt
, where Ỹjt is observed value added, given

by Yjt + exp(ηjt), allowing for measurement error. Note that the correction with the error

term ηjt is important to eliminate any variation in the expenditure share that comes from

variation in output not correlated with factor of production choices. Finally, with θ̂Ljt and

αLjt , the expression for the estimated markup for each firm in each period is derived as:

µ̂jt =
θ̂Ljt

αLjt

(3.21)

(3.21) remarks the rationale behind this approach for estimating markups, i.e. market

power can be detected when the output elasticity of labor does not equalize the labor

expenditure share.

3.3 A simpler dual approach to derive industry-level markups

The computational intensive methodology illustrated above allows for estimating firm-

specific markups using disaggregated micro-level data. Here, I present a more parsimo-

nious approach, that can be applied to more aggregated data, and is suitable to estimate

industry-specific markups, i.e. all firms belonging to the same industry are assumed to

share the same price-cost margin. The purpose of exploring this alternative method is to

have a standard of comparison between a simpler and less demanding (in terms of data

requirements and computational burden) approach and a more structural and onerous one.

The basic idea behind this unsophisticated approach is that, under certain assump-

tions, total factor productivity can be calculated either as the residual of the production

function or, alternatively, as the residual of the dual cost function. However, the correla-

tion between these theoretically equivalent measures is hard to verify empirically. Roeger

(1995) argues that this lack of correlation can be explained by the presence of a positive

markup of prices over marginal costs. In fact, with imperfect competition, the difference

in the growth rate of output and a weighted average of the factor inputs cannot be entirely

attributed to technical change. This is because, if price exceeds marginal cost, the input

shares per unit of output do not sum up to one and are lower, instead, because of the

presence of a positive markup.

Formally, consider an industry i characterized by a linearly homogeneous production func-

tion. The value added for this industry at time t is given by Yit = ΘitF (Lit,Kit) where

Lit is labor, Kit is capital and Θit is an industry- and period-specific shock in production.
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Note that the productivity term Θit can be thought of as including an unanticipated and

random element as well as an element that can be foreseen by all the firms in the industry.

Carrying on the insight of Hall (1988), the decomposition of the Solow residual (SR) into

a pure technology component and a markup component can be formulated as:

SRit = Ŷit − αitL̂it − (1− αit)K̂it = βit

(
Ŷit − K̂it

)
+ (1− βit)Θ̂it (3.22)

where the hat represents growth rates, PLit and P Yit are price of labor (i.e. wage) and

price of output, respectively, and αit =
PL
itLit

PY
it Yit

is the labor expenditure share in total value

added expressed in growth rates. In this context, market power can be recovered from the

Lerner index βit =
PY
it −cit
PY
it

= 1 − 1
µit

, with cit denoting the marginal cost, and µit =
PY
it
cit

the price-cost markup. While value added, input factor usage, and input shares can be

easily observed in the data, the Lerner index and the productivity shock cannot. Hence,

the estimation of βit in (3.22) is problematic because (Ŷit − K̂it) and Θ̂it are positively

correlated since optimal input decisions (in this case concerning capital) are made taking

into account the partially known productivity shock. A possible solution to this problem

would require identifying appropriate instruments that are correlated with output, but are

neither a consequence nor a cause of technological innovation yet, as well documented in

the literature, finding such instruments is a difficult task.

To deal with this issue, Roeger derives the dual price-based Solow residual (SPR):

SPRit = αitP̂
L
it + (1− αit)R̂it − P̂ Yit = −βit

(
P̂ Yit − R̂it

)
+ (1− βit)Θ̂it (3.23)

where Rit represents the rental rate of capital. Subtracting (3.22) from (3.23), the net

Solow residual is given by:

SRit − SPRit =
(
Ŷit + P̂ Yit

)
− αit

(
L̂it + P̂Lit

)
− (1− αit)

(
K̂it + R̂it

)
= βit

[(
Ŷit + P̂ Yit

)
−
(
K̂it + R̂it

)]
(3.24)

(3.24) can be further rewritten to obtain a direct measure of the price-cost markup, i.e.(
Ŷit + P̂ Yit

)
−
(
K̂it + R̂it

)
= µit

[
αit

((
L̂it + P̂Lit

)
−
(
K̂it + R̂it

))]
(3.25)

Note that (3.25) simply states that the markup captures the difference between the net

change in nominal value added and the net change in nominal labor payments weighted
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by the labor share in value added, where net means that the change in nominal capital

has been netted out from both variables. Also note that the term (1− βit)Θ̂it, causing the

endogeneity issue in (3.22) and, potentially, in (3.23), does not appear in (3.25) so that this

equation can be consistently estimated without using instrumental variables. Moreover,

(3.25) provides a way of estimating markups indirectly controlling for (i.e. netting out)

productivity.

From (3.25) it is also clear that markup estimates at the industry-level can be easily

obtained using only aggregated data on the nominal value added (calculated as the nominal

value of sales minus the nominal value of materials), the total labor remuneration in nominal

terms, and the nominal value of capital (calculated as the product between the real capital

stock and the nominal interest rate).
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4 Trade Exposure and Price-Cost Margins

4.1 The Mexican case

From the early 1950s until the early 1980s Mexico2, like many other developing countries,

adopted a growth strategy based on import substitution. Relying on protection measures

against world competition and government intervention in the domestic economy, this

strategy encouraged investment in industry, suppressed agricultural prices and expanded

government enterprises. Between 1960 and 1981 Mexico experienced an average increase of

real GDP of 7 percent per year; even accounting for the high rate of population growth in

Mexico over the that period, this translated into an average increase of GDP per capita of

4 percent per year. During the 1970-1982 period, however, the import substitution policy

began to be less effective as policies of deficit spending and monetary expansion financed by

public sector borrowing from international banks were implemented. As a result, Mexico

experienced rising inflation, which together with a fixed nominal exchange rate, led to

substantial real exchange rate appreciation and growing current account deficit. Despite

the substantial economic imbalances, the Mexican economy continued to expand on an

average growth rate of real GDP of 6.2 percent over 1970-1982.

In 1982 the import substitution policy, and the Mexican economy with it, fell apart.

Faced with a massive public debt owned by foreign banks, sharply rising international

interest rates, and falling oil prices due to the worldwide recession, Mexico could not

meet its debt obligations. The peso collapsed, the government nationalized banks and

implemented strict exchange rate controls and the economy entered a deep recession.

In late 1982, under newly elected President Miguel de la Madrid Hurtado, Mexico embarked

on its first steps on the long road to recovery. During the 1983-85 period, with the financial

support of the International Monetary Fund, the new administration implemented a series

of policies designed to cut the public sector deficit and turn the large trade deficit into a

surplus. These policies included reduction in government expenditures, increases in taxes

and in the prices of public services, elimination of many subsidies and closure of some

public enterprises, enforcement of license requirements for all imports and the abolition of

the exchange controls. Although this program was successful in creating a trade surplus

and in partially lowering inflation, it was not enough to prevent another crises. In late 1985

fiscal discipline began to waver, IMF funding ended, an earthquake in Mexico City caused

2The following data on the Mexican economy as well as the main features of the trade reform are taken
from Kehoe (1995).
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disruption and imposed significant costs, and the oil prices started on a steep decline that

continued until 1987.

The 1985-87 period was characterized by falling output and accelerating inflation. It

was during this period, however, that Mexico began some of the policy reforms that were

crucial in bringing deficit and inflation rate to acceptable levels and restoring economic

prosperity during the 1987-93 period. Major initiative included privatization of state-

owned companies, deregulation of financial markets, liberalization of foreign investment

regulations and a dramatic re-orientation of trade policy.

The trade policy reforms were perhaps the most striking. In 1985 the process of aper-

tura, openness to foreign trade and investment, began and between 1982 and 1994 Mexico

went from being a relatively closed economy, even for developing countries’ standards, to

be one of the most open in the world. In 1982 tariffs were as high as 100 percent and there

was substantial dispersion in tariff rates. Licenses were required for importing any good

and, as a general rule, foreigners were restricted to no more than 49 percent ownership of

Mexican enterprises. In 1982 import licenses, not tariffs, were Mexico’s most significant

trade barriers. Starting in late 1983 quantitative restrictions were replaced with tariffs.

The portion of tariff items subject to license requirements fell from 100 percent in 1983 to

65 percent in 1984 and reached 10 percent in 1985. By 1992 it was just 2 percent. Even

so, the portion of the value of imports subject to license requirements fell more slowly:

from 100 percent in 1983 to 83 percent in 1984, to 35 percent in 1985, to 11 percent in

1992. As import licenses were replaced by tariffs as the major tool of trade policy, average

tariffs initially rose and then fell. The average tariff went from 23.2 percent in 1983 to 25.4

percent in 1985, to 13.1 in 1992. The trade-weighted average tariff went from 8.0 percent

in 1983 to 13.3 percent in 1985, to 11.1 percent in 1992.

Equally effective with the change in average tariff rates was the simplification of the tar-

iff schedule. These measures were major steps in making the Mexican trade policy less

protective and more transparent. They were accompanied by a number of other support-

ing policies: in 1986 Mexico acceded the GATT adopting the Harmonized Commodity

Description and Coding System, the Foreign Trade Law and the GATT Anti-Dumping

Code. In short, in about five years Mexico dramatically liberalized its trade regime. The

liberalization process was almost complete by the end of 1987, although the impact on

the flow of imports was softened by real devaluations. The reforms helped to promote

exports. In terms of both import penetration and export rates, the manufacturing sector

was substantially open as a consequence.
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4.2 Relating markups and measures of trade liberalization

Prior to the consistent liberalization started in 1983, trade accounted for a small share

of manufacturing production in most Mexican industries. Both the ratio of imports over

domestic consumption and the ratio of exports over domestic production were below 10

percent. Nonetheless, as a consequence of the rapid and dramatic process of foreign trade

and investment liberalization, in merely a decade Mexico went from being a relatively closed

economy, even for developing countries’ standards, to be one of the most open in world.

In order to investigate whether this outward-looking reform generated import discipline I

relay on two simple models that allow for quantifying the impact of trade liberalization on

the price-cost margins. The first model is a variant of Domowitz, Hubbard and Peterson

(1986) and it is suitable for a industry-level analysis on the markups. Consider the relation:

µit = f (Hit, TRADEit, Hit ∗ TRADEit,KQit, Ii, Tt) (4.1)

where the explanatory variables include a measure of industry structure, the Herfindahl in-

dex Hit, a measure of trade liberalization, the industry-level capital-output ratio KQit, as

well as industry Ii and time Tt controls. Regarding the measure of trade exposure I alterna-

tively use the share of total industrial output falling into commodity categories subject to

import licenses (QUOTAit), and the production-weighted official tariff rate (TARIFFit).

When the industry dummies are not included, most of the variation occurs across indus-

tries and the Herfindahl index and the capital-output ratio should identify variations in

technology and the degree of competition among domestic producers. If a pro-competitive

effect of trade exposure exists, it should manifest as a negative correlation between mea-

sures of trade liberalization and markups. Moreover, if highly-concentrated industries do

not operate under perfect competition, they should be relatively more sensitive to foreign

competition, therefore the interaction term between the Herfindahl index and the trade

indicator should reflect the same negative relation between trade openness and price-cost

margins.

With panel data it is possible to further control for persistent differences across industries

in technology and market structure by including industry dummy variables. In this case,

the estimated coefficient reflect only temporal variation in the data and, since measures of

trade policy change through time, price-cost margins regressions including industry dum-

mies are better suited to capture the disciplining effect of trade liberalization.

The second model, proposed by Schmalensee (1985), aims to explain the extent of com-

45



petition within a given industry by studying firm-level margins. The rationale behind this

second exercise is to detect whether cross-firm variations are due to industry-wide effects

or to firm-specific market shares. In general, more efficient firms should be larger and have

higher profits, therefore a positive relation between market shares and price-cost margins

is usually expected and it is not necessarily an indication of market power, as emphasized

by Demsetz (1973) in his famous critique. However, if the degree of market power varies

across industries, industry dummies should capture this source of difference in firm-level

profitability. If industry dummies are not significantly different across industries, the ev-

idence suggests absence of heterogeneity in market power. For the purpose of verifying

the effect of trade liberalization on profitability at the firm level consider the following

specification:

µjit = f
(
Sjit, S

2
jit, TRADEit, Sjit ∗ TRADEit,KQjit,KQ2

jit, Ii, Tt
)

(4.2)

where the price-cost margin µjit of firm j in industry i in year t depends on its share of

output in total domestic manufacturing production, Sjit and S2
jit, on the capital-output

ratio KQjit, on an industry-specific measure of trade exposure, TRADEit, as well as

industry and year dummy variables.

4.3 Relating markups and export status

The two previous models relate markups with trade exposure using trade indicators that

mainly capture the extent of import liberalization. In fact, both the quota coverage and the

average tariff rate measure protective restrictions on imports. A number of recent models of

international trade, however, emphasize the implications of trade openness, productivity

and profitability for exporters. More specifically, these models generate the result that

more productive firms are more profitable because they can charge higher markups, the

higher profitability allows those firms to pay an export entry cost and become exporters,

thus exporters have usually higher markups.

In the literature two main reasons for this positive relation between markups and firm’s

export status have been identified. Bernard, Eaton, Jensen, and Kortum (2003), as well

as Melitz and Ottaviano (2008) attribute the source of the markup premium for exporters

to differences in productivity. Both contributions essentially predict that exporters will

charge higher markups because they are more productive than their domestic rivals and

this productivity wedge allows them to be more profitable and more competitive. On the
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other hand, Kugler and Verhoogen (2011) and Hallak and Sivadasan (2009) explore the

role of quality differences between exporters and non exporters assuming that if exporters

produce higher quality goods while using higher quality inputs, they can charge higher

markups, all things equal.

Given that with the structural approach I can estimate firm-level markups, I can easily

relate a firm’s markup to its export status in a regression framework as follows:

ln(µjt) = ψ0 + ψ1Ejt + zjtρ+ εjt (4.3)

where µjt is the markup for firm j at time t and Ejt is a dummy variable that takes the

value of one when firm j is an exporter. Thus, the coefficient associated with this dummy,

ψ1, measures the percentage markup premium for exporters. In addition, zjt is a set of

variables including capital and labor use that control for differences in size and factor

intensity, as well as year- and industry-specific dummy variables that control for aggregate

trends in markups. The vector ρ collects the coefficients associated with the whole set of

controls.

After obtaining an estimate for ψ1 it is possible to recover the level markup difference,

denoted as µE , by calculating the percentage difference with respect to the constant term

ψ0, which captures the markup average for domestic firms. Specifically, µE = ψ1 exp(ψ0).

A positive and significant µE would imply that there is in fact a markup premium for

exporters with respect to the domestic producers.
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5 Data

My entire analysis is conducted using plant-level panel data collected through the Mexico’s

Annual Industrial Survey INEGI. These data were made available by Mexico’s Secretary

of Commerce and Industrial Development SECOFI, (now Secretariat of Economy) and

includes a sample of active Mexican manufacturing plants during the period 1984-1990.

For a typical industry, the sample is representative of about 80 percent of the total output

in that industry therefore, even if the smallest plants were excluded, the sample can be

considered fairly representative. Note that, because of the way the data are reported, it is

not possible to identify which plants belong to the same firm. Therefore, even if there are

certainly multi-plant firms in the sample, I formally treat a plant as a firm and do not try

to capture the extent to which multi-plant firms may have a different strategic production

behavior due to their multi-plant nature. For this reason the words ”firm” and ”plant” are

used interchangeably as, in this dataset, they are essentially the same. Furthermore, as

mentioned before, when a firm exited the sample, it was replaced with a firm with similar

production characteristics and the new firm was assigned the same identifier as the exiting

one. Thus the panel can be considered essentially closed as it is not possible to keep track of

entry and exit patterns. The panel is however unbalanced since a (marginally) decreasing

number of firms is included in the sample over the years.

For each plant in each year it is possible to observe data on value of production, revenue,

input expenditure, labor remunerations,value of fixed capital, investment, inventories, and

input costs. Each plant can be traced and uniquely identified over time using a combina-

tion of industry (RAMA), class (CLASE) and plant (FOLIO) identity codes. The dataset

also contains price indices at the industry level for output and intermediate inputs, and

sector-wide deflators for machinery and equipments, buildings and land. Moreover, the

dataset contains detailed information about imports, exports, and commercial policy fea-

tures like coverage of import license and tariff rates at the industry level. This information

is particularly useful to describe the Mexican trade liberalization process and to verify its

effects on the price-cost margins.

5.1 Data preparation: relevant variables and sample selection criteria

The original sample consisted of 22,526 observations on 3,218 plants during the period

1984-1990. All the variables used in the analysis are reported in Table 1, the monetary

variables were converted to millions of 1980 Mexican pesos using specific deflators.
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Table 1: Variables from the original dataset used in the analysis

Variable Description

Labor force
TOTREMUN1 total labor remunerations
TOHHOM1 total hours worked
TOPEOC total employment

Inputs costs
TOTMASUM5 total material cost
GTRENALQ1 rent and leasing costs
VAENELCN6 value of electricity consumed
GASTMAQU1 cost of subcontractors

Value of output
VALPROEL2 value of output

Revenue
INSERMAQ1 income from subcontracting

Fixed capital
V684 machinery and equipment valued at replacement cost
V924 machinery and equipment produced for own use
V693 construction and installation valued at replacement cost
V933 construction and install assets produced for own use
V701 land valued at replacement cost
V717 transportation equipment valued at replacement cost
V947 transportation equipment assets produced for own use
V721 other assets valued at replacement cost
V954 other asset produced for own use

Trade indicators
TAI630 average tariff on input (June 30)
TAI1230 average tariff on input (Dec. 30)
TAQ630 average tariff on output (June 30)
TAQ1230 average tariff on output (Dec. 30)
LCI630 license coverage on input (June 30)
LCI1230 license coverage on input (Dec. 30)
LCQ630 license coverage on output (June 30)
LCQ1230 license coverage on output (Dec. 30)

Price indices
1PM wholesale price index
2PPP producer price index
3PKE construction price index
4PK machinery price index
5PMP1 raw materials price index
6PEMP electricity price index
7PKT transportation price index
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In addition, I use some of the original variables present in the dataset to construct

new variables useful for the analysis. These variables, their description and the calculation

details are reported in Table 2.

First, the expenditure in intermediates was calculated without taking into account in-

ventories. This choice was dictated by the fact that in 1985 the variables characterizing

inventories presented many missing observation thus, following one of the sample selection

criteria (described in detail below) of withdrawing incomplete series, to consider inventories

would have caused the elimination of half of the plants from the analysis.

Second, total capital stock for each plant was calculated as the sum of replacement cost of

capital and the capitalized value of the rents with a 10 percent discount rate.

Third, the variables involved in the calculation of the value added and the value added

itself were corrected in order to account for the measurement error in the intermediate in-

puts expenditure for the maquiladoras3. Specifically, the value added was corrected adding

the income from subcontracting and subtracting the cost of subcontractors. The gross

value of output, which suffers from the same bias, was corrected under the assumption

that the ratio between value added and output and between primary materials and to-

tal inputs are constant through time and among plants running the following regression4:

CORGVO=GVO+(b((INSERMAQ/PM)-(GASTMAQU/PM))). The value of the b5 pa-

rameter used in the correction was estimated at a two-digit national accounts classification

level (RAMA) using only the plants that did not conduct maquila activities. Finally, the

corrected value of expenditure in intermediates was simply calculated by subtracting the

corrected value added from the corrected value of gross output.

Around 20 percent of the original observations were eliminated discarding negative,

zero, and missing values of the following variables: total employment, total hours worked,

capital stock, gross value of output, corrected gross value of output, value added, corrected

value added, intermediates, corrected intermediates, labor remunerations. This process

ended up with the elimination of 4,234 observations. Among the 18,292 observations left,

other 4,924 were eliminated dropping the incomplete series, i.e. plants that were discarded

3The maquiladora is a firm-concept very diffused in Mexico.Maquiladoras are manufacturing firms that
are allowed to import materials and equipment on a duty-free and tariff-free basis for assembling of manu-
facturing and then sell the assembled or manufactures products to the domestic firm which commissioned
the maquila service or re-export the products outside the Mexican border. The maquiladoras generate mea-
surement error because the Mexican accounting system attributes to the firm that order the subcontracting
service the expenditure in intermediates actually used by the subcontractor.

4See Table 2 for a detailed description of the variables involved in this regression.
5The average value of b is 1.47 with standard deviation 0.12.

50



Table 2: Variables constructed

Variable Description Calculation

GVO Gross value of output
GVO=(VALPROEL/PPP)+(V92/PKM)

+(V93/PKE)+(V94/PKT)+(V95/PKM)
INT Intermediates INT=(TOTMASUM/PMP1)+(VAENELCN/PEMP)
VA Value added VA=GVO-INT

CORVA Corrected value added
CORVA=VA+(INSERMAQ/PM)

-(GASTMAQU/PM)

CORGVO Corrected gross value of output
CORGVO=GVO+(b*((INSERMAQ/PM)

-(GASTMAQU/PM)))
CORINT Corrected intermediates CORINT=CORGVO-CORVA

TRCK Total replacement cost of capital
TRCK=(V68/PKM)+(V69/PKE)+(V70/PM)

+(V71/PKT)+(V72/PM)
KSTOCK Capital stock KSTOCK=TRCK+((GTRENALQ/PM)/0.10)
INVEST Investment INVEST=KSTOCKt − 0.9∗KSTOCKt−1

TLPM Deflated total labor remunerations TLPM=TOTREMUN/PM
TLPMPH Labor remunerations per hour TLPMPH=TLPM/TOHHOM

for at least one year because of one or more of the above reasons were completely eliminated

from the sample. The final sample used in the analysis contained 13,368 observations on

2,088 plants. Moreover, in order to carry on the structural production function estimation

using the investment as a proxy for productivity, 2,092 observations were further dropped in

order to create the investment series. Finally, two sectors, Tobacco and Nonferrous metals,

were dropped because the extremely low number of plants left after the sample selection

was not adequate to perform a meaningful empirical analysis in those two industries.

5.2 Sample characteristics

Table 3 reports in detail the industrial classification codes aggregated into each sector, the

average number of plants in each sector as well as some other characteristics that describe

the relative importance of each sector in the total manufacturing output and the openness

to trade. As shown in Table 3 there is substantial heterogeneity in all these characteristics

among the Mexican manufacturing industries.

Table 4 summarizes the data by presenting the number of plants and various indicators

of plant size pooling all the manufacturing plants during the period 1985-1990. Except for

1986, average plant growth is positive whether measured by gross output, value added, or

total employment and it is particularly high in the last 2 years included in the sample.

Average capital stock per plant decreases from 1985 to 1986 probably as a consequence

of the physical destruction caused by the earthquake of 1985 and the low level of net
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Table 3: Industry-specific indicators

# of Share of Share of Share of % of plants
Rama Sector Industry plants output imports exports exporting
11-19 1 Food 226 11.66 7.24 3.09 0.20
20-22 2 Beverages 108 8.42 2.59 2.64 0.22

23 3 Tobacco 6 1.35 2.58 0.22 0.10
24-26 4 Textiles 103 2.25 10.00 8.17 0.24

27 5 Clothing and Apparel 81 0.82 19.22 2.29 0.10
28 6 Leather and Footwear 19 0.18 1.62 58.00 0.38

29-30 7 Wood and Furniture 61 0.64 3.42 5.25 0.13
31-32 8 Pulp and Paper 117 4.80 15.22 1.82 0.13
33-40 9 Chemicals 277 15.72 12.54 11.27 0.42
41-42 10 Plastic and Rubber 159 3.21 14.54 4.51 0.21

43 11 Glass 22 3.07 6.90 15.73 0.62
44 12 Cement 27 2.71 2.05 9.06 0.39
45 13 Nonmetal Minerals 95 1.22 9.68 3.01 0.13
46 14 Iron and Steel 73 10.58 3.10 4.88 0.24
47 15 Nonferrous Metals 6 3.68 2.77 48.68 0.51

48-50 16 Metal Products 106 2.87 14.34 8.80 0.32
51 17 Nonelectrical Machinery 116 1.85 28.80 26.14 0.29

52 -55 18 Electrical Machinery 109 5.49 20.52 8.60 0.41
56-58 19 Transport Equipment 116 19.06 19.54 39.94 0.44

59 20 Other Manufacturing 46 0.54 16.92 4.14 0.20

Note: The share of output is reported as average over the sample period. The shares of imports and exports
are calculated as shares of total sectoral imports and exports, respectively, over sectoral output and are re-
ported as averages over the sample period.

investment during the recession of 1986. Its upward trend after 1987 is consistent with

the recovery of the economy and the exit from the sample of small firms, which occurs

mainly in 1989-1990. Capital productivity is characterized by ups and downs during the

entire period and this may reflect underutilization of capacity and delays in replacing old

equipment. Finally, investment follows also a very irregular pattern with sharp drops in

1986 and 1988 which are likely picking up, again, the adverse effects of the earthquake and

the recession. Additional variables that are used in the regression models and further help

to characterize the Mexican manufacturing environment are reported in Table 6 at the end

of the section.
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Table 4: Production characteristics

Variable 1985 1986 1987 1988 1989 1990
Numbers of Plants 1,949 1,972 1,953 1,919 1,873 1,614
Gross Value of Outputa 465.01 439.07 453.21 473.80 554.19 619.88
Value Addedb 415.56 243.88 247.99 259.75 304.36 361.79
∆ Gross Value of Outputc 7.81 6.66 4.76 21.27 15.09
∆ Value Addedd -2.20 53.45 98.89 61.86 42.65
Capital Stocke 3.14 2.92 2.99 2.94 3.05 3.22
Capital Productivityf 4.59 4.70 4.74 4.35 4.56 4.56
Investmentg 24.94 13.38 37.03 19.17 36.64 36.53
Total Employment 369.29 348.28 343.33 350.20 802.02 409.50
∆ Total Employment h 7.64 1.62 2.40 17.82 44.55

Note: aIn millions of 1980 pesos; bIn millions of 1980 pesos; cPercentage; dPercentage; eIn millions
of 1980 pesos; fAverage plant-level gross value of output/capital stock; gIn millions of 1980 pesos;
hPercentage.

5.3 Trade statistics

The trade data on imports and exports, used to calculate the statistics at the industry level

reported in the last three columns of Table 3, came from the Commodity Trade database

of the United Nations Statistical Office, which provides information at the four-digit level

ISIC classification and categorized products by end of use. These data were merged with

the Mexico’s Annual Industrial Survey, which on the other hand categorized products by

production technology, trying to achieve a reasonable match relying on detailed product

codes available in the industrial survey. Also since the trade data are reported in dollars,

they were first converted into 1980 dollars and then into pesos using the 1980 exchange

rate in order to render the figures comparable removing the exchange rate fluctuations.

In addition, the data on commercial policies were provided by the SECOFI and were

already harmonized with the classification scheme of the industrial census. These data,

summarized by industry and time sub-periods in Table 5, clearly demonstrate that most

of the changes in commercial policy took place between 1985 and 1988.
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Table 5: Average annual change in trade protection

∆ Import coverage ∆ Average tariff rate
1985-1988 1988-1990 1985-1988 1988-1990

Food -24.34 -11.46 -22.97 -5.97
Beverages -33.09 -29.63 -34.73 -7.33
Tobacco 3.17 -0.17 -26.57 -8.46
Textiles -49.56 -25.70 -24.89 -12.37
Clothing and Apparel -41.60 -47.83 -25.16 -11.93
Leather and Footwear -56.32 -40.18 -25.44 -11.01
Wood and Furniture -71.98 -31.37 -25.50 -12.99
Pulp and Paper -53.11 -45.68 -33.80 -10.98
Chemicals -53.08 -23.34 -21.31 -7.23
Plastic and Rubber -70.13 -30.21 -21.95 -12.12
Glass -48.72 -4.71 -34.00 -11.14
Cement -25.36 -0.81 -20.27 -6.93
Nonmetal Minerals -50.98 -8.57 -24.12 -10.22
Iron and Steel -42.95 -4.92 -18.71 0.15
Nonferrous Metals -51.64 -6.68 -23.51 -8.04
Metal Products -66.38 -19.88 -27.73 -9.74
Nonelectrical Machinery -44.07 -14.83 -18.70 -3.20
Electrical Machinery -72.64 -40.66 -22.54 -10.03
Transport Equipment -44.31 -36.09 -24.39 -7.16
Other Manufacturing -47.78 -17.44 -23.73 -9.60

Note: The change is expressed in percentage.
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6 Production Function Estimation Results

In this section I exploit the structural framework described in Section 3.1 to estimate pro-

duction function parameters controlling for endogenous productivity for eighteen Mexican

manufacturing sectors. I estimate several models under different production technology

specifications (Cobb-Douglas and translog) with both the Olley and Pakes and Levinson

and Petrin approaches. The estimation results suggest that the Cobb-Douglas specification

with the investment function used as a proxy for productivity (Olley and Pakes method)

is the most adequate to fit the data, therefore I provide all the main results on production

function parameters and productivity adopting this specification. At the end of the section

I report robustness check results obtained with alternative models.

6.1 Production function parameters

I begin by presenting the production function estimates for the whole sample comparing

the structural estimation results with the ones obtained using more standard OLS and fixed

effects estimation techniques. I then test whether there is statistically significant evidence

that the production function coefficients change during the period considered.

6.1.1 Comparing different estimators

The last two columns of Table 7 report the results obtained estimating a Cobb-Douglas

production function using the investment as a proxy for productivity (Olley and Pakes

approach). Specifically, in the first stage the Cobb-Douglas version of equation (3.7), i.e.

yjt = βlljt + βkkjt + h−1
t (kjt, ijt) + ηjt

= φt(ljt, kjt, ijt) + ηjt (6.1)

is estimated with OLS. The results of the first stage estimation, i.e. φ̂jt and η̂jt, are carried

through the second stage where the residual ξjt of the productivity process from equation

(3.11) is again obtained by OLS. Finally, equation (3.13) is estimated by GMM exploiting

the moment condition on capital in (3.14). Note that, since the coefficient on labor βl is

identified and estimated in the first stage, I rely on one moment condition to identify the

only remaining parameter, βk, in the second stage. Thus, the system is just identified and

the identity matrix is the optimal weighting matrix used in the GMM objective function.
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In almost all sectors, with the exception of Food (1) and Glass (11), the coefficient associ-

ated with labor is significant and ranges from 0.15 in Chemicals (9) to 0.96 in Leather and

Footwear (6). The coefficient on capital, on the other hand, is significant for only twelve

sectors and ranges from 0.36 in Plastic and Rubber (10) to 0.74 in Nonelectrical machinery

(17). As expected, there are significant differences in the production function parameters,

thus in technology, across sectors. In particular, some sectors like Clothing and Apparel

(5), and Plastic and Rubber (10) are more labor intensive, while other sectors like Pulp and

Paper (8), Chemicals (9), and Transportation equipment (19) are more capital intensive.

Table 7: Estimates of production function coefficient
under different estimation methodologies

OLS FE Structural
Industry βl βk βl βk βl βk

1 0.7407∗∗∗ 0.2243∗∗∗ 0.5601∗∗∗ 0.3161∗∗∗ 0.0537 0.5749∗∗

2 0.5873∗∗∗ 0.3654∗∗∗ 0.2402∗∗∗ 0.2492∗∗∗ 0.2751∗∗ 0.6385∗∗

4 0.7115∗∗∗ 0.1243∗∗∗ 0.4717∗∗∗ 0.0845 0.4914∗∗ 0.0833
5 0.7949∗∗∗ 0.2067∗∗∗ 0.6128∗∗∗ 0.0364 0.5967∗∗ 0.2334
6 0.8408∗∗∗ 0.2353∗∗∗ 0.5624∗∗∗ 0.2017∗∗ 0.9606∗∗ 0.0086
7 0.7293∗∗∗ 0.2424∗∗∗ 0.5486∗∗∗ 0.3465∗∗∗ 0.4192∗∗ 0.0615
8 0.6923∗∗∗ 0.3273∗∗∗ 0.2629∗∗∗ 0.6271∗∗∗ 0.2320∗∗ 0.5934∗∗

9 0.6454∗∗∗ 0.3251∗∗∗ 0.1343∗∗∗ 0.1500∗∗∗ 0.1545∗∗ 0.6202∗∗

10 0.7943∗∗∗ 0.2525∗∗∗ 0.5239∗∗∗ 0.1128∗∗ 0.5108∗∗ 0.3617∗∗

11 0.7291∗∗∗ 0.1906∗∗∗ 0.9015∗∗∗ 0.3534∗∗∗ 0.0475 0.6243∗∗

12 0.8219∗∗∗ 0.1667∗∗∗ 0.4523∗∗∗ -0.0043 0.4852∗∗ 0.8142
13 0.8143∗∗∗ 0.1804∗∗∗ 0.5834∗∗∗ 0.2179∗∗∗ 0.3992∗∗ 0.3970∗∗

14 0.8039∗∗∗ 0.2285∗∗∗ 0.5298∗∗∗ 0.2009∗∗∗ 0.2622∗∗ 0.4180∗∗

16 0.7238∗∗∗ 0.3396∗∗∗ 0.4642∗∗∗ 0.3298∗∗∗ 0.3432∗∗ 0.5092∗∗

17 0.7454∗∗∗ 0.2758∗∗∗ 0.6412∗∗∗ 0.2909∗∗∗ 0.4699∗∗ 0.7388∗∗

18 0.9131∗∗∗ 0.1723∗∗∗ 0.7183∗∗∗ 0.0440 0.2678∗∗ 0.6330∗∗

19 0.6379∗∗∗ 0.4406∗∗∗ 0.3661∗∗∗ 0.3624∗∗∗ 0.3099∗∗ 0.7342∗∗

20 0.9414∗∗∗ 0.0883∗∗∗ 0.4884∗∗∗ 0.0369 0.3188∗∗ 0.1178

Note: The stars indicate significance levels (**p < 0.05, ***p < 0.01). For the structural estima-
tion the standard errors are obtained by block-bootstrap.

The comparison between the results from the structural estimations and those obtained

with a simple OLS regression yields a well established empirical evidence. First, the coef-

ficients on labor and capital are highly statistically significant across all sectors. Second,

focusing only on the coefficients that are significant in the structural estimation, the OLS

coefficient on labor is always bigger while the coefficient on capital is always smaller than

its structural counterpart. This pattern is well documented in the literature and is deter-
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mined by the correlation structure between the transmitted productivity shock and the

production inputs. More precisely, the variable input labor is supposed to be positively

correlated with the unobserved productivity, thus the OLS coefficient on labor is likely to

be biased upward. On the other hand, if current capital is not correlated with the current

productivity shock, as it is decided one period ahead, or if capital is much less weakly

correlated with productivity than labor, the OLS estimate on capital is likely to be biased

downward.

Finally, looking at the estimates obtained using plant-level fixed effects (third and fourth

column of Table 7), it is clear that, at least for labor, this approach partially mitigates

the bias discussed above, i.e. the fixed effect coefficient on labor is always significant and

smaller than the OLS one. However, the estimation of the capital parameter under fixed

effects appears more problematic with some insignificant values and an unclear pattern

with respect to the magnitude of the coefficient, which is higher than its OLS counterpart

in some cases but smaller in some other cases. Nonetheless, the fixed effects estimates

still remain higher for labor and lower for capital than those obtained with the structural

approach. This is because the former is just an indirect way of controlling for unobserved

productivity, whereas the latter fully accounts for the transitory productivity shock.

With Cobb-Douglas technology, the production function coefficients represent the elas-

ticity of output with respect to the inputs and their sum can be interpreted as returns to

scale. Table 8 reports the estimated returns to scale, i.e. βl + βk. With OLS in most of

the industries the sum of the two coefficients is very close to one but the constant returns

to scale hypothesis is statistically verified only for half of the industries. The within esti-

mator (plant-level fixed effects) delivers returns to scale that are in general below one and

overall lower than in the OLS case. However, for fourteen industries constant returns to

scale are statistically verified. Finally, the returns to scale estimated with the structural

procedure are mostly in between the OLS and FE results and, again, in thirteen out of

eighteen industries the constant returns to scale hypothesis cannot be rejected.

Since the structural approach, and to some extent also the FE, should deliver more

credible estimates as they control (directly or indirectly) for productivity shocks, the em-

pirical evidence seems to support the presence of constant returns to scale in the majority

of the Mexican manufacturing industries.
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Table 8: Returns to scale
under different estimation methodologies

OLS FE Structural
Industry βl + βk βl + βk βl + βk

1 0.9650 0.8762 0.6286∗∗

2 0.9527∗∗ 0.4894∗∗ 0.9136∗∗

4 0.8358∗∗ 0.5562∗∗ 0.5747
5 1.0016 0.6492∗∗ 0.8301∗∗

6 1.0761∗∗ 0.7641∗∗ 0.9692∗∗

7 0.9717 0.8951 0.4807∗∗

8 1.0196 0.8900∗∗ 0.8254
9 0.9705∗∗ 0.2843∗∗ 0.7747
10 1.0468∗∗ 0.6367∗∗ 0.8725
11 0.9197∗∗ 1.2549 0.6718∗∗

12 0.9886 0.4566∗∗ 1.2994∗∗

13 0.9947 0.8013∗∗ 0.7962∗∗

14 1.0324 0.7307∗∗ 0.6802
16 1.0634∗∗ 0.7940∗∗ 0.8524∗∗

17 1.0212 0.9321 1.2087∗∗

18 1.0854∗∗ 0.7623∗∗ 0.9008∗∗

19 1.0785∗∗ 0.7285∗∗ 1.0441∗∗

20 1.0297 0.5253∗∗ 0.4366∗∗

Note: The stars indicate that the constant returns to
scale hypothesis H0 : βl +βk = 1 cannot be rejected at
a 5 percent significance level.

6.1.2 Testing for a structural change in the production function parameters

In order to verify whether the trade liberalization process generated factor reallocation

phenomena across the Mexican manufacturing industries by modifying the factor intensity,

I re-estimate the structural model dividing the sample into two sub-periods, the first from

1985 to 1987 and the second from 1988 to 1990. This choice is dictated by the fact that

in the first three years (1985-1987) the most dramatic reforms took place, while the last

three years (1988-1990) can be mainly considered a consolidation period. In order to carry

on the test I modify (6.1) and (3.11) in the following way:

yjt =βlljt + β̃lDtljt + βkkjt + β̃kDtkjt + β̄kkjt + ˜̄βkDtkjt + βiijt + β̃iDtijt

+ βkkk
2
jt + β̃kkDtk

2
jt + βiii

2
jt + β̃iiDti

2
jt + βkikjtijt + β̃kiDtkjtijt + ηjt (6.2)

ωjt =γ0 + γ̄0Dt + γ1ωjt−1 + γ2ω
2
jt−1 + γ3ω

3
jt−1 + ξjt (6.3)
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where Dt is a dummy variable taking the value of one from 1988 on and zero otherwise.

Note that in (6.3) only the constant, i.e. the average productivity, is allowed to possibly

change between the two sub-periods. The intuition behind (6.2) is simply that, if β̃l and

β̃k are significantly different from zero there is evidence of a structural change in the

production function parameters.

Table 9: Production function coefficients estimates
for the sample divided in two sub-periods

1985-1987 1988-1990

Industry βl βk βl + β̃l βk + β̃k
1 0.0355 0.0002 0.0898 1.9850
2 0.1994∗∗ 0.6455 0.3573∗∗ 0.5397
4 0.4175∗∗ 0.2257 0.5968∗∗ 0.1530
5 0.5314∗∗ 0.0236 0.6527 0.3806
6 0.9343∗∗ 0.0000 0.9617 0.3746
7 0.4317∗∗ 0.2614 0.4083 0.5654
8 0.2109∗∗ 0.6516 0.2500 0.5409
9 0.0815∗∗ 0.6566∗∗ 0.2214∗∗ 0.5900
10 0.4031∗∗ 0.4216 0.6390∗∗ 0.3083
11 -0.0091 0.6738∗∗ 0.0415 2.0660
12 0.4614∗∗ 0.4091 0.5405 0.9828
13 0.3372∗∗ 0.5547 0.4672∗∗ 0.1800
14 0.2578∗∗ 0.5190 0.2643 0.1855
16 0.3263∗∗ 0.4570 0.3391 0.5750
17 0.4652∗∗ 0.2690 0.4961 1.2480
18 0.2274∗∗ 0.5754∗∗ 0.3053 0.6739
19 0.3630∗∗ 0.6670 0.2577 0.8071
20 0.2593∗∗ 1.3320∗∗ 0.4975 0.0154

Note: In the first two columns, the stars indicate that zero is not
contained in the 95 percent confidence interval obtained by block-
bootstrapping the sample. In the last two columns, the stars indi-
cate that the coefficient is significantly different between the first
and the second sub-period.

Table 9 shows that, reasonably, in almost all the cases the estimated coefficients for

the two sub-periods can be considered as an upper and lower bound for the coefficients

estimated using the whole sample (reported in the last two columns of Table 7). However,

the first two columns of Table 8 demonstrate that, especially for the capital coefficient, the

division of the sample compromises the significance of the estimates. Moreover, regarding

capital, the coefficient associated with dummy variable is never significant meaning that

there is no evidence that the capital parameter changed in the second part of the sample. As
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for labor, a significant structural change occurs after 1987 for just five industries: Beverages

(2), Textiles (4), Chemicals (9), Plastic and Rubber (10), and Nonmetal minerals (13),

with the labor coefficient always increasing in the second sub-period. Nonetheless, since

only in the Chemicals industry the capital coefficient is significant in the first sub-period

and does not change between the two sub-periods, I conclude that, overall, the factor

intensity remained fairly constant during the trade liberalization process for the majority

of the industries with the exception of the Chemicals sector which became more labor-

intensive. The coefficient associated with the dummy variable in (6.3), not reported here,

is insignificant in every industry suggesting that the average productivity did not change

from the first sub-period to the second.

6.2 Productivity analysis

The structural framework illustrated in Section 3.1 is suitable to obtain a characterization

of the technology in each industry through the production function coefficients as well

as an estimate of the productivity process for each firm in each year. Specifically, with

a Cobb-Douglas technology, the productivity process can be recovered, after estimating

βl and βk, as ω̂jt = φ̂jt − β̂lljt − β̂kkjt. Furthermore, recall that the first-order Markov

productivity process is modeled as a third degree polynomial in lagged productivity of the

form: ωjt = γ0 + γ1ωjt−1 + γ2ω
2
jt−1 + γ3ω

3
jt−1 + ξjt.

The empirical evidence suggests that, since for almost all the industries the γ0, γ2,

and γ3 coefficients are statistically insignificant, the productivity process can be actually

approximated by the AR(1) process ωjt = γ1ωjt−1+ξjt. Therefore, the current productivity

depends only linearly on the value of the previous productivity. Moreover, the γ1 coefficient

is estimated to be always below one (except for the Cement industry (12)) meaning that

the productivity process is stationary. Figure 1 depicts the productivity process for four

industries chosen for illustrative purposes.

For two of those four industries, Figure 2 shows the smoothed plots for capital and

investment. Specifically, in each panel the vertical axis measures the estimated productivity

shock, while the horizontal axis running left measures investment levels and the horizontal

axis running right measures capital usage. The structural estimation procedure is based on

a crucial monotonicity assumption regarding productivity and investment, i.e. conditioning

on any observed levels of capital usage the investment level should increase in productivity.

As demonstrated in Figure 2 this monotonicity condition seems to hold.
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Figure 1: Productivity process
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The ability of obtaining a direct estimate of the productivity process allows me to

analyze the growth in productivity for each firm from year to year. In fact, knowing ωjt,

the growth in productivity can be easily calculated as ∆ωjt = ωjt−ωjt−1. Table 10 displays

the mean and the standard deviation of the productivity growth between 1986 and 1990.

The average annual growth in productivity is relatively small, below 0.1 percent, for the

majority of the industries and for six of them (Wood and Furniture (7), Pulp and Paper (8),

Chemicals (9), Cement (12), Nonmetal minerals (13), and Iron and Steel (14)) the average

growth rate is negative. The standard deviation, however, is relatively high demonstrating

that there are significant differences among the firms in each industry with respect to

productivity growth performances. The last column of Table 10 shows the percentage of

firms that have moved across the quartiles of the productivity growth distribution. The

figures are always above 60 percent demonstrating that in each industry there is a lot of

heterogeneity and reshuffling across firms. This results can be observed further in Figure

3 where the frequency and the kernel approximated distribution of productivity growth

is depicted for three industries in 1986 (left panel) and 1990 (right panel). It is easy to

see that, even if the distribution is always centered around zero, its shape considerably

changes between the first and the last year in each of the three industries. Furthermore,
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Figure 2: Productivity as a function of capital and investment
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in the Beverage sector the distribution is fairly symmetric although very leptokurtic in

both the first and last year. In the Chemicals sector the distribution is skewed to the

right in 1986 but skewed to the left in 1990 and strongly leptokurtic in both years. In

the Nonelectrical machinery sector the distribution is right skewed and leptokurtic in both

1986 and 1990 but skewness and kurtosis are lower in the last year. In conclusion in none

of the sector the distribution of productivity growth seems normal.

6.3 Robustness checks with alternative models

In this section I compare the production function coefficient estimates obtained apply-

ing the structural approach to alternative models. In particular I estimate the following

additional specifications:

I Value added with translog technology using the investment as a proxy for productivity

(Olley and Pakes method) and estimating all the production function coefficients in

the second stage relying on the moment conditions in (3.15).

II Value added with Cobb-Douglas technology using the demand for intermediate inputs

as a proxy for productivity (Levinson and Petrin method), estimating the coefficient

on labor in the first stage and the coefficient on capital in the second stage relying on

the moment condition in (3.14).

III Value added with translog technology using the Levinson and Petrin method and

estimating all the production function coefficients in the second stage relying on the

moment conditions in (3.15).
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Table 10: Annual productivity growth

% Firms
Industry Mean Std. Dev. moving

1 0.0078 0.2392 73.29
2 0.0048 0.1110 78.57
4 0.0005 0.1082 73.78
5 0.0022 0.2607 74.50
6 0.0042 0.1154 70.75
7 -0.0049 0.2390 72.12
8 -0.0027 0.1285 74.56
9 -0.0039 0.1231 76.46
10 0.0006 0.1212 75.49
11 0.0079 0.3033 85.06
12 -0.0121 0.2199 78.85
13 -0.0001 0.1292 77.17
14 -0.0084 0.1186 67.41
16 0.0004 0.0959 70.93
17 0.0045 0.1164 67.20
18 0.0065 0.2574 80.98
19 0.0002 0.1728 74.89
20 0.0221 0.2660 71.35

Note: The last column reports the percentage of firms
that during the period 1986-1990 have moved across
the quartiles of the productivity growth distribution.

IV Gross output with Cobb-Douglas technology including intermediate inputs in the pro-

duction function, using the Levinson and Petrin method, and relying on the moment

conditions of lagged labor, lagged intermediate inputs, and current capital to identify

the coefficients associated with labor, intermediate inputs, and capital, respectively,

in the second stage.

The results for the second and fourth specifications are omitted here because the esti-

mation of these models was particularly problematic. The solving algorithm could not find

a solution satisfying the optimization criteria and the resulting production function param-

eters were in many cases zero which implies that, since I imposed the restriction for the

βs to be nonnegative, this constraint was often binding. The results for the first and third

specifications are presented in Tables 11, 12, and 13. In particular, I estimate the third

specification twice, first using the entire sample and then using a subsample excluding the

maquiladoras. This is because the Mexican accounting system includes in the books of the

firm that orders a subcontracting service the value of expenditure in intermediate inputs
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Figure 3: Distribution of productivity growth
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used by the subcontractor, generating a measurement error problem with the intermediate

inputs.

The results in Tables 11, 12, and 13 demonstrate, first, that even if the translog specifi-

cation allows for a more flexible way of modeling technology, the overall significance of the

estimates is much lower because the higher order and interaction terms potentially generate

collinearity issues. Moreover, the interpretation of the coefficients and returns to scale is

complicated with translog because the sign and the magnitudes of the coefficients do not

have a straightforward meaning as they capture more elaborated and complex interactions

between inputs.
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Table 11: Estimates of production function coefficients,
translog technology, Olley and Pakes method

Industry βl βk βll βkk βlk
1 -0.5721∗∗ 0.8281∗∗ -0.2091∗∗ 0.1178 -0.0163
2 -0.1930 0.7812∗∗ -0.1736∗∗ 0.0080 0.1688
4 0.2847 0.2217∗∗ -0.0709 0.0658 -0.0519
5 -0.0629 0.4851∗∗ -0.1372 0.0439 0.0179
6 1.1807∗∗ -0.9369∗∗ 0.4271 0.2104∗∗ -0.8233∗∗

7 -0.1161 0.4346 -0.2170 -0.0726 0.1719
8 0.0109 0.4832 -0.1031 0.0496 -0.0376
9 0.0249 0.5997∗∗ -0.0522∗∗ 0.0461 -0.0056
10 0.1905 0.6011∗∗ -0.1205∗∗ 0.0214 0.0960
11 -0.7413 1.1676 -0.3956 -0.1522 0.5748
12 -0.6070 0.9394 0.0396 -0.1361 0.4806
13 0.0622 0.3478∗∗ -0.1197∗∗ 0.0199 0.0065
14 -0.2046 0.7527∗∗ -0.2260 -0.0090 0.2257
16 -0.0524 0.4558∗∗ -0.1157 0.1322 -0.1350
17 0.2323 0.6427 -0.0173 0.0281 -0.0093
18 -0.8505 1.3917∗∗ -0.5748∗∗ -0.1901 0.7524
19 0.3172∗∗ 0.7545∗∗ 0.0107 0.0715 -0.0268
20 -0.6517∗∗ 0.9863∗∗ -0.3648∗∗ -0.0030 0.2928

Note: The stars indicate significance levels (**p < 0.05), i.e. zero is not contained
in the 95 percent confidence interval obtained by block-bootstrapping.

The lack of significance is exacerbated when the intermediate inputs demand is used as a

proxy for productivity as confirmed by the results reported in Table 12 and 13. The cause

of this problem is likely to be the measurement error in intermediate inputs, originated

by the peculiar way of recording expenditure in intermediates for the maquiladoras, which

does not appear to be resolved even when these firms are excluded. In fact, a crucial

requirement for the Levinson and Petrin method to be successfully applied is the absence

of measurement error in intermediate inputs expenditure.
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Table 12: Estimates of production function coefficients,
translog technology, Levinson and Petrin method (full sample)

Industry βl βk βll βkk βlk
1 0.1802 0.2095 -0.0513 0.0472 -0.0954
2 0.0427 0.5830∗∗ -0.1206 0.0164 0.0997
4 3.4026 1.2897 0.4224 0.1580 -0.1516
5 -0.0905 0.1157 -0.1374 0.0480 0.0742
6 1.0747 -0.7804 0.3546 0.1824 -0.6245∗∗

7 -0.3855 0.1080 -0.2711 -0.0653 0.2937
8 0.4332 0.2107 0.0085 0.0867 -0.1770
9 0.2912 0.4189 -0.0070 0.0442 -0.0515
10 0.8374 0.0504 0.1267 0.1365 -0.2883
11 0.0808 0.6522 0.0868 0.0135 0.0125
12 -0.6883 1.5939∗∗ 0.4354 -0.2522 0.3858
13 -0.1825 0.0699 -0.1802 0.0058 0.1736
14 0.5714∗∗ 0.2521 -0.0752 0.0166 0.0229
16 0.0089 0.4300 -0.1181 0.1094 -0.1072
17 -0.2529 -0.7824 -0.1235 -0.0594 0.1201
18 -0.0418 0.5842 -0.2297 0.0530 0.1067
19 0.4602∗∗ 0.5693∗∗ 0.0380 0.0830∗∗ -0.0936
20 -0.7006 0.4892 -0.2989 0.0049 0.2461

Note: The stars indicate significance levels (**p < 0.05), i.e. zero is not contained
in the 95 percent confidence interval obtained by block-bootstrapping.
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Table 13: Estimates of production function coefficients,
translog technology, Levinson and Petrin method (no maquiladoras)

Industry βl βk βll βkk βlk
1 0.3688 0.0799 0.0246 0.0713 -0.2004
2 0.3015 0.4871∗∗ 0.0186 0.0313 -0.0108
4 1.9368 0.8479 0.2181 0.0842 -0.1069
5 -0.0888 0.0604 -0.1406 0.0232 0.0899
6 1.1008 -1.3294 0.3612 0.0915 -0.6068
7 -0.4666 0.0064 -0.2858 -0.0727 0.2973
8 0.3385 0.2600 -0.0135 0.0961 -0.1688
9 0.2820 0.3859 0.0008 0.0477 -0.0735
10 0.3165 0.5362 -0.0904 0.0070 0.0880
11 -0.5346 0.9487 -0.2968 -0.0829 0.3910
12 0.6469 0.6338 0.0770 -0.0684 0.0222
13 -0.2048 0.0895 -0.1775 0.0130 0.1527
14 0.1499 0.5091∗∗ -0.2016 0.0056 0.1357
16 -4.8433 1.9756 -1.5002 -0.1237 0.7065
17 -0.1554 -0.7857 -0.0907 -0.0421 0.0681
18 -0.0285 0.4356 -0.1706 0.1099 -0.0467
19 0.4329∗∗ 0.5857∗∗ -0.0032 0.0735 -0.0279
20 -0.7159 0.4555 -0.3246 -0.0238 0.3011

Note: The stars indicate significance levels (**p < 0.05), i.e. zero is not con-
tained in the 95 percent confidence interval obtained by block-bootstrapping.
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7 Price-Cost Margins Results

In this section I present the results on the industry-level markups estimated with the simple

dual approach outlined in Section 3.3. I then compare these with the plant-level markups

derived by plugging into equation (3.19) the production function parameters previously ob-

tained within the structural framework. Finally, with the results of the markup estimations

in hand, I investigate the relation between price-cost margins and trade openness.

7.1 Industry-level Markups

Table 14 reports the mean, median and standard deviation of the year- and industry-specific

markups recovered by estimating (3.25) by OLS. Note that with this procedure it is only

possible to estimate one markup for each industry in each year, therefore the variation

is along the (firm) cross-sectional dimension. The average markup ranges between 0.24

for Chemicals and 2.69 for Cement and in almost all the industries the mean and the

median are different, with the mean being usually higher than the median, implying that

the distribution of the markups is not symmetric. Moreover, the standard deviation is

high indicating that in every industry the markups vary consistently across years. In many

industries the magnitude of the markups is quite unreasonable (significantly lower than

one) and the significance of the estimates is fairly poor. Overall this simple estimation

procedure delivers very imprecise and unreliable results and it does not appear to be a

valid alternative to the structural approach.

7.2 Plant-level Markups

Table 15 summarizes the plant-level markups recovered combining the output elasticity

with respect to labor β̂l, obtained estimating (6.1), i.e. a Cobb-Douglas production function

with the investment as a proxy for productivity, and data on labor expenditure and value

added as described in (3.21). For sixteen out of eighteen industries the average markup

is significantly different than zero and above or very close to one. Once again the mean

is higher than the median implying that the markups distribution is positively skewed in

almost all the industries. This result is confirmed in Figure 4 where the distribution of

the markups for some representative industries is plotted. The same figure shows also that

the distribution of the markups is asymmetric, as expected. This is because markups are

supposed to be bigger than or equal to one as they represent the ratio between price and
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Table 14: Industry-level markup estimates

Industry Mean Med. St.D.
1 1.00 0.47 1.36
2 2.54 1.63 3.82
4 0.99 0.59 1.02
5 0.79 0.80 0.47
6 1.45 1.11 1.37
7 1.50 0.93 1.75
8 1.28 1.26 1.16
9 0.24 0.22 0.31
10 0.89 1.10 0.73
11 2.58 0.77 4.17
12 2.69 1.42 3.53
13 0.90 0.54 1.00
14 0.70 0.48 0.74
16 0.70 0.62 0.72
17 0.92 0.43 1.46
18 0.65 0.37 0.83
19 0.30 0.06 0.50
20 0.73 0.56 0.63

Note: Mean, median, and standard de-
viation of the markups are calculated for
each industry pooling all the years.

marginal cost, therefore their distribution should be truncated around one. The standard

deviation is very high indicating a substantial variation in markups across firms in each

manufacturing sector.

The comparison between the results from Table 14 and those in Table 15 clearly high-

lights that the plant-level markups obtained with the structural approach are usually higher

than the ones estimated at the industry level using the simplified approach. This is be-

cause the industry-level markups are estimated in first differences which usually leads to

a downward bias. At plant level the highest significant markup, 2.20, is estimated for the

Cement industry while the lowest significant markup, 0.82, is estimated form the Chemical

industry and this results is the same at the industry level. Nonetheless, the correlation

between the industry-level average markups and the plant-level average markups is merely

0.10.

Table 16 shows the markups estimated at the plant level using different specification for

the production functions, i.e. the alternative models I and III described before. The plant-

level markups with translog technology are confirmed to be higher than the industry-level
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Table 15: Plant-level markup estimates,
Cobb-Douglas technology

Olley&Pakes
(full sample)

Industry Mean Med. St.D.
1 0.40 0.28 0.55
2 1.61∗∗ 1.12∗∗ 2.17
4 1.04∗∗ 0.92∗∗ 0.60
5 1.68∗∗ 1.52∗∗ 0.85
6 2.19∗∗ 2.30∗∗ 0.35
7 1.21∗∗ 1.13∗∗ 0.56
8 0.96∗∗ 0.70∗∗ 4.27
9 0.82∗∗ 0.51∗∗ 3.11
10 1.13∗∗ 1.02∗∗ 0.86
11 0.29 0.26 0.21
12 2.20∗∗ 2.21∗∗ 1.12
13 1.25∗∗ 1.12∗∗ 0.65
14 1.13∗∗ 0.89∗∗ 1.04
16 0.93∗∗ 0.83∗∗ 0.53
17 0.99∗∗ 0.91∗∗ 0.50
18 0.82∗∗ 0.70∗∗ 0.59
19 1.37∗∗ 0.79∗∗ 2.78
20 1.08∗∗ 0.96∗∗ 0.57

Note: The stars indicate significance level
(**p < 0.05), i.e. zero is not contained in
the 95 percent confidence interval obtained
by block-bootstrapping.

ones in almost all the sectors under any specification. However, the significance of these

results is much lower than the significance of the plant-level markups obtained with Cobb-

Douglas technology and this is mainly due to the fact that the Cobb-Douglas specification

fits the data better and delivers more precise and reliable estimates of the production

function parameters and, therefore, of the markups as well. Furthermore, I conduct a test

to verify whether the average and median markups are statistically bigger than one. In fact,

since the markup in this context is defined as price over marginal cost, a meaningful markup

should be equal to or above one. For almost all the industries and under any specification

I cannot reject the null hypothesis, meaning that the markups are statistically bigger than

one at a 5 percent significance level. This result, though, needs to be considered cautiously

because the confidence intervals obtained by block-bootstrap used for inference are not

tight.
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Figure 4: Distribution of plant-level markup estimates
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In conclusion, the striking differences between the industry-level and plant-level markup

estimates highlight the following important point. Relaxing the constant markup assump-

tion across firms and allowing for time varying and heterogeneous (among firms) produc-

tivity shocks leads to more precise and substantially higher markups.

7.3 Markups and Trade Liberalization

In this section I rely on the models described in Section 4.2 to analyze the impact of trade

liberalization on the price-cost margins at the industry and plant level.

7.3.1 Industry-Level Analysis

To perform the industry-level analysis I use the results of the markups estimation presented

in Section 7.1 obtained with the simple dual approach and the results obtained with the

structural approach estimating a Cobb-Douglas technology and using investment as a proxy

for productivity. In fact, only these two sets of results are directly comparable since

one of the requirements to estimate (3.25) is for the production function to be linearly

homogeneous and the test on the returns to scale of the Cobb-Douglas production function
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Table 16: Plant-level markup estimates, translog technology

Olley&Pakes Levinson&Petrin Levinson&Petrin
(full sample) (full sample) (no maquiladoras)

Industry Mean Med. St.D. Mean Med. St.D. Mean Med. St.D.
1 2.98 2.07 4.04 3.89 2.99 7.12 3.51∗∗ 2.51 4.84
2 2.37∗∗ 1.63 2.79 2.61 1.87 3.03 1.62 1.22 2.72
4 1.27∗∗ 1.11∗∗ 0.80 4.89∗∗ 4.42∗∗ 3.60 3.16∗∗ 2.71∗∗ 2.50
5 2.17∗∗ 2.20∗∗ 1.20 1.76∗∗ 1.61∗∗ 1.25 2.01∗∗ 1.91∗∗ 1.22
6 2.35∗∗ 1.88∗∗ 3.15 1.84∗∗ 1.39∗∗ 2.25 1.79∗∗ 1.33∗∗ 2.50
7 2.17∗∗ 2.16∗∗ 1.22 1.83∗∗ 1.43∗∗ 2.42 1.87∗∗ 1.54∗∗ 2.50
8 4.90 1.35∗∗ 94.62 0.89 1.52 17.36 0.96 1.43 8.32
9 1.06∗∗ 0.51∗∗ 3.51 1.61 1.03 3.36 1.53 0.91 3.34
10 1.45∗∗ 1.42∗∗ 0.71 1.44 1.34 0.66 1.46 1.33 0.96
11 2.74 1.82 3.78 0.63 0.55 1.74 1.17 0.65 2.01
12 3.10 2.89 3.45 1.26 1.57 5.18 3.31 3.28 1.68
13 2.22∗∗ 2.37 1.17 1.87∗∗ 1.65∗∗ 1.60 1.90∗∗ 1.71∗∗ 1.63
14 2.12 1.60 2.72 3.49∗∗ 2.97∗∗ 3.22 3.11∗∗ 2.57∗∗ 3.68
16 1.24 1.57∗∗ 1.47 1.45 1.62 1.80 1.52 1.47 8.82
17 0.69 0.60 0.45 0.44 0.22 0.89 0.48 0.27 1.13
18 1.85 1.22 3.33 2.53 1.45 8.21 2.43 1.27 7.53
19 1.20 0.75 2.27 1.13 0.97∗∗ 1.90 1.66∗∗ 1.12∗∗ 2.15
20 2.61∗∗ 2.69 2.23 1.48∗∗ 1.22∗∗ 1.81 1.50 1.27 1.95

Note: The stars indicate significance level (**p < 0.05), i.e. zero is not contained in the 95 percent
confidence interval obtained by block-bootstrapping.

in (6.1) confirmed that there is statistically significant evidence of constant returns to scale

most of the industries. Recall that the markups obtained with the simple dual approach

are directly estimated at the industry-level. On the other hand, the price-cost margins

obtained with the structural approach are estimated at the plant level, thus in this part

of the analysis I collapse these results to the annual average markup in each sector. The

other explanatory variables included in (4.1), i.e. Herfindahl index, capital-output ratio and

measures of trade exposure, are constructed by aggregating and averaging across individual

firms in each sector in each year. Models 1 and 2, which include industry-specific dummy

variables, should explain the temporal variation within each industry while models 3 and

4, with only year dummy variables, are supposed to capture the variation between sectors.

Note also that the measures of trade exposure reflect the extent of trade liberalization, i.e. a

decrease in the quota coverage or in the tariff rate implies an increase in trade openness and

foreign competition. Therefore, a positive coefficient associated with these trade indicators

describes a negative effect of the trade reforms on the markups and is expected in the
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presence of import discipline. The regression results are reported separately for each type

of trade liberalization instrument in Tables 17-20.

Tables 17 and 18 report the regression results obtained estimating (4.1) by OLS and

using the industry-level markups recovered with the simple dual approach as a dependent

variable. It is easy to see that, using either the quota coverage or the average tariff rate

as trade indicators, very few coefficients in these regressions are significant and this result

is exacerbated in models 3 and 4 which include only year dummy variables. The lack of

significance is further confirmed by the adjusted R2 which is quite low, although all the

models are globally significant as verified by the F -statistic.

In both cases, with quota and tariff, one of the few significant coefficients is the one

associated with the capital-output ratio in models 1 and 2. The sign of this coefficient is

unexpectedly negative however, since only the temporal variation is picked up in the model

with industry dummy variables, this result may be reflect underutilization of installed

capacity during the recession, which was prevalent for most of the sample period.

As for the measures of trade exposure, the coefficient associated with the tariff rate (Table

17, model 3) is positive and highly significant indicating that the markups tend to be

lower the more the openness to trade. The coefficient on the interaction term between the

trade indicator and the capital-output ratio in model 2 is also consistently significant with

both quota and tariff. Its positive sign is again evidence of trade discipline and suggests

that industries with a higher capital-output ratio are more likely to experience a reduction

in margins as a consequence of trade liberalization. Nonetheless, because of the overall

very low explanatory power, the regression results reported in Tables 16 and 17 cannot be

viewed as strong evidence of an impact of trade on the markups. In addition, these results

confirm that the simple dual approach used to obtain the markups at the industry level is

inadequate since the markup estimates are imprecise, and in many cases insignificant, and

this compromises any further analysis conducted with those estimates.

I now turn to the regressions reported in Tables 19 and 20 whose results are also ob-

tained estimating (4.1) by OLS with the annual average markup in each sector, recovered

from the structural plant-level estimation, as dependent variable. First note that in these

regressions the level of significance is substantially higher, especially when the industry

dummy variables are included (models 1 and 2). Thus, even if aggregated at the industry

level, the markups coming from the structural estimation appear to perform much bet-

ter. However, a substantial part of the explanatory power comes from industry effects as

demonstrated by the R2 which greatly increases from models 3 and 4 to models 1 and 2.
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This outcome possibly reflects sector-specific industrial characteristics, policies, entry bar-

riers or technological differences that are not captured by the other explanatory variables.

The year effects are always negative, with both quota and tariff, in model 1 and 2 and are

also negative in models 3 and 4 for the majority of the years considered. This result may

capture the fact that during the period of analysis the Mexican economy faced difficult

challenges that negatively impacted the profitability of the firms. The industry dummy

variables, when included, are significant in many industries and their sign are consistent

across all the specifications.

When quota is used as a trade indicator, the coefficient on the capital-output ratio has the

expected positive sign in every model and in model 3 and 4 it is also highly significant,

implying that industries with a higher capital share of output have higher price-cost mar-

gins. On the other hand, when tariff is used as a measure of trade exposure, this coefficient

is still positive and significant when industry dummies are left out, but turns negative,

although insignificant, when industry effects are controlled for. The coefficient associated

with the Herfindahl index, when significant (model 3 with both quota and tariff) is positive

confirming a higher rate of profit in more concentrated industries.

The coefficients on quota coverage and tariff rate are both positive and significant in model

3 indicating that price-cost margins decrease as trade protections are removed. In model

1, however, the same coefficients are not significant, suggesting that differences in the level

of protection across sectors seem to be more relevant than variation over time. Adding

interaction terms reveals a more complex picture. The net impact of quota coverage and

tariff rate as well as their interaction with the Herfindahl index and the capital-output

ratio are not significant in explaining the temporal variation (model 2), but the interaction

between quota and Herfindahl index (Table 19, model 4) and the interaction between tariff

and capital-output ratio (Table 20, model 4) are significant. Specifically, the interaction

term for quota coverage and Herfindahl index is positive and significant implying that the

profitability of the most concentrated industries is likely to decrease when trade is liberal-

ized. Conversely, the interaction term for tariff rate and capital-output ratio in negative

and highly significant suggesting that the trade reforms have a negative impact on the

margins of the industry with the lowest capacity.

In summary, the industry-level analysis provides some evidence of import discipline,

i.e. lower protection generated lower profitability in the Mexican manufacturing indus-

tries. This pattern is clearly established across sectors but not equally clearly over time.

Moreover, the importance of using reliable estimates (in this case markups) to correctly
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evaluate economic policies is emphasized by the much better performance of the markups

estimated within the structural framework with respect to the ones estimated relying on

the simpler approach.

7.3.2 Plant-Level Analysis

To examine the intra-sectoral variation in price-cost margins I estimate (4.2) by OLS

using as the dependent variable the plant-level markups. Recall that these markups were

recovered from the structural estimation of my preferred specification, i.e. Cobb-Douglas

technology with investment as a proxy for productivity. The explanatory variables are also

calculated at the plant level with the exception of the trade indicators, quota coverage in

model 1 and average tariff rate in model 2, which are only available at the industry level.

The regression results are reported in Table 21.

First note that the plant-level models are globally significant as indicated by the F -

statistic, but explain only a small fraction of the plant-level variation in price-cost margins

as confirmed by the relatively low value of the adjusted R2 (approximately 1.13). This is

nonetheless a common outcome of regressions performed on large micro-level dataset as the

one used here. The year dummy variables are always negative but insignificant while the

industry dummy variables are significant in many cases with both positive and negative

signs.

The coefficient associated with market share is positive and highly significant suggesting

that a rise in its market share increases the price-cost margin of a plant but at a decreasing

rate since the coefficient on the squared share is, on the other hand, negative and significant.

The coefficient on capital-output ratio is positive and highly significant in both models

implying that, as expected, an increase in capacity has a positive effect on the profitability

of a plant, however this effect becomes marginal when the capacity is large as demonstrated

by the very small magnitude of the coefficient on the squared capital-output ratio.

As for the trade indicators, the coefficients on quota coverage and tariff rate are both

insignificant, implying that there is no evidence that the trade reforms affected the price-

cost margins of the Mexican manufacturing plants. This is not a particularly surprising

result since the high number of firms populating the manufacturing sectors should have

imposed some degree of internal competitive pressure prior to the trade liberalization.

I also estimate the same regressions with the plant-level markups estimated under

different specifications, i.e. translog technology with both investment and intermediate
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inputs demand as proxies for productivity, as dependent variable. The results, not reported

here, are in line with those presented in Table 21. However, the overall significance of

the models is lower presumably because, as already mentioned, the translog production

function specification delivers unreliable markup estimates.

7.4 Markups for exporters

The previous section presented the analysis conducted on markups considering measures

of imports liberalization. In this section, on the other hand, I focus on characterizing the

relation between markups and export status. Moreover, since the structural framework

allows for estimating both markups and productivity at the plant level, I further explore

the role of productivity in the profitability of the Mexican manufacturing plants.

I first estimate (4.3) by OLS using the logarithms of the plant-level markups estimated

using my preferred specification, i.e. Cobb-Douglas technology with investment as a proxy

for productivity, as the dependent variable. The explanatory variables are capital and la-

bor use, a full interaction of year and industry dummy variables, and, of course, a dummy

variable indicating export status. After obtaining an estimate for the coefficient associated

with the exporter dummy, ψ1, and the constant term ψ0, I perform a test on the signif-

icance of the nonlinear combination of the parameters ψ1 + exp(ψ0) which captures the

level markup difference for exporters. Finally, I re-estimate (4.3) adding the estimated pro-

ductivity ωjt in order to directly control for differences in productivity and verify whether

there is still evidence of a markup premium for exporter. Specifically, the second regression

is given by: ln(µjt) = ψ0 + ψ1Ejt + ψ2ωjt + zjtρ+ εjt.

In both cases, with and without the additional productivity control, I obtain that

the the level markup difference µE = ψ1 + exp(ψ0) is positive, 0.019 not controlling for

productivity and 0.016 controlling for productivity respectively, but insignificant. However,

since the number of exporting firms in the Mexican manufacturing industries is not very

high in the years considered and, most importantly, the extent of exporting is quite limited

for the majority of the exporters, I try to verify whether the markup premium exists for

intensive exporters, i.e. firms that export a high percentage of the value of their output.

To do so I calculate for each exporter the ratio of exports value over output value and

substitute the export dummy in (4.3) with another dummy, EHjt , that indicates export

intensity. Specifically, EHjt is equal to one if firm j is in the 75th or above percentile of the

export-output ratio distribution, i.e. if firm j is an intensive exporter. Table 22 shows the
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results obtained estimating by OLS the modified version of (4.3) with the export intensity

dummy, not controlling (model 1) and controlling for productivity (model 2).

First the coefficient associated with the export intensity dummy variable is always pos-

itive and significant, with and without including productivity in the regression suggesting

that exporting has a positive impact on price-cost margins. Also the coefficient associated

with productivity in model 2 is positive and highly significant, meaning that productivity

contributes to firms’ profitability. In addition, the level markup difference for intensive

exporters µEH
is positive significant in both model. More precisely, I obtain a significantly

estimated µEH
of 0.0588 in model 1 which implies that intensive exporters have a level

markup premium of approximately 6 percent. In model 2 the estimated µEH
is signif-

icant and equal to 0.0539 meaning that, even controlling for productivity, the intensive

exporter have a level markup premium of approximately 5.4 percent. Note that controlling

for productivity in this context means to control for differences in marginal costs, if ψ2

(the coefficient on productivity) picks up cost heterogeneity fully, so that the coefficient on

the intensive exporter dummy picks up the variation in average prices between intensive

exporter and the other firms (low exporters and non exporters). However, because the

productivity used in this regression was estimated as the residual of a value added pro-

duction function, it may not contain only differences in costs but also unobserved quality

differences in both inputs and output, as well as others market power effects. Nonetheless

it is important to emphasize that an intensive exporter effect is still present even once

differences in productivity are accounted for. This result is therefore consistent with the

recent international trade literature predicting a positive relation between markups and

exports status, especially when intensive exporters are considered.
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Table 17: Regression estimates at the industry level with industry-level markup as the
dependent variable and quota coverage as the trade liberalization indicator

Variable Model 1 Model 2 Model 3 Model 4
Independent
Intercept 1.394 (1.952) 2.791 (2.016) 0.267 (0.626) 0.324 (0.806)
H -11.228 (23.00) -21.935 (23.53) 4.422 (7.586) 5.710 (10.19)
QUOTA -0.460 (1.757) -3.081 (3.106) 1.385 (1.197) 1.331 (2.366)
KQ -0.531 (0.314)∗ -1.608 (0.549)∗∗∗ 0.177 (0.231) 0.016 (0.402)
H*QUOTA 8.967 (41.13) -7.001 (37.36)
KQ*QUOTA 2.847 (1.211)∗∗ 0.531 (1.062)

Year dummy
1985 2.497 (1.143)∗∗ 2.132 (1.168)∗ 1.637 (0.841)∗∗ 1.581 (0.855)∗

1986 -0.606 (0.705) -0.674 (0.691) -0.796 (0.598) -0.773 (0.607)
1987 0.225 (0.610) 0.345 (0.600) 0.009 (0.563) 0.059 (0.578)
1988 0.250 (0.572) 0.217 (0.560) 0.315 (0.547) 0.333 (0.554)
1989 0.068 (0.561) -0.044 (0.552) 0.213 (0.545) 0.219 (0.552)

Industry dummy
1 -0.171 (1.643) -0.416 (1.675)
2 2.294 (1.277)∗ 2.461 (1.277)∗

4 -0.061 (1.347) -0.251 (1.321)
5 0.171 (0.958) 0.365 (0.942)
6 0.742 (0.954) 0.872 (0.937)
7 0.868 (1.075) 1.168 (1.062)
8 0.479 (1.191) 0.555 (1.166)
9 -0.916 (1.566) -1.179 (1.540)
10 0.598 (1.024) 0.376 (1.009)
11 2.244 (0.935)∗∗ 2.707 (0.936)∗∗∗

12 2.875 (1.143)∗∗∗ 3.911 (1.202)∗∗∗

13 0.098 (1.179) 0.219 (1.155)
14 0.603 (1.064) 1.404 (1.095)
16 -0.139 (1.039) -0.164 (1.017)
17 0.464 (1.028) 0.933 (1.026)
18 -0.183 (1.037) -0.154 (1.020)
19 -0.166 (0.977) 0.098 (0.962)

N. of Observations 108 108 108 108
Root MSE 1.573 1.539 1.623 1.638
Adjusted R2 0.256 0.288 0.208 0.194
F -statistic 2.480 2.600 4.510 3.570
Prob> F 0.001 0.000 0.000 0.000

Note: The stars indicate significance levels (**p < 0.05, ***p < 0.01). Model 1 includes year and industry dummy
variables. Model 1 includes year and industry dummy variables as well as the interactions between quota and
Herfindahl index and quota and capital-output ratio. Model 3 includes only year dummy variables. Model 4
includes year dummy variables and the interactions between quota and Herfindahl index and quota and capital-
output ratio.
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Table 18: Regression estimates at the industry level with industry-level markup as the
dependent variable and average tariff rate as the trade liberalization indicator

Variable Model 1 Model 2 Model 3 Model 4
Independent
Intercept -1.516 (2.041) 1.962 (2.314) -0.884 (0.727) -0.941 (1.280)
H -3.121 (21.78) -30.882 (27.64) 1.989 (7.288) 0.193 (18.63)
TARIFF 14.372 (4.391)∗∗∗ 1.822 (7.155) 8.699 (2.863)∗∗∗ 8.908 (6.504)
KQ -0.464 (0.294) -2.850 (0.859)∗∗∗ 0.342 (0.230) 0.494 (0.623)
H*TARIFF 99.348 (106.5) 9.179 (98.80)
KQ*TARIFF 9.085 (3.128)∗∗∗ -0.665 (2.552)

Year dummy
1985 -0.329 (0.989) -0.557 (0.955) 0.682 (0.771) 0.680 (0.792)
1986 -2.857 (0.870)∗∗∗ -3.023 (0.836)∗∗∗ -1.916 (0.701)∗∗∗ -1.932 (0.715)∗∗∗

1987 -0.727 (0.613) -0.734 (0.589) -0.515 (0.573) -0.530 (0.581)
1988 0.495 (0.543) 0.470 (0.521) 0.409 (0.527) 0.401 (0.534)
1989 0.133 (0.528) -0.052 (0.510) 0.209 (0.525) 0.208 (0.531)

Industry dummy
1 1.070 (1.553) 0.437 (1.515)
2 1.809 (1.084)∗ 2.251 (1.069)∗∗

4 0.249 (1.269) 0.130 (1.247)
5 -0.596 (0.880) -0.454 (0.851)
6 0.005 (0.880) 0.164 (0.846)
7 0.615 (1.010) 0.634 (0.991)
8 1.099 (1.136) 0.988 (1.108)
9 0.373 (1.525) -0.076 (1.480)
10 0.910 (0.968) 0.732 (0.948)
11 1.915 (0.885)∗∗∗ 1.994 (0.849)∗∗

12 4.119 (1.135)∗∗∗ 6.055 (1.265)∗∗∗

13 0.436 (1.113) 0.433 (1.085)
14 1.876 (1.069)∗ 2.994 (1.118)∗∗∗

16 0.548 (0.997) 0.472 (0.974)
17 1.289 (0.999) 1.772 (0.986)∗

18 -0.011 (0.977) 0.091 (0.968)
19 0.489 (0.926) 0.773 (0.899)

N. of Observations 108 108 108 108
Root MSE 1.480 1.420 1.563 1.580
Adjusted R2 0.394 0.208 0.265 0.251
F -statistic 3.220 3.580 5.830 4.580
Prob> F 0.000 0.000 0.000 0.000

Note: The stars indicate significance levels (**p < 0.05, ***p < 0.01). Model 1 includes year and industry dummy
variables. Model 1 includes year and industry dummy variables as well as the interactions between tariff and Herfind-
ahl index and tariff and capital-output ratio. Model 3 includes only year dummy variables. Model 4 includes year
dummy variables and the interactions between tariff and Herfindahl index and tariff and capital-output ratio.
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Table 19: Regression estimates at the industry level with industry-average markup as the
dependent variable and quota coverage as the trade liberalization indicator

Variable Model 1 Model 2 Model 3 Model 4
Independent
Intercept 1.283 (0.163)∗∗∗ 1.278 (0.175)∗∗∗ 0.593 (0.180)∗∗∗ 0.700 (0.225)∗∗∗

H -2.051 (1.923) -2.044 (2.055) 7.254 (2.173)∗∗∗ 3.667 (2.868)
QUOTA -0.019 (0.147) -0.026 (0.266) 1.076 (0.346)∗∗∗ 0.443 (0.663)
KQ 0.025 (0.026) 0.031 (0.048) 0.164 (0.067)∗∗ 0.295 (0.114)∗∗

H*QUOTA 0.288 (3.459) 18.843 (10.24)∗

KQ*QUOTA -0.015 (0.106) -0.438 (0.298)

Year dummy
1985 -0.119 (0.095) -0.115 (0.100) -0.593 (0.243)∗∗ -0.534 (0.241)∗∗

1986 -0.121 (0.058)∗∗ -0.120 (0.059)∗∗ -0.231 (0.173) -0.269 (0.171)
1987 -0.056 (0.050) -0.057 (0.051) -0.113 (0.163) -0.186 (0.163)
1988 -0.036 (0.048) -0.036 (0.048) 0.022 (0.158) -0.013 (0.156)
1989 -0.057 (0.047) -0.057 (0.047) 0.011 (0.158) -0.013 (0.155)

Industry dummy
1 -0.800 (0.138)∗∗∗ -0.795 (0.144)∗∗∗

2 0.447 (0.106)∗∗∗ 0.448 (0.109)∗∗∗

4 -0.143 (0.112) -0.142 (0.114)
5 0.599 (0.080)∗∗∗ 0.598 (0.082)∗∗∗

6 1.101 (0.080)∗∗∗ 1.102 (0.081)∗∗∗

7 0.070 (0.090) 0.069 (0.092)
8 -0.183 (0.099)∗ -0.183 (0.100)∗

9 -0.381 (0.131)∗∗∗ -0.379 (0.134)∗∗∗

10 -0.012 (0.085) -0.010 (0.087)
11 -0.803 (0.078)∗∗∗ -0.805 (0.081)∗∗∗

12 1.037 (0.095)∗∗∗ 1.032 (0.103)∗∗∗

13 0.081 (0.099) 0.080 (0.100)
14 0.074 (0.089) 0.070 (0.096)
16 -0.202 (0.087)∗∗ -0.202 (0.088)∗∗∗

17 -0.155 (0.086)∗ -0.157 (0.088)∗

18 -0.312 (0.087)∗∗∗ -0.311 (0.088)∗∗∗

19 0.247 (0.081)∗∗∗ 0.246 (0.083)∗∗∗

N. of Observations 108 108 108 108
Root MSE 0.131 0.133 0.470 0.462
Adjusted R2 0.933 0.931 0.147 0.175
F -statistic 60.70 54.85 3.300 3.280
Prob> F 0.000 0.000 0.000 0.000

Note: The stars indicate significance levels (**p < 0.05, ***p < 0.01). Model 1 includes year and industry dummy
variables as well as the interactions between quota and Herfindahl index and quota and capital-output ratio. Model
3 includes only year dummy variables. Model 4 includes year dummy variables and the interactions between quota
and Herfindahl index and quota and capital-output ratio.
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Table 20: Regression estimates at the industry level with industry-average markup as the
dependent variable and average tariff rate as the trade liberalization indicator

Variable Model 1 Model 2 Model 3 Model 4
Independent
Intercept 1.335 (0.179)∗∗∗ 1.421 (0.217)∗∗∗ 0.448 (0.223)∗∗ -0.144 (0.360)
H -2.194 (1.928) -3.245 (2.595) 6.367 (2.238)∗∗∗ 3.801 (5.109)
TARIFF -0.259 (0.387) -0.624 (0.661) 1.615 (0.883)∗ 4.399 (1.817)∗∗

KQ 0.025 (0.026) -0.019 (0.082) 0.188 (0.071)∗∗∗ 0.914 (0.178)∗∗∗

H*TARIFF 4.860 (9.502) 9.583 (26.67)
KQ*TARIFF 0.160 (0.299) -3.202 (0.733)∗∗∗

Year dummy
1985 -0.083 (0.087) -0.087 (0.089) -0.335 (0.237) -0.376 (0.223)∗

1986 -0.086 (0.077) -0.090 (0.078) -0.275 (0.216) -0.375 (0.201)∗

1987 -0.042 (0.054) -0.043 (0.054) -0.133 (0.177) -0.200 (0.164)
1988 -0.041 (0.048) -0.041 (0.048) 0.050 (0.163) 0.015 (0.151)
1989 -0.058 (0.047) -0.062 (0.047) 0.014 (0.162) 0.013 (0.150)

Industry dummy
1 -0.828 (0.137)∗∗∗ -0.838 (0.141)∗∗∗

2 0.447 (0.095)∗∗∗ 0.460 (0.099)∗∗∗

4 -0.147 (0.112) -0.144 (0.115)
5 0.609 (0.078)∗∗∗ 0.607 (0.080)∗∗∗

6 1.110 (0.078)∗∗∗ 1.113 (0.079)∗∗∗

7 0.074 (0.090) 0.079 (0.092)
8 -0.194 (0.100)∗ -0.191 (0.102)∗

9 -0.405 (0.135)∗∗∗ -0.412 (0.138)∗∗∗

10 -0.018 (0.085) -0.017 (0.088)
11 -0.798 (0.078)∗∗∗ -0.797 (0.079)∗∗∗

12 1.012 (0.100)∗∗∗ 1.052 (0.118)∗∗∗

13 0.075 (0.099) 0.080 (0.101)
14 0.052 (0.095) 0.083 (0.105)
16 -0.213 (0.088)∗∗ -0.211 (0.090)∗∗

17 -0.170 (0.088)∗ -0.156 (0.091)∗

18 -0.315 (0.087)∗∗∗ -0.308 (0.090)∗∗∗

19 0.232 (0.082)∗∗∗ 0.241 (0.083)∗∗∗

N. of Observations 108 108 108 108
Root MSE 0.131 0.132 0.484 0.447
Adjusted R2 0.933 0.932 0.094 0.228
F -statistic 61.04 55.51 2.380 4.160
Prob> F 0.000 0.000 0.000 0.000

Note: The stars indicate significance levels (**p < 0.05, ***p < 0.01). Model 1 includes year and industry dummy
variables. Model 1 includes year and industry dummy variables as well as the interactions between tariff and
Herfindahl index and tariff and capital-output ratio. Model 3 includes only year dummy variables. Model 4 includes
year dummy variables and the interactions between tariff and Herfindahl index and tariff and capital-output ratio.
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Table 21: Regression estimates at the plant level with plant-level markup as the
dependent variable

Variable Model 1 Model 2
Independent
Intercept 1.0684 (0.1175)∗∗∗ 1.1154 (0.1485)∗∗∗

SHARE 1.6139 (0.2531)∗∗∗ 1.3719 (0.3773)∗∗∗

SHARE2 -0.2433 (0.1261)∗ -0.2219 (0.1275)∗

KQ 0.1659 (0.0057)∗∗∗ 0.1658 (0.0057)∗∗∗

KQ2 -1.8e−4 (8.3e−6)∗∗∗ -1.8e−4 (8.3e−6)∗∗∗

QUOTA -0.0048 (0.2349)
TARIF -0.2925 (0.5565)
SHARE*QUOTA 0.6111 (0.5275)
SHARE*TARIFF 1.9790 (1.6234)

Year dummy
1985 -0.1134 (0.1370) -0.0654 (0.1126)
1986 -0.1257 (0.0771)∗ -0.0908 (0.1012)
1987 -0.1004 (0.0649) -0.0848 (0.0707)
1988 -0.0603 (0.0617) -0.0614 (0.0619)
1989 -0.0602 (0.0619) -0.0596 (0.0618)

Industry dummy
1 -0.7805 (0.1311)∗∗∗ -0.7909 (0.1254)∗∗∗

2 0.2169 (0.1489) 0.2269 (0.1331)∗

4 -0.1105 (0.1321) -0.1115 (0.1318)
5 0.5857 (0.1432)∗∗∗ 0.5990 (0.1396)∗∗∗

6 1.1255 (0.1833)∗∗∗ 1.1399 (0.1806)∗∗∗

7 0.0333 (0.1454) 0.0415 (0.1460)
8 -0.2394 (0.1295)∗∗ -0.2496 (0.1304)∗∗

9 -0.3969 (0.1189)∗∗∗ -0.4125 (0.1236)∗∗∗

10 -0.0451 (0.1244) -0.0510 (0.1249)
11 -1.1191 (0.1938)∗∗∗ -1.1326 (0.1943)∗∗∗

12 0.6382 (0.1824)∗∗∗ 0.6229 (0.1889)∗∗∗

13 0.0650 (0.1337) 0.0627 (0.1334)
14 -0.2687 (0.1421)∗ -0.2924 (0.1533)∗

16 -0.2190 (0.1316)∗ -0.2299 (0.1327)∗

17 -0.2457 (0.1296)∗ -0.2601 (0.1329)∗∗

18 -0.3643 (0.1309)∗∗∗ -0.3699 (0.1308)∗∗∗

19 -0.0406 (0.1330) -0.0515 (0.1335)

N. of Observations 11205 11205
Root MSE 1.814 1.814
Adjusted R2 0.127 0.127
F -statistic 59.48 59.49
Prob> F 0.000 0.000

Note: The stars indicate significance levels (**p < 0.05, ***p < 0.01). Model
1 includes quota as a trade liberalization indicator. Model 2 includes tariff as
a trade liberalization indicator. 83



Table 22: Markups and export status

Variable Model 1 Model 2
EHjt

0.0216 (0.0082)∗∗∗ 0.0198 (0.0076)∗∗∗

ωjt 0.3977 (0.0118)∗∗∗

Linear restriction
ψ1 + exp(ψ0) 0.0588 (0.0222)∗∗∗ 0.0539 (0.0208)∗∗∗

N. of Observations 7929 7929
Root MSE 0.287 0.268
Adjusted R2 0.871 0.887
F -statistic 590.8 669.4
Prob> F 0.000 0.000

Note: The stars indicate significance levels (***p < 0.01). Model 1 includes
only the export intensity dummy variable and the set of zjt controls. Model
2 includes the export intensity dummy variable, the set of zjt controls as
well as productivity.

84



8 Conclusions

In this contribution I focus on the importance of correctly estimating production function

parameters and price-cost margins in order to assess differences in technology, productivity,

and market power among eighteen Mexican manufacturing firms and evaluate the impact

of trade liberalizing policies on their profitability.

Relying on a structural framework that corrects the simultaneity bias using investment

or intermediate inputs as a proxy for unobserved productivity I estimate production func-

tion parameters. My results confirm the well establish empirical evidence that production

function coefficients obtained with OLS are biased and support the argument that control-

ling for firm-specific productivity shocks successfully corrects this bias. In fact, compared

to OLS, the structural estimation delivers a much lower labor parameter and a higher

capital parameter. I also find evidence of constant returns to scale in the majority of the

industries analyzed.

The second step in my empirical investigation is to use the production function esti-

mates to recover firm-level markups adopting a structural approach in which markups are

derived from cost minimization first order conditions and can be interpreted as the wedge

between the cost share of production factors and their revenue share. I test the validity of

this approach by comparing the firm-level markup estimates with industry-level markups

obtained through a less sophisticated dual estimation approach. The price cost-margins

estimated at the plant level are more reasonable in terms of magnitude and significantly

higher than their industry-level counterparts. This result demonstrates that explicitly tak-

ing into account differences in productivity is crucial in assessing the extent of market

power.

Finally, I exploit the fact that the sample spans over a period of dramatic reforms in the

Mexican economy to quantify the impact of trade exposure on the markups. I conduct an

industry-level as well as a plant-level analysis relating price-cost margins and measures of

import liberalization. The industry-level evidence confirms the hypothesis of import disci-

pline, i.e. the removal of trade protections negatively affected the profitability of domestic

firms, but this evidence is not confirmed in the plant-level analysis. Nonetheless, this is

not a very surprising result since the Mexican manufacturing sector was presumably quite

competitive even prior to the trade policy reforms because of the large number of firms op-

erating in this sector. In addition, I test the prediction of several recent international trade

models that larger firms are likely to be more productive, thus can charge higher markups
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and afford to pay a sunk cost to become exporters. In the case of Mexican exporters I find

a statistically significant markup premium only for ”intensive” exporters, i.e. firms that

export a high percentage of their output, and for these firms the premium prevails even

after netting out the effect of productivity. Furthermore, as expected, productivity proves

to have a positive and highly significant effect on the markups confirming that the most

productive firms have, on average, higher markups.
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