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1 Introduction 

 

Crisponi syndrome (CS; MIM# 601378) was initially described in 17 patients from 

12 different families in central and southern Sardinia [Crisponi G., 1996]. The syndrome 

usually manifests at birth, when patients present with hyperthermia and abnormal 

paroxysmal contractions of the facial and oropharyngeal muscles, as well as feeding and 

respiratory difficulties often requiring the use of nasogastric feeding. Physical 

dysmorphisms such as a large face, broad nose and camptodactyly have been described in 

most of the patients. Hyperthermia as well as acute respiratory crises are frequently 

associated with death within the first months of life. Feeding difficulties and hyperthermia 

often resolve after infancy in the rare surviving patients, who then develop scoliosis and 

sometimes psychomotor retardation. In pre-adolescent patients, evidence of cold-induced 

sweating was reported. In 2007 CRLF1 (MIM# 604237; locus 19p13.11) was identified as 

the gene involved in the pathogenesis of the syndrome [Crisponi et al., 2007; Dagoneau et 

al., 2007]. Mutations in this gene are also responsible for Cold induced sweating syndrome 

type 1 (CISS1; MIM# 272430) [Knappskog et al., 2003]. 

CISS1 was first described in two Israeli sisters [Sohar et al., 1978] and the similar clinical 

phenotype was reported later in two Norwegian brothers [Knappskog et al., 2003]. It 

involves paradoxical sweating at cold ambient temperatures on the upper part of the body, 

along with progressive scoliosis, dysmorphic features including a high arched palate, nasal 

voice and joint contractures.  

Initially it was supposed that CS and CISS1 represented two allelic diseases [Crisponi et 

al., 2007] comprised in a new family of “CNTF receptor–related disorders,” along with 

cold-induced sweating syndrome type 2 (CISS2; MIM#610313), caused by mutations in 

the CLCF1 gene (MIM# 607672; locus 11q13.2), [Hahn et al., 2006; Rousseau et al., 

2006], and Stüve–Wiedemann syndrome (SWS; MIM#601559), caused by mutations in the 
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LIFR gene (MIM# 151443; locus 5p13.1) [Dagoneau et al., 2004] (Fig. 1).  Successively, 

both  genotype/phenotype correlation and functional analysis on mutated CRLF1 proteins 

suggested  that CS and CISS1 are manifestations of the same disease with different degrees 

of severity due to different ages of clinical evaluation and altered kinetics of secretion 

[Herholz, Meloni et al., 2011].  

CRLF1 protein is a member of the ciliary neurotrophic factor receptor (CNTFR) pathway 

and interacts with CLCF1 to form a heterodimeric complex that binds to the CNTF 

receptor. This pathway is known to be important for the development and maintenance of 

the nervous system and muscles.  

Locus heterogeneity for CS/CISS1 within the CNTF receptor–related disorders could be 

assumed just with CISS2, which shows the same phenotype, but it is due to mutations in 

the CLCF1 gene. However, as there have been only  three  cases from two families 

described so far in literature, this assumption might be too early at the moment [Hahn et 

al., 2006; Rosseau et al., 2006; Hahn et al., 2010]. 

 

2 Clinical description of Crisponi syndrome  

 

2.1 Presentation in Infancy 

The phenotypic manifestations of the syndrome are already evident at birth. Typical 

findings include dysmorphic features, such as camptodactyly, foot anomalies, high arched 

palate and chubby cheeks. When crying or being handled, infants tend to startle 

excessively, and a state of massive muscular contraction occurs. This especially involves 

contraction of the mimic muscles of the face into an expression resembling that of a tetanic 

spasm. Furthermore the patients present contractions of the oropharyngeal muscles 

resulting in a excessive salivation, inability to suck or swallow. Cries appear as a 
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continuous weak lament, emitted in forced expiration, followed by short apneic spells with 

cyanosis. The muscles of the neck are contracted with hyperextension of the head and 

opisthotonus. Even the respiratory muscles are involved in the contraction phenomena, 

with dyspnea, cyanosis and apneic states during crying. Such episodes of contraction are of 

variable duration. When the baby is quiet and during sleep, they are not manifested. When 

crying or being handled, the muscle contractions are exacerbated as well as during fever 

episodes. Fever is the most sever manifestation of the syndrome. It appears in a temporal 

windows from a few days to a few weeks after birth.  It presents as an intermittent 

character not linked to any infection with peaks over 42°C with rapid falls. Death usually 

occurs in concomitance with these episodes. [Crisponi,1996]. 

 

2.2 Presentation in Childhood and Adulthood 

 

Once the difficulties of early childhood have been overcome, individuals with 

CS/CISS1 syndrome are, for the most part, able to lead a fairly normal and productive life, 

obtain a secondary education, and have children. Life expectancy is probably normal; 

although the neonatal mortality is very high, some patients survive (in Sardinia 8 out of 24) 

and to date only one individual has been followed to the eighth decade [Hahn et al., 2006].  

Cold-induced sweating, the most disabling symptom in adulthood, is recognized during the 

first decade/puberty (age ≥3 years). At environmental temperatures of 22° C or less, 

affected individuals sweat profusely on their face and upper body, accompanied by intense 

shivering and dermal vasoconstriction, so that the fingers appear cold and cyanotic. 

Profuse sweating is also triggered by apprehension, nervousness, or by sweet gustatory 

stimuli, in particular by chocolate. In contrast, affected individuals sweat very little in heat 

and only in the lumbar region, the groin, and the anterior thigh. They become flushed and 

unpleasantly overheated in hot climates [Hahn et al., 2006, Hahn et al., 2010]. Although 
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the hyperhidrosis can be somehow treated [Hahn et al., 2006, Hahn et al., 2010, Herholz et 

al., 2010], heat intolerance is a lifelong problem. 

Towards the end of the first decade, affected children develop a progressive thoracolumbar 

kyphoscoliosis that requires either bracing or spinal instrumentation. 

The clinical manifestations of the syndrome in adult patients are still today object of study 

and continuous updating.  

 

2.3 Differential diagnosis  

 

A differential diagnosis is a critical step at birth; many common disorders can 

manifest the same features of CS/CISS1, such as hypertonia and  contractures. These 

include neonatal tetanus, cerebral palsy due to sever perinatal asphyxia, but also the 

hyperekplexia or startle disease, Schwartz-Jampel syndrome, Isaacs-Mertens syndrome and 

the stiff-baby syndrome. Muscle contractions are common in several congenital muscular 

dystrophies. The frequent elevations in body temperature up to 42°C may be associated 

with malignant hyperthermia. But the syndromes showing the major clinical overlap and 

the more similar mode of inheritance are the Stuve-Wiedemann syndrome (SWS) and Cold 

Induced Sweating type 2 (CISS2) that, along with CS and CISS1 are identified as “CNTF 

receptor–related disorders” (Fig.1). 

 

2.3.1 The Cold induced syndrome type 2 (CISS2) 

Cold Induced Sweating Syndrome type 2 is caused by mutations in the CLCF1 gene 

and shows characteristics similar to those described in CISS1. So far only three cases have 

been reported in literature [Rousseau et al., 2006; Hahn et al., 2010], an Australian and two 

Hungarian sisters. The  symptoms are basically the same of CS/CISS1 with dysmorphic 
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features already present at birth, feeding difficulty, profuse sweating on the face, trunk and 

limbs during exposure to cold, inability to sweat properly in response to heat. Although 

patients suffering from CISS2 are only three, and it is still too early to arrive at a 

conclusion, we could  hypothesize the presence of locus heterogeneity for CS/CISS1, with 

two loci involved, CRLF1 and CLCF1, of which the first characterized by a wider number 

of mutations (approximately 95% in the CRLF1 gene and 5% in the CLCF1 gene). 

 

2.3.2  The Stuve-Wiedemann syndrome (SWS)  

Stuve-Wiedemann syndrome is caused by mutations in the LIFR gene [Dagoneau et 

al., 2004]. As in CS/CISS1 and CISS2, also this syndrome is characterized by different 

phenotypes at birth and during the developmental period. Many clinical features present in 

patients affected by SWS are the same described in patients suffering from CS/CISS1, 

including: camptodactyly, difficulty in sucking and swallowing, hyperthermia, respiratory 

distress, dysmorphic facial features, protrusion of the mouth, early death, progressive 

kyphoscoliosis, poor thermal regulation with severe heat intolerance and paradoxical 

sweating. However, some skeletal abnormalities such as bowing of the long bones and 

large metaphyses, associated with short stature, are a peculiar manifestation of SWS and 

never been described associated with CS/CISS1 or CISS2. 
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Fig.1  CS/CISS1 and other CNTF-receptor complex  related disorders. 

 

3 Genetic and molecular characterization  

  

3.1 Genetic studies  

 

By an homozygosity mapping approach, using high-density SNP arrays, in five 

Sardinian and three Turkish families with CS, Crisponi et al. in 2007 identified a critical 

region on chromosome 19p12-13.1. The most prominent candidate gene within this 

genomic interval was CRLF1, which was previously found to be involved in the 

pathogenesis of CISS1. The findings of mutations in this gene associated both to CISS1 

and CS led to the hypothesis that they were allelic disorders. 
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3.2 Structure and expression of the CRLF1 gene 

 

The human CRLF1 gene is localized on chromosome 19p13.11. It consists of 9 

coding exons, spans for 14Kb and it is transcribed as a 1,824 bp linear mRNA (Ref. seq 

NM_004750.4). It encodes for a 422 amino acids protein (~ 46 KDa). This protein 

(NP_004741.1) has a domain structure that includes a signal sequence (positions 1–37) 

followed by an Ig-like C2-type N-terminal domain (positions 38–131), two consecutive 

fibronectin III–like domains (positions 134–229 and 234–334), and a C-terminal domain 

(positions 335–422). Each fibronectin type III repeat contains a highly conserved amino 

acid motif: the first has two cysteine doublets while the second has a WSXWS motif, at 

position 327. This motif is probably needed for correct folding and domain orientation of 

the protein [Bazan, 1990]. The C-terminus shows no homology to known functional 

domains [Elson et al., 1998].  

The literature describes the CRLF1 as a gene involved in regulating the immune system, in 

the development of the nervous system and with a key role in fetal development. 

The highest levels of CRLF1 mRNA were observed in lymph node, spleen, thymus, 

appendix, placenta, stomach, and fetal lung, with constitutive expression of CRLF1 mRNA 

detected in a human kidney fibroblast cell line. 

In the mouse embryo, expression of Crlf1 mRNA is evident in different tissue and at 

different stages of development; in particular, at 11.5 days post-conception (dpc), Crlf1 

was detected in the mesonephric duct, limb buds, first branchial arch, nasal processes, and 

the dermatomyotome. At 14.5 dpc, Crlf1 was detected in the lung, kidney, genital tubercle, 

precartilaginous condensations of the digital metacarpals, intervertebral discs, tongue, and 

facial mesenchyme. At 18.5 dpc, Crlf1 expression was observed in the cortex and 

hippocampus regions of the brain  [Alexander et al., 1999; Kass, 2011]. 
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3.3 Mutational analysis of the CRLF1 gene   

 
The complete CRLF1 coding sequence has been sequenced in all the patients 

analyzed, along with exon/intron junctions. All mutations are described according to the 

Human Variation Society (HGVS) nomenclature [den Dunnen and Antonarakis, 2000]. 

Mutation nomenclature has been then checked with the Mutalyzer program [Wildeman et 

al., 2008]. 

To date, overall 42 distinct CRLF1 mutations have been found either as homozygous or 

compound heterozygous sequence changes in 63 patients with diagnosis of CS/CISS1 from 

52 families apparently not related to each other; 13 Italians (in particular 9 from Sardinia), 

18 Turkish, 8 Spanish and 24 from other different geographical areas (Table 1). Actually 

two of these 63 patients were found to be heterozygotes for one mutation (SC218 and 

SC247, see Table 3). In these cases we were not able to find a second mutation, probably 

due to the limits of the region analyzed and of the techniques used.   

For these patients we hypothesized the presence of deletions/duplications in heterozygosity  

not readily detectable by sequence analysis of genomic DNA. To test their presence, a 

variety of methods including quantitative PCR, long-range PCR, multiplex ligation-

dependent probe amplification (MLPA), CGH array or SNP array may be used.  

In our cases, we decided to perform a long- range PCR using the following primers pairs: 

1F-1Rintronic (3,8 Kb); 2Fintronic 2R (3,7 Kb); 2F-6R (3,5 Kb) and 5F-9R (3,8 Kb), but 

no additional bands were seen. So for one patient we decided to proceed by SNP array.  

Case SC218 is a 6 months years old Spanish female. She was positive to CRLF1 analysis, 

but we found only the maternally inherited c.713dupC mutation. The phenotype was 

clearly attributable to Crisponi syndrome;  hyperthermia, contraction of facial muscle, 

trismus, swallowing, feeding difficulties, chubby cheeks and camptodactyly were evident. 

The analysis proceeded by Genome-Wide Human SNP array 6.0 (Affymetrix). The 
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reference sets used contained 57 samples. The results showed a loss of heterozygosity 

(LOH) of 120Kb on chromosome 19p12 (20,596,194-20,716,377 in reference hg19) (start 

marker CN_795771- end marker CN_165017), about 2 Mb 5’ upstream of the CRLF1 

gene. We were not able to assess whether this variation was de novo or transmitted, since 

the parents could not be analyzed. In this region, are mainly present Zinc Finger Proteins 

(ZNFs). Although the analysis has not been exhaustive, these data deserve to be further 

evaluated. 

It seems that all the 42 mutations found so far are inherited, although the inheritance could 

not be ascertained in some cases. Of these mutations, 16 (38%) are missense, 12 (28,6%) 

small indels, 6 (14,3%) splice site mutations, 4 (9,5%) nonsense and 4 (9,5%) large 

deletions. At least 20 (about 50%) of the total reported mutations are predicted to result in 

truncated proteins (Fig. 2). There is no apparent mutational hot spot in CRLF1, and there 

seems to be no correlation between the severity of the phenotype and the location/type of 

mutation.  

 

 

 

 

 

 

 

 

Fig.2 Different types of mutation found in the CRLF1 gene . 

 

Of these 42 mutations, 24  have already been reported in literature as associated to 

CS/CISS1, [Crisponi et al., 2007; Dagoneau et al., 2007; Herholz, Meloni et al., 2011; 

Hahn et al., 2006; Knappskog et al., 2003; Hahn et al., 2010; Okur et al., 2008; Thomas et 
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al., 2008; Yamazaki et al., 2010; Di Leo et al., 2010; Hahn et al., 2011; Tüysüz et al., 2012; 

Hakan et al., 2012; El-Assy et al., 2012] , 7 have been  presented in a poster at the ESHG 

2011 [Lebre et al., 2011] and 11 are novel and reported here for the first time (Table 1).  

Of these 11 novel mutations found in our patient cohort, 5 are missense (c.433T>C, 

p.S145P; c.935G>C, p.R312P; c.[803T>C;1018C>T], p.[F268S; R340C]; c.221T>C, 

p.L74P and c.646C>T, p.R216C), 2 donor splice site defects (c.115+1G>A; c.527+5G>T), 

2 large deletions (exon 3-exon 4 and exon 5_9), 1 small indels (c.721_737dup, 

p.G247Cfs*3) and 1 nonsense (c.776C>A; p.S259*). For these novel mutations, DNA 

sequences were compared to the reference sequence NM_004750.4. The sequence variants 

were confirmed by re-sequencing of PCR products obtained from a second amplification 

reaction. For the novel missense variants, 100 control chromosomes (of matched ethnicity 

where available) were screened by direct sequence. For c.433T>C, the novel identified 

variant lost a cleavage site for AvaII restriction enzyme, so we used enzymatic digestion 

for control screening, while for c.646C>T (Pakistan origin) we used the reference panel of 

1000 Genome Project [The 1000 Genomes Consortium, Nature 2012]. 

The c.221T>C variant, was found in a Sardinian patient, in compound heterozygosity with 

the most frequent c.676_677dupA. To test the presence of the variant in control 

chromosomes, we took advantage of the SardiNIA Medical Sequencing Discovery Project 

which has been carried out by whole genome sequencing of 2100 individuals in the 

founder Sardinian Population, to map human genome variation that is rare or 

geographically restricted and unique to this specific population [Sidore et al., ASHG 

2012].  

The 2 donor splice site variants, c.115+1G>A and c.527+5G>T were detected in trans in 

the same patient. The mother was carrier of the new variant c.115+1G>A while the father 

was carrier of the other variant c.527+5G>T. Although this last variant affects the same 
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residue of another mutation described before in a CS patient from Yemen [Dagoneau et al., 

2007], the substitution is different, G>T instead of G>A.  

All these 11 mutations are not present in the SNP databases nor listed as non pathogenic 

variants in the literature. Prediction of splice sites was performed with NetGene2 

(http://www.cbs.dtu.dk/services/NetGene2/), whereas for non synonymous SNPs 

functional prediction we employed dbNSFP (http://sites.google.com/site/jpopgen/dbNSFP) 

[Liu et al., 2011], an integrated database of functional predictions from four new and 

popular algorithms (SIFT, Polyphen2, LRT, and MutationTaster), along with a 

conservation score (PhyloP) multiple algorithms. All missense and splice site changes were 

predicted to be pathogenetic. Regarding the mutations in cis c.[803 T>C;1018C>T], the 

prediction by dbNSFP suggests that the causative one should be c.803T>C rather than 

c.1018C>T.  

We also found 2 new large homozygous deletions (exon 3_4del and exon 5_9del). The first 

one was initially supposed by absence of PCR products for exons 3-4 in the patient. It was 

then confirmed by performing a long-PCR that covered the entire genomic region 

harboring exons 3-4 in both patient and parents (primer pairs 2F and 5R, Crisponi et al., 

2007). It resulted in one shorter amplification product in the patient, and in two products in 

the parents, carriers of the deletion. The sequence analysis of this shorter product revealed 

that the deletion starts in intron 2 (position c.398-456) and ends in intron 4 (position 

c.697+747).  

As for the first deletion, the second one (exon5_9) was also supposed by absence of PCR 

products for exons 5-9 in the patient. Unfortunately it could not be confirmed by 

performing a long PCR that covered the entire genomic region harboring exons 5 through 

9, in both patient and parents (primer pairs 4F and 9R, Crisponi et al., 2007). We assumed 

that it spans over exon 9. We further confirmed such deletion by Real Time Quantitative 
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PCR analysis, which was performed on 7900HT Fast Real-Time PCR System (Applied 

Biosystem) using SYBR®Green assay. This is a sensitive and accurate method for the 

quantification of DNA in homogeneous solutions allowing to differentiate the presence of  

0, 1, or 2 copies of the gene. This result confirmed the deletion previously seen with classic 

PCR assay (data not shown). 

To date the most frequent mutations are found in the Sardinian (c.226T>G and 

c.676_677dupA), Turkish (c.708_709delCCinsT) and Spanish (c.713dupC)  populations. 

The c.226T>G mutation results in a tryptophan-glycine substitution at position 76 of the 

Ig-like domain (p.W76G). Tryptophan 76 is likely buried within the molecule and a 

substitution by a glycine would be expected to result in a loss of tight internal side-chain 

arrangement and, thus, in a considerable decrease in stability. The W76 is strictly 

conserved within CRLF1 homologous proteins from different organisms [Crisponi et al., 

Dagoneau et al., 2007]. 

The c.676_677dupA variant results in a threonine-asparagine change at position 226, 

followed by a frameshift, which leads to the deletion of a complete fibronectin domain as 

well as C-terminal domain (p.T226Nfs*104). This variant was found either in homozygous 

or compound heterozygous state [Crisponi et al., 2007]. 

These two mutations listed in Table 1, c.226T>G and c.676_677dupA, have been found so 

far only in Sardinian individuals, so deriving from a founder effect in this population (4 

homozygous for c.676_677dupA, 3 compound heterozygous, and 1 homozygous for 

c.226T>G). In Sardinia we also found a third mutation c.221T>C, but only in one patient 

as compound heterozygote for c.676_677dupA.  

In the Turkish families, the most frequent mutation, always found in homozigosity is 

c.708_709delCCinsT, which leads to a frameshift in the second fibronectin type III domain 

(p.P238Rfs*6). It was found in 6 patients from 5 families.  
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The c.713dupC variant is very common in the Spanish population. This mutation is located 

in the region encoding the second FNIII domain of the protein, and results in a premature 

termination of translation (p.P239Afs*91). It was found in 10 patients, either in 

homozygous or compound heterozygous state, from 6 families. Furthermore it was also 

found in a Turkish patient [Dagoneau et al., 2007] and in 3 French brothers [Lebre et al., 

ESHG 2011].  

The c.708_709delCCinsT and the c.713dupC were frequently found in families of Gipsy 

origin, where often take place marriages between consanguineous.  

 

 

Fig.3 Distribution along the CRLF1 mRNA and protein of 35 mutations found associated to CS/CISS1. 
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3.3.1 Geographical distribution of the molecular spectrum of CRLF1 analysis  

 

Up to date 63 patients affected by CS/CISS1 have been reported worldwide with 

28,6% of the patients originating from Turkey (18), 20,6% from Italy (13, of which 9 from 

Sardinia), 12,7% from Spain (8) and the remaining 38% (24) from different geographical 

areas. In Italy the estimate reaches 40% if we consider also 15 Sardinian patients with a 

clinical diagnosis of CS [Crisponi, 1996] not confirmed by a molecular analysis for CRLF1 

since died before the discovery of the gene (Fig.4). 

Considering this higher prevalence in Sardinia, Turkey and Spain, the most involved area 

is the one of the Mediterranean basin. In this area other cases have been described in 

Libya, Morocco and France (This report and Lebre et al., ESHG 2011). Other CS/CISS1 

patients have been identified in Eastern countries, in particular in Israel [Knappskog et al., 

2003], India [Thomas et al., 2008], Pakistan [This report], Yemen [Dagoneau et al., 2007],  

Saudi Arabia [El-Assy et al., 2012] and Japan [Yamazaki et al., 2010], while in the 

Western states one patient in Canada [Hahn et al., 2006], one in Australia [This report], 

and one in  USA [Hahn et al., 2010]. 

 



20 

 

% carriers = 1,4 %

Incidence/year = 1:20700

*(9 CRLF1 tested)

Sardinia 24*

Turkey 18

Spain 8

France 5

Italy 4

Libia 3

Norway 3

Israel 3

Pakistan 2

Saudi Arabia 1

India 1

Yemen 1

Morocco 1

USA 1

Canada 1

Japan 1

Australia 1

 

Fig.4 Geographical distribution of CS/CISS1. The left panel lists the numbers of  patients identified in the 

different geographical areas.  

 

3.3.2 Molecular analysis of CLCF1 and CNTFRa genes 

 

CRLF1 and CLCF1 proteins are involved in the ciliary neurotrophic factor (CNTF)- 

receptor pathway, important for embryonic development and maintenance of the nervous 

system [De Chiara, 1995]. This pathway supports the differentiation and survival of a wide 

range of neural cell types during development and in adulthood. To be efficient, the 

CLCF1 secretion requires the association with the soluble cytokine receptor CRLF1 

[Rosseau et al., 2006; Herholz et al., 2011]. The stable heterodimeric complex of the 

CRLF1 and CLCF1 forms a ligand for CNTFRα, which, along with gp130 and LIFR, 

comprise the CNTF-receptor complex [Elson et al., 2000]. Binding of CRLF1/CLCF1 to 

CNTFRα leads to dimerization of gp130/LIFRβ, which in turn induces downstream 

signaling events, including activation of the Janus kinase 1/STAT3 pathway [Heinrich et 

al., 2003].  
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Fig.5 Schematic representation of the complex CRLF1/ CLCF1 with the CNTF receptor. 

 

The interaction between genes of the CNTF receptor complex, the functional link between 

CRLF1 and CLCF1 and in particular the clinical overlap between CS/CISS1 and CISS2 

created the basis for undertaking a mutational analysis for the CLCF1 and the CNTFRα 

(MIM# 118946; locus 9p13) genes, respectively in 35 and 20 patients negative for CRLF1 

analysis. To date, only 4 causative mutations in the CLCF1 gene have been described in 

CISS2 patients [Rousseau et al., 2006; Hahn et al., 2010], while disease-causing mutations 

have never been reported for the CNTFRα gene. The results of our analyses were negative 

since we did not find causative mutations in these genes, but only polymorphisms 

previously described as benign variants. In details, we found only 2 non synonymous 

mutations in heterozygosity in the CLCF1 gene, which by different prediction softwares 

such as SIFT, Polyphen and ESEfinder, were predicted not to be disease-causing 

mutations. We didn’t perform analysis of the LIFR gene, since mutations in this gene cause 
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SWS, which, although having a phenotype very similar to CS/CISS1 and CISS2 (Fig.1) 

presents in addition to short stature, the typical curvature of the long bones, absent in the 

35 patients analyzed.  

 

4 Clinical evaluation  

 

The CS/CISS1 is a rare disease, of recent identification and characterization, with a 

quite complex phenotype and with different levels of severity, so it is complicated  to reach 

a correct diagnosis. The clinical diagnosis of CS/CISS1 is based on the critical analysis of 

medical data and family history. This is then confirmed at a genetic level by positivity to 

the molecular analysis of the causative CRLF1 gene. 

Before requesting a molecular analysis for the CRLF1 gene, neonatologists and 

pediatricians as well as geneticists are required to complete a detailed clinical 

questionnaire, to acquire all the information useful to support the suspect  of  CS/CISS1 

diagnosis and to standardize clinical data for all patients. Furthermore these information 

are also useful to allow forthcoming studies on genotype/phenotype correlation, or to 

extend the analysis to other genes implicated in similar disorders.  

 

4.1 Genotype/phenotype correlation 

 

With the exception of SWS with the characteristic bowing of the long bones, caused 

by LIFR mutations, manifestations of the CNTF receptor–related disorders are very similar 

both when caused by mutations in CRLF1, as in CS/CISS1  and by mutations in CLCF1, as 

in the case of CISS2. In particular CISS1 and CISS2 are clinically indistinguishable.  

In table 3 are shown the clinical phenotypes of all CS/CISS1 patients reported so far and 

mutated for the CRLF1 gene. There is no evident correlation between the phenotype and 
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the type/localization of mutations found. A functional study on the mutated forms of 

CRLF1, [Herholz, Meloni et al 2011], showed that CS and CISS1 are actually the same 

disease and that the phenotypic severity depends on altered kinetics in the secretion of the 

mutated CLRF1 proteins. So a defective secretion is a major component affecting 

phenotypic severity of CLRF1- associated disorder [Herholz, Meloni et al., 2011].  

 

4.2 Management and therapy 

 

At the moment there is no treatment available for this syndrome. At birth the patients 

require close monitoring in case of episodes of laryngospasm with respiratory distress, 

crisis of acute hyperthermia, or like-epileptic crisis, in particular when contractions of the 

oropharyngeal and respiratory muscles occur, that may lead to sudden death. In all these 

cases it is important to prepare appropriate countermeasures, such as supplemental oxygen, 

cooling blankets, anti-epileptic drugs. It is recommended a monitor for sleep apnea. A 

serial and continuous EEG monitoring may be required during the first few weeks of life. 

To overcome the sucking and feeding problems, the infants require prolonged use of a 

nasogastric tube. Bracing, occupational therapy or plastic surgery may be necessary to 

correct congenital finger and hand deformities. Surgical intervention or prolonged bracing 

may be required to treat the progressive thoracolumbar kyphoscoliosis. Sweating triggered 

by cold or apprehension can be effectively treated with clonidine/amitriptyline or 

moxonidine [Herholz et al., 2010; Hahn et al., 2010]. Heat exposure and prolonged 

physical activity in hot climate are to avoid. 

Keratopathy is a constant of these patients, and the use of artificial tears or lubricating gel 

since birth could prevent the onset of surface erosion or more severe corneal damage. 

Furthermore, it was seen that some patients have decreased pain perception, so the 

quantitative sensory testing (QSART), nerve biopsies with morphometric analyses and skin 
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biopsy with quantitative analysis of sensory innervations, could be performed to further 

explore the possibility of impaired development of sensory neurons. 

This disease is still poorly understood and often not diagnosed correctly because the 

phenotype is relatively new and extremely complex, with marked clinical overlaps  to other 

diseases. The identification of mutations in the CRLF1 gene provides a definite diagnosis 

in patients with suspected diagnosis of CS/CISS1. Furthermore the genetic test available 

can be carried out for determining the carrier status in at-risk relatives in families with 

history of disease, and also for prenatal-testing if the disease-causing mutations in the 

family have been identified. 

 

5 Pilot study to assess the feasibility of a carrier screening for  CS in  Sardinia 

 

5.1 Requirements to perform a population screening  

 

In 1975, genetic screening has been defined as the search in a population, for individuals 

possessing certain genotypes with or predisposing to certain diseases. To date, genetic 

screening can be defined as a type of test performed for the early detection or exclusion of 

a hereditary disease, for knowing the predisposition toward a disease or to determine 

whether a person is a carrier of a disease that can be inherited to the offspring [Godard et 

al., 2003]. In particular, population-based carrier screening for autosomal recessive 

disorders tends to define at-risk couples in which both members are heterozygotes and 

therefore at risk of having affected children in 25% of cases. Some considerations for this 

kind of screening have been discussed in 2008 at a meeting sponsored by the National 

Human Genome Research Institute (http://www.genome.gov/27026048): 

- the disorder impairs health in the homozygous affected offspring, 

-  there is a high frequency of carriers in the screened population, 
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-  technically and clinically valid screening methods are available and cost effective to 

all, 

-  IVF, prenatal diagnosis, and termination are reproductive options, 

-  consent (informed and voluntary participation) is obtained, 

-  potential benefits and risks of carrier testing are communicated before and after the 

test, 

- privacy is protected, 

-  stigmatization of the carrier by the community is minimized, 

- experienced professional resources are available.  

 

5.2 Sardinia as a model of “Founder Population”  

 

In a founder population, the geographical isolation, lack of immigration and/or high levels 

of endogamy and consanguinity preserve the genetic features of the original founders over 

time. Their genetic makeup can change over the centuries under the effect of several 

evolutionary mechanisms, such as bottleneck and genetic drift. These processes alter allele 

frequencies, and while common variants are barely lost, rare variants may be either lost or 

drifted to higher frequencies than in the original population [Peltonen et al., 2000]. 

Sardinia is the second largest island in the Mediterranean sea. Its modern population is of 

approximately 1.65 million inhabitants  and constitutes a genetically isolated founder 

population, which has already aided in the identification of genes involved in several 

Mendelian disorders (β- and α-thalassemia, APECED and Wilson’s disease) wherein the 

detection of gene mutations has confirmed the existence of  a strong "founder" effect.  

In addition, its relatively large size offers adequate statistical power for the genetic analysis 

of many diseases common in the island. Furthermore, due to its organization into long-

established settlements, it simplifies analysis of micro-isolates. Mutations that arose in 
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ancient times and were transmitted to offspring, can be found today in apparently unrelated 

families, with a frequency higher than in other populations, and this is manifested by an 

increased incidence of rare autosomal recessive diseases. So in Sardinia a population 

screening is technically feasible and justifiable for many genetic disorders. 

 

5.3 Pilot study to assess the frequency of founder mutations  

 

The mutational analysis of the CRLF1 gene in Sardinian patients affected by CS/CISS1, 

showed  the presence of allelic heterogeneity, with three mutations found. Among these,  

c.676_677dupA and c.226 T>G are the most frequent, whereas  c.221 C>T is found in only 

one patient. 

Sardinia is one of the geographical regions with the highest number of patients. Despite 

this, the complexity of the phenotype and the early lethality  complicate diagnosis, and this 

could lead to an underestimation of the number of cases. Before implementing a 

population-based screening program, studies should be carried out to establish a reliable 

prevalence of the disease as well as to assess the feasibility of routine screening.  For these 

reasons we performed a pilot study to assess the frequency of the two most frequent 

mutations found associated with CS/CISS1 in Sardinia thus far. This allowed us to assess 

the carrier frequency and to determine the incidence of the syndrome in Sardinia. The two 

mutations c.226 T>G and c.676_677dupA were analyzed on 1194 anonymous DNA, 

selected from a cohort of about 3000 healthy donors with Sardinian origin by at least two 

generations, available in our laboratory and originated from four provinces, Cagliari 

(CA/VS), Ogliastra (OG), Sassari (SS) and Oristano (OR). The assay used was the Custom 

TaqMan ® SNP Genotyping Assays provided by Applied Biosystem, which allows to 

design oligonucleotide probes containing the desired mutations. The allelic discrimination 

was conducted by 7900HT Fast Real-Time PCR System (Applied Biosystem) and it was 
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possible to evaluate the heterozygous/homozygous state for both mutations investigated. In 

heterozygote controls, the result was confirmed by Sanger sequencing using the 3130 

Genetic Analyzer instrument. 

The third variant c.221T>C identified in Sardinia, was not considered in this pilot study 

since it was found very recently and only in one individual.  Furthermore it was not present 

in any Sardinian healthy controls from the SardiNIA Medical Sequencing Discovery 

Project. This could be explained in two ways: either the origin of the carrier parent is not 

completely Sardinian, or its frequency is very rare.  

We found 5 carriers for c.226T>G and 12 for c.676_677dupA, and these data allowed us to 

estimate a percentage of carriers of 1,4% with an incidence of about 1 affected per 20,700 

newborns, i.e. 0,005 %, calculated on 15,000 live newborns/year in Sardinia. The data for 

c.226T>G  were confirmed successively by the search of this variant within the SardiNIA 

Medical Sequencing Discovery Project [Sidore et al., ASHG 2012]. A more detailed 

analysis taking into account the different provinces of origin, showed that the most 

involved area is the Ogliastra, with an incidence of 1:10,200 and a percentage of carriers of 

1.9% (Table 4). These findings approximately confirm the epidemiological data collected 

in 40 years, during which 24 CS/CISS1 patients were identified. In fact, according to our 

results, we would have expected about 28 affected individuals.  

The data obtained so far on carrier frequency does not justify the extension of carrier 

screening to all couples of childbearing age, but only to at-risk relatives in family with a 

clear history of the disease.  
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6 Discussion 

 

6.1 Biological relevance 

 

A murine Crlf1 knock-out (KO) model was developed in 1999 by Alexander and 

colleagues [Alexander et al., 1999]. The loss of Crlf1 doesn’t compromise embryonic 

survival but is lethal during the first day of life. Neonatal KO mice for Crlf1 fail to suckle 

and die of starvation within 24 hours of birth, with their stomachs devoid of milk,  

suggesting that Crlf1 is necessary for the recognition or processing of pheromonal signals 

or for the mechanics of suckling itself. In addition, Crlf1 KO mice show motor neuron 

deficits in the facial nucleus and ventral horn of the lumbar spinal cord [Zou et al., 2009]. 

As well as for Crlf1, mice KO for Cntf receptor α (Cntf-Rα) and Clcf1 mirror the same 

phenotype, with perinatal death, decreased facial motility, inability to suckle and 

significant reductions in motor neuron number, while mice and humans deficient of CNTF, 

the primary ligand to CNTFR, were healthy [Takahashi et al., 1994, De Chiara et al., 1995; 

Zou et al., 2009].  The same phenotype was also seen in the gp130 and Lifr null mice. [Li 

et al., 1995; Nakashima et al., 1999]. 

The findings are analogous to those of infants with CS/CISS1 and CISS2 who suffer from 

severe oral-facial weakness and impaired suckling. The observations illustrate the 

importance of the CNTFR/gp130/LIFR tripartite receptor and its ligand CLCF1/CRLF1 for 

development and maintenance of the nervous system in particular for the embryonic 

development of facial motor neurons.  

It is known that the IL6 cytokines acting through gp130 receptors are required for the 

cholinergic differentiation of sympathetic neurons innervating sweat glands [Stanke et al., 

2006]. CRLF1 and CLCF1 are cytokines expressed in sweat-gland tissue, and currently, 

this complex is one of the most likely candidates to mediate the switch from noradrenergic 
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to cholinergic phenotype of sympathetic neurons via gp130/LIFR pathway [Stanke et al., 

2006].  

Cholinergic sympathetic neurons innervate, as additional target tissues, the skeletal muscle 

vasculature and the periosteum, the connective tissue covering the bone [Francis et al., 

1999]. Skin biopsies from a CS/CISS1 patient, derived from areas of hyperhidrosis showed 

that the sweat glands lacked cholinergic innervation while adrenergic supply was amply 

maintained [Di Leo et al., 2010]. If confirmed, these results would indirectly support a role 

for CLCF1/CRLF1 in mediating the switch from noradrenergic to cholinergic properties of 

sympathetic neurons that innervate sweat glands and periosteum during development.  

Although the defects observed in mice and humans suggest vitally important functions of 

CRLF1 expression in developmental pathways, new evidences suggest that changes in 

CRLF1 expression may also be associated with several post-natal disease processes [Kass, 

2011]. A paper published in 2009 suggests that the CRLF1/CLC complex disrupts cartilage 

homeostasis and promotes the progress of Osteoarthritis (OA) by enhancing the 

proliferation of chondrocytes and suppressing the expression level of cartilage structural 

proteins [Tsuritani et al., 2009]. Furthermore it has also been recently supported a 

potentially important antifibrotic role for CRLF1 in Idiopathic Pulmonary Fibrosis, 

suggesting that its expression in the lung could be a potentially reparative response to 

fibrotic lung injury [Kass et al., 2012]. Both these studies show that the CRLF1 is involved 

in other more common diseases. This could further explain the complexity of the 

CS/CISS1 phenotype. 

Recently Crabe et al., in 2009 found that similar to CLCF1, the p28 subunit of IL-27 could 

associate with CRLF1 to form a new complex that can bind IL-6R, a tripartite receptor of 

IL-6Ra, WSX-1, and gp130. Activation of this receptor leads to downstream signaling 

events via the JAK/STAT pathway (particularly STAT3), MEK/ERK, and PI3K/AKT. 
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This recent discovery suggests that CRLF1 can stimulate cell populations that may not 

express CNTFR, so up to now the full range of cells that are potentially responsive to 

CRLF1 stimulation is unknown, as well as the biological activity of CRLF1 on these cells. 

These data highlights how CRLF1 function and is still little known, as well as its 

involvement in other  pathways. These new interactions could further elucidate the 

complexity of the CS/CISS1 phenotype and could explain a definitive relationship with the 

mutations found. 

 

6.2 Clinical and Diagnostic relevance 

 

Before 2007 it was thought that CS and CISS1 were different disorders, with CS 

reported for its neonatal phenotype and CISS1 for its evolutive phenotype. In 2007, the 

identification of mutations in the CRLF1 gene led to the conclusion that they were allelic 

forms of the same disease. Functional studies on mutated forms of CRLF1, gave the hint 

that the two syndromes, CS and CISS1, represent manifestations of one single disorder, 

with different degrees of severity. The rare cases of CISS1 most likely correspond to CS 

survivors. This led to the old matter about ‘lumpers' and ‘splitters' and thus to the critical 

question of how to classify and name these genetic entities. In 2011 it was suggested to 

rename the two genetic entities CS and CISS1 with the broader term of Sohar–Crisponi 

syndrome [Herholz, Meloni et al., 2011]. However the discussion about what term is more 

appropriate to define the syndrome is still open. Since 2007, a molecular genetic testing for 

CRLF1 mutations is available, allowing for a reliable genetic counseling. It comprises the 

sequence analysis of all 9 exons and exon-intron boundaries. If a variant is found in a 

patient, several types of analyses are performed to determine its pathogenicity. The variant 

is checked in mutation databases and published data, any novel non synonymous variant is 

checked in 100 alleles from control samples (with matched ethnicity where possible). The 
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variant is also checked on the dbSNFP software database, which runs several prediction 

programs (SIFT, Polyphen, Mutation taster, Mutation assessor, LRT, GERP and PhyloP) 

that predict the likely effect of the missense mutation on the CRLF1 protein. Variants 

predicted to affect splicing are also checked using Netgene2. The presence of the variant is 

also evaluated in the parents and other family members. The results of our study have 

shown that mutations in the CRLF1 gene are responsible for CS/CISS1, representing a 

single genetic entity with variable degrees of severity. Functional studies have shown that 

altered kinetics of protein secretion associated with mutated CRLF1 proteins is associated 

with various degrees of severity in CS/CISS1. However, there is currently no clear 

genotype/phenotype correlation for both type and location of mutations in CRLF1. The 

distinctions are further complicated by the combination of different mutations (compound 

heterozigosity) in some patients. Further functional studies on mutated CRLF1 proteins  

will be needed to better define their role in the pathogenesis of CS/CISS1. 

 

7 Future prospects 

 

The functions of CRLF1 need to be further explored. Little is known about other 

interacting proteins and receptors involved. Future research will be directed toward a better 

understanding of the molecular disease mechanisms, of the genotype–phenotype 

correlations and of potentially modifiers of the phenotype, making use of recombinant 

systems, proteomics approaches or mouse models. In particular, since the Crlf1 null mouse 

dies on postnatal day 1, a conditional model using the cre-lox system may be effective in 

dissecting the organ-specific effects of Crlf1 deficiency. A more deep understanding of 

CRLF1 signalling pathways would be critical to the development of novel therapeutic 

strategies for CS/CISS1 as well as other diseases.  
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Furthermore a short-time goal will be the clinical and genetic delineation of CS/CISS1-like 

phenotypes, which are not caused by CRLF1/CLCF1 mutations. In such cases, the 

identification of new disease-causing genes, after exclusion of rearrangements by 

SNP/CGH arrays would be achievable by whole-exome sequencing, and will help in better 

dissecting pathways and networks where CRLF1 is involved and function.  

 

8 Materials and methods 

 

8.1 Clinical Questionnaire and Consent Form for Genetic Analysis 

 

The study protocol was approved by the Münster University Hospital Ethical 

Committee in Germany and all subjects involved in this study gave informed written 

consent. Neonatologists, pediatricians or geneticist who request the molecular analysis for 

CRLF1  are invited to fill in and complete a detailed clinical questionnaire, necessary for a 

critical evaluation of the phenotype and for a future genotype/phenotype correlation. The 

written consent and clinical questionnaire were attached in the supplementary materials. 

 

8.2 DNA extraction 

 

DNA used for PCR-based diagnostic analysis has originated from white cells 

fractionated from whole blood in EDTA. The method used was saline extraction (salting-

out)  based on osmotic lysis of red blood cells and then white cells isolations. So the cells 

were lisated with SDS 10% and Proteinase K that degrades the proteins permitting the 

nucleic acids extraction. The last step is the precipitation with isopropanol.  
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The DNA quality and its concentration was determined using both the spectrophotometric 

reading (Nanodrop 2000c Spectrophotometers-Thermo Scientific) and by loading an 

aliquot of DNA on agarose gel electrophoresis (0,8%) 

 

8.3  PCR (Polymerase Chain Reaction) and Sequencing 

 

The PCR was performed in 25 µL of final volume; the protocol is the following: 

50 nanograms DNA, 1XBuffer, 1.5millimoles of MgCl2, 200µM of dNTP and 25 

picomoles of primer pairs. 1U of TaQ Polymerase was added to solution. 

We used Buffer GC-rich (1X final) and DMSO (1X final) in place of normal Buffer for 

amplification of the GC rich regions. See below the tables of the primers (5’-3’) used for 

the analysis :  

CRLF1 

Exon Forward         Reverse  bp 

1 ttagcgccttgtcaattcggc tgttccccggccgtccagg 394 

2 gacaatcattaacagcgtc agtgtgcccacagctcatcc 507 

3 ggagatcgagtcaccagcctc ggcagcctcagggtgcagac 441 

4 cttgaccaacgcggaccct acttacctaccttccctctg 456 

5 acagaggcaggttccatc caggaggtctggttgctcac 250 

6 ctaccgagtggaggacagtg tatgcgacagaatgaggccg 421 

7 tcggtccttgagaaacggg ttggagcagtacgcgtgc 252 

8 agctcaagcagttcctgg gggtgtgaacaagacctgc 377 

9 

2Fint.* 

ggacaggacacgaatgaagc 

gacacactataggtaccctg   1Rint* 

cattaagacgcctcacattccc 

 tctcgttccacacagagtgg 

518 

      - 
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*The primer pairs 2Fint and 1Rint were used only for Long Range PCR. 

 

CLCF1  

Exon Forward  Reverse   bp 

1 tcctgggagtcctcagacg aggacgggaaccggatctc 484 

2 cctctctttctctcccgtctt actggtgggagccaaagagc 473 

3 tcacctgcatacaaatgatatcc actccctcgagcatgacttc 931 

3’UTR aggtctaccgagctggggag ggcaagagtctgatgagcacc 847 

CNTFRα  

Exon Forward  Reverse   bp 

1 ggagagtgagtgtgaagga tcgtgaactttcctgtcg 845 

2 gtgctgggaggggtctgtatta gcatgaaaagcctcagccag 455 

3 cctactccgtgtcagtcggg ctccatgtccctctgggtgg 388 

4 ggagctttgaacactcttcatc ggctcagaggccagaagag 562 

5/6 ccacaactttggcatcaatg ggcatgtacatgccatgtatac 700 

7 ggggatatcagacttggaac gcagagagcctgatgcatc 479 

8 ccttctcctcagggaagtcc ggcaggagttggacagacag 462 

9/10 

10 

ggaaacaggatctgcctgatg 

ccaagctggccctccttcc 

ccctcacgtcccccaagg 

caccttccccaaccacaatttc 

700 

559 

 

The PCR products were purified with ExoSAP-IT® (Invitrogen) and sequenced using the 

relative primers and BigDye Terminator v3.1 Cycle Sequencing kits (Applied Biosystem). 

by the 3130xl Genetic Analyzer (Applied Biosystem). 
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8.4 Quantitative PCR with SYBR®Green assay 

 

The quantitative PCR was performed by SYBR®Green assay (Applied Biosystem 

life Technologies) using the 7900HT Fast Real Time PCR system instrument (Applied 

Biosystem). Quantification was performed using the comparative Ct method also referred 

to as the 2
-ΔΔC

T method [Schmittgen & Livak, Nature 2008]. The copy numbers of the 

target gene were normalized against a calibrator DNA sample with disomic copy number 

of all exons (normal human DNA). The results were normalized and we estimated a copy 

number value of about 0,5 for the parents, (one allele), carriers of the deletion; of 1,00 for 

the reference sample (both alleles), and of 0 (absence of final product), in the patient 

[Barrois et al., 2004, Rose-Zerilli et al., 2009]. 

The specific primers have been designed using the software Primer Express v2.0 (Applied 

Biosystem). An intergenic region of chromosome 3,was used as reference gene. (Forward 

tgttcacagccacaaaccagat; Reverse  cctaccacagtctccacacctgta) 

The protocol in 10 µL final volume is the following: 10 nanograms DNA; 1X 

SYBR®Green solution and 2,5 µM primer pairs. 

  

8.5 Allelic discrimination 

 

The allelic discrimination was performed with Custom TaqMan®SNP Genotyping 

Assays (Applied Biosystem) designed specifically for the desired mutations (c.226 T>G 

and c.676_677dupA). The instrument is 7900HT Fast Real-Time PCR system (Applied 

Biosystem). In a final volume of 5 µL the protocol is the following: 10 nanograms DNA; 

1X TaqMan®Genotyping Master Mix; 1X Assay Mix 
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9 List of software and databases used 

 

For the functional prediction of the new mutations found we used the following 

software: 

 dbNSFP (http://sites.google.com/site/jpopgen/dbNSFP);  

 FastNP (http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp);  

 PolyPhen (http://genetics.bwh.harvard.edu/pph/); 

 SIFT (http://sift.jcvi.org/);  

 ESEfinder (http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home);  

 NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/). 

For the analysis of the variants we used the following databases:  

 dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) 

 Exome Variant Server (http://evs.gs.washington.edu/EVS/) 

 1000GenomeProject (http://www.1000genomes.org/). 

For the mutation nomenclature we used the following software and databases: 

 Mutalyzer (https://mutalyzer.nl/) 

 HGVS (http://www.hgvs.org/) 

 NCBI (http://www.ncbi.nlm.nih.gov/) 
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 10 Tables 

 

Table 1 Summary of the 42 known CRLF1 mutations found so far in CS/CISS1 patients. For SIFT, Polyphen and LRT and Mutation Taster predictions: D indicates Damaging, P 

indicates Probably Damaging, T indicates Tolerated and B indicates Benign. For Mutation Assessor prediction L indicates Low; M, Medium and N, neutral. 

 

         



38 

 

 
 
 

 Table 2 Summary of the non causative variants found in our patient cohort. 

 

      Fast-SNP 

Number ex/int  DNA variant Effect SNP Variant type Effect Transcription regulatory  

1 exon 1 c.73_75delCTG  p.Leu25del rs137853925  In frame deletion Untested   

2 exon 2 c.237 C>T  p.N79N rs2238647  Synonymous Sense/Synonymous with very low risk    

3 intron 4 c.698-19 T>G  - rs7247346  Intronic  -   

4 exon 2 c.266 G>A  p.R89H  rs143326783 Missense   -   

5 intron 2 c.398 - 57 C>T   - rs8108207 Intronic Intronic with no Known function  - 

6 intron 4 c.697 + 67 G>A  - rs35521276 Intronic Intronic ehancer: lower risk (very low), upper risk (low) transcription factor binding site*  

7 intron 4 c. 698 - 19 T>G  - rs7247346 Intronic Intronic with no Known function  - 

8 intron 2 c.398-50 C>T    rs28579583 Intronic Intronic with no known function   

9 intron 6 c.1025-65 C>A   rs79743774 Intronic  -   

(*GATA-2; *NF-kappaB1)      
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Table 3 (I): Genetic and clinical data for CS/CISS1 patients (from case 1 to 21) reported so far and positive to mutations in the CRLF1 gene  
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Table 3 (II): Genetic and clinical data for CS/CISS1 patients (from case 22 to 42) reported so far and positive to mutations in the CRLF1 gene  
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 Table 3 (III): Genetic and clinical data for CS/CISS1 patients (from case 43 to 63) reported so far and positive to mutations in the CRLF1 gene  
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Provincies Controls  
Carriers 

Allele p* frequency  Allele q* frequency  2pq* frequency Incidence  
 c.226T>G            c.676_677dupA  

CA/VS  340 2 3 0,993 0,007 0,014 1: 19050  

OG 450 2 7 0,99 0,01 0,019 1: 10200  

SS 287 0 1 0,998 0,002 0,004 1: 250000  

OR 117 1 1 0,992 0,008 0,016 1: 15600  

Sardinia 1194 5 12 0,993 0,007 0,0139 1: 20700  

                

 

Table 4. Estimate of the allele frequency and incidence of CS/CISS1  in the Sardinian population.  For the Hardy-Weinberg equilibrium  (p+q)²=1:                                                                                                                                                                        

(p*  = frequency of the dominant allele; q*  = frequency of the recessive allele; 2pq* = frequency of heterozygous ).                                                                                                                                                                                                                             

The incidence in the four different provinces  has been  calculated on 15,000 new birth/ year in Sardinia ( http://www.sardegnastatistiche.it).                                                                  
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Klinik und Poliklinik für Kinderheilkunde 
- Allgemeine Kinderheilkunde - 
Direktor: Univ.-Prof. Dr. med. E. Harms 

 

Universitätsklinikum Münster  Klinik und Poliklinik für Kinder- und 
Jugendmedizin– Allgemeine Kinderheilkunde –  D-48129 Münster, 
Germany 

 
 D-48129 Münster  

 
Hausadresse: 
Albert-Schweitzer-Straße 33 
D-48149 Münster 
Call Center:++49-2 51- 83 - 0 
 
Phone :++49-02 51- 83 - 46439 
Fax:++49-2 51-83 - 47735 
e-mail: rutschf@mednet.uni-muenster.de 

                                                
 

Study on Crisponi Syndrome and Cold Induced Sweating Syndrome 
Study Coordinator: PD Dr. Frank Rutsch, University Children’s Hospital,                   

Albert-Schweitzer-Strasse 33, D-48149 Münster, Germany 
 

Consent Form for Genetic Analysis and for              
Participation in the Patient’s Registry 

  
Patient Name:   …………………………………………………………………… 

Date of birth:                                        …… / …../ ………. 

Today, I was informed by Dr. ______________________ , that a sample of me (my child) is 

planned to be taken for molecular genetic studies.  

It is confirmed, that the sample will not be used for commercial purposes.   

It is confirmed, that the sample will only be used for genetic analysis of the disorder I am (my 

child) is presumably suffering from,  ______________________________ (please specify). The 

results of the genetic studies will only be told to the physician involved. Protection of privacy is 

ascertained.  
 

□ (please check) I agree, that the sample indicated above can be taken from me (my child). 

 

 □ (please check) I agree, that the clinical data of me (my child) will be used in a registry for the 

disease in an pseudonymous fashion. This means that my name (my child’s name) will be 

substituted by a code.  

 

□ (please check)  I agree that in the course of the research study my data (my child’s data) 

concerning the health status and the clinical history, age, gender, weigth and height and ethnic 

origin will be gathered and saved in a pseudonymous fashion.   



Seite 2 von 2 

□ (please check)  I agree that these data will be given to the study coordinator and to the official 

supervising committee of the research study, who will check if the study is run according to 

standards.  

 

□ (please check)   I agree that an authorized person of the study coordinator or an authorized 

person of the supervising committee can gain insight into these data, if this is necessary to 

check the correct guidance of the study.  

 

 

I know, that I can repeal this consent at any time and without giving reasons.   

Place: ………………………………              Date:   ….. / …../ …….. 

  

……………………………… / ……………………………     …………………………………. 

Signatures of the parents/ patient                                                  Signature of the physician  

  

Name: ……………………… / …………………………..                  Name: …………………… 
       



 

 

 

CRISPONI SYNDROME 

AND 

COLD INDUCED SWEATING 

SYNDROME 

 

 

 

 
- clinical data sheet – 

 

 

 

 

 

Patient Initials:  

Date of birth: ____.____.________ (dd.mm.yyyy) 

Sex: m �     f � 

 

 

 

 

 

Physician:          

                                             

 

Hospital / Address: 

 

 

Email: 

 

 

Date: ____.____.________ (dd.mm.yyyy) 



Case History 
 

Past Medical History 
 

Twin: yes �   no �  

 

Delivery: spontaneous �     C-Section �    Other � (please specify: ______________) 

 

Gestional Age:  ___________________ 

 

Birth Weight:  __________ g 

 

Birth Length: __________ cm 

 

Birth Head Circumference: __________ cm 

 

Apgar Score: ____ at 1min. ____at 5 min. ____ at 10 min 

 

Umbilical Cord pH: _____ 

 

Family History  (please attach pedigree-tree) 

 

Nationality / Ethnic Origin:  _________________________ 

 

Consanguinity of Parents:    yes �    no �  unknown  � 

 

Abortions:     yes �    no �  unknown  � 

     If yes, how many: _____________________ 

 

Still born Children:   yes �    no �  unknown  � 

     If yes, how many: _____________________ 

 

Siblings with Diagnosis   yes �    no �  unknown  �  deceased �   

Crisponi Syndrome:   If yes, how many: ____________________ 

     (Please attach an additional form for each sibling) 

 

Siblings with Diagnosis CISS: yes �    no �  unknown  �  deceased � 

     If yes, how many: _____________________ 

     (Please attach an additional form for each sibling) 

 

 

Deceased Siblings:   yes �    no �  unknown  � 

     If yes, how many: _____________________ 

 

Healthy Siblings:    yes �    no �  unknown  � 

     If yes, how many: ____________________ 
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Physical Features 

 
Date of  measuring:                ____.____._______ (dd.mm.yyyy) 

 

Body Height: _________cm  

Body Weight: ________kg 

 

Photo: if possible, please attach a recent photo of the patient. 

 

Head 
 

Chubby Cheeks:   yes �    no �   

 

Micrognathia:  yes �    no �   

 

Anteverted Nostrils:   yes �    no �   

 

High Arched Palate:  yes �    no �   

 

Low Set Ears:  yes �    no �   

 

Rotated Ears:   yes �    no �  direction: ____________ 

 

Depressed Nasal Bridge: yes �    no �   

 

Expressionless Face:  yes �    no �   

 

Nasal Voice:   yes �    no �   

 

Other important findings: yes �    no �   

(please specify)  _______________________________________________ 

    _______________________________________________ 

Head Circumference:     
________ mm 

 

Facial Height  

(distance from the root of the nose to the inferior border of the mandible): 

________ mm 

 

 

Skull Height  

(distance from the root of the nose to the highest point of the vertex): 

 ________ mm 

 

 

 



Bizygomatic Distance  
(distance between the most lateral points of the zugomatic arches):   

  

________ mm 

 

 

Inner Canthal Distance 

(distance between the inner canthi of the two eyes):    

   

________ mm 

 

 

Nasal Length 

(distance from the nasal root to the nasal base):    

  

________ mm 

  

 

Interalar Distance (Nasal Width) 

(distance between the most lateral aspects if the alae nasi): 

________ mm 

 

 

Philtrum Length 

(distance between the base of the nose and the border od the upper lip, in the midline): 

________ mm 

 

Body 
  

Scoliosis:   yes �    no �   

(please specify) __________________________________________________________ 

Surgery:   yes �    no �    if yes, please specify age:_______________(Month, Year)  

 

Camptodactyly:   bilateral �    unilateral �    no � 

Surgery:   yes �    no �    if yes, please specify age:_______________(Month, Year)  

 

Feet anomalies:   yes �    no �   

Over-Riding Toes:  yes �    no �   

Rocker-bottom Feet:  yes �    no �   

Clinodactyly:   yes �    no �   

Syndactyly:   yes �    no �   

 

Torticollis:   yes �    no �   

 

Joint contractures:   yes �    no �   

(please specify region) _____________________________________________________ 

 



Carrying Angle 

(angle subtended by the forearm on the humerus): _______°  

 

Cubitus Valgus:  yes �    no �   

 

Hypospadias:   yes �    no �   

 

Other important findings: yes �    no �   

(please specify)  __________________________________________________________ 

________________________________________________________________________ 

 

Diagnostic Studies 

 
EEG:     yes �    no �  date: ____.____._______ (dd.mm.yyyy)  

(please specify findings) ___________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

 

CT:     yes �    no �  date: ____.____._______ (dd.mm.yyyy) 

(please specify findings) ___________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

 

MRT:    yes �    no �   date: ____.____._______ (dd.mm.yyyy) 

(please specify findings) ___________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

 

EMG:    yes �    no �  date: ____.____._______ (dd.mm.yyyy)  

(please specify findings) ___________________________________________________ 

________________________________________________________________________

________________________________________________________________________ 

 

Nerve Conduction Velocity: _______ m/s date: ____.____._______ (dd.mm.yyyy) 

 

Sweat Test:   yes �    no �  date: ____.____._______ (dd.mm.yyyy) 

(please specify findings or attach report)_______________________________________ 

_______________________________________________________________________ 

 

Sleep Studies:   yes �    no �  date: ____.____._______ (dd.mm.yyyy) 

(please specify findings or attach report)_______________________________________ 

_______________________________________________________________________ 

 

Muscle Biopsy:   yes �    no � date: ____.____._______ (dd.mm.yyyy) 

(please specify findings) ___________________________________________________ 

 



Laboratory Studies 
 

 Date: (dd.mm.yyyy) 

 

Date: (dd.mm.yyyy) 

 

Date: (dd.mm.yyyy) 

 

Plasma 

Noradrenaline 
(please select correct unit) 

   

Adrenaline 
(please select correct unit) 

   

Renin 
(please select correct unit) 

   

Vasopressin 
(please select correct unit) 

   

Dopamine 
(please select correct unit) 

   

Liquor 

GABA 
(please select correct unit) 

   

Aspartate 
(please select correct unit) 

   

Lactate 
(please specify correct 

unit) 

   

Glucose 
(please select correct unit) 

mmol/L 

mg/dl 

mmol/L 

mg/dl 

mmol/L 

mg/dl 

Dopamine 
(please select correct unit) 

   

 

 

Genetic Studies 
 

Mutations in CRLF1 (Chromosome 19p12):  yes �    no � 

(Please specify mutations or attach report) _____________________________________ 

________________________________________________________________________ 

 

Other Mutations:   yes �    no � 

(if yes, please specify)  _____________________________________________________ 

________________________________________________________________________ 

 

 

Diagnosis 
 

Please mark correct diagnosis: 

Crisponi Syndrome    �   Date : ____.____._______ (dd.mm.yyyy) 

Cold Induced Sweating Syndrome  �   Date : ____.____._______ (dd.mm.yyyy) 

 

 

 



Treatment 

 

Administered Drugs: 
 

   

Drug dose / kg  

body-weight 

Duration of 

treatment 

(from...to...) 

comment 

    

    

    

 

 

SupportiveTreatment: 
 

 yes no Duration of treatment 

(from...to...) 

comment 

Artificial 

ventilation 

 

    

O2 

supplementation 

 

    

Nasogastric 

feeding 

 

    

PEG tube  

 

    

Others 

 

    

 

Outcome 
 

If still alive, please specify age: ______________________________________________ 

If deceased, please specify age and cause of death: _______________________________ 

________________________________________________________________________ 

 

Autopsy Performed:    yes �    no �  

(if yes, please attach autopsy report) 


