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Introduction & Scope

The word correlation appears for the first time in a book by Francis Galton (Hereditary

Genius, 1869 [1]), without being further defined (“the characteristic of strong morality

and moral instability are in no way correlated”). Although the term is relatively new

correlations of various type have always been an integral part of human life. Typical

examples of correlation are for example the dependence between the color of the eyes

of offspring and their parents (and in general all the hereditary traits), the relationship

between income and education, or simply traffic jams. From the mathematical point of

view the correlation is a causal, complementary, parallel, or reciprocal relationship, es-

pecially a structural, functional, or qualitative correspondence between two comparable

entities.

In the case of solid state physics, for two independent electrons we have that the

probability density of finding the first electron at r and the second electron at r′ is

〈ρ̂(r)ρ̂(r′)〉 = 〈ρ̂(r)〉〈ρ̂(r′)〉 (1)

where ρ̂(r) is the electron density operator and the outer brackets express the expec-

tation value of the operator. If these two electrons are correlated, then the probability

of finding the first electron at a certain position in space depends on the position of

the second electron, and vice versa. In other words, the product of their independent

density functions does not describe correctly the real situation:

〈ρ̂(r)ρ̂(r′)〉 6= 〈ρ̂(r)〉〈ρ̂(r′)〉 (2)

We can say that the uncorrelated electrons tend to avoid each other or in the same

way that at large distances, the uncorrelated pair density is too small, and at small

distances, the uncorrelated pair density is too large.
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Introduction & Scope

This thesis attempts to explain the behavior of some strongly correlated1 materials

from first principles. Correlated compounds have attracted much attention in the last

decades. The reason for their popularity is due to their rich and exotic phenomenol-

ogy such as charge / orbital / magnetic ordering; strong Jahn-Teller effects; high Tc

superconductivity, polaronic phenomena, multiferroicity etc.

From 1963 (when Hubbard introduced his Hamiltonian for the description of cor-

relation effects in d- and f -bands [2]) to the present day, research has made great

strides, theoretically as well as experimentally. Modern spectroscopy techniques like

x-ray absorption, spectroscopy angular resolved photoemission spectroscopy (ARPES),

neutron scattering experiments, measurements of the optical conductivity or more ad-

vanced ellipsometry, various microscopy techniques, and many more related approaches

or combinations of them provide data which must be interpreted and understood by

means of reliable theoretical calculations. In this thesis, in order to obtain realistic

data, we propose and develop a new methodology (Pseudo-Self-Interaction Correction

[3, 4, 5]) that proves to be a reliable and accurate theoretical tool.

We point out that the increasing knowledge about correlated systems from the

theoretical point of view offers the possibility of designing materials according to our

needs. On the other hand, this requires the development of theoretical techniques that

can capture the essence of the new experimental data produced.

The remainder of this thesis is organized as follow:

– In the first chapter of this thesis we discuss the PSIC approach, and present the new

Variational Pseudo-Self-Interaction formulation (VPSIC).

– Chapter two is devoted to cuprates. In particular we will approach the problem of

Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) quantum oscillation

observed in mildly underdoped (∼0.1 holes per CuO2 unit) ortho-II YBa2Cu3O6.5

based on band structure calculations. We will suggest that the experimentally

observed pockets are a characteristic of some form of ordering (probably magnetic)

causing a Fermi surface reconstruction.

1We use the term “strongly correlated” to describe systems whose electron charge retains atomic-like

features such as strong space localization, poorly dispersed band energies, and large on-site Coulomb

energies.
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Introduction & Scope

In the following, starting from a recent experiment [6], we will clarify theoretically

the properties of a possible stable structures of bulk rocksalt-like CuO.

– In chapter three we will test the new VPSIC formalism on the electronic and struc-

tural properties of the magnetic perovskites YTiO3 and LaTiO3. We show that

the new approach furnishes a coherent guideline to understand the differences

between YTiO3 and LaTiO3, and correctly describes their different magnetic or-

dering of the two systems.

– In chapter four we will present a detailed theoretical analysis of MnO and NiO

magnetic properties under hydrostatic pressures, carried out by an array of both

standard (LDA and PBE) and advanced first-principles methods (VPSIC and the

Heyd, Scuseria and Ernzerhof (HSE) hybrid functional approach). We will show

that the results provided by VPSIC and HSE are quite satisfying and explain

experimental data.

– The last chapter of this thesis is divided in two parts:

• In the first part of the chapter we will approach the problem of charge dis-

proportion in ab inito calculation. We analyze the charge imbalance in the

double perovskite La2NiMnO6, where Ni is nominally 2+ and Mn nominally

4+, using different methodologies such as partial DOS integration, Bader

analysis, etc. Our results confirm that quantifying the charge transfer un-

ambiguously is tricky.

• In the second part we will analyze the possibility of finding a nickel based

heterostructure with properties similar to cuprate. Specifically with our VP-

SIC calculations we will focus on the 1/1 layered system LaAlO3/LaNiO3

for which we find the desired cuprate like Fermi surface structure in the

paramagnetic state. However, we find that the system has an antiferromag-

netic metallic ground state. Our results clarify the origin of the peculiar

properties of LaAlO3/LaNiO3 superlattices.

3
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1

Pseudo-self-interaction correction

The local (spin) density (LDA, LSDA) to density functional theory (DFT) has allowed

accurate first-principles simulations for several decades, and provided a deep under-

standing of many condensed matter systems. Although the successes of LDA and

LSDA are innumerable, there are cases where these approximations fail systematically,

in particular in magnetic and strongly correlated systems.

Typical examples of LSDA failures (or severe difficulties) are the series of transition-

metal monoxides [7], improperly described in LSDA as either small-gap exchange-

antiferromagnetic insulators [8, 9] (MnO, NiO) or even ferromagnetic and nonmagnetic

metals (FeO, CoO, CuO) [8, 10] whereas according to experiments these materials are

charge-transfer antiferromagnetic wide-gap insulators. A similar situation occurs for

the high-Tc parent compounds La2CuO4 and YBa2Cu3O6 which in LSDA are non-

magnetic metals rather than antiferromagnetic insulators [11] and for the perovskite

manganites (e.g., LaxCa1−xMnO3 ) [11, 12] for which the LSDA fails to predict the

correct magnetic and orbital orderings. In general, LSDA favors metallic and ferro-

magnetic ground states over the observed antiferromagnetic insulating ground states.

This is particularly harmful in the case of hexagonal YMnO3, which is antiferromag-

netic and ferroelectric, but is described as a metal within LSDA [13], thus preventing

the possibility of calculating any ferroelectric properties at all.

One, though not the only, reason for these failures is that the approximate exchange-

correlation functional contains a residual electron self-interaction (SI), not canceling out

as it does in Hartree Fock, for example. This effect is marginal in many cases, but it

can be dramatic for 3d and even 2p states, which are very localized near atomic nuclei.

5



1. PSEUDO-SELF-INTERACTION CORRECTION

One consequence is that LSDA overestimates electron delocalization to reduce the self-

interaction (SI) repulsion, and in some cases converts what should be an insulator

into a metal. More generally, it can be said that the SI adulterates, and exaggerates,

the on-site repulsion. There are several techniques that attempt to correct this effect,

such as L(S)DA+U [14] or Hybrid-functionals [15], but in this context we consider the

Pseudo-Self-Interaction Correction (PSIC) [3, 4].

This chapter is organized as follow: in Sec.1.1 we show the origin of SI in LSDA,

in Sec.1.1.1 we discuss the influence of SI on the band-theory description of strongly

correlated materials, in Sec.1.2 we review the main features of earlier work on Self-

Interaction Correction (SIC) implementation in LSDA, in Sec.1.3 We describe the PSIC

formulation and in Sec.1.4 we describe the new variational PSIC approach.

1.1 LSDA and self-interaction

In the LSDA approach the electron energy (i.e. Hartree plus exchange-correlation)

Ehxc[n(r)], and the single-particle effective potential Vhxc[n(r)] depend solely upon

the local value of the electron density. This assumption allows the practical study of

many-body system with a remarkable reduction of the computational effort and makes

practicable the formulation and the algorithmic coding of the most disparate physical

properties which can be determined in a self-consistent manner. On the other hand, the

local dependence on the single-particle electron density entails a SI, i.e. the interaction

of a particle with its self-generated potential. The SI can be quantitatively determined

[16], and the expression of the screening potential is

Vhxc(r) =
N−1∑
i=1

∫
dr′

|ψi(r′)|2

|r− r′|
+ Vxc[n(r)]− Vxc[nN (r)] + (1.1)

+fN

∫
dr′

|ψN (r′)|2

|r− r′|
+ Vxc[nN (r)],

where the third term and the fourth term on the right hand are the Hartree and

exchange-correlation SI contributions of the Nth particle, and nN (r) = fN |ψ(r)|2 is the

charge density and fN the orbital occupation of the same particle. The Hartree SI

depends linearly on fN and dominates the LSDA Vxc[n(r)] ∼ n
1/3
N . At this point we

can define the SI to the LSDA energy functional contribution as:

ESI =
∑

i

Ehxc[ni(r)], (1.2)

6



1.2 Previous Work

where Ehxc[ni(r)] is the Hartree plus exchange-correlation energy of orbital i. This is

certainly one of the major weaknesses of LSDA potential.

We note that the presence of SI is due to the local dependence of the electron

density. Indeed in any exact-exchange theory, for example Hartree Fock, self-exchange

counterbalances the Hartree contribution.

1.1.1 Self-interaction and strong correlated materials

The presence of self-interaction in the LSDA is a major cause of the incorrect descrip-

tion of strongly correlated materials. LSDA is usually regarded as an uncorrelated

theory; however, the LSDA energy and effective potential include correlation, although

in an approximate local form. As a matter of fact, for a free atom, we can compare

the contribution of the correlation energy, which can be isolated from other energy

contributions, with experiment. In this way [17, 18, 19] it was shown that the mag-

nitude of the exchange is underestimated by 10-15% in LSDA while the magnitude of

the correlation energy is overestimated by as much 100-200%. Luckily, for properties

connected to total energy changes (such as e.g. the first atomic ionization potential

potential [18]) these two errors compensate each other and LSDA produces results in

good agreement with the experiments. Unfortunately, error cancellation is not as good

in the screening potential. Indeed the diagonal part of the Hartree potential is markedly

greater than the local exchange, and this results in a SI contribution which causes a

difference between measured electronic removal energy and LSDA eigenvalue.

1.2 Previous Work

In this section, as anticipated, we review briefly the main features of earlier work on

SIC implementation in LSDA.

1.2.1 PZ-SIC

A key contribution is that by Perdew and Zunger [17, 20]. Their SIC recipe is quite

simple: subtract the SI contribution from the total LSDA energy functional ELSDA.

In this way they recover a good agreement between photoemission data and eigenval-

ues, although there is no exact relation of eigenvalues and extraction energies. This

7



1. PSEUDO-SELF-INTERACTION CORRECTION

approach, hereinafter referred to as PZ-SIC, for free atoms takes the form

ESIC [n] = ELSDA[n]−
∑

i

(Eh[ni] + ELSDA
xc [ni]), (1.3)

where i = n, l,m, σ is a collective index for the atomic quantum numbers, and the (spin-

polarization dependent) exchange-correlation energy is referred to the fully polarized

state. Applying the Kohn-Sham minimization to eq.(1.3) we obtain a nearly SI-free

single-particle for particle i

V SIC [n, ni] = V LSDA[n]− Vh[ni]− V LSDA
xc [ni]. (1.4)

Indeed, the potential V SIC still contains a residual contribution of SI due to the non-

linear dependence of the exchange-correlation on the charge density.

In the case of extended systems (i.e. where we assume a Bloch view) in which elec-

tronic charge is delocalized in the system and cannot be associated with a specific ion,

except for some special cases (e.g. molecular solids), the behavior of PZ-SIC undergoes

a radical change. The extension of the PZ-SIC formulation to extended systems was

accomplished by different approaches, for example by implementing the method in the

LMTO (linear-muffin-tin-orbital) basis [21, 22, 23], as well as in the ASA (atomic sphere

approximation) [24, 25], or using the properties of Wannier functions [26, 27, 28]. In

general, whatever the specific strategy, PZ-SIC tends to enhance the charge localization

and leads to an overcorrection of single-particle energies with respect to their LSDA

energies. This is because the energy stabilization induced by the SI potential in the

PZ form is so strong that the electronic charges generally evolves in order to maximize

their localization, with the effect that any localized charge configuration is always at

least a local minimum of the PZ-SIC functional. Configurations with delocalized Bloch

states (e.g. the O p states in manganites) at lower energies [21] seem to occur due

to the artificially enforced spherical approximation, rather than to the ability of the

PZ-SIC functional to detect the correct electronic ground state.

1.2.2 VKP approach

In the PSIC the SI is parameterized in terms of its atomic counterparts. With this

approach the Bloch’s vision is completely preserved, and it is assumed that some degree

of localization, and thus an “effective” SI, is present in the Bloch states and must be

8
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removed. In 1996 Vogel, Krüger and Pollmann [29] (VKP-PSIC) suggested to extract

the SI contribution from the band energies of wide-gap (III-V and II-VI) insulators

exploiting the pseudo-potential (PP) formalism. They modified the usual PP generation

procedure to include the angular moment-dependent atomic SI into each PP projector,

making it SI-free by construction:

V pSIC
l (r) = V PS

l (r)− VH [nl(r)]− V LSD
xc [nl(r)], (1.5)

where V PS
l is the ion-core PP (minus a long-range local part which is treated sepa-

rately), and the other terms are the atomic SI for angular moment l (only l-dependence

survives because the radial symmetry is assumed), and nl = |φl|2 is the corresponding

atomic charge. Using the Kleinman-Bylander [30] (KB) form the PP projector acting

on Bloch states takes the form

V̂ pSIC =
∑

l

|V pSICφl〉〈φlV
pSIC
l |

〈φl|V pSIC
l |φl〉

. (1.6)

SIC projectors are typically short-ranged, so the correction is fairly localized around

the ion core and can be treated by conventional plane wave codes without additional

difficulties. The VKP-PSIC approach improves the agreement between experimental

excitations and computed band energies for a series of wide-gap semiconductors [29,

31, 32]. To understand the reason for this success we analyze the specific case of bulk

ZnO. The valence bands have a well-defined atomic-angular character and each of them

(Zn 3s, 3p, 3d, and O 2s, 2p) is purged of its own atomic self-interaction, in agreement

to eq.(1.6). This assumption works quite well for II-IV wide-gaps. In the general case

the bands with a dominant angular character are subject to a smaller SI than the

corresponding orbitals in the free atom, for various reasons:

- charge spreading dilutes the effects of SI

- bands with a well-defined orbital character are rare, and hybridization among different

atomic states is common

- regardless of their occupation and degree of localization, all bands (high localized

Zn 3d, and O 2s, moderately localized O 2p and weakly localized Zn 3s, 3p are

corrected by the full atomic SI. This, obviously, is questionable because SI should

vanish for empty states

9



1. PSEUDO-SELF-INTERACTION CORRECTION

Based on these considerations it follows that the approach VKP-PSIC is applicable

only to a limited number of cases.

1.3 Pseudo-SIC formulation

Filippetti and Spaldin [3] developed an approach that extends the applicability of VKP

to a large variety of cases, particularly useful for strongly correlated materials. The

key concepts of this generalization are:

- the SI projector cannot be merely atomic, but must somehow depend on the specific

chemical environment to effectively simulate the charge distribution of the real

system;

- the approach should retain the advantages of LSDA, no explicit state dependence,

locality of the effective single-particle potential and eigenstate invariance under

unitary transformations;

- even the PP formalism, an atomic SI projector is a generally valid form that can be

built and used in a single-particle scheme;

- just like in the ordinary PP formalism, the SIC projector must be transferable, and

fixed once and for all for each atomic species.

From these concepts Filippetti and Spaldin proposed the following KB-type PSIC pro-

jector:

V̂ σ
SIC =

∑
i

|Υσ
i 〉〈Υσ

i |
Cσ

i

(1.7)

where

Υσ
i (r) = V σ

HXC [nσ
i (r)]φi(r) (1.8)

is the usual KB projection function, but now with V σ
HXC in place of the usual PP, and

Cσ
i = 〈φi|V σ

HXC [nσ
i (r)]φi〉 (1.9)

the normalization factor of the KB PP. The pseudo-SIC Kohn-Sham (KS) equations

are

[−∇2 + V̂PP + V̂ σ
HXC − V̂ σ

SIC ]|ψσ
nk〉 = εσnk|ψσ

nk〉, (1.10)

10



1.3 Pseudo-SIC formulation

where V̂PP is the PP projector, and εσnk are the KS eigenvalues.

In the VKP approach V σ
HXC [nσ

i (r)] is just the atomic potential of the ith state at full

occupation. Filippetti and Spaldin, instead, introduce in V σ
HXC [nσ

i (r)] the dependence

on the chemical environment writing

nσ
i (r) = pσ

i |φi(r)|2, (1.11)

where φi is the atomic orbital. The occupation number pσ
i can be calculated self-

consistently as atomic orbital projections of the manifold of the occupied Bloch states:

pσ
i =

∑
nk

fσ
nk〈ψσ

nk|φi〉〈φi|ψσ
nk〉, (1.12)

where fσ
nk are Fermi occupation number. For unoccupied state (pσ

i = 0) and the KS

equation reduce to that of LSDA. For fully occupied states (pσ
i =1) the pSIC correction

is completely atomic-like. In a nutshell the pσ
i ’s are localization parameters for the

Bloch states. Of course the introduction of pσ
i implies the recalculation of V σ

HXC [nσ
i ]

at each cycle of self-consistency for each angular component and atom, resulting in an

increase of the computational cost. In order to reduce the computational effort, the SI

potential is assumed linearly dependent on the occupation numbers:

V σ
HXC [nσ

i ] = pσ
i V

σ
HXC [nσ

i ; pσ
i = 1], (1.13)

so that only the pσ
i must be updated at each iteration of the self-consistency. The

above equation implies that all states are corrected by the full atomic SI. This is of

course unrealistic, as the SI will be screened to some extent by the environment. The

full SI (pi ∼ 1) only applies in an atomic (or molecular) limit. There is a necessity to

introduce an “orbital relaxation contribution”. Filippetti and Spaldin [3] proposed an

argument based on the Janak theorem [16]. In DFT the energy required to remove a

fraction p of an electron from a localized state is [16, 17, 21]

∆E(p) = E(p)− E(0) =
∫ t=p

t=0
dtε(t) (1.14)

where ε is the corresponding KS eigenvalue. In LSDA due to the dominance of the

Hartree term we have: ε(p) ∼ ε(0) + pδε, with δε = ε(1) − ε(0). In PZ-SIC the

linear dependence is largely (although not completely) canceled, and ε(p) ∼ ε(1). The

associated relaxation energy that must be provided to the system to extract one electron

11



1. PSEUDO-SELF-INTERACTION CORRECTION

from the single particle state is ∆E(1) = ε(1). In PSIC, instead, only the atomic SI part

(not the whole LSDA Hamiltonian) depends on orbital occupation, hence the energy

relaxation associated to the SI survives and must be accounted for. Assuming a linear

scaling of the SI potential, we get from equation 1.14

∆ESI(1) = εSI(0) +
1
2
δεSI (1.15)

Imposing εSI(0) = 0, i.e. that the SI vanish at zero occupation, we have ∆ESI(1) =

εSI/2, i.e. the SI energy associated to the removal of one electron charge from the

considered state is one half the atomic SI at full occupancy. This energy must be

subtracted off the LSDA eigenvalue to compare it with some observed extraction energy.

This is achieved by rescaling the SI as

V σ
HXC [nσ

i ] → 1
2
V σ

HXC [nσ
i ] (1.16)

1.3.1 Total energy

Filippetti and Spaldin use an expression for the total energy that is not related to

Eq.(1.10) by a variational principle. (It is, by construction, within LSDA and PZ-SIC).

In PZ-SIC the energy functional is [17]

ESIC [n,m] = E[n,m]−
∑
i,σ

EHXC [nσ
i ] (1.17)

where E[n,m] is the LSDA energy functional and EHXC [nσ
i ] the Hartree exchange-

correlation energy of the ith fully spin-polarized electron charge

EHXC [nσ
i ] =

∫
drni(r)(

1
2
VH [nσ

i (r)] + EXC [nσ
i (r)]) (1.18)

where VH is the Hartree potential and EXC is the local exchange-correlation energy

density. For the pseudo-SIC total energy Filippetti and Spaldin adopt expression as

Eqs.(1.17) and (1.18), with the orbital charges nσ
i given by Eqs.(1.11) and (1.12). The

Euler-Lagrange derivative of equation 1.18 yields

δEHXC [nσ
i ]

δψ∗σ
nk

=
δEHXC [nσ

i ]
δpσ

i

δpσ
i

δψ∗σ
nk

= fσ
nk|φi〉Cσ

i 〈φi|ψσ
nk〉 (1.19)

where

δEHXC [nσ
i ]

δpσ
i

= Cσ
i (1.20)
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1.4 Variational pseudo-self-interaction formulation

represents the Janak theorem [16] applied to the SIC contribution, since Cσ
i (Eq.1.9)

is the SI part of the atomic eigenvalue.

Is the non-variational character of the pSIC approach may be acceptable? The non-

variationality in the logic of PSIC is entirely justified: while LSDA (or GGA) starts

from a total energy functional, and the KS equations are formally only a device for

functional minimization, the PSIC aim is to provide an accurate description of the

electronic properties, and then, once single-particle energies and wavefunctions are in

hand, to select an expression for the total energy. Without variationality, the total

energy (Eq.1.17) is selected on the sole criterion of accuracy, which derives from the

accuracy of the LSDA functional itself. In effect, the PSIC energy correction (second

term of Eq.1.17) is a slowly-varying function of the Hamiltonian external parameters,

to which it is only sensitive through smooth changes in the orbital occupations pi.

In practice, the most relevant physical trends are still dictated by the LSDA energy

functional, now depending on eigenstates solutions of the PSIC-KS equations.

ESIC [n,m] =
∑
i,σ

fσ
nkε

σ
nk −

∑
σ

∫
drnσ(r)V σ

HXC [n(r),m(r)] (1.21)

+ EHXC [n,m] + Eion

+
1
2

∑
nk,σ

fσ
nk〈ψ

σ
nk|V̂

σ
SIC |ψσ

nk〉 −
∑
i,σ

EHXC [nσ
i ]

where Eion is the usual Ewald term.
∑

i,σ EHXC [nσ
i ] produces a soft modification to

the LSDA energy functional whereas the fifth term in Eq.(1.21) is a strongly vary-

ing contribution which compensates the same contribution present in the pseudo-SIC

eigenvalues. Without this compensation, Eq.(1.21) would give very inaccurate total

energies which would be unphysically far from the LSDA values as you can see in fig.

1.4 Variational pseudo-self-interaction formulation

In this Section we sketch the generic variational formulation [5], not related to any

specific basis function implementation.
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1. PSEUDO-SELF-INTERACTION CORRECTION

1.4.1 VPSIC energy functional and related Kohn-Sham equations

We start from the following VPSIC energy functional:

EV PSIC [{ψ}] = ELSD[{ψ}]− 1
2

∑
ijνσ

ESI
ijσν P

σ
jiν (1.22)

where ELSD is the usual LSDA energy functional:

ELSD[{ψ}] = Ts[{ψ}] + EH [n] + Exc[n+, n−] + Eion[{ψ}]

written as sum of (non-interacting) kinetic (Ts), Hartree (EH), exchange-correlation

(Exc), and electron-ion (Eion) energies (ψ are single-particle wavefunctions, n+ and n−

up- and down-polarized electron densities, and n=n++n−). Eq.(1.22) follows the spirit

of the original PZ-SIC procedure[17], and subtracts from the LSDA total energy a SI

term written as a sum of effective single-particle SI energies (ESI) rescaled by some

orbital occupations P . Here i, j are sets (li,mi, li,mj) of atomic quantum numbers

(typically relative to a minimal atomic wavefunction basis set) while σ and ν indicate

spin and atomic site, respectively (non-diagonal formulation is necessary to enforce

covariancy, thus i=(li,mi), j=(li,mj)).

Most of the peculiarity of the VPSIC approach resides in the way the second term

of Eq.(1.22) is written for an extended system whose eigenfunctions are Bloch states

(ψσ
nk). The orbital occupations are then calculated as projection of Bloch states onto

localized (atomic) orbitals (hereafter indicated as {φ}):

P σ
ijν =

∑
nk

fσ
nk 〈ψσ

nk|φi,ν〉 〈φj,ν |ψσ
nk〉, (1.23)

where fσ
nk are Fermi occupancies. For the effective SI energies we adopt a similar

approach:

ESI
ijσν =

∑
nk

fσ
nk 〈ψσ

nk|γi,ν〉Cij〈 γj,ν |ψσ
nk〉 (1.24)

where γi,ν is the projection function associated to the SI potential of the ith atomic

orbital centered on atom ν:

γiν(r−Rν) = VHxc[niν(r−Rν), 0]φiν(r−Rν), (1.25)
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1.4 Variational pseudo-self-interaction formulation

where niν(r)=φ2
iν(r). We can express the Hartree plus exchange-correlation atomic SI

potential VHxc in radial approximation:

VHxc = VH [nliν ] + Vxc[nliν , 0] = ∂EHxc[nliν ]/∂nliν (1.26)

(calculated at full polarization: n=n+, n−=0). Finally, the Cij are normalization

coefficients:

C−1
li,mi,mj

=
∫
dr φlimi

(r)VHxc[nli,ν(r), 0]φlimj
(r) (1.27)

with li=lj . They are purely atomic and do not depend on the atomic positions. The

use of projectors γ in Eq.(1.24) is aimed at casting the SI energy in fully non-local form

(analogous to the fully-non local pseudopotential form due to Kleinman and Bylander

[30]) which consent a huge saving of computational effort when calculated in reciprocal

space.

To grab the idea behind Equations 1.24, 1.25, and 1.27, notice that in the limit of

large atomic separation, the Bloch states ψnk are brought back to atomic orbitals φiν ,

and ESI
ijσν to atomic SI energies εSI

i (discarding spin and atomic index):

εSI
i =

∫
dr ni(r) (VH [ni(r)] + Vxc[ni(r), 0]) (1.28)

Thus, the orbital occupations P σ
ijν (if suitably normalized) act as scaling factors for

the atomic SI energies, assumed as the upper limit of the SI correction amplitude.

We remark that in the atomic limit Eq.(1.22) goes back to the PZ-SIC total energy

expression only for what concern the Hartree SI part, while our SI exchange-correlation

energy density (1/2)Vxc[ni, 0] departs from the PZ-SIC expression εxc[ni, 0], since Vxc =

εxc + ni∂εxc/∂ni.

From Eq.(1.22) we can obtain the corresponding VPSIC Kohn-Sham equations

through the usual Euler-Lagrange derivative:

∂EV PSIC

∂ψ∗nkσ

= ε̃nkσ ψnkσ

= ĥLSD
σ ψnkσ −

1
2

∑
ijν

{
∂ESI

ijσν

∂ψ∗nkσ

P σ
jiν + ESI

ijσν

∂P σ
jiν

∂ψ∗nkσ

}
(1.29)

15



1. PSEUDO-SELF-INTERACTION CORRECTION

where ε̃nkσ are VPSIC eigenvalues, and;

hLSD
σ (r) = −∇

2
r

2

+ VH [n(r)] + Vxc[n+(r), n−(r)] + Vion(r) (1.30)

is the usual KS LSDA Hamiltonian, and:

∂ESI
ijσν

∂ψ∗nkσ

= |γi,ν〉Cijν〈 γj,ν |ψσ
nk〉; (1.31)

∂P σ
jiν

∂ψ∗nkσ

= |φj,ν〉 〈φi,ν |ψσ
nk〉. (1.32)

The first sum term in curly bracketsin Eq.(1.29) corresponds to the SI potential

projector written as in the original PSIC Kohn-Sham equations. In practice they give

similar results when applied onto the Bloch state. Thus Eq.(1.29) describes an energy

spectrum substantially similar to that of the non-variational scheme, but with the added

bonus of originating from the VPSIC energy functional.

In DFT methods it is customary to rewrite the total energy in terms of eigenvalue

sums. Indicating with εnkσ the LSDA eigenvalues, it is immediate to verify that∑
nkσ

fσ
nk ε̃nkσ =

∑
nkσ

fσ
nk 〈ψσ

nk|
∂EV PSIC

∂ψ∗nkσ

〉

=
∑
nkσ

fσ
nk εnkσ −

∑
ijσν

ESI
ijσνP

σ
jiν , (1.33)

Eq.(1.22) can then be rewritten as

EV PSIC [{ψ}] = ẼLSD[{ψ}] +
1
2

∑
ijσν

ESI
ijσν P

σ
jiν (1.34)

where

ẼLSD[{ψ}] =
∑
nkσ

fσ
nk ε̃nkσ + EHxc[n+(r), n−(r)]

+ Eion −
∑

σ

∫
drnσ(r)V σ

Hxc[n+(r), n−(r)] (1.35)

is the LSDA energy functional but now including the VPSIC eigenvalues in place of the

LSDA eigenvalues. Finally, as in the original PSIC formulation the SI VHxc potential

is rescaled by a relaxation factor α=1/2 accounting for screening (i.e. suppression) of

the atomic self-interaction. A careful test on a large series of compounds [33] confirmed

that this relaxation value is adequate for most extended bulk systems.
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1.4 Variational pseudo-self-interaction formulation

1.4.2 Simplified variants of VPSIC and relation with the original non-

variational method

From the general espression of Eq.(1.22) two interesting subcases can be obtained:

assumig fixed (i.e. non self-consistent) orbital occupations Pij , in Eq.(1.29) the second

term in curl brackets vanishes and the VPSIC-KS equations reduce to those of the

original PSIC scheme of Ref.[3] (indeed, it was previously pointed out [4] that the

original scheme becomes variational at fixed orbital occupations).

Another useful subcase is obtained replacing Eq.(1.24) with a simplified expression:

ESI
ijσν = P σ

ijνε
SI
iν = P σ

limimjν ε
SI
liν

(1.36)

where the atomic εSI
liν

(in radial approximation) is given by Eq.(1.28). Using Eq.(1.36),

previous Eqs.(1.22) and (1.29):

EV PSIC0 [{ψ}] = ELSD[{ψ}]− 1
2

∑
ijνσ

P σ
ijν P

σ
jiν ε

SI
jν (1.37)

= ẼLSD[{ψ}] +
1
2

∑
ijνσ

P σ
ijν P

σ
jiν ε

SI
jν (1.38)

∂EV PSIC0

∂ψ∗nkσ

= ĥLSD
σ ψnkσ −

∑
ijν

P σ
ijν

∂P σ
jiν

∂ψ∗nkσ

εSI
jν (1.39)

This simplified VPSIC formalism (hereafter indicated as VPSIC0) is a computa-

tionally convenient alternative (especially in terms of required memory) to perform

structural optimizations in large systems. However it is tipically less accurate for mag-

netic systems.

1.4.3 Forces formulation

In VPSIC the atomic forces formulation follows from the usual Hellmann-Feynman

procedure. It is obtained as the LSDA expression augmented by a further additive

contribution due to the atomic-site dependence of the SI projectors:
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1. PSEUDO-SELF-INTERACTION CORRECTION

− ∂EV PSIC [{ψ}]
∂Rν

= FLSD
ν +

+
1
2

∑
ij,nkσ

fσ
nk

{
〈ψσ

nk|
∂γi,ν

∂Rν
〉Cij〈 γj,ν |ψσ

nk〉P σ
jiν [{ψ}] + c.c.

}

+
1
2

∑
ij,nkσ

fσ
nk

{
ESI

ijσν [{ψ}] 〈ψσ
nk|

∂φi,ν

∂Rν
〉〈φj,ν |ψσ

nk〉+ c.c

}
(1.40)

whereas in the simplified version, we have, in addition to FLSD
ν the quantity:∑

ij,nkσ

fσ
nk

{
P σ

ijνε
SI
jν 〈ψσ

nk|
∂φj,ν

∂Rν
〉〈φi,ν |ψσ

nk〉+ c.c

}
(1.41)

In writing Eqs.(1.40) and (1.41), we have assumed that the force on a given atom

ν only depends on the single atomic projector centered on ν. This is not necessarily

true if the orbital occupations are to be re-orthonormalized on the cell. This choice

complicates appreciably the above formulation.
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2

Cuprates

This chapter addresses some issues in relation to cuprates. In particular, in Sec.2.1 we

approach the problem of quantum oscillations and in Sec.2.2 we study the electronic

and magnetic properties of CuO in the rocksalt-structure.

2.1 Quantum oscillations

The main part of the following discussion is published in the APS Journal “Phys.

Rev. B, 79(064519), 2009 [34]” and in the EPS Journal “EPL, 88(67009), 2009 [35]”.

The section about the non-magnetic phase of ortho-II YBa2Cu3O6.5 (Sec.2.1.3) was

essentially my own work, or about 90% of the work. In the section about magnetic phase

(Sec.2.1.4) my operational contribution was the calculation of the antiferromagnetic

phase of Y1−xCaxBa2Cu3O6 (no spinless polarons), or about the 35% of the work.

The writing and preparation of the papers was done collaboratively with coworkers and

supervisors, as did the planning and assessment of the work.

2.1.1 Introduction

The existence of a Fermi surface (FS) in underdoped high-Tc superconductors is at-

tested by Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) quantum oscilla-

tion observed in mildly underdoped (∼0.1 holes per CuO2 unit) ortho-II YBa2Cu3O6.5

(henceforth YBCO; ortho-II stands for the chain-aligned oxygen configuration with

one Cu(1)-O chain per 2×1×1 cell) and YBa2Cu4O8 [36, 37, 38, 39, 40] and by angle-

resolved photoemission (ARPES) [41, 42, 43, 44]
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The oscillations (of resistance and Hall coefficient in SdH, and magnetization in

dHvA) correspond to closed sections (pockets) of the FS and they exhibit, as a function

of the inverse of the magnetic field, characteristic frequencies related to the cross-

sectional area of the pocket (or pockets: their number and location is undetermined).

The frequency measured by dHvA experiments (more accurate than SdH) is 540±4 T,

corresponding to a small portion (2%) of the Brillouin zone being enclosed by the

pockets. The cyclotron mass, deduced from a Lifshitz-Koshevic fit of the oscillation

amplitude vs temperature, is m=1.76±0.07 free-electron masses. The oscillations were

observed [36, 37, 38] in high field and only at low (4 K) temperature; the sign of the

Hall coefficient was seen to become negative from about 25 K downward, and this was

interpreted as a signature of the pockets in question being electron-like in nature. A

further recent measurement [45] in YBa2Cu3O6.51 reported, in addition to the same

signal of Ref. [36], an oscillation with frequency and mass in the vicinity of 1600 T and

3.4 me respectively, allegedly (see Ref.[45], p.201) associated with a hole-like pocket.

On the other hand, angle-resolved photoemission (ARPES) [41, 42, 43, 44] observes

large zone-corner-centered cylinders at optimal doping turning into disconnected hole-

like arcs near nodal points upon underdoping.

The microscopic nature of the pockets is currently under intense debate. Several

hypotheses have been formulated under the general category of a symmetry-breaking

FS reconstruction, as suggested for “1/8” compounds [46], among which d-density-

wave order [40], field-induced long-range magnetic order [47], short-range magnetic

order [48, 49, 50], and magnetic polarons [51, 52, 53], but none of them has gained a

general consensus yet. Magnetic correlations are popular candidates as, according to

various experimental probes [54, 55, 56, 57, 58, 59], antiferromagnetic (AF) correlations

coexist with, or survive into, the superconducting (SC) phase over a wide doping range.

A further problem is the discrepancy between SdH pockets and ARPES arcs, and

their electron vs hole nature. It is usually supposed in Ockham’s razor fashion that

the same single normal (i.e. non superconducting) phase is observed in oscillation

and ARPES. Actually, this is far from obvious, because SdH/dHvA are done in high

field at low T, and ARPES in zero field and high T. Thus, magnetic fluctuations

possibly induced by the field may well be incommensurate, hence not amenable to

short-wavelength periodic models. On the other hand, ARPES measurements may

be affected by surface contributions or lack of resolution. These issues remarkably
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2.1 Quantum oscillations

complicate the interpretation of the experiments, and even more so the possibility of

reconciling their results (see Ref.[60] for a thorough discussion).

As already mentioned SdH and dHvA examine at low temperature a state obtained

by applying a high magnetic field to the superconductor. To a first approximation

this state is supposed to be the normal (possibly pseudo-gap) state. The simplest

hypothesis is that once superconductivity is removed, YBCO is a metallic and non-

magnetic Fermi-liquid like system (although more sophisticated options also exist, such

as e.g. magnetic fluctuations and polaronic formations in stripe-like morphology [61]

and more). Since experiments are often interpreted based on this assumption, an issue

to be settled is whether or not the FS of this specific non-magnetic metallic phase

exhibits pockets as revealed in experiments. At the same time the hints about the

role of magnetism suggest a considerable scope for ab initio band-like quasiparticle

calculations, accounting accurately for material-specific information, and for coupling

to the lattice.

The remainder of this Section is organized as follow: Subsection 2.1.2 describes

briefly the methodologies employed. In Subsection 2.1.3 we analyze the non-magnetic

metallic phase of YBCO with three distinct techniques based on DFT: GGA (gener-

alized gradient approximation), GGA+U, and PSIC. Furthermore, we adopt the com-

mon practice (discussed below) of applying rigid-band shifts to explore the FS in a

wide energy interval surrounding the calculated EF. Our calculation widen the scope

of recent[62] calculations limited to the GGA approach. Our study shows that overall

there is no reliable indication that non-magnetic metallic YBCO possesses electron-FS

pockets. Specifically, only one technique (the GGA+U) finds an electron-like pocket,

appearing however at a –60 meV shift away from calculated EF. None of the other

techniques find any such pocket in a ±100 meV interval around EF. As we will argue,

in fact, there is only scant evidence for hole-like pockets as well.

In Subsection 2.1.4 we present results for the FS of Ca-doped Y1−xCaxBa2Cu3O6

at hole doping h=x/2=0.125 (thus hole injection only involves CuO2 planes, without

the complicacies due to oxygen doping). In particular we focus on the AF ordering

and two other polaronic configurations (as well as the Pauli paramagnetic (PM) phase

as a reference) as possible candidate electronic ground-states states in an underdoped

cuprate. Our results apparently do not solve the pockets vs. arcs contest, insofar

as the calculated FS features partially agree, and partially disagree, with both the
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experiments. In fact, all the investigated magnetic states exhibit nodal pockets, with

calculated areas not far from SdH experiments. However, the calculated pockets are

hole-like, in contrast with oscillation results, but in agreement with the totality of

ARPES measurements. This prevents an identification and leads us to conclude that

the analyzed magnetic configurations are not those observed. We mention two possible

solutions to this puzzle. First, as shown below, the FS properties are tied closely to the

specific magnetic arrangement, so that different pocket areas and shapes, as well as,

possibly, local curvature, will be associated with more complex magnetic correlations;

e.g., Jahn-Teller bipolarons [52, 53] or spin-bag-like ferromagnetic polarons [63] (these

structures are currently beyond the computational limits of our method, although some

of them may become feasible in the near future). Second, the high magnetic field in

SdH may produce a state influencing the FS in ways beyond the scope of zero-field

calculations [47] such as, e.g. inducing incommensurate magnetic correlations. On the

other hand, ARPES results are easier to reconcile with our results, e.g. considering arcs

as product of configurationally averaged PM and AF phases. Beside these speculations,

here we provide evidence that a first-principle theory can indeed describe the Mott phase

of high-Tc compounds at low-doping, and establish a relation, grounded on realistic

quantum-mechanical simulations, between magnetic ordering and the presence of small

pockets at the FS of high-Tc superconductors.

2.1.2 Technicalities

We calculate the band structure of YBCO in the non-magnetic metallic state with three

different DFT-based techniques. We use the GGA (generalized gradient approxima-

tion), GGA+U, and the pseudo-self-interaction correction method (PSIC) [3, 4] which

correctly describes the physics of several correlated cuprates [64, 65, 66, 67, 68, 69]. In

particular the PSIC is able to describe the competition of metallic and insulating phases

of YBa2Cu3O6+x from x=0 (where it is [69] an antiferromagnetic Mott insulator) across

two metal-insulator transitions [68] to metallic x=1, obviating to the failures of plain

GGA or similar approaches in this context. Our GGA and GGA+U calculations are

carried out using the VASP package [70, 71, 72, 73] with the projector-augmented wave

method (PAW) [74, 75]. The PSIC calculation are performed using a custom in-house

code with ultrasoft pseudopotentials [76] and a plane wave basis set. The cutoff energy

was set at 420 eV. A Monkhorst-Pack [77] 9×19×6 grid was used for the self-consistency
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cycle. We assumed the crystal structure of YBa2Cu3O6.5 determined by Grybos et al

[78, 79]. We intentionally use the in-plane 2×1 periodicity appropriate to chain-ordered

ortho-II YBCO at this specific doping, since experiments are claimed to be performed

in this structure. We tested non-spin-polarized calculations, spin-polarized calculations

with small initial moments, and fixed-magnetic-moment calculations with zero imposed

magnetization, consistently getting the same results, i.e. a non-magnetic metallic state.

The Fermi surfaces are visualized with the Xcrysden package [80, 81].

We used the Dudarev implementation [82] of GGA+U, whereby the relevant param-

eter is the difference U–J of the effective on-site Coulomb and exchange interactions.

U–J was set to 9 eV for the d states of planar Cu, which reproduces the fundamental

gap of Mott-insulating antiferromagnetic YBa2Cu3O6 as obtained in PSIC [68, 69] or

in experiment (no qualitative changes are observed down to U–J=6 eV for YBCO). We

underline that the paramagnetic FS calculation is sensitive to U–J via small orbital

polarizations (i.e. deviations from exact half-filling) in the partially occupied Cu dx2−y2

states, and this may affect the details of band morphology in the vicinity of EF.

For the magnetic phase we use only the PSIC approach. No attempt to describe by

first-principles Ca-doped Y1−xCaxBa2Cu3O6 has been made so far, to our knowledge.

A few LDA+U calculations were carried out for the simpler La1−xSrxCu2O4 system

[63, 83] (in particular Ref.[63] is the precursor study of polaronic configurations in high-

Tc cuprates by first-principles), while model calculations for polaronic configurations

are more common (see e.g. the Peierls-Hubbard Hartree-Fock Hamiltonian including

electron-phonon coupling [84]).

Our PSIC calculations for Y1−xCaxBa2Cu3O6 are carried out with a plane waves ba-

sis and ultrasoft [76] pseudopotentials (energy cutoff 30 Ryd, 12×12×12 special k-point

grids for density of states calculations, 11×11×11 uniform grid for FS calculations). Ca

doping is described by explicit Y-Ca substitutions in 2×2×1 supercells, a choice which

limits the magnetic patterns that can be simulated to PM and AF orderings, and two

Zhang-Rice polaron configurations within AF background.

2.1.3 Non-magnetic phase: ortho-II YBa2Cu3O6.5

In this section we study the FS of metallic, non-magnetic ortho-II YBa2Cu3O6.5 (Fig.2.1)

using GGA, GGA+U and PSIC. The calculated Fermi surface exhibits no pockets in

GGA+U and PSIC, a minor one in GGA. Upon shifting the Fermi level in the vicinity
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of the calculated value, we instead observe several pocket structures. We calculate their

cross-sectional areas and cyclotron masses. Overall, our calculations show no solid ev-

idence of the existence of electron-like –nor, in fact, of any– Fermi surface pockets in

this phase. This suggests that the origin of the pockets should be sought for in other,

different phases.

Figure 2.1: Crystal structure of YBa2Cu3O6.5: yttrium (orange), barium (green), copper
(red), oxygen (blue).

2.1.3.1 Band structures

In Fig.2.2 we compare the band structures in the kz=0 plane, as obtained by the three

methods. The dispersion in kz is weak and not important in the present context. kx

and ky are in units of the inverse 1/a and 1/b of the in-plane lattice constants. The

leftmost panel (Fig.2.2(a)) displays the bands within the GGA approach. Moving along

the (π/2,0)-(π/2,π) direction, the first band to cross EF is mainly due to states of the

Cu(1)-O chain. This band is very close to being one dimensional. The next four bands

crossings EF come from the CuO2 planes. There is a splitting between the bonding

and antibonding CuO2 bands of ∼0.2 eV along the (π/2,0)-(π/2,π) line at EF. Each

of these two bands are further split up by the additional 2a periodicity (this is most

evident close to the point (π/2,π)). We find that the splitting is 40 meV at EF along

the (π/2,0)-(π/2,π) direction. In the GGA calculation a fairly flat Cu(1)O chain-Oapical

band crosses EF close to the (0,π) point and gives rise to a small tubular quasi-2D hole

pocket. This band is 13 meV above EF at (0,π). In addition, a second band with

a similar character lies just 20 meV below EF at (0,π). Our results are similar to

calculations on YBCO reported previously [62, 85].
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Figure 2.2: Band structures of YBa2Cu3O6.5 - Band structures of YBa2Cu3O6.5. (a)
GGA, (b) GGA+U with U–J= 9 eV, (c) PSIC.

In the central panel, Fig.2.2(b), we show the GGA+U bands. Overall, the GGA+U

rendition appears quite close to those of GGA. This is expected as U only affects

magnetic and/or orbital-polarized states, thus the paramegnetic configuration is mildly

affected. The main difference with respect to the GGA case is that the flat chain-apical

bands crossing EF near (0,π) are now about 80 meV above EF and 140 meV below

EF at (0,π), i.e. they are split by more than 200 meV, compared to about 30 meV in

GGA. This difference is due to the indirect (i.e. self-consistent) effect of the orbital

polarization of in-plane Cu d states on the band manifold [82].

The right panel, Fig.2.2(c), shows our calculation with the PSIC technique. Here

we see more radical differences with respect to the other two methods, mainly due

to the fact that PSIC corrects for self-interaction Cu d as well as O p states, so that

the corrections can be equally sizable for non magnetic and/or non orbitally-polarized

states. This description results in generally less dispersed band structure; chain bands

are now far from EF, and the net result is that there are no small pockets in the Fermi

surface.

2.1.3.2 Fermi surfaces

Strictly speaking, the theoretical prediction of the FS is based on the calculated elec-

tronic structure and Fermi level. Here, however, we also consider how the FS changes

upon an upward or downward shift of the Fermi level compared to the calculated value.

This is a fairly common practice in band theory studies of superconductors. The first
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motivation is that, while DFT calculations usually describe well the general features of

the band structure of metals, small discrepancies in the relative positions of the bands

are common when comparison with experiment is involved. (Generally, this relates to

structural details and of course to the DFT description of the electron correlation.)

For example, in Sr2RuO4, studied in detail with the dHvA technique, the Fermi energy

needs to be shifted by 40 meV in either direction [86] to improve the calculated-bands

agreement with experiment. Even in MgB2, shifts of the order of 100 meV are needed

[87, 88].

A further motivation pertaining to doped cuprates is that Fermi level shifts roughly

simulate doping fluctuations. Of course the shift-doping relation depends on which

specific band or bands are or get occupied upon shifting. In our case the maximum shifts

applied (∼50–60 meV) correspond to rather substantial doping fluctuation (∼±0.04,

i.e. a 30% of the nominal doping).

In Fig.2.3 we collect the FS for the three techniques (top to bottom), and upward

to downward (left to right) shifts of the Fermi level. The top panel (Fig.2.3(a)) reports

GGA results. For ∆EF=+50 meV the FS consists of just two large hole-like CuO2 sheets

centered on (π/2,π), plus three quasi-one-dimensional sheets (one from the chains, and

two from the planes). As EF shifts down, a small hole-like pocket develops near the

(0,π) point, originating from the flat CuO-Oapical band discussed earlier. A further

lowering of EF causes this pocket to grow in size and then merge with the antibonding

CuO2 plane sheet. As EF is further reduced, the second CuO-BaO band crosses the

Fermi level, giving rise to another pocket. Eventually, this merges with the bonding

CuO2 plane sheet. Similar results were recently reported in Refs.[62] and [89].

Fig.2.3(b) shows the FS evolution according to GGA+U calculations. In this case

for ∆EF=+50 meV the FS is similar to the GGA calculation, but shows a hole-like

pocket near the (0,π) point, whose origin is the chain-apical band. This pocket merges

with the CuO2 sheets at zero shift. This trend is again expected given the larger

splitting of the chain-apical band at (0,π) discussed in connection with Fig.2.2. For

∆EF=–55 meV, an electron-like pocket appears near (π/2,π), surrounded by a hole-

like sheet. Going back to Fig.2.2, one immediately realizes that this is also due to

the enhanced splitting in GGA+U: a similar pocket would appear in GGA for a much

larger negative shift of over 200 meV.
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Figure 2.3: Evolution of the FS of YBCO - Evolution of the FS of YBCO with
Fermi-level shift ∆EF in the basal plane (kz = 0). The main quantum oscillation orbits
(Fn) are marked on the O meV and –55 meV panel for GGA (a), on the +50 meV and
–55 meV for GGA+U (b). In PSIC there are no small pockets.
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Fig.2.3(c) shows the PSIC results. The only structures in the FS are two large

hole-like CuO2 sheets centered on (π/2,π). The Fermi level shift only moderately affect

their area. No small pockets appear in this shift interval.

Overall Fig.2.3 shows a marked sensitivity of the GGA and GGA+U FS to the

relative positions of the bands. This suggests that subtle changes in doping could

result in the formation of small FS pockets. On the other hand, the PSIC FS is quite

independent of doping, and would lead to predict or expect no small pockets at all.

2.1.3.3 Fermi surface pockets: frequencies and masses

To make contact with the quantum oscillations measured in SdH and dHvA experiments

[36, 37, 38, 45], we calculate the quantum oscillation frequencies F=(~A/2πe) from the

cross-sectional area A of the orbits (i.e. the pockets), and the attendant cyclotron

masses m=~2(∂A/∂E)/2π for the various structures found by the different techniques.

They are reported in Figs.2.4, 2.5, and 2.6 for GGA, GGA+U, and PSIC, respectively.

For all techniques we report the high-frequency oscillations related to large cylinders;

for GGA and GGA+U only, low-frequency oscillations related to small pockets are

reported in a second panel. Thus, the frequencies shown in Fig.2.4(a), Fig.2.5(a) and

Fig.2.6 (F1 and F2) are from the main CuO2 sheet surfaces, whereas those in Fig.2.4(b)

and Fig.2.5 (b) (F3 and F4) are from the small pockets. We note, first of all, that the

frequencies calculated for the main CuO2 sheets (F1 and F2) are similar for GGA

and GGA+U with frequencies between 3000 T and 5500 T, whereas the frequencies

calculated with the PSIC approach are between 1000 T and 2000 T. The reason of

this difference is the lesser dispersion of the band structure as calculated with the

PSIC technique. All values are way larger than the experimental one; the masses are

typically a factor of two (or more) smaller than in experiment, and always negative.

These FS sheets can therefore be ruled out as the origin of the experimental oscillations

reported so far.

Next we analyze the small-pocket signals in the frequency range 0 to 900 T. In

the GGA calculation, the hole-like pocket F3 has a frequency between 100 and 600 T

depending on the EF shift; the experimental value would be attained at a shift of

about –65 meV. The calculated mass of this pocket is shift-independent, and equal to

∼–1.4 me. The F4 pocket has a fairly low frequency of 100 to 300 T and a negative

mass similar to F3. With the GGA+U approach we find the hole-like pocket F4, with a
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Figure 2.4: GGA extremal dHvA frequencies - GGA extremal dHvA frequencies
(solid) for the large hole-like pockets (a) and for the small pockets (b). Dash-dotted lines
are the calculated band masses.
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roughly shift-independent mass of ∼–1.25 me and frequency in the 400 to 600 T range,

and the electron-like pocket F3 with frequency between 400 and 800 T and a sharply

varying mass, between 1.5 me and 2.3 me.

Comparing with experiments [36, 37, 38], several of our calculated pockets may seem

good candidates. Frequencies and masses (in absolute value) are more or less in the

ballpark. If we accept the assumption that the change of sign of the Hall resistance [37]

is purely due to the electron-like nature of the pockets, we implictly fix the experimental

sign of the mass to a positive value. The frequency and mass deduced from observation

[36, 37] would then be compatible only with the F3 GGA+U pocket.

A very recent measurement [45] in YBa2Cu3O6.51 has revealed, in addition to the

same signal of Ref. [36], an oscillation with frequency and mass in the vicinity of 1600 T

and 3.4 me respectively. In Ref.[45] (p.210) the signal is attributed tentatively to a hole-

like pocket. In all our calculations, including shifts, there is only one case (GGA+U at

large negative shift, rightmost picture in panel b of Fig.2.3) in which hole and electron

pockets coexist. Near the (π/2,π) point in the GGA+U calculations, starting at a

shift of –55 meV, the structure recognizably involves two distinct pockets: one is the

electron pocket F3 discussed above; the other a larger hole-like pocket surrounding F3

itself. Their simultaneous presence is due to a change in curvature of the same band,

most notably between (π/2,π) and (π/2,0). The character of this band is, like that of

F3, strongly chain-apical. The corresponding calculated frequency is about 2200 T and

a mass of –1.4 me. The frequency is very roughly similar to the 1600 T measured in

Ref. [45], while the mass is over a factor two smaller.

Overall, however, we conclude that there is not enough evidence to actually associate

our calculated results to the experimental findings of Refs.[36, 37, 38, 45]. The reasons

will be discussed in the next Section.

2.1.3.4 Discussion and summary

The calculations just reported have detected several small pockets (mainly hole-like)

roughly compatible with the observed oscillation. However, all these small pockets have

essentially chain or chain-apical character, and not in-plane character. GGA+U does

seemingly finds the “right” pattern of coexisting electron and hole pockets, but (aside

from the need for an artificial –60 meV Fermi level shift, corresponding to a 30% over-

doping) both pockets have a chain-apical nature even stronger than the corresponding
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GGA-calculated band due to the remarkable (perhaps exaggerated) U -induced lowering

of in-plane Cu bonding states.

On the other hand, there appears to be experimental evidence that the negative and

oscillating Hall resistance at low temperature resulting from electron-like pockets (i.e.

a positive mass) be related to states residing in the CuO2 planes. This is supported

[36] by the suppression of ab-plane conductivity anisotropy below 100 K, implying that

chains do not conduct at low temperatures (and high field).

Further supporting the fact that FS pockets are a plane-related feature, quantum

oscillations were observed in YBa2Cu4O8 [37, 39, 90]. Calculations [62, 90, 91] for that

compound have shown that the GGA-calculated band related to the F3 hole pocket in

YBa2Cu3O6.5 is now as far as 400 meV below EF, hence cannot not reasonably invoked

to explain the observations.

We further recall that pockets appear only upon appreciably shifting the Fermi

energy: the proper calculated Fermi surfaces, i.e. those at zero shift, show no small

pockets, except for the GGA F4 hole pocket of Fig.2.3(a), related to the backfolding

in the 2×1 cell of a pocket found by GGA itself in YBa2Cu3O7 (not seen by ARPES)

[92].

Were we forced to embrace one of the methods applied here and the pertaining

conclusions as the most reliable in this context, we would by all means pick PSIC, and

conclude that in non-magnetic YBCO simply there are no small pockets, electron-like

or otherwise. Indeed, among those used here, PSIC has shown to be by far the most

dependable technique in the context of cuprates. For instance, the energy balance of

various magnetic phases of YBa2Cu3O6+x is correctly described, and so are the general

properties of a number of cuprates [64, 65, 66, 67, 68, 69]. Furthermore, in the context

of FS determination, PSIC (top of Fig.2.7) matches ARPES perfectly for YBa2Cu3O7

[92] whereas GGA (bottom of Fig.2.7) finds, as mentioned, a zone-corner pocket which

ARPES does not observe.

In summary, we presented calculations of the electronic structure of YBCO in the

non-magnetic state with three different DFT-based approaches: GGA, GGA+U and

PSIC. Upon substantial shifts of the Fermi energy, GGA and GGA+U do produce

small FS pockets, mostly originating from chain or chain-apical bands, with frequencies

and band masses similar to those experimentally observed (one GGA+U pocket has a

positive cyclotron mass, i.e. is electron-like), while PSIC shows no small pocket at all.
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Figure 2.7: PSIC (top) and GGA (bottom) FS for YBa2Cu3O7

34



2.1 Quantum oscillations

As discussed, our conclusion is that there is no unambiguous evidence for the existence

of electron-like pockets –nor, indeed, of any pockets– in the non-magnetic metallic state

of YBa2Cu3O6.5. In addition, no pockets (either electron or hole) derive from in-plane

states. This is a conclusion coherently obtained by three different ab initio techniques.

We suggest that the experimentally observed pockets are a property of another state of

YBCO, possibly characterized by some form of ordering (probably magnetic, given its

coexistence with superconductivity up to high doping revealed by many experiments)

causing a FS reconstruction.
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2.1.4 Magnetic phase: Y1−xCaxBa2Cu3O6

In this section, using the PSIC, we study the FS of underdoped Y1−xCaxBa2Cu3O6

(Fig.2.8) in a selection of magnetically ordered and polaronic states. Inclusion of doping

on the antiferromagnetically ordered CuO2 planes causes the appearance of small, hole-

like Fermi surface pockets centered around the nodal points. The pocket properties

(area, mass) depend on the underlying magnetic ordering (e.g. change with polaron

formation), although the hole-like character is rather persistent for all the examined

magnetic states.

Figure 2.8: Crystal structure of Y1−xCaxBa2Cu3O6 for x=0.25: yttrium (orange), bar-
ium (green), calcium (violet), copper (red), oxygen (blue).

2.1.4.1 Results

The PSIC approach successfully describes [68] the undoped precursor YBa2Cu3O6 as

an AF Mott insulator. The main features of the AF Mott phase can be recognized in

the closely similar orbital-resolved density of states (OR-DOS) at h=x/2=0.125 (top

panels of Fig.2.9): valence and conduction bands are a mix of spin-polarized Cu dx2−y2

and unpolarized O pxpy states, with the main optical transition (involving CuO2-plane

orbitals) starting at 1.2 eV, and higher transitions around 3.5 eV into apical O pz and

Cu dz2 states. The Cu magnetic moments of 0.5 µB and in-plane AF coupling constant

J'0.15 eV in YBa2Cu3O6 agree well with experiment.
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Figure 2.9: OR-DOS for AF and PM phase at h=0.125 doping - OR-DOS for AF
(top) and PM (bottom) phase at h=0.125 doping. Labels “ap” and “pl” indicate apical
and in-plane (CuO2) atoms, respectively; arrows show spin directions. For each atom the
light shadowed (green) curves shows the most important orbital contribution (px for Opl,
pz for Oap, dx2−y2 for Cupl, Ba, and Y, dz2 for Cupl), the dark shadowed (black) curves
the contribution of the other p (for O) and d (for Cu, Y, and Ba) orbitals.

37



2. CUPRATES

Fig.2.10 report calculated band energies, hole density isosurfaces, and FS for both

AF and metallic non-magnetic (i.e. Pauli-paramagnetic (PM)) phases at h=0.125. The

latter (right panels) shows doubly degenerate bands, and no Mott gap. The valence

band is a 3.5 eV-wide spin-unpolarized dx2−y2-(px,py) hybrid, with Fermi level EF

at ∼2 eV below the valence band top (VBT). The corresponding hole density is an

array of connected bonds of self-evidently dx2−y2-(px,py)–like shape; the FS is a large

cylinder centered at the zone corner, as expected for the metallic Fermi-liquid-like state.

Only in-plane atoms contribute to the FS, whereas apical-atom states start appearing

∼0.2 eV below EF.

In the AF state (left panels) holes are homogeneously spread and evenly distributed

through up- and down-polarized planar Cu. Despite the altered orbital filling and

magnetic moments of Cu, the AF ordering is weakened but remains substantially in

charge. The Mott gap still splits the planar CuO2 band manifold into 2 eV-wide empty

upper and nearly filled lower Hubbard bands. The latter is sliced by EF at 0.1 eV

below its top, along the BZ diagonal near the nodal point, with off-plane states again

far below EF. The reduced valence bandwidth with respect to the PM case follows from

AF ordering, which hinders Cu-Cu nearest-neighbor hopping of spin polarized dx2−y2-

(px,py) holes. We see that the AF hole density is no longer an array of connected

bonds, but is disentangled in two spin-polarized sublattices in which hole carriers of

same polarization are enclosed in a single CuO4 square. Because of this decoupling, the

AF Fermi surface (plotted in the 1×1 reduced zone of edge 2π/a) is squeezed from a

large cylinder to circlets enclosing small areas around nodal points. A closer inspection

reveals four (doubly degenerate) concentric circlets, one for each of the two up- and

two down-polarized states per 2×2 CuO2 plane. An estimate of our calculated FS area

Ak for a single pocket (averaged over the four circlets of each pocket) gives 1.9% of the

1×1 BZ area A=(2π/a)2, which converts to a frequency of 600 T, close to the value

obtained via Onsager relation from SdH measurements[36, 37, 38]. The calculated

hole-like effective mass per pocket, however, is –0.5 me, well below the experimental

value reported in Ref.[36, 37, 38]. According to Luttinger’s sum rule, an estimate of the

carrier concentration can be derived from the pocket area in 2-D as n=[2/(2π)2](Ak/A),

which for the four pockets gives a carriers/holes ratio of n/h∼1.2 in the AF state at

h=0.125, thus suggesting a weak violation of Luttinger’s sum rule (n=h), or more likely
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Fermi-surface pockets in underdoped cuprates

Fig. 1: (Color online) OR-DOS for AF (top) and PM (bottom)
phase at h= 0.125 doping. Labels “ap” and “pl” indicate apical
and in-plane (CuO2) atoms, respectively; arrows show spin
directions. For each atom the light shadowed (green) curves
shows the most important orbital contribution (px for Opl, pz
for Oap, dx2−y2 for Cupl, Ba, and Y, dz2 for Cupl), the dark
shadowed (black) curves the contribution of the other p (for O)
and d (for Cu, Y, and Ba) orbitals.

of self-evidently dx2−y2-(px, py)–like shape; the FS is a
large cylinder centered at the zone corner, as expected for
the metallic Fermi-liquid–like state. Only in-plane atoms
contribute to the FS, whereas apical-atom states start
appearing ∼ 0.2 eV below EF.
In the AF state (left panels) holes are homogeneously

spread and evenly distributed through up- and down-
polarized planar Cu. Despite the altered orbital filling
and magnetic moments of, the AF ordering is weakened
but remains substantially in charge. The Mott gap still
splits the planar CuO2 band manifold into 2 eV wide
empty upper and nearly filled lower Hubbard bands. The
latter is sliced by EF at 0.1 eV below its top, along the
BZ diagonal near the nodal point, with off-plane states
again far below EF. The reduced valence bandwidth with
respect to the PM case follows from AF ordering, which
hinders Cu-Cu nearest-neighbor hopping of spin polarized
dx2−y2-(px, py) holes. We see that the AF hole density is
no longer an array of connected bonds, but disentangled
in two spin-polarized sublattices in which hole carriers of
same polarization are enclosed in a single CuO4 square.
Because of this decoupling, the AF Fermi surface (plotted
in the 1× 1 reduced zone of edge 2π/a) is squeezed from
a large cylinder to circlets enclosing small areas around
nodal points. A closer inspection reveals four (double
degenerate) concentric circlets, one for each of the two up-
and two down-polarized states per 2× 2CuO2 plane. An
estimate of our calculated FS area Ak for a single pocket

Fig. 2: (Color online) Top: band energies at x= 1/4 (h=
0.125) for the (2× 2) AF phase (a) and the (1× 1) PM phase
(d). K-points coordinates (units of 1/a= 1/b, 1/c with a, b,
c unit-cell parameters) are X = [π/2, 0, 0], X = [0,π/2, 0], L=
[π/2,π/2, 0], M = [π/2,π/2,π/2]. Middle: hole density isosur-
face for AF (b) and PM (e) phases. For the AF white and red
lobes are for up- and down-polarized holes. Bottom: calculated
FS for AF (c) and PM (f) phases.

(averaged over the four circlets of each pocket) gives
1.9% of the 1× 1 BZ area A= (2π/a)2, which converts
to a frequency of 600T, close to the value obtained
via Onsager relation from SdH measurements [4]. The
calculated hole-like effective mass per pocket, however, is
−0.5me, well below the experimental value reported in
ref. [4]. According to Luttinger’s sum rule, an estimate of
the carrier concentration can be derived from the pocket
area in 2D as n= [2/(2π)2] (Ak/A), which for the four
pockets gives a carriers/holes ratio of n/h∼ 1.2 in the
AF state at h= 0.125, thus suggesting a weak violation
of Luttinger’s sum rule (n= h), or more likely that the
FS differs slightly from the Luttinger surface to which the
sum rule applies [33]. Experimentally [4] a similar value
(n/h∼ 1.5) was deduced.
We emphasize that a reason to compare the FS of

magnetic phases with experiment is the evidence [34]
that magnetic order develops in high magnetic fields
at low doping in the superconducting state (this was
modeled in ref. [7]). The key difference between PM and
AF Fermi surfaces is that in the former the electronic
states are spin-degenerate, thus each FS point hosts two
spin-compensating holes, while in the latter the injected
holes are fully spin-polarized, i.e. each circlet visible in the
AF FS plot can by only inhabited by fully spin-polarized
carriers. Due to planar AF symmetry each up-polarized

67009-p3

Figure 2.10: Band energies, hole density isosurface, Fermi surface - Top: Band
energies at x=1/4 (h=0.125) for (2×2) AF phase (d) and (1×1) PM phase (a). K-points
coordinates (units of 1/a=1/b, 1/c with a, b, c unit-cell parameters) are X=[π/2,0,0],
X=[0,π/2,0], L=[π/2,π/2,0], M=[π/2,π/2,π/2]. Middle: hole density isosurface for AF (e)
and PM (b) phases. For the AF white and red lobes are for up- and down-polarized holes.
Bottom: calculated FS for AF (f) and PM (c) phase.

that the FS differs slightly from the Luttinger surface to which the sum rule applies

[93]. Experimentally [36, 37, 38] a similar value (n/h∼1.5) was deduced.

We emphasize that a reason to compare the FS of magnetic phases with experiment

is the evidence [94] that magnetic order develops in high magnetic fields at low doping

in the superconducting state (this was modeled in Ref. [47]). The key difference

between PM and AF Fermi surfaces is that in the former the electronic states are spin-

degenerate, thus each FS point hosts two spin-compensating holes, while in the latter

the injected holes are fully spin-polarized, i.e. each circlet visible in the AF FS plot

can only be inhabited by fully spin-polarized carriers. Due to planar AF symmetry
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each up-polarized circlet is matched by an identical down-polarized, so that the total

current can be still thought of as spin-compensated. However, this is not longer true

when AF ordering is lost, which may occur due disorder and/or short-range localization

phenomena. This motivates the exploration of more complex magnetic configurations

than ordinary AF. Indeed, while the presence of closed features surrounding nodal

points is a general characteristic of the AF background, shape and size of these FS

features may be altered upon inclusion of polaronic states. Here we make a first attempt

to model polarons and the attendant FS.

In Fig.2.11 (again at h=0.125 doping) we describe the electronic features of spin-

less polarons (reminiscent of the Zhang-Rice singlet (ZRS) polarons [95]) embedded in

the CuO2-plane AF background. According to the Zhang-Rice model, a doping hole

localizes on the four oxygens of a given CuO4 plaquette, and strongly couples to the

native hole on Cu(2) forming a two-body singlet state. The coupling may be driven or

accompanied by local lattice distortion. From our band-theory perspective, this picture

corresponds to a self-consistent solution with the hole charge mainly “condensed” on

the four oxygens of a single CuO4 unit, with magnetization anti-paired to (i.e. compen-

sating) that of the Cu(2) ion. In the following our polaronic solutions will be indicated

as ZRS for brevity, although the singlet is strictly a 2-body state, whereas our equations

deliver the one-body –i.e. integrated– density matrix of an interacting electron system.

We found stable ZRS solutions provided that an O breathing distortion was frozen-

in (the four oxygens of one ZRS-to-be CuO4 unit were equally displaced by 1% of the

lattice parameter towards the Cu at the center of one ZRS-to-be CuO4 unit). The

condensation of one ZRS occurs within each breathing-distorted CuO4. (We remark

that the breathing displacement amplitude is tentative, i.e. not obtained by structural

relaxation according to energy minimization, but the qualitative description of the ZRS

state would not change by structural optimization in 2×2 symmetry.) The nature of

this state is apparent from the hole spin densities: in Fig.2.11 (a2) we have one ZRS

per cell (dashed circle), in Fig.2.11 (b2) two ZRS per cell aligned into [110]-oriented

stripes. (those two are the only configurations which can be considered in 2×2 in-plane

symmetry). We observe that the ZRS “condense” on the distorted CuO4 plaquette:

holes localize on oxygens, and the induced magnetization is indeed anti-aligned to that

of Cu, producing a vanishing total magnetization on the distorted CuO4 unit. Notice

that the other non ZRS-populated CuO4 units (i.e. belonging to the AF background)
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2.1 Quantum oscillations

Figure 2.11: ZR - Top: Band energies and hole spin density isosurface
(h/V=0.006 bohr−3) at h=0.125 doping for two different magnetic phases with ZRS in-
cluded, both within (2×2)symmetry. (a1) and (a2) refer to the one-ZRS per 2×2 plane
configuration, (b1) and (b2) for two-ZRS per 2×2 plane configuration. (c) Orbital-resolved
DOS for the one-ZRS configuration (only planar Cu dx2−y2-O (px,py) state are shown for
simplicity). Red (dotted) ellipses enclose the ZRS DOS contributions from injected and
native antialigned holes (blue arrows) to give S=0 locally.
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remain substantially unaffected by the presence of ZRS on the adjacent unit. This

arrangement is different from that described by LDA+U in Ref.[63] where spin-bag (i.e.

non spin-compensated) polarons were obtained on the CuO2 planes of La1−xSrxCu2O4.

The ZRS signature in Fig.2.11 (a1) is a single CuO2 band being depleted (i.e. hole-

filled) and lifted by about 0.7 eV over the valence bands related to the AF-ordered

units. In the stripe configuration of Fig.2.11 (b1), two ZRS bands are now raised by

roughly the same amount above the valence AF background. All other bands related

to non-ZRS CuO2 units are well below EF and unaffected by hole injection. Thus, in

both cases, only the ZRS bands contribute to the FS. The OR-DOS in Fig.2.11 (c), left

panel, shows that each ZRS band involves all the four in-plane oxygens first-neighbors

to the central Cu of the ZRS unit. This up-polarized hole couples to the native Cu

down-polarized hole (the two are enclosed in dashed ellipses) to form the singlet. The

DOS from non-ZRS CuO2 units in (Fig.2.11 (c), right panel, is close to that of the AF

phase in Fig.2.9, with hardly any magnetic moment reduction on Cu.

Fig.2.12 shows the FS of the three examined magnetic states (AF, one-ZRS, two-

ZRS) at different values of h. The calculated FS at h=0.125 is in the central-column

panels (the others are discussed below). Closed FS structures near nodal points appear

to be a general feature of spin-polarized states. The one-ZRS FS shows a large nodal-

point centered pocket due to the ZRS band (plus a minor AF-background pocket). In

the two-ZRS configuration we find intersecting pockets from the two ZRS bands. The

pocket shape is circular for the single ZRS, while for the stripe it is the intersection of

two 90◦-rotated ellipses. From the calculated FS areas of the ZRS bands, we obtain

n/h∼1.2 and ∼1 respectively, again mildly deviating from the Luttinger sum rule.

(Notice that for PM and AF orderings, as previously discussed, holes were evenly

distributed on all CuO2 units. In the one- and two-ZRS configurations, they concentrate

on one and two CuO2 units respectively, so the effective doping is in fact h=0.5 and

h=0.25.) The frequency and mass for the one and two ZRS cases is 2500 T and 1600 T

respectively, with masses of –0.4 and –1. These do not match the SdH experimental

values reported for YBa2Cu3O6.5 at h'0.1[36, 37, 38]. The numerical discrepancy may

be attributed in part to the different doping mechanism and different effective doping h;

however, the difference in mass sign (hole-like for our calculations, electron-like for the

experiments) suggests that this polaron configuration is not what is actually observed

in SdH and dHvA experiments.
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2.1 Quantum oscillations

Figure 2.12: Evolution of the FS vs. rigid Fermi level shift - Evolution of the FS
vs. rigid Fermi level shift ∆EF for AF (top panels), AF plus one-ZRS (middle panels), AF
plus two-ZRS (bottom panels) configurations. From left to right, ∆EF=–0.2 eV (h∼0.2),
0 (h=0.125), and +0.1 eV (for AF), +0.5 eV for the two ZRS configurations (h∼0.02).
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2.1.4.2 Discussion

A definite conclusion we can draw is that different magnetic configurations in zero field

and 2×2 periodicity will produce FS differing in the details, but sharing the charac-

ter of nodal hole-like pockets. This is broadly consistent with ARPES, but not with

SdH/dHvA. To verify if electron-like branches may appear in the vicinity of EF as

calculated for h=0.125, in Fig.2.12 we also plot the FS obtained rigidly shifting EF,

which very roughly simulates doping fluctuations [34]. The FS remains hole-like and

the pocket area falls sharply for an upwards shift (“decreasing doping”, right panel

column in Fig.4). Electron pockets at the anti-nodes do instead appear (while hole

pockets open up) for EF shifting down (left panel column in Fig.4). The shift, how-

ever, would correspond to optimal doping, i.e. to a unrealistic 50 % doping fluctuation.

There is no obvious way to reconcile the Hall resistance sign with the present results. If

one accepts the notion that the low T-high field Hall resistance (i.e. mass sign) change

is a genuine electron current signature in the normal state, the present configurations

should be ruled out. This does not imply that magnetism is not involved (we in fact

think it is). A series of different polaronic patterns (e.g. as in Ref.[52, 53] and [63])

have been proposed as possible stable electronic configurations at low doping, but the

present approach cannot yet tackle computationally the supercells needed.

We finally touch upon attempts to reconcile SdH pockets –whose shape, number,

and location is undetermined– with ARPES arcs near nodes (see e.g. [48, 50, 96] for a

summary). Recently, a photoemission pattern switching from large-doping Fermi cylin-

ders to low-doping arcs was observed [44] upon tuning the self-doping of YBa2Cu3O6+x

via surface treatment. Cylinders and arcs appear to coexist in different sample portions

depending on the local self-doping, and arcs were hypothesized [44, 48] to be residual

pockets (the estimated “virtual” areas would be, as our own are, in fair agreement with

SdH data). From total energies, we find the PM phase slightly lower than, but still quite

close to AF. A coexistence may be expected, as suggested by µSR experiments [54].

One may then speculate that the observed FS results from a configuration-averaged

superposition of pockets and cylinder portions whose shape and spectral intensity de-

pends on extension and shape of coexisting AF and PM regions. Indeed, short-range

AF order [48, 50] has been shown to cause a similar “unfocusing” of the pocket shape
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into an apparent arc shape. Finally, of course, oscillations may turn out to be a token

of the high-field conditions in SdH/dHvA, but this is outside our present scope.

2.1.4.3 Conclusions

We studied in detail the electronic structure of underdoped Y1−xCaxBa2Cu3O6 by

the PSIC approach. Our results showed that AF phases (with or without embedded

polarons) produce closed hole-like FS branches centered at nodal points, whose area

depends on the doping concentration and for h=0.125 is comparable to the pocket area

observed by SdH for YBa2Cu3O6.5 at h=0.1. On the other hand, Fermi-liquid cylinders

are always related to the spin-compensated (i.e. non-magnetic) states. These results

support the viewpoint that pocket/arc dichotomy may be due as a superposition of

pockets and cylinder portions related to competing AF and PM regions. We remark

that some features of the pockets (specifically the effective mass and its sign) are not

consistent with oscillation experiments on YBa2Cu3O6.5, so that no unambiguous iden-

tification can be made. The indication is that the AF and high-density ZRS polaron

configurations explored here are not the states observed by oscillation experiments.

Candidate alternatives may be either an exotic field-induced state, which is beyond the

scope of our method; or more complex polaronic structures [52, 53, 63] (plus coexisting

orderings separated at nanoscopic range [54]) which are conceptually describable by

our method, but for the moment computationally unapproachable.

The conclusions of this work compare reasonably with recent experiments. The

existence of long-range (albeit incommensurate) spin order has been confirmed [97];

and additional quantum oscillations have been observed and interpreted as spin den-

sity wave induced [98]. This vindicates our choice of a spin density wave symmetry

breaking, although very simplified because of the size of the system we can afford. The

supposition that the pocket/arc dichotomy may be due as a superposition of pockets

and cylinder portions related to competing AF and PM regions is compatible with the

doping evolution of the Fermi surface topology recently observed in another cuprate

[99].
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2.2 CuO: rocksalt-structure

The main part of the following discussion is published in the APS Journal “Phys.

Rev. B, 80(140408), 2009 [100]”. In this section my operational contribution was the

calculation of the total energy for several magnetic phases vs c/a and the estimation

of the Néel temperature for the tetragonal-rocksalt CuO or about the 70% of the work.

The writing and preparation of the paper was done collaboratively with coworkers and

supervisors, as did the planning and assessment of the work.

2.2.1 Introduction

The monoxides of most 3d transition metals crystallize in rocksalt-like structures. They

realize an insulating electronic spectrum removing spin-orbital degeneracies in the oc-

tahedral submanifolds tg and eg of the d shell by means of magnetic ordering and

lattice distortions. Copper monoxide becomes a Mott-like charge-transfer insulating

type-A antiferromagnet [101, 102] via a less direct, though conceptually equivalent

strategy: it adopts a relatively low-density monoclinic structure comprising distorted

tetrahedral units (see the discussion in Ref.[64]), called tenorite. Can CuO be stabi-

lized in some close relative of the rocksalt structure? Cubic rocksalt CuO would be a

Pauli-paramagnetic metal. Given the t6ge
3
g orbital configuration of Cu2+, spin-orbital

degeneracy removal requires both magnetic order and symmetry-lowering structural

distortions. The minimal distortion needed is the paradigmatic Jahn-Teller elongation

of the Cu-centered octahedra along the z axis (rocksalt can be seen as made up of

side-sharing octahedra). The symmetry of stable rocksalt-like CuO will therefore be no

higher than tetragonal, with two lattice constants a (in-plane) and c (vertically).

The routes to gap opening and structure stabilization in CuO have enjoyed a revived

interest after Siemons et al. recently grew [6] on cubic SrTiO3 an ultrathin (∼15-20 Å)

CuO film with apparently rocksalt-like structure.

In this section we report ab initio calculations on CuO done with the PSIC [3, 103]

method [76, 104], which treats accurately the delicate chemistry of divalent Cu in

cuprates, which are instead unapproachable by standard methods. Indeed, we have

verified that LDA invariably produces a non-magnetic metallic rocksalt CuO, as in the

case of tenorite CuO [64].
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2.2.1.1 Electronic and magnetic properties
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Figure 2.13: Energy per formula unit vs c/a for tetragonally-distorted CuO, in-plane
lattice constant a=3.905 Å. The energy zero is the lowest structure, AF-II at c/a=1.09.
In the regions labeled ’z2’ and ’x2–y2, the magnetic hole has dz2 and dx2−y2 character
respectively. The barrier between the two minima corresponds to degenerate eg states.

In Fig.2.13 we report the energy vs c/a of tetragonal-rocksalt CuO in the non-

magnetic, ferromagnetic (FM), and four different antiferromagnetic (AF) ordering states,

at the lattice constant a=3.905 Å of the SrTiO3 substrate (see also below). In this

structure, Cu atoms sit on an fcc lattice slightly elongated along the cartesian z axis,

and their spin arrangement defines the magnetic ordering. The AF phases we consider

are AF-A, AF-G, AF-4 and AF-II. While these are only some of the many possible

spin arrangements on this lattice, they suffice to calculate the independent magnetic

couplings; also, by analogy with other monoxides, they are likely to capture the essen-

tial physics. AF-A is made of ferromagnetic planes stacked antiferromagnetically in

pairs (similarly to tenorite) along z; it is barely metallic at all c/a’s, with a single band

dipping below the Fermi level in a small region of the Brillouin zone. AF-G is fully
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antiferromagnetic (and equivalent to two interpenetrating ferromagnetic cubic lattices),

and has a tiny indirect gap over most of the c/a range. The last two, AF-II and AF-4,

compete closely for stability. The lowest-energy structure in Fig.2.13 is AF-II, typical

of other transition-metal monoxides. It consists of z-, AF-stacked planes each built up

of (110)-oriented ferromagnetic Cu rows arranged antiferromagnetically in the (110)

direction (see further discussion below). This phase has a gap of 1.1 eV at the absolute

structural energy minimum. The AF-4 structure is very similar (see below) and very

close in energy to AF-II. The topmost curve in Fig.2.13 is the non-magnetic metallic

state, with an equilibrium c/a of 1 and degenerate eg states. The tenorite structure

studied in Ref.[64] is as expected energetically favored over all the present structures.
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Figure 2.14: Density of states of CuO projected on Cu eg orbitals at the axially-expanded
minimum. Energy zero is the valence band top. Thick solid line: dx2−y2 ; thin solid line,
shaded curve: dz2 . The antiferromagnetically-split Cu hole is almost pure dx2−y2 . The
spin splitting of this state, 9.5 eV, is a measure of the effective on-site interaction U .

The energetics shows that the cubic non-magnet (or Pauli paramagnet) collapses

spontaneously into tetragonally-distorted spin-polarized structures. The magnetic states

have two distinct minima (Fig.2.13), one metastable at roughly c/a=0.97 (vertical com-

pression ∼3%), and one stable at c/a=1.09, corresponding to a vertical espansion of

9%. The c/a compression or elongation stems entirely from a Jahn-Teller distortion of

the Cu-centered octahedron. The two minima are separated by a sharp maximum near

c/a=1, related to the unresolved degeneracy of the partially occupied eg doublet. In

each of the two minima, the degeneracy is broken in favor of one of the eg orbitals.

Examining the density of states (DOS) projected on Cu eg orbitals for AF-II at

c/a=1.09 in Fig.2.14, we see that the empty minority state on Cu has essentialy

pure dx2−y2 character, i.e. there is a dx2−y2 magnetic orbital ordering at the absolute
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Figure 2.15: Density of states of CuO projected on Cu eg orbitals at the axially-
compressed minimum. Energy zero is the valence band top. Thick solid line: dx2−y2 ;
thin solid line, shaded curve: dz2 . The antiferromagnetically-split Cu hole is almost pure
dz2 . The spin splitting is similar to that in Fig.2.14.

structural-energy minimum. Instead, the DOS in the metastable vertically-compressed

minimum in Fig.2.15 shows that the polarized hole has dz2 character, and hence a

dz2 magnetic orbital ordering. The gap increases monotonically from about 0.2 eV at

c/a=0.96 to 2 eV at c/a=1.35. In the AF-II structure at the equilibrium c/a=1.09,

the gap is 1.1 eV. It opens between mostly O p valence and purely Cu d empty states,

which qualifies this variant of CuO as a charge transfer Mott insulator. The calcu-

lated Cu magnetic moment in the AF-II structure is about 0.6 µB at both structural

minima, quite in line with the moments usually found computationally in cuprates

[65, 66, 67, 68].

Our main structural prediction is that c/a elongates by nearly 10%, a sizable Jahn-

Teller effect by any standard. However, a c/a of over 1.35, i.e. a 35% expansion, has

been inferred from diffraction measurements [6]. We opine that this is a strikingly,

perhaps unreasonably, large number. The argument [6] that the volume per formula

unit of elongated rocksalt at c/a=1.35 would be the same as in tenorite is hardly

compelling. The volumes of the cubic non-magnetic and polarized elongated structure

(59 and 65 Å3 per formula, respectively) are both far from the 80 Å3 per formula of

tenorite. The latter, however, is an open structure with locally tetrahedral coordination

that naturally has a sizably larger specific volume than the close-packed octahedral

rocksalt; this is similar, e.g., to Si in the diamond structure having a 20% larger volume

per atom than in close-packed hcp or fcc [105]. A more robust proxy of bonding behavior

in the various structures are Cu(2+)-O bond lengths. In cuprates, the latter cluster
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around 1.95-2 Å, and a Cu-O bond length of 2.65 Å as implied by experiment is quite

out of the ordinary. To quote a fairly extreme example, in YBa2Cu3O7 (YBCO), the

only sizably anomalous bond length is apical O to in-plane Cu at 2.25 Å, an elongation

originating from a dramatic apical distortion of the Cu-O pyramid with basal face on

Cu-O planes, due to chain Cu’s pulling apical oxigen as close as 1.80 Å. (We stress that

our considerations apply to Cu(2+): trivalent Cu can indeed establish Cu-O bonds as

long as 2.75 Å. However, mixed valence is not expected in bulk CuO.)

Since in Fig.2.13 the in-plane lattice constant is that of SrTiO3 substrate as in

experiment, the Jahn-Teller vertical elongation is coupled to a lateral constraint. We

estimated that the minimum energy for free-standing AF-II CuO in the expanded basin

is at (a,c)=(3.79,4.30) Å, vs. the epi-constrained (a,c)=(3.905,4.25) Å. (In passing, this

suggests e.g. LaAlO3, a=3.79 Å, as a substrate for CuO growth.) The vertical distortion

is only slightly larger in the free-standing case, with comparable Cu-O bond lengths of

2.15 Å (free-standing) vs 2.125 Å (epitaxial), both very far from 2.65 Å. (We also have

searched for off-plane distortions and buckling in the various structures, but found

none.) Our present results, therefore, are circumstantial evidence that tetragonal-

rocksalt CuO should have a bulk c/a closer to 1.1 than to the 1.35 reported so far

experimentally for films [6]. The latter c/a value might be due to surface and interface

effects, given that the films in question are ultrathin.

We now discuss magnetic couplings and ordering temperatures, motivated by the

suggestion [6] that CuO in the rocksalt structure may have a Neél temperature TN

around 900 K, much larger than all other monoxides and than tenorite CuO. The

lowest-energy AF-II structure can be seen as two interpenetrating AF simple-cubic

sublattices, as shown in Fig.2.16. There are two independent magnetic couplings in the

basal plane, and two more in the vertical planes. (This holds also for AF-4: the differ-

ences with AF-II are schematized in Fig.2.17.) The couplings within each sublattice (J‖
in the basal plane and J⊥ along the c axis) originate from O-mediated super-exchange

between Cu’s that are second neighbors on the full lattice. The two sublattices are cou-

pled by the “diagonal” terms Jd‖ in the basal plane and Jd⊥ in the vertical planes. As

easily seen by inspection, in the expression of the magnetic energy for AF-II the terms

involving diagonal J’s cancel out, which cures the apparent frustration in this struc-

ture. Therefore, the relevant ordering temperature can be estimated for each sublattice

separately. As shown below, the intra-lattice couplings are AF and anisotropic (one J
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2.2 CuO: rocksalt-structure

Figure 2.16: Schematic basal (xy)-plane view of the AF-II (or equivalently AF-4) struc-
ture. Filled and empty symbols indicate up or down spin. Square and circles are Cu atoms
belonging to the two cubic AF sublattices discussed in the text. The intra sub-lattice AF
coupling is named J‖ and the inter-sublattice coupling is named Jd‖. Note that the appar-
ent frustration is avoided in this structure because the contributions involving Jd‖ cancel.
The vertical xz plane is obviously equivalent upon exchange of ‖ by ⊥, and allowance for
the different numerical value of the J’s. Oxygens (not drawn) sit at the crossings of the
two nets.

is one fifth of the other). Thus each sublattice can be mapped onto an anisotropic Ising

model (three-dimensional, simple-cubic, antiferromagnetic).

The coupling parameters are calculated from the total energies of the various mag-

netic phases as

J‖ = (2EAF II − EAF G − EAF A)/2

J⊥ = EAF II − EAF 4

Jd‖ = (EAF G − EAF A)/2 (2.1)

Jd⊥ = (EAF 4 + EAF A − EFM − EAF II)/2.
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2. CUPRATES

Figure 2.17: Top: stacking sequence of the AF-II (right) and AF-4 structures (left) viewed
in the vertical (010) plane the c axis being (001)). Bottom: alternate view of AF-II (right)
and AF-4 (left) as, respectively, (111)-oriented monolayer and (110)-oriented bilayer AF-A
structures. Filled and empty symbols are up and down Cu’s. Oxygens are not shown.

The calculated parameters are J‖=–28.4 meV, Jd‖=–27.3 meV, J⊥=–5.6 meV, and

Jd⊥=2.5 meV. The anisotropy ratio is J⊥/J‖=0.197, i.e. as anticipated the system is

strongly two-dimensional in terms of magnetic interaction.

J‖ Jd‖ J⊥ Jd⊥

–28.4 –27.3 –5.6 2.5

TN(Ising) TN(Weiss)
plain rescaled plain rescaled

530 300 725 410

Table 2.1: In-plane (‖) and vertical (⊥) magnetic couplings ( meV) and Neél temperatures
(K) for Jahn-Teller-distorted CuO in the AF-II structure.

A simple estimate of the Néel temperature can be obtained [106] by a modified

Weiss formula: we find TN=725 K for AF-II. Applying Anderson’s rescaling [106, 107]

this estimate drops to 410 K. Since the present system is quite anisotropic, a formula

born of isotropic classical models may not apply. We therefore employ results for

the anisotropic Ising model. The critical temperature is a maximum in the isotropic

case (1500 K for our calculated maximum J), and drops [108, 109] with increasing

anisotropy, as one would intuitively expect. From renormalization-group data [110] on

the anisotropy dependence of the critical temperature, we infer a Néel temperature of

530 K at the calculated ratio J⊥/J‖'0.2. Upon Anderson scaling, TN drops to 300 K.

The data are collected in Tab.2.1. It appears that the present estimates (except to

some extent for the unscaled Weiss formula) do not confirm the suggestion about a

Neél temperature of rocksalt CuO much larger than in other transition-metal oxides.
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2.2 CuO: rocksalt-structure

This is clearly expected given the strong anisotropy of in-plane and vertical coupling,

and the weakness of the latter.

In Fig.2.18 we compare our calculated valence DOS with the UPS peak positions [6].

The general shape and energy positions (see Ref.[6]) are in fair, though not especially

striking agreement with experiment. On the other hand, if our conjecture about the

possible interface and surface-induced expansion of the measured sample is correct, our

DOS and the UPS spectrum should not necessarily agree, and this imperfect matching

is not too disturbing.
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Figure 2.18: Valence density of states compared with UPS peak positions. The DOS is
broadened by a running average procedure.

In a recent paper Grant [111] studied rocksalt CuO using LDA+U. He finds that

both a substantial U (6 eV, which e.g. we also found to be the minimal value needed to

open a gap in YBa2Cu3O6) and a tetragonal distortion are needed to open a gap in the

spectrum. He investigated only the expanded-c/a basin of the magnetic phase, finding

a shallow structural minimum at about c/a=1.2, somewhat closer to our value than to

experiment. The vertical Cu-O bonds of 2.35 Å are reasonable, though still somewhat

large. The value of U suggested by our calculations (over 9 eV) is larger than that used

by Grant: whether and how much U affects structure is an open question.
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2. CUPRATES

2.2.2 Conclusions

The results of another theory study [112] based on a hybrid functional are qualitatively

comparable to ours, with important differences. Two dz2 and dx2−y2–orbitally ordered

minima are obtained under compression and expansion, but at very different in-plane

lattice constants. (We did not use the latter as a parameter, but took it as fixed by

experiment: as mentioned, a hypothetical cubic CuO has the same lattice constant as

the substrate.) The expanded c/a value of 1.36 is close to experiment, and the gap at

that c/a is 2.7 eV (1.5 eV in the compressed configuration), both quite large compared

to ours. The J’s deduced from total-energy differences are also very different from ours,

which is a token of the different energetic order of the various structures found by the

hybrid functional.

In summary PSIC calculations show that metallic rocksalt CuO stabilizes by Jahn-

Teller distortion at c/a=1.09 in an AF-II magnetic arrangement with dx2−y2 orbital

ordering and a charge-transfer gap of 1.1 eV. The Jahn-Teller distortion of the Cu-

centered octahedra is a sizable 10%. Given our results, and other typical Cu-O bond

lengths in cuprates, we suggest the 35% expansion reported in experiment may be due

to interface and surface effects. We estimate relatively low Neél temperatures (between

300 by anderson59-rescaled anisotropic Ising model, and 750 K by unrescaled Weiss

formula) due to the strong anisotropy of magnetic couplings, hence we do not support

the suggestion of high Neél temperature in tetragonal-rocksalt CuO.
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3

Magnetic titanates

This Chapter is devoted to the application of the VPSIC formalism for the analysis of

magnetic perovskites YTiO3 and LaTiO3. The main part of the following discussion is

published in the APS Journal “Phys. Rev. B, 84 (195127), 2011 [5]”. I only report

the part of the long VPSIC paper to which I contributed, in particular my contribution

is about the 50% of this part. The writing and preparation of the paper was done

collaboratively with coworkers and supervisors, as did the planning and assessment of

the work.

3.1 Introduction

Titanates characterized by the nominal Ti d1 configuration rank among the most pe-

culiar and intriguing magnetic perovskites. At variance with the more investigated

classes of manganites and cuprates whose fundamental chemistry is governed by 3d eg

states, in titanates the 3d valence states are 3d t2g, thus orbitals not directly oriented

towards the oxygens; this produces a much weaker p-d hybridization and crystal field

splitting than in eg systems. However, experiments show that the phenomenology of

these systems may be crucially affected by small structural details.

A nice illustration of this over-sensitive magnetostructural coupling is the compared

study of YTiO3 (YTO) and LaTiO3 (LTO): both systems are Pnma perovskites, with

relatively small Jahn-Teller (JT) distortions and large GdFeO-type octahedral rota-

tions; the difference in cation size (with La bigger than Y) causes larger distortions

and rotations in YTO than in LTO (in agreement with the well known space-filling
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3. MAGNETIC TITANATES

criterion), in turn leading to quite a different magnetic behaviour: YTO is ferromag-

netic [113, 114, 115] with low Curie temperature Tc=30 K, sizable band gap (∼1eV)

and magnetic moments M=0.8 µB, in line with a Ti d1 ionic configuration; LTO,

on the other hand, is antiferromagnetic G-type [116] with TN=130K, very small en-

ergy gap (∼0.3 eV) and sensibly smaller magnetic moments (∼0.57 µB)[117]. A long-

standing debate centers this much reduced magnetic moment and the nearly isotropic

spin-wave dispersion in LaTiO3 [118]. It was pointed out that a single electron in

the triple-degenerate t2g manifold can fluctuate giving rise to an exotic “orbital liq-

uid” state[119, 120]. However this faschinating hypothesis is contrasted by a series of

evidences[116, 117, 119, 121, 122, 123, 124] that crystal field splitting is actually not

small enough to keep the t2g degeneracy unlifted, and instead a Jahn-Teller distorted,

orbital-ordered state is realized in LTO, as well as in YTO.

Needless to say, these issues stimulated a long series of attempts to describe the

titanates by a variety of ab-initio approaches, including LSDA[125], LDA+U [126,

127], and several LSDA+DMFT implementations[128, 129, 130]. While our description

reproduces, at least in part, some of the previous findings, our results are especially

valuable as they account for properties on purely ab-initio grounds, in the framework

of the same theory, and without system-dependent parameters (e.g. U, J).

After the description of the methodology (Sec.3.2), we illustrate the electronic prop-

erties of YTO (Sec.3.3), calculated at the experimental structure, as prototype of “ba-

sic” t2g system. We then discuss the more peculiar LTO, highlighting the differences

with respect to YTO (Sec.3.4). In Sec.3.5 we discuss the structural properties of both

systems, rationalizing their different behavior, and sum up in Sec.3.6. Notice that

LSDA does not reproduce the Mott-insulating behaviour for these systems, and in fact

predict an unphysical non magnetic, metallic electronic ground-state.

3.2 Technicalities

Calculations are carried out with ultrasoft pseudopotentials [76] and a plane-wave ba-

sis set with cut off ranging from 30 to 35 Ryd, 6×6×6 special k-point grids for self-

consistent calculations, 10×10×10 special k-points and linear tetrahedron interpola-

tion method for density of states. The Ceperley-Alder-Perdew-Zunger local-density
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3.3 Electronic properties of YTiO3

approximation is used for the exchange-correlation functional. Structural relaxations

are carried out with a convergence threshold of 1 mRy/Bohr on the calculated forces.

3.3 Electronic properties of YTiO3

In Fig.3.1 the orbital-resolved DOS of YTO is shown. The occupied DOS have two

major contributions: at VBT there is a ∼0.8 eV-wide fully spin-polarized DOS peak

of Ti 3d states (residually hybridized with a small O 2p portion). Despite the nominal

Ti3+ d1 configuration, a certain amount of Ti d-O p hybridization is clearly visible

(notice the different scale of Ti 3d and O 2p DOS: here the O 2p weight is way smaller

than, e.g. in manganites). It follows that the calculated static charges and magnetic

moment differ considerably from their nominal values (for Ti we obtain ∼1.6 and ∼0.7

electrons for up and down-polarized 3d state, respectively, and M=0.92 µB, a bit larger

than the observed 0.8 µB). Below the Ti 3d peak there is a broader, unpolarized DOS

of O 2p character spanning the energy interval between -4 eV to -8 eV (not shown in

Figure). The CBB bands are also dominated by and large Ti 3d t2g states, residually

hybridized with O 2p and Y 4d orbitals. Thus we can unquestionably categorize the

system as a true Mott-Hubbard insulator, at variance with most manganites or cuprates

that are actually charge-transfer insulators or in the intermediate regime (more later

on this important point).

In the band energy plot of FM YTO (Fig.3.2, left panel) we see four occupied

bands (one for each Ti) separated from the 3d empty conduction bands by 1.8 eV.

The fundamental gap only involves majority, and is direct at Γ. The CBB bands are

∼1 eV wide. According to our calculations, the sharp DOS peak at the valence top

is a complex admixture of the five Ti 3d orbitals. To assess quantitatively the iden-

tity of this state, we diagonalized the corresponding Pσ
mm′ (Eq.1.23) density matrix in

the 3d orbital subspace. The results are reported in Tab.3.1 for two coordinate sys-

tems: the orthorhombic Pnma
√

2×
√

2×2 (x′,y′,z′), and the conventional cubic(x,y,z),

which differ by a 45◦ rotation[131] of the(x,y) plane. The Ti at (0,0,0) in the cu-

bic reference system of YTO, shows prevailing contributions of |yz〉 and |xy〉 orbitals;

however, not completely discardable eg contributions are present as well. The charge

density isosurface plot (Fig.3.4 left panel) confirms that this state can be expressed

as |Ψ1〉∼0.75|yz〉 + 0.56|xy〉. Also evident is the resulting orbital ordering: co-planar
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Figure 3.1: Orbital-resolved DOS for YTO - Orbital-resolved DOS for FM YTO.
For clarity only Ti 3d, Y 5d, and O 2p are showed (oxygens on-top and in plane with Ti
are labelled OT and OP , respectively). Notice that Y and O DOS are magnified by more
than one order of magnitude with respect to the dominant Ti 3d DOS.
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3.4 Electronic properties of LaTiO3

states shows an alternance of dominant |yz〉 and |xz〉 contributions, plus a change

of sign for |xy〉 which causes the lobes of |yz〉 (or |xz〉) to lean back and forth to-

wards the (x,y) plane (e.g. |Ψ2〉∼0.75|xz〉 − 0.56|xy〉). On the other hand, states

aligned along z only differ by the alternance of |xy〉 sign, thus |Ψ3〉∼0.75|yz〉−0.56|xy〉,
|Ψ4〉∼0.75|xz〉 + 0.56|xy〉. Our results are in excellent agreement with the finding of

linear dichroism x-Ray absorption [132] which gives 0.8 and 0.6 for the coefficients of

the two most occupied t2g orbitals [133], and with LDA+DMFT [128] which obtains

0.78 and 0.62, respectively.

Figure 3.2: Band YTO and LTO - (Left panel) Band energy (spin up and spin down)
of FM YTO and (right panel) AF-G LTO

3.4 Electronic properties of LaTiO3

Remarkable differences from YTO emerge from the calculated DOS (Fig.3.3) and band

structure (Fig.3.2): the fundamental band gap is a bit smaller for LTO but still quite

sizeable (1.6 eV); furthermore, the latter is much flatter than in YTO: the occupied
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3. MAGNETIC TITANATES

3d states at VBT now span a much narrower energy range (0.4 eV instead of 0.8 eV),

and the hybridization with the oxygens is smaller, although still well visible. Even the

conductions bands in LTO appear flatter, and in fact they are separated in two groups

by a gap of 0.2 eV. The magnetic moment is 0.89 µB, similar to YTO.

-1 0 1 2 3 4
E-E

F
  (eV)

0

0.2

0.4

d
en

si
ty

 o
f 

st
a

te
s 

(a
.u

.)

0

0.2

0.4

0

4

0

4

0

0.2

0.4

0

0.2

0.4

La

O
T
 p

Ti d

O
P
 p

Figure 3.3: Orbital-resolved DOS for AF G-type LTO - Orbital labels are the same
as in Fig.3.1. La and OT states are spin-compensated, due to AFG symmetry. La and O
DOS are magnified by more than one order of magnitude with respect to the dominant Ti
3d DOS.

The difference with YTO, is also borne out by the analysis of the diagonalized den-

sity matrix in Tab.3.1. In the cubic reference system, at variance with YTO we see

that the eg contribution is now almost vanishing, and the occupied states are almost

purely t2g. Moreover, the diversification of the t2g occupancies is much reduced with
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3.4 Electronic properties of LaTiO3

respect to YTO as a results of the smaller rotations. Indeed this state approximately

resembles cigar-shaped [111]-directed lobes, resulting from a nearly even t2g combina-

tion, as confirmed by the corresponding charge density isosurface plot in Fig.3.4, right

panel. Notice that if t2g coefficients were exactly the same, Ψ1 and Ψ2, as well as Ψ3

and Ψ4, would be identical, and the resulting cigars in each plane parallel to each other,

pointing all along [111].

|x′y′〉 |x′z′〉 |y′z′〉 |z′2〉 |x′2 − y′2〉
YTO
Ti 1 0.11 0.48 0.58 0.33 0.56
Ti 2 0.11 0.48 -0.58 -0.33 -0.56
Ti 3 -0.11 0.48 0.58 -0.33 -0.56
Ti 4 -0.11 0.48 -0.58 0.33 0.56

LTO
Ti 1 0.02 0.15 0.78 0.08 0.60
Ti 2 0.02 0.15 -0.78 -0.08 -0.60
Ti 3 -0.02 0.15 0.78 -0.08 -0.60
Ti 4 -0.02 0.15 -0.78 0.08 0.60

|xy〉 |xz〉 |yz〉 |z2〉 |x2 − y2〉
YTO
Ti 1 0.56 -0.07 0.75 0.33 0.11
Ti 2 -0.56 0.75 -0.07 -0.33 0.11
Ti 3 -0.56 -0.07 0.75 -0.33 -0.11
Ti 4 0.56 0.75 -0.07 0.33 -0.11

LTO
Ti 1 0.60 -0.45 0.66 0.08 0.02
Ti 2 -0.60 0.66 -0.45 -0.08 0.02
Ti 3 -0.60 -0.45 0.66 -0.08 -0.02
Ti 4 0.60 0.66 -0.45 0.08 -0.02

Table 3.1: 3d orbital decomposition of the four occupied states (one for each Ti) at VBT of
YTO and LTO. Coordinates (x’,y’,z’) and (x,y,z) refers to orthorhombic and conventional
cubic cartesian axes, respectively, as indicated in Fig.3.4.

While the orbital charge distribution in YTO and LTO is so different, and causes

much of their macroscopic differences, the relative ordering is the same: even for LTO,
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3. MAGNETIC TITANATES

in the plane there is perfect alternance (i.e. chessboard-like order) of leading |xz〉 and

|yz〉 contributions (this is less evident than in YTO since the t2g coefficients are not as

different as in YTO), plus a sign alternance for |xy〉. Along z only the sign alternance

occurs. Our calculated t2g coefficients are remarkably close to the values (0.56, 0.45,

0.69) measured by NMR spectra in Ref.[119], as well as those calculated by a model

Hamiltonian (0.6, 0.39, 0.69) in Ref.[116].

Figure 3.4: Charge density isosurface of YTO and LTO - Charge density isosurface
n±=± 0.01 electrons/cm3) of the upmost occupied state for FM YTO (left) and AF-G LTO
(right). Red (light) and blue (dark) surfaces represent spin majority (+) and minority (-
) contributions, respectively. On this scale only Ti d contributions are visible (oxygen
contributes residually, see the DOS in Figs.3.1 and 3.3). Both YTO and LTO are orbital-
ordered, i.e. the four Ti atoms in the cell have same integrated charge but different orbital
distribution (numbers connect each Ti with the corresponding 3d orbital decomposition
reported in Tab.3.1).

The observed magnetic ground-state is correctly predicted for both systems: for

YTO the FM energy is lower than AF-G and AF-C phases by 10.1 meV/f.u. and

8.3 meV/f.u., respectively (in agreement with previous LDA+U results [126] with U −
J =3.2 eV). For LTO, on the other hand, we obtain the AF-G phase lower than FM and

AF-A phases by 15.2 meV/f.u. and 10.05 meV/f.u., respectively. Fitting the energies
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3.5 Structural properties

on a 2-parameter nearest-neighbor Heisenberg Hamiltonian:

H = −1
2

∑
i

[
Jpl(Ŝi · Ŝi+x + Ŝi · Ŝi+y) + JzŜi · Ŝi+z

]
(3.1)

where i + x, i + y, and i + z indicate nearest neighbors of i in the x,y, and z

directions, respectively, we obtain Jpl = 4.15 meV and Jz = 1.8 meV for planar and

orthogonal exchange interaction parameters in YTO, respectively; Jpl = −5.02 meV

and Jz = −5.03 meV for the same quantities in LTO. These results nicely confirm the

analysis of the orbital ordering: while a remarkable anisotropy is present in YTO, LTO

is substantially isotropic.

3.5 Structural properties

Tab.3.2 shows experimental and VPSIC-calculated atomic coordinates and the most

important structural parameters, i.e. Ti-O-Ti angles (θ), and Ti-O distances, indicated

in Fig.3.5.

Figure 3.5: Pnma structure of YTO (left) and LTO (right). Cell parameters are fixed
to experimental values, while atomic positions were relaxed according to VPSIC. Labels
indicate Ti-O-Ti angles and Ti-O distances in plane (θp, dp) and along z (θz, dz). Results
are reported in Tab.3.2.

In-plane there are two types of Ti-O bonds, long (dL) and short (dS), which alternate

along both x and y directions (see Fig.3.5), while along z there is only one dz∼dS . These

values easily rationalize the chessboard-like Ti d ordering: on each Ti the occupied state
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x/a y/b z/c

Y 0.478 (0.479) 0.073 (0.073) 1/4
Ti 0 0 1/2
OI -0.139 (-0.121) -0.063 (-0.042) 1/4
OII 0.307 (0.309) 0.184 (0.190) 0.067 (0.058)

La 0.491(0.493) 0.053(0.043) 1/4
Ti 0 0 1/2
OI -0.080(-0.081) -0.008(-0.007) 1/4
OII 0.0288(0.291) 0.204(0.206) 0.042 (0.043)

dS dL dz

YTO 2.0(2.02) 2.13(2.08) 2.07(2.02)
LTO 2.02(2.03) 2.06(2.05) 2.02(2.03)

θp θz

YTO 140.41o (143.62o) 133.30o (140.35o)
LTO 153.82o (152.93o) 154.30o (153.75o)

Table 3.2: Atomic positions in crystal coordinates (x/a, x/b, x/c), and main structural
parameters (Ti-O-Ti angles in plane (θp) and along z (θz), Ti-O distances along z (dz) and
in-plane (the shorter dS and the longer dL) bonds) for Pnma YTiO3 and LaTiO3 calculated
by VPSIC, in comparison with the experimental data (in parenthesys). Cell structures are
fixed to the experimental values a=5.316 Å, b=5.679 Å, c=7.611 Å for YTO, a=5.640 Å,
b=5.584 Å, c=7.896 Å for LTO[117].

prefers to lie along the longer Ti-O bond (thus alternatively |xz〉 and |xy〉 for dL parallel

to x, or |yz〉 and |xy〉 for dL parallel to y). For YTO the difference between dL and dS is

quite sizeable, and give rise to a very pronounced ordering, as seen in the analysis of the

charge density. For LTO the dL and dS difference is much reduced, and so is the planar

chessboard ordering, indeed. Notice that for both materials the JT-type structural

distortions are minor, i.e. properties along x, y, and z are, on average, almost the same

(especially for LTO). The GdFeO-type tiltings and rotations, on the other hand, are

quite sizable and represent the major factor determining the observed structures and

the consequent splitting of the t2g triplet state. Finally, the VPSIC-calculated structure

is satisfactorily close to experiment for both LTO and YTO (although for the latter

oxygen rotations are a bit overemphasized along z).
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3.6 Conclusions

In summary, VPSIC results furnish a coherent guideline to understand (at least part of)

the differences between YTO and LTO, and correctly describe the different magnetic

ordering of the two systems: The bigger GdFeO-type distortions of YTO produce

crucial differences in electronic and magnetic properties, as evidenced by the results:

a) larger Ti 3d-O 2p and t2g-eg mixing;

b) crucially different charge density distribution around Ti;

c) an increase by factor ∼2 of the occupied 3d state bandwidth. The wider rotations, in

particular, destabilize the AF superexchange coupling which prevails in a purely

d1 t2g unrotated Pnma environment.

Notice that the above considerations are completely reverted for doped manganites,

whose chemistry is governed by eg: in that case cubic symmetry and absence of octa-

hedral rotations works in favor of eg-p hybdridization. In titanates, on the other hand,

absence of octahedral rotations means vanishing p-d hybridization, pure t2g charge

character, and minimal t2g bandwidth.

It remains to explain the large difference between our calculated and the mea-

sured energy gap. This actually occurs by construction: our VBT and CBB band

energies represent removal and additional energies, and their difference estimates the

on-site Coulomb energy U, whereas the lowest excitation measured for these true Mott-

Hubbard insulators is an intra-site excitation energy which of course does not include

U. The attempt to argument a presumed smallness of U on the basis of the very tiny

energy gap of LaTiO3 [124] is a misinterpretation. In fact, according to our band

structure U∼3 eV, as expected for a system of this kind. It is also not very proper

the strategy carried out in several works of estimating the excitation energy as LDA-

calculated t2g (average) band splitting: this is justified by the fact that in the limit of

vanishing U (i.e. delocalized electrons) excitation and additional/removal energies go

back to be the same quantities; however we must keep in mind that here the vanishing

of U is an artifact of the LDA, not a true feature of the titanate. A more rigorous

strategy to evaluate the lowest excitation energy is suggested in [127] where a suited
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Hamiltonian for the excited state is constructed in such a way to project out the elec-

tronic ground state. Here we do not pursue this route which overcomes the capability

our actual methodological setting, and leave to future developments the investigation

of the crystal-field splitting and orbital-liquid state in LTO by VPSIC. However, we

emphasize that the rationalization of the FM vs. AF G-type competition is correctly

described already at the level of our ground-state results.
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4

Transition metal monoxides

The main part of the following discussion is published in the APS Journal “Phys. Rev.

B, 84(115114), 2011 [134]”. In this section my operational contribution was essentially

the LDA and VPSIC calculation while the HSE and Montecarlo parts were the results of

C. Franchini and R. Tiwari calculations. The writing and preparation of the paper was

done collaboratively with coworkers and supervisors, as did the planning and assessment

of the work.

4.1 Introduction

The relative simplicity of structural and magnetic ordering and the abundance of avail-

able experimental and theoretical data elect transition metal monoxides (TMO) as fa-

vorite prototype materials for the ab initio study of exchange interactions in Mott-like

insulating oxides [107]. TMO are known to be robust antiferromagnetic (AF) Mott-

like insulators with sizable exchange interactions and Néel ordering temperatures. The

accurate determination of magnetic interactions purely by first-principles means is a

remarkable and as yet unsolved challenge [135, 136, 137]. The difficulty stems, on the

one hand, from fundamental issues in the description of Mott insulators by standard

density functional theory (DFT) approaches, such as local-spin density approximation

(LDA) or the generalized gradient approximation (GGA). On the other hand, the de-

termination of low-energy spin excitations require a meV-scale accuracy; however, the

error bar due to specific implementation and technical differences may easily be larger.
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A large amount of theoretical work for TMO has amassed over the years. A number

of studies were carried out in particular for MnO and NiO with a variety of advanced

methods: the LDA+U [82, 135, 138, 139, 140, 141], GGA+U [142, 143], the optimized

effective potential (OEP) [135], the quasiparticle Green function (GW) approach [137,

144, 145], several types of self-interaction corrected LDA (SIC-LDA) [21, 24, 146, 147,

148, 149], Hartree-Fock [150, 151, 152, 153] and several types of hybrid functionals

such as B3LYP [153, 154, 155], PBE0 [152, 156, 157], Fock-35 [153], and B3PW91

[156]. From a methodological viewpoint, Refs. [135, 147, 158] are particularly relevant

for our present purposes, because of the systematic comparison of diverse approaches

to computing magnetic interactions. Other studies [159, 160, 161] focused in particular

on pressure-induced high-to-low spin magnetic collapse observed at very high pressure

(∼150 GPa for MnO) and relevant to Earth-core geophysics. Here we will not, however,

be concerned with the phenomenology of this specific phase transition.

In this Chapter we present a detailed analysis of MnO and NiO magnetic properties

on a wide range of lattice parameters (i.e. hydrostatic pressures) carried out by standard

and advanced first-principles methods. In particular, our theoretical front-liners are two

approaches proposed recently for the description of strongly-correlated systems: the

Heyd, Scuseria and Ernzerhof (HSE) hybrid functional approach [162, 163, 164], and

the VPSIC [5], implemented in plane-wave basis set plus ultrasoft [76] pseudopotentials.

To provide a baseline for their evaluation, we complement these methods by their

local counterparts implemented in the same methodological setting, namely LDA in

plane-waves and ultrasoft pseudopotentials (reference for VPSIC) and GGA in the

Perdew-Becke-Ernzerhof [165](PBE) version (reference for HSE). Performing the same

set of calculations in parallel with different methods is instrumental to distinguish

fundamental and methodological issues, and characterizes this work with respect to

the many previous theoretical studies of TMO.

MnO and NiO in equilibrium conditions have a high-spin magnetic configuration

and large (∼ 3.5-4 eV) band gap. Magnetic moments and exchange interactions de-

pend crucially on the details of structural and electronic properties. The latter are

characterized by a complex interplay of distinct energy scales: the crystal field split-

ting, which in rocksalt symmetry separates the on-site 3d eg and t2g energies; the charge

transfer energy between O p and TM d states; the hopping energies between d-d and

p-d states [166]. Ref.[135] convincingly shows that an empirical single-particle potential
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suitably adjusted to reproduce the experimental values of the above mentioned energies

can deliver highly accurate magnetic interactions (moments and spin-wave dispersion).

However, obtaining a correct balance of all these contributions is difficult even for ad-

vanced density functional methods, not to mention standard LDA or GGA, which fail

altogether (to different extents depending on the specific compound). A general analysis

of these failures and difficulties of ab initio approaches is beyond the scope of this work;

we mention that the thorough analysis carried out in Refs. [135, 167] suggests that a

single parameter, as adopted by the LDA+U, is not sufficient, while global multi-state

energy corrections could serve this purpose. Both the advanced methods (HSE and

VPSIC) adopted in this work, while quite different in spirit, act in terms of “global”

corrections to local density functional energy spectrum, i.e. no a priori assumption is

made about which particular state or band is in need of modification or correction.

MnO and NiO are both affected by SI, although to different extents [103]: severely

for MnO, dramatically for NiO. Under positive (i.e. compressive) pressure the problem

will be amplified, as any small band gap which may exist at equilibrium will be further

reduced up to complete closure, and magnetic moments may be disrupted. Thus, a

reliable description of TMO under pressure necessarily requires approaches overcoming

the SI problem. Both VPSIC and HSE, although from different starting points, work

towards the suppression of SI. The former explicitly subtracts the SI from the LDA

functional; the latter, in a more fundamental manner, inserts of a portion of true Fock

exchange in place of the local exchange functional, whose incomplete cancellation with

the diagonal Hartree counterpart is the source of SI in LDA/GGA functionals [168].

The results will show that, despite the different conceptual origin, the two approaches

deliver a consistent description of MnO and NiO, in fact with spectacular quantitative

agreement in several instances.

The Chapter is organized as following: Sec.4.2 describes briefly the methodologies

employed; in Sec.4.3, the model used to calculated the exchange-interaction parameters

is discussed. Sec.4.4 illustrates our results at equilibrium (4.4.1) and under pressure

(4.4.2). In Sec.4.4.2.2 and 4.4.2.3 we discuss the exchange interactions and critical

temperatures, respectively. Section 4.5 offers some concluding remarks.
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4.2 Methods

Our first-principles results are obtained by using two different codes: PWSIC [4] and

VASP [71, 169]. With the PWSIC code, which uses plane-waves basis set and ultra-

soft pseudopotentials we carry out calculations within LDA (hereafter LDA-PW) and

VPSIC [5] (see Sec.1.4).

The VASP [71, 169] code, employing the projected augmented wave (PAW) ap-

proach, is used for PBE [165] and HSE [162, 163, 164] calculations. In the HSE method

the short-range (sr) part of the exchange interaction (X) is constructed by mixing ex-

act non-local Hartree-Fock exchange and approximated semi-local PBE exchange. The

remaining contributions to the exchange-correlation energy, namely the long-range (lr)

exchange interaction and the electronic correlation (C), is treated at PBE level only,

resulting in the following expression:

EHSE
XC =

1
4
EHF,sr,µ

X +
3
4
EPBE,sr,µ

X + EPBE,lr,µ
X + EPBE

C . (4.1)

The partitioning between sr and lr interactions is achieved by decomposing the Coulomb

kernel (1/r, with r = |r− r′|) with a parameter µ, controling the range separation be-

tween the short (S) and long (L) range part

1
r

= Sµ(r) + Lµ(r) =
erfc(µr)

r
+

erf(µr)
r

. (4.2)

We have used here µ = 0.20 Å−1, in accordance to the HSE06 parameterization [170]

and corresponding to the distance 2/µ at which the short-range interactions become

negligible. For µ= 0, HSE06 reduces to the unscreened hybrid functional PBE0 [171,

172].

PWSIC calculations have been carried out in 16-atom face centered cubic (FCC)

supercells [i.e. 8 formula units (f.u.)], cut-off energies of 40 Ry, reciprocal space integra-

tion over 6×6×6 and 10×10×10 special k-point grids for self-consistency and density

of states calculations, respectively. VASP calculations have been performed using a 4

f.u. unit cell, an energy cut-off of 25 Ry, a 4×8×4 k-point mesh and a standard HSE

mixing parameter a=0.25. Pressures have been evaluated using the Birch-Murnaghan

equation of state [173].

Montecarlo simulations of the classical 2-parameter Heisenberg model have been

carried out for a spin lattice system of size L=12 (i.e. N = L3 total lattice sites).

70



4.3 Magnetic structures and the Heisenberg model

We determined ground state magnetic ordering and critical temperature by simulated

annealing for each pair of ab-initio-calculated J1 and J2 parameters characterizing the

magnetic structure (see 4.3), at each lattice constant and for each method. In order

to test finite-size effects on the results some annealing with L=20 was also performed.

The annealing was done over 30 temperature points, starting from high temperature

(roughly twice the critical temperature) down to T=0, with 106 sweeps at each temper-

ature. The annealing protocol is the usual Metropolis algorithm based on single spin

update.

4.3 Magnetic structures and the Heisenberg model

TMO have a rock-salt structure (see Fig.4.1), so each TM has 12 nearest-neighbor (NN)

and 6 next-nearest neighbors (NNN). The NNN are connected through oxygen bridges,

and their interaction J2 is dominated by superexchange. On the other hand, NN interact

via a typically smaller exchange coupling J1 whose sign may depend on the specific

TMO; J1 involves direct TM-TM exchange (giving a robust AF contribution) and

a 90◦-oriented TM-O-TM superexchange (expected to be weakly FM). The observed

ground state magnetic phase is antiferromagnetic (111) A-type, labeled AF2 hereafter.

It can be seen as a stacking of (111) planes of like spin alternating along the [111]

direction, as illustrated in Fig.4.1. In AF2 each TM has 6 spin-paired intra-(111)-

plane NN and 6 spin-antipaired inter-(111)-plane NN; on the other hand, all 6 NNN

bonds are inter-planar and antipaired. Thus, this configuration maximizes the energy

gain associated to the NNN antiparallel spin alignment. As for beyond-NNN magnetic

interactions, there is ample experimental [174] and theoretical [147] evidence that they

can be safely discarded (e.g. according to inelastic neutron scattering [174] in NiO they

are two order of magnitude smaller than the dominant J2. We explicitly checked this

with our code).

In order to evaluate J1 and J2 we need to consider at least two competing high-

symmetry magnetic phases beside the observed AF2. Natural choices are the ferro-

magnetic (FM) order and the AF (110) A-type order with (110) spin-paired planes

compensated along [110] (labeled AF1). AF1 can also be seen as made of FM (001)

planes alternating along [001] (see Fig.4.1). The AF1 phase has all the 6 NNN spin-

paired, 4 of the NN spin-paired, and 8 NN spin-antipaired. On the other hand, it is
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4. TRANSITION METAL MONOXIDES

Figure 4.1: Magnetic phases used for the Heisenberg model fit: FM; AF2 that is built
of alternating (111) planes of like spins [highlighted by thick (red) lines]; AF1, made of
alternating (011) (or equivalently (001)) planes of like spins, delimited by (red) thick lines.
The highly frustrated G-type AF phase is also shown for comparison. Filled light (green,
up spin) and black (down spin) circles indicate TM atoms, small empty circles are for
oxygens. For the G-type phase (blue) filled circles marked with a question mark indicate
TM atoms with frustrated spin direction.

interesting to note that the G-type AF order (also depicted in Fig.4.1) is strongly dis-

favored by frustration, since in FCC symmetry there is no way to arrange the 12 NN

interactions in antiparallel fashion without conflict.

To extract J1 and J2 we fit our calculated total energies to a standard 2-parameter

classical Heisenberg Hamiltonian of the form:

H = −J1

∑
〈i,j〉

~ei · ~ej − J2

∑
〈〈i,j〉〉

~ei · ~ej (4.3)

where 〈i, j〉 and 〈〈i, j〉〉 indicate summation over NN and NNN, respectively, and ~ei

is the spin direction unit vector. Energies (per f.u.) are then expressed as:

EFM = E0 − 6J1 − 3J2

EAF1 = E0 + 2J1 − 3J2
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EAF2 = E0 + 3J2 (4.4)

This is solved to give:

J1 =
1
8
(EAF1 − EFM )

J2 =
1
24

(4EAF2 − 3EAF1 − EFM ) (4.5)

With this choice of the Hamiltonian, negative and positive J values correspond to

energy gain for spin-antiparallel and spin-parallel orientations, respectively.

Finally, we mention that several other anisotropic terms may in principle contribute

to the Heisenberg Hamiltonian, related to short-range dipolar interactions favoring a

preferential spin direction parallel to (111) planes, and to rhombohedral distortions

of the AF2 phase consisting on a (111) inter-planar contraction and slight change of

the perfect 90◦ angle of the rock-salt cell, which causes a symmetry breaking of J1

in two J+
1 and J−1 values [152]. However, all these effects are quantified to be order-

of-magnitude smaller than the dominant exchange-interaction energies (e.g. for NiO

J+
1 -J−1 ∼ 0.03 meV according to neutron data [174]), thus the Heisenberg Hamiltonian

written in Eq.4.3 can be considered fully sufficient for our present purposes.

4.4 Results: MnO and NiO

4.4.1 Equilibrium structures

We have calculated total energies and pressures of MnO and NiO as a function of lattice

parameter for the 3 magnetic phases FM, AF2, and AF1. Values of the equilibrium

lattice parameter and bulk modulus for the stable AF2 phase are reported in Tab.4.1,

in comparison with the experimental values.

Results are quite satisfactory overall: each method predicts an equilibrium lattice

constant in good agreement (within 1-2%) with experiment for the AF2 phase. It is

well known that structural properties calculated by LDA or GGA can be good, or even

excellent, although the electronic properties are poor [180, 181]. The results for MnO

and NiO are a case in point, as both LDA and PBE stay within 1% from experiment

(the former in defect, the latter in excess). As for beyond-local functionals, HSE slightly

underestimates PBE results and as a consequence is quite close to experiment, while
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Figure 4.2: Calculated pressure for MnO in the three considered magnetic phases (see
text). Each panel reports results obtained by a different energy functional.
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Figure 4.3: Calculated pressure for NiO in the three considered magnetic phases (see
text). Each panel reports results obtained by a different energy functional.

VPSIC underestimate its respective local-functional (LDA-PW) references by ∼1% (a

tendency also found [5] in other classes of oxides such as titanates and manganites).

In Figs.4.2 and 4.3 the calculated pressures for, respectively, MnO and NiO are

reported as a function of lattice parameters for the three magnetic phases. The behavior

in the region around the equilibrium lattice constant is expressed by the calculated bulk

modulus (B0) in Tab.4.1. The advanced functionals coherently give an increase of B0 by

∼20-30 GPa (∼15%) with respect to their respective local functionals. This increase

is a consequence of the enhanced 3d state localization and concomitant increase in

Coulomb repulsion under compression which is expected from beyond-local approaches.

Concerning the agreement with experiment, both PBE and HSE give values within the

reported experimental uncertainty. In contrast, LDA-PW gives B0 at the higher end

of the experimental error bar, thus that the 15% further increase caused by VPSIC
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4.4 Results: MnO and NiO

pushes the value of B0 ∼40-50 GPa above the experiment. Hence the discrepancy

should be seen as due to the LDA-PW performance (and to the characteristics of the

used pseudopotentials), rather than as a failure of the VPSIC method in itself. The

larger discrepancy, of course, is also related to the smaller volume.

A very interesting feature which emerges consistently from all the methods is the

quite similar pressure dependence for different magnetic orderings, especially evident

for NiO. This looks surprising at first glance, especially at strong compressive pressure,

where changes in the magnetic ordering are related to metal-insulating transitions and

to radical changes in the electronic properties. The explanation is that eg electrons

(strongly hybridized with O p states) govern the electronic and magnetic properties,

but have only a minor effect on the response to applied hydrostatic pressure. In MnO,

where t2g states are also magnetically active, pressure is slightly more sensitive to the

specific magnetic ordering (in Fig.4.2 AF2 tends to differ from AF1 and FM, which

almost overlap each other). It should also be noted that in MnO for very contracted

lattice constants the advanced functionals give pressures a factor of 1.5-2 larger than

those of the corresponding local functionals, depending on the method and specific

magnetic phase. At variance, for NiO advanced and local functionals give pressures

in the same range. This reflects the larger effect of the advanced functionals on the

half-filled t2g shell of MnO, which is pushed down in energy and increase its spatial

localization and its Coulomb repulsion under compression, than on the filled t2g shell

of NiO.

4.4.2 Magnetic properties upon applied pressure

4.4.2.1 Magnetic phase diagram under pressure

Figs.4.4 and 4.5 summarize our findings concerning phase stability and magnetic mo-

ments for MnO and NiO. Each panel reports results obtained by a given energy func-

tional for relative magnetic energies (with respect to the most stable magnetic ordering)

and their corresponding magnetic moments, as a function of lattice constant. Column-

wise, panels are ordered according to the code used: LSDA and VPSIC (left, PWSIC);

PBE and HSE (right, VASP).

We start our analysis from MnO results given by LDA and PBE (top panels of

Fig.4.4). We can capture immediately the substantial similarity of the two approaches:
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Figure 4.4: Total energies (relative to the ground state) and magnetic moments of FM,
AF1 and AF2 phases of MnO as a function of lattice parameter, calculated by LDA and
VPSIC (left panels), PBE and HSE (right panels). The insulating (I) or metallic (M)
character of each magnetic phase is also indicated. Vertical dashed lines indicate phase
transitions.

at large volumes AF2 is the most stable phase and insulating, a metallic AF1 region

∼50-100 meV above AF2, and a metallic FM region ∼100-150 meV above AF2. Under

compression, all two methods reports a phase transition (indicated by the vertical

dashed lines) through which the AF2 phase yields to a metallic FM region as ground

state, which wins over higher-energy AF1 and (further above) AF2 metallic phases.

Looking at the corresponding magnetic moments, LDA and PBE both show a gradual

moment decay when going from 4.7 Å up to a threshold of 4.0 Å (LDA) and 4.1 Å

(PBE), corresponding, in the pressure scale, to ∼40 GPa and 80 GPa, respectively.

After this threshold, magnetic moments fall quite abruptly down to ∼ 2 µB at 3.8 Å

for the stable FM metallic phase (notice that this unphysical collapse described by

LDA-PW and PBE is not related to the true moment collapse [159] in MnO at much

higher pressures).
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Now we analyze the results obtained within beyond-local functionals. Overall, the

picture is radically different: for the whole range of lattice parameters, the AF2 insu-

lating phase is robustly the ground state, and the spurious phase transition discussed

above is absent. Furthermore, both approaches report a stability enhancement (i.e. a

roughly linear energy gain) of AF2 for decreasing lattice constant. This effect is in-

deed expected as a consequence of the increased Mn d-O p covalency and the related

strengthening of AF superexchange coupling. The AF2 maximum stability is reached at

∼3.9 Å according to VPSIC (corresponding to an applied compression of ∼130 GPa),

and at ∼4.0 Å according to HSE (P∼90 GPa). The peak of AF2 energy gain with

respect to the equilibrium structure is nearly 100%, from ∼50 meV/f.u. to more than

100 meV/f.u. according to HSE and VPSIC. Above AF2 both advanced functionals

favor the AF1 phase, which, (at variance with the always insulating AF2 phase) under-

goes a metal-insulating transition at 3.97 Å (VPSIC) and 4.05 Å (HSE). Above AF1

resides a FM region, again separated in a large-volume insulating and small-volume

metallic sides, with an insulating-metal transition threshold of 4.07 Å for VPSIC, and

4.15 Å for HSE. This consistency is also reflected in similar values of magnetic moments

through the whole lattice constant range: both methods describe a moderate decline

from ∼4.7 µB at 4.7 Å to ∼4.0-4.2 µB (depending on the specific magnetic phase) at

a=3.8 Å. Interestingly, the coherent picture delivered by the advanced functionals for

MnO is not limited to the predict the same ground-state, but also involves ordering and

energy differences among the three magnetic phases. This is instrumental to coherently

describe finite-temperature properties as well, as shown in Section 4.4.2.3.

Now we move to the analysis of NiO results, summarized in Fig.4.5, starting again

from the phase stability diagram drawn by the two local functionals (upper panels).

At variance with MnO, now all the methods give the insulating AF2 phase as stable at

any lattice constant; however the competition with the other two orderings is described

differently: according to LDA, moving from large to small lattice constants there is

first a tiny region where the AF2 stability increases, reaches maximum at 4.4 Å (thus

much above the equilibrium value) and then falls linearly all the way down to 3.8 Å .

Furthermore, above AF2 the LDA predicts a coexistence of degenerate AF1 and FM

metallic phases. This scenario can be rationalized looking at the magnetic moments for

AF1 and FM calculated in LDA: starting from the large lattice constant value of ∼1 µB,

the magnetic moment falls rapidly and vanishes altogether just at 4.4 Å (i.e. still above
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Figure 4.5: Total energies (relative to the ground state) and magnetic moments of FM,
AF1 and AF2 phases of NiO as a function of lattice parameter, as calculated for the
different methods used in this work: LDA and VPSIC calculations (left), PBE and HSE
calculations (right). PM indicates Pauli Paramagnetic ordering, I and M insulating and
metallic character, respectively. Vertical dashed lines indicate phase transitions.

the equilibrium value of 4.35 Å). Below this threshold the LDA describes a metallic

Pauli paramagnetic region. On the other hand, the expected Mott-insulating behavior

is only maintained in the AF2 phase. This feature represents a major shortcoming

which seriously hamper the NiO description by LDA.

PBE shows a similar, although slightly less dramatic failure, since the moment

collapse starts to show up for smaller lattice constant values (4.0 Å for FM and 4.1 Å

for AF1, thus definitely below the equilibrium 4.19 Å ), and the magnetic moment is

severely reduced to about 0.5 µB, without vanishing completely.

Both the beyond-LDA functionals, predict a large enhancement of AF2 stability

upon lattice constant decrease in a wide range around the equilibrium value. The arti-

ficial moment collapse described by the local functionals is absent, and all the magnetic

phases remain insulating through the whole lattice constant range. All methods find
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magnetic moments of about 1.7-1.8 µB at large lattice constants, and a very moderate

decrease to ∼1.5 µB at the smallest lattice constant considered (3.8 Å). Particularly

striking is the agreement between HSE and VPSIC, both describing a tiny FM region

intermediate between AF2 and AF1, and a parabolic rise of the AF2 energy gain from

∼50 meV at 4.7 Å up to ∼250 meV at 3.8 Å.

In order to clarify the difference in the magnetic moments under pressure obtained

by the different methods, we examine the orbital-resolved density of states (DOS) for

NiO at two representative lattice constants, a=4.5 Å and a=4.0 Å , corresponding to

situations of tensile and compressive strain. The results are shown in Fig. 4.6.
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Figure 4.6: Orbital-resolved DOS for NiO calculated at two lattice constant values (4.0 Å,
and 4.5 Å) with all our employed functionals: VPSIC (top right), PBE (bottom left) and
HSE (bottom right). Only the DOS for the relevant orbitals are shown: O p (filled gray
curves) and Ni d, separated in t2g (filled red curves) and eg (solid blue lines) contributions.
Positive and negative curves represent majority and minority contributions.

LDA FM and AF1 phases are actually Pauli-paramagnetic, with perfectly compen-

sated spin-densities, while in the AF2 phase a barely visible gap opens up within the eg
manifold. In PBE for FM and AF1 phases some magnetization shows up in the upper

eg manifold, while for AF2 the magnetic moment is formed, and a Mott gap is about
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to open. Even at a=4.5 Å some differences among the local functionals are detectable:

according to LDA only the AF2 is insulating, while PBE provides well formed magnetic

moments in each phase but only AF2 is clearly insulating.

Using beyond-local functionals, the expected picture of wide-gap intermediate charge-

transfer/Mott insulator described by the experiments [182, 183, 184] is restored. Now

the DOS is that of a robust insulator under both lattice expansion and compression,

with a valence band top populated by a mixture of O p and Ni d states, and the con-

duction bottom with a majority of eg and a minor fraction of O p states. The energy

gap for the AF2 phase ( ∼3.5 eV for both VPSIC and HSE) is in good agreement with

the experimental value, and even FM and AF1 phases show sizeable gaps of about 1-2

eV.

In summary, for MnO and NiO VPSIC and HSE deliver a very coherent description

of relative phase stabilities in the whole examined range of lattice parameters, and

predict a clear enhancement of the AF2 phase relative stability (not described by local

functionals) within a wide lattice parameter interval, which suggests the possibility

of an enhancement of the magnetic ordering Néel temperature (TN ) upon applying

compressive stress. Before exploring the validity of this expectation we will first discuss

the evolution of the magnetic coupling constants upon compression.

4.4.2.2 Exchange interactions under pressure

A few qualitative considerations on magnetic interactions can help to correctly interpret

our results. Our calculations find the T=0 magnetic ground state to be the observed

AF2 for both MnO and NiO; however, the detailed magnetic interactions suggest two

different scenarios. Magnetic coupling between Mn2+ 3d5 ions is mediated by half-filled

orbitals (thus J1 mainly by t2g-t2g and J2 by eg-eg couplings), which are both robustly

AF oriented according to superexchange theory [107, 185, 186]. Thus we expect J1 and

J2 to be both sizable and negative (i.e. AF in our present convention). For Ni2+ d8

ions, on the other hand, only eg-eg coupling is magnetically active. Hence we expect

a large and negative J2 due to the dominance of covalent superexchange, very small

and positive J1 due to superexchange-mediated 90◦-oriented eg-(O px,py)-eg orbital

coupling, and therefore huge J2/J1 values.

These expectations are largely confirmed by our results: in MnO (Fig.4.7) J1 and

J2 roughly track each other as function of the lattice parameter irrespective of the
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calculation method. However, it is of the utmost importance to observe the dramatic

difference between the description of local and advanced functionals: looking at LDA

results (Fig.4.7) J1 and J2 are moderately negative at expanded lattice, then upon

lattice shrinking they both change sign and grow up to a maximum value at ∼ 4 Å,

and finally fall back down as the lattice shrinks further. The VPSIC almost completely

reverses this behavior: J1 and J2 nearly vanish at 4.7 Å (signaling a shorter interaction

range with respect to LDA), and then grow steadily (in absolute value) on the negative

side as the lattice squeezes up. Curiously, LDA and VPSIC curves intersect each

other at ∼ 4.4 Å, but this agreement near the equilibrium lattice is just a fortuitous

crossing of two otherwise radically different behaviours. Notice finally that while in

VPSIC J2/J1>1 at any lattice parameter, in LDA-PW the exchange interaction ratio

fluctuates as function of the lattice constant.
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Figure 4.7: Exchange-interaction parameters J1 (black filled circles) and J2 (red filled
squares) as a function of lattice parameter calculated for MnO with various approaches.
a) with PWSIC code by LDA-PW and VPSIC functionals; b) with VASP code using PBE
and HSE functionals. Dashed lines refer to local density functional (LDA-PW and PBE)
calculations, solid lines represent beyond-local density functionals calculations (VPSIC and
HSE). Black and red crosses show experimental values for J1 and J2, respectively, reported
for MnO in Tab.4.2.

The considerations exposed for LDA and VPSIC can be identically repeated for

PBE and HSE, respectively (the similarity of curves is apparent comparing panel a)

and b) see Fig.4.7).

Now we move to examine NiO (Fig.4.8). As expected, the relative weight of J1 and

J2 is very different: all functionals (both local and beyond-local) find J1 very small and

positive at any lattice value (black symbols). On the other hand, the large and negative
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Figure 4.8: Exchange-interaction parameters J1 (black filled circles) and J2 (red filled
squares) as a function of lattice parameter calculated for NiO with various approaches.
From top to bottom: a) with PWSIC code by LDA-PW and VPSIC functionals; b) with
VASP code using PBE and HSE functionals. Dashed lines refer to local density functionals
calculations (LDA-PW and PBE), whereas solid lines represents beyond-local density func-
tionals calculations (VPSIC and HSE). Black and red crosses show experimental values for
J1 and J2, respectively, reported for NiO in Tab.4.2.

J2 is again differently described by the two sets of functionals. We can repeat most of

the considerations made for J2 in MnO (Fig.4.8), the behavior with lattice parameter

being roughly inverted.Phenomenologically, it is important to note the appreciable

growth of the exchange interactions for large applied compression, coherently described

by beyond-local functionals. In the next section we will illustrate the reverberations

of this behavior on the magnetic ordering temperature. For now, we remark that this

is the expected behavior of the so called covalent exchange, i.e. the shorter the TM-O

distance, the stronger the energetic advantage for the O 2p ligand states to overlap

with the adjacent TM 3d states with unlike spins. This advantage reaches a maximum

at a certain compression, after which the J’s start falling. This is the point when the

pressure is so strong that minority DOS begins to be appreciably populated and in turn

magnetic moments start falling.

Overall, the two beyond-local functionals furnish a qualitatively and quantitatively

coherent description of exchange interactions under pressure for MnO and NiO. There

is a large body of data in literature, both theoretical and experimental, with which

to compare our data, at least at equilibrium. In Tab.4.2 we report our values for the

theoretical equilibrium structure in comparison with the experimental values and other

theoretical predictions obtained by several density functional based approaches (see
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Sec.4.1), we neglect tight-binding or shell-model results, which rely on experimental

fitting).

The J’s reported in the Table are determined by finite energy differences, though in

some cases, the magnetic force theorem (MFT) [191] based on the exchange-correlation

density-functional gauge invariance under infinitesimal spin rotations [135, 192, 193,

194] was used. In Ref. [137], exchange interactions and the whole spin-wave spectrum

was determined from the poles of spin susceptibility [195, 196]. As for experiments,

results from both inelastic neutron scattering (INS) [174, 187, 188] and thermodynamic

data (TD) [189, 190] are reported.

Comparison of J values given by different approaches and considerations on the

level of agreement with the available experimental data must be taken very carefully.

Differences of the order of a few meV may derive from technical implementation aspects

rather than from the underlying theory. In MnO the comparison is further complicated

by the closely similar J values. It is expected that local functionals should overestimate

the J’s, due to the underestimation of intra-atomic exchange splitting and the related

overestimation of p-d hybridization. This is indeed verified with PBE; however LDA

(the least accurate of the two local functionals) delivers J’s in excellent agreement with

the experiment: this fortuitous agreement was previously explained as consequence

of the unphysical AF2 to FM transition occurring in LDA-PW near the equilibrium

structure. On the other hand, beyond-local functionals perform quite satisfactorily,

apparently ranking among the closest to experiment both in absolute terms and con-

cerning the J2/J1 ratio (1.16 for INS data, 1.1 for HSE, 1.5 for VPSIC). For NiO the

analysis is simpler, as J1 is very small and a qualitative comparison can be done on the

base of J2 only. As already commented, the LDA is grossly inadequate and can be left

aside. On the other hand PBE delivers sizably overestimated J2. As for beyond-local

functionals, we have previously seen that that J’s calculated by VPSIC and HSE al-

most overlap each other throughout the lattice parameter range. The agreement with

values drawn from neutron experiments [174] is indeed quite satisfying. Nevertheless,

the slight VPSIC underestimation of the equilibrium lattice parameter (4.09 Å against

the near experimental-matched 4.18 Å of HSE) reverberates in a ∼15% overestimation

of J2. Looking at previous literature, we found a substantial agreement of VPSIC and

HSE with GGA+U calculations of Ref. [142] (here the J’s are also calculated as a func-

tion of lattice parameter) and with other types of hybrid functionals[153] as well. On
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the other hand, both unrestricted HF [153], full SIC in LMTO approach (SIC-LMTO)

[146] and the local SIC (LSIC) (a KKR-based implementation of the self-interaction

correction method [147, 148, 149]) tend to an excessive electronic localization, which

thus turns into a slight underestimation of the exchange interactions.
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LDA-PW VPSIC PBE HSE Expt.

MnO
a0 4.38 4.35 4.47 4.41 4.43a

B0 158 194 145 170 151b,162c

NiO
a0 4.15 4.09 4.19 4.18 4.17d

B0 234 269 183 202 180-220e

a): Ref.[175]; b): Ref.[176], c): Ref.[177]
d): Ref.[178]; e): Ref.[179]

Table 4.1: Equilibrium lattice constants a0 (in Å) and bulk moduli B0 (in GPa) calculated
in this work with various methods, compared with experimental values. All values refer to
the stable AF2 magnetic ordering.
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MnO NiO
J1 J2 J1 J2

Experiment

INSa -4.8 -5.6 INSb 1.4 -19.0
TDc -5.4 -5.9 TDd -1.4 -17.3

This work: local functionals

LDA-PW -2.7 -6.3 LDA-PW -0.5 -14.7
PBE -9.5 -14.9 PBE 1.2 -44.5

This work: advanced functionals

VPSIC -5.0 -7.6 VPSIC 3.3 -24.7
HSE -7.0 -7.8 HSE 2.3 -21.0

Previous calculations

LSDAe (MFT) -13.2 -23.5
LDA+Ue (MFT) -5.0 -13.2 GGA+Ul 1.7 -19.1
OEPe (MFT) -5.7 -11.0 SIC-LMTOm 1.8 -11.0
PBE+Uf -4.4 -2.3 Fock-35n 1.9 -18.7
PBE0f -6.2 -7.4 B3LYPn 2.4 -26.7
HFf -1.5 -2.32 UHFn 0.8 -4.6
QPGWg -2.8 -4.7 QPGWg -0.8 -14.7
LSICh 1.4 -3.3 LSICh 2.8 -13.9
LSICh (MFT) -1.8 -4.0 LSICh (MFT) 0.3 -13.8
B3LYPi -5.3 -11.0

a): Ref.[187, 188], b): Ref.[174], c): Ref.[189] d): Ref.[190]
e): Ref.[135], f): Ref.[152], g): Ref.[137], h): Ref.[147]
i): Ref.[154, 155], l): Ref.[142], m): Ref.[146], h): Ref.[153]

Table 4.2: Exchange interaction parameters for MnO and NiO (in meV) calculated in
this work, compared to experimental and theoretical values from previous works.
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4.4.2.3 Critical transition temperatures under pressure

Fig.4.9 reports critical temperatures for MnO and NiO calculated with the Heisenberg

Hamiltonian given in Eq.4.3 and solved through classical MonteCarlo (MC) simulated

annealing technique [197]. Values calculated at equilibrium and at experimental vol-

ume are reported in Tab.4.3, in comparison with the experiment and other theoretical

predictions.
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Figure 4.9: Critical temperatures as a function of lattice constant for MnO (top panel)
and NiO (bottom) calculated by simulated-annealing MonteCarlo simulation of the Heisen-
berg Hamiltonian in Eq.4.3. Left and right panels separate local and advanced functionals
used to determine each set of (J1, J2). The shaded areas in the top-left panel indicate
FM metallic regions; apart from that, each curve separates low-T insulating AF2 from
high-T insulating PM regions (PM stands for Pauli Paramagnetic ordering). The dashed
horizontal lines indicate experimental TN values.

We start discussing the case of MnO as described by our local density functionals.

As expected, MC calculations describe fictitious phase transitions (consequence of the
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spurious magnetic moment collapse previously discussed) from AF2 to FM metallic

magnetic phase (highlighted by the dashed areas) while moving from large to small

lattice parameters. The onset of this transition depends on the method: it is especially

harmful in LDA as it occurs near (just below) the theoretical lattice value (4.35 Å).

In all cases this phase transition dramatically alters the critical temperature behavior,

which is expected to grow (at least in some interval around equilibrium) as the lattice

parameter contracts.

Furthermore in all cases the predicted TN (see Tab.4.3) remains quite distant from

the experimental TN=118 K (horizontal dashed line in the Figure). Notice again that

while PBE overestimates TN at the equilibrium structure, the spurious phase transition

in LDA-PW cause TN to be smaller than the experimental values, and paradoxically

not too far (at experimental lattice constant) from the experiment. This is another

manifestation of the fortuitous agreement already pointed out in the illustration of the

exchange interactions.

Conversely, the advanced functionals deliver for MnO a nicely consistent picture,

with TN growing steadily from very large lattice constants (TN →0) up to 3.9-4.0 Å,

and peaking at ∼410 K. The corresponding pressure is around 120±20 GPa depending

on the approach (see Fig.4.2). There is a minor offset between the two methods, due to

the slight increase in J’s moving from VPSIC to HSE. However, if calculated at their

respective equilibrium values, both VPSIC and HSE predict a TN which is almost spot-

on to the experimental value. In addition, HSE and VPSIC-derived dTN/dP∼6k/GPa

also agree well with experiment.

Moving to the analysis of NiO, the two local functionals behave quite differently

from each other. So, it is all the more remarkable that their beyond-local counterparts

are capable to rebuild a very consistent picture, with TN linearly growing along with

the decrease of lattice parameter. The near-overlap of HSE and VPSIC is especially

striking, and already noticed for the J’s. Notice that for NiO there is no lattice pa-

rameter turning point in the considered range, thus TN keeps growing up to 3.8 Å,

corresponding to a pressure of about 100-120 GPa (see Fig.4.3). The agreement with

the experiment for NiO is much less outstanding than for MnO, as both HSE and VPSIC

remains below the experimental TN=523 K by ∼20% (at the equilibrium structure the

VPSIC value is actually not too far from the experiment thanks to its underestimated

lattice parameter).
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MnO NiO

Experiment

NDa,b 118 523
Expt. J’s 85c 340d

Expt. J’s 90e 300f

This work: local functionals

LDA-PW 55 (71) 272 (280)
PBE 249 (257) 824 (829)

This work: advanced functionals

VPSIC 116 (89) 458 (387)
HSE 125 (116) 393 (400)

Previous works

LSICg (DLM) 126 336
LSICg (RPA) 87 448
LSICg (MC) 90 458
LDAh (MC) 423 965
LDA+Uh(MC) 240 603
CEDh (MC) 172 519

a): Ref.[198], b): Ref.[199], c) Ref.[187, 188], d) Ref.[174], e) Ref.[189].
f) Ref.[190], g) Ref.[147], h) Ref.[136].

Table 4.3: Critical temperatures (K) for MnO and NiO calculated in this work at equilib-
rium and experimental (in brackets) lattice constant, compared with experimental (neutron
diffraction, ND) and theoretical values from previous works. As a reference we also report
MC-calculated values obtained by using the experimental J’s (see text for discussion).
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The disagreement between ab initio theoretical estimates and the experimental value

of TN for NiO is typical and well documented in the literature (see e.g. Ref. [147] and

references therein) and a full discussion on the subject is beyond our present scope.

We only remark that the mismatch with HSE and VPSIC is somewhat puzzling, in

consideration of the excellent agreement of the calculated J2 with the experimental

value. In fact, even using experimental sets of J’s, the MC-calculated TN would change

only marginally our theoretical value: as a useful reference we also report in the Table

the TN of MnO and NiO calculated by MC using sets of experimental J’s reported

in Tab.4.2. It turns out that these TN underestimate by ∼30% the directly mea-

sured TN (they are even lower than those obtained with our calculated J’s, since the

slight overestimation of our calculated J’s helps in shifting up the predicted TN ). The

discrepancy between experimental J’s and TN somewhat points out to possible inade-

quacies of the employed Heisenberg model, possibly due to further terms (not included

in Eq.4.3) which might be important at the relatively high ordering temperature of

NiO. In Tab.4.3 we compare our results with some previous theoretical predictions (we

omit the many mean-field approximations which are known [107] to grossly overesti-

mate the critical temperature). Ref.[147] proposes TN obtained by disordered local

moments (DLM), random-phase approximations (RPA) and MC, based on the MFT-

calculated J’s given in Tab.4.2. The DLM values are closest to our HSE and VPSIC

estimate, while RPA and MC values for NiO are larger than our values despite smaller

J’s, due to the debatable inclusion in Ref.[147] of the quantum rescaling factor (S+1)/S

[136]. Ref. [136] also proposes MFT-calculated J’s, derived from LDA, LDA+U, and

LDA plus dynamical mean field approach solved through cluster exact diagonalization

(CED). The latter seems to restore an outstanding agreement with the experimental

TN for NiO [200].
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4.5 Summary and Conclusions

It is fair to affirm that the overall account of the structural, electronic, and magnetic

properties of MnO and NiO provided by the advanced functionals is overall quite sat-

isfying, internally consistent, and in good agreement with experiments. In particular,

HSE shows a remarkable quantitative agreement with experiments on most examined

properties; the VPSIC, perhaps surprisingly when considering the substantially differ-

ent conception at the basis of their theoretical constructions, is quite comparable with

HSE results, and in some cases in spectacular quantitative agreement (e.g. the NiO

exchange interactions vs. lattice constant). An important persistent shortcoming of

VPSIC, however, is the prediction of structure: the predicted lattice constant is below

experiment by ∼1-2%. This tendency to deliver smaller-than-optimal structural pa-

rameters was also encountered in other situations [5], and it is probably not an isolated

occurrence, but rather a characteristics of the VPSIC method. In perspective, we ex-

pect that this drawback could be overcome by adopting the GGA (e.g. PBE) instead

of the LDA as reference functional upon which to build the VPSIC projector. This

would probably lead, as in the case of HSE, to a moderate volume reduction compared

to the slightly overestimated GGA volume, hence probably to an end product much

nearer to experiments.

Finally, our evaluation of the exchange-interaction parameters and of the Néel tem-

peratures requires a mention. While the calculated J’s of both MnO and NiO are found

in satisfying agreement with the experiments, only for the first an equally satisfying TN

is predicted by the MC-solved Heisenberg Hamiltonian. This discrepancy can stimulate

debate and more work devoted to investigate the possible inadequacies of the Heisen-

berg Hamiltonian at high temperature, an aspect that has not been sufficiently stressed

in previous literature.

In conclusion, we have presented a systematic analysis of the structural and mag-

netic properties of MnO and NiO under applied pressure, including ground-state and

finite temperature properties, by using a range of standard and advanced first-principle

approaches. The advanced techniques (HSE, VPSIC) describe very consistently the

behavior of the exchange interactions in a wide range of lattice constant values around

the equilibrium structure, showing an overall agreement with experiments. This places

such methods among the most accurate now available to the first-principles community.
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Our results establish a benchmark of accuracy for innovative techniques aimed at the

determination of the magnetic properties of magnetic oxides.
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5

Nickelates

5.1 Charge disproportionation from first principle: La2NiMnO6

We have a forthcoming paper: “Charge disproportionation from first principle: the case

of the double perovskite La2NiMnO6”. This is essentially my own work. The planning

and assessment of the work was done in collaboration with the supervisors.

5.1.1 Introduction

Charge disproportionation, also known as charge ordering, is expected in materials

containing a mix of cations of nominally different valence. These may be a single species

on inequivalent sites/environments, or two or more different species. Examples are

magnetite and doped manganites. It is a source of puzzlement that disproportionation

as calculated ab initio is generally quite modest compared to the nominal value - but

then of course quantifying charge transfer is tricky. As a case study we will consider

the double perovskite La2NiMnO6 (LNMO).

LNMO is a ferromagnetic (FM) semiconductor and a most promising material for

spintronics. LNMO is a double ordered perovskite (A2BB′O6) with NiO6 and MnO6 oc-

tahedra. It is monoclinic (P21/n) at low temperature and transforms to rhombohedral

(R3̄) at high temperature (in this context we will focus only on this), with these two

structure coexisting over a wide temperature range [201, 202]. Its paramagnetic-FM

transition temperature (Tc) is about 280 K.

The magnetic properties of LNMO can be well explained by Goodenough-Kanamory

rules [203, 204, 205]. However disagreements exist about the cation oxidation state
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(i.e. Ni2+/Mn4+ or Ni3+/Mn3+). Nuclear magnetic resonance spectroscopy (NMR)

and x-ray absorption spectroscopy have provided evidence for ordered Mn4+-O-Ni2+

superexchange interactions in LNMO [206, 207]. On the other hand some neutron

diffraction measures conclude that Ni3+ and Mn3+ are present [201, 202]. It is known

that disproportionation calculated from first-principles is quite modest compared to the

nominal valence. The idea here is to analyze the charge imbalance between Ni and Mn

via partial DOS integration (integrals of atom-centered-sphere-projected densities of

states), Bader analysis [208, 209, 210, 211] and by the occupancy of localized Wannier

functions [212].

The Section is organized as follow: in Sec.5.1.2 we show the structure and electronic

properties of LNMO, in Sec.5.1.3, Sec.5.1.4, and Sec.5.1.5 we discuss and show the

results of our analysis.

5.1.2 Structure and electronic properties

Using GGA [213] we have performed structural optimization of the internal degrees of

freedom of the rhombohedral (RH) structure, keeping the lattice parameters fixed at

experimental values [201]. Our structural parameters (Table 5.1) for the RH FM state

are in good agreement whit another theoretical study [214] as well as with experimental

data [201]. In our final structure (Fig.5.1) we observe that NiO6 is tilted with respect

to MnO6 giving rise to a Ni–O–Mn bond angle of 157◦.

a(Å) b(Å) c(Å) x y z

5.474 5.474 5.474 La 0.24994 0. 24993 0.24994
α β γ Ni 0.0 0.0 0.0

60.671 60.671 60.671 Mn 0.5 0.5 0.5
O 0.80678 0.68043 0.25839

Table 5.1: GGA structural parameters of La2NiMnO6 in RH phase

In Fig.5.2 we show the band structure and the spin, site, and orbital-resolved density

of states (DOS) of FM RH LNMO. We obtain an insulating solution with a band gap

of ∼0.5 eV. In the DOS (Fig.5.2(b)) we see that below −2 eV the main contribution

is from O-p states. The crystal field splits the Mn- and Ni-d manifolds into t2g and eg
levels. In the up-spin channel the Mn-t2g bands are located between Ni-eg and Ni-t2g
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Figure 5.1: Structure of RH FM La2NiMnO6. In the picture we can observe that the
Ni(grey)–O(red)–Mn(violet) bond angle is 157◦.

bands and are filled, while the Mn-eg bands are separated by a gap of ∼2.5 eV from the

Mn-t2g bands and are empty. In the down-spin channel, both Mn-eg and Mn-t2g bands

are empty and located ∼1.5 to 5 eV above the top of valence band (TVB). In other

words the nominal valence of Mn is 4+ (d3 : t32g e
0
g) in agreement with the Mn NMR

and x-ray absorption spectroscopy measurements [206, 207]. In the up-spin channel,

the Ni-t2g and Ni-eg levels are placed in an energy range of ∼2 eV from the TVB and

show a significant hybridization with Mn-d states and O-p states. In the down-spin

channel the Ni-t2g bands are found between O-p states and the TVB, while Ni-eg states

lie ∼1.0 eV above the TVB. This leads to conclusion that the oxidation state of Ni is

nominally 2+ (d8 : t62g e
2
g).

In our calculations the magnetic moment of Mn is 2.94µB which agrees with the

experimental value of 3.0µB [215]. However, the magnetic moment of Ni is 1.28µB)

which is less than the experimental value of 1.9µB [215]. The residual moment reside

on the O sites giving rise to the total magnetization of ∼5.0µB in agreement with
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experiment [215].
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Figure 5.2: Electronic properties of FM RH La2NiMnO6

97



5. NICKELATES

5.1.3 Integrating atom-projected DOS

To interpret the electronic structure of a material, it is often useful to understand which

state with what occupation can be associated with a specific atom. One standard way

to do this is to use the projected density of states (PDOS), defined as the number

of electronic states at a specified energy weighted by the fraction of the total electron

density for those states that appears in a specified volume around the nuclei. Typically,

this volume is simply taken to be spherical; so to calculate the PDOS we must specify

the effective radii of each atom of interest. The results of this approach for LNMO are

shown in Fig.5.3. We plot the oxidation state of the atoms versus the ratio Rsph/Rion

where Rsph is the radius of the sphere centered on the atom and Rion is the ionic radius

of this one. Unfortunately the definition of the radius is not unambiguous. If too small
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RionNi(2+)= 0.83 Å

RionMn(4+)= 0.67 Å

Figure 5.3: Integrated atom-projected DOS for La2NiMnO6 in the RH phase. The stars
indicate one-half of the bond length Mn-O and Ni-O

a radius is used, information on electronic states that are genuinely associated with

the atom will be missed. If the radius is too large, on the other hand, the LDOS will

include contributions from other atoms. Of course this affects the calculated charge. A
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5.1 Charge disproportionation from first principle: La2NiMnO6

good criterion to choose the radii of the spheres could be to take one-half of the bond

length Mn-O for the sphere centered on Mn and the half of the bond length Ni-O for

the one centered on Ni (see stars in Fig.5.3). In this case our results suggest that the

oxidation state for Ni and Mn is +2.5 and +3.0 respectively, with a disproportion of

0.5 electrons. Only at unreasonably small radii the Mn attains its nominal 4+ state.

5.1.4 Bader analysis

The Bader approach [208, 209, 210, 211] eliminates the space-partitioning ambiguity of

the method just described (Sec.5.1.3): space is divided into regions by surfaces where

the gradient of the electron density has no surface-normal component S ·∇ρ = 0, whith

S a surface normal vector. We will refer to regions bounded by such dividing surfaces

as Bader regions (Fig.5.4).

Figure 5.4: The Bader partition generates volumes that are not spherical. An example
is the green cube in the picture, which belongs to Mn (the others are not Bader volumes).

Because this analysis is based solely on the charge density, it is rather insensitive

to the basis set used in the calculation and can be used to analyze plane wave based

calculations as well as atomic-basis ones. Each Bader region generally contains one

nucleus, but not necessarily. Sometimes no nucleus is found within a Bader region. By

integrating the electronic density within the Bader region where an atom is located, and

possibly adding the electronic charge in nearby regions that do not include a nucleus,

the total charge on an atom can be estimated.
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ion oxidation state

Ni +1.19
Mn +1.66

Table 5.2: Bader analysis for La2NiMnO6 in RH phase

In tab.5.2 we show the results of Bader analysis. The oxidation state for Ni and

Mn is +1.19 and +1.66 respectively with a weak disproportion of ∼ 0.5 electrons.

5.1.5 Wannier approach

Wannier functions (WFs) |WT
n 〉 are defined as Fourier transforms of Bloch functions

|Ψnk〉 [216]:

|WT
n 〉 =

1√
Ω

∑
k

e−ikT|Ψnk〉, (5.1)

where T is the lattice translation vector, n the band number and k the reciprocal

lattice vector. WFs are not uniquely defined because, in the single band case, there

is a freedom of choice of the phases of the Bloch functions, |Ψnk〉, as a function of k,

and in the multiband case, any set of orthogonal linear combination of Bloch functions

|Ψnk〉 could be used in (5.1). The uncertainty in the WF’s definition corresponds to a

freedom of choice for a unitary transformation matrix U (k)
jn

|Ψnk〉 →
∑

j

U
(k)
jn |Ψjk〉. (5.2)

A commonly used approach to generate WFs was proposed by N. Marzari and D. Van-

derbilt [217]. They use a condition of maximum localization of the WFs (MLWFs),

that consists in a variational procedure for the matrix U (k)
jn . As an initial step before

the variational process, a set of trial localized orbitals (in fact atomic orbitals) was

chosen and projected onto the subspace of Bloch functions. Later [218] it was shown

that this initial guess for the WFs of transition-metal oxides is usually so good that the

variational procedure can be dropped and the projection of the trial orbitals onto the

subspace of Bloch functions can be used to define the unitary transformation matrix

U
(k)
jn .
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5.1 Charge disproportionation from first principle: La2NiMnO6

5.1.5.1 Maximum localization of the WFs

We use this approach for a qualitative analysis because an analysis of the full charge

distribution in term of the maximally-lpcalized Wannier functions would be rather

complex. A simple picture of the charge ordering can be obtained by constructing

occupation-resolved WFs (ORWFs) [219] from the two eg fully occupied bands. For

this purpose we choose an energy window of [10.0, Ef ] eV for up-spin. The resulting

WFs are centered at the Ni-site as illustrated in Fig.5.5.

Figure 5.5: An occupied eg WF centered on Ni (green) showing remarkable delocalization
to the neighboring Mn (violet).

To devise ways of attributing electron charges to a given atom, we observe that

the majority t2g WF’s centered on Mn are fully occupied and all others are empty; all

Ni-centered WFs except minority eg are fully occupied. Each WF is normalized, hence

contains one electron. Now the individual electrons occupying a WF centered on an

atom are attributed to that atom. This yields a formal valency of 4+ for Mn and 2+
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for Ni. Having recovered the nominal ionic state of the two cations, we also obtain the

nominal charge disproportionation.

Of course, as exemplified by Fig.5.5, a major fraction of the unit charge lodged in

a WF centered on a given atom spills out of the sphere centered on that atom into

neighboring ones, and will therefore be attributed to other atoms when the charge is

integrated in the spheres. This charge spill-out will cause the actual charge dispropor-

tionation to be much smaller than nominal. We may argue that the small directly-

calculated disproportionation does not conflict with the ionic picture, in the precise

and limited sense just outlined.

Notice that as already mentioned LNMO is a FM insulator where the double-

exchange interaction is dominant. This results from the interaction of the filled d

orbital of one metal ion with the vacant d orbital of another metal ion through anion

p orbital. Fig.5.6 shows the overlap between MLWFs, placed at neighboring NiO6 and

MnO6 octahedra of LNMO calculated in the FM RH phase: the superexchange path is

mediated by the corner-shared O. The Mn and Ni-centered WFs should be thought as

empty and filled, respectively, in the double-exchange picture.

Figure 5.6: Overlap between MLWFs, placed at neighboring NiO6 and MnO6 octahedra
of LNMO calculated in the RH phase, showing the double-exchange path mediated by the
corner-shared O. The MLWFs are centered on Ni (green) and Mn (violet).
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5.1 Charge disproportionation from first principle: La2NiMnO6

5.1.5.2 Projected Wannier functions

An alternative use of WFs in the context of the evaluation of atomic charges is to

calculate the Wannier occupancy matrix for WFs generated in a wide energy window

including empty states. Here we employ the pseudopotential method and a plane wave

basis set. Hence, site centered pseudoatomic orbitals φn were chosen as a set of trial

orbitals [212].

Nonorthogonalized approximations to the WFs in the direct |W̃T
n 〉 and reciprocal

space |W̃nk〉 are calculated as projection of the pseudoatomic orbitals onto a subspace

of Bloch functions that is defined by setting an energy interval E1 ≤ εi(k) ≤ E2 or

some band numbers N1 ≤ i ≤ N2:

|W̃T
n 〉 =

∑
k

|W̃nk〉e−ikT, (5.3)

|W̃nk〉 ≡
N2∑

i=N1

|Ψik〉〈Ψik|φnk〉 =
∑

E1≤εi(k)≤E2

|Ψik〉〈Ψik|φnk〉. (5.4)

To generate orthogonalized WFs, one should define the overlap matrix:

Onn′(k) ≡ 〈W̃nk|W̃n′k〉 (5.5)

Orthogonalized Wannier functions are then obtained as:

|WT
n 〉 =

∑
k

|Wnk〉eikT, (5.6)

where

|Wnk〉 =
∑
n′

(Onn′(k))−
1
2 |W̃n′k〉 (5.7)

with the Wannier functions occupancy matrix QWF
nm [212] given by:

QWF
nm = 〈W 0

n |

(∑
k

N2∑
i=N1

|Ψik〉θ(εi(k)− Ef )(k)〈Ψik|

)
|W 0

m〉 (5.8)

where θ is the step function and Ef is the Fermi energy. For our purpose we choose

an energy window of [10.0, 17.0] eV for both spin channels. The choice is based on the

projected DOS and calculated band structure (Fig.5.2) where we note that the d-states

are located in the energy window from ∼10.0 eV to ∼17.0 eV. In Fig.5.7 we compare

103



5. NICKELATES

Wannier occupation d-orbital Ni Mn

Up 4.715 3.040
Down 3.040 0.145

total 7.755 3.185

Table 5.3: d-Wannier occupation calculated with Eq.5.8

the DFT and the d-WFs bands: we can see that they match almost exactly, except

around some band crossings. In Tab.5.3 we show the occupation of d-WFs calculated

with Eq.5.8. Our result suggest that the oxidation state for Ni and Mn is +2.25 and

+3.82 respectively with a disproportion of 1.57 electrons. We note that the projected

Wannier functions will in general depend on the specific choice of the radial part of the

atomic orbital, as well as on the energy window chosen for the construction. In the

latter sense, the WF-based evaluation of charge disproportionation still contains major

element of arbitrariness.

104



5.1 Charge disproportionation from first principle: La2NiMnO6

L Z Γ F

10

12

14

16

18

20
En

er
gy

 (e
V

)

LDA

WFs

En
er

gy
 w

in
do

w

up-spin

(a) up-spin

L Z Γ F

10

12

14

16

18

20

En
er

gy
 (e

V
)

LDA

WFs

En
er

gy
 W

in
do

w

down-spin

(b) down-spin

Figure 5.7: DFT band structure (black lines) for FM RH LNMO: (a) up-spin, (b) down-
spin FM. The blue lines demarcate the energy window. d-WF bands are depicted as red
lines.
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5.1.6 Conclusions

Ion Nominal DOS1/2bond Bader Wannier

Mn +4 +3.0 +1.66 +3.82
Ni +2 +2.5 +1.19 +2.25

δQ 2 0.5 0.47 1.57

Table 5.4: Summary of charge analysis. In the last row (δQ) we compare the nominal
charge disproportion with that calculated in this work.

From our analysis we can draw the following conclusions:

– The ambiguity in defining the volumes used for atom-projected DOS calculation

is the fundamental problem of the method and generally any choice could be

questionable: the choice of the volume is not a simple task.

– An elegant method is the Bader decomposition, which uses stationary points in the

three-dimensional electron density to partition charge among different atoms.

One limitation of this approach is that it will tend to produce geometrically

sensible (Voronoi-polyhedra-like) regions, which however do not necessarily match

the bonding situation in the solid. Indeed, it tends to produce ionicities much

smaller than nominal.

– With maximally-localized Wannier functions, we reconcile the Ni2+/Mn4+ picture

with weak charge disproportion.

– The projected Wannier functions provides useful, non-trivial occupations, which how-

ever will in general depend on the specific choice of the radial part of the atomic

orbital and on the energy window.

– Not surprisingly, as seen in Tab.5.4 the various methods give scattered results, qual-

itatively confirming a charge disproportionation between Ni and Mn.
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superlattices

5.2 Order, phase transitions, and transport in ultra-thin

nickelate superlattices

We have a forthcoming paper: “Ordered ground state and phase transitions in ultra-thin

nickelate superlattices”. This is essentially my own work. The planning and assessment

of the work was done in collaboration with the supervisors.

5.2.1 Introduction

Correlated materials are often characterized by incipient or actual instabilities towards

collective ordered states. Two recent sets of experiments [220, 221, 222] have investi-

gated phase transitions playing out in LaNiO3 (LNO, in bulk the only metallic Pauli-

paramagnetic rare-earth nickelate) in an intentionally perturbed environment, namely

epitaxially-strained ultra-short superlattices (SL) of LNO layers alternated with the

band insulator LaAlO3 (LAO). These elegant nanostructuring manipulations of ma-

terials properties revealed nearly concurrent transitions from a non-magnetic normal

metal to a long-range-ordered magnetic, insulating, charge-ordered state for sufficiently

thin LNO (2-3 layers at most), observing a crossover to an insulator-like conductivity

temperature (T) dependence, spectral weight transfer in optical conductivity [220], and

XAS (x-ray absorption spectroscopy) line splitting [221, 222]. Magnetometry (measur-

ing zero total magnetization) and µSR (muon spin rotation, detecting magnetic mo-

ments with a lower-bound value 0.5 µB and line shape compatible with long-range

order) lend support to long-range antiferromagnetic (AF) order [220].

The precise nature of the low-T state of the LNO/LAO SL and the transitions it

undergoes is unclear. In this section we address the problem studying ultrathin (1+1

and 1+2-layer) LNO/LAO SLs under tensile strain using variational self-interaction-

corrected local density functional theory (VPSIC) [3, 4, 5], which notoriously provides a

markedly improved description of correlated and magnetic materials [5, 134] compared

to conventional semi-local approaches. Our ground state is structurally dimerized,

charge-ordered, insulating, and antiferromagnetic with modulation vector (0,π/2), in

analogy with bulk rare-earth nickelates (this state is labeled AFD henceforth). From

the calculated energetics, we infer antiferromagnetic (AF) to paramagnetic (PM) and

insulating-metal (IMT) transitions at two distinct critical temperatures (50 and 150 K

respectively). The AF-PM transition is driven by superexchange, the IMT by Mott

107



5. NICKELATES

localization, valency disproportionation and structural dimerization of Ni atoms at

low T. All the above results are consistent with experiments of Ref.[220]; in addition,

to elucidate the experiments of Ref.[221, 222] we calculate the SLs conductivity by

Bloch-Boltzmann approach [223, 224], showing a transition of the electron-doped AF

insulating ground state undergoes a transition from hopping to band conductivity at

150 K, wich may reconcile Ref.[221, 222] with Ref.[220].

Finally, we find that the high-T metallic PM phase has a Fermi surface (FS) akin

to optimally-doped cuprates, as foreshadowed in earlier theoretical work [225, 226].

5.2.2 Method

Total energy, force, and band structure calculations are performed by VPSIC [5] us-

ing the plane-wave ultrasoft pseudopotential method in the supercell approach. The

epitaxially-strained LNO/LAO (1+1) SL is simulated at an in-plane lattice constant

fixed to that of PrScO3, corresponding to a tensile planar strain of about 3%. The

LNO layers contain up to four Ni atoms to simulate antiferromagnetism. We optimize

the cell length, and atomic positions according to quantum forces [5]. Band energies

calculated on a dense 2050-k point grid are used in Bloch-Boltzmann transport theory

within a relaxation time approximation to obtain dc conductivity [227].

5.2.3 Structure and charge ordering

In the AFD ground state the nominally trivalent Ni(III) atoms of LNO are inequivalent

due to strong cooperative dimerization of the Ni-centered octahedra. All Ni-O bonds

around each Ni either expand or contract from 2 Å to 2.19 Å or respectively 1.83 Å

in a predominantly breathing mode. The calculated octahedra rotations are rather

small (∼1-2◦). The short and long bonds match those, respectively, in peroxonickel

complexes with nominal tetravalent Ni(IV) and NiO with nominal divalent Ni(II). (We

use these labels below). The distortion is accompanied by charge transfer from Ni(IV)

to Ni(II), which we quantify by VPSIC occupations [3]. The total transfer is 0.07 |e|,
in fair agreement with the 0.03 |e| estimated [220] from the difference of integrated op-

tical conductivity above and below the transition. This charge-ordered bond-dimerized

phase clearly is in line with a [2 Ni(III)→Ni(II)+Ni(IV)] disproportionation suggested

by the splitting in the SL XAS spectra, analogous to insulating nickelates [221, 222].
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The magnetic order and insulating character of this state confirm this conclusion, as

discussed below.

5.2.4 Magnetism

In the AFD state the structural and valency dimerization are associated with the AF

pattern sketched in Fig.5.8. Ni(II)’s [squares, circles in the Figure] carry a moment

µNi(II)=±1.44 µB, while Ni(IV)’s [crosses in the Figure] have zero moment, confirming a

picture of Ni(III) disproportionation into unpolarized Ni(IV) t62ge
0
g and polarized Ni(IV)

t62ge
2
g. The planar modulation wavevector is (0,π/2) on the (a,b) basis, similarly to

bulk nickelates and monoxides [5, 100]; in our single-LNO-layer cell, there is no vertical

modulation by construction. Our result agrees with µSR [220] lower-bound moment

0.5 µB (below 40 K for tensile strain), with magnetometry ruling out ferromagnetism,

and µSR asymmetry lineshapes [220] favoring long-range order.

2

spectively 1.83 Å in a predominantly breathing mode.

Octahedra rotations are only slight (∼1-2◦) around any

axis. The short and long bonds match those, respec-

tively, in peroxonickel complexes with nominal tetrava-

lent Ni(IV) and NiO with nominal divalent Ni(II). (We

use these labels below). The distortion is accompanied by

charge transfer from Ni(IV) to Ni(II), which we quantify

by pSIC occupations [3], akin to Wannier occupations [8]

and fairly insensitive to atomic sphere size. The total

transfer is 0.07 |e|, in fair agreement with the 0.03 |e| es-

timated [1] from the difference of integrated optical con-

ductivity above and below the transition. This charge-

ordered bond-dimerized phase clearly is in line with a

[2 Ni(III)→Ni(II)+Ni(IV)] disproportionation suggested

by the splitting in the SL XAS spectra, analogous to

insulating nickelates [2]. The magnetic order and insu-

lating character of this state confirm this conclusion, as

discussed below. This state is also consistent with a re-

sistivity ρ∼T3/2 from bond-length fluctuation scattering

above the transition, suggesting incipient dimerization

[2].
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FIG. 1. Magnetic order of the LNO/LAO (1+1) SL. Squares,

circles: up (filled) and down (empty) polarized Ni(II); crosses:

unpolarized Ni(IV). Circles and squares indicate distinct in-

terpenetrating cubic AF lattices (see text). Oxygens (not

shown) sit on connecting lines roughly halfway between Ni’s.
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Magnetism– In the AFD state the structural and va-

lency dimerization are associated with the AF pattern

sketched in Fig.1. Ni(II)’s [squares, circles in the Fig-

ure] carry a moment µNi(II)=±1.44 µB , while Ni(IV)’s

[crosses in the Figure] have zero moment, confirming

a picture of Ni(III) disproportionation into unpolarized

Ni(IV) t62ge
0
g and polarized Ni(IV) t62ge

2
g. The planar

modulation wavevector is (0,π/2) on the (a,b) basis, sim-

ilarly to bulk nickelates [12] and monoxides [5, 13]; in

our single-LNO-layer cell, there is no vertical modulation

by construction. Our result agrees with µSR [1] lower-

bound moment 0.5 µB (below 40 K for tensile strain),

with magnetometry ruling out ferromagnetism, and µSR

asymmetry lineshapes [1] favoring long-range order over

spin glass.

To estimate the critical temperature of the mag-

netic transition, we map our pattern on a Ising model.

The AFD structure, with in-plane couplings JL and JS

(Fig.1), can be viewed as two interpenetrating simple-

cubic antiferromagnetic G-type lattices (circles, dashed

lines, and, respectively, squares and solid lines in Fig.1).

Because the AFD magnetic energy does not depend

on JS , the two sub-lattices are decoupled, and there-

fore the critical temperature can be estimated for each

of them separately. The purely t2g-mediated JS acts

across interstices between octahedra and should be

very weak, so we choose to neglect it. By inspec-

tion of the simulation cell (see Fig.1) we have EAFD–

EFM=(8JL+4JS)µ2
Ni(II)�8JLµ2

Ni(II), involving the ener-

gies of AFD and ferromagnetic (FM) phases (the FM

is also insulating, has the same Ni(II)-Ni(IV) geometric

and charge-ordering pattern, and the same moments.)

From the calculated total energies we extract an antifer-

romagnetic JL=–11.2 meV. As the vertical coupling J⊥
across the LAO layer should be very weak compared to

the in-plane JL ( i.e. the anisotropy JL/J⊥ is large),

we use results for the 3D anisotropic AF Ising model [9]

in the asymptotic large anisotropy limit. The result is

TN�0.40 JL/kB∼33 K, rather close to the experimental

40 K.
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FIG. 2. Bands (left; zero at valence band top) and DOS of

the AFD states, projected on Ni(II), center,and Ni(IV), right.

Electronic structure and metal-insulator transition–
The concurrent action of dimerization and magnetic

superstructure open an electronic gap in the AFD phase.

Fig.2 reports the bands (left), and the density of states

(DOS) projected on Ni(II), center, and Ni(IV), right.

The gap is 1.3 eV, indirect. The projected DOS shows

that the top valence states are predominantly Ni(II) and

of mixed eg character, while the low conduction states are

Figure 5.8: Magnetic order of the LNO/LAO (1+1) SL. Squares, circles: up (filled)
and down (empty) polarized Ni(II); crosses: unpolarized Ni(IV). Circles and squares in-
dicate distinct interpenetrating cubic AF lattices (see text). Oxygens (not shown) sit on
connecting lines roughly halfway between Ni’s. The 2

√
2×
√

2 simulation cell is indicated
(long-dash).

To estimate the critical temperature of the magnetic transition, we map our pattern

on a Ising model. The AFD structure, with in-plane couplings JL and JS (Fig.5.8), con-

sists of two interpenetrating simple-cubic antiferromagnetic-G lattices (circles, dashed
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lines, and, respectively, squares and solid lines in Fig.5.8). The AFD magnetic energy

does not depend on JS , so the two sub-lattices are decoupled, and the critical temper-

ature can be estimated for each of them separately. Since only the Ni-O bond parallel

eg orbitals are spin-polarized and contribute to the magnetic coupling, the diagonal JS

exchange interaction is arguably negligibly weak.

From the energies of AFD and ferromagnetic (FM) phases, since

EAFD − EFM = (8JL + 4JS)µ2
Ni(II) ' 8JLµ

2
Ni(II) (5.9)

(see Fig.5.8), we extract an antiferromagnetic JL=–11.2 meV. The FM is also insulating

and has the same moments, structure, and charge-ordering pattern, showing that the

AFD ordering is simply driven by AF superexchange. As the vertical coupling J⊥ across

the LAO layer should be very weak compared to the in-plane JL (i.e. the anisotropy

JL/J⊥ is large), we use results for the 3D anisotropic AF Ising model [228] in the

asymptotic large anisotropy limit obtaining TN'0.40JL/kB∼33 K, rather close to the

experimental 40 K.

5.2.5 Electronic structure and metal-insulator transition

The concurrent action of dimerization and magnetic superstructure open an electronic

gap in the AFD phase. Fig.5.2.5 reports the bands (left), and the density of states

(DOS) projected on Ni(II), center, and Ni(IV), right. The gap is 1.3 eV, indirect. The

projected DOS shows that the top valence states are predominantly Ni(II) and of mixed

eg-Op character, while the low conduction states are mostly Ni(IV), in agreement with

the dimerization being the driving mechanism. The conduction band bottom (CBB)

is very flat throughout the BZ, an essential trait to interpret transport results for

the electron-doped AFD phase. The Ni(IV)-Ni(II) charge transfer is associated in

optical experiments to a spectral weight depletion below 0.4 eV, which is identified

as the “charge gap” [220]. Our best shot at this gap is the (admittedly somewhat

larger) electronic gap, originating from the combined structure, charge, and magnetic

ordering. Indeed, we point out that the octahedra distortion is essential to obtain

a gap. Forbidding distortion, all simulated phases are metallic and show no charge

transfer. Only the Pauli-PM metal is stable among these; e.g., the G-type AF dimerizes

spontaneously to a ferrimagnetic marginal metal with Ni-Ni charge transfer.
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2

spectively 1.83 Å in a predominantly breathing mode.

Octahedra rotations are only slight (∼1-2◦) around any

axis. The short and long bonds match those, respec-

tively, in peroxonickel complexes with nominal tetrava-

lent Ni(IV) and NiO with nominal divalent Ni(II). (We

use these labels below). The distortion is accompanied by

charge transfer from Ni(IV) to Ni(II), which we quantify

by pSIC occupations [3], akin to Wannier occupations [8]

and fairly insensitive to atomic sphere size. The total

transfer is 0.07 |e|, in fair agreement with the 0.03 |e| es-

timated [1] from the difference of integrated optical con-

ductivity above and below the transition. This charge-

ordered bond-dimerized phase clearly is in line with a

[2 Ni(III)→Ni(II)+Ni(IV)] disproportionation suggested

by the splitting in the SL XAS spectra, analogous to

insulating nickelates [2]. The magnetic order and insu-

lating character of this state confirm this conclusion, as

discussed below. This state is also consistent with a re-

sistivity ρ∼T3/2 from bond-length fluctuation scattering

above the transition, suggesting incipient dimerization

[2].
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FIG. 1. Magnetic order of the LNO/LAO (1+1) SL. Squares,

circles: up (filled) and down (empty) polarized Ni(II); crosses:

unpolarized Ni(IV). Circles and squares indicate distinct in-

terpenetrating cubic AF lattices (see text). Oxygens (not

shown) sit on connecting lines roughly halfway between Ni’s.

The 2
√

2×
√

2 simulation cell is indicated (long-dash).

Magnetism– In the AFD state the structural and va-

lency dimerization are associated with the AF pattern

sketched in Fig.1. Ni(II)’s [squares, circles in the Fig-

ure] carry a moment µNi(II)=±1.44 µB , while Ni(IV)’s

[crosses in the Figure] have zero moment, confirming

a picture of Ni(III) disproportionation into unpolarized

Ni(IV) t62ge
0
g and polarized Ni(IV) t62ge

2
g. The planar

modulation wavevector is (0,π/2) on the (a,b) basis, sim-

ilarly to bulk nickelates [12] and monoxides [5, 13]; in

our single-LNO-layer cell, there is no vertical modulation

by construction. Our result agrees with µSR [1] lower-

bound moment 0.5 µB (below 40 K for tensile strain),

with magnetometry ruling out ferromagnetism, and µSR

asymmetry lineshapes [1] favoring long-range order over

spin glass.

To estimate the critical temperature of the mag-

netic transition, we map our pattern on a Ising model.

The AFD structure, with in-plane couplings JL and JS

(Fig.1), can be viewed as two interpenetrating simple-

cubic antiferromagnetic G-type lattices (circles, dashed

lines, and, respectively, squares and solid lines in Fig.1).

Because the AFD magnetic energy does not depend

on JS , the two sub-lattices are decoupled, and there-

fore the critical temperature can be estimated for each

of them separately. The purely t2g-mediated JS acts

across interstices between octahedra and should be

very weak, so we choose to neglect it. By inspec-

tion of the simulation cell (see Fig.1) we have EAFD–

EFM=(8JL+4JS)µ2
Ni(II)�8JLµ2

Ni(II), involving the ener-

gies of AFD and ferromagnetic (FM) phases (the FM

is also insulating, has the same Ni(II)-Ni(IV) geometric

and charge-ordering pattern, and the same moments.)

From the calculated total energies we extract an antifer-

romagnetic JL=–11.2 meV. As the vertical coupling J⊥
across the LAO layer should be very weak compared to

the in-plane JL ( i.e. the anisotropy JL/J⊥ is large),

we use results for the 3D anisotropic AF Ising model [9]

in the asymptotic large anisotropy limit. The result is

TN�0.40 JL/kB∼33 K, rather close to the experimental

40 K.
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FIG. 2. Bands (left; zero at valence band top) and DOS of

the AFD states, projected on Ni(II), center,and Ni(IV), right.

Electronic structure and metal-insulator transition–
The concurrent action of dimerization and magnetic

superstructure open an electronic gap in the AFD phase.

Fig.2 reports the bands (left), and the density of states

(DOS) projected on Ni(II), center, and Ni(IV), right.

The gap is 1.3 eV, indirect. The projected DOS shows

that the top valence states are predominantly Ni(II) and

of mixed eg character, while the low conduction states are

Figure 5.9: Bands (left; zero at valence band top) and DOS of the AFD states, projected
on Ni(II), center,and Ni(IV), right.

Since the IMT is associated to dimerization, the transition T is that at which

the structure undimerizes thermally, with attendant gap closure. The full distorted-

octahedra population N0 is thermally activated out of the low-T ground state into

the high-T state as N0 exp (−Rt) whenever the Arrhenius rate R=ν0 exp(−∆E/kBT )

become appreciable–say, unity. Since the Pauli-PM is the only stable undimerized

state, we envisage an AFD-PM transition and use the AFD-PM energy difference

∆E=0.20 eV/Ni atom. With a plausible prefactor ν0=5 THz [229], R=1 Hz corre-

sponds to Tc'80 K, in fair agreement with 100 K experimentally.

The PM phase has a large hole-like Fermi surface (Fig.5.10) centered at the 1×1

Brillouin zone corner, analogous to optimally-doped cuprates, confirming earlier theo-

retical suggestion [225, 226]. Unlike cuprates, however, the states character is mixed

eg.

To compare our results with alternative methods, we note that LSDA finds no

stable AF phase and obtains undimerized structures even starting from dimerized and

polarized initial conditions. LDA+U does not stabilize the AF phase and predicts [230]

a gapped FM phase (not seen in experiment; it is unclear if a different U may obtain

the observed phase). Our method does not use tuning parameters. Its agreement

with experiment suggests an improved account for on-site correlation compared to
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Figure 5.10: Fermi surface of the PM phase.

other methods. Further supporting this contention, we find agreement with dynamical

mean field theory (DMFT) for the simplified-geometry PM state where it was applied;

our Fermi surface in the PM phase is analogous to that of DMFT [226], and in the

undimerized AF G-type phase (results not shown) we obtain a pseudo-gapped DOS

similar to DMFT [231] at large U.

5.2.6 Transport

The dc σ(T) of Ref.[221, 222] does not signal a proper IMT in the ultrathin SLs (3 LNO

layers or less), but rather an anomalous hopping-like T-dependence; thicker-LNO SLs

behave as normal metals with large residual resistivity. To resolve this discrepancy we

calculate σ within BBT with energy-dependent relaxation time, known to be accurate

for doped insulators [223]. We suggest that the thick normal-metal SL corresponds to

the Pauli-PM phase, and the ultrathin SL to the electron-doped AFD phase (typical

defects, e.g. oxygen vacancies, in transition metal oxides are donors).

We tune the parameters of the relaxation time model to reproduce the σ∼T 3/2

normal-metal behaviour reported in Ref.[221, 222] (Fig.5.11, top) for the Pauli-PM.

Then we combine the same relaxation-time model with the bands of the AFD phase,

to obtain σ(T) for the n-doped Mott phase (Fig.5.11). Our results fit nicely the data

[221, 222]: at low T σ grows exponentially, then saturates to a metallic linear behavior

above T∼150K. To understand this result, we analyze σ as a function of µ and T.
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tedly somewhat larger) electronic gap, which originates
from the combined structure, charge, and magnetic or-
dering.

Indeed, we point out that the octahedra distortion is
essential to obtain a gap. If we forbid distortion, all sim-
ulated phases are metallic and, not surprisingly, show
no charge transfer. However, only the Pauli-PM metal
is stable in the non-dimerized configuration; e.g. the G-
type AF dimerizes spontaneously becoming ferrimagnetic
and marginally-metallic with Ni-Ni charge transfer, still
higher in energy that the AFD. The distortion also sta-
bilizes magnetism (the AF-G is incompletely dimerized,
with moment 0.6 and 0.1 µB on Ni(II) and Ni(IV) re-
spectively).

Since the metal-insulator transition is associated to
dimerization, we define the transition temperature as
that at which the structure “un-dimerizes” thermally,
with attendant closure of the electronic gap. The ini-
tially full population N0 of distorted Ni octahedra is
thermally activated out of the low-T ground state into
the high-T state as N0 exp (−Rt) whenever the Arrhe-
nius rate R=ν0 exp (−∆E/kBT ) become appreciable–
say, unity. Since the only stable undimerized state is the
Pauli-PM, we envisage an AFD-to-undimerized PM tran-
sition, and use the AFD-PM energy difference ∆E=0.20
eV/Ni atom. With a plausible prefactor ν0=5 THz [15],
R=1 Hz corresponds to Tc"80 K, in fair agreement with
100 K experimentally.

One reason of interest in the undimerized metallic PM
phase is its large hole-like Fermi surface (Fig.3) centered
at the 1×1 Brillouin zone corner, analogous to optimally-
doped cuprates. This result confirms the suggestion of
Ref.[7] and the parameter-dependent results of Ref.[8].
Unlike cuprates, however, the Fermi surface states are of
mixed eg character. In principle this almost 2D section
should give rise to quantum oscillation as function of in-
verse magnetic field, with frequency 0000 Tesla. (The
second reason of interest is its Sebeck coefficient, dis-
cussed below.)

FIG. 3: Fermi surface of the PM phase.

Before moving to transport properties, it is worth
comparing our results with those of alternative meth-
ods. LSDA finds no stable AF phase, ending up in
the undimerized paramagnetic or FM phases even when
starting from artificially dimerized and polarized initial
conditions. LDA+U also does not stabilize the AF phase,
and predicts [16] a gapped FM phase, which does not
match the experimental AF order; it is unclear if U might
be tuned differently to obtain an AF phase. By contrast,
our method does not use tuning (U-like or otherwise)
parameters. Its good agreement with experiment sug-
gests that its account for on-site correlation is much im-
proved over other common methods. Further supporting
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FIG. 4: Calculated conductivity vs. T for metallic PM phase
(red line) and n-doped AFD phase (black)
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FIG. 5: Density of states (upper panel) and conductivity
(lower panel) for metallic PM phase (black line) and AFD
phase (orange-filled line) as function of chemical potential.

this contention, we find fair agreement with dynamical
mean field theory (DMFT) for the simplified geometry
and (para)magnetic state to which DMFT has been ap-
plied; our Fermi surface in the PM phase is analogous
to that of DMFT [8], and in the undimerized AF G-
type phase (results not shown here) we obtain a pseudo-
gapped DOS similar to DMFT [11] at large U.

Transport– DC conductivity σ(T) measured in Ref.2
furnishes a different viewpoint: there the IMT is not
found for the ultrathin SLs (i.e. with 3 LNO bulk units
or less) which instead appears as a correlated metal with
anomalous hopping-like T-dependence, whereas thicker
SLs behave as a normal metal but with large residual
resistivity. To shed light on these findings, we calcu-
late σ using the BBT approach with energy-dependent
relaxation time modeling which has already showed to
be accurate for doped insulators[12] (see supplementary
materials). Our working hypothesys is that the thick
normal-metal SL corresponds to the Pauli-PM phase,
the ultrathin SL to the electron-doped AFD insultating
phase (typical impurities in wide-gap transition metal ox-
ides, e.g. oxygen vacancies, are donors).

Since the relaxation time model depends on several pa-

Figure 5.11: Calculated conductivity vs. T for metallic PM phase (red line) and n-doped
AFD phase (black)
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tedly somewhat larger) electronic gap, which originates
from the combined structure, charge, and magnetic or-
dering.

Indeed, we point out that the octahedra distortion is
essential to obtain a gap. If we forbid distortion, all sim-
ulated phases are metallic and, not surprisingly, show
no charge transfer. However, only the Pauli-PM metal
is stable in the non-dimerized configuration; e.g. the G-
type AF dimerizes spontaneously becoming ferrimagnetic
and marginally-metallic with Ni-Ni charge transfer, still
higher in energy that the AFD. The distortion also sta-
bilizes magnetism (the AF-G is incompletely dimerized,
with moment 0.6 and 0.1 µB on Ni(II) and Ni(IV) re-
spectively).

Since the metal-insulator transition is associated to
dimerization, we define the transition temperature as
that at which the structure “un-dimerizes” thermally,
with attendant closure of the electronic gap. The ini-
tially full population N0 of distorted Ni octahedra is
thermally activated out of the low-T ground state into
the high-T state as N0 exp (−Rt) whenever the Arrhe-
nius rate R=ν0 exp (−∆E/kBT ) become appreciable–
say, unity. Since the only stable undimerized state is the
Pauli-PM, we envisage an AFD-to-undimerized PM tran-
sition, and use the AFD-PM energy difference ∆E=0.20
eV/Ni atom. With a plausible prefactor ν0=5 THz [15],
R=1 Hz corresponds to Tc"80 K, in fair agreement with
100 K experimentally.

One reason of interest in the undimerized metallic PM
phase is its large hole-like Fermi surface (Fig.3) centered
at the 1×1 Brillouin zone corner, analogous to optimally-
doped cuprates. This result confirms the suggestion of
Ref.[7] and the parameter-dependent results of Ref.[8].
Unlike cuprates, however, the Fermi surface states are of
mixed eg character. In principle this almost 2D section
should give rise to quantum oscillation as function of in-
verse magnetic field, with frequency 0000 Tesla. (The
second reason of interest is its Sebeck coefficient, dis-
cussed below.)

FIG. 3: Fermi surface of the PM phase.

Before moving to transport properties, it is worth
comparing our results with those of alternative meth-
ods. LSDA finds no stable AF phase, ending up in
the undimerized paramagnetic or FM phases even when
starting from artificially dimerized and polarized initial
conditions. LDA+U also does not stabilize the AF phase,
and predicts [16] a gapped FM phase, which does not
match the experimental AF order; it is unclear if U might
be tuned differently to obtain an AF phase. By contrast,
our method does not use tuning (U-like or otherwise)
parameters. Its good agreement with experiment sug-
gests that its account for on-site correlation is much im-
proved over other common methods. Further supporting
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FIG. 5: Density of states (upper panel) and conductivity
(lower panel) for metallic PM phase (black line) and AFD
phase (orange-filled line) as function of chemical potential.

this contention, we find fair agreement with dynamical
mean field theory (DMFT) for the simplified geometry
and (para)magnetic state to which DMFT has been ap-
plied; our Fermi surface in the PM phase is analogous
to that of DMFT [8], and in the undimerized AF G-
type phase (results not shown here) we obtain a pseudo-
gapped DOS similar to DMFT [11] at large U.

Transport– DC conductivity σ(T) measured in Ref.2
furnishes a different viewpoint: there the IMT is not
found for the ultrathin SLs (i.e. with 3 LNO bulk units
or less) which instead appears as a correlated metal with
anomalous hopping-like T-dependence, whereas thicker
SLs behave as a normal metal but with large residual
resistivity. To shed light on these findings, we calcu-
late σ using the BBT approach with energy-dependent
relaxation time modeling which has already showed to
be accurate for doped insulators[12] (see supplementary
materials). Our working hypothesys is that the thick
normal-metal SL corresponds to the Pauli-PM phase,
the ultrathin SL to the electron-doped AFD insultating
phase (typical impurities in wide-gap transition metal ox-
ides, e.g. oxygen vacancies, are donors).

Since the relaxation time model depends on several pa-

Figure 5.12: Density of states (upper panel) and conductivity (lower panel) for metallic
PM phase (black line) and AFD phase (orange-filled line) as function of chemical potential.

Fig.5.12 compares the total DOS and σ(µ) (at 100K) for PM and AFD. The flat

PM DOS near EF gives σPM∼4 kS/cm, while σAFD<2 kS/cm near the CBB. The

inset of Fig.5.13 shows a marked slope discontinuity near the AFD CBB DOS, separat-

ing a steep 10-meV-wide lower region from a higher-energy flatter side, signaling the

crossover in the eg CBB from hopping-like flat-band to dispersed metallic regime. This

hopping-to-band conductivity transition is in the upper panel of Fig.5.13 where σ(µ)

is reported for a range of temperatures from 10K (blue thickest line) up to 290K (red

thickest line) (the change in color highlight the transition at T=150-170K). The solid

vertical line indicate the threshold value µt = 0.662 eV whch separate two distinct

conductivity regimes: in the low-µ region σ grows exponentially with µ and T, and
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FIG. 6: Conductivity (upper panel) and doping (lower panel)
vs. chemical potential and temperature. Temperature is var-
ied from 10K (thickest blue line) up to 290 (thickest red line),
progressively increasing by 20K at each curve. Inset: detail of
the DOS near the conduction bottom; dashed (solid) vertical
lines mark µ

∗ (µt), see text.

rameters, we tune these parameters to reproduce, for the
Pauli-PM phase, the σ ∼ T 3/2 normal-metal behaviour
reported in Ref.2 (Fig.4, red line). Then we combine
the same relaxation-time modeling with the band struc-
ture of the AFD phase, to obtain σ(T) for the n-doped
Mott phase (Fig.4, black line; here a diagnostic chem-
ical potential value µ∗ is assumed, discussed later on).
Our results nicely fit the observations of Ref.2: at low-
T σ grows exponentially, and then saturates to a more
conventional metallic linear behaviour above T∼ 150K.
To understand this result, in what follows σ is carefully
analyzed as a function of both µ and T.

In Fig.5 total density of states (DOS) and σ(µ) (at
T=100K) for PM and AFD phases are compared. The
PM shows flat DOS in a wide region around EF and σ
∼ 4000 ω−1cm−1, while the AFD DOS is clearly insu-
lating, with σ lower than 2000 ω−1cm−1 in the conduc-
tion band region. In Fig.6 we focus on the energy region
around the conduction band bottom of the AFD phase,
which matters for n-type transport. We can see (upper

panel, inset) a marked slope discontinuity near the DOS
edge, separating a very steep, 10-meV wide lower region,
from a higher-energy flatter side. This signal the change
from a hopping-like flat band behaviour at the eg conduc-
tion band bottom to a more dispersed, metallic regime at
higher energy. This hopping-to-band conductivity transi-
tion is well visible in the upper panel of Fig.6 where σ(µ)
is reported for a range of temperatures from 10K (blue
thickest line) up to 290K (red thickest line) (the change
in color highlight the transition at T=150-170K). The
solid vertical line indicate the threshold value µt = 0.662
eV whch separate two distinct conductivity regimes: in
the low-µ regon σ grows exponentially with µ and T, and
for fixed µ it saturates to nearly constant values around
T=150K; above µt σ recovers normal-metal behaviour: it
decreases with T, and grows linearly with µ. The dashed
vertical line marks the reference value µ∗, falling well in
the middle of the hopping conduction region, assumed for
the calculation of σ(T) in Fig.4. Finally, in lower panel of
Fig.6 we report doping concentration curves n(µ) for the
same temperature range. At µ=µ∗ (dashed vertical line)
n grows with T from zero up to 8×1019 cm−3 (0.52 elec-
trons/cell) at 290K, crossing the boundary of the transi-
tion (T=150K) for n ∼2×1019 cm−3 (0.13 electrons/cell),
which closely match the integrated DOS in the 10-meV
steepest region (the vertical line in the inset). The inter-
pretation of our results is simple: the low-µ regime (low
dopant concentration) characterized by hopping-like con-
ductivity, corresponds to carriers progressively filling the
steepest DOS edge; at higher µ (i.e. highest dopant con-
centration) carriers start to fills the higher-energy flatter
DOS region and the normal metal behavior takes place.

Summary– Ab initio calculations suggest that
LNO/LAO ultra-short-period SLs have a structurally-
and valency-dimerized charge-ordered insulator ground
state, making phase transitions to a metallic Pauli para-
magnet. The magnetic and metal-insulator critical tem-
peratures are estimated around 35 K and 80 K respec-
tively. This interpretation is in good agreement with
available experimental data. We have also calculated
the electron conductivity as function of chemical poten-
tial and temperature, showing that the electron-doped
AFD phase undergoes a hopping-conductivity to metal-
conductivity phase transition at T∼150K, thus providing
a sound interpretation to the results of transport exper-
iments.

Work supported in part by the European Commission
via project OxIDes, by IIT via a Seed grant, by MIUR
via projext 2DEG-FOXI, and by Fondazione Banco di
Sardegna grants. Computing resources were provided by
CASPUR, CINECA, and Cybersar.

Figure 5.13: Conductivity (upper panel) and doping (lower panel) vs. chemical potential
and temperature. Temperature is varied from 10 K (thickest blue line) up to 290 (thickest
red line), progressively increasing by 20 K at each curve. Inset: detail of the DOS near the
conduction bottom; dashed (solid) vertical lines mark µ∗ (µt), see text.

for fixed µ it saturates to nearly constant values around T=150K; above µt σ recovers

normal-metal behaviour: it decreases with T, and grows linearly with µ. The dashed

vertical line marks the reference value µ∗, falling well in the middle of the hopping

conduction region, assumed for the calculation of σ(T) in Fig.5.11. Finally, in lower

panel of Fig.5.13 we report doping concentration curves n(µ) for the same temperature

range. At µ=µ∗ (dashed vertical line) n grows with T from zero up to 8×1019 cm−3

(0.52 electrons/cell) at 290K, crossing the boundary of the transition (T=150K) for n

∼2×1019 cm−3 (0.13 electrons/cell), which closely match the integrated DOS in the

10-meV steepest region (the vertical line in the inset). The interpretation of our results

is simple: the low-µ regime (low dopant concentration) characterized by hopping-like
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conductivity, corresponds to carriers progressively filling the steepest DOS edge; at

higher µ (i.e. highest dopant concentration) carriers start to fills the higher-energy

flatter DOS region and the normal metal behavior takes place.

5.2.7 Summary

Ab initio calculations suggest that LNO/LAO ultra-short-period SLs have a structurally-

and valency-dimerized charge-ordered insulator ground state, making phase transitions

to a metallic Pauli paramagnet. The magnetic and metal-insulator critical temper-

atures are estimated around 35 K and 80 K respectively. This interpretation is in

good agreement with available experimental data. We have also calculated the elec-

tron conductivity as function of chemical potential and temperature, showing that the

electron-doped AFD phase undergoes a hopping-conductivity to metal-conductivity

phase transition at T∼150 K, thus providing a sound interpretation to the results of

transport experiments.
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Summary & Outlook

The main aim of this work was to improve our understanding of strongly correlated

materials. For this reason we have used the Pseudo–Self-Interaction approach and

developed the Variational-Pseudo–Self-Interaction formulation. These aspects are re-

flected in the five chapters of this thesis:

– In chapter 1 we introduced the Pseudo–Self-Interaction and presented the new vari-

ational approach.

– Chapter 2 was devoted to cuprate superconductors. In particular we approached

the problem of Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) quan-

tum oscillation observed in the underdoped cuprate YBa2Cu3O6.5, and we have

suggested that the experimentally observed pockets are a property of a state char-

acterized by some form of magnetic ordering. Moreover we clarified theoretically

the properties of the possible stable structures of bulk rocksalt-like CuO.

– In chapter 3 we tested the new Variational Pseudo-Self-Interaction formalism on

YTiO3 and LaTiO3. We discussed electronic and structural properties and showed

that this new approach is very helpful to understand the differences between

YTiO3 and LaTiO3.

– In chapter 4 we analyzed the MnO and NiO magnetic properties under pressure by

both standard (LDA and PBE) and advanced first–principles methods (VPSIC

and the Heyd, Scuseria and Ernzerhof hybrid functional). We showed that the

results provided by VPSIC and HSE are quite consistent, and satisfactory in

comparison to experiment.
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– The final chapter (Chap.5) was devoted to nickelates. We first faced the problem of

charge disproportionation in the double perovskite La2NiMnO6 confirming quali-

tatively the charge disproportionation between Ni and Mn. Then we analyzed the

magnetic and electronic properties of the 1/1 layered system LaAlO3/LaNiO3.

The unifying aspect of most of the topics tackled in this work is the need for major

corrections to semi-local (LDA or GGA) exchange-correlation to obtain even qualita-

tively correct results. The basic issue is that the effective promotion cost of an electron

from a site to the next (U, in Hubbard parlance) is grossly underestimated by LDA due

to the self-interaction, and as a consequence metallicity often spuriously prevails: e.g.,

CuO is metallic and non-magnetic in LDA, and MnO and NiO are marginal small-gap

insulators only due to combinations of crystal fields and small Hund exchange.

PSIC removes the spurious on-site self-interaction repulsion present in e.g. LDA

and, judging from the empirical evidence, it appears to restore the on-site interaction

to values that capture well the energy scale typically associated to U in the Hubbard

model. The outcome is that the correct (qualitatively and most of the time quantita-

tively) ground states and electronic structures are regained. CuO, MnO and NiO, e.g.,

are large-gap charge-transfer insulators, with the correct character of near-gap states.

As a byproduct, pSIC can estimate the effective U from the density of states, and that

U usually agrees with those estimated or guessed in LDA+U. In some cases (not dis-

cussed in this work), the electronic structure is characterized by two distinct U scales,

which the PSIC captures correctly [232] and automatically. In insulators and wide gap

semiconductors the (V)PSIC reduces the excessive delocalization of the valence states

(typically p states of oxygen or nitrogen) correcting the gap error of LDA or GGA.

On the other hand (V)PSIC works less well on Si or Ge, and generally in small gap

systems, where other sources of error are comparable.

One aspect to improve in this version of SIC is the fact that the SI potential is

assumed linearly dependent on the occupation number (Eq.1.13). This is correct for

the Hartree term, which is the dominant contribution for large occupation numbers,

whereas it introduces a nonlinearity error of O(p1/3
i − pi) in the exchange-correlation

part. Another potential pitfall is the possible tendency (common to hybrid and SIC

approaches) to over-correct the delocalization and the hybridization of the LDA, as

indeed LDA + U does with large U. At least, the (V)PSIC overcorrection is self-

contained and not dependent from parameters.
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Another issue is how well the LDA-SIC mimics the “real” self-energy of the inter-

acting system (ie, the effective interaction potential, energy-dependent and non-local,

among electrons beyond Hartree). It is plausible that this version of SIC is implicitly

non-local and energy-dependent as the self-energy must be. In fact, since PSIC corrects

every state in dependence on the projection of the Bloch states, typically the band en-

ergies (“quasiparticles”) are corrected differently for different energies, that is, in an

energy dependent manner. The “quasiparticle corrections”, i.e. the energy-dependent

difference of LDA and pSIC eigenvalues, mirror quite closely those obtained by GW

and by hybrids, for instance, in ZnO. This suggests that the common dominant in-

gredient of all these approaches on the electronic structure is self-interaction removal.

Further, since the SIC corrections depend on angular momentum and atomic site, each

Bloch state, having different projections on each channel and on each site, sees different

potentials for the same angular momentum. In this sense the correction is (although it

is not obvious to prove it) implicitly non-local.

Finally we remark that three variants of PSIC were mentioned in Chap.1: original

(PSIC), variational (VPSIC), and simplified variational (VPSIC0). PSIC was used in

Chap.2, VPSIC in Chap.3, 4, and 5. No results obtained with VPSIC0 are presented

here, but the method was analyzed in Ref.[5] (material not reported in this work). As

Ref.[5] discusses in detail, PSIC and VPSIC are largely equivalent in terms of electronic

structure. VPSIC, however, uses a more robustly defined total energy which should give

more reliable structures; importantly, unlike PSIC, it allows for the calculation of forces.

VPSIC0 is a simplified version of VPSIC that will allow less costly force calculations

and structural relaxations. Its performance is comparable to the other versions in

non-magnetic systems, but unfortunately is less than impressive for magnetic systems.
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