
 

 

 

 

 

Università degli Studi di Cagliari 

 

DOTTORATO DI RICERCA 

Scienze e Tecnologie Chimiche 

Ciclo XXIV 

 

METABOLOMIC INVESTIGATION OF FOOD 

MATRICES BY 1H NMR SPECTROSCOPY 

 

Settore scientifico disciplinare di afferenza 
CHIM/02 – Chimica Fisica 

 

 

Presentata da:            Dott.ssa Cristina Piras 

Coordinatore Dottorato                       Prof. Mariano Casu 

Tutor/Relatore            Dott.ssa Flaminia Cesare Marincola 

 

 

Esame finale anno accademico 2010 – 2011 

 

 



 

 

i 

 

Table of Contents 

 

Preface          1 

1. NMR in food science       3 

1.1 Basic principles of NMR spectroscopy     3 

1.1.1 Types of information provided by an NMR spectrum  6 

1.1.2 Two-dimensional NMR spectroscopy     7 

1.2 Applications of NMR in food science     8 

References          11 

2. NMR-based Metabolomics      14 

2.1 Metabolomics         14 

2.2 Multivariate statistical analysis in metabolomics   16 

2.2.1 Principal Component Analysis (PCA)     17 

2.2.2 Supervised data exploration      18 

2.3 Pre-processing of  NMR data in metabolomics   19 

References          25 

3. 1H NMR Metabolite Fingerprint and Pattern Recognition 

of  Mullet (Mugil cephalus) Bottarga     28 

3.1 INTRODUCTION       28 

3.2 MATERIAL AND METHODS      30 

3.2.1 Samples         30 

3.2.2 Chemicals        31 

3.2.3 Low molecular weight metabolite extraction    31 

3.2.4 NMR data acquisition       32 

3.2.5 Data processing and Multivariate Data analysis   32 



 

 

ii 

 

3.3 RESULTS AND DISCUSSION      33 

3.3.1 1H NMR analysis of the aqueous extract of bottarga   33 

3.3.2 Multivariate Data Analysis      40 

References          46 

4. Metabolic Fingerprinting of Fiore Sardo, a raw ewe’s cheese,  

by 1H NMR spectroscopy       49 

4.1 INTRODUCTION       49 

4.2 MATERIAL AND METHODS      51 

4.2.1 Chemicals        51 

4.2.2 Bacterial strains        51 

4.2.3 Cultures preparation       52 

4.2.4 Manufacture of Fiore Sardo cheese      53 

4.2.5 Chemical Analysis       54 

4.2.6 Microbiological and statistical analyses    54 

4.2.7 Low molecular weight metabolite extraction    55 

4.2.8 1H NMR Spectroscopy       56 

4.2.9 NMR Data Pre-processing      56 

4.3 RESULTS AND DISCUSSION      57 

4.3.1 Cheeses compositional and microbiological characteristics  57 

4.3.2 1H NMR spectra of aqueous extract of Fiore Sardo   62 

4.3.3 Impact of ripening on the metabolic profile of cheeses  72 

4.3.4 Impact of starter culture combination on the metabolic profile 81 

4.4 CONCLUSIONS        84 

References          85 



 

 

iii 

 

5. NMR metabolic profiling of the organic and  aqueous  

extracts of Argentina sphyraena (Osteichthyes: Argentinidae) 92 

5.1 INTRODUCTION       92 

5.2 MATERIAL AND METHODS      94 

5.2.1 Chemicals        94 

5.2.2 Samples         94 

5.2.3 The lipid fraction extract      95 

5.2.4 The water-soluble extract      95 

5.2.5 1H NMR spectroscopy        96 

5.2.6 Pre-processing of NMR spectra     96 

5.2.7 Chemometric analysis of the data     97 

5.3 RESULTS AND DISCUSSION      97 

5.3.1 Physiological data and muscle lipid content    97 

5.3.2 1H NMR spectrum of the aqueous extract  

of Argentina sphyraena muscle      99 

5.3.3 1H NMR spectrum of muscle lipid extract  

of Argentina sphyraena      109 

5.3.4 Multivariate statistical analysis     112 

5.4 CONCLUSIONS        116 

References          117 

6. General Conclusions        120 

 



 

 

1 

 

Preface 

 

The term “metabolomics” is used to define a scientific study that seeks an 

analytical description of complex biological samples, by identifying and/or 

quantifying hundreds or even thousands of distinct chemical identities (low 

molecular weight metabolites). Initially applied mainly in fields such as medicine, 

plant sciences, and toxicology, metabolomics has recently emerged as an important 

tool also in food science, in particular for quality, processing and safety of raw 

materials and final products. With the advent of “metabolomics” in food science, the 

analysis of food is now performed in considerably more chemical details in order to 

understand the molecular details of what gives certain foods their unique flavor, 

texture, aroma, and color.  

High-resolution Nuclear Magnetic Resonance (NMR) spectroscopy has an 

exceptional place in the chemical analyses of food, offering different advantages 

with respect to traditional analytical techniques, including simplicity of sample 

preparation and information on a wide range of compounds present in the food 

matrix by a single experiment. Among the NMR applications in food science, the 

1H NMR-based metabolomic approach has been receiving an increasing interest, 

since experiments are usually rapid and reproducible and can potentially provide 

large data sets that turn out to be suitable for statistical interpretation. If coupled 

with multivariate statistical methods (MVA), with the purpose of unravelling 

information hidden in complex systems, NMR represents a potent new tool for 

assessing metabolic function and for highlighting the variations of metabolite 

concentrations linked to typical conditions. This approach, in particular, opens the 

possibility of using NMR spectral data for the classification of samples without the 

use of chemical information, allowing an unbiased chemically comprehensive 

comparison to be made among different sample.  

The work presented in this Ph.D. project shows examples of the successful 

MVA analysis of liquid-state 1H NMR spectra of foods. This work has resulted in 

one published paper and two manuscripts in preparation.  
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The main body of the thesis is divided into the following parts: 

Chapter 1 introduces the basic principle of NMR spectroscopy and its 

applications in food science.  

Chapter 2 illustrates the metabolomics field and its terminologies, followed by 

an introduction of the potentials of using NMR in this research area.  Then, some 

multivariate statistical analysis methods in the data analysis of complex NMR 

spectra are described together with the importance of the pre-processing of NMR 

data.  

In Chapters 3 the potential of using NMR spectroscopy for exploring the 

metabolic profile of bottarga (i.e. salted and dried mullet roes) is investigated. In 

particular, the usefulness NMR-based metabolomic approach to distinguish 

bottarga samples according both to the fish geographical origin and the 

manufacturing processing is illustrated. 

In Chapter 4 a 1H NMR-based metabolomic investigation of Fiore Sardo, a raw 

ewe’s milk cheese produced in the Mediterranean island of Sardinia, is described.  In 

particular, the fermentative performance of autochthonous lactic acid bacteria, used 

as starter and adjunct cultures in cheese making, was evaluated by a complementary 

analysis of the metabolic profile of cheese and its microbiological characteristics 

during ripening. The influence of wild strains on cheese metabolome was compared 

to that of commercial starters. The results show the potentiality of NMR-based 

metabolomics for the study of fermentation processes in dairy food matrices.  

Chapter 5 illustrates the possibility of using 1H NMR spectroscopy in 

combination with multivariate statistics in fish research. To this aim, the aqueous 

and lipid extracts from Argentina sphyraena were preliminarily investigated to 

achieve distinction of fish specimens according to seasonal variations.  

Finally, the conclusions of this PhD thesis and the perspective of future work 

are collected in Chapter 6. 
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1. NMR in food science 
 
 
 

1.1 Basic principles of NMR spectroscopy 

Some atomic nuclei behave like microscopic bar magnets. The general condition 

for a nucleus to behave in this way is to have an odd number of protons and/or 

neutrons (i.e. to have the spin quantum number, I, different from zero). Since the 

most common nuclei in NMR (1H, 13C, 31P, 19F) have the spin number I equals ½, 

the following discussion will be particularized for the spin 1/2 nuclei, but the 

general rules and conclusions are valid for all cases (Abragham, 1961). 

The nucleus of an atom, being electrically charged and spinning, generates a 

magnetic field. The magnetic moment () associated with the nucleus is proportional 

to the angular momentum (P): P. The proportionality factor  is named 

gyromagnetic ratio and is a constant for each nucleus. In the absence of other 

magnetic fields, the magnetic moments  for a collection of many atoms are 

randomly oriented and in continuous reorientation due to thermal motions 

(Figure 1.1A). The result is that the macroscopic sample has no magnetization, 

because of the averaging to zero of the elementary magnetic moments. 

 

 

 
Figure 1.1 The classical model of the formation of net nuclear magnetization in a 
sample: (A) In the absence of a magnetic field, the individual nuclear magnetic 
moments (represented by vector arrows here) have random orientation so that 
there is no net magnetization; (B) In the presence of applied magnetic field, the 
nuclear magnetic moments are aligned preferentially with the applied field. 

A B 
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If an external magnetic field (B0) is applied to the sample, the magnetic 

moments tend to line up in the direction of the field (Figure 1.1B). In this situation, 

a supplementary movement takes place. The magnetic moment  precesses around 

the direction of the external magnetic field with a rotation frequency defined as 0, 

the Larmor frequency: This rotation can be clockwise or counterclockwise, 

depending on the sign of the gyromagnetic ratio. 

According to quantum mechanics, for spin of 

I=1/2, only two orientations of the magnetic 

moment are allowed: parallel and antiparallel to 

the external magnetic field (Figure 1.2). The 

two allowed orientations have different energies 

(Figure 1.3) and the number of nuclei adopting 

each orientation is not equal, the lower energy 

state (parallel to the Bo field for the positive  

nuclei) being the most populated one. The 

macroscopic result of this status is that the 

individual magnetic moments do not cancel to 

zero anymore. Indeed, taken B0 along the z axis 

of the laboratory frame of reference, in the 

equilibrium situation, the precessing magnetic 

moments are randomly distributed on the surface of a cone around z (Figure 1.4). 

The macroscopic result is that there is no net magnetization in the xy plane, the 

projections of magnetic moments in the xy plane canceling to zero, but only a net 

magnetization (M0) on the direction of the external magnetic field. 

 

Figure 1.3 Energy levels of nuclear magnetic dipoles of I=1/2 
 in the absence and in the presence of magnetic field B0 

Figure 1.2 (left) In the presence 
of an externally applied magnetic 
field, B0, nuclei are constrained to 
adopt one of two orientations 
with respect to B0. As the nuclei 
possess spin, these orientations 
are not exactly at 0 and 180 
degrees to B0, a magnetic 
moment precessing around B0. 
This path describes the surface of 
a cone (right). 
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The energy gap () between spatially 

quantized (allowed) orientations of the magnetic 

moments depends on the gyromagnetic ratio and 

on the external magnetic field: h 

where h is the Planck's constant. If a 

radiofrequency field is now applied in a direction 

perpendicular to the external magnetic field and 

at a frequency that matches the precession 

frequency of the nucleus, absorption of energy 

will occur and the nucleus will “flip” from its 

lower energy orientation to the higher energy 

orientation. Thus, the net magnetization M0 can 

be flipped from the z axis into the xy plane 

(Figure 1.5). After the radiofrequency field is 

switched off, the system will return to equilibrium. Consequently, the readable  

magnetization  in  the  xy  plane  decay  to  zero  in  a  certain  time  which is 

recorded by the spectrometer in the form of a free induction decay (FID).  During 

an NMR experiment, the signal is measured in the time domain, i.e.  as a  function  

of  time, and, then, Fourier transformed  to  obtain  the spectrum in the frequency 

domain. Thereby, the FIDs from active NMR nuclei in a sample, which 

superimpose in the time domain, are sorted out according to their Larmor 

frequency by the Fourier transformation.  

 

 

 

 

Figure 1.5 The effect of a 90° pulse on equilibrium magnetization. 

 

 

Figure 1.4 Distribution of N 
magnetic moments in 
equilibrium under the 
influence of an external 
magnetic field Bo. 
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1.1.1 Types of information provided by an NMR spectrum 

The basic information observed in an NMR spectrum is simply a spectral line 

characterized by position, multiplicity, intensity, and linewidth. A brief description 

of the meaning of these parameters follows. 

The position of an NMR signal reflects the dependence of the nuclear magnetic 

energy levels on the electronic environment in a molecule. Indeed, the nucleus of a 

particular element, which is part of a molecule, experiences an effective magnetic 

field, which is smaller than the external magnetic field B0. The reason for this 

phenomenon is the shielding of the nucleus by electrons. The electrons shielding 

the nucleus could be those belonging to the same atom, those involving the atom in 

chemical bonds or those of the neighbor atoms. Each atom (of the same element) in 

a different position in a molecule will have a different electronic surrounding, thus 

experiencing a different effective magnetic field. The difference between the 

resonance frequency of a free nucleus and the same nucleus in a chemical 

environment is named chemical shift. The chemical shift is measured by the 

dimensionless parameter (as the difference between the resonance frequency of 

the studied nucleus  and the resonance frequency of the nucleus of the same element 

in a reference compound. In order to make this parameter independent of the field 

strength (and thus independent of the constructive characteristics of the 

spectrometer), the difference frequency is also divided to the resonance frequency of 

the standard. As the difference in frequency is very small, the resulting expression 

is further multiplied with 106, thus the chemical shift being expressed as parts per 

million (ppm). The most widely used reference  substance  for  1H NMR  

spectroscopy  is TSP-d4  (per-deuterated  3-trimethylsilyl  propionate  sodium  

salt),  as  it  exhibits almost  complete  shielding.  The  difference  between  the  

nucleus  and  a reference  with  maximum  shielding  (per  definition  0  ppm)  will  

result  in  positive value on the ppm axis, as most compounds have a smaller 

shielding than TSP.   

As each individual nucleus active in NMR behaves as a small magnet, it is not 

surprising that these local magnetic fields interact with neighboring nuclei in a 

molecule. When interactions of nuclei occur through chemical bonds, the 

observable effect, known as spin-spin coupling, is the splitting of the signal of a 

particular nucleus in direct relationship with the number and type of neighboring 
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nuclei. The size of the splitting, called coupling constant (J) is independent of the 

magnetic field. The coupling patterns can provide very valuable information for 

structure assignments.  

The area under a NMR signal is proportional to the number of nuclei giving rise 

to that signal. Thus, the ratios of the integrals of various signals in the NMR 

spectrum represent the relative numbers of atoms for those signals. This property 

is very valuable in structure elucidation problems. If one refers the integrals of 

signals in a sample to the integral of a signal belonging to a compound which was 

added in a known concentration to the sample, then, the concentrations of 

compounds in complex mixtures can be determined. The accuracy of the integration 

of NMR signals depends dramatically on the experimental conditions. Each type of 

nucleus has different characteristics in terms of relaxation properties. In order to 

obtain fully relaxed signals, one should employ appropriate waiting (relaxation) 

delays. 

The linewidth of an NMR signal, usually measured at half height of the peak, can 

be influenced by factors like: relaxation time, relaxation mechanism, chemical 

exchange, intramolecular rotations, temperature, presence of paramagnetic 

impurities, homogeneity of the sample, homogeneity of the spectrometer's magnetic 

field, interactions with neighboring nuclei. It contains information on the rate of 

processes, including rate of molecular motions. 

 

1.1.2 Two-dimensional NMR spectroscopy 

Besides being able to detect multiple nuclei, NMR spectroscopy has also the 

advantages of measuring two (or more) nuclei at the same time, by introducing a 

second frequency dimension.  Conventional NMR spectra (one-dimensional spectra) 

are plots of intensity vs. frequency; in two-dimensional spectroscopy intensity is 

plotted as a function of two frequencies, usually called F1 and F2. There are various 

ways of representing such a spectrum on paper, but the one most usually used is to 

make a contour plot in which the intensity of the peaks is represented by contour 

lines drawn at suitable intervals, in the same way as a topographical map. The 

position of each peak is specified by two frequency coordinates corresponding to F1 

and F2.  
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One of the advantages of 2D NMR spectroscopy is the power of structure 

elucidation of molecules. Types of 2D NMR experiments mostly used in food 

science include COSY (COrrelation SpectroscopY) and TOCSY (Total Correlation 

SpectroscopY). COSY shows which signals in a proton spectrum have mutual spin-

spin couplings. The resulting spectrum has the conventional 1D NMR spectrum 

along the diagonal cross-peaks at chemical shifts corresponding to pairs of coupled 

nuclei. In general, protons within three bonds are well correlated in the COSY 

spectrum but in sp2 spin systems such as olefinic and phenolic compounds, even the 

correlation beyond three bonds is readily detected. TOCSY provides information on 

unbroken chains of coupled protons in the same molecule. For example, if anomeric 

protons of carbohydrates are defined, the rest of the signals in the crowded region 

can be easily assigned using the correlation in the TOCSY spectrum. 

  

1.2 Applications of NMR in food science 

In the last twenty years, increasing application of high-resolution (HR) NMR 

spectroscopy in the study of agriculture food products has been remarked (Alberti 

et al., 2002; Bertocchi and Paci, 2008; Consonni and Caligiani, 2010). The attention 

to this technique by scientists, official control institutions and food industries can be 

attributed both to the high specificity and versatility of the NMR technique and to 

the improvement of NMR instrument performances and availability. The main 

characteristics that make NMR very suitable for studying food matrices are the 

following:  

1) it is a non-destructive method, thus it is possible to perform different 

analyses on the same sample;  

2) it is able to detect different nuclei, allowing a study of the sample under 

different perspectives; 

3)  it is structure-sensitive, i.e. capable of investigating structural features;  

4) it is sensitive to dynamics, which allows differentiation between molecules or 

portions of molecules with different mobility. 

Compared to more  common  optical  spectroscopic  techniques,  NMR gives a 

far  more  detailed  molecular picture of food composition,  since  it simultaneously 

detects, in a non-targeted way, signals from different compounds,  such  as  

carbohydrates,  amino  acids,  organic and  fatty  acids,  amines,  and  lipids,  
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without  any  upfront  separation (Belton P.S. et al., 1996). Furthermore, NMR can 

give information (directly or indirectly) also on the physical status of water and fat, 

the starch and protein in emulsions, the internal structure of solid foods and so on. 

More recently, the combination of high resolution 1H or 13C NMR fingerprinting 

with advanced chemometric methods has emerged as a promising approach for 

exploring pattern of biomarkes of food quality and authenticity (Sacchi R. et al., 

1998; Brescia M.A. et al., 2004; Brescia M.A. et al., 2005; Sacchi R. et al., 2007; 

Consonni R. et al., 2008; Donarski J.A. et al., 2008). This topic will be discussed in 

more details in Chapter 2.  

However, it is worth reminding that, although NMR spectroscopy has many 

advantages, this technique has some major drawbacks, mainly concerning the 

sensitivity (this aspect is based on the small difference of the spin populations in the 

nuclear energy states, i.e. the population difference) (Abragham, 1961). 

Although sensitivity reasons rendered the 1H nucleus as the most exploited, other 

nuclei can be studied by NMR. For instance, one of the main fields in which HR 13C 

NMR spectroscopy is applied in food science concerns food lipids to asses fatty acid 

composition, distribution of acyl chain on triacylglicerols, quality and authenticity 

of food (Sacchi R. e al., 2007). 

Besides HR-NMR, other NMR techniques have become highly informative in 

food applications. Among these: 

 High-resolution solid-state NMR spectroscopy was developed in  the 1970s,  

but it is not until the recent years that HR 1H magic angle spinning (MAS) 

NMR spectroscopy has been recognized  as  an  efficient  analytical  method  for  

analyzing solid food such as beef (Shintu et al., 2007) and flour (Calucci L., 2004). 

In addition, the HR-MAS method has become an important new tool for the 

study of semi-solids such as flour doughs or intact fruits (Perez E.M.S., 2011; 

Vermathen M., 2001). 

 The methods of authentication through the determination of stable isotope 

ratios have in recent years found a remarkably wider range of food applications. 

The relative deuterium concentration and specific deuterium-site locations in a 

molecule can be determined using site-specific natural isotope fractionation NMR 

(SNIF-NMR) (Martin G.J. et al., 2006). This technique can provide information 

about the chemical pathway of formation and, in some cases, information about 

http://www.springerlink.com/content/?Author=G%c3%a9rard+J.+Martin
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the geographical origin, being particularly interest for authentication and 

certification. SNIF-NMR has been applied to the analysis of wine (Košir I.J. et 

al., 2001), fishes (Aursand M. et al., 2000), honey (Cotte J.F. et al., 2007), milk 

and dairy product (Belloque J. et al, 2000). 

 Low-field (LF) NMR gives information about the relaxation time, strictly 

correlated with inter and intramolecular motions, diffusion processes, and 

structural properties of liquids in porous systems or amorphous phase. Very 

interest and recent applications has been focused on the measurement of bound 

and free water in food (Bertram H.C. et al., 2002), whereas, in the particular case 

of aqueous solutions, the relaxation characteristic of the single water signal 

brings about a wealth of information about the solute molecules that could be 

relevant in the characterization of a specific sample. 

 The past few years have seen also a rapid increase in the applications of 

Magnetic Resonance Imaging (MRI) to foods. MRI is a powerful method for the 

non-invasive investigation of soft tissues in fruit and vegetables; the high water 

contents make imaging fairly straightforward and factors such as ripeness and 

tissue damage appear to affect images in a clearly measurable way. A dedicated 

review of the application of NMR microscopy in food chemistry has been 

recently published in the literature (Koizumi M. et al., 2008) 

http://www.springerlink.com/content/?Author=M.+Aursand
http://www.jstage.jst.go.jp/search/?typej=on&typep=on&typer=on&d3=au&dp3=Mika+KOIZUMI&ca=999999&alang=all&rev=all&pl=20&search=%8C%9F%8D%F5%8E%C0%8Ds
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2. NMR-based Metabolomics 
 
 
 

2.1 Metabolomics 

The terms metabolomics and metabonomics are often used interchangeably1 to 

indicate a scientific area aimed at identifying and quantifying the metabolome, the 

dynamic set of low molecular weight molecules (metabolites2) as found in a an 

organism or a biological sample. Generally, metabolites include organic species (i.e. 

amino and fatty acids, nucleic acids, carbohydrates, organic acids, vitamins, 

polyphenols, lipids), although inorganic and elemental species can also be studied.  

Metabolites are often simply view as one of the end-products of gene expression 

and protein activity. It is increasingly understood that metabolites themselves 

modulate macromolecular processes through, for example, feedback inhibition and 

as signalizing molecules. Metabolomic studies are therefore intended to provide an 

integrated view of the functional status of an organism. The choice of the analytical 

approach to be used depends on the specific problem. Basically, four different 

approaches can be employed: target analysis, metabolic profiling, metabolomics, and 

metabolic fingerprinting (Oldiges M. et al., 2007). The target analysis is used when one 

is interested in a specific metabolite; in this case a selective extraction can be 

performed to concentrate the selected metabolite and to avoid interference from 

other compounds. The metabolic profiling is used when one is interested in the 

specific role of a selected metabolic pathway; it requires the identification and 

quantification of a selected number of pre-defined metabolites in a given sample.  

                                                           
1
 Historically, the term metabonomics is defined as ‘‘the quantitative measurement of the time 

related multi-parametric metabolic response of living systems to pathophysiological stimuli or 
genetic modification’’ (Nicholson J.K. et al., 1999). It was devised by Jeremy Nicholson, Elaine 
Holmes, and John Lindon of Imperial College (London) from the Greek roots ‘‘meta’’ (change) and 
‘‘nomos’’ (rules or laws) in reference to chemometric models that have the ability to classify changes 
in metabolism (Lindon J.C. et al., 2004). While not expressly defined, the term metabolomics was 
indicated by Fiehn (2001) to be the ‘‘comprehensive and quantitative analysis of all metabolites. . . .’’ 

2 Within the context of metabolomics, a metabolite is usually defined as any molecules less than 
1kDA in size. However, there are exception to this, depending on the sample and the detection 

methods. 
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Metabolomics requires a complete analysis in which all the metabolites are 

quantified and identified. Finally, the metabolic fingerprinting is used when the 

sample classification, without quantification of individual specific metabolites, is 

required 

Recent advances in analytical chemistry, combined with multivariate data 

analysis, have brought the scientific community closer to the final goal of 

metabolomics, i.e. the comprehensive evaluation of all metabolites, both 

quantitatively and qualitatively, in living organisms. Among many different 

technological platforms, NMR and Mass Spectrometry (MS) have been successfully 

used for metabolic fingerprinting analysis. These two techniques have their 

respective advantages and limitations, and are often discussed as being 

complementary (Reily and Lindon, 2005). However, as a tool for metabolomics, 

NMR has some unique advantages over MS-based methods. Indeed, it can provide a 

detailed analysis on the bimolecular composition very quickly with relatively simple 

sample preparation (Reo N.V., 2002).Furthermore, it is a universal detector for all 

molecules containing NMR-active nuclei, unlike MS where detection of analytes is 

influenced by selective ionization or ultraviolet spectrometers where only 

chromophore-bearing compounds are detected. For all proton-bearing molecules, 

the intensity of all proton signals is proportional to the molar concentration of the 

metabolite. Thus, using a proper internal standard, the real concentration of 

metabolites can be easily calculated. 

In metabolomics, the detection of metabolites is not the final step, but all data 

obtained from the analytical methods should be further analyzed by statistical 

methods in order to extract all possible information. The accuracy and correctness 

of the data to be further analyzed by the statistical methods are inevitably reliant on 

the robustness of the raw analytical data set. In this aspect, NMR has a unique 

advantage, the highest reliability in metabolomics. Unlike the retention time in 

chromatography-based techniques, with a few exceptions, the chemical shift, 

coupling constant, and integral of each signal in an NMR spectrum do not change 

as long as they are measured under the same conditions: applied field strength, 

solvent, pH, and temperature. Despite the low intrinsic sensitivity, the robustness 

of data and ability to cover a broad range of metabolites has enabled NMR to be the 

favoured overall metabolomics and fingerprinting tool. In addition to the 
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advantages of data robustness, the power of NMR in structure elucidation of 

metabolites cannot be matched by any other method.  

Until recently, most of the work in metabolomics has focused primarily on 

clinical or pharmaceutical applications such as drug discovery (Kell D.B. et al., 

2006), drug assessment (Lindon J.C. et al., 2004), clinical toxicology (Griffin J.L. et 

al., 2004) and clinical chemistry (Moolenaar S.H. et al., 2003; Wishart D.S. et al., 

2001). However, over the past few years, metabolomics has emerged as a field of 

increasing interest also in food science. With the advent of metabolomics, foods are 

now being analyzed with considerably more chemical details, with hundreds or even 

thousands of distinct chemical identities (metabolites) being detected and/or 

identified in certain food (Moco S. et al., 2006; Ninonuevo M.R. et al., 2006). The 

potential to chemically ‘‘deconstruct’’ foods and beverages into their chemical 

constituents offers food chemists a unique opportunity to understand the molecular 

details of what gives certain foods and drinks their unique taste, texture, aroma, or 

colour. 

 

2.2 Multivariate statistical analysis in metabolomics 

In NMR-base metabolomics studies, many hundreds of samples are routinely 

analyzed and a minimum of several hundreds of signals are detected in each 

spectrum. It is, therefore, crucial to extract the relevant information from such a 

huge data set. Although detailed inspection of NMR spectra and integration of 

individual peaks can give valuable information on dominant biochemical changes, 

subtle variation in spectra may be overlooked. The  complexity  of NMR  data  

makes  is  of  prime  importance  to  utilize  data  reduction  techniques  in order  to  

access  the  latent  chemical  information  in  the  data. To this aim, multivariate 

statistical methods (chemometrics) provide an expert means of analyzing and 

maximizing information recovery from complex NMR spectral data sets (Trygg J., 

2007).  

In chemometrics there are three basic categories of analysis: 

1. Explorative analysis that give an overview of all of the data in order to 

detect trends, patterns, or clusters; 

2. Classification analysis and discriminant analysis which classifies samples into 

categories or classes; 
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3. Regression analysis and prediction models used when a quantitative 

relationship between two block of data is sough. 

 

In the following paragraphs, the chemometric methods most frequently 

employed in food science to the analysis of NMR data are briefly described  

 

2.2.1 Principal Component Analysis (PCA) 

Principal components analysis (PCA) is widely used in metabonomic studies and is 

an unsupervised approach in that it allows inherent clustering behaviour of samples 

to be ascertained with no a priori knowledge of sample class membership (Jackson 

J.E.A., 1991). PCA reduces the dimensionality of a data set as it allows 

multidimensional data vectors to be projected onto a hyperplane of lower 

dimensions (typically 2 or 3), with this projection explaining as much of the 

variation as possible within the data. 

For instance, in the case of a NMR-based metabolomic investigation, the NMR 

data consists of a matrix of N observations (spectra) and K variables (spectral 

regions) so that a variable space of K dimensions is created:  each variable 

represents a numerical value on one coordinate axis, and each observation is placed 

in K-dimensional space (Figure 2.1). 

 

 

Figure 2.1 A principal component analysis (PCA) model 
approximates the variation in a data table by a low dimensional 
model plane. 
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The PCA model components (PCs) are calculated by a standard method: the first 

principal component (PC1) is a linear combination of the original input variables, 

and it describes the largest variation in the data set; the second PC (PC2) is then 

calculated, and this is orthogonal to PC1 and describes the next highest degree of 

variation in the data set and so on. When two PCs have been defined, they 

constitute a plane; hence, projection of the observation vectors in the 

multidimensional space onto this plane enables the data to be visualized in a two-

dimensional (2D) map known as a scores plot. This plot reveals any inherent 

clustering of groups of data, trends or outlier, based purely on the closeness or 

similarity of their input coordinates. Thus, the analysis provides a convenient and 

objective means of reducing the complexity of the original data and of visualizing 

groups and classifying them. A loadings plot describes the influence of the variables 

in the model plane, and the relation among them. An important feature is that 

directions in the score plot correspond to directions in the loading plot, and vice 

versa. 

 

2.2.2 Supervised data exploration 

In many areas of life sciences today, classification problems constitute the most 

prevalent forms of intricacies, both in terms of discrimination between groups and 

interpretation of group differences in meaningful ways. The choice of analytical 

method adopted is related to whether discriminatory power is of greater importance 

than the ability to interpret the underlying chemical or biological changes related 

to class differences. 

In what are known as supervised methods, data sets can be modelled so that the 

class of separate samples (a validation set) can be predicted on the basis of a series of 

mathematical models derived from the original data or training set. One widely 

used supervised method is the Partial Least Squares (PLS) regression (Wold, 1985). 

PLS is a multivariate method for assessing a relationship between a descriptor 

matrix X (i.e. spectral intensity values) and a response matrix Y (containing 

dependent variables). PLS regression has foremost been used in the field of 

multivariate calibration where the response matrix is quantitative, but might 

additionally be employed for qualitative data structures typical in discrimination 

analysis in the form of PLS-DA. However, as PLS-DA explains differences between 
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overall class properties, the interpretation becomes progressively more complicated 

as the number of classes increase. 

Orthogonal PLS (O-PLS) consists of a new way to decompose the PLS solution 

into two components: (a) components orthogonal to Y and (b) components 

correlated to Y. This procedure allows the investigation of the possible relationship 

between a descriptor matrix X and a response matrix Y, enhancing the relevant 

information and decreasing or eliminating any structured noise in the data set. As a 

matter of fact, O-PLS enables the elimination of strong systematic orthogonal 

variation with respect to Y from a given dataset X, like the so called “structured 

noise”. Since NMR signals could be affected by several sources of noise information, 

such as temperature, pH and electronic instabilities (Halouska S.M., 2006), the use 

of O-PLS could improve this source of “noise” information with further advantage 

of improved detection limit for outliers in the scores, predictions and simplification 

of data interpretation. OPLS can, analogously to PLS-DA, be used for 

discrimination (OPLS-DA) (Cloarec O. et al., 2005).   

 

2.3 Pre-processing of  NMR data in metabolomics 

The initial objective in metabonomics is to classify a NMR spectrum based on 

identification of its inherent patterns of peaks and, second, to identify those spectral 

features responsible for the classification, which can be achieved via both supervised 

and unsupervised pattern recognition techniques. In order to achieve these goals, 

the NMR data must be prepared for multivariate modelling. The steps involved in 

analysis of metabonomics NMR data have been well described (Lindon J.C. et al., 

2005) and typically involve at a minimum: 

a. post-instrument processing of acquired spectroscopic data; 

b. production of a data table from the analytical measurements such that there 

are m rows (observations, samples) and n columns (variables, frequencies, 

integrals);  

c. normalization of the data or some related adjustment to the spectral 

intensities; 

d. scaling of the data; 

e. multivariate statistical modelling of the data. 
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All the necessary processing steps are described in the following. 

 

Phase and baseline correction. Until  recently,  spectral  variations  were  

sought  to  be  manually  corrected  which  is  highly  time  intensive  for  large  

data  sets.  Commercial  NMR  software  now  includes  multiple  methods  to  

automatically  correct  the  baseline  inconsistency  and  phase  adjustment.  This  

method  appears  to  work  well  for  phasing  and  frequency  shifting,  but  only  of  

spectral  regions  that  contains  well  resolved  resonances,  not  multiple  

overlapped  spectra  which  is  the  case  in  complex  NMR spectra of biological 

matrices. For this reason, complex NMR spectra are often manually phased 

corrected.  As to the baseline offset, it is most often automatically corrected.  The 

post-instrument processing of acquired spectroscopic NMR data mainly includes 

polynomial baseline correction by removal of offsets.  

 

Binning, intelligent bucketing, and chemical shift alignment. There are a 

number of approaches for reducing an NMR spectrum to a series of descriptors for 

metabolomic analysis. Historically, pattern recognition of NMR-based metabolite 

data was performed using either quantitative or scored integrals of specific spectral 

peaks. This approach does not work well in crowded regions of spectra with 

substantial peak overlap and is not easily automated for application to large sample 

sets. Calculating the peak areas within specified segments of a spectrum (binning or 

bucketing) was introduced originally to allow comparison of NMR data measured at 

different magnetic field strengths by minimizing, but not eliminating, the effects of 

second order spectral differences (Gartland K.P.R. et al., 1991; Anthony, M.L. et al., 

1994). Accordingly, NMR spectra are typically reduced using bin widths between 

0.01-0.04 ppm and the total area within each bin is used as an abstracted 

representation of the original spectrum (Figure 2.2). This operation reduces the 

effect of pH-induced changes in chemical shift, ensuring that the same species is 

always counted correctly across samples with such variation. Besides, binning also 

encompasses the typical width of an NMR resonance, taking into account spin-spin 

splittings and line widths. The binning operation results in a data matrix consisting 

of rows that reflect observations/samples and columns that represent variables, i.e. 

the spectral integrals of defined bins across the whole spectral width. However, 
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although the bucketing approach deals with the peak shift problem, it ruins the 

resolution of the acquired data, thus confounding variance contributions from small 

peaks with variance contributions from large peaks in the same bucket. It is worth 

remarking that binned data should only be used for development of chemometric 

classification models, but it is necessary to examine and analyze the full resolution 

spectra for biomarker identification.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 An example of segmented NMR spectrum 

 

An alternative approach to standard, equidistant binning is the use of variable 

bin sizes. This approach should enhance equidistant binning in a very robust way, 

since a priori knowledge is not introduced and data modifying peak alignments are 

avoided. Several methods have been proposed, such as nonequidistant binning 

(Dieterle et al., 2006a) and adaptive binning (Davis R.A. et al., 2007). Both create a 

reference spectrum, respectively by averaging or taking maximal intensities over all 

spectra, followed by the determination of the smooth minima of this spectrum, the 

bin edges. Although the applied smoothening procedures counteract peak shift 

differences, they depend on rather arbitrarily chosen parameters and the creation of 

a reference spectrum, implicating loss of information compared with the procedure 

using all the spectra. Despite their drawbacks, these algorithms outperform 

standard binning. A similar algorithm, referred to as intelligent bucketing, is also 
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available in the commercial package ACD/Laboratories (www.acdlabs.com). 

Intelligent Bucketing allows smaller or larger bins within a predefined range and 

the bin edges are also based on local minima. 

Since the use of binned data can lead to inaccuracies in peak intensities (e.g., by 

inclusion of variable amounts of baseline offset), more attention has recently been 

paid to methods that forego the need for binning of metabonomic data. Recent 

advances in chemometric approaches involve the utilization of full resolution NMR 

data, where each data point in an acquired spectrum is extracted as a variable for 

modelling. This approach has many advantages, for example, the spectral structure 

is retained, which enables the NMR user to identify metabolites with ease, and it 

also avoids searching within bins post data modelling to determine metabolites of 

discriminatory importance. However, in the presence of chemical shift variations 

due to experimental conditions (for instance, pH), in order to get significant the 

comparison among spectra, additional pre-processing of NMR spectra must be 

performed aimed at the peak alignment (Stoyanova R. et al., 2004; Forshed J. et al., 

2005).  Different algorithms for NMR alignment are available in the literature, such 

as icoshift (interval correlated shifting), COW (Correlation Optimized Warping), 

PARS (Peak Alignment by Reduced Set mapping), and SWA (Segment-Wise 

Alignment). Among these, in the present PhD work the icoshif program was used 

(Figure 2.3).  

 

 

 

 

 

 

 

 

Figure 2.3 Example of peak position variation: nonaligned 1H NMR lactic 
acid peaks from 45 spectra (A) and profiles processed by Coshift (B). 
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iCoshift divides spectra into segments and aligns these to the corresponding 

segments of a reference spectrum. The alignment is performed by shifting the 

segments sideways so as to maximize their correlation. In practice, this procedure 

involves calculating the crosscorrelation between the segments by a fast Fourier 

transform engine that aligns all spectra of a data set simultaneously. The segments 

can be user-defined or of constant length. Missing parts on the segment edges are 

either filled with ‘missing values’, or by repeating the value of the boundary point. 

The maximum shift correction of the segments can either be equal to a constant 

defined by the user, or the algorithm can search for the best value for each segment 

(Savorani F. et al., 2009).  

Normalization. This is a row operation that is applied to the data from each 

sample and comprises methods to make the data from all samples directly 

comparable with each other. A common use is to remove or minimize the effects of 

variable dilution of the samples. One common method of normalization involves 

setting each observation (spectrum) to have unit total intensity by expressing each 

data point as a fraction of the total spectral integral. We refer to this method as 

normalization to a constant sum. 

Scaling. This operation is performed on the columns of data (i.e., on each 

spectral intensity across all samples), aimed primary to reduce the noise in the data, 

and thereby enhance the information content and quality. From a biological point of 

view, metabolites present in high concentrations are not necessarily more 

important than those present in low concentration. If concentration determination 

is  the  final  objective,  no  scaling  of  the NMR  data  should  be  done,  since  the  

relative  intensities  of  the  NMR  resonances  are  proportional  to  the  

concentration  of  the  observed  nuclei.  On  the  other  hand,  the  dominant  

resonances  within  the  NMR  spectra  may  not  necessarily  be  the  spectral  

features  that  reveal  systematic  variation  occurring  within  the  analysed 

samples. Therefore, down weighting of those variables that are the least stable can 

become a necessary step.  

A number of scaling methods are used for NMR data including mean-centring, 

autoscaling, and pareto scaling (Van den Berg R.A. et al., 2006). The choice for a 

pretreatment method depends on the biological question to be answered, the 
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properties of the data set and the data analysis method selected. Mean centering 

involves the subtraction of the mean value of a descriptor from all values of that 

descriptor so that the mean for each variable is 0. This is typically done so that all 

the components found by PCA have as their origin the centroid of the data, 

resulting in a parsimonious model. Differently, each column of the table can be 

scaled so that it has unit variance, by dividing each value in the column by the 

standard deviation of the column. If the data are mean centered, the weighting 

reflects the covariance of the variables, while in unit variance scaling, the weighting 

reflects their correlation. Pareto scaling also mean-centers the data, but uses the 

square root of the standard deviation as the scaling factor.  

Basically, mean-centering implies that the variables are centered, but not scaled. 

In UV scaling, variables are centered and scaled to unit variance, which means that 

“long” variables are shrunk and “short” variables are stretched, so that all variables 

will rest on equal footing using as scaling factor the standard deviation. Pareto 

scaling is between no scaling and UV scaling. 
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3. 1H NMR Metabolite Fingerprint and Pattern 
Recognition of Mullet (Mugil cephalus) Bottarga 

 
 
 

3.1 INTRODUCTION 

The eviscerated roes of striped mullet (Mugil cephalus), a cosmopolitan species 

found in coastal tropical and subtropical waters, are manufactured in several 

countries and the salted and dried products can be found world wide under different 

names and typologies. The Mediterranean island of Sardinia has a long tradition in 

manufacturing mullet roes to obtain a product called “bottarga”. Basically, the 

curring procedure consists of the following steps (Figure 4.1): a) extraction of 

ovaries from female fish without breaking. b) washing, to remove impurities; c) 

salting; d) drying; e) packaging. 

 

 

 

 
Figure 4.1 Typical preparation of bottarga in Sardinia: a) extraction of ovaries 
from female fish without breaking. b) washing, to remove impurities; c) salting; 
d) drying, in a well ventilated room; e) packaging. 

 

e 

http://en.wikipedia.org/wiki/Coast
http://en.wikipedia.org/wiki/Tropical
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In recent years, Sardinian bottarga, that is sold as whole ovaries (“in baffe”) or 

grated in jars, has become so increasingly popular in the international markets that 

mullets of the Mediterranean sea are not enough to satisfy the request of this 

product. As a result, the Sardinian producers must turn their attention to other 

fishing areas located in different regions of the globe for roe supplies. Indeed, raw 

roes are purchased from distributors located mainly in FAO 31 (central-western 

Atlantic), 34 (central-eastern Atlantic) and 41 (south- western Atlantic) fishing 

areas. Even if the raw material is not necessarily original of the island, Sardinian 

bottarga has its own peculiar rheological and organoleptic profile thanks to the 

skills of the local producers, inheritors of an ancient tradition in processing this 

delicacy. For this reason, Sardinian manufacturers of bottarga are requesting a 

Protected Geographical Indication (PGI) designation for this product.  

The globalisation of food markets and the relative ease with which food 

commodities are transported between countries increases the awareness of 

consumers about the origin of the foods they eat. As far as fishery products are 

concerned, the European legislation establishes that the FAO area in which fish was 

caught should be part of the information available to consumers (Commission 

Regulation (EC) No 2065/2001). This applies also to processed products such as 

bottarga. It is therefore of great importance to be able to determine the 

geographical origin of fish, especially when used in preparing processes to perform 

authentication and/or traceability studies useful to enforce labeling regulations. 

Traditional methods for species authentication of fish include DNA and protein 

analyses (Martinez I. et al., 2003). Recently, the analysis of metabolite profiles by 

NMR spectroscopy has been proposed as an alternative method for the 

authentication of seafood (Standal I. et al., 2003; Aursand M. et al., 2009; 

Gribbestad I.S. et al., 2005; Mannina L. et al., 2008; Martinez I. et al., 2005; 

Savorani F et al., 2010). In the past two decades 1H NMR has proved to be a fast 

and versatile technique, useful both for compositional analysis and for rapid 

screening of food, allowing the detection of the major metabolites in a single 

spectrum, and, when associated with MVA techniques, can provide a suitable tool 

for comparing, discriminating, or classifying samples on the basis of their metabolic 

profile (Martinez I. et al., 2005; Lee E.J. et al., 2009). The free metabolite pool found 

in the aqueous phase of animal and vegetable matrices reflects the metabolic 
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processes of the living organism, and it can be characteristic of individuals from a 

specific geographical area but can also reflect the chemical and physical 

transformations that can take place during storage of the raw material, 

manufacturing, and shelf life.  

As for the majority of marine products, which are rich in health-beneficial -3 

fatty acids, most of the investigations on salted and dried mullet roes concern the 

lipid components and, particularly, the lipid classes and fatty acid composition (see 

Scano P. et al., 2010 and literature cited therein). To our knowledge, differently 

from the lipid components, investigations on the low molecular weight compounds 

of bottarga are rare in the literature (Chiou T.K. et al., 1988).  

The aim of this work was to evaluate whether the 1H NMR low molecular 

weight metabolite profile of bottarga can be considered a valid tool to characterize 

bottarga samples having different geographical origins and production processing 

protocols (grated or “in baffe”). For this purpose, the 1H NMR spectra of the 

aqueous extract of 25 samples of bottarga, manufactured in Sardinia from mullets of 

known and unknown geographical origin and commercialized either in baffe or 

grated in jars, were recorded. Principal component analysis (PCA) was applied to 

the 1H NMR spectral data to explore possible grouping of samples with common 

characteristics in terms of origin and processing of the raw material. 

 

3.2 MATERIAL AND METHODS 

3.2.1 Samples 

Twenty-five samples of bottarga manufactured in Sardinia were analysed:  

(a) 12 samples in baffe were kindly gifted by a manufacturer located in Cagliari, on 

the South of Sardinia. They belong to the same batch of suppliers and were 

processed from imported frozen roe, kept at -20 °C for not longer than 6 

months. 

(b) 2 samples from FAO 37.1.3 were kindly gifted by a manufacturer located in 

Cabras, on the Central Western Coast of Sardinia, and underwent curing 

procedures soon after evisceration; thus, no freezing procedures were adopted.  
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(c) 11 samples purchased at a local supermarket were not labeled with geographical 

origin. The labels reported the ingredients as mullet roe and salt. 

The typology of samples and the geographical provenience of the raw roes are 

summarized in Table 3.1. 

 

Table 3.1 Summary of the studied bottarga samples (Year of Mullet Catching: 2007) 

N°  samples Typology 
Identification of 
the catch areaa 

Catch area 

3 in baffe FAO 34 central-eastern Atlantic 

6 in baffe FAO 41 south- western Atlantic 

3 in baffe FAO 31 central-western Atlantic 

2 grated in jar FAO 37.1.3 Mediterranean Sea 

11 grated in jar unknown unknown 

aFAO Yearbook. Fishery Statistics. Catches, 2000; Vol. 86/1 

 

3.2.2 Chemicals 

 Deuterium oxide (D2O, 99.9%) was purchased from Cambridge Isotope 

Laboratories Inc. (Andover, MA, USA). Sodium 3-trimethylsilyl-propionate-

2,2,3,3,-d4 (TSP, 98 atom % D), perchloric acid (70%) and potassium hydroxide 

(KOH) were acquired from Sigma-Aldrich (Milan, Italy). 

 

3.2.3 Low molecular weight metabolite extraction 

Water soluble metabolites were extracted using perchloric acid on the basis of the 

procedure previously described by Gribbestad et al. (Gribbestad I.S. et al., 2005). 

 Approximately 2 g of bottarga was pulverized in a mortar and transferred into a 

glass dish. A 4 mL solution of perchloric acid (7% in D2O) was added and the 

mixture continuously stirred and warmed at 50°C until a paste consistency was 

obtained. The homogenate was centrifuged at 4000 rpm for 10 min at 4°C. Then, 

the supernatant was adjusted to pH 7.8 with 9M KOH in D2O and centrifuged 
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again to remove the potassium perchlorate. The final extract was lyophilized and 

stored at -20°C until analyzed. Before NMR analysis, each sample was redissolved 

in 1mL of D2O, and an aliquot of 600 μL was transferred into a 5 mm tube to which 

50 μL of TSP/D2O solution (0.80mM final TSP concentration) was added as 

internal standard. All of the extractions were performed in duplicate. 

 

3.2.4 NMR data acquisition 

1H NMR experiments were carried out on a Varian Unity Inova 400 spectrometer 

operating at 399.94 MHz. Spectra were recorded at 298 K with a spectral width of 

5624 Hz, a 90° pulse of 7.5 μs, an acquisition time of 3 s, a relaxation delay of 25 s, 

and 64 scans. The residual water signal was suppressed by applying a presaturation 

technique with low-power radiofrequency irradiation for 1.5 s. The FIDs were 

multiplied by an exponential weighting function equivalent to a line broadening of 

0.3 Hz prior to Fourier transformation. Chemical shifts were referred to the TSP 

single resonance at 0.00 ppm. 2D NMR 1H-1H COSY spectra were acquired with a 

spectral width of 4423 Hz in both dimensions, 2048 data points, and 512 increments 

with 48 transients per increment. 2D NMR 1H-1H TOCSY spectra were acquired in 

phase sensitive mode with a size and number of data points similar to those of the 

COSY and a mixing time of 150 ms. 

 

3.2.5 Data processing and Multivariate Data analysis 

The 1H NMR spectra were segmented in 191 spectral domains of 0.04 ppm 

width (bins) by selecting the regions 8.50-5.10 and 4.54-0.80 ppm. No significant 

resonance shifts were observed for all signals that could justify a different bucketing 

size. The spectral region between 4.54 and 5.10 ppm was excluded from statistical 

analysis to remove the effect of the presaturation of the water residual resonance. 

Bucketing was performed by MestReNova (version 5.2.4). 

The integrated area within each bin was normalized to a constant sum of 100 for 

each spectrum to account for difference in volume of extracts. The final data set 

consisted of a 25 x 191 matrix, in which rows represented samples and columns the 

normalized area of each domain. The generated file was imported into SIMCA-P+ 

program (Version 12.0, Umetrics, Umeå, Sweden) and submitted to mean-centering 
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and autoscaling before statistical analysis.  Principal Components Analysis (PCA) 

was applied. 

 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 1H NMR analysis of the aqueous extract of bottarga 

The 1H NMR spectral profiles of bottarga aqueous extracts were similar among 

the examined samples, although changes in the relative intensities of some 

resonances were observed in all regions. Figure 3.2 shows a representative 1H 

NMR spectrum and Table 3.2 lists the assignment of the peaks.  

41 compounds were identified on the basis of data published in the literature 

(Seierstad T. et al., 2008; Fan T. et al., 1996; Gribbestad I.S. et al., 2005; Standal 

I.B. et al., 2007; Mannina L et al., 2008), by performing 2D conventional NMR 

experiments (COSY and TOCSY), and by recording spectra of standard 

compounds. In some cases, validation of the peak attribution was achieved by 

adding standard compounds directly to the sample solution and recording again the 

NMR spectrum under the same conditions.  

The high-field region of the NMR spectrum (0.8-3.0 ppm) showed signals 

arising from aliphatic groups of free amino acids and organic acids. In particular, 

signals representing leucine (Leu), isoleucine (Ile), valine (Val), alanine (Ala), lysine 

(Lys), proline (Pro), and methionine (Met) were identified. The predominant 

organic acid identified was lactic acid (Lac). In addition, acetic (Ace), malic (Mal), 

and succinic (Suc) acids were also present. Small singlets at 2.91 and 2.73 ppm were 

ascribed to trimethylamine (TMA) and dimethylamine (DMA), respectively.  

In the midfield region of the spectrum (3.0-5.5 ppm), the main contributions 

arose from the strongly overlapped signals of the  protons of the free amino acids 

and from saccharides. Moreover, the intense peaks at 3.21 and 3.24 ppm were 

attributed to choline (Cho) and phosphorylcholine (P-Cho). Creatine (Crt) and/or 

phosphocreatine (P-Crt) and creatinine (Crn) were also identified. Furthermore, the  
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Figure 3.2 Representative 1H NMR spectrum of bottarga aqueous extract in D2O.
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doublets at 5.18-5.22 ppm account for the anomeric proton of -saccharides (a-

sacc).  

The signals in the low-field region (5.5-8 ppm) were assigned to the aromatic 

amino acids tyrosine (Tyr), phenylalanine (Phe), tryptophan (Trp), histidine (His), 

nucleobases (cytosine (Cyt), uracil (Ura)), nucleosides (cytidine (Ctd), uridine (Uri), 

inosine (Ino), guanosine (Gua)), and nucleotides. The two singlets at 8.18 and 8.21 

ppm were indicative of the presence of hypoxanthine (Hyp). Formic acid (Form) 

resonates at 8.46 ppm. 

Among the identified metabolites, there are nutrients such as taurine (Tau) and 

carnitine (Carn), fish taste-active amino acids (i.e., Glu, Met, Gly, Ala) (Fuke S. et 

al., 1991; Hayashi T. et al., 1990), nucleotide derivatives, preservatives (Lac and 

Mal), and biomarkers typically used for assessing fish quality. In particular, TMA 

accumulates in spoiling fish as a result of bacterial reduction of TMAO, and DMA, 

its counterpart, is diagnostic of freezing processes (Martinez I. et al., 2005), whereas 

the accumulation of Hyp and Ino is directly related to the degradation of adenosine 

triphosphate (ATP). The presence of these biomarkers in our samples can be 

ascribed to a series of chemical and physical transformations typically occurring in a 

biological matrix excised from the living organism, which can modify the original 

metabolic fingerprint. This is even more important when one is dealing with 

foodstuffs and, in particular, with fish raw materials transported across continents, 

stored at low temperature, as in the case of mullet roes. 
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Table 3.2 Proton chemical shifts (ppm) of the metabolites identified in the aqueous extract of 
bottarga 
 

Compound Group 1H (ppm)a 1H Multiplicityb Correlationc (ppm) 

Acetate (Ace) CH3 1.92 s // 

Alanine (Ala) 
CH 3.80 q 1.49 (C) 

CH3 1.49 d 3.80 (C) 

-alanine (b-ala) 

CH2 2.56 t 3.19 (C) 

CH2 3.19 t 2.56 (C) 

Arginine (Arg) 

CH 3.77 t 1.92 (C) 

CH2 1.92 m 3.77, 1.70 (C) 

CH2 1.70 m 1.92, 3.25 (C) 

CH2 3.25 t 1.70 (C) 

Aspartate (Asp) 

CH 3.91 dd 2.68, 2.80 (C) 

CH 2.68 dd 2.80, 3.91 (C) 

'CH 2.80 dd 2.68, 3.91 (C) 

Carnitine (Carn) 

CH 2.43 m 4.60 (C) 

CH 4.60 m 2.43 (C), 3.49 (C) 

CH 3.49 m 4.60 (C) 

N-(CH3) 3
+ 3.24 s // 

Choline (Cho) 

N-(CH3)3
+ 3.21 s // 

N-CH2 4.07 m 3.52 (C) 

O-CH2 3.52  4.07 (C) 

Creatine/ 
Phosphocreatine 
(Crt/P-Crt) 

N-CH3 3.04 s 3.93 (T) 

N-CH2 3.93 s 3.04 (T) 

Creatinine (Crn) 
N-CH3 3.06 s // 

N-CH2 4.06 s // 

Cytidine (Ctd) 

C1’H, ribose 5.91 d // 

C5H 6.07 d 7.85 (C) 

C6H 7.85 d 6.07 (C) 

Cytosine (Cyt) 
C5H 5.98 d 7.50 (C) 

C6H 7.50 d 5.98 (C) 

Cytidine 

monophosphate 

(CMP) 

C5H, ring 6.12 d 8.08 (C) 

C6H, ring 8.08 d 6.12(C) 

Dimethylamine 

(DMA) 
N(CH3)2 2.73 s // 

Formate (Form) HCOO- 8.46 s // 
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Compound Group 1H (ppm)a 1H Multiplicityb Correlationc (ppm) 

Glutamate (Glu) 

CH 3.78 t 2.10 (C), 2.38(T) 

CH 2.10 m 2.38 (C) 

CH 2.10 m 2.38 (C) 

CH2 2.38 t 2.10 (C), 3.78 (T) 

Glycine (Gly) CH2 3.57 s // 

Guanosine (Gua) C8H, ring 8.03 s // 

Guanosine 
monophosphate 
(GMP) 

C1’H, ribose 5.94 d 4.76 (C) 

C2’H, ribose 4.76 m 5.94 (C) 

C8H, ring 8.20 s // 

Histidine (His) 
C2H, ring 7.79 s 7.07 (T) 

C4H, ring 7.07 s 7.79 (T) 

Hypoxanthine (Hyp) 
C2H, ring 8.21 s // 

C8H, ring 8.18 s // 

Inosine (Ino) 

C1’H, ribose 6.11 d 4.82 (C) 

C2’H, ribose 4.82 m 6.11 (C) 

C3’H, ribose 4.48 m 4.36 (C) 

C4’H, ribose 4.36 m 4.48, 3.88 (C) 

C5’H, ribose 3.88 m 4.36 (C) 

C2H, ring 8.34 s // 

C8H, ring 8.23 s // 

Isoleucine (Ile) 

CH 3.68 m 1.99 (C) 

CH 1.99 m 1.02, 1.27, 3.68 (C) 

CH 1.48 m 0.94, 1.27 (C) 

CH 1.27 m 0.94, 1.48, 1.99 (C) 

’CH3 1.02 d 1.99 (C) 

CH3 0.94 t 1.27, 1.44 (C) 

Lactate (Lac) 

CH3 1.34 d 4.12 (C) 

CH2 4.12 q 1.34 (C) 

Leucine (Leu) 

CH 3.75 t 1.70 (C) 

CH2 1.70 m 3.75 (C) 

CH 1.72 m 0.96 (C) 

CH3,’CH3 0.96 d 1.72 (C) 
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Compound Group 1H (ppm)a 1H Multiplicityb Correlationc (ppm) 

Lysine (Lys) 

CH 3.77 t 1.92 (C) 

CH2 1.92 m 
1.43 (C), 3.03 (T), 

3.77 (C) 

CH2 1.43 m 
1.73 (C), 1.92 (C), 

3.03 (T) 

CH2 1.73 m 1.43, 3.03 (C) 

CH 3.03 t 1.43 (T), 1.73 (C), 

Malate (Mal) 

CH 4.33 dd 2.38 (C) 

CH 2.38 dd 2.70, 4.33 (C) 

’CH 2.70 dd 2.38 (C) 

Methionine (Met) 

CH 3.86 t 2.19 

CH2 2.19 m 2.65, 3.86 (C) 

CH2 2.65 t 2.19 (C) 

S-CH3 2.14 s // 

Phenylalanine (Phe) 

CH 3.99 dd 3.13, 3.29 (C) 

CH 3.29 dd 3.99 (C) 

’CH 3.13 dd 3.99 (C) 

C2,6H, ring 7.42 m // 

C3,5H, ring 7.42 m 7.33 (C) 

C4H, ring 7.33 m 7.42 (C) 

Phosphorylcholine 
(P-Cho) 

N-(CH3)3
+ 3.24 s // 

N-CH2 4.32 m 3.68 (C) 

O-CH2 3.68 m 4.32 (C) 

Proline (Pro) 

CH 4.15 t 
2.04 (C), 2.35 (C), 

2.01 (T) 

CH 2.35 m 4.15 (C) 

’CH 2.04 m 4.15 (C) 

CH2 2.01 m 3.38 (C), 3.40 (C) 

CH 3.38 t 2.04 (T), 2.35 (T) 

’CH 3.40 t 2.04 (T), 2.35 (T) 

Serine (Ser) 

CH 3.86 dd 3.96 (C) 

CH 3.96 dd 3.86 (C) 

Succinate (Suc) CH2 2.41 s // 
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Compound Group 1H (ppm)a 1H Multiplicityb Correlationc (ppm) 

Taurine (Tau) 
N-CH2 3.27 t 3.43 (C) 

S-CH2 3.43 t 3.27 (C) 

Trimethylamine 
(TMA) 

N-(CH3)3 2.91 s // 

Trimethylamine 

oxide (TMAO) 
O-N-(CH3)3 3.24 s // 

Threonine (Thr) 

CH 3.60 d 4.27 (C) 

CH 4.27 m 1.34 (C), 3.60 (T) 

CH3 1.34 d 4.27 (C) 

Tryptophan (Trp) 

C4H, ring 7.72 d 
7.19 (C), 7.27 (T), 

7.54 (T) 

C5H, ring 7.19 t 7.27 (C), 7.72 (C) 

C6H, ring 7.27 t 
7.19 (C), 7.54 (C), 

7.72 (T) 

C7H, ring 7.53 d 7.27 (C), 7.72 (T) 

Tyrosine (Tyr) 

CH 3.94 dd 3.06 (C) 

CH 3.19 dd 3.06 (C) 

’CH 3.06 dd 3.19, 3.94 (C) 

C2,6H, ring 6.89 d 7.19 (C) 

C3,5H, ring 7.19 d 6.89 (C) 

Uracil (Ura) 
C5H, ring 5.81 d 7.54 (C) 

C6H, ring 7.54 d 5.81 (C) 

Uridine (Urd) 

CH-1’ ribose 5.94 d 4.39 (C) 

CH-2’ ribose 4.39 m 5.94 (C) 

C5H, ring 5.91 d 7.89 (C) 

C6H, ring 7.89 d 5.91 (C) 

Valine (Val) 

CH 3.62 d 2.28 (C) 

CH 2.28 m 0.99, 1.04, 3.62 (C) 

'CH3 1.04 d 0.99, 2.28 (C) 

CH3 0.99 d 1.04, 2.28 (C) 

a 1H chemical shifts re reported with respect to TSP signal (0.00 ppm).  
b Multiplicity definitions: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; m, 
multiplet.  
c Experiment legend: C, COSY; T, TOCSY 
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3.3.2 Multivariate Data Analysis 

Visual analysis of the NMR spectra did not show obvious relationships between 

the intensities of certain signals and the geographical origin of mullets. The use for 

MVA tools was therefore warranted. An exploratory analysis of the data set was 

carried out by applying a PCA. PCA is an unsupervised technique and requires no 

information about class membership; it looks just for inherent variation in the data 

set. Application of PCA on the 25 samples of bottarga under investigation allowed 

us to reduce the large 1H NMR data set to three principal components with 28.5, 

16.1, and 13.4% of total variance explained. As can be seen in Figure 3.3, a good 

separation of samples of known geographical origin is observed in the score plot of 

PC1 vs. PC2. Here, bottarga seems to cluster in four different groups among which 

samples from FAO 37.1.3. (Mediterranean sea, east Sardinia) form a cluster nicely 

separated from the rest of the data by the PC2. Furthermore, samples of unknown 

geographical origin, all showing negative PC2 values, can be grouped in two 

clusters: U1 on the positive side of PC1 and U2 on the negative side of PC1.  

The explanation of what each PC represents in relation to the original 

measurements can be assessed by analyzing the coefficients by which the original 

variables (in our case, the spectral bins) must be multiplied to obtain the PC, that is, 

the “loadings”. Examination of the loadings plot enables us to determine the 

variables with the highest impact on the variance and, thus, to identify the 

metabolites that contributed most to the cluster separation. However, for our data 

set, the latter step is not straightforward. Indeed, because the 1H NMR spectra of 

extracts of bottarga are very crowded with signals, several variables hold 

contributions from more than one metabolite, and, in some cases, the same 

metabolite contributes to more than one variable; thus, the resulting loadings plots 

are difficult to analyze. For these reasons, we simplified the appearance of the PC1 

versus PC2 loadings plot, underlining only those bins composed predominantly by 

one metabolite and lying in the extremity of the axis, that is, giving the highest 

contribution to the PCs (Figure 3.3b). 

Here, contributions of metabolites to the sample clustering can be estimated 

considering the following rule: the position of a sample in a given direction in the 

score plot is influenced by the metabolites lying in the same direction in the 
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corresponding loadings plot. Grouping of samples of different origin is mainly 

along PC1, and metabolites that characterize this first PC are Phe, Tyr, and, on the 

opposite side, nucleotides and derivatives (CMP, GMP, Ctd, Uri, Ino, Gua, Hyp, 

Ura, and Cyt). It is interesting to note that these latter, probably from disruption of 

nuclei acids, are strongly correlated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 PC1 versus PC2 (a) scores plot (ellipses are arbitrarily drawn to group 
samples; the explained variance is given is parentheses) and (b) loadings plot (with 
the most significant metabolites highlighted) of PCA applied to the 1H NMR spectral 
data of the bottarga aqueous extracts. “Nucl” includes CMP, GMP, Ctd, Uri, Ino, 
Gua, Hyp, Ura, andCyt. 
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Along PC2 we found that DMA, a biomarker of freezing, is placed on the 

opposite side of samples from FAO 37.1.3; this observation is in agreement with the 

fact that mullet roes from FAO 37.1.3 underwent curing procedures soon after 

evisceration. Furthermore, Cho and P-Cho, derivatives of phosphocholine (PC) in 

which mullet roes are rich (Scano P. et al., 2008), are placed along PC2, on the same 

side of the grated samples. These compounds can be considered as biomarkers of 

hydrolytic mechanisms on PC, caused by the salting and drying procedures and 

probably exacerbated by the industrial grating. Samples from FAO 34 are more 

characterized by Met and Glu, which are taste-active compounds in fish derivatives 

(Fuke S. et al., 1991; Hayashi T. et al., 1990), whereas samples from FAO 41 are 

characterized by His and Lac. With regard to the samples of unknown geographical 

origin, the U1 cluster is rich in Ile and TMA; the latter can be linked with a more 

marked degradation of the raw food matrix (the uncured roes), because the salinity 

of the final product (bottarga) does not allow extensive bacterial growth. A 

comparative analysis of the full-resolution spectra confirmed the above-reported 

observations regarding metabolites characterizing sample grouping. 

Separation of bottarga according to geographical origin of mullet is still visible 

in the scores plot of PC1 versus PC3 in Figure 3.4a. Interestingly, here samples of 

cluster U2 overlap with FAO 41 and those of U1 with FAO 31. The same 

procedure was applied to the PC1 versus PC3 loadings plot shown in Figure 3.4b. 

Opposite to PC2, in the third PC, loading values of DMA, Cho and P-Cho, and His 

are very low, whereas Val is the metabolite that most contributes to the separation 

of the samples along PC3. 

The results of the PCA models suggested that the application of MVA to the 1H 

NMR data allows characterization of bottarga according to the geographical origin 

of the raw material and clustering of samples on the basis of their history and 

treatments. These encouraging results led us to investigate the possibility of 

classifying samples of unknown origin as belonging to a specific geographical 

region. To this goal, the best analytical tool would be a discriminant analysis, such 

as partial least-squares discriminant analysis; however, our restricted and 

inhomogeneous sampling, in terms of numbers of samples in each group, did not  
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Figure 3.4 PC1 versus PC3 (a) scores plot (ellipses are arbitrarily drawn to group samples; 
the explained variance is given in parentheses) and (b) loadings plot (with the most 
significant metabolites highlighted) of PCA applied to the 1H NMR spectral data of the 
bottarga aqueous extracts. “Nucl” includes CMP, GMP, Ctd, Uri, Ino, Gua, Hyp, Ura, and 
Cyt. 

 

allow its performance. Therefore, we carried out a PCA removing samples from 

FAO 37.1.3 and FAO 34, because, by analysis of Figures 3.3 and 3.4, they do not 

seem to have any common characteristic with the unknown samples. The resulting 

scores plot, reported in Figure 3.5a, shows that samples called U2 of unknown 

geographical origin are grouped with samples from FAO 41, whereas all other  
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Figure 3.5 PC1 versus PC2 (a) scores plot (ellipses are arbitrarily drawn to group 
samples; the explained variance is given in parentheses) of PCA applied to the 1H NMR 
spectral data of the bottarga aqueous extracts (samples from FAO 37.1.3 and FAO 34 
have been removed from the original matrix) and (b) loadings plot (with the most 
significant metabolites highlighted). “Nucl” includes CMP, GMP, Ctd, Uri, Ino, Gua, Hyp, 
Ura, and Cyt; “others” refers to all the other loadings. 

 

 

samples U1 show no similarities either with FAO 41 or with FAO 31. The 

explanation of this result might be that the unclassified samples do not belong to 

any of the fishing areas here studied and/or they are blends of roes of mullets 

caught in different geographic areas. The corresponding loadings plot, reported in 
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Figure 3.6b, shows a trend similar to that of Figure 3.4b; that is, nucleosides and 

derivatives are strongly inversely correlated to Tyr and Phe. Moreover, they 

mostly contributed to the overlap of U2 group with FAO 41 samples. TMA and Ile 

characterize U1 samples, whereas DMA, Met, and Asp characterize samples from 

FAO 31. 

In conclusion, the results of the present study, although a larger data set is 

warranted, demonstrated that the application of MVA to the 1H NMR spectral data 

allows bottarga to be characterized according to the geographical origin of the raw 

material and storage and manufacturing procedures. In fact, in the space spanned by 

the first three PCs, samples tend to cluster on the basis of their geographical origin 

and sample history. Among the molecular compounds unambiguously identified, 

Phe, Tyr, and nucleoside derivatives, followed by DMA, Cho and P-cho (FAO 37), 

His and Lac (FAO 41), Asp, Met, and Glu (FAO 31 and 34), and Ile and TMA (U1), 

are the metabolites that principally characterize the groups of samples. Among 

samples of unknown origin, the tendency of U2 to cluster together with samples of 

FAO 41 can be ascribed, in terms of metabolites, to the nucleoside derivatives and 

their inverse correlation with Phe and Tyr. 
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4. Metabolic Fingerprinting of Fiore Sardo, a raw ewe’s 
cheese, by 1H NMR spectroscopy 

 
 
 

4.1 INTRODUCTION 

Cheese is a well-known milk product which has gained great popularity 

throughout the world for its health-promoting and organoleptic properties. Cheese 

making is essentially a dehydration process in which milk casein, fat and minerals 

are concentrated 6 to 12-fold, depending on the variety. The basic steps common to 

most cheeses are: acidification, coagulation, dehydration, and salting. Acidification 

is the major function of the starter bacteria, mainly represented by lactic acid bacteria 

(LAB). In particular, lactic acid, produced by the microbial fermentation of 

carbohydrates, is responsible for the fresh acidic flavour of unripened cheeses and is 

important in coagulation of milk casein. 

During ripening, very complex biological, biochemical, and chemical processes are 

determined and directed by the microflora cheese curd, which are responsible of the 

organoleptic qualities of the end product. In fact, while the basic composition and 

structure of cheese are determined by the curd-producing operations, it is during 

ripening that the individuality and unique characteristics of each cheese variety 

develop. In this phase, starter LAB play essential roles by producing volatile flavor 

compounds, by releasing proteolytic and lipolytic enzymes, and by producing 

natural antibiotic substances that suppress growth of pathogens and other spoilage 

microorganisms. Although it is generally accepted that the cheese starter flora is 

the primary defining influence on flavour development, the contribution of 

non-starter lactic acid bacteria (NSLAB), coming from raw milk, is also considered 

significant, although not been well understood yet (El Soda M.A., 1993). 

Even though the importance of the biodiversity of indigenous milk microflora in 

the manufacturing of high-value traditional cheeses has been widely accepted (De 

Angelis M. et al., 2001; Pisano M.B. et al., 2007), the great majority of 

industrialised processes rely on the addition of selected commercial LAB cultures of 

generic composition to the milk, before coagulation, in order to accelerate cheese 

ripening, inhibit the development of harmful microflora, reach the desired acidity 
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and, therefore, to achieve high degree of control over the fermentation process and 

a standardisation of the final product. Unfortunately, the use of commercial starters, 

in addition to or in substitution of the indigenous microflora, has also some 

disadvantages in cheesemaking. Primarily, since the biodiversity of commercial 

starters is limited, their use often leads to a loss of the uniqueness of the original 

product as well as a loss of some characteristics that have made the product 

popular.  

Fiore Sardo is a typical Italian hard cheese, produced exclusively in the island of 

Sardinia according to ancient techniques. It is a “Protected Designation of Origin” 

(PDO) cheese, traditionally made from raw ewes’ milk without the addition of 

starter cultures. Thus, the maturation is solely due to the actions of the indigenous 

microbial flora present in the milk and in the dairy environment. Fiore Sardo has 

been initially produced only at farm level, but its increasing popularity in the 

national and international market and the innovations in cheese-making technology 

have recently favoured its manufacture also in industrial plants, complying the 

manufacturing traditional method reported on the Fiore Sardo specification. 

Recently, the majority of the Fiore Sardo cheese producers have improved and 

optimized several technological phases and, according to the EU Hygiene Directive 

853/2004, the overall hygienic quality of milk. According to this Directive, Fiore 

Sardo should be produced from ewe’s raw milk containing poor microbial content, 

not sufficient to carry out a suitable acidification and a proper ripening process. As a 

consequence, a constant guarantee of the organoleptic and sensory features of Fiore 

Sardo cheese is currently lacking. To this regard, some recent findings have showed 

that autochthonous LAB, used as starters or adjunct cultures, can improve, to some 

extent, the typical sensory characteristics of Fiore Sardo (Pisano M.B. et al., 2007), 

thus, suggesting their use in cheese making to achieve a better management of the 

process and maintain the Fiore Sardo ‘‘typicality’’, as previously showed for similar 

cheeses (Macedo A.C. et al., 2004). 

Among the 1H NMR-based metabolomic applications in food science reported in 

the literature, only few studies have been performed on cheeses (Consonni R. and 

Cagliani L.R., 2008; Brescia M.A. et al., 2005; Rodrigues D. et al., 2011). In 

particular, Consonni and Cagliani (2008) investigated the water-soluble metabolite 

content of Parmigiano Reggiano cheese in terms both of ripening and geographical 
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origin, while Brescia et al. (2005) focused on the characterisation of the 

geographical origin of buffalo milk and mozzarella cheese. More recently, 

Rodrigues et al. (2011) have analysed the metabolic profiles of potential probiotic or 

symbiotic cheeses, made with pasteurised milk, in relation to the probiotic strain, 

type of cheese, and ripening time.  

The main difficulties in establishing a definitive role for microflora in cheese 

quality are linked to the complex and dynamic nature of this system, leaving 

knowledge gaps on the interactions between microflora, flavour, and cheese 

maturation. The aim of the present wok was to perform a NMR-based metabolomic 

investigation to evaluate the influence of adjunct autochthonous strains on the 

metabolome of Fiore Sardo during ripening. In particular, the fermentative 

performance of these strains was evaluated by a complementary analysis of the 

metabolic profile of cheese and its microbiological characteristics. The effect of 

these wild strains was compared to that of commercial starters. Our results provide 

new insights on the potentiality of NMR-based metabolomics for the study of 

fermentation processes in dairy food matrices produced with raw milk. To the best 

of our knowledge, there are no 1H NMR-based metabolomic investigations on raw 

milk cheeses in the literature.  

 

 

4.2 MATERIAL AND METHODS 

4.2.1 Chemicals 

All solvents used, of the highest available purity, were purchased from Merck 

(Darmstadt, Germany). Deuterium oxide (D2O, 99.9%) and sodium 3-trimethylsilyl-

propionate-2,2,3,3,-d4 (TSP, 98 atom % D) were acquired from Sigma-Aldrich 

(Milan, Italy). 

 

4.2.2 Bacterial strains  

Four different strain combinations were used for Fiore Sardo cheesemaking 

(Table 4.1). Combinations A1, A2, and A3 contained autochthonous strains, 

belonging to the Culture Collection of the Department of Public Health, Clinical 

and Molecular Medicine, University of Cagliari. The LAB strains of the two species 
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used in combination A2 were previously isolated from Fiore Sardo cheeses (Pisano 

et al., 2006). The other strains were isolated from raw ewes’ milk used in the 

industrial plant for cheeses-making. The A3 combination included the same strains 

present in A1 with the exception of the Lactobacillus strain. All of these strains 

were identified by physiological and biochemical properties and by species-specific 

PCR, and selected on the basis of acidifying, proteolytic, lipolytic and antagonistic 

activity against food-borne pathogens and spoilage bacteria (data unpublished). 

Combination CC contained commercial LAB starter cultures. 

 

Table 4.1 Experimental cheeses and adjunct cultures used in the 
manufacturing of Fiore Sardo cheese 
 

Batches Bacterial Species (strain code) 

CC Commercial LAB starter cultures (MO536)a 

A1 

Lactococcus lactis subsp. lactis (3M17LS6) 

Enterococcus  faecium (1KFLS6)  

Lactobacillus  paracasei (62LP39) 

A2 

Lactococcus lactis subsp. lactis (1FS17b) 

Lactococcus lactis subsp. lactis (1FS171m) 

Lactobacillus plantarum (7FS171m) 

A3 
Lactococcus lactis subsp. lactis (3M17LS6) 

Enterococcus  faecium (1KFLS6) 

a The commercial LAB consists of Lactococcus lactis subsp. lactis and 
Lactococcus lactis subsp. cremoris 

 

 

4.2.3 Cultures preparation 

After cultivation in appropriate medium (MRS, Oxoid, Basingstoke, UK for 

lactobacilli and M17, Oxoid, for cocci) for two consecutive transfers, the strains 

were checked for purity and inoculated (0.1 %) in MRS or M17 broth at 30 °C for 

16 h. Each culture was centrifuged at 5000  g at 4 °C for 20 min. Pellets were 

washed twice in phosphate-buffered saline (PBS; 137 mm NaCl, 2.7 mm KCl, 4.3 

mm Na2HPO4, 1.4 mm K2HPO4; pH 7.3), and resuspended in pasteurised ewe’milk 

at a cell density of approximately 9 log cfu/ml. This cell suspension was used to 

inoculate cheese milk.  
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4.2.4 Manufacture of Fiore Sardo cheese  

Four cheese groups were manufactured according to the technical disciplinary of 

Fiore Sardo cheese in an industrial plant (Argiolas Formaggi, Dolianova, Cagliari, 

Italy) (Figure 4.1): one type of cheese was made with the addition of commercial 

lactic cultures (CC), while three types of cheeses were prepared using the three 

different combinations of adjunct cultures (A1, A2 and A3), as reported in Table 4.1. 

 

Raw ewes’ milk

(200 litres)

Heating of milk to 37°C

Addition of lamb rennet paste 

Coagulation of milk after 20 min

Cutting of coagulum and hand pressing of the curd

Salting by immersion in brine for ca. 16 h 

Storage for 3 weeks at 12 °C and 80% relative humidity

The cheeses transferred to a ripening chamber and stored 3 months at 8°C and 90% humidity

Ripening at 8”C and 90% humidity  up to 90 days

Addition of  LAB coltures

Raw ewes’ milk

(200 litres)

Heating of milk to 37°C

Addition of lamb rennet paste 

Coagulation of milk after 20 min

Cutting of coagulum and hand pressing of the curd

Salting by immersion in brine for ca. 16 h 

Storage for 3 weeks at 12 °C and 80% relative humidity

The cheeses transferred to a ripening chamber and stored 3 months at 8°C and 90% humidity

Ripening at 8”C and 90% humidity  up to 90 days

Addition of  LAB coltures

 

Figure 4.1 Schematic overview of the production of Fiore Sardo 

 

A total of four cheese-making trials were performed. In each trial, two cheese 

batches were simultaneously produced from two vats of the same bulk raw ewes’ 

milk for a total of eight cheeses batches The distribution of cheeses in 

cheeses-making was randomised. 

Mean composition of raw ovine milk used for cheese-making was 6.43% fat, 5.58% 

protein, 4% lactose and pH 6.7. Milk in each vat (200 L) was heated to 37 °C and 

commercial  or autochthonous adjunct cultures, grown for 18 h at 30 °C in 2 L of 
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pasteurized ewe’s milk, were inoculated. After 20 min, liquid lamb rennet was added 

to milk and coagulation took place within 30 min. The curds were cut and kept in 

stock for about 2 min. Then, the curd pieces were thinly cut into small pieces (the 

size of a rice grain) that were hand pressed into moulds. After brine salting for 16 h 

(23 Bé, 230 g NaCl/L), the cheeses were stored for 3 weeks at 12 °C and 80% 

relative humidity. The cheeses were then transferred to a ripening chamber and 

stored 3 months at 8°C and 90% humidity. From each batch, samples at 2, 6, 15, 28, 

and 90 days of ripening were taken and transported to the laboratory under 

refrigeration.  

 

4.2.5 Chemical Analysis 

Milk samples were analysed for total solids (TS) (IDF 1987), fat (IDF 1996) and 

protein (IDF 1985). In cheese samples, TS (IDF 1982), moisture (calculated as 100-

TS), NaCl (IDF 1988), fat (IDF 1986), total nitrogen (TN) (IDF 1964) and protein 

(calculated as TN × 6.38) were determined. The pH was measured with a HI8520 

pH meter (Pool Bioanalysis Italiana, Milan, Italy) on milk and cheese samples (10 g 

aliquots) taken from at least three different places in the cheese block. 

 

4.2.6 Microbiological and statistical analyses 

Ten millilitres of milk or ten grams of cheese were transferred to a sterile tube 

containing 90 ml of 2% (w/v) sodium-citrate solution. Cheese samples were 

homogenized in a Stomacher Lab Blender (Pool Bioanalysis Italiana) for two 

minutes at normal speed. Decimal dilutions were prepared in sterile solution of 

0.1% (w/v) peptone and plated in triplicate on specific media to enumerate 

microbial groups.  

Total mesophilic aerobic flora was enumerated on Plate Count agar (PCA, 

Microbiol, Cagliari, Italy), using the pour plate method. The plates were incubated 

at 30 °C for 48–72 h.  

Enterobacteriaceae and Escherichia coli were determined on Violet Red Bile 

Glucose agar (VRBGA, Microbiol) and Triptone Bile X-gluc agar (TBX, 

Microbiol), respectively, using the pour plate method. VRBG and TBX plates were 

covered with a layer of the same culture medium before incubation at 37 °C and 44 

°C for 24 h, respectively.  
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Enterococci were isolated by surface plating on KF-Streptococcus agar (Oxoid, 

Basingstoke, UK) supplemented with 1% TTC, incubated for 48 h at 42 °C.  

Lactic acid bacteria were counted on de Man, Rogosa Sharpe Agar (MRS, pH 5.4; 

Oxoid) and on M17 (Microbiol) incubated at 30 °C for 72 h, under microaerophilic 

and aerobic conditions, respectively.  

Microbial counts were calculated as number of colony forming units (cfu) per 

gram or ml of sample and reported as log10 cfu/g or ml. Calculations of Standard 

Error were also performed. One-way ANOVA was performed on data obtained 

analyses for each sampling date during ripening considering one main effect, 

adjunct cultures type. Tukey test for multiple comparisons was used to separate 

treatment means. All statistics were performed using GraphPad Prism Statistics 

software package version 3.00 (GraphPad Prism Software Inc., San Diego, CA, 

USA). Statistical significance was inferred at P < 0.05. 

 

4.2.7 Low molecular weight metabolite extraction 

At each ripening time, a slice of cheese (ca 130 mg) was freeze-dried, after 

removal of 1 cm of crust around, and then pulverized in a ceramic mortar, before 

carrying out a methanol-chloroform-water extraction, according to the procedure 

previously described by Folch J. at al. (1957). Each extraction was performed in 

triplicate. This setup yielded a total of 120 samples for each of which a high 

resolution 1H NMR spectrum was recorded.  

Height portions (each portion ca 0.2 g) were dissolved in 12 mL of a mixture 

chloroform-methanol (2:1, vol/vol). Samples were kept 1 hour in darkness. After 

the addition of 4 ml of H2O in each tube and centrifugation at 1000 rpm for 20 min 

at 4°C, the CHCl3 fraction was separated from the MeOH/H2O mixture, containing 

the water-soluble low-molecular-weight components. The water/methanol phase 

was dried and the residue was redissolved in 1 mL of D2O. An aliquot of 600 L 

was placed into a 5 mm NMR tube, adding 50 L of TSP in D2O solution (0.80 mM 

final concentration). 
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4.2.8 1H NMR Spectroscopy 

1H NMR experiments were carried out at 298 K on a Varian UNITY INOVA 

400 spectrometer operating at 399.95 MHz. For each sample, 252 scans were 

recorded at 298 K with the following parameters: spectral width of 5623 Hz, a 90° 

pulse of 6.8 s, acquisition time of 3s, and relaxation delay of 3s. The residual water 

signal was suppressed by applying a presaturation technique with low power 

radiofrequency irradiation for 1.5 s. The FIDs were multiplied by an exponential 

weighting function equivalent to line broadening of 0.3 Hz prior to Fourier 

transformation. 1H NMR chemical shifts were referenced to TSP at   0.0 ppm. 

 

4.2.9 NMR Data Pre-processing 

The NMR spectra were phased and automatically baseline corrected by ACDlab 

(Advanced Chemistry Development, V. 12.01 2010). The same software was used to 

export data in ASCII format. The chemical shift region between 4.50 and 4.98 ppm 

(corresponding to the water resonance) was removed prior to statistical analysis in 

order to eliminate any spurious effect of variability in the suppression of water. The 

chemical shift region between -0.5 and 0.5 ppm, corresponding to the TSP 

resonance, was also removed. In this manner, spectral data points were reduced to 

18945 points and, then, a spectral dataset with the dimensions 120x18945 was 

constructed for subsequent multivariate data analysis.  

The spectral data were imported into MATLAB (R2006a; Mathworks, Inc., 

Natick, MA). Since several shifts in peak positions were observed, especially for 

those metabolites hardly dependent on pH variations, spectra were aligned using an 

in-house modified version of Correlation Optimised Shifting (Coshift) able to 

perform the Co-shift in localised regions of the spectrum (Savorani F. et al., 2010). 

Then, spectral data set was normalized, to avoid dilution effects of samples, and the 

data matrices was pareto-scaled by SIMCA-P+ version 12.0 (Umetrics, Sweden). 

The quality of the models was described by R2 and Q2 values. R2 is defined as the 

proportion of variance in the data explained by the models and indicates goodness 

of fit. Q2 is defined as the proportion of variance in the data predictable by the model 

and indicates predictability.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 Cheeses compositional and microbiological characteristics 

The main physicochemical characteristics of experimental Fiore Sardo cheeses 

during ripening are shown in Table 4.2. A clear indication of a dynamic metabolic 

activity of strains in all cheeses is provided by the decrease in pH throughout 

ripening. The pH values in 2-days-old cheeses ranged from 5.03 to 5.15, similarly to 

that found for Fiore Sardo and other raw milk cheeses with longer ripening times 

(Macedo A.C. et al., 1995; Macedo A.C. et al., 2004; Pisano M.B. et al., 2006; Pisano 

M.B. et al., 2007).  In particular, the pH value of A3 cheese was slightly higher 

(P>0.05), than those of cheeses made with A1, A2, and CC combinations while no 

significant differences were observed among these three types of cheeses (P<0.05). 

The pH profile followed a similar trend in all batches, decreasing between 2 and 

15-day-ripening and, then, slightly increasing. At the end of ripening, CC and A3 

cheeses exhibited pH values higher than those in A1 and A2 cheeses. This result 

may be related to the inclusion of lattobacilli strains (i.e. NSLAB) in the A1 and A2 

combinations. Indeed, as well documented in the literature (Fox P.F. et al., 1993), 

while LAB growth during the early stage of ripening, NSLAB survives for longer 

periods, forming lactic acid by fermentation of the residual lactose.  

Water activity increased during the first week of ripening, achieving values 

around 0.85-0.90, and, then decreased throughout ripening with no significant 

(P<0.05) differences among cheeses elaborated with different cultures. Humidity 

decreased during ripening in all batches. There were no statistical differences in the 

percentage of fat, protein, and NaCl among all types of cheeses and thought the 

ripening time. 

The evolution of different microbial counts throughout ripening of Fiore Sardo 

is reported in Tables 4.3. Previous works on this cheese have revealed that its 

indigenous microflora is mainly constituted by homofermentative cocci and 

facultative heterofermentative lactobacilli3: Lc. lactis subsp. lactis and E. faecium  

                                                           
3
Homofermentative LAB ferment glucose to lactic acid as the primary by-product; heterofermentative 

LAB ferment glucose to lactic acid, ethanol, acetic acid and carbon dioxide as by-products. 
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Table 4.2 Mean physicochemical characteristics* of Fiore Sardo cheeses during ripening  

 
Parameters Cheese  Days of ripening 

  2 6 15 30 90 

pH 

CC 5.03±0.02 4.92±0.04 4.41±0.37 4.93±0.12 5.07±0.08 

A1 5.09±0.01 4.99± 0.06 4.81±0.04 4.87±0.01 4.89±0.02 

A2 5.09±0.00 4.89 ±0.07 4.75±0.02 4.78±0.08 4.89±0.02 

A3 5.15±0.05 5.12 ±0.08 4.95±0.16 5.10±0.13 5.20±0.08 

aw 

CC 0.81±0.01 0.85±0.06 0.81±0.05 0.82±0.06 0.72±0.05 

A1 0.84±0.02 0.85±0.05 0.82±0.05 0.81±0.05 0.71±0.01 

A2 0.87±0.01 0.90±0.01 0.88±0.03 0.88±0.02 0.76±0.02 

A3 0.85±0.05 0.84±0.03 0.82±0.06 0.80±0.06 0.71±0.03 

Moisture (%) 

CC 46.01±0.66 45.24±0.42 43.72±0.62 42.13±0.09 40.54±0.58 

A1 46.41±0.48 43.48±0.6 44.45±0.83 43.10±1.44 42.07±0.04 

A2 46.50±1.4 46.10±1.05 45.14±1.54 43.34±0.62 42.41±0.93 

A3 44.18±1.9 42.99±1.4 42.18±0.95 41.20±1.2 40.91±0.33 

Fat (%) 

CC 26.59±0.20 26.58±0.14 27.08±0.16 28.08±0.43 28.72±0.20 

A1 26.33±0.31 26.61±1.26 27.12±0.56 27.44±0.81 28.06±0.17 

A2 26.49±0.8 25.88±0.68 26.23±1.16 27.03±0.47 27.54±0.69 

A3 28.01±0.92 27.89±0.77 28.00±0.5 28.34±0.26 28.68±0.12 

FDM (%) 

CC 49.24±0.22 48.53±0.11 48.11±0.23 48.69±0.67 48.74±0.58 

A1 49.12±0.14 48.35±0.45 48.82±0.27 48. 22±0.2 48. 43±0.33 

A2 49.31±0.40 48. 01±0.32 47.79±0.78 47.72±0.33 47.82±0.43 

A3 50.18±0.08 48.91±0.12 48.42±0.06 48.20±0.54 48.52±0.06 

Protein (%) 

CC 22.93±0.39 22.94±0.38 23.26±0.44 23.94±0.14 24.48±0.3 

A1 22.73±0.27 22.76±1.06 23.01±0.6 23.45±0.77 23.94±0.05 

A2 22.97±0.39 22.23±0.39 22.54±0.73 23.08±0.2 23.62±0.52 

A3 24.17±1.4 24.09±1.32 24.25±1.21 24.81±1.2 24.65±0.02 

Salt (%) 

CC 0.80±0.02 1.35±0.06 1.64±0.00 1.87±0.12 2.17±0.08 

A1 0.79±0.01 1.33±0.04 1.48±0.07 1.79±0.05 2.11±0.12 

A2 0.77±0.03 1.26±0.13 1.59±0.07 1.78±0.04 2.01±0.13 

A3 0.79±0.06 1.35±0.09 1.57±0.16 1.63±0.17 2.25 ±0.07 

*Values are the mean  standard error of two independent experiments 
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Table 4.3 Counts* of the main microbial groups, expressed as log10 cfu·g-1 or ml-1, in Fiore Sardo cheese 
during ripening 

 

Microbial 

groups 

Cheese Days of ripening 

  2 6 15 30 90 

Aerobic  

mesophiles 

CC 8.44±0.74 9.55± 0.15 9.43± 0.07 9.53± 0.03 7.80 ±0.20 

A1 9.02±0.52 10.59±0.11 10.60± 0.09 10.54±0.06 8.60±0.03 

A2 9.51±0.95 9.93± 0.68 10.80± 0.01 10.15±0.49 8.39±0.31 

A3 8.23±0.15 9.64± 0.08 9.60 ±0.15 9.50±0.38 7.90±0.30 

Lactococci 

CC 8.59±0.59a 9.63± 0.15 9.62±0.08 8.51±0.33 6.78±0.06 

A1 8.71±0.83 9.78± 0.18 9.65±0.35 8.96±0.04 7.05±0.35 

A2 9.53±0.06 9.27± 0.31 9.75±0.06 8.61±0.03 6.56±0.32 

A3 9.53±0.06 9.27±  0.31 9.75±0.06 8.61±0.03 6.30±0.32 

Enterococci 

CC 6.09±0.04 5.92± 0.12 5.94±0.34 6.25±0.19 5.30±0.09 

A1 7.14±0.56 7.82± 0.34 8.03±0.61 8.52±0.25 6.57±0.03 

A2 6.54±0.05 6.39± 0.42 6.74±0.06 6.60±0.08 5.52±0.04 

A3 6.65±0.22 7.44± 0.21 7.64±0.05 6.79±0.16 6.15±0.15 

Enterobacteriaceae 

CC 6.82±0.82 6.24± 0.04 5.66±0.18 5.92±0.52 < 2 

A1 6.09±1,09 5.90± 0.00 5.15±0.15 3.50±0.50 < 2 

A2 6.82±0.06 6.30±  0.04 6.49±0.29 4.39±0.61 <2 

A3 6.28±0.06 5.37± 0.39 5.51±0.23 3.92±0.62 <2 

E. coli 

CC 6.20±0.20 5.20± 0.84 4.50±0.80 3.66±0.33 < 2 

A1 5.20±0.20 4.35± 1.35 3.30±0.70 2.50±0.50 < 2 

A2 5.30 ±0.20 5.17±  0.07 3.78±0.70 3.02±0.15 <2 

A3 4.23±0.71 3.31± 0.14 2.99±0.79 2.77±0.77 <2 

Lactobacilli 

CC 5.30±0.20 7.72± 0.31 7.96±0.15 8.34±0.34 6.46±0.66 

A1 7.28±0.02 9.79± 0.15 9.07±0.44 9.25±0.32 8.89±0.30 

A2 6.98±0.42 9.77± 0.34 8.37±0.33 9.17±0.09 8.99±0.14 

A3 6.66±0.09 7.70± 0.31 7.20±0.09 7.39±0.19 6.39±0.39 

*Values are the mean  standard error of two independent experiments 
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among cocci, Lb. paracasei subsp. paracasei and Lb. plantarum among lactobacilli 

were the predominant species isolated during ripening (Mannu L. et al., 2000; 

Pisano M.B. et al., 2006). The data in Table 4.3 show that aerobic mesophiles 

increased in all four cheese batches up to 30 days of aging and, then, declined. A1 

and A2 cheeses exhibited the highest values. This result can be reasonably linked to 

the composition of the added strain combination, A1 and A2 including more 

bacterial specie compared to A3 and CC. 

No marked differences were observed among the lactococci counts of cheeses, 

although their develop slightly differently during ripening: the maximum count in 

cheeses made with A2 and A3 combinations was obtained at the second week of 

ripening, while between the first and the second week in CC and A1 chesses. In all 

batches, the increase in lactococci count paralleled the drop in pH values. This 

behaviour is logical, if one take into consideration that lactococci are the main 

producers of lactic acid. The decrease of lactococci count in the later stages of 

ripening may be explained by inhibitor effects determined by the low pH and aw 

values, and high NaCl concentrations. A further contribution may arise from the 

scarce capacity of lactococci to compete with other more acid-resistant microbial 

populations such as lactobacilli (Dasen A. et al., 2003). The progressive 

disappearance of the lactococci during the period of ripening has been observed also 

in other types of cheeses (Rodriguez Medina M.L. et al., 1995; Garcia Fontan M.C. 

et al., 2001).  

Numbers of enterococci were similar to those observed in other cheese varieties 

from raw milk (Medina M. et al., 1992; Suzzi G. et al., 2000, Psoni L. et al., 2003). 

The presence of enterococci in high numbers is a common trait, not only in the case 

of raw milk cheese, but for other cheeses as well, like Manchego (Ordonez J.A. et al., 

1978), Mozzarella (Coppola S. et al., 1988), Kefalotyri (Litopoulou-Tzanetaki E. et 

al., 1990), and Serra (Macedo A.C. et al., 1995). Whether their presence in matured 

cheeses contributes to the development of good and acceptable flavour or not is still 

debated. Indeed, on one hand, high levels of enterococci are considered to lead to 

deterioration of some organoleptic characteristics in certain cheeses (Thompson 

T.L. and Marth E.H., 1986; Lopez-Diaz T.M. et al., 1995), while, on the other hand, 

many reports pinpoint the desirable role that enterococci have in cheese production 

and quality (Centeno J.A. et al., 1996; Centeno J.A. et al., 1999). In the experimental 
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cheeses under investigation, the evolution that chemical and physico-chemical 

parameters undergo with ripening does not create unfavourable conditions to the 

growth of enterococci, their counts keeping relatively high during ripening. When 

Enterococccus strains were employed as a co-inoculum in experimental cheeses (i.e. in 

A1 and A3 combinations), higher mean counts were detected, especially in the 

middle stages of ripening.  

The numbers of microorganisms indicative of the hygienic level, 

Enterobacteriaceae and coliforms, were relatively high at the beginning of ripening of 

all cheeses; this contamination, usual for raw milk cheeses (Hatzikamari M. et al., 

1999; Macedo A.C. et al., 1995; Nikolaou E. et al., 2002; Zarate V. et al., 1997), may 

arises from raw milk during milking, unrefrigerated storage and transportation, 

and, possibly, from manufacturing. High levels of Enterobacteriaceae in raw milk 

cheeses are of great concern for the dairy industry because of their technological 

and public health significance. In all batches under investigation, ripening had a 

positive influence on the numbers of Enterobacteriaceae and coliforms, both decreasing 

up to undetectable levels on day 90. Various factors may contribute to this decline, 

including a significant increase in the concentration of NaCl (Zarate V. et al., 1997) 

and the inhibition of these bacteria by lactic acid bacteria (Nũnez M. et al., 1985), 

basically by causing a decrease in the pH and an increase in lactic acid concentration 

(Zarate V. et al., 1997). In particular, it is known that Enterobacteriaceae require 

values of pH inferior to 5.0–5.20 for inhibition (Medina M. et al., 1991). Since pH 

values below this range were recorded under our experimental conditions, it is 

likely that pH is an important agent regulating the survival of Enterobacteriaceae and 

coliforms in Fiore Sardo cheese. 

Lactobacilli, which usually dominate the NSLAB microflora (Fox P.F. et al., 

1993), increased significantly their numbers until day 30 of ripening. Some species 

of lactobacilli resist high salt concentrations and pH (Desmazeaud M. and Piard 

J.C., 1992) and this explains their ability to grow in cheese compare to lactococci. 

Their growth was more pronounced in A1 and A2 cheeses, likely due to the 

contribution of lactobacilli used as co-inoculum in cheesemaking. Lactobacilli 

decreased significantly in 3-month-old CC and A3 cheeses, while their count kept 

almost constant in A1 and A2 cheeses.  
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4.3.2 1H NMR spectra of aqueous extract of Fiore Sardo 

Figure 4.3 displays representative NMR spectra of the aqueous extract of Fiore 

Sardo at 2, 15, and 90 days of ripening. The identification of 1H NMR signals was 

performed using the Human Metabolome Database (HMD) (www.hmdb.ca), 

Biological Magnetic Resonance Data Bank (BMRB) (www.bmrb.wisc.edu), and 

previous literature data (Brescia M.A. et al., 2005: Consonni R. et al., 2008; 

Gianferri R. et al., 2007). Some minor signals or overlapped resonances were 

assigned by performing 2D conventional NMR experiments (COSY and TOCSY). 

In some cases, validation of the peak attribution was achieved by spiking with pure 

standard compounds. This allowed the identification of metabolites belonging to 

the categories of carbohydrates, organic acids, amino acids, and phenolic 

compounds. Chemical shifts are summarized in Table 4.4. 

 

 

 

Figure 4.3 1H-NMR spectra for Fiore Sardo cheese aqueous extract at (a) 2, (b) 15, and (c) 90 days 
of ripening. 

 

http://www.hmdb.ca/
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As expected, the most predominant signals in the NMR spectra of all cheese 

extracts belonged to lactic acid (1.36 and 4.23 ppm), the main product from the 

metabolism of lactose. Besides, citric acid was recognized by its characteristic 

signals at 2.70 and 2.80 ppm, while acetic, succinic, formic, and pyruvic acid were 

identified by their unique singlets at 2.06, 2.63, 8.44, and 2.37 ppm, respectively. 

The sugar region (3.5-5.5 ppm) showed signals of the anomeric protons of 

-glucose (5.22 ppm), β-glucose (4.65 ppm), -galattose (5.25 ppm), and -galattose 

(4.58 ppm). In addition, a multiplet a 5.02 ppm was observed at increasing ripening 

times and assigned to unidentified oligosaccharides.  

Signals detected in the high-field region of the spectra (0.5-3.5 ppm) arose mainly 

from aliphatic amino acids. Only signals from alanine, valine, leucine, and isoleucine 

were clearly identified. Indeed, several barely resolved multiplets fall in this 

spectrum zone, making the signal assignments difficult. To this purpose, the use of 

2D NMR experiments has been very useful. For instance, glutamic acid and 

glutamine give weak overlapped signals in the 2.05-2.15 ppm zone, which were 

separated in the second dimension of the TOCSY experiment. Partially overlapped 

signals of aspartic acid (2.73 and 2.834 ppm) and asparagine (2.88 and 2.96 ppm) 

were assigned on the basis of the TOCSY correlations with the  hydrogens 

centered at 3.893 and 4.01 ppm, respectively (Figure 4.4).  

 

ppm

ppm

ppm

ppm

 

 
Figure 4.4 Expansion of the 2D TOCSY spectrum of Fiore Sardo 
aqueous extract at 90 days of ripening. 
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Choline (Cho) and phosphorylcholine (P-Cho) were identified in the spectra. 

The –N(CH3)3 group of these two compounds originates two singlets resonating at 

3.19 and 3.22 ppm for Cho and P-Cho, respectively. Part of the presence of these 

compounds in cheese extracts may be ascribed to hydrolytic actions on the 

phosphatidylcholine’s family by lypolisis during ripening. 

Furthermore, signals from short-chain free fatty acids were also observed, such 

as 3-hydroxyburyrate (Figure 4.5). The presence of these compounds in the 

aqueous extract of cheese is mainly related to the intensity of bacterial fermentation 

that took place during ripening.  

 

 

Figure 4.5 2D TOCSY expansion of Fiore Sardo aqueous extract, 
showing the cross-peak of 3-hydroxyburyrate 

 

 

The weakest signals of the NMR spectra resonated within the low-field region 

(5.5–8.5 ppm) and belonged mainly to aromatic groups of amino acids. The 

aromatic protons of histidine, phenylalanine, and tryptophan were identified. 

Moreover, the nucleobases uracyl was also detected. The doublet at 7.18 ppm 

(J=8.1 Hz), which is coupled to another doublet at 6.89 ppm (J=8.1 Hz) in COSY 

and TOCSY spectra, was attributed to tyrosine. At 90 days of ripening, an other 

doublet appeared at 7.22 ppm (J=8.1 Hz) that was assigned to tyramine according 
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to the COSY correlation of this peak with the doublet at 6.90 ppm (J=8.1 Hz) 

(Figure 4.6).  

tyr

tyr
tym tym

tyr

tyr
tym tym

 

Figure 4.6 Expansion of the 1H-NMR spectrum of Fiore Sardo aqueous extract. Signal 
assignments relative to tyrosine (tyr) and tyramine (tym) are reported. 

 

 
 

Tyramine is a biogenic amine (BA), often produced by decarboxylation of 

tyrosine in food and vegetable during fermentation. The accumulation of BA in 

cheese is quite common throughout the ripening period and arises mainly from the 

enzymatic decarboxylation of amino acids by microorganisms (Joosten H. et al., 

1987; Pinho O. et al., 2001), belonging largely to NSLAB (lactobacilli, pediococci, 

and enterococci) and to Enterobacteriaceae (Figure 4.7). In particular, 

Enterobacteriaceae are able to decarboxylate lysine to produce cadaverine, certain 

lactobacilli show also high histidine decarboxylase activity, while the most relevant 

decarboxylase activity from enterococci isolated from dairy products concerned 

tyrosine (Joosten H. et al., 1989). Besides tyramine, also histamine was detected in 

cheeses at 90 days of ripening. 

 

 

 
Figure 4.7 Synthesis of biogenic amine 
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Table 4.4 Summary of the metabolites identified in the 400 MHz 1H spectrum of the aqueous 
extract of Fiore Sardo 

 

Carbohydrates 

Compound Group 1H (ppm)a 1H Multiplicityb Correlations 

Galactose 

(-Gal) 

C1H 5.25 d 3.76 (C) 

C2H 3.76 dd 5.25, 3.71 (C) 

C3H 3.71 m 3.76 (C) 

Galactose 

(-Gal) 

C1H 4.58 d 3.51 (C) 

C2H 3.51 dd 4.58, 3.67 (C) 

C3H 3.67 m 3.51 (C) 

Glucose 

(-Glc) 

C1H 5.22 d 3.55 (C) 

C2H 3.55 dd 5.22 (C) 

C3H 3.71 t // 

C4H 3.40 t // 

C5H 3.87 m 3.82 (C) 

C6H 3.82 dd 3.87(C) 

Glucose 

(-Glc) 

C1H 4.65 d 3.27 (C) 

C2H 3.27 dd 4.65, 3.65 (C) 

C3H 3.65 t 3.27 (C) 

C4H 3.38 t 3.44 (C) 

C5H 3.44 m 3.38 (C) 

 

Organic acids 

 
 

 
Compound Group 1H (ppm)a 1H Multiplicityb Correlations 

Acetic acid (Ace) CH3 2.06 s // 

Citric acid (Cit) 2,4CH 2.80 dd 2.71, 2.86 (C) 

Formic acid 

(Form) 
HCOO- 8.44/8.35 s // 

Lattic acid (Lac) 

CH3 1.36 d 4.23 (C) 

CH 4.23 q 1.36(C) 

Pyruvate (Pyr) CH3 2.377 s // 



 

 

67 

 

Table 5.4 (Continued) 

Biogenic amines 

Compound Group 1H (ppm)a 1H Multiplicityb Correlations 

Histamine (Hys) 

C7H, ring 7.34 s // 

C5H, ring 7.42 s // 

Tyramine (Tym) 

C1H 2.76 dd 2.61 (C) 

C2H 2.61 dd 2.76 (C) 

C3,4H, ring 6.69 d 7.20 (C)  

C5,6H, ring 7.20 d 6.69 (C) 

 

Other Compunds 

Compound Group 1H (ppm)a 1H Multiplicityb Correlations 

Ethanol (Et) 
C1H 1.14 t 3.65 (C) 

C2H 3.65 q 1.14 (C) 

Hypoxanthine (Hyp) 
CH-2 8.22 s // 

CH-8 8.18 s // 

Uracil (Ura) 
C5H, ring 5.78 d 7.53 (C) 

C6H, ring 7.53 d 5.79 (C) 

Choline (Cho) 

N-(CH3)3
+ 3.19 s // 

N-CH2 4.05 m 3.52 (C) 

CH2 3.52 m 4.05 (C) 

4-aminobutyrate 

(GABA) 

CH2 2.35 t 1.92 (C) 

CH2 1.92 q 3.02, 2.35 (C) 

CH2 3.02 t 1.92 (C) 
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Table 4.4 (Continued) 

Amino acids 

Compound Group 1H (ppm)a 1H Multiplicityb Correlationc 

Alanine (Ala) 
CH 3.79 q 1.47 (C) 

CH3 1.47 d 3.79 (C) 

Arginine (Arg) 

CH 3.78 t 1.93 (C) 

CH2 1.93 m 3.78, 1.73 (C) 

CH2 1.73 m 1.93, 3.26 (C) 

CH2 3.26 t 1.73 (C) 

Aspartate (Asp) 

CH 3.93 dd 2.83 (C) 

CH2 2.73 dd 3.93 (C) 

’CH2 2.83 dd 3.93 (C) 

Asparagine (Asn) 

CH 4.01 dd 2.88, 2.96 (C) 

CH2 2.88 dd 4.01 (C) 

’CH2 2.96 dd 4.01 (C) 

Carnitine (Carn) 

CH 2.50 m 4.56(C) 

CH 4.56 m 2.50 , 3.47(C) 

CH 3.47 m 4.56 (C) 

N-(CH3) 3
+
 3.22 s // 

Creatine (Crt) 

N-CH3 3.03 s // 

N-CH2 3.93 s // 

Phosphocreatine  

N-CH3 3.05 s // 

N-CH2 3.98 s // 

Creatinine (Crn) 
N-CH3 3.12 s // 

N-CH2 4.07 s // 



 

 

69 

 

Table 4.4 (Continued) 

Compound Group 1H (ppm)a 1H Multiplicityb Correlationc 

Glycine (Gly) CH2 3.57 s // 

Glutamate (Glu) 

CH 3.76 dd 2.09 (C) 

CH2 2.09 m 2.34, 3.76 (C) 

CH2 2.34 m 2.09 (C) 

Glutamine (Gln) 

CH 
3.79 d 2.12 (C) 

CH2 2.12 m 2.45, 3.79 (C) 

CH2 2.45 m 2.12(C) 

Histidine (His) 

C2H, ring 8.66 s 7.39 (C) 

C4H, ring 7.39 s 8.66 (C) 

Isoleucine (Ile) 

CH 3.68 m 1.96 (C) 

CH 1.98 m 1.00, 1.22, 3.68 (C) 

CH 1.48 m 0.96, 1.22(C) 

'CH 1.22 m 0.96, 1.48, 1.98(C) 

'CH3 1.00 d 1.98 (C) 

CH3 
0.96 t 1.22, 1.48(C) 

Leucine (Leu) 

CH 3.72 t 1.72(C) 

CH2 1.72 m 3.72 (C) 

CH 1.77 m 0.94 (C) 

CH3,’CH3 0.94 d 1.77 (C) 
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Table 4.4 (Continued) 

Compound Group 1H (ppm)a 1H Multiplicityb Correlationc 

Lysine (Lys) 

CH 3.77 t 1.94(C) 

CH2 1.94 m 3.77 (C) 

CH2 1.45   m 1.73 (C),  

CH2 1.73 m 1.45, 3.02 (C) 

CH2 3.02 t 1.73 (C) 

Methionine (Met) 

CH 3.87 t 2.18 (C) 

CH2 2.18 m 2.65, 3.87 (C) 

CH2 2.65 t 2.18 (C) 

S-CH3 2.13 s // 

Phenylalanine 

(Phe) 

CH 4.01 dd 3.12, 3.26 (C) 

CH 3.26 dd 4.01 (C) 

’CH 3.12 dd 4.01 (C) 

C2,6H, ring 7.42 m // 

C3,5H, ring 7.40 m 7.32 (C) 

C4H, ring 7.32 m 7.42 (C) 

Proline (Pro) 

CH 4.15 t 2.03, 2.34 (C) 

CH 2.34 m 4.15 (C) 

’CH 2.03 m 4.15 (C) 

CH2 2.02 m 3.37, 3.42 (C) 

CH 3.37 t // 

’CH 3.42 t // 

Serine (Ser) 
CH 3.85 dd 3.95 (C) 

CH 3.95 dd 3.85 (C) 
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Table 4.4 (Continued) 

Compound Group 1H (ppm)a 1H Multiplicityb Correlationc 

Threonine (Thr) 

CH 3.58 d 4.18 (C) 

CH 4.18 m 1.35 (C) 

CH3 1.35 d 4.18 (C) 

Tryptophan (Trp) 

CH 4.07 dd // 

CH2 3.50 dd 4.07 (C) 

’CH2 3.28 dd // 

C2H, ring 7.31 s // 

C4H, ring 7.71 d 7.20 (C),  

C5H, ring 7.20 t 7.27, 7.71 (C) 

C6H, ring 7.27 t 7.20, 7.54 (C) 

C7H, ring 7.54 d 7.27 (C) 

Tyrosine (Tyr) 

CH 3.95 dd 3.04 (C) 

CH 3.22 dd 3.04(C) 

’CH 3.04 dd 3.22, 3.95 (C) 

C2,6H, ring  6.89 d 7.18 (C) 

C3,5H, ring 7.18 d 6.89 (C) 

Valine (Val) 

CH 3.62 d 2.27 (C) 

CH 2.27 m 0.99, 1.04, 3.62 (C) 

'CH3 1.04 d 0.99, 2.27 (C) 

CH3 0.99 d 1.04, 2.27 (C) 

a 1H chemical shifts re reported with respect to TSP signal (0.00 ppm).  
b Multiplicity definitions: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; m, 
multiplet.  
c Experiment legend: C, COSY; T, TOCSY.
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4.3.3 Impact of ripening on the metabolic profile of cheeses 

Two different sources of variation (i.e. strain species and ripening time) and 

their impact on the metabolic profile of cheese were considered in this study. 

Although the visual inspection of NMR spectra revealed some changes in the levels 

of metabolites either in term of added strain or ripening time, the analysis of the 

whole set of spectra was virtually impossible, thus, making obvious the need for 

multivariate statistical analysis to reduce the complexity of the pool of NMR data 

and provide a comparative interpretation of the metabolic changes. 

An explorative PCA analysis of the overall data set was firstly performed. 

Figure 4.8 shows the PCA score plot (PC1 vs PC2), accounting for ca. 70% of the 

total variance. On the upper side of the Figure, samples are labelled according to 

the combination of the added strains, while, on the bottom side, samples are 

coloured according to the fermentation time.   

 

 

 

Figure 4.8 PCA scores plot derived from the 1H NMR spectra of Fiore 
Sardo cheese aqueous extracts: (A) symbols indicate the added strain 
combinations: CC (triangle), A1 (cross), A2 (circle), and A3 (square); (B) 
colours indicates the ripening period: 2 (black), 6 (red), 15 (blue), 28 
(green), and 90 (violet) days . 

A 
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As it can be noted, a progressive change of the metabolic profile of cheeses 

occurs from the right to the left part of the plot as the ripening period increases, 

indicating continuous fermentation. Furthermore, it is interesting to note that, for 

each starter combination, a different behaviour is observed, fermentation being the 

fastest in CC cheeses, whereas the slowest in cheeses made with A1 combination.  

For the purpose of a comparative analysis of the metabolic changes over time, a 

temporal pairwise comparison PCA model was calculated for each combination of 

added cultures. Figures 4.9-4.12 show the results relative to the cheeses 

manufactured with CC, A1, A2, and A3 combinations, respectively. The statistics 

for differentiating cheeses during maturation showed high goodness of fit and 

predictability with R2 values ranging from 0.77 to 0.96 and Q2 values from 0.69 to 

0.92. Due to the high number of variables in the spectral dataset under 

investigation (i.e. 18945), the best way to identify the metabolites mainly affected 

during the course of ripening was provided by the analysis of the loading line plots 

(Figures 4.9-4.12 E-H): the upper section of the line plot represents metabolites 

that were higher in samples cluster on the positive side of PC1, whereas the lower 

section represents metabolites that were higher in samples cluster on the negative 

side of PC1. Comparison among the data indicates similar metabolic differentiations 

over time in all of the batches. For a clearer description of these modifications, the 

data discussion will carry on per molecular class.  

Carbohydrates. One of the most evident modifications during ripening is the 

consumption of carbohydrates. Indeed, as pointed out by the comparison among the 

middle field spectral regions, the amount of sugars were relatively high in the early 

stage of ripening compared to the later stage. This result is reasonable expectable, 

since the primary event in cheese manufacture is the complete and rapid metabolism 

of lactose and its constituent monosaccharides by LAB (Leroy F. et al., 2004; 

Marilley L. et al., 2004). This biochemical transformation is essential for the 

production of good quality cheese, since the presence of fermentable carbohydrates 

may lead to the development of an undesirable secondary flora (Fox P.F. et al., 

1990). In particular, the decrease of the carbohydrate level at the beginning of 

ripening is ascribable to their conversion into lactic acid via pyruvate by 

Homofermentative starter LAB. Pyruvate, in turn, can also lead to the generation
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Figure 4.9 PCA scores (A-D) and loadings (E-H) plots derived from the 1H NMR spectra of 
Fiore Sardo cheese manufactured with CC strain combination. 
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Figure 4.10 PCA scores (A-D) and loadings (E-H) plots derived from the 1H NMR spectra of 
Fiore Sardo cheese manufactured with A1 strain combination. 
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Figure 4.11 PCA scores (A-D) and loadings (E-H) plots derived from the 1H NMR spectra of 
Fiore Sardo cheese manufactured with A2 strain combination. 
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Figure 4.12 PCA scores (A-D) and loadings (E-H) plots derived from the 1H NMR spectra of 
Fiore Sardo cheese manufactured with A3 strain combination
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of other metabolites such as acetate, ethanol, diacetyl, and acetaldehyde (Cogan 

T.N. et al., 1993; Henriksen C.M. et al., 2001).  

Organic acids. Organic acids are the major products of carbohydrate 

catabolism of lactic acid bacteria (Gonzalez-de Llano D. et al., 1996). Furthermore, 

they are important secondary carbon sources for many microorganisms and are 

intermediates and metabolites of a variety of biochemical processes (Bevilacqua A.E. 

et al., 1992; Lues J.F.R., 2000). 

 In all the experimental cheeses under investigation, the level of lactic acid 

increased in the initial stage of ripening (from 2 to 6 days), and, then, decreased. 

Since Lac is the most abundant organic acid detected in cheeses, the changes in its 

content are reasonably responsible of the observed modification in pH (see Table 

4.2). In particular, the initial decrease of pH may be associated with the production 

of Lac from the lactose metabolism, while the following increase of pH can be 

related to the consumption of Lac by the nonstarter microbiota and/or by the 

indigenous cheese microbiota (Eliskases-Lechner F. et al., 1999; Bevilacqua A.E. et 

al., 1992). However, possible contributions to pH by the formation of basic 

compounds from proteolysis are not ruled out (Poullet B. et al., 1991).  

The citric acid content progressively decreased during cheese aging in all 

batches. Citrate can be metabolized by citrate-positive strains of lactococci and by 

certain mesophilic lactobacilli in the NSLAB flora, such as strains of Lb. casei and 

Lb. plantarum , to produce pyruvate and acetate (Hugenholtz J. et al., 1993; Palles T. 

et al., 1998). It is interesting to note that the decrease of citric acid level was 

particularly marked in A1 and A2 cheeses, the former being inoculated with Lb. 

paracei and the latter with Lb. plantarun. It is therefore likely that the growth of 

facultative heterofermentative LAB is connected to their ability to use citrate as a 

source of energy. 

Acetic acid (Ac) content increased as ripening progressed up to one month of 

maturation, then decreases. Ac is an important flavour compound in many cheeses. 

Besides being produced from lactose by heterofermentative LAB, it may also be 

formed as a result of citrate and lactate metabolism, or as a product of the 

catabolism of amino acids.  

http://www.springerlink.com/content/?Author=C.+M.+Henriksen
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Pyruvic acid increased towards the end of the ripening period. This is a key 

compound in several metabolic pathways. It is formed both through the glycolytic 

pathway and through the degradation of the amino acids serina and threonine. 

Furthermore, pyruvate can also act as substrate of several metabolic reactions such 

as the formation of formic acid, ethanol, diacetyl, acetoin, and 2,3-butylene glycol 

(Marth E.H., 1974). The progressive increase of pyruvate level during ripening is a 

clear indication of its rapid production. 

Amino acids. Proteolysis is the major process in cheese ripening; its 

degradation products, amino acids and peptides, have a considerable role on the 

texture, background flavour, and the availability of flavour precursors in all 

matured cheese varieties (Law B.A. et al., 1987; Fox P.F. et al., 1989).  

The amino acids profile was similar in all of the Fiore Sardo trials: as the 

ripening time increases, a general increase of the amino acids level occurred, being 

particularly significant for leucine, isoleucine, valine, phenilalanine, and methionine. 

During cheese ripening, some individual free amino acids were further degraded. 

This is the case of the glutamic acid, tyrosine, and histamine.  

Glu reached the highest content at 30 days of ripening, while in the following 

period decreased. The consumption of Glu was paralled by an increase in -amino 

butyric acid (GABA) level, as pointed out by TOCSY experiments performed on 

90-day-old cheeses (Figure 4.13). The link between these two metabolites is the 

ability of some mesophilic lactobacilli to produce GABA by Glu decarboxylation. In 

the past, the presence of GABA in ripened cheeses was pointed out as an indication 

of anomalous fermentations that produce organoleptically deficient cheeses 

(Innocente N., 1997). More recently, the presence of GABA has been reviewed in a 

positive way  in terms of functional properties of cheese, due to the known 

physiological functions of GABA such as neurotransmission, induction of 

hypotension, and diuretic and tranquilizer effects (Guin Ting Wong, et al, 2003).  

Decarboxilation of tyrosine to tyramine and histidine to histamine took place at 

the end of ripening. Indeed, the presence of these BA is clearly visible in all 90-day-

old cheeses under investigation. The production of biogenic amines is an extremely 

complex phenomenon, dependent on several chemical and biochemical variables, 

such as availability of free amino acids, temperature, pH, salt concentration, the 
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growth kinetics of the microorganisms, and their proteolytic and decarboxylase 

activities. Many studies have investigated the single effects of these factors, but 

little information exists on their combined or interactive effects. Therefore, finding 

a direct correlation between the BA contents and the total bacterial count in the 

cheeses is not an easy task (Halàsz A. et al., 1994).  

 

ppm

ppm

GABA GABA

ppm

ppm

GABA GABA

 

 

Figure 4.13 2D TOCSY expansion of the aqueous extract of Fiore Sardo at 90 days 
of ripening. The correlation peaks of GABA are indicated. 

 

Osmolytes. With increasing ripening period, the level of Cho decreased. This 

behaviour, together with the parallel increase of betaine and glycine signals, is 

possibly due to the ability of some bacteria, including E. coli, to convert Cho into 

glycine-betaine and subsequently accumulated betaine during osmotic stress 

(Landfald B. et al., 1986). This hypothesis could explain the slower growth of 

glycine signal intensity in A1, A2, and A3 cheeses compared with the cheeses of 

type CC, the latter exhibiting the highest count in E. coli.  
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4.3.4 Impact of starter culture combination on the metabolic profile 

To better compare the metabolic changes in cheeses in terms of the added strains, a 

PCA was applied on the 90-day-old cheeses (Figure 4.14). 

 

 

 

 

Figure 4.14 PCA scores (A) and loadings (B) plots derived from the 1H NMR 
spectra of 90-day-old Fiore Sardo cheeses manufactured with CC (black), A1 
(green), A2 (blue), and A3 (red) strain combinations. 

 

 

The score plot displays a clear separation of cheeses manufactured with 

commercial starters from those made with the autochthonous cultures. In 

particular, the former cluster on the negative side of PC1 and the later on the 

positive side, suggesting that the first PC could be considered as representative of 

the origin of added strains (“autochthonous or not”). The loading plot shows that 

B 

A 
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this separation is mainly dominated by  a decrease in lactic acid and an increase in 

amino acid and BA in CC chesees (Figure 14.14b). Futhermore, it is also worth 

noting that, comparing to A1, A2, and A3 cheeses, those made with commercial 

strains exhibited, starting from the first 48 h of ripening, overdeveloped irregularly 

shaped eyes and an early blowing, responsible of texture defects preserved until the 

end of ripening period (Figure 4.15). This kind of defects is typically due to 

infection of coli bacteria, which ferment the lactose and release large amounts of 

CO2 and H2 (Bachmann H.P. and Spahr U., 1995). Although this contamination is 

usual for raw milk cheeses, it is interesting to note that, in the cheeses under 

investigation, the counts of coli bacteria in CC was always higher than in A1, A2, 

and A3. Therefore, it seems reliable to link the observed structural defects of CC to 

its high content of these microorganisms. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15 Pictures of Fiore Sardo at 90 days of ripening. Labels 
indicates the type of strain combination used in cheesemaking 

 

 

As to the differences in the metabolic profiles of cheeses prepared with 

autochthnous strains, the PCA score plot in Figure 4.14 suggests the second PC  as  

representative of the biological activity of strains (i.e LAB vs NSLAB). Indeed, the 

cheeses made with adjunct autochthonous LAB and NSLAB (i.e. A1 and A2) cluster 

near (on the positive side of PC2) and far from cheeses manufactured only with 

autochthonous LAB (i.e. A3). A better understanding of these differences was 
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achieved by performing a pair-wise PCA (Figure 4.16). On loading plots, the 

metabolites responsible for separation of A3 from A1 and A2 cheeses were increased 

level of val, leu, ile, tym, and phe, together with decreased level of form, cit, lac, and 

met. In addition, mainly form and phe were increased in A1 cheeses compared to 

those of type A2, while level of tyr, val, leu, ile and lac were higher in A2 samples. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 PCA scores and loadings plots derived from the 1H NMR spectra of Fiore Sardo 
cheeses with 90 days of ripening as pair wise comparisons of cheeses with different strain 
combination: (A) PCA score plot showing separation between A1 (9) and A2 cheeses and (D) 
complementary loading plot of the first component (PC1); (B) PCA score plot showing separation 
between A3 (9) and A1 cheeses and (E) complementary loading plot of the PC1; (C) PCA score plot 
showing separation between cheeses with A3 and A2 strain combinations and (F) complementary 
loading plot of the PC1. 
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4.4 CONCLUSIONS 

In the present study, the effect of adjunct autochthonous cultures on the Fiore 

Sardo metabolic profile was investigated by a 1H NMR-based metabolomic 

approach. The 1H NMR spectroscopy revealed to be an important tool for unbiased 

metabolite fingerprinting of cheese, while PCA highlighted genuine differences 

between strain combinations, affording clues on the nature of this differentiation. It 

was clear that, compared with commercial starters, blends prepared with 

autochthonous strains showed a higher level of lactic acid and a lower level of 

amino acids and, in particular, biogenic amines. Complemented with the monitored 

microbiological characteristics of cheeses, our results indicated a slower 

fermentation performance for the autochthonous strain combinations, but a more 

positive role with respect to the antagonist microflora and to the production of 

potential toxic compounds (i.e. BA).  

The synergy between the NMR results and the microbiological analysis of 

cheeses demonstrated that the global analysis of metabolites by the combination of 

NMR spectroscopy and chemometrics can provided insights into cheese 

fermentation and the fermentative behaviours of strains. Thus, the finding of this 

work are promising in indicating 1H NMR spectroscopy as a rapid and objectively 

sound technique for evaluation of the fermentative process in raw milk cheeses in 

any step of manufacturing. Undoubtedly, in order to better understand how to 

make good quality cheese, further studies are needed, complemented also by the 

evaluation of the influence of the native strains on the sensory characteristics of the 

final product.  
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5. NMR metabolic profiling of the organic and  aqueous 
extracts of Argentina sphyraena   

(Osteichthyes: Argentinidae) 
 
 
 

5.1 INTRODUCTION 

Europe’s fishing grounds were once among the most productive in the world, 

but forty years of the Common Fisheries Policy (CFP)4 have resulted in serious 

depletion of fish populations, ecosystem degradation and damage to species, 

habitats and sites protected by EU environmental legislation (EC, 2009). Fishing 

has become unsustainable, increasingly unprofitable and reliant on public subsidies. 

This in turn has led to deprivation in coastal communities and an ever growing 

reliance on imported fish. 

OCEAN20125, a coalition of environmental organizations and associations of 

small-scale fishermen dedicated to stop overfishing and to bringing an end to the 

practice of destructive fishing, together with organizations such as Greenpeace and 

Living Seas, are mobilized, also at Community level, to steer the fisheries reform 

towards a policy that addresses the recovery of fish stock as a priority. As part of a 

broader, stepwise approach to returning EU fisheries to a sustainable footing, 

OCEAN2012 suggested replacing, or at least enhancing, relative stability with a 

system of allocating access to fisheries based on an explicit consideration of certain 

criteria. The allocation system should contribute a more equitable distribution of 

access to available fishing resources and a culture of compliance.  In the interests of 

creating a principle-centered approach to fisheries management in EU waters and 

for the EU fleet globally, OCEAN2012 is investigating issues that may be 

incorporated into a reformed CFP. Some of these issues relate to giving highest 

priority to environmental objectives under the CFP, creating a framework to ensure 

decisions are made at appropriate levels, defining instruments that deliver 

                                                           
4 The Common Fisheries Policy (“CFP”) is the European Union’s (“EU”) instrument for the 
management of fisheries and aquaculture. European Comm’n, Fisheries, About the Common 
Fisheries Policy, http://ec.europa.eu/fisheries/cfp_en.htm (last visited Feb. 5, 2010). 
 
5 http://www.ocean2012.eu 
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sustainable fishing capacity, basing access to fishing on criteria that ensure a 

transition to, and support for, environmentally and socially sustainable fishing. 

Among the proposed criteria in support of a long-term sustainability and a 

minimization of the adverse ecological and environmental impact of fishing 

activities, there is also the reduction of unwanted by-catches and progressive 

elimination of discards. Basically, the discarding process artificially splits the fish 

community into two fractions: the commercial/marketed, and the discarded/non-

marketed. The incidental capture of species toward which there is no directed effort 

is characteristic of commercial fisheries and is termed `by-catch'. Among different 

fishing gears, the trawl is responsible for most fisheries discards (Stergiou K.I. et 

al., 1998; Hall S.J., 1999). In the Mediterranean Sea, from a total of 300 species 

caught, only c.a. 10% are consistently marketed and c.a. 30% are occasionally 

retained, depending on the sizes caught and market demands, whereas 60% are 

always discarded (Carbonell A. et al., 1998; Stergiou K.I. et al., 1998; Machias A. et 

al., 2001; D’Onghia G. et al., 2003).  

In Italy, the catch of trawl fishery is highly represented by small pelagic species 

with low economic value, scarcely known by consumers and poorly appreciated and 

commercialized. Among these, Argentina sphyraena is an important fraction of the 

by-catch of the deep sea trawl fishery in western Mediterranean. In spite of its 

abundance, in Italy argentina has a low economic interest, finding no appreciation 

on the market. In fact, especially in urbanized areas, the global market trends affect 

mostly the consumers’ preference thus privileging those species with a higher 

commercial value present on the market like hake (Merluccius merluccius) from 

fishery, or gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) 

from aquaculture.  

The studies on fish metabolomics found in the literature cover a wide range of 

topics: fish physiology and development, pollutant effects on fish, fish condition and 

disease, and fish as foodstuffs (Samuelsson, L.M. and Larsson D.G.J., 2008). Among 

these, those using NMR spectroscopy in combination with pattern recognition 

techniques have been focused mainly to well known fish species, for the elucidation 

of the origin and adulteration of foodstuffs (Martinez I. et al., 2005; Aursand M. et 

al., 2009; Standal I.B., 2009; Savorani F. et al., 2010).  



 

 

94 

 

Besides being little known to the consumers, Argentina sphyraena is also little 

know in marine biology. Thus, starting from collaboration with the Department of 

Life Sciences and Environment, Section of Animal Biology and Ecology of the 

University of Cagliari, in the present study, 1H NMR spectroscopy was combined 

with multivariate statistical analysis to investigate seasonal variations of the 

aqueous and lipid profile of Argentina sphyraena. The goals of the study were to: (i) 

use NMR to metabolically profile this fish for future studies, (ii) ascertain how the 

metabolic profiles differ according to the fishing season and (iii) provide new 

insights on the potential of NMR-based metabolomics as a rapid and informative 

screening tool in fish research.  

 

 

5.2 MATERIAL AND METHODS 

5.2.1 Chemicals 

 Deuterium oxide (D2O, 99.9%) was purchased from Cambridge Isotope 

Laboratories Inc. (Andover, MA). Sodium 3-trimethylsilylpropionate- 2,2,3,3,-d4 

(TSP, 98 atom % D), perchloric acid (HClO4, 70%), and potassium hydroxide (KOH) 

and some standard amino acids, organic acids and nucleobases were acquired from 

Sigma-Aldrich (Milan, Italy). 

 

5.2.2 Samples 

50 individuals of Argentina sphyraena were caught from December to April 

between 2010 and 2011 in the waters around the island of Sardinia at a depth of 

150m during experimental campaigns of trawling and commercial fishing (Table 

5.1). Fishes were frozen at -20 °C and transported by boat to our laboratory. The 

fish were thawed and gutted. Muscle was chopped and mixed, to get a 

representative sample, and further stored at -80 °C  before extracting the water-

soluble component. 

 

5.2.3 The lipid fraction extract  

Lipid extraction was performed according to a modified Bligh and Dyer (Martinez 

I. et al., 2009) procedure: 10 g of fish muscle were homogenized for 2 min with a  
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Table 5.1 Fishing season, area and depth of capture, number of individuals 
caught of the samples studied sphyraena Argentina. 

 

SEASONS FISHING AREA/ DEPTH N° SAMPLES 

DECEMBER TEULADA 150M 13 

JANUARY TEULADA 150M 13 

FEBRUARY TEULADA 150M 6 

APRIL TEULADA 150M 18 

 

 

mixture of 16 ml of H2O, 40 ml of methanol and 20 ml of chloroform. Then, 20 ml 

of chloroform were added to the mixture and homogenized for 40 s, prior the 

addition of 20 ml of H2O and a further homogenization for 40 s. The homogenate 

was centrifuged for 10 min at 4000 rpm and the chloroform phase containing the 

lipids was recuperated for NMR analyses. The lipid phase was transferred into a 

round-bottomed flask and dried with a rotary vacuum evaporator. The lipids were 

then gravimetrically determined by weighting the flask before and after evaporation 

and converted to percent lipids. The extract was redissolved in 800 L of CDCl3 

and transferred into a 5 mm NMR tube. 

 

5.2.4 The water-soluble extract 

Water-soluble metabolites were extracted using perchloric acid on the basis of 

the procedure previously described by Gribbestad et al. (Gribbestad I.S. et. al., 

2005). This has prevented the enzymatic degradation of the muscle during the 

extraction and allowed to remove the acidic proteins and macromolecules. On 

portion of ca. 1g of muscle was accurately sampled from each fish adding 2 ml of 

HClO4  (7% in D2O). Subsequently, the sample was homogenized for about 20 

seconds with the homogenizer Ultra-Turrax T25 basic and continuously stirred and 

warmed at 50 °C until a paste consistency was obtained. The homogenate was 

centrifuged at 4000  rpm for 10 min at 4 °C. Then, the supernatant was adjusted to 

pH 7.8 with 9M KOH in D2O and centrifuged again to remove the potassium 
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perchlorate. The final extract was lyophilized and stored at -20 °C until analyzed. 

The solutions were thawed just before NMR analysis.  

For NMR analysis, each sample was redissolved in 1 mL of D2O, and an aliquot 

of 800 L was transferred into a 5 mm tube to which 66.6 l of TSP/D2O solution 

was added (0.78 mM final concentration of TSP) as a frequency standard. The 

solution pH was accurately adjusted to 7.80 and, subsequently, the sample was 

centrifuged at 10000 rpm for 5 min at 4°C  in order to remove precipitates. 

 

5.2.5 1H NMR spectroscopy  

1H NMR experiments on aqueous extract were carried out on a Varian Unity 

500 spectrometer operating at 499.83 MHz. Spectra were recorded at 300 K with a 

spectral width of 5624 HZ, a 45° pulse of 7.5 s, an acquisition time of 3s, a 

relaxation delay of 7s, and 256 scans. The residual water signal was suppressed by 

applying a presaturation technique with low-power radiofrequency irradiation for 

1.5 s. The FIDs were multiplied by an exponential weighting function equivalent to 

a line broadening of 0.3 Hz prior to Fourier transformation. Chemical shifts were 

referred to the TSP single resonance at 0.00 ppm. 2D NMR 1H-1H COSY spectra 

were acquired with a spectral width of 53 KHz in both dimensions, 512 increments 

in f1 and 2K data points in f2 with 96 transients. 2D NMR 1H-1H TOCSY spectra 

were acquired in phase sensitive mode with a size and number of data points similar 

to those of the COSY and a mixing time of 80 ms. 

The 1H NMR spectra of the lipid fraction were recorded at 298 K on a Varian 

UNITY INOVA 400 spectrometer operating at 399.95 MHz. The 1H spectra of the 

CDCl3 extracts were acquired by co-adding 40 transients, a 45° pulse of 3.4 s, a 

recycle delay of 16.5 s and the chemical shifts were referenced the proton signal of 

the solvent (7.26 ppm).  

 

5.2.6 Pre-processing of NMR spectra 

Spectra were processed using ACD Labs 1D Spectrum Manager, version 12.0. 

All spectra were zero filled to 64k points and multiplied by an exponential factor of 

0.3 Hz. Each FID was then Fourier transformed, phased using the simple method, 

baseline corrected using a 4th order polynomial and referenced to the appropriate 
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reference signal. Prior to integration, the spectral region of the water aqueous 

extracts containing the residual HOD (4.65-4.85 ppm), and those at both edges, 

containing only noise (between 10.00 and 9.00 ppm and between 0.50 and -0.50 

ppm) were removed.  

The intelligent bucketing method developed by ACD/Labs was used to integrate 

the spectra. A bucket width of 0.04 ppm was selected with the intelligent bucket 

looseness set to 50%. This resulted in bucket widths that ranged between 0.02 and 

0.06 ppm.  Subsequently, the matrix was normalized to minimize the differences due 

to the sample extract dilutions.  

 

5.2.7 Chemometric analysis of the data 

Multivariate data analysis was carried out using SIMCA-P+ 12.0 (Umetrics, 

Umea, Sweden). Data were Pareto scaled before analysis. Pareto scaling is a 

compromise between mean centering, which may fail to pick out small changes in 

metabolite concentrations, and scaling to unit variance, which gives equal weight to 

baseline imperfections, noise, and defined signals in the NMR spectrum. Principal 

components analysis (PCA) and OPLS-DA were used to examine inherent 

clustering and correlations within the data.  

 

5.3 RESULTS AND DISCUSSION 

In the first part of this section, some preliminary information on the 

physiological state of Argentina sphyraena, provided by the Section of Animal Biology 

and Ecology of the University of Cagliari, are reported, together with the mean 

muscle lipid content of the fish. In the second part, the 1H NMR spectra of the 

water soluble and lipid extracts from muscle are shown, while the multivariate 

statistical analysis results are discussed in the third part. 

5.3.1 Physiological data and muscle lipid content 

Since the level of lipids and low molecular weight metabolites in fish muscle can 

be affected by both the sexual maturation and the diet of fish (Ozyurt G. and Polat 

A., 2006), preliminary data on the maturity stage and the feeding activity of 

individuals under investigation were collected. 
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A macroscopic observation carried out on ovary indicated that fishes caught in 

December were in a post-spawning period, those caught in January were in the 

pre-spawning  state, while those of April were in the spawning period. Furthermore, 

the results for the hepatosomatic index (HSI), shown in Figure 5.1, revealed that 

the fish feeding activity increased from December to April, that is from the 

immature to the mature stage. This result indicates that Argentina sphyraena feed 

also during the spawning period, differently from other species of fish that stop 

feeding in this stage (Solansky K.S. et al., 2005). 

 

 

 

 

 

 

 

 

Figure 5.1 HSI measured as the liver weight to body weight. 

 

The above information was complemented by the estimation of the lipid content 

in fish muscle by the standard macro-gravimetric method of Bligh–Dyer (Martinez 

I. et al., 2009). The data, reported in Figure 5.2, shows that the the mean fat content 

in April (1.1%) was 56% less than the December value (2.48%), pointing out a 

progressive decrease of the fat level from the immature to the mature stage. This 

result, together with the above mentioned physiological data, suggests that, during 

the pre-spawning period, Argentina sphyraena accumulate and storage fat in the 

muscle that are likely used as fuel during the gonadal development in the maturity 

stage (Hendry A.P. and Berg O.K., 2000).  
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Figure 5.2 Average lipid content in argentina fish muscle estimated 
by the standard macro-gravimetric method of Bligh–Dyer (1959). 

  

 

5.3.2 1H NMR spectrum of the aqueous extract of Argentina sphyraena muscle 

Figure 5.3 shows a typical 1H NMR spectrum of the aqueous extract of muscle of 

Argentina sphyraena, while in Figure 5.4 some spectral regions are shown in more 

detail. The main assignments are reported in Table 5.1 

The compounds were identified on the basis of data published in the literature 

(Mannina L. et al., 2008; Standal I.B. et al., 2007; Fann T., 1996), by performing 2D 

NMR experiments (COSY and TOCSY), and by recording spectra of standard 

compounds. In some cases, validation of the peak attribution was achieved by 

adding standard compounds directly to the sample solution and recording the NMR 

spectrum again under the same conditions. Finally, for a limited number of cases, 

the software Chenomx NMR Suite (version 7.1), a powerful platform allowing easy 

identification and quantification of metabolites in NMR spectra or processing NMR 

spectra, was used. A total of 41 molecular compounds were identified which can be 

distinguished in the following classes: carbohydrates, organic acids, amino acids, 

osmolytes, and derivatives of nucleosides.  

Some organic acids such as fumaric (Fu), malic (Mal), formic (Form), succinic 

(Suc), acetic (Ace), citric (Cit), and lactic acid (Lac) were identified. Among these, 

the most abundant was lactic acid (1.36 and 4.23 ppm) whose signal at 1.36 ppm is a 

partly overlaps with that of threonine at 1.33 ppm. Threonine presence was 



 

 

100 

 

highlighted by the cross speak signals at 3.58 and 4.27 ppm in the TOCSY 

spectrum (Figure 5.5).  

 

Figure 5.3 1H NMR spectrum of the aqueous extract of Argentina sphyrenae muscle 

 

 A small amount of glucose was present in the muscle aqueous extract. It was 

identified by means of the diagnostic anomeric doublets at 4.66 ppm (-form) and 

5.24 ppm (-form) and by 2D NMR experiments.  

The characteristic singlets at 3.04 and 3.93 ppm are indicative of the presence of 

creatine and/or phosphocreatine. Both compounds represent an important energy 

store in skeletal muscle (Walliman T., 2007). Phosphocreatine is used to 

anaerobically generate ATP from ADP, forming creatine.  

The signals at 6.91 and 7.83 ppm were attributed to two dipeptides with 

antioxidant activity: carnosine, N()-(-alanine)-L-1-histidine, and its methylated 

analogue, anserine, N()-(-alanine)-L-1-methylhistidine.) (Boldyrev A.A. et al., 

1990). Moreover, other amino acids, such as arginine (Arg), aspartate (Asp), 

phenylalanine (Phe), glycine (Gly), glutamate (Glu), histidine (His), isoleucine (Ile),  
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Figure 5.4 Expansions (a-d) of the 1H NMR spectrum of the aqueous extract of muscle of 
Argentina. Assignments for the numbered resonances are given in Table 5.1. 

 

 

a) 

b) 
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Figure 5.4 continued 

c) 

d) 
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Figure 5.5 2D TOCSY expansion of the aqueous extract of muscle of 
Argentina, showing the cross-peak of threonine. 

 

leucine (Leu), lisine (Lys), methionine (Met), proline (Pro), tirosine (Tyr), valine 

(Val) and tryptophan (Trp) were identified.  Gly is known to participate at a 

number of metabolic reactions like the formation of porphyrins, purines, and many 

other metabolites (Neuberger A., 1961). Furthermore, Gly, Ala, and Ser are 

interconvertible and their presence in muscle can be justified (Kaushik S.J. and 

Luquet P., 1979). Finally, taurine, an important antioxidant (Aruoma O.I. et al., 

1988), was identified by the characteristic resonances at 3.28 and 3.44 ppm. The 

deficiency of this metabolite results in a deterioration of eyesight (Hayes K.C. et al., 

1975).  

The low-field region (Figure 5.d) was characterized by singlets of hypoxanthine 

(Hyp) (8.19 e 8.21 ppm)  and  inosine (Ino) (8.34 e 8.23 ppm).  The values of Ino and 

Hyp increase during the storage period by the action of autolytic and 

microbiological enzymes that determine the spoilage of the food (Surette M.E. et al., 

1988). In particular, Hyp, can be considered a quite accurate indicator of freshness 

in many fish species (Kyrana V.R. et al., 1997; Jacober L.F. et al., 1982; Zhang H.Z. 

et al., 1997).  
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The correlation peaks COSY between the signals at 8.27, 7.60 and 8.62 ppm 

showed the presence of a water-soluble vitamins as niacinamide (or nicotinamide). 

The niacinamide is part of two coenzymes, nicotinamide adenine dinucleotide 

(NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The compounds 

involved in many redox reactions and in the synthesis of fatty acids and amino 

acids. 

Trimethylamine-N-oxide (TMAO), an important osmolyte in fishes, was 

identified by the intense singlet at 3.27 ppm, coming from  protons in the –N(CH3)4 

group. The importance of osmolytes in diet is due to their relevant roles in 

preserving human health which make them really bioactive compounds. TMAO has 

recently been shown to prevent the misfolding of the prion protein (Bennion B.J. et 

al., 2004). The presence of TMAO in the aqueous extract of fish suggested also a 

good preservation state. In fact, during the storage, TMAO is degraded to the 

volatile trimethylamine (TMA) responsible for the unpleasant fish odor. Another 

singlet at 2.73 ppm was identified as dimethylamine (DMA). DMA is diagnostic of 

freezing processes. 
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Table 5.2 1H-NMR chemical shifts of metabolites identified in the aqueous extract of muscle of   
Argentina sphyraena 

Free amino acids and dipeptides 

Compound Group (ppm)a Multiplicityb Correlationc 

Alanine (Ala) 6 
CH 3.79 q 1.48 (C) 

CH3 1.48 d 3.79 (C) 

-Alanine(-Ala) 16 
CH2 2.57 t 3.18 (C) 

CH3 3.18 t 2.57 (C) 

Arginine (Arg) 8 

CH 3.77 t 1.92 (C) 

CH2 1.92 m 3.77 (C), 1.70 (C) 

CH2 1.70 m 1.92 (C), 3.25 (C) 

CH2 3.25 t 1.70 (C) 

Aspartate (Asp) 17  

CH 3.91 dd 2.69 (C), 2.80 (C) 

CH 2.69 dd 2.80 (C), 3.91 (C) 

'CH 2.80 dd 2.69 (C), 3.91 (C) 

Creatine (Crt) /  N-CH3 3.04 s 3.93 (T) 

Phosphocreatine(PCrt) 

20 
N-CH2 3.93 s // 

Glycina (Gly) 24 CH2 3.56 s // 

Glycina-Betaine (GB) 

25 

N-CH3 

CH2 

3.26 

3.90 

s 

s 
// 

Glutamate (Glu) 10 

CH 3.76 t 2.10 (C), 2.38(T) 

’CH 2.10 m 2.38 (C), 3.76 (C) 

CH2 2.38 t 2.10 (C), 3.76 (T) 

Histidine (His) 35  
C2H, ring 7.77 s // 

C4H, ring 7,06 s // 

Histidine in Anserine 

(Ans) 34 

 

C2H, ring 

C4H, ring 

6.91 

7.83 

s 

s 
// 

Isoleucine (Ile) 1 

CH 3.68 m 1.98 (C) 

CH 1.98 m 
1.02 (C), 1.26(C), 

3.68(C) 

CH 1.47 m 0.93 (C), 1.26(C) 

'CH 1.26 m 
0.93(C), 1.47(C), 1.98 

(C) 

'CH3 1.02 d 1.98 (C) 

CH3 0.93 t 1.26 (C), 1.47 (C) 
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Table 5.2 (Continued)     

Compound Group (ppm)a Multiplicityb Correlationc 

Leucine (Leu) 2 

CH 3.75 t 1.70 (C) 

CH2 1.70 m 3.75 (C) 

CH 1.73 m 0.97 (C) 

CH3,’CH3 0.97 d 1.73 (C) 

Lysine (Lys) 7 

CH 3.78 t 1.92 (C) 

CH2 1.92 m 
1.45 (C), 3.04 (T), 

3.78 (C)  

CH2 1.45 m 
1.74 (C), 1.92 (C), 

3.04 (T) 

CH2 1.74 m 1.45 (C), 3.04 (C) 

CH2 3.04 t 
1.45 (T), 1.74 (C), 

1.92 (T) 

Methionine (Met) 11 

CH 3.85 t 2.19 (C) 

CH2 2.19 m 2.64 (C), 3.85 (C) 

CH2 2.64 t 2.20 (C) 

S-CH3 2.14 s // 

Phenylalanine(Phe) 36 

CH 3.99 dd 3.13(C), 3.29 (C) 

CH 3.29 dd 3.99 (C) 

’CH 3.13 dd 3.99 (C) 

C2,6H, ring 7.42 m // 

C3,5H, ring 7.42 m 7.33 (C) 

C4H, ring 7.33 m 7.42 (C) 

Proline (Pro) 12 

CH 4.14 t 
2.05 (C), 2.38 (C), 

2.00 (T) 

CH 2.36 m 4.14 (C) 

’CH 2.05 m 4.14 (C) 

CH2 2.00 m 
3.38 (C), 3.40 (C), 

4.14 (C) 

CH 3.38 t 2.05 (T), 2.38 (T) 

’CH 3.40 t 2.05 (T), 2.38 (T) 

Taurine (Tau) 23 
N-CH2 3.28 t 3.44 (C) 

S-CH2 3.44 t 3.28 (C) 

Threonine(Thr) 4 

CH 3.58 d 4.27 (C) 

CH 4.27 m 1.33 (C), 3.58 (T) 

CH3 1.33 d 4.27 (C) 
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Table 5.2 (Continued)     

Compound Group (ppm)a Multiplicityb Correlationc 

Triptophane (Trp) 38 

C4H, ring 7.74 d 
7.19 (C), 7.27 (T), 

7.54 (T) 

C5H, ring 7.19 t 7.54 (T), 7.74 (C)  

C6H, ring 7.27 t 7.54 (C), 7.74 (T) 

C7H, ring 7.54 d 
7.19 (T), 7.27 (C), 

7.74 (T) 

Tyrosine (Tyr) 33 

CH 3.94 dd 3.06 (C) 

CH 3.19 dd 3.06 (C) 

’CH 3.06 dd 3.19 (C), 3.94 (C) 

C2,6H, ring 6.89 d 7.19 (C) 

C3,5H, ring 7.19 d 6.89 (C) 

Valine (Val) 3 

CH 3.62 d 2.29 (C) 

CH 2.29 m 
1.00 (C), 1.05 (C), 

3.62 (C) 

'CH3 1.05 d 1.00 (C), 2.29 (C) 

CH3 1.00 d 1.05 (C), 2.29 (C) 

 
 

Nucleotides and relative compounds 

Compound Group (ppm)a Multiplicityb Correlationc 

AMP 26 

C1’H, ribosio 6.14 d // 

C2’H, ribose 4.79 // // 

C3’H, ribose 4.52 // // 

C4’H, ribose 4.37 // // 

C5’H, ribose 4.03 // // 

CH-2 

CH-8 

8.60 

8.27 

s 

s 

// 

ADP/ ATP 28 

CH-2 8.27 s // 

NH, ring 8.52 s // 

C1’H, ribose 6.15 d // 

Inosine (Ino) 27 

C1’H, ribose 6.11 d 4.30 (T), 4.46 (T), 

4.78 (C) 

C2’H, ribose 4.78 m 4.30 (T), 4.46 (T), 

6.11 (C) 

C3’H, ribose 4.46 m 4.30 (T), 4.78 (C), 

6.11 (T) 

C4’H, ribose 4.30 m 4.46 (T), 4.78 (T) 
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Table 5.2 (Continued)     

Compound Group (ppm)a Multiplicityb Correlationc 

 C5’H, ribose 4.02 m 4.36 (C) 

C2H, ring  8.34 s // 

C8H, ring 8.23 s 

 

// 

Inosine 

monophosphate 

(IMP) 31 

C1’H, ribose 6,15 d 4.04 (T), 4.38 (T), 4.52 

(T), 4,81 (C)  

C2’H, ribose 4,81 m 4.38 (T), 4.53 (T), 6,15 (C) 

C3’H, ribose 4.52 dd 4.04 (T), 4.38 (T), 4.81 (T) 

C4’H, ribose 4.38 m 4.04 (T), 4.52 (T), 4.81 (T) 

C5’H, ribose 4.04 m 4.38 (T),4.52 (T), 4.81 (T) 

C2H, ring 8.59 s // 

C8H, ring 8,23 s // 

Hypoxantine (Hyp) 

40 

C2H, ring  8.21 s // 

C8H, ring 8.19 s // 

Niacinamide 39 

N5, ring 

N4, ring 

7.60 

8.27 

q 

d 

8.27 (C), 8.62 (C) 

7.60 (C), 8.62 (T) 

N2, ring 8.95 s // 

N6, ring 8.62 d 7.60 (C), 8.27 (T) 

 
 

Sugars 

Compound Group (ppm)a Multiplicityb Correlationc 

-Glucose 30 
C1H  5.24 d 3.52 (C) 

C2H 3.52 dd 5.24 (C) 

-Glucose 29 
C1H  4.66 d 3.27 (C) 

C2H 3.27 dd 4.66 (C) 
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Organic acid 

Compound Group (ppm)a Multiplicityb Correlationc 

Acetic acid (Ace) 9 CH3 1.92 s // 

Citric acid  (Cit) 15 
C2H 2.56 dd 2.73 (C) 

C4H 2.73 dd 2.56 (C) 

Formic acid (Form) 41 HCOO- 8.46 s // 

Fumaric acid (Fu)32 CH 4.33 dd 2.38 (C) 

Lactic acid (Lac) 5 
CH3 1.33 d 4.12 (C) 

CH2 4.12 q 1.33 (C) 

Malic acid  (Mal) 13 

CH 4.33 dd 2.38 (C) 

CH2 2.38 dd 
2.70 (C) , 4.33 

(C) 

’CH2 2.70 dd 2.38 (C) 

Succinic acid (Suc) 14 CH2 2.41 s // 

 
Osmolytes and other compounds 

Compound Group (ppm)a Multiplicityb Correlationc 

Dimethylamine (DMA) 

18 
N(CH3)2 2.73 s // 

Uracil (Ura) 37 C5H, ring 5.81 d 7.55 (C) 

 C6H, ring 7.55 d 5.81 (C) 

Trimethylamine(TMA) 

19 
N-(CH3)3 2.90 s // 

Trimethylamine O 

(TMAO) 22 
O-N-(CH3)3 3.27 s // 

Choline (Cho) 21 

N-(CH3)3
+ 3.21 s // 

CH2 4.07 m 3.52 (C) 

CH2 3.52 m 4.07 (C) 
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5.3.3 1H NMR spectrum of muscle lipid extract of Argentina sphyraena 

The representative 1H NMR spectrum of Argentina sphyraena chloroform extract 

is shown in Figure 5.6. The assignment of 1H NMR spectrum was obtained by 

performing 2D-NMR experiments and by using literature data (Mannina L. et al., 

2008; Aursand M. et al., 1993; Sacchi R. et al., 1993; Scano P. et al., 2006) (Table 

5.3). Detailed chemical shift attributions are shown in Figure 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 A representative 1H NMR spectrum of the lipid extract of Argentina sphyraena 
muscle 
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Figure 5.7 Expansions of the 1H NMR spectrum of the lipid extract of muscle of argentina. 
Assignments for the numbered resonances are given in Table 5.3. 
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Table 5.3 1H NMR chemical shift assignment for the lipid extract of muscle of argentina. 
Numbering of peaks references to Figure 5.7. 

Peak Carbon Compounda ppma 

1 -CH3 CHO 0.64 

2 -CH3 

 

All fatty acids except 3 0.84 

3 -CH3 

 

Fatty acids 3 0.94 

4 -(CH2)n 

 

All fatty acids except PUFA 1.22 

5 -CH2CH2 

COOH 

 

All fatty acids except DHA e EPA  1.57 

6 -CH2CH2 

COOH 

 

EPA 1.66 

7 -CH2CH= All fatty acids except DHA 1.95-2.15 

8 -CH2COOH All fatty acids except DHA 2.23-2.33 

9 -CH2CH2 

COOH 

 

DHA 2.35 

10 CH2 diallilici DUFA 2.78 

11 -CH2- 

 

PUFA 2.81 

12 CH2N- PE 3.15 

13 (CH3)3N- PC 3.24 

14 CH2N PC 3.68 

15 

 

17 

CH2 sn3 PC e PE 3.93 

16 CH2 sn1,3 TG 4.15-4.30 

17 

 

CH2 sn1  PC e PE 4.35 

18 CH2OP PC 4.38 

19 CH sn2 PC e PE 5.18 

20 CH2sn2 TG 5.24 

21 CH=CH All fatty acids  5.33 

a The chemical shifts are referenced to the peak of CHCl3 (=7.26 ppm) 
b Abbreviations: TG, triglycerides; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
PUFA, polyunsaturated fatty acids; DUFA, diunsaturated fatty acids; EPA, eicosapentaenoic 
acid. DHA docosahexaenoic acid. 
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5.3.4 Multivariate statistical analysis 

A preliminary analysis of NMR data relative to the aqueous and organic extracts 

of argentina was performed to test the potentiality of NMR to detect seasonal 

variations.  

Metabolomic changes in the water soluble extract. Figure 5.8 shows the 

PCA model applied on the full 1H NMR data set of water-soluble metabolites. No 

significant seasonal differentiation was found, noticeable overlaps being observed 

among samples.  

 

 

 

 

 

 

 

 

Figure 5.8 PCA score plot derived from the 1H NMR spectra of the aqueous extract of 
Argentina muscle: December; January; February; April.  

 

 

A more distinct differentiation according to the fishing period was achieved by 

OPLS-DA (Figure 5.9a), as reflected by a higher goodness of fit and predictability 

(Rx
2=0.94; Ry

2=0.86; Q2=0.71), compared with the PCA model (Rx
2=0.66; Q2=0.61). 

The improvement of model by OPLS-DA suggests that the structured noise was 

the principal source of data variation in the NMR spectra.  The corresponding 

loadings (Figure 5.9b) indicate that the samples caught in December were 

characterized by the largest content of Tau,  and  Glucose, Asp, Ans, and Pro; 

samples fished in January by Cho, TMAO, ADP, and ATP; Crt/P-Crt, IMP, AMP, 

and Lac were the main representative metabolites of February; finally, April’s 
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samples have the highest level of free aminoacids  (Ala, Leu, Ile, Val, Lys, Arg, Met, 

Glu, Phe, Thr, and Gly) and acetic and formic acid.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 OPLS-DA score (a) and loading (b) plot derived from the 1H NMR spectra of the 
aqueous extract of argentina caught in Teulada at a depth of 150 m: December; January; 
February; April. 
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It is interesting to note that, among the metabolites most representative of each 

fishing period, some can be reliable biomarkers for providing information on the 

seasonal variations of these components, while other can be involved also in 

post-mortem processes which, in turn, can be accelerated in case of acute stress 

during fishing. Indeed, for instance, free amino acids in fish play essential roles in 

metabolism, such as adjustment of osmotic pressure and as energy source. In 

particular, the imidazole compounds, such as histidine, make a large contribution to 

the buffering capacity in fish muscle and reflect its biochemical condition (Suyama 

M. et al., 1986). Differently, the accumulation of inosine and hypoxanthine in fish 

species is related to the post-mortem ATP depletion, due to both autolytic and 

microbial action, although the former seems more important. On account of this, 

nucleotide degradation products have been widely used as indicators of storage age 

or freshness. Indeed, a high content of inosine monophosphate  in the flesh indicates 

a high level of freshness whereas a high content of hypoxanthine indicates that 

spoilage phase will soon start, if not started yet (Spinelli J. et al., 1964). In the light 

of these considerations, it is therefore evident that the analysis of the whole NMR 

profiling of the water soluble metabolite extract of fish requires significant 

development efforts in order to get reliable information on the biology of this 

species. 

Metabolomic changes in the lipid extract. PCA on the 1H NMR lipid extract 

data set failed to highlight any metabolic difference among samples based on 

seasonal variations (data not shown). Thus, in order to emphasize the different 

among samples, an OPLS-DA was used. The scores plot in Figure 5.10a showed a 

clear patter of arrangement of specimens according to the fishing period. In 

particular, samples caught in April showed group homogeneity slightly higher than 

samples caught in December and January. By examining the corresponding 

loadings plot (Figure 5.10b), the important contribution to the discrimination 

among samples was found to be the level of polyunsaturated fatty acids (PUFA), 

higher in samples caught in April, that is in the spawning period, and lower in 

December, i.e. in the post-spawning stage. It is known that the level of PUFA in 

fishes is highly dependent on the food availability. Thus, the maximum level of 

PUFA found in April may be related to increasing feeding. This hypothesis is in 
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line with the increase with HSI found in spring samples (Figure 5.1). However, it 

can not be ruled out also an importance influence by the source of dietary lipids 

(Shirai N. et al., 2001).   
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Figure 5.10 OPLS-DA score (a) and loading (b) plot derived from the 1H NMR spectra of the 
lipid extract of argentina caught in Teulada at a depth of 150 m: December; January; April. 
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5.4 CONCLUSION  

This work represents a first attempt to combine NMR spectroscopy and 

multivariate statistical analysis  to investigate seasonal variations of the metabolic 

profile of fish muscle. Although this is a preliminary study, the potential of this 

approach is clear. On one side, the water soluble fraction of muscle is riched of 

metabolites playing important role in physiological functions and, thus, useful to 

investigate biochemical conditions of muscle. However, due to the concomitant 

presence of metabolites indicative of post-mortem metabolic processes, the results 

must be interpreted carefully in view of using such a model to investigate seasonal 

variations. On the other hand, the lipid profile allows extracting information that 

could be correlated with the diet of fish and its feeding activity. By taking more 

samples and planning a better experimental design, the desired task can be made. 

Toward this direction, the present work has been evolving. 
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6. General Conclusions 
 
 

 

In the recent years, metabolomics has been gaining considerable attention in 

food science, proving to be a valuable tool for the biochemical analysis of foodstuff. 

Indeed, metabolomics has the potential to generate a comprehensive set of 

biomarkers which can be used to understand and monitor food properties such as 

shelf life and quality. Among the analytical techniques used in metabolomics for 

assessing food constituents, high-field 1H NMR spectroscopy is unique in its ability 

to describe the chemical profile of the sample and provide very quickly information 

about a large number of compounds (i.e. amino acids, carbohydrates, and organic 

and fatty acids). However, 1H NMR spectra of even rather simple single-phase 

foods often result in complex spectra. For this reason, it is advantageous to analyze 

the spectra by multivariate methods like those developed in the field of 

chemometrics.  

The present Ph.D. work showed some applications on the NMR-based 

metabolomic approach. The investigated food matrices were largely different, from 

a manufactured product that underwent only physical treatments (bottarga), to a 

manufactured product where biochemical transformations took place (Fiore Sardo 

cheese), and a raw food (Argentina sphyraena). All of these food matrices were not 

chosen by chance, but they represent an important piece of economy of the island of 

Sardinia, or might be further valorized, gaining more importance in the near future. 

Indeed, bottarga and Fiore Sardo are typical products exported all over the world, 

while Argentina sphyraena is a fish a low economic interest, finding no appreciation, 

at the moment, on the market. 

The results of this PhD study have contributed with new insights and deeper 

understanding of the potential perspective of the combined NMR/multivariate 

methods approach in food science, showing the great versatility of NMR 

spectroscopy and the strong synergetic relation between NMR and chemometrics. 

NMR revealed its extraordinary potential, when applied to natural samples and 

products, while chemiometric analytical technique proved to be an essential tool to 
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get information on the properties of interest (e.g., geographical origin for bottarga) 

based on the knowledge of other properties easily obtained (i.e. NMR spectra). 

The results obtained by the investigation of bottarga demonstrated that a 

NMR-based metabolomics technique can be a powerful tool for the detection of 

novel biomarkers and establishing quality control parameters for bottarga. The 

work presented in this study evidenced the effectiveness of metabolite 

fingerprinting as a tool to distinguish samples according both to the geographical 

origin of fish and the manufacturing process. 

The results relative to the Fiore Sardo showed the potential of the combination 

of NMR spectroscopy and chemometrics as a promising partnership for detailed 

cheese analysis, providing knowledge that can facilitate better monitoring of the 

food production chain and create new opportunities for targeted strategies for 

processing. Such analysis may be performed in any stage of the cheese 

manufacturing, allowing for thorough evaluation of every step in the process.  

Finally, the preliminary results relative to the metabolomic investigation of 

Argentina sphyraena should certainly serve as a basis for implement a research tool 

able to provide deeper insights on the biology of this fish species with all 

advantages offered by the metabolomics approach. 
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