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Global warming (GW) induced by increasing concentrations of greenhouse gases 

(GHG) in the atmosphere has become today an important environmental concern. The 

major anthropogenic sources of GHG are transportations, energy sectors and agriculture 

which are responsible in European Union (EU) for more than 20%, 60% and 9% of 

emissions, respectively (EEA 2004, 2007). 

A worldwide problem has become the depletion of petrochemical fuels and the 

continuous rise in oil prize that call us to make a global effort in order to find 

alternative energetic sources. 

Presently many options are being studied and implemented in practice to meet the 

sustainability goals agreed under the Kyoto Protocol (1992) with different degrees of 

success. Wind, geothermal, solar (either thermal or photovoltaic), hydroelectric, ocean 

wave, carbon sequestration and bio fuels energy are been developed as more 

sustainable alternative energy sources compared with the combustion of fossil fuels 

(Dewily and Van Langenhove, 2006; Schiermeier et al., 2008). The use of fossil fuels 

is now widely accepted as unsustainable, due to depleting resources and the 

accumulation of GHG in the environment that have already exceeded dangerously high 

thresholds. For this reason, in order to achieve environmental and economics 

sustainability fuel production processes are required that are not only renewable but 

also capable of sequestrating atmospheric CO2 so the development of CO2-neutral fuels 

is one of the most urgent challanges facing our society (Sasi et al., 2011). 

One important goal for the gradual replacement of fossil fuels by renewable energy 

sources, as a measure for transportation emissions reduction, is the use of biofuels 

which are seen as real contributors to reach those goals, particularly in the short term. 

Today the most common biofuels are biodiesel and bio-ethanol, which can replace 

diesel and gasoline, respectively. In EU biodiesel represent 82% of total biofuels 

production (Bozbas, 2008) and is still growing in Europe, South America and United 

States, based on political and economic objectives. 

The first generation of biofuel production systems (starch- and sugar-based ethanol 

production crops) demonstrated the feasibility of generating liquid transportation fuels 

from renewable sources, but at initially low energy-conversion efficiencies and high 

cost. Plants that produce high levels of cellulose and hemicellulose biomass (which can 

be converted into sugars using advanced enzyme catalysts) are being developed as 

second generation biofuel production systems. These biofuel crops do not compete 

directly with food production, require less agronomic inputs and have lower 
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environmental impacts than first generation biofuels. However since vegetable oil 

produced by crops of first generation may also be used for human consumption, this 

can lead to an increase in price of food-grade oils, causing the cost of biodiesel to 

increase and preventing its usage. Morevor the use of biodiesel from second generation 

crops may also be advantageous since the land requirements for biofuels production 

may lead to a competition with arable land and biodiversity loss, due to the cutting of 

existing forests and the use of potential invasive crops that may disrupt the biological 

integrity of local ecosystems and important ecological areas (Scarlat et al., 2008; RFA, 

2008). 

Although biofuels are still more expensive than fossil fuels their production is 

increasing in countries around the world also encouraged by policy measures and 

biofuels targets for transport (COM, 2006). 

A transition to a third generation biofuels, such as microalgae, is than needed since 

low-cost and profitable biodiesel should be produced from low-cost feedstocks in order 

not to compete with edible vegetable oils and should have lower environmental 

impacts. Thus transition can also contribute to a reduction in land requirements due to 

their higher energy yields per hectare as well as to their non-requirement of agricultural 

land. 

Concerning potential feedstock microalage are among the more interesting possibilities 

currently being investigated and implemented at pilot scale or even at industrial scale. 

Their use as a possible solution to the problem of GW is desirable since this group of 

fast-growing unicellular organisms shows several advantages which make them one of 

the most promising and attractive renewable sources for a fully sustainable and low-

carbon economy portfolio. Between their advantages: widespread availability, absent 

(or very reduced) competition with agricultural land, utilization of cheap and abundant 

nutrient sources (sunlight, carbon dioxide, water), high oil and biomass yields, high 

quality and versatility of the by-products, generation of biomass for biofuel production 

with concomitant CO2 sequestration and suitability for wastewater treatments and other 

industrial plants (Vilchez et al., 1997; Olguín, 2003; Mulbry et al., 2008; EABA, 

2012). 

The high potentiality of algae based biofuels is confirmed by the number of recent 

papers available in the literature related to the use of microalgae in the energy sector 

(Usui and Ikenouchi, 1997; Borowitzka, 1999; Kargi and Ozmihçi, 2004; Chisti, 2007), 

by the growing investments of private companies (Solazyme, Ocean Nutrition Canada, 
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Cellana, AlgaeLink) and governments (US Dep. Energy, 2010) in algae-related 

research activity as well as by the increasing number of filed patents (Burton and 

Cleeland, 2008; Wu and Xiong, 2009; Cao and Concas, 2010; Parsheh et al., 2010; 

Rispoli et al., 2011). 

Despite this growing interest, the current microalgae-based technology is still not 

widespread since it is affected by technical and economic constraints that hinder its full 

scale-up (Chen et al., 2011). Therefore, great R&D efforts are currently undertaken to 

produce biodiesel at competitive costs and with the required quality starting from 

microalgae feedstock. In particular given the potential benefits of microalgae, their 

cultivation should be studied and optimized to make them competitive as fuel 

producing systems in the global market (Debska et al., 2010). 

The main technical barriers are related to the fact that photosynthetic efficiency, growth 

rate and lipid content of microalgae are still low if compared to the rate of fuel demand 

of the transportation market. In order to overcome such drawback, scientific community 

is moving on three main directions. The first one is the identification of cultivation 

conditions and photobioreactors configurations that maximize lipid productivity and 

CO2 fixation by means of a reduced number of known microalgae (Yoo et al., 2010; 

Yeh et al., 2011). The second main research line is targeted to the identification of new 

microalgae strains which are intrinsically characterized by high growth rates and high 

lipid content (de la Vega et al., 2011). Finally the most attractive scientific challenge to 

face this problem is the genetic manipulation of existing strains in order to increase 

their photosynthetic efficiency and/or to regulate their metabolism in order to achieve 

an abundant production of lipids coupled with high biomass accumulation (León-

Bañares et al., 2004). 

Coherently to the research lines above reported, these topics have been focused in this 

work with a double aim.  

The first is to investigate for the first time in the literature the potentiality of a relatively 

unknown marine strain, Nannochloris eucaryotum, for the viable production of biofuels 

and high value-added products at the industrial scale by means of a process which uses 

flue gases as CO2. The effect of medium composition and nutrient starvation on the 

growth kinetics of this microalga is investigated using batch photobioreactors with the 

aim to gain useful information for the process optimization. The determination of 

nutrient levels in the medium, or any restriction associated with them, which are 

capable to affect the growth rate of cells during cultivation, represents a first step 
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towards the increase of cultures productivity, and hence the improvement of the 

economics of microalgae-derived fuel production. 

The second aim is to evaluate the potential use of a fresh-water strain, Chlorella 

vulgaris, for mass cultivation in batch and continuous photobioreactors by coupling the 

use of pure CO2 and an enriched medium that could improve the algal biomass 

productivity. The target of this activity is strictly connected to the possibility of 

optimize the CO2 capture and bio-oil production. In fact when trying to transpose this 

technology at industrial scale, one of the main concerns is the management of huge 

quantities of waste gases. Separating the CO2 from the other gases which constitute the 

flue gas can reduce the quantity of gases to be managed up to 90% thus simplifying the 

system operability of photobioreactors. 
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2.1 Microalgae 

 
Algae are recognised to be as one of the oldest life-forms appared on the Earth 

about 3.5 billions of years ago (Falkowski and Raven, 1997). They are considered as 

ancestors of primitive plants (thallophytes), i.e. lacking roots, stems and leaves, have 

no sterile covering of cells around the reproductive cells and have chlorophyll a as 

their primary photosynthetic pigment (Lee, 1980). Algae structures are primarily for 

energy conversion without any development beyond cells, and their simple 

development allows them to adapt to prevailing environmental conditions and prosper 

in the long term (Falkowski and Raven, 1997). 

Prokaryotic cells (cyanobacteria) lack membrane-bound organelles (plastids, 

mitochondria, nuclei, Golgi bodies and flagella) and are more similar to bacteria 

rather than algae. Eukaryotic cells, which comprise of many different types of 

common algae, do have these organelles that control the functions of the cell, 

allowing it to survive and reproduce. Eukaryotes are categorised into a variety of 

classes mainly defined by their pigmentation, life cycle and basic cellular structure 

(Khan et al., 2009). The most important classes are: green algae (Chlorophyta), red 

algae (Rhodophyta) and diatoms (Bacillariophyta). 

As will be explained more in detail in section 2.6, algae can either be autotrophic or 

heterotrophic. The former require only inorganic compounds such as CO2, salts and a 

light energy source for growth while the latter are non photosynthetic therefore 

require an external source of organic compounds as well as nutrients as an energy 

source. Some photosynthetic algae are mixotrophic, i.e. they have the ability to both 

perform photosynthesis and acquire exogenous organic nutrients. Autotrophic algae 

are considered photosynthetic oxygenic autotrophs because they use light energy to 

convert CO2 absorbed by chloroplasts into Adenosine Triphosphate (ATP), the usable 

energy currency at cellular level, which is then used in respiration to produce energy 

to support growth. Depending on species and type of algae, this energy can be in the 

form of lipids as well as carbohydrates. It is the lipid that can be easily converted into 

a suitable industrial fuel source. 

 

2.2 Photosynthesis  

Photosynthesis is a very complex process carried out by green plants and algae. 

These organisms are able to harness the energy contained in sunlight, and via a series 

of oxidation-reduction reactions, produce O2 (which is release in the environment as 
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“bi-product”) and carbohydrates, as well as other compounds, which may be utilized 

for energy (Kruse et al., 2005) as well as the synthesis of other compounds such as 

lipids and proteins (Karube et al. 1992).   

 

CO2 + H2O + light energy → (CH2O)n + O2 

 

This equation is the net result of two different processes: the first, which is often 

referred to as the "light reaction", involves the splitting of water in an oxidative 

process that requires light and have the function to generate reducing agents, ATP and 

Nicotinamide Adenine Dinucleotide Phosphate (NADPH), to be used in the second 

phase (the so called “dark or indipendent-light reaction”) of carbon assimilation by 

using atoms of carbon supplied by CO2. 

Briefly, there are two functionally separate sites of photon absorption, coupled in 

tandem by a chain of redox carrier molecules (photosystem II (PSII), plastoquinone 

(PQ), plastocyanin (PC), cytochrome b6f complex (Cyt b6f), photosystem I (PSI), 

ferredoxin (Fd), ferredoxin-NADP reductase (FNR) and ATP synthase). The photon 

absorption elicits a charge separation of at two reaction sites, PSII and PSI. This is 

depicted in Figure 1 as the so-called ‘‘Z-scheme’’ of photosynthesis. 

The electron flow away from the chlorophyll molecules draws electrons from water.  

This whole complex of photon capturing mechanisms, charge separation, generation 

of metabolic energy, and reducing capability, and the water splitting system is 

embedded in the lipid membrane of flattened sac-like structures present in the 

chloroplast, known as thylakoids. 

The electrons pumped by the two reaction centres eventually give rise to the 

production of the NADPH used in the process of carbon assimilation. At the same 

time protons are pumped across the membrane into the inner cavity of the thylakoid 

(the lumen). This sets up a charge gradient. On their return, the protons spin a 

molecular rotor, which gives rise to the synthesis of ATP, the biological energy 

currency. 
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Figure 1. Illustration of the light reactions of photosynthesis (the so-called Z-scheme). The major 
functional units are represented as oval shapes; photosystem II (PSII), plastoquinone (PQ), 
plastocyanin (PC), cytochrome b6f complex (Cyt b6f), photosystem I (PSI), ferredoxin (Fd), 
ferredoxin- NADP reductase (FNR) (in order of electron transport chain) and ATP synthase. P680 and 
P700, refer to the reaction centres of photosystem II (PSII) and I (PSI) respectively, the asterisk (*) 
indicates the excited state. The inset shows a schematic close-up of the light harvesting complex 
(LHC) (Williams and Laurens, 2010). 
 

Finally, the ‘‘reducing power’’ (NADPH) and energy (ATP) produced by the light 

reaction are used in the enzymatic ‘‘light-independent’’ part of photosynthesis to 

enable the incorporation of CO2 into organic material and its subsequent reduction. 

This process is regulated by a series of enzymes such as ribulose 1-5 bisphosphate 

carboxylase oxygenase, commonly known by the shorter name of RuBisCO. The 

carboxylation by means of RuBisCO represents the Calvin cycle which leads to the 

end to the production of a glucose molecule. 

The "light reaction" may be written as:  

 

12 H2O + light → 6O2 + 24 H+ + 24e- 

 

The oxidation of water is accompanied by a reduction reaction resulting in the 

formation of NADPH. 

This reaction is illustrated below 

 

NADP+ + H2O → NADPH + H+ + O 
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The NADPH formation reaction is linked or coupled to yet another reaction resulting 

in the formation of a highly energetic compound, ATP. As this reaction involves the 

addition of a phosphate group to a compound called, Adenosine Diphosphate (ADP) 

during the light reaction, it is called photophosphorylation. The light energy, which is 

captured, is stored in the form of chemical bonds of compounds such as NADPH and 

ATP. The energy contained in both NADPH and ATP is then used to reduce CO2 to 

glucose, a type of sugar (C6H12O6). 

 

2.3 General considerations for culturing microalgae 
 

Culturing requirements are species specific, but some media are “broad” with 

respect to meeting the nutritional/culturing needs of groups of microalgae. Successful 

culturing entails formulating the medium and environmental conditions to meet the 

target algae’s requirements for optimal growth. Temperature, light, pH (Goldman, et 

al., 1982), salinity (for marine strain) and mixing, as well as nutrient quantity and 

quality are the parameters of interest to obtain optimal growth. 

Moving from the laboratory to large scale is not just “doubling” the batch. It does not 

work for brewing and it does not work for growing algae. One problem is that the 

laboratory algae may have been grown under “unbalanced growth” conditions. It is 

essential to develop standards or standardized ranges that parallel the conditions that 

will exist in the larger scale cultivation unit in the laboratory. Range requirements for 

nitrogen, phosphorus and carbon, quality and quantity of light, temperature, salinity, 

and mixing or turbulence with respect to a particular species must be carefully 

established before moving out of the laboratory. 

CO2 bubbling can physically damage cells and, unless filtered with a 0.2 µm filter 

unit there is a chance of bacterial or viral contamination. Bubbling does increase the 

surface area exposure to CO2 and removes the excess O2 produced. If there is not 

sufficient algae biomass to utilize the CO2, the higher concentration of CO2 can lower 

the pH. 

Beijerinck, Bold Basal, BG11 are some of the most common media recommended for 

freshwater algae in Chlorophyceae (CCAP). Optimal growth requires optimal nutrient 

availability, temperature and light intensity. Optimal in this case means most 

advantageous to the specific algae, since each species has specific growth 

requirements. 
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In addition to the algae species selection, Mata et al. (2010) summarizes some of the 

points made by Maxwell et al. in 1985. The first consideration related to the 

importance of water, its chemistry and its availability. The second is the ease of 

access/cost to carbon and mineral nutrients (N and P in particular). This makes the 

use of sewage effluent (source of N and P) coupled with CO2 (source of C) 

sequestration an attractive solution. 

 

2.4 Nutrients requirement and their effect on the growth 

Microalgae need some essential macronutrients (carbon, nitrogen, phosphorus, 

sulphur, calcium, magnesium) for their growth while micronutrients requirement is 

limited to small amount of some elements such as iron, boron, manganese, copper, 

molybdenum, vanadium, cobalt, nickel, selenium and in same case silicon (Such and 

Lee, 2003). Some of these nutrients can be easily found in nature bound in minerals 

while others are supplied by bacteria metabolism. 

It is important to develop a balanced medium for optimum microalgae cultivation and 

CO2 fixation. 

Nitrogen and phosphorous are considered elements key to algal metabolism then they 

must be found in the media in which algae are grown. The researchers asserted that 

balancing the nutrients based on the elemental composition of the biomass should be 

the basis for effective medium design (Mandalam and Palsson, 1998). However, some 

nutrients need to be present in excess. For example, phosphorus must be supplied in 

excess because the phosphates react with metal ions (Chisti, 2007). 

Phosphorous is most often limited in nature because it is effectively bound in 

sediment. This element, in the form of orthophosphate, is generally considered the 

main limiting nutrient in freshwater aquatic ecosystems: that is, if all the phosphorous 

are used, autotrophic growth will cease, no matter how much nitrogen is available 

(Barsanti and Gualtieri, 2006). 

On the other hand, in nature nitrogen is not necessarily limiting because bacteria are 

fixing nitrogen and supplying the algae with a constant nitrogen source. 

Nutrient deficiencies and excess nutrients, both, can cause physiological and 

morphological changes in microalgae since they can inhibit some of the vital 

metabolic pathways. 
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Applying stress in the form of limited nutrients (especially N or P) can increase lipid 

percentages within the biomass, as can been see from Figure 2. However, this stress 

application also affects the growth rate and thus may lower overall lipid production. 

 

 

 

 

 

 

 

 

                      Figure 2. Effect of nitrogen depletion on microalgal total lipid content. 

 

There are three main different situations of nutrient supply: nutrient-sufficient, 

nutrient-limited and nutrient-deficient. The first case should be evident, whereas the 

difference between the latter two cases may be subtle. Nutrient limitation occurs 

when cells are grown in an environment of a constant, but insufficient, supply of a 

limiting nutrient, to which the cells generally adapt. Nutrient deficiency is 

characterized by the culture’s reliance on endogenous reserves because there are no 

nutrients in the environment (Rodolfi et al. 2009, Dragone et al. 2011). 

The effect of nitrogen and phosphorus concentrations on microalgae growth has been 

extensively addressed in the literature (Przytocka Jusiak, 1976; Shifrin and Chisholm, 

1981; Piorreck, 1984; Jeanfils et al. 1993; Tam and Wong, 1996; Kilham et al., 1997; 

Mandalam et al., 1998; Martinez et al. 1999; Illman et al. 2000; Kirpenko, 2001; Xu 

et al. 2001; Mohapatra et al. 2002; Leonardos and Geider, 2004; Sassano et al. 2004, 

2007; Soletto et al. 2005; Li et al. 2008a; Qu et al. 2008; Bilanovic et al. 2009; 

Celekli and Balci, 2009; Converti et al. 2009; Debska et al., 2010; Hu and Zhou, 

2010; Li et al. 2010; Bhola et al., 2011; Feng et al. 2011; Lin and Lin, 2011). 

In particular, industrial and agricultural wastewater and secondary sewage treated 

effluent can be used as medium source of nitrogen and phosphorus (Prathima Devi et 

al. 2012). Actually, although nitrogen and phosphorous are elements key to algal 

growth, they are also serious pollutants in many waterways. Municipal sewage, 

industrial, and agricultural wastewaters contain carbon, nitrogen, and phosphorus to 

varying degrees. Agricultural wastewater often has higher levels of nitrogen and 
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phosphorus than municipal sewage, and the composition of industrial wastewaters 

depends on the type of industry that creates them and might even include wastewater 

loaded with heavy metals that would be of little value in promoting algal growth. 

Algae can thrive in nitrogen- and phosphorus-rich conditions common to many 

wastewaters, and this feature may be harnessed to not only remove, but also capture 

these important nutrients in order to return them to the terrestrial environment as 

agricultural fertilizer. This tackles the matter of eutrophication in the aquatic 

environment where the wastewater is eventually returned (Pittman et al., 2011). 

 

2.4.1 Carbon 

A number of microalgal species have been shown to be able to utilize carbonates 

such as Na2CO3 and NaHCO3 for cell growth (Goldman and Graham, 1981; Novak 

and Brune, 1985; Chen and Johns, 1991; Ginzburg 1993; Merrett et al., 1996; Huertas 

et al., 2000b; Lin et al., 2003; Hongjin and Guangce, 2009; Šoštaric et al., 2009; Hu 

and Zhou, 2010, Kim et al., 2010, Romanenko et al., 2010; Yeh et al., 2010). Some 

of these species typically have high extracellular carbo-anhydrase activities (Huertas 

et al., 2000a), which is responsible for the conversion of carbonate to free CO2 to 

facilitate CO2 assimilation. This mechanism is directly related to the pH of the 

medium (Azov, 1982). In addition, the direct uptake of bicarbonate by an active 

transport system has been found in several species (Colman and Rotatore, 1995; 

Merrett et al., 1996). Adoption of carbonate-utilizing strains for CO2 fixation could 

be advantageous in two aspects: 1) as only a limited number of microalgal species 

thrive in media containing high concentration of carbonate salts, species control (i.e., 

preventing wild-type microalgal species from contaminating the cultivation system) is 

relatively simple; 2) most of these species have high pH optimum (in the range of 9 to 

11) further simplifying species control (Ginzburg, 1993). 

 

2.4.2 Nitrogen  
 

Ammonia, urea and nitrate are often selected as the nitrogen source for the mass 

cultivation of microalgae (Xu et al., 2001; Li et al., 2008a). The choice of the suitable 

source of nitrogen depends on strain considered since metabolic pathways related to 

nitrogen are species-specific. Although ammonium and urea are often used in mass 

cultivation owing to the relatively low-cost, selecting proper nitrogen source for each 
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algal species is important in improving biomass and oil productivity (Li et al., 

2008b). 

Urea and nitrate were found to be better than ammonia for the growth and lipid 

accumulation in Chlorella sp., Chlorella vulgaris, Neochloris oleoabundans and 

Scenedesmus rubescens (Tam and Wong, 1996; Liu et al., 2008; Li et al., 2008b; 

Hsieh and Wu, 2009; Pruvost et al., 2009; Lin and Lin, 2011). In contrast, for 

Ellipsoidion sp. the ammonium has been demonstrated to produce higher biomass and 

lipid content than those of urea and nitrate (Xu et al., 2001). 

In general, lipid productivity and content are inversely correlated with each other; and 

stress conditions, e.g. deprivation or limitation of nitrogen (or of phosphate, to a 

lesser extent), limit cell growth while increasing lipid content (Rodolfi et al., 2009; 

Khozin-Goldberg and Cohen, 2006). Nitrogen limitation has been observed to result 

in lipid content increase in many Chlorella strains such as Chlorella emersonii (63%), 

Chlorella minutissima (56%), Chlorella vulgaris (57.9%), Chlorella luteoviridis 

(28.8%), Chlorella capsulata (11.4%), and Chlorella pyrenoidosa (29.2%) as well as 

others microalgae strains (Shifrin and Chisholm, 1981; Reitan et al., 1994; 

Stephenson et al. 2010, Mutlu et al. 2011, Yeh and Cheng, 2011). It has been 

reported that, under nitrogen deficient conditions, many other strains show increase in 

their lipid content and modification on fatty acids composition (Griffiths et al. 2011). 

Neochloris oleoabundans cells accumulate lipids in a range 25–54% with 80% 

triglycerides component (Tornabene et al., 1983; Kawata et al., 1998; Pruvost et al., 

2011). It has also been reported that the triglycerides accumulated in Nannochloris sp. 

under nitrogen deficient conditions could be 2.2 times of that in nitrogen sufficient 

cultures (Yamaberi et al., 1998, Takagi et al., 2000). 

The general principle is that when there is insufficient nitrogen for the protein 

synthesis required by growth, excess carbon from photosynthesis is channelled into 

such storage molecules as triacylglycerols or starch (Scott et al. 2010). 

 

2.4.3. Phosphorus 
 

Phosphorus is an important limiting nutrient in many ecosystems (such as lakes, 

rivers, and estuaries), and also one of the most likely to limit the rate of 

phytoplankton production. Microalgae use phosphorus for their metabolism in form 

of polyphosphate. Recent reviews on polyphosphate metabolism in photosynthetic 
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organisms have been made by Yang and Finnegan (2010), Seufferheld and Curzi 

(2010) and Yao et al. (2011). 

Even if with a little extent compared to the larger results on nitrogen, phosphorus 

starvation can also enhance microalgal biomass and lipid productivity, as reported for 

Monodus subterraneus (Khozin-Goldberg and Cohen, 2006), and produce changes in 

fatty acids composition as reported for Phaeodactylum tricornutum and Dunialella 

tertiolecta (Siron et al., 1989). 

 

2.4.4 Other elements 

Iron, sulphur, magnesium, and other elements are also indispensable for the 

growth of microalgae. 

Iron is involved in electron flow from H2O to nicotinamide adenine dinucleotide 

phosphate (ADP in its oxidized form) (Roden and Zachara, 1996). Some 

investigations have been addressed to the effect of iron on microalgae growth. High 

iron concentrations have been show to enhance cell growth (Sung et al., 1998) and 

induce lipid accumulation (Liu et al., 2008) in Chlorella strains; this suggests that 

some metabolic pathways may be modified upon exposure to high levels of that 

oligoelement in the medium. 

Sulphur is an essential component of two amino-acids, cysteine and methionine. In its 

absence, protein biosynthesis is impeded and the photosynthetic system PSII repair 

cycle is blocked (Zhang et al., 2002). 

Magnesium is required as essential element in the core of the tetrapyrrolic ring which 

is the base of the chlorophyll molecule. 

Some trace metals play key roles in (non-cyclic) photosynthetic electron transport 

(Raven et al., 1999). For instance, manganese is essential for O2 evolution, and 

calcium has an important role in the thylakoid lumen in facilitating H2O 

dehydrogenation and O2 evolution. 

 

2.5 Effect of temperature, pH and light on the growth 

 
2.5.1 Temperature 
 

Temperature is one of the major factors that regulate cellular, morphological and 

physiological responses of microalgae (Dauta et al., 1990; Hosono et al., 1994; Mayo 

and Noike, 1996; Mayo, 1997; Hirata et al., 1997; Martinez et al., 1999; Carvalho 
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and Malcata, 2003; de Castro Araujo et al., 2005; Kitaya et al., 2005; Shi et al., 2006; 

Cho et al., 2007; Colla et al., 2007; Durmaz et al., 2007; Converti et al., 2009). 

Higher temperatures generally accelerate the metabolic rates of microalgae, whereas 

low temperatures lead to inhibition of microalgal growth (Muñoz et al., 2006). In 

suitable temperature condition, the enzymes in microalgal cells possess the highest 

activity. Although algae may be able to grow at a variety of temperatures 

(Chinnasamy et al., 2009), different species show different optimal temperatures 

which are specific to each strain (Renaud et al., 2002; Cho et al., 2007). For example, 

the optimum temperature range for Nannochloropsis, Tetraselmis, and Isochrysis 

species were found to be 19-21, 19-21 and 24-26°C, respectively (Abu-Rezq et al., 

1999). For many species, optimal growth temperatures of 15–26°C have been 

observed with maximum cell densities obtained around 23°C (Ono and Cuello, 2003). 

However, optimal temperatures are also influenced by other environmental 

parameters, such as light intensity and the distance between cultivation apparatus and 

artificial illumination system. 

The control of temperature is a key factor for culturing microalgae outdoors (Torzillo 

et al., 1991). Actually, temperature can vary depending on the geographic region of 

cultivation (Ramos de Ortega and Roux, 1986). Seasonal and even daily fluctuations 

in temperature can interfere with algae production. Temperatures can reach as high as 

30°C higher than ambient temperature in a closed photobioreactor without 

temperature control equipment. For this reason, evaporate cooling or shading 

techniques are employed frequently to inhibit temperatures of that magnitude (Suh 

and Lee, 2003). On the other hand, some “thermophiles” Chlorella species are 

reported to be tolerant to high temperature (Hanagata et al., 1992; Sakai et al., 1995; 

Loseva et al., 1998). 

 

2.5.2 pH 

The pH is a fundamental parameter which regulates cell metabolism and 

biomass formation (Goldman et al., 1982). Each strain of microalgae has a narrow 

optimal range of pH (Mayo and Noike, 1994, 1996; Mayo et al., 1997; Alyabyev et 

al., 2011) and most microalgal species are favoured by neutral pH. However, there 

are some extremophilic species which dwell in environments that are characterized by 

very low or high pH-values (acidophiles or alkalophiles). For example, between 

microalgae which show growth under alkaline conditions there is Spirulina platensis 
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with an optimum pH around 9 (Hu et al., 1998; Qiang et al., 1998) while 

Chlorococcum littorale thrive well with an acidic pH around 4 (Kodama et al., 1993; 

Schnackenberg et al., 1996). Galdieria sulphuraria (Barbier et al., 2005) and 

Chlamydomonas acidophila (Cuaresma et al., 2011) have been reported to be also 

resistant to pH 0 and 1.5-2.5, respectively. 

The pH of the medium is linked to the concentration of CO2 and pH increases steadily 

in the medium as CO2 is consumed during flow downstream in a cultivation system 

(Suh and Lee, 2003). The pH affects mainly the liquid chemistry of polar compounds 

and the availability of nutrients such as iron, organic acids and even CO2 (Coleman 

and Colman, 1981; Lee and Pirt, 1984).  

There is a complex relationship between CO2 concentration and pH in microalgal 

photobioreactor related to the chemical equilibrium among chemical species such as 

CO2, H2CO3, HCO3
- and CO3

2- (Livanski and Bartos, 1986). The chemical equilibrium 

between these forms is pH dependent with CO2 the predominant form at lower pH below 

7 and CO3
2-

 predominant above pH 10. Rapid growth of algae can, with the assimilation 

of CO2 as the C source, cause the pH to rise. 

Increasing CO2 concentrations can lead to higher biomass productivity, but will also 

decrease pH, which can have an adverse effect upon microalgal physiology. By 

contrast, microalgae have been shown to cause a rise in pH to 10–11 because of CO2 

uptake (Oswald et al., 1988). This increase in pH can be beneficial in open ponds for 

instance for neutralization of pathogens in microalgal wastewater treatment, but can 

also inhibit microalgal growth. 

 

2.5.3 Light 

In photosynthetic cultures, the light energy is used by the cells either for 

maintenance purposes or formation of new biomass (Pirt, 1986). Consequently, the 

biomass productivity and the cell growth rate are directly linked to the light energy 

available, which varies from day to night.  

The effect of light intensity on growth kinetics and biomass accumulation (Dauata et 

al., 1990; Ogbonna et al., 1995; Qiang et al., 1998; Lu et al., 2001; Olguin et al., 

2001, Carvalho and Malcata, 2003; Yun and Park, 2003; Leonardos and Geider, 

2004; You and Barnett, 2004; Kitaya et al., 2005; Chen and Chen, 2006; Yeh et al., 

2010; Pedrosa Bezerra et al. 2011; Shu et al., 2011; Amini Khoeyi et al., 2012; 

Ruangsomboon, 2012) as well as the effect of illumination cycles (hours of light and 
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hours of dark) on biochemical composition (Shifrin and Chisholm, 1981; Ogbonna 

and Tanaka, 1996; Ma et al., 1997, Janssen et al., 2001; Ratchford and Fallowfield, 

2003; Meseck et al., 2005; Umorin and Lind, 2005; Jacob-Lopes et al., 2009; Hodaifa 

et al., 2011; Seyfabadi et al., 2011; Sforza et al., 2011) have been characterized on 

different microalgae strains such as Chlorella vulgaris, Chlorella pyrenoidosa, 

Nannochloropsis salina, Dunaliella tertiolecta, Monodus subterraneus, Pavlova 

lutheri, Spirulina platensis, Chaetoceros muelleri, Porphyridium cruentum, Euglena 

gracilis, Tetraselmis chui, Scenedesmus obliquues and Botryococcus braunii. 

 

2.6 Modality of cultivations 

2.6.1. Photoautotrophy 

 

Phototrophic cultivation occurs when the microalgae use light (such as sunlight 

or artificial light provided by lamps) as the energy source and inorganic carbon (e.g., 

CO2) as the carbon source to form chemical energy through photosynthesis (Huang et 

al., 2010). This is the most commonly used cultivation condition for microalgae 

growth (Gouveia et al., 2009; Gouveia and Oliveira, 2009; Illman et al., 2000; Yoo et 

al., 2010) and currently is the only method which is technically and economically 

feasible for large-scale production of algae biomass for non-energy production 

(Borowitzka, 1997). Under phototrophic cultivation there is a large variation in the 

lipid content of microalgae depending on the type of microalgae species. Normally a 

nitrogen-limiting or nutrient-limiting condition is used to increase the lipid content in 

microalgae (Mata et al., 2010). As a result, achieving higher lipid content is usually at 

the expense of lower biomass productivity. Thus, lipid content is not the sole factor 

determining the oil-producing ability of microalgae. Instead, both lipid content and 

biomass production need to be considered simultaneously. Hence, lipid productivity, 

representing the combined effects of oil content and biomass production, is a more 

suitable performance index to indicate the ability of a microalga with regard to oil 

production. The major advantage of using autotrophic cultivation to produce 

microalgal oil is the consumption of CO2 as carbon source for the cell growth and oil 

production. However, when CO2 is the only carbon source, the microalgae cultivation 

site should be close to factories or power plants which can supply a large quantity of 

CO2 for microalgal growth. 
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2.6.2. Heterotrophy 

 

Some microalgae species can not only grow under phototrophic conditions, but 

also use organic carbon under dark conditions, just like bacteria. The situation when 

microalgae use organic carbon as both the energy and carbon source is called 

heterotrophic cultivation (Chojnacka and Marquez-Rocha, 2004). 

Although microalgae can utilize light efficiently, photoautotrophic growth is often 

slow because of light limitation at high cell densities on a large scale (Wen and Chen, 

2003) or “photoinhibition” due to excessive light. In view of these disadvantages 

associated with photoautotrophic cultivation, heterotrophic growth of microalgae for 

biomass production should be favourably considered (Chen, 1996; Miao and Wu, 

2006). Heterotrophic cultivation offers several advantages over photoautotrophic 

cultivation including elimination of problems associated with limited light that hinder 

high cell density in large scale photobioreactors during phototrophic cultivation 

(Huang et al., 2010) allowing much simpler scale-up possibilities since smaller 

reactor surface to volume ratio’s may be used (Eriksen, 2008), good control of the 

cultivation process, and low-cost for the harvesting of biomass because of higher cell 

density obtained (Chen and Johns, 1991). 

In heterotrophic culture, both cell growth and biosynthesis of products are 

significantly influenced by medium nutrients and environmental factors. Carbon 

sources are the most important element for heterotrophic cultivation of microalgae. 

Moreover, heterotrophic microalgae might utilize carbon sources as acetate, glucose, 

ethanol, glycerol, sucrose, lactose, galactose, mannose and fructose depending on 

microalgal species (Yokochi et al., 1998, Liang et al., 2009). Liu et al. (1999) 

compared several carbon sources and concluded that glucose was preferred. Than, in 

order to lower the production cost of microalgal oil as biodiesel, cheaper carbon 

sources should be considered. 

In this process microalgae are grown in stirred tank bioreactors or fermenters. These 

systems provide a high degree of growth control and also lower harvesting costs due 

to the higher cell densities achieved (Wen and Chen, 2003; Chen and Chen, 2006). 

The set-up costs are minimal, although the system uses more energy than the 

production of photosynthetic microalgae because the process cycle includes the initial 

production of organic carbon sources via the photosynthesis process (Chisti, 2007). 

Higher biomass production and productivity could be obtained from using 

heterotrophic cultivation. The feasibility for large-scale biodiesel production based on 
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heterotrophic cultivation of Chlorella protothecoides was outlined by Lee et al. 

(2007) and Xiong et al. (2008). This microalga shows higher lipid content during 

heterotrophic growth and a 55% increase in lipid content was obtained by changing 

the cultivation condition from phototrophic to heterotrophic (Miao and Wu, 2006). 

The highest lipid productivity (3700 mg L-1 d-1) was reported by Xiong et al. (2008) 

using a 5-L fermentor operated with an improved fed-batch culture strategy. Hence, 

they concluded that heterotrophic cultivation could result in higher production of 

biomass and accumulation of high lipid content in cells. 

Other studies also suggest higher technical viability of heterotrophic production 

compared to photoautotrophic methods in either open ponds or closed 

photobioreactors for the cultivation of Crypthecodinium cohnii (de Swaaf et al., 

2003) and Galdieria sulphuraria (Graveholt et al., 2007). Using heterotrophic growth 

gives much higher lipid productivity, as the highest lipid productivity from 

heterotrophic cultivation is nearly 20 times higher than that obtained under 

phototrophic cultivation. However, the sugar based heterotrophic system frequently 

suffers from problems with contamination since it is difficult to prevent bacteria 

proliferation. Actually, open ponds and raceway ponds are usually operated under 

phototrophic cultivation conditions since, compared to other types of cultivation, the 

contamination problem is less severe when using heterotrophic growth (Mata et al., 

2010). 

 

2.6.3. Mixotrophy 

 

Mixotrophic cultivation is when microalgae undergo photosynthesis and use 

both organic compounds and inorganic carbon (CO2) as a carbon source for growth. 

This means that the microalgae are able to live under either phototrophic or 

heterotrophic conditions, or both (Zhang et al., 1999). Microalgae assimilate organic 

compounds and CO2 as a carbon source, and the CO2 released by microalgae via 

respiration will be trapped and reused under phototrophic cultivation (Mata et al., 

2010). The ability of mixotrophs to process organic substrates means that cell growth 

is not strictly dependent on photosynthesis, therefore light energy is not an absolutely 

limiting factor for growth (Andrade et al., 2007) as either light or organic carbon 

substrates can support the growth (Chen et al., 1996). Examples of microalgae that 

display mixotrophic metabolism processes for growth are the cyanobacteria Spirulina 

platensis and the green alga Chlamydomonas reinhardtii (Chen et al., 1996). The 
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photosynthetic metabolism utilises light for growth while aerobic respiration uses an 

organic carbon source (Zhang et al., 1999). Growth is influenced by the media 

supplement with glucose during the light and dark phases; hence, there is less 

biomass loss during the dark phase (Andrade et al., 2007). Growth rates of 

mixotrophic algae generally compare favourably with cultivation of photoautotrophic 

algae in closed photobioreactors but are considerably lower than for heterotrophic 

production. Successful production of mixotrophic algae allows the integration of both 

photosynthetic and heterotrophic components during the diurnal cycle. This reduces 

the impact of biomass loss during dark respiration and decreases the amount of 

organic substances utilised during growth. These features infer that that mixotrophic 

production can be an important part of the microalgae-to-biofuels process. It should 

be pointed out that, compared with phototrophic and heterotrophic cultivation, 

mixotrophic cultivation is rarely used in microalgal oil production. 

 

2.7. Production systems. 

Microalgae cultivation can be done in open-culture systems and/or in highly 

controlled closed-culture systems called photobioreactors (PBRs). Comparitions 

between the two type of cultivation system are reported in Table 1. 

 

2.7.1 Open ponds 
 

Open ponds are the most widely used systems for large-scale outdoor 

microalgae cultivation (Borowitzka, 1993) and most commercial microalgal 

cultivation is presently carried out, with few exceptions, in open systems (Richmond, 

1999). 

There are many types of open cultivation systems which vary in size, shape, material 

used for construction, type of agitation and inclination (Tredici, 2004). Algal cultures 

can be defined (one or more selected strains), or are made up of an undefined mixture 

of strains. However, to date only a few species of microalgae (e.g Spirulina sp., 

Chlorella sp., Dunaliella salina) have been found to be able to be grown successfully 

at a commercial scale in open ponds (Tredici and Materassi, 1992; Borowitzka, 1993; 

Parsheh et al., 2010). 

Many different designs have been suggested for pond construction but only four 

major pond design have been developed and operated at a large-scale: a) unstirred  
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 Table 1. Comparison between open ponds and photobioreactors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ponds (lakes and natural ponds), b) inclined ponds, c) central pivot ponds and d) 

raceway ponds (Figure 3). Generally, these cultivation systems are less expensive to 

build and operate, more durable than large closed reactors and with a large production 

capacity when compared with closed systems. On the other hand, the production 

through ponds requires more extensive land areas despite being cheap since it uses 

very low amount of CO2 of the air and are more susceptible to contaminations from 

other organisms such as mushrooms, bacteria and protozoa and also to weather 

conditions, not allowing control of water temperature, evaporation and lighting. They 

also show low photosynthetic efficiency (Morita et al., 2001b) due to low CO2 (since 

atmosphere only contains 0.03% (v/v) CO2 it is expected that mass transfer limitation 

could slow down the cell growth of microalgae) and sunlight available only at the 

pond surface. According to Richmond (2004) ponds use more energy to homogenize 

nutrients and the water level cannot be kept much lower than 15 cm (or 150 L m-2) for 

the microalgae to receive enough solar energy to grow. In these open-culture systems 

nutrients can be normally provided through runoff water from nearby land area or by 

channelling the water from sewage/water treatment plants. The water is typically kept  

 

Parameter Open systems PBRs 

Contamination risk High Low 
Sterility None Achievable 
Species control Difficult Easy 
Area/Volume ratio Low High 
Water losses High Low 
CO2 losses High Depends on pH, alkalinity 
O2 inhibition Low Problematic 
Mixing Very poor Uniform 
Light utilization efficiency Poor High 
Temperature control Difficult Less difficult 
Evaporation of growth medium High Low 
Hydrodynamic stress on algae Very low Low-High 
Process control Complicated Less complicated 
Maintenance Easy Difficult 
Yield Low High 
Population (algal cell) density Low High 
Biomass concentration Similar in both 3-5 times in PBRs 
Constructions costs Low High 
Weather dependance High Low 
Overheating problems Low High 
Dissolved oxygen concentration Low High 
Scale-up Difficult Difficult 
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Figure 3. Example of open cultivation systems: a) natural unstirred pond (Wikipedia, 2011), b) small pond 
for Spirulina culture, Asia (Wikipedia, 2011), c) Open raceway-type culture ponds of Earthrise in 
California, US (Spirulina.org.uk), d) Paddle wheel of a raceway pond (Department of Chemical 
Engineering, Tehran Polytechnic, Iran) 

 

in motion by paddle wheels or rotating structures, and some mixing can be 

accomplished by appropriately designed guides. 

Profitable production of microalgae, at present, is limited to comparatively few 

production plants producing high value health foods such as ß-carotene by Dunaliella 

salina and proteins and carotenoids by Chlorella sp., Spirulina platensis, 

Haematococcus pluvialis (Jimenez et al., 2003; Borowitzka, 2005; Del Campo et al., 

2007). Most of these plants are located in South East Asia, Australia and USA, 

mainly Hawaii, California, Texas and Arizona (Borowitzka and Borowitzka, 1990; 

Benemann, 1992; Richmond, 1992). 

 

2.7.2 Photobioreactors 

To overcome some constraints related to ponds efficiency, closed PBRs have 

been proposed, which not only possess higher photosynthetic efficiency, but also 

temperature control of the culture medium, since temperature normally increases with 

a b 

c 

d 

d 



 36

the exposure to the sunlight (Morita et al., 2001c) and allow for the use of external 

contamination control. The critical design requirement in the PBR design is the 

illumination surface area per unit volume and a high surface area to volume ratio (S/V 

ratio) is required to have an efficient PBR (Ogbonna and Tanaka, 1997). 

Further, despite several research efforts for the design and operation of many PBRs, 

devising and developing suitable apparatus, cultivation procedures and algal strains 

susceptible of undergoing substantial increases in efficiency for the use of solar 

energy and CO2 are the major challenges for the industrial microalgal culturing.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Example of closed cultivations systems: a) tubular horizontal photobioreactor (Bioprodukte-
steinberg.de), b) column photobioreactor (Bioenergy Noe, 2012), c) inclined column photobioreactor 
(algaebiodiesel.com), d) flate pannel photobioreactor (Wijffels, 2007), e) BIOCOIL (heatingoil.com) 
 

Accordingly, there is no ‘best reactor system’ to achieve maximum productivity with 

minimum operation costs, irrespective of the available biological and chemical 

systems (Carvalho et al., 2006). Selection of the PBR depends on the ability to 

maximize the productivity and photosynthetic efficiency. 

c 

a b 

d e 
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Design and operation of suitable microalgal biomass production systems have been 

discussed and patented extensively in the literature (Molina Grima et al. 2000; 

Hirabayashi et al., 2002; Scragg, 2002; Carvalho et al., 2006; Lopez et al., 2006; 

Levin, 2007; Lewnard and Wu, 2008; Oyler, 2008; Ugwu et al. 2008; Hsieh et al. 

2009b; Kayama and Kadowaki, 2009; Lin, 2009; Slavin, 2009; Briassoulis et al. 

2010; Dimanshteyn, 2010; Erb and Peterson, 2010; Haley, 2010; Hu, 2010; McNeff, 

2010; Melkonian and Podola, 2010; Seebo 2010; Woerlee and Siewers, 2010; Dhale, 

2011; Edelson, 2011; Hulatt et al. 2011; Kassebaum and Kassebaum, 2011; Katoch 

and Katoch, 2011; Lin, 2011; Zhang et al., 2011) with recent reviews 

comprehensively presenting several types of closed bioreactors for the production of 

microalgae based on transport phenomena and process engineering methodological 

approaches (Janssen et al., 2003; Choi et al., 2003; Hankamer et al., 2007; Kunjapur 

and Eldridge, 2010). 

Between the numerous types of enclosed PBRs suitable for large-scale cultivation 

that have been designed in an attempt to best control the growth factors of microalgae 

there are four main categories which are summarized in the Figure 4: 1) 

tubular/horizontal, 2) column/vertical, 3) flat plate or flat panel, 4) helical/tubular 

(BIOCOIL).  

                                     Table 2. Prospects and limitations of different photobioreactors 
 

Culture systems Advantages Disadvantages 

Tubular PBRs Large illumination surface area, 
suitable for outdoor cultures, fairly 
good biomass productivities, 
relatively cheap 

Gradients of pH, dissolved oxygen 
and CO2 along the tubes, fouling, 
some degree of wall growth, requires 
large land space 

Vertical-column PBRs High mass transfer, good mixing 
with low shear stress, low energy 
consumption, high potentials for 
scalability, easy to sterilize, readily 
tempered, good for immobilization 
of algae, reduced photoinhibition 
and photo-oxidation 

Small illumination surface area, their 
construction require sophisticated 
materials, shear stress to algal 
cultures, decrease of illumination 
surface area upon scale-up 

Flat-plate PBRs Large illumination surface area, 
suitable for outdoor cultures, good 
for immobilization of algae, good 
light path, good biomass 
productivities, relatively cheap, 
easy to clean up, readily tempered, 
low oxygen build-up 

Scale-up require many compartments 
and support materials, difficulty in 
controlling culture temperature, some 
degree of wall growth, possibility of 
hydrodynamic stress to some algal 
strains 

 
Each type of PBR has advantages and disadvantages (Table 2) in terms of potential 

efficiency of sunlight utilization, effective mass transfer of O2 and CO2, easiness of 

cleaning and scalability. 
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The main parameter used to compare the photosynthetic productivities of different 

type of PBRs is the photosynthetic light conversion efficiency (PE) which is defined 

as the percentage of light energy recovered as microalgal biomass to the total light 

energy received by the cultivation system (Watanabe and Hall, 1996a). PE should be 

used in conjunction with volumetric productivity when evaluating systems operated 

under similar climactic conditions (Tredici and Zitelli, 1998). 

 
 
2.7.2.1 Tubular / horizontal PBRs 
 

Tubular configuration is considered as one of the most suitable types for outdoor 

mass cultures. Most of these outdoor cultivation systems are usually constructed with 

either glass or plastic tube of small diameter, often mounted as parallel loops on a 

rigid scaffold. 

They can be in form of horizontal / serpentine (Tredici and Materazzi, 1992; Molina 

Grima et al., 2001), vertical (Pirt et al., 1983), near horizontal (Henrard et al., 2011), 

conical (Norsker, 2002) or inclined PBRs (Vunjak-Novakovic et al., 2005). Re-

circulation, aeration and mixing of the cultures in these PBRs are usually done by air-

pump or preferably by airlift systems. 

Tubular PBRs are very suitable for outdoor microalgae mass cultures since they have 

large illumination surface area. On the other hand, one of their major limitations is 

poor mass transfer. It should be noted that mass transfer (oxygen build-up) becomes a 

problem when tubular FBRs are scaled up. For instance, some studies have shown 

that very high dissolved oxygen (DO) levels are easily reached in tubular 

photobioreactors (Torzillo et al., 1986; Richmond et al., 1993; Molina Grima et al., 

2001). 

Normally they consist of straight, coiled or looped transparent tubing arranged in 

various ways for maximizing sunlight capture. Properly designed completely isolate 

the culture from potentially contaminating external environments, hence, allowing 

extended duration monoalgal culture. 

Also, photoinhibition is very common in outdoor tubular PBRs. When a tubular 

reactor is scaled up by increasing the diameter of tubes, the illumination surface to 

volume ratio would decrease. On the other hand, the length of the tube can be kept as 

short as possible while a tubular PBR is scaled up by increasing the diameter of the 

tubes. In this case, the cells at the lower part of the tube will not receive enough light 

for cell growth (due to light shading effect) unless there is a good mixing system. 
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Also, it is difficult to control culture temperatures. Actually, although they can be 

equipped with thermostat to maintain the desired culture temperature, this could be 

very expensive and difficult to implement. It should also be noted that adherence of 

the cells to the walls of the tubes is common. Furthermore, long tubular PBRs are 

characterized by gradients of oxygen and CO2 transfer along the tubes. The increase 

in pH of the cultures would also lead to frequent re-carbonation of the cultures, which 

would consequently increase the cost of algal production. 

Consequently, even if this reactor type is quite effective it is too expensive and needs 

too much auxiliary energy for pure biofuel production. 

 

2.7.2.2 Tubular / helicoidal (BIOCOIL) 

In 1999 Borowitzka described a particular type of tubular reactor, a cylindrically 

shaped helical tubular design known as BIOCOIL (Robinson et al., 1988) which was 

supposedly the most promising design at that time. Considerations around tubular 

PBRs lead to the conclusion that diameter of tubes and position of PBRs to respect to 

the light could improve the PE. The solar collector tubes are generally 0.1 m or less in 

diameter. Tube diameter is limited because light does not penetrate too deeply in the 

dense culture broth that is necessary for ensuring a high biomass productivity of the 

PBR (Chisti, 2007). Instead of being laid horizontally on the ground, the tubes may 

be made of flexible plastic and coiled around a supporting frame to form a helical coil 

tubular PBR (Chisti, 2007). However, there has been a limited discussion of the 

BIOCOIL during the last 20 years suggesting that its potential should be longer 

addressed (Chrismadha and Borowitzka, 1994; Watanabe et al., 1995, 1998; 

Watanabe and Hall, 1995, 1996a, 1996b; Watanabe and Saiki, 1997; Rorrer and 

Mullikin, 1999; Borodin et al., 2000, 2002;  Morita et al., 2000a, 2000b, 2001a, 

2001b, 2002; Lu et al., 2001, 2002, Travieso et al., 2001; Nerantzis et al., 2002; 

Scragg et al., 2002; Acién Fernández et al., 2003; Hall et al., 2003a; Watanabe, 2004; 

Carlozzi and Pinzani, 2005; Moheimani, 2005; Perner-Nochta et al., 2007; Fan et al., 

2008; Soletto et al., 2008; Concas et al., 2009,2010; Briassoulis et al., 2010; Kong et 

al., 2010; Westerhoff et al., 2010; Moheimani et al., 2011). Watanabe and Hall 

(1996a) noted that the design has radiation losses in the central area of the reactor. 

The authors attempted to improve it by constructing a laboratory-scale cone-shaped 

helical tubular reactor. It should be noted that little has been reported on the ability of 

the cone-shaped design to be scaled up. This design supposedly increased the 
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illuminated surface area while covering the same area on the ground as a regular 

tubular or FP reactor (Watanabe and Hall, 1996b). The biomass productivity obtained 

for Spirulina platensis and Chlorella sp. HA-1 were 15.9 g L-1 d-1 and 21.5 g L-1 d-1 

which correspond to a PE of 6.83% and 5.67%, respectively (Watanabe and Hall, 

1996a; Watanabe and Saiki, 1997). A maximum photosynthetic productivity of 34.4 g 

L-1 d-1 corresponding to a greater PE of 8.67% was obtained for Chlorella sorokiniana 

cultivated in a conical COIL feded with 10% CO2 (Morita et al., 2000a). Soletto et al. 

(2008) reached a PE of 9.4% during a fed-batch cultivation of S. platenis by changing 

the feeding rate of CO2 and light intensity at the values of 0.44 g L-1 d-1 and 125 µmol 

m2 s-1, respectively. 

 
2.7.2.3 Column/vertical PBRs 

 
Vertical-column PBRs are compact, low-cost and easy type of reactors to 

operate monoseptically and appear to best satisfy the design considerations at least at 

laboratory scale. There are two main types of vertical reactors: air-lift reactors and 

bubble column reactors. In these types of reactors, mixing energy is provided by the 

gas intake, thus combining aeration and dispersion. Generally, the reaction volume is 

sparged from the bottom. 

They have been reported to be very promising for large-scale 

cultivation of microalgae since can attain a final biomass concentration and specific 

growth rate that are comparable to values typically reported for narrow tubular PBRs 

(Merchuk and Mukmenev, 2000). Vertical air-lift reactors improve gas exchange, 

liquid flow and exposure of cells to light (Camacho et al. 1999). Airlift reactors 

circulate the culture without moving parts or mechanical pumping, which reduces the 

potential for contamination and for cell damage due to shear. The air-lift driven 

tubular PBR both circulated the fluid through the loop and stripped oxygen from the 

culture (Spolaore et al. 2006). 

Some bubble column PBRs are equipped with either draft tubes or constructed as split 

cylinders. In the case of draft tube PBRs, intermixing occurs between the riser and the 

down comer zones of the PBR through the walls of the draft tube. Their main 

advantages include: high mass transfer, good mixing with low shear stress, 

low energy consumption, high potentials for scalability, easy to sterilize, readily 

tempered, good for immobilization of algae, reduced photoinhibition and photo-

oxidation. Their main limitations include: small illumination surface area required 
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sophisticated materials for their construction, shear stress to algal cultures, decrease 

of illumination surface area upon scale-up. 

 

2.7.2.4 Flat plate PBRs 
 

Another kind of system configuration which allows having a large illumination 

surface area is represented by flat-plate (FP) PBRs (Sierra et al., 2008). In 1985 

Samson and Leduy developed a flat reactor equipped with fluorescence lamps 

following the pioneering work of Milner (1953). A year later, Ramos de Ortega and 

Roux (1986) developed an outdoor FP reactor by using thick transparent PVC 

materials. As time went on, extensive works on various designs of vertical alveolar 

panels and FP reactors were reported (Tredici and Materassi, 1992; Zhang et al., 

2002; Hoekema et al., 2002; Nebdal et al., 2010). Generally, FP PBRs are made of 

transparent materials in order to maximize the utilization of solar light energy. 

Accumulation of dissolved oxygen concentrations in this type of PBRs is relatively 

low compared to horizontal tubular PBRs. It has been reported that with FP PBRs, 

high photosynthetic efficiencies can be achieved (Richmond, 2000). Between the 

main advantages in utilizing FP PBRs there are: large illumination surface area thus 

making them suitable for outdoor cultures, good capacity of algae immobilization, 

good light path, good biomass productivities, relatively cheap, easy to clean up, 

readily tempered, low oxygen build-up. Main limitations of these PBRs are: the scale-

up require many compartments and support materials, a difficulty in controlling 

culture temperature, some degree of wall growth, and possibility of hydrodynamic 

stress to some algal strains.  

 

2.7.3 Comments on different photobioreactor systems   

 

Some authors claimed that the PE is significantly higher in tubular PBRs 

compared to FP PBRs because their curved surface resulted in the spatial dilution of 

light. Although some authors have claimed that FP reactors may have greater PE 

(Janssen et al. 2003) the results of Tredici et al. are convincing and it appears that PE 

is a drawback for FP reactors. Another drawback for FP reactors is that cell damage 

may occur because of the high stress resulting from aeration, a problem that has never 

been reported in tubular reactors. However, FP PBRs have advantages over other 

closed reactors. In FP PBRs, the oxygen path is much shorter than in tubular reactors 
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(Sierra et al. 2008). A shorter oxygen path results in FP concentrations than 

horizontal PBRs (Ugwu et al. 2008). Power consumption is another important 

criterion for comparison among reactor types. FP reactors consume less power than 

tubular reactors to achieve similar or greater mass transfer capacity (Sierra et al. 

2008). 

The comparisons between tubular and column reactors, made by Sánchez Mirón et al. 

(1999), lead to the significant conclusion that tubular reactors have very limited 

possibility for commercial scale applications, whereas column reactors do have 

potential. Bubble column reactors performed better than tubular reactors because they 

are supposedly more suited for scale-up, require less energy for cooling because of 

the low surface to volume ratio, and overall outperform tubular reactors throughout 

the year. Under high light intensity, vertical reactors experience less photoinhibition, 

and under low light intensity, a vertical orientation captures more reflected light 

(Sánchez Mirón et al. 1999). A vertical orientation also requires less land area 

(Camacho et al. 1999). Molina Grima et al. (2001) asserted that, for tubular reactors, 

a two layered loop with the lower set of tubes displaced horizontally in between the 

upper set of tubes maximizes efficiency of land use. 

 

2.8 Microalgal productivity 

It should be noted that the objective of the PBR photosynthetic production 

process of microalgal biomass is to obtain simultaneously the reduction of input 

energy and the achievement of high photosynthetic production. Also, these closed 

PBRs may be located indoors or outdoors, although outdoor location is more common 

due to the ease of using free sunlight. Comparison of performances achieved by PBRs 

and open ponds may not be easy, as the evaluation depends on several factors, among 

which the algal species cultivated and the method adopted to compute productivity.  

In order to evaluate productivity in algae production units three parameters are 

common used (Scragg, 2002; Richmond, 2004): 

- Volumetric productivity (VP): productivity per unit reactor volume (expressed as g 

L-1 d-1), 

- Areal productivity (AP): productivity per unit of ground area occupied by the 

reactor (expressed as g m2 d-1), 

- Illuminated surface productivity (ISP): productivity per unit of reactor illuminated 

surface area (expressed as g m2 d-1). 
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These productivities vary with type of the system. For example, the productivity (mg 

L-1 d-1) values of 370, 400–700 and 900 have been recorded for tubular, shallow and 

coiled outdoor tubular ponds, respectively, compared with 510 mg L-1 d-1 obtained for 

the indoor reactor (Chisti, 2007; Del Campo et al., 2007). Although microalgae 

production efficiency is often mentioned in the literature, no consensus was observed 

on how to calculate it. 

The cost of biomass production in PBRs may be one order of magnitude higher than 

in ponds. While in some cases, for some microalgae species and applications it may 

be low enough to be attractive for aquaculture use, in other cases, the higher cell 

concentration and the higher productivity achieved in PBRs may not compensate for 

its higher capital and operating costs. 

Generally, in any PBR design, the system productivity in continuous operating mode 

is obtained by multiplying the steady-state biomass concentration by the dilution rate 

used. These are related to the average irradiance inside the photobioreactor, which in 

turn is a function of the irradiance on the reactor surface, operational variables such 

as fluid-dynamics and dilution rate along with the pigment content (Molina Grima et 

al. 2000; Fernandez et al. 2003; Hu et al. 2008). 

Of several geometries of PBRs mentioned above the most efficient one is reported to 

be tubular type, which should maximize the use of solar light, to avoid large areas of 

shade and facilitate the diffusion of CO2 along with the control of temperature. In this 

kind of configuration microalgae are maintained in circulation with turbulent flow to 

avoid the sedimentation and to reduce deposit in the walls of the tubes (Chisti et al. 

2007). 

Further, time-dependent changes in the culture medium temperature in every season 

have been predicted (Morita et al. 2001c) using a heat balance model of the conical 

helical tubular PBR previously established (Illman et al. 2000). Using these results, 

the energy required to maintain the temperature of culture medium within an 

appropriate range as well as the maximum and minimum culture medium 

temperatures has been predicted for several sites with different climate 

characteristics. This helps to examine the possibilities for the combinations of the 

microalgae used for practically higher photosynthetic production of microalgal 

biomass, with less operating energy consumption throughout the year at various sites. 

A large difference in photosynthetic productivity was caused by the difference in 

ambient temperature in each site, if temperature control of the culture medium was 
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not maintained. This helped to get practically higher photosynthetic production with 

less operating energy consumption throughout the year, using a combination of 

various strains that had different characteristics relative to temperature. 

As stated by Richmond (2004) despite closed systems offer no advantage in terms of 

areal productivity, they largely surpass ponds in terms of volumetric productivity (8 

times higher) and cell concentration (about 16 times higher). On the other hand, 

despite their advantages it is not expected that PBR have a significant impact in the 

near future on any product or process that can be attained in large outdoor raceway 

ponds. PBRs suffer from several drawbacks that need to be considered and solved. 

Their main limitations include: overheating, bio-fouling, oxygen accumulation, 

difficulty in scaling up, the high cost of building, operating and of algal biomass 

cultivation, and cell damage by shear stress and deterioration of material used for the 

photo-stage. 

Accordingly, the choice of the most suitable system is situation-dependent, dictated 

by both the available species of algae and the final intended purpose. The need of 

accurate control impairs the use of open-system configurations, so focus has shifted 

mostly on closed systems. 

In conclusion, PBRs and open ponds should not be viewed as competing technologies 

because in the opinion of researchers the real competing technology in the future will 

be the genetic engineering and to this field is addressed the attention of the scientific 

community (Gressel, 2008). 

 
 
2.9 Application of microalgae 

 

2.9.1  Biodiesel production 

 

As the demand for diesel increases worldwide there is an increasing interest in 

sources other than crude oil for producing diesel fuel. Renewable fuel sources 

include, but are no limited to, plant oil such as corn, rapeseed, canola, soybean and 

algal oils, animal fats such as inedible tallow, fish oils and various waste streams such 

as yellow and brown greases and sewage sludges.  

In Table 3 biodiesel productivities from common seed plants and microalgae are 

compared. 

It can be seen how microalgae show a clear advantage in terms of land use because of 

their higher biomass productivity and oil yield. It should be also noted that although 
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the oil contents are similar between seed plants and microalgae there are significant 

variations in the overall biomass productivity and resulting oil yield and biodiesel 

productivity with a clear advantage for microalgae. 

The common feature of these sources is that they are composed of glycerides and free 

fatty acids. Both of these classes of compounds contain aliphatic carbon chains 

having formed about 8 to 24 carbon atoms. The aliphatic chains can be fully saturated 

or mono, di or poly-unsaturated. 

 

           Table 3. Comparition between plants and microalgae biodiesel productivities* 

 

Plant sources %  seed oil 

content (wt 

in biomass) 

Oil yield  

(L oil/ha 

year) 

Land use 

(m
2
 year/Kg 

biodiesel) 

Biodiesel 

productivities (Kg 

biodiesel/ha year) 

Corn/Maize (Zea mays L.) 44 172 66 152 
Hemp (Cannabis sativa L.) 33 363 31 321 
Soybean (Glycine max L.) 18 636 18 562 
Jatropha (Jatropha curcas L.) 28 741 15 656 
Camelina (Camelina sativa L.) 42 915 12 809 
Canola/Rapeseed (Brassica 

napus L.) 
41 974 12 862 

Sunflower (Helianthus annus L.) 40 1070 11 946 
Castor (Ricinus communis L.) 48 1307 9 1156 
Palm oil (Elaeis guineensis) 36 5366 2 4747 
Microalgae (low oil content) 30 58700 0.2 51927 
Microalgae (medium oil content) 50 97800 0.1 86515 
Microalgae (high oil content) 70 136900 0.1 121104 

*Mata et al., 2010 

Fatty acids are the main components of lipids and represent the chemical skeleton for 

biofuel production. 

Research regarding biofuel from microalgae is mainly devoted to the production of 

biodiesel. Table 4 shows a comparison of biodiesel quality from microalgal oil and 

common diesel fuel. 

 

            Table 4. Comparison of biodiesel quality from microalgal oil and common diesel fuel$ 

 
Properties Biodiesel from microalgal oil Diesel fuel 

Density                           Kg L-1 0.864 0.838 
Viscosity                           Pa·s 5.2 x 10-4 (40°C) 1.9 x 10-4 (40°C) 
Flash point                           °C 65-115* 75 
Solidifying point                 °C -12 -50  -10 
Cold filter plugging point   °C -11 -3.0  (-6.7  max) 
Acid value mg            KOH g-1 0.374 0.5 max 
Heating value              MJ Kg-1 41 40-45 
HC ratio 1.18 1.18 

* Based on data from multiple sources available in literature 
$ Source: Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing , China (2004) 
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Biodiesel is produced by a transesterification process in which triglycerides react with 

a monoalcohol and a catalyst (Chisti, 2007). Thus biodiesel production is extremely 

dependant on intracellular lipids content. 

Microalgae can have lipid contents exceeding 80% by weight of dry biomass (Rodolfi 

et al., 2009) although this is usually in the range of 15–35% and is dependent upon 

algae strains and growth conditions (Chisti, 2007). In Table 5 the common range of 

lipid content for some of the most studied microalgae is reported. 

Under optimal conditions of growth, algae synthesize fatty acids principally into 

glycerol-based membrane lipids, which constitute about 5–20% of their dry content 

weight (Hu et al., 2008). Unlike the glycerolipids found in membranes, the 

triacylglycerols (TAGs) do not perform a structural role but instead serve primarily as 

a storage form of carbon and energy. 

Thus, one of the key criteria for selection of microalgae strains for biodiesel feedstock 

production is a high intracellular lipid and TAG content. Total lipids are composed of 

neutral lipid in the form of energy reserve bodies, as well as glyco-and phospholipids 

in the structural membranes. Neutral lipids are typically the major constituents of 

algal lipid-oil in aging or stressed cultures, mainly in the form of TAGs (Hu et al., 

2008; Chen et al., 2008). 

In this context, not all microalgae are suitable. As a matter of fact, even though some 

microalgae (such as Chlorella sp., Botryococcus braunii, Nannochloris sp., 

Nannochloropsis sp., Schizochytrium sp., Nitzchia sp., Parietochloris incisa) have 

been claimed to possess up to 30% lipids (Chisti, 2007; Satyanarayana et al., 2011), 

the same microalgae species may present much lower percentages, depending on 

environmental and operational conditions applied for culturing (González-Fernández 

et al. 2010). 

Additionally, not all intracellular lipids are suitable for biodiesel production (Chisti, 

2007). Therefore, biodiesel production from algae not only lies on the extraction of 

lipids but also in the finding of high lipid content algae species (Demirbas and 

Demirbas, 2011). 

Exploitation of microalgae for not only biodiesel production but also bioenergy 

generation (biomethane, biohydrogen), or combined applications for biofuels 

production and CO2-mitigation, by which CO2 is captured and sequestered, has been 

investigated with a growing interest from the first ‘90s and are still under research 
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Table 5. Mean lipid content of major investigated microalgae strains 
 

 

 

 

 

 

 

 

 

                  

 

 

 

(Scragg et al., 2003; Miao and Wu 2004; Kruse et al., 2005; Tsukahara and 

Sawayama 2005; Xu et al., 2006; Chisti 2007; Huntley and Redalje 2007; Li et al., 

2007; Ono and Cuello 2007; Marker et al., 2009, Sayre, 2009; Wu and Xiong, 2009; 

Neto, 2010; Pruvost et al., 2011; Satyanarayana et al., 2011). Only a few microalgal 

strains are produced commercially (e.g. Spirulina, Chlorella, Dunaliella, 

Microalgae species Lipid content (% w/w DW) Reference 

Botryococcus braunii 25.0-75.0 Meng et al., 2009 
Chaetoceros calcitrans 14.6-16.4 Mata et al., 2010 
Chaetoceros meulleri 30.8 Rodolfi et al., 2009 
Chlorella emersonii 29.0-63.0 Illman et al., 2000 
Chlorella minutissima 31.0-57.0 Illman et al., 2000 
Chlorella pyrenoidosa 2.0 Mata et al., 2010 
Chlorella prototechoides 50.3-57.8 Xiong et al., 2008 
Chlorella sorokiniana 20.0-22.0 Illman et al., 2000 
Chlorella vulgaris 28.0-58.0 Scragg et al., 2002 
Chlorella sp. 28.0-32.0 Chisti, 2007 
Chlorococcum sp. 19.3 Rodolfi et al., 2009 
Crypthecodinium cohnii 20 Meng et al. 2009 
Cylindrotheca sp. 16.0-37.0 Meng et al. 2009 
Dunaliella primolecta 23.0 Chisti, 2007 
Dunaliella salina 5.0-25.0 Mata et al., 2010 
Dunaliella tertiolecta 60.6-67.8 Takagi et al. 2006 
Ellipsoidion sp. 27.4 Rodolfi et al., 2009 
Haematococcus pluvialis 25.0 Mata et al., 2010 
Isochrysis galbana 7.0-40.0 Mata et al., 2010 
Isochrysis sp. 27.4 Rodolfi et al., 2009 
Monallanthus salina > 20.0 Chisti, 2007 
Monodus subterraneus 39.3 Li et al. 2008a 
Nannochloris sp. 29.9-40.3 Takagi et al., 2000 
Nannochloropsis oculata 22.7-29.7 Chiu et al., 2009 
Nannochloropsis sp. 35.9 Rodolfi et al., 2009 
Neochloris oleabundans 15.9-56.0 Gouveia et al., 2009 
Nitzschia laevis 69.1 Li et al., 2008a 
Nitzschia sp. 45.0-47.0 Chisti, 2007 
Ocystis pupilla 10.5 Mata et al., 2010 
Parietochloris incisa 62.0 Li et al., 2008a 
Pavlova lutheri 35.5 Rodolfi et al., 2009 
Pavlova salina 30.9 Rodolfi et al., 2009 
Phaeodactylum tricornutum 18.0-57.0 Mata et al., 2010 
Porphyrodium cruentum 9.5 Rodolfi et al., 2009 
Scenedesmus obliquus 11.0-55.0 Mata et al., 2010 
Scenedesmus quadricauda 18.4 Rodolfi et al., 2009 
Scenedesmus sp. 21.1 Rodolfi et al., 2009 
Schyzochytrium sp. 50.0-77.0 Chisti, 2007 
Skeletonema costatum 21.1 Rodolfi et al., 2009 
Skeletonema sp. 31.8 Rodolfi et al., 2009 
Spirulina maxima 4.1 Gouveia and Oliveira, 2009 
Spirulina platensis 4.0-16.6 Mata et al., 2010 
Tetraselmis sp. 14.7 Rodolfi et al., 2009 
Tetraselmis suecica 15-23 Chisti, 2007 
Thalassiosira pseudonana 20.6 Rodolfi et al., 2009 
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Haematococcus and Nannochloropsis) and some of the dominating microalgae 

species in biodiesel investigation field includes Phaeodactylum tricornutum, 

Botryococcus braunii, Dunaliella tertiolecta (Lee et al., 2009), Chlorella sp. (Wu et 

al., 2009), Scenedesmus sp., Tetraselmis sp. (Lee, 1997), as reported in Figure 5. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 5. Some of the dominating microalgae species used in biodiesel investigation field. A) 
Chlorella sp., b) Scenedesmus sp., c) Botryococcus braunii, d) Dunaliella sp., e) Tetraselmis sp., f) 
Phaeodactylum tricornutum. All the strains here reported are depositated in the Culture Collection of 
Algae at the University of Texas, Austin (http://web.biosci.utexas.edu/utex/default.aspx). 

 
These strains are probably not the best strains for the production of biodiesel. For this 

reason is essential to continue a screening for new strains or modify the strains such 

that optimal production of lipids for biodiesel becomes feasible. 

The interest on biodiesel production from microalgae is also attested by some of the 

reported top companies in algae fuel industry: Algenol, A2BE Carbon Capture, 
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Aurora BioFuels, Inc., Aquaflow bionomics corporation, Blue Marble Energy, 

Cellana, Community Fuels, GreenShift, International Energy, LiveFuels, OilFox 

Argentina, Organic Fuels, OriginOil, PetroSun Biofuls, Petroalgae, Sapphire Energy, 

Seambiotic, Solix Biofuels, Solazyme (www.oilgae.com). 

 

2.9.2 CO2 fixation 
 

Generally, phototrophic microalgal growth requires a supply of CO2 as a carbon 

source. Usual sources of CO2 for microalgae include: a) atmospheric CO2; b) CO2 

from industrial exhaust gases (e.g. flue gas and flaring gas); 3) CO2 chemically fixed 

in the form of soluble carbonates (e.g. NaHCO3 and Na2CO3). The tolerance of 

various microalgal species to the concentration of CO2 is variable; however, the CO2 

concentration in the gaseous phase does not necessarily reflect the CO2 concentration 

to which the microalga is exposed during dynamic liquid suspension, which depends 

on the pH and the CO2 concentration gradient created by the resistance to mass 

transfer. 

One of the most attractive features of microalgal biomass production is the potential 

to fix CO2 from the atmosphere or combustion flue gas. Atmospheric CO2 levels 

[0.03% (v/v)] are not sufficient to support the high microalgal growth rates and 

productivities needed for full-scale biofuel production. Flue gases from power plants, 

which are responsible for more than 7% of the total world CO2 emissions from energy 

use (Kadam, 1997), contains CO2 at concentrations ranging from 5 to 15% (v/v) 

(Maeda et al., 1995) providing a CO2-rich source for large-scale production of 

microalgae and a potentially more efficient route for CO2 bio-fixation. Therefore, to 

use a flue gas emission from an industrial process unit (e.g. from fuel-fired power 

plants) as a source of CO2 for the microalgae growth is envisioned to have a great 

potential to diminish CO2 and to provide a very promising alternative to current GHG 

emissions mitigation strategies. Owing to the cost of upstream separation of CO2 gas, 

direct utilization of power plant flue gas has been considered in microalgal biofuel 

production systems (Lackne, 2003). 

Chemical analysis has shown that algal biomass consists of 40% to 50% carbon, 

which suggests that about 1.5 to 2.0 kg of CO2 is required to produce 1.0 kg of 

biomass (Sobczuk et al., 2000). In 1994 the delivered cost of CO2 was $40 to $60 per 

day (Becker, 1994), making algae production costly. The current emphasis on 

sequestering carbon from available sources such as industrial waste gas is both 
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economically and politically attractive. According to previous studies, the supply of 

carbon to microalgal mass culture systems is one of the principal difficulties and 

limitations that must be solved (Benemann, 1987, Oswald, 1988, Tapie and Bernard, 

1988). The principal point of all considerations relating to the CO2 budget is that, on 

the one hand, CO2 must not reach the upper concentration that produces inhibition 

and, on the other hand, must never fall below the minimum concentration that limits 

growth (Rados et al., 1975). These maximum (inhibition) and minimum (limitation) 

concentrations vary from one species to another and are not yet adequately known, 

ranging from 2.3 × 10−2 M to 2.3 × 10−4 M (Rados et al., 1975, Lee and Hing, 1989). 

Fortuitously, the benefits of flue gas injection on microalgal growth were observed to 

be greater than the growth impacts solely attributed to inhibition of photorespiration 

by high CO2 concentrations, with 30% increase in biomass productivity. This was 

attributed to the presence of nutrient (sulphur and nitrate) in the flue gas (Douskova et 

al., 2009). 

 

2.9.3 Microalgae CO2 tolerant 
 

A series of experiments have been carried out in the last twenty years in order to 

test the possibility of growing microalgae by capturing CO2 emitted by fired power 

plants. Although CO2 concentrations vary depending on the flue gas source (Kadam, 

2001), 10%-20% (v/v) is typically assumed. For this reason several species have been 

tested under CO2 concentrations of over 15% both using simulating and real flue gas 

concentrations (Ono and Cuello, 2003). 

Simulating flue gas concentrations can be obtained in laboratory experiments by 

mixing at different flow rates filtered compressed air and pure CO2 provided by 

pumps and cylinders, respectively. Many attempts have been successfully carried out, 

depending on strains used and cultivation conditions, with a range of CO2 

concentrations between atmospheric air and 15-20% (v/v). 

One of the genus most studied, Chlorella sp., was widely cultivated with 15% (v/v) 

CO2 concentrations since this value is recognized close to real flue gas emitted by 

different kind of power plant installations (Watanabe et al., 1992; Negoro et al., 

1993; Yun et al., 1997; Keffer and Kleinheinz, 2002; Lee et al., 2002; Yue et al., 

2005; Chiu et al., 2008; Chinnasamy et al., 2009; Sasi et al., 2011; Bhola et al., 

2011). 
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The direct use of power plant flue gas has been also considered for CO2 sequestration 

systems (Benemann et al., 1987, Aresta et al., 2005). Tetraselmis suecica was 

cultivated using actual flue gas from an electric power plant (Laws and Berning, 

1991), flue gas produced from a boiler was used to cultivate Tetraselmis sp., 

Phaeodactylum sp. and Nanncohloropsis sp. in Electric Power Company of some 

Japanese cities (Negoro et al., 1992,1993; Hamasaki et al., 1994; Kurano et al., 1995; 

Maeda et al., 1995; Matsumoto et al., 1995, 1997), two strains of Dunaliella parva 

and tertiolecta were tested with flue gas emitted by a combustion turbine generator on 

the roof of MIT’s Cogeneration Power Plant at Cambridge-Boston (Vunjak-

Novakovic et al. 2005), Euglena gracilis was tested with flue gas from a power plant 

(Chae et al., 2006), a series of experiments were carried out by Aquaculture Inc. in 

conjunction with the University of Hawaii to test 20 microalgae strains and 5 kind of 

flue gas emitted from a propane-fired boiler system (Nakamura et al. 2008). Korean 

researchers evaluated three microalgae, Botryococcus braunii, Chlorella vulgaris and 

Scenedesmus sp. for their carbon fixation ability to determine which organism to 

select for use with high levels of CO2 for the production of biodiesel (Yoo et al., 

2010). All the strains were submitted to real flue gas emitted by heating generator 

burning liquefied petroleum. The study found that the C. vulgaris grew in up to 10% 

(v/v) CO2 with no negative effects. However, these researchers concluded that 

Scenedesmus sp. was the best of the three with regards to CO2 mitigation due to its 

better CO2 fixation ability. Also Chlorella sp. was tested using flue gas in Korean and 

Turkish facilities (Lee et al., 2002, Şen et al., 2005) and in Czech Republic municipal 

incinerators (Doucha et al., 2007, Douskova et al., 2009, 2010). A complex treatment 

of agricultural waste (including anaerobic fermentation of suitable waste, 

cogeneration of the obtained biogas and growth of microalgae consuming the CO2 

from biogas and flue gas) was verified for Chlorella sp. under field conditions in a 

pilot-scale photobioreactor (Kastanek et al., 2010). 

The advantage of utilizing flue gas directly is the reduction of the cost of separating 

CO2 gas. Since power plant flue gas contains a higher concentration of CO2 

(Kikkinides et al. 1993) identifying high CO2 tolerant species is important. One of the 

highest CO2 tolerant species is Euglena gracilis. Growth of this species was enhanced 

under 5%-45% concentration of CO2 even if the best growth was observed with 5% 

(v/v) CO2 concentration. However, the species did not grow under greater than 45% 

CO2 (Nakano et al., 1996). Hirata et al. (1996a, b) reported that Chlorella sp. UK001 
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could grow successfully under 10% (v/v) CO2 conditions. It is also reported that 

Chlorella sp. can be grown under 40% (v/v) CO2 conditions (Hanagata et al., 1992). 

Furthermore, Maeda et al., (1995) found a strain of Chlorella sp. T-1 which was 

tested under a wide range of CO2 concentrations (from 0.03% to 100%). When 

precultivated in 50% (v/v) CO2 enriched medium this strain could grow slowly under 

100% (v/v) CO2, although the maximum growth rate occurred under a 10% 

concentration. Hanagata et al., (1992) have screened five green freshwater microalgae 

for tolerance to high CO2 concentrations. Between them, Scenedesmus was found to 

be better able to tolerate very high CO2 concentrations than Chlorella. However 

Scenedesmus could grow under 80% (v/v) CO2 conditions while was completely 

inhibited by 100% (v/v) CO2 and the maximum cell mass was observed in 10-20% 

(v/v) CO2 concentrations. Chlorococcum littorale was found to grow with 60% (v/v) 

CO2 but no growth was observed between 70-100% (v/v) even when the seed culture 

was grown at 60% (v/v) CO2 (Kodama et al., 1993). Some attempts were made to test 

the ability of different Chlorella genus to grow in a range of CO2 concentrations 0.03-

70%. Chlorella pyrenoidosa was grown until 50% (v/v) CO2 but showed its better 

growth with 15% (v/v) (Tang et al., 2011), Chlorella ZY-1 showed its optimum 

between 10-20% (Yue and Chen, 2005) and Chlorella KR-1 have an optimum at 15% 

(v/v) (Sung et al., 1999a, b). 

In relation to the possibility of growing microalgae under pure CO2 the first strain 

discovered to have this ability was the thermoacidophilic Cyanidium caldarium 

(Seckback et al., 1971a, b, Woodward et al., 1992), which was able to grow in low 

pH environment along with Galdieria partita. Watanabe et al. (1992) tested the 

ability of Chlorella sp. HA-1 to grow by using increasing concentrations of CO2. 

They show that at the pure CO2 condition HA-1 could not grow even if the strain still 

shows a green colour at the end of the experiments. Sergeenko et al. (2000) outlines 

for the first time to have successfully cultivated C. vulgaris in batch cultures with 

pure CO2. This strain was previously cultivated in a 5% CO2 enriched medium. 

Recently Chlorella minutissima was tested in a wide range of CO2 concentrations 

(from 0.03% to 100%). It was found that this strain is able to better tolerate 

concentration until 40% (v/v) but after 60% (v/v) the growth is strongly reduced 

(Papazi et al., 2008). A new unknown isolated strain collected from the Johannesburg 

Zoo Lake was tested at 5, 10, 25, 50 and 100% (v/v) CO2 by varying the flow rate at 
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20, 50 and 100 ml min-1, respectively. The best yield of biomass was obtained with 

100% (v/v) CO2 at the flow rate of 50 ml min-1 (Kativu et al., 2010). 

 
 

2.9.4 Wastewater treatment 
 

Since large scale cultivation of microalgae implies the consumption of huge 

amounts of nutrients, the economic feasibility of the process could be seriously 

compromised when fresh water is employed and synthetic reagents are used as main 

source of macronutrients. A possible solution to this drawback is to harness costless 

resources to produce the macronutrients and the water needed to perform large scale 

cultivation. In particular seawater can be used instead of fresh water due to its 

costless availability in huge amounts. Moreover, wastewater could be used as 

inexpensive source of nitrogen and phosphorus while at the same time flue gases 

could be exploited to provide the suitable CO2 supply (Craggs et al., 1997; Kim and 

Jeune, 2009). Besides allowing the economic viability of the process, the exploitment 

of such costless resources could have a positive impact on important environmental 

concerns since it contributes to the reduction of water pollution and consumption. 

Furthermore the recycling of flue gases, results in lower CO2 emissions thus 

contributing to increase the environmental sustainability of industries that use fossil 

fuels for power generation (Zeiler et al., 1995). In this scenario, the combination of 

the three roles of microalgae – CO2 fixation, wastewater treatment and biofuel 

production – has the potential to maximize the impact of microalgal biofuel 

production systems. 

The involvement of microalgae in aquaculture systems where cells growth is 

combined with biological cleaning and wastewater treatment seems to be an 

advantageous and promising tool for microalgal biomass production coupled with 

greenhouse gas mitigation (CO2 uptake) and biodiesel production (Yun et al., 1997; 

Kumar et al., 2010b). In this way domestic wastewater can be seen a residue of 

interest for biofuels production from microalgae (Rawat et al., 2011; Wu et al., 2012). 

Microalgae ponds can be used in secondary or tertiary treatment. This could allow the 

nutrition of cells by using wastewater as sources of organic compounds, mainly 

nitrogen and phosphorous (Craggs et al., 1997) which are the first cause of 

eutrophication in the aquatic environment representing a serious problem for 

receiving water bodies (Mulbry et al., 2008). 
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Actually, although nitrogen and phosphorous are elements key to algal growth, they 

are also serious pollutants in many waterways. Algae can thrive in nitrogen- and 

phosphorus-rich conditions common to many wastewaters (Pittman et al., 2011), and 

this feature may be harnessed to not only remove, but also capture these important 

nutrients in order to return them to the terrestrial environment as agricultural 

fertilizer. 

Use of microalgae for municipal wastewater treatment in ponds is well established 

(Woertz et al., 2009), and algae based treatment of dairy and piggery waste also has 

been investigated (An et al. 2003; Craggs et al., 2004; Kebede-Westhead et al., 2006; 

Travieso et al., 2006; Mulbry et al., 2008). 

Additionally, microalgae can been also used for the treatment of industrial wastewater 

(Hodaifa et al., 2008; Muñoz et al., 2008), the removal of heavy metal from effluents 

and acid mine drainage (Das et al., 2009) and mitigate the effects of sewage effluent 

such as those originating from water treatment or fish aquaculture (Muller-Fuega, 

2000). 

Wastewater production by human activity is ubiquitous, and the continuous increase 

in world population, particularly in developing countries, makes it an inexhaustible 

resource. Because the use of microalgal biomass grown in domestic wastewaters as a 

human and animal food supplement faces toxicological problems, intensive research 

is being carried out on the promotion of lipid accumulation for further biodiesel 

production (Burton and Cleeland, 2008; Theodore and Wardle, 2009). 

Generally, the use of wastewater could reduce nutrient addition for nitrogen and 

phosphorous by approximately 55% (Yang et al., 2011). Aslan and Kapdan (2006) 

used Chlorella vulgaris for nitrogen and phosphorus removal from wastewater with 

an average removal efficiency of 72% for nitrogen and 28% for phosphorus. Other 

widely used microalgae cultures for nutrient removal are Chlorella (Yun et al., 1997; 

Lee et al., 2001; de-Bashan et al., 2008), Scenedesmus (Martìnez et al., 2000, Ruiz 

Marin et al., 2010), Spirulina (Olguín et al., 2003; Kumar et al., 2010a), 

Chlamidomonas (Kong et al., 2010) species. Nutrient removal capacities of 

Nannochloris (Jimenez-Perez, 2004), Botryococcus brauinii (An et al., 2003) as well 

as the screening of other microalgae with such capabilities (Sydney et al., 2011) have 

also been investigated. 
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2.9.5 High-value added products    
 

High-value added products from microalgae comprise an important market in 

which compounds such as β-carotene, astaxanthin (Wang and Chen, 2008), 

polyunsaturated fatty acids (PUFAs) such as Eicosapentaenoic acid (EPA) and 

Docosahexaenoic acid (DHA), and polysaccharides such as ß-glucane dominate 

(Reyes Suarez et al. 2008). Some of these fine chemicals play an important role for 

human nutrition while others can be also utilise in the pharmaceutical, neutracetical 

and cosmetic market (Pulz and Gross 2004; Spolaore et al. 2006, Mata et al., 2010). 

Normally the production of these bioactive compounds demands the use of 

monocultures in order to better control productivity and production efficiency. For 

these reasons cultivation systems such as large-scale PBRs have been preferred to 

open ponds.  

2.9.5.1 Fatty acids 

Microalgae are considered as potential sources of PUFAs of more than 18 

carbons (Hirabayashi et al., 2003; Thomas and Kumaravel; 2011) since they are 

commonly found in fish originating from microalgae consumed in oceanic 

environments (Certik and Shimizu, 1999). Between microalgal PUFAs of particular 

interest there are γ -Linolenic acid (GLA) (Sajilata et al., 2008), Arachidonic acid 

(AA), EPA and DHA. However, currently, DHA is the only algal PUFA 

commercially available (Wu et al., 2010). Indeed, even if the potential industrial 

production of EPA has been demonstrated for some species such as Monodus 

subterraneus, Nannochloropsis sp., Crypthecodinium cohnii, Porphyridium 

purpureum, Phaeodactylum tricornutum and Isochrysis galbana, (Qiang et al., 1997; 

Chini Zitelli et al., 1999; Jiang et al., 1999; Wen and Chen, 2003) no purified algal 

oil is currently economically competitive with other sources (Belarbi et al., 2000). 

2.9.5.2 Pigments and carotenoids 

Among the hundreds of known carotenoids, only very few are used 

commercially: β-carotene (Hosseini Trafeshi and Shariati, 2006), astaxanthin (Chang 

et al., 2008; Miao et al., 2008) and, of lesser importance, lutein (Cerón et al., 2008), 

xanthophill (Zhang, 2009), zeaxanthin and lycopene (Del Campo et al., 2000). Their 

most important uses are as natural food colorants (e.g., orange juice) and as additive 

for animal feed (poultry, fish). Carotenoids also have applications in cosmetics. The 
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nutritional and therapeutic relevance of certain carotenoids is due to their ability to 

act as provitamin A, that is, they can be converted into vitamin A (García-González et 

al., 2005; Pangestuti and Kim, 2011). 

2.9.6 Human nutrition 

Microalgae for human nutrition are nowadays incorporated into pastas, snack 

foods, candy bars or gums and beverages in different forms such as tablets, capsules 

and liquids. Owing to their diverse chemical properties, they can act as a nutritional 

supplement or represent a source of natural food colorants (Borowitzka, 1999; Apt 

and Behrens, 1999; Rodriguez-Garcia et al., 2008). The commercial applications are 

dominated by three main strains: Spirulina, Chlorella and Dunaliella salina. In 

particular, Spirulina is used in human nutrition because of its high proteins content 

and its excellent nutritive value with health-promoting effects (Desmorieux, et al., 

1999; Rangel-Yagui et al., 2004). 

 

2.9.7 Cosmetic field 

Some microalgal species, mainly Spirulina and Chlorella, are established in the 

skin care market (Stolz and Obermayer, 2005). Microalgae extracts can be mainly 

found in face and skin care products (e.g., anti-aging cream, refreshing or regenerant 

care products, emollient and as an anti-irritant in peelers) as well as in sun protection 

and hair care products. 

 

2.10 Genetic engineering 

One of the most intriguing tools to improve the photosynthetic efficiency and 

biomass productivity of microalgae as well as the economics of biofuel production is 

the genetic engineering (Chisti, 2007). This emerging technology could enhance fuel 

production in a variety of ways including the increase of cellular lipid content and 

improving temperature tolerance of algae to reduce cooling expenses (Chisti, 2008). 

In addition, genetic engineering could increase algal cells tolerance to light saturation, 

photoinhibition and photooxidation (Chisti, 2007). 

Genetic engineering is regarded as an attractive solution that could improve 

productivity and economics, but it is affected by some constraints which led scientific 

community to be critical regards to its applicability. Actually, it will require long-
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term research and funding as well as overcoming regulations against the release of 

genetically modified organisms (Rodolfi et al., 2009). 

Among the reasons to be wary of genetic engineering could be considered the 

following: first, increases in lipid content and other valuable cellular components are 

inherently constrained by cellular metabolism; second, genetically modified algae 

may have a variety of detrimental effects on the environment; third, genetically 

modified algae are not as fit as natural strains and thus unlikely to overcome 

competition without the aid of other agents (Pulz and Gross, 2004). 

Nevertheless, genetic engineering has tremendous potential and has already achieved 

successes in the laboratory (León-Bañares et al., 2004). For example, Mussgnug et al. 

(2005, 2007) described experiments that altered the so called “light harvesting 

complexes” (LHCs) which have the ability to capture solar energy and control the 

flow of the excitation energy to the photosynthetic reaction centres. They also 

facilitate the dissipation of light energy as heat or fluorescence when irradiation 

exceeds photosynthetic capacity. This second trait is especially undesirable in algal 

bioreactors because it reduces efficiency. To resolve this issue, the authors used RNA 

technology to create a mutant of C. reinhardtii that significantly down regulated the 

amount of LHCI and LHCII complexes. Their experiments, which were successful, 

also showed that the reduction was permanent, something that had not previously 

been reported in literature. The strain of mutant microalga resulted in a decrease in 

dissipation of captured light energy, an increase in photosynthetic quantum yield, and 

reduced sensitivity of the system to photoinhibition.  

Anastasios Melis, professor of plant and microbial biology at the University of 

California-Berkley, and his students are working to genetically modify green algae to 

enhance their capacity to generate hydrogen. They are manipulating genes to reduce 

the amount of chlorophyll in the chloroplast. The goal is to make individual cells 

absorb less sunlight, so that more light can penetrate deeper into the algal culture and 

let more cells use the sunlight to make hydrogen. 

In particular, Melis and co-workers focused their attention on altering the optical 

characteristics of microalgae in order to improve solar-to-biofuels energy conversion 

efficiency in mass culture under bright sunlight conditions. This objective was 

achieved by genetically truncating the size of the LHC arrays in C. reinhardtii that 

serve to absorb sunlight in the photosynthetic apparatus. They found that 132 Chl 

molecules (37 for PSII and 95 for PSI) is the smallest Chl antenna size that will 
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permit assembly of the photosystems in chloroplasts. Such Chl antenna size 

configuration of the photosystems would compromise the competitive ability and 

survival of the cells in the wild. However, it would enable efficient solar-to-product 

conversion by the cells in mass culture, leading to high rates of biomass accumulation 

and hydrocarbon production by these microorganisms (Masuda et al., 2003; Polle et 

al., 2003; Tetali et al. 2007; Mitra and Melis, 2008; Melis, 2009). 

Although the application of genetic engineering to improve biofuel production in 

algae is in its infancy, significant advances have been made in the development of 

genetic manipulation tools by many private companies such as: Synthetic Genomics 

(La Jolla, CA) which is engineering microalgae to continuously excrete oils from the 

cells and which will allow the non-invasive extraction of algal oils, Solazyme (South 

San Francisco, CA), Sapphire Energy (San Diego, CA), Phycal (Highland Heights, 

OH;), Seambiotic (Israel) and TransAlgae (Israel). 

 

2.11 Chlorophyta 

The Chlorophyta, one of the 10 recognized Algal Divisions, are commonly 

known as the green algae. They have green chloroplasts that are not masked by other 

pigments and both chlorophyll a and b are present. In addition they have β- and γ- 

carotene and several xanthophylls. These characteristics are very similar to higher 

plants and this similarity may be of significance when investigating green algae 

nutrient requirements. Starch is the polysaccharide storage product. Green algae as a 

group range in body type from non-motile single cells, to flagellates, and to colonial 

multicellular complexes. 

Plant evolutionists believe that land plants evolved directly from a class of green 

algae, the Trentepohliophyceae. In addition to this class, Division Chlorophyta 

contains nine other Classes: Prasinophyceae, Ulvophyceae, Cladophorophyceae, 

Briopsidophyceae, Zygnematophyceae, Klebsormidiophyceae, Dasycladophyceae, 

Charophyceae, and Chlorophyceae. Most of the Order Chlorophyceae within the 

Class Chlorophyceae lives in fresh water. There are about 355 genera that include 

2650 species in the Order.  

During the past decades extensive collections of microalgae have been created by 

researchers in different countries. Some examples are: the freshwater microalgae 

collection at the University of Coimbra (ACOI) in Portugal considered one of the 

world’s largest, having more than 4000 strains and 1000 species, the Sammlung von 
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Algenkulturen Collection at the University of Gottingen (SAG) and the Culture 

Collection of Algae at the University of Cologne (CCAC) in Germany, the Pasteur 

Culture Collection of Axenic Cyanobacterial Strains (PCC) and the Caen-

ALGOBANK (AC) in France, the Culture Collection of Algae and Protozoa (CCAP) 

in Scotland, the Culture Collection of Autotrophic Organisms (CCALA) in Czech 

Republic, the Scandinavian Culture Collection of Algae and Protozoa at the 

University of Copenhagen (SCCAP) in Denmark, the Collection at the University of 

Texas (UTEX) and the American Type Culture Collection (ATCC) in USA, the 

Canadian Phycological Culture Centre (CPCC) in Canada, the National Institute for 

Environmental Studies (NIES) in Japan and the Australian National Algae Culture 

Collection (ANACC). These collections attest to the large variety of different 

microalgae available to be selected for use in a broad diversity of applications, such 

as value added products for pharmaceutical purposes, food crops for human 

consumption and as energy source. 

To the Class of Chlorophyceae belong the two strains objects of this study: Chlorella 

vulgaris and Nannochloris eucaryotum. 

Both species, which are genetically related, are unicellular nonmotile coccoid (round) 

cells, typically 2 to 12 µm. They can live in freshwater, seawater or on soil and are 

easy to grow, making them useful in physiological and biochemical laboratory 

studies.  

While Chlorella vulgaris is a well studied and documented specie starting form 50’s 

(Tamiya, 1957), Nannochloris eucaryotum is a relatively new isolated strain 

(Whilhem and Wild, 1982).  

 

2.11.1 Nannochloris eucaryotum 

Nannochloris eucaryotum was identified for the first time in 1982 by Wilhem et 

al. and named Nanochlorum eucaryotum. In that year they published two articles in 

the journal “Zeitschrift für Naturforschung” showing the characteristics of this new 

isolated marine microalgae. They outlined its unusual metabolic and physiological 

behaviour despite its particular reduced size and genetic sequence. These findings 

were also confirmed two years later by Zahn (1984). In particular Wilhem et al. 

focused their attention on its growth in different conditions of salinity. In 1987 

Geisert et al. investigated the effect of nutrients content on the profile of its 
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carotenoids with particular emphasis on the production of sporopollenin (a 

heteropolymer made up of fatty acids, phenols and carotenoids). 

In 1988 two articles, Oed et al. and Sargent et al. pointed out how the classification of 

this microalgae inside the genus Nanochlorum was unclear. Actually this strain 

showed a high similarity of its genetic sequences to these of the genus Chlorella and 

for this reason for many years it was considered as a substrain of that genus. On the 

other hand, it was hard to explain its metabolism since some of the genetic sequences 

inside the Chlorella genus were not found inside its genes. These findings lead the 

researchers to believe that Nanochlorum was a real new strain probably filogenetic 

related in the past to the genus Chlorella. By considering all these informations, 

Menzel and Wild in 1989 assessed a comparative investigation of some Nannochloris 

species and clearly found out that Nanochlorum eucaryotum belonged to a new 

genus. Starting to 1989 the name of this strain has been accepted as Nannochloris 

eucaryotum even if little modifications of its name has been used as synonyms such 

as Nanochlorum eucayotum (Derenne et al., 1992a, b), Nanochlorum eukaryotum 

(Schreiner et al. 1995) and Nannochloris eucaryota (Tschermack-Woess, 1999). 

Currently four synonims of this strain (Nannochloris eucaryotum, Nanochlorum 

eucayotum, Nannochloris eucaryota, Nannochloris eucaryota) are accepted as 

reported in the official taxonomy browser of the National Center of Biotechnology 

Information (NCBI). In 2004 Henley et al. carried out a complete phylogenetic 

analysis of the 'Nannochloris-like' algae with particular emphasis on the strain 

Picochlorum oklahomensis genus and specie. They found out that Nannochloris 

eucaryotum showed a high genetic similarity to the genus Picochlorum and for this 

reason a new synonym Picohlorum eucaryotum was selected for the strain. According 

to the NCBI and to the algaebase, the largest algae database in the world with about 

130.000 names of strains, the authority names currently accepted for this strain are 

Nannochloris eucaryotum and Picochlorum eucaryotum. This strain is reported to be 

characterized by a high adaptability to extreme environmental conditions such as high 

salinity, low irradiance, elevated CO2 and decreased O2 levels (Geisert et al., 1987). 

Over the last thirty years, from its discovery onwards, only 25 articles have been 

published on the specie Nannochloris eucaryotum (including all its variants of name). 

Amongst them, 15 are focused on the field of taxonomy, philogenetics and genetics 

trying to clarify the exact identity of this microalgae and its position inside the genus. 

Few articles have provided some informations about its growth kinetics (Wilhem et 
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al., 1982a,b; Zahn, 1984; Huesemann et al., 2003), carotenoids content (Geisert et al., 

1987); constituents of its outer wall (Derenne et al., 1992a,b; Krienitz et al., 1999), 

life cycle (Tschermack-Woess, 1999; Yamamoto and Nozaki, 2001), effect of a 

produced substance on the cell lysis of a red tide organism (Perez, 2001; Perez and 

Martin, 2001) and marine ecology (Li et al., 2008). 

It should be pointed out that, except the papers of Wilhem et al., 1982, Geisert et al. 

1987 and Huesmann et al, 2003, in the literature there are not informations about the 

optimization of Nannochloris eucaryotum culture conditions, its nutrients 

requirement, lipid content, fatty acid composition and cultivation in batch 

photobioreactors. 

 

2.11.2 Chlorella vulgaris  

As cosmopolitan genus, the growth physiology relative to major nutrient 

elements N, P, K, Mg, and S of Chlorella species was studied in the late 50’s using a 

synchronous culture technique. The life cycle of these microalgae was studied by 

Hase et al. (1957) which divided it into seven stages and investigated the role played 

by nutrients deficiency on growth retardation and stages division.  

C. vulgaris has been extensively studied for various purposes, such as the production 

of biomass as a source of valuable chemicals or heath foods, aquaculture feed (Amini 

Khoeyi et al., 2011), wastewater treatment (Sydney et al., 2011), CO2 uptake in 

photobioreactors (Hulatt et al. 2011). Sasi et al. (2011) have developed a 

photobioreactor to optimize the growth rate of C. vulgaris by outlining that light 

intensity, CO2 concentration and the application of a dark phase are important growth 

limiting factors. This strain seems to be an ideal candidate due to its easy cultivation 

in a relatively low-priced media without the necessity of utilizing very specific 

compounds (Šoštaric et al., 2009). It is also known as one of the fastest growing 

microalgae (Becker, 1994) with an average lipid content of 14–30% by weight of dry 

biomass (Illman et al., 2000; Spolaore et al., 2006) and a reasonable amount (14-

22%) of triglycerides (Becker, 1994). Studies looking at algae to be used for animal 

feed found those harvested in the late-logarithmic growth phase were 30-40% protein, 

10-20% lipids, and 5-15% carbohydrates. At other growth phases, these percentages 

can vary considerably. 

For all these reasons C. vulgaris is commonly used for large scale algal production 

(Hulatt et al., 2011). That Chlorella is a good choice for biodiesel production is also a 
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conclusion reached by Mata et al. (2010) in their extensive review of microalgae and 

biodiesel production. They found lipid content measured as percent dry weight 

biomass ranged from 5.0% to 58.0%, lipid productivity as mg L-1 d-1 from 11.2 to 

40.0, and biomass productivity as g L-1 d-1 from 0.02 to 0.20 for C. vulgaris. This 

strain is also reported to grow in heterotrophic and mixotrophic (combining auto- and 

heterotrophic) conditions as well as the typical autotrophic condition. 
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3.1 Introduction 

A supply of secure, equitable, affordable and sustainable energy is vital to future 

prosperity (Hall et al., 2001). Approximately 30% of final consumer energy is used for 

transport and therefore is mainly derived by fossil fuels. Thus, CO2 emissions 

produced to meet this demand account for substantial amounts of total global 

emissions (IPCC). For this reason, today there is a rising interest to biofuels as one of 

most attractive resource of energy, with particular emphasis on transportation. Their 

environmental benefits, i.e., no net increased release of carbon dioxide and very low 

sulfur content that could be cut down by 10%, represent the main advantages to be 

considered (Cadenas and Cabezndo, 1998; Huang et al., 2010). By taking their 

renewable origin into account, biofuels have a significant economical potential as 

compared to non-renewable fossil fuels whose market prices will definitely increase in 

the future (Huang et al., 2010). However, their high cost and the controversial matter 

of land competition for food are the main limitations to widespread their 

commercialization. Actually, biofuels may become a viable alternative and survive in 

the market, if and only if they could economically compete with standards ones. It is 

also well known that the end cost of biofuels mainly depends on the market price of 

the feedstock that is responsible of 60-75% of biofuels total cost (Mata et al., 2010). 

This percentage depends upon of the cost of the fats and oils used in its production, 

which could be minimized by using cheaper oils from non-edible sources (Vasudevan 

and Fu, 2010). 

Process engineering to produce bio-oils from microalgae is an emergent area for 

industrial practice with great promise in order to partially replace petroleum-derived 

fuels and biofuels from oil crops (Chisti, 2007). Industrially scaling-up of microalgal 

oil production has the potential to reduce the arable land necessary worldwide to 

replace the current fuel demand using biofuels (Sheehan et al., 1998). However, 

limitations of organism survival, growth and lipid content, carbon dioxide enrichment, 

light penetration, seasonability, harvest and biosafety of transgenic microalgae are the 

main barriers to the industrial production of microalgae-derived bio-oils (Francisco et 

al., 2010). Therefore, great R&D efforts are currently undertaken to produce biodiesel 

at competitive costs and with the required quality starting from microalgae feedstock. 

In particular, as recently pointed out by Debska et al. (2010), given the potential 

benefits of microalgae, their cultivation should be studied and optimized to make them 

competitive as fuel producing systems in the global market. Along these lines, a novel 
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process that makes use of CO2 from industrial plants and microalgae cultivation from 

which bio-oil may be extracted has been recently patented (Cao and Concas, 2008, 

2010). The process allows also the production of green coal, as well as useful 

compounds in the food, biomedical, cosmetic, and bio-technical industry. 

Nowadays more than 30.000 different strains of microalgae have been isolated. In 

spite of this high number, only few of them are potentially exploitable at the industrial 

scale. Among these ones, the small unicellular marine eukaryotic green alga 

Nannochloris eucaryotum (Menzel and Wild, 1989) [also known as Nannochlorum 

eucaryotum (Wilhelm and Wild, 1982) or Picochlorum eucaryotum
 (Henley et al., 

2004)] shows a high adaptability to extreme environmental conditions such as high 

salinity, low irradiance, elevated CO2 and decreased O2 levels (Geisert et al., 1987). It 

has been also found that the lipid content of Nannochloris genus can be increased up 

to about 56% (Negoro et al., 1991) Thus, such microalga species represents a suitable 

candidate for large-scale biomass production, including its potential exploitation in the 

patented process (Cao and Concas, 2008, 2010). 

Along these lines, the key factor is represented by the full operability of large 

photobioreactors capable of high biomass productivity. In this regard, it is well known 

that one of the major factors affecting the growth rate of microalgae is the culture 

medium being used. Although exhaustive broad-scale optimization studies are 

prohibitively time-consuming and costly, condition-specific medium analysis serves 

as a preliminary step to process improvement (Debska et al., 2010). The effect of 

medium composition and nutrient starvation on the growth of N. eucaryotum was then 

investigated for the first time in this work using batch photobioreactors with the aim to 

gain information useful for the process optimization. It should be noted that, to the 

best of our knowledge, these aspects have not been addressed in the literature as far as 

this microalga strain is concerned. The results here reported may then help the design 

and development of N. eucaryotum-based processes. In fact, the determination of 

nutrient levels in the medium, or any restriction associated with them, which are 

capable to affect the growth rate of cells during cultivation, represents a first step 

towards the increase of cultures productivity, and hence the improvement of the 

economics of microalgae-derived fuel production (Debska et al., 2010). 
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3.2 Materials and methods 

3.2.1 Microorganism 

The marine algal strain Nannochloris eucaryotum (strain N° 55.87) obtained 

from the Sammlung von Algenkulturen at the University of Göttingen (SAG), 

Germany, was considered in this work. Stock cultures were propagated and maintained 

in Erlenmeyer flasks with a Brackish Water Medium (BWM) whose composition is 

reported in Table 6. Other culture conditions were temperature of 25°C, a photon flux 

density of 98 µmol m-2 s-1 provided by four 15 W white fluorescent tubes, and a 

light/dark photoperiod of 12 h. Flasks were continuously shaken at 100 rpm 

(Universal Table Shaker 709, ASAL Srl, Cernusco sul Naviglio, (MI), Italy). 

 

3.2.2 Culture conditions 

Growth experiments were conducted in 150-ml Erlenmeyer flasks and 250-ml 

Pyrex bottles in contact with atmospheric air via open culture conditions and stirring. 

Cultures were maintained at room temperature and under a photon flux density of 84 

µmol m-2 s-1 provided by three 15 W white fluorescent tubes and a light/dark 

photoperiod of 12 h. The culture media volumes were 75 ml and 200 ml for 

Erlenmeyer flasks and bottles, respectively. Both flasks and bottles were agitated by a 

magnetic stirrer at 500 rpm by means of magnetic PFTE stir bars (6 mm diameter and 

30 mm length). Flasks, bottles, and magnetic stir bars, as well as culture media were 

sterilized in autoclave at 121°C for 20 min prior to microalgae inoculation. The initial 

pH of the culture medium was adjusted to 7.0 by using 1 M NaOH or 1 M HCl 

aqueous solutions depending on the culture medium. The initial cell concentration in 

each experiment was about 0.1 g L-1. 

 

3.2.3 Culture media 

The culture media were prepared by considering the following media and 

components: 

• Natural seawater (Mediterranean sea, lat. 39° 11' N - long. 09° 10' E) centrifuged 

at  4000 rpm for 15 min (Thermo Fisher Scientific Inc. Waltham, MA, USA) and 

then  filtered by means of 0.45 µm filter (Millipore Corporation, Bedford, MA, USA); 

• De-ionized water; 

• Soil extract; 
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• Macronutrients aqueous solution (KNO3 10 g L-1; K2HPO4 1 g L-1; 

MgSO4•7H2O 1 g L-1); 

• Micronutrients aqueous solution (H3BO3, 2.86 g L-1; MnCl2·4H2O, 1.81 g L-1; 

 ZnSO4·7H2O, 0.222 g L-1; CoCl2·6H2O, 0.035 g L-1; CuSO4·5H2O, 0.08 g L-1; 

 Na2MoO4·2H2O, 0.230 g L-1; EDTA-Na2, 29.754 g L-1; FeSO4·7H2O, 24.9 g L-1) 

• Vitamin B12. 

Microalgae growth was investigated in six different culture media, hereafter named A 

to F, which represent modifications of BWM. The composition of each culture 

medium is reported in Table 6. It should be noted that the amount of inorganic and 

organic compounds dissolved in the natural seawater as well as in the soil extract was 

not determined. 

               Table 6: Composition of culture media investigated in this worka 

Component    units BMW     A B C D E F 

KNO3     [g L-1] 2.0·10-1     - - - 2.0·10-1 2.0·10-1 2.0·10-1 

K2HPO4     [g L-1] 2.0·10-2     - - - 2.0·10-2 2.0·10-2 2.0·10-2 

MgSO4*7H2O     [g L-1] 2.0·10-2     - - - 2.0·10-2 2.0·10-2 2.0·10-2 

H3BO3 [g L-1] 2.86·10-3 - - - 2.86·10-3  2.86·10-3 2.86·10-3 

MnCl2*4H2O [g L-1] 1.81·10-3 - - - 1.81·10-3  1.81·10-3 1.81·10-3 

ZnSO4*7H2O [g L-1] 2.22·10-4 - - - 2.22·10-4  2.22·10-4 2.22·10-4 

CoCl2*6H2O [g L-1] 3.5·10-5 - - - 3.5·10-5  3.5·10-5 3.5·10-5 

CuSO4*5H2O [g L-1] 8.0·10-5 - - - 8.0·10-5 8.0·10-5 8.0·10-5 

Na2MoO4*2H2O [g L-1] 2.3·10-4 - - - 2.3·10-4  2.3·10-4 2.3·10-4 

EDTA-Na2 [g L-1] 2.98·10-2 - - - 2.98·10-2 2.98·10-2 2.98·10-2 

FeSO4*7H2O [g L-1] 2.49·10-2 - - - 2.49·10-2 2.49·10-2 2.49·10-2 

Vitamin B12 [µg L-1] 5 - - - - - 5 

Soil extract [ml L-1] 30 - - 32 - 30 - 

Seawater [ml L-1] 469 1000 503 487 469 455 469 
a Amounts of inorganic and organic compounds added with soil extract or seawater have not been taken 
into account. 
 
 

3.2.4 Biomass concentration and pH measurements 

The growth of microalgae was monitored through daily measurements of the 

culture media optical density (OD) (Genesys 20 spectrophotometer, Thermo Fisher 

Scientific Inc. Waltham, MA, USA) at 560 nm wavelength (D560) with 1 cm light path. 

The biomass concentration (X) was calculated from OD measurements using an X vs. 

OD calibration curve. The latter one was obtained by gravimetrically evaluating the 

biomass concentration of known culture medium volumes which were previously 
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centrifuged at 4000 rpm for 15 min and dried at 105°C for 24 h. pH was daily 

measured by pHmeter (KNICK 913, Bodanchimica S.r.l., Cagliari, Italy). For the sake 

of reproducibility, each experimental condition was investigated at least in triplicate. 

The average and standard deviation values of the experimental results were calculated 

using OriginPro 6.1. 
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3.3 Results and discussion 

 

3.3.1   Effect of Brackish Water Medium constituents. 

N. eucaryotum was batch cultured to investigate the effect of the BWM 

constituents in 150-ml Erlenmeyer flasks using the six different media described in the 

experimental section (Table 6). The comparison among the different culture media 

was performed in terms of growth rate of microalgal cells. The latter one was defined 

by assuming that the rate of increase of microalgal cell mass is a function of the cell 

mass only, according to the well know Malthus' law (Bailey and Ollis, 1986): 

 

X
dt

dX
µ=        (1) 

 

where X represents the cell mass concentration [g L-1], t is the time [h], and µ the 

growth rate [h-1], which is typically a function of nutrients concentration, pH, 

temperature, light, and culture conditions. The average growth rate µ  is defined as 

follows: 
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µ
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       (2) 

 

where τ [h] is the total time of cultivation. By integrating Eq. (1) with the initial 

condition X = X0 at t = 0, and using Eq. (2), the following relationship between the 

microalga mass concentration and the average growth rate is obtained 
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where Xτ is the biomass concentration at t = τ, which was set equal to 360 h in this 

work. Results of N. eucaryotum growth in the different culture media investigated are 

summarized in Figure 6. It can be observed that this microalga grows very slowly in 

the medium A, B, and C, while a significantly averaged higher growth rate is obtained 

when medium D, E, and F are used, respectively. The slight lower growth rate 

measured for the case of medium B can be related to the reduced concentration of the 



 70

nutrients contained in this medium, i.e., inorganic salts dissolved in the seawater, with 

respect to medium A. On the other hand, the use of medium C obtained by adding soil 

extract to medium A slightly improved the growth rate, which significantly increases 

when the inorganic salts solution is added to the culturing broth (medium D). The 

comparison between media D, E, and F reveals that the soil extract addition (medium 

E) slightly contributes to the increase of the growth rate of N. eucaryotum, while the 

effect of vitamin B12 (medium F) is negligible. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Growth rate of N. eucaryotum in different culture 
media: A, seawater; B, diluted seawater; C, soil extract 
enriched diluted seawater; D, soil extract- and vitamin-
depleted BWM; E, vitamin-depleted BWM; F, soil extract-
depleted BWM. The average and standard deviation values 
of each datum were obtained from three independent 
cultures. 

 

According to the findings presented above, only results obtained using media D, E, 

and F will be considered in the sequel. Figure 7 shows the time evolution of pH during 

the cultivation of N. eucaryotum in the media D, E, and F, respectively. It can be 

clearly seen that the presence of soil extract and vitamin B12 does not significantly 

affect the culture pH, which continuously increases during the microalgae growth up 

to about 8.6. The analysis of the experimental results reported in Figures 6 and 7 

shows that under the adopted experimental conditions the growth rate of N. 

eucaryotum is influenced mostly by the inorganic salts concentration while the effect 

of the other nutrient sources, such as soil extract or vitamin B12, is small or negligible, 

respectively. 
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Figure 7. pH time profile measured during N. eucaryotum 
cultivation (D, soil extract- and vitamin-depleted BWM; E, 
vitamin-depleted BWM; F, soil extract-depleted BWM). The 
average and standard deviation values of each datum were 
obtained from three independent cultures. 

 

 

3.3.2  Effect of the initial concentration of potassium nitrate 

A series of batch experiments in 250-ml bottles was carried out with the medium 

E (cf. Table 6) to evaluate the effect of nitrogen starvation on the growth of N. 

eucaryotum by varying its initial content in the culture medium. More specifically, the 

initial concentration of potassium nitrate in medium E was reduced in three different 

experiments from N0 = 2 10-1 g L-1 to one half and one fourth of N0 while the initial 

concentration of the other nutrients were maintained at the values reported in Table 6. 

The results of this study are shown in Figure 8, where it can be seen that growth 

curves without lag phase were obtained regardless the initial concentration of nitrate. 

It can be also observed that for the case N = N0 the selected microalga exponentially 

grows up to the end of the cultivation time (t = 840 h). Since microalga growth is 

clearly responsible of nitrogen depletion, it can be stated that in this case the growth 

rate is not significantly affected by the diminishing nitrate concentration. On the other 

hand, a different behavior is shown by N. eucaryotum when N is reduced to 1/2 and 

1/4 of N0. Specifically, the growth curve presents an inflection point after about 360 h 

of cultivation for both the experiments. In the case of N = 1/2 N0, the growth rate 

decreases after 360 h so that the growth curve approaches a stationary phases when t 

equals about 720 h. 
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When the initial concentration of nitrate was reduced to 1/4 of N0, the growth curve 

reaches a stationary phases at t equals about 420 h. However, a slight increase in 

biomass concentration follows the stationary phase. This finding may be explained by 

recalling that microalgae cells can grow using the organic matter produced by the old 

died cells as nitrogen source. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Biomass concentration (X) versus cultivation 
time for three cultures of N. eucaryotum at different initial 
nitrate concentration (N0 corresponds to the initial 
concentration of potassium nitrate in medium E, i.e. 2 10-1 g 
L-1). 

 

At the end of the stationary phase living cells might change their metabolism to reduce 

the nitrogen requirements, thus making the organic nitrogen sufficient for their 

growth. A similar result was obtained by Debska 
et al. (2010) during cultivation of 

Chlorella vulgaris. They concluded that C. vulgaris can utilize internal reserves of 

nitrogen, hence maintaining growth after external sources are depleted. 

Figure 9 shows the effect of the initial nitrate concentration on medium pH during N. 

eucaryotum growth.  

No significant difference in the pH time profiles was observed during the exponential 

growth (cf. Figure 9) for the different nitrate concentrations. 

However, for the cases N = 1/2 N0 and N = 1/4 N0 a decrease of pH can be seen once 

the culture reaches the stationary phase. This is probably due to the increase of 

dissolved CO2 related to its lower consumption by microalgae during such growth 

phase. 
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Figure 9. pH of the medium versus cultivation time for 
three cultures of N. eucaryotum at different initial nitrate 
concentration (N0 corresponds to the initial concentration of 
potassium nitrate in medium E, i.e. 2 10-1 g L-1). 

 
 

3.3.3  Effect of the initial concentration of potassium phosphate 

With the aim to investigate the effect of phosphorus starvation N. eucaryotum 

was cultivated in medium E by reducing its initial concentration of phosphate to 1/2 

and 1/4 of P0, while the initial concentration of other nutrients remains the same of 

those ones reported in Table 1 for each experiment. The results of this investigation in 

terms of biomass concentration as a function of time are shown in Figure 10. For all 

the initial phosphate concentrations the growth curves do not present lag phase. It can 

be also seen that the growth of N. eucaryotum do not significantly change when the 

initial concentration of phosphate is reduced to 1/2 of P0. This result reveals that the 

selected microalga is less sensitive to phosphorus content than to nitrogen one. Indeed, 

microalgal biomass exponentially grows for the entire length of the cultivation. On the 

other hand, when the initial P content was further reduced to 1/4 of P0, the cells mass 

concentration exponentially increased only during the first 360 h of cultivation. A 

stationary phase was then reached, followed by an approximately linear increase of 

biomass with time. 

The cells growth occurring at the end of the stationary phase can be related to the 

ability of microalgae to change their nutrients requirements. In fact, the rate of 

phosphorus consumption depends on its concentration in the medium as well as the 

corresponding intracellular content (Kaplan et al., 1986). Therefore, the stationary 

phase can be regarded as a period during which microalgal cells are getting adapted to 

a low phosphorus content environment. It should be also mentioned that the 
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microalgae can grow at the expense of their internal phosphorus reservoirs (Martinez 

et al., 1999). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Biomass concentration (X) versus cultivation 
time for three cultures of N. eucaryotum at different initial 
phosphate concentration (P0 corresponds to the initial 
concentration of potassium phosphate in medium E, i.e. 2 
10-2 g L-1). 

 
 

3.3.4  Effect of pH 

A series of batch experiments were performed to investigate the effect of pH on 

growth of N. eucaryotum. The latter one was cultivated in 200 ml of medium E 

contained in Pyrex bottles. pH was measured six times per day and adjusted to the 

desired value by means of additions of 0.5 M NaOH and HNO3 aqueous solutions. 

These experiments were conducted for 360 h since it was previously shown that 

during this time interval the microalgal growth is not significantly affected by 

nutrients concentration. The remaining experimental conditions are the same as those 

ones reported in the experimental section. In order to make a comparison in terms of 

growth rate of microalgal cells the integral method (Fogler, 2004) was adopted. 

Specifically, by assuming that µ remains constant during the exponential growth 

phase, Eq. (1) can be integrated with the initial condition X = X0 at t = 0 to give the 

following relationship between the microalgae mass concentration and time: 

 

t
X

X
µ=









0

ln        (4) 

0 120 240 360 480 600 720 840 960
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

 P
0

 1/2 P
0

 1/4 P
0

X
 [

g/
l]

time [h]



 75

The temporal profile of biomass concentration can be then linearly fitted through Eq. 

(4) to obtain the growth rate µ. The experimental data along with the linear fitting 

results for each value of pH investigated are reported in Figure 11. It can be seen that 

the growth rate µ increases as the pH of the medium increases. Specifically, the 

growth rate was 9.85±0.54•10-4 h-1, 2.03±0.03•10-3 h-1, and 2.86±0.06•10-3 h-1, when 

pH was controlled at 6.60±0.67, 8.29±0.34, and 8.47±0.53, respectively. The 

regression coefficient was higher than 0.9, thus confirming that during the investigated 

time interval the variation of nutrients concentration and of light absorbance taking 

place do not affect the growth rate significantly. This finding can be explained by 

recalling that the carbon dioxide dissolved in the culture medium is the main nutrient 

of microalgae since it is photo-synthetically converted to biomass. Since phase and 

chemical equilibria of CO2 with water states that the total concentration of inorganic 

carbon dissolved in the culture media increases as pH increases, the results shown in 

Figure 11 can be explained by considering the availability of inorganic carbon for the 

microalgae growth which increases as pH is augmented. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. Left-hand side of equation (4), i.e., ln(X/X0), 
versus cultivation time at different pH of the medium. The 
average and standard deviation values of each datum were 
obtained from three independent cultures. 

 

It should be mentioned that the finding described above is substantially different from 

the one obtained by Geisert et al. (1987). In fact, these authors found that the optimal 
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growth was found significantly also at pH equal to 4 and 9, respectively. It is 
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explanation of such experimental result might be due to the fact that alkaline pH might 

favour the enzymatic activity of RuBisCO. This enzyme is involved in the first major 

step of carbon fixation during the photosynthesis, a process by which atmospheric 

CO2 is converted to energy-rich molecules such as glucose. In particular alkaline pH 

and Mg2+ are needed to favour the formation of the so-called carbamate (a molecule of 

lysine plus a molecule of CO2 which represent the active site of the RuBisCo). As 

microalgae grow by photosynthesis there is an increase of the pH in the culture 

medium and the more alkaline the pH is the more the activity of RuBisCo is favoured 

in order to fix CO2 and produce sugars (Lodish et al., 2000). 
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3.4 Concluding remarks 

In this work, the effect of medium composition and nutrient starvation on the 

growth of N. eucaryotum in batch photobioreactors was investigated for the first time. 

A modified Brackish Water Medium (BWM) and atmospheric air (0.03% v/v CO2) 

were used. Specifically, the algae growth was first analyzed by using a culture 

medium where some of the BWM components (inorganic nutrients, soil extract, and 

vitamin B12) have been eliminated. Then, the starvation effect in terms of nitrate and 

phosphate concentrations was addressed. It was found that when only natural seawater 

is used as cultivation medium, the growth was inhibited. On the other hand, the algae 

growth did not result significantly affected by neither soil extract removal nor vitamin 

B12 addition. To study the effect of starvation in terms of nitrate and phosphate 

contents, the latter ones were reduced by two and four times with respect to the BWM 

composition, respectively. The obtained results show that the algae growth is affected 

by the nitrate concentration reduction. The same results holds true also only when the 

phosphate concentration is reduced four times. Finally, the effect of pH medium on 

growth rate is investigated. 

Although the presented results are based on lab-scale mechanically agitated flasks and 

bottles experiments, they may provide useful information of the effects of medium 

composition on N. eucaryotum growth in view of its exploitation to large-scale 

photobioreactors. In particular, during future stages of process development, economic 

and operational studies will have to be performed by taking advantage of the results 

obtained in this work. 

Indeed, in order to make the microalgal-derived biofuels economical with respect to 

conventional ones, the cost of microalgae cultivation should be reduced as much as 

possible. Along this line, the most intuitive processing option would be to cultivate 

microalgae in natural waters without any nutrients addition. Moreover, marine strains 

would be preferred since seawater is cheaper and easier to be obtained with respect to 

fresh water. This is particularly true in arid or semi-arid regions, which are the most 

suitable areas for microalgae cultivation due to their higher temperature and radiation. 

However, the case of N. eucaryotum investigated in this work demonstrates that the 

target above is not guaranteed. The choice of marine microalgae may not be sufficient 

to prevent the need to enrich the culture medium with inorganic nutrients. On the other 

hand, it is demonstrated that some of medium nutrients that are typically prescribed 

for laboratory cultivation of microalgae may have a small or negligible effect on algae 
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growth. This consideration makes the elimination of expensive substances, such as 

vitamins, quite reasonable when developing microalgae-based processes at the 

industrial scale. 

Finally, the high tolerance and growth rate this microalga strain shows at high pH may 

favor the combination of CO2 sequestration and biomass production. In fact, it is well 

known that CO2 absorption in aqueous solution increases as the pH solution increases. 

Therefore, an alkaline aqueous solution can be used in absorption processes to capture 

CO2 emitted for instance by power plants. The liquid phase obtained from the CO2 

absorption process can be then exploited for the microalgae cultivation. The high pH 

and total inorganic carbon concentration of this medium determine high growth rate of 

N. eucaryotum, which, in turn, gives rise to a higher production of microalgal biomass 

to be fed in the subsequent biofuels production process. 
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4.1 Introduction 

The production of biofuels from renewable resources is well known to be highly 

critical to guarantee a sustainable economy and face global climate changes (Cheng 

and Timilsina, 2011). In recent years, microalgae have been recognized to be a 

promising alternative source for biofuel-convertible lipids (Halim et al., 2011). In 

fact, when compared to first generation biofuels, microalgae are characterized by 

higher growth rates and larger bio-oil productivities. In addition, cultivation of 

microalgae does not compromise arable lands (Chisti, 2007) thus avoiding “food for 

fuel” concerns. Moreover, biological fixation of CO2 can be carried out much more 

effectively by using autotrophic microalgae rather than terrestrial crops (Usui and 

Ikenouchi, 1997; Borowitzka, 1999; Chisti, 2007). For these reasons, the potential use 

of microalgae as renewable feedstock for the massive production of liquid biofuels is 

receiving a rising interest mostly driven by the global concerns related to the 

depletion of fossil fuels supplies and the increase of CO2 levels in the atmosphere 

(Olguin, 2003; Mulbry et al., 2008). The high potential of algae based biofuels is 

confirmed by the number of recent papers available in the literature (Francisco et al., 

2008; Huang et al., 2010; Demirbas, 2011; Gong and Jiang, 2011; Li et al., 2011; 

Mallick et al., 2011; Phukan et al., 2011; Sasi et al., 2011; Singh et al., 2011;) on the 

subject, the growing investments of private companies (Torrey, 2008) and 

governments (Sheehan et al., 1998) as well as the increasing number of filed patents 

(Mata et al., 2010). Despite such interest, the current microalgae-based technology is 

still not widespread since it is characterized by technical and economic constraints 

that might hinder its full scale-up. In particular, the main barriers are related to the 

extensive land's areas needs as well as the estimated high costs of the operating 

phases of microalgae cultivation, harvesting and lipid extraction (Chen et al., 2011). 

Thus, one of the main targets of the scientific community is to identify, and/or create, 

new microalgae strains which are intrinsically characterized by high biomass 

productivity and lipid content as well as the capability of capturing CO2 from flue 

gases (Cao and Concas, 2008, 2010; Mazzuca Sobczuk and Chisti, 2010). In such 

contest the most attractive scientific challenge is the genetic manipulation of existing 

strains with the aim of increasing their photosynthetic efficiency (Tetali et al., 2007; 

Mitra and Melis, 2008; Melis, 2009) and/or regulate their metabolism (Dorval 
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Courchesne et al., 2009; Radakovits et al., 2010) in order to achieve an abundant 

production of lipids coupled with high biomass accumulation. A further goal is to 

suitably exploit process engineering techniques to identify the operating conditions of 

photobioreactors (i.e. light supply, mass transfer, culture media etc.) that maximize 

lipid productivity and CO2 fixation as well as the economic viability of the technique 

(Concas et al., 2010). In particular, one of the most impacting cost items is related to 

the need of a continuous replenishment of macronutrients (mainly CO2, nitrogen and 

phosphorus) during algal cultivation (Jiang et al., 2011). In fact, as rule of thumb, 

about 1.8 kg of CO2, 0.33 kg of nitrogen and 0.71 kg of phosphate are consumed to 

produce 1 kg of microalgal biomass (Amaro et al., 2011; Yang et al., 2011). Since 

large scale cultivation of microalgae implies the consumption of huge amounts of 

such macronutrients, the economic feasibility of the entire process could be seriously 

affected by the erroneous evaluation of their depletion kinetics. Therefore, in view of 

industrial scaling-up, the effect of nutrients concentration in the medium on biomass 

composition and productivity should be quantitative evaluated. In addition, changes 

in nutrients concentration can result in conflicting effects on the process economics. 

For instance, a decrease of nitrogen concentration in the cultivation broth typically 

results in higher lipid contents counteracted by lower growth rates. This inverse 

relationship between biomass productivity and lipid content makes the process 

optimization in terms of lipid productivity not straightforward. Therefore, since 

nutrients concentration and supplies are among the most controllable factors in 

microalgae cultivation, at least the main macronutrients (i.e. nitrogen and 

phosphorus) uptake rates need to be quantitatively evaluated for the microalgae 

strains candidate to industrial exploitation. This way, macronutrients concentrations 

might be precisely controlled during cultivation. Hence, biomass production can be 

optimized with respect to the required process end-products by means of suitable 

growth kinetics and broth composition. Moreover, the exploitation of costless 

feedstock such as seawater and flue gas as sources of micronutrients and CO2, might 

greatly improve the economic feasibility of the microalgae-based technology while 

simultaneously producing a positive impact on important environmental concerns 

such as water and air pollution. In addition, marine strains capable to survive under 

elevated CO2 concentration might represent suitable candidate for the industrial 

cultivation of microalgae for biofuels production and CO2 capture. Among such 

strains the unicellular marine eukaryotic green alga Nannochloris eucaryotum
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(Menzel and Wild, 1989) (also known as Nanochlorum eucaryotum
 (Wilhelm and 

Wild, 1982) or Picochlorum eucaryotum
 (Henley et al., 2004), shows high 

adaptability to extreme environmental conditions such as high salinity, low irradiance 

and elevated CO2 levels (Geisert et al., 1987). It has been also found that the lipid 

content of strains belonging the same genus (i.e. Nannochloris) can be close to about 

50% (Negoro et al., 1991). While these aspects make this microalgae strain a suitable 

candidate for large-scale biofuel production and CO2 capture, it is important to note 

the lack of information available in the literature about its growth kinetics and lipid 

content. Thus, such strain seems to be worthy of further and deeper investigations. 

Along the lines of our recent work (Lutzu et al., 2012) on this subject, the growth 

kinetics of N. eucaryotum in batch photobioreactors is quantitatively investigated in 

this work (Concas et al., 2012) with the aim of determining useful kinetic parameters 

which might be used for process engineering and its optimization. In particular, the 

Monod’s model for multiple nutrients limitation is adopted to quantitatively describe 

the growth of this microalga as a function of nitrogen and phosphorus concentrations. 

The maximum growth rate, the half saturation constants and yields coefficients for 

nitrate and phosphate uptake are also determined by suitably fitting the experimental 

data (Lutzu et al., 2012). The reliability of the obtained parameter values is than 

tested by suitably predicting new experimental data. Finally, the possibility of using 

100% (v/v) CO2 gas as carbon source in a semi-batch photobioreactor is also 

investigated in this work with the aim of verifying the capability of N. eucarytoum of 

capturing CO2 from sources characterized by high concentration values of this gas. 

Lipid content and fatty acid composition is also evaluated in order to assess the 

potential exploitability of N. eucaryotum as feedstock for biofuel production. It 

should be noted that, to the best of our knowledge, all these aspects have not been 

addressed in the literature as far as this microalga strain is concerned. 
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4.2 Materials and methods 

4.2.1 Microorganism 

The marine algal strain Nannochloris eucaryotum (strain N° 55.87) obtained 

from the Sammlung von Algenkulturen at the University of Göttingen (SAG), 

Germany, was investigated in this work. Stock cultures were propagated and 

maintained in Erlenmeyer flasks with a Brackish Water Medium (BWM) (SAG, 

2009) under incubation conditions of 25°C, a photon flux density of 98 µmol m-2 s-1 

provided by four 15 W white fluorescent tubes and a light/dark photoperiod of 12 h 

was assured. Flasks were continuously shaken at 100 rpm (Universal Table Shaker 

709). 

 

4.2.2 Culture conditions 

The experimental data used to fit the kinetic parameters of the Monod’s 

equation shown in the next section were obtained in a recent work (Lutzu et al., 2012) 

from which the description of the experimental set up and procedure, also used to 

obtain novel data in this work, might be seen. In addition, the possibility of exploiting 

100% (v/v) CO2 gas as carbon source was evaluated using the photobioreactor whose 

schematic representation is reported in Figure 12. It consists of a cylindrical glass 

photobioreactor (9.5 cm diameter and 21 cm height) with a volumetric capacity of 1.5 

L and operated in semi batch mode (i.e. batch mode for the liquid phase and 

continuous mode for the gas one). The reactor was then filled with 1 L of growth 

medium and then mechanically stirred at 400 rpm through a rotating blade powered 

by an electrical engine (GZ high power overhead stirrer). Cultures were maintained at 

25°C by a thermostatic bath (GD120 series) and illuminated by a photon flux density 

of 100 µmol m-2 s-1 provided by eight 11 W white fluorescent bulbs with a light/dark 

photoperiod of 12 h. A gas constituted by pure CO2 (100% v/v) from a cylinder was 

continuously supplied through suitable spargers at a flow rate of 40 ml min-1. The 

inlet pressure of CO2 was equal to 1.6 bar.  

 

4.2.3 Culture medium 

The culture medium to perform the experiments with pure CO2 was prepared by 

considering the following components and proportions:  
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Figure 12. Schematic representation of the semi-continuous 
photobioreactor used for cultivating N. eucaryotum under high CO2 
concentration levels. 

 

• natural sea water (Mediterranean sea, lat. 39° 11' N - long. 09° 10' E) 

centrifuged at 4000 rpm for 15 min (Thermo Fisher Scientific Inc. Waltham) and then 

filtered by means of 0.45 µm filter, 455 ml L-1; 

• de-ionized water, 450 ml L-1;  

• soil extract (SAG, 2009), 30 ml L-1;  

• macronutrients aqueous solution (KNO3 10 g L-1; K2HPO4 1 g L-1; 

MgSO4·7H2O 1 g L-1), 20 ml L-1;  

• micronutrients aqueous solution (SAG, 2009) 5 ml L-1.  

The volumetric and chemical composition of the growth medium is reported in Table 

7. Cultivations were then performed with different initial concentrations of nitrates 

(N0) and phosphates (P0). 

 

4.2.4 Biomass concentration and pH measurements 

The growth of microalgae was monitored through daily measurements of the 

culture media optical density (OD) (Genesys 20 spectrophotometer, Thermo Fisher 

Scientific Inc. Waltham) at 560 nm wavelenght (D560) with 1 cm light path. The 

biomass concentration (X) was calculated from OD measurements using an X vs. OD 
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calibration curve (Lutzu et al., 2012). The latter was obtained by gravimetrically 

evaluating the biomass concentration of known culture medium volumes which were 

previously centrifuged at 4000 rpm for 15 min and dried at 105°C for 24 h. pH was 

daily measured by pHmeter (KNICK 913). For the sake of reproducibility, each 

experimental condition was investigated at least in duplicate. 

 

          Table 7. Volumetric and chemical composition of the culture medium used in this work 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.5 Fatty acids methyl esters analysis  

After lipid extraction the total amount of saponifiable lipids and fatty acid 

composition of extracted lipid was determined after transesterification with methanol-

acetyl chloride. Gas chromatographic analysis was carried out according to EEC N° 

2568/91 (2011) using a flame ionization detector (FID) (Thermo Trace Ultra, GC-

14B) and a RTX-WAX column T (fused silica, 0.25 mm x 60 m x 0.25 µm) 

maintained at 180ºC. Helium was used as carrier gas at a flow rate of 1 ml min-1. 

 

 

 

 

Component units (N0, P0) 

Volumetric composition   

De-ionized water ml L-1 450 

Seawater ml L-1 455 

Soil extract ml L-1 30 

Macronutrients aqueous solution ml L-1 20 

Micronutrients aqueous solution ml L-1 5 

Resulting chemical composition   

KNO3 g L-1 2.0·10-1 

K2HPO4 g L-1 2.0·10-2 

MgSO4·7H2O g L-1 2.0·10-2 

H3BO3 g L-1 2.86·10-3 

MnCl2·4H2O g L-1 1.81·10-3 

ZnSO4·7H2O g L-1 2.22·10-4 

CoCl2·6H2O g L-1 3.5·10-5 

CuSO4·5H2O g L-1 8.0·10-5 

Na2MoO4·2H2O g L-1 2.3·10-4 

EDTA-Na2 g L-1 2.98·10-2 

FeSO4·7H2O g L-1 2.49·10-2 
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4.3 Model equations and parameters evaluations 

The relevant material balance used to quantitatively describe the growth of 

microalgal cells in the batch photobioreactor used in this work (Lutzu et al., 2012) to 

obtain kinetic parameter is reported as follows: 

X
dt

dX
µ=           (1) 

where X represents the cell mass [g L-1], t is the time [h], and µ the growth rate [h-1], 

which is typically a function of nutrients concentration, pH, temperature, light and 

other culture conditions. With the aim of evaluating the kinetic parameters of nitrogen 

and phosphorus uptake by N. eucaryothum, the Monod’s model for multiple nutrients 

limitation was adopted to simultaneously take into account the effect of nitrogen and 

phosphorus concentration on N. eucaryotum growth (Bailey and Ollis, 1986): 

PNi
CK

C
pHITCO

PNi ii
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,

20 =
+

= ∏
=

µµ       (2) 

where µ0 can be regarded as the maximum growth rate under the temperature level T, 

the light intensity I, the CO2 mass transport and the pH conditions of the adopted 

experimental set-up while Ki represents the half saturation constant. Mass 

concentration Ci (g L-1) of nitrogen and phosphorus in the medium may be related to 

the biomass concentration X under batch operation through the following 

relationship: 

PNiXXYCC
iii

,)( 0,0 =−−=       (3) 

where C0,i is the initial concentration of the limiting nutrients, and Yi the yield 

coefficient of nitrogen and phosphorus. On the basis of Eqs. (1), (2), and (3), the 

values of five parameters (µ0, KN, KP, YN, YP) are needed to quantitatively interpret 

the experimental results. The strategy adopted to fit the above mentioned kinetic 

parameters is illustrated in what follows. By assuming µ as a constant during the 

phase of exponential growth, Eq. (1) can be integrated with the initial condition X = 

X0 at t = 0 to give the following relationship between the microalgae mass 

concentration and time: 

t
X

X
µ=









0

ln          (4) 

Experimental data obtained in the case where the exponential growth took place 

without being affected by nutrient or light limitation phenomena (i.e. µ = µ0), are then 
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linearly fitted through Eq. (4) in order to obtain the value of µ0. While maintaining 

fixed the above reported value of µ0, the kinetic parameter KN and YN were evaluated 

by coupling the numerical integration of Eqs. (1), (2), and (3) with a non-linear fitting 

of the experimental data related to the case where nitrogen limitation phenomena took 

place. Numerical integration was performed using standard IMSL (International 

Mathematics and Statistics Library) routines. Finally, by maintaining fixed the fitted 

values of µ0, KN and YN, the kinetic parameters KP and YP were obtained by non-

linearly fitting the experimental data obtained in case where phosphorus limitation 

phenomena took place. The reliability of the fitted parameters were then evaluated by 

successfully predicting novel experimental results obtained in this work when 

nitrogen and phosphorus starvation phenomena occurred both simultaneously or 

separately, albeit at different concentration levels with respect to the experimental 

data used during the fitting procedure. 
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4.4 Results and discussions 

A series of batch experiments were carried out recently (Lutzu et al., 2012) to 

evaluate the effect of the initial concentration of nitrogen (Ninit) and phosphorus (Pinit) 

on the growth of N. eucaryotum by varying the initial content of potassium nitrate and 

potassium biphosphate in the culture medium. The initial concentrations of nitrogen 

and phosphorus in the “base case” experiment will be hereafter indicated as N0 and 

P0, respectively (cf. Table 7). It can be observed from Figure 13 that, for the case 

where Ninit = N0 and Pinit = P0, N. eucaryotum grows exponentially with time up to the 

end of the cultivation period. Since microalgae growth causes nutrients depletion, it 

can be stated that in this case the growth rate does not seem to be significantly 

affected by the diminishing nitrates and phosphates concentrations.  

 

 

 

 

 

 

 

 

Figure 13. Comparison between model results and experimental 
data (Lutzu et al., 2012) in terms of cells mass as a function of 
time to obtain the N. eucaryotum maximum growth rate (µ0). 

 

Thus, the experimental data obtained for the case Ninit = N0  and Pinit = P0 can be 

linearly fitted through Eq. (4) as it may be seen from Figure 13, by means of a 

constant growth rate equal to 0.00199 h-1 under the selected experimental conditions. 

This finding confirms that in this case the growth rate is not significantly affected by 

the diminishing nitrogen and phosphorus concentrations as well as by the decreasing 

light intensity inside the medium due to microalgae absorbance. In addition, during 
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this experiment (Lutzu et al., 2012), the medium pH varied from the initial value of 

7.0 to 8.8. 

Thus, the growth rate does not appear to depend on pH in the above mentioned range. 

The fitted value of µ can be then regarded as the maximum growth rate µ0 (cf. Eq. 

(2)) under the temperature, light intensity, CO2 transfer and pH conditions available 

in the case where Ninit = N0  and Pinit = P0. 

The effect of initial nitrogen concentration was also investigated (Lutzu et al., 2012) 

by reducing it to one half and one fourth of N0, while maintaining constant the initial 

phosphate concentration. 

From the experimental data reported in Figure 14, it clearly appeared that for Ninit = 

1/2 N0 growth curve approached a stationary phase after about 720 h thus indicating 

the occurrence of nitrogen starvation phenomena. 

Thus by maintaining fixed the above reported value of µ0, the kinetic parameter KN 

and YN were evaluated with the proposed model by fitting the experimental data 

where it is assumed that CP is much greater than KP, since such phosphorus does not 

limit the algae growth under these conditions, as it may be seen from Figure 13. 

Model results are compared with experimental data in Figure 14. The best fitting 

value for the half saturation constant KN was equal to 5.2 10-4 gN L-1 while the 

corresponding value of the nitrogen yield YN was 5.9 10-2 gN/gbiomass. 

As far as the effect of phosphorus depletion on the growth kinetic of N. eucaryotum is 

concerned, the experimental data reported in Figure 15 clearly show that when the 

initial content of P was reduced to 1/4 P0, the cells mass concentration increased only 

during the first 400 h of cultivation. Then a stationary phase was reached up to 700 h 

of cultivation.  

This fact indicates that for Pinit = 1/4 P0 phosphorus becomes a limiting nutrients after 

a specific culture time. Hence, by assuming that CN is much greater than KN under 

these experimental conditions and maintaining fixed the values of µ0 already 

obtained, the kinetic parameters KP and YP were obtained by non-linearly fitting the 

experimental data for the case when Ninit = N0 and Pinit = 1/4 P0 in the time interval 0-

700 h. Model results are compared with experimental data in Figure 15. 

In particular, the best fitting value of 2.5 10-5 g L-1 is obtained for the half saturation 

constant KP while the corresponding value of 6.0 10-3 gP/gbiomass is obtained for the 

phosphorus yield YP.  With the aim of testing the predictive capability of the adopted 
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Figure 14. Comparison between model results and experimental 
data (Lutzu et al., 2012) in terms of cells mass as a function of time 
to obtain the half-saturation constant (KN) and yield coefficient (YN) 
for nitrates uptake by N. eucaryotum. 

 

 

 

 

 

 

 

 
 

Figure 15. Comparison between model results and experimental 
data (Lutzu et al., 2012) in terms of cells mass as a function of time 
to obtain the half-saturation constant (KP) and yield coefficient (YP) 
for biphosphates uptake by N. eucaryotum. 

 

growth model as well as the reliability of the fitted parameters, numerical simulation 

of new experimental runs where only the initial nitrogen was further reduced (i.e Ninit 

= 1/4 N0 and Pinit = P0) and only the initial phosphorus concentration was halved (i.e. 
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Ninit = N0 and Pinit = 1/2 P0) were performed. Figure 16 illustrates the comparison 

between experimental data and model results which were obtained by maintaining 

fixed the corresponding parameters obtained through the fitting procedure described 

above. To further test the predictive capability of the model when both the initial 

nitrogen and phosphorus concentrations are simultaneously reduced, new 

experimental data have been obtained in this work for the case where Ninit = 1/2 N0 

and Pinit = 1/2 P0, following the procedure described in the literature (Lutzu et al., 

2012). Experimental results are compared with model predictions in Figure 17, from 

which it can be seen that also in this case the model permits to predict the culture 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Comparison between model predictions and 
experimental data (this work) in terms of cells mass as a function of 
time. 

 

behavior at varying initial nitrate and phosphate concentrations in the medium with a 

reasonable accuracy. Experimental results are compared with model predictions in 

Figure 17, from which it can be seen that also in this case the model permits to 

predict the culture behavior at varying initial nitrate and phosphate concentrations in 

the medium with a reasonable accuracy. It should be mentioned however, that the so 

called phenomenon of “diaouxic growth” that occurred after prolonged culture times 
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Figure 17. Comparison between model predictions and 
experimental data (this work) in terms of cells mass as a function of 
time. 
 

(Lutzu et al., 2012) was not simulated in this work. Subsequently, the effect of high 

CO2 concentration on the growth of N. eucaryotum in batch photobioreactors was also 

investigated in this work. Specifically, specific experiments were carried out where 

CO2 (100% v/v) was continuously bubbled at a flow rate of 40 ml min-1 into the 

growth medium when Ninit = N0 and Pinit = P0. To this aim the semi-batch 

photobioreactor shown schematically in Figure 12 was used. 

From Figure 18 it can be observed that, under the above mentioned conditions, 

microalgae start growing with a modest lag phase, which probably indicates the 

intrinsic affinity of N. eucaryotum for high dissolved CO2 concentration in the growth 

medium. Moreover, when comparing the experimental results of Figure 15 with the 

corresponding ones (i.e. Ninit = N0 and Pinit = P0) obtained in our previous work (Lutzu 

et al., 2012) using CO2 available in the atmosphere, a higher initial growth rate can be 

observed. Such behavior is due to the higher availability of dissolved CO2 which 

results in the increase of the specific growth rate µ0 (CO2, pH, I), thus suggesting that 

its dependence upon dissolved CO2 concentration should be also taken into account 

through Monod’s type kinetics. In fact CO2 is the main macronutrient for triggering 

photosynthesis in microalgae. On the contrary, a stationary phase is attained after 

about 350 h of cultivation when the biomass concentration was about 0.35 g L-1, while 

using CO2 from the atmosphere microalgae keep growing almost exponentially up to 

840 h of cultivation (Lutzu et al., 2012). Once the steady state was attained, the 

possibility to operate the photobioreactor in fed-batch mode was evaluated. 

0 100 200 300 400 500 600 700 800 900

0.1

0.2

0.3

0.4

0.5

0.6

 Experimental data (N
init

=1/2N
0
, P

init
=1/2P

0
) 

  Model prediction

 

 

X
, 
(g

 L
-1
)

Time, (h)



 93

 
 

 

 

 

 

 

 

 

 

Figure 18. Growth of N. eucaryotum in the batch photobioreactor 
depicted in Figure 12 in terms of cells mass as a function of time. 

Culture conditions: 100% (v/v) CO2, aeration rate = 40 ml min-1, 
agitation speed = 400 rpm and 25°C. 

 
 
In fact starting from the 16th day of culture, 150 ml of culture were withdrawn every 5 

days and then replaced by an equal volume of fresh medium, thus imposing a dilution 

rate (D) (Novick and Szilard, 1950; Fogler, 2006) of about 0.0015 h-1. As shown in 

Figure 18, after each withdrawal, the biomass concentration decreases and then starts 

increasing as a result of nutrient availability and the diminished concentration of toxic 

catabolites. In particular, 4 cycles of withdrawal and replacement with fresh medium 

were performed and, after 5 days from each withdrawal, the biomass always reached 

the concentration corresponding to the steady state. Such behavior demonstrates that 

the photobioreactor can be suitably operated in fed-batch mode while assuring the 

culture stability with a dilution ratio (D) of 0.0015 h-1. By indicating with Xs the 

microalgae concentration at the steady state, i.e. 0.35 g L-1, the potential biomass 

productivity (Pb)
 (Mazzuca Sobczuk and Chisti, 2010) was evaluated, through the 

equation Pb = D·Xs, to be about 12.6 mg L-1 d-1. It should be noted that, given the high 

growth rate observed during the initial phase, higher dilution rates could be probably 

used while guaranteeing reactor stability. This could allow us to obtain higher 

biomass productivities. Moreover, it is worth noting that such result is obtained under 
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extreme operating conditions such as elevated CO2 levels and low pH (cf. Figure 19) 

at which very many of the algal strains investigated so far in the literature have been 

shown to grow with strongly reduced capability (Papazi et al., 2008) or not to grow at 

all (Watanabe et al., 1992). Figure 19 shows the pH evolution during the experiment. 

It can be observed that when the culture is started, pH drops to the value of 5.32, as a 

result of the CO2 inlet. Although such low value of initial pH, microalgae start 

growing exponentially while pH increases as a result of the photosynthetic activity. 

According to Geisert et al. (1987) this behavior confirms that N. eucaryotum could 

survive under very low pH values. In fact, even though the optimal pH for N. 

eucaryotum is in the range between 5 and 7, cell growth can take place at pH equal to 

4 and 9, respectively (Geisert et al., 1987).  

 

 

 

 

 

 

 

 

 

Figure 19. pH evolution as a function of time during the growth of 
N. eucaryotum in the batch photobioreactor depicted in Fig. 1. 
Culture conditions: 100% (v/v) CO2, aeration rate = 40 ml min-1, 
agitation speed = 400 rpm and 25°C. 

 
Such result is very important in view of the utilization of such strain to capture CO2 

from sources where its concentration is quite high. In fact, such microalgae grows not 

only at low pH but also at a higher rate during the initial growth phase with respect to 

the corresponding one observed when lower CO2 levels are used. It is worth noting in 

passing that under the above mentioned experimental conditions the lipid content of 

N. eucaryotum is evaluated to be 16.2% wt/wtbiomass. While details of the extraction 
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procedure will be reported in a subsequent publication (Rossi et al., 2012), it should 

be noted that the cumulative amount of fatty acid methyl esters having carbon 

numbers from C16 to C18 is about 71.2% wt/wt. Thus it can be stated that, at least 

from a qualitative point of view (Damiani et al., 2010), lipids extracted from N. 

eucaryotum could be suitably exploited for the production of biodiesel.  
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4.5 Concluding remarks 

In this work the Monod’s growth model for multiple nutrients limitation was 

adopted in order to evaluate the kinetic parameters related to the growth of N. 

eucaryotum under the experimental conditions of our recent work (Lutzu et al., 

2012). The maximum growth rate was evaluated to be 1.99 10-3 h-1. Half saturation 

concentrations for nitrate (KN) and phosphate uptake (KP) were evaluated as 5.4 10-4 

gN L
-1 and 2.5 10-5 gP L

-1, respectively. Yield factors for nitrogen (YN) and phosphorus 

(YP) resulted to be 5.9 10-2 gN/gbiomass and 6.0 10-3 gP/gbiomass, respectively. Predictive 

capability of the adopted growth model along with the fitted kinetic parameters was 

also tested with good results. It is worth noting that these results represent a first step 

for developing useful mathematical models to simulate and optimize the growth of N. 

eucaryotum in large-scale photobioreactors. Subsequently, the possibility to grow N. 

eucaryotum in a semi batch photobioreactor fed with a gaseous stream of pure (100% 

v/v) CO2 was experimentally demonstrated for the first time in this work. The strain 

showed a good adaptability to high concentrations of dissolved CO2 as well as to low 

pHs thus being potentially useful for the CO2 capture from flue gases. Finally, 

although the potential biomass productivity is not high, the lipid content of N. 

eucaryotum, grown under elevated CO2 levels, is relatively good (i.e. 16.16% wt/wt) 

and the FAMEs composition of the extracted oil is in compliance with the European 

regulation for quality biodiesel. This aspect represents an interesting result since the 

oil extracted from the majority of microalgal strains is characterized by FAMEs 

composition that is not suitable for the production of biodiesel through simple 

transesterification processes. Although further analyses should be performed to 

evaluate the potential exploitability of N. eucaryotum as feedstock for biofuels 

production, the obtained results allow to state that, at least from a qualitative point of 

view, the oil extracted from this strain seems to be suitable for the production of 

biodiesel. On the other hand, the low biomass productivity might severely affect its 

exploitability at the industrial level. For these reasons the optimization of operating 

conditions should be performed by means of suitable mathematical models where the 

kinetic parameters obtained in this work are needed in order to achieve this target. 
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5.1 Introduction 
 

Literature review reported in the Chapter 2 suggests that, in view of the 

industrial scaling-up of microalgae cultivation, the current technology today available 

should be optimized in terms either of selected algal strains or design/operating 

parameters (Sierra et al., 2008). While the creation of new microalgal strains 

intrinsically characterized by high lipid productivities is an ambitious goal which can 

be achieved through genetic manipulation of existing strains (Dorval Courchesne et 

al., 2009;  Radakovits et al., 2010), the optimization of design and operating 

parameters may be accomplished by exploiting suitable process engineering 

techniques. To this aim, suitable mathematical models, that are capable of 

quantitatively describing the influence of the crucial operating parameters (i.e. 

photobioreactors geometry, heat and mass transfer conditions, growth medium 

composition, pH etc.) on microalgae growth and lipid accumulation, should be 

developed. Several mathematical models of microalgae growth within 

photobioreactors have been proposed in the literature. So far, the basic characteristics 

of algal kinetics have been taken into account (Cornet et al., 1995; Acién Fernández et 

al., 1997; Zonneveld et al., 1997; Molina Grima et al., 1999; Camacho Rubio et al., 

1999; Wu and Merchuk, 2001; Molina Grima et al., 2001; Li et al., 2003; Berenguel et 

al., 2004; Pruvost et al., 2008). In particular, most mathematical models available in 

the literature were capable of quantitatively describing the evolution of biomass 

concentration as a function of light density distribution within the culture (Cornet et 

al., 1995; Acién Fernández et al., 1997). Other modeling efforts have been devoted to 

quantitatively describe the production of photosynthetic oxygen and the corresponding 

consumption of dissolved carbon dioxide within the culture (Camacho Rubio et al., 

1999), the pH evolution (Berenguel et al., 2004), the mass transfer phenomena 

(Molina Grima et al., 1999) and the influence of hydrodynamic regime on light 

conversion (Pruvost et al., 2008). Recently, also the effect of cell size distribution on 

the nutrient uptake capacity of microalgae has been simulated by means of suitable 

population balances (Concas et al., 2010). However, in spite of the large number of 

mathematical models appearing in the literature, to the best of our knowledge, no 

comprehensive models, which simultaneously account for all the above mentioned 

phenomena taking place, have been proposed. In particular very few models were able 

to quantitatively describe the evolution of pH during photosynthetic growth of 

microalgae (Camacho Rubio et al., 1999). Moreover the few works which have 
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attempted to model the pH evolution during microalgal growth were steady state 

models and were based on the erroneous assumption that only the inorganic carbon 

species affect the solution pH (Camacho Rubio et al., 1999) while the effects of other 

major ions in solution were neglected. Nevertheless, the quantitative description of pH 

evolution during microalgal growth is very important since it can influence 

photosynthetic phenomena in a number of ways. In fact pH can affect the distribution 

of carbon dioxide species and carbon availability, alter the speciation (and thus the 

availability) of macro- and micronutrients, and at extreme levels potentially provoke 

direct physiological effects (Chen et al., 1994). Moreover, in microalgal cultures, [H+] 

is recognized to be a non-competitive inhibitor near neutral conditions, but at too low 

or too high pHs, it can inhibit photosynthetic growth and substrate utilization rates 

(Mayo, 1997). Furthermore pH can affect the enzymatic activity of intra- and extra-

cellular carbonic anhydrase thus influencing the carbon capture mechanism of some 

microalgal strains (Rigobello-Masini et al., 2003). 

Therefore the quantitative description of pH evolution in microalgal cultures is a key 

goal in order to properly control and optimize photobioreactors. Indeed pH variations 

are not only a fundamental indicator of the evolution of photosynthetic activity but 

can, in turn, strongly influence the growth kinetics of microalgae. In particular this is 

of crucial importance when high CO2 concentrated gases, such as flue gases, are used 

as carbon source. In fact in this case the medium’s pH can reach very low values that 

might inhibit microalgae growth. On the other hand, the potential exploitation of 

costless feedstock such as flue gases as source of CO2 is one of the main targets of 

scientists and technicians operating in this field. In fact the use of flue gases as carbon 

source or microalgae might greatly improve the economic feasibility of the 

microalgae-based technology while simultaneously producing a positive impact on 

significant environmental concerns such as air pollution, climate changes. Thus the 

correct evaluation of the effect of pH is critical also for assuring the possibility of 

exploiting/capturing CO2 from flue gases through microalgae. For the above 

mentioned reasons, microalgae strains capable to survive under elevated CO2 

concentration might represent suitable candidate for the industrial cultivation of 

microalgae for biofuels production and CO2 capture. Among such strains the 

unicellular eukaryotic fresh green alga Chlorella vulgaris is characterized by high 

growth rates (Radakovits et al., 2012), coupled with a significant lipid content 

(Mallick et al., 2011; Sasi et al., 2011). Moreover C. vulgaris is tolerant to high-
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temperatures and toxic compounds such as NOx and SOx (Ho et al., 2011) and is 

capable to grow in inexpensive media such as wastewaters (Chinnasamy et al., 2009). 

Finally, according to Baba and Shiraiwa (2012) C. vulgaris is one among that strains 

which are capable of developing suitable molecular mechanisms that allows its 

adaptation to extremely high CO2 concentrations. For all these reasons this microalgae 

is potentially one of the more useful strains for biofuels production and CO2 capturing 

from flue gases. 

In the light of the foregoing the goal of the present chapter is to describe the growth of 

C. vulgaris, previously acclimated to high CO2 concentrations, under acidic conditions 

in semi batch photobioreactors fed with pure CO2 (100% v/v), to provide experimental 

data in order to validate a rigorous and comprehensive mathematical model that have 

been developed by our research group (Concas et al. 2012b). Model results and 

experimental data in terms of dry biomass concentration and pH were successfully 

compared, thus demonstrating the validity of the proposed model as well as its 

predictive capability. 

Particularly, the focus of this work is to investigate the growth kinetics of C. vulgaris 

in enriched media to provide useful experimental data in order to validate the 

mathematical model. This will permit to properly simulate cell growth and pH 

evolution during microalgae growth within the photobioreactor. However model 

results are not shown since the target of the present work is focused only on the 

experimental analysis of microalgae behavior under high CO2 concentrations. 
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5.2 Materials and methods 

5.2.1 Microorganism and culture medium 

The fresh water algal strain Chlorella vulgaris, provided by Prof. Torzillo of the 

Centro per lo Studio dei Microorganismi Autotrofi di Firenze, Italy, was investigated 

in this work. Stock cultures were propagated and maintained in Erlenmeyer flasks 

with a Kolkwitz Triple Modified medium (KTM-A) under incubation conditions of 

25°C, a photon flux density of 98 µmol m-2 s-1 provided by four 15 W white 

fluorescent tubes, and a light/dark photoperiod of 12 h. Flasks were continuously 

shaken at 100 rpm (Universal Table Shaker 709).  

 

5.2.2 Strain acclimation to high CO2 concentrations  

Acclimation of C. vulgaris to high CO2 concentrations was carried out in a 6 L 

helical tubular photobioreactor coupled with a degasser system, as shown in Figure 

20. The light collector of the photobioreactor consisted of 66 m transparent 

polyurethane tubing arranged around a circular metal frame. It was internally 

illuminated by tree 60W white fluorescent lamps providing a light intensity of 100 

µmol m-2 s-1 for a light-dark photoperiod of 12 h. Liquid circulation in the light 

collector was assured by a peristaltic pump. The degasser unit was a 1 L bubble 

column which allowed removing photosynthetic oxygen by exposing the broth to 

atmosphere. Pure CO2 (100% v/v) was continuously bubbled in the growth medium 

by means of a flowmeter (Rotameter FL-3207C, OMEGA Eng. Ltd.) at a flow rate of 

30 ml min-1. The growth medium consisted of KTM-A. Once the culture reached the 

stationary growth phase the photobioreactor was operated in fed-batch mode by 

assuring a suitable dilution rate for about 230 days. Such a long cultivation time was 

assured in order to trigger permanent changes in the strain to extremely high CO2 

concentrations. The withdrawals made during the operation in fed-batch mode were 

used as inoculum for the experiments performed in the semi-batch continuously 

stirred photobioreactors described in what follows. 

 

5.2.3 Culture conditions  

The possibility of exploiting 100% (v/v) CO2 gas as carbon source for growing 

high CO2 acclimated strain of C. vulgaris in a continuously stirred system. A schematic 
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Figure 20. Schematic representation of a 6 L helical tubular photobioreactor (BIOCOIL). It consists of 
a 4.5 L light-receiver photostage coupled with a 1.5 L degasser system. The circulation and 
illumination of culture medium are provided by a peristaltic pump and tree 60W white fluorescent 
lamps, respectively. 

 
 

representation of the photobioreactor is shown in Figure 12. It consists of a 

cylindrical glass photo-bioreactor (9.5 cm diameter and 21 cm height) with a 

volumetric capacity of 1.5 L and operated in semi batch mode (i.e. batch mode for the 

liquid phase and continuous mode for the gas one). The reactor was filled with a 

volume equal to 1 L of growth medium and then mechanically stirred at 400 rpm 

through a rotating blade powered by an electrical engine (GZ high power overhead 

stirrer). Cultures were maintained at 25°C by a thermostatic bath (GD120 series) and 

illuminated by a photon flux density of 84 µmol m-2 s-1 provided by eight 11 W white 

fluorescent bulbes with a light/dark photoperiod of 12 h. A gas constituted by pure 

CO2 (100% v/v) from a cylinder was continuously supplied through suitable spargers 

at a flow rate of 40 ml min-1. The inlet pressure of CO2 was equal to 1.6 bar. 

 

5.2.4 Culture Medium 

C. vulgaris was cultured in 1L of modified Kolkwitz medium (KTM-A) 

containing (g L-1): KNO3, 2.5; KH2PO4, 0.5; MgSO4·7H2O, 0.27; CaCl2·2H2O, 0.04; 

NaHCO3, 1 and 1 ml of A5 micronutrients solution as well as 1 ml of E.D.T.A.Na2-
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Fe solution. The micronutrients solution contained (g L-1): H3BO3, 2.86; 

MnCl2·7H2O, 1.81; ZnSO4·7H2O, 0.222; CoCl2·6H2O, 0.035; CuSO4·5H2O, 0.080; 

Na2MoO4·2H2O, 0.230. As far as the E.D.T.A.Na2-Fe solution, it contained (g L-1): 

29.754 g E.D.T.A.-Na2 and 24.9 g FeSO4·7H2O.  

 

5.2.5 Biomass and pH measurement 

The growth of microalgae was monitored through spectrophotometric 

measurements of the culture media optical density (OD) (Genesys 20 

spectrophotometer, Thermo Fisher Scientific Inc. Waltham) at 560 nm wavelenght 

(D560) with 1 cm light path. The biomass concentration X (g L-1) was calculated from 

OD measurements using the X vs. OD calibration curve shown in Equation (1). The 

latter was obtained by gravimetrically evaluating the biomass concentration of known 

culture medium volumes which were previously centrifuged at 4000 rpm for 15 min 

and dried at 105°C for 24 h.  

 

X (g L-1) = 0.538 * D560        (1) 

 
pH was daily measured by pHmeter (KNICK 913). For the sake of reproducibility, 

each experimental condition was investigated at least in duplicate. The average and 

standard errors values of the experimental results were calculated using OriginPro 8. 

 

5.2.6 Design of the experiments 

C. vulgaris growth was performed with different initial concentrations of total 

dissolved inorganic nitrogen (Ntot,l), phosphorus (Ptot,l) and carbon (Ctot,l) as shown in 

the Table 8. In order to evaluate the effect of pure CO2 on the microalgae growth, by 

varying the concentrations of the three main macronutrients, three different versions 

of KTM were prepared. With regards to the bicarbonate, nitrate and phosphate 

content it is that of the best case in KTM-A. Nitrate and phosphate content are 

doubled while maintaining constant bicarbonate content in KTM-B to respect KTM-

A and bicarbonate content is halved while nitrate and phosphate content are 

maintained constant in KTM-C to respect KTM-A, respectively.  
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       Table 8. Composition of KTM investigated in this work 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Component units KTM-A KTM-B KTM-C 

KNO3 [g L-1] 2.5 5 2.5 

KH2PO4 [g L-1] 0.5·10-1 1 0.5·10-1 

NaHCO3 [g L-1] 0.5·10-1 0.5·10-1 0.25·10-1 

MgSO4*7H2O [g L-1]   2.7·10-1 2.7·10-1 2.7·10-1 

CaCl2*2H2O [g L-1] 4.0·10-2 4.0·10-2 4.0·10-2 

EDTA-Na2-Fe [ml L-1] 1 1 1 

A5 [ml L-1] 1 1 1 
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5.3 Results and discussions. 

5.3.1 Adaptation of C. vulgaris to pure CO2 in the BIOCOIL 

In order to adapt C. vulgaris to grow with pure CO2, 600 ml of C. vulgaris, 

cultivated in KTM-A under atmospheric air, were used as inoculum to start the 

growth in the BIOCOIL using the base case medium. The inoculum concentration, 

which represents 1/10 of the total volume (6 L), was equal to 0.1 g L-1. 

Figure 21a shows the biomass concentration of C. vulgaris in the BIOCOIL 

photobioreactor. It can be seen that microalgae start growing with a much reduced 

lag phase, which probably indicates the intrinsic affinity of C. vulgaris for high 

dissolved CO2 concentration in the growth medium. Subsequently, after two weeks 

the culture reaches the stationary phase when the biomass concentration is about to 2 

g L-1. Starting from then the microalgae still continue to grow maintaining a biomass 

concentration around that value with small fluctuations which are due to the 

operation of the photobioreactor in fed-batch mode. Actually, once the steady state 

was attained, the possibility to operate the BIOCOIL in fed-batch mode was 

evaluated. In fact starting from around the 40th day of culture, an aliquot of culture 

(about 150-200 ml) was withdrawn and then replaced by an equal volume of fresh 

medium. It should be pointed out that the withdrawal of a known amount of culture 

medium and its replacement not occurred at the same interval time. Since 

withdrawals were not executed at a specific interval time, it was not possible to 

impose a specific dilution rate. Anyway, as shown in Figure 21a, after a series of 

withdrawals, the biomass concentration decreased and then started increasing as a 

result of nutrient availability and the diminished concentration of toxic catabolites. In 

particular, after about 5-7 days from each withdrawal, the biomass always reached 

the concentration corresponding to the steady state. Such behavior demonstrates that 

the BIOCOIL can be suitably operated in fed-batch mode while assuring the culture 

stability for a long period of time. This represents a very interesting result if we 

consider that in the literature there are not examples of photobioreactors operated 

consecutively in fed-batch mode for 7 months. Actually, only Borowitzka (1999) 

outlines to have successfully grown a wide range of marine microalgae (including 

Tetraselmis sp., Isochrysis galbana, Phaeodactylum tricornutum and Chaetoceros 

sp.) as well as Spirulina sp. at high productivities in pilot scale BIOCOILs of up to 

700 L for periods greater than 4 months in semi-continuous culture. 
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Figure 21. Biomass concentration (a) and pH (b) evolution 
during the seven month cultivation of Chlorella vulgaris in 
the helical tubular photobioreactor (BIOCOIL). Culture 
conditions: 100% (v/v) CO2, aeration rate = 30 ml min-1, 
mixing 35 rpm and 25°C. 

 
 
 

The pH evolution during the cultivation of C. vulgaris in the BIOCOIL is reported in 

the Figure 21b. It can be seen that at the beginning the pH drops as a consequence of 

CO2 inlet which force the cells to live in an environment where the pH becomes more 

acidic. Microalgae cells need some time (the extent depends on the strain considered) 

to adapt their metabolic apparatus to the “stressful” situation represented by the 

acidification of the culture medium due to the feeding with pure CO2 (Collins and 

Bell, 2006; Collins et al., 2006). Once the enzymatic apparatus has been modulated to 

face the acidic environment, microalgae start to grow and the pH slowly starts to 

increase following the photosynthetic activity of the cells. This experimental result 

confirms that high CO2 acclimated C. vulgaris may represent a suitable candidate for 

biofuels production through exploitation of flue gases as carbon source. 

 

 

 

a 

b 
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5.3.2 Effects of nutrient concentrations and pH on the growth of C. vulgaris 

 

The effects of nutrient concentrations and acidic pH on the growth kinetics of 

C. vulgaris were quantitatively evaluated in this work by cultivating this strain, 

previously acclimated to high CO2 concentrations, in a semi-batch stirred tank 

photobioreactor (cfr. Figure 12). In the base case experiment the operating conditions 

shown in the Materials and Methods section were adopted. Further experiments were 

then carried out to evaluate the effect of the initial concentration of dissolved 

inorganic carbon, nitrogen and phosphorus on the growth of C. vulgaris by varying 

the initial content of sodium bicarbonate, potassium nitrate and potassium 

biphosphate in the culture medium. During each experiment, pure CO2 (100% v/v) 

was continuously bubbled at a flow rate of 40 mL min-1 into the growth medium. 
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Figure 22. Biomass concentration as a function of time when 
KTM-A is used for culturing C. vulgaris (initial 
concentration of sodium bicarbonate, potassium nitrate and 
potassium biphosphate are 0.5·10-1, 2, 0.5·10-1 g L-1, 
respectively). 
 
 
 

From Figures 22 and 23 it can be observed that, under the base case conditions 

(KTM-A), the culture starts growing without showing a significant lag phase 

despite the high CO2 concentrations and the low pH reached by the medium when 

gas bubbling started. This is probably due to the fact that C. vulgaris was 



 108

previously adapted to grow under high dissolved CO2 concentrations. This behavior 

is consistent with the assumption made by some authors on the fact that a prolonged 

exposition to high CO2 concentrations may probably trigger changes of the 

metabolism and the cellular structure of microalgae (Giordano et al., 2005). In fact 

Baba and Shiraiwa (2012) recently recognized that high CO2 concentrations may 

trigger the expression of specific genes that may underlie changes in the carbon 

capture mechanism (CCM) of several strains of microalgae as well as changes of 

their structural anatomy and in the redistribution of certain cellular organelles 

(Bozzo et al., 2000). A comparison of the functional states in CO2-susceptible and 

CO2-tolerant species was carried out in several works (Pesheva et al., 1994; Iwasaki 

et al., 1996). An increase in the PSI activity was found in CO2-tolerant 

Chlorococcum littorale during its adaptation to high CO2 concentration. In this 

case, the transition state of the PS was observed during the first day following CO2 

increase from 0.03 to 40%. A similar increase in CO2 concentrations did not induce 

the state transition and completely blocked the growth of CO2-susceptible specie 

Stichococcus bacillaris. These results seems to demonstrate that the tolerance to 

high CO2 levels could be correlated with a reduced PSI activity and cell inability to 

maintain the energetic of photosystems and also that the susceptibility to CO2 stress 

depends on different microalgae strains considered. Although high CO2 inducible 

mechanisms in microalgae at the molecular level are still not well understood, the 

capability of C. vulgaris to adapt to high levels of CO2 is well confirmed also by 

the present results. In fact, from Figure 22 it can be shown that culture starts to 

grow almost exponentially until about 150 h when the decelerating growth took 

place. After 300 h of cultivation the culture reaches a kind of “plateau” when the 

biomass concentration was about 0.400 g L-1. The stationary phase is probably 

reached due to the synergic effects of catabolic products accumulation and 

insufficient penetration of light rather than for the exhaustion of nutrients. In fact 

initial concentrations of macro and micronutrients were high enough to sustain the 

exponential growth of C. vulgaris for a period of time longer than the one observed 

in the experiment.  
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 Figure 23. pH as a function of time when KTM-A is used 
for culturing C. vulgaris (initial concentration of sodium 
bicarbonate, potassium nitrate and potassium biphosphate 
are 0.5·10-1, 2, 0.5·10-1 g L-1, respectively). 

 
 

Figure 23 shows the pH evolution during the experiment. It can be observed that when 

the culture is started, pH drops to the value of about 5.6, as a result of the CO2 inlet. 

Although such low value of pH, the culture starts growing and subsequently pH 

increases slightly as a result of the photosynthetic activity which determines the 

consumption of CO2 and the use of [H+] as substrate by microalgae. According to 

Goldman and Graham (1981) and Mayo (1994) such behavior confirms that C. 

vulgaris could survive under very low pH values and high CO2 concentrations. In fact, 

even though the optimal pH for C. vulgaris is in the range between 6 and 8, cell 

growth can take place at pH equal to 4 and 10, respectively (Mayo, 1994). 

Figures 24 and 25 show the biomass concentration and pH of C. vulgaris when the 

concentration of nitrate and phosphate are doubled in the medium while maintaining 

constant all the other macronutrients (KTM-B). It can be seen that, under these 

experimental conditions, microalgae growth seems to have the same metabolic 

behavior for the first part of the growth curve since it shows a kind of plateau after 

about 250 h, which is similar to that obtained with KTM-A. What is evident is that 

doubling the concentrations of nitrate and phosphate permit to obtain a final biomass 
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Figure 24. Biomass concentration as a function of time 
when KTM-B is used for culturing C. vulgaris (initial 
concentration of sodium bicarbonate, potassium nitrate 
and potassium biphosphate are 0.5·10-1, 5, 1 g L-1, 
respectively). 

 
 

 
concentration of 0.470 g L-1 which is higher compared to that one obtained whit the 

concentrations of nitrate and phosphate in the base case (0.400 g L-1). It can be also 

seen that, while the biomass concentration with KTM-B seems potentially continue to 

increase after 500 h of cultivation (cfr. Figure 25), the growth with KTM-A appears to 

have reached a stable concentration of 0.400 g L-1. This difference is probably due to 

the fact that the larger availability of nitrate and phosphate in KTM-B allow the cells 

to sustain photosynthetic activity with higher rates to respect the cells in KTM-A. It 

should be also noted how the use of pure CO2 with KTM-B seems no to have 

particular effect on microalgae growth. Actually, as shown in Figure 24, the culture 

starts growing without showing a significant lag phase despite the use of pure CO2. 

Figure 25 shows the low pH reached by the medium when 100% (v/v) CO2 is bubbled. 

It can be seen how the evolution of pH is similar to that one shown in Figure 23 

obtained for KTM-A, thus confirming the possibility for C. vulgaris to survive under 

very low pH. 
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Figure 25. pH as a function of time when KTM-B is used 
for culturing C. vulgaris (initial concentration of sodium 
bicarbonate, potassium nitrate and potassium biphosphate 
are 0.5·10-1, 5, 1 g L-1, respectively). 

 

In Figure 26 the biomass concentration when C. vulgaris is cultured with KTM-C is 

reported. It can be observed how the reduction of carbon content in the medium leads 

to a reduction of microalgae biomass concentration. Actually it can be noted that 

culture starts to grow almost exponentially until about 100 h when the decelerating 

growth took place. After 220 h of cultivation the culture reaches a plateau when the 

biomass concentration was about 0.3 g L-1. This value is clearly lower if compared to 

biomass concentration reached when carbon content is doubled in the culture medium 

0.4 g L-1. As above mentioned, the acclimation of microalgae to high CO2 

concentrations may provoke significant changes in the carbon uptake mechanisms of 

microalgae. In particular it is reasonable to assume that strains acclimated to high CO2 

conditions are more sensitive to the reduction of initial carbon concentration. Thus, for 

high CO2 acclimated cells, the halving of the initial carbon concentration may have 

determined the starting of a carbon starvation phenomena leading to a strong 

inhibitory effect on the mechanisms used to uptake and concentrate carbon inside the 

cells. 

Also in this case, the inlet of pure CO2 to the medium where the carbon content has 

been halved seems no to have negative effect on the growth since microalgae shows a 

much reduced lag phase. 
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Figure 26. Biomass concentration as a function of time when 
KTM-C is used for culturing C. vulgaris (initial concentration 
of sodium bicarbonate, potassium nitrate and potassium 
biphosphate are 0.25·10-1, 2.5, 0.5·10-1 g L-1, respectively). 
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Figure 27. pH as a function of time when KTM-C is used for 
culturing C. vulgaris (initial concentration of sodium 
bicarbonate, potassium nitrate and potassium biphosphate are 
0.25·10-1, 2.5, 0.5·10-1 g L-1, respectively). 

 
 

Finally in the Figure 27 the pH evolution during the experiment with KTM-C is 

reported. It can be observed that the culture shows the same behavior seen for KTM-A 
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and –B. Actually, pH drops at the beginning to the value of about 5.5, as a 

consequence of the culture medium acidification, due to the inlet of the CO2. 

Than the culture starts growing producing the subsequent increase of pH as a result of 

the photosynthetic activity which, in turn, determines the consumption of CO2 and the 

use of [H+] as substrate by microalgae, leading to the basification of the medium. 

From Figures 23, 25 and 27 it can be seen how the pH of the medium changes during 

the culture time, with a common initial phase characterized by the reduction of pH as a 

consequence of the pure CO2 inlet. The addition of CO2-enriched gas induces new 

equilibrium states between gaseous CO2 and dissolved forms of inorganic carbons 

(dissolved CO2, H2CO3, HCO3
- and CO2

2-) which results in a pH decrease in the 

medium. However, as shown for the three media used, the decrease of the pH at the 

early culture time seems not to affect the algal growth because pH is resumed to the 

physiological range for the growth of C. vulgaris during the long linear growth period. 

The dependence of microalgal growth and productivity on the CO2 concentration has 

been rather well investigated, especially in the range of low (atmospheric) and slightly 

elevated (2-15%) CO2 concentrations (Yun et al., 1996; Yue et al., 2005; Chiu et al., 

2008). The effect of extremely high CO2 concentrations on photosynthesis, growth and 

cell metabolism has been less studied (Watanabe et al., 1992; Maeda et al., 1995; 

Papazi et al., 2008; Kong et al., 2010). In the literature examples are found where C. 

vulgaris was able to grow in the presence of high CO2 concentrations after being 

gradually adapted to grow in a medium with increasing concentration of CO2 (Yun et 

al., 1996). On the other hand, Hanagata et al. (1992) showed that Scenedesmus sp. was 

able to grow when the level of CO2 in the gas was increased up to 80%. This strain 

was totally inhibited when the concentration was increased up to 100% (v/v), even if 

the growth was resumed when the concentration was returned to 20%. These results 

demonstrate that the mechanism of inhibition due to the growth in the presence of high 

concentration of CO2 is reversible. They also confirm that this mechanism is not the 

same for all the microalgae strains and that further research should be addressed to 

clear this point. Actually, the mechanism of inhibition of algal growth by high 

concentration of CO2 has been extensively investigated in cyanobacteria while little is 

known about the principle of inhibition in eukaryotic microalgae as well as the 

metabolic nature of the adaptation. 

In this work C. vulgaris was able to grow in the presence of pure CO2 without being 

progressively adapted to grow in a medium with gradually increased concentration of 
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CO2. Another example of Chlorella strain which was able to grow with pure CO2, 

without have to be precultivated with 100% (v/v) CO2, is given by Murakami et al. 

(1998). They characterized the growth of a new isolated strain, Chlorella sp. UK001, 

and reported that it was able to grow with almost constant high growth rate under CO2 

concentrations ranging from the atmospheric level to 40% (v/v) in air without to 

gradually acclimation. 

In our experiment, air-adapted cells of C. vulgaris were directly inoculated in the 

helical tubular photobioreactor where 100% (v/v) CO2 was supplied. This strain was 

able to grow both in the BIOCOIL (cfr. Figure 20) and in the batch photobioreactor 

(cfr. Figure 12) without showing inhibition phenomena. The growth in the BIOCOIL 

was characterized by a little lag phase (due to the acclimation of the metabolic 

apparatus to high CO2) while the growth in the batch photobioreactor not showed lag 

phase at all. 

When cultivated under 100% (v/v) CO2 in the BIOCOIL photobioreactor the lipid 

content of C. vulgaris was evaluated to be 17.50% wt/wtbiomass. This result can not be 

compared with lipid contents of other microalgae strains cultivated under pure CO2 

since there are not examples of lipid content obtained under these experimental 

conditions. On the other hand, the obtained results are consistent with the typical ones 

reported in the literature for C. vulgaris cultivated with normal medium without 

nitrogen starvation (Murakami et al., 1998; Illman et al., 2000). 

Finally it should be also pointed out that, in order to be exploited as a fuel, the 

microalgae should be characterized by a high calorific value. Microalgae grown under 

normal conditions showed high relatively calorific values between 18 and 21 KJ g−1 

(Changdong and Azevedo, 2005). Several studies report that the calorific value of C. 

vulgaris biomass can be increased by growing them under low nitrogen conditions 

(Illman et al., 2000; Scragg et al., 2002). In our case the calorific value of C. vulgaris 

biomass was found to be 18.64 KJ g−1 and this value is consistent with the results 

obtained by Bhola et al. (2011) and Illman et al. (2000), which reported calorific 

values equal to 17.44 KJ g−1 and 18 KJ g−1, respectively. 

Thus it can be stated that, at least from a qualitative point of view, by taking into 

consideration its lipid content and calorific value C. vulgaris could be suitably 

exploited for the production of biodiesel. 
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5.4 Concluding remarks 

In this work the growth kinetics in semi batch photobioreactors fed with 100% 

(v/v) CO2 of a fresh water strain, C. vulgaris, was investigated in order to provide 

experimental data to validate model results of a rigorous and comprehensive 

developed mathematical model (not shown).  

This strain showed a good adaptability to high concentrations of dissolved CO2 as 

well as to low pHs thus being potentially useful for the CO2 capture from flue gases.  

Actually, C. vulgaris was successfully adapted to grow with pure CO2 by cultivating 

it in a 6 L helical tubular photobioreactor (BIOCOIL). With the experimental 

conditions adopted, the BIOCOIL was operated consecutively for seven months 

maintaining an almost constant biomass concentration of about 2 g L-1 and the pH in 

a range between 6 and 7. 

Microalgae adapted in the BIOCOIL to pure CO2 were used to investigate the growth 

kinetics of C. vulgaris in acidic culture media fed with pure CO2. The experimental 

results showed that C. vulgaris was able to grow under 100% (v/v) CO2 without 

revealing inhibition phenomena as confirmed by the almost total absence of lag phase 

during the early phases of cultivation. The biomass concentrations reached at the end 

of cultivation time, about 20 days (480 h), were 0.400 g L-1, 0.470 g L-1 and 0.340 g 

L-1 when three different culture media KTM-A, KTM-A and KTM-A were used, 

respectively. The best result was obtained when the content of nitrate and phosphate 

were doubled (KTM-B) while the lowest biomass concentration was reached when 

the carbonate content was halved (KTM-C) with respect to the base case (KTM-A), 

respectively. In all the media C. vulgaris starts to grow without showing lag phases 

thus confirming its ability to survive in the presence of elevated CO2 concentrations. 

While these experiments in batch photobioreactors were carried out by using C. 

vulgaris adapted to 100% (v/v) CO2, this strain was also able to grow in the 

BIOCOIL photobioreactor without pre-adaptation to pure CO2 thus demonstrating 

that C. vulgaris has the intrinsic capability to modulate its metabolic and genetic 

apparatus to face the high level of CO2 as well as the low pHs due to the inlet of pure 

CO2 in the culture media.  

By taking into considerations the ability of C. vulgaris to grow under pure 100% (v/v) 

and with acidic pHs, this CO2-tolerant microalgae could represent an ideal candidate 

in view of the utilization of industrial emissions containing CO2 to culture microalgae. 
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The growth kinetics of two microalgae strains, Nannochloris eucarytoum and 

Chlorella vulgaris, was investigated under 100% (v/v) CO2 in order to verify the 

possibility to use flue gases emitted by industrial power plants as carbon sources for 

performing microalgal mass cultivation and to gain information useful for the 

biodiesel process optimization. 

The first one, the marine strain N. eucaryotum, was characterized for the first time in 

the literature with regards to its response to the use of pure CO2 as well as to the effect 

of medium composition and nutrient starvation on its growth kinetics. 

As far as the fresh water strain C. vulgaris, it was demonstrated its potential 

exploitability for the management of huge amounts of waste gases since it was 

successfully cultivated in batch and fed-batch photobioreactors under pure CO2 and 

acidic media. 

It was found that both N. eucaryotum and C. vulgaris are able to tolerate extreme 

elevated CO2 concentrations thus making them two real candidates for the mass 

cultivation when flue gases from industrial installations are used. 

Major conclusions of this work include the followings: 

1. The growth of N. eucaryotum does not result significantly affected by neither 

removal nor addition of some of the nutrients that are typically prescribed for 

laboratory cultivation. This consideration makes the elimination of expensive 

compounds, such as vitamins, quite reasonable when developing microalgae-based 

processes at the industrial scale. 

2. The growth of N. eucaryotum is affected by the reduction of nitrate 

concentration as well as by the decrease of phosphate concentration even if with a 

little extent. The results about the effect of the medium composition on the growth, 

even if obtained through lab-scale experiments, represent useful information in view 

of N. eucaryotum exploitation in large-scale photobioreactors. 

3. When atmospheric CO2 was supplied, the pH first slightly decreased and 

subsequently increased as a result of microalgae growth thus making alkaline the 

aqueous culture medium. This strain showed also a good tolerance to high pHs thus 

confirming that it could be potentially useful for the CO2 capture from flue gases since 

alkaline aqueous solution can be used in absorption processes to capture CO2 emitted 

for instance by power plants. 
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4. N. eucaryotum was experimentally demonstrated, for the first time, to growth in 

a semi batch photobioreactor fed with a gaseous stream of pure (100% v/v) CO2. The 

strain showed a good adaptability to high concentrations of dissolved CO2 as well as to 

low pHs. 

5. The choice of a marine strain, such as N. eucaryotum, allows the use of natural 

seawater for producing the growth medium. This aspect has positive impact on the 

technology viability since seawater it is cheaper and easier to be obtained with respect 

to fresh water. On the other hand, experimental results demonstrate that the use of only 

natural seawater may not be sufficient to prevent the need to enrich it with inorganic 

nutrients. 

6. When grown under high CO2 levels N. eucaryotum shows a relatively good 

average lipid content (i.e. 16.16% wt/wt) as well as a FAMEs composition of the 

extracted oil which is in compliance with the European regulation for quality 

biodiesel. These obtained results (although further analyses should be performed to 

enhance lipid productivity) allow to state that, at least from a qualitative point of view, 

the oil extracted from this strain seems to be suitable for the production of biodiesel. 

7. Chlorella vulgaris showed a good tolerance to high concentrations of dissolved 

CO2 as well as to acidic pHs thus being potentially useful for the CO2 capture from 

flue gases. Actually, this strain was demonstrated, for the first time in the literature, to 

be able to continuously grow for seven months in BIOCOIL photobioreactor using 

100% (v/v) CO2. 

 

Suggestions for further research which arise from this work include the followings: 

8. When compared to other microalgae strains, N. eucarytoum is characterized by a 

relatively low biomass productivity which might affect its exploitability at the 

industrial scale. For these reasons the optimization of operating conditions should be 

performed by means of suitable mathematical models by taking into consideration the 

kinetic parameters obtained in this work. 

9. Since large scale cultivation of microalgae implies the consumption of huge 

amounts of macronutrients, the economic feasibility of the process could be seriously 

compromised when fresh water is employed and synthetic reagents are used as source 

of macronutrients. A possible solution to this drawback is to harness costless resources 

to produce the macronutrients and the water needed to perform large scale cultivation. 

In particular seawater can be used instead of fresh water due to its costless availability 
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in huge amounts. Moreover, wastewater could be used as inexpensive source of 

nitrates and phosphates while flue gases could be exploited to provide the suitable CO2 

supply. Besides allowing the economic viability of the process, the exploitment of 

such costless resources could have a positive impact on important environmental 

concerns since it contributes to the reduction of water pollution and consumption. 

Furthermore the recycling of flue gases, results in lower CO2 emissions thus 

contributing to increase the environmental sustainability of industries that use fossil 

fuels for power generation. 

10. Since it was demonstrated that Chlorella vulgaris was able to continuously grow 

in BIOCOIL photobioreactor using 100% (v/v) CO2 at laboratory scale, a possible 

development of this line could be the setup of a BIOCOIL outside in order to verify 

the photosynthetic efficiency of this strain by the direct use of solar radiation coupled 

with the use of carbon dioxide emitted by a combustion engine (i.a. current generator).  

11. The possibility to genetically modify the genes involved in the photosynthetic 

and metabolic apparatus of these microalgae (C. vulgaris and N. eucaryotum) should 

be investigated to the aim of enhancing their photosynthetic efficiency and biomass 

productivity. 

12. The scientific community is currently focused on the exploitability at industrial 

level of a few number of well known microalgae strains, that represent only the 5% of 

the thousands strains reported in the main algae databases. This means that the 

researchers have the possibility to address their attention on hundreds of unstudied 

strains in order to verify their photosynthetic efficiency, biomass productivity, CO2 

tolerance and lipid content. A possible winning choice could be to focus this activity 

on those strains which are genetically related at least at genus level. This should 

permit to study new microalgae which have in common with the known strains crucial 

genes and enzyme involved in the main metabolic pathways responsible for biodiesel 

production. 
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