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Preface

This thesis is about the concept of Sunspot Equilibria.
In the �rst part, an historical evolution is proposed through the studies of the

major researchers on the topic: from the forerunners (Samuelson, and Azariadis, in
primis), to Cass and Shell, the founders of the study of sunspot as it is considered
today, up to the researchers that expanded the concept adapting it to today�s
interpretation (Peck and Farmer, among others).

The second and third parts describe the concept of sunspot in a particular
class of endogenous growth two-sector-models associated to forms of market imper-
fections (externalities), pointing out the mechanism that leads to the existence of
sunspots and Hopf bifurctions.

What emerges is that the concept of sunspot can be understood as a sort of
microfoundation of the macroeconomy: sunspots are a microeconomic way to show
that there are macroeconomic equilibria of underemployment.

Therefore, there is a space for the State�s intervention in the economy which,
eliminating restrictions to market participation and other limiting conditions, allows
to move from Pareto-optimal situations in a dynamic sense to Pareto - optimal
situations in the traditional sense.

This aspect can also be seen from the point of view recalled in the models pre-
sented: the possibility of Hopf bifurcations shows there is a non-negligible possibility
for the system to be taken out from a low-consumption, low-production-equilibrium,
pushing the economy toward higher levels of consumption, production, employment.

v





CHAPTER 1

Sunspot equilibria in models of general equilibrium

1. The long journey toward the concept of "Sunspot"

The �rst economist and econometrician to use the term "sunspot" was W. S.
Jevons: in his works he tried to discover the causes of business cycles that led
to �uctuations in prices. Studying meteorology, he put forward the hypothesis
that solar activity (sunspot) a¤ects the climate and, in particular, the rain: in
Jevons�vision, this randomness of rain would a¤ect the conditions of production in
agriculture and thus the well-being of economic subjects.

Sunspot activity which Jevons refers to is then essentially characterized by
"intrinsic" uncertainty, which a¤ects the so-called fundamentals of the economy:
tastes, production technology and endowments of each subject.

Modern studies on sunspot equilibria, instead, focus on extrinsic uncertainty
and, precisely, the term sunspot refers to any activity of extrinsic uncertainty, which
is not transmitted through the economic fundamentals, but involves all phenomena
that can, nonetheless, in�uence the choices of economic agents.

The extrinsic uncertainty is also known as market uncertainty: an economy is
a social system in which the individuals can not be sure of the behavior of others
and therefore, trying to optimize their own actions, each agent must try to predict
actions of the other economic agents. Since each agent is uncertain about the
actions of the others, he is necessarily uncertain also on the economic results of the
actions taken. The extrinsic uncertainty a¤ects the behavior of economic agents,
creating distortions that a¤ect the allocations and, ultimately, equilibrium prices.
The sunspot equilibrium can thus be de�ned as a "distorted" equilibrium [24], that
is an equilibrium in which the �rst theorem of welfare no longer holds: according to
the theorem, every market equilibrium corresponds to a Pareto-optimal situation
and viceversa.

The concept of sunspot equilibrium, as commonly understood today, is the
result of a long process of study and research.

In the beginning, Samuelson [21] allowed the formalization of economic models
(with overlapping generations) in which, unlike the Arrow - Debreu general equi-
librium, there can be multiple steady states which are indeterminate and even not
Pareto �optimal.

Samuelson dealt with the problem of multiplicity and indeterminacy of equi-
librium. Other papers, including the one by Gale [14], showed that the particular
assumptions placed at the base of a economic system such as, for example, the
presence of a single good for period, the absence of production, etc. bring to inde-
terminate equilibrium. However, indeterminate steady states are "robust", that is
the occurrence of small changes in preference or endowments will not a¤ect their
occurrence [27].

1



2 1. SUNSPOT EQUILIBRIA IN MODELS OF GENERAL EQUILIBRIUM

Azariadis [1] showed the possibility of "a paradoxical behavior called extrinsic
uncertainty" in the overlapping generations models with rational expectations in
which stochastic dynamics might trigger �uctuations and cycles in some level of
activities.

One of the �rst attempts to insert the uncertainty created by an unknown
future into a model was the one by Shell (1977); in his paper based on the over-
lapping generations economies with in�nite horizon, the only stochastic feature is
represented by the level of sunspot activity which has no e¤ect on economic fun-
damentals. It is shown that there is an equilibrium in which rational individuals
believe that the general price level is in�uenced by the level of sunspot activity, and
these expectations are self-ful�lling.

The work of Cass-Shell [9] was the completion of all these lines of research:
their main contribution was that sunspots and extrinsic uncertainty can have ef-
fects, despite the presence of rational expectations in the real world; this paper
represented a whole new and fundamental approach to extrinsic uncertainty.

2. The new approach to extrinsic uncertainty: the Cass-Shell model

Keynes (and many Keynesians, later) sustained that the volatility of the in-
vestment is, at least in part, based on market psychology. The Cass - Shell model
analyzes the market equilibrium. The equilibrium in an economy with complete
markets of securities and goods and in which consumers share the same probability
expectations is equivalent to the equilibrium of certainty of the traditional general
equilibrium model, in which sunspots cannot have importance: with no restrictions
on the participation to the markets, the sunspot are not relevant. If, however,
the subjective probabilities di¤er among consumers, then the sunspot tend to have
importance.

2.1. Formal de�nition of sunspot. The model presented by Cass-Shell is
a simple overlapping generations model: there is a simple exchange economy with
a de�ned time horizon, two goods, two states of nature and a �nite number of
consumers endowed with goods that are independent of the state of nature. Given
that uncertainty has no e¤ect on the fundamentals of the economy, it is purely
extrinsic uncertainty and simply considered as sunspot activity. A strong version of
rational expectations is adopted: consumers have the same beliefs about sunspot
activity. This allows the interpretation that subjective probabilities are equal to
the objective probabilities.

The exchange process must take place in time: individuals can operate ex-
changes but they must be concluded when one of parties is alive. The markets are
assumed complete in all goods but consumers are naturally limited in their partic-
ipation to the markets that gather before their birth. Economists generally agree
on the fact that the general equilibrium model of Arrow - Debreu is particularly
versatile. There is, however, a fundamental and signi�cant aspect of the current
dynamic economies that is not re�ected in the traditional Arrow - Debreu struc-
ture: in the real world, the same process of market exchange takes place over time.
The exchange may include promises delivering assets in the future, under certain
circumstances, but each of the parties in a exchange must be alive at the date in
which it takes place. Even if the subjects alive at "current time" may know the
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prices that will prevail in the future, they simply can not exchange with individuals
whose birth dates are in the future.

Even in a world where the dates of birth and death vary between individuals,
a person can readily conceive the existence of a complete set of markets. What
can not be imagined, however, it is that there could be an unlimited participation
in these markets. At any given time, some of the potential "players" have already
left the "scene", while others are yet to enter. In Cass - Shell model, consumers
are placed in the �ow of time and then it is describes the market structure for
the economy; it is assumed that there are two generations: consumers in the G0

generation were born at the beginning of the time horizon and live to the end of it;
consumers of the G1 generation were born after those of G0 but, like those of G0,
live until the end of time.

Fig. 1: temporal line of events

Consumers G0 were born before the sunspot activity occurs and they can ex-
change with each other in the securities market that are contingent to the occurence
of the extrinsic random variable, the sunspot activity; they can also trade with each
other and with the G1 members on the local market for goods, which opens after
the observation of sunspot. On the other hand, consumers of G1 are being born
after the extent of sunspot activity is known. They can trade with each other and
with the G0 consumers on the local market for goods but, of course, they cannot
trade in the securities market, which is required to meet before their birth. There-
fore, participation in the market for goods is not restricted, while participation in
the securities market is necessarily restricted.

This form of market imperfection will lead to an important result: the possibility
that extrinsic uncertainty can have e¤ects of allocations of equilibrium.

Cass - Shell consider also the following elements:
a) there are two standard goods: i = 1; 2;

b) two states of nature1 are possible: s = �; �;

c) xih(s) indicates the vector of in state s consumption for the consumer h :�
x1h(s); x

2
h(s)

�
d) xh indicates the vector of prospective consumption2:

[xh(�); xh(�)] =
�
x1h(�); x

2
h(�);x

1
h(�); x

2
h(�)

�
1A state of nature is a complete description of the environment, from the beginning to the

end of the economic system
2The term "perspective" re�ects the fact that consumes are related to the state of nature

that occurs
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e) consumer h has prospective goods indicated by !h, strictly positive vector

!h = [!h(�); !h(�)] =
�
!1h(�); !

2
h(�); !

1
h(�); !

2
h(�)

�
f) the preferences of h are described by the utility function uh(!h), which is

de�ned according to his prospective consumption plans.

In this simple economy there is no production: fundamentals are represented by
endowments and preferences. It is assumed that the uncertainty is purely extrinsic,
which allows to consider the random variable s as sunspot activity, indicating the
state sunspot with � and the state not-sunspot with �. The endowments are not
a¤ected the activity sunspot, namely:

(2.1) !h(�) = !h(�) 8h
It is assumed that consumer behavior is based on a utility function of Von

Neumann - Morgenstern type3. The consumer h believes that "sunspots" occur
with probability �h(�) and, therefore, that non-sunspot occur with probability
�h(�) = 1 � �h(�). Then preferences are represented by the familiar principle of
expected utility, i.e.:

(2.2) uh [xh(�); xh(�)] = �h(�)vh(�) [xh(�)] + �h(�)vh(�) [xh(�)] 8h
The vh functions, synthesizing consumer h tastes, are supposed monotone,

strictly increasing and strictly concave: it implies that h is strictly risk averse. The
preferences are obviously independent of the sunspot, given that the only e¤ect of s
on vh is through its e¤ect on allocating xh(s). There is not, instead, a direct e¤ect
of sunspot activity on consumers�welfare.

The Von Neumann - Morgenstern utility function and the condition !h(�) =
!h(�) are in themselves su¢ cient to qualify the sunspot activity to be due to
extrinsic uncertainty. Since it is assumed that expectations about sunspot activity
are common to all consumers, it is:

�h(�) = �(�) �h(�) = �(�) = 1� �(�)
which can be interpreted as a strong version of the hypothesis of rational ex-

pectations.
At this point, it can be given a formal de�nition of sunspot: the extrinsic

uncertainty, that is the sunspot activity, a¤ects the allocation of resources if for
some consumer h it is:

�h(�) 6= �h(�)
i.e., his plan of activity of equilibrium depends on the state of nature. In this

case, the sunspot activity is economically signi�cant. On the contrary, if it is:

3The Von Neumann - Morgenstern utility function is a real-valued function u, de�ned on Y ,
set of all prospects of an agent h; it has the two properties of the keeping of the order (i.e. it
respects the order of preference that an entity establishes between two prospects) and of linearity
(i.e. the total utility is the sum of utility functions relative to each statement prospect). It does
not imply that the economic entity is aware he is using an utility function for his decisions but,
simply, that the person behaves like a expected utility maximizer.
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�h(�) = �h(�)

all consumer allocations are independent from the state of nature and the
sunspot activity is economically irrelevant.

2.2. Pareto-optimality and dynamic Pareto-optimality. The sunspots
can also be seen from the point of view of welfare for the economic agents.

In in�nite horizon models with overlapping generations of �nitely lived con-
sumers, but without uncertainty, the two fundamental theorems of welfare can
be expressed not in terms of e¢ cient or Pareto-optimal allocations, but rather in
terms of "weakly e¢ cient" Pareto-optimal. The crucial element that distinguishes
the welfare problem is that, for a given risk, some people literally have to live with
it, while for others (those born after the risk has disappeared) it�s just a historical
datum, though important.

Then, two standard levels of welfare are de�ned: the traditional Pareto criterion
and a criterion of dynamic (or weak) Pareto. An allocation is dynamic Pareto-
optimal if, at least, another allocation can be improved upon without worsening
some other�s allocations.

Of course, every Pareto optimal allocation is dynamic Pareto-optimal, but the
opposite it is not true. The following two propositions are the formal outcome
on the analysis of welfare: the sunspot equilibria are indicated by dynamically
Pareto-optimal allocations; non-sunspot equilibria are indicated by Pareto-optimal
allocations and this follows from the equivalence between non-sunspot equilibria
and the traditional certainty equilibria. Therefore, the Pareto-optimal allocations
form a subset of the dynamic Pareto - optimal allocations.

This can be graphically represented: Consider the �gure 2, where the economy
is composed by two only consumers, A and B, which consume one only good.

Fig. 2: sunspots have no relevance
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The Edgeworth Box shows the measures of good consumption for each of the
two consumers on the horizontal axis in the state �; on the vertical axis in the
state �. Because uncertainty is purely extrinsic and then aggregated resources are
independent of the state of nature, the box is a square. Also, because the individual
allocations are independent of the state of nature, the vector of the endowment lies
on the diagonal. In this case the competitive equilibrium always exists and we can
distinguish two cases:

a) in the �rst, consumers have the same probability expectations about the
occurring of states � and �: then the tangency of the indi¤erence curves and the
competitive equilibrium of contingent securities takes place only on the diagonal, so
the sunspots have no relevance. In fact, as can be seen in �g. 2, the endowments of
the two consumer are identical, since the extrinsic uncertainty exerts no in�uence
on them. Moreover, the indi¤erence curves of the two consumers are tangent to
each other and the point of tangency is on the diagonal: it means that the in the
tangent point, the slope of the two curves is common to the two agents (allocations
on the diagonal of the square give the tangency indi¤erence curve). So, with the
assumption of strict concavity (that is to strict risk-aversion), every allocation out of
the diagonal is Pareto-dominated by some allocation on the diagonal and, therefore,
given that the allocations lie on the diagonal, there is no acceptable mutual trade:
the sunspot cannot matter and there are no allocations such that p(�)

�(�) 6=
p(�)
�(�) ,

implying xh(�) 6= xh(�) for h in G0 = H.

Fig. 3: sunspots do have relevance

b) in the second, consumers have di¤erent expectations about the probability
of (�) and (�) and this results in a strong motivation to exchange the contingent
securities. Endowments always lie on the diagonal but the indi¤erence curves are
not tangent on it; it will exist a competitive equilibrium of contingent securities
outside of the diagonal, so that the sunspots must have relevance. In fact, as can
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be seen from �gure 3, when the probability expectations di¤er among individuals,
the exstrinsic uncertainty plays a role: the slopes of the two indi¤erence curves
measured on the diagonal, i.e. the vector of the endowments, are di¤erent from
each other: p(�)

�(�) 6=
p(�)
�(�) :

3. Developments in the study of extrinsic uncertainty

Research has established the possibility of indeterminacy of equilibrium and
sunspot equilibria in a wide variety of economic models. The main contribution
of the analysis of Cass-Shell is the fact that in a world with sunspot, the extrin-
sic uncertainty can have real e¤ects, despite the presence of rational expectations.
Sunspots are compatible with the individual optimization, with self-ful�lling expec-
tations and compensations of competitive markets.

As noted by Cass-Shell, equilibrium indeterminacy and the possibility of sunspot
can be seen as elements that re�ect a certain degree of market incompleteness or
obstacles at the entrance, but also the presence of externalities or some degree of
increasing returns.

In what follows, some types of these models are analyzed.

3.1. Stationary Sunspot Equilibria (SSE). Among the authors who have
continued in the footsteps of Cass-Shell, Peck [20] is to be counted. In his work he
not only deals with the de�nition of extrinsic uncertainty and proposes maximiza-
tion problems, but also studies the conditions of existence of sunspot equilibria and,
above all, de�nes the important concept of stationary sunspot equilibrium (SSE).

In each period t = 1; 2; 3, ..., a consumer was born, who lives for that period
and for the next. The consumer in each generation is indicated by an index linked
to his date of birth. The economy starts in period 1 and continues inde�nitely. In
each period, there is a single perishable good and �at currency completely durable.
Consumption of the consumer t in period s is indicated by xst . The economy is
pure exchange, without production; the endowment of the consumer t in period s
is !st (s = t; t+ 1).

For consumer t, it is respectively:

(xtt; x
t+1
t ) 2 R2++ and (!tt; !

t+1
t ) 2 R2++

Every consumer has a utility function ut(xtt; x
t+1
t ) that is assumed to be strictly

monotone, strictly concave and always di¤erentiable. Each consumer pays a tax
� t, given in �at money units: when � t is positive the consumer is taxed, when � t
is negative the consumer is given a transfer. Finally, it can be de�ned pt (the price
of consumption of period t) and pm (the price of money, with the normalization
p1 = 1, so that there is a system of current prices).

Under perfect foresight conditions , in which consumers know the future prices
with certainty, the maximization problems are:

a) for the consumer 0:

max u0(x10)
sub p1x10 = p

1!10 � pm�0
x10 > 0

b) for the consumer t:
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max ut(xtt; x
t+1
t )

sub ptxtt + p
t+1xt+1t = pt!tt + p

t+1!t+1t � pm� t
xtt; x

t+1
t > 0

The market clearing requires that:

xtt + x
t
t�1 = !

t
t + !

t
t�1 (t = 1; 2; :::)

The only uncertainty considered takes the form of sunspots, with a new real-
ization in each period beginning from period 1. The set of possible types of sunspot
in period t can be indicated as:


t = (1; 2; 3; :::; n)

At this point, it can be de�ned with Bt the set of events that occur in period
t. The stochastic process that generates the sunspot is described by a probability
value P on the space (
; B). Consequently, the probability of the realization of the
sunspots, given the time series of previous achievements, is well-de�ned: if st is the
time series of sunspot in period t and st+1 2 
t+1 is a particular type of sunspot for
the period t + 1, then �(st; st+1) represents the probability of type st+1 in period
t+ 1, conditioned by the particular time series st.

At the beginning of each period, the type of sunspot is revealed to everybody
and therefore the market for goods is opened. The realization of the sunspot in
period 1, that is s1, is therefore known at the beginning. Young consumers know
all the prices, quantities and realizations of sunspot included the �rst period, but
they do not know the future. The consumption decisions of the period t by the
consumer t are to be based only on the information available at the time, so xtt
is measurable in the set Bt+1. Consumers in their last period simply spill their
remaining wealth on the market, so xt+1t is measurable in the set Bt+1. Consumers
know the whole stochastic process that generates the sunspots. At this point,
the rational expectations equilibrium for this economy is de�ned in "traditional"
terms: it is that equilibrium for which the markets clear and consumers maximize
the expected utility.

Now the following de�nition can be given: a rational expectations equilibrium
for (u; !; � ;
; B; P ) is a set of pm prices (1; p2; p3:::) and consumption (x10; x

1
1; x

2
1; x

2
2; x

3
2:::)

that satisfy the conditions:

i) 8t � 1;
�
xtt; x

t�1
t ; pt

�
are measurable functions in Bt, the space of the state of nature

ii) x10 � !10 = �pm�0
iii) 8t � 1; 8st 2 
i, xtt and xt�1t solve the maximum program:

max �(st; st+1)ut(xtt; x
t+1
t )

sub ptxtt + p
t+1xt+1t = pt!tt + p

t+1!t+1t � pm� t
xtt; x

t+1
t > 0

iv) xtt + x
t
t�1 = !

t
t + !

t
t�1 condition of market clearing

The de�nition of sunspot balance is in the "tradition" of the Cass-Shell model:
a sunspot equilibrium is a rational expectations equilibrium in which, for given t
and st, there exist (�; �) 2 
t+1 such that

xt+1t (�) 6= xt+1t (�)
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and then the sunspots have relevance for some consumer t. Furthermore, a
rational expectations equilibrium that is not a sunspot equilibrium is a non-sunspot
equilibrium.

The market structure in this model is interpreted as a sequence of spot mar-
kets connected to each other by means of the currency and, therefore, goods are
exchanged for money (goods that allow to balance in presence of any event of the
next period). There are markets of contingent securities as in the equilibrium model
by Arrow and as in Cass - Shell, and it is possible to normalize the price of the
currency in each local market. This normalization has the interesting detail that all
the budgetary constraints a consumer faces in each spot market can be expressed
as a single equation iii). Another interesting character is the simple relationship
between a non-sunspot equilibrium and the corresponding equilibrium for the econ-
omy of certainty: if (p�; pm�) is an equilibrium of certainty for the economy, then
the corresponding non-sunspot equilibrium is pm = pm� and pt(st) = pt�, 8t; 8st.

When there are multiple perfect foresight equilibria, as often happens, it is
easy to build a sunspot equilibrium: it is needed to let all prices and quantities
follow a path of perfect foresight if s1 = 1 and another path of perfect foresight if
s2 = 2 . This form in some trivial way to sunspot equilibrium (i.e. a randomization
on the equilibrium of perfect foresight) was treated also in the model of Cass -
Shell and is included in the de�nition of sunspot equilibrium given above, both for
mathematical reasons and also for an economic one: because of the multiplicity of
perfect foresight equilibria, an initial condition determined outside of the model sets
the price of money and prices of goods. However, given that the initial condition is
not determined by economic fundamentals, it may be useful to think of it as caused
by sunspot. When the realization of sunspot at the beginning of the period 1
a¤ects the price of the currency, the interpretation is that sunspots are determining
the initial condition. When the initial condition is considered set independently of
sunspot, it can be �xed �s1 = 1 for s1 = 1, without loss of generality. In order to
understand how the sunspots a¤ect prices, just such initial condition is considered:
it sets the price of money and consumption in the �rst period and then, in other
words, establishes an expectation of what will probably be the prices next year.
Although there is a unique path of perfect foresight that makes this expectation,
there are in�nitely many pairs of di¤erent prices, with associated probabilities, for
which the action of the current period is rational. So, there may be a few stochastic
process by which the price of the next period will be either the �rst or the second
of the pair of prices, depending on the realization that the event will occur in that
period. But why the younger generation should allow the sunspot to in�uence
their demands and then prices? Because di¤erent realizations establish di¤erent
expectations about the prices of the next period and this causes di¤erent behaviors
by the expected utility maximizers.

At this point, before de�ning the concept of stationary sunspot equilibrium, it
is necessary to characterize some additional assumptions:

a) the utility function u is continuously di¤erentiable, strictly monotonic and
strictly concave;

b) endowments ! are constant;
c) 8t; 8st, there are at least two realizations � and � such that �� > 0 and

�� > 0;
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d) the indi¤erence curve of ! has a slope �1 < m < 0 at the point of the
endowment (that is, the intersection on the diagonal);

e) the consumption of the �rst and second period are complementary.
Under these assumptions, there is a stationary sunspot equilibrium (SSE), for

a given Markov process4, in which consumption is a function of only the current re-
alization. In fact, the conditions d) and e) ensure that the supply curve is backward
bending and has a slope of -1 to 0 at the intersection with the diagonal. On the
diagonal, two points (a; a) and (b; b) with a < b are chosen, near the intersection
with the diagonal but on opposite sides of the intersection; considering the square
de�ned by the vertices (a; a); (a; b); (b; b); (b; a), it is (a; b) above the supply curve
and (b; a) under such curve (see �g. 4).

Figure 4: stationary sunspot equilibrium.

The equilibrium is de�ned as follows:
p1 = 1 pm = a s1 = �

pt

pt+1 = 1 when st = st+1 = �

pt

pt+1 =
b
a when st = � st+1 = �

pt

pt+1 = 1 when st = st+1 = �

pt

pt+1 =
a
b when st = � st+1 = �

xtt(�) = !
t
t � a ; xtt�1(�) = !

t
t + a

xtt(�) = !
t
t � b ; xtt�1(�) = !

t
t + b

The equilibrium is completed by the construction of stationary transition ma-
trix:

4It is a method of description of the states of a decision-making process, through a transition
matrix whose elements represent the probability values. For i = a; b and j = a; b, an element �ij
of this matrix indicates the probability that the sunspot activity is i in the next period if it is j
in the current one.
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� =

���� �aa �ab
�ba �bb

����
In other words, the SSE may be de�ned as the equilibrium of rational expec-

tations that is perfectly correlated with extraneous events or factors outside of
fundamental of any individual. SSE�s are interesting because they allow to under-
stand how the set of equilibria is enlarged by the sunspot assumption, given that
the event to be considered is characterized by two values: either sunspot activity or
absence of sunspot activity. The occurrence of these events is, of course, governed
by the Markov process. Simply, a SSE is a rational expectations equilibrium in
which the forecast is rati�ed by the current price behavior.

3.2. The link between sunspot and economic cycle. One of the most
important developments related to the theory of sunspot equilibria is on the trend
of the business cycle. Azariadis [3] tried to clarify the relationship between sunspot
equilibria and economic cycles and, more precisely, has tried to characterize com-
pletely a limited class of equilibria sunspot (stationary SE of order 2, that is, with
two possible events or states of nature) in a simple model with overlapping gener-
ations of identical families that consume a single good produced.

The concept of sunspot equilibrium is of central importance to a full under-
standing of the rational expectations equilibrium as an equilibrium construction;
the aim of the Azariadis model is to contribute to the clari�cation of this con-
struction and especially of rational expectations equilibria in nonlinear dynamic
economies: in fact, the study of rational expectations equilibria in linear systems
has brought remarkable fruits, but the study of the non-linear economies appears
even more interesting and, of course, it is bound to be more complex.

The sunspot phenomena are signi�cant when stable expectations are supported
as a long-run equilibrium of an economy in an open time-horizon, as the one con-
sidered by Azariadis: a simple OLG model in which the perfect foresight equilibria
are well understood, and this understanding includes periodic equilibria.

The stationariness in a broad sense is important for two reasons: because it
is likely that stable expectations are the asymptotic result of many well-de�ned
learning processes and because the understanding of the SSE is a prerequisite to
understand the dynamic sunspot phenomena.

The �rst result formally expresses a direct connection between sunspot and
cycles. Then, the model gives a su¢ cient condition for the existence of sunspot
equilibria. This condition, which is based on stochastic characteristics of extrinsic
uncertainty and on the form of the savings function, describes a class of economies
in which there exist sunspot equilibria. The structure used is the OG model with
�at money and production, a simple reinterpretation of the pure exchange model
examined by Samuelson, Gale and others. The same condition implies the existence
of periodic order-2 equilibria . The reasons for this connection are clari�ed further,
describing how the stationary equilibria bifurcate in sunspot equilibria.

These results lead to investigate in greater depth the relationship between
sunspot equilibria and cycles. The result obtained by Azariadis is surprisingly
strong: the order-2 cycles exist if and only if there exist the order-2 sunspot equi-
libria.
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Time extends from one to in�nity; at discrete points in time (t = 1; 2; :::)
appears a generation of given measure of identical individuals, who lives for two
periods ("young" age and age "old") and dies in t+2. Consumption occurs only in
the age "old", while production takes place only in the "young". Each member of
the generation t is endowed with e1 > 0 divisible leisure units in youth and e2 > 0
units of a single perishable good in old age. The only exception to this pattern is
the �rst generation, which was born "old" at the time t = 1: every member of it has
e2 units of the consumption good and a unit of �at currency, that is an inherently
useless which is the only store of value in the economy.

Each member of the younger generation can use a technology with constant
returns of scale to transform 0 < n < e1 units of his free time iny � n good units
of perishable good to buy the currency reserve and �nance the excess consumption
of e2, in old age. The entire stock of assets is then held by the old, since it has
positive value. All individuals are price takers and have perfect foresight about
future prices.

The utility of an individual born at time t depends on several factors: �rst, from
leisure to which he renounces of the time t or, equivalently, the amount of goods
he o¤ers, yt; second, from his consumption ct+1 at time t+ 1. The utility function
denoted by u(ct+1; yt) is assumed monotone, completely twice di¤erentiable and
strictly concave. For all this work it is assumed that consumption and leisure are
normal goods and that young would choose positive savings when facing a zero real
interest rate.

The excess demand for consumer goods from the community in period t is the
sum (xt � yt) of the demand excess of the old (xt) and youth (�yt). In this simple
model xt necessarily equals the purchasing power (1=pt) of existing cash balances,
so that the excess of aggregate demand can be de�ned as:

D (pt; pt+1) =
1

pt
� s

�
pt
pt+1

�
where the savings function of the representative family is:

s(R) = max u(e2 +Ry; y) (0 � y � e1)
(where R is the wage in real terms).
A competitive equilibrium is associated with a sequence of non-negative prices

(pt)
1
t=1 that satis�es the condition:

D (pt; pt+1) = 0 8t
The competitive equilibrium is equivalently associated with a sequence (mt)

1
t=1

of real money balances that satis�es the condition:

D (1=mt; 1=mt+1) = 0 8t
(m = 1=pt by de�nition).
The search for equilibrium with perfect foresight is equivalent to solve the

di¤erence equation:

D (pt; pt+1) = 0

One solution has the form mt+1 = '(mt); where ' is a known function.
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Of particular interest is the concept of periodicity. It is called periodic com-
petitive equilibrium of order�k (or k � cycle) the sequence:

(pt)
1
t=1

(if pt = pt+k; t = 0; 1; 2:::; k � 2)
An important feature of the competitive equilibria (in general) and of those

periodic (in particular) is that, if the stationary monetary equilibrium, is locally
stable then there exists a cycle� 2 (that is, a cycle of period�2).

The following �gure illustrates the above:
- in a), the competitive equilibrium is the sequence (p1; p2; p3; :::);

- the b), the cycle�2 is the sequence of alternate prices:
�
1bm ; 1

f(bm) ; 1bm ; :::
�

Fig. 5: sunspot equilibrium and cycle�2

The sunspot equilibria are equilibria of rational expectations that are perfectly
correlated with extraneous events or factors outside of preferences, endowments
and production sets and sets of every individual. The equilibria of this type are not
necessarily stationary, but in this work is concerned only on stationary sunspots, for
which to understand how the set of equilibria is expanded by the sunspot hypothesis.

The event that is considered now is characterized by two values: either sunspot
activity (a) or absence of sunspot activity (b). The occurrence of a and b is governed
by a Markov process with the following stationary transition probability matrix:

� =

���� �aa �ab
�ba �bb

����
For (i = a; b) and (j = a; b); an element of this matrix denotes the probability

that the sunspot activity will be i tomorrow, given j today.
Now, it is assumes that all agents in the economy believe in a perfect and

stationary correlation of future prices with the sunspot activity; in other words,
individuals expect that future prices are:

p = '(i) (i = a; b)
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if i occurs tomorrow. In other words, a stationary sunspot equilibrium is a
rational expectations equilibrium in which the prediction is validated by the current
price behavior.

Before proceeding to de�ne the stationary sunspot equilibria, some useful prop-
erties of the z�saving function (the counterpart of rational expectations conditions
of perfect foresight s saving function) are to be indicated. Consider the function:

z = z(R; �)

It is single-valued, continuous and such that:
a) z(R; 0) = s(R) 8R

b) z(1; �) = s(1) 8�

c) z(R; �) lies between s(R) and s(1) 8R; �

d) z(R; b�) lies between z(R; 0) and z(R; �); if b� < �
Possessing one only value and continuity of z descend from the strict concavity

and continuity of maximization function of the consumer with respect to y. This
feature becomes useful once the �rst order conditions are written and di¤erentiated
with respect to �: the key result is that z is a simple deformation of s, which
coincides when � = 0.

Now, it is de�ned �(R; �) as the elasticity of saving with respect to wages, in
conditions of random expectations on real wage R, evaluated in (R; �). Then it will
be valid the relationship:

�(1; �) = (1� �)"(1) 8�
where "(1) is the corresponding elasticity of the saving, in conditions of perfect

foresight.
Having de�ned the function z, stationary sunspot equilibrium can be now for-

mally de�ned. A balance stationary sunspot is a quadruple (pa; pb; �aa; �bb) of
positive numbers such that:

a) �aa; �bb lie in the open interval (0; 1);

b) pa 6= pb

c) the demand excess of the consumer good is zero in any current state,
that is:

i) Da = 1
pa
� z

�
pa
pb
; �aa

�
= 0

ii) Db = 1
pb
� z

�
pb
pa
; �bb

�
= 0

A SSE (pa; pb; �aa; �bb) is a stationary sunspot equilibrium with respect to an
exogenous matrix � if the numbers �aa; �bb in the de�nition are the elements of
the diagonal of the matrix �. This de�nition is in accordance with that informal
one given previously. If the event a (respectively b) occurs in the current period,
pa (respectively pb) is the equilibrium price according to the equations (i) and (ii).
Expectations for which pa = '(a) and pb = '(b) are then self-ful�lling.
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Furthermore, the de�nition requires that is (pa 6= pb, with 0 < �aa < 1 and
0 < �bb < 1). If it is (pa = pb) the SSE degenerates into a stationary equilibrium
of the type "golden rule". Another type of degeneration is obtained when certain
transitions are eliminated from the transition matrix. In particular, if �aa = �bb =
0, the occurrence of the event a (or respectively b) today, ensures the occurrence
of b (or respectively a) tomorrow. In other words, the equilibrium prices pa; pb
necessarily follow one another. The SSE then degenerates into a cycle�2, as can
be seen from the equations (i) and (ii): the cycle�2 therefore appears as a limiting
sunspot equilibrium associated with a degenerate 2 � 2 matrix that has zero in
diagonal.

As a direct consequence it can be expressed the following important result,
referred to as Theorem of equilibrium in the neighborhood of a cycle�2: in an
economy that admits a periodic equilibrium of order�2, there is generally a neigh-
borhood �(�) of the matrix (2 � 2) such that there exists an stationary sunspot
equilibrium with respect to any � in �(�).

If an equilibrium of order�2 them satis�es the conclusions of the theorem stated
above, it is called "regular".

To study the existence of SSE, it is set w = pa=pb and de�ned the following
single-valued function:

F (w; �aa; �bb) = wz(w; �aa)� z(1=w; �bb)
A SSE exists if and only if F has a positive root w 6= 1 for some �aa 2 (0; 1)

and �bb 2 (0; 1). This is because each SSE that satis�es the relations (i) and (ii)
for some pa 6= pb also satis�es:

1

w
=
z(w; �aa)

(1=w; �bb)

and therefore also the F (�) = 0. Moreover, for each positive root w 6= 1, there
can be found two pa; pb positive numbers such that the relations (i) and (ii) hold
true.

The function F (w; �aa; �bb) is continuous for all (w; �aa; �bb) with w > 0. It
has the following properties for each (�aa; �bb):

a) F (1; �aa; �bb) = 0

b) F !1 for w !1

c) for w su¢ ciently small, F (w; �aa; �bb) < 0

d) if w is a root of F (w; �aa; �bb), then also 1=w is a root of F (w; �aa; �bb)

After de�ning these properties, there is an answer to two related questions:
�rst, what it can be said about the 2�2 matrix of transition probabilities for which
exists a SSE ? second, can sunspot equilibria be found in the neighborhood of a
stationary equilibrium of perfect foresight?

Evaluating with w = 1 the derivative of the function F with respect to w, it is:

@wF (1; �aa; �bb) = s(1) [1 + �(1; �aa) + (1; �bb)]

This relationship combined with the one about �(R; �) allows to write:
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@wF (1; �aa; �bb) < 0 if [2� �aa � �bb] "(1) < �1
A direct implication of this relationship is the following theorem: assuming that

the utility function satis�es the regularity assumptions regarding di¤erntiability,
concavity and behavior at the limit, then a su¢ cient condition for the existence
of a sunspot equilibrium with respect to a given Markov matrix � of transition
probabilities is:

"(1) < 0 and �aa + �bb < 2�
1

j"(1)j
In fact, if "(1) � 0; this would violate the theorem just stated and also the

condition F (1; �aa; �bb) = 0. The inequality @wF < 0 is su¢ cient to ensure that
F has two roots other than w = 1. This condition, given �aa; �bb > 0, is applied
directly to the existence of cycles�2. This theorem identi�es a subset of the set of
all of the transition probability matrices for the which there exist SSE. This subset
can be represented in the following �gure:

Fig.6: subset of cycles-2

The �gure indicates the shaded area with k = 2 � 1
j"(1)j . The unit square

indicates, instead, the whole set of matrices for which there exist the cycles�2.
To understand some of the properties of the theorem, the sunspot equilibria

in the neighborhood of the line (�aa + �bb = k) in Fig. 8 are considered. When
[�aa+�bb] decreases passing through k, it is found that @wF is strictly positive, then
it becomes in�nitesimal and then becomes negative. The passing through zero of
the derivative of F is what mathematicians call bifurcation. It is shown that, given a
path P on the plane (�aa; �bb) that transversely intersects the line (�aa + �bb = k)
at a given point C, the graph of w = pa=pb as a function of the x�coordinate of P
has a point of equilibrium before C and three points of equilibrium after C.
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Finally Azariadis states that the existence of sunspot equilibria in the neigh-
borhood of periodic cycles is potentially a very general property, which remains
valid for n�dimensional systems and of any order�k cycles.

3.3. Sunspot in not-overlapping-generation models. Advances in un-
derstanding of indeterminacy of equilibria and dynamics of economic systems were
in direct proportion to the progress made in the mathematical methods. In this
regard, also other types of models (not OLG but which have enabled signi�cant
advances in understanding the working of the economy) deserve mention.

The models with in�nitely-life economic agents have been used, among other
things, for the study of equilibrium indeterminacy of economic systems, in the pres-
ence of elements such as monopolistic competition or externalities or even increasing
returns. The conclusions which these models typically reach relates primarily to the
fact that the extrinsic uncertainty must be taken seriously, because it can generate
�uctuations driven by expectations: in fact, it is known that the type of di¤erential
equations that characterize the equilibrium conditions of a competitive economy
with in�nite horizon can have solutions in which the endogenous variables �uctuate
in response to sunspot variables, that is random events, which have nothing to do
with economic fundamentals and therefore does not directly a¤ect the equilibrium
conditions. It is possible to see these sunspot equilibria as a representation of a
real phenomenon, that is economic �uctuations not caused by exogenous shocks to
fundamentals but rather by revisions of agents�expectations in response to some
event, for which those expectations become self-ful�lling.

Another very important type is the "one-step-forward-looking" structure: in
it, the state of equilibrium at time t only depends on expectations, common among
agents, of the value of future state variables. It is a very simple structure, whose
time horizon is limited to a period which, however, has enabled the achievement
of important results: one of the �rst was the so-called local stationary sunspot
equilibrium, i.e. a sunspot equilibrium whose support is in the neighborhood the
steady state of the economy. This has also allowed to deepen the connection between
the existence of local stationary sunspot equilibria and the indeterminacy of steady
state, a theme appeared since the early works of Azariadis (1981) on self-ful�lling
expectations in the structure of the models with overlapping generations.

Later, it has been possible to apply to one-step-forward-looking models tools
such as continuous time, the study of the global dynamics (and not just the local
one), the application of the results of the studies on deterministic chaos. With these
elements it has been possible to give an alternative approach, in particular, in the
study of the economic system growth: in fact many causal mechanisms had already
been identi�ed as human capital, research and innovation, externalities, but it had
not been reached a satisfactory description of the �uctuations in growth rates.
It has been shown that the �uctuations in the growth rates will occur through
a mechanism of self-ful�lling expectations, expectations already incorporated in
economy through the theory of sunspot equilibria. The one-step-forward-looking
models made it possible to incorporate the concept of sunspot equilibrium in a
continuous time frame. Such a possibility has been suggested �rst by Woodford
and other authors: the most interesting character of the use of the continuous-
time methods is the possibility that it brings a full understanding of the properties
of the global dynamics of these stochastic equilibria, not limiting it to the local
dynamic study. Today there are a number of results in new literature of growth that



18 1. SUNSPOT EQUILIBRIA IN MODELS OF GENERAL EQUILIBRIUM

have established the possibility of multiple paths of stationary growth or cyclical
growth paths, and then, in general, the strong indeterminacy in the long run.
Finally, another result due to one-step-forward-looking models is the possibility
of application of the non-stationary nature of the economic environment: �rst,
it signi�cantly broadens the class of economies compatible with the existence of
sunspot equilibria; second, this non-stationarity allows to study both the economic
cycles and the economy�s growth into a uni�ed structure.

4. Further contributions

4.1. A geometric approach. The paper by Gaetano Bloise [8], in the tradi-
tion of the work by Grandmont [15] and Woodford [28], aims to present a geomet-
ric method useful for the study of sunspot equilibria in nonlinear multidimensional
economic models with no predetermined variables. This approach allows to char-
acterize the support of a sunspot equilibrium by its invariance properties in the
underlying deterministic dynamics. It provides a complete description of stochastic
endogenous �uctuations around a stationary state.

He considers the simplest reduced form model allowing the study of sunspot
equilibria in a nonlinear dynamic economy, assuming the temporary excess demand
only depends on current prices and on the expectation over prices in the next
period and, in addition, is separable in these two arguments. Such a formulation
represents the smallest departure from linear rational expectation models which
allows to encompass nonlinearities. However, it is undoubtedly restrictive and
is mainly motivated by the need for technical tractability. So, clear results are
obtained at the cost of limited applicability.

The work focuses on �rst-order sunspot equilibria: in the current period, prices
provide all the information about the stochastic distribution of prices in the next
period. This notion of equilibrium is more restrictive than the one proposed by
Woodford and can be reconciled better with the problem of coordination of beliefs.
In approaching the issue of existence of sunspot equilibria, the argument is divided
into two parts. First, pursuing the line of research initiated by Grandmont et al.
[15], it is shown that, if a given set is invariant for the deterministic equilibrium
map, then it is possible to construct persistent equilibrium �uctuations taking place
on this set and not vanishing in the long run. Second, a suitable invariant set can be
found close to the steady state equilibrium whenever it is (locally) indeterminate.

The analysis leads to two main general conclusions. One is that nonlinear mod-
els admit stationary �rst-order sunspot equilibria whenever indeterminacy occurs;
the second is that, under some slightly more restrictive assumptions, it is possible
to show the existence of stochastic equilibria persisting on a full dimensional set
even when indeterminacy is lower dimensional.

Considered an in�nite horizon economy with no intrinsic uncertainty on fun-
damentals, equilibrium is a time-homogenous Markov process, where the current
state is a su¢ cient statistic for the future evolution of the system. Uncertainty is
created by self-ful�lling revisions of individuals�expectations.

An economy is described by a state space E = RN , a pair of di¤eomorphisms
(v; w) from E onto itself and a temporary equilibrium relation5. Equilibrium

5The vector space E (as well as any of its subsets) is endowed with the norm topology. It is
in fact su¢ cient to require that the pair of di¤eomorphisms (v; w) is only locally de�ned on open
sets.
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processes will take place in the state space, so that a state should be thought
of as a complete description of all relevant current variables. The two mappings
(v; w) are intended to capture all the fundamentals of the economy and to impose
constraints on the transition law for the state variable at equilibrium. A temporary
equilibrium is a pair (x; �), where x is a state and � is a probability measure on
the state space with compact support, satisfying the condition

v (x)�
Z
E

w (y) d� (y) = 0

This restriction embodies short-run equilibrium constraints: if (x; �) solves this
equation, then agents have no incentive to take actions di¤erent from those pre-
scribed at x when the expectation (commonly held by all agents) of the distribution
at the next period state is given by �; so, the equation might be thought of as a no-
arbitrage requirement or, possibly, as relating the marginal utility of consumption
today and the expected marginal utility of consumption tomorrow.

The paper directs to time-homogenous Markov equilibria. Given a (nonempty)
compact subset X of E, a Markov process on the support X is a measurable transi-
tion map �, from X into P (X)6. An invariant (probability) measure for a Markov
process (�;X) is a probability measure v in P (X) such that, for all measurable
subsets B of X,

v (B) =

Z
X

�x (B) dv (x)

So a de�nition of Sunspot Equilibrium can be given: a sunspot equilibrium on
the support X is a Markov process (�;X) such that, for each x in X, the pair
(x; �x) is a temporary equilibrium; that is, for each x in X,

v (x)�
Z
X

w (y) d�x (y) = 0

Thus, a sunspot equilibrium is a time-homogeneous stochastic process over
some set X such that for each value x of the state variable there is a (conditional)
probability measure �x over X that justi�es x: if agents commonly believe that the

Given a closed subset E0 of E, we use b (E0) to denote the �-�eld of Borel subsets of E0; for
any closed subset E00 of E0, we have that

b
�
E00
�
=
�
B � E00 : B 2 b

�
E0
�	

The set of all probability measures on (E0; b (E0)) (or, simply, on E0) is denoted by P (E0);
for any closed subset E00 of E0, we have that

P (E00 =
�
� 2 P

�
E0
�
: �
�
E00
�
= 1

	
Given a closed subset E0 of E, the space P (E0), endowed with the topology of weak con-

vergence, is a metrizable topological space; for any closed subset E00 of E0, the weak convergence
topology on P (E00) is the relativization of the weak convergence topology on P (E0) to P (E00).
Finally, for any pair of closed subsets (E0; E00) of E, any continuous mapping h : E0 ! E00,
and any probability measure � in P (E0), �h�1 is the probability measure in P (E00) de�ned by
�h�1 (B) = �

�
h�1 (B)

�
for all measurable subsets B of E00.

6For convenience, we write (�;X) interchangeably with � : X ! P (X) and �x interchange-
ably with � (x).
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future state variable is distributed according to �x, then x clears markets in the
current period. Additionally, this agents�belief coincides with the true (conditional)
probability distribution on the future state variable. Note that, whenever a sunspot
equilibrium is truly stochastic, probability distributions only re�ect an uncertainty
originating in the beliefs of agents, rather than in some intrinsic �uctuation of
fundamentals.

Deterministic equilibria represent economic situations which do not involve any
uncertainty. To examine such equilibria, it is useful to introduce the di¤eomorphism
g from E onto itself de�ned by the composition

�
w�1 � v

�
. A deterministic equi-

librium is then any (nonempty) compact subset X of E such that g(X) � X: for
each initial condition x0 in X, the sequence of states generated by iterating g on
x0 is a sequence of temporary equilibria with perfect foresight which remains in
the support X forever. A steady state equilibrium, in turn, is a �xed point of the
map g. Following traditional terminology in the literature on sunspot equilibria in
sequential economies, a steady state is (locally) indeterminate whenever there is a
continuum of other (nonstationary) deterministic equilibria arbitrarily close to this
steady state.

Then, the de�nition of indeterminacy is given: a steady state equilibrium a is
said to be (locally) indeterminate whenever, for any open neighborhood U of a, there
exists a deterministic equilibrium on an uncountable support X contained in U . It
is a well-known result that verifying whether a steady state is indeterminate requires
the study of the linear operator Dag: the steady state is (locally) indeterminate
whenever Dag has at least one eigenvalue inside the unit circle.

A deterministic equilibrium is consequently identi�ed with a (nonempty) com-
pact subset X of E such that f(X) � X and, without loss of generality, we can
assume that the origin of E is a steady state equilibrium (thus, a �xed point of f
). Clearly, indeterminacy of this steady state is una¤ected by our transformation
of the state space: the steady state is (locally) indeterminate whenever D0f has
at least one eigenvalue inside the unit circle. From now on, the map f (jointly
with the equilibrium restriction (2:3)) is the only object we need to check for the
occurrence of sunspot equilibria. It is referred to as the deterministic equilibrium
map.

The investigation in Bloise�s paper has shed some additional light on the oc-
currence of sunspot equilibria in sequential economies. Whenever the steady state
equilibrium is indeterminate, sunspot equilibria exist close to such a steady state.
These equilibria are such that the current state of the economy gives all the in-
formation about the distribution of the next period state. Moreover, under some
assumptions, in a nonlinear economy, there exist stationary, persistent equilibrium
�uctuations around the steady state taking place on a full-dimensional set and ad-
mitting an invariant measure absolutely continuous with respect to the Lebesgue
measure. More, the existence of sunspot equilibria in sequential economies with an
indeterminate steady state is a well-established result in the literature. However,
from this geometric approach some conclusions which have been neglected by the
traditional linear approximation method can be drawn. It is, for instance, now
clearer that, in nonlinear models, one should not expect sunspot equilibria to take
place on the stable manifold. Even though the paper considered a very speci�c
form of the temporary equilibrium relation, results pose a serious question on the
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empirical implications of sunspot equilibria. In linear models, all (bounded) sto-
chastic processes must take place on the stable linear manifold, thus implying that
a strong linear correlation among, say, prices must exist. In nonlinear models, on
the contrary, such equilibria might not involve any linear restriction and, in gen-
eral, may persist on a support that is qualitatively di¤erent from the linear stable
manifold, so that little predictions can be proposed. Among many others, a serious
drawback of this analysis is that it does not account for predetermined variables.

4.2. The concept of global sunspot. The work of Roger Farmer [13] can
be considered one of the most important contributions on the sunspots literature.
He studied in particular the aspect of �nancial crises as global sunspots, continuing
the research on �nancial markets begun in 1998 with Jess Benhabib.

In his paper, Farmer constructs a heterogenous agent general equilibrium model
to explain asset prices. In this model, asset price �uctuations are caused by random
shocks to the price level that reallocate consumption across two kinds of people.
Asset prices are volatile and price dividend ratios are persistent even though there
is no fundamental uncertainty and �nancial markets are sequentially complete.
Following David Cass and Karl Shell, he refers to the random variables that drive
equilibria as "sunspots".

Farmer�s work di¤ers in three ways from standard asset pricing models: �rst, it
allows for birth and death (by exploiting Blanchard�s concept of perpetual youth);
second, there are two types of people that di¤er in the rate at which they discount
the future; third, there is an asset, government debt, denominated in currency
(dollars).

The model has no fundamental uncertainty of any kind and a set of perfect
foresight equilibria that are solutions to a di¤erence equation which converges to a
unique steady state.

The results in Farmer�s paper rely on all three of these pieces; perpetual youth,
multiple types and nominal debt. The initial price level is indeterminate and,
because of this fact, the initial price level is indeterminate: so, there is more than
one solution to the di¤erence equation, each of which is an equilibrium, and each
of which begins at a di¤erent initial point.

Then the author exploits the indeterminacy of the set of the perfect foresight
equilibria to construct a rational expectations equilibrium in which uncertainty is
nonfundamental. The people in the model come to believe that the future price
level is a random variable, driven by a sunspot, and they write �nancial contracts
contingent on its realization. But the unborn cannot participate in the �nancial
markets that open before they are born. As a consequence, sunspot shocks re-
allocate resources between people of di¤erent generations. Most sunspot models
add a shock to the perfect foresight equilibria of a model that has been linearized
around an indeterminate steady state. This method may be used to generate local
sunspot equilibria, but there is no guarantee that the sunspot solutions of a linear
approximation are close to the equilibria of the original model once the variance of
the shocks becomes large.

In this paper, Farmer takes advantage of the nonlinear nature of the solution to
compute global sunspot equilibria. Although the model represents an endowment
economy, the framework provided can easily be extended to allow for production
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by adding capital and a labor market. If the explanation for asset price volatil-
ity is accepted, models that build on this framework have the potential to unify
macroeconomics with �nance theory in a simple way.

In this model people have in�nite horizons but �nite lives. These people survive
from one period to the next with an age-invariant probability. There are two types
of people, one of which is more patient than the other. There is no production,
and each type is endowed with a single commodity in every period. In the absence
of money, the unique equilibrium of this model is characterized by a di¤erence
equation in a single state variable that converges to a unique steady state. The
initial condition of this di¤erence equation is the net indebtedness in the �rst period,
of patient to impatient types.

In a steady state equilibrium, patient people consume less than their endowment
when young and more than their endowment when old: impatient people consume
more than their endowment when young and less than their endowment when old.
In the steady state, there is an exponential age distribution of each type.

A government is added to this model: it consists of a treasury and a central
bank. The treasury issues currency (dollar) denominated debt and, although money
is used as a unit of account, no agent in the model holds money. Each period, the
treasury raises lump-sum taxes that it uses to pay the interest on its debt and to roll
over the principal. The central bank �xes the nominal interest rate at a constant.

The model possesses a set of perfect foresight equilibria that are solutions to a
�rst order di¤erence equation. There is more than one perfect foresight equilibrium
because the initial price level is a free variable. This fact is used to construct
a rational expectations equilibrium in which the price level is random. In this
equilibrium, price-level �uctuations reallocate the tax burden of government debt
between current and future generations. These �uctuations exist as equilibria, even
in the presence of a complete set of state-contingent securities, because the unborn
cannot insure against the state of the world into which they are born.

Among the many possible models of sunspot equilibria, this one combines stan-
dard assumptions about preferences with a plausible demographic structure to gen-
erate equilibria, driven by self-ful�lling prophecies, that exhibit many of the fea-
tures that we see in real world asset markets. Farmer characterizes equilibria of the
model, after a series of assumption:

(1) about people, apples and trees; there are two types of people, each type
endowed with one unit of a unique perishable commodity in every period
in which is alive - called "apple". The wealth of a person in the year of
his birth is equal to the discounted present value of his "apples"; so, this
is called a tree. People have logarithmic preferences, with two discount
factors: the �rst is bigger than the second, re�ecting the fact that people
in the �rst group are more patient than the second. People of each type
die with a given probability and, when a person dies, he is replaced by a
new person of the same type. The population is a constant, of measure 1.

(2) about uncertainty; uncertainty in period t is indexed by a random variable
St with compact support S, so that St 2 S. A ��period sequence S�t is a
��period history with root St:

S�t = fSt; St+1; :::; S�g
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The root is the initial date-state pair and a history S�t is a (� -t)�dimensional
random variable with support S��tt .

(3) about the asset markets; asset markets are sequentially complete; three
assets are actively traded: Arrow securities, government debt and trees.

(4) about government; government consists of a central bank and a treasury;
the treasury issues dollar denominated one-period debt and faces a bud-
get constraint. The central bank sets the gross interest rate equal to a
constant; a monetary policy rule of this kind is called passive. The trea-
sury issues su¢ cient nominal debt to roll over its existing debt, net of tax
revenues. A �scal policy of this kind is called active.

Now, an equilibrium is a possibly stochastic sequence that satis�es a pair of
stochastic di¤erence equations.

At �rst, only perfect foresight equilibria are taken into consideration. The
equilibria are characterized by non-stochastic sequences. For a calibrated version
of the model, there is a single steady state solution to the equations and this
steady state is a saddle. The saddle path, also called the stable manifold, is a
one-dimensional manifold of points with the property that trajectories that begin
on this manifold converge to the steady state (in the words of Guckenheimer and
Holmes).

Saddle-path is usually associated with uniqueness of equilibrium. In this model,
although there is a unique stable saddle path, the initial value of outstanding gov-
ernment debt depends on the initial price level (and this can take on a continuum
of values in an open set). Because of the dependence of the initial condition on
the dollar price of apples, this model is associated with a continuum of perfect
foresight equilibria. An equilibrium is characterized by a sequence that begins at
an arbitrary point on the stable manifold and converges to the unique steady state
over time.

Fig.5: set of perfect foresight equilibria

The stable manifold is a set D = [D1; D2] with the property that every point
that begins on this manifold follows a �rst order di¤erence equation that converges
to the steady state (the dashed curve is the unstable manifold).

The model proceeds with the construction of a set of rational expectations equi-
libria, by the randomization over the perfect foresight equilibria of the underlying



24 1. SUNSPOT EQUILIBRIA IN MODELS OF GENERAL EQUILIBRIUM

model. In these equilibria, people form self-ful�lling beliefs about the distribution
of future prices.

In the �nite Arrow-Debreu model there is, generically, a �nite odd number
of equilibria and new stochastic equilibria cannot be constructed by randomizing
across the existing perfect foresight equilibria, because of the �rst welfare theorem
which asserts that every competitive equilibrium is Pareto optimal. This result
breaks down when there is incomplete participation in asset markets as a con-
sequence of overlapping generations: so, it possible to construct randomizations
across the perfect foresight equilibria of the model, that are themselves equilibria.

Because there are multiple perfect foresight equilibria, there are multiple pos-
sible values of prices. In a stationary environment, people come to understand that
the future price is a random variable and they form beliefs that are indexed to an
observable shock: This shock is a sunspot that is unrelated to fundamentals.

Farmer makes a very bright example of what makes agents coordinate beliefs on
a sunspot equilibrium supposing that two agents A and B believe the writing of an
economic journalist who makes accurate prediction of asset prices. This journalist
predicts either a 10% rise or a 10% fall in the price of trees.

The 2 agents, wishing to insure against wealth �uctuations, use the articles to
write a contract: in the event of a rise agent A agrees, in advance, that he will
transfer wealth to B. In the event of a fall, the transfer is in the other direction.
These contracts have the e¤ect of ensuring that the journalist�s predictions are
self-ful�lling. How can that be an equilibrium? There are three groups of people
involved in any potential trade: patient agents alive today, impatient agents alive
today and agents of both types who will be born tomorrow. Fluctuations in the
price of trees cause a wealth redistribution from the newly born to the existing
generations. This wealth redistribution operates by a transfer of tax obligations
to or from the unborn. Because the existing agents have di¤erent propensities to
consume out of wealth, they choose to change their net obligations to each other
in di¤erent ways depending on whether the transfer from the unborn is positive or
negative. In a rational expectations equilibrium, the di¤erent behaviors of the 2
agents are self-ful�lling.

Farmer, then, constructs a sunspot equilibrium with two future states, the 10%
increase and the 10% fall in the price (after this, he generalizes the construction to
many possible states).

This is the essential and characterizing aspect of Farmer�s paper: the construc-
tion of global sunspot equilibria. Farmer introduces a new method for computing
sunspot-driven rational expectations equilibria. The usual method of computing
sunspot equilibria proceeds by linearizing a dynamic stochastic general equilibrium
model around an indeterminate steady state and adding random shocks to the re-
sulting linear system. This method produces a valid approximation to the equilibria
of a non-linear model but the accuracy of the approximation decreases as the vari-
ance of the shocks becomes larger. He shows how to construct a higher order global
approximation that remains valid for persistant and "larger" shocks.

In fact, Farmer�s work explains three asset pricing puzzles that are di¢ cult to
reconcile with the now standard representative agent approach to macroeconomics:
i) asset prices are volatile and persistent and price-dividend ratios are predictable;
ii) long-lived risky assets earn 5% more on average than short term government debt;
iii) the volatility of asset prices changes through time. So the author argues that
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all of these "problems" are caused by the simple fact that no one can buy insurance
over the state of the world he was born into. Then, a series of simulations and
graphs are presented: these simulations give a great insight into the explanations
of the three feeatures. To construct global sunspot equilibria, the pricing kernel is
mapped into the interval [0; 1] : the pricing kernel (m0) is a random variable with
the property that the price of any asset can be computed as the expected value
of its product with m0. It is assumed that, for any value of m (the marginal rate
of substitution of a person alive in two consecutive periods), the variable m0 has
a distribution with mean f(m), where m0 = f (m) is the stable manifold of the
map. The assumption implies that in any given period, people believe that m0 is
a random variable with support D for every value of m 2 D. This means that,
however well the economy is doing today, there is always positive probability that
the next period will be associated with an extreme value in which the discount
factor is at its upper or lower bound.

By modeling m0 as distributed random variable, it is possible to capture in
a parsimonious way, the idea that people believe that equilibria will be selected
by the psychology of market participants. Because people are assumed to be risk
averse, they would always prefer the mean of a gamble to the gamble itself. And,
in the case of sunspot �uctuations, that mean is available.

Farmer arrives to a conclusion common to the sunspot literature: asset price
�uctuations cause Pareto ine¢ cient reallocations of wealth between current and
future generations and these reallocations lead to substantial �uctuations in welfare.
So there is room for policy makers to stabilize asset prices through monetary and
�scal interventions that, in turn lead to welfare improving.
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CHAPTER 2

Sunspots in endogenous growth two sector models

1. Introduction

The problem of the indeterminacy and sunspot equilibrium in economic �nan-
cial models has been analysed by many authors in recent times: among them,
Nishimura, Shigoka, Yano (2006), and Benhabib, Nishimura, Shigoka (2008), Slo-
bodyan (2009).

Many papers reported the occurrence of the stochastic behaviour (sunspots)
also in presence of individual optimization, self-ful�lling expectations and com-
pensations of competitive markets. We remember that a phenomenon is called
sunspot when the fundamental characteristics of an economy are deterministic but
the economic agents believe nevertheless that equilibrium dynamics is a¤ected by
random factors apparently irrelevant to the fundamental characteristics (Nishimura,
Shigoka, Yano 2006).

In this paper, we consider the mechanism that leads to the existence of sunspots
close to the indeterminate equilibrium (the Hopf orbit) in a class of endogenous
growth two-sector-models with externality. Nishimura, and Shigoka (2006) consider
the reduced form of the Lucas and Romer models, as a continous deterministic
three-dimensional non linear di¤erential system, with one pre-determined variable
(a combination of the state variables) and two non-predetermined variables (related
with the control variables). They constructed a stationary sunspot equilibrium
near the stable Hopf cycle that emerges from the unique equilibrium point adding
a Wiener variable to the non-predetermined variables; in their formulation, the
cycle represents a compact solution of the stochastic process associated with the
deterministic model.

Benhabib, Nishimura, Shigoka (2008) prove the existence of a sunspot equi-
librium that comes from a Hopf cycle or a homoclinic orbit in a continuous time
model of economic growth with positive externalities and with variable capacity
utilization; the model has one only predetermined variable (the state variable) and
one non-predetermined variable (the control variable). In their model, the posi-
tive externality produces the existence of multiple equilibria. Through dynamical
analysis they show that the equilibrium is globally indeterminate in the periodic
orbit; moreover, there exists a sunspot equilibrium with a support located in the
bounded region enclosed by either a homoclinic orbit or a periodic orbit, such that
each sample path does not converge to any speci�c point and continues to �uc-
tuate without decaying asymptotically. As in the previous model, the stochastic
formulation comes from adding a white noise to the non-predetermined variable.

Slobodyan (1999) treated the indeterminacy in a deterministic continuous-time
model with in�nitely lived agents, one predetermined variable (the state variable)
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and one non-predetermined variable (the control variable); the model is character-
ized by increasing social returns to scale due to externality in the production func-
tion of which the agents are assumed to be unaware. There are two steady states:
one has zero capital and zero consumption (the origin), while the other is char-
acterized by positive levels of both capital and consumption. For some parameter
values, both steady states are indeterminate, and the whole state space is separated
into two regions of attraction of the steady states. The basin of attraction of the
origin can be regarded as a development trap. Also in this case, the indeterminacy
allows for the existence of sunspot equilibria related with the non-predetermined
variable. Slobodyan (2009) studied the possibility of "rescuing" an economy from
a development trap through sunspot-driven self-ful�lling expectations.

In this work, we construct sunspot equilibria in a deterministic general class
of endogenous growth two sector models with externalities in the line of Mulligan
and Sala-i-Martin (1993), Venturi (2014) and compare the dynamical situations
arising from the di¤erent applications: the Lucas model, the Romer model and a
disposable - resource endogenous growth two-sector model (Bella 2010).

Following Mulligan and Sala-i-Martin (1993), the endogeneous growth two-
sector model is presented in the reduced form; it means considering a three dimen-
sional deterministic continous non - linear di¤erential system, whose steady states
correspond to the Balanced Growth Path (BGP), that is all variables grow at a
constant rate.

Starting from a three-dimensional standard reduced deterministic model that
admits stable cycles (with one predetermined variable and two non-predetermined
variables), the model can be reformulated adding a stochastic term to the non-
predetermined variables (as a white noise) and transforming it into a stochastic
model that leads to indeterminacy, multiple steady stades and bifurcations. If for
a given endogenous growth model, there exists a continuum of equilibria in a small
neighborhood of a BGP that continues to stay in this neighborhood, it is said that
equilibrium is locally indeterminate. If there exists a continuum of equilibria outside
a small neighborhood of a BGP, it is said that equilibrium is globally indeterminate
(i.e. Hopf cycle or homoclinic orbit; see Mattana, Nishimura, Shigoka 2008).

Following Slobodyan 2009, in our formulation, the stochastic approch suggests
a way out from the cycle trap only for disposable resource application (the model
has multiple equilibrium points); in the other examples (Lucas, Romer) the model
has one only equilibrium point and we have no way out when the initial conditions
start inside the stable bounded cycle: this is the so-called poverty development
trap.

The paper1 is organized as follows: the second section analyzes the general
economic model; the third introduces the Hopf orbit; the fourth section compares
Lucas, Romer and the natural resource model (Bella 2010) and presents some nu-
merical simulations; in the last we show the results and the economic implications
of existence of sunspot equilibrium in a natural resource system with externalities.

1A short version of this paper is published as Venturi B., Pirisinu A. � �Bifurcation and
sunspots in continuous time optimal model with externalities�in Mola, Conversano, Vichi (Eds.)
� Classi�cation, (Big) Data Analysis and Statistical Learning, pag. 233/240 �Springer Nature,
Zurich, 2018 � ISBN (978)-3-319-55707-6
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2. The economic general model

Now, we consider the deterministic economic general model (Mulligan, Sala-
i-Martin 1993, Venturi 2014) that deals with the maximization of an objective
function

Max
c(t); u(t)

Z 1

0

U(c)e��tdt(2.1)

subject to:
:

k = A [(r(t)�ru(t)�u ] [v(t)��k(t)�k ]
^
r(t)

�
r̂ k(t)

�^
k � �kk(t)� c(t)

:
r = B

h
r(t)�r ((1� u(t))�u

i h
(1� v(t))�� k(t)�k

i ^
r(t)

�
r̂ k(t)

�^
k � � rr(t)

k(0) = k0

r(0) = r0

where

(2.2) U(c) =
c1�� � 1
1� �

is a standard utility function, c is per-capita consumption, � is a positive
discount rate and � is the inverse of the intertemporal elasticity of substitution.

The constraints are two equations related with the growth process of the ana-
lyzed economic system.

Notation is as follows: k is a physical capital and r could represent the human
capital (see the Lucas model 1998), the knowledge (the Romer model, 1990) or
a natural resource (see Bella, 2010); individuals have a �xed endowment of time,
normalized to unity at each point in time, which is allocated to physical and to the
other capital sector (respectively: human, knowledge or natural resource); �k and
�r being the private share of physical and the other capital in the output sector,
�k and �r being the corresponding shares in the second sector, u and v are the
fractions of r and k capital used in the �nal output sector at instant t; conversely,
(1 � u) and (1 � v) are the fractions used in the second sector; the parameters A
and B represent the level of the technology in each sector; � is a depreciation rate;
�^
k
is a positive externality parameter in the production of physical capital; �^

r
is a

positive externality parameter in the production of the second sector
The equalities �k + �r = 1 and �k + �r = 1 ensure that there are constant

returns to scale at the private level. At the social level, however, there may be
increasing, constant or decreasing returns depending on the signs of the externality
parameters.

All other parameters � = (�k, �^
k
; �r, �^r ; �k,�^k

; �r ,�^r , �; ; �; �) lie inside the

following set:
� � (0; 1)� (0; 1)� (0; 1)� (0; 1)� (0; 1)� (0; 1)� (0; 1)� (0; 1)� R4+.
The representative agent�s problem (2.1) - (2.2) is solved by de�ning the current

value Hamiltonian:

H =
c1�� � 1
1� � + �1(A((r(t)

�ru(t)�u)(v(t)��k(t)�k)
^
r(t)

�
r̂ k(t)

�^
k � �kk(t)� c(t)) +

+�2B(r(t)
�r (1� u(t))�u)((1� v(t))��k(t)�k^r(t)� r̂ k(t)�^k � � rr(t)) (2.3)
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where �1 and �2 are co-state variables which can be interpreted as shadow prices of
the accumulation of the state variables k and r. The solution candidate comes from
the �rst-order necessary conditions (for an interior solution) obtained by means of
the Pontryagin Maximum Principle with the usual transversality condition

(2.4) lim
t!1

�
e��t (�1k + �2r)

�
= 0

Only the competitive equilibrium solution is considered (as well known, it fol-
lows from the presence of the externality that the competitive solution di¤ers from
the planner�s solution2).

After eliminating v(t) the rest of the �rst order conditions and accumulation
constraints entail four �rst order non linear di¤erential equations in four variables:
two control variables (c and u) and two state variables (k and r). The solution of
this autonomous system is called a Balanced Growth Path (BGP) if it entails a set
of functions of time solving the optimal control problem (2:1)-(2:4) such that k, r
and c grow at a constant rate and u is constant.

With a change of variable, in standard way, (since k, r and c grow at a constant
rate and u is a constant in the BGP), a system of four �rst order ordinary di¤erential
equations in c, u, k and r is transformed into a system of three �rst order ordinary
di¤erential equations with two non-predetermined variables (the control variables)
and one predetermined (a linear combination of the state variables).

Setting A = B = 1 and

(2.5) x
1
= kr

�
r̂

(�
r̂
�1)

; x
2
= u; x

3
=
c

k

it is:

(2.6)
_x1 = �1(x1; x2; x3)
_x2 = �2(x1; x2; x3)
_x3 = �3(x1; x2; x3)

where the �i 2 R3, are countinuos and derivable nonlinear functions,which depend
of the parameters (�k; �^

k
; �r; �^r ; �k; �^k

; �r; �^r ; �; ; �; �) of the model, and �i :

U �R3 �! R3 with U � R, an open subset, and i = 1; 2; 3.

3. The emergence of a Hopf orbit in the general model.

As well known a stationary (equilibrium) point of system (2.6) is any solution
of

2The planner�s solution involves a choice of k; r; c; u, and ra which maximizes the control
optimal model (2.1) and to r = ra for all t.

In the other hand the path for r coincides with the given path ra in the competive solution
then the system is in equilibrium (see Lucas 1990, Mattana and Venturi, 1999).

The equilibrium solution taking ra as exogenously determined.
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(3.1)
_x1 = �1(x1; x2; x3) = 0
_x2 = �2(x1; x2; x3) = 0
_x3 = �3(x1; x2; x3) = 0

Assuming the existence of at least one solution, at some point P �(x�1; x
�
2; x

�
3)

the local dynamical properties of (2:6) are described in terms of the Jacobian
matrix of (2:6), J(P );with J(P �) = J�, for brevity.

Lemma 1. Let � 2 b� � � be. In b� there is at least one value � = �c, (� is
the bifurcation parameter3) such that the Jacobian matrix J� has a pair of purely
imaginary roots and a real root di¤erent from zero.

Proof. By Routh-Hurvitz�s criterion we can state that J� can have one (real)
eigenvalue �1 = r and two complex eigenvalues �2=3 = p� qi whose real parts can
be either positive or negative. The real part of the two complex conjugate roots is
a countinous function (a four order polinomial) G(�):

(3.2) G(�) = �B(J�)Tr(J�) +Det(J�)

that changes sign in b� when the parameter � varies.
In fact, since the real parts of the complex conjugate roots vary continuously

with respect to �, there must exist at least one value � = �c such that G (�) = 0.
When this occurs, by Vieta�s theorem, J� has a simple pair of purely imaginary
eigenvalues. The solutions of characteristic polinomial

��3 + Tr(J�)�2 �B(J�)�+Det(J�) = 0
for � = �c becomes:

�1 = Tr(J�) and �2=3 = �i
p
B(J)

Q.E.D. �

Lemma 2. If � 2 b�; the derivative of the real part of the complex conjugate
eigenvalues with respect to �, evaluated at � = �c, is always di¤erent from zero.

Proof. We have only to verify that the following derivative d
d�G(�) is di¤erent

from zero in b� : �

Theorem 1. The system (2.6) undergoes at hopf bifurcations in b� for � = �c:
Proof. It follows directly from lemmas 1 and 2 that the assumptions of Hopf

Bifurcations theorem are satis�ed. �

As well known the study of the stability of the emerging orbits on the center
manifold4, can be performed by calculating the sign of a coe¢ cient q depending on
second and third order derivatives of the non-linear part of the system written in
normal form.

3The dynamical characteristic of the Jacobian matrix suggests which bifurcation parameter
to choose. We choose the parameter �:

4It is a manifold associated with the complex conjugate roots with real part zero.
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If q > 0 (resp. q < 0) then the closed orbits Hopf-bifurcating from the steady
state P �c (x

�
1; x

�
2; x

�
3) are attracting or super-critical (resp. repelling or sub-critical)

on the center manifold.

4. Stochastic dynamics

Now, it can be built a stochastic system that has sunspot equilibria as solu-
tions: the costruction is very similar to that reported in T. Shigoka (1994) and J.
Benhabib, K. Nishimura, and T. Shigoka (2006), J. Benhabib, K. Nishimura and
Y. Mitra, (2008).

The system (2.6) includes one predetermined variable x
1
and two non-predetermined

variables x
2
and x

3
, in vectorial form :

(4.1) ( _x1; _x2; _x3)
T = �i (x1; x2; x3)

with �i : U �R3 �! R3, U � R, i = 1; 2; 3.
If the deterministic dynamic given by (2.7) satis�es the hypothesis of the theo-

rem 1, in other words the parameters set of the model belongs to b�; then (2.6) has
a period solution � 5.

The equilibrium is globally indeterminate in the interior of the bounded region
enclosed by �.

We remember that a probability space is a triple (
; BR3 ; PR3) where: 
 denotes
the space of events, B is the set of possible outcomes of a random process; B is
a family of subsets of 
 that, from a mathematical point of view, represents a
�-algebra6.

The �-algebra can be interpreted as information (on the properties of the
events)7.

Now a �noise� (a Wiener process) is added in the equations related with the
control variables of the optimal choice problem.

Let st(!) = (!; t) be a random variable irrelevant to fundamental characteristic
of the optimal economy, it means that doesn�t a¤ect preferences , technology and
endowment (i.e. sunspot). We assume that a set of sunspot variable fst(!)gt �0 is
generated by a two-state continuous-time Markov process with stationary transition
probabilities and that st : 
 �! f1; 2g for each t � 0. Let [fst(!)gt�0; (
; BR3 ;
PR3)] be a continuous time stochastic process 8, where ! 2 
, B
 is a �-�eld in 
,
and P
 is a probability measure.The probability space is a complete measure space
and the stochastic process is separable.

Let (R3+++; BR3
+++

; PR3
+++

) be a probability space on the open subset R3+++
of R3 where BR3

+++
denotes the Borel �-�eld in R3++. Let (�; B; P ) be the product

probability space of (R3+++; BR3
+++

; PR3
+++

) and (
; B
; P
), that is (R3+++ �
;

5The Hopf cycle is an invariant set inside a two dimensional manifold: the center manifold.
6A � - algebra di¤ers from an algebra, for the property that the union of in�nite elements of

the family must belong to the set.

7The smallest �- algebra that can be built with subsets of real numbers is represented by
open intervals that are called Borel sets and indicated with B. So, it can be concluded that a
probability space is a triple (
, F , Pr) where 
 denotes the space of events and F a family of
subsets of 
.

8A stochastic process is a family of random variables.
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BR3
+++

� B
; PR3
+++

� P
). Let (�; B�; P �) be the completion of (�; B; P ). Let
(x10; x

2
0; x

3
0) be the value of our model at the time t = 0. Now, a point (x10;

x20; x
3
0; !) in � can be denoted as ': in other words, ' = (x

1
0; x

2
0; x

3
0; !). Let Bt =

B(x10; x
2
0; x

3
0; ss; s � t) the smallest �-�eld of ' respect to which (x10; x20; x30) ss; s � t

are measurable.
Let B�t = B

�(x10; x
2
0; x

3
0; ss; s � t) be the �-�eld of ' sets which are either Bt

sets or which di¤er from Bt sets by sets of probability zero.
Let Et the conditional expectation operator relative to B�t .
The following equation is a �rst order condition of some intertemporal opti-

mization problem with market equilibrium conditions incorporated:

(4.2) ( _x1; Et(d _x2=dt); Et(d _x3=dt) = �i(x1('); x2('); x3('))

where (x10('); x
2
0('); x

3
0(')) = (x

1
0; x

2
0; x

3
0) and

dx1t
dt ;

dx2t
dt ;

dx3t
dt are de�ned as:

dxit
dt

= lim
h!0+

(xit+h � xit)
h

(i = 1; 2; 3)

if the limit exists.

Definition 1. Suppose that f(x1t('); x2t('); x3t('))gt �0 is a solution of the
stochastic di¤erential equation (4.2) with (x1t('); x2t('); x3t(')) 2 R3+++ . If
for any pair (t > s � 0),(x1t('); x2t('); x3t(')) is B�t -measurable but non B�s -
measurable it constitutes a sunspot equilibrium.

Theorem 2. If the deterministic system (4.1) has a Hopf solution or a homo-
clinic orbit (a cycle), then a sunspot equilibrium (SE) is a solution of the stochastic
process f(x10('); x20('); x30('))gt �0 with a compact support.

4.1. The Lucas model. As an application of the general model indicated
above, the Lucas model is consedered. In the original optimal control model, the
state variables are: k, the physical capital and r = h, the human capital; the control
variables are: u, the non-leisure time and c, the consumption.

The deterministic reduced form of this model is given by:

_x1 = Ax�1x
1��
2 + �(1��+)

� (1� x2)x1 � x3x1 (4.3)

_x2 = �(��)
� x22 +

�(1��+)
� x2 � x3x2

_x3 = � �
�x3 +A

���
� x��11 x1��2 x3 + x

2
3

where: x1 = h

�
1��+
��1

�
k ; x2 = u ; x3 = c

k ;  = �^h
.

The variable x1 is a pre-determined one (it is a combination of the state vari-
ables), while x2 and x3 are the non - predetermined variables.

The three dimensional deterministic system (4.3) undergoes a stable Hopf bifur-
cation. In line with Nishimura Shigoka Yano, the model can be written in the form
of a stochastic system and it is possible to verify the above theorem 2. Then the
system has a compact sunspot equilibrium as a solution of the stochastic process.

The model has one only equilibrium point and there is no way out when the
initial conditions start inside the stable bounded cycle or very close to the boundary.
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4.2. The modi�ed Romer model. Another application of the generalized
model is the modi�ed Romer model. In the original optimal control model, the state
variables are: k, the physical capital and r = A;where A is the level of knowledge
currently available, the human capital (Romer 1990, Slobodyan 2007); the control
variables are: HY , is the human capital, the skilled labour employed in the �nal
sector; c, the consumption.

The deterministic reduced form of this model is given by:

_x1 = x1x
�
2 � ��

1� �(1� x2)x1 � x3x1 (4.4)

_x2 = (��)
�(1��)x

�1
1 x�+12 + �(���1)

1�� x2 � �
1�� (1� � +  +


�� (� � ))x

2
2 � 

1��x2x3

_x3 = x23 + (
2

�� � 1)x
�1
1 x�2 x3 � �

�x3

where: x1 = A

�
�+�+
�+�

�
k ; x2 = HY ; x3 = c

k ;  = �^h
.

x1 is a pre-determined variable (it is a combination of the state variables), while
x3 and x2 are the non pre-determined variables; the parameters � + � +  = 1.
and � � 1 is a parameter that captures the degree of complementarity between the
inputs (the case � = 1 corresponds to non complementarity).

The three dimensional deterministic system (4.4) undergoes a stable Hopf bi-
furcation in a parameter set. In line with Nishimura Shigoka Yano (2006), we can
re-write the model in the form of a stochastic system and we can apply the the-
orem 2. Then the system has a compact sunspot equilibrium as a solution of the
stochastic process.

The model has one only equilibrium point and there is no way out when the
initial conditions start inside the stable bounded cycle or very close to the boundary.

4.3. The natural resource model. The natural disposal resource system in-
cludes two non-predetermined variables x

1
and x

2
and one, predetermined variable x

3
.:

(4.5)
_x1 = (� �

� )x1 + (
���
� )x1 � x21

_x2 = (
�
� )(1� x2)x2 + x1x2

_x3 = (
�
� )((1� x2)x3 + (� � 1)x

2
3

where: x
1
= c

k ; x2 = nr; x3 =
y
k .

A stochastic process can be built considering the following equation:

(4.6) (Et(d _x1=dt); Et(d _x2=dt); _x3) = �i(x1('); x2('); x3('))

where (x10('); x
2
0('); x

3
0(')) = (x10; x

2
0; x

3
0) and

dx1t
dt ;

dx2t
dt ;

dx3t
dt are de�ned as

dxit
dt = lim

h!0+

(xit+h�x
i
t)

h (i = 1; 2; 3) if the limit exists.

In order to analyze the local dynamical properties of (4:5), �rst we �nd the
stationary (equilibrium) points of the system (4:5) ; which are any solution of:

(� �
� )x1 + (

���
� )x1 � x21 = 0

(�� )(1� x2)x2 + x1x2 = 0

(�� )((1� x2)x3 + (� � 1)x
2
3 = 0
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There are eight steady states values:

1) P �1 (0; 0; 0)

2) P �2
�
0; 0;

�
�

�(1��)

��
3) P �3 (0; 1; 0) (double solution)
4) P �4 (

�
� ; 0; 0)

5) P �5
�
1
�

�
�� �(���)

�(1��)

�
; 0;
�

�
�(1��)

��
6) P �6 (

�
� ; 1�

(��)
�� ; 0)

7) P �7 (
�(1��)
�(1��) ; 1�

�(1��)
�(1��) ;

�
�(1��) )

It is well-known that many theoretical results related to the system depend
upon the eigenvalues of the Jacobian matrix evaluated at the stationary point
P �i with i = 1; 2; 3; 4; 5; 6; 7.

The local bifurcation analysis permits to determine the structural stabililty of
the solutions of the model. The Jacobian matrix associated with the system (4.5)
is:

(4.8) J(P ) =

26666664

1
� (��+ 2�x1+ 0 1

�x1 (� � �)
+(� � �)x3)

�x2 1
� (�(1� 2x2)+ 0

+�x1)
0 1

� �x3
1
� �(1� x2)+
+2(� � 1)x3

37777775
Now, considered the function:

G(�) = �B(J�)Tr(J�) +Det(J�)
(where B is the sum of the principal minors, Tr is the trace and Det is the

determinant of the Jacobian matrix). According to the theorem 1 (see section 3),
there is a parameter value � = �c such that, in the steady state, the Jacobian
Matrix J(P �) possesses two complex conjugated roots with real part equal to zero
and the real root di¤erent from zero: this happens only for the steady state P �7 (in
fact, the Jacobian evaluated in the steady states 1 to 6 becomes triangular, leaving
no possibilities of bifurcations). So, given the function:

(4.9) G(�) = �B(JP�
7
)Tr(JP�

7
) +Det(JP�

7
)

the invariant elements of the Jacobian are:
Tr(JP�

7
) = �(1��)

�(1��) �
�
� ;

B(JP�
7
) = �

�
�(1��)
�(1��)

�
;

Det(JP�
7
) = �2�(1��)

�2�(1��)

�
1� �(1��)

�(1��)

�
:

It is possible to determine two solutions in which the function G(�) vanishes:

(4.10)
��c = �

���c = ���(1��)
�
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The derivative of the real part of the complex conjugate eigenvalues of (JP�
7
)

evaluated at � = ��c and � = ���c , is always di¤erent from zero: then, a family
of Hopf bifurcations emerges around the steady state P �7 of the system (4.5), for
� = ��c and � = �

��
c .

Now, we consider some numerical simulations: in particular, consider the fol-
lowing two sets of parameters (see [2]):

set a) � = 0:002; � = 0:66;  = 2; � = 0:04; ��c = 0:66;
set b) � = 0:002; � = 0:66;  = 2; � = 0:04; ���c = 0:975:

We evaluate the growth rate of the economy and get: � = � �
���+�2 .

In a �rst simulation, �xed � = 0:66;  = 2, we consider � as a function of � :

� = f (�) = � 0;002
��2�0;66+0;662

Fig. 1: � = f (�)

The growth rate is positive for � < 0:8844:
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A second simulation shows the growth rate as function of � and �:
� = f(�; �) = 0:002

2���2+�

Fig. 2: � = f(�; �)

The last simulation shows the growth rate as function of  and � :
� = f(�; ) = 0:002

0:66���0:4356

Fig. 3: � = f(�; )
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The calculation of the stability coe¢ cient q (as in Bella, 2010) gives some
results for our parameter sets; for the set a); it is q = �2:40 � 1012 < 0; it means
that bifurcation is super-critical, the steady state is unstable and the periodic orbits
are attracting on the center manifold. For the set b), it is q = 8:37 � 1014 > 0; it
means that bifurcation is sub-critical and the periodic orbits are repelling.

The deterministic equilibrium dynamic (4.5) has a family of periodic orbits ��c
emerging from one steady state, with ��c in the center manifold (a two-dimensional
invariant manifold in R3+++). For some set of parameters in the model, there exists a
sunspot equilibrium whose support is located in the bounded region enclosed by the
periodic orbit ��c . Each sample path of the sunspot equilibrium does not converge
to any speci�c point and continues to �uctuate without decaying asymptotically.

For some parameter value, due to pessimistic self-ful�lling expectations, sunspot
equilibria exist in some neighbourhood of a steady-state. If the periodic orbit emerg-
ing from a steady state is super-critical, there is no way out (Slobodyan, 2007). If
the periodic solution is repelling, then there is a possibility of a way out of the
orbit and the optimal path can reach another steady state. Such situation can be
understood as a poverty or development trap.

5. Conclusions

In the applicative examples here proposed, we analyzed di¤erent aspects.
In Lucas model, there are two main causes of endogeneous growth: the �rst is

the accumulation of human capital, that is the endogeneous growth is due to the
fact that the factors determining human capital accumulation remain unchanged;
the second is the presence of the externality: it is not necessary to have endogenous
growth but it works as an incentive to accumulate human capital and not to let it
decrease as time passes by.

In his models, Romer (1986) describes a system in which capital that has de-
creasing returns to scale on the microeconomic level but increasing returns on the
macroeconomic level, due to spillovers; so it predicts positive sustained per capita
growth. On the other hand, Romer (1990) puts knowledge (and the technological
change that is its fruit) at the heart of economic growth: it provides the incen-
tive for capital accumulation and accounts for much of the increase in output per
hour worked. In this line, authors like Sala-i-Martin (1997) have shown that the
investment share is a robust variable in explaining economic growth.

In the model of natural resource, the endogeneous growth and the chance to
escape the development trap are strictly bounded to the expectations: positive or
negative outlook can crucially determinate the growth of the economic system.

This positive and statistically signi�cant e¤ect of investment on the growth rate
of countries suggests that investment not only a¤ects the stock of physical capital
but also increases intangible capital (for example, knowledge) in a way such that
the social return to investment is larger than the private return.

For real-world economies, it�s important to underline that, in case of endogenous
growth, the balanced growth rate crucially depends on the marginal product of
physical capital, which varies positively with the stock of knowledge capital. Thus,
when the level of knowledge capital plays its important role, economies with a
large stock of knowledge may compensate for a large stock of physical capital.
Consequently, the growth rate will be higher in those countries in which the stock
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of knowledge capital is relatively large: this fact can explain high growth rates of
Germany and Japan after World War II, for example.

More generally, economies may be both globally and locally indeterminate.
Global indeterminacy refers to the balanced growth rate that is obtained in the
long run and states that the initial value of consumption crucially determines to
which BGP the economy converges and, thus, the long-run balanced growth rate.

Moreover, local indeterminacy around the BGP with the lower growth rate, can
be observed if the parameter constellation is such that the trace of the Jacobian
matrix is smaller than zero, so that the eigenvalues of the Jacobian matrix have
negative real parts. If in that situation a certain parameter is varied, two purely
imaginary eigenvalues may be observed that generate a Hopf bifurcation, which
leads to stable limit cycles.

Some other authors have studies both development and poverty traps: it is
indicated that poverty traps and indeterminacy in macroeconomic models may
be caused by the same set of reasons, like externalities or increasing returns to
scale. Among many, Slobodyan (1999) tried to understand, in this framework, how
important sunspot-driven �uctuations could be for the economy�s escape from the
poverty trap: for a chosen level of the noise intensity (approximately 14% SD of the
log consumption), the probability of escaping the trap is not negligible, only when
the initial condition is very close to the trap boundary. The set of those initial
conditions is not very large and is restricted to initial level of consumption, within
85% of the level necessary to put the system right on the boundary between the
poverty trap and the region of attraction of the positive steady state.

The probability of escape, as expected, increases as expectations become more
optimistic: for very optimistic expectations (i.e., initial consumption very close to
the boundary) absolute majority of escapes happens very fast. So the economy that
starts with a very low initial capital and very pessimistic expectations of future
interest rates and wages gets trapped. It will probably continue the downward
spiral (the change from "pessimistic" level of consumption to the "optimistic" one
may constitute hundreds and thousands percent of the "pessimistic" level). The
escape happens if it chosen a random variable with bounded support, as the sunspot
variable. The sunspot variable has a natural interpretation of a change in perceived
present discounted wealth.
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CHAPTER 3

Sunspots in a optimal resource control model with
externalities

1. Introduction

A great path of research in the economic �eld regards the e¤ects of those
phenomena known as externalities, that is the unwanted e¤ects of actions that
create a difdference between private and social costs, in Pigou�s de�nition. The
externalities, positive or negative, give rise to direct e¤ects on agents and allocations
of the ecnomic system, which are not "registered" by the setup of market prices.

This paper analyzes an optimal control model with externalities: we point out
the consequences of a higher degree of exploitation of natural resources (as it is for
wood, for example, used far beyond the threshold of re-generation). These phe-
nomena can also be seen in the shorter and shorter obsolescence of many products,
in particular of electronic devices (computer, moile phones, as well as tv sets): this
is sometimes called "programmed obsolescence" and it�s a crucial factor in the ma-
jor consumption of raw materials and in the growing pollution from the electronic
waste. In Wirl (2004) such situation of growing pollution leads to highly negative
externalities that can be easily understood in terms of higher costs of contrasting
pollution and renewing (or preserving) the reserves of natural resources.

He analyzes stable limit cycles as optimal long-run e¤ects of intertemporal
policy and �nds multiple equilibria separated by a threshold curve in the state
plane and a steady state that is between the traditional long run harvesting rule
and the maximum sustainable yield.

Antoci Galeotti Russu (2011 JET), following the framework used by Wirl, glob-
ally analyze an economic growth model with environmental negative externalities;
they �nd two stationary states: the �rst is in fact, a poverty trap; the second has
saddle-point stability. The model exhibits global indeterminacy, since either the
�rst or the second state can be selected according to agent expectations. More,
there is a chance for existence two limit cycles near the two stationary states so
that, even starting from the same initial values the economy may approach either
of the two equilibrium points. Numerical simulations suggest that, even if the econ-
omy starts very close to the saddle-point, locally determinate, it can move quite far
away from it, in particular toward the poverty trap.

Bella (2010) studies the presence of closed orbits that signal economic �uctu-
ations around the steady state, due to the exploitation of natural resources; this
leads, in turn, to an indeterminate equilibrium and suggests the emergence of a
poverty-environment trap, related to the degree and the extent of the resorce uti-
lization.

Kogan (2014) investigates the impact of negative externalities, resulting from
the transboundary pollution; to do so, he illustrates a two-player di¤erential game
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model of pollution, that contemplates possibility of changing of the biosphere from
a carbon sink to a carbon source.

Our paper follows these lines of research but imposing a di¤erent second con-
straint, a third-degree function describing the dynamics of the natural resource.
The economic reason behind this phenomenon is to be found in the highly rising
demand of raw material from industrialized countries. None the less, this leads to
an increasing pollution and a quick depletion of reserves.

By using bifurcation theory we prove that the model undergoes a Hopf bifur-
cations in some parameter set. Following Benhabib and Nishimura (2006) we are
able to show that the 3-dimensional, continuous-time, reduced form of this eco-
nomic system possesses stochastic characteristics which arise from indeterminate
equilibrium close to steady state and Hopf cycle (see Chiappori and Guesnerie,
1991, Benhabib, Nishimura, 2006, Slobodyan 2009). In our formulation, the sto-
chastic approach suggests a way out from the cycle trap (the poverty enviroments
trap, see Slobodyan 2009).

The paper1 develops as follows: the second section analyses the economic model;
the third and fourth sections regard the steady states and the Hopf bifurcations; the
�fth section illustrates the stochastic dynamics of the model; then, the sixth section
presents some numerical simulations and the last section is displays the results and
the economic implications of existence of sunspots equilibrium in a natural resource
system with externalities.

2. The model

We consider a natural resource optimal control model with externalities. It
deals with the maximization of a standard utility function with constraints:

(P )

Max
c(t); n(t)

R1
0

c1���1
1�� e��tdt

subject to _k = Ak� (nr)
1��

ra � c
�
r = �r

�
1� (nr)2

�
and k(0) = k0

r(0) = r0

where: c is per-capita consumption; � 2 R++ is a positive discount rate;
� is the inverse of the intertemporal elasticity of substitution; k is the physical
capital; A 2 R++ is a measure of the stock of existing technology (without loss of
generality, we put A = 1); r is the stock of the renewable natural resource; n is a
fraction of r, n 2 [0; 1]; � 2 R++ is the growth rate of the variable r; ra represents
an external e¤ect due to the presence of a common pool natural resource;  2 R is
a parameter, the esponent of ra. The vector of parameters � � (�; �; ; �; �) lies
inside � = R2++ � R� R2++ � (0; 1).

The state variables of the optimal control model are k and r. The control
variables are c and n:

The solution candidates for the problem P can be obtained by means of the
Pontryagin Maximum Principle with the usual transversality condition:

1Presented as: Venturi B, Pirisinu A. "Sunspot in a resource optimal control model with
externalities" at the XLI AMASES Meeting �Cagliari, Sept. 14-16, 2017
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(2.1) lim
t!1

�
e��t (�1k + �2r)

�
= 0:

We consider only the competitive equilibrium solution (as well known, it follows
from the presence of the externality that the competitive solution di¤ers from the
planner�s solution2) in equilibrium r = ra for all t.

In standard way, we introduce the discounted Hamiltonian:

(2.2) H =
c1�� � 1
1� � + �1

h
k� (nr)

1��
ra � c

i
+ �2�r(1� (nr)2)

where �1 and �2 are the costate variables. The necessary �rst order conditions
are:

(2.2.a)
@H
@c

= 0 c�� = �1

(2.2.b)
@H
@n

= 0 =) 2�n2r2�2 = �1(1� �)k�n1��r1��+�1

(2.2.c) �@H
@k

=
�
�1 � ��1 =)

�
�1 = ��1 � �1�k��1n1��r1��+

(2.2.d)
�@H
@r =

�
�2 � ��2 =)

�
�2 =

= ��2 � �1(1� � + )k�n1��r��+ � �2�
h
1� 3 (rn)2

i
Since the (not maximized) Hamiltonian is jointly concave in both its state and

control variables, by Mangasarian�s condition the �rst order conditions are also
su¢ cient for the existence of an interior solution of the problem P.

By eliminating the costate variables �1 and �2, we can re-write the equations
of the optimal control problem in terms of a system of four non-linear di¤erential
equations in the state (k and r) and control variables (c and n):

(2.3)

_k = k
�
k��1 (nr)

1��
r � c

k

�
�
r = r�

�
1� (nr)2

�
�
c = c

�
� �
� +

�
�k

��1n1��r1��+
�

�
n = n

h
� �
(�+1)

c
k +

�(��+�1)
(�+1) + �(nr)2

�
(1��+)
(1��)

�i
We call a Balanced Growth Path (BGP) a solutions of the system (2:3) in which

the growth rate of k, r, c and n are constant.

2The planner�s solution involves a choice of k; r; c; n which solves the optimal control problem
(2.1) and to r = ra for all t.

On the other hand, the path of ra coincides, in equilibrium, with the path of r (see Lucas
1990, Mattana and Venturi, 1999).

The equilibrium solution takes ra as exogenously determined.
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We can write the above conditions in term of variables�growth rates and, by
using the following substitution:

(2.4) x
1
=
c

k
; x

2
= nr; x

3
=
y

k

where y = k� (nr)
1��

ra is the production function. We get a deterministic
system of three di¤erential equations with two non-predetermined variables and one
predetermined variable. At the end with some computation, we �nd the simpler
form:

(2.5)

_x1 = x1
�
x
1
+
�
1
� � 1

�
x
3
� �

�

�
_x2 = x2

h
� �
(�+1)x1 +

�
1��x

2
2
+ �

�+1

i
_x3 = x3

h
1��
�+1x1 � (1� �)x3 +

2�
�+1

i
3. Steady states analysis

A stationary (equilibrium) point P �of the system (2:5) is any solution of:

(3.1)

x
1

�
x
1
+
�
1
� � 1

�
x
3
� �

�

�
= 0

x
2

h
� �
(�+1)x1 +

�
1��x

2
2
+ �

�+1

i
= 0

x3

h
1��
�+1x1 � (1� �)x3 +

2�
�+1

i
= 0

We �nd eight steady states values; the eight solutions are:

(3.2)
1)P �1 = (0; 0; 0)

2)P �2 =
�
0; 0; 2�

1��2

�
3)P �3 =

�
�
� ; 0; 0

�
4)P �4 =

h
1
�

�
�� (1��)(1��+2��)

(1��)(1���2)

�
; 0; 1��+2��

(1��)(1���2)

i
5� 6)P �5; P �6 =

�
�
� ;�

r
1��
1+�

�
��
�� � 1

�
; 0

�
not admissible because

�
��
�� � 1

�
< 0

7� 8)P �7; P �8 =

264 1
�

�
�� (1��)(1��+2��)

(1��)(1���2)

�
;

�
r

1��
1+�

h
�
��

�
�� (1��)(1��+2��)

(1��)(1���2)

�
� 1
i
; 1��+2��
(1��)(1���2)

375 ;
not admissible because:

h
�
��

�
�� (1��)(1��+2��)

(1��)(1���2)

�
� 1
i
< 0

The admissible solutions are:
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(3.3)

P �1 = (0; 0; 0)

P �2 =
�
0; 0; 2�

1��2

�
P �3 =

�
�
� ; 0; 0

�
P �4 =

h
1
�

�
�� (1��)(1��+2��)

(1��)(1���2)

�
; 0; 1��+2��

(1��)(1���2)

i
Let J = J(P ) denote the Jacobian matrix J of the system (2:5) evaluated at

the point P (x1 ; x2 ; x3) :

(3.4)

J(P ) =

2666664
2x1 +

1��
� x3 � �

� 0 1��
� x1

� �
�+1x2 � �

�+1x1 +
3�
1��x

2
2 +

�
�+1 0

1��
�+1x3 0 1��

�+1x1 � 2(1� �)x3 +
2�
�+1

3777775
Let J(P �i) = JP�i the Jacobian matrix in stationary point P � �

�
x�
1
; x�

2
; x�

3

�
for

some values of the parameters.
Let furthermore

(3.5) Det (�I� J) = �3 � Tr(J)�2 +B(J)��Det(J)
be the characteristic polynomial of J(P ), where I is the identity matrix and

Tr(J); Det(J) and B(J), are trace, determinant and sum of principal minors of
order 2 of J, respectively. It is well-known that many theoretical stability results
relating to the system (2:5) depend upon the sign of the eigenvalues �i solutions of
polynomial characteristic evaluated in the stationary points P �i (with i = 1; 2; 3; 4).

With the aim to simplify the notations, we re-write the Jacobian J(P ) in the
following easy way:

(3.6) J =

24 J11 0 J13
J21 J22 0
J31 0 J33

35
where:

J11 = 2x1 +
1� �
�

x
3
� �

�

J13 =
1� �
�

x1

J21 = �
�

� + 1
x2

J22 = �
�

� + 1
x
1
+

3�

1� � x
2
2 +

�

� + 1
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J31 =
1� �
� + 1

x3

J33 =
1� �
� + 1

x
1
� 2(1� �)x

3
+

2�

� + 1

The invariants of the matrix J(P ) are:

Det(J) = J22(J11J33 � J13J31)

Tr(J) = (J11 + J22 + J33)

B(J) = (J11J22 + J22J33 + J11J33 � J31J13)

We determine the qualitative dynamics of the model around each of the steady
states P �i (with i = 1; 2; 3; 4).

We consider the following two subsets of parameters:

�1 =

�
� 2 � : � 2 R++; 0 < � < 1; � 2 R++;  < �

(1� �)
2��

;  2 R�
�

�2 =

�
� 2 � : � 2 R++; 0 < � < 1; � 2 R++;  > �

(1� �)
2��

�
If � 2 �1, then  < � (1��)

2�� ; we have di¤erent equilibria; it depends on the
steady state we consider:

i. P �1 = (0; 0; 0)
in this case we have always three real negative eigenvalues. Then, this

is a stable equilibrium;

ii. P �2 =
�
0; 0; 2�

1��2

�
we have two real negative eigenvalues and one positive real eigenvalue.

We have a continuum of equilibrium trajectories approaching the steady
state P �2 (indeterminacy);

iii. P �3 =
�
�
� ; 0; 0

�
we have two real positive eigenvalues and one negative real eigenvalue.;

we have a unique equilibrium trajectory approaching the steady state P �3;

iv. P �4 =
h
1
�

�
�� (1��)(1��+2��)

(1��)(1���2)

�
; 0; 1��+2��

(1��)(1���2)

i
If  < � (1��)

2�� ; then, in an easy way, we can see that: a = J11 > 0; c = J13 >
0; g = J31 < 0; e = J22 < 0;h = J33 < 0

It follows that:
ah < 0; cg < 0 (a� h)2 + 4cg < 0;

Det(J) = (ah� cg)e > 0
B(J) = (Tr(J)) e� e2 + DetJ

e > 0 =) (Tr(J)) e > e2 � DetJ
e

Tr(J) < 0 =) a < �(h+ e)
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From a dynamic point of view, the case iv is interesting because the invariants
of the Jacobian matrix change sign in the set �1 in a way that allows a topological
structural change. By using an application of the general theorem due to Routh
(see Benhabib - Perli, 1994), the number of roots of the characteristic polynomial
with real positive part is given by the number of sign variations of the coe¢ cients
and the number of negative roots is given by the number of sign permanences, as
shown in the following chart:

�1 Tr(J) �B(J) + Det(J)
Tr(J) Det(J)

� � � +

There are 2 permanences of sign and 1 variation: then, the eigenvalue �1 has
real positive part and eigenvalues �2=3 have real negative part;

Det(J) = (ah� cg)e > 0
B(J) = (Tr(J)) e� e2 + DetJ

e > 0 =) (Tr(J)) e > e2 � DetJ
e B(J) > 0

Tr(J) > 0 =) a > �(h+ e)

�1 Tr(J) �B(J) + Det(J)
Tr(J) Det(J)

� + � +

3 variations �1 = positive �2=3 = real positive part
we must have : (a� h)2 < �4cg

We have two subsets �A1 and �
B
1 where we can have either one real positive

root and two roots with negative real part (when the trace is negative) or one real
positive root and two roots with positive real part, (when the trace is positive).

Let � 2 �2; then  > � (1��)
2�� :We have di¤erent equilibria, depending on the

steady state considered:

i. P �1 = (0; 0; 0)

ii. P �2 =
�
0; 0; 2�

1��2

�
We have two real negative eigenvalues and one positive real eigenvalue.

a continuum of equilibrium trajectories approaching the steady state P �2
(indeterminacy).

iii. P �3 =
�
�
� ; 0; 0

�
We have two real positive eigenvalues and one negative real eigenvalue.

We have a unique equilibrium trajectory approaching the steady state
P �3 (See BP 1994)

iv. P �4 =
h
1
�

�
�� (1��)(1��+2��)

(1��)(1���2)

�
; 0; 1��+2��

(1��)(1���2)

i

We have two subsets �A2 and �
B
2 where we can have either three real negative

eigenvalues (when � (1��)
2�� <  < 0) or one negative and two positive eigenvalues

(when  > 0).
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4. Hopf bifurcations

In order to �nd the indeterminate equilibrium close to the steady state, inter-
esting from the dynamical point of view, we consider the equilibrium point (P �4).

By using bifurcation theory we prove the existence of a Hopf cycle around the
steady state P �4.

We evalute the invariant elements of the Jacobian and we have that the expres-
sion for the eigenvalues is given by:

(4.1)
�1 = J22
�2 =

1
2 (J

�
11 + J

�
33) +

1
2

p
(J�11)

2 � 2J�11J�33 + (J�33)2 + 4J�13J�31
�3 =

1
2 (J

�
11 + J

�
33)� 1

2

p
(J�11)

2 � 2J�11J�33 + (J�33)2 + 4J�13J�31

(4.2) J =

24 a = J�11 0 c = J�13
0 e = J�22 0

g = J�31 0 h = J�33

35
We consider the function:

(4.3) G() = �B(JP�
4
)Tr(JP�

4
) +Det(JP�

4
)

There is a parameter set 
; in which there exists a value  = c such that the
function G() is equal to zero.

So, by Routh�s thoerem, we can identify the number of the roots of the polino-
mial with positive real parts (see BP 1994).

So the conditions needed to obtain pure imaginary roots are:
Theorem. There exists a parameter value  = c such that in the steady state

P �4 the Jacobian Matrix J(P �4) possesses two complex conjugated roots with real
part equal to zero and the real root di¤erent from zero.

Proof. Let  < � (1��)
2�� ; then it is: a > 0 c > 0 g < 0 e < 0 h < 0

(4.4)

ah < 0 cg < 0
B(J) = (Tr(J)) e� e2 + DetJ

e > 0
=) (Tr(J)) e > e2 � DetJ

e B(J) > 0
Tr(J) < 0 =) a < �(h+ e)
Det(J) = (ah� cg)e = Det(J) > 0
(a� h)2 + 4cg < 0 (a� h)2 < �4cg

Considering the characteristic polynomial ��3+Tr(J)�2�B(J)�+Det(J) = 0;
then we have the following cases:

a) B(J) > 0
�1 Tr(J) < 0 �B(J) + Det(J)

Tr(J) Det(J) > 0

� � � +
2 permanences,1 variation ) �1 =positive �2=3 = real negative part

b) Tr(J) > 0 =) a > �(h+ e)
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�1 Tr(J) < 0 �B(J) + Det(J)
Tr(J) Det(J) > 0

� + � +
3 variations ) �1 =positive ; �2=3 =real positive part; we must have:

(J11 � J33)2 < �4J31J13:

We determine solutions in which the function G() vanishes:  = �c .
The derivative of the real part of the complex conjugate eigenvalues of (JP�

4
)

evaluated at  = �c is always di¤erent from zero.
A family of Hopf bifurcations � emerges around the steady state P �4 of the

system (2:5), when  = �c .
It follows directly from the assumptions of the Hopf bifurcation Theorem.

Thus we can infer, by the Hopf bifurcation theorem, that varying the bifur-
cation parameter (, in our case), the equilibrium point modi�es its stability in
correspondence of the presence of a limit cycle (attractive or repulsive).

The calculation of the stability coe¢ cient q is done following [17].

5. Stochastic dynamics

Now we build a stochastic system that has a sunspot equilibrium as a solu-
tion; the costruction is very similar to that reported in Shigoka (1994), Benhabib -
Nishimura (2006), Benhabib - Nishimura (2008).

Our system (2:5) includes one predetermined variable x1 and two non-predetermined
variables x2 and x3.

Let Et the conditional expectation operator in vectorial form :

(5.1)
�
_x1; Et

�
dx2
dt

�
; Et

�
dx3
dt

��
= �i(x1; x2; x3)

with �i : U �! R, U � R3, i = 1; 2; 3. We denote Et
�
dx2
dt

�
and Et

�
dx3
dt

�
as

(5.2) Et

 
dxit
dt

= lim
h!0+

(xit+h � xit)
h

!
(i = 1; 2);

respectively.
We add a �noise�(a Wiener process) in the equations related with the control

variables of the optimal choice problem. Let st(!) = (!; t) be a random variable
irrelevant to fondamental characteristic of the optimal economy: it means that it
doesn�t a¤ect preferences, technology and endowment (i.e. sunspot):

(5.3) ( _x1dt; dx2; dx3) =
�1(x1; x2; x3) + 0
�2(x1; x2; x3) + sd!t
�2(x1; x2; x3) + d�t

We assume that

Et

�
d!t
dt

�
= lim

h!0+

(!t+h � !t)
h

= Et

�
d�t
dt

�
= lim

h!0+

(�t+h � �t)
h

= 0

are well de�ned; s 2 [0; �), where � is a su¢ ciently small positive constant; dt is
a Lebesgue measure; dx1; dx2; d!t; d�t are Lebesgue-Stieltjes signed measures with
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respect to t. We assume that d!t is a singular signed measure of t relative to the
Lebesgue measure dt.

Let
R t+h
t

d!t = !t+h � !t be and !t is a random variable irrelevant to the
fundamentals (i.e. a sunspot variable). In the same way, we consider the random
variable �t such that d�t is also a singular signed measure of t relative to the
Lebesgue measure dt and that, if s = 0; �t = 0, 8t � 0.R t+h

t
d�t = �t+h � �t and, and if s = 0; then d�t disappears from the system.

We specify a stochastic process f"tgt�0 generating sunspot variables in a way
consistent with the formulation in the equations (2.5) and (5.1). We assume that
a set of sunspot variables f"t(!)gt�0 is generated by a two-state continuous-time
Markov process with stationary transition probabilities and that "t : 
 ! f�1; 1g
for each t � 0. Let

h
f"t(!)gt�0 ; (
; B
; P )

i
be a continuous time stochastic

process, where ! 2 
; B
 is a �-�eld in 
, and P is a probability measure. We
further assume that (
; B
; P ) is a complete measure space and that the stochastic
process f"t(!)gt�0 is separable.

Let Z = fz(1); z(2)g with (z(1); z(2)) = (�1; 1), and letP(h) = [pij(h)]1�i ; j�2; h �
0 denote a 2 � 2 stationary transition probability matrix, where pij(h) is the con-
ditional probability that "t(!) moves from "t(!) = z(i) to "t+h(!) = z(j) through
the length of time h under the condition "t(!) = z(i).P2

j=1 pij(h) = 1 per i = 1; 2 and for each h � 0. We assume that the transition
probability matrix satis�es the following continuity condition:

(5.5) lim
h!0+

P(h) =

�
1 0
0 1

�
For a �xed !, "t = "(t) considered as a function of t is called a sample function.

A function g(�) will be called a step function, if it has only �nitely many points of
discontinuity in every �nite closed interval, if it is identically constant in every open
interval of continuity points, and if g(t0�) � g(t0) � g(t0+) or g(t0+) � g(t0) �
g(t0�), when t0 is a point of discontinuity. Then we have the following result:

Theorem 3. A sunspot equilibrium (SE) is a stochastic process fx1t; x2t; x3tgt �0
with a compact support � such that it is a solution of the stochastic di¤erential equa-
tion (5.1) (See Nishimura - Shigoka, 2006).

It follows from Khasminskii, 1980 (Theorem 7.1.1) that our system is asymp-
totically stable in probability, and the coe¢ cients of the system 5.1 satisfy an
inequality

(5.7) jb(t;X)�Bj+ j�(t;X)� �j <  jxj
in a su¢ ciently small neighborhood of the � and with su¢ ciently small constant

; then the solution � of the nonlinear system is asymptotically stable in probability.
From what said above, there is the chance of �rescuing�of our model econony

from a development trap, through sunspot-driven self-ful�lling expectations. For
some parameter value, due to pessimistic self-ful�lling expectations, sunspot equi-
libria exist in some neighbourhood of the steady-state P �4 : If the periodic orbit
emerging from the steady state P �4 is super-critical, there is no way out (Slobodyan,
2006). If the periodic solution is repelling , then there is a possibility of a way out
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of the orbit (in fact the growth rate of economy � becames positive for low level
of the externality ) and the optimal path can reach another steady state P �i .Such
situation can be understood as a poverty or development trap.

6. Simulations

Now we consider again the Jacobian matrix evaluated in the Steady State P �4 :
J (P �4) =

=

26666666666664

�
��
� (1��)(1��+2��)

�(1��)(1���2)
0

1��
� �
�
�
�
� �

(1��)(1��+2��)
�(1��)(1���2)

�
0

� �
�+1 �

�
�
�
� �

(1��)(1��+2��)
�(1��)(1���2)

�
+

+ �
�+1

0

(1��+2��)
(1+�)(1���2) 0

1��
�+1

�
�
� �

(1��)(1��+2��)
�(1��)(1���2)

�
�

�2 1��+2��
(1���2) + 2�

�+1

37777777777775
In a more compact form we write:

J (P �4 ) =

24 a 0 c
0 e 0
g 0 h

35
Eigenvalues are solutions of the characteristic equation: det [J (P �4 )] = 0:
That is:

det

24 a� � 0 c
0 e� � 0
g 0 h� �

35 = 0
So, we have:

(e� �) [(a� �) (h� �)� cg] = (e� �)
�
�2 � (a+ h)�� cg

�
= 0

The eigenvalues are:

e� � = 0 , �1 = e

�
�2 � (a+ h)�� cg

�
= 0 , �2;3 =

1

2
(a+ h)� 1

2

p
a2 � 2ah+ h2 + 4cg

So, in order to have purely imaginary eigenvalues, the following two conditions
must hold:

1) a+ h = 0 , h = �a

2) a2 � 2ah+ h2 + 4cg < 0
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According to the second condition, we can write:
(a� h)2 + 4cg < 0 ! (h = �a)! 4a2 + 4cg < 0 a2 + cg < 0
a2 + cg < 0

Fixing � = 2
3 ; � =

1
25 ; � =

1
500 , we have after some computations:

a2 + cg < 0 , 3591

3596
< � <

4491

4496
(� 0:99861 < � <� 0:99888)

According to the condition 1) a+ h = 0, we have:

�

�
� (1� �)
�(1� �)

(1� � + 2��)�
1� ��2

� +
�

�

1� �
� + 1

� (1� �)
�(1 + �)

(1� � + 2��)�
1� ��2

� �21� � + 2���
1� ��2

� +
2�

� + 1
= 0

Again, after some computation, we get:

 =
(1� �)(�� 1)
��(1 + �)

Substituting the values to the parameters, we get:

 = f(�) = � 499

100�

Finally, choosing for � a value inside the interval indicated above (� = 0:99875),
we have:  = � 3992

799 :

With these values we have:

J (P �4 ) =

24 3764
1538075 0 1882

1538075
0 � 185936

1538075 0
� 684
9625 0 � 3764

1538075

35
and, in fact, the eigenvalues are:

�1 = �
185936

1538075
�2;3 = �

2
p
1197130790

7690375
i

that is, one eigenvalue with negative real part and the other two purely imagi-
nary eigenvalues.

Now, we have the Hopf cycles as we indicated in the previous sections. With
the Matlab software, we obtain this simulation of the trajectories giving the steady
state P �4 as initial condition:
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Fig. 1 - Steady state P4 as initial condition

After an initial overshooting, after few time units we observe the Hopf cycle
around the steady state.

Giving other initial conditions ("random", in the sense we take a random point)
we obtain other trajectories like the following:

Fig. 2 - Random initial condition
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These kinds of trajectories indicate the possibility of escaping the poverty (or
development) trap, taking the system up towards position with higher levels of
consumption, production, etc.

7. Conclusions

Sunspot equilibria are rational expectation equilibria, compatible also with
some measure of market inperfections. They can be understood, from a micro-
economic point of view, as the presence of macro - equilibria of underemployment.
Again, they can be observed in the presence of features like externalities.

In our paper, we focused on the role of negative externalities due to over-
exploitment of natural resources in determining the indeterminacy of equilibrium.
As a matter of fact, economies may be both globally and locally indeterminate.
Global indeterminacy refers to the balanced growth rate that is obtained in the
long run and states that the initial value of consumption, crucially determines to
which BGP the economy converges and, thus, the long-run balanced growth rate.

Further, that result con�rms the outcome in most of the economics literature
stating that the representative individual must have a relatively high intertemporal
elasticity of substitution for local indeterminacy to occur if labor supply is exoge-
nous (cf. Benhabib and Perli 1994).

Moreover, local indeterminacy around the BGP with the lower growth rate, can
be observed if the parameter constellation is such that the trace of the Jacobian
matrix is smaller than zero, so that both eigenvalues have negative real parts. If
in that situation a certain parameter is varied, two purely imaginary eigenvalues
may be observed that generate a Hopf bifurcation, which leads to stable limit
cycles. In particular, we studied the possibility that the the system undergoes Hopf
bifurcation, when particular values of the parameters of the model are taken into
account. Further, our simulations con�rm the model admits �uctuations (and stable
limit cycles), in correspondence to the equilibrium and this can be sees as a way out
of the poverty trap. These poverty traps (and indeterminacy) in macroeconomic
models, that may be caused by externalities or increasing returns to scale, may
be escaped through sunspot-driven �uctuations: authors like Slobodyan found not
negligible probabilities of escaping the trap only when the initial condition is close
enough to the trap boundary and the probability of escape, as expected, increases
as expectations become more optimistic.

The escape happens if it choosen a random variable with bounded support as
the sunspot variable. So the sunspot variable has a natural interpretation of a
change in perceived present discounted wealth and it is the feature that leads the
system to points of higher values of its variables.
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