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Abstract

Problems related to the optimization of human resources in working areas have

been extensively studied in the literature with the major goal of guaranteeing

the greatest benefits from the efforts of workers, while taking into account

their personal skills and requirements. In particular, in this thesis we focus

on short-term and long-term manpower planning problems. The main goal

consists in appropriately assigning shifts to workers in a given time horizon,

taking into account their own requirements, their contractual rules, and the

quality and efficiency of the work environment.

In this thesis the manpower planning problem is studied in three different

working areas, namely container terminals, hospitals and retail stores. Dif-

ferent solutions are proposed based on mathematical models that allow to

describe in linear algebraic terms the set of feasible solutions. An optimal

scheduling is then computed using linear integer programming. The proposed

policies have been validated on three different real case studies in Cagliari,

Italy.
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Chapter 1

Introduction

Manpower planning and management identify the process of organizing working timetables

in order to take into account the workforce demand in all phases of the various activities of

a company [15]. Indeed, the efficiency of companies strictly depends on the effectiveness in

Manpower Planning (MP), particularly when the labor costs are very high. A low efficiency

in MP may result in an expensive workforce surplus/deficit and in a bad quality of the

working environment. Frequently, in big companies some human resources are explicitly

devoted to organize MPs, producing a timetable after a time consuming effort. Indeed,

even if short term scheduling are done, it typically occurs that some unexpected events

happen, such as sudden lack of staff, thus requiring the generation of a new timetable

which take such events into account. Some research efforts have been devoted to produce

efficient tools to support decision-makers [17]. However they are often based on intuitions

and skills of the operator devoted to this, and are strictly related to the specific application

area. A quite detailed survey on this is reported in the following chapters with special

focus on the considered three application areas. As a result, no standard methodologies

for MP are available to companies and most of them attempts to adapt similar cases, with

big issues deriving from the heterogeneous format of data. Indeed, frequently databases

do not exist in a unified format, even among different departments of the same company.

Current commercial MP packages, are tailored to the international market and do

not address the unique problem of rostering. Therefore each environment often ends up

inventing its own methodology. For example, a consultation with staff of a company in

Sardinia indicated that drawing up a week duty roster for a normal sized ward (30 staff

members), accounting for all the various requirements, can take up to 3 hours. Rosters

are commonly tabulated “by hand” using pencil and customized duty tables.These rosters

must then be copied out if different views/parts of the roster are needed. This leads to

an endless paper chain of hand-written rosters and accompanying documents, and a lot

of repetition of tasks which could be easily automated. Figure 1 shows a real duty roster
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Figure 1.1: Hand written duty rosters

for a ward in the Polytechnic Hospital in Cagliari, one of the cases study discussed in this

thesis.

The manual approach creates a number of other problems, apart wasted time. Among

them, low quality solutions and unnecessary tensions at work among people due to the

inevitable subjectivity of the process. Moreover, the MP is often seen by the operators as

a low level secondary job and they have little motivation to dedicate the time required to

obtain a good solution.

In this thesis the MP problem is approached as the process of assigning workers to

shifts to meet the service demand [21, 27]. To this aim, the time horizon of interest is

discretized in elementary sub-periods. During each sub-period, a set of activities have to

be performed, each one requiring a certain number of tasks to be completed, and each

task requires a specific number of workers. Therefore, the problem can be viewed as the

identification of a rostering policy that assigns tasks of the different activities to employees

during the different time periods, in order to cover the demand for all the activities.

Obviously, this should be done satisfying a series of restrictions of different nature, in

particular, personal requirements and contractual rules. Different goals may be considered.

In this thesis special attention is devoted to the minimization of the surplus/deficit of

workers, and the minimization of some functions that guarantee satisfactory working

conditions for employees. A number of different requirements, often unexpected, must be

suddenly fulfilled in different sub-periods, such as motivated requests of day-off that must

be covered by other staff members. As a consequence the scheduling has to be updated
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many times and quickly, often forcing inefficient solutions, which are not appreciated by

the personnel.

There are two important aspects that heavily contribute to make the MP problem

difficult, namely

1. the large number of constraints the working load and scheduling of each roster must

satisfy;

2. the different contractual rules and abilities of rosters.

Concerning the first item above, we point out the difference between hard constraints and

soft constraints. Hard constraints correspond to requirements that should be satisfied to

make an assignment feasible. For example, having the correct number of employees/nurses

with the correct skills on each shift, do not assign shifts the day after a night shift, and so

on. On the other side, soft constraints could be violated but a cost is associated to their

violation in order to do that only if strictly necessary to find an admissible scheduling.

Basically, soft constraints may be seen as strong wishes of the personnel that should be

satisfied whenever it is possible. Often soft constraints are contradictory among them.

In such a case, solving the MP problem consists in finding the right compromise among

them, taking into account the costs deriving from their violation.

In this thesis the MP problem is investigated with reference to three real applications

briefly described in the following.

• Container terminals. Maritime transport is the backbone of international trade, and

containers play an interestingly crucial role in freight transportation [32, 33, 50].

In 2013, the world container port throughput increased by 5.1 percent and reached

651.1 million of twenty-foot equivalent units (TEUs). In maritime transportation

networks, shipping liners deploy deep-sea vessels (also called mother vessels) be-

tween a limited number of transshipment container terminals (TCTs), whereas

smaller vessels (also called feeders) link TCTs to origin and destination ports. The

hub-and-spoke topology of maritime networks results in a critical role for TCTs,

because of the consolidation of flows along the routes linking TCTs. Moreover, de-

lays at TCTs can negatively impact the reliability of the liner service and generate

additional costs for customers. Unlike origin and destination ports, TCTs operate

under continuous and heavy competitive pressure, because shipping liners have high

bargaining power in redesigning their maritime routes and excluding unsatisfactory

TCTs. As a result, TCTs must provide high-performance and cost-effective services

and accurately plan the management of their resources to satisfy the demanding
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requests of shipping liners. Since few ports adopt completely automated systems,

human resources are relevant assets for TCTs, particularly in the case of high labour

costs, and manpower management is a crucial activity for TCTs.

• Hospitals. In this thesis we focus on the long term scheduling problem of the shifts

of a team of nurses [64, 75, 58]. We propose a solution based on integer linear

programming, which allows to compute a scheduling in a given time horizon, which

is optimal with respect to certain criteria, while satisfying a series of constraints

imposed by the contractual rules of nurses and that aims to guarantee comfortable

working conditions to them. To take into account possible sudden and unpredictable

variations in the requirements of the hospital and in the availability of the personnel,

we propose a solution based on a Decision Support System (DSS), which splits the

scheduling in the long time horizon in several smaller time horizons, and continuously

update a series of information relative to the hospital and the team of nurses.

• Retail stores. We focus the problem of MP in a big retail store where a short term

scheduling (typically one week) should be performed. In this case, each employee

has certain skills and is paid according to his/her top skill [23, 45, 48]. Skills

uniquelly identify the tasks that can be solved. The objective of the manpower

scheduling is that of assigning tasks to employees during the different time periods

in order to cover the given workforce demand, which is computed a priori on the

basis of hystorical data forcasts techniques. As in the previous cases, contractual

rules should be satisfied and the objective of the timetabling problem is to maximize

the employee satisfaction, while minimizing the deficit or surplus of employees.

When dealing with the above problems, it is not easy to identify a specific approach

that is clearly and always preferable to the other. Indeed, as explained in the following

chapters, very different approaches have been proposed in the literature when dealing

with MP problems in the above three areas. Furthermore, as in all the cases of very large

dimension problems, it may be necessary to look for ad hoc heuristics. Indeed, in general,

finding the optimal solution for a large dimension scheduling problem requires analyzing

the space of the feasible solutions and selecting the best one, or at least one that is as

close as possible to the optimal one (if the given problem is computationally intractable).

Some scheduling problems can be efficiently solved by reducing them to combinatorial

optimization problems solved in polynomial times, such as linear programming, maximum

flow or transport problems. Others can be tackled with standard techniques, such as
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dynamic programming and branch-and-bound methods. In particular, approaches are

usually classified into two macro-classes: exact methods and heuristic methods. Exact

methods are unfortunately applicable only to problems with a relatively small number of

variables. Therefore, in real problems, they are often unable to provide a solution (even if

sub-optimal) in reasonable times.

In this thesis we propose solutions based on linear integer programming and the dimen-

sions of the problems at hand allow the computation of optimal solutions in a reasonable

time.

The thesis is organized as follows. In Chapter 2 a brief background on linear integer

programming is provided. In Chapter 3 two different polices for the short-term manpower

planning problem in terminal containers are described and applied to a real case. In

Chapter 4 the MP problem in the department of a hospital is solved in a long-term horizon

thanks a Decision Support System. Again, the solution is applied to a real case study. In

Chapter 5 a short-term MP problem in retail stores is dealt and implemented using data

provided by a real application. Finally, Chapter 6 provides a summary of conclusions and

future research perspectives.
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Chapter 2

Linear integer programming

Linear programming is concerned with the optimization (minimization or maximization)

of a linear function while satisfying a set of linear equality and/or inequality constraints or

restrictions. The linear programming problem was first conceived by George B. Dantzig

around 1947 [26] while he was working as a mathematical advisor to the United States

Air Force Comptroller on developing a mechanized planning tool for a time-staged de-

ployment, training, and logistical supply program. Although the Soviet mathematician

and economist L. V. Kantorovich formulated and solved a problem of this type dealing

with organization and planning in 1939, his work remained unknown until 1959. Hence,

the conception of the general class of linear programming problems is usually credited to

Dantzig. Because the Air Force refers to its various plans and schedules to be implemented

as ”programs,” Dantzig’s first published paper addressed this problem as ”Programming in

a Linear Structure.” The term ”linear programming” was actually coined by the economist

and mathematician T. C. Koopmans in the summer of 1948 while he and Dantzig strolled

near the Santa Monica beach in California. In 1949 George B. Dantzig published the

”simplex method” for solving linear programs. Since that time a number of individuals

have contributed to the field of linear programming in many different ways, including

theoretical developments, computational aspects, and exploration of new applications of

the subject. The simplex method of linear programming enjoys wide acceptance because

of (1) its ability to model important and complex management decision problems, and

(2) its capability for producing solutions in a reasonable amount of time. In this chapter,

we introduce the linear programming problem. The following topics are discussed: basic

definitions in linear programming, assumptions leading to linear models, manipulation of

the problem, examples of linear problems, and geometric solution in the feasible region

space and the requirement space. This chapter is elementary and may be skipped if the

reader has previous knowledge of linear programming [9].
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2.1 The linear programming problem

We begin our discussion by formulating a particular type of linear programming problem.

As will be seen subsequently, any general linear programming problem may be manipulated

into this form.

Basic Definitions

Consider the following linear programming problem. Here, c1x1 + c2x2 + · · · + cnxn is

the objective function (or criterion function) to be minimized and will be denoted by z.

The coefficients c1, c2, · · · , cn are the (known) cost coefficients and xl, x2, · · · , xn are the

decision variables (variables, structural variables, or activity levels) to be determined.

Minimize c1x1 + c2x2 +· · ·+ cnxn

subject to a1,1x1 + a1,2x2 +· · ·+ a1,nxn ≥ b1

a2,1x1 + a2,2x2 +· · ·+ a2,nxn ≥ b2

...
... +· · ·+ ...

...

am1,1x1 + am2,2x2 +· · ·+ amn,nxn ≥ bm

x1, x2, · · · , xn ≥ 0.

The inequality
∑n

j=1 ai,jxj ≥ bi denotes the ith constraint (or restriction or func-

tional, structural, or technological constraint). The coefficients ai,j for i = 1, · · · ,m, j =

1, · · · , n are called the technological coefficients. These technological coefficients form

the constraint matrix A.

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...

am,1 am,2 · · · am,n


The column vector whose ith component is bi, which is referred to as the right-

hand-side vector, represents the minimal requirements to be satisfied. The constraints

x1, x2, · · · , xn ≥ 0 are the non negativity constraints. A set of values of the variables

x1, · · · , xn satisfying all the constraints is called a feasible point or a feasible solution.

The set of all such points constitutes the feasible region or the feasible space. Using the

foregoing terminology, the linear programming problem can be stated as follows: Among

all feasible solutions, find one that minimizes (or maximizes) the objective function.
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Example

Consider the following linear problem:

Minimize 2x1 + 5x2

subject to x1 + x2 ≥ 6

−x1 + −2x2 ≥ -18

x1, x2, ≥ 0.

In this case, we have two decision variables x1 and x2. The objective function to

be minimized is 2x1 + 5x2. The constraints and the feasible region are illustrated in

Figure 2.1. The optimization problem is thus to find a point in the feasible region having

the smallest possible objective value.

x2

x1

x1 ≥ 0

x2 ≥ 0

1

2

feasible region

(0,9)

(0,6)

(6,0) (18,0)(0,0)

Figure 2.1: Illustration of the feasible region

Assumptions of Linear Programming

To represent an optimization problem as a linear program, several assumptions that are
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implicit in the linear programming formulation discussed previously are needed. A brief

discussion of these assumptions is given next.

1. Proportionality. Given a variable xj, its contribution to cost is cjxj and its contri-

bution to the ith constraint is ai,jxj. This means that if xj is doubled, say, so is

its contribution to cost and to each of the constraints. To illustrate, suppose that

xj is the amount of activity j used. For instance, if xj = 10, then the cost of this

activity is 10cj. If xj = 20, then the cost is 20cj, and so on. This means that no

savings (or extra costs) are realized by using more of activity j; that is, there are

no economies or returns to scale or discounts. Also, no setup cost for starting the

activity is realized.

2. Additivity. This assumption guarantees that the total cost is the sum of the in-

dividual costs, and that the total contribution to the ith restriction is the sum of

the individual contributions of the individual activities. In other words, there are no

substitution or interaction effects among the activities.

3. Divisibility. This assumption ensures that the decision variables can be divided

into any fractional levels so that non-integral values for the decision variables are

permitted.

4. Deterministic. The coefficients cj, ai,j, and bi are all known deterministically. Any

probabilistic or stochastic elements inherent in demands, costs, prices, resource

availabilities, usages, and so on are all assumed to be approximated by these coef-

ficients through some deterministic equivalent.

It is important to recognize that if a linear programming problem is being used to model

a given situation, then the aforementioned assumptions are implied to hold, at least over

some anticipated operating range for the activities. When Dantzig first presented his linear

programming model to a meeting of the Econometric Society in Wisconsin, the famous

economist H. Hotelling critically remarked that in reality, the world is indeed nonlinear. As

Dantzig recounts, the well-known mathematician John von Neumann came to his rescue

by countering that the talk was about ”Linear” Programming and was based on a set

of postulated axioms. Quite simply, a user may apply this technique if and only if the

application fits the stated axioms. Despite the seemingly restrictive assumptions, linear

programs are among the most widely used models today. They represent several systems

quite satisfactorily, and they are capable of providing a large amount of information besides

simply a solution, as we shall see later, particularly in Chapter 6. Moreover, they are also
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often used to solve certain types of nonlinear optimization problems via (successive) linear

approximations and constitute an important tool in solution methods for linear discrete

optimization problems having integer-restricted variables.

Problem Manipulation

Recall that a linear program is a problem of minimizing or maximizing a linear function in

the presence of linear inequality and/or equality constraints. By simple manipulations the

problem can be transformed from one form to another equivalent form. These manipula-

tions are most useful in linear programming, as will be seen throughout the text.

INEQUALITIES AND EQUATIONS

An inequality can be easily transformed into an equation. To illustrate, consider the con-

straint given by
∑n

j=1 ai,jxj ≥ bi . This constraint can be put in an equation form by

subtracting the nonnegative surplus or slack variable xn+i (sometimes denoted by Si) lead-

ing to
∑n

j=1 ai,jxj − xn+i = bi and xn+i ≥ 0 . Similarly, the constraint
∑n

j=1 ai,jxj ≤ bi

is equivalent to
∑n

j=1 ai,jxj − xn+i = bi and xn+i ≥ 0 . Also, an equation of the form∑n
j=1 ai,jxj = bi can be transformed into the two inequalities

∑n
j=1 ai,jxj ≤ bi and∑n

j=1 ai,jxj ≥ bi ,although this is not the practice.

NONNEGATIVITY OF THE VARIABLES

For most practical problems the variables represent physical quantities, and hence must be

nonnegative. The simplex method is designed to solve linear programs where the variables

are nonnegative. If a variable xj is unrestricted in sign, then it can be replaced by x
′
j−x

′′
J

where x
′
j ≥ 0 and x

′′
j ≥ 0. If x1, · · · , xk are some K variables that are all unrestricted

in sign, then only one additional variable x
′′

is needed in the equivalent transformation:

xj = x
′
j − x

′′
for j = 1, · · · , k, where x

′
j ≥ 0 for j = 1, · · · , k, and x′′ ≥ 0. (Here, −x”

plays the role of representing the most negative variable, while all the other variables xj are

x′j above this value.) Alternatively, one could solve for each unrestricted variable in terms

of the other variables using any equation in which it appears, eliminate this variable from

the problem by substitution using this equation, and then discard this equation from the

problem. However, this strategy is seldom used from a data management and numerical

implementation viewpoint. Continuing, if xj ≥ lj, then the new variable x′j = xj − lj is

automatically nonnegative. Also, if a variable xj is restricted such that xj ≤ uj, where we

might possibly have uj ≤ 0, then the substitution x′j = uj − xj produces a nonnegative

variable x′j.
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MINIMIZATION AND MAXIMIZATION PROBLEMS

Another problem manipulation is to convert a maximization problem into a minimization

problem and conversely. Note that over any region,

maximum
∑n

j=1 cjxj = −minimum
∑n

j=1−cjxj

Hence, a maximization (minimization) problem can be converted into a minimization

(maximization) problem by multiplying the coefficients of the objective function by -1 .

After the optimization of the new problem is completed, the objective value of the old

problem is -1 times the optimal objective value of the new problem.

Standard and Canonical Formats

From the foregoing discussion, we have seen that any given linear program can be put

in different equivalent forms by suitable manipulations. In particular, two forms will be

useful. These are the standard and the canonical forms [4]. A linear program is said to

be in standard format if all restrictions are equalities and all variables are nonnegative.

The simplex method is designed to be applied only after the problem is put in standard

form. The canonical form is also useful, especially in exploiting duality relationships. A

minimization problem is in canonical form if all variables are nonnegative and all the con-

straints are of the ≥ type. A maximization problem is in canonical form if all the variables

are nonnegative and all the constraints are of the ≤ type. The standard and canonical

forms are summarized in Table 2.1

Linear Programming in Matrix Notation

A linear programming problem can be stated in a more convenient form using matrix

notation. To illustrate, consider the following problem:
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x =


x1

x2

...

xn

 b =


b1

b2

...

bm

 A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...

am,1 am,2 · · · am,n


Minimize

∑n
j=1 cjxj

subject to
∑n

j=1 ai,jxj = bi, i = 1, · · · ,m
xj ≥ 0, j = 1, · · · , n

Denote the row vector (c1, c2, ..., cn) by c, and consider the following column vectors

x and b, and the mx n matrix A.

Then the problem can be written as follows:

Minimize cx

subject to Ax = b

x ≥ 0

The problem can also be conveniently represented via the columns of A. Denoting A

by [a1, a2, · · · , an] where aj, is the jth column of A, the problem can be formulated as

follows:

Minimize
∑n

j=1 cjxj

subject to
∑n

j=1 ajxj = b

xj ≥ 0, j = 1, · · · , n

2.2 Linear programming modeling

The modeling and analysis of an operations research problem in general, and a linear pro-

gramming problem in particular, evolves through several stages. The problem formulation

phase involves a detailed study of the system, data collection, and the identification of

the specific problem that needs to be analyzed (often the encapsulated problem may only

be part of an overall system problem), along with the system constraints, restrictions,

or limitations, and the objective function(s). Note that in real-world contexts, there fre-

quently already exists an operating solution and it is usually advisable to preserve a degree

of persistency with respect to this solution, i.e., to limit changes from it (e.g., to limit
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the number of price changes, or decision option modifications, or changes in percentage

resource consumptions, or to limit changing some entity contingent on changing another

related entity). Such issues, aside from technological or structural aspects of the prob-

lem, should also be modeled into the problem constraints. The next stage involves the

construction of an abstraction or an idealization of the problem through a mathematical

model. Care must be taken to ensure that the model satisfactorily represents the sys-

tem being analyzed, while keeping the model mathematically tractable. This compromise

must be made judiciously, and the underlying assumptions inherent in the model must be

properly considered. It must be borne in mind that from this point onward, the solutions

obtained will be solutions to the model and not necessarily solutions to the actual system

unless the model adequately represents the true situation. The third step is to derive a

solution. A proper technique that exploits any special structures (if present) must be cho-

sen or designed. One or more optimal solutions may be sought, or only a heuristic or an

approximate solution may be determined along with some assessment of its quality. In the

case of multiple objective functions, one may seek efficient or Pareto-optimal solutions,

that is, solutions that are such that a further improvement in any objective function value

is necessarily accompanied by a detriment in some other objective function value. The

fourth stage is model testing, analysis, and (possibly) restructuring. One examines the

model solution and its sensitivity to relevant system parameters, and studies its predictions

to various what-if types of scenarios. This analysis provides insights into the system. One

can also use this analysis to ascertain the reliability of the model by comparing the pre-

dicted outcomes with the expected outcomes, using either past experience or conducting

this test retroactively using historical data. At this stage, one may wish to enrich the

model further by incorporating other important features of the system that have not been

modeled as yet, or, on the other hand, one may choose to simplify the model. The final

stage is implementation. The primary purpose of a model is to interactively aid in the

decision-making process. The model should never replace the decision maker. Often a

”frank-factor” based on judgment and experience needs to be applied to the model solu-

tion before making policy decisions. Also, a model should be treated as a ”living” entity

that needs to be nurtured over time, i.e., model parameters, assumptions, and restrictions

should be periodically revisited in order to keep the model current, relevant, and valid.

We describe several problems that can be formulated as linear programs. The purpose

is to exhibit the varieties of problems that can be recognized and expressed in precise

mathematical terms as linear programs.
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2.3 Geometric solution

We describe here a geometrie procedure for solving a linear programming problem. Even

though this method is only suitable for very small problems, it provides a great deal of

insight into the linear programming problem. To be more specific, consider the following

problem:

Minimize cx

subject to Ax = b

x ≥ 0

Note that the feasible region consists of all vectors x satisfying Ax = b and x ≥
0. Among all such points, we wish to find a point having a minimal value of cx.

Note that points having the same objective value z satisfy the equation cx=z, that

is,
∑n

j=1 cjxj = z. Since z is to be minimized, then the plane (line in a two-dimensional

space)
∑n

j=1 cjxj = z must be moved parallel to itself in the direction that minimizes

the objective the most. This direction is -c, and hence the plane is moved in the direc-

tion of -c as much as possible, while maintaining contact with the feasible region. This

process is illustrated in Figure 1.3. Note that as the optimal point x* is reached, the line

c1x1 + c2x2 = z∗ , where z∗ = c1x
∗
1 + c2x

∗
2 cannot be moved farther in the direction -c

= (−c1,−c2), because this will only lead to points outside the feasible region. In other

words, one cannot move from x* in a direction that makes an acute angle with -c , i.e.,

a direction that reduces the objective function value, while remaining feasible. We there-

fore conclude that x* is indeed an optimal solution. Needless to say, for a maximization

problem, the plane cx = z must be moved as much as possible in the direction c, while

maintaining contact with the feasible region. The foregoing process is convenient for

problems having two variables and is obviously impractical for problems with more than

three variables. It is worth noting that the optimal point x* in Figure 2.2 is one of the

five corner points that are called extreme points.

2.4 Modeling with integer variables

Consider the manufacture of television sets. A linear programming model might give a

production plan of 205.7 sets per week. In such a model, most people would have no

trouble stating that production should be 205 sets per week (or even roughly 200 sets per

week). On the other hand, suppose we were buying warehouses to store finished goods,

where a warehouse comes in a set size. Then a model that suggests we purchase 0.7
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x2

x1

c

Objective decreases

Feasible region

Optimal solution

c1x1 + c2x2 = z2, z2 < z1

c1x1 + c2x2 = z1

Figure 2.2: Geometric solution
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warehouse at some location and 0.6 somewhere else would be of little value. Warehouses

come in integer quantities, and we would like our model to reflect that fact. This integrality

restriction may seem rather innocuous, but in reality it has far reaching effects. On one

hand, modeling with integer variables has turned out to be useful far beyond restrictions to

integral production quantities. With integer variables, one can model logical requirements,

fixed costs, sequencing and scheduling requirements, and many other problem aspects.

In AMPL, one can easily change a linear programming problem into an integer program.

The downside of all this power, however, is that problems with as few as 40 variables

can be beyond the abilities of even the most sophisticated computers. While these small

problems are somewhat artificial, most real problems with more than 100 or so variables

are not possible to solve unless they show specific exploitable structure. Despite the

possibility (or even likelihood) of enormous computing times, there are methods that

can be applied to solving integer programs. The CPLEX solver in AMPL is built on a

combination of methods, but based on a method called branch and bound. The purpose of

this chapter is to show some interesting integer programming applications and to describe

some of these solution techniques as well as possible pitfalls. First we introduce some

terminology. An integer programming problem in which all variables are required to be

integer is called a pure integer programming problem. If some variables are restricted to

be integer and some are not then the problem is a mixed integer programming problem.

The case where the integer variables are restricted to be 0 or 1 comes up surprising often.

Such problems are called pure (mixed) 0-1 programming problems or pure (mixed) binary

integer programming problems. The use of integer variables in production when only

integral quantities can be produced is the most obvious use of integer programs.

2.5 Branch and bound

We will illustrate branch and bound by using an example . In that problem, the model is

Minimize 8x1 + 11x2 + 6x3 + 4x4

subject to 5x1 + 7x2 + 4x3 + 3x4 ≤ 14

xj ∈ {0, 1}j = 1, · · · , 4.

The linear relaxation solution is x1 = 1, x2 = 1, x3 = 0.5, x4 = 0 with a value of 22.

We know that no integer solution will have value more than 22. Unfortunately, since x3

is not integer, we do not have an integer solution yet. We want to force x3 to be integer.

To do so, we branch on x3, creating two new problems. In one, we will add the constraint
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x3 = 0. In the other, we add the constraint x3 = 1. Note that any optimal solution

to the overall problem must be feasible to one of the subproblems. If we solve the linear

relaxations of the subproblems, we get the following solutions:

• x3 = 0: objective 21.65, x1 = 1, x2 = 1, x3 = 0, x4 = 0.667;

• x3 = 1 :objective 21.85, x1 = 1, x2 = 0.714, x3 = 1, x4 = 0

At this point we know that the optimal integer solution is no more than 21.85 (we actually

know it is less than or equal to 21 (Why?)), but we still do not have any feasible integer

solution. So, we will take a subproblem and branch on one of its variables. In general, we

will choose the subproblem as follows:

• We will choose an active subproblem, which so far only means one we have not

chosen before, and

• We will choose the subproblem with the highest solution value (for maximization)

(lowest for minimization).

In this case, we will choose the subproblem with x3 = 1, and branch on x2. After

solving the resulting subproblems, we have the branch and bound tree. The solutions are:

• x3 = 1, x2 = 0 : objective 18, x1 = 1, x2 = 0, x3 = 1, x4 = 1;

• x3 = 1, x2 = 1 : objective 21.8, x1 = 0.6, x2 = 1, x3 = 1, x4 = 0

We now have a feasible integer solution with value 18. Furthermore, since the x3 =

1, x2 = 0 problem gave an integer solution, no further branching on that problem is

necessary. It is not active due to integrality of solution. There are still active subproblems

that might give values more than 18. Using our rules, we will branch on problem x3 =

1, x2 = 1 by branching on x1 to get Figure 4. The solutions are:

• x3 = 1, x2 = 1, x1 = 0 :objective 21, x1 = 0, x2 = 1, x3 = 1, x4 = 1;

• x3 = 1, x2 = 1, x1 = 1 : infeasible.

Our best integer solution now has value 21. The subproblem that generates that is not

active due to integrality of solution. The other subproblem generated is not active due to

infeasibility. There is still a subproblem that is active. It is the subproblem with solution

value 21.65. By our rounddown result, there is no better solution for this subproblem

than 21. But we already have a solution with value 21. It is not useful to search for

another such solution. We can fathom this subproblem based on the above bounding
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argument and mark it not active. There are no longer any active subproblems, so the

optimal solution value is 21. We have seen all parts of the branch and bound algorithm.

The essence of the algorithm is as follows:

1. Solve the linear relaxation of the problem. If the solution is integer, then we are

done. Otherwise create two new subproblems by branching on a fractional variable.

2. A subproblem is not active when any of the following occurs:

(a) You used the subproblem to branch on,

(b) All variables in the solution are integer,

(c) The subproblem is infeasible,

(d) You can fathom the subproblem by a bounding argument.

3. Choose an active subproblem and branch on a fractional variable. Repeat until there

are no active subproblems.

Thats all there is to branch and bound! Depending on the type of problem, the

branching rule may change somewhat. For instance, if x is restricted to be integer (but

not necessarily 0 or 1), then if x = 4.27 your would branch with the constraints x ≤ 4

and x ≥ 5 (not on x = 4 and x = 5). In the worst case, the number of subproblems can

get huge. For many problems in practice, however, the number of subproblems is quite

reasonable. For an example of a huge number of subproblems, try the following in AMPL:

var x0 binary;

var x{1..17} binary;

maximize z: -x0 + sum{j in 1..17} 2 * x[j];

subject to c: x0 + sum{j in 1..17} 2 * x[j] ¡= 17;

Note that this problem has only 18 variables and only a single constraint. CPLEX looks

at 48,619 subproblems, taking about 90 seconds on a Sun Sparc 10 workstation, before

deciding the optimal objective is 16. LINGO (another math programming package) on a

16MHz 386 PC (with math coprocessor) looks at 48,000+ subproblems and takes about

five hours. The 100-variable version of this problem would take about 1029 subproblems

or about 31018 years (at 1000 subproblems per second). Luckily, most problems take far

less time.
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2.6 Cutting plane techniques

There is an alternative to branch and bound called cutting planes which can also be

used to solve integer programs. The fundamental idea behind cutting planes is to add

constraints to a linear program until the optimal basic feasible solution takes on integer

values. Of course, we have to be careful which constraints we add: we would not want to

change the problem by adding the constraints. We will add a special type of constraint

called a cut. A cut relative to a current fractional solution satisfies the following criteria:

1. every feasible integer solution is feasible for the cut, and

2. the current fractional solution is not feasible for the cut.

This is illustrated in Figure 2.3.

2nd Constraint

1st Constraint

A Cut

.

Figure 2.3: A cut

There are two ways to generate cuts. The first, called Gomory cuts, generates cuts

from any linear programming tableau. This has the advantage of solving any problem

but has the disadvantage that the method can be very slow. The second approach is

to use the structure of the problem to generate very good cuts. The approach needs a

problem-by-problem analysis, but can provide very efficient solution techniques.
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Chapter 3

Short-term manpower planning in
transhipment container terminals

Nowadays, maritime transport is the backbone of international trade, and containers play

an interestingly crucial role in freight transportation. In 2013, the world container port

throughput increased by 5.1 percent and reached 651.1 million TEUs [[76]]. In maritime

transportation networks, shipping liners deploy deep-sea vessels (also called mother ves-

sels) between a limited number of transshipment container terminals (TCTs), whereas

smaller vessels (also called feeders) link TCTs to origin and destination ports. The hub-

and-spoke topology of maritime networks results in a critical role for TCTs, because of

the consolidation of flows along the routes linking TCTs. Moreover, delays at TCTs can

negatively impact the reliability of the liner service and generate additional costs for cus-

tomers [[60], [80]]. Unlike origin and destination ports, TCTs operate under continuous

and heavy competitive pressure, because shipping liners have high bargaining power in

redesigning their maritime routes and excluding unsatisfactory TCTs. As a result, TCTs

must provide high-performance and cost-effective services and accurately plan the man-

agement of their resources to satisfy the demanding requests of shipping liners. Since

few ports adopt completely automated systems, human resources are relevant assets for

TCTs, particularly in the case of high labour costs, and manpower management is a cru-

cial activity for TCTs.

The workload of TCTs is typically organized in 24/7 shifts. Due to union and work rules,

shifts must be planned several months before their implementation. However, when shifts

are built, there is little or no knowledge about the arrival times of vessels and the final

workload of TCTs, because maritime logistics is affected by both uncertainty and vul-

nerability, which may also result in port disruptions due to natural causes (wind, etc.),

equipment failures, labour disputes, and geopolitical factors. As a result, the relevant un-

certainty in maritime logistics causes frequent priority changes, and shipping liners often
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request service variations to TCTs, which must adapt internal processes to these exter-

nal changes in order to remain competitive. In the case of the manpower problem, this

situation can be addressed by its separation into two planning stages:

Long-term plan. This plan consists of a sequence of working and free days, which spans

several months. In this plan, a TCT’s worker is denoted as fixed in a shift of a day

if he must be on-duty during that shift, whereas he is classified as flexible in a day

if he must be on-duty during that day, but his shift in that day will be determined in

the next planning stage, when there will be more precise information on the actual

workload. The missing information on the real workload prevents deciding in the

long-term plan what each worker is required to do and results in the risk of personnel

overmanning and undermanning.

Short-term plan. This plan is typically performed 24 hours before the day in question,

when the workload is almost certain. It is required to inherit the separation between

fixed and flexible operators from the long-term plan, to determine shifts for flexible

workers and to decide what each worker must do in the next workday. Moreover, in

the short-term plan, TCTs must decide how many external workers should be hired

and compute personnel undermanning and overmanning.

This thesis aims to model the short-term manpower planning problem and evaluate its

effectiveness as it determines the final manpower costs for TCTs. Although there is much

literature on workforce management in several fields [[27], [59]], little attention has been

devoted thus far to the specific context of container terminals [[72], [25]].

Some studies addressed the scheduling of preselected operators to handling activities,

whereas our problem setting is different, as we aim to select which workers will be em-

ployed by a TCT. [54] studied an allocation problem in which preselected servicemen

are dispatched to locations in the yard, while minimizing the number of servicemen, dis-

tances, travel and waiting times. [47] investigated the operator-scheduling problem, in

which each preselected operator is assigned to time slots of handling equipment. [41]

proposed a model for scheduling and assigning a set of jobs on reefer containers to pres-

elected operators.

A more similar study was done by [53], who focused on both the short-term and long-

term manpower planning problems, but they neglected personnel overmanning and under-

manning. [30] considered personnel undermanning in the short-term manpower planning

problem, but ignored overmanning. The optimization model by [30] was also used in [69]

to investigate the introduction of different levels of manpower flexibility.
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In our opinion, the limited amount of studies on the manpower planning problem has re-

sulted in few tools to support decision-making processes regarding this problem, whereas

TCTs keep on facing it by ad hoc policies, which are based on hunch and experience.

In addition, no studies shed light on these policies and evaluate how good they are. In

this thesis, the manpower policy adopted in a real case study is illustrated and compared

to the optimal solutions of an optimization model, which is proposed to minimize the

assignment costs of workers to shifts, tasks and vessels, while avoiding both overmanning

and undermanning.

In this chapter we present the results of two papers [32],[33] dealing with the problem of

manpower planning in TCT. Two different manpower policies are proposed and validated

in a real case study in Cagliari.

3.1 The manpower planning problem in transhipment
container terminals

In this section, we describe the main components and decisions of the manpower planning

problem. Decision-making processes in this problem should take into account a large array

of information on the TCT workers from the long-term plan. An explicit example of the

long-term plan of a worker is indicated in Figure 3.1. Each line represents a month, and

each column is a day of that month. Six types of entries are used:

• I means that the worker is fixed in the first shift;

• II means that the worker is fixed in the second shift;

• III means that the worker is fixed in the third shift;

• FLX means that the worker is flexible in that day;

• RIC and FER denote days off. The first string represents days off already set since

the first release of the long-term plan; the second one indicates additional days off

added upon a worker’s request.

Although external workers can also also employed when the inner manpower is insufficient,

the number of inner and external operators is limited; thus workforce undermanning may

occur. It must be avoided because TCTs cannot afford to pay penalties for delays produced

on vessels. Personnel overmanning may also occur because the long-term plan is built

when the workload is not yet known. It must be avoided because TCTs cannot pay
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Figure 3.1: An example of a real long-term plan

workers for doing nothing.

Overmanning and undermanning are the main issues of the short-term manpower problem.

They are faced with swapping a day off with a workday in the long-term plan:

• In the case of undermanning, a workday is added to some workers on a day off

according to the long-term plan, provided that there is sufficient rest time before

and after their new shift. At the same time, a future workday is changed into a day

off in the long-term plan.

• In the case of overmanning, a day off is added to some workers who were on duty

according to the long-term plan. At the same time, a future day off is changed into

a workday in the long-term plan.

Changing a close workday in a day off and vice versa is a viable modus operandi; in fact,

it is already adopted by some TCTs. However, workers must be timely informed on these

possible changes in the long-term plan in order to make them smoothly implementable

and correct undermanning and overmanning promptly.

Two main types of activities are performed in maritime TCTs: vessel activities, i.e. load-

ing/discharging operations, and housekeeping activities. A vessel activity is a sequence of

handling operations in which containers are discharged from and loaded onto vessels. A

housekeeping activity is a sequence of container transfers along the yard, which are per-

formed when the area of the incoming and outgoing vessel activities differ [[51]]. Some

activities have high priorities, whereas other activities are less important and can be post-

poned. Generally speaking, vessel activities have higher priority because shipping liners
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request them, whereas housekeeping must be unavoidably performed to be in the position

of properly performing future vessel operations. Mother vessels have the highest priority

and must be served on time, due to relevant penalties negotiated between shipping liners

and TCTs on possible operation delays.

Each activity is carried out by a team (or gang) of workers, each of which is in charge of

one task. Generally speaking, tasks have a tight hierarchy, and inner operators are paid

according the top task they can do. They can be employed in lower-level tasks, but they

cannot be assigned to upper lever tasks.

In the short-term plan, TCTs are required to inherit from the long-term plan the sepa-

ration between fixed and flexible operators. While fixed operators in a specific day are

already assigned to shifts in that day, the so-called flexible operators in a day will work in

that day, and their shift must be determined in the short-term plan. According to work

rules, flexible operators must be informed about their shifts at least 24 hours before their

beginning. Once an inner worker is employed as a fixed or a flexible worker, he must

be off duty for a minimum number of rest shifts. Although the long-term plan already

guarantees sufficient rest times between consecutive workdays in fixed shifts, this is not

always true for workers in flexible shifts, because they often cannot be assigned to any

shift due to insufficient rest times. Therefore, the short-term plan must enforce the rest

times before and after any flexible duty.

The workload in TCTs depends on the number of containers to be handled. However,

since TCTs know how many containers can be handled in average by a gang, the workload

demand can be described as number of workers required to perform a task for an activity

in a shift. The objective of the short-term plan is to assign internal and external workers

to shifts, tasks and activities at the lowest operating cost, as well as to minimize personnel

undermanning and overmanning.

Unlike inner operators, the costs of external workers do not have individual attributes,

because TCTs do not know a priori which external person will be employed. They can

perform only a limited number of tasks and must be paid according to shifts, tasks and

activities.
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3.2 First manpower policy

In this section we present the short term manpower planning policy proposed in [32].

Different requirements are take into account to properly assign workers to shifts, tasks

and operations, while accounting for some decisions already made in the long-term plan.

An optimization model is formulated to discuss the decision-making ability of the real

terminal in dealing with this problem. The experimentation shows that its current policy

in the short-term plan is effective, but some improvements can be obtained if unnecessary

restrictions were removed for the long term plan and some changes are accepted in the

current modus opearndi of the terminal.

3.2.1 Mathematical model

In this paragraph, we present an optimization model for the short-term planning of the

TCTs’ manpower problem. Let I be the set of internal operators. They can be employed

on a set J of shifts. Let d be the number of shifts in a day and t the index of the T days

in the planning horizon, whose values range from 0 to T − 1. It is worth noting that, in

this thesis, the planning horizon of the short-term plan is longer than one day, provided

that the workload is almost certain in this time interval. This novelty is motivated by

the advantage of rapidly alerting TCTs on the possible occurrence of undermanning and

overmanning in future days.

Let Z be the set of operations to be performed, which are divided into vessel and house-

keeping operations. Since several tasks are requested to perform any operation z ∈ Z, let

Kz be the set of tasks required for operation z ∈ Z and Kz
o ⊆ Kz the set of tasks that

can be outsourced for activity z ∈ Z. Moreover, let Ik ⊆ I be the set of operators able

to perform task k, Ij ⊆ I the set of fixed workers in shift j ∈ J , It ⊆ I the set of flexible

workers in day t.

The following data are defined. Let njkz be the number of operators required to perform

task k ∈ Kz for activity z ∈ Z at shift j ∈ J . This work demand can be met by internal

workers who can be deployed at shift j ∈ J and are able to perform task k. They can be

employed as fixed operators at shift j ∈ J or flexible operators in the day including shift

j ∈ J . Moreover, the work demand njkz can be met by external operators if k ∈ Kz
o .

According to work rules, a rest of r(j) shifts must be guaranteed to workers after a duty

on shift j ∈ J .

Five types of variables are defined:
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xijkz Operator selection variable, which takes value 1 if worker i ∈ I is employed as a

flexible worker in shift j ∈ J to perform task k ∈ Kz for operation z ∈ Z, 0

otherwise. Let ci ≥ 0 be the related unitary cost.

yijkz Operator selection variable, which takes value 1 if worker i ∈ I is employed as a

fixed worker in shift j ∈ J to perform task k ∈ Kz for operation z ∈ Z, 0 otherwise.

Let ci ≥ 0 be the related unitary cost.

vjkz Number of external workers deployed in shift j ∈ J to perform task k ∈ Kz
o for

activity z ∈ Z. Let also djkz be the related unitary cost and wj the maximum

number of external workers who can be employed in shift j ∈ J .

u+
jkz Number of workers in surplus in shift j ∈ J , task k ∈ Kz for operation z ∈ Z. Let

f+
jkz be the related unitary cost.

u−jkz Number of workers in shortage in shift j ∈ J , task k ∈ Kz for operation z ∈ Z. Let

f−jkz be the related unitary cost.

The fulfillment of workload demand can be enforced as follows:

∑
i∈Ik

xijkz +
∑
i∈Ik

yijkz + vjkz − u+
jkz + u−jkz = njkz∀j ∈ J,∀z ∈ Z, ∀k ∈ Kz

o (3.1)

When tasks cannot be outsourced, constraint 3.1 takes the following form:

∑
i∈Ik

xijkz +
∑
i∈Ik

yijkz − u+
jkz + u−jkz = njkz

∀j ∈ J,∀z ∈ Z, ∀k ∈ Kz −Kz
o (3.2)

Constraint 3.3 enforces the employment of flexible operators, who can perform only one

task and one activity in each day:

(t+1)d∑
j=td+1

∑
z∈Z

∑
k∈Kz

xijkz = 1 ∀i ∈ It, t = 0, ..., |T | − 1

(3.3)
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Constraint 3.4 enforces the employment of fixed operators in the shift established in the

long-term plan. They also perform only one task and one activity:∑
z∈Z

∑
k∈Kz

yijkz = 1 ∀i ∈ Ij, j ∈ J

(3.4)

The assignment of workers to shifts should guarantee sufficient rest shifts between con-

secutive workdays for each operator. Each operator i ∈ I must be off duty for r(j)

consecutive shifts after a duty as a flexible worker in shift j ∈ J :

∑
z∈Z

∑
k∈Kz

xijkz +

r(j)∑
ρ=1

(xi(j+ρ)kz + yi(j+ρ)kz) ≤ 1

∀i ∈ I, j = 1, ..., |J | − r(j) (3.5)

Each fixed operator i ∈ I must be off duty for r(j) consecutive shifts after a duty in shift

j ∈ J :

∑
z∈Z

∑
k∈Kz

yijkz +

r(j)∑
ρ=1

xi(j+ρ)kz ≤ 1

∀i ∈ I, j = 1, ..., |J | − r(j) (3.6)

It is worth noting that the constraints on the rest shifts can be ignored between two

consecutive fixed shifts, because the long term-plan already guarantees sufficient rest

times in this case.

The number of external sub-contracted workers in each shift j ∈ J is limited:∑
z∈Z

∑
k∈Kz

o

vjkz ≤ wj ∀j ∈ J

(3.7)

The objective is to minimize the assignment costs of internal and external operators, as

well as personnel workforce undermanning and overmanning:

min
∑
i∈I

∑
j∈J

∑
z∈Z

∑
k∈Kz

ci(xijkz + yijkz) +
∑
j∈J

∑
z∈Z

∑
k∈Kz

o

djkzvjkz+∑
j∈J

∑
z∈Z

∑
k∈Kz

f+
jkzu

+
jkz +

∑
j∈J

∑
z∈Z

∑
k∈Kz

f−jkzu
−
jkz (3.8)

The model is used in a rolling horizon fashion, i.e., decisions are taken for all days of

the planning horizon, but only the decisions on the first day of the planning horizon are

implemented. This model is tested with a planning horizon of two days in the real case

study described in Section 3.2.2.
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3.2.2 The case study

In this section we illustrate and analyse the policy of a real container terminal for addressing

the short-term manpower planning problem. In order to explain its policy, some details

are provided on its organization.

Although many tasks are performed in the terminal, only three of them are taken into

account in this analysis, because they are supposed to be the most important ones for

this terminal: the quay cranes (QC) driver, who moves containers between vessels and

terminal berths, the rubber-typed gantry crane (RTG) driver, who stores containers in

the yard, and the driver of internal transfer vehicles (ITV), which are low-cost tractors

providing horizontal transport. The QC is the top-level task; in fact, QC operators can

also perform any other task, whereas RTG operators can also be employed as ITV ones,

and ITV operators can perform this task only.

The long-term plan is taken for granted from the terminal, which divided each workday

into 3 shifts of 8 hours each. The main task of each inner operator is known, and external

workers can carry out the ITV task only in the case of workforce undermanning. The

typical housekeeping gang is made up of 5 operators: 2 of them are deployed in the RTG

task and 3 in the ITV one. The standard vessel gang operating on a quay crane is made

up of 6 operators: 1 deployed in the QC task, 2 in the RTG one and 3 in the ITV one.

However, 2 operators in each vessel gang must be able to perform the QC task: due to

the physiological impossibility of keeping high handling rates for 8 hours in this crucial

task, QC operators are deployed for 4 hours each in this task, which is swapped after half

of the shift. Therefore, in the model of Section 3.2.1, the work demand is derived from

vessel gangs with 2 QCs, 2 RTGs and 2 ITVs.

Although the precise costs cannot be disclosed for confidentiality purposes, we are allowed

to provide information on the ratios between these costs and the cheapest one (i.e., the

cost of internal workers in the ITV task): 1.25 for internal operators in the QC task,

1.0625 for internal operators in the RTG task, 1.625 for external operators (in the ITV

task only), 12.5 for undermanning and overmanning for all tasks and activities.

3.2.2.1 The manpower policy

The terminal does not adopt any tool for addressing the manpower problem, and its policy

on this problem is organized as follows.

First, the terminal assigns all operators in fixed shifts to their main tasks and to the most

important activities, which are ranked by priority. This assignment starts from the QC

task, continues with the RTG one and, next, with the ITV one. Therefore, the terminal
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first assigns QC operators in fixed shifts to the most important activities: if the workforce

demand in this task is perfectly met, the terminal switches to the analysis of the RTG

task; in the case of overmanning, QC operators in surplus could be later selected for

employment in the RTG task and/or the ITV one; in the case of undermanning, shortages

will be addressed by the following assignment of QC operators in flexible shifts.

Next, the terminal checks the RTG task: if the workforce demand is perfectly met by

adding RTG operators in fixed shifts, the terminal switches to the ITV task; in the case of

overmanning, RTG operators in surplus could be later selected for employment in the ITV

task; in the case of undermanning, shortages will be addressed by possible QC operators in

surplus and, if this is not sufficient and/or possible, by the following assignment of flexible

operators. Next, the terminal checks the ITV task: if the workforce demand is perfectly

met by adding ITV operators in fixed shifts, the terminal switches to the analysis of

operators in flexible shifts; in the case of overmanning, ITV operators are kept in surplus;

in the case of undermanning, shortages will be addressed by the following assignment of

operators in flexible shifts.

Next, the focus switches to operators in flexible shifts. They are assigned to their main

tasks and activities according to the priority list, as long as some shortages occur at

this stage after the previous assignment of fixed operators. First, the terminal checks

the QC task and works as follows: if the workforce demand is perfectly met by adding

QC operators in flexible shifts, the terminal switches to RTG operators; in the case of

overmanning, it checks if QC operators in surplus can be assigned to the RTG task and/or

the ITV one, and, if this is not sufficient or possible, all QC operators in surplus are put

in a day off and a future rest day in the long-term plan is changed into a workday; in

the case of undermanning, the terminal deploys QC operators having a day off, provided

that they have sufficient rest time before and after the new shift. The procedure is then

repeated for RTG operators and ITV ones. In the last case, shortages are addressed first

by external operators and, if they are not sufficient, by operators who were supposed to

have a day off.

3.2.2.2 Analysis of the manpower policy

The terminal decisions and the optimization model in Section 3.2.1 are compared in this

section. The model is implemented by the PuLP library, an open source package that

allows mathematical programs to be described in the Python computer programming lan-

guage. In this thesis, PuLP is set to call the freeware solver GLPK 4.46 running on a PC

with a 2.3 GHz processor and 8 GB of memory. We consider a set of 18 real instances

denoted in Table 3.1 from P1 to P18, each of which represents a typical workday. All
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instances are optimally solved in less than two minutes.

In each instance, the daily workforce inherited from the long-term plan is made up with:

• 8 operators, 4 RTG operators and 1 ITV operator in the first shift;

• 8 QC operators, 4 RTG operators and 1 ITV operator in the second shift;

• 8 QC operators, 4 RTG operators and 1 ITV operator in the third shift;

• 11 QC operators, 4 RTG operators and 5 ITV operators in flexible shifts.

All instances are divided into three shifts denoted by j=1, j=2 and j=3, each of which is

associated with a manpower demand expressed in terms of number of gangs for vessels

and housekeeping activities. For example, in the third shift of instance P5, the workforce

demand is 1 vessel gang and 3 housekeeping ones.

In Table 3.1, terminal decisions and model solutions are denoted by T and M respectively,

whereas CF concerns the ”clustered flexibility” described in Section 3.2.3. The columns

of Table 3.1 have the following meanings:

• QC is the number of operators available for the QC task;

• RTG is the number of operators available for the RTG task;

• ITV is the number of inner operators available for the ITV task;

• EXT is the number of external operators deployed in the ITV task;

• QC− is the number of QC operators in shortage;

• RTG− is the number of RTG operators in shortage;

• ITV − is the number of inner ITV operators in shortage;

• QC+ is the number of QC operators in surplus;

• RTG+ is the number of RTG operators in surplus;

• ITV + is the number of inner ITV operators in surplus.
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Therefore, the total number of operators required in the QC task is QC+QC− in the case

of undermanning and QC − QC+ in the case of overmanning. The same computation

can also be repeated for RTG and ITV tasks. For example, in the second shift of problem

P1, the terminal and the model recommend employing 5 internal operators in the QC

task, 11 in the RTG one and 7 in the ITV one. Interestingly, although 35 QC operators

are available, in the solution of P1 only 6 + (5 − 1) + 6 = 16 are deployed in this task,

whereas the remaining 35− 16 = 19 are considered for deployment in lower-level tasks.

The comparison in Table 3.1 shows that the terminal’s decisions and the model solutions

are identical. Hence, one may infer that the manpower policy seems to be very effective;

in fact, no improvement is found by the optimization model, which was exactly solved.

From an algorithmic viewpoint, this policy is a greedy heuristic, which solves the problem

because of:

• The clear priority rank among tasks (the topmost task is the QC, next the RTG

and, finally, the ITV);

• The evaluation of all operators in their main tasks and in all possible lower-level

tasks, to minimize undermanning and overmanning;

• The employment of external operators, only if necessary, to avoid undermanning.

Therefore, if one aims to pursue some improvements, they cannot be found in the short-

term plan. This thesis shows that they can be observed if some changes are made in the

long-term plan, whose construction presents two drawbacks:

• the frequent impossibility to deploy in any duty some workers in a flexible shift;

• the deployment of 2 QCs in each vessel gang, as this is the most expensive task;

These drawbacks are discussed and analyzed in Section 3.2.3 and 3.2.4.

3.2.3 The clustered flexibility

The terminal schedules flexible shifts in the long-term plan by the replication of predefined

sequences of shifts, but some of them prevent assigning operators to any shift in a day.

For example:

• 1 2 F 3, which means that an operator is fixed in the first shift of a day, fixed in

the second shift of the next day, flexible in the following day and fixed in the third

shift of the last day. Since the rest time after a duty is two shifts, in this case the

operator can be deployed only in the second and the third shift of the third day.
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QC RTG ITV EXT QC− RTG− ITV − QC+ RTG+ ITV +

T,M CF T,M CF T,M CF T,M CF T,M CF T,M CF T,M CF T,M CF T,M CF T,M CF

P1 j=1: 3, 0 6,6 6 7,7 6 10,10 6 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 1,1 0 4,4 0

j=2: 2, 0 5,5 8 11,11 10 7,7 5 0,0 0 0,0 0 0,0 0 0,0 0 1,1 4 7,7 6 3,3 1

j=3: 3, 0 6,6 6 6,6 6 1,1 6 5,5 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

P2 j=1: 2, 0 5,5 4 8,8 4 10,10 5 0,0 0 0,0 0 0,0 0 0,0 0 1,1 0 4,4 0 6,6 1

j=2: 2, 0 8,8 5 5,5 12 10,10 12 0,0 0 0,0 0 0,0 0 0,0 0 4,4 1 1,1 8 6,6 8

j=3: 1, 0 3,3 3 5,5 7 5,5 7 0,0 0 0,0 0 0,0 0 0,0 0 1,1 1 3,3 5 3,3 5

P3 j=1: 7, 0 7,7 3 12,12 9 6,6 1 8,8 13 7,7 11 2,2 5 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 5, 0 10,10 10 10,10 10 1,1 4 9,9 6 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 6, 0 4,4 7 8,8 12 1,1 3 11,11 9 8,8 5 4,4 0 0,0 0 0,0 0 0,0 0 0,0 0

P4 j=1: 7, 0 5,5 4 10,10 11 4,4 1 10,10 13 9,9 10 4,4 3 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 6, 0 12,12 12 12,12 12 3,3 3 9,9 9 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 3, 0 6,6 6 6,6 6 1,1 4 5,5 2 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

P5 j=1: 7, 0 13,13 14 14,14 13 5,5 1 9,9 13 1,1 0 0,0 1 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 2, 2 4,4 4 8,8 8 2,2 5 6,6 3 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 1, 3 2,2 2 8,8 8 3,3 4 5,5 4 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

P6 j=1: 2, 0 5,5 4 13,13 5 15,15 4 0,0 0 0,0 0 0,0 0 0,0 0 1,1 0 9,9 1 11,11 0

j=2: 1, 0 2,2 2 6,6 4 5,5 7 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 4,4 2 3,3 5

j=3: 6, 0 4,4 12 8,8 12 1,1 9 11,11 3 8,8 0 4,4 0 0,0 0 0,0 0 0,0 0 0,0 0

P7 j=1: 1, 0 5,5 4 8,8 3 19,19 6 0,0 0 0,0 0 0,0 0 0,0 0 3,3 2 6,6 1 17,17 4

j=2: 1, 0 3,3 8 2,2 7 9,9 7 0,0 0 0,0 0 0,0 0 0,0 0 1,1 6 0,0 5 7,7 5

j=3: 1, 0 3,3 3 4,4 6 6,6 15 0,0 0 0,0 0 0,0 0 0,0 0 1,1 1 2,2 4 4,4 13

P8 j=1: 5, 0 10,10 10 10,10 10 8,8 10 2,2 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 3, 0 6,6 6 6,6 6 6,6 4 0,0 2 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 1, 0 2,2 2 6,6 4 5,5 7 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 4,4 2 3,3 5

P9 j=1: 2, 0 5,5 5 4,4 4 5,5 4 0,0 0 0,0 0 0,0 0 0,0 0 1,1 1 0,0 0 1,1 0

j=2: 8, 0 11,11 13 15,15 14 6,6 4 10,10 12 5,5 3 1,1 2 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 3, 0 6,6 6 6,6 6 1,1 3 5,5 3 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

P10 j=1: 9, 0 13,13 11 14,14 12 6,6 2 12,12 16 5,5 7 4,4 6 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 1, 0 5,5 2 4,4 7 4,4 4 0,0 0 0,0 0 0,0 0 0,0 0 3,3 0 2,2 5 2,2 2

j=3: 4, 0 5,5 8 7,7 8 1,1 5 7,7 3 3,3 0 1,1 0 0,0 0 0,0 0 0,0 0 0,0 0

P11 j=1: 2, 0 5,5 4 9,9 4 11,11 5 0,0 0 0,0 0 0,0 0 0,0 0 1,1 0 5,5 0 7,7 1

j=2: 3, 0 6,6 9 9,9 10 6,6 9 0,0 0 0,0 0 0,0 0 0,0 0 0,0 3 3,3 4 0,0 3

j=3: 3, 0 6,6 6 6,6 6 1,1 6 5,5 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

P12 j=1: 5, 0 9,9 6 10,10 6 6,6 1 4,4 9 1,1 4 0,0 4 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 5, 0 10,10 10 10,10 10 1,1 4 9,9 6 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 5, 0 5,5 9 7,7 10 1,1 3 9,9 7 5,5 1 3,3 0 0,0 0 0,0 0 0,0 0 0,0 0

P13 j=1: 2, 0 6,6 5 14,14 4 13,13 4 0,0 0 0,0 0 0,0 0 0,0 0 2,2 1 10,10 0 9,9 0

j=2: 2, 0 4,4 4 4,4 4 5,5 5 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 1,1 1

j=3: 9, 0 5,5 15 7,7 12 1,1 6 17,17 12 13,13 3 11,11 6 0,0 0 0,0 0 0,0 0 0,0 0

P14 j=1: 2, 0 4,4 4 5,5 4 5,5 5 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 1,1 0 1,1 1

j=2: 6, 0 12,12 12 12,12 12 8,8 7 4,4 5 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 3, 0 6,6 6 6,6 6 1,1 3 5,5 3 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

P15 j=1: 4, 0 8,8 7 11,11 8 13,13 2 0,0 6 0,0 1 0,0 0 0,0 0 0,0 0 3,3 0 5,5 0

j=2: 1, 0 3,3 3 6,6 5 5,5 5 0,0 0 0,0 0 0,0 0 0,0 0 1,1 1 4,4 3 3,3 3

j=3: 6, 0 5,5 12 7,7 12 1,1 5 11,11 7 7,7 0 5,5 0 0,0 0 0,0 0 0,0 0 0,0 0

P16 j=1: 1, 2 2,2 2 6,6 6 8,8 6 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 2,2 0

j=2: 5, 0 10,10 10 10,10 10 10,10 10 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 1, 2 2,2 2 6,6 6 5,5 7 1,1 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 1

P17 j=1: 3, 1 6,6 6 8,8 8 8,8 2 0,0 6 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 1, 3 4,4 2 10,10 8 10,10 8 0,0 0 0,0 0 0,0 0 0,0 0 2,2 0 2,2 0 2,2 0

j=3: 5, 0 4,4 10 8,8 10 1,1 5 9,9 5 6,6 0 2,2 0 0,0 0 0,0 0 0,0 0 0,0 0

P18 j=1: 2, 2 4,4 4 8,8 8 5,5 2 3,3 6 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=2: 6, 0 12,12 12 12,12 12 5,5 8 7,7 4 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

j=3: 1, 3 2,2 2 8,8 8 3,3 3 5,5 5 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0

Total 321 352 442 431 299 279 213 192 78 45 41 27 0 0 23 21 71 46 100 59

Table 3.1: Terminal (T ) vs Model (M) vs Clustered Flexibility (CF)
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• 1 F 2, which means that an operator is fixed in the first shift of a day, flexible in the

following day and fixed in the second shift of the last day. In this case, the operator

can be deployed only in the first and second shift of the second day.

Generally speaking, flexibility opportunities are not completely exploited. This shortcoming

is corrected by the proposed variant, which is called clustered flexibility. It is based on

clustering flexible shifts in the long-term plan, as already done in the Gioia Tauro Terminal

[[53]], while enforcing that 25% of shifts of each operator are flexible in a month, as

imposed by work rules. In this study, we meet this requirement; in fact, each week 25%

of operators are set to be on-duty in flexible shifts for 5 consecutive days, which precede

and follow two off-duty days.

The clustered flexibility is denoted by CF in Table 3.1. The last row of this table shows

that the clustered flexibility changes the deployment of inner operators: in the QC task,

they are on duty for 352 times instead of 321, in the RTG task 431 times instead of 442,

in the ITV task 279 times instead of 299. Interestingly, the number of inner operators

deployed by the terminal and the clustered flexibility policy is identical (1062), but the

clustered flexibility employs QC operators more frequently, and they can also be used in

RTG and ITV tasks. Unsurprisingly, the recourse to external workforce for the ITV task

dropped from 213 to 192 operators. Personnel undermanning decreases for QC operators

from 78 to 45 and for RTG operators from 41 to 27. Finally, personnel overmanning

decreases for QC operators from 23 to 21, for RTG operators from 71 to 46 and for ITV

operators from 100 to 59.

3.2.4 QCs shift splitting

QC operators perform the most important task in TCTs because their productivity affects

the overall terminal performance. However, it is not physiologically possible for them to

keep high handling rates in shifts of 8 hours. The terminal policy accounts for these

fatigue issues by vessel gangs with two operators able to perform the QC task. More

precisely, each QC operator drives a quay crane for 4 hours a day and carries out a simpler

task in the remaining 4 hours of his shift, even if he is paid as a QC for 8 hours a day.

Therefore, 6 workers operate a quay crane for 4 hours each on a daily basis.

However, the QC is the most expensive task for TCTs, and it is beneficial to deploy

the minimum number of QC operators. In order to face this drawback, we investigate a

strategy called QCs Shift Splitting. It is based on the splitting of shifts of QC operators

into two intervals of 4 hours, during which they only perform this task. The two intervals

are separated by a break of 8 hours for workers in fixed duties and 4 or 8 hours for those
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in flexible duties. According to this strategy, 3 workers operate a quay crane daily and,

thus, the number of QC operators is halved.

The QCs Shift Splitting is investigated by a new optimization model, whose periods

represent intervals of 4 hours. Therefore, consider the same notation in Section 3.2.1 and

let J ′ be the set of periods of 4 hours, which is used instead of set J . As a result, the

work demand is expressed with respect to index j′ ∈ J ′ and is denoted by nj′kz, which

represents the number of operators requested to perform task k ∈ Kz for activity z ∈ Z
at period j′ ∈ J ′. Moreover, the number of periods in a day becomes 2d instead of d,

which still denotes the number of shifts in a day, and the QC task is denoted by 1.

The new discretization of the planning horizon can be exploited if the long-term plan is

changed accordingly. QC operators with fixed duty in the first shift have a fixed duty in the

first and the fourth period of the modified long-term plan. If they are fixed in the second

shift, the modified long-term plan reports a fixed duty in the second and fifth period; if

they are fixed in the third shift, the modified plan reports a fixed duty in the third and

sixth period. RTG and ITV operators with a fixed duty in the first shift have fixed duties

in the first and second periods; if they are fixed in the second shift, they become fixed in

the third and fourth periods; if they are fixed in the third shift, they become fixed in the

fifth and sixth periods. More formally, let Ij′ the set of operators fixed in period j′ ∈ J ′.
QC operators in flexible shifts are required to be on duty twice a day, but the work periods

cannot be consecutive. RTG and ITV operators in flexible shifts are also required to be

on duty twice a day, but the work periods must be consecutive.

The new model is formulated as follows:

min
∑
i∈I

∑
j′∈J ′

∑
z∈Z

∑
k∈Kz

ci(xij′kz + yij′kz) +
∑
j′∈J ′

∑
z∈Z

∑
k∈Kz

o

dj′kzvj′kz+

+
∑
j′∈J ′

∑
z∈Z

∑
k∈Kz

f+
j′kzu

+
j′kz +

∑
j′∈J ′

∑
z∈Z

∑
k∈Kz

f−j′kzu
−
j′kz (3.9)

∑
i∈Ik

xij′kz +
∑
i∈Ik

yij′kz + vj′kz − u+
j′kz + u−j′kz = nj′kz

∀j′ ∈ J ′, ∀z ∈ Z, ∀k ∈ Kz
o (3.10)

∑
i∈Ik

xij′kz +
∑
i∈Ik

yij′kz − u+
j′kz + u−j′kz = nj′kz

∀j′ ∈ J ′,∀z ∈ Z, ∀k ∈ Kz −Kz
o (3.11)
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(t+1)2d∑
j′=2td+1

∑
z∈Z

∑
k∈Kz

xij′kz = 2 ∀i ∈ It, t = 0, ..., |T | − 1

(3.12)

xij′1z + xi(j′+1)1z ≤ 1

∀i ∈ It, t = 0, ..., |T | − 1, j = 2td+ 1...(t+ 1)2d,∀z ∈ Z (3.13)

xij′kz = xi(j′+1)kz

∀i ∈ It, t = 0, ..., |T | − 1,∀j′mod2 = 1,∀z ∈ Z, ∀k ∈ Kz − 1 (3.14)

∑
z∈Z

∑
k∈Kz

yij′kz = 2 ∀i ∈ I ′j, j′ ∈ J ′

(3.15)

∑
z∈Z

∑
k∈Kz

(xij′kz + yij′kz + xil′kz + yil′kz) ≤ 1 ∀i ∈ I, j′ = (t+ 1)d, ..., (t+ 1)2d,

l′ = (t+ 1)2d+ 1, ..., (t+ 1)2d+ d, t = 0, ..., |T | − 1 (3.16)

The objective function (3.9) minimizes the assignment costs of internal and external op-

erators, as well as manpower undermanning and overmanning. The fulfillment of the

workload demand is enforced by constraint (3.10) for tasks that can be outsourced and

(3.11) in the opposite case. According to (3.12), each operator in flexible shifts must be

deployed in two periods of 4 hours each. These periods cannot be consecutive for the

QC task (constraint (3.13)), whereas they must be consecutive for RTG and ITV tasks

(constraint (3.14)). According to (3.15), each operator in fixed shifts must be deployed

in two periods of 4 hours each. Constraint (3.16) guarantees a rest time of 12 hours

between two duties in consecutive workdays.

The scenario of QCs’ shift splitting is compared to the current terminal policy, which was

described in Section 3.2.2. Results are shown in Table 3.2, in which the terminal policy

is denoted by T and the QCs’ shift splitting by SS. This table presents the same nota-

tion of Table 3.1 on workforce availability (QC, RTG and ITV ), outsourcing (EXT ),

undermanning (QC−, RTG− and ITV −) and overmanning (QC+, RTG+ and ITV +).

Note that the figures on the terminal policy in Table 3.2 are exactly twice that of Table

3.1, due to the different discretization of the planning horizon.

According to the experimentation, the lessening in the shortage of operators is (156 −
14)/156 = 91.03% in the QC task and (82 − 5)/82 = 93.90% in the RTG one. No
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shortage is yet observed on ITV operators. These figures are certainly better than those

in Table 3.1 in the case of clustered flexibility; in fact, the lessening in shortages was

(78− 45)/78 = 42.31% in the QC task and (41− 27)/41 = 34.15% in the RTG one.

Moreover, the lessening in the surplus of operators is (46− 22)/46 = 52.17% in the QC

task, (142 − 89)/142 = 37.32% in the RTG one and (200 − 177)/200 = 11.50% in the

ITV one. In the case of clustered flexibility (Table 3.1), the lessening in shortages was

(23− 21)/23 = 8.69% in the QC task, (71− 46)/71 = 35.21% in the RTG one, whereas

the decrease was larger in the case of the ITV task ((100− 59)/100 = 41.00%).

QC RTG ITV EXT QC− RTG− ITV − QC+ RTG+ ITV +

T SS T SS T SS T SS T SS T SS T SS T SS T SS T SS

Total 642 384 884 908 598 832 426 581 156 14 82 5 0 0 46 22 142 89 200 177

Table 3.2: The effect of QCs’ shift splitting on the overall set of 18 instances

The QC shift splitting strategy is actually investigated by the terminal, as it follows the

most important rules already adopted in this case study, such as informing workers on

their shifts and providing sufficient rest times. Although the terminal is requested to plan

daily duties of 8 hours, nothing is said about their possible division.

From a practical viewpoint, the QC shift splitting strategy results in the need to change

the organization of the long-term plan for QC workers, but this is an easy modification

in the system data. The decision-making process of the terminal is also recommended

to change, as it can be effectively supported by optimization-based solutions instead of

specific policies. The final acceptance of the QC splitting strategy depends on the final

approval of QC workers: although some workers may not be willing to accept the new

strategy, it produces some savings, which can be used as incentives for QC workers.

3.3 Second manpower policy

In this section we present the short term manpower planning policy proposed in [33].

It consists in determining shifts, tasks and activities of the manpower working in these

terminals in order to serve vessels in time intervals, which typically do not overlap with

personnel shifts. This complex problem is modelled by an integer linear programming

formulation. The optimal solutions of the model are compared with the decisions made in

accordance with the manpower policy adopted by a real transhipment container terminal.

The experimentation sheds light on when its policy is effective or when there is room for

optimisation. The computational tests indicate that the model can be optimally solved

even in the case of huge transhipment container terminals.
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3.3.1 Mathematical model

In this section, we propose a general mathematical programming model for the short-term

manpower planning problem, which can be used for any configuration of personnel shifts,

vessel activities and their possible overlapping. Let I be the set of the internal workers.

They can be employed on a set J of periods, which span over a planning horizon of several

days. Each period j ∈ J represents a time interval, which is equal to the greatest common

divisor between the duration of the shifts of the internal workers and the shortest vessel

activity. In the example of Table 3.3.2, each period j is a time interval of 2 hours, which

is the greatest common divisor between 8 and 6.

Let d be the number of periods in a day, s the number of periods in each shift of

the internal workers, the number of shifts in a day and τ be the number of days in

the planning horizon. Moreover, let e be the number of periods in a work time of the

external workers. In the example of Table 3.3.2 , the number d of periods in a day is 12,

the number s of periods in the shift of the internal workers is 4, the number ρ of daily

shifts of the internal workers is 3 and the number τ of days in the planning horizon is

2. Since external workers must be on-duty for 6 hours, thus e is equal to 3 in this case

study. According to this notation, in the first day of the planning horizon, the shifts of

the internal workers start in periods 1 + (p − 1)s, where p is the index of the daily shift

and ranges from 1 to ρ. More generally, in day t, the shifts of the internal workers start

in periods [(t− 1)d+ 1] + (p− 1)s, where t is the day index ranging from 1 to τ . Let Zj

be the set of activities to be performed in period j ∈ J . Since several tasks are requested

to perform any activity z ∈ Zj in period j ∈ J , let Kz be the set of tasks requested for

activity z ∈ Zj in period j ∈ J and K̄z ⊆ Kz, the subset of tasks that can be outsourced

for activity z ∈ Zj in period j ∈ J . For example, an element of Kz is the QC task, which

is denoted by qc. Moreover, let Ik ⊆ I be the set of the internal workers able to perform

task k ∈ Kz for activity z ∈ Zj in period j ∈ J, Ij ⊆ I be the set of fixed workers in

period j ∈ J and It ⊆ I be the set of flexible workers in day t. Let J̃ be the last period

in which a worker can be deployed in the QC task (for example, if each period j ∈ J

is a time interval of 2 hours, Table 3.3.2 shows that QC workers must interrupt their

activity at the end of period j = 2, thus j = 2 ∈ J̃). Let J̈ be the periods at the end of

which QC workers must keep performing the current activity (for example, if each period

j ∈ J is a time interval of 2 hours, Table 3.3.2 shows that QC workers must perform

the same activity in periods j = 1 and j = 2, thus j = 1 ∈ J̈). In addition, let nk,z,j be

the number of internal workers requested to perform task K ∈ Kz for activity z ∈ Zj in

period j ∈ J . The following five types of variables are defined:
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• xi,k,z,j is the internal worker selection variable, which takes value 1 if worker i ∈
F ∪ Ik is employed as a flexible worker to perform task k ∈ Kz on activity z ∈ Zj
in period j ∈ J , 0 otherwise. Let ci,k,z,j ≥ 0 be the related unitary cost.

• yi,k,z,j is the internal worker selection variable, which takes value 1 if worker i ∈
Ij ∪ Ik is employed as a fixed worker to perform task k ∈ Kz on activity z ∈ Zj in

period j ∈ J , 0 otherwise. Let ci,k,z,j ≥ 0 be the related unitary cost.

• vk,z,j is an integer non-negative variable representing the number of external workers

hired to perform task k ∈ K̄z on activity z ∈ Zj in period j ∈ J . Let wj be the

maximum number of external workers who can be hired in period j ∈ J and dk,z,j

be the associated unitary cost.

• u+
k,z,j is an integer non-negative variable representing number of workers in surplus

in task k ∈ Kz for activity z ∈ Zj in period j ∈ J . Let f+
k,z,j be the associated

unitary cost.

• u−k,z,j is an integer non-negative variable representing number of workers in shortage

in task k ∈ Kz for activity z ∈ Zj in period j ∈ J . Let f−k,z,j be the associated

unitary cost.

1. The workforce demand nk,z,j can be met by internal workers in flexible shifts, internal

workers in fixed shifts and external workers, if tasks can be outsourced. As the

available manpower is typically different from the workload demand, the surplus of

workers or the deficiency of workers must be computed in each task k ∈ Kz, each

activity z ∈ Zj and each period j ∈ J , in order to obtain exact demand satisfaction.

This constraint can be enforced as follows:

1.a ∑
i∈Ik∪It

xi,k,z,j +
∑

i∈Ik∪Ij

yi,k,z,j + vk,z,j − u+
k,z,j + u−k,z,j = nk,z,j j = 1 + (t− 1)d · · · dt,

t = 1 · · · τ, ∀z ∈ Zj,∀k ∈ K̄z

1.b If tasks cannot be outsourced, constraint (1.a) is formulated as follows:

∑
i∈Ik∪It)

xi,k,z,j +
∑

i∈Ik∪Ij

yi,k,z,j − u+
k,z,j + u−k,z,j = nk,z,j

j = 1 + (t− 1)d · · · dt, t = 1 · · · τ, ∀z ∈ Zj,∀k ∈ Kz \ K̄z
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2. Each internal worker flexible in day t must start his duty in the first period of a shift

of that day:

∑
k∈Kz

∑
z∈Zj

∑
j=[(t−1)d+1]+(p−1)s p=1,··· ,ρ

xi,k,z,j = 1∀i ∈ It

3. Each internal worker flexible in day t must be on duty for s consecutive periods in

that day:

∑
k∈Kz

∑
z∈Zj

xi,k,z,j =
∑
k∈Kz

∑
z∈Zj

xi,k,z,(j+1)∀j mod s 6= 0, (t−1)d+1 ≤ j ≤ td, t = 1, · · · τ, ∀i ∈ It

4. Each fixed internal worker starts his duty in the first period of a shift decided in the

long-term plan:

∑
k∈Kz

∑
z∈Zj

yi,k,z,j = 1 j = [(t−1)d+1]+(p−1)s, p = 1, · · · , ρ, t = 1, · · · τ, ∀i ∈ Ij

5. Each fixed internal worker must be on-duty in his shift for s consecutive periods a

day:

∑
k∈Kz

∑
z∈Zj

yi,k,z,j =
∑
k∈Kz

∑
z∈Zj

yi,k,z,(j+1) ∀i ∈ Ij,∀j mod s 6= 0

6. Each worker i ∈ I must have a rest time of r(j) periods after a duty finishing in

period j ∈ J :

∑
k∈K

∑
z∈Z

[
xi,k,z,j+yi,k,z,j+

r(j)∑
=1

(xi,k,z,(j+)+yi,k,z,(j+))
]
≤ 1 j mod s = 0,∀z ∈ Zj, k ∈ Kz,∀i ∈ I

7. The number of external workers hired in each period is limited:

∑
k∈K̄z

∑
z∈Zj

vk,z,j ≤ wj ∀j ∈ J
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8. Whenever external workers are hired, they must complete their shift, thus the num-

ber of external workers must not change during their shift. As they must work for

e consecutive periods, the following constraint is introduced:

∑
k∈K̄z

∑
z∈Zj

vk,z,j =
∑
k∈K̄z

∑
z∈Zj

vk,z,(j+1) ∀j mod e 6= 0

9. The rotation in the QC task must be enforced in the middle of shifts for workers

in flexible duties:∑
z∈Zj

(xi,k,z,j + xi,k,z,(j+1) ≤ 1 j ∈ J̃ ,∀z ∈ Zj, k = qc ∈ Kz,∀i ∈ It ∪ Ik

10. In the example of Table 3.3.2, if each period j ∈ J is a time interval of 2 hours,

the periods in J̈ take values (t− 1)d + b, b = 2, 6, 10, where the day index t takes

values 1 and 2. When this rotation must not be performed, the flexible workers in

the QC task are enforced to keep performing the current activity:

xi,k,z,j = xi,k,z,(j+1) j ∈ J̈ ,∀z ∈ Zj, k = qc ∈ Kz,∀i ∈ It ∪ Ik

11. In the example of Table 3.3.2, if each period j ∈ J is a time interval of 2 hours,

the periods in J̈ take values (t−1)d+ b, b = 1, 5, 7, 11, where the day index t takes

values 1 and 2. The same restrictions must be enforced for QC workers in fixed

shifts:∑
z∈Zj

(yi,k,z,j + yi,k,z,(j+1) ≤ 1 j ∈ J̄ ,∀z ∈ Zj, k = qc ∈ Kz,∀i ∈ It ∪ Ik

12. yi,k,z,j = yi,k,z,(j+1)j ∈ J̈ ,∀z ∈ Zj, k = qc ∈ Kz,∀i ∈ It ∪ Ik

13. The objective is to minimise the assignment costs of internal as well as external workers

to tasks, activities and periods, as well as the costs of personnel under-manning and

over-manning:

min
∑

i∈Ik

∑
k∈Kz

∑
z∈Zj

∑
j∈J ci,k,z,j(xi,k,z,j +yi,k,z,j)+

∑
k∈K̄z

∑
z∈Zj

∑
j∈J dk,z,jvk,z,j +∑

k∈Kz

∑
z∈Zj

∑
j∈J f

+
k,z,ju

+
k,z,j + +

∑
k∈Kz

∑
z∈Zj

∑
j∈J f

−
k,z,ju

−
k,z,j
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3.3.2 Case study

This section presents a case study on the short-term manpower problem in a real TCT,

where each workday of internal workers is divided into three consecutive shifts of 8 hours

each. Moreover, vessel services are typically provided to shipping liners in time intervals

multiple of 6 hours. External workers could also be hired to overcome under-manning in

vessel services and they must be on-duty for 6 hours a day whenever they are hired. If all

vessel services are 6 hours long, all time intervals can be represented as shown in Table

3.3.2 in the case of available information regarding vessel arrival and departure times for

the next two days. This example indicates that several criticalities take place because of

the different durations of internal workers shifts and vessel services. For example, some

vessels may berth at the end of the 6th hour of the planning horizon and internal workers

must be assigned to these new activities during their shift. The same problem occurs at

the end of the 12th, 18th, 30th, 36th and 42th hour of the planning horizon. In addition,

vessel services must be interrupted at the end of the 8th, 16th, 32th and 40th hour of the

planning horizon owing to shift change. Although many tasks are performed in this case

study, only the most important are investigated: the Quay Crane (QC) driver, who picks

up and drops of containers from vessels, the Rubber Typed Gantry crane (RTG) driver,

who stores containers in the yard and the driver of Internal Transfer Vehicles (ITV), which

are low-cost tractors providing horizontal transport. The QC is the top-level task, in fact

QC workers can also perform any other task; RTG workers can also be employed in the

ITV task and ITV workers can perform this task only. External workers are allowed to

carry out the ITV task only. In this case study, housekeeping gangs are made up of 5

workers: 2 of them are deployed in the RTG task and the remaining 3 in the ITV task.

The standard vessel gang is made up of 6 workers: 1 deployed in the QC task, 2 in the

RTG task and 3 in the ITV task. For example, consider this sequence of vessel activities

in the first day of the planning horizon: 9 activities in the first service interval of 6 hours,

3 in the second, 7 in the third and 5 in the fourth interval. Consequently, the manpower

demand becomes:

• 9 QCs, 18 RTGs and 27 ITVs in the first service interval;

• 3 QCs, 6 RTGs and 9 ITVs in the second service interval;

• 7 QCs, 14 RTGs and 21 ITVs in the third service interval;

• 5 QCs, 10 RTGs and 15 ITVs in the fourth service interval.
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Figure 3.2: Discretisation of the planning horizon

Moreover, in this case study, two workers in each vessel gang must be able to perform

the QC task, owing to the physiological impossibility of keeping high handling rates for

8 hours in this crucial task. Consequently, two workers are deployed in the QC task for

4 consecutive hours in their shift. Therefore, in this example,18 workers must be able to

perform the QC task in the first service interval, 6 in the second, 14 in the third and 10 in

the fourth interval. The example in Table 3.3.2 also provides some guidelines to minimise

the time lost by QC workers during the change of vessel activities: if all requested vessel

services are 6 hours long, then the workers in the QC task are recommended to perform

the same vessel activity in the first 4 hours of the first vessel service, in the last four hours

of the second vessel service, in the first 4 hours of the third vessel service, in the last

four hours of the fourth vessel service and so on. In this case study, the daily manpower

demand can be typically met by 60 internal workers: 52 workers able to perform the QC

task, as well as the RTG and the ITV task, 7 workers for the RTG and the ITV task, 1 for

the ITV task. In addition, 13 workers are fixed in the first shift, 13 workers in the second

shift, 13 workers in the third shift and 21 workers are employed on a flexible duty.

This numerical example also points out the need of removing the overlapping between

internal workers shifts and service intervals, as this overlapping involves the quantification

of the manpower demands by time intervals of 8 hours. In order to minimise the risk

of personnel under-manning, the TCT of this case study usually considers the maximum

number of activities between the consecutive intervals of 6 hours: since max ((9, 3)=9,

max (3,7)=7 and max (7,5)=7, in the case of overlapping, the sequence of vessel activities

would become 9 activities in the first service interval of 8 hours, 7 in the second and 7 in

the third. As a result, this modus operandi overestimates the number of vessel activities

in the last two hours of the first shift, in the first four hours of the second shift and in the
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last six hours of the third shift. Generally speaking, removing the overlapping is beneficial

in the short-term manpower planning problem, because the workforce can be assigned to

vessels services of any duration requested by shipping liners.

3.3.3 Testing

The policy of this TCT regarding the short-term manpower problem can be described by

a simple greedy heuristic algorithm, which works as follows. At first, the TCT assigns

all workers in fixed shifts to tasks and activities, which are ranked and served by priority.

This assignment starts from the workers capable of performing the QC task, goes on with

those capable of performing the RTG task and continues to those capable of performing

the ITV task. In case of over-manning on a specific task, the surplus of workers may

be corrected by the employment in lower-level tasks. If this is not possible, they are

put in a day-off and a future rest day in the long-term plan is changed into a workday.

In the case of under-manning on a specific task, deficiencies will be later addressed by

the assignment of workers in flexible shifts. Subsequently, the TCT focuses on workers

with flexible shifts and determines when they must be on-duty in order to have the same

workforce in all shifts. This choice is motivated by its simplicity and the current lack

of decision tools, which are able to set and evaluate different manpower configurations.

However, the uniform manpower supply may disclose its ineffectiveness whenever the

manpower demand is not uniform in the daily planning horizon. After that, the terminal

policy determines the tasks and activities of workers in flexible shifts. These decisions

start from the QC task, go on with the RTG task and end with the ITV task. In the

last case, the possible under-manning is addressed by external workers and if they are

still insufficient, the under-manning is addressed by the overtime of workers in a day off,

provided they have sufficient rest time before and after the new shift. In the case of

over-manning, workers are put in a day off and a future rest day in the long-term plan

is changed into a workday. The TCT policy and the solutions of the optimisation model

are compared in a set of problem instances taken from the case study in Section 2.2.

The model is implemented using the PuLP library, which is an open-source package that

allows mathematical programmes to be described in the Python computer programming

language. In this thesis, PuLP is set to call the solver Cplex 12.6.2 running on a PC with

1,3 GHz Intel Core I5, 4GB of RAM and 4 cores. Thirty real instances are taken from 30

consecutive days in the long-term plan. Since the model is implemented with a planning

horizon of two days (|J | = 24 with periods of 2 hours) and the TCT policy is implemented

for a single day, the comparison is performed only on the first day of each instance. To

clarify, the model is used in a rolling horizon fashion: decisions are taken for all days in
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the planning horizon, but only the decisions made in the first day are implemented on the

three investigated tasks (|K| = 3). The instances are reported in the lines of Tables 2,

3 and 4. They are introduced by |I| = 60, wj = 40∀j, as this case study has 60 internal

workers in each day and 40 external workers at most in each period j. The columns

denoted by Z1 report the sequence of vessel and housekeeping activities performed by the

terminal in the first day of the planning horizon. For example, the line (5,0), (8,0), (6,0),

(1,0) means 5 vessel activities and 0 housekeeping activities in the first service interval,

8 vessel activities and 0 housekeeping activities in the second service interval, 6 vessel

activities and 0 housekeeping activities in the third service interval, 1 vessel activity and 0

housekeeping activities in the fourth service interval. Since the planning horizon spans two

days, the activities in the second day are reported in the following line. For example, in the

first instance the activities in the first day are (1,0), (1,0), (1,0), (1,0) and the activities

in the second day are (5,0), (5,0), (5,0), (5,0). All instances are optimally solved in a few

seconds, as detailed in section 4.2. As the terminal policy provides a uniform manpower

supply, it is worth discussing its effectiveness with respect to different values of variance

in the manpower demand. Instances in Table 3.3.3 present a variance lower than 1, those

in Table 3.3.3 present a variance ranging between 1 and 5, whereas those in Table 3.3.3

present a variance larger than 5. The decisions derived from the terminal policy and those

obtained by the optimal model solutions are denoted by tand M respectively. Moreover,

the following notations are adopted:

• QC is the number of workers used in the QC task in all periods;

• RTG is the number of workers used in the RTG task (even if their top task may be

QC) in all periods;

• ITV is the number of internal workers used in the ITV task (even if their top task

may be QC or RTG) in all periods;

• EXT is the number of external workers (hired for the ITV task only) in all periods;

• U+ number of internal workers in surplus in all periods;

• QC- is the number of QC workers deficient in all periods;

• RTG- is the number of RTG workers deficient in all periods;

• ITV- is the number of internal ITV workers deficient in all periods.
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Figure 3.3: Instances with low variance in the manpower demand

Figure 3.4: Instances with medium variance in the manpower demand

The last line of each table reports the sum of the results over all problem instances. Table

3.3.3 shows, in the case of low variance, the terminal policy returns similar results with

respect to the optimisation model. The model slightly decreases under-manning in the

RTG task, over-manning and the use of external workers.

Table 3.3.3 shows that in case of medium manpower variance, the model is much more

able to reduce deficiencies in the RTG task. No deficiency is observed on QCs and ITV

tasks owing to the high manpower supply in the QC task as well as external workers hired

in the ITV task respectively. However, the model makes use of larger number of external

workers to perform the ITV task, whereas the terminal policy deploys larger number of

internal workers in this task.

Table 3.3.3 shows that in the case of high variance, the model is much more efficient

in reducing under-manning and over-manning while hiring similar number of external

workers. The higher quality of model solutions depends on the possibility of employing

flexible workers in peak periods of the manpower demand, whereas this option is not
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Figure 3.5: Instances with high variance in the manpower demand

possible according to the terminal policy.

In this section, the proposed optimisation model is also tested on larger TCTs in order

to evaluate its reproducibility. As the worlds largest transhipment terminal has 40 quay

cranes [https://www.singaporepsa.com/our-business/terminals] and the experimentation

in section 4.1 was done on a TCT equipped with 10 quay cranes, we have also investigated

new problem instances, which are two, three and four times larger than those reported

in section 4.1. More precisely, the cardinality of set I of internal workers, the maximum

number of external workers wj in each period j ∈ J and the manpower demand nkzj are

supposed to be two, three and four times larger than the values adopted in section 4.1.

All problem instances are optimally solved by Cplex 12.6.2 running on a PC with 1,3 GHz

Intel Core I5, 4GB of RAM and 4 cores. The results are reported in Table 3.3.3, in which

each problem instance is described by the quantification of the number of workers and

activities, whereas the number of periods |J | is 24 and the number of tasks |K| is 3 for

the overall experimentation. The columns of Table 3.3.3 are divided into four groups,

each representing different terminal class size:

• The first group of columns concerns the real instances described in section 4.1 on

a terminal with 10 quay cranes and is denoted by |I| = 60, wj = 40∀j ∈ J , as it

has 60 internal workers and 40 external workers at most in each period j. Columns

report the sequence of vessel and housekeeping activities performed by the TCT in

the first day of the planning horizon (denoted by Z1), the solution time (denoted

by T[s]) and the gap between the optimum and the LP relaxation (denoted by

LG[%]). For example, line (5,0), (8,0), (6,0), (1,0) in Z1 means 5 vessel activities

and 0 housekeeping activities in the first service interval, 8 vessel activities and 0

housekeeping activities in the second service interval, 6 vessel activities and 0 house-
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Figure 3.6: A set of instances on larger TCTs.

keeping activities in the third service interval, 1 vessel activity and 0 housekeeping

activities in the fourth service interval. This instance is solved in 0.54 seconds and

LP relaxation is integer.

• The second group of columns concerns a TCT equipped with 20 quay cranes and

is denoted by 2 ∗
∣∣I∣∣, 2wj, 2Z1, as it has 2 ∗ 60 = 120 internal workers, 2 ∗ 40 = 80

external workers at most in each period and the number of activities is twice larger

than the values reported in the first group of columns. For example, line (5,0),

(8,0), (6,0), (1,0) in Z1 means, in this case, 10 vessel activities and 0 housekeeping

activities in the first service interval, 16 vessel activities and 0 housekeeping activities

in the second service interval, 12 vessel activities and 0 housekeeping activities in
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the third service interval, 2 vessel activities and 0 housekeeping activities in the

fourth service interval. This instance is solved in 5.85 seconds and LP relaxation is

integer.

• The third group of columns concerns a TCT equipped with 30 quay cranes and is

denoted by 3|I|, 3wj, 3Z1, as it has 3 ∗ 60 = 180 internal workers, 3 ∗ 40 = 120

external workers at most in each period and the number of activities is three times

larger than the values reported in the first group of columns. For example, line (5,0),

(8,0), (6,0), (1,0) in Z1 means, in this case, 15 vessel activities and 0 housekeeping

activities in the first service interval, 24 vessel activities and 0 housekeeping activities

in the second service interval, 18 vessel activities and 0 housekeeping activities in

the third service interval, 3 vessel activities and 0 housekeeping activities in the

fourth service interval. This instance is solved in 15.01 seconds and LP relaxation

is integer.

• The fourth group of columns concerns a TCT equipped with 40 quay cranes and is

denoted by 4|I|, 4wj, 4Z1, as it has 4 ∗ 60 = 240 internal workers, 4 ∗ 40 = 160

external workers at most in each period and the number of activities is four times

larger than the values reported in the first group of columns. For example, line (5,0),

(8,0), (6,0), (1,0) in Z1 means, in this case, 20 vessel activities and 0 housekeeping

activities in the first service interval, 32 vessel activities and 0 housekeeping activities

in the second service interval, 24 vessel activities and 0 housekeeping activities in

the third service interval, 4 vessel activities and 0 housekeeping activities in the

fourth service interval.

Table 3.3.3 shows that all instances are optimally solved within an acceptable time

interval for TCTs. In fact, the LP relaxation is often integer and if this is not the case,

the insertion of cuts at the root node rapidly leads to the optimum. Hence, the size of

the branch-and-bound tree is always zero.
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Chapter 4

Long-term nurse scheduling

In this chapter we present the results proposed in [62] where, motivated by a real case

study in Cagliari (Italy), we focus on the nurse scheduling problem in a department of a

hospital. We deal with the long term scheduling problem of the shifts of a team of nurses.

We propose a solution based on integer linear programming, which allows to compute a

scheduling in a given time horizon, which is optimal with respect to certain criteria, while

satisfying a series of constraints imposed by the contractual rules of nurses and that aims

to guarantee comfortable working conditions to them.

To reduce the computational complexity of the approach, and to take into account

possible sudden and unpredictable variations in the requirements of the hospital and in the

availability of the personnel, we propose a solution based on a Decision Support System

(DSS), which splits the scheduling in the long time horizon in several smaller time horizons,

and continuously update a series of information relative to the hospital and the team of

nurses. For sake of simplicity and inspired by the considered case study, we assume that

the long term horizon corresponds to one year, while the sub-intervals are equal to one

month.

Three main features of the proposed approach have to be highlighted since, even if

fundamental in real situations, are often neglected in the literature (see e.g., [12, 58, 68,

70, 75, 79] mentioned in the following subsection).

• First, we assume that external personnel may be taken from other departments or

other structures if the current team of nurses does not allow to satisfy certain hard

constraints. However, this leads to high costs for the department and typically to

a lower quality of service. Our approach allows to keep this explicitly into account

and look for a solution that minimizes such an occurrence.

• Second, our approach allows to keep into account the work load at the end of a given

period and automatically send such an information as an input to the scheduling
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in the following period. This problem is also addressed in [70] but from a different

perspective as mentioned in the following subsection.

• Third, in several approaches in the literature differences among nurses are not taken

into account. On the contrary, our model allows to distinguish among nurses in

maternity, in part time, or nurses that benefit of special reductions of the work

for several reasons (e.g., because they have a close relative who suffers a serious

illness).

We finally remark that the proposed tool could also be successfully used as a support

to find out redundancies or weakness in the staff.

A real case study is considered, namely the surgery department at the University of

Cagliari (Italy). A series of real data provided by the person who currently manually

assigns shifts, enables us to confirm its effectiveness. Not only the desired goals are more

satisfactorily reached, but all the constraints are met, despite of the solutions computed

manually.

The testing phase also shows the scalability of the method. In particular, it shows

that scheduling (optimal in the short time horizon) may be obtained in reasonable time

even in the case of hypothetical problems of dimensions much larger than the case study

at hand.

The following subsection provides a survey of relevant contributions strictly related to

the topic in this thesis. As it clearly appears, a huge amount of problem formulations,

goals, and perspectives have been considered, so it is really hard to make a fair comparison

among the different contributions. Typically, the most appropriate one highly depends on

the specific requirements and operating conditions.

4.1 Literature review

An excellent survey of the approaches proposed to solve the problem of nurse rostering,

updated at 2004, has been proposed by Burke et al. in [17]. Here methods that span

from operations research techniques to artificial intelligence approaches are recalled and

critically evaluated. Furthermore, a huge amount of problem formulations are mentioned

that span from staffing (i.e., the computation of the number of personnel of the required

skills in order to meet predicted requirements) to specific nurse rostering problems based

on peculiar administrative modes of operation (centralized scheduling, unit scheduling,

self-scheduling, etc.). Typically such formulations are inspired by real case studies with

their own features/rules/constraints. In the following, without the pretension of being
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exhaustive, we mainly provide details on a series of contributions that are based on integer

or linear/mixed integer programming, being them the mostly related to our contribution,

at least in terms of modeling approach.

Several interesting contributions based on integer or linear/mixed integer programming

are mentioned by Burke et. al in [17]. See e.g., [43, 57]. However, as Burke et al. pointed

out, almost all of them focus on short-term scheduling or cyclic re-scheduling and do not

keep into account exhaustively the constraints that currently influence a feasible solution

in a real hospital.

Integer programming is also used in [64] to solve the cyclic preference scheduling

problem for hourly workers. In particular, a branch-and-price algorithm is developed that

makes use of several branching rules and an extremely effective rounding heuristic.

Trilling et al. [75] focus on the anaestehesiology nurse scheduling problem of a French

public hostital. As well known, and as pointed out in the paper, anaestehesiology nurses

constitute one of the most shared resourses. Therefore the goal in [75] is that of estab-

lishing how to assign nurses to the different departments.

Moz and Pato [58] solve a problem that is essentially a rescheduling problem. In

more detail, they assume that shifts in a given period (a week) are already assigned

to nurses and one of the nurses could no more respect his/her assignment, thus the

whole scheduling should be recomputed. The approach they propose allows to minimize

differences with respect to the original scheduling while guaranteeing the satisfaction of

a series of constraints.

Berrada et al. [12] solve the problem of assigning shifts to nurses under the assump-

tions that each nurse always works during the same shift (i.e. there is no rotation). Hence,

each shift corresponds to a separate problem.

Satheesh et al. [68] deal with a problem that is similar to ours but with much less

details, which are however fundamental when applying the approach in real case applica-

tions. Furthermore, authors in [68] apply their method to a numerical example that is not

taken from a real case study. On the contrary in our thesis, the validation is performed

via a real case study, comparing the results obtained with the proposed approach with

those actually used in the hospital.

Smet et al. [70] investigate the effects of the scheduling on short time horizons over

long time horizons. In particular, the concepts of local and global consistency in constraint

evaluation processes are introduced and a general methodology to address these challenges

in integer programming approaches is proposed. As mentioned above, our approach also

deals with this problem, even if in different terms and without resorting to constraints
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classifications, but guarantees the satisfaction of all the constraints also on the long time

horizon.

Valouxis et al. [79] provide a way to address the computational complexity of the

problem in large scale systems, proposing a two stage strategy to compute shifts to be

assigned to nurses: the first phase decides the workload for each nurse and for each day,

while the second phase assigns the specific daily shifts.

Special attention deserves the contribution by Maenhout and Vanhoucke [55]. Here

the authors propose an integrated methodology for allocating a given workforce over multi-

ple departments based on the hospitals nurse staffing policies, each wards shift scheduling

policies and the nurses characteristics. The model decides at the staff planning level on

the workforce size and on which nurses are assigned to each ward. This staffing plan is

developed based on an initial baseline roster that is created at the shift scheduling level for

a heterogeneous set of nurses and indicates, for each ward, which nurses will be working

each shift. As a result, the baseline roster consists of a configuration of individual nurse

schedules that is generated by incorporating multiple objectives, such as cost, schedule

desirability and quality nursing care.

Furthermore, Carrasco [65], inspired by a real case study in Spain, focused on the

problem of assigning guard shifts to the physicians in a department starting from the

assumption that employees prefer that their guard duties are regularly distributed in time.

The proposed solution efficiently combines random and greedy strategies with heuristics,

allowing to keep into account a series of specific constraints.

We finally mention the recent contribution by Bagheri et al. [5] and some references

therein. In particular, Bagheri et al. propose a stochastic optimization model which

accounts for uncertainties in the demand and stay period of patients over time. Sample

Average Approximation method is used to obtain an optimal schedule for minimizing

the regular and overtime assignment costs. Results have been validated via numerical

experiments on a real case study. In [5] Bagheri et al. also propose an excellent, up to

date survey of the literature on the nurse scheduling problem. Here a series of models

are classified based on the considered objective, the main properties, and the proposed

approach. Here we limit to briefly recall the most recent contributions, and address to

[5] for a more exhaustive discussion. Tapaloglu and Selim [74] use fuzzy mathematical

programming and fuzzy goal programming to minimize deviations of nurse preferences

and hospital regulations. Ohki et al. [61] propose a cooperative genetic algorithm to

minimze a penality function for evaluating shift schedules. Zhang et al. [82] aim at

maximizing the quality of objectives with respect to the importance of constraints using

genetic algorithms and a variable neighborhood search. Finally, Fan et al. [38] maximize
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the nurse satisfactions and hospital regulations thanks to an approach based on binary

integer linear programming.

4.2 Problem description

A Database contains three kinds of information: the specific requirements/rules of the

department, the information on the available team of nurses, and the information on the

current month. In more detail, the main information on the specific requirements/rules

of the department are: the definition of the shifts (starting and end time of each shift),

the maximum number of call days per month, the maximum number of night shifts per

month, and the maximum (minimum) number of consecutive working days to be assigned

to nurses, where all such numbers depend on the working position of nurses. The main

information on the team of nurses are: the number of regular nurses, the number of

maternity nurses, the scheduled free days (e.g. vacations or sick days) of each nurse, and

the expected (average) monthly number of working hours. Finally, the most significant

information on the current month are: the number of days in the current month, the

weekday or public holidays, and so on.

All such information are used to formulate a linear integer programming model that

characterizes the set of admissible solutions in the current month, illustrated in detail in the

next section, which keeps into account all the constraints mentioned above. This clearly

requires the formulation of a series of constraints that account a series of information

coming from the scheduling of the previous month. The scheduling in each month is thus

computed solving an optimization problem whose objective function takes into account

the three main requirements previously mentioned. As shown in Fig. 4.1, the scheduling

resulting from the optimization in one month, is not only used to define the scheduling in

the long term horizon, but is also used to update a series of information in the database.

4.3 Mathematical model

In this section we propose a mathematical model to solve the problem of scheduling

working hours of nurses in a given time horizon. Without loss of generality, we assume

that the time horizon is equal to one month.

We first set input data, including some input data from the working plan of the pre-

vious month, then we define decision variables and introduce the objective function that

we want to minimize. Finally, we define the constraints in order to fulfill the restrictions
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Figure 4.1: The proposed Decision Support System

required by the hospital manager.

Input data

• n is the number of days in the current month.

• D = {1, · · · , n} is the set of days in the current month.

• I is the set of indices associated with nurses.

• Imat ⊂ I is the set of indices associated with maternity nurses.

• Ai,d ∈ {0, 1} is equal to 1 if d is a scheduled free day for nurse i in the current

month; 0 otherwise.

• d-offi is the number of free days of nurse i ∈ I during the current month.

• hmi is the expected (average) monthly number of working hours of nurse i ∈ I.

• J = {1, 2, 3} is the set of shifts.

• pj is the amount of hours of the shift j ∈ J .
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• Rmax is the maximum number of call days per month assigned to each nurse.

• Nightmax is the maximum number of night shifts per month assigned to each nurse.

• Dmax (Dmin) is the maximum (minimum) number of consecutive working days

assigned to each nurse.

• Nd,j is the number of nurses required at shift j ∈ J on day d ∈ D.

• Zi ∈ {0,1, · · · , Dmax − 1} is equal to the maximum number of admissible consec-

utive working days of nurse i ∈ I at the beginning of the current month.

(This parameter allows us to impose that the constraint on the maximum number of

consecutive working days is satisfied also at the beginning of the month. Therefore,

if a nurse i worked Dmax consecutive days at the end of the previous month, Zi

should be equal to 0 because the nurse could not work more than Dmax consecutive

days. If the last but one day of the previous month was the last free day for nurse

i at that month, then Zi = Dmax − 1.)

• LJi ∈ {1, 2, 3}. In particular, LJi = 2 (3) if nurse i ∈ I worked at the second

(third) shift during the last day of the previous month; it is equal to 1 if the last

day of the previous month was a call day for nurse i ∈ I.

• LBOJi ∈ {0, 1}. is equal to 1 if nurse i ∈ I worked at the third shift during the

last but one day of the previous month; 0 otherwise.

Decision variables and related costs

• Xi,d,j ∈ {0, 1} is equal to 1 if nurse i ∈ I has to work at shift j ∈ J of day d ∈ D,

and the day d is not a call day for nurse i; 0 otherwise.

• Ri,d ∈ {0, 1} is equal to 1 if d ∈ D is a call day for nurse i ∈ I \ Imat. In the

considered case study, a nurse in a call day should be available during the third shift

of the day. Furthermore, a day could be a call day for a nurse i only if he/she was

working during the first shift of that day; 0 otherwise. No call day could be assigned

to maternity nurses.

• Yi,d ∈ {0, 1} is equal to 1 if d ∈ D is a working day for nurse i ∈ I; 0 otherwise.
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• Uplusd,j ∈ N is a positive integer variable that counts the number of nurses in

surplus during the shift j ∈ J of day d ∈ D. In the considered case study no

surplus may be used during shift j = 3. Therefore, Uplusd,j is only defined for

j ∈ {1, 2}.

We denote as f+
d,j > 0 the cost associated with a nurse in surplus at shift j ∈ J of

day d ∈ D.

• Uminusd,j ∈ N is a positive integer variable that counts the number of nurses in

deficit during the shift j ∈ J of day d ∈ D.

We denote as f−d,j > 0 the cost associated with a nurse in deficit at shift j ∈ J of

day d ∈ D. This corresponds to the cost deriving from the recruitment of a nurse

from other departments or structures.

• W+
i,d ∈ {−1, 0, 1} is equal to −1 if nurse i ∈ I works at day d ∈ D but does not

work at day d − 1 ∈ D; is equal to 0 if days d, d − 1 ∈ D are either working days

or rest days for nurse i ∈ I; it is equal to 1 if nurse i ∈ I works at day d− 1 ∈ D
but does not work at day d ∈ D.

• HM+
i ∈ N is a positive integer variable counting the number of working hours of

nurse i ∈ I during the current month, exceeding hmi.

We denote as fH+
i > 0 the cost associated with a working hour of nurse i exceeding

hmi.

• HM−
i ∈ N is a positive integer variable counting the number of working hours of

nurse i ∈ I during the current month, in deficit with respect to hmi.

We denote as fH−i > 0 the cost associated with a working hour of nurse i in deficit

with respect to hmi.

• Si,d = Yi,d+Yi,d+1 is a dummy variable that will be used to give priority to a schedule

where free days assigned to nurse i ∈ I are not isolated, i.e., if d ∈ D \ {n} is a

free day (and d− 1 was not a free day), d+ 1 is desirable to be a free day.

We denote as fS+
i,d > 0 the cost associated with the case where d is an isolated

free day for nurse i ∈ I.
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Objective Function

We have three main requirements.

1. Minimize the number of nurses in deficit.

2. Minimize the difference between the number of hours that each nurse currently

works during a month and the number of hours he/she is expected to work.

3. Give priority to a schedule where free days are assigned consecutively (and not

isolated).

This corresponds to minimize the following objective function:

f =
∑

d∈D
∑

j∈J f
−
d,j · Uminusd,j+

+
∑

i∈I HM
+
i · fH+

i +
∑

i∈I HM
−
i · fH−i +

∑
i∈I Si,d · fS

+
i,d

Constraints

1. During shift j ∈ J of day d ∈ D the number of working nurses should be equal to

Nd,j.

1.1 Shift j = 1:

∑
i∈I

Xi,d,1 +
∑

i∈I\Imat

Ri,d − Uplusd,1 + Uminusd,1 = Nd,1 ∀d ∈ D

1.2 Shift j = 2:

∑
i∈I

Xi,d,2 − Uplusd,2 + Uminusd,2 = Nd,2 ∀d ∈ D

1.3 Shift j = 3:

∑
i∈I

Xi,d,3 + Uminusd,3 = Nd,3 ∀d ∈ D

2. No more than one shift a day should be assigned to nurses. We need to distinguish

non maternity (regular) and maternity nurses. Indeed, the former ones may work

during any shift, while the latter ones may only work during shifts j = 1 or j = 2.
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2.1 Regular nurses:

Ri,d +
∑
j∈J

Xi,d,j ≤ 1− Ai,d ∀i ∈ I \ Imat ∀d ∈ D

2.2 Maternity nurses:

2∑
j=1

Xi,d,j ≤ 1− Ai,d ∀i ∈ Imat ∀d ∈ D

By definition of Ai,d, the above constraints guarantee that no shift is assigned to a

nurse who is in vacation, or in rest, or is sick at that day.

3. The following constraints enable us to count the number of hours each nurse works

during the current month, in addition, or in deficit, with respect to the expected

monthly amount of hours.

3.1 Regular nurses:

∑
d∈D

∑
j∈J

pj ·Xi,d,j +
∑
d∈D

p1 ·Ri,d = hmi +HM+
i −HM−

i ∀i ∈ I \ Imat

3.2 Maternity nurses:

D∑
d=1

2∑
j=1

pj ·Xi,d,j = hmi +HM+
i −HM−

i ∀i ∈ Imat

The correctness of the above constraints follows from the fact that the considered

objective function aims at minimzing HM+
i and HM+

i for all i ∈ I.

4. When a nurse works in a given shift, he/she cannot work in the subsequent two

shifts. Also in this case, we have to distinguish between regular and maternity nurses.

4.1 Regular nurses:

4.1.a

Xi,d,2 +Xi,d+1,1 +Ri,d+1 ≤ 1 ∀i ∈ I \ Imat ∀d ∈ D \ {n}

4.1.b

Ri,d +Xi,d+1,1 +Ri,d+1 ≤ 1 ∀i ∈ I \ Imat ∀d ∈ D \ {n}
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4.1.c

Ri,d +Xi,d+1,2 ≤ 1 ∀i ∈ I \ Imat ∀d ∈ D \ {n}

The first set of inequalities requires that if nurse i works at shift j = 2 in a

given day, he/she cannot work at shift j = 1 the day after. We do not need to

impose that he/she doesn’t work at shift j = 3 of the same day because this is

already guaranteed by constraint (2.1). Note that constraint (2.1) guarantees

that a nurse i benefits of two following rest shifts if he/she works at shift

j = 1.

Constraints (4.1.a) and (4.1.b) impose that if nurse i is in a call day in d (so

he/she may potentially work during the night of day d), then he/she cannot

work at shifts j = 1 the day after.

Similarly, constraint (4.1.c) imposes that if a nurse i is in a call day in d, then

he/she cannot work at shift j = 2 the day after.

Note that we are not imposing that a nurse who works during the night in a

given day cannot work during the first and the second shift of the day after,

because this would be a redundant constraint. Indeed (see constraints (9)), a

nurse who works during the night must be at rest the two days after.

4.2 Maternity nurses.

Xi,d,2 +Xi,d+1,1 ≤ 1 ∀i ∈ Imat ∀d ∈ D \ {n}

In this case we only have the above set of constraints because night shifts

cannot be assigned to maternity nurses.

5. Each day, exactly one nurse should be in a call day. Maternity nurses cannot be in

a call day.

∑
i∈I

Ri,d = 1 ∀i ∈ I \ Imat ∀d ∈ D

6. At most Rmax call days per month can be assigned to regular nurses.

∑
d∈D

Ri,d ≤ Rmax ∀i ∈ I \ Imat

7. At most Nightmax night shifts per month can be assigned to regular nurses.

∑
d∈D

Xi,d,3 ≤ Nightmax ∀i ∈ I \ Imat
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8. The following equality constraints introduce |I|× |D| binary variables. The generic

variable Yi,d, associated with nurse i and day d, is equal to 1 when nurse i is

working at day d; 0 otherwise. Obviously, such constraints need not be currently

implemented when solving the optimization problem but are introduced here to more

clearly explain the remaining constraints.

8.1 Regular nurses:

Yi,d =
∑
j∈J

Xi,d,j +Ri,d ∀i ∈ I \ Imat ∀d ∈ D

8.2 Maternity nurses:

Yi,d =
2∑
j=1

Xi,d,j ∀i ∈ Imat ∀d ∈ D

9. If a regular nurse i works in a night shift in a given day, then he/she must be at

rest during the subsequent two days.

9.1

2 Xi,d,3 + Yi,d+1 + Yi,d+2 ≤ 2 ∀i ∈ I \ Imat ∀d ∈ D \ {n− 1, n}

9.2

Xi,d,3 + Yi,(d+1) ≤ 1 ∀i ∈ I \ Imat d = n− 1

10. Each nurse could not work more than Dmax consecutive days.

Yi,d +
Dmax∑
t=1

Yi,d+t ≤ Dmax ∀i ∈ I ∀d ∈ {1, · · · , n−Dmax + 1}

11. Each nurse could not work less than Dmin consecutive days.

11.1

W+
i,d = Yi,d − Yi,d−1 ∀i ∈ I d ∈ {2, · · · , n}

11.2 When a nurse moves from a rest day to a working day, the following Dmin− 1

days should be working days as well. If the remaining time horizon is smaller
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than Dmin−1 days, then the constraint applies to the whole remaining horizon.

11.2.a

Dmin∑
t=2

Yi,d+t ≥ (Dmin − 1) ·W+
i,d ∀i ∈ I d ∈ {1, · · · , n−Dmin + 1}

11.2.b

n∑
t=d+1

Yi,d+t ≥ (n− d) ·W+
i,d ∀i ∈ I d ∈ {n−Dmin + 2, · · · , n− 1}

12. An additional constraint is necessary because constraint (9) imposes to a nurse i

to have two rest days, after the night shift, therefore it is clear that to respect the

minimum consecutive Dmin days, a nurse can work the night shift if and only if

he/she worked the Dmin-1 previous days.

Dmin−1∑
t=1

Yi,d−t ≥ (Dmin − 1) ·Xi,d,3 ∀i ∈ I \ Imat d ∈ {n−Dmin + 2, · · · , n}

13. We need to add the following constraint because constraints (4.1) imposes that a

nurse i in a call day d either works in the night shift of d or is at rest in d + 1.

Therefore it is clear that to respect the minimum consecutive Dmin days, a nurse

can work in a call day if and only if he/she worked the Dmin-2 previous days.

Dmin ·Ri,d ≤
Dmin−2∑
t=1

Yi,d−t ∀i ∈ I \ Imat d ∈ {n−Dmin + 2, · · · , n}

Border constraints

We finally introduce a series of constraints, (called “border constraints”) that take into

account the programming in the previous time horizon. They allow to automatically run

the optimization problem ”month after month”.

14. If the last day of the previous month was a call day for a regular nurse i, then the

first and the second shift of the first day of the current month could not be assigned

to him/her.

Xi,1,1 +Xi,1,2 = 0 ∀i ∈ I : LJi = 1
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15. If a regular nurse worked during the second shift of the last day of the previous

month, in the first day of the current month he/she should not work during the first

shift and should not be in call day.

Xi,1,1 +Ri,1 = 0 ∀i ∈ I : LJi = 2

16. If a regular nurse worked during the third shift of the last day of the previous month,

in the first and in the second day of the current month he/she should be at rest.

Yi,1 + Yi,2 = 0 ∀i ∈ I : LJi = 3

17. The above two constraints reduce to the following one in the case of a maternity

nurse since he/she cannot be in a call day and cannot work during the third shift.

Xi,1,1 = 0 ∀i ∈ Imat : LJi = 2

18. If a regular nurse worked in the third shift of the last but one day of the previous

month, then the first day of the current month he/she must be at rest.

Yi,1 = 0 ∀i ∈ I : NLJi = 0

19. Each nurse should work at most Dmax consecutive days. To ensure that this con-

straint is also guaranteed when switching from one month to the next one, variable

Zi has been introduced. It is an input variable to the scheduling of the current

month and keeps into account the number of consecutive days that the generic

nurse i could work at the beginning of the current month. The following inequality

imposes the satisfaction of such a constraint:

Zi+1∑
d=1

Yi,d ≤ Zi ∀i ∈ I

20. Working days of nurses could not be isolated. In particular, Dmin is the minimum

number of consecutive days that he/she should work. The following constraint

guarantees that this holds also when switching from one month to the next one.

[Dmax−(Dmin−1)]−Dmin∑
d=1

Yi,d = [Dmax − (Dmin − 1)]−Dmin

∀i ∈ I : Zi ≥ Dmax − (Dmin − 1)
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Concluding, the number of decision variables is 10 · |I| · |D|, while the number of

constraints is 9 · |I| · |D| + 3 · |D| + |I \ Imat| · |D|, where | · | denotes cardinality.

Therefore, both numbers are O(|I| · |D|).

4.4 The case study

The proposed approach has been tested on a real working environment, specifically, the

surgery department of the University Hospital in Cagliari (Italy).

Working days are partitioned in three shifts: 7:00 am - 2:00 pm (j = 1), 2:00 pm -

10:00 pm (j = 2), 10:00 pm - 7:00 am (j = 3). Therefore the amount of hours of shifts

j = 1, 2, 3, is equal to p1 = 7, p2 = 8, p3 = 9, respectively.

Furthermore, a regular nurse (i ∈ I \ Imat) is expected to work 36 hours per week,

while a maternity nurse (i ∈ Imat) is expected to work 30 hours per week. The length of

the planning horizon is one month, therefore it is hmi = (n−d-offi)·36/7 for i ∈ I\Imat,
and hmi = (n − d-offi) · 30/7 for i ∈ Imat. Moreover, regular nurses may work during

any shift, while maternity nurses may only work during shifts 1 and 2.

For each regular nurse, the maximum number of call days per month is 6, as well as

the maximum number of night shifts per month. Furthermore, the maximum number of

consecutive working days is 6, while the minimum number of consecutive working days is

3.

Finally, shifts should be assigned to nurses in order to guarantee the following require-

ments:

• at least 4 nurses should be simultaneously present during shifts j = 1 and j = 2;

• exactly 3 nurses should be simultaneously present during shift j = 3;

• if a day is an urgent day, at least 5 nurses should be simultaneously present during

shift j = 1.

4.5 Testing

The testing phase has been performed with the aim of comparing the solutions obtained

using the proposed optimization approach with those currently used in the considered

department, which have been computed manually by a person responsible to do that. Due

to the difficulty of fulfilling all the requirements and constraints when operating manually,

the person devoted to this first takes into account “hard” constraints, then she/he tries to

rearrange the scheduling in order to also meet “soft” constraints (if possible). Referring
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to the enumeration used in Section 3, Constraints (6), (11), and (12) may be considered

as soft constraints when computing the solution manually, while all the others should be

always considered as hard constraints. We also note that the manual approach could be

very time consuming, usually many hours.

Results are reported in Tables 4.1 to 4.4. Each table contains information relative to

two months. Let us explain the notation used in these tables by looking at Table 4.1 and

focusing on February. Analogous considerations repeat for March in Table 4.1, and for

the other months in the remaining tables.

The first column identifies the 21 nurses working in the considered department.

Column 2 summarizes the values of HM+
i resulting from the scheduling currently used

in the hospital (H). Analogously, column 4 summarizes the values of HM+
i resulting from

the scheduling obtained using the proposed model (M). HM+
i is equal to the number

of working hours of nurse i during the current month, exceeding the average monthly

number of working hours, which is equal to 36 (for regular nurses) or 30 (for maternity

nurses) in the considered case study.

Column 3 summarizes the values of HM−
i resulting from the scheduling currently used

in the hospital (H). Analogously, column 5 summarizes the values of HM−
i resulting from

the scheduling obtained using the proposed model (M). HM−
i is equal to the number of

working hours of nurse i during the current month, in deficit with respect to the average

monthly number of working hours.

Columns 6, 7 and 8 contain information on the soft constraints not satisfied by the

scheduling used in the hospital (H): Ai (Bi, Ci, respectively), is equal to the number of

times constraint (11) ((12), (6), respectively) is not met during the current month by

nurse i. Zeros are not reported in these columns to make tables more readable. On the

contrary, all the constraints are met when using the proposed approach. Therefore, in

such a case for all i and all months, it is Ai = Bi = Ci = 0.

Looking at Tables 1 to 4, we observe that (see last row), during almost all months∑21
i=1HM

+
i and

∑21
i=1HM

−
i are smaller when computed using the proposed approach.

The only exception is given by July. However, as summarized in Table 4.3, this is obtained

with the violation of a huge number of constraints when operated manually as it actually

occurs in the hospital (H).

A clear comparison between the scheduling resulting from the proposed approach (M)

and the scheduling used in the hospital (H) is also reported in Fig. 4.2 and Fig. 4.3. These

figures show in the two cases (M and H) the values of function fi, for i = 1, . . . , 21, defined

as follows:
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Table 4.1: Comparison of the scheduling currently used in the hospital (H) and the
scheduling obtained using the proposed model (M): February and March

Nursei

FEBRUARY MARCH

H M

constraints

not satisfied

by hospital

H M

constraints

not satisfied

by hospital

HM+
i HM−

i HM+
i HM−

i Ai Bi Ci HM+
i HM−

i HM+
i HM−

i Ai Bi Ci

1 0 13 0 0 6 0 0 0 1

2 0 1 0 0 25 0 0 0 1

3 9 0 0 0 1 10 0 0 0

4 0 3 0 0 10 0 0 0 1

5 0 5 0 0 16 0 0 1

6 0 3 0 0 3 13 0 1 0

7 0 2 0 0 8 0 0 0

8 6 0 0 0 8 0 0 0

9 7 0 0 0 15 0 0 5

10 1 0 0 0 14 0 0 0

11 1 0 0 0 13 0 0 0 2

12 0 1 0 0 9 0 0 0 2 1

13 0 6 0 0 1 1 1 5 0 0 0 1

14 0 8 0 0 0 0 0 0 1 1

15 0 3 0 0 1 12 0 0 0 2

16 1 0 0 0 1 1 9 0 0 2

17 0 4 0 0 0 0 0 0 1

18 0 7 0 0 9 0 0 14 4

19 0 8 0 0 14 0 0 0

20 0 4 0 0 28 0 0 0 2

21 0 5 0 0 9 0 0 0

25 73 0 0 6 3 2 233 0 1 22 13 4 3

98 0 11 233 23 20
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Table 4.2: Comparison of the scheduling currently used in the hospital (H) and the
scheduling obtained using the proposed model (M): April and May

Nursei

APRIL MAY

H M

constraints

not satisfied

by hospital

H M

constraints

not satisfied

by hospital

HM+
i HM−

i HM+
i HM−

i Ai Bi Ci HM+
i HM−

i HM+
i HM−

i Ai Bi Ci

1 15 0 3 0 0 15 1 0 2

2 16 0 4 0 0 10 0 0 2

3 17 0 1 0 1 1 15 0 0 0 2

4 0 10 0 0 1 2 2 0 0 0 1

5 17 0 2 0 0 4 0 0 2

6 19 0 3 0 2 19 0 0 0 2

7 0 1 3 0 2 1 0 2 0 0 1

8 16 0 0 0 0 15 0 0 2

9 14 0 0 0 1 0 13 0 0 1 1 1

10 13 0 4 0 0 0 0 0

11 14 0 3 0 2 8 0 8 0 1

12 23 0 0 0 2 0 5 1 0 1

13 15 0 0 0 3 0 0 0

14 1 0 0 0 2 2 0 1 0

15 19 0 3 0 1 0 0 0 1 1

16 12 0 11 0 1 2 0 0 0 1 1

17 0 0 0 0 2 6 0 0 0 1

18 18 0 0 0 4 0 0 2

19 9 0 0 0 1 2 0 0 0

20 22 0 0 0 9 0 0 0 2

21 8 0 2 0 23 0 1 0

267 11 39 0 13 6 2 97 64 12 2 11 14 1

278 39 21 161 14 26
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Table 4.3: Comparison of the scheduling currently used in the hospital (H) and the
scheduling obtained using the proposed model (M): June and July

Nursei

JUNE JULY

H M

constraints

not satisfied

by hospital

H M

constraints

not satisfied

by hospital

HM+
i HM−

i HM+
i HM−

i Ai Bi Ci HM+
i HM−

i HM+
i HM−

i Ai Bi Ci

1 18 0 15 0 1 2 0 3 0 2

2 7 0 0 5 2 1 5 0 19 0 1

3 23 0 19 0 1 1 16 0 16 0 2

4 0 0 0 6 3 16 0 7 0 1 2

5 0 2 0 1 2 1 13 0 20 0

6 9 0 6 0 3 23 0 20 0 2

7 19 0 0 1 1 5 0 20 0 1 1 1

8 0 2 0 1 1 3 0 16 0 1

9 0 1 3 0 2 2 11 0 18 0 1 2

10 0 0 0 0 14 0 20 0 1 1 1

11 1 0 0 2 1 0 0 10 0 1 1

12 11 0 15 0 1 9 0 19 0

13 11 0 0 0 1 38 0 16 0 1

14 12 0 0 4 1 2 13 0 20 0 4 1 1

15 12 0 17 0 2 1 6 0 20 0 2 1

16 0 0 0 0 8 0 14 0

17 19 0 0 0 0 0 6 0 1

18 0 0 0 0 17 0 0 0

19 5 0 20 0 1 4 0 20 0 2

20 9 0 20 0 1 1 0 4 20 0 1

21 0 11 20 0 1 10 0 20 0

153 16 135 20 17 9 8 211 4 324 0 15 13 8

169 155 34 215 324 36
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Table 4.4: Comparison of the scheduling currently used in the hospital (H) and the
scheduling obtained using the proposed model (M): August and September

Nursei

AUGUST SEPTEMBER

H M

constraints

not satisfied

by hospital

H M

constraints

not satisfied

by hospital

HM+
i HM−

i HM+
i HM−

i Ai Bi Ci HM+
i HM−

i HM+
i HM−

i Ai Bi Ci

1 20 0 0 12 9 0 1 0 3 1

2 22 0 0 1 1 9 0 3 0

3 22 0 0 6 1 12 0 0 1 1

4 23 0 0 5 1 0 3 0 0 1 1

5 22 0 3 0 13 0 1 0 1

6 5 0 1 0 2 2 28 0 0 0

7 11 0 0 2 1 0 4 0 0 1 1

8 19 0 0 2 0 1 0 0 1 1 1

9 28 0 11 0 13 0 2 0 1 1

10 30 0 2 0 11 0 1 0 1

11 7 0 0 12 1 6 0 0 0 1

12 22 0 0 6 1 5 0 0 0 1 1

13 6 0 0 5 2 5 0 0 0

14 13 0 2 0 1 3 0 0 1

15 11 0 0 3 1 1 18 0 1 0 1

16 24 0 0 6 6 0 1 0

17 22 0 0 2 7 0 0 0 1

18 6 0 0 0 1 8 0 0 0 1

19 18 0 17 0 2 18 0 0 0

20 7 0 3 0 1 24 0 13 0

21 15 0 5 0 0 6 0 0 1

348 0 44 62 8 3 8 194 14 23 2 10 5 8

348 106 19 208 25 23
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Figure 4.2: Summary of fi defined as in eq. (4.1) for i = 1, · · · , 21 in March, using the
scheduling provided by the hospital (H) and the scheduling obtained using the proposed
model (M).

fi =

{
HM+

i if HM+
i > 0

−HM−
i if HM−

i > 0
(4.1)

In more detail, Fig. 4.2 refers to March, while Fig. 4.3 refers to July. In simple words,

based on the above definition, if fi is positive, it means that nurse i worked more than

expected in the considered month. Alternatively, if fi is negative, it means that he/she

worked less that expected, and the absolute value is equal to the deficit of hours with

respect to the expected value. Obviously the target value is 0 for all i.

Finally, to validate the applicability of the proposed approach in larger dimension

problems, different scenarious have been considered, and the computational times (in

seconds) as well as the percentage distance (GAP %) with respect to the optimal solution,

are computed solving instances by Cplex 12.6.2 on a mac air with 1.3 GHz Intel Core I5,

4 GB of RAM and 4 cores. Results are summarized in Table 4.5. The first series of

simulations (×1) refer to the current situation where the number of nurses is equal to 21.

As it can be seen, all instances are solved in less than 1.25 hours.

The other series of simulations (×2,×3,×4) refer to hypothetical situations where

the current number of nurses is multiplied by 2, 3, and 4, respectively. For sake of brevity,

computational times and gaps in these cases are reported for only two months, namely

March (3) and July (7). The most critical instance is relative to 168 nurses and month

3, and is solved in slightly more than 2 hours.
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Figure 4.3: Summary of fi defined as in eq. (4.1) for i = 1, · · · , 21 in July, using the
scheduling provided by the hospital (H) and the scheduling obtained using the proposed
model (M).

Table 4.5: Summary of the results of a series of experiments carried out to test the
proposed approach in larger dimension problems.
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Chapter 5

Short-term manpower scheduling in
retailer stores

This chapter focuses on the problem of short-term manpower scheduling in retailer stores.

A team of empolyees, each one with its on skills, should be assigned to different shifts

taking into account the tasks that should be solved, the skills of the employees, and their

benefit in terms of working conditions.

A real case study in Cagliari is used to test the approach, still based on linear integer

programming. A web application has also been developed, with a user friendly interface,

which makes the tool ready to be used by the considered retailer store.

As already discussed in the previous chapters, a huge literature exists devoted to the

assignment of shifts to working staff. However, while the literature focused on certain

specific working areas, in particular hospitals and health care in general, is extremely rich,

despite of its significance, schedule optimization for retail stores has received relatively

weak attention. Furthermore, most of the contributions are focused on the problem of

profit maximization. We address to Chapados et al. [23] for a good, detailed, and quite

recent survey of the literature on this topic.

An important remark that still holds in this area, as in the areas investigated in the

previous chapters, is that it is not easy to provide a well structured literature review

where contributions are compared in terms of generality and effectiveness, e.g., in terms

of optimality of the solution or computational complexity. Indeed, very different problem

statements are considered having different goals and perspectives, based on ad hoc as-

sumptions coming from specific applications and selled products, considering different time

horizons (long term and short term scheduling), and using completely different approaches

for the computation of an optimal or suboptimal solution.

This chapter considers a problem formulation that is quite different from the rest of

the literarure. Indeed, it assumes that the team of employees is given and each employee
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has his/her own skills and personal requirements. He/she should be asked to work as

much as possible to solve the tasks that are more appropriate to his/her skills, and in any

case he/she should never be devoted to tasks requiring a skill that is more payed that

that considered when computing his/her salary. Furthermore, a series of requirements in

terms of breaks, number of working Sunday per month, and so on, should be satisfied in

order to guarantee a good quality of working conditions, which obviously has an impact

on his/her effectiveness at work and in the quality of the service to costumers [81].

The rest of the chapter is structured as follows. The problem statement and the

proposed solution are described in detail in Section 5.1. The integer linear programming

model is illustrated in detail in Section 5.2. Finally, Section 5.3 presents the consid-

ered case study, the web application that has been developed, and the results of some

scheduling.

5.1 Problem Statement and proposed solution

In this chapter we deal with the problem of automatically scheduling the shifts of employees

in a big store, taking into account a series of activities that should be performed, and the

individual skills of employees.

Each activity consists of a certain number of tasks, which could be performed by

employees having certain skills. Skills are ordered according to a top/down list that is

used to compute salaries. Each employee may be devoted to a certain number of tasks

depending on his own skills. However, if his salary has been computed based on one

skill, he/she cannot be devoted to tasks requiring skills in a higher position of the above

mentioned list. On the contrary, he can be devoted to tasks requiring skills in a lower

position in the list, but this produces a lost for the company. Indeed, the company is

paying a work more than necessary, as if it requires a skill in a higher position in the list.

We focus on short-term scheduling and, as it typically occurs in this framework, the

time horizon is taken equal to one week. However, the proposed solution is general and

can be used even if the time horizon is multiple of one week.

We assume that a series of information on the current week are taken into account,

e.g., the number of working days and the time period of the year, which clearly affects

the requirements in terms of workload. In more detail, we assume that the workforce

demand is given. This consists in a table that specifies the workforce required during each

day of the week, as a function of the hour of the day, devoted to each activity. Such

a table is computed taking into account historical data on analogous weeks in previous

years, and eventually using ad hoc forecasts approaches. Several methods can be used in
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this respect. For an extensive discussion on this we address the reader to [45, 48] and the

references therein.

We also assume that a series of fundamental information on the team of employees

are available, in particular, we know:

• which employees are in a working week or in vacation,

• which employees requested some day-off during the week or are in a sick day,

• which are the skills of each employee in the team,

• which is the last day in the previous week each employee has worked,

• the number of Sunday in which each employee has worked in the previous weeks,

and so on.

As typically occurs in big stores, each employee has his/her own skills (e.g., cashier,

warehouse worker, accountant, shop assistant, and so on) and can solve a certain number

of activities depending on them. However, his/her salary is established based on the most

expensive and qualified skill. So, whenever, a scheduling is computed, which assigns an

employee to an activity that requires a skill less qualified than his/her top skill, the store is

not taking the maximum benefit from its own human resources. To avoid this, a penalty

is associated with such an occurrence and this is taken into account in the performance

index to be optimized.

Furthermore, each employee has his/her own contract that could be a full time or a

part time.

Moreover, based on the specific store a series of hard constraints should be imposed,

namely constraints that identify feasible solutions since they cannot be violated. In par-

ticular:

• the opening and the closing time of the store are given;

• shifts could either be totally free or they should be multiple of one hour or multiple

of half an hour;

• there could be an upper (lower) bound on the maximum (minimum) number of

consecutive and total hours in a working day;

• there could be an upper bound on the maximum number of consecutive working

days;
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• no more that two Sunday per month could be working days;

• on Sunday and other holidays the over-manning (namely, a number of employees

larger than necessary) is not allowed because of economical reasons.

Each store also has some soft business constraints that could be taken into account

in the performance index to be minimized:

1. avoid breaks between shifts assigned to the same employee in the same working day,

2. avoid under-manning and over-manning. The number of employees should be as

close as possible to a given recommended value defined by the workforce demand.

Such a value varies with the day, the time, and the activity;

3. the maximum number of working hours per day should not exceed a certain value,

unless strictly necessary to find out a feasible solution;

4. minimize the number of employees that are assigned to activities not requiring their

top skill.

The main contribution of this thesis consists in the formulation a of mathematical

model that allows to compute an optimal solution using integer linear programming.

Details on the constraints and on the objective function are provided in the following

section.

Fig. 5.1 presents via a flow chart, how the proposed mathematical model interacts with

a database which contains information on the current week, on the team of employees,

on the store rules, and on the workload demand.

Note that, to make the approach user friendly, an interface is fundamental, as shown

in Fig. 5.1.

5.2 The integer linear programming model

In this section we illustrate the integer linear programming model that allows us to solve

the scheduling problem introduced in the previous section.

We first introduce input data, including a series of data from the working plan of

the previous weeks; we define all the decision variables and some cost functions; then,

we introduce the objective function that we want to minimize; finally, we define all the

constraints that allow us to take into account the restrictions required by contractual

rules.
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Mathematical

model

Database

Information on the team of employee

1. skills

2. last day worked in the previous
week

3. number of precedents worked
Sundays

Store Rules

Workload demand

Information on

the current week

Interface

View

Figure 5.1: Flow chart of the proposed approach

Input data

• I: set of indices associated with employees.

• s: number of weeks to be scheduled.

• S = {0, 1, · · · , s − 1}: indices associated with the weeks in the considered time

horizon.

• ns ∈ {4, 5}: number of weeks in a month.

• d = s ∗ 7: number of days in the considered time horizon.

• D = {1, · · · , d}: indices associated with the days in the considered time horizon.

• HSi: number of weekly hours worked by the ith employee.

• HN : number of working hours in each day (eventually some reduction could oc-

cur in some days, e.g., Sunday, but for simplicity they are taken into account via

appropriate constraints).

• HDMAX: maximum number of working hours per day assigned to each employee

(differences among employees may be easisly accounted adding appropriate con-

straints).
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• DCmax (DCmin): number of maximum (minimum) consecutive working hours

per day.

• DAY Cmax: number of maximum consecutive working days.

• HBREAKmin: minimum number of consecutive hours of break between two shifts

in the same day.

• J ∈ {1, . . . , HN}: set of indices associated with the time periods in each day.

• K: set of tasks to be executed;

• Z: set of activities, where each activity is defined as a set of tasks.

• Zj ⊆ Z: set of activities to be performed in period j ∈ J .

• Kz: set of tasks to be executed to perform activity z ∈ Z.

• Nd,j,k,z: number of employees required to execute task k ∈ Kz inside activity z ∈ Z
in period j ∈ J of day d ∈ D.

• Ci,d,j,k,z: cost of employee i ∈ I assigned to task k ∈ Kz inside activity z ∈ Z in

period j ∈ J of day d ∈ D.

• Hdayi,d ∈ {0, 1}: 1 if employee i ∈ I is in vacation on day d ∈ D (or he/she got

some special permission that allows him/her not to work, e.g., he/she is sick); 0

otherwise.

Decision variables and related costs

• Xi,d,j,k,z ∈ {0, 1}: 1 if employee i ∈ I has to work in period j ∈ J at activity

z ∈ Zj to perform task k ∈ Kz on day d ∈ D; 0 otherwise.

• LXi,d,j ∈ {0, 1}: 1 if employee i ∈ I has to work in period j ∈ J of day d ∈ D; 0

otherwise.

• Uplusd,j,k,z ∈ N: counts the number of employees in surplus (with respect to

Nd,j,k,z) devoted at activity z ∈ Zj to perform task k ∈ Kz in period j ∈ J of day

d ∈ D.

We denote as f+
d,j > 0 the cost associated with the surplus of one employee in the

period j ∈ J of day d ∈ D.
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• Uminusd,j,k,z ∈ N: counts the number of employees in deficit (with respect to

Nd,j,k,z) devoted at activity z ∈ Zj to perform task k ∈ Kz in period j ∈ J of day

d ∈ D.

We denote as f−d,j > 0 the cost associated with the deficit of one employee in the

period j ∈ J of day d ∈ D.

Note that, since typically stores manager want to penalize deficit more than surplus,

it is f−d,j > f+
d,j.

• Yi,d ∈ {0, 1}: 1 if employee i ∈ I works in day d ∈ D; 0 otherwise.

• W+
i,d,j ∈ {0, 1}: 1 if employee i ∈ I works in day d ∈ D and starts in period j ∈ J ;

0 otherwise.

• W−
i,d,j ∈ {−1, 0}: −1 if employee i ∈ I works in day d ∈ D and finishes in period

j ∈ J ; 0 otherwise.

The following Fig. 5.2 explains the meaning of the above variables. Assume that the

working day starts at time 8.30 and ends at 20.00. Furthermore, assume that shifts

should be multiple of half an hour. Finally, let the first and the second shift of a

certain employee i in day d be as shown in Fig. 5.2. Then, it is W+
i,d,4 = W+

i,d,14 = 1

and W−
i,d,9 = W−

i,d,18 = −1.
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Figure 5.2: W+
i,d,j (W−

i,d,j) is equal to 1 (−1) for the value of period j corresponding to
the beginning (end) of the shift.

Objective Function

As explained in Section 4 we have four soft constraints, 1 to 4, which can be easily imposed

via the minimization of the following performance index consisting in the summation of

four terms, each one associated with a different soft constraint:
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f =
∑

i∈I
∑

d∈D
∑

j∈J W
+
i,d,j

+
∑

d∈D
∑

j∈J
∑

z∈Zj

∑
k∈Kz

Uminusd,j,k,z · f−d,j,k,z + Uplusd,j,k,z · f+
d,j,k,z

+
∑

i∈I
∑

d∈DHplusi,d · fH
+
i,d

+
∑

i∈I
∑

d∈D
∑

j∈J
∑

z∈Zj

∑
k∈Kz

Xi,d,j,k,z ∗ Ci,d,j,k,z

Constraints

In the following all the hard constraints mentioned in Section 4 are formalized in terms of

linear equalities or inequalities.

1. During activity z ∈ Zj in period j ∈ J of day d ∈ D, the number of working

employees required to perform task k ∈ Kz should be possibly equal to Nd,j,k,z. If

such is not feasible, under-manning or over-manning occurs:

∑
i∈I Xi,d,j,k,z − Uplusd,j,k,z + Uminusd,j,k,z = Nd,j,k,z,

∀d ∈ D, ∀j ∈ J , ∀z ∈ Zj, ∀k ∈ Kz.

2. In period j ∈ J of day d ∈ D, employee i ∈ I could be devoted to only one task

k ∈ Kz in one activity z ∈ Zj:∑
k∈Kz

∑
z∈Zj

Xi,d,j,k,z ≤ LXi,d,j, ∀i ∈ I, ∀d ∈ D, ∀j ∈ J .

3. In day d ∈ D employee i ∈ I should not exceed a HDMAX value, unless strictly

necessary to find out a feasible solution:∑
j∈J

LXi,d,j ≤ HDMAX +Hplusi,d, ∀i ∈ I, ∀d ∈ D.

4. In day d ∈ D employee i ∈ I could not work less than DCmax hours:

LXi,d,j +
DCmax∑

t

LXi,d,(j+t) ≤ DCmax, ∀i ∈ I, ∀d ∈ D, ∀j ∈ J −DCmax.
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5. Variables Yi,d and
∑

j∈J LXi,d,j should be related. In particular, it should be:

Yi,d ≤
∑
j∈J

LXi,d,j ≤M ∗ Yi,d, ∀i ∈ I, ∀d ∈ D,

where M is a positive integer greater than or equal to the number of periods in day

d.

6. Employee i ∈ I should work at least DCmin consecutive hours in day d ∈ D. This

can be imposed by the following four constraints:

(a) First, we should impose that W+
i,d,j = 1 if LXi,d,j−1 = 0 and LXi,d,j = 1;

W−
i,d,j = −1 if LXi,d,j−1 = 1 and LXi,d,j = 0 (see Figure 5.2):

LXi,d,j−1 − LXi,d,(j) = W+
i,d,(j) +W−

i,d,(j), ∀i ∈ I,∀j ∈ J \ {1}.

(b) If variable W+
i,d,j = 1, then the consecutive DCmin periods of time must be

equal to 1: ∑DCmin
t=1 LXi,d,(j+t) ≥ (DCmin) ∗W+

i,d,j,

∀i ∈ I, ∀d ∈ D, ∀j ∈ J \ {|J | −DCmin, |J | −DCmin+ 1, · · · , |J |}

(c) In a given day d ∈ D, if employee works in the first period, then the consecutive

DCmin− 1 periods of time must be equal to 1:

DCmin−1∑
t=1

LXi,d,(j+t) ≥ (DCmin− 1) ∗ LXi,d,0 ∀i ∈ I ∀d ∈ D

(d) In a given day d ∈ D, if employee works in the last period l, then the consec-

utive previous DCmin− 1 periods of time must be equal to 1:

DCmin−1∑
t=1

LXi,d,(j−t) ≥ (DCmin− 1) ∗ LXi,d,l ∀i ∈ I ∀d ∈ D

7. At least HBREAKmin periods of break between two shifts in the same day d ∈ D
should be assigned to employee i ∈ I:

W−
i,d,j +

∑HBREAKmin
t=1 LXi,d,(j+1) ≤ 0,

∀i ∈ I, ∀d ∈ D, ∀j ∈ {DCmin,DCmin+ 1, · · · , |J | −DCmin]}.

8. Each employee i ∈ I could not work more than DAY Cmax consecutive days. To

enforce this constraint we need to take into account the shifts assigned to employee

i during the previous week:
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(a) For the first day, bi measures the difference between the number of days in a

week (7) and the number of days that employee i worked after the last day of

rest in the previous week.

d+7−bi∑
t=1

Yi,(d+t) = DAY Cmax− bi, ∀i ∈ I, d = 1.

(b) For the remaining days:∑DAY Cmax
t=0 Yi,(d+t) ≤ DAY Cmax,

∀i ∈ I, ∀d ∈ D \ {|D| −DAY Cmax, |D| −DAY Cmax+ 1, · · · , |D|}.

9. Employee i ∈ I must work exactly HSMAXi hours per week.

7∗(s+1)∑
d=(s∗7)+1

∑
j∈J

LXi,d,j = HSMAXi ∀i ∈ I ∀s ∈ S

10. Each employee i ∈ I should work at most two Sunday per month.

s∑
d=1

Yi,7∗d ≤ 2−
ns−s−1∑
d=0

Yi,7∗d ∀i ∈ I

11. If an employee i ∈ I is in vacation on day d, or he/she got some special permission

that allows him/her not to work, then Yi,d should be equal to 0; otherwise, it could

either be 0 or 1.

Yi,d ≤ 1−Hdayi,d ∀i ∈ I ∀d ∈ D

5.3 Case study

The above mathematical model has been used to solve a scheduling problem on a real

case study in Cagliari (Italy). The considered big store has 11 retail stores in Sardinia

(Olbia, Carbonia, Sestu, Oristano, etc.), including the one in Cagliari. It sells a huge

variety of products for the house and the garden, e.g., furnishings, carpentry, bricolage,

paintings, lighting systems, animal foods and equipments, gardening, and so [22]. Each

store has its own rules. Our model is suitable for all of them even if numerical results are

presented in the following only for the largest and oldest store in Cagliari.

In the considered big store the team of employees consists of |I| = 20 persons: 18

working full time (HSi = 40 hours) and 2 working in part time (HSi = 20 hours). Each

employee (full time and part time) could not work more than HDMAX = 9 hours per
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day. The minimum number of consecutive hours of break between two shifts in the same

day is equal to HBREAKmin = 1.5 hours.

For each employee, the maximum number of consecutive days per week is DAY Cmax =

6. Furthermore, the maximum (minimum) number of consecutive working hours per day

is DCmax = 6.5 hours (DCmin = 3 hours).

The considered store opens at 8:30 am and closes at 8:30 pm. We assume that shifts

are multiple of half an hour. As a consequence, the interval of time in which the store is

opened in partitioned into 24 subintervals, i.e., J = {1, · · · , 24}.
The scheduling is performed over a time horizon of one week, namely it is s = 1.

Moreover, we assume that the current month has 4 weeks, which implies ns = 4.

We deal with the |K| = 9 different tasks summarized in Table 5.1, each one requiring

a specific skill.

K Task

1 store manager

2 cashier 1

3 cashier 2

4 technical sale agent 1

5 technical sale agent 2

6 technical sale agent 3

7 furniture sale agent 1

8 furniture sale agent 2

9 warehouse worker

Table 5.1: Tasks definition

Table 5.2 summarizes the tasks that each employee may execute based on his/her own

skills. Tasks are divided into “main task” and “other tasks”. The “main task” corresponds

to the main skill of the employee and it is the task for which the employee has been hired.

In other words, it is the task that has been considered when fixing his/her salary. The

“other tasks” are tasks that typically require a less qualified skill, so that are usually less

paid. This is taken into account in the problem formulation assigning a smaller value to

the cost Ci,d,j,k,z if k is a “main task” rather than an “other task” for employee i (for a

given triple of values d, j and z).

Employees working part-time are identified by i = 18, 19.
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i main task other tasks

1 1 2-3

2,3 2 3

4 1 2-3-4-5-6-7-8-9

5 4 5-6

6,11,12,13,20 1 2-3-4-5-6-7-8-9

7,8,9,10 4 5-6

14,15 1 4-5-6

16 2 3

17 4 5

18 6 7-8-9

19 6 7-8

Table 5.2: Tasks that can be assigned to employees

We consider |Z| = 4 different activities defined as in Table 5.3.

z set of tasks

1
cashier 1, technical sale agent 1,furniture sale agent 1

warehouse worker, store manager

2
cashier 1, cashier 2, technical sale agent 1

technical sale agent 2, furniture sale agent 1, warehouse worker, store manager

2
cashier 1, cashier 2, technical sale agent 1

technical sale agent 2, furniture sale agent 1, warehouse worker, store manager

4

cashier 1, cashier 2, technical sale agent 1

technical sale agent 2, technical sale agent 3, furniture sale agent 1

furniture sale agent 2, warehouse worker, store manager

Table 5.3: Activities definition

The Figure 5.3 is an example of workforce demand Nd,j,k,z where the day d is fixed.

Periods of time j are reported in the abscissa while in the ordinate we have the number

of employees required for the different tasks k.

For the sake of brevity we do not report the costs Cd,j,k,z’s for all d, j, k, and z. We

only provide in Figure 5.4, the cost Cd,j,k,z for employee i = 5 in a certain day d for the

different tasks he/she can be execute.
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Figure 5.3: An example of worksforce demand for a given day

5.3.1 Web application and numerical simulations

In this subsection we present a web application that has been developed to implement the

proposed approach in a user friendly manner. For a better understanding its description is

done with reference to the considered case study. Therefore, we simultaneously illustrate

the web application and the numerical simulations.

The web application architecture is sketched in Figure 5.5. Python is the main lan-

guage. Furthermore, the micro-service Flask is used to keep the core simple but extensible.

The database mySql is used to store data that are easily input via two interfaces built

using bootsrap and html5.

The mathematical model is developed using the library PULP. Different optimization

software packages can be selected, including Cplex, Gurobi, Xpress, GLPK.

Two screenshots of the interface that we use to enter input data are given in the

following. Figure 5.6 shows how some preliminary settings relative to the big store are

entered. Figure 5.7 shows how data relative to employees are entered, in particular: their

names, their maximum number of working hours per week, their skills.

Two screenshots of the interface that provide output data, namely the results of the

scheduling, are given in the following.

Figure 5.8 shows the screenshot of a summary of the scheduling during a day. Each

column refers to a different employee: here we can read in which time intervals of the

day he/she should work and, inside the green rectangles, the activity (first entry in the

rectangle) and the task (second entry in the rectangle) to whom he/she is devoted. A
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Figure 5.4: An example of the cost Cd,j,k,z for employee i5 in a day d where in the abscissa
there are the periods of time j in the ordinate we have the costs for different skills that
is able to do.
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Figure 5.5: Architecture of the web application

slightly different notation is used here for activities: letters A, B, C, D refer to activities

1, 2, 3, 4, respectively. Figure 5.9 provides a zoom of a part of Figure 5.8. The two

last rows provide a summary of the number of working hours in the day and in the week,

respectively. Again, Figure 5.10 provides a zoom of a part of Figure 5.8.

Finally, the last two columns show how many employees are in surplus (blue rectangles)

and how many employees are in deficit (red rectangles) in each period of time.

Other views, which are not reported here for sake of brevity, can be obtained to get a

clear summary of several issues. Finally, given the current structure of the web application,

it is very easy to further enrich the set of output views, depending on the requirements of

the manager of the retail store.

To show the effectiveness of the proposed approach when applied to the considered
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Figure 5.6: Screenshot of the interface used to enter preliminary settings on the big store

Figure 5.7: Screenshot of the interface used to enter data relative to employees
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Figure 5.8: The resulting scheduling in a certain day

Figure 5.9: A zoom of the first columns and rows of Figure 5.8

Figure 5.10: A zoom of the last two rows of Figure 5.8
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numb. of employees time horizon [weeks] numb. of tasks Gap Time [seconds]

20 1 1512 0.0 91.32

20 2 3024 0.0 1026,97

Table 5.4: Average computational times to compute the scheduling

case study, both in terms of computational times and distance from the optimality, Ta-

ble 5.4 has been reported. A team of N = 20 employees has been considered (first

column), and two different time horizons, one and two weeks (second column) with a

number of tasks equal to 1512 and 3024, respectively (third column). In both cases (1

week and 2 weeks), a set of real data from four different time horizons have been con-

sidered to implement the approach. The average computational times are reported in the

last column. Obviously, it is not linear with the length of the time horizon. Finally, in all

cases, the percentage distance (Gap, fourth column) between the best possible objective

and the best found objective, is null. In all cases, optimization has been performed using

Cplex 12.6.2 on a mac air with 1.3 GHz Intel Core I5, 4 GB of RAM and 4 cores.

We conclude this section pointing out that a numerical comparison with real data is

not provided, since the company currently computes the shifts assignment by hand, so it

is not able to implement all the policies described in Sections 5.2 and 5.3.
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Chapter 6

Conclusions and future work

Manpower planning or scheduling or rostering is the process of constructing work timeta-

bles for its staff so that an organization can satisfy the demand for its goods or services.

It is extremely difficult to find good solutions to these highly constrained and complex

problems and even more difficult to determine optimal solutions that minimize costs,

meet employee preferences, distribute shifts equitably among employees and satisfy all the

workplace constraints. In general, the unique characteristics of different industries and

organizations mean that specific mathematical models and algorithms must be developed

for personnel scheduling solutions in different areas of application.

The application areas in this thesis are: container terminals, hospitals, retail shops.

A short summary of the main contributions is provided in the following items.

• The short-term manpower planning problem plays a crucial role for TCTs, but it

was rarely investigated in the literature. It consists of determining shifts, tasks

and activities of workers, while avoiding both personnel under-manning and over-

manning. The case study of a real TCT has revealed that personnel shifts and vessel

services typically do not overlap, but this problem setting was not investigated.

In order to cover this gap, the problem has been modelled by an integer linear

programming formulation, which can be used for any configuration of personnel

shifts, vessel activities and their possible overlapping.

The optimal solutions of the model have been compared to the decision policy of

this TCT, which ranks activities in a priority list and assigns workers to activities

starting from the topmost task. A key critically in this policy is the unexploited

option of flexible workers, who are assigned to shifts in order to provide a uniform

manpower supply in each day. The motivation of this choice is just the simplicity

of implementation for the TCT, which has no planning tools to evaluate other

manpower configurations rapidly.
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• A Decision Support System to solve the nurse scheduling problem in a long time

horizon is proposed. It is based on the idea of splitting the problem in the whole time

interval (typically one year) in several sub-problems (each one relative to one month)

and update a series of information that could vary in the long time horizon. A linear

integer programming problem has been formulated to optimally solve the problem in

the short time horizon. All short time decisions take into account decisions adopted

in the previous period while inheriting information to be implemented in the current

period. This allows to minimize deficit and surplus in assigning shifts to nurses

in a typical department, while taking into account the required constraints. This

enables to automatically compute a solution that is optimal in the short time period

according to certain criteria, e.g., (1) minimize the number of nurses in deficit,

(2) minimize the difference between the number of hours that each nurse currently

works during a month and the number of hours he/she is expected to work, (3) give

priority to a schedule where free days are assigned consecutively.

Results are validated using real data provided by the surgery department of the

University Hospital in Cagliari, Italy, where shifts are currently assigned manually

by a person devoted to this. This kind of approach could be time consuming

(usually many hours) and, even more, could lead to inefficient schedules, namely

schedules where some constraints are not satisfied. On the contrary, using the

proposed approach, it is possible to reach in few minutes a solution that fulfills all

the constraints.

Thanks to its nice computational performance the proposed model could be usefully

adopted in many occurrences, such as:

– to highlight, face and forecast critical events in a department by simulating emer-

gency situations;

– to adopt, almost in real time, decisions different from those planned, if necessary,

quickly re-optimizing with respect to new unexpected requirements;

– to verify different policies of human resources assignment;

– to avoid unbalances in shifts assignments.

• The problem of automatically scheduling the shifts of employees in a big store is

proposed, taking into account a series of activities that should be performed, and

the individual skills of employees. We focus on short-term scheduling and, as it

typically occurs in this framework, the time horizon is taken equal to one week.

However, the proposed solution is general and can be used even if the time horizon
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is multiple of one week. We assume that a series of information on the current week

are taken into account. The main contribution is a mathematical model that allows

to compute an optimal solution using integer linear programming. Note that, to

make the approach user friendly, an interface is built.

As a future work we plan to extend the above results in the directions summarized in

the following items.

• Research in the field is in progress to model activities, which may not necessarily

overlap with personnel shifts. These activities may span several days and may inter-

play with other activities, which may gain priority in the uncertain environment of

the shipping industry. In a future work, we aim to investigate the short-term man-

power planning problem with stochastic workforce demand and planning horizons

longer than that adopted in this thesis.

• The experimentation in [32] has shown that the proposed TCT policy is very effec-

tive in case of low variance in the daily manpower demand, as it returns the similar

solutions to those obtained by the optimization model. However, the uniform man-

power supply may be ineffective whenever the manpower demand is not uniform

in the daily planning horizon. In fact, in case of medium and high variance, the

model outperforms the terminal policy significantly, because it is able to increase

the manpower in peak demand periods. The experimentation has revealed that this

model can also be used in the case of huge TCTs; in fact all instances are optimally

solved within an acceptable time interval. Research in the field is in progress to

model account for possible sources of randomness, such as vessel delays or service

disruptions. Finally, the model generality may be of interest for other application

areas (e.g. the healthcare).

• As a future work related to nurse rostering, we first plan to consider more general

scenarios, simultaneously dealing with sets of departments who share resources.

Second, we plan to extend the proposed approach in order to be useful for the

computation of summer and winter holidays, keeping into account the data from

the previous years and the specific/personal requirements of the staff. Finally, we

would like to define a user friendly interface that makes the resulting tool appealing

for hospital operators.

• As a future work related to retailer stores, we plan to consider sets of shops sharing

common resources. Then we plan to improve the way the workforce demand is
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computed since it has a strong impact on the effectiveness of the solution. Finally,

we plan to improve our web application making it more flexible and useful in quite

different environments.
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planning incorporating skills: State of the art”, European Journal of Operational

Research, Vol. 243, N. 1, pp.1–16, 2015.

[28] De Bruecker, P., Van den Bergh, J, Belin, J. Demeulemeester, E., “Workforce plan-

ning incorporating skills: State of the art,” European Journal of Operational Re-

search, Vol. 243, N. 1, pp.1-16.

[29] Demassey, S., Pesant, G., Rousseau, L. M.: “Constraint programming based column

generation for employee timetabling,” 7th International Conference on Integration of

AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems (CPAIOR05, Prague, 2005)

[30] Di Francesco, M., Fancello, G., Serra, P. and Zuddas P., “Optimal management of

human resources in transhipment container ports”, Maritime Policy & Management,

Vol. 42, No. 2, pp.127-144, 2015.

[31] Di Francesco, M., Fancello, G., Serra, P. Zuddas, “Optimal Management of Human

Resources in Transhipment Container Ports.,” Maritime policy management, Vol.

42, N. 2, pp.127-144.

[32] M. Di Francesco, N. Diaz-Maroto Llorente, S. Zanda, P. Zuddas, “Planning and

optimising manpower management in a transshipment container terminal,” European

J. of Industrial Engineering (EJIE), Vol. 10, No. 6, 2016

95



[33] M. Di Francesco, N. Diaz-Maroto Llorente,S. Zanda , P. Zuddas , “An optimization

model for the short-term manpower planning problem in transhipment container

terminals,” Computers & Industrial Engineering, Vol. 97, pp. 183–190, 2016.

[34] K A Dowsland and JM Thompson. “Solving a nurse scheduling problem with knap-

sacks, networks and tabu search.,” Journal of the Operational Research Society, Vol.

51, pp. 825–833, 2000.

[35] Kathryn Dowsland. “Nurse scheduling with tabu search and strategic oscillation.,”

European Journal of Operational Research, Vol. 106, pp. 393–407, 1998.

[36] Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: “Staff scheduling and rostering:

A review of applications, methods and models.,” European Journal of Operational

Research, Vol. 153, pp. 3–27, 2014.

[37] A.T. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier, “Staff scheduling and rostering:

A review of applications, methods and models,”, European Journal of Operational

Research, Vol. 153, pp. 327, 2004.

[38] N. Fan, S. Mujahid, J. Zhang, P. Georgiev, P. Papajorgji, P. Pardlos, “Nurse schedul-

ing problem: An integer programming model with a practical application”, Systems

analysis tools for better health care delivery, Vol. 74, pp 65-98, New York: Springer,

2013.

[39] M. Gamache and F. Soumis, “A method for optimally solving the rostering problem,”

in: OR in Airline Industry, (Kluwer Academic, Boston, 1998) pp. 124–157.

[40] Glover F., McMillan C.,“The general employee scheduling problem: an integration

of management science and artificial intelligence.” Comput Oper Res, Vol. 13, pp.

563–593, 1986.

[41] Hartmann, S. “A general framework for scheduling equipment and manpower at

container terminals”, OR Spectrum, Vol. 26, No. 1, pp.51–74, 2004.

[42] Hartmann, S., “A general framework for scheduling equipment and manpower at con-

tainer terminals.Container Terminals and Automated Transport Systems.,” Springer

Berlin Heidelberg, pp.207-230

[43] M. Isken, “An implicit tour scheduling model with applications in healthcare,” Annals

of Operations Research, Vol. 128, pp. 91–109, 2004.

96



[44] Isken M.W. “An implicit tour scheduling model with applications in healthcare.” Ann

Oper Res Vol. 128, pp. 91–109, 2004.

[45] zgr Kabak, Fsun lengin, Emel Akta, ule nsel ,Y. Ilker Topcu. “Efficient shift scheduling

in the retail sector through two-stage optimization.” European Journal of Operational

Research, Vol. 184, pp. 76–90, 2008.

[46] Kim, K.H., Kim, K.W., Hwang, H. Ko, C.S., “Operator-scheduling using a con-

straint satisfaction technique in port container terminals.,” Computers Industrial

Engineering, Vol. 46, N. 2, pp.373–381.

[47] Kim, K.H., Kim, K.W., Hwang, H. and Ko, C.S. “Operator-scheduling using a con-

straint satisfaction technique in port container terminals”, Computers & Industrial

Engineering, Vol. 46, No. 2, pp.373–381, 2004.

[48] Shunyin Lam, Mark Vandenbosch, Michael Pearce. “Retail sales force scheduling

based on store traffic forecasting.” European Journal of Operational Research, Vol.

74, pp. 61–88, 1998.

[49] Lauer J, Jacobs LW, Brusco MJ, Bechtold S.E. “An interactive, optimization-based

decision support system for scheduling part-time, computer lab attendants.” Omega,

Vol. 22, pp. 613–626, 1994.

[50] Legato, P. Monaco, M.F., “Human resources management at a marine container

terminal.,” European Journal of Operational Research, Vol. 156, N. 3, pp.769-781.

[51] Li, M-K. “A method for effective yard template design in container terminals”, Eu-

ropean Journal of Industrial Engineering, Vol. 8, No. 1, pp.1–21, 2014.

[52] Lim, A., Rodrigues, B., Song, L., “Manpower allocation with time windows,” Journal

of the Operational Research Society, Vol. 55, N. 11, pp.1178–1186.

[53] Legato, P. and Monaco, M.F. “Human resources management at a marine container

terminal’, European Journal of Operational Research, Vol. 156, No. 3, pp.769–781,

2004.

[54] Lim, A., Rodrigues, B., and Song, L. “Manpower allocation with time windows’,

Journal of the Operational Research Society, Vol. 55, No. 11, pp.1178–1186, 2004.

[55] B. Maenhout, M. Vanhoucke, “An integrated nurse staffing and scheduling analysis

for longer-term nursing staff allocation problems,” Omega, Vol. 41, n. 2, pp. 485–

499, 2013.

97



[56] H.H. Millar, M. Kiragu, “Cyclic and non-cylcic scheduling of 12h shift nurses by

network programming,” European Journal of Operational Research, Vol. 104, n. 3,

pp. 582–592, 1998.

[57] H.H. Millar, M. Kiragu, “Cyclic and non-cylcic scheduling of 12h shift nurses by

network programming,” European Journal of Operational Research, Vol. 104, N. 3,

pp. 582–592, 1998.

[58] M. Moz, M. Pato, “Solving the problem of rerostering Nurse schedules with hard

constraints: New multicommodity flow models,” Annals of Operations Research, Vol.

128, pp. 179–197, 2004.

[59] Nearchou, A.C. and Lagodimos, A.G. “Heuristic solutions for the economic manpower

shift planning problem”, European Journal of Industrial Engineering, Vol. 7, No. 6,

pp.657–686, 2013.

[60] Notteboom, T.E. “The Time Factor in Liner Shipping Services”, Maritime Economics

& Logistics, Vol. 8, No. 1, pp.19–39, 2006.

[61] M. Ohki, S.-Y. Uneme, H. Kawano, “Effective mutation operator and parallel pro-

cessing for nurse scheduling”, In V. Sgurev, M. Hadjiski, J. Kacprzyk (Eds.) Intel-

ligent systems: From theory to practice, Vol. 299, pp 229–242, Berlin, Heidelberg:

Springer, 2010.

[62] S. Zanda, C. Seatzu, P. Zuddas, “Long term nurse scheduling via a decision support

system based on linear integer programming: A case study at the University Hospital

in Cagliari,” Computers & Industrial Engineering, 2018.

[63] H.W. Purnomo, J.F. Bard, “Cyclic preference scheduling for nurses using branch and

price,” Naval Research Logistics, Vol. 54, N. 2, pp. 200–220, 2007.

[64] Purnomo HW, Bard JF “Cyclic preference scheduling for nurses using branch and

price.” Nav Res Logist Vol. 54, pp. 200–220, 2007.

[65] R.C. Carrasco, “Long-term staff

[66] Roja Z, Kalkis V, Vain A, Kalkis H, Eglite M “Assessment of skeletal muscle fatigue

of road maintenance workers based on heart rate monitoring and myotonometry.” J

Occup Med Toxicol, pp. 1–20, 2007.

98



[67] M. Sanja Petrovic, “You have to get wet to learn how to swim applied to bridging the

gap between research into personnel scheduling and its implementation in practice,”

PATAT 2016.

[68] K. Satheesh Kumar, G. Nagalakshmi, S. Kumaraguru, “A shift sequence for nurse

scheduling using linear programming problem,” Journal of Nursing and Health Sci-

ence, Vol. 3, N. 6, pp. 24–28, 2014.

[69] Serra, P., Fadda, P. and Fancello, F. “Evaluation of alternative scenarios of labour

flexibility for dockworkers in maritime container terminals’, Maritime Policy & Man-

agement, DOI: 10.1080/03088839.2015.1043752, 2015.

[70] P. Smet, F. Salassa, G. Vanden Berghe, “Local and global constraint consistency in

personnel rostering,” Int. Trans. in Operation Research, pp. 1–19, 2016.

[71] Stahlbock, R. Voss, S., Operations research at container terminals: a literature

update,” OR Spectrum, Vol. 30, N. 1, pp.1–52. Stahlbock, R. Voss, S. (2008).

Operations research at container terminals: a literature update. OR Spectrum, Vol.

30, N. 1, pp.1–52.

[72] Stahlbock, R. and Voss, S. “Operations research at container terminals: a literature

update’, OR Spectrum, Vol. 30, No. 1, pp.1–52, 2008.

[73] Thompson GM, Goodale JC (2006) Variable employee productivity in workforce

scheduling. Eur J Oper Res, vOL. 170, PP. 376–390, 2006.

[74] S. Topaloglu, H. Selim, “Nurse scheduling using fuzzy modeling approach,” Fuzzy

Sets and Systems, Vol. 161, n. 11, pp. 1543–1563, 2010.

[75] L. Trilling, A. Guinet, D. Le Magny, “Nurse scheduling using integer linear program-

ming and constraint programming,” 12th IFAC Symposium on Information Control

Problems in Manufacturing, Saint-Etienne, France, 2006.

[76] UNCTAD “Review of Maritime Transport”, Technical report, United Nations, New

York and Geneva, 2014.

[77] Vakharia AJ, Selim HS, Husted RR, Efficient scheduling of part-time employees.

Omega Vol. 20, pp. 201–213, 1992.

[78] Christos Valouxis, Christos Gogos, George Goulas, Panayiotis Alefragis, Efthymios

Housos, “A systematic two phase approach for the nurse rostering problem,” Euro-

pean Journal of Operational Research, Vol. 219, pp. 425–433, 2012.

99



[79] Christos Valouxis, Christos Gogos, George Goulas, Panayiotis Alefragis, Efthymios

Housos, “A systematic two phase approach for the nurse rostering problem,” Euro-

pean Journal of Operational Research, Vol. 219, pp. 425–433, 2012.

[80] Vernimmen, B., Dullaert, W. and Engelen S. ‘Schedule Unreliability in Liner Shipping:

Origins and Consequences for the Hinterland Supply Chain’, Maritime Economics &

Logistics, Vol. 9, No. 3, pp.193–213, 2007.

[81] S. Zanda, P. Zuddas, C. Seatzu, ”Short term manpower scheduling in retailer stores”,

computers and industrial engineering (in preparation)

[82] Z. Zhang, Z. Hao, H. Huang, “Hybrid swarm-based optimization algorithm of GA &

VNS for nurse scheduling problem”, In B. Liu, C. Chai (Eds.) Information computing

and applications, Vol. 7030, pp 375–382, Berlin, Heidelberg: Springer, 2011.

100


	Introduction
	Linear integer programming 
	The linear programming problem 
	Linear programming modeling 
	Geometric solution
	Modeling with integer variables
	Branch and bound
	Cutting plane techniques

	Short-term manpower planning in transhipment container terminals
	The manpower planning problem in transhipment container terminals
	First manpower policy
	Mathematical model
	The case study
	The manpower policy
	Analysis of the manpower policy

	The clustered flexibility
	QCs shift splitting

	Second manpower policy
	Mathematical model
	Case study
	Testing


	Long-term nurse scheduling 
	Literature review
	Problem description
	Mathematical model
	The case study
	Testing

	Short-term manpower scheduling in retailer stores
	Problem Statement and proposed solution
	The integer linear programming model
	Case study
	Web application and numerical simulations


	Conclusions and future work
	Bibliography

