
Assessing Sofware Quality by
Micro Patterns Detection

Giuseppe Destefanis
DIEE

University of Cagliari

Advisor: Prof. Michele Marchesi - Co-Advisor: Prof. Giulio Concas

Curriculum: ING-INF/05

Cycle XXV

A thesis submitted for the degree of

PhilosophiæDoctor (PhD) in Computer Science and Electronic Engineering

A.Y. 2011/2012

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Thesis overview . 2

2 Software Metrics 5

2.1 Software Metrics Classification . 6

2.2 Object-Oriented Metrics . 7

2.2.1 CK Metrics Suite . 8

3 Design Pattern 13

3.1 Introduction . 13

3.2 Good programming practices . 17

3.2.1 Delegation . 18

3.3 Creational Patterns . 18

3.4 Structural Patterns . 19

3.5 Behavioral Patterns . 20

4 Micro patterns catalog 23

4.0.1 Degenerate State and Behavior 25

4.0.2 Degenerate Behavior . 26

4.0.3 Degenerate State . 28

4.0.4 Controlled Creation . 28

4.0.5 Wrappers . 29

4.0.6 Data Managers . 30

iii

CONTENTS

4.0.7 Base Classes . 30

4.0.8 Inheritors . 32

5 Interpretation of Micro Patterns 35

5.1 Introduction . 35

5.2 A new interpretation . 36

6 Anti patterns 43

6.1 Definition of the anti-patterns . 43

6.2 Experimental results . 45

6.3 Relationship with faults . 45

6.4 Correlation between Anti Patterns . 48

6.5 Discussion . 49

6.6 Threats to validity . 50

7 Micro pattern Fault Proneness 51

7.0.1 Introduction . 51

7.1 Methodology . 52

7.2 Results . 52

7.2.0.1 Big Systems . 60

7.2.0.2 Small Systems . 60

7.3 Threats to validity . 62

8 Micro pattern in Agile software 63

8.1 Introduction . 63

8.2 Methodology . 64

8.3 Results . 65

8.3.1 Survey . 66

8.3.2 Source code analysis . 67

8.3.3 Micro patterns and faults . 68

8.3.4 Discussion . 69

8.4 Threats to validity . 70

iv

CONTENTS

9 The Java Tool 75

9.1 The Eclipse Rich Client Platform . 75

9.2 The Java plug-in . 76

10 Related Works 79

11 Conclusions 81

12 Appendix 85

12.1 Consideration about the relationships between Micro Patterns and Tra-

ditional Software Metrics . 85

13 List of Publications Related to the Thesis 87

References 89

v

CONTENTS

vi

List of Figures

4.1 Micro patterns catalog . 24

6.1 Coverage of all 27 micro patters . 45

6.2 Percentual Presence of Anti Patterns . 46

6.3 Eclipse 2.1 . 47

6.4 Eclipse 3.0 . 47

6.5 Eclipse 3.1 . 48

6.6 Correlation between anti patterns . 48

7.1 Coverage of all 27 micro patterns (black line: Small Systems - grey line:

Big Systems) . 58

8.1 Left side: floss-AR - Right side: Japs . 68

9.1 System architecture view . 76

12.1 OO class metrics (Average for each categories of micro patterns) 86

vii

LIST OF FIGURES

viii

List of Tables

4.1 Micro pattern definition by Gil and Maman 34

7.1 Correlation between micro patterns . 54

7.2 Fault proneness . 56

7.3 Average of faults . 57

7.4 Contingency table . 58

7.5 Contingency table Eclipse 2.1 . 59

7.6 Contingency table Eclipse 3.0 . 59

7.7 Contingency table Eclipse 3.1 . 59

7.8 Contingency table Tomcat 6.0 . 60

7.9 Contingency table Ant 1.6 . 60

7.10 Contingency table Ant 1.7 . 61

7.11 Contingency table Lucene 2.2 . 61

7.12 Contingency table Lucene 2.4 . 61

8.1 floss-AR developers survey (5 developers) 71

8.2 floss-AR developers survey (5 developers) 71

8.3 floss-AR developers survey (5 developers) 71

8.4 jAPS micropattern distribution (%) . 72

8.5 floss-AR micro patterns distribution (%) 73

8.6 FlossAR fault-prone analysis . 74

ix

LIST OF TABLES

x

1

Introduction

One of the goals of Software Engineering is to reduce, or at least to try to control, the

defectiveness of software systems during the development phase. Software engineers

need to have empirical evidence that software metrics are related to software quality.

Unfortunately, software quality is quite an elusive concept, software being an immaterial

entity that cannot be physically measured in traditional ways. In general, software

quality means many things.

In software, the narowest sense of product quality is commonly recognized as ab-

sence or low incidence of bugs in the product. It is also the most basic meaning of

confermance to requirements, because if the software contains too many functional

defects, the basic requirement of providing the desired function is not met.

To increase overall customer satisfaction as well as satisfaction toward various qual-

ity attributes, the quality attributes must be taken into account in the planning and

design of software.

To improve quality during development, we need models of the develompment pro-

cess, and within the process we need to select and deploy specific methods and ap-

proaches, and employ proper tools and technologies. It is necessary to know measures

of the characteristics and quality parameters of the development process and its stages,

as well as metrics and models to help ensure that the development process is under

control to meet the product’s quality objectives.

Software quality metrics tend to measure whether software is well structured, not

too simple and not too complex, with cohesive modules that minimize their coupling.

Many quality metrics have been proposed for software, depending also on the paradigm

1

1. INTRODUCTION

and languages used there are metrics for structured programming, object-oriented pro-

gramming, aspect-oriented programming, and so on.

The use of traditional metrics as quality indicators is very di�cult. The Lines

of Code (LOC) metric (very related to faults), is di�cult to use, you can not say to

a team of developers to develop classes by imposing a predefined number of lines of

code. The use of the micro patterns (introduced by Gil and Maman (1)) metrics, that

capture concepts of good or bad programming (like anti patterns) can help developers

to focus on those classes that belong to categories of micro patterns prone to fault. The

relationship between traditional metrics and micro patterns is useful for enabling these

new metrics to evaluate software quality. Micro patterns are similar to design patterns,

but their characteristic is that they can be identified automatically, and are at a lower

level of abstraction with respect to design patterns (4).

This thesis tackles the problem of measuring software quality in Object Oriented

(OO) systems by using such novel approaches based on micro patterns that can be

a useful metrics in order to measure the quality of software by showing that certain

categories of micro patterns are more fault prone than others, and that the classes

that do not correspond to any category of micro patterns are more likely to be faulty.

Many empirical studies were performed to validate empirically CK suite under these

two aspects, showing an acceptable correlation between CK metrics values and software

fault-proneness and di�culty of maintenance.

In OO, micro patterns can help to identify the portions of code that should be

improved (for example those where encapsulation is not respected), and highlight other

portions that make up good design practices. The design patterns, defined in the

early nineties (4) were an important breakthrough at analysis and design level, but are

di�cult to be automatically supported at the coding level. There are tools claiming

to help finding the usage of design patterns in code, but in practice they are used in a

very limited way. On the contrary, micro patterns are defined at coding level, and it is

relatively easy to recognize them automatically, thus being able to implement formal

conditions on the structure of the class.

1.1 Thesis overview

The thesis is organized according to this scheme:

2

1.1 Thesis overview

• Chapter 2 provides an overview of the concept of software metrics;

• Chapter 3 presents an overview of the design patterns catalogs (4);

• Chapter 4 discusses the micro patterns catalog using the definitions made by Gil

and Maman (1);

• Chapter 5 discusses the interpretation of Micro Patterns given by Arcelli and

Maggioni (2) (3);

• Chapter 6 present the study of the evolution of five particular micro patterns

(anti patterns) in di↵erent releases of the Eclipse and NetBeans systems, and

the correlations between anti patterns and faults. The analysis confirms previous

findings regarding the high coverage of micro patterns onto the system classes,

and show that anti patterns not only represent bad Object Oriented programming

practices, but may also be associated to the production of worse quality software,

since they present a significantly enhanced fault proneness.

• Chapter 7 present a study that aims to show, through empirical studies of open

source software systems, which categories of micro patterns are more correlated

to faults. Gil and Maman demonstrated, and subsequent studies confirmed, that

75% of the classes of a software system are covered by micro patterns. In this

chapter is also analyzed the relationship between faults and the remaining 25%

of classes that do not match with any micro pattern. We found that these classes

are more likely to be fault-prone than the others. We also studied the correlation

among all the micro patterns of the catalog, in order to verify the existence of

relationships between them.

• Chapter 8 present a study on micro patterns in di↵erent releases of two software

systems developed with Object Oriented technologies and Agile process. In this

chapter we present some empirical results on two case studies of systems devel-

oped with Agile methodologies, and compare them to previous results obtained

for non Agile systems. In particular we have verified that the distribution of

micro patterns in a software system developed using Agile methodologies does

not di↵er from the distribution studied in other systems, and that the micro pat-

terns fault-proneness is about the same. We also analyzed how the distribution

3

1. INTRODUCTION

of micro patterns changes in di↵erent releases of the same software system. We

demonstrate that there is a relationship between the number of faults and the

classes that do not match with any micro patterns. We found that these classes

are more likely to be fault-prone than the others even in software developed with

Agile methodologies

• Chapter 9 present the Java tool used in order to extract from the source code the

informations about micro patterns distributions.

• Chapter 10 discusses the related works in the field.

4

2

Software Metrics

Measurement is an inherent and fundamental activity of all engineering disciplines that

provides the ability to control activities, products and resources of a specific process.

Compared with other traditional engineering disciplines, software engineering is the

youngest and most immature, but it is surprising how fast, above all during the last

decade, software engineering has increased its power to deliver and produce large, reli-

able and high quality software systems. New methodologies, techniques, process models

and tools have been proposed and successfully applied to improve and support the pro-

duction of high quality software systems. The aim of software engineering is to provide

the technologies which apply an engineering approach to the development and support

of software products and processes. Software engineering activities includes managing,

planning, modeling, analyzing, designing, implementing, testing and maintaining. To

achieve this goal measurement plays a key role, allowing to understand, control and

improve software development processes and products. Measurement is fundamental

during each step of software development:

• to support project planning;

• to determine the strengths and weaknesses of the current processes and products;

• to evaluate the quality of specific processes and products;

• to assess project progress;

• to take corrective actions and evaluate the impact of such actions.

5

2. SOFTWARE METRICS

Measurement becomes essential to provide visibility to entities and relationships,

to quantitatively assessing problems and to suggest adequate solution scenarios. It

happens at all di↵erent levels of details and abstraction, helping engineers to make

the better decision about methodologies, techniques and tools to improve or to simply

understand the status of processes, products and resources.

2.1 Software Metrics Classification

The first obligation of a measurement process is to establish what to measure. This is

a general concept whose validity also address software engineering. Thus, the primary

objective in applying a measurement approach upon software development is to identify

the entities and attributes to be measured. Following Fenton (34) software entities may

be of three di↵erent types:

• Processes: a collections of related software engineering activities.

• Products: an artifacts produced as output of any software engineering activity.

• Resources: an artifacts required as input of any software engineering activity.

The activities of a process are related in some way which depends on time. Resources

and products are related with processes. Each process activity is characterized by the

resources it uses and by the products it produces. Any artifact can be considered both

a resources or a product according to the specific associated process. More specifically,

an artifact produced by a specific activity can feed another activity. Measurement is

the activity of quantify in some way any attribute of a process, product or resource. It

is possible to characterize its attributes as:

• Internal Attributes of a process, product or resource are those that can be mea-

sured in terms of the sole process, product or resource. Thus, internal attribute

can be measured considering the process, product or resource on its own, inde-

pendently of its behavior.

• External attributes of a process, product or resource are those that can not be

measured in terms of the sole process, product or resource. Thus, external at-

tribute can only be measured considering the process, product or resource related

6

2.2 Object-Oriented Metrics

with the external environment and context. In this case the behavior becomes as

important as the entity itself.

For any industrial process quality and productivity are indeed the most important

parameters to be controlled and quantitatively assessed. This is true for industrial soft-

ware development, too. Nevertheless, a formal definition of terms such like quality and

productivity is far to be simple. Typically, business level roles, such as managers and

customers, are more interested on external attributes, because quality and productiv-

ity are expressed in terms of such kind of attributes. For example, Boehem expressed

software quality in terms of portability, reliability, e�ciency, human engineering, testa-

bility, understandability and modifiability. Thus, quality attribute is decomposed in

other external attributes, which in turn are still far to be simply definable. In prac-

tice, the decomposition goes on in order to finally express external attributes in terms

of internal attributes, which are directly measurable. Similarly, McCall proposed an

alternative model, which became the basis for the ISO 9126 software quality standard.

The standard express quality again in terms of external attributes like functionality, re-

liability, usability, e�ciency, maintainability and portability. While external attributes

are highly important on business level, internal attributes are fundamental as they are

the ones that can be directly measured. Internal attributes represent the last step

on the decomposition of external attributes, that is, external attributes are typically

quantified in terms of internal attributes. Early and modern approaches such like

top-down design, low-coupling-high-cohesion structured design, object orientation and

design patterns are all based on a common principle: good internal structure leads to

good external quality. This principle underlines the tight relationships between internal

and external attributes and points that the establishment of a good level of desirable

internal attribute leads to the consequent establishment of a good level of the high

abstraction desirable attributes.

2.2 Object-Oriented Metrics

This section starts with a synthetic description of OO concepts, to achieve the applica-

tion and the extension of software measurement principles for OO systems. After that

the main OO metrics proposed in the software engineering literature will be presented.

OO is an optimal paradigm to successfully apply the divide et impera principle for

7

2. SOFTWARE METRICS

managing the high complexity of large systems. OO systems are composed of objects

which represent the abstraction of a real objects within an existing application domain.

OO systems are made of interacting objects at runtime, which reside in the computer

memory and hold the data to be processed. Objects are characterized by state and

behavior; the state represents the internal information structure, whereas the behav-

ior represents the way they can interact with each other. Objects interact by sending

messages, and when this occurs they are coupled. Objects are described by classes,

the basic OO building components; classes specify how to instantiate objects. People

who create, maintain or improve OO software face problems such as handling software

components. This mental burden can be described as cognitive complexity. High cog-

nitive complexity can determine component with undesirable external qualities, like

in- creased bug-proneness or reduced maintainability. Cognitive complexity depends

on the internal characteristics of the class and its interconnections with others. OO

metrics try to measure this complexity taking into account three elements:

• Coupling: it measures the static usage dependencies among class in an object-

oriented system.

• Cohesion: it describes to which extent the methods and attributes of a class

belong together.

• Inheritance: it evaluates to what extent classes reuse code.

2.2.1 CK Metrics Suite

Chidamber and Kemerer (35) have suggested a suite of six object oriented design met-

rics. The theoretical basis for the definition of such metrics, is the set of ontological

principles proposed by Bunge (36) and later applied to the formal definition of object

oriented systems by Wand and Weber (37). The Bunge ontology has largely interested

researchers involved in the formal modeling of object orientation, since it deals with

concepts inherent to the real world, which is the claimed basis of object oriented ap-

proach. According to Bunge ontology the world is viewed as composed of substantial

individuals having a finite set of properties. These concepts can be formally translated

and encapsulated in the object oriented paradigm definition, where an object is equiv-

alent to a substantial individuals collectively considered with its properties. Similarly,

8

2.2 Object-Oriented Metrics

attributes such as coupling, cohesion, complexity and inheritance can be defined in

terms of Bunge ontology. This approach provides for the first time a theoretical and

formal basis of metrics definition. As pointed by Chidamber and Kemerer themselves,

not only previous attempt to define object oriented metrics, but more generally the

large part of traditional metrics definition lacked such theoretical basis. In this section

we will present the CK Suite metrics and discuss them in terms of their implementa-

tion and empirical validation. All the following definitions are directly referred to the

original paper.

• WMC - Weighted Methods per Class

Definition: consider a class C, with methods M1,...,Mn that are defined in the

class. Let c1,...,cn be the complexity1 of methods. Then:

nX

i=1

ci

If all method complexities are considered to be unity, then WMC is the number

of methods (NOM) for the class C:

WMC = NOM = n

Interpretation: this metric measure class complexity. The number of methods

and their complexity are predictors of the e↵ort required to develop and maintain

the class. The larger the number of methods, the greater the potential impact on

children classes, as they inherit all methods of parent classes. Moreover, a class

with a large number of methods are likely to be application specific, limiting the

possibility of reuse.

• DIT - Depth of Inheritance Tree

Definition: the DIT metric is the number of ancestors of a given class, that is the

number of nodes (classes) to be crossed to reach the root of the inheritance tree.

In cases involving multiple inheritance, the DIT will be the maximum length from

the node to the root of the tree.

Interpretation: DIT is a meusere of how many ancestors may potentially a↵ect

a class. The deeper a class is in the hierarchy tree, the greater the probability

9

2. SOFTWARE METRICS

of inherit a large number of methods, thus increasing class complexity. On the

other hand, the deeper a class is in the inheritance tree, the greater the potential

level of reuse of inherited methods.

• NOC - Number of Children

Definition: the NOC metric is the number of immediate subclasses subordinated

to a class in the class hierarchy.

Interpretation: NOC is a measure of how a class can potentially a↵ect its sub-

classes. The greater the number of children, the larger the level of reuse. On

the other hand, a high value for this metric may warn a misuse of inheritance

mechanism.

• CBO - Coupling Between Object Classes

Definition: the CBO metric for a given class is a count of the number of other

classes to which it is coupled.

Interpretation: two classes are coupled when methods declared in one class uses

methods or instance variables defined by other class. High coupling negatively

a↵ects modularity of the design. In order to promote encapsulation and improve

modularity, class coupling must kept to the minimum.

• RFC - Response For a Class

Definition: the RFC metric is the cardinality of the response set for a class. Given

a class C, with methods M1,...,Mn, let Ri with i = 1, .., n to be the set of methods

called by Mi. Thus, the response set for the class C is defined as:

RC =
n[

i=1

ci

the RFC metric is then given by:

RFC = |RC|

Interpretation: the response set for a class is the number of methods that can

be potentially executed in response of a message received by an object of that

10

2.2 Object-Oriented Metrics

class. This is a measure of the communication of the class with other classes in

the system. The greater the number of methods that can be invoked by a class,

the larger the complexity of the class. RFC gives a measure of the e↵ort required

for maintain a class in terms of testing time.

• LCOM - Lack of Cohesion in Methods

Definition: Given a class C, with methods M1,...,Mn, let Ii with i = 1,..,n, to be

the set of instance variables accessed by Mi. We define the cohesive method set

and the non-cohesive method set as:

CM = {(Mi,Mj)|Ii \ Ij 6= �, i 6= j}

NCM = {(Mi,Mj)|Ii \ Ij = �, i 6= j}

the LCOM metric is then given by:

LCOM =

⇢
|NCM |� |CM | , if |NCM | > |CM |
0, otherwise

Interpretation: the LCOM metric is refers to the notion of degree of similarity in

methods. The degree of similarity is formally given by:

�(Mi,Mj)Ii\ = Ij

The larger the number of similar methods, the more cohesive the class. This

approach is coherent with traditional notion of cohesiveness, which is intended to

account the interrelation of di↵erent part of a program. Cohesiveness of methods

in a class is a desirable attribute, since it promotes encapsulation. Lack of cohe-

sion implies classes should probably split into two or more specialized subclasses.

The object oriented approach has been claimed as a key technology to better man-

age software complexity and to provide improvement of systems quality. The object

oriented research mainly has been studying the relationship between object oriented

metrics and quality in terms of defects, if |NCM | > |CM | otherwise specifically those

reported during customer acceptance testing. Defect density is considered to be an

11

2. SOFTWARE METRICS

indicator of fault proneness at class level and then a measure of maintenance e↵ort.

Similarly, defect density is reasonably related with extent of code change, which is

again a surrogate measure of maintainability. Early studies found the existence of a

relationship between defects and both traditional complexity measures, such as the Mc-

Cabe ciclomatic complexity, and size measures, such as the LOC family metrics. More

recently many empirical experiments have been performed to find similar relationships

between defects and object oriented metrics such like the Chidamber and Kemerer

metrics previously described.

Although the CK metrics have been validated by a large number of studies, the

literature presents also criticism mainly on a theoretical basis (7) (8). Furthermore,

the CK suite does not cover potential complexity that arises from certain other OO

design factors such as encapsulation and polymorphism.

12

3

Design Pattern

3.1 Introduction

Design patterns were introduced in 1995 by Erich Gamma, Richard Helm, Ralph John-

son and John Vlissides almost as a philosophical current (4). A pattern describes a

problem that frequently occurs and proposes a possible solution in terms of the orga-

nization of classes / objects that are generally recognized like a good solution to solve

the problem.

Design patterns are characterized by four main elements:

• Name - mnemonic reference that allow to increase the vocabulary of technical

terms and allows us to identify the problem and the solution in one or two words;

• Problem - a description of the problem and the context in which the pattern could

provide a solution;

• Solution - describes the basic elements that constitute the solution and the rela-

tionships between these

• Consequences - specifies the possible consequences that the application of the

proposed solution can provide. Refer for example to possible problems of space or

e�ciency of the solution, or with applicability to specific programming languages;

When a design pattern is generally accepted by a community of developers this

pattern becomes an excellent tool for the documentation of the software. There are

13

3. DESIGN PATTERN

examples of applications fully described through the use of design patterns (JUnit is

one of this).

The Design Pattern are referred to the reuse of a design point involving di↵erent

aspects like:

• Economic aspects: they reduce the time and the cost for the design of the indi-

vidual modules;

• Technical aspects: they reduce project risks and the possibility of errors in the

project. Solution implemented and reused multiple times and you can predict a

priori characteristics (eg behavior of non-functional)

• Anthropological Appearance: simplifies the understanding of the project by pro-

viding a clear third level of abstraction;

The definitions of collections of patterns in a specific application domain, is the

first step to establish a context for reuse. In the book of the Gang of Four patterns are

described by the following points:

• Name: summarizes the essence of the pattern. The objective is to expand the

vocabulary of the project.

• Intent: It is a description that tries to answer to two questions: what does the

Design Pattern do? Which design problems the dp aims to solve?

• Aka (Also known as): Any other names that identify the pattern.

• Motivation: Scenario that illustrates the problem and how the pattern provides

a solution.

• Applicability: situations of applicability of the pattern and directions on how to

recognize these situations.

• Structure: the graphical representation of the involved classes (using UML) and

their relationships.

• Participants: the classes involved in the pattern, their relationships and their

responsibilities (class diagram, object ed activity diagram)

14

3.1 Introduction

• Collaborations: How the di↵erent classes work together to achieve the goals (se-

quence diagram).

• Consequences: advantages and disadvantages of the use of the pattern and pos-

sible side e↵ects in the use of the pattern.

• Implementation: tips and techniques for implementation with reference to specific

programming languages.

• Sample source code: code snippets that provide guidance on the implementation.

• Known uses: examples of the use of the patterns in existing systems.

• Related Patterns: Di↵erences and most important relationships with other pat-

terns and typical concomitant use.

The design patterns are classified by two criteria. The first criterion, called pur-

pose, reflects what a pattern does. Patterns can have either creational, structural, or

behavioral purpose.

• Creational patterns concern the process of object creation.

• Structural patterns deal with the composition of classes or objects.

• Behavioral patterns characterize the ways in which classes or objects interact and

distribute responsibility.

The second criterion, called scope, specifies whether the pattern applies primarily

to classes or to objects. Class patterns deal with relationships between classes and

their subclasses. These relationships are established through inheritance, so they are

staticfixed at compile-time.

Object patterns deal with object relationships, which can be changed at run-time

and are more dynamic. Almost all patterns use inheritance to some extent. So the only

patterns labeled class patterns are those that focus on class relationships. Note that

most patterns are in the Object scope. Creational class patterns defer some part of

object creation to subclasses, while Creational object patterns defer it to another object.

The Structural class patterns use inheritance to compose classes, while the Structural

object patterns describe ways to assemble objects. The Behavioral class patterns use

15

3. DESIGN PATTERN

inheritance to describe algorithms and flow of control, whereas the Behavioral object

patterns describe how a group of objects cooperate to perform a task that no single

object can carry out alone.

Design patterns solve many of the day-to-day problems object-oriented designers

face, and in many di↵erent ways. Here are several of these problems and how design

patterns solve them.

Design Patterns help to simplify the design of a software system:

• Identification of necessary objects: decomposing a system into objects is the most

di�cult task in the object oriented design. The task is di�cult because many

factors come into play: encapsulation, granularity, dependency, flexibility, per-

formance, evolution, reusability, and on and on. Design patterns help to identify

less-obvious abstractions and the objects that can capture them. For example,

objects that represent a process or algorithm don’t occur in nature, yet they are

a crucial part of flexible designs.

• Determining Object Granularity: objects can vary in size and number. They

can represent everything down to the hardware or all the way up to entire ap-

plications. The application of a particulary pattern implies the evaluation of the

granularity of the system. There are patterns that allow to represent complete

subsystems with very simple objects. (The Facade pattern describes how to rep-

resent complete subsystems as objects, and the Flyweight pattern describes how

to support huge numbers of objects at the finest granularities.)

• Specifying Object Interfaces: Every operation declared by an object specifies the

operation’s name, the objects it takes as parameters, and the operation’s return

value. This is known as the operation’s signature. The set of all signatures

defined by an object’s operations is called the interface to the object. An object’s

interface characterizes the complete set of requests that can be sent to the object.

Any request that matches a signature in the object’s interface may be sent to the

object.

• Specifying Object Implementations: An object’s implementation is defined by its

class. The class specifies the object’s internal data and representation and defines

16

3.2 Good programming practices

the operations the object can perform. There are patterns focused on inheritance,

whereas other patterns are focused on composition.

3.2 Good programming practices

Class inheritance is basically just a mechanism for extending an application’s function-

ality by reusing functionality in parent classes. CLass iheritance allow to define a new

kind of object rapidly in terms of an old one and to get new implementations almost

for free, inheriting most of what it is needed from existing classes.

The two most common techniques for reusing functionality in object-oriented sys-

tems are class inheritance and object composition. Class inheritance lets you define

the implementation of one class in terms of another’s. Reuse by subclassing is often

referred to as white-box reuse. The term white-box refers to visibility, with inheritance,

the internals of parent classes are often visible to subclasses. Object composition is an

alternative to class inheritance. Here, new functionality is obtained by assembling or

composing objects to get more complex functionality. Object composition requires that

the objects being composed have well-defined interfaces. This style of reuse is called

black-box reuse, because no internal details of objects are visible and objects appear

only as black boxes.

Inheritance and composition each have their advantages and disadvantages. Class

inheritance is defined statically at compile-time and is straightforward to use, since it’s

supported directly by the programming language. Class inheritance also makes it easier

to modify the implementation being reused. When a subclass overrides some but not

all operations, it can a↵ect the operations it inherits as well, assuming they call the

overridden operations.

Class inheritance has some disadvantages:

• it is not possible to change the implementations inherited from parent classes at

run-time, because inheritance is defined at compile-time;

• parent classes often define at least part of their subclasses’ physical representation.

Because inheritance exposes a subclass to details of its parent’s implementation, it’s

often said that inheritance breaks encapsulation.

17

3. DESIGN PATTERN

Object composition is defined dynamically at run-time through objects acquiring

references to other objects. Composition requires objects to respect each others’ inter-

faces, which in turn requires carefully designed interfaces that don’t stop you from using

one object with many others. But there is a payo↵. Because objects are accessed solely

through their interfaces, we don’t break encapsulation. Any object can be replaced at

run-time by another as long as it has the same type. Moreover, because an object’s

implementation will be written in terms of object interfaces, there are substantially

fewer implementation dependencies. Object composition has another e↵ect on system

design: favoring object composition over class inheritance helps you keep each class

encapsulated and focused on one task. Your classes and class hierarchies will remain

small and will be less likely to grow into unmanageable classes. On the other hand, a

design based on object composition will have more objects (if fewer classes), and the

system’s behavior will depend on their interrelationships instead of being defined in

one class.

3.2.1 Delegation

Delegation is a way of making composition as powerful for reuse as inheritance. In

delegation, two objects are involved in handling a request: a receiving object delegates

operations to its delegate. This is analogous to subclasses deferring requests to parent

classes. But with inheritance, an inherited operation can always refer to the receiving

object through the this member variable in C++ and self in Smalltalk. To achieve the

same e↵ect with delegation, the receiver passes itself to the delegate to let the delegated

operation refer to the receiver.

3.3 Creational Patterns

Creational design patterns abstract the instantiation process. They help make a sys-

tem independent of how its objects are created,composed, and represented. A class

creational pattern uses inheritance to vary the class that’s instantiated, whereas an

object creational pattern will delegate instantiation to another object. Creational pat-

terns become important as systems evolve to depend more on object composition than

class inheritance. As that happens,emphasis shifts away from hard-coding a fixed set

18

3.4 Structural Patterns

of behaviors toward defining a smaller set of fundamental behaviors that can be com-

posed into any number of more complex ones. Thus creating objects with particular

behaviors requires more than simply instantiating a class.

Below there is a brief description of the creational patterns:

• Abstract Factory: Provide an interface for creating families of related or depen-

dent objects without specifying their concrete classes.

• Builder: Separate the construction of a complex object from its representation so

that the same construction process can create di↵erent representations.

• Factory Method: Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory Method lets a class defer instantiation

to subclasses.

• Prototype Pattern: Specify the kinds of objects to create using a prototypical

instance, and create new objects by copying this prototype.

• Singleton: Ensure a class only has one instance, and provide a global point of

access to it.

3.4 Structural Patterns

Structural patterns are concerned with how classes and objects are composed to form

larger structures. Structural class patterns use inheritance to compose interfacesor

implementations. As a simple example, consider how multiple inheritance mixes two or

more classes into one. The result is a class that combines the properties of its parent

classes. This pattern is particularly useful for making independently developed class

libraries work together. Another example is the class form of the Adapter pattern. In

general, an adapter makes one interface (the adaptee’s) conform abstraction of di↵erent

interfaces. inheriting privately from an adaptee interface in terms of the adaptee’s.

Below there is a brief description of the structural patterns:

• Adapter: Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn’t otherwise because of incompati-

ble interfaces.

19

3. DESIGN PATTERN

• Bridge: Decouple an abstraction from its implementation so that the two can

vary independently.

• Composite: Compose objects into tree structures to represent part-whole hierar-

chies. Composite lets clients treat individual objects and compositions of objects

uniformly.

• Container: Meccanismo di ereditarieta che tiene conto dell’incapsulamento.

• Decorator: Attach additional responsibilities to an object dynamically. Decora-

tors provide a flexible alternative to subclassing for extending functionality.

• Facade: Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use.

• Flyweight: Use sharing to support large numbers of fine-grained objects e�ciently.

• Proxy: Provide a surrogate or placeholder for another object to control access to

it.

3.5 Behavioral Patterns

Behavioral patterns are concerned with algorithms and the assignment of responsi-

bilities between objects. Behavioral patterns describe not just patterns of objects or

classes but also the patterns of communication between them. These patterns char-

acterize complex control flow that’s di�cult to follow at run-time. They shift your

focus away from flow of control to let you concentrate just on the way objects are

interconnected.

Below there is a brief description of the behavioral patterns:

• Chain of Responsibility: Avoid coupling the sender of a request to its receiver by

giving more than one object a chance to handle the request. Chain the receiving

objects and pass the request along the chain until an object handles it.

• Command: Encapsulate a request as an object, thereby letting you parameter-

ize clients with di↵erent requests, queue or log requests, and support undoable

operations.

20

3.5 Behavioral Patterns

• Interpreter: Given a language, define a represention for its grammar along with

an interpreter that uses the representation to interpret sentences in the language.

• Iterator: Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

• Mediator: Define an object that encapsulates how a set of objects interact. Me-

diator promotes loose coupling by keeping objects from referring to each other

explicitly, and it lets you vary their interaction independently.

• Memento: Without violating encapsulation, capture and externalize an object’s

internal state so that the object can be restored to this state later.

• Observer: Define a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated automatically.

• State: Allow an object to alter its behavior when its internal state changes. The

object will appear to change its class.

• Strategy: Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that

use it.

• Template Method: Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses redefine certain steps

of an algorithm without changing the algorithm’s structure.

• Visitor: Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the classes of

the elements on which it operates.

21

3. DESIGN PATTERN

22

4

Micro patterns catalog

Micro patterns are similar to design patterns, but are at a lower level of abstraction,

closer to the implementation. These metrics could be used especially for the analysis

of Object Oriented code because they are defined as class metrics; their functionality

is to detect characteristic information of the entity class.

The term Micro derives from the application of this condition to the entity class;

there are metrics such as milli patterns that determine conditions on packages or on

cluster of classes, and the nano patterns metrics that determine conditions on the classes

methods.

Gil and Maman cataloged 27 micro patterns, automatically recognizable, that are

related to a variety of programming practices in Java from inheritance, to data encap-

sulation, to the emulation of typical practices of procedural programming (1). They

developed a tool that implements the algorithms needed for the detection of micro

pattern using a language based on First Order Predicate Logic (FOPL). However, they

did not provide any detail on the implementation of these algorithms, leaving a certain

degree of freedom on the interpretation of the definitions. For example, the condition

all methods must be public can be interpreted in a restrictive manner by extending this

condition even to inherited methods of a class, or applying it in a less restrictive way,

only to methods declared by the class.

Design patterns (4), described in Chapter 3, were di�cult to implement and it is not

possible to recognize them in automated manner, micro patterns instead are designed

to be mechanically recognizable by either the formal terms of the structure of the class.

23

4. MICRO PATTERNS CATALOG

Figure 4.1: Micro patterns catalog

Fig 5.1 shows a global map of the catalog, including the 8 categories, and the

palcement of the 27 micro patterns into these. The X dimension corresponds to class

behavior and categories at the left hand side of the map are those of patterns which

restrict the class behavior more than patterns which belong to categories at the right.

The Y dimension of the figure correspond to class state: categories at the upper portion

of the map are of patterns restricting the class state more than patterns which belong

to categories at the bottom of the map.

Below there is a brief overview of all categories with the corresponding micro pat-

terns given by Gil and Maman.

Out of the 27 patterns in the catalog, there are 21 patterns in which the state,

behavior or the creation are degenerate in one way or another. This section describes

the 12 patterns out of these which have no other category. The remaining 9 patterns

are described together with their other respective category.

24

4.0.1 Degenerate State and Behavior

The first, and most simple category of micro patterns, includes those interfaces and

classes in which both state and behavior are extremely degenerate. This degeneracy

means, in most cases, that the class (or interface) does not define any variables or

methods. Despite these severe restrictions, classes and interfaces which fall into this

group are useful in tasks such as making and managing global definitions, class tagging,

and more generally for defining and managing a taxonomy.

In addition to the patterns listed below, this category also contains the Pure Type,

Augmented Type, Pseudo Class, and State Machine micro patterns which are described

in the Base Classes category.

• Designator. The most trivial interface is an empty one. Interestingly, vacuous

interfaces are employed in a powerful programming technique, of tagging classes

in such a way that these tags can be examined at runtime. For example, a class

that implements the empty interface Cloneable indicates (at run time) that it is

legal to make a field-for-field copy of instances of that class. Thus, a Designator

micro pattern is an interface which does not declare any methods, does not define

any static fields or methods, and does not inherit such members from any of

its superinterfaces. A class can also be Designator if its definition, as well as

the definitions of all of its ancestors (other than Object), are empty. Pattern

Designator is the rarest, with only 0.2% prevalence in the software corpus used by

Gil and Maman. It was included in the catalog because it presents an important

JAVA technique, which is also easily discernible.

• Taxonomy. Even if the definition of an interface is empty it may still extend

another, potentially non-empty, interface. Consider for example interface DocAt-

tribute (defined in package javax.print.attribute). This interface extends interface

Attribute in the same package without adding any further declarations. Interface

DocAttribute is used, similarly to the Designator micro pattern, for tagging pur-

poses specifically that the attribute at hand is specialized for what is known as

”Doc” in the JRE. An empty interface which extends a single interface is called a

Taxonomy, since it is included, in the subtyping sense, in its parent, but otherwise

identical to it. There are also classes which are Taxonomy. Such a class must

25

4. MICRO PATTERNS CATALOG

similarly be empty, i.e., add no fields nor methods to its parent. Since construc-

tors are not inherited, an empty class may contain constructors. A Taxonomy

class may not implement any interfaces. This micro pattern is very common in

the hierarchy of JAVAs exception classes, such as: EOFException which extends

IOException. The reason is that selection of a catch clause is determined by the

runtime type of the thrown exception, and not by its state.

• Joiner. An empty interface which extends more than one interface is called a

Joiner, since in e↵ect, it joins together the sets of members of its parents. For

example, the interface MouseInputListener joins together two other interfaces:

interface MouseMotionListener and interface MouseListener. An empty class

which implements one or more interfaces is also a Joiner. For example, class

LinkedHashSet marries together class HashSet and three interfaces Cloneable,

Serializable and Set.

• Pool. The most degenerate classes are those which have neither state nor behav-

ior. Such a class is distinguished by the requirement that it declares no instance

fields. Moreover, all of its declared static fields must be final. Another require-

ment is that the class has no methods (other than those inherited from Object, or

automatically generated constructors). A Pool is a class defined by these require-

ments. It serves a the purpose of grouping together a set of named constants.

Programmers often use interfaces for the Pool micro pattern. For example, pack-

age javax.swing includes interface Swing-Constants which defines constants used

in positioning and orienting screen components. The pattern, also called ”con-

stant interface anti-pattern”, makes it possible to incorporate a name space of

definitions into a class by adding an implements clause to that class.

4.0.2 Degenerate Behavior

The degenerate behavior category relates to classes with no methods at all, classes that

have a single method, or classes whose methods are very simple.

• Function Pointer. Very peculiar are those classes which have no fields at all,

and only a single public instance method. An example is class LdapNameParser

(which is defined in package com.sun.jndi.ldap.LdapNameParser). This class has

26

a single parse method, with (as expected) a string parameter. Instances of Func-

tion Pointer classes represent the equivalent of a function pointer (or a pointer to

procedure) in the procedural programming paradigm, or of a function value in the

functional programming paradigm. Such an instance can then be used to make

an indirect polymorphic call to this function. The task of function composition

(as in the functional programming paradigm), can be achieved by using two such

instances.

• Function Object. The Function Object micro pattern is similar to the Function

Pointer micro pattern. The only di↵erence is that Function Object has instance

fields (which are often set by the class constructor). Thus, an instance of Function

Object class can store parameters to the main method of the class. The Function

Object pattern matches many anonymous classes in the JRE which implement

an interface with a single method. These are mostly event handlers, passed as

callback hooks in GUI libraries (AWT and Swing). Hence, such classes often

realize the COMMAND design pattern.

• Cobol like. Formally, the Cobol like micro pattern is defined by the requirement

that a class has a single static method, one or more static variables, and no in-

stance methods or fields. This particular programming style makes a significant

deviation from the object oriented paradigm. Although the prevalence of this

pattern is vanishingly small, instances can be found even in mature libraries. Be-

ginner programmers may tend to use Cobol like for their main class, i.e., the class

with function public static void main(String[] args) The prevalence of Cobol like

is not high, standing at the 0.5% level in the corpus used by Gil and Maman.

However, they found that it occurs very frequently (13.1%) in the sample pro-

grams included with the JAVA Tutorial (30) guides. The Degenerate Behavior

category also includes two other patterns: Record, which has no methods at all,

and Data Manager, in which all methods are either setters or getters. The two

also belong in the Data Managers category, and are described below with the

other patterns of that category.

27

4. MICRO PATTERNS CATALOG

4.0.3 Degenerate State

The Degenerate State category pertains to classes whose instances have no state at

all, or that their state is shared by other classes, or that they are immutable. In this

category Gil and Maman also find the Trait pattern which is defined under its other,

Base Classes, category, and the Canopy pattern (defined under Wrappers).

• Stateless. If a class has no fields at all (except for fields which are both static

and final), then it is stateless. The behavior of such a class cannot depend on its

history. Therefore, the execution of each of its methods can only be dictated by

the parameters. Micro pattern Stateless thus captures classes which are a named

collection of procedures, and is a representation, in the object-oriented world, of

a software library in the procedural programming paradigm. A famous example

of the Stateless micro pattern is the Arrays class, from package java.util.

• Common State. At the next level of complexity, stand classes that maintain state,

but this state is shared by all of their instances. Specifically, a class that has no

instance fields, but at least one static field is a Common State. For example, the

class System manages (among other things) the global input, output, and error

streams. A Common State with no instance methods is in fact an incarnation of

the modular

• Immutable. An immutable class is class whose instance fields are only changed

by its constructors. The Canopy is an immutable class which has exactly one

instance field. Its description is placed under its other category, Wrappers. More

general is the Immutable micro pattern, which stands for immutable classes which

have at least two instance fields. Class java.util.jar.Manifest is an Immutable class

since assignment to its two fields takes place only in constructors code.

4.0.4 Controlled Creation

There are two patterns in this category, which match classes in which there is a special

protocol for creating objects. The first pattern prevents clients from creating instances

directly. The second pattern provides to clients ready made instances.

28

• Restricted Creation. A class with no public constructors, and at least one static

field of the same type as the class, matches the Restricted Creation micro pattern.

Many Singleton classes satisfy this criteria. A famous example is java.lang.Runtime.

• Sampler. The Sampler matches classes class with at least one public constructor,

and at least one static field whose type is the same as that of the class. These

classes allow client code to create new instances, but they also provide several

predefined instances. An example is class Color (in package java.awt) with fields

such as red, green and blue.

4.0.5 Wrappers

Wrappers are classes which wrap a central instance field with their methods. They

tend to delegate functionality to this field. The main pattern in this category is Box.

The case that the wrapper protects the field from changes is covered by Canopy. There

are cases in which there is an auxiliary field; these are captured by pattern Compound

Box.

• Box. A Box is class with exactly one instance field. This instance field is mutated

by at least one of the methods, or one of the static methods, of the class. Class

CRC32 (in the java.util.crc package) is an example of this micro pattern. Its

entire state is represented by a single field (int crc), which is mutated by method

update(int i).

• Canopy. A Canopy is a class with exactly one instance field which can only

changed by the constructors of this cass. The name Canopy draws from the visual

association of a transparent enclosure set over a precious object; an enclosure

which makes it possible to see, but not touch, the protected item. Class Integer,

which boxes an immutable int field, is a famous example of Canopy. As explained

above, since the Canopy pattern captures immutable classes, it also belongs in

the Degenerate State category.

• Compound Box. This is a variant of a Box class with exactly one non-primitive

instance field, and, additionally, one or more primitive instance fields. The highly

popular Vector class matches the Compound Box pattern.

29

4. MICRO PATTERNS CATALOG

4.0.6 Data Managers

Data managers are classes whose main purpose is to manage the data stored in a set

of instance variables.

• Record. JAVA makes it possible to define classes which look and feel much like

Pascal record types. A class matches the Record micro pattern if all of its fields

are public and if has no methods other than constructors and methods inherited

from Object. Perhaps surprisingly, there is a considerable number of examples of

this pattern in the JAVA standard library. For example, in package java.sql there

is the class DriverPropertyInfo which is a record managing a textual property

passed to a JDBC driver.

• Data Manager. Experienced object-oriented programmers will encapsulate all

fields of a Record and use setter and getter methods to access these. A class is a

Data Manager if all of its methods (including 5 inherited ones) are either setters or

getters. Recall that Data Manager micro pattern (just as the previously described

Record) also belong to the Degenerate Behavior category.

• Sink. A class where its declared methods do not call neither instance methods

nor static methods is a Sink. Class JarEntry of package java.util.jar.JarEntry is

an example of Sink.

4.0.7 Base Classes

This category includes five micro patterns capturing di↵erent ways in which a base

class can make preparations for its subclasses.

• Outline. An Outline is an abstract class where two or more declared methods

invoke at least one abstract methods of the current (this) object. For example,

the methods of java.io.Reader rely on the abstract method read(char ac[], int i,

int j) Obviously, Outline is related to the TEMPLATE METHOD design pattern.

• Trait. The Trait pattern captures abstract classes which have no state. Specifi-

cally, a Trait class must have no instance fields, and at least one abstract method.

The term Trait follows the traits modules of Ducasse, Nierstrasz and Black. For

instance, class Number (of package java.lang) provides an implementation for two

30

methods: shortValue() and for method byteValue(). Other than this implementa-

tion, class Number expects its subclass to provide the full state and complement

the implementation as necessary.

• State Machine. It is not uncommon for an interface to define only parameterless

methods. Such an interface allows client code to either query the state of the

object, or, request the object to change its state in some predefined manner. Since

no parameters are passed, the way the object changes is determined entirely by

the objects dynamic type.

This sort of interface, captured by the State Machine pattern, is typical for state

machine classes. For example, the interface java.util.Iterator describes the pro-

tocol of the standard JAVA iterator, which is actually a state machine that has

two possible transitions: next() and remove(). The third method, hasNext() is a

query that tests whether the iteration is complete. In the state machine analogy,

this query is equivalent for checking if the machines final state was reached.

• Pure Type. A class that has absolutely no implementation details is a Pure Type.

Specifically, the requirements are that the class is abstract, has no static members,

at least one method, all of its methods are abstract, and that it has no instance

fields. In particular, any interface which has at least one method, but no static

definitions is a Pure Type. An example is class Bu↵erStrategy, which is found

in package java.awt.image.Bu↵erStrategy. As the documentation of this class

states, it ”represents the mechanism with which to organize complex memory”.

The concrete implementation can only be fixed in a subclass, since, ”Hardware

and software limitations determine whether and how a particular bu↵er strategy

can be implemented.”. Indeed, this class has nothing more than four abstract

methods which concrete subclasses must override.

• Augmented Type. There are many interfaces and classes which declare a type,

but the definition of this type is not complete without an auxiliary definition of an

enumeration. An enumeration is a means for making a new type by restricting the

(usually infinite) set of values of an existing type to smaller list whose members

are individually enumerated. Typically, the restricted set is of size at least three (a

set of cardinality two is in many cases best represented as boolean). For example,

31

4. MICRO PATTERNS CATALOG

methods execute and getMoreResults in interface java.sql.Statement take an int

parameter that sets their mode of operation. Obviously, this parameter cannot

assume any integral value, since the set of distinct behaviors of these methods

must be limited and small. This is the reason that this interface gives symbolic

names to the permissible values of this parameter. Formally, an Augmented

Type is a Pure Type except that it makes three or more static final definitions of

the same type. Pattern Augmented Type pattern is quite rare (0.5%), probably

thanks to the advent of the Enum mechanism to the language.

• Pseudo Class. A Pseudo Class is an abstract class, with no instance fields, and

such that all of its instance methods are abstract; static data members and meth-

ods are permitted. A Pseudo Class could be mechanically rewritten as an inter-

face. For instance, class Dictionary, the abstract parent of any class which maps

keys to values, could be rewritten as an interface. Pseudo Class is an anti-pattern

and is not so common; its prevalence is only 0.4%.

4.0.8 Inheritors

The three disjoint patterns in this category correspond to three di↵erent ways in which

a class can use the definitions in its superclass: implementing abstract methods, over-

riding existing methods and enriching the inherited interface. The catalog does not

include patterns for classes which mix two or more of these three.

• Implementor. An Implementor is a non-abstract class such that all of its the

public methods were declared as abstract in its superclass. An example is class

SimpleFormatter, which is defined in the java.util.logging package). This class has

single public method, format(LogRecord logrecord), which was declared abstract

by the superclass, Formatter (of the same package).

• Overrider. A class where each of its declared public methods overrides a non-

abstract method inherited from its superclass. Such a class changes the behavior

of its superclass while retaining its protocol. A typical Overrider class is the

Bu↵eredOutputStream class.

• Extender. An Extender is a class which extends the interface inherited from its

superclass and super interfaces, but does not override any method.

32

For example, class Properties (in java.util) extends its superclass (Hashtable) by declar-

ing several concrete methods, which enrich the functionality provided to the client.

None of these methods overrides a previously implemented method, thus keeping the

superclass behavior intact. Note that an Extender may be regarded as an instantiation

of a degenerate mixin class over its superclass.

33

4. MICRO PATTERNS CATALOG

T
a
b
le

4
.1
:
M
icro

p
attern

d
efi
n
ition

by
G
il
an

d
M
am

an

M
icro

p
attern

D
efi

n
ition

1
D
esign

ator
Interface

w
ith

n
o
m
em

b
ers.

2
T
axon

om
y

E
m
p
ty

interface
exten

d
in
g
an

oth
er

interface.

3
Join

er
E
m
p
ty

interface
join

in
g
tw

o
or

m
ore

su
p
erinterfaces.

4
P
ool

C
lass

w
h
ich

d
eclares

on
ly

static
fi
n
al

fi
eld

s,
b
u
t
n
o
m
eth

od
s.

5
F
u
n
ction

P
ointer

C
lass

w
ith

a
sin

gle
p
u
b
lic

in
stan

ce
m
eth

od
,
b
u
t
w
ith

n
o
fi
eld

s.

6
F
u
n
ction

O
b
ject

C
lass

w
ith

a
sin

gle
p
u
b
lic

in
stan

ce
m
eth

od
,
an

d
at

least
on

e
in
stan

ce
fi
eld

.

7
C
ob

ol
L
ike

C
lass

w
ith

a
sin

gle
static

m
eth

od
,
b
u
t
n
o
in
stan

ce
m
em

b
ers.

8
S
tateless

C
lass

w
ith

n
o
fi
eld

s,
oth

er
th
an

static
fi
n
al

on
es.

9
C
om

m
on

S
tate

C
lass

in
w
h
ich

all
fi
eld

s
are

static.

10
Im

m
u
tab

le
C
lass

w
ith

several
in
stan

ce
fi
eld

s,
w
h
ich

are
assign

ed
exactly

on
ce,

d
u
rin

g
in
stan

ce
con

stru
ction

.

11
R
estricted

C
reation

C
lass

w
ith

n
o
p
u
b
lic

con
stru

ctors,
an

d
at

least
on

e
static

fi
eld

of
th
e
sam

e
typ

e
as

th
e
class

12
S
am

p
ler

C
lass

w
ith

on
e
or

m
ore

p
u
b
lic

con
stru

ctors,
an

d
at

least
on

e
static

fi
eld

of
th
e
sam

e
typ

e
as

th
e
class

13
B
ox

C
lass

w
h
ich

h
as

exactly
on

e,
m
u
tab

le,
in
stan

ce
fi
eld

.

14
C
om

p
ou

n
d
B
ox

C
lass

w
ith

exactly
on

e
n
on

p
rim

itive
in
stan

ce
fi
eld

.

15
C
an

opy
C
lass

w
ith

exactly
on

e
in
stan

ce
fi
eld

th
at

it
assign

ed
exactly

on
ce,

d
u
rin

g
in
stan

ce
contru

ction
.

16
R
ecord

C
lass

in
w
h
ich

all
fi
eld

s
are

p
u
b
lic,

n
o
d
eclared

m
eth

od
s.

17
D
ata

M
an

ager
C
lass

w
h
ere

all
m
eth

od
s
are

eith
er

setters
or

getters.

18
S
in
k

C
lass

w
h
ose

m
eth

od
s
d
o
n
ot

p
rop

agate
calls

to
any

oth
er

class.

19
O
u
tlin

e
C
lass

w
h
ere

at
least

tw
o
m
eth

od
s
invoke

an
ab

stract
m
eth

od
on

th
is.

20
T
rait

A
b
stract

class
w
h
ich

h
as

n
o
state.

21
S
tate

M
ach

in
e

Interface
w
h
ose

m
eth

od
s
accep

t
n
o
p
aram

eters.

22
P
u
re

T
yp

e
C
lass

w
ith

on
ly

ab
stract

m
eth

od
s,

an
d
n
o
static

m
em

b
ers,

an
d
n
o
fi
eld

s.

23
A
u
gm

ented
T
yp

e
O
n
ly

ab
stract

m
eth

od
s
an

d
th
ree

or
m
ore

static
fi
n
al

fi
eld

s
of

th
e
sam

e
typ

e.

24
P
seu

d
o
C
lass

C
lass

w
h
ich

can
b
e
rew

ritten
as

an
interface:

n
o
con

crete
m
eth

od
s,

on
ly

static
fi
eld

25
Im

p
lem

entor
C
on

crete
class,

w
h
ere

all
th
e
m
eth

od
s
overrid

e
in
h
erited

ab
stract

m
eth

od
s.

26
O
verrid

er
C
lass

in
w
h
ich

all
m
eth

od
s
overrid

e
in
h
erited

,
n
on

-ab
stract

m
eth

od
s.

27
E
xten

d
er

C
lass

w
h
ich

exten
d
s
th
e
in
h
erited

p
rotocol,

w
ith

ou
t
overrid

in
g
any

m
eth

od
s.

34

5

Interpretation of Micro Patterns

5.1 Introduction

The question posed by Gil and Maman in the original work about micro patterns is:

”Can design be traced and identified in software?” .

The prime candidates of units of design to look for in the software are obviously

design patterns. Despite the voluminous research ensuing it, attempts to automate and

formalize design patterns are scarce. Specific research on detection of design patterns

exhibited low precision, typically with high rate of false negatives. Indeed, as Mak,

Choy and Lun (29) say, ”...automation support to the utilization of design patterns is

still very limited”.

To overcome this predicament, Gil and Maman define the notion of traceable pat-

terns, which are similar to design patterns, except that they are mechanically recog-

nizable and stand at a lower level of abstraction. A pattern is traceable if it can be

expressed as a simple formal condition on the attributes, types, name and body of a

software module and its components.

The term ”mechanically recognizable” means that there exists a Turing machine

which decides whether any given module matches this condition. Thus, a condition

”the module delegates its responsibilities to others” is not recognizable. On the other

hand a predicate such as ”each method invokes a method of another class with the

same name”, can be automatically checked.

It is required that these patterns are not random; they must capture a non-trivial

idiom of the programming language which serves a concrete purpose. Yet, by defini-

35

5. INTERPRETATION OF MICRO PATTERNS

tion, traceable patterns stand at a lower level of abstraction than that of the classical

collection of design patterns (4). This is because traceable patterns are tied to the

implementation language and impose a condition on a single software module.

5.2 A new interpretation

The original categorization of micro patterns consisted in eight overlapping categories,

which are described in Chapter 5. In order to allow the detection of types presenting

micro pattern flavours through a similarity-based approach, Arcelli and Maggioni first

propose a categorization of micro patterns in three groups. Considering the definitions

provided for the micro patterns, it is possible to note that each of them is based on one

of the following three aspects:

• The analysis of the attributes belonging to a type;

• The analysis of the methods declared within a type;

• The analysis of both attributes and methods that characterize a type;

Arcelli and Maggioni define the set A as the set of micro patterns that can be iden-

tified by only analyzing the attributes of a type. Starting from (1), this set is clearly

defined as A = Stateless, Common state, Immutable, Box, Compound box, Canopy,

Trait. The authors define the set M as the set of micro patterns that can be identified

by analyzing only the methods declared within a type. Therefore, M = Data manager,

Sink, Outline, State machine, Implementor, Overrider, Extender. Finally, the set AM

is the set containing those micro patterns that are identified by analyzing both the

attributes and methods belonging to a certain type. Hence, AM = Designator, Taxon-

omy, Joiner, Pool, Function pointer, Function object, Cobol like, Restricted creation,

Sampler, Record, Pure type, Augmented type, Pseudo class. These categories contain

all the micro patterns, as M + A + AM =7+7+13=27.

Arcelli and Maggioni want to revisit the micro patterns also considering the NOA

and NOM metrics, in order to support the detection of types presenting micro pattern

flavours. To do so, they introduce three values:

• the attributes similarity ratio (ASR),

• the methods similarity ratio (MSR),

36

5.2 A new interpretation

• the global similarity ratio (GSR).

For each micro pattern belonging to the A category, ASR measures the amount

of attributes of a given type which satisfy the attributes conditions specified for that

micro pattern, with respect to the total number of attributes declared within the type.

For each micro pattern in M, MSR calculates the amount of methods of a given type

which satisfy the methods conditions specified for that micro pattern, with respect to

the total number of methods declared within the type. Finally, for each micro pattern

in AM, GSR considers both attributes and methods as being homogeneous entities of

a type. Therefore, GSR measures the amount of attributes and methods (considered

altogether) of a given type which satisfy the attributes and methods conditions specified

for the micro pattern, with respect to the total number of attributes and methods

declared within the type.

The attributes and methods considered in the evaluations are only those strictly

belonging to the analyzed classes. The authors do not consider any inherited attribute

or method.

ASR, MSR and GSR are calculated considering the NOA and NOM of each given

type, hence taking into account the whole set of attributes and methods that charac-

terize each of them. These similarity ratios are percentage rates, and are calculated in

a di↵erent way depending on the micro pattern of interest.

Moreover, they are to be intended as an indication of how much a given type is

similar to a certain micro pattern. The higher the value of these measures, the more

the type is close to a correct and complete micro pattern realization. If a type has

a similarity ratio of 100% to a certain micro pattern, the whole set of its attributes

and/or methods satisfy the constraints specified by the micro pattern, and hence it is

a precise instance of it.

Instances with a 100% similarity ratio are therefore those that can also be identified

by the precise matching approach proposed by Gil and Maman (1).

For some micro patterns (Designator, Taxonomy, Joiner, Trait, Pure type, Pool

and Record) Arcelli and Maggioni specify an upper bound of 3 or 5 methods and/or

attributes defined by a type. This because the authors think it is too restrictive to

consider only those types that do not define any attributes and/or methods at all. The

authors verified that specifying a higher upper bound would result in detecting a larger

37

5. INTERPRETATION OF MICRO PATTERNS

number of instances presenting flavours of these patterns, but that are of scarce interest

if we consider the purpose and the specifications of these micro patterns.

Designator:

• MSR: IfNOM+NOM inh. > U.B. thenMSR = 0 elseMSR = 1�NOM+NOM inh
U.B.

• ASR: If NOA+NOA inh. > U.B. then ASR = 0 else ASR = 1� NOA+NOA inh.
U.B.

Taxonomy:

• MSR: If NOM > U.B. then MSR = 0 else MSR = 1� NOM
U.B.

• ASR: If NOA > U.B. then ASR = 0 else ASR = 1� NOA
U.B.

Joiner: the conditions for this micro pattern are the same of micro pattern Taxonomy,

but in this case the number of extended interfaces must be equal or greater than two.

• MSR: If NOM > U.B. then MSR = 0 else MSR = 1� NOM
U.B.

• ASR: If NOA > U.B. then ASR = 0 else ASR = 1� NOA
U.B.

Pool:

• MSR: If NOM > U.B. then MSR = 0 else MSR = 1� NOM
U.B.

• ASR: in any case static fields
NOA

Function Pointer:

• MSR: If public methods = 1 then MSR = 1 else MSR = 0

• ASR: If NOA = 0 then ASR = 1 else ASR = 0

Function Object:

• MSR: If public m. = 1 then MSR = 1 else MSR = 0

• ASR: If NOA = 0 then ASR = 0 else ASR = 1

Cobol like:

• MSR: If (static m. = 1) and (NOM > 1) then MSR = 0 else MSR =
static methods

NOM

38

5.2 A new interpretation

• ASR: in any case static fields
NOA

Stateless:

• MSR: -

• ASR: If NOA = 0 then ASR = 1 else ASR = static fields+final fields
NOA

Common State:

• MSR: -

• ASR: If NOA = 0 then ASR = 0 else ASR = static fields
NOA

Immutable:

• MSR: If NOM = 0 then MSR = 1

• ASR: If NOA > 1 then

NOA = Number of fields modified by method
NOA

else NOA = 0

Restricted Creation:

• MSR: If (public constructors = 0) then MSR = 1 else MSR = 0

• ASR: If static same class fields >= 1 then ASR = 1 else ASR = 0

Sampler:

• MSR: If public constructors >= 1 then MSR = 1 else MSR = 0

• ASR: If static same class fields >= 1 then ASR = 1 else ASR = 0

Box:

• MSR: -

• ASR: If NOA = 1 and (non final fields = 1) then ASR = 1 else ASR = 0

Compound Box:

• MSR: -

39

5. INTERPRETATION OF MICRO PATTERNS

• ASR: If NOA >= 1 and (non� primitive fields = 1) then ASR = 1 else

if NOA > 1 and (non�primitive fields > 1) then ASR = 1� non primitive fields
NOA

Canopy:

• MSR: -

• ASR: If NOA = 1

then ASR = Number of fields modified by constructor
NOA

else ASR = 0

Record:

• MSR: If NOM > U.B. then MSR = 0 else MSR = 1� NOM
U.B.

• ASR: in any case public fields
NOA

Data Manager:

• MSR: If NOM = 0 then MSR = 0

else MSR = (getter methods+setter methods)
NOM

• ASR: -

Sink: a propagating method is a method which invokes at least another method within

its body, either defined in the same class or in another type.

• MSR: If NOM = 0 then MSR = 0 else MSR = propagating methods
NOM

• ASR: -

Outline:

• MSR: If Methods invoking an abstract method of the

same class >= 1 then MSR = 1 else MSR = 0

• ASR: -

Trait:

• MSR: If abstract methods >= 0 then MSR = 1 else MSR = 0

• ASR: If NOA = 0 then ASR = 1 else ASR = 0

40

5.2 A new interpretation

State Machine:

• MSR: If NOM = 0 then MSR = 0

else MSR = propagating methods
NOM

• ASR: -

Pure Type:

• MSR: MSR = abstract methods
NOM

• ASR: If NOA = 0 then ASR = 1 else MSR = 1
NOA

Augmented Type:

• MSR: -

• ASR: If (static final same class fields) >= 3 then ASR = 1

else ASR = static final same class fields
U.B.

Pseudo Class:

• MSR: In any case (abstract m.+static m.)
NOM

• ASR: in any case static fields
NOA

Implementor:

• MSR: If NOM = 0 then MSR = 0 else MSR = implementing methods
NOM

• ASR: -

Overrider:

• MSR: If NOM = 0 then MSR = 0 else MSR = ovveriding methods
NOM

• ASR: -

Extender:

• MSR: If NOM = 0 then MSR = 1 else MSR = 1� ovveriding methods
NOM

• ASR: -

41

5. INTERPRETATION OF MICRO PATTERNS

42

6

Anti patterns

In this chapter we aim to study and clarify the relationship between a subset of micro

patterns and software defects, a field of study not covered in the literature on this topic,

by analyzing software systems with a large number of classes. At the same time, we

aim to confirm the following results found in the literature:

• three out of four classes match at least one micro pattern in the catalog (1);

• the definitions of micro patterns in terms of NOM and NOA can be validated.

Specifically, we will show that some design principles, that can be related to the

absence of specific micro patterns, yield better results than others, studying the

relationship between micro patterns in term of the number of faults introduced

in the software.

6.1 Definition of the anti-patterns

Let us consider the five micro patterns called anti-patterns, because they are associated

to bad programming practices: Pool, CobolLike, Record, Pseudo Class, and Function

Pointer.

We want to investigate their relationship with software defects. The anti-pattern

Pool is defined when a class declares only fields of type static final, and declares no

methods. Classes with this micro pattern are the most degenerate. In fact they are

classes with neither state nor behavior. With respect to the state, it would be not

enough to declare fields of type final, since final-but-not-static fields are simply con-

stants, whose value can be di↵erent for di↵erent instances of the same class. This

43

6. ANTI PATTERNS

would represent the existence of a state. But in the case of static final constants, the

value would be the same in di↵erent instances of the same class, representing a unique

immutable state. Methods inherited from the class java.lang.Object and constructor

methods are not considered. This anti pattern is also called ”constant interface anti

pattern”, and good Object Oriented programming practices require this behavior to be

assigned to an interface rather than to a class (13).

The Cobol Like anti pattern is a class having a single static method, one or more

static variables, and no instance methods or fields. Cobol Like classes do not declare

any method or instance field. Classes of this kind are very far from the Object Oriented

programming paradigm and should be very rare. The Cobol Like anti pattern can be

applied to classes and abstract classes.

The Record anti pattern is a class declaring only public fields and with no methods

at all. Here again methods inherited from the java.lang.Object class and constructors

are not considered. The Record micro pattern is very far from the Object Oriented

programming paradigm since it violates the information hiding principle. It can be

applied to classes and abstract classes.

The Pseudo Class is an abstract class declaring only abstract methods and not

declaring fields which are not static. It can be substituted by an interface, thus must

be considered an anti pattern. It can be applied to abstract classes.

The Function Pointer micro pattern is a class declaring only one public method

and no fields. The instances of this kind of classes are equivalent to the pointers to

a function in the paradigm of procedural languages and consequently are away from

the Object Oriented programming paradigm. It can be applied to classes and abstract

classes.

Considering the standard definitions of Pool and Record micro patterns, Arcelli and

Maggioni judge too restrictive the constraints that classes implementing them must not

declare any method (2) (3). Thus they prefer to define an upper bound (U.B.) in order

to consider valid instances of these patterns also classes defining at most 5 methods

(U.B. set to 5). We also analyzed the parameter that evaluates the micro pattern

considering both ASR and MSR, the GSR (Global Similarity Ratio), defined as GSR

= min(ASR,MSR). GSR is a real number between zero (complete absence of the micro

pattern) and one (presence of the micro pattern as defined in (1)). Intermediate values

indicate a partial presence of the micro pattern.

44

6.2 Experimental results

6.2 Experimental results

In order to test the hypothesis formulated by Gil and Maman, the analyzed dataset

includes twenty Eclipse releases and three NetBeans releases. It hosts a total of 335545

classes, Gil and Maman used 70000 classes for their study. Our results confirm their

claims: ”Three out of four classes match at least one micro pattern in the catalog” (1).

The coverage relative to Eclipse is about the 80%, while in NetBeans it is about 86%,

as reported in Fig. 6.1 for all the 27 micro patterns. This means that these systems

can be characterized almost entirely in terms of micro patterns.

Figure 6.1: Coverage of all 27 micro patters

6.3 Relationship with faults

Figures 6.3, 6.4, and 6.5 report the relationships among anti patterns and faults in

Eclipse 2.1, 3.0 and 3.1. In these tables we consider only perfect matches between

45

6. ANTI PATTERNS

Figure 6.2: Percentual Presence of Anti Patterns

46

6.3 Relationship with faults

classes and anti patterns (GSR = 1). The anti pattern Pseudo Class appears only

between 0% and 0.1% of classes in the 20 releases examined, thus we decided to neglect

this anti pattern. The first row reports the number of classes exhibiting a given anti

pattern and presenting at least one fault. The second row reports the number of classes

exhibiting a given anti pattern with no faults. The third row reports the total number

of classes into the system matching the anti pattern.

Figure 6.3: Eclipse 2.1

Figure 6.4: Eclipse 3.0

47

6. ANTI PATTERNS

Figure 6.5: Eclipse 3.1

6.4 Correlation between Anti Patterns

We characterized all software systems by a matrix of GSR (Global Similarity Ratio) co-

e�cients, where each row identifies a class and each column contains a GSR coe�cient

for each micro pattern. The GSR coe�cient is computed according to the definitions

described in Chapter 5, and ranges from a minimum value of zero, denoting the absence

of the micro pattern, to a maximum of one, denoting the presence of the micro pattern.

A value between zero and one denotes partial presence for the micro pattern. The

correlation between micro patterns provides information on the independence (or de-

pendence) between a particular micro pattern and another. The results for the Pearson

Figure 6.6: Correlation between anti patterns

correlation indicate that there is no correlation in general between the anti patterns,

48

6.5 Discussion

except among Pool and Record. This means that each anti pattern characterizes the

system independently. The only significant correlation is 0.49 among Pool and Record.

This is a quite expected result due to the definitions of the two micro patterns: the

Record is a class that declares only public fields and no methods, while the Pool is a

class that declares only

6.5 Discussion

The data shown tracked software defects only for three of the twenty Eclipse releases:

2.1, 3,0 and 3.1. It is interesting to compare these data for all the system classes

with those obtained by our analysis for the anti patterns on Tables in figures 6.3,

6.4, and 6.5. Perhaps the most interesting result regards the Cobol Like anti pattern.

In fact, while the use of any anti patterns should be avoided according to Object

Oriented programming practices, our results show that in the particular case of the

Cobol Like anti pattern such programming practice produces software more fault prone.

A comparison among the average fault presence in all the Eclipse classes and in the

Cobol Like classes indicates an enhanced fault proneness in the latter. We use the

following indicators:percentage of faulty classes; average fault number; percentage of

faults contained in the corresponding percentage of the total system (similar to the

Pareto 80-20 rule).

The first indicator for Cobol Like classes is 53%, 66% and 56% in Eclipse 2.1, 3.0

and 3.1, respectively, while the values obtained for the overall system are 28%, 27%

and 34%. The average fault number is 1.89, 3.19 and 1.93 for Cobol Like classes for

the three Eclipse versions, while is 0.669, 0.867 and 0.866 for the overall three versions.

As regards the last indicator, we have 3.6% of faults contained in 0.013% of system

classes in Eclipse 2.1, 3.63% of faults contained in 0.009% of system classes in Eclipse

3.0, and 3.47% of faults in 0.015% in Eclipse 3.1. We computed the statistical t-test

and Mann-Whitney test on these three indicators, which confirmed the higher fault

proneness for Cobol Like classes to a high degree of significance.

With regards to other anti patterns, even if the indicators above do not show mean-

ingful results for any increased fault proneness, the absolute values of faults for the

corresponding classes suggest that the fault presence can be reduced eliminating the

49

6. ANTI PATTERNS

anti pattern classes. For example, the use of a Pool class may cause the presence of

faults which could be avoided with the proper use of an interface in its place.

6.6 Threats to validity

We identified three main threats to the validity of our results. We examined 20 Eclipse

versions and 3 NetBeans versions. Both are similar environments (IDE for Java pro-

gramming), and thus may be not representative of all environments or programming

languages. This constitutes a threat to the external validity of our findings. Eclipse

and NetBeans are Open Source software. Commercial software is typically developed

using di↵erent platforms and technologies, with strict deadlines and cost limitation, and

by developers with di↵erent experiences. This might provide di↵erent micro pattern

distributions, which is another threat for the external validity. Another threat regards

the relationships among anti patterns and faults, which has been studied only for three

Eclipse versions.

50

7

Micro pattern Fault Proneness

7.0.1 Introduction

In this chapter, we explore the relationship between use (or non-use) of micro patterns

and the presence of defects in classes.

The 27 micro patterns proposed by Gil and Maman were shown by them to be

present in 75% of classes they analysed. Some of those patterns are regarded as ”anti-

patterns” (13) representing practices that are considered to be poor design practice

Thus classes can be divided into 2 categories: MP and NMP — those that match one

or more of the 27 micro patterns, and those that match no micro pattern.

We examine the relationship between the category a class belongs to and the pres-

ence of defects in that class.

One potential complication in this kind of research is that there may be non-trivial

relationships between the micro patterns themselves. As part of our research, we iden-

tify these relationships.

Our main research questions are:

• RQ1: Are micro patterns related to each other?

• RQ2: Are some micro patterns more fault-prone than others?

• RQ3: Does fault-proneness di↵er for NMP classes?

We show that there are relationships between micro patterns that have similar

definitions, and our results about the correlation show that. Some micro-patterns are

more fault prone than others.

51

7. MICRO PATTERN FAULT PRONENESS

It is important to highlight the case of the Extender micro pattern which is one of

the most fault prone: this fact can open further discussion on the use of inheritance in

Java and in OOP.

Regarding the NMP category, our studies show that these classes are more likely

to fault.

7.1 Methodology

We used the Java tool described in Chapter 9 in order to extract from a generic software

system the data relative to the micro patterns distribution.

We also analyzed the parameters that evaluate the micro pattern considering both

ASR and MSR, the GSR (Global Similarity Ratio), defined as GSR = min(ASR,MSR).

GSR is a real number between zero (complete absence of the micro pattern) and one

(presence of the micro pattern as defined in (1)). Intermediate values indicate a partial

presence of the micro pattern.

We divided the software systems analyzed for this work in two categories of di↵erent

dimensions (in terms of number of classes) called Big Systems and Small Systems. The

”Big Systems” category is composed by three Eclipse releases, and the ”Small Systems”

category is composed by Tomcat 6.0, Ant 1.6, Ant 1.7, Lucene 2.2 and Lucene 2.4.

For Eclipse we computed the number of faults in each class. We matched infor-

mation recovered from software repositories such as Bugzilla (22) and Issuezilla, with

commit operations performed by developers in CVS (23), associating bugs with the

corresponding class. The bugs dataset for the Eclipse software projects are publicly

available, as well as the commit operations. The details of the process of bugs extrac-

tion from the repositories can be found in (24) (25) (26). In order to calculate the

faults of the Small Systems category we used the information taken from the Promise

repository (27).

7.2 Results

Each software system analyzed is characterized by a GSR matrix where each row repre-

sents the value for a class and each column contain a GSR value for each micro pattern.

The GSR coe�cient ranges between zero and one. The correlation between columns

52

7.2 Results

of the GSR matrix provides an important information about the relationship between

di↵erent micro patterns, for example if the matching of one micro pattern with a class

implies the matching of an other micro pattern with the same class. All the corre-

lation matrices of the systems analyzed are very similar (this demonstrates that the

correlation between micro patterns is independent of the size of the system) and the

correlation matrix presented in Table 7.1, is the correlation matrix of Eclipse 3.1.

Below we list the strongest correlations observed:

• Joiner - Taxonomy: the highest correlation value is between these two micro pat-

terns. This is an expected result, because the set of Joiner classes is a subset of

the Taxonomy classes. For the purpose of our study it is not necessary to dif-

ferentiate Joiner and Taxonomy so we consider only the Taxonomy micropattern

(which contains both definitions).

• Common State - Stateless: Another strong correlation occurs between the Com-

mon State micropattern and the Stateless micropattern. Even in this case the

definitions are similar and the correlation is justified: when a class does not de-

clare a state because it contains only constants, it is Stateless. But constants are

static and consequently a class of this type is also Common State.

• Compound Box - Box - Canopy: A similar consideration can be made for micro

patterns Compound Box and Box and for micro patterns Box and Canopy: the

conditions for the first are a subset of the conditions for the second.

• Pool - Stateless: The correlation value between Pool and Stateless stems from the

fact that the Stateless micropattern requires the presence of concrete methods

(Stateless classes are Pool classes with methods).

• Pure Type - Trait: Among the micro patterns Pure Type and Trait there is a

strong correlation because both require abstract classes.

• Pseudo Class - Augmented Type: Among the micro patterns Pseudo Class and

Augmented type there is a strong correlation value because both require abstract

methods and static fields.

Figure 7.1 shows the average percentage of presence of each micro pattern for Big

System and for Small Systems. Table 7.2 shows, for each micro pattern, the proportion

53

7. MICRO PATTERN FAULT PRONENESS

T
a
b
le

7
.1
:
C
orrelation

b
etw

een
m
icro

p
attern

s

D
T

J
P

F
P

F
O

C
L

S
C

I
R
C

S
B

C
B

C
Y

R
D

D
M

S
K

O
L

T
T

S
M

P
T

A
T

P
C

IR
O
R

E
X

D
E
S
IG

N
A
T
O
R

1.00
0.52

0.52
-0.06

-0.09
-0.08

-0.05
-0.11

-0.12
-0.13

-0.04
-0.03

-0.13
-0.14

-0.10
-0.06

-0.06
-0.16

-0.04
-0.03

0.35
-0.04

-0.01
-0.02

-0.09
-0.14

-0.24

T
A
X
O
N
O
M
Y

0.52
1.00

1.00
-0.03

-0.05
-0.04

-0.03
-0.06

-0.06
-0.07

-0.02
-0.02

-0.07
-0.07

-0.05
-0.03

-0.03
-0.08

-0.02
-0.02

0.26
-0.02

-0.01
-0.01

-0.05
-0.07

-0.12

JO
IN

E
R

0.52
1.00

1.00
-0.03

-0.05
-0.04

-0.03
-0.06

-0.06
-0.07

-0.02
-0.02

-0.07
-0.07

-0.05
-0.03

-0.03
-0.08

-0.02
-0.02

0.26
-0.02

-0.01
-0.01

-0.05
-0.07

-0.12

P
O
O
L

-0.06
-0.03

-0.03
1.00

-0.06
0.09

0.07
0.58

0.50
0.22

0.06
-0.01

-0.08
-0.05

-0.06
0.31

-0.03
0.04

-0.02
-0.02

-0.05
-0.01

0.06
0.06

-0.04
-0.05

0.00

F
U
N
C
T
IO

N
P
O
IN

T
E
R

-0.09
-0.05

-0.05
-0.06

1.00
-0.08

-0.05
-0.11

-0.12
-0.12

-0.03
-0.03

-0.12
-0.13

-0.09
-0.06

-0.06
0.16

-0.02
0.06

-0.08
0.04

-0.01
-0.02

0.10
0.13

-0.02

F
U
N
C
T
IO

N
O
B
JE

C
T

-0.08
-0.04

-0.04
0.09

-0.08
1.00

0.02
0.05

0.05
0.01

0.00
-0.00

0.22
0.20

0.23
0.04

-0.05
0.04

-0.01
-0.03

-0.07
0.00

0.03
0.02

0.03
0.11

0.02

C
O
B
O
L
L
IK

E
-0.05

-0.03
-0.03

0.07
-0.05

0.02
1.00

0.31
0.51

0.21
0.08

0.10
-0.02

-0.00
-0.04

0.02
0.01

0.05
-0.01

-0.02
-0.04

-0.02
-0.00

0.10
-0.05

-0.06
-0.05

S
T
A
T
E
L
E
S
S

-0.11
-0.06

-0.06
0.58

-0.11
0.05

0.31
1.00

0.88
0.54

0.13
0.03

-0.15
-0.06

-0.11
0.14

0.00
0.03

0.02
-0.04

-0.10
-0.01

0.12
0.18

-0.06
-0.07

0.09

C
O
M
M
O
N
S
T
A
T
E

-0.12
-0.06

-0.06
0.50

-0.12
0.05

0.51
0.88

1.00
0.51

0.27
0.12

-0.10
-0.02

-0.11
0.12

0.01
0.04

0.01
-0.04

-0.11
-0.02

0.11
0.18

-0.06
-0.08

0.06

IM
M
U
T
A
B
L
E

-0.13
-0.07

-0.07
0.22

-0.12
0.01

0.21
0.54

0.51
1.00

0.14
0.04

-0.17
-0.09

-0.13
0.52

0.01
-0.05

0.03
-0.05

-0.11
-0.02

0.11
0.14

-0.07
-0.07

0.04

R
E
S
T
R
IC

T
E
D
C
R
E
A
T
IO

N
-0.04

-0.02
-0.02

0.06
-0.03

0.00
0.08

0.13
0.27

0.14
1.00

-0.01
0.00

0.02
-0.03

0.04
0.02

0.02
0.01

-0.01
-0.03

0.00
0.07

0.08
-0.03

-0.02
-0.02

S
A
M
P
L
E
R

-0.03
-0.02

-0.02
-0.01

-0.03
-0.00

0.10
0.03

0.12
0.04

-0.01
1.00

-0.00
0.01

-0.00
0.01

0.06
-0.01

-0.00
-0.01

-0.03
-0.01

-0.00
0.02

-0.02
-0.00

0.04

B
O
X

-0.13
-0.07

-0.07
-0.08

-0.12
0.22

-0.02
-0.15

-0.10
-0.17

0.00
-0.00

1.00
0.69

0.77
-0.06

-0.03
0.05

-0.01
-0.05

-0.11
-0.00

-0.02
-0.03

0.06
0.12

0.03

C
O
M
P
O
U
N
D
B
O
X

-0.14
-0.07

-0.07
-0.05

-0.13
0.20

-0.00
-0.06

-0.02
-0.09

0.02
0.01

0.69
1.00

0.55
-0.06

0.02
0.03

0.01
-0.05

-0.12
0.00

-0.01
-0.00

0.02
0.11

0.03

C
A
N
O
P
Y

-0.10
-0.05

-0.05
-0.06

-0.09
0.23

-0.04
-0.11

-0.11
-0.13

-0.03
-0.00

0.77
0.55

1.00
-0.04

-0.06
0.06

-0.02
-0.04

-0.08
-0.00

-0.01
-0.02

0.05
0.14

0.00

R
E
C
O
R
D

-0.06
-0.03

-0.03
0.31

-0.06
0.04

0.02
0.14

0.12
0.52

0.04
0.01

-0.06
-0.06

-0.04
1.00

-0.04
-0.02

-0.02
-0.02

-0.06
-0.02

0.04
0.03

-0.05
-0.06

-0.05

D
A
T
A
M
A
N
A
G
E
R

-0.06
-0.03

-0.03
-0.03

-0.06
-0.05

0.01
0.00

0.01
0.01

0.02
0.06

-0.03
0.02

-0.06
-0.04

1.00
0.06

0.01
-0.02

-0.05
-0.01

-0.00
0.01

-0.04
-0.06

0.08

S
IN

K
-0.16

-0.08
-0.08

0.04
0.16

0.04
0.05

0.03
0.04

-0.05
0.02

-0.01
0.05

0.03
0.06

-0.02
0.06

1.00
-0.03

0.11
-0.14

0.14
0.05

0.05
0.03

-0.03
-0.15

O
U
T
L
IN

E
-0.04

-0.02
-0.02

-0.02
-0.02

-0.01
-0.01

0.02
0.01

0.03
0.01

-0.00
-0.01

0.01
-0.02

-0.02
0.01

-0.03
1.00

0.19
-0.03

0.30
0.07

0.16
-0.03

-0.02
0.04

T
R
A
IT

-0.03
-0.02

-0.02
-0.02

0.06
-0.03

-0.02
-0.04

-0.04
-0.05

-0.01
-0.01

-0.05
-0.05

-0.04
-0.02

-0.02
0.11

0.19
1.00

-0.03
0.71

-0.00
-0.01

-0.03
-0.02

-0.01

S
T
A
T
E
M
A
C
H
IN

E
0.35

0.26
0.26

-0.05
-0.08

-0.07
-0.04

-0.10
-0.11

-0.11
-0.03

-0.03
-0.11

-0.12
-0.08

-0.06
-0.05

-0.14
-0.03

-0.03
1.00

-0.04
-0.01

-0.02
-0.08

-0.12
-0.20

P
U
R
E
T
Y
P
E

-0.04
-0.02

-0.02
-0.01

0.04
0.00

-0.02
-0.01

-0.02
-0.02

0.00
-0.01

-0.00
0.00

-0.00
-0.02

-0.01
0.14

0.30
0.71

-0.04
1.00

0.09
0.15

-0.04
-0.04

-0.02

A
U
G
M
E
N
T
E
D
T
Y
P
E

-0.01
-0.01

-0.01
0.06

-0.01
0.03

-0.00
0.12

0.11
0.11

0.07
-0.00

-0.02
-0.01

-0.01
0.04

-0.00
0.05

0.07
-0.00

-0.01
0.09

1.00
0.63

-0.01
-0.01

-0.01

P
S
E
U
D
O
C
L
A
S
S

-0.02
-0.01

-0.01
0.06

-0.02
0.02

0.10
0.18

0.18
0.14

0.08
0.02

-0.03
-0.00

-0.02
0.03

0.01
0.05

0.16
-0.01

-0.02
0.15

0.63
1.00

-0.02
-0.03

-0.01

IM
P
L
E
M
E
N
T
O
R

-0.09
-0.05

-0.05
-0.04

0.10
0.03

-0.05
-0.06

-0.06
-0.07

-0.03
-0.02

0.06
0.02

0.05
-0.05

-0.04
0.03

-0.03
-0.03

-0.08
-0.04

-0.01
-0.02

1.00
-0.05

-0.07

O
V
E
R
R
ID

E
R

-0.14
-0.07

-0.07
-0.05

0.13
0.11

-0.06
-0.07

-0.08
-0.07

-0.02
-0.00

0.12
0.11

0.14
-0.06

-0.06
-0.03

-0.02
-0.02

-0.12
-0.04

-0.01
-0.03

-0.05
1.00

-0.05

E
X
T
E
N
D
E
R

-0.24
-0.12

-0.12
0.00

-0.02
0.02

-0.05
0.09

0.06
0.04

-0.02
0.04

0.03
0.03

0.00
-0.05

0.08
-0.15

0.04
-0.01

-0.20
-0.02

-0.01
-0.01

-0.07
-0.05

1.00

54

7.2 Results

of classes that match with that micro pattern, and the proportion of faults that are

in classes that match with that pattern. We divided the table in two parts, in order

to show the distribution of micro patterns in Small Systems (like Tomcat, Ant and

Lucene) and in Big Systems (like Eclipse). Micro pattern Joiner is absent from Table

7.2, as explained in the Results section, and micro pattern Augment Type is absent

because the presence of this micro pattern is negligible in the systems analyzed.

Considering the data, the more fault-prone micro patterns were as follows:

• Compound Box with 11.2 % of faults on the 8.1 % of the classes;

• Canopy with 5.6 % faults on the 3.1 % of the classes;

• Restricted Creation with 2.3 % of faults on the 0.6 % of the classes;

• Extender with 16.1 % of faults on the 14.6 % of the classes;

• Sampler with a 1.8 % of faults on the 0.9 % of the classes;

• Stateless with 2.1 % of faults on the 2.1 % of the classes.

Our results confirm those obtained by Kim et al. (28) about the fault-proneness

of Compound Box, Sampler, and Common State micro pattern. On the other hand

we found complitely new results for others micro patterns. For example in the Big

Systems the micro pattern Extender shows a pronounced fault proneness since 14.5 %

of classes contain 26.4% of faults (7.3). In particular NMP classes result more fault

prone than others with a high significativity (table 4). It is interesting to check what is

the fault-proneness of those classes that do not match with any of the micro patterns

catalog (NMP category). We consider two categories of membership for the classes of

a system:

• NMP: classes that do not matches any micro pattern in the catalog.

• MP: classes that matches with at least one micro pattern of the catalog;

The data in Table 7.3 shows that the classes that do not match with any micro

pattern are more fault-prone than other classes. In the case of the Small System

category there is an average of 33% on the 20% of total classes. The same happens in

the categories of Large Systems, (three versions of Eclipse) where the average of faults

is 31% on the 28% of total classes.

55

7. MICRO PATTERN FAULT PRONENESS

Table 7.2: Fault proneness

Micropattern Small Systems Big Systems

MP % FAULT % MP% FAULT%

DESIGNATOR 4,3 0,2 3,0 1,0

TAXONOMY 0,6 0,1 1,0 0,1

POOL 0,4 0,4 0,4 0,1

FUNCTIONPOINTER 8,5 3,3 8,1 3,6

FUNCTIONOBJECT 3,3 2,3 6,4 4,8

COBOLLIKE 2,1 1,2 1,4 3,2

STATELESS 2,1 2,6 1,8 1,8

COMMONSTATE 1,8 1,7 1,0 1,4

IMMUTABLE 1,1 1,1 0,8 1,0

RESTRICTEDCREATION 0,6 2,3 0,5 2,1

SAMPLER 0,9 1,8 0,7 3,0

BOX 5,5 2,6 1,0 0,7

COMPOUNDBOX 8,1 11,2 7,5 7,7

CANOPY 3,1 5,6 6,6 4,7

RECORD 0,1 0,1 3,1 0,3

DATAMANAGER 0,0 0,0 0,0 0,0

SINK 17,4 10,8 6,5 1,9

OUTLINE 0,1 0,0 0,7 1,9

TRAIT 0,4 0,1 0,4 0,4

STATEMACHINE 2,2 1,8 3,4 0,7

PURETYPE 0,6 0,4 0,2 0,0

AUGMENTEDTYPE 0,0 0,0 0,0 0,0

PSEUDOCLASS 0,0 0,0 0,1 0,1

IMPLEMENTOR 1,0 0,9 1,0 0,5

OVERRIDER 0,5 0,5 1,7 1,2

EXTENDER 14,6 16,1 14,5 26,4

56

7.2 Results

Table 7.3: Average of faults

NMP MP

Ant 1.6 % Classes 18 82

% Faults 21 79

Ant 1.7 % Classes 20 80

% Faults 22 78

Lucene 2.2 % Classes 23 77

% Faults 44 56

Lucene 2.4 % Classes 19 81

% Faults 32 68

Tomcat 6.0 % Classes 22 78

% Faults 44 56

Avg Classes 20 80

Avg Faults 33 67

Eclipse 2.1 % Classes 28 72

% Faults 27 73

Eclipse 3.0 % Classes 29 71

% Faults 33 67

Eclipse 3.1 % Classes 28 72

% Faults 32 68

Avg Classes 28 72

Avg Faults 31 69

57

7. MICRO PATTERN FAULT PRONENESS

Figure 7.1: Coverage of all 27 micro patterns (black line: Small Systems - grey line: Big

Systems)

In order to verify the validity (in statistical terms) of the observed phenomenon, we

performed the chi-square test on the observed data. We assumed to have from classes

two populations belonging to MP classes, and n2 belonging to NMP classes, where

each class has respectively the probability P1 or P2 to show the characteristic A: ”fault

in the class” . In a random sample from the first population, r1 members have the

charateristic A and then a relative frequency equal to r1/n1; in the second population

the relative frequency is r2/n2, with P1⇠r1/n1 and P2⇠r2/n2 for large numbers. The

data can be exposed as a contingency table reported below.

Table 7.4: Contingency table

A: Fault in the class

With fault Without fault

MP classes r1 n1-r1 n1

NMP classes r2 n2-r2 n2

r1+r2 (n1-r1)+(n2-r2) n1+n2

58

7.2 Results

The total number of observations is indicated in the lower right, the four inner cells

represent the observed frequencies.

We can therefore formulate the following: Hypothesis H0: the relative frequency

of the characteristic A is equal in the two populations. The di↵erence observed in the

samples is casual.

To perform the test we consider a particular class and we check if it belongs to the

MP classes category or to the NMP classes category, and if it presents a number of

faults equal or greater than 1, it will become part of the population of the “classes with

fault”, otherwise it will became part of the population of “classes without fault”.

The number of classes of the three Eclipse versions analyzed are su�ciently large to

perform the test on each version.

Table 7.5: Contingency table Eclipse 2.1

A: Fault in the class

With fault Without fault

MP classes 1943 4276

NMP classes 796 1621

Table 7.6: Contingency table Eclipse 3.0

A: Fault in the class

With fault Without fault

MP classes 3441 5079

NMP classes 1654 1777

Table 7.7: Contingency table Eclipse 3.1

A: Fault in the class

With fault Without fault

MP classes 3460 6617

NMP classes 1517 2397

59

7. MICRO PATTERN FAULT PRONENESS

7.2.0.1 Big Systems

Eclipse 2.1 contains 8636 classes whose distribution is shown in Table 7.5. The chi-

square test show the following results: �2 = 2.21, p = 0.136. In this case the test

turns out to be not significant. This fact emphasizes that the results obtained with the

release of Eclipse 2.1 about the faults distribution, are di↵erent from those obtained

in releases 3.0 and 3.1. In the release 2.1, the classes more fault-prononess appear to

be those belonging to the MP category (even if only by one percentage point). The

release Eclipse 3.0 contains 11951 classes whose distribution is shown in Table 7.6. The

chi-square test show the following results: �2 = 60.8, p = 6.18e�15. In this case the test

result is significant, and allows us to reject the hypothesis H0. We argue that the two

classes of membership are not due to chance. The release Eclipse 3.1 contains 13991

classes whose distribution is shown in Table 7.7. The chi-square test show the following

results: �2 = 23.86, p = 1.03e�6. Also in this case the test result is significant, and

allows us to reject the hypothesis H0. We argue that, also for the release Eclipse 3.1,

the two classes of membership are not due to chance.

Table 7.8: Contingency table Tomcat 6.0

A: Fault in the class

With fault Without fault

MP classes 46 598

NMP classes 31 155

Table 7.9: Contingency table Ant 1.6

A: Fault in the class

With fault Without fault

MP classes 70 218

NMP classes 24 39

7.2.0.2 Small Systems

The distribution of the classes for Tomcat 6.0 is shown in Table 7.8 The chi-square

test show the following results: �2 = 14.44, p = 0.00014. Also in this case the test

result is significant, and allows us to reject the hypothesis H0. We can argue that even

60

7.2 Results

Table 7.10: Contingency table Ant 1.7

A: Fault in the class

With fault Without fault

MP classes 137 492

NMP classes 36 80

Table 7.11: Contingency table Lucene 2.2

A: Fault in the class

With fault Without fault

MP classes 109 81

NMP classes 35 21

Table 7.12: Contingency table Lucene 2.4

A: Fault in the class

With fault Without fault

MP classes 158 116

NMP classes 45 20

for Tomcat 6.0 the two classes of membership are not due to chance, and the classes

belonging to the category NMP are more prone to faults.

The contingency table obtained for Ant 1.6 is shown in Table 7.9. The chi-square

test show the following results: �2 = 4.33, p = 0.037. Also in this case the test result

is significant, and allows us to reject the hypothesis H0.

The contingency table obtained for Ant 1.7 is shown in Table 7.10. The chi-square

test show the following results: �2 = 4.19, p = 0.040. Also in this case the test result is

significant, and allows us to reject the hypothesis H0. The contingency table obtained

for Lucene 2.2 is shown in Table 7.11. The chi-square test show the following results:

�2 = 4.55, p = 0.033. Also in this case the test result is significant, and allows us to

reject the hypothesis H0. The contingency table obtained for Lucene 2.4 is is shown in

Table 7.12. The chi-square test show the following results: �2 = 2.46, p = 0.11. In this

case the test turns out to be non significant.

According to these results, we can now answer to the research questions.

RQ1: Are micro patterns related to each other?

61

7. MICRO PATTERN FAULT PRONENESS

The answer is yes and the strong correlations are between Joiner - Taxonomy, Common

State - Stateless, Compound Box - Box - Canopy, Pool - Stateless, Pure Type - Trait,

Pseudo Class - Augmented Type.

RQ2: Are some micro patterns more fault-prone than others?

The answer is yes and the order is: Compound Box, Canopy, Restricted Creation,

Extender, Sampler, Stateless.

RQ3: Does fault-proneness di↵er for NMP classes? The answer is yes. Data

shown that the classes that do not match with any micro pattern are more fault-

proneness than the other classes.

7.3 Threats to validity

Threats to external validity are related to generalization of our conclusions. With regard

to the Big Systems category, we considered three versions of Eclipse, and this could

a↵ect the generality of the discussion. In future work we will consider di↵erent systems.

With regard to the category of Small Systems, we analyzed two versions of Lucene

and two versions of Ant (besides Tomcat), future studies should treat more systems.

The software systems analyzed are Open Source software. Commercial software is

developed using di↵erent platforms and technologies, with strict deadlines and cost

limitation, and by developers with di↵erent experiences. This might provide di↵erent

micro pattern distributions. Another threat regards the relationships among micro

patterns and faults, which has been studied only for three Eclipse versions and for the

Small Systems category.

62

8

Micro pattern in Agile software

8.1 Introduction

Given the purpose of micro patterns, a question naturally arises as to whether there

is a relationship between the use of di↵erent patterns and the quality of the code. In

particular there are no studies investigating the di↵usion and the distribution of micro

patterns in software systems developed using Agile methodologies (5).

In this chapter we will present the possible use of micro patterns metrics to indirectly

assess the quality of the developed software, by showing the relationship between micro

patterns and faults and in this context, we assess the ability of micro patterns to

discriminate the usage of Agile practices.

We present results on di↵erent releases of two software systems on two industrial

case-study. We understand that the presented evidence is anecdotal, but with real

software projects it is very di�cult to plan multi-project researches of this kind. This

is because software houses tend to be very secretive about their projects. We hope that

other researchers will try to replicate the presented results on similar projects whose

data they can access.

The target of our research is the evolution of a software project consisting of the

implementation of floss-AR, a program to manage the Register of Research of univer-

sities and research institutes. floss-AR was developed with a full object-oriented (OO)

approach and released with GPL v.2 open source license.

The second system is a Web application, which has been implemented through a

specialization of an open source software project, jAPS (Java Agile Portal System) (9),

63

8. MICRO PATTERN IN AGILE SOFTWARE

that is a Java framework for Web portal creation. This system is certified as a software

developed using Agile methodologies.

In order to verify the use of Agile methodologies during the development phases of

the analyzed systems, we submitted a questionnaire to the developers such as to have

greater knowledge about Agile methodologies used.

We decided to organize our research answering to the following research questions:

• RQ1: Do software systems developed with Agile methodologies have a di↵erent

distribution of micro patterns with respect to non Agile open source systems?

• RQ2: Is the micro patterns faults-proneness the same for Agile and non Agile

software?

• RQ3: Does the micro patterns distribution change during software evolution?

If yes, how?

8.2 Methodology

The goal is to investigate the possible relationship between Agile methodologies and

micro patterns. We submitted to the developers of the floss-AR software system, a

questionnaire in order to evaluate the e↵ective use of Agile methodologies in the early

stages of software development (20). We used the Java Tool described in Chpater 9

in order to extract from the software systems analyzed the data relative to the micro

patterns distribution. We analyzed the two systems developed using Agile methodolo-

gies and we have studied the distribution and the evolution of micro patterns through

di↵erent releases.

The micro patterns catalog contains several categories that in the literature are

considered like anti patterns (15) as descriptive of bad programming practices not

related to the object orientation techniques.

In (6) Destefanis et al. show that there are other micro patterns categories prone

to fault and that the classes of a software system that does not belong to any category

of micro patterns are more prone to faults. In this research we analyzed the di↵erent

releases of the floss-AR system in order to verify if:

• also in this case there is a relationship between the number of faults and anti

micro patterns;

64

8.3 Results

• there is a relationship between number of faults and micro patterns more fault

prone;

• there is a relationship between number of faults and classes that do not belong

to any micro patterns category.

The analysis cannot have statistical significance (because it is performed on a single

system), but it is however interesting and a good starting point to further studies.

To establish the link between source code and fix operation we adopt the traditional

heuristics proposed by Bachmann and Bernstein (14):

1. Scan through the change logs for bug report in a given format (e.g. fix bug, fix

issue and so on).

2. Exclude all false-positive bug numbers (e.g. r420, 2009-05-07 10:47:39 -0400 and

so on).

3. Check if there are other potential bug number formats or false positive number

formats, add the new formats and scan the change logs iteratively.

4. Check if potential bug numbers exist in the bug- tracking database with their

status marked as fixed.

Based on these heuristics we mine the source code repository (such as CVS and SVN)

for commit that fixed a bug. Knowing how many time a class have been debugged and

knowing the micro patterns associated (if any) to the class we could then evaluate the

fault proneness of micro patterns for the system analyzed.

8.3 Results

In this section we present the results of the survey to developers and on the analysis

performed on the source code of the Agile systems. In particular we show how the

Agile development impacts on the micro patterns statistics, and on the fault proneness

of micro patterns, anti patterns and the set composed by the classes that do not match

with andy micro patterns of the catalog (no micro patterns category: NMP).

65

8. MICRO PATTERN IN AGILE SOFTWARE

8.3.1 Survey

The results of the survey clearly show that Agile development has been applied for the

floss-AR system. Tabs. 8.1 8.2 8.3 resume the survey’s results.

The questions are divided in three groups according to the format of the possible

answers. The first question requires an answer with 5 possibilities, in the second set the

questions are posed in a YES or NO form, while in the third set the questions require

a short sentence answer.

For developing floss-AR the following Agile practices have been applied:

• Pair programming

• Stand Up Meeting

• Refactoring

• On Site Customer

According to further discussions with the developers team, we are also able to identify

four main phases of development:

• Phase 1 (Initial Agile): a phase characterized by the full adoption of all practices,

including testing, refactoring and pair programming. This is the phase leading to

the implementation of a key set of the system features. In practice, specific classes

to model and manage the domain of research organizations, roles, products, and

subjects were added to the original classes managing the content management

system, user roles, security, front end and basic system services. The new classes

include service classes mapping the model classes to the database, and allowing

their presentation and user interaction.

• Phase 2 (Cowboy Coding): this is a critical phase, characterized by a minimal

adoption of pair programming, testing and refactoring, because a public pre-

sentation was approaching, and the system still lacked many of the features of

competitors’ products. So, the team rushed to implement them, compromising

the quality.

66

8.3 Results

• Phase 3 (Refactoring): an important refactoring phase, characterized by the full

adoption of testing and refactoring practices and by the adoption of a rigorous pair

programming rotation strategy. The main refactorings performed were Extract

Superclass, to remove duplications and extract generalized features from classes

representing research products, and corresponding service classes, and Extract

Hierarchy applied to a few big classes, such as an Action class that managed a

large percentage of all the events occurring in the user interface. This phase was

needed to fix the bugs and the bad design that resulted from the previous phase.

• Phase 4 (Mature Agile): Like Phase 1, this is a development phase characterized

by the full adoption of the entire set of practices, until the final release.

8.3.2 Source code analysis

We next report the results on how Agile methodologies can impact on the micro patterns

distribution and on the fault proneness of the code. In Tabs. 8.4 8.5 we report the

micro patterns distributions for each release of the floss-AR and Japs systems, in order

to show how such distributions evolve from one release to the next.

Both systems respect the Gil and Maman statement that about 75% of classes be-

long to at least one micro pattern. This means that micro patterns are good descriptors

also for software developed with Agile methodologies. The distributions of micro pat-

terns among classes roughly respect the same proportions found for software developed

with traditional methodologies (6). In fact previous results show that Extender, Sink

and Function Pointer are the most common micro patterns, while Taxonomy, Pool,

Sampler and Record are almost absent. One key point is the behavior of anti patterns,

which are indicators of bad programming practices (13). The overall anti patterns

behavior is captured by Function Pointer, because classes belonging to others anti pat-

terns, like Pool or Record, are a very small fraction of the total number of classes.

Such behavior is displayed in Fig. 8.1 (left side), which shows an overall decreasing

trend in the usage of anti patterns. This suggests that the constant application of

Agile methodologies during software development across di↵erent releases may impact

positively the software quality, carrying as side e↵ect the reduction in the use of bad

programming practices.

67

8. MICRO PATTERN IN AGILE SOFTWARE

Figure 8.1: Left side: floss-AR - Right side: Japs

8.3.3 Micro patterns and faults

Next we examine the relationship among micro patterns and faults in the floss-AR

releases. The top part of Tab. 6 shows the distribution of faulty classes among non

micro patterns (NMP) and micro patterns (MP). It must be noted that NMP classes

are only 25% of the total classes, and nevertheless they own the larger percentage of

faulty classes, except for the last release, where the percentage of faulty classes is the

same as the percentage of NMP in the entire release. This result for the first four

releases is in agreement with those reported in (6), where NMP own most of the faults.

This means that software developed through the adoption of Agile methodologies does

not di↵er from other software with respect to such distribution. The result for the last

release is somehow unexpected, and we cannot explain it with the data at our disposal.

Further analysis are needed in order to understand the reasons for this inversion in the

fault proneness.

The bottom part of Tab. 6 shows how faults are distributed among the di↵erent

MP categories: anti micro patterns (AMP), fault-prone MP, and other MP, where fault

prone MP are identified by the analysis performed in (6). Also in this case the total

percentage of faulty classes in the last release is di↵erent than in previous releases,

68

8.3 Results

but the distribution among AMP, fault prone MP, and other MP is again respected.

These results confirm that also in Agile systems the most fault prone micro patterns

are Extender and Compound Box, and that also the AMP classes are more fault prone

than others.

8.3.4 Discussion

According to these results, we can now answer to the research questions:

RQ1: Do software systems developed with Agile methodologies have a dif-

ferent distribution of micro patterns with respect to non Agile open source

systems?

The answer to this research question is negative. According to tabs. 4, 5, the distri-

butions of classes across micro patterns is roughly the same described in (6), where 8

systems were analyzed. They are very similar for both Japs and floss-AR, in all the

releases analyzed. This result suggests that the use of Agile methodologies and pro-

gramming practices does not influence the distribution of micro patterns in the classes.

RQ2: Is the micro patterns faults-proneness the same for Agile and non

Agile software?

The answer to this question is positive except for the last release of floss-AR. Com-

paring the results obtained for the first 4 releases of floss-AR analyzed (Tab. 6, top

part) NMP classes are by far the most fault prone classes. The more detailed analysis

reported in Tab. 6 (bottom part) shows that among the classes matching with at least

one micro pattern the Extender and Compound box micro patterns as well as the anti

patterns are the most fault prone. This result confirms the findings reported in (6) and

shows that the fault prone micro patterns distributions in Agile software is similar to

the one found in systems developed without the adoption of Agile methodologies.

RQ3: Does the micro patterns distribution change during software evolu-

tion? If yes, how?

The answer to this research question is not univocal. In general we have shown that

across all the releases the micro patterns distribution remains the same, with the ex-

ception of the anti patterns classes. In fact we found a decrease of the percentage of

anti patterns classes in both systems across the releases. This may be related to the

continuous adoption of Agile methodologies during development and maintenance.

69

8. MICRO PATTERN IN AGILE SOFTWARE

8.4 Threats to validity

Threats to construct validity are related to the Agile methodologies not used during

the system’s development (like TDD and continuous integration). This may influence

our conclusion that the use of agile methodologies may improve software quality, given

that agile development has been adopted partially. Another threat to construct validity

is related to the relationship between micro patterns and faults. We assume, based

on previous works, that MP are related to software defectiveness. This result has

not been generalized to all software systems, thus not necessarily the micro patterns

catalogue is directly related to software defectiveness. Nevertheless we believe that our

work can build a first step in this direction. Threats to internal validity are related

to the fact that with di↵erent values of micro patterns could be possible to observe

di↵erent correlations. Threats to external validity are related to generalization of our

conclusions. With regard to the system studied in this work we considered only open

source systems written in Java, and this could a↵ect the generality of the discussion and

thus our results are not representative of all environments or programming languages.

Commercial software is typically developed using di↵erent platforms and technologies,

with strict deadlines and cost limitation, and by developers with di↵erent experiences.

This might result in di↵erent micro patterns distributions, which is another threat for

the external validity. Another threat regards the relationships among anti patterns and

faults, which has been studied only for the floss-AR system. Finally we have another

threat to conclusion validity: there is not an estimated error on the recognition of a

particular micro pattern for a given class.

70

8.4 Threats to validity

Table 8.1: floss-AR developers survey (5 developers)

Question Very

good

Good Discrete Adequate Not ade-

quate

How would you de-

scribe the collaboration

of the team?

4 1 0 0 0

Table 8.2: floss-AR developers survey (5 developers)

Question Yes No

The collaboration inside the team in-

creased the productivity?

5 0

Did you take part in developing the whole

system?

3 2

Do you have favourite programming

styles?

2 3

Have the project decisions been discussed

together with the team?

5 0

Did you interact directly with the cus-

tomer?

4 1

Did you use refactoring? 5 0

Table 8.3: floss-AR developers survey (5 developers)

Question Answer

Which Agile methodologies did you

use during development? • Pair Programming

• Stand Up Meeting

• Refactoring

• On Site Customer

How often did you interact with the

customer?

1-2 times per month

How often did you use refactoring? 2-3 times per month

71

8. MICRO PATTERN IN AGILE SOFTWARE

Table 8.4: jAPS micropattern distribution (%)

MP 1.0 1.2 1.4 1.6 1.6.2 1.8 1.8.2 2.0

DESIGNATOR 2.14 1.79 2 3.3 3 4.32 6.83 9.6

TAXONOMY 0 0 0 0 0 0 0 0

POOL 0 0 0 0.55 0.54 0.27 0 0.35

JOINER 0 0 0 0 0 0 0 0

FUNCTIONPOINTER 27.1 23.3 27.5 18.7 19.5 18.1 16.7 7.18

FUNCTIONOBJECT 0.71 6.1 0 2.2 2.7 1.89 2.02 1.22

COBOLLIKE 0 0 0 0.27 0.27 0.81 0.75 0.5

STATELESS 0.71 0 1 0.82 0.82 1.08 1.01 1.22

COMMONSTATE 0 0 0 0 0 0 0 0.17

IMMUTABLE 0 3.2 0 0.82 0.82 0.81 0.75 0.87

RESTRICTEDCREATION 0.35 0.4 0.33 0.55 0.54 0.54 0.5 0.17

SAMPLER 0 0 0 0 0 0 0 0

BOX 4.64 15.4 3.98 0.27 0.27 0.27 0.25 1.4

COMPOUNDBOX 7.5 10 12.3 7.1 17.9 7.02 6.83 11.9

CANOPY 0 0 0 0 0 0 0 0

RECORD 0 0 0 0 0 0 0 0

DATAMANAGER 0.35 0.35 0 0 0 0 0 0

SINK 15.3 3.9 15.6 4.14 3.5 2.7 2.78 2.45

OUTLINE 0 0 0 0 0 0 1.0 0.35

TRAIT 0 0 0 0 0 0 1.3 1.1

STATEMACHINE 0.71 0 0.66 0.82 0.82 0.54 0.5 5.4

PURETYPE 0 0 0 0 0.5 0.8 0.3 0.2

AUGMENTEDTYPE 0 0 0 0 0 0 0 0

PSEUDOCLASS 0 0 0 0 0 0 0 0

IMPLEMENTOR 0 0.71 0.3 0.27 0.27 0.27 0.25 0.35

OVERRIDER 0 0 0.3 0.82 0.82 0.54 0.5 0.87

EXTENDER 25 27.9 27.5 36.1 35.9 37.2 34.6 25.1

TOTAL 84 73 85.7 77 76.6 76.4 74.4 75.1

72

8.4 Threats to validity

Table 8.5: floss-AR micro patterns distribution (%)

MP CA SAR SS OS 2.1.1

DESIGNATOR 1.5 1.5 1.6 1.38 0.9

TAXONOMY 0 0 0 0 0

POOL 0.2 0.2 0.36 0.3 0.76

JOINER 0 0 0 0 0

FUNCTIONPOINTER 20.2 19.7 22.8 17.8 13.31

FUNCTIONOBJECT 2.5 2.4 2 4.45 1.53

COBOLLIKE 0.17 0.17 0.14 0.46 0.13

STATELESS 0.4 0.3 0.29 1.07 2.57

COMMONSTATE 0.2 0.2 0.14 0.15 0.06

IMMUTABLE 0.2 0.2 0.14 0.76 0.06

RESTRICTEDCREATION 0.1 0.1 0.29 0.30 0.06

SAMPLER 0 0 0 0 0

BOX 2 2 3.21 0.15 13.79

COMPOUNDBOX 7.9 8.2 7.45 10.4 12.61

CANOPY 0 0 0 0 0

RECORD 0 0.2 0 0.2 1.6

DATAMANAGER 0 0 0 1.68 1.74

SINK 18.9 18.6 17.2 3.53 14.77

OUTLINE 0 0 0 0.3 1.1

TRAIT 0.33 0.3 0.29 1.2 0.13

STATEMACHINE 0.17 0.17 0.29 0.15 0.06

PURETYPE 0 0 0 0.3 0.1

AUGMENTEDTYPE 0 0 0 0 0

PSEUDOCLASS 0 0 0 0 0

IMPLEMENTOR 1.7 1.22 1.46 2.61 0.69

OVERRIDER 0.33 0.34 0.29 1.07 0.2

EXTENDER 28.4 28.8 27.7 28.4 16.58

TOTAL 85.1 84.8 85.8 75.5 81.6

73

8. MICRO PATTERN IN AGILE SOFTWARE

Table 8.6: FlossAR fault-prone analysis

OS(%) CA(%) SAR(%) SS(%) 2.1.1(%)

Distribution of faulty classes NMP 63.12 62.41 71.63 70.92 23.4

among NMP and MP MP 36.87 37.58 28.36 29.07 76.59

Percentage of MP faults

Fault Percentage of AMP 12.76 12.05 7.8 7.8 23.4

Fault Percentage of fault-prone MP faults 18.43 14.89 11.34 13.47 32.62

Fault Percentage of other MP 5.67 10.63 9.21 7.8 20.56

74

9

The Java Tool

This chapter introduces the Java plug-in developed in order to extract the basic in-

formations about the source code, which is essential for subsequent analysis based on

micro patterns metrics.

9.1 The Eclipse Rich Client Platform

The term rich client was coined in the early 1990s with the rush to build client applica-

tions using the likes of Visual Basic and Delphi. The dramatic increase in the number

and popularity of these client applications was due in part to the desire for a ”rich”

user experience (33).

Rich clients support a high-quality end-user experience for a particular domain

by providing rich native user interfaces (UIs) as well as high-speed local processing.

Rich UIs support native desktop metaphors such as drag and drop, system clipboard,

navigation, and customization. When done well, a rich client is almost transparent

between end users and their workfostering focus on the work and not the system. The

term rich client was used to di↵erentiate such clients from terminal client applications,

or simple clients, which they replaced.

The basic unit of functionality is called a plug-in (or a bundle in OSGi terms), the

unit of modularity in Eclipse. Everything in Eclipse is a plug-in. An RCP application

is a collection of plug-ins and a framework on which they run. An RCP developer

assembles a collection of plug-ins from the Eclipse base and elsewhere and adds in

the plug-ins he or she has written. These new plug-ins include an application and a

75

9. THE JAVA TOOL

product definition along with their domain logic. In addition to understanding how

Eclipse manages plug-ins, it is important to know which existing plug-ins to use and

how to use them, and which plug-ins to build yourself and how to build them.

Small sets of plug-ins are easy to manage and talk about. As the pool of plug-ins in

your application grows, however, grouping abstractions are needed to help hide some

of the detail. The Eclipse teams define a few coarse sets of plug-ins, as shown in Figure

9.1.

Figure 9.1: System architecture view

9.2 The Java plug-in

We developed a RCP plug-in in order to extract from a generic software system the

data relative to the micro patterns distribution.

Although the application is born to be a Rich Client, this is an application intended

for developers; we have preferred to focus on execution speed compared to a complex

76

9.2 The Java plug-in

graphical user interface by removing some of the predefined classes.

The tool works in two steps: the first step consists in parsing the source code, and in

generating a series of files containing information relative to the various classes, fields,

methods, calls and so on; in the second step this set of files is examined for computing

the micro patterns.

The files produced in the first steps are the following:

• nodes.txt : the list of classes and interfaces declared in the system. Contains: CU1

full path, class name, class type, LOC. Class name is the name of the class (or

abstract class, or interface). Class type can be: C (class), A (abstract class), I

(interface).

• methods.txt : the list of all the methods defined in classes and interfaces of the

system. Contains: CU full path, class name, method name, numbers of param-

eters, parameter list, method type, modifiers, LOC. Method name is the name

of the method or constructor. Parameter list is the list of parameters separated

by a space. Each parameter is represented by the full name of the class (package

name.class name). Type method: m (method), c (constructor). Modifiers list is

the list of modifiers of the method separated by a space (nothing is written if a

modifiers is a default modifier).

• fields.txt : the list of all variables (instance variables and class variables) defined

in the classes and interfaces of the system . The file contains: CU full path, class

name, field name, field type, modifiers. Field name is the name of the variable

(instace, classes variable, constant). Field type is the full name of the type of the

field.

• methodInvocation.txt : the list of all calls to other methods contained within meth-

ods defined in the classes of the system. This file contains: CU full path, class

name, name of calling method, number of parameters, lists of parameters, name of

called method, number of parameters, lists of parameters, class of called method.

1
The compilation units (CU) are files containing one or few classes. Most of them contain just one

class (for example in Eclipse 90% of CU have just one file). Sometimes they may contain 2 or 3 classes,

where one class is typically large, and the others are much smaller and support services for the first

one.

77

9. THE JAVA TOOL

The class of the called method is the full name of the class where is declared the

called method.

• fieldAccess.txt : the list of all direct accesses to a instance variable or class variable

(field) contained within thmethods defined in the classes of the system. This file

contains: CU full path, class name, name of calling method, number of parame-

ters, lists of parameters, the field name to which the method accesses, full name

of the class that owns the field.

• fieldWriteAccess.txt : the structure is like that of FieldAccess.txt. In this file are

reported only the fields in which access is a write operation. The method accesses

the field to change the value. In the file FieldAccess instead are also reported

fields to which the method leads to simple read operations.

• links.txt : the list of all the dependencies of a class system from another class,

contained in system or not contained (including base classes as String, Date or

Integer, but not primitive types like int or double). If a class depends on another

more than once, there are many link declarations as there are the dependencies.

The file contains: CU full path of starting class, full name of the starting class,

full name of the arrival class, relation type.

The relation type can be: D, IH, I.

– D = dependence

– IH = inheritance

– I = implements

In the second step the tool calculates the presence of the micro patterns for each

class of the analyzed system, using the files produced in the first step. The tool uses

the definitions given by Arcelli and Maggioni. The class is assigned to only one micro

pattern, the one with the higest GSR (defined in (2) (3)).

78

10

Related Works

After the work of Gil and Maman that defines the catalog of the micro patterns (1),

several works appeared in this field. Arcelli and Maggioni suggest a novel approach to

the detection of micro patterns which is aimed at identifing types that are very close

and similar to a correct micro pattern implementation, even if some of the methods

and/or attributes of the type do not comply with the constraints defined by the micro

pattern (2) (3). The new interpretation is based on the number of attributes (NOA)

and the number of methods (NOM) of a type. Kim et al. performed micro-pattern

evolution analysis on three open source projects, ArgoUML, Columba, and jEdit, to

identify micro pattern frequencies, common kinds of pattern evolution, and bug-prone

patterns showing that the pattern evolution kinds that are bug-prone are somewhat

similar across projects (28). The bug-prone pattern evolution kinds of two di↵erent

periods of the same project are almost identical. Similar studies to those discussed in

our work have been conducted for design patterns (4): Heuzeroth et al. presented an

approach to support the understanding of software systems by detecting design patterns

automatically using static and dynamic analyses (10).

Aversano et al. report an empirical study showing that for three open source

projects, the number of defects in design-pattern classes is in several cases correlated

with the scattering degree of their induced crosscutting concerns, and also varies among

di↵erent kinds of patterns (11). Zimmer presented a classification of the relationships

between design patterns, which led to a new design pattern and to an arrangement

of the design patterns into di↵erent layers (31), and Noble describe and classifies the

common relationships between object-oriented design patterns (32).

79

10. RELATED WORKS

Tasharofi et al. (17) provide a set of high-level process patterns for Agile develop-

ment which have been derived from a study of seven Agile methodologies based on a

proposed generic Agile Software Process. These process patterns can promote method

engineering by providing classes of common process components with can be used for

developing, tailoring, and analyzing Agile methodologies.

Concas et al. in (16) studied and discussed the evolution of the classical software

metrics and their behavior related to the Agile practices adoption level. The authors

show that, in the reported case study, a few metrics are enough to characterize with

high significance the various phases of the project. Consequently, software quality, as

measured using these metrics, seems directly related to Agile practices adoption.

80

11

Conclusions

The objective of the work conducted during these three years of my PhD and described

in this thesis, was to enable the use of micro patterns as a means of support to the

evaluation of the quality of the source code. The starting point was the big job done by

Francesca Arcelli and Stefano Maggioni in the redefinition of micro patterns in terms

of NOM and NOA (2) (3), definitions at the base of the plug-ins that we developed for

the analysis of source code.

• The objectives of the work described in Chapter 6 was to try to quantify the re-

lationship between anti patterns (metrics that suggest a wrong OO programming

practices) and faults in a software system. We observed from empirical studies

on three Eclipse releases that 10% of the faults in these systems belong to classes

classified as anti patterns. By implementing a refactoring of these classes that

follow the implementation described in anti patterns definition (usually very sim-

ple classes to analyze), it might be possible to eliminate the 10% of faults acting

on 13% of classes of the system. Note that these 13% classes are typically very

simple - being without methods, or with just one method - and should anyway

be refactored to comply with good OO style. Performing this refactoring should

also enable to fix a small but not negligible percentage of all system faults. We

chose to study a high number of Eclipse releases (20) to evaluate the temporal

evolution of the percentage of occurrence of anti patterns in later versions of a

software system, extending Gil and Maman empirical work (1). Finally, we found

that the use of anti patterns causes an increment of the fault proneness in the

interested classes. For the future we will extend our analysis to investigate the

81

11. CONCLUSIONS

stabilization of a micro pattern over time in order to obtain information on the

maturity of a software system.

• The objectives of the work described in Chapter 7 were to analyze the correlation

between all the micro patterns of the catalog proposed by Gil and Maman, to

analyze the fault proneness of each micro pattern and to analyze what happens

in the classes that do not match with any micro pattern.

We used the Java plug-ing (described in Chapter 9) in order to extract the data

relative to the micro pattern distribution in a generic software system.

We divided the software systems analyzed into two categories of di↵erent sizes

(in terms of number of classes) called Big Systems and Small Systems, with the

aim to understand if there are the same features in systems of di↵erent sizes. The

”Big Systems” category is composed by three Eclipse releases, and the ”Small

Systems” category is composed by Tomcat 6.0, Ant 1.6, Ant 1.7, Lucene 2.2 and

Lucene 2.4.

We observed from empirical studies on the two categories that a correlation be-

tween di↵erent micro patterns exists and that the percentage of presence of each

micro pattern in a system is very similar for Big Systems and Small Systems (as

shown in Figure 7.1). With regard to the fault proneness of each micro pattern,

we found that there are micro patters more fault prone than others. The final

result regards the fault proneness of classes that do not match with any micro

pattern of the catalog: we found that thess classes are more fault prone then

classes that matching at least one micro pattern.

The use of micro patterns may be helpful to evaluate the quality of a software

project during the development process. A tool like the one used for the research

conducted in the present work could be used in order to monitor the di↵erent

stages of development, and possibly to control the temporal evolution of each

category of micro patterns. It can be seen from our empirical results that classes

that do not correspond to any micro patterns are more fault-prone and this sup-

ports that the use of a design methodology increases the quality of the code.

• The objectives of the work described in Chapter 8 were the analysis of micro

patterns distribution in Agile open source software and the analysis of the re-

82

lationship between MP-NMP and faulty classes. For the floss-AR system we

analyzed the change log for bug report and extracted fix operation according to

the traditional heuristic proposed in (14). We also submitted to the floss-AR

developers team a questionnaire in order to evaluate the e↵ective use of Agile

methodologies, while for Japs this is certified on the web site (9).

Our analysis shows that the micro pattern distribution among classes is the same

for the two systems, and remains roughly the same as the one found in non

agile systems. Thus the adoption of agile methodologies does not influence such

distribution. For example, Gil and Maman statement’s that about 25% of classes

does not match with any micropattern, is confirmed also in the two agile systems

analyzed, for all the releases.

The analysis of fault prone classes shows that in agile systems the Extender and

Compound box micro patterns are fault prone, as well as the anti micro patterns

classes. In particular the most fault prone classes are those not belonging to any

micro pattern. The last release of floss-AR represents an exception to this rule,

even if the percentage of faulty classes belonging to NMP (23.4%), is still larger

than the percentage of NMP classes in all the systems (18.4%).

Finally we found that the micro patterns distribution across the releases is un-

changed, with the exception of the anti pattern classes, which displays a decreas-

ing trend.

We can conclude that micro patterns may be helpful to evaluate the quality of

an Agile software project during the development process. A tool like the one

used in the present work could be used in order to monitor the di↵erent stages of

development, and possibly to control the temporal evolution of each category of

micro patterns. It can be seen from our empirical results that classes that do not

correspond to any micro patterns are more fault-prone and this supports that the

use of a design methodology increases the quality of the code.

Considering the natural adaptiveness of Agile development it could be useful to

monitor the evolution of the most fault-prone micro patterns in order to increase

the software quality and decrease the amount of defects.

83

11. CONCLUSIONS

84

12

Appendix

12.1 Consideration about the relationships between Mi-

cro Patterns and Traditional Software Metrics

Many empirical studies were performed to validate empirically CK suite under these

two aspects, showing an acceptable correlation between CK metrics values and software

fault-proneness and di�culty of maintenance. On the side of the relationship between

micro patterns and software quality, our studies shown that there are di↵erent categories

of micro pattern more prone to be faulty. In this appendix we present a preliminary

analysis of the relationship between traditional software metrics and micro patterns in

three versions of Eclipse (2.1, 3.0, 3.1).

For each category of micro pattern we have identified the corresponding classes and

we calculated the average of the considered metrics evaluating three versions of Eclipse

(2.1, 3.0, 3.1). It is interesting to see the average LOC (metric highly correlated with

faults) in the di↵erent categories of micro patterns. Results are shown in fig. 12.1.

As regards the category named NMP, comprising the classes of the system that do

not belong at any micro pattern of the catalog (25 % of the classes of the system),

previous studies demonstrate that this is a category prone to faults. The fact that

the average LOC value is not among the highest, indicates that these classes are not

particularly complex (like core classes of the system). Another result regards anti

patterns. While these are usually considered bad programming practices they in general

present low values on average, for some critical metrics with respect to other micro

patterns. For example Function Pointer possess an average a low value of the LOC

85

12. APPENDIX

Figure 12.1: OO class metrics (Average for each categories of micro patterns)

and of the CBO. Since LOC is directly related to bugs, this mean that on average

Function Pointer classes will be less fault prone than others. Furthemore, the coupling

with other classes is lower, in general, than for other micro patterns.

These features are also common to other anti patterns, like Record, Pool, Pseu-

doclass. Thus, while anti patterns are usually believed to represent bad programming

practices, from the point of view of theirs relationship with software metrics well es-

tablished to be ralated to software quality, they appear not so bad. In fact in general

they will be less fault prone and will keep coupling low. Threats to external validity

could a↵ect our data. We considered three versions of Eclipse, and this could a↵ect

the generality of the discussion. In future work we will consider di↵erent systems. The

software systems analyzed are Open Source software. Commercial software is developed

using di↵erent platforms and technologies, with strict deadlines and cost limitation, and

by developers with di↵erent experiences. This might provide di↵erent micro pattern

distributions.

86

13

List of Publications Related to

the Thesis

• Concas G., Destefanis G., Marchesi M., Ortu M, Tonelli R., Micro patterns in

Agile Software, XP 2013, 14th International Conference on Agile Software Devel-

opment, June 3rd - 7th, Vienna

• Cocco L., Concas G., Marchesi M., Destefanis G., Agent-Based Modelling and

Simulation of the Software Market, Including Open Source Vendors Journal of

Information Technology Management

• Destefanis G., Tonelli R., Tempero Ewan, Concas G., Marchesi M., Micro Pattern

Fault Proneness, Euromicro SEAA 2012 Cesme Izmir (Turky)

• Concas G., Marchesi M., Destefanis G., Tonelli R. . 2012. An Empirical Study

of Software Metrics for Assessing the Phases of an Agile Project. International

Journal of Software Engineering and Knowledge Engineering

• Destefanis G., Tonelli R., 2012. Mixing SNA and Classical Software Metrics for

Sub-Projects Analysis 11th International Conference on Software Engineering,

Parallel and Distributed Systems (SEPADS 12) Cambridge (UK), February 2012

• Destefanis G., Tonelli R., Concas G., Marchesi M., 2012. An Analysis of Micro-

Anti-Pattern E↵ects on Fault Proneness in Large Java Systems SAC 2012, Riva

del Garda (Trento)

87

13. LIST OF PUBLICATIONS RELATED TO THE THESIS

88

References

[1] J. Y. Gil, I. Maman. Micro pattern in Java Code, Proceedings of the 20th Ob-

ject Oriented Programming Systems Languages and Applications, San Diego,

CA, USA, pp:97116, 2005. 2, 3, 23, 36, 37, 43, 44, 45, 52, 79, 81

[2] F. Arcelli and S. Maggioni. Metrics-based Detection of Micro pattern to im-

prove the Assesment of Software Quality. Proceedings of 1st Symposium on

Emerging Trends in Software Metrics (ETSM 2009), Italy, May 2009. 3, 44,

78, 79, 81

[3] Maggioni, Stefano, and Francesca Arcelli. ”Metrics-based detection of micro

patterns.” Proceedings of the 2010 ICSE Workshop on Emerging Trends in

Software Metrics. ACM, 2010. 3, 44, 78, 79, 81

[4] E. Gamma, R. Helm, R. Jhonson, J. Vlissides. Design Pattern: Elements of

Reusable Object-Oriented Software. Addison Wesley, 1995. 2, 3, 13, 23, 36,

79

[5] Agile Manifesto, URL: www.agilemanifesto.org. 63

[6] Destefanis, G., Tonelli, R., Tempero, E., Concas, G., Marchesi, M. (2012,

September). Micro Pattern Fault-Proneness. In Software Engineering and Ad-

vanced Applications (SEAA), 2012 38th EUROMICRO Conference on (pp.

302-306). IEEE. 64, 67, 68, 69

[7] N.I. Churcher and M.J. Shepperd, Comment on - ”A Metric Suite for Object

Oriented Design”, Correspondence of IEEE Transaction on Software Engi-

neering, 21(3) pp. 263-65, 1995 12

89

REFERENCES

[8] B. Henderson-Sellers, L.L. Constantine and I.M. Graham, ”Coupling and co-

hesion: towards a valid metrics suite for object-oriented analysis and design,

Object Oriented Systems, 3(3), pp.143-58, 1996 12

[9] JAPS: Java agile portal system. URL: http://www.japsportal.org. 63, 83

[10] D. Heuzeroth, T. Holl, G. Hogstrom, W. Lowe. Automatic Design Pattern

Detection, IWPC 03 Proceedings of the 11th IEEE International Workshop

on Program Comprehension 79

[11] L. Aversano, L. Cerulo, and M. Di Penta. Relationship between design pat-

tern defects and crosscutting concern scattering degree: an empirical study

IET Softw. October 2009 Volume 3, Issue 5, p.395409 79

[12] S. Dorairaj, J. Noble, and P. Malik, ”Understanding Team Dynamics in

Distributed Agile Software Development”, ;in Proc. XP, 2012, pp.47-61.

[13] J. Bloch. E↵ective Java Programming Language Guide. Addison-Wesley,

June 2011. 44, 51, 67

[14] A. Bachmann and A. Bernstein. Software process data quality and charac-

teristics: a historical view on open and closed source projects. IWPSE-Evol

’09 Proceedings of the joint international and annual ERCIM workshops on

Principles of software evolution (IWPSE) and software evolution (Evol) work-

shops, ACM, 2009. 65, 83

[15] Destefanis, G., Tonelli, R., Concas, G., Marchesi, M. (2012, March). An

analysis of anti micro patterns e↵ects on fault proneness in large Java systems.

In Proceedings of the 27th Annual ACM Symposium on Applied Computing

(pp. 1251-1253). ACM. 64

[16] G. Concas, M. Marchesi, G. Destefanis, R. Tonelli, An empirical study of soft-

ware metricsfor assessing the phases of an agile project, International Journal

of Software Engineeringand Knowledge Engineering, Vol 22, 2012, pp.525-548

80

90

REFERENCES

[17] Process Patterns for Agile Methodologies. Samira Tasharofi, Raman Ramsin

01/2007; In proceeding of: Situational Method Engineering: Fundamentals

and Experiences, Proceedings of the IFIP WG 8.1 Working Conference, 12-14

September 2007, Geneva, Switzerland 80

[18] Robert Cecil Martin. 2003. Agile Software Development: Principles, Pat-

terns, and Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[19] Empirical studies of agile software development: A systematic review. Tore

Dyba, Torgeir Dingsoyr. SINTEF ICT, S.P. Andersensv. 15B, NO-7465 Trond-

heim, Norway

[20] Rashina Hoda, James Noble, and Stuart Marshall. 2010. How much is just

enough?: some documentation patterns on Agile projects. In Proceedings of

the 15th European Conference on Pattern Languages of Programs (EuroPLoP

’10). ACM, New York, NY, USA, , Article 13 , 13 pages. 64

[21] Agile Processes in Software Engineering and Extreme Programming, Lecture

Notes in Business Information Processing Volume 31, 2009, pp 247-248, Soft-

ware Product Line Engineering Approach for Enhancing Agile Methodologies,

Jabier Martinez, Jessica Diaz, Jennifer Perez, Juan Garbajosa

[22] Bugzilla. http://www.bugzilla.org/. 52

[23] Cvs. http://www.nongnu.org/cvs/. 52

[24] R. Tonelli, G. Concas, M. Marchesi, A. Murgia. An analysis of SNA metrics

on the Java Qualitas Corpus ISEC 11 Proceedings of the 4th India Software

Engineering Conference 52

[25] G. Concas, M. Marchesi, A. Murgia, S. Pinna, R. Tonelli. Assessing tradi-

tional and new metrics for object-oriented systems, Proceedings of the WET-

sOM10, Cape Town, South Africa 52

[26] I. Turnu, G. Concas, M. Marchesi, S. Pinna, R. Tonelli. A modified Yule

process to model the evolution of some object-oriented system properties In-

formation Sciences, Volume 181, Issue 4, 15 February 2011, Pages 883902

52

91

REFERENCES

[27] G. Boetticher, T. Menzies and T. Ostrand, PROMISE Repository of em-

pirical software engineering data http://promisedata.org/ repository, West

Virginia University, Department of Computer Science, 2007 52

[28] S. Kim, K. Pan, J. Whitehead. Micro Pattern Evolution, MSR 06, May 22-23,

2006, Shanghai, China 55, 79

[29] Mak, Je↵rey KH, Cli↵ord ST Choy, and Daniel PK Lun. ”Precise modeling

of design patterns in UML.” Software Engineering, 2004. ICSE 2004. Proceed-

ings. 26th International Conference on. IEEE, 2004. 35

[30] Campione, Mary, Kathy Walrath, and Alison Huml. The Java tutorial: a

short course on the basics. Addison-Wesley Longman Publishing Co., Inc.,

2000. 27

[31] Zimmer, Walter. ”Relationships between design patterns.” Pattern languages

of program design 1 (1995): 345-364. 79

[32] Noble, James. ”Classifying relationships between object-oriented design pat-

terns.” Software Engineering Conference, 1998. Proceedings. 1998 Australian.

IEEE, 1998. 79

[33] McA↵er, Je↵, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse rich client

platform. Addison-Wesley Professional, 2010. 75

[34] Hall, Tracy, and Norman Fenton. ”Implementing e↵ective software metrics

programs.” Software, IEEE 14.2 (1997): 55-65. 6

[35] Chidamber, Shyam R., and Chris F. Kemerer. ”A metrics suite for object

oriented design.” Software Engineering, IEEE Transactions on 20.6 (1994):

476-493. 8

[36] Bunge, M., Treatise on Basic Philosophy: Ontology II: the World of Systems,

Riedel, Boston, MA, 1979 8

[37] Wand, Y., Weber, R., An Ontological Model of an Information System, IEEE

Transaction on Software Engineering, 16(11) pp. 1282-92, 1990. 8

92

	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis overview

	2 Software Metrics
	2.1 Software Metrics Classification
	2.2 Object-Oriented Metrics
	2.2.1 CK Metrics Suite

	3 Design Pattern
	3.1 Introduction
	3.2 Good programming practices
	3.2.1 Delegation

	3.3 Creational Patterns
	3.4 Structural Patterns
	3.5 Behavioral Patterns

	4 Micro patterns catalog
	4.0.1 Degenerate State and Behavior
	4.0.2 Degenerate Behavior
	4.0.3 Degenerate State
	4.0.4 Controlled Creation
	4.0.5 Wrappers
	4.0.6 Data Managers
	4.0.7 Base Classes
	4.0.8 Inheritors

	5 Interpretation of Micro Patterns
	5.1 Introduction
	5.2 A new interpretation

	6 Anti patterns
	6.1 Definition of the anti-patterns
	6.2 Experimental results
	6.3 Relationship with faults
	6.4 Correlation between Anti Patterns
	6.5 Discussion
	6.6 Threats to validity

	7 Micro pattern Fault Proneness
	7.0.1 Introduction
	7.1 Methodology
	7.2 Results
	7.2.0.1 Big Systems
	7.2.0.2 Small Systems

	7.3 Threats to validity

	8 Micro pattern in Agile software
	8.1 Introduction
	8.2 Methodology
	8.3 Results
	8.3.1 Survey
	8.3.2 Source code analysis
	8.3.3 Micro patterns and faults
	8.3.4 Discussion

	8.4 Threats to validity

	9 The Java Tool
	9.1 The Eclipse Rich Client Platform
	9.2 The Java plug-in

	10 Related Works
	11 Conclusions
	12 Appendix
	12.1 Consideration about the relationships between Micro Patterns and Traditional Software Metrics

	13 List of Publications Related to the Thesis
	References

