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Abstract

Intelligent video-surveillance is at present one of the most active research fields in computer
science. It brings together a wide variety of computer vision and machine learning tech-
niques to provide useful tools for surveillance operators and forensic video analytics. Person
re-identification is among these tools; it consists of recognising whether an individual has
already been observed over a network of cameras. Person re-identification has various pos-
sible applications, e.g., off-line retrieval of all the video-sequences showing an individual of
interest whose image is given as query, or on-line pedestrian tracking over multiple cameras.
The task is typically achieved by exploiting the clothing appearance, as classical biometric
traits like the face are impractical in real-world video surveillance scenarios. Clothing ap-
pearance is represented by means of low-level local and global features of the images, usu-
ally extracted according to some part-based body model to treat different body parts (e.g.
torso and legs) independently. The use of novel sensor technologies, e.g. RGB-D cameras
like the MS Kinect, could also allow for the extraction of anthropometric measures from a
reconstructed 3D model of the body, that can be used in combination with the clothing ap-
pearance to increase recognition accuracy.

This thesis presents a novel framework, named Multiple Component Dissimilarity (MCD),
to construct descriptors of images of persons, using dissimilarity representations, a recent
paradigm in machine learning in which the objects of interest are described as vectors of
dissimilarities to a set of predefined prototypes. MCD extends the original dissimilarity
paradigm to objects decomposable in multiple parts and with localised characteristics, to
better deal with the peculiarities of the human body. The use of MCD has at least three im-
portant advantages:

(i) a drastic reduction of computational needs, mostly due to the compactness of dissim-
ilarity representations (basically, small vectors of real numbers, easy to store and very
fast to be matched);

(ii) a totally generic formulation of the underlying low-level representation, that allows
one to combine different descriptors, even if they are heterogeneous in terms of the
model and features used, into a single dissimilarity vector;

(iii) it provides a natural way to learn high-level concepts from low-level representations.

Building on its above salient features, MCD is used in this thesis to achieve several objec-
tives:

(i) develop an approach to speed up existing person re-identification methods;
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(ii) implement a novel person re-identification method based on the combination of dif-
ferent local and global features into a single dissimilarity vector, able to attain state-of-
the-art performance;

(iv) develop a multi-modal approach to person re-identification (a novelty in the litera-
ture), by combining the clothing appearance with anthropometric measures extracted
through the use of novel RGB-D sensors, into a single dissimilarity vector;

(v) develop a method to perform a novel task, proposed for the first time in this thesis,
consisting in finding, among a set of images of individuals, those relevant to a textual,
semantic query describing clothing appearance of an individual of interest. This task
has been named appearance-based people search and can be useful in applications like
forensics video analysis, where a textual description of the individual of interest given
by a witness can be available, instead of an image.

Person re-identification and appearance-based people search are different tasks, aimed
at addressing different problems. Still, they can be seen as instances of the more general
problem of searching and matching people on multi-media data, e.g., video footages, range-
depth data, speech audio data. Building on the commonalities with Information Retrieval,
in the final part of the thesis, a possible formulation of the task of people search on multi-
media data will be proposed, with some suggestions and guidelines on how to exploit the
MCD framework for addressing this novel class of problems.
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Chapter 1

Introduction

T he demand for security and safety of citizens and critical infrastructures is continu-
ously growing in our society. Governments, international institutions and private com-

panies are going along with these needs, spending a huge amount of efforts. A key role in this
context is played by video-surveillance systems: nowadays, network of CCTV cameras have
been deployed everywhere (Fig. 1.1). Camera networks are in principle an useful tool for ad-
dressing a variety of security issues [50]. E.g., for the prevention of crimes and of accidents
(e.g. in an industrial facility), for the surveillance of state borders, for forensic investigations,
and for the safeguard of the environment (e.g. forest fire detection). Last but not least, their
presence can act as a strong deterrent for criminals. However, monitoring and analysing the
massive quantity of recorded videos that a typical camera network generates per day, is be-
coming a critical problem. Surveillance operators are required to survey tens or hundreds of
cameras at the same time; investigations that take place after a crime may need the review
of hundreds of hours of footage.

To extract useful information from large collections of videos taken by surveillance cam-
eras, and to help human operators in handling and understanding what is currently seen by
a camera network, is the challenge of intelligent video-surveillance, which is at present one of
the most active research fields in computer engineering and computer science. It brings to-
gether a wide variety of computer vision and machine learning techniques to enable various
useful applications, such as:

• on-line tracking of the movements of a person or an object of interest [70, 100, 137];

• recognition of suspicious actions (e.g. a person running in the crowd) [109];

• detection of particular events of interest (e.g. a luggage being left unattended at an
airport) [43, 131];

• summarisation of long footages to highlight only parts of potential interest [96].

Person re-identification[39] is another task that intelligent video-surveillance systems
can enable. It consists of recognising an individual who has already been observed (hence
the term re-identification) over a network of cameras. It is currently attracting much in-
terest from researchers, due to its various possible applications, e.g., off-line retrieval of all
the video-sequences where an individual of interest appears, whose image is given as query,

1
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Figure 1.1: From left to right: a CCTV camera located at the Warwick Castle, an historical at-
traction in the country town of Warwickshire, UK; CCTV cameras in London, UK. According
to a recent study [54], 1.85 million CCTV cameras operate in the sole UK.

or on-line pedestrian tracking over multiple, possibly not-overlapping cameras (a task also
known as re-acquisition [57]).

While several biometric traits can be in principle used to this aim, strong pose variations
and unconstrained environments (see Fig. 1.3) make the use of classical biometric traits like
face difficult of impractical [39] with the typical sensors and setting of a surveillance network.
Therefore, researchers explored the use of cues that pose less constraints, at the expense of
an intrinsically lower identification capability. Among them, clothing appearance is used
in the most of re-identification methods, as a soft, session-based cue, that is relatively easy
to extract, and exhibits uniqueness over limited periods of time. Various descriptors of the
clothing appearance have been proposed so far in the literature [39]. They are mostly de-
signed heuristically, and are based on the extraction of various kinds of low-level local and
global features from the images showing the individual1. Typically, they exploit a part-based
body model, to take into account the non-rigid structure of the human body and treat the
appearance of different body parts (e.g. torso and legs) independently.

Building on person re-identification, in this thesis another useful, novel task is proposed,
that can be implemented using clothing appearance descriptors. The task has been named
appearance-based people search, and consists in finding, among a set of images of individ-
uals, the ones relevant to a textual query describing clothing appearance of an individual
of interest. People search differs from person re-identification, as the query in this case is
a textual, semantic description, instead of an image. This can be useful in applications like
forensics video analysis, where a textual description of the individual of interest given by a
witness can be available, instead of an image.

Apart from the clothing appearance, it is difficult to extract other cues from video streams
of classical CCTV cameras. However, the extraction of other soft biometrics can be enabled
by the recent introduction of combined video and range (RGB-D) sensors like MS Kinect
[80]; for instance, they can be used to estimate various anthropometric measures useful to
perform re-identification [10], like the height, the arm length, the leg length.

This thesis presents a novel framework to construct descriptors of the human appear-
ance for the above tasks, using dissimilarity representations [104], a recent paradigm in ma-
chine learning in which the objects of interest are described as vectors of dissimilarities
to a set of predefined prototypes. The framework, called Multiple Component Dissimilar-

1The term “local features” refers to localised characteristics of the image, e.g. the colour distribution
around a certain salient point of the image; the term “global features”, instead, refers to characteristics of the
whole image, e.g. the overall colour distribution.
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ity (MCD), extends the original dissimilarity paradigm to objects decomposable in multiple
parts and with localised characteristics, to better deal with the peculiarities of the human
body. MCD allows for the construction of extremely compact representations, and carries
at least three important advantages with respect to the tasks of person re-identification and
people search:

• First, it can drastically reduce the issue of computational complexity, specially of the
matching phase of person re-identification methods2, due to the compactness of dis-
similarity representations. It is worth noting that computational requirements have
been almost overlooked so far; as a result, many re-identification methods are not suit-
able for direct deployment on real-world systems.

• Second, it builds upon a totally generic formulation of the underlying low-level rep-
resentation, and therefore can be used to combine different descriptors, even if they
are heterogeneous in terms of the model and features used. Such descriptors can also
come from modalities different to the clothing appearance (e.g., the face, anthropo-
metric measures obtained using a RGB-D sensors) Therefore, it can also be used to
perform multi-modal person re-identification, in cases where the clothing appearance
is not the only cue available.

• Third, it provides a natural way to learn high-level concepts from low-level represen-
tations. This directly enables the task of appearance-based people search described
above.

Building on the above salient features of MCD, in this thesis the novel dissimilarity frame-
work is exploited to:

• Develop a general approach to speed up any existing person re-identification method
based on appearance body models with multiple body parts and/or local features,
which includes most methods of the current literature.

• Implement a novel person re-identification method based on the combination, through
MCD, of different local and global features, that attains state-of-the-art performance
on common benchmark data sets.

• Combine the clothing appearance with anthropometric measures (e.g., the height,
the arm length) extracted from the Depth information of RGB-D sensors, to perform
multi-modal person re-identification. To the best of the Author’s knowledge, the com-
bined use of multiple soft modalities for person re-identification has never been pro-
posed so far in the literature on this topic.

• Develop a general method to perform appearance-based people search, exploiting the
same appearance descriptors used for person re-identification.

While person re-identification and people search can be addressed using the same MCD
framework above, they are different tasks. However, they can be seen as instances of the

2Matching refers to the act of finding the most similar person in a gallery of candidates, given an image of
the person of interest as query. The computational time required by the matching phase may become critical,
especially in real-time applications, as the number of candidates grows.
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more general problem of searching and matching people on multi-media data, i.e. video
footages, range-depth data, but also speech audio data and so on. In the final part of the the-
sis, a possible formulation of the task of people search on multi-media data will be proposed,
with some suggestions and guidelines on how to exploit the MCD framework for addressing
this class of problems.

The rest of this introductory Chapter is structured as follows. First, in Sect. 1.1 a closer in-
sight on person re-identification is given. Then, dissimilarity representations are introduced
in Sect. 1.2. People search on multimedia data is discussed in Sect. 1.3. Finally, in Sect. 1.4 I
underline the main contributions of this thesis and outline the rest of the work.

1.1 People re-identification and search

Knowing whether a person of interest was present in a given place at a given time is of cru-
cial importance in many surveillance tasks. For this reason, researchers have spent a lot of
efforts in developing techniques to detect people seen by a camera. To track an individual in
a network of multiple cameras requires to maintain his/her identity over different fields of
view (FOVs). Indeed, if FOVs are at least partly overlapping, one may exploit the simultane-
ous presence of a person in two or more video feeds to keep his/her identity over different
cameras [79]. However, as the size of the site where the camera network is deployed grows,
guaranteeing enough overlapping FOVs becomes difficult or even unsustainable.

Person re-identification is the task of associating video-sequences of people seen in dif-
ferent cameras, with generally non overlapping FOVs [39]. It is based on the extraction of
signatures, or descriptors, associated to each tracked person in each camera view. When a
tracked person leaves a certain camera view, and then reappears in a different one, the de-
scriptors extracted from the latter camera view is matched against the former one, allowing
one to reassign to that person the same identity that was previously associated to him/her.
Re-identification is therefore born to associate on-the-fly different video-sequences to the
same individual. Indeed, another possible application is to give a video-sequence, or an im-
age, of an individual of interest as query to the system, and retrieve from a data base of pre-
viously stored video-sequences those showing the same individual. This task may be very
useful e.g., for off-line investigations.

Formally, person re-identification is usually modelled as a classical matching problem,
whose goal is to rank templates in a template gallery with respect to their similarity to a
given probe individual. Thus, the problem of re-identifying an individual represented by its
descriptor P can be formulated as:

T = argmin
Ti

D(Ti ,Q) ,Ti ∈T (1.1)

where T = {T1, . . . ,TN } is a gallery of N template descriptors, and D(·, ·) is a proper distance
metric.

Descriptors are created from the sequence of rectangular regions (blobs) of frames con-
taining the person, and can in principle be extracted using a variety of biometric cues. How-
ever, the typical re-identification setting is characterised by multiple, uncalibrated cameras
in an unconstrained environment, with free poses and non collaborative users. This makes
the use of classical biometric cues like face of gait not feasible in practice. For this reason,
researchers have concentrated their efforts in exploiting the clothing appearance to con-
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Figure 1.2: Descriptor construction pipeline.

struct descriptors for person re-identification. Clothing appearance exhibits a high degree
of uniqueness over limited periods of time, and is relatively easy to extract.

Using the same appearance descriptors above, this thesis also proposes a new useful task,
named appearance-based people search, which consists of retrieving video sequences of in-
dividuals that match a textual description of clothing (e.g., “person wearing a black t-shirt
and white trousers”). This problem differs from re-identification, as in the latter task the
query is an image (or a video-sequence), while in the former task the query is a high level
textual description. This functionality can be very useful, e.g., in forensics investigations,
where a textual description can be provided by a witness. Appearance-based people search
bears a close resemblance with attribute-based people search, where images of people that
show a certain attribute (e.g. the presence of a bag, a certain colour of the shirt) are retrieved.
So far, attribute-based search was addressed by very few authors [124, 130].

Whatever is the task of interest (person re-identification or people search), the procedure
of extracting appearance descriptors typically follow this pipeline (see Fig. 1.2):

1. the person is detected and tracked by suitable algorithms;

2. the pixels belonging to the person are separated from the background (foreground ex-
traction or segmentation) in each frame of the video-sequence;

3. a descriptor is built from the resulting silhouettes (one for each frame), using local or
global features, possibly after different body parts are detected through a body model,
in order to take the into account the non-rigid nature of the body;

Descriptors of Step 3 are then stored in a data base for subsequent searches.
Step 1 requires i) a method to detect people in a given video frame [38] (i.e., to recog-

nise the image regions, or blobs, that contain a person), and ii) a data association algorithm
that track people found by the detector [70, 100, 137] (i.e., to associate blobs in subsequent
frames to the same person). These two steps may also be carried out together, and reinforce
one another [3]. Step 2 is usually carried out using an adaptive model of the background [44].
Regarding Step 3, a number of different techniques have been proposed in recent years. Of-
ten, the body is at first divided in parts; this phase can be carried out using a fixed or adaptive
part subdivisions. The whole body, or the parts in which the body has been subdivided, are
then described by global features of different kinds (e.g., colour distributions), or by bags
(unordered sets) of local features.
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(a) (b) (c) (d) (e)

Figure 1.3: Pairs of images showing the same person from different cameras, taken from the
VIPeR [57] and i-LIDS data sets [139]. Notice pose variations (a)(b)(c), partial occlusions (d),
illumination changes (a)(b)(c), and different colour responses (e).

Many challenging issues can affect some or all the three steps above. Among them we
cite (see Fig. 1.3):

• Pose and viewpoint variations. The relative pose of a person with respect to the cam-
eras of the network varies depending on the walking path of that person, and of the
viewpoint of the camera. This may cause consistent variations of the person appear-
ance.

• Partial occlusions. Parts of a person may be not visible to the camera due to occlu-
sions caused by objects, clothing accessories or other people. This may cause the seg-
mentation algorithm to fail in separating one person from the rest of the scene; conse-
quently, descriptors may be built from images partially corrupted by the source of the
occlusion.

• Illumination changes. Illumination conditions may differ in different cameras, and in
the same camera in different periods of time due to changing environmental condi-
tions. This may result in appearance changes over different cameras and during time.

• Different colour responses. Different cameras may have a different colour response,
that may affect person appearance as well.

Various techniques have been put in place to overcome, at least partially, the issues above.
Some of them will be discussed in Chapter 2.

Despite various other soft biometrics (e.g., gait) different than the clothing appearance
could be in principle used for person re-identification, it is in general difficult or imprac-
tical to extract them. Still, the recent introduction of combined video and range (RGB-D)
sensors (e.g., MS Kinect [80]), can enable the extraction of some useful soft cues, even in
unconstrained environments and without calibration, exploiting the per-pixel depth esti-
mation that is added to the usual RGB information. The Depth information can be used, for
instance, to construct a 3D model of the person, or to extract his/her skeleton, that in turn
can be used to estimate various anthropometric measures (e.g. the height, the leg length) for
re-identification [10]. The combination of anthropometric measures with appearance could
in principle lead to a more robust signature of the person and thus to better recognition
performance.
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Figure 1.4: (a) Fish shapes and (b) various possible approaches to measure their similarity:
(b.2) the area of non-overlapping parts; (b.3) one shape is covered by identical balls, such
that the balls centres belong to it, taking care that the other shape is covered as well; the
shapes are then exchanged and the same procedure is repeated; the sought distance is the
radius of the minimal ball; (b.4) Dissimilarity of corresponding skeletons, that can be com-
puted e.g. by summing up the differences between corresponding parts, weighting missing
correspondences more heavily. Figures taken from [104].

1.2 Dissimilarity representations

The classical way of representing objects in pattern recognition is to evaluate a set of mea-
surements (features) on the object and construct a vector of such measures, commonly called
a feature vector [42]. Dissimilarity representations have been proposed to deal with classi-
fication problems in which a feature vector representation is not available, or it is difficult
to find discriminative features, and it is possible to define a dissimilarity measure between
pairs of objects, instead [104]. For example, while how to describe the shape of an object
may not be clear, it may be simple to define a pair-wise dissimilarity between shapes, e.g.
the area difference (see Fig. 1.4 for an example). By means of such measure, it is possible to
represent any object with a vector of dissimilarity values to a predefined set of “prototype”
objects.

Implicit to the dissimilarity paradigm is the idea that the notion of proximity (similarity
or dissimilarity) is more fundamental than the notion of feature or of class [104]. In fact,
proximity plays the most important role on the intuitive definition of what constitutes a
class, while the way one represents objects (e.g. by feature vectors) is only subsequent. This
means that dissimilarity representations are representation-independent: in fact, the under-
lying representation (e.g., feature vectors, if available) of prototypes and objects, is actually
not relevant from the point of view of the dissimilarity representation. Fig. 1.5 visualises the
differences between feature-based and dissimilarity-based representations.

Prototypes can be chosen in several ways depending on the task at hand, for instance by
clustering a given set of objects and taking as prototypes the objects nearest to cluster cen-
troids [104]. The dimensionality of dissimilarity representations is strictly governed by the
number of prototypes, as each prototype defines exactly one dimension. How many pro-
totypes are used also usually impacts to the performance of classification algorithms. The
number of prototypes becomes therefore an useful parameter for the system designer to gov-



8 CHAPTER 1. INTRODUCTION

Define a set of 
measurements (features)

Represent objects as
points in a feature vector

space

Choose a set
of prototypes

Define a 
dissimilarity measure

Represent objects by their
dissimilarities to prototypes

Feature-based representation Dissimilarity-based representation

Figure 1.5: Feature-based representations and dissimilarity-based representations.

ern the trade-off between the compactness of descriptors (that may reduce computational
requirements) and the performance.

An extension of the paradigm for objects models with multiple parts
and components

Dissimilarity representations can be exploited in various tasks. In computer vision applica-
tions, often objects (e.g., human body) are better described using a part-based model and/or
bags of local image features. This is the case, for instance, of typical appearance descriptors
used for person re-identification and people search. Therefore, for this kind of applications
it could be useful to extend the dissimilarity paradigm so that prototypes can even represent
localised image characteristics and refer to specific object parts.

Following this intuition, in this thesis a novel dissimilarity framework is proposed, that
extends the original paradigm in two ways: (i) it allows for prototypes to represent either
global or local characteristics (both called “components” in the framework’s terminology),
and (ii) it can associate a specific body part to each prototype. This framework, named Mul-
tiple Component Dissimilarity, enables the construction of a dissimilarity representation
from any existing appearance descriptor, and even from a combination of descriptors that
use heterogeneous body models and features. This novel representation provides a natural
way to learn high-level concepts (which enables appearance-based people search). Further-
more, it can drastically reduce the issue of computational complexity of the matching phase
of re-identification tasks: in fact, matching two descriptors reduces to comparing small dis-
similarity vectors, that is an almost immediate operation with modern CPUs.

Although the framework is inspired by appearance descriptors, its general representa-
tion into multiple parts and components is not confined to the task of representing cloth-
ings characteristics: indeed, it can embrace other domains. This thesis will preliminarily
explore the use of MCD to combine other soft cues with the clothing appearance, when
they are available, by combining appearance descriptors with anthropometry for person re-
identification.
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1.3 Modelling people search on multimedia data

The Multiple Component Dissimilarity framework allows one to cope with two task, person
re-identification and people search, in a very similar way. In fact, these tasks are also similar
in terms of problem formulation, both being essentially Information Retrieval [91] problems.
They differ only for the particular kind of query: an image or a video in the case of person
re-identification, and a textual, or semantic, query in the case of people search. Going more
general, person re-identification and people search can be seen as specific instances of the
problem of retrieving people described by means of any set of modalities (e.g., appearance,
anthropometry) extracted from data coming from different media (RGB data, Depth data,
but also audio and speech, for instance) with respect to a query which can be expressed at
various semantic levels. A query, for instance, of the same kind of the data being processed
(e.g. an image), or even at an higher semantic lever (e.g. a textual description). Building
on this general idea, in this thesis a possible model of people search on multimedia data is
proposed, which tries to provide a general framework for such kinds of problems.

1.4 Outline and goals of the thesis

In this introductory Chapter, the reader has been introduced to the motivations and chal-
lenges of an important task in intelligent video-surveillance, namely person re-identification.
The main contributions of this thesis to this fields are:

• a general framework, called Multiple Component Dissimilarity (MCD), that extends
the dissimilarity paradigm for pattern recognition to deal with objects consisting of
multiple parts and bags of components;

• a method to speed up existing person re-identification methods, that is based on MCD
representations and exploits their compactness to reduce computational needs;

• a state-of-the-art re-identification method based on the combination of different kinds
of appearance features into one single MCD descriptor;

• a method to combine different descriptors, even heterogeneous and coming from dif-
ferent cues/modalities, into a single, compact one, based on MCD;

• an implementation of the above method to perform person re-identification based
on both clothing appearance and anthropometric measures, extracted using RGB-D
cameras; to the Author’s best knowledge, this is first example of multi-modal person
re-identification presented in literature;

• a novel data set for assessing multi-modal person re-identification methods that ex-
ploit RGB-D information, made up of RGB and Depth video-sequences showing indi-
viduals in different poses and locations, under different illumination conditions;

• a method that uses MCD to perform the new task of “appearance-based people search”,
by learning high level concepts from dissimilarity representations obtained through
MCD;

• a possible formulation of a generalisation of the tasks of people search and person re-
identification, that is named “people search on multi-media data”.
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The rest of the thesis is structured as follows. Chapter 2 provides an overview of exist-
ing descriptors for person re-identification. Then, the Multiple Component Dissimilarity
framework to construct dissimilarity descriptors and perform person re-identification and
people search is presented in Chapter 3. Experimental evidences of the effectiveness of us-
ing MCD in the tasks of person re-identification and people search are then provided in the
next four Chapters. In Chapter 4, the compactness of MCD-based descriptors is exploited to
speed up an existing person re-identification method. In Chapter 5, a novel re-identification
method based on MCD is presented, based on the combination of multiple kinds of de-
scriptors into a single dissimilarity vector, and which is able to attain state-of-the-art per-
formance while exhibiting low computational requirements. In Chapter 6, MCD is used to
obtain multi-modal person re-identification methods combining clothing appearance with
anthropometric measurements extracted through the use of RGB-D cameras. In Chapter 7,
is used to implement appearance-based people search. Chapter 8 presents a novel formu-
lation of the problems of people search and person re-identification as instances of a new
general task, “people search on multi-media data”. Finally, Chapter ?? concludes the thesis,
suggesting directions for future research.



Chapter 2

Literature overview

This Chapter provides an overview of existing methods used in literature for the task of per-
son re-identification. As explained in Chapter 1, most methods are based on descriptors of
the clothing appearance, which are relatively easy to extract and show a good uniqueness
over limited periods of time. Given a frame showing a person, the first step for constructing
an appearance descriptor is to extract the pixels that belong to the silhouette of that person.
As stated in Sect. 1.1, this is done by i) locating the rectangular region of the image that con-
tains the person, also called blob (Fig. 2.1-a), and ii) labelling the pixels of the blob as person
or non-person pixels. The second step is to describe the appearance of the person, relying
on the pixels belonging to the person’s silhouette. This step produces the actual appearance
descriptor. Possibly, if more than one frame are available per person (e.g. if the source is a
video-sequence), appearance descriptors created from different frames can be conveniently
accumulated.

The vast majority of methods assumes that the steps of detection, tracking and segmen-
tation have been already accomplished using any of the algorithms available in literature,
and concentrate on the task of constructing descriptors. The interested reader is referred to
[38] and [21] for a comprehensive survey of pedestrian detection and foreground segmenta-
tion algorithms.

(a) (b)

Figure 2.1: (a) Example outputs of a pedestrian detection algorithm in three frames taken
from real-world video-surveillance footages; Detected blobs are in green. (b) Example of
division of a blob into person and non-person pixels.

11
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Appearance descriptors usually follow a part-based body model: the body is at first sub-
divided in parts, to deal with the non-rigid nature of the human body. Then, body parts
are described via global features or bags (i.e., unordered sets) of local features. Body part
subdivision models and features used in the literature are described respectively in Sect.2.1
and in Sect.2.2 of this Chapter. Combining different kind of features may help in attaining
a better performance; Sect. 2.3 provides a closer insight on typical approaches for feature
combination in appearance descriptors.

While almost all existing methods use the clothing appearance as main cue to perform re-
identification, it is worth to note that other approaches have been attempted in literature, for
instance based on gait, or anthropometric measures captured through novel RGB-D sensors.
These methods are briefly surveyed in Sect. 2.4, which concludes this Chapter.

2.1 Part-based body models

The human body is not a rigid object. Instead, it has a complex kinematics, and can be bet-
ter described by a part-based model, possibly where relative positions of parts are not fixed
a-priori but are inferred from the image. Furthermore, discontinuities of the clothing ap-
pearance usually follow the body structure (e.g., the clothing appearances of the upper and
lower body usually differ). Many existing appearance descriptors, therefore, exploit some
part-based human body model to segment the silhouette into different parts. Some other
descriptors (e.g., [7, 13, 20, 33, 58, 63, 64, 68, 73, 77, 88, 90, 107, 126, 127]) consider the body
as a whole instead. Part-based body models used in existing appearance descriptors can
roughly be divided into three categories:

• fixed models, in which size and position of body parts are chosen a-priori by the de-
signer;

• adaptive models, that try to fit a predefined part subdivision model to the image of the
individual;

• learned models, that use a part-based body model that is previously learnt from a train-
ing set of images of individual.

In the rest of the Section, part-based body models belonging to the three categories above
are reviewed and compared.

2.1.1 Fixed part models

Probably the simplest kind of part subdivision is a fixed one, in which the sizes and positions
of body parts are chosen a-priori. An example of this approach can be found in [86, 110, 140],
where the body is subdivided into six horizontal stripes of equal size, that roughly capture
the head, upper and lower torso and upper and lower legs. Similarly, in [6] the silhouette is
subdivided in five equal-sized stripes. An even simpler fixed part subdivision is used in [78].
Three horizontal stripes of respectively 16%, 29% and 55% of the total blob height roughly
locate head, torso and legs, then the first strip is discarded as the head typically consists of
few pixels and is not informative for the clothing appearance.
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2.1.2 Adaptive part models

Other body models are adaptive, in the sense that they try to fit a predefined part subdivision
model to the image of the individual. In one of the descriptors proposed in [8], the MPEG-7
Dominant Colour Descriptor (DCD) [136] is used to dynamically separate the body into two
parts, upper and lower body, looking for discontinuities in dominant colours (the same DCD
is also used as feature set to describe each body part, see Sect. 2.2). The approach of [45]
extends the basic idea of exploiting appearance anti-symmetries of [8]. It dynamically finds
three body areas, namely the head, torso, and legs, exploiting symmetry and anti-symmetry
properties of silhouette and appearance. To this aim, two operators are defined. The first
measures is called chromatic bilateral operator. It measures the appearance anti-symmetry
of a certain image region with respect to a given horizontal axis, and is defined as

C (y,δ) = ∑
B[y−δ,y+δ]

d 2(pi , p̂i
)
, (2.1)

where d(·, ·) is the Euclidean distance, evaluated between pixels represented in the HSV
colour space pi and p̂i located symmetrically with respect to an horizontal axis placed at
height y of the person image. This distance is summed up over the person pixels lying in the
horizontal strip B[y−δ,y+δ] centred in y and of height 2δ.

The second is called spatial covering operator and measures the difference of the silhou-
ette areas of two regions:

S(y,δ) = 1

W δ

∣∣∣A
(
B[y−δ,y]

)− A
(
B[y,y+δ]

)∣∣∣, (2.2)

where W is the width of the blob, and A
(
B[y−δ,y]

)
and A

(
B[y,y+δ]

)
, denote the number of

person pixels respectively of the strip of vertical extension [y − δ, y] and [y, y + δ]. These
operators are combined to find two axes, yHT and yT L , that respectively separate head and
torso, and torso and legs. These axes are defined as

yT L = argmin
y

(
1−C (y,δ)+S(y,δ)

)
, (2.3)

yHT = argmin
y

(−S(y,δ)
)
. (2.4)

The parameter δ is set to a value of δ = Y /4 where Y is the blob height in pixels. The
values yHT and yT L isolate three regions approximately corresponding to head, body and
legs (Fig. 2.2-a). The head part is discarded as it carries very low informative content. As
claimed by the authors, this strategy is able to locate body parts which are dependent on the
visual and positional information of the clothes, robust to pose, viewpoint variations, and
low resolution. After [45], the same part-based model has been used in various other works
[14, 92, 93, 133].

A deformable model that is fitted to each individual to find six body regions is used one of
the methods in [55], based on decomposable triangulated graphs [2]. A triangulated graph is
a collection of cliques of size three, that has a perfect elimination order for their vertices, i.e.,
there exists an elimination order for all vertices such that (i) each eliminated vertex belongs
only to one triangle, and (ii) a new decomposable triangulated graph results from eliminat-
ing the vertex.
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Figure 2.2: (a) Symmetry-driven subdivision in three parts [45]. The blob of size Y ×X pixels
containing the person is divided according to two horizontal axes, yHT and yT L , found by
minimising a proper combination of the operators defined in Eqs. (2.1)-(2.2). (b) Decom-
posable body model used in [55]: (b.1) the decomposable triangulated graph model; (b.2)
Partitioning of the person according to the decomposable model. (c) An example of fitting
the decomposable triangulated model of [55] to an individual: (c.1) an image of an individ-
ual; (c.2) edges detected through the the Canny’s algorithm [25]; (c.3) result of fitting the
model to the edges (in red). All figures are taken from [45] and [55].

The model is fit to the image of a person using the following strategy. Let the model
be a decomposable triangulated graph T with n triangles Ti , i = 1, . . . ,n. The goal is to find
a function g that maps the model to the image domain, such that the consistency of the
model with salient image features is maximised, and deformations of the underlying model
are minimised. The function g must be a piecewise affine map [47], i.e the deformation of
each triangle gi (Ti ) must be an affine transformation. The problem becomes to minimise an
energy functional E(g , I ) that can be written as a sum of costs:

E(g , I ) =∑
i

Ei (gi , I ) =∑
i

(
E d at a

i (gi , I )+E shape
i (gi )

)
, (2.5)

where the I represents the image features. The terms E shape
i (gi ) take into account the cost

for shape distortion of the i -th triangle, while E d at a
i (gi , I ) attracts the model to salient im-

age features, which are found using an edge detector (Canny’s algorithm [25]). As shown in
[2], a model based on decomposable triangulated graphs can be efficiently optimised using
dynamic programming. Once the model has been fitted with regard to the image, the indi-
vidual is partitioned into six salient body parts, shown Fig. 2.2-b with different colours. An
example of application to a real pedestrian image is shown in Fig. 2.2-c.

2.1.3 Learned part models

More recently, some methods that rely on previously trained body part detectors and artic-
ulated body models have been proposed. Part detectors are statistical classifiers that learn
a model of a certain body part (e.g., an arm) from a given training set of images of people
where body parts are manually located and labelled. Typically, these detectors exploit fea-
tures related to the edges contained on the image. An approach of this kind has been used in
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(a) (b) (c) (d)

Figure 2.3: (a) Sample output of the articulated body model used in [15, 16]. (b) Sample
output of the Pictorial Structure model used in [28]. (c) Sample Pictorial Structure of the
upper body part, with the torso part as root node. (d) Kinematic prior learned on the dataset
from [111]. The mean part position is shown in blue dots; the covariance of the part relations
in the transformed space is shown using red ellipses. Figures taken from [15] and [4].

[16, 15] based on the work of Felzenszwalb et al. [46]. The overall body model is made up of
different part models; each one, in turn, consists of a spatial model and of a part filter. The
spatial model defines a set of allowed placements for a part with respect to the bounding
box containing the person, and a deformation cost for each placement. To learn a model, a
generalisation of Support Vector Machines (SVM) [23] called latent variable SVM (LSVM) is
used. In [16, 15], such model is used to detect four different body parts, namely head, left
torso, right torso and the upper legs (see Fig. 2.3-a).

An articulated body model based on Pictorial Structures (PS) was proposed in [4] and
later exploited in [28] for the task of re-identification. In [28], six parts are considered (chest,
head, thighs and legs, see Fig. 2.3-b), while the original PS model is also able to detect and
locate upper and lower arms.

A PS model for an object [48] is a collection of parts with connections between certain
pairs of parts (an example is provided in Fig. 2.3-c). The approach of [4] uses a PS of the
human body that is made up of a set of N parts, and a set of generic part detectors based on
descriptors of the shape. The model and the body part detectors are trained on a training set
of images of people.

Let L = {
l0, . . . , lN−1

}
be the set of configurations of each body part. Each li is the state

of the i -th body part li = (
xi , yi ,θi , si

)
, where xi and yi are the image coordinates of the

part centre, θi is the absolute part orientation, and si is the part scale, relative to the size
of the part in the training set. Given the image evidence D , the problem is to maximise
the a-posteriori probability (posterior) p(L|D) that the part configuration L is correct. The
posterior is proportional to

p(L|D) ∝ p(D|L)p(L) (2.6)

according to Bayes’ theorem [42]. The term p(D|L) is the likelihood of the image evidence
given a particular body part configuration, while p(L) corresponds to a kinematic tree prior.
Both are learned from a training set, as follows.

Kinematic three prior. The prior p(L) encodes the kinematic constraints, i.e. the con-
straints on the relative parts disposition. The body structure is mapped on a directed acyclic
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graph, so that p(L) can be factorised as

p(L) = p(l0)
∏

(i , j )∈E
p

(
li |l j

)
(2.7)

where E denotes the set of all directed edges in the kinematic tree, and l0 is the root node,
that in [4] is chosen to be the torso body part.

The prior for the root part configuration p(l0) is assumed to be uniform. To model part
relations p(li |l j ), a transformed space is used, where such relations can be modelled as Gaus-
sian [48]. More specifically, the part configuration li =

(
xi , yi ,θi , si

)
is transformed into the

coordinate system of the joint between the two parts i and j using the transformation:

T j i (li ) =


xi + si d j i

x cosθi + si d j i
y si nθi

yi + si d j i
x si nθi + si d j i

y cosθi

θi + θ̄ j i

si

 (2.8)

where d j i = (
d j i

x ,d j i
y

)T is the mean relative position of the joint between the two parts i and

j , in the coordinate system of part i , and θ̄ j i is the relative angle between the two parts.
Then, part relations are modelled as Gaussian in the transformed space:

p
(
li |l j

)=N
(
T j i (li )|Ti j (l j ),Σ j i

)
(2.9)

where d j i and Σ j i can be learned via maximum likelihood estimation [42] from a labelled
training set of images of people. It is worth noting that the body parts are only loosely at-
tached to the joints (also called a loose-limbed model [120]), which helps increasing the ro-
bustness of the pose estimation. Fig. 2.3-d shows the priors learned from the multiple views
and multiple poses people data set of [111], a common benchmark corpus for body pose
estimation algorithms.

Likelihood of the image evidence. To estimate the likelihood p(D|L), the methods relies
on a different appearance model for each body. Each appearance model will result in a part
evidence map di that reports the evidence for the i -th part for each possible position, scale,
and rotation.

Assuming that the different part evidence maps are conditionally independent, and that
each di depends only on the part configuration li , the likelihood p(D|L) can be written as:

p(D|L) =
N∏

i=0
p (di |li ) . (2.10)

Substituting Eq. (2.7) and Eq. (2.10) in Eq. (2.6), one finally obtains:

p(L|D) ∝ p(l0) ·
N∏

i=0
p (di |li ) ·

∏
(i , j )∈E

p
(
li |l j

)
(2.11)

The part detectors p (di |li ) use a variant of the shape context descriptor [95], that consists
in a log-polar histogram of locally normalised gradient orientations. The feature vector is ob-
tained by concatenating all shape context descriptors whose centres fall inside the bounding
box of the part. During detection, different positions, scales, and orientations are scanned
with sliding windows. The classifier used for detection is an ensemble of a fixed number of
decision stumps combined through AdaBoost [52].
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2.2 Features

Each body part (or the whole image of the individual, if no body part subdivision model
is used) is typically described using one or more different global or local features. In this,
Section, the main kinds of features used in the literature are reviewed.

2.2.1 Global features

Global features are characteristics measured in the whole image or body region considered,
and are usually represented as a fixed-size vector of real numbers.

Probably the most widely used feature of this kind is the global colour histogram. Given
a colour image of size N =W ×H pixels, the colours of the image are at first quantised into B
bins 1, . . . ,B . The histogram is then constructed as the count of the number of occurrences
per bin. Typically, such count is normalised as the fraction of pixels of the image belonging to
the bin. Colour image pixels are typically represented as a triplet of values, representing the
amount of colour in different colour channels (e.g., Red, Green and Blue). In this case, each
colour channel is quantised separately. The resulting histogram can be multi-dimensional
(one dimension for each channel), or mono-dimensional (the final histogram is constructed
as the concatenation of histograms in each colour channel). The latter saves a lot of space
(e.g., if 16 bin are used for each colour channel, the size of the multi-dimensional histogram
would be 16∗16∗16 = 4096 bins, while the mono-dimensional one would have a size of 48
bins) and has usually a similar discriminant capability to the former. Various colour spaces
exist in the literature. Among them it is worth citing:

• The RGB colour space, where each colour is represented as the corresponding amount
of Red, Green and Blue; it directly relates to the way devices acquire and visualise
colours.

• Perceptual colour spaces, i.e., spaces inspired to the way the human brain perceives
colour; e.g., the Hue-Saturation-Value (HSV) colour space, in which the light intensity
(V channel) is separated from the colour tonality (H channel) and the saturation of the
colour (S channel).

Good surveys on colour spaces are provided in [125, 129]. Many appearance descriptors use
global colour histograms, to represent the whole body appearance [13, 73, 86] or the over-
all appearance of each body part [6, 14, 15, 16, 45, 55, 58, 78, 110, 133, 140]. Du et al. [40]
recently evaluated histograms computed in various colour spaces for building appearance
descriptors for person re-identification. To tackle with the lower amount of information usu-
ally carried by peripheral pixels (that could actually belong to the background, as the person
segmentation is usually very noisy), in [28, 45, 133] these pixels receive less weight than those
near the vertical silhouette symmetry axis.

The colour space is typically quantised in an uniform fashion. However, many colour
ranges can be irrelevant for representing a certain appearance, e.g. colours ranges that are
not present in the image, or whose coverage percentage with respect to the image is irrele-
vant. For this reason, some approaches try first to find the most representative colour ranges,
then describe the appearance with respect to these ones. One of the methods of [8] and the
methods of [15, 16, 77] use the Dominant Colour Descriptor (DCD) (also called Represen-
tative Meta Colours Model, RMCM) of MPEG-7, which provides a compact description of
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the most representative colours. Given an image, the DCD algorithm first finds the K dom-
inant colours [36], via k-means clustering of all the colour triplets in the image. Then, the
descriptor is defined as

F = {
{ci , pi }, i = 1, . . . ,K

}
(2.12)

where ci is the i -th dominant colour (i.e., the centroid of the i -th cluster), and pi is the per-
centage of image pixels that fall into the i -th cluster. A similar approach is used also in [24],
called Global Colour Context. The method of [33] partly differs to the former ones, although
it shares with them the same idea of describing appearance in terms of the most important
colours. Instead of finding representative colours by clustering, they are chosen a priori;
specifically, eleven colors, usually referred to as culture colours [32], are used: black, white,
red, yellow, green, blue, brown, purple, pink, orange, and grey. Each pixel of the image is
assigned to the most similar cultural colour.

Colour histograms are invariant to scale and show a good robustness with respect to par-
tial occlusions, if the occlusion itself is small. However, they are sensitive to changing bright-
ness and colour response of the sensor. Illumination conditions in outdoor environments
may consistently vary during time due to changing weather conditions and the varying illu-
mination of the Sun during the day. On the other hand, lighting conditions of indoor scenes
may vary from camera to camera due to different types of lamps (e.g., incandescent, tung-
sten, neon) and also due to weather conditions in case of presence of windows that let the
Sun light enter. Colour response of the sensors may also vary due to environmental condi-
tions and due to the automatic colour balance that often takes place in-camera.

Different mechanisms have been exploited to tackle with the above problems. Proba-
bly the simplest one is colour normalisation [129]. The chromaticity RGB space is one of
these techniques, used in [20, 40, 127], and consists of dividing each colour channel of each
pixel by the sum of all the channels of that pixel, e.g. R ′ = R/(R +G +B). Another common
technique is the Grey-world normalisation [22], which relies on the assumption that the av-
erage colour of a scene is usually a tonality of grey. It consists of dividing each RGB chan-
nel of every pixel by the average value of that channel in the image, e.g. R ′ = R/mean(R).
Grey-world normalisation is used in [126, 127]. Similar to Grey-world is the affine normal-
isation used in [20, 126, 127], where pixel-values of each color channel are normalised in-
dependently by subtracting the average and scaling them with the standard deviation, e.g.
R ′ = (

R −mean(R)
)
/std(R).

Alternative to colour normalisation is histogram equalisation [49], which is used in the
re-identification methods of [9, 126, 127]. It is based on the assumption that a change in
illumination preserves the rank ordering of sensor responses (i.e. pixel values). The rank
measure for the i −th bin of the histogram and the k-th colour channel is defined as Mk (i ) =∑i

u=0 Hk (u)/
∑N

u=0 Hk (u), where N is the number of bins and Hk () is the histogram relative to
the k-th channel.

Finally, Piccardi and Cheng [107] exploited a colour quantisation scheme to mitigate the
effect of illumination changes between cameras. They represent the image with a Major
Colour Spectrum Histogram (MCSH), that is, an histogram of the top N represented colour
values in the image.

Another problem of histograms is that they do not retain any information on the spatial
disposition of colours. A simple way to incorporate the spatial information is to add the
relative pixel height (i.e. the ratio between the vertical coordinate of the pixel and the total
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height of the silhouette) as another channel of the image1. A colour-position histogram can
be then built which is able to spatially localise the colour distribution [20, 127, 126]. A similar
approach is used also in [78], where two dimensions are added to each pixel (i.e. the radial
and angular distance to the torso center) and quantised. The Color Structure Descriptor
(CSD) of MPEG-7 [90] is used in [62], and encodes the distribution of colour by the following
steps: (i) move a window of size 8×8 pixel over the picture ; (ii) determine which colours are
present in within the window; (iii) increase the corresponding bins in a color histogram by
one, independently of the number of pixels of these colors.

Instead of looking at colour properties, other kinds of global features try to characterise
gradients, textures and repeated patterns of the whole body appearance or of each body part.
Gabor filters [97] ans Schmid filters [117] are orientation-sensitive filters that capture texture
and edge informations on the image. The former ones are aimed at detecting horizontal
and vertical lines, while the latter ones detect circular gradient changes. They are used in
various appearance descriptors [58, 86, 88, 110, 140] in conjunction with other colour-related
features.

Hahnel et al. [62] compared various different texture features. The fist is the 2D Quadra-
ture Mirror Filter (QMF), a well known filter in signal processing that splits a 2D input signal
into two bands (high and low-pass) in each direction (horizontal, vertical and diagonal. The
second is the Oriented Gaussian Derivatives (OGD) filter, based on steerable Gaussian filters.
Also, two MPEG-7 texture-related descriptors, are used the Homogeneous Texture Descrip-
tor (HTD) that uses Gabor filters, and the Edge Histogram Descriptor (EHD), basically an
histograms of the directions of each edge pixel in the image [121].

It is worth pointing out that texture-based features have always been used in combina-
tion to colour-based ones. Information on repeated patterns is in fact likely to be not dis-
tinctive enough when used alone. Hahnel et al. [62] confirmed this thought, and showed
also that the combination of colour and texture-based descriptors may lead only to minor
performance improvements.

2.2.2 Local features

The term local feature refers to an appearance characteristic of a small portion of the image
(e.g., the neighbourhood of a pixel). The regions where local features are extracted can be
chosen in various way (e.g. by dense sampling, by an interest operator or at random). Each
small region is described by a feature vector (e.g., an histogram). This lead to a representa-
tion of the image as as a bag (set) of local features.

Interest points are one important category of local features. The most famous among
them is SIFT (Scale Invariant Feature Transform) [87], where at first salient points of the
image are chosen via in interest operator that looks for “stable” locations in the image (i.e.
locations that are identifiable over different scales and rotations). This operation is carried
out by detecting scale-extrema locations in the scale space of scale σ, which is defined by the
function

L(x, y,σ) =N (x, y,σ)∗ I (x, y) (2.13)

where ∗ is the convolution operation in the image coordinates x and y , and N (x, y,σ) is a
2-D Gaussian with standard deviation σ. Stable key-points can be detected in this space e.g.

1The horizontal coordinate of the pixel is typically not used, as it is not robust to body rotations and view-
point changes.
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by using difference-of-Gaussians functions convolved with the image:

D(x, y,σ) = (
N (x, y,kσ)−N (x, y,kσ)

)∗ I (x, y) = L(x, y,kσ)−L(x, y,σ) (2.14)

To detect the local minima and maxima of D(x, y,σ), each point (x, y) is compared with
its 8 neighbours at the same scale kσ, and its 9 neighbours in the two scales (k − 1)σ and
(k +1σ). If this value is the minimum or maximum of all these points, then this point is an
extrema, and it is labelled as key-point. A subsequent stage filters out low-contrast and noisy
points. The remaining key-points are described as a histogram of the edge orientations of a
small window centred on the key-point. SIFT points or its variants, (e.g., Speeded-Up Robust
Features, SURF [12]) are used in various appearance descriptors [35, 63, 64, 77, 88, 92, 93] to
represent the whole body appearance.

Other approaches use different kinds of local features. Maximally Stable Colour Regions
(MSCR) [51] are used in [28, 45, 88]. The MSCR algorithm first detects a set of regions in the
image (Fig. 2.4-a) by using a constrained agglomerative clustering on image pixels, which
show the maximal chromatic distance. The detected regions are then described by their area,
centroid, second moment matrix and average color, forming 9-dimensional feature vectors,
and are stable to scale and affine transforms.

Recurrent Highly-Structured Patches (RHSP) used in the method of [45], try instead to
capture repeated patterns and textures of the clothing appearance. The procedure of cre-
ating RHSPs is as follows. First, random and possibly overlapping small patches are ex-
tracted from the image. Patches that do not carry texture informations (e.g. showing uni-
form colours) are discarded by thresholding the patch entropy, computed as the sum of the
entropy of each colour channel. Remaining patches are then further filtered, keeping only
those that exhibit invariance to rotations. Second, the recurrence of each patch is evalu-
ated, via Local Normalised Cross-Correlation over a small local region containing that patch.
Third, patches that show a high degree of recurrence are clustered, maintaining for each fi-
nal cluster the patch nearest to the centroid. These patches are finally described as their
Local Binary Pattern histogram [102], a simple yet efficient way to describe textured content,
based on a per-pixel transform that encodes small-scale appearance structures.

Instead of using interest operators or proper selection criteria to choose where to extract
a local feature, in [58], a set of strips of fixed height and position are extracted from the image,
and described by a concatenation of colour histograms in different colour spaces and Gabor
and Shmid filters. Similarly, in [68] partly overlapping rectangular patches of fixed size are
sampled from the image following a pre-defined regular grid. Each patch is represented by
its colour histogram in the HSV colour space, and by its LBP histogram to capture textures
and repeated patterns.

2.3 Combination of features and matching

Many person re-identification methods use appearance descriptors made up of only one
kind of features among the above mentioned ones, typically based on colour or interest
points [6, 8, 15, 16, 20, 24, 33, 55, 63, 64, 78, 92, 93, 126, 127]. However, as combining differ-
ent sources of information usually helps in attaining a better performance, especially when
sources are complementary (i.e. they look at different aspects of the appearance, e.g. colour
and texture), many authors have defined descriptors that use a combination of features.
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(a) (b)

Figure 2.4: (a) Maximally Stable Colour Regions [51] detected in two images showing the
same pedestrian. (b) Steps of the extraction of RHSP: random extraction, rotational invari-
ance check, recurrence check, entropy thresholding, clustering. The final result of this pro-
cess is a set of patches (in this case only one) characterising repeated patterns of each body
part of the individual. Figures taken from [45].

In principle, two main combination techniques can be exploited to this aim [114]:2

1. feature-level fusion: if the features used are made up of a single vector of fixed size
(e.g. global features, or local features with an intrinsic ordering) they can be combined
simply by concatenating feature vectors;

2. score-level fusion: a distinct detector/matcher is used for each feature, and their real-
valued scores are combined (e.g., by averaging them, or using their maximum value).

The first approach is followed for instance in [40, 68, 133]. The second approach requires
to define a proper fusion rule. Many methods used a weighted average of the partial scores
attained with each single feature, where weights are fixed a-priori by the system designer
[13, 14, 28, 45]. Another approach is to learn a proper metric or a set of weights from a train-
ing set. In [58], AdaBoost[52] is used to this aim: each feature set is associated to a weak
two-class classifier (a decision stump) which discerns between the class 0 (identities differ)
and 1 (identity is the same) based only in that feature set. The method of [110] tries to find
a linear function to weight the absolute difference of samples by training an ensemble of
RankSVM rankers [75] given pairwise relevance constraints. The Probabilistic Relative Dis-
tance Comparison (PRDC) technique of [140] maximises the probability that a pair of true
match has a smaller distance than that of a wrong match. The output is an orthogonal matrix
which essentially encodes the global importance of each feature. In [88] a pairwise metric
is learned through a recently proposed method, Pairwise Constrained Component Analy-

2In verification tasks, whose goal is to establish whether the claimed identity is true, combination can also
be performed at decision level, i.e., by combining the crisp outputs of classifier/detectors. It can not be applied
to person re-identification, which is a recognition task instead.
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(a) (b)

Figure 2.5: (a) Two sequences of aligned foreground silhouettes. (b) Their corresponding
Gait Energy Image. Figures taken from [65].

sis (PCCA) [94], which learns a projection into a low-dimensional space where the distance
between pairs of data points respects the desired constraints.

Metric learning and similar approaches always help in boosting re-identification per-
formance. However, it is worth to note that all the above methods require a training set of
labelled data, which is usually. Such set can be for instance the gallery of templates. This
requires that the template gallery is fixed, i.e. templates cannot be added during system
operation. Obviously, this constraint is usually too strong for many real-world application
scenarios.

2.4 Other cues

Some cues alternative to the clothing appearance have been exploited in the literature to
perform person re-identification or assimilable tasks. Despite the intrinsic limitations of
such cues, they could be potentially of help in certain conditions, possibly combined with
appearance cues.

Human gait, i.e. the recurrent pattern of motion of a person walking, is among these
cues. In cognitive science, it is known to be one of the cues that humans exploit to recognise
people [122]. Among the approaches to characterise gait, the recently proposed Gait Energy
Image (GEI) [65] has attracted the attention of many researchers. Here, the gait signature
is formed by by normalising, aligning and averaging a sequence of foreground silhouettes
corresponding to one “walking period” (see Fig. 2.5). Principal Component Analysis (PCA) is
then used to reduce the dimensionality of the signature.

The use of Gait Energy Image can lead to high recognition rates [134] and can overcome
one of the main limitations of clothing appearance-based approaches, that is, the impos-
sibility of distinguishing people when their clothing changes between observations. It is
also not directly affected by illumination changes. However, it requires perfect alignments
of the silhouettes to be compared, and is sensible to segmentation errors. These two con-
straints severely limit the use of GEI-based methods on practical, real-world applications.
Researchers have therefore attempted to explore other approaches. Zhao et al. [138] and
more recently Gu et al. [59] used a 3D skeletal representation, that however requires multi-
ple overlapping camera views or a constrained environment to construct and track it.

Some authors attempted instead to perform remote face recognition [99], that is, face
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recognition with low resolution images. As low resolution face images are not directly us-
able for recognition, many approaches attempted to address the problem through the ob-
vious way of trying to increase image resolution, using super-resolution techniques [60, 66,
74, 118]. Some authors proposed instead techniques that work directly on low resolution im-
ages, by exploiting metric learning [85, 84], multidimensional scaling [19], or multiple frames
from video sequences [5]. All the approaches above could in principle be used in conjunc-
tion with appearance cues to increase re-identification accuracy when the face is visible.

Another useful set of soft cues is anthropometry, that is, the characterisation of individ-
uals through the measurement of physical body features [113], e.g., height, arm length, and
eye-to-eye distance. Measures are typically taken according to a number of body landmark
points (e.g., elbows, hands, knees, feet), that have to be localized either automatically or
manually. In the classic study by Daniels and Churchill [34], the uniqueness of 10 different
anthropometric traits was evaluated on a large data base of 4063 individuals. None of the
considered traits was found to be “average” (i.e., approximately close to the mean point),
considering all 10 dimensions. Furthermore, only 7% of the individuals were “average” in 2
dimensions, and 3% in 3 dimensions.

Although the use of anthropometric measurements for person recognition has been pro-
posed in many works, their extraction was often based on costly devices, like 3D laser scan-
ners, and/or require user collaboration in a constrained environment [101, 56, 98]. In some
works, anthropometric measurements are extracted from a single RGB camera view, instead.
In [11] a method that does not require camera calibration was proposed, for simultaneously
estimating anthropometric measurements and pose. However, the former are measured up
to a scale factor, and consequently can not be used to directly compare individuals in images
acquired by different cameras. Calibration is not required in [1] as well, although 13 body
landmarks have to be manually selected, from an image of an individual in frontal pose.
Other methods focus on height measurement only [89, 82, 17, 53, 83], but require camera
calibration to estimate absolute height values. Interestingly, in [89] height is used as a cue
for the task of associating tracks of individuals coming from disjoint camera views, which is
actually the same re-acquisition task that is enabled by person re-identification.

None of the above works fits the typical setting of person re-identification tasks, which is
characterised by multiple, uncalibrated cameras and unconstrained environment, with free
poses and non collaborative users. Recently, it has been shown that body pose can be re-
liably estimated in real-time by exploiting RGB-D sensors [119, 123], like the MS Kinect, a
device recently introduced in the video-gaming market. The pose estimation functionality
of Kinect SDK [80], which is based on a similar method, provides the absolute position (in
meters) of 20 different body joints in real-time, with high reliability (see Fig. 2.6). Detect-
ing joint positions enables the evaluation of several anthropometric measures. In [10] such
joints were used to extract a set of different anthropometric measures from front or back
poses: distance between floor and head, ratio between torso and legs, height, distance be-
tween floor and neck, distance between neck and left shoulder, distance between neck and
right shoulder, and distance between torso center and right shoulder. Other three geodesic
distance measures were estimated from the 3D mesh of the abdomen, obtained from the
Kinect depth map: torso center to left shoulder, torso center (located in the abdomen) to
left hip, and between torso center to right hip. Results reported in [10] appear promising.
However, many of the considered anthropometric measures are hard or impossible to ex-
tract from unconstrained poses. For instance, extracting measures from 3D mesh requires
near-frontal pose (abdomen is hidden in back pose); neck distance to left and right shoulders



24 CHAPTER 2. LITERATURE OVERVIEW

(a) (b) (c) (d)

Figure 2.6: (a) The 20 skeletal points tracked by the Kinect SDK in the classical representation
of the Vitruvian Man. (b–d) Examples of the pose estimation capabilities of the Kinect SDK.
Depending on the degree of confidence of the estimation of the points position, the Kinect
SDK distinguishes between good (in green) or inferred (in yellow) points, the latter being less
reliable than the former.

becomes hard to compute from lateral pose, even using a depth map, and requires to distin-
guish between left and right body parts. Such issues limit the actual set of anthropometric
measures that can be used in realistic scenarios.



Chapter 3

The Multiple Component
Dissimilarity framework

This Chapter describes the Multiple Component Dissimilarity (MCD) framework and its ap-
plication to person re-identification and people search. The framework extends the dissim-
ilarity paradigm for pattern recognition, originally proposed by Pekalska and Duin [104]. In
particular, MCD aims at representing in a dissimilarity space objects that are made up of
multiple parts, and that are better described taking into account localised characteristics.
This class of objects includes, for instance, the human body. Such representation can be
built from different cues (even combined) and carries important advantages in person re-
identification and people search tasks, which will be discussed in the next Sections.

In the rest of the Chapter, the reader is first introduced to dissimilarity-based represen-
tations in Sect. 3.1. The MCD framework itself is then presented and motivated in Sect. 3.2.
Sect. 3.3 and Sect. 3.4 show respectively how MCD representations can be exploited for the
tasks of person re-identification and people search. An extension of the framework to com-
bine different cues is also presented in Sect. 3.5. Sect. 3.6 concludes the Chapter, and pro-
vides a brief outline of the experimental analysis provided in the next Chapters.

3.1 Dissimilarity-based representations for pattern recog-
nition

Pattern recognition is a field of study devoted to the design of systems able to automatically
recognise a particular kind of object or distinguish among categories (classes) of objects. The
traditional approach to pattern recognition [42] is indeed inspired by the modern scientific
method, which builds on empiric observations, measurements of phenomena, and a sub-
sequent formulation of a theory or model, that describes them and hopefully allows one to
make predictions about them. In particular, pattern recognition usually follows the simple
scheme of i) describing objects as sets of measurements, called features (e.g., colour, weight,
length, etc.), ii) use statistical classifiers to learn a model of the classes of objects of interest
in the feature space, from a training set of labelled examples, and iii) generalise the learned
model to unseen objects described in the same feature space.

Indeed, this approach is rational, simple and works very well in a number of practical
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cases. However, the success of such approach is directly, strongly influenced by a proper
choice of the features used. Unfortunately, in many classification problems it may be diffi-
cult to find a suitable set of features. An example is how to describe the shape of an object
(see the example on Fig. 1.4).

Dissimilarity representations have been originally proposed to deal with classification
problems in which a feature vector representation is not available, or it is difficult to find
discriminative features, and it is possible to define a dissimilarity measure between pairs
of objects instead. By means of such measure, it is possible to represent any object with a
vector of dissimilarity values to a predefined set of “prototype” objects. This novel object
representation is then used in place of classic feature vectors to address pattern recognition
problems. Dissimilarity-based representations build on the fact that the notion of similarity
(or dissimilarity) of objects is more fundamental that their description in terms of measure-
ments: indeed, a strong paradigm shift with respect to feature vector representations1.

Formally, given a set of n objects X = {xi } and a representative set of m prototypes P =
{p j }, the dissimilarity representation of X is defined by means of a n×m dissimilarity matrix

D = (
di j

)
(3.1)

where
di j = d

(
xi , p j

)
(3.2)

is the dissimilarity of the pair of objects xi and p j . Each element xi of X is then represented
as the i -th row of D . Note that the prototype set can be a subset of X , or even coincide with
X . In the latter case, D is square.

The distance measure d
(·, ·) is called a metric when the following conditions hold:

1. reflectivity: d
(
x, x

)= 0

2. positivity: d
(
x, y

)> 0 if x 6= y

3. symmetry: d
(
x, y

)= d
(
y, x

)
4. triangle inequality: d

(
x, y

)< d
(
x, z

)+d
(
z, y

)
for every z

While reflectivity and positivity are crucial to define a proper dissimilarity measure d
(·, ·),

the latter two properties are actually not essential [105], which is important given that non-
metric distances often seem to arise e.g. in computer vision [41, 71]. This fact also enables
the use of dissimilarities derived from psychological judgements, that often lack of the sym-
metry property [128].

Different approaches can be followed to define the prototype set P . The straightforward
way is to simply take the whole data set X as prototype set. However, as the number of sam-
ples in X grows, the size of the dissimilarity vector associated to each sample may become
too high, and ultimately lead to an high computational complexity and to a reduction of the
discriminant capabilities of classifiers in classification tasks (the so-called curse of dimen-
sionality [42]). Thus, some prototype selection scheme [103] should be put in place to prop-
erly choose the elements of P . In the following, some of the most representative prototype
selection schemes are briefly reviewed.

1Pekalska and Duin [104] extensively discussed this point in their book on dissimilarity representations
[104], which has largely inspired this thesis work. The interested reader is pointed to this book for examining
in depth the theoretical motivations on dissimilarity-based representations.
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Random selection. m < n prototypes are randomly chosen from X . Alternatively, k pro-
totypes are randomly chosen for each class ωc of X .

Clustering. Elements of X are clustered into m clusters (e.g. by using k-means [42])
and prototypes are chosen as the elements of X nearest to the each centroid. Note that this
may require that a vectorial representation of the elements of X is available, as clustering
techniques usually work on vectorial spaces.

Mode seek. Prototypes consist of the modes estimated from each class ωc in X . For each
ωc , the algorithm proceeds as follows [29]:

1. choose a relative neighbourhood size s > 1 (s integer);

2. for each object xi ∈ Xωc , where Xωc is the subset of X of elements belonging to the class
ωc , find the dissimilarity d

(
xi ,nns(xi )

)
to its s-th nearest neighbour;

3. find a set Pωc consisting of all x j ∈ Xωc for which d
(
x j ,nns(x j )

)
is minimum within its

set of s nearest neighbours.

The objects from the set Pωc are the estimated modes of the distribution ofωc in terms of the
given dissimilarities. The final prototype set is the union of Pωc : P =⋃

c Pωc .
Feature selection. First, the prototype set is defined as the whole X . Dissimilarities

are then treated as features and a feature selection technique [61] is used to select proto-
types whose corresponding dissimilarity values carry useful information for the classifica-
tion problem at hand.

Editing. Similarly to the case of feature selection, prototypes are at first defined as the
whole X . An editing algorithm [42] is then applied to the dissimilarity matrix D(X , X ) to
reduce the space complexity, e.g. by eliminating prototypes that are surrounded by objects
of the same class.

Interestingly, it has been shown [103] that performance of classification algorithms that
work in a dissimilarity space may be only slightly affected by the way prototypes are chosen
(the prototype selection scheme that usually lead to worst performance is the random se-
lection). The number of prototypes that are used, instead, seems more important (an higher
number of prototypes usually guarantees a lower classification error).

Dissimilarity representations threat objects in their wholeness, i.e., dissimilarities are
evaluated between pairs of entire objects. In some pattern recognition tasks, especially in
computer vision ones, the objects of interest have a structure that is better described with
a part-based model. E.g., the human body, which has a complex kinematics and can ap-
pear in different images with different poses, is often represented as a collection of parts (see
Sect. 2.1). Moreover, there can be localised characteristics of objects that need to be pre-
served in the representation (e.g., local features of the appearance of the human body). For
this kind of objects, dissimilarity representations as described above may not be suitable. In
the next Section, they will be extended to proper describe objects exhibiting multiple parts
and localised characteristics.

3.2 Multiple Component Dissimilarity representations

Many objects may be better described as a rigid or non-rigid collection of parts. The human
body, for instance, may be decomposed into different body parts, e.g. the head, the torso,
the arms, and the legs, whose relative position may be constrained by specific relations. As
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(a) (b)

I I1
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ci1
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(c)

Figure 3.1: General representation of the human appearance adopted by MCD. (a) The image
of an individual. (b) The body is subdivided into body parts: in this example, upper and lower
body, shown respectively in green and in red. (c) A set of components (e.g., SIFT points) is
extracted form each body part. Components are represented here as coloured dots.

stated in Sect. 2.1, this fact has been exploited by various person re-identification methods
to construct better appearance descriptors.

Generally speaking, the human body appearance2 can be described as an ordered se-
quence of M sets, corresponding to M body parts (M ≥ 1):

I = {I1, . . . , IM }. (3.3)

Each set Im may contain a number of local features, each represented by a feature vector ck
m ,

or one single global feature vector c1
m describing the appearance of the whole body part:

Im = {
ci

m

}
, ci

m ∈X. (3.4)

These ci
m are called components in MCD terminology. X is the feature space, which for the

sake of simplicity is assumed to be the same for all the components, without loosing gener-
ality. Fig. 3.1 visually describes this model in the case when two body parts are used.

This model for the human appearance is general and can frame all existing appearance
descriptors. For instance, the descriptors of [8, 9, 45, 55, 93] extract multiple body parts;
the ones of [35, 45, 55, 58, 63] use multiple components; in [45, 93] both a body part sub-
division and a multiple component representation is used. Even descriptors made up of
one single feature vector (e.g., [20, 126]) can be viewed as a particular case of the multiple
parts/multiple components representation, where only one “component” is extracted from
one single body “part” (the whole body).

Note that the number of sets of components can be higher than the number of body
parts, if more than one kind of features is used to describe each part. An example is the
popular SDALF descriptor [45], which in Fig. 3.2 is shown as an instantiation of the multi-
ple parts/multiple components model. SDALF uses a two body-part subdivision into torso
and legs, discarding the image region corresponding to the head. From each body part,
Maximally Stable Colour Regions (MSCR) and Recurrent High-Structured Patches (RHSP) are
extracted. Finally, a weighted HSV histogram is extracted from each body part. The two

2The rest of the Chapter will refer specifically to the representation of the human body appearance, as
this is the object of interest of person re-identification. Note however, that the same multiple parts-localised
characteristics description is suitable for a vast number of objects, e.g. non-rigid objects like animals and
moving mechanisms, or rigid ones like cars.
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Set #1:
MSCR
(Torso)torso

Set #3:
RHSP
(Torso)

Set #2:
MSCR
(Legs)

Set #4:
RHSP
(Legs)

Set #5:
WHSV

(Torso-Legs)
legs

(a) (b)

Figure 3.2: The popular SDALF descriptor [45] as an instantiation of the proposed appear-
ance model. SDALF subdivides body into torso (disregarding the head) and legs parts (a);
from each part, RHSP and MSCR local features are extracted, and the weighted HSV his-
tograms of each part are concatenated, leading to five sets of components (b).

weighted histograms are then concatenated to form a single feature vector. The total num-
ber of sets of components is therefore 5.

Consider now a gallery I = {
I1, . . . ,IN

}
of N individuals, each described as above. The

goal is to build a dissimilarity-based representation of such individuals, preserving their
multiple parts/multiple components structure. To this aim, a set of Km prototypes Pm ={

pk
m

}
is first defined for each body part. Prototypes are components chosen from I as de-

scribed below. For each I ∈I , a dissimilarity descriptor ID is then created, as a concatenation
of the vectors of dissimilarity values between each Im ∈ I, and the prototypes Pm of the m-th
body part.

Prototypes are created as follows. For each body part m = 1, . . . , M :

1. The feature vectors of the m-th part of each I ∈I are merged into a set Xm =⋃N
j=1 I j ,m ;

2. Km prototypes of the m-th body part are chosen from Xm to form the prototype gallery
Pm = {

p1
m , . . . ,pKm

m
}
.

Step 2 can be carried out with any prototype selection technique like those described in
Sect. 3.1. Note that, regardless of the prototype selection method adopted, prototypes en-
code low-level local or global visual characteristics of the appearance.

The above procedure returns M sets of prototypes, one for each body part:

P = {
P1, . . . ,PM

}
. (3.5)

Fig. 3.3 visualises the procedure of prototype selection when k-means is used with a de-
scriptor having two body parts.

Once the prototypes have been defined, given the original multiple parts/multiple com-
ponents descriptor of any individual, I = {I1, . . . , IM }, its MCD descriptor is obtained as the
concatenation of the M dissimilarity vectors

ID =
[

I D
1 . . . I D

M

]
, (3.6)

where:
I D

m =
[

d
(
Im ,p1

m

)
. . . d

(
Im ,pKm

m
)]

, m = 1, . . . , M , (3.7)

and d
(
Im ,p j

m
)

is the dissimilarity between Im and the j -th prototype of the m-th body part.

Since Im is a set of components, and p j
m is a single component, the dissimilarities d

(
Im ,p j

m
)
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Figure 3.3: Creation of the prototype gallery in MCD using k-means for prototype selection.
In this example, the body is subdivided into two parts: upper (in green) and lower body (in
red). (a) A gallery of three individuals, represented according to MCM. (b) All the compo-
nents of the same part are merged. (c) The k-means clustering algorithm is applied (in this
example, with k = 4 for the upper body part and k = 3 for the lower body part), and proto-
types are selected for each part as the components nearest to the centroids of each cluster.

must be evaluated via an one-vs-many distance measure, e.g. the minimum of the distances

of between each element of Im and p j
m .

This dissimilarity-based representation exhibits a considerable reduction in storage re-
quirement: only one vector of real values for each individual, and the set of prototypes, need
to be stored. The compactness of dissimilarity descriptors also allows for extremely fast
matching between pairs of them, as computing distances between vectors of real numbers
is a very fast operation with modern CPUs. This can enable several useful applications, like
real-time re-identification of an individual, among a huge number of candidates. Moreover,
prototypes represent localised low-level characteristics that can encode high-level concepts,
which as will be shown in Sect. 3.4 can enable appearance-based people search over images
described by dissimilarity vectors.

It must be pointed out that a seemingly analogous representation is used also in visual
words methods, widely used e.g. in scene categorization (e.g., [135]). In these methods, a
visual codebook is first built off-line, then the frequency (count of the occurrences) of each
visual word inside each sample is considered. Differently, in the dissimilarity paradigm the
degree of similarity of each prototype to the whole sample is considered.
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3.3 Multiple Component Dissimilarity matching for person
re-identification

Person re-identification is usually modelled as a matching problem (see Sect. 1.1), whose
goal is to rank templates in a given template gallery with respect to their similarity to a given
probe individual. The above dissimilarity-based representation can be conveniently used to
match appearance descriptors in the dissimilarity space.

Let T be a template gallery of N individuals, and Q be a probe individual. Their MCD
representation is denoted respectively as T D = {

TD
1 , . . . ,TD

N

}
and QD. Note that the same sets

of prototypes must be used for constructing the MCD representation of all the templates and
of the probe. Such sets can in principle be defined from the any gallery of individuals, includ-
ing the template gallery, or a different design data set. Similarly to Eq. (1.1), the problem of
re-identifying the individual QD in the dissimilarity space can be formulated as:

T∗D = argmin
TD

i

DD(
TD

i ,QD)
. (3.8)

Where DD(·, ·) is a distance measure in the dissimilarity space. It plays an important role,
as a suitable distance measure can lead to a better performance. In principle, any common
distance measure, like the Euclidean, cosine, and normalised cross-correlation distances,
could be used. However, none of the above measures properly captures the concept that un-
derlies the proposed dissimilarity representation, that is, each dissimilarity value represents
a degree of presence (and then, of relevance) of the corresponding prototype. Thus, every
element of a dissimilarity vector carries a different amount of information in representing
the sample of interest. In particular, lower dissimilarity values carry more information than
higher values, and thus encode the most relevant characteristics of the sample.

Based on the above arguments, here a weighted Euclidean distance between a pair of
dissimilarity vectors x and y associated to two given objects is proposed. Each weight reflects
the importance of the corresponding prototype with respect to such objects:

d D(x, y) =
(∑

i

wi

W
|xi − yi |2

)1/2
, (3.9)

where W is a normalization factor such that 1
W

∑
i wi = 1. The weights wi must be chosen

to guarantee that prototypes carrying more information about at least one of the objects
receive higher relevance (i.e. an high wi ). On the other hand, the weight of prototypes that
are less important for both objects of them must be low. In other words, when comparing
two objects one must look mostly at visual characteristics that are present in at least one of
the two. To do so, the weights wi are defined as

wi = f
(
w i

)
, (3.10)

w i = 1−min(xi , yi ), (3.11)

where f(·) is a monotonically increasing function, and w i is the maximum similarity (corre-
sponding to the minimum dissimilarity) of the i -th prototype with respect to both objects,
assuming that dissimilarity values xi and yi are in the range [0,1]. Thus, the higher the rel-
evance (the lower the dissimilarity) of the i -th prototype to at least one of the objects, the
higher the wi .
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Figure 3.4: Comparison of weighting rules for the weighted Euclidean distance in the dis-
similarity space, normalised to one. Note that for the Tangent rule w i has been truncated to
0.99 in order to avoid Infinite weights.

Different choices of the weighting rule f(·) can enhance the differentiation of relevant
prototypes from non-relevant ones. Here three possible choices are proposed:

• linear: f
(
w i

)=αw i ;

• power: f
(
w i

)= w i
β ;

• tangent: f
(
w i

)= tan
(
π
2

(
w i

)
.

The linear rule shall work well when the degree of presence of a prototype varies pretty much
linearly with the corresponding dissimilarity value. The power and the tangent rules, in-
stead, strongly differentiate between high and low dissimilarities, and shall be used when
the relevance of certain prototype is assumed to be high only if the corresponding dissimi-
larity is very low. Fig. 3.4 shows the weight, normalised to one, as a function of w i using the
three rules above.

3.4 Multiple Component Dissimilarity and people search

The Multiple Component Dissimilarity representation can be conveniently used also for a
novel task, consisting of finding, among a set of images of individuals, the ones relevant
to a textual query that describes the clothing appearance of an individual of interest. This
novel task is named appearance-based people search in this thesis, and differs from person
re-identification, where the query is an image of the person of interest. This can be useful
in applications like forensics video analysis, where a textual description of the individual of
interest given by a witness can be available, instead of an image.

In the following, a general approach to extend based person re-identification systems to
enable also the people search functionality is proposed, based on MCD representations. The
approach is based on the intuition that the high level concepts that form the textual query
and describe a certain clothing characteristics (e.g., “red shirt”), may be encoded by one or
more visual prototypes, according to the low-level features and part subdivision used. As
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Figure 3.5: Prototypes obtained from the upper body parts of a small set of individuals. De-
scriptors of people wearing a red shirt should exhibit a high similarity to prototypes p8 and
p10. A high similarity to p3 can be expected instead in the case of a white shirt.

an example, consider the 10 prototypes shown in Fig. 3.5, selected using k-means clustering
from a set of rectangular patches, represented by HSV histograms, sampled from the upper
body parts of 24 images of individuals from the VIPeR data set [57]. Intuitively, descriptors of
people wearing a red shirt should exhibit a high similarity to prototypes p8 and p10, while a
high similarity to p3 can be expected in the case of a white shirt. Similarly, other prototypes
may encode useful information to recognise other clothing characteristics.

Following the above intuition, a possible approach to perform appearance-based people
search through an existing appearance descriptor, is to:

(i) identify a set Q = {Q1,Q2, . . .} of clothing characteristics that can be detected by the
given descriptor, named basic queries;

(ii) construct a detector for each basic query Qi , using dissimilarity values as features of a
supervised classification problem.

The basic queries that have to be identified in step (i) depend on the original descriptor. For
instance, if it separates lower and upper body parts, and uses colour features, one basic query
can be “red trousers/skirt”. Step (ii) can be viewed as a supervised binary classification prob-
lem for each Qi , which consists of recognising the presence or absence of the corresponding
visual characteristic, using as features the dissimilarity values between an image descriptor
and the prototypes. A binary classifier (e.g., a Support Vector Machine [31]) can be trained
using as features the dissimilarity values of an image descriptor to the prototypes. The train-
ing set can be obtained from a gallery of images of individuals, labelled accordingly. The
resulting classifier can then be used as the detector for the basic query Qi .

Note that one may know in advance that some features (prototypes) do not carry any
discriminant information for some Qi . For instance, this is the case of the prototypes of the
lower body part, with respect to queries related to the upper body. Such features can thus be
discarded before constructing the corresponding classifier.

Finally, complex queries can be built by connecting basic ones through Boolean opera-
tors, e.g., “red shirt AND (blue trousers OR black trousers)”. Given a set of images, those rel-
evant to a complex query can simply be found by combining the subsets of images found by
each basic detector, using the set operators corresponding to the Boolean ones. In the above
example, this amounts to the union (OR) of the images retrieved by the “blue trousers” and
“black trousers” basic queries, followed by the intersection (AND) with the images retrieved
by the basic query “red shirt”.

The above approach for building detectors is independent of the original appearance
descriptor, as it is based on the general framework of MCD.
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3.5 Combination of multiple modalities

The clothing appearance is used in the most of re-identification methods as a soft, session-
based cue, that is relatively easy to extract, and exhibits uniqueness over limited periods of
time. However, the recognition performance that can be attained by using clothing appear-
ance is limited, especially in scenarios where the number of individuals is very large, since
many individuals could wear very similar clothing. In a recent paper [28] recognition perfor-
mance of a proposed appearance-based re-identification method was compared to the one
of human operators, to assess how far computer vision is from the empirical “upper bound”
represented by human performance. Although human operators outperform the machine,
as expected, they surprisingly achieve an average first-rank recognition rate of 75%, which is
lower than one could expect, given that the individual in each query image had to be found
among a set of 45 pedestrian images only. This suggests that clothing appearance can be
an intrinsically “weak” cue for re-identification,3 and that combining it with other biometric
traits may be useful. The extraction of other soft biometrics can be enabled by the recent
introduction of RGB-D sensors, like MS Kinect, even in unconstrained environments and
without calibration, thanks to their per-pixel depth estimation that is added to the usual
RGB information. For instance, human pose estimation capability of Kinect SDK [80] pro-
vides 20 different skeletal points in metric coordinates, that can be used to estimate various
anthropometric measures (e.g. the height, the arm length, and others [10]).

When different biometric modalities (like clothing appearance and anthropometric mea-
surements) are used in matching problems like person re-identification, a proper fusion
strategy must be used to combine the respective information. In principle, two main fusion
techniques can be exploited to this aim [114]:4

1. feature-level fusion: feature vectors coming from different modalities are concate-
nated into a single feature vector;

2. score-level fusion: a distinct detector/matcher is used for each modality, and their real-
valued scores are combined (e.g., by averaging them, or using their maximum value).

Feature-level fusion can be applied if each modality is represented by a fixed size feature
vector, and features exhibit an intrinsic ordering. However, this is not the case for most
appearance-based descriptors used in re-identification, may be made up of multiple local
features, without an intrinsic ordering between them (see Sect. 2.2). Other modalities may
have a different representations, e.g. anthropometric measures are typically scalar values
(see Sect.2.4). Even when concatenating feature vectors is possible, the resulting size could
arise computational and curse of dimensionality issues [18]. On the other hand, the perfor-
mance of score-level fusion can be strongly affected by the choice of the fusion rule and of
its parameters (if any), and a suitable choice for the task at hand may be not trivial.

3It is easy to see that the human could reason only on the clothing appearance to perform the task, if one
looks at the images used in the test. In fact, the face was often not recognizable, because of the low resolution
of the images and of the different poses. Moreover, the images showed only the region of the original frame
containing the person, so that it was difficult to estimate body measurements like the height, that could have
helped in distinguishing the target individual from the others.

4In verification tasks, whose goal is to establish whether the claimed identity is true, multi-modal fusion
can also be performed at decision level, i.e., by combining the crisp outputs of classifier/detectors. It can not
be applied to person re-identification, which is a recognition task instead.
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Figure 3.6: Scheme of the extended MCD framework. (a) prototype construction. First, mul-
tiple parts/multiple component descriptors in each modality are extracted from each indi-
vidual in the template gallery. Then, a separate set of prototypes for each modality is con-
structed. (b) multi-modal descriptor computation: each template individual, and the probe
individual, are described in the dissimilarity spaces defined by the sets of prototypes of each
modality. The dissimilarity vectors obtained are finally concatenated to obtain the multi-
modal dissimilarity descriptor.

The MCD framework can provide a third way to combine different modalities in an uni-
form and elegant fashion. In fact, an important characteristic of MCD descriptors is that
they are representation-independent, in the sense that the underlying representation (e.g.,
feature vectors, if available) of prototypes and objects, is actually not relevant from the point
of view of the dissimilarity representation. Prototypes are logically and semantically at an
higher level than the actual features extracted from objects. This suggested us another way
to build multi-modal descriptors: in fact, prototypes can even represent characteristics seen
in different modalities. Therefore, one can conveniently create different sets of prototypes
for each modality, and combine dissimilarities to these prototypes in a single dissimilarity
vector, which will be semantically as coherent as a dissimilarity vector with respect to proto-
types of a single modality.

In the following, the MCD framework is extended to support multiple modalities, e.g.,
clothing appearance and anthropometric measurements. As stated in Sect. 3.2, when cloth-
ing appearance is the sole modality used, a person is described as an ordered sequence
of sets of components, where each set is associated to a different body part. If L different
modalities are used, each one can be associated to a distinct feature vector vl , k = 1, . . . ,L.
These feature vectors can be framed into the multiple parts/multiple components represen-
tation, by considering each vk as a vector of observations coming from one single body part,
corresponding to the whole body. In the multiple parts/multiple components representa-
tion, this corresponds to the particular case where only one “component” is extracted from
the whole body. This enables the application of the MCD framework. In particular, a set of
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prototypes for each modality has to be constructed first. Then, for any given individual I, L
dissimilarity vectors ID,1, . . . ,ID,L are constructed, corresponding to the considered modali-
ties. To this aim, an appropriate dissimilarity measure between I and a prototype must be
defined, for each modality. The dissimilarity vectors ID,1, . . . ,ID,L can then be concatenated
into a multi-modal dissimilarity vector representation of individual I:

ID,mul ti−mod al = [ID,1, . . . ,ID,L] . (3.12)

The proposed multi-modal representation is summarised in Fig. 3.6. It has the advantage of
being compact, and feature-independent. Furthermore, two multi-modal dissimilarity vec-
tors can be matched using the same weighted Euclidean distance of Eqs. (3.9)-(3.10). This
means in particular that it is not necessary to define an appropriate set of weights for com-
bining the information coming from each modality during matching, since higher weights
are automatically given to the most distinctive characteristics (prototypes), regardless of the
modality they are associated to.

This extension of MCD representations exhibits important advantages with respect to
feature-level fusion rules. First, it enables the combination of modes characterized by fixed-
length feature vectors with modes characterized by unordered, multiple local features (e.g.
appearance descriptors). Second, it can overcome the dimensionality issue, as dissimilari-
ties can be evaluated with respect to a small number of prototypes, even if the underlying
vectorial representation (if any) is made up of big feature vectors. Moreover, it does not need
to empirically choose a proper fusion rule (the actual choice of which may strongly affect
performance), as per score-level fusion.

3.6 Outline of the following Chapters

In this Chapter, the Multiple Component Dissimilarity framework for describing objects with
multiple parts and multiple components (such as the human body) in a dissimilarity space
has been presented. The application of MCD to the tasks of person re-identification and peo-
ple search has been also discussed. The following three Chapters experimentally evaluate
the application of MCD to these tasks. Chapter 4 applies MCD to the task of speeding up an
existing person re-identification method. Chapter 5 then present a novel appearance-based
re-identification method attaining state-of-the-art performance with low computational re-
quirements, where different kinds of global and local features are extracted and combined
into a single dissimilarity vector using MCD. Chapter 6 implements the method described
in Sect. 3.5 to perform multi-modal person re-identification on networks of RGB-D cameras,
combining appearance and anthropometry. Finally, Chapter 7 shows and experimentally
evaluates a practical implementation of appearance-based people search.



Chapter 4

Using MCD to speed up existing
re-identification methods

Despite the practical relevance of computational complexity of person re-identification meth-
ods, this issue has been almost overlooked in the literature so far. Moreover, it is worth point-
ing out that the processing time of many existing methods may be too high for practical
applications. Dissimilarity-based descriptors obtained through the use of MCD have a great
advantage with respect to processing time. In fact, they are basically vectors of real numbers,
and therefore they are much more compact than, e.g., bags of multiple feature vectors com-
ing from different interest points. Such compactness can drastically reduce their matching
time, which is the most time-consuming step of a person re-identification method.

In this Chapter, MCD is exploited for speeding up an existing person re-identification
method. In particular, MCD is applied to a baseline method that is representative of a typ-
ical appearance descriptor for person re-identification, which extracts random partly over-
lapping rectangular patches from the body torso and legs separately.

As will be shown in the experimental results reported in this Chapter, this may happen
at the expense of a lower re-identification accuracy. Despite this, trading a lower accuracy
for a lower processing time can be advantageous in practical applications, and this will be
demonstrated through the use of a simple quantitative model.

The rest of the Chapter is structured as follows. First, the model for evaluating the trade-
off between accuracy and processing time is presented in Sect. 4.1. A description of the
baseline method and details on the application of MCD are provided in Sect. 4.2. A thorough
experimental evaluation which analyses both performance and processing time an how they
are influenced by the main parameters of MCD is then presented, in Sect. 4.3. Conclusions
are finally drawn in Sect. 4.4.

4.1 Trade-off between re-identification accuracy and match-
ing time

MCD-based methods may attain a much lower matching time and memory requirement
than its non-dissimilarity-based version. However, this is sometimes attained at the ex-
pense of a lower re-identification accuracy, as will be shown in Sect. 4.3. In such a case, re-

37



38 CHAPTER 4. USING MCD TO SPEED UP EXISTING RE-IDENTIFICATION METHODS

identification methods obtained by MCD are not advantageous over their non-dissimilarity-
based counterparts, in application scenarios where a higher accuracy is more important
than a lower processing time. For instance, this can be the case of off-line forensics in-
vestigations (e.g., looking for an individual of interest among a dataset of videos previously
recorded).

However, trading a lower accuracy for a lower processing time can be advantageous in
other scenarios. As an example, consider a real time application in which individuals ob-
served by different, non-overlapping cameras are automatically tracked, and a human op-
erator can select an individual of interest from one of the videos, and ask the system to re-
identify it (again, in real time). In this case, the template gallery containing the descriptors
of all tracked individuals can be automatically constructed and updated in real time. When
the operator sends a probe image to the system, it first builds the corresponding descrip-
tor, then matches such descriptor against all the ones in the template gallery, and returns
to the operator the list of templates ranked for decreasing similarity with the probe. Finally,
the operator scrolls such list to search for the individual of interest (see Fig. 4.1). Clearly, a
re-identification method A with a lower accuracy than another method B results in a higher
average search time spent by the operator to find the individual of interest in the ranked list
provided by the system (assuming the operator has a 100% accuracy). However, if the higher
search time of method A is balanced by a lower processing time, the overall re-identification
time between submitting the probe and finding the corresponding individual in the ranked
list (namely, the sum of the processing and search times) can be lower for method A than for
B. Therefore, in a real time scenario like the one considered above, method A can be prefer-
able to B, although its re-identification accuracy is lower.

In the following a simple quantitative model is given to evaluate the overall re-identification
time, that will be used in the experimental evaluation of Sect. 4.3. Let

• td be the average time required to construct the descriptor of the image of an individ-
ual, using a given method, and

• tm the average matching time between two descriptors.

If the template gallery contains the descriptors of N individuals, the average processing time
tp is given by the time needed for constructing the probe descriptor plus the time needed to
match it to the N template descriptors (as explained above, here it is assumed that template
descriptors are constructed during tracking, and are thus already available at this time):

tp = td +N tm . (4.1)

Let us now denote with tc the average time spent by the operator to compare the probe
image with a template image, and with R ∈ {1, . . . , N } the random variable defined as the rank
of the query individual in the list provided by the system.1 The average search time ts spent
by the operator is given by:

ts = tcE {R} , (4.2)

where E {R} is the expected rank of the probe individual. The value of E {R} can be computed
from the Cumulative Matching Characteristics (CMC) curve, which is a widely used measure

1Here it is assumed that the template gallery always contains the correct match. If this is not the case, for
the purposes of this section the domain of R can be extended by adding a value N +1, to denote the absence of
the correct match in the template gallery.
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Figure 4.1: A typical on-line, real-time application scenario of person re-identification. a)
The security operator sends a probe image to the system. The system builds a descriptor of
the probe, and b) matches it against all the descriptors stored in the template gallery, that
are constructed on-line. c) The system returns to the operator the list of templates ranked
for decreasing similarity to the probe.

of ranking accuracy of re-identification methods. It is defined as the cumulative distribution
of R: P (R ≤ r ), r = 1, . . . , N , namely the probability that the template image of the query
individual is among the top-r ranked images. Using the standard notation C MC (r ) for P (R ≤
r ), it is easy to see that E {R} is given by:

E {R} = ∑N
r=1 r P (R = r )

= C MC (1)+∑N
r=2 r

(
C MC (r )−C MC (r −1)

)
= N ·C MC (N )−∑N−1

r=1 C MC (r ) .
(4.3)

The overall average re-identification time tr can be finally obtained as:

tr = tp + ts = td +N tm+
tc

[
N ·C MC (N )−∑N−1

r=1 C MC (r )
]

.
(4.4)

This model can be used to compare re-identification methods for the on-line task of
Fig. 4.1. In this scenario, the best method is usually the one with the lowest tr.

4.2 Baseline method and application of MCD

In this Section, MCD is applied to a baseline person re-identification method to lower its
average re-identification time tr. Such baseline method is a straightforward implementa-
tion of the multiple parts and multiple components model that underlies MCD. It has been
published by the Author in [116], and attains a recognition performance similar to other
state-of-the-art methods such as the widely cited SDALF [45]. The method is referred to as
“MCMimpl” from here on, which stands for “Multiple Component Method implementation”.
It is described in the following.
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Figure 4.2: Two examples of different images for the same individual: note the difference
both in contrast and brightness.

real patch

simulated patch

simulated patch

simulated patch

simulated patch

(a) (b)Figure 4.3: Examples of four artificial patches simulating changing illumination (right), cor-
responding to the patch highlighted on the left.

Given an image of an individual, first background and foreground are separated through
a STEL generative model [76]. Then the body is divided into M = 2 parts, torso and legs,
exploiting its anti-symmetry properties, via the algorithm proposed by Farenzena et al. [45]
and described in Sect. 2.1.2. Similarly to [45], the head is discarded, since it does not carry
enough information due to its small size. From each part, a set of 80 partly overlapping
patches is randomly extracted and represented via the concatenation of H, S and V colour
histograms (24, 12 and 4 bins respectively). The patch width and height are defined as 15%
of the width and height of the corresponding part.

To increase robustness to illumination changes, these are simulated by constructing ar-
tificial patches from real template ones.

Light variations usually result in a change of both brightness and contrast of the image
(see for example Fig. 4.2). Brightness variations can be obtained by adding or subtracting
a fixed value to the RGB components of the pixels of the image. Instead, changing contrast
means increasing or decreasing the differences between pixel values. A standard method
to obtain this is the following: denoting as [0,C ] the original range of each colour channel
(usually C = 255), every R, G, and B pixel value is translated to [−C /2,C /2], multiplied by a
fixed coefficient, and then re-normalised to [0,C ]. A coefficient greater than 1 results in a
higher contrast, while a lower contrast is obtained by choosing values smaller than 1.

To change both brightness and contrast, here a modification of the above technique is
used, which does not translate values to [−C /2,C /2] first, but simply multiplies each pixel
value of each channel by a coefficient K . Intuitively, this increases (or decreases) the dif-
ferences between pixel values as well. However, while in the standard method values lower
than C /2 are reduced, and those higher than C /2 are increased, in our variant all the values
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are increased (or decreased), thus obtaining also a change of brightness. The proposed al-
gorithm multiplies pixel values by a series of coefficients [k1, . . . ,kS] to generate S simulated
patches from each real one (see the example in Fig. 4.2). To choose proper ki values, the al-
gorithm starts from an initial vector K = [k1, . . . ,kS], then decreases its values until applying
the greatest ki to the original image does not saturate the image too much. More precisely, it
checks that the mean value of R, G and B multiplied by the greatest value of K is not higher
than a threshold, which has been set to 240.

The distance between two sets of patches X and Y corresponding to the same part of two
different individuals is evaluated by the k-th Hausdorff set distance proposed by Wang and
Zucker [132]:

dH (X ,Y ) = max(h(X ,Y ),h(Y , X )) (4.5)

where
hk (X ,Y ) = kth

x∈X
min
y∈Y

(‖x − y‖) (4.6)

where the parameter k governs the sensitiveness to outlying matches, and was set to k = 10.
The the norm ‖x − y‖ in Eq. (4.6) is the Bhattacharyya distance between histograms, which
is defined as:

‖x − y‖ =
√

1−∑
i

p
xi yi (4.7)

The final matching score between a probe Q and a template T is computed as the average
of the distances between the two parts:

D(T,Q) = 1

2

(
d(T1,Q1)+d(T2,Q2)

)
. (4.8)

4.2.1 Prototype creation

To apply MCD to the MCMimpl method described above, prototypes are at first chosen from
the template gallery via a two-stage clustering scheme. The Mean-Shift algorithm [30] is used
at the first stage, to separately cluster the patches of each individual (excluding the simulated
ones), while k-means is applied at the second stage on the resulting centroids.

To incorporate the simulation algorithm of the baseline method, each prototype was fi-
nally associated to a set containing 1) the patch nearest to each centroid, and 2) the series
of simulated patches created from that patch. A prototype is therefore defined as a set of
components: the patch found using the clustering scheme mentioned above, and the set of
simulated ones.

The bandwidth parameter of Mean-Shift, which governs the spread of each cluster, was
set to BW = 0.3. The number Km of prototypes for the m-th body part corresponds to the
k value of the k-means algorithm, and therefore it must be set in advance. Although this
seems a drawback (as in practice it is difficult to guess a suitable value for Km), the following
experiments will show that the choice of k is not crucial. Mean-Shift, which does not require
to define the desired number of clusters beforehand, turned out to produce too unbalanced
clusters at the second stage instead, as many of them were composed by only one or two
components.
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4.2.2 Computation of dissimilarities and matching

The simulated patches added to prototypes make them sets of components instead of single
components. This means that dissimilarities have to be computed with a set distance, as
also the original descriptor is made up of sets of components. A suitable measure can be
the k-th Hausdorff distance of Eqs. (4.5)-(4.6). Using the same Bhattacharyya distance of
Eq. (4.7) as a metric between pairs of components, which is bounded in [0,1], it is guaranteed
that dissimilarities fall in the same range. Thus, during matching the weighted Euclidean
distance of Eqs. (3.9) - (3.10) can be used. Among the weighting rules listed in Sect. 3.3, in
the following experiments the Tangent rule is used.

4.3 Experimental evaluation

In this Section, MCMimpl is compared with its dissimilarity-based version (denoted in the
following as MCMimplDis), via a thorough experimental evaluation. The set-up of the exper-
iments is described in Sect. 4.3.1. Experimental results are then provided in Sect. 4.3.2.

4.3.1 Experimental set-up

The classical experimental set-up for assessing person re-identification methods, which is
usedin this Section, uses two galleries of images of people, the template and the probe gallery.
Each image is associated to one identity, and each identity is represented by at least one
template image and one probe image. For each image of the probe gallery, the templates
are ranked with respect to their similarity, and the performance of the algorithm is usually
evaluated as the quality of the ranking (the higher is the rank of the true template identity,
the better the ranking), e.g. by using the CMC curve defined in Sect. 4.1.

Two benchmark datasets used in many previous works have been used in this experi-
mental analysis: VIPeR [57], and a set of images taken from the i-LIDS MCTS video dataset
[139].

The VIPeR dataset is made up of two non-overlapping views of 632 different pedestri-
ans, taken from two different cameras, under different poses, viewpoint and lighting con-
ditions (see Fig. 4.4). It is the most challenging dataset currently available for person re-
identification. The first and second view of each pedestrian were used respectively as the
template gallery and the probe gallery. The experiments have been carried out on three
different subdivisions of this dataset. One of them was used in many previous works: the
images of the 632 pedestrians are split into ten, partially overlapping folds of 316 individu-
als, to carry out ten different runs of the experiments. The same folds have been defined in
[45] and are used in this work to obtain results that are comparable with the rest of the litera-
ture. Since a template gallery of 316 individuals is relatively small for some real applications,
two further subdivisions of VIPeR have been considered: ten, partially overlapping folds of
474 individuals randomly sampled from the whole dataset, and a single fold made up of all
the 632 available individuals. This also allowed us to evaluated the trade-off between accu-
racy and re-identification time as a function of the number of templates. In the following,
the above three versions of VIPeR are referred to respectively as VIPeR-316, VIPeR-474, and
VIPeR-632. Note that in VIPeR-632 only one run of the experiments is carried out.

The i-LIDS dataset contains 476 images of 119 different pedestrians, taken at an airport
arrival hall from different non-overlapping cameras. It shows pose and lighting variations,
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Figure 4.4: Pairs of images showing the same individual taken from the VIPeR data set. Notice
pose and illumination variations.

Figure 4.5: Pairs of images showing the same individual taken from the i-LIDS data set. No-
tice pose and illumination variations, and partial occlusions.

and strong occlusions (see Fig. 4.5). The same experimental set-up as in [139] is used: one
image for each person was randomly selected to build the template gallery, while the other
images formed the probe gallery. Therefore, the template gallery is composed of 119 images,
while the probe gallery has 357 images. The whole procedure is repeated ten times. The folds
originally used in [139] are not available, therefore they have been generated randomly.

The re-identification accuracy has been evaluated using the CMC curve defined in Sect. 4.1.
The re-identification time has been evaluated using the model described in the same Sec-
tion.

4.3.2 Results

First, the raw processing time, memory requirements, and re-identification performance of
MCMimpl and of its MCD-based version (which in the following is referred to as MCMimplDis)
are assessed. Then, the trade-off between accuracy and computational time on the real-time
application scenario depicted in Sect. 4.1 is evaluated by the model proposed in the same
Section. Finally, two critical aspects of the proposed approach are assessed, namely, the
number of prototypes and the gallery of individuals used to construct them.

Computational requirements and re-identification accuracy

Processing time and memory requirements of MCMimplDis, have been evaluated on a 2.4
GHz CPU, using C# code without any particular optimisation or parallelisation. Results are
shown in Table 4.1. Processing times are averaged over ten runs of the experiments, except
for VIPeR-632. The average time for prototype construction is reported for four different
sizes of the template gallery, corresponding to the four different datasets considered (i-LIDS,
VIPeR-316, VIPeR-474, and VIPeR-632). The average total time required for a single run of
the experiments is also reported for each dataset: it comprises creation and matching of
template and probe descriptors, and also prototypes creation and dissimilarity vectors con-
struction, for MCMimplDis.
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MCMimpl MCMimplDis

Avg time for template descriptor creation 93.7 ms(1) 17.5 ms
Avg time for probe descriptor creation 6.8 ms(1) 17.5 ms
Avg time for prototypes creation, 119 templates - 2447.3 ms(2)

Avg time for prototypes creation, 316 templates - 6083.2 ms(2)

Avg time for prototypes creation, 474 templates - 12384.8 ms(2)

Avg time for prototypes creation, 632 templates - 16270.7 ms(2)

Avg time for dissimilarity vector creation - 110.3 ms(2)

Avg time for a single match 28.6 ms 0.004 ms
Avg total time for a single run (i-LIDS) 2719.1 sec 63.5 sec
Avg total time for a single run (VIPeR-316) 2887.6 sec 87.2 sec
Avg total time for a single run (VIPeR-474) 6521.0 sec 134.5 sec
Avg total time for a single run (VIPeR-632) 11550.6 sec 179.4 sec
Size of the descriptor 96 KB 1.2 KB(2)(3)

Size of the prototype gallery - 48 KB(2)(3)

Table 4.1: Comparison of the computational and memory requirements of MCMimpl and
MCMimplDis. Notes: (1) in MCMimpl, the construction of a template descriptor includes
the generation of simulated patches, and thus requires a higher time than the construction
of a probe descriptor; (2) these values refer to 150 prototypes for both the considered body
parts (torso and legs); (3) 32 bit floating point values.

As expected, MCMimplDis clearly outperforms MCMimpl in terms of processing time and
memory usage. In particular, a speed-up of four orders of magnitude is attained for descrip-
tors matching. The average overall time required to perform a run of the experiments is
much lower as well, and the difference increases as the size of the template gallery grows.

Regarding re-identification accuracy, the performance in terms of average CMC curve
of MCMimpl and MCMimplDis on the four datasets are reported in Fig. 4.6. MCMimplDis

attained a worse recognition performance than MCMimpl on i-LIDS and VIPeR-316, that
correspond to the smallest template galleries, respectively 117 and 316 templates. However,
the accuracy gap diminished on VIPeR-474, that exhibits a larger template gallery, and al-
most vanishes on VIPeR-632, that corresponds to the largest template gallery, and is this in
the most challenging and most realistic scenario. This suggests that, when the number of
templates is very high, as in many practical applications, the dissimilarity-based version of
a re-identification method obtained through MCD can attain the same performance as the
original, not dissimilarity-based method, while requiring much lower computational and
storage resources.

Trade-off between accuracy and processing time

The above results show that the dissimilarity-based version of a re-identification method
can perform worse than the original one. Here the model of Sect. 4.1 is used to evaluate
whether the resulting trade-off between accuracy and processing time can be nevertheless
advantageous, in the real-time application scenario described in the same Section. To this
aim, the overall re-identification time tr of MCMimpl and MCMimplDis have been evaluated,
through the use of Eq. (4.4). The expected rank of Eq. (4.2) is computed from the CMC curves
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Figure 4.6: CMC curves attained by MCMimpl and MCMimplDis on the four datasets used
in the experiments. Note that in the first three plots (from top to bottom, from left to right)
average CMC curves over ten runs of the experiments are reported, while the last plot refers
to a single run. Note also that the range of rank scores (X axis) is [1,50] in plots first two plots,
and [1,100] in the last row, since the latter plots correspond to datasets with a larger number
of templates.

of Fig. 4.6. To evaluate the time td required by MCMimplDis for creating one descriptor, both
the time needed to build the MCM descriptor, and the time to build the corresponding dis-
similarity representation, have been considered.

For the sake of completeness, tr has been evaluated for all the four datasets: the i-LIDS
and VIPeR-316 datasets, where the MCMimplDis attained a lower accuracy than MCMimpl;
and the VIPeR-474 and VIPeR-632 datasets, were the accuracy of the two methods was simi-
lar. The results are reported in Table 4.2.

The overall re-identification time is the sum of two quantities, the processing time tp (i.e.,
the time required by the system to rank templates in respect to a probe) and the search time
ts (i.e., the time spent by the operator to find the individual in the ranked list of templates). As
expected, the processing time of MCMimplDis is lower than the one of MCMimpl. The search
time of Eq. (4.2) is given by tc (i.e., the average time the operator spends in comparing the
probe image with one template image) times the expected rank. The latter turned out to be
higher for MCMimplDis, on i-LIDS and VIPeR-316, due to the lower accuracy. It was slightly
higher also for VIPeR-474 and VIPeR-632, although very close to the one of MCMimpl. This
means that the overall re-identification time of MCMimplDis will be lower than the one of
MCMimpl, for tc lower than a given value t∗c , and higher for tc > t∗c .

Accordingly, first the value of t∗c has been computed. Table 4.2 shows that the re-identification
time of MCMimplDis is lower, if tc is below about 0.8 seconds for i-LIDS, and 1.3 seconds for
VIPeR-316. Since it is likely that in a real-time application scenario like the one considered
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MCMimpl MCMimplDis

i-LIDS
Processing time tp 3.497 sec 0.128 sec
Search time ts (with tc = 0.5 sec) 10.103 sec 12.203 sec
Re-identification time tr (with tc = 0.5 sec) 13.600 sec 12.331 sec

t∗c 0.802 sec

VIPeR-316
Processing time tp 9.044 sec 0.129 sec
Search time ts (with tc = 0.5 sec) 13.224 sec 16.601 sec
Re-identification time tr (with tc = 0.5 sec) 21.268 sec 16.730 sec

t∗c 1.320 sec

VIPeR-474
Processing time tp 13.564 sec 0.129 sec
Search time ts (with tc = 0.5 sec) 42.475 sec 43.084 sec
Re-identification time tr (with tc = 0.5 sec) 56.039 sec 43.213 sec

t∗c 11.021 sec

VIPeR-632
Processing time tp 18.082 sec 0.130 sec
Search time ts (with tc = 0.5 sec) 55.941 sec 57.700 sec
Re-identification time tr (with tc = 0.5 sec) 74.023 sec 57.830 sec

t∗c 5.101 sec

Table 4.2: Comparison of processing time, search time, and overall re-identification time of
MCMimpl versus MCMimplDis (see the text for the details).

here tc is lower than these values, these results show that MCMimplDis can be considered
advantageous over MCMimpl, despite the lower accuracy. Note finally that in VIPeR-474 and
VIPeR-632 t∗c is considerably higher.

The re-identification time tr has been also evaluated, for a realistic reference value of
tc = 0.5 seconds. It can be seen that tr is always lower for MCMimplDis, and the difference
with respect to MCMimpl increases as the template gallery size increases.

Finally, it is worth pointing out that the processing time of MCMimplDis, namely the delay
between the request of the operator and the response of the system, is almost independent
on the template gallery size, and exhibits the very low value of about 0.13 seconds. In con-
trast, MCMimpl requires a much higher processing time, which grows with the number of
templates. This difference is due to the extremely fast matching attained by MCMimplDis. In-
deed, such high matching speed can be attained by any dissimilarity-based re-identification
method based on MCD, as the comparison of dissimilarity vectors is always a fast operation.

To sum up, the above results provide evidence that a dissimilarity-based version of an
appearance-based re-identification method can attain an advantageous trade-off between
accuracy and processing time.
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Figure 4.7: (left) Recognition performance of MCMimplDis on the VIPeR-316 dataset, mea-
sured as the AUC20%, versus the percentage of the template gallery used to build prototypes.
(right) Comparison between the CMC curves of MCMimplDis on the i-ILIDS dataset, attained
by constructing the prototypes using either the same dataset, or the VIPeR dataset.

Effect of changing the source and the number of the prototypes

The processing time of MCMimplDis, as well as of any dissimilarity-based method obtained
via MCD, is affected by prototype construction. This can be a problem, especially in appli-
cations where new templates can be added on-line during system operation. For instance,
they can correspond to new individuals that are observed by a camera network.

It is thus very interesting to investigate whether the prototype gallery can be constructed
using only a subset of the whole template gallery, or even using gallery of individuals different
than the template gallery. This can avoid to re-build the prototype gallery (and thus, the
dissimilarity representation of the existing templates) each time a new template is added
to the system. In particular, in the latter case prototypes can be generated off-line, prior to
system operation. To this aim, it would be desirable to use a dataset with a wide range of
different clothing characteristics.

To assess the performance that can be attained when the prototype gallery is built either
from a subset of the template gallery, or from a different gallery, two further experiments
have been conducted: 1) an evaluation of the recognition performance in the VIPeR-316
dataset with respect to the percentage of templates used to build the prototype gallery, and
2) the same experiment on i-LIDS of (Fig. 4.6), using this time the VIPeR data set to construct
the prototypes, taking into account that VIPeR exhibits a relatively wide range of clothing
characteristics.

Results are reported in Fig. 4.7. They show that re-identification accuracy remains al-
most the same, 1) if at least 60% of the templates in the original gallery are used to construct
prototypes (see Fig. 4.7(left)), and, most importantly, 2) if prototypes are constructed using
a gallery of individuals different from the template gallery (see Fig. 4.7(right)).

Finally, the accuracy and processing time on the the VIPeR-316 dataset have been evalu-
ated as a function of the number of prototypes per part p. The accuracy has been concisely
evaluated as the portion of the area under the CMC curve corresponding to the first 20% of
the ranks, denoted as AUC20%. Note that this is the part of the curve of most interest, be-
cause it corresponds to the first ranks. The results (shown in Fig. 4.8) provide evidence that
the number of prototypes affects performance only slightly.

Fig. 4.8(right) shows that, as the number of prototypes increases, the AUC20% initially



48 CHAPTER 4. USING MCD TO SPEED UP EXISTING RE-IDENTIFICATION METHODS

50 100 150 200 250 300

3

4

5

6

7

8

9

10

K

ti
m

e
 (

se
c

)
Time for prototype creation vs prot. nr.

50 100 150 200 250 300

0

50

100

150

200

250

K

ti
m

e
 (

m
s)

Dissimilarities computation time vs prot. nr.

50 100 150 200 250 300

0.119

0.12

0.121

0.122

0.123

0.124

0.125

K

A
U

C
2

0
%

Performance vs prot. nr.

Figure 4.8: (left) Average time for creating prototypes from a dataset of 316 images, versus the
number of prototypes per part, K . (center) Average time for computing dissimilarity vectors
for a single individual, versus the number of prototypes per part, K . (right) Recognition
performance of MCMimplDis on the VIPeR-316 dataset, measured as the AUC20%, versus the
number of prototypes per part, K .

grows, then reaches a nearly stable value. This behaviour can be easily explained: once the
number of prototypes is enough so that the great part of the distinctive visual characteristics
have been captured by different clusters, increasing the number of prototypes has mainly the
effect of splitting some of the previous clusters into two or more similar ones. Consequently,
no further information is embedded in the new prototypes. On the other hand, Figs. 4.8(left)
and 4.8(center) show that increasing the number of prototypes slows down both prototype
construction and dissimilarity vector computation. Note that all the plots of Fig. 4.6 corre-
spond to p = 150.

4.4 Conclusions

In this Chapter MCD has been used to address the open issue of the computational complex-
ity of person re-identification methods, which has been overlooked so far in the literature.
Results have showed that MCD drastically reduces the processing time as well as memory
requirements. Also, it can attain a similar accuracy as the original method, especially when
the size of the template gallery is high.

Moreover, even if its accuracy is lower, the trade-off attained between accuracy and pro-
cessing time can be advantageous in terms of the overall re-identification time, in real-time
application scenarios. Finally, it has been shown that the visual prototypes needed by a
dissimilarity-based method can be constructed either using a subset of the template gallery,
or even a different gallery, without affecting re-identification accuracy. This is very relevant
for real-time applications as well.



Chapter 5

A state-of-the-art re-identification
method based on MCD

In Chapter 4 MCD has been used to speed up an existing re-identification method. In this
Chapter, a novel re-identification method based on MCD is presented, which is able to attain
state-of-the-art performance with a low computational request. The method, which is de-
scribed and experimentally evaluated in the following Sections, exploits the representation
independence of MCD’s prototypes (which are logically and semantically at an higher level
than the actual features extracted from objects, as stated in Chapter 3) to combine various
kinds of features (both local and global) that look at different aspects of the appearance (e.g.,
colour, texture). Each feature is responsible for a different set of prototypes, and dissimilar-
ities corresponding to each set are finally concatenated to form the global dissimilarity vec-
tor. During matching phase (i.e. when comparing two descriptors), the weighted Euclidean
distance of of Eqs. (3.9)-(3.10) takes care of assigning a higher weight to more relevant pro-
totypes, regardless of the underlying features used for each prototype.

The proposed method is able to deal with templates and probes made up of multiple
frames, as required in practical scenarios, where typically an entire track (i.e., a sequence of
frames containing a person) is acquired and processed for each individual seen by the sensor
network. Using multiple frames to construct templates should lead to a better recognition
performance, as more poses are acquired and a partial occlusion which may happen in a
frame may be not present in subsequent frames.

To enable matching of multiple frames (i.e., matching between two sequences of frames,
one template sequence and one probe sequence), each frame of the template track is at first
matched against each frame of the probe track. The final matching score is then evaluated
as a combination of the matching scores between the single template-probe frame pairs. A
weighted sum of all the scores is proposed to this aim, where the pairwise matching scores
corresponding to similar poses (i.e. when the two frames matched are likely to show a person
in the same pose) receive a higher weight.

The rest of the Chapter is organised as follows. Sect. 5.1 illustrates the body model and
features used in the descriptor. Details on the application of MCD on this descriptor are
then given in Sect. 5.2. The procedure to matching sequences of frames is explained in
Sect. 5.3. Then a comprehensive experimental evaluation on two popular benchmark data
sets is given in Sect. 5.4. Finally, conclusions are summed up in Sect. 5.5.

49
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(a) (b) (c)

Figure 5.1: Enhanced part subdivision used in the proposed descriptor: (a) the image of an
individual; (b) the torso-legs symmetry driven subdivision used in [45]; (c) in the enhanced
body subdivision the torso is further subdivided into three body parts of equal height.

5.1 Body model and features used in the descriptor

First, the silhouette of the body is extracted with the same STEL generative model used in
Chapter 4.

The proposed method then uses a simple body model which inherits from the symmetry-
driven one of [45] (it has been described in Sect. 2.1.2). The original model subdivides the
body into two body parts: torso and legs. In the new body model, the torso is further sub-
divided into three body parts (upper, middle and lower torso) of equal height (see Fig. 5.1).
This simple modification of the model of [45] allows to roughly capture the presence of short
sleeves, which will result on the presence of skin-like colours in the middle and/or lower
torso. It is worth pointing out that, in contrast with more complex body models, such as the
one based on pictorial structures used in [28] (see Sect. 2.1.3), the proposed part subdivision
is very fast to compute and may be used in real application scenarios.

Concerning the kind of features, five different ones are used, that generally look over
different appearance aspects, although some are partly overlapping in this sense. These fea-
tures are:

1. RandPatchesHSV. 100 rectangular patches are sampled at random, and described with
the concatenation of H, S, and V colour histograms (32, 24 and 4 bins respectively; note
that the V channel is more down-sampled than the other two, as it is more sensitive
than the others to brightness variations). The patch width and height were defined as
30% of the width and height of the corresponding part (upper, middle and lower torso)
and as 15% of the width and height of the corresponding part (legs).

2. RandPatchesLBP. 50 rectangular patches are sampled at random, and described with
three rotation-invariant LBP histograms [108], respectively of the H, S and V channels,
concatenated to form a single feature vector. The patch size is the same as in the first
feature RandPatchesHSV.

3. FCTH. The Fuzzy Colour and Texture Histogram descriptor was originally proposed
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for image retrieval [27]. It comprises colour and texture information in one feature
vector, based on fuzzy-linking histograms on HSV color space and on the output of
Haar Wavelet transforms.

4. EdgeHistogram. It is an histogram of the directions of each edge pixel in the image,
and one of the suite of MPEG-7 descriptors [121].

5. SCD. The Scalable Colour Descriptor, another MPEG-7 descriptor, is a colour histogram
encoded by a Haar transform [121]. It uses the HSV colors space uniformly quantized
to 255 bins, that are subsequently non-uniformly quantised in 64 bits/histogram for a
rough representation of the color distribution.

Note that only the first two are local features, while the remaining three are global features
extracted from the whole body part.

5.2 Prototype selection and dissimilarity vector creation

MCD is applied to the appearance descriptor above, by separately choosing a prototype set
for each kind of feature and each body part, and then concatenating the resulting dissim-
ilarity vectors. To this aim, for each kind of feature it is basically needed to define 1) the
prototype selection scheme, and 2) the one-vs-many distance to compute dissimilarities.

Concerning prototype selection, for the two local features RandPatchesHSV and Rand-
PatchesLBP, the same two-stage clustering scheme of Sect. 4.2.1 is used (with the Band Width
parameter of Mean-shift set to BW = 0.2), and prototypes are chosen as the patches nearest
to the resulting centroids. For the remaining global features FCTH, EdgeHistogram and SCD,
k-means is used.

Concerning dissimilarities computation:

• In the case of the two local features RandPatchesHSV and RandPatchesLBP, each dis-
similarity is evaluated as the k-th minimum distance over all the distances between
the prototype and each of the components of the body part, with k = 10. The pairwise
distance between a component and a prototype is evaluated using the Bhattacharyya
distance of Eq. (4.7).

• In the case of the three global features FCTH, EdgeHistogram and SCD, the Cosine dis-

tance is used, defined as d(x, y) = 1−
∑

i xi ·yi√∑
i x2

i ·
√∑

i y2
i

.

Note that all the distances are bounded in [0,1]. This enables the use of the weighted Eu-
clidean distance in the dissimilarity space (Eqs. (3.9)-(3.10)) for matching dissimilarity de-
scriptors.

5.3 Matching between sequences of frames

In practical applications, each person seen by a camera is usually associated to a track, i.e.
a sequence of rectangular regions of a frame, containing the person. Thus, a real-world re-
identification system is likely to have to deal with template and probe tracks rather than sin-
gle frames. Both the template and the probe gallery are therefore made up of sets of frames.
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This scenario is often called MvsM (Multiple shots versus Multiple shots) in the literature
[45], while the simple one template frame versus one probe frame scenario is called SvsS.
In [45], a third scenario is described, the MvsS, where templates are sets of frames while
the probe is one single frame. This can correspond to a scenario in which a continuous
re-identification is performed, i.e. where the person is continuously matched against the
templates in real-time, using the currently seen frame as probe.

In the proposed method, the matching in MvsM and MvsS scenarios is performed as
follows. For each comparison between one template track and each probe track, at first ev-
ery frame of the template track is matched against every frame of the probe track using the
weighted Euclidean distance of Eqs. (3.9)-(3.10). Then, to compute the final matching score,
one of the following approaches is used:

1. score selection, by ranking the minimum, median, or maximum value of the pairwise
matching scores;

2. weighted sum of the pairwise matching scores, whose weights are computed with a
novel algorithm that takes into account the pose similarity. This algorithm will be de-
scribed in the following.

5.3.1 Weighting of multiple matches

The proposed algorithm for weighting multiple matches build on the assumption that matches
involving similar poses (i.e., frames showing two individuals in a similar pose, e.g. both in
frontal pose) should receive an higher weight than matches involving different poses. To es-
timate the pose of a person from one image is a non-trivial task. However, in this task we are
not really interested on the actual person’s pose; rather, we are interested in the similarity of
a pair of poses. In the following, a possible approach to estimate the degree of similarity of
two poses given two images is presented.

Consider a pair of frames f1 and f2 showing two individuals. Let these two images be
subdivided into an equal number of horizontal strips. If the individuals shown in the images
are in a different pose (e.g., one in frontal pose, one in lateral pose), the average Hue 1 of each
strip should different. E.g., the average H of the strips that contain the head should change
from frontal to lateral pose, because of the different amount of skin colour and hair colour
in the two cases.

Let S f be the vector of average values of the Hue channel in each strip of the frame f :

sf =
[

avg
(

fstr i p=1
)

. . . avg
(

fstr i p=S
)]

(5.1)

where S is the number of the strips. Following the intuition above, the pose similarity of
f1 and f2 can be roughly evaluated by considering the differences of the two corresponding
vectors of average strip Hue values s1 and s2. This difference is evaluated using the Cosine
similarity, which is bounded in [0,1] by definition. The pose similarity is thus defined as:

pose similarity( f1, f2) =
∑

i s1,i · s2,i√∑
i s2

1,i ·
√∑

i s2
2,i

. (5.2)

1Hue is the H channel in the HSV colour space, and encodes the actual colour; the other channels are S
which encodes the saturation of the colour, and V, which encodes its intensity.
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The similarity above is used to compute the weights of each matching pair. Given a tem-
plate set of frames T = {ti } to compare with a probe set of frames P = {p j }, the final matching
score is given by:

score =
∑
i , j

(
pose similarity(ti , p j )

)C

Σ
·d D(ti , p j ), (5.3)

Σ=∑
i , j

(
pose similarity(ti , p j )

)C , (5.4)

where C is a parameter that governs how much low and high similarities are differentiated,
Σ is a normalisation factor such that the sum of the weights is one, and d D(ti , p j ) is the
matching distance in the dissimilarity space between ti and p j , computed by means of the
weighted Euclidean distance of Eqs. (3.9)-(3.10).

5.4 Experimental evaluation

In this Section, the proposed method is experimentally evaluated on two common bench-
mark data sets, which are described in Sect. 5.4.1. All the five features used (see Sect. 5.1)
are at first separately tested in Sect. 5.4.2. Then their combination in a single dissimilarity
descriptor is evaluated in Sect. 5.4.3. Finally, in Sect. 5.4.4 the score combination rules of
Sect. 5.3 are tested, and the performance of the method is compared against current state-
of-the-art re-identification methods.

5.4.1 Experimental set-up

The following experimental evaluation has been carried out using two benchmark data sets.
One is a set of images taken from the i-LIDS MCTS video dataset (in the following simply
denoted as i-LIDS), the other is the CAVIAR4REID data set [28]. Both data sets contain several
images per individual, so that the MvsM scenario can be properly simulated.

The i-LIDS data set is the same used in Sect. 4.3. It contains 476 images of 119 differ-
ent pedestrians, taken at an airport arrival hall from different non-overlapping cameras (see
Fig. 4.5). Each pedestrian is associated to at least two images (seven images maximum). With
this data set, the MvsM and MvsS scenarios have been tested, using the following procedures
for constructing the template and probe galleries:

• Concerning the MvsM scenario, from each individual’s N frames in the data set up
to M = 3 template frames are chosen at random. Up to M frames are then chosen
as probe frames for that individual, from the remaining ones. If N < 2M , first M ′ =
min(N − 1, M) frames are taken at random as templates, then M ′′ = max(1, N − M ′)
frames are taken at random from the remaining ones, as probe frames.

• Concerning the MvsS scenario, from each individual’s N frames in the data set up to
M = 3 template frames are chosen at random. One frame is then chosen as probe
frame for that individual, from the remaining ones. If N < M+1, first M ′ = N−1 frames
are taken at random as template frames, then the remaining frame is taken as probe
frame.
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(a)

(b)

Figure 5.2: Images taken from the CAVIAR4REID data set: (a) images of three individuals
from the first camera, and (b) the same individuals seen by the second camera. Notice pose
variations, and the strong difference in quality between the images taken by the first camera,
which are generally fair, and those taken by the second camera, which are typically blurry
and darker.

In both scenarios, prototypes are chosen from the template gallery (Sect. 5.2) and dissimi-
larity descriptors of the templates and of the probes are computed. Finally, for each probe
frame, the template sets of frames are ranked with respect to their similarity to the probe.
The procedure is repeated ten times, and the performance is assessed by means of the Cu-
mulative Matching Characteristics curve.

The CAVIAR4REID data set contains tracks of 72 pedestrians taken from two cameras A
and B in an indoor shopping centre in Lisbon. To properly simulate a multiple camera sce-
nario, here the 50 pedestrians whose tracks are captured by both cameras are used. Each
track is made up of 10 frames. The first camera is used as source for templates, while the
second camera is used as source for probes. Despite the relatively small number of individ-
uals, this is a very difficult data set (see Fig. 5.2), mostly due to poor illumination conditions
(especially for the second camera) and pose variations. It is thus one of the most realistic
data sets currently available. With this data set, only the MvsM scenario was tested, as fol-
lows. For each individual, M = 5 template frames are chosen at random from camera A,
then M probe frames are chosen at random from camera B. Prototypes are chosen from the
template gallery (Sect. 5.2) and dissimilarity descriptors of the templates and of the probes
are computed. Then, for each probe set of frames, the template sets of frames are ranked
with respect to their similarity to the probe, using the method of Sect. 5.3. The procedure is
repeated ten times, and the performance is assessed by means of the Cumulative Matching
Characteristics curve (Sect. 4.1).

Finally, concerning the parameters of the method, the number of prototypes per part
has been set to 200 for RandPatchesHSV and RandPatchesLBP, and to 100 for FCTH, Edge-
Histogram and SCD (in total, 2800 prototypes).

5.4.2 Performance of the single feature sets

The performance attained by using the single feature sets in the three scenarios considered
(i-LIDS MvsM, i-LIDS MvsS, CAVIAR4REID MvsM) is reported in Figs. 5.3-5.5. In all the ex-
periments, the final matching score between one template track and one probe track is com-



5.4. EXPERIMENTAL EVALUATION 55

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank score

R
e

c
o

g
n

it
io

n
 r

a
te

CMC (i−LIDS, MvsM)

 

 

RandPatchesHSV

RandPatchesLBP

FCTH

EdgeHist

SCD

Figure 5.3: CMC curves attained by the single features on the i-LIDS data set (MvsM scenario
with M=3).
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Figure 5.4: CMC curves attained by the single features on the i-LIDS data set (MvsS scenario
with M=3).
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Figure 5.5: CMC curves attained by the single features on the CAVIAR4REID data set (MvsM
scenario with M=5).
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Figure 5.6: CMC curves attained by combining feature sets on the i-LIDS data set (MvsM
scenario with M=3). The performance of the best single feature set, randPatchesHSV, is also
reported for reference.

puted as the median value of the matching scores between each frame of the template track
and each frame of the probe track.

Results show that the best performing single feature is randPatchesHSV. This was ex-
pected, as it looks at colour-related information, and is able to capture local appearance
characteristics, which depending on viewpoint and pose may appear in different positions
in different images. In contrast, the other colour-related features (FCTH and SCD) can only
capture global colour characteristics. Therefore, they are less robust to viewpoint and pose
changes, and accordingly perform worse than randPatchesHSV.

Texture-only features (randPatchesLBP and EdgeHist) perform poorly: indeed, informa-
tion on textures is likely to be not distinctive enough when used alone. Instead, the per-
formance of re-identification systems that use a combination of colour-related and texture-
related local and global features should take advantage of their complementary information.
This intuition is studied in the next Section.

5.4.3 Performance of the combination of feature sets

The single features of Sect. 5.1 have been combined by concatenating their corresponding
dissimilarity vectors to form a single vector of size 2800 (200 each relative to randPatchesHSV
and randPatchesLBP, 100 each relative to the remaining three feature sets, for each of the
four body parts). The performance of the resulting dissimilarity descriptor in the two data
set considered is shown in Fig. 5.6-5.8, which also report the performance of the combi-
nation of local features only (randPatchesHSV and randPatchesLBP), and the performance
of the best single feature set (randPatchesHSV ) as reference. In all the methods above, the
matching score has been computed as the median value of the scores between each frame
of the template track and each frame of the probe track.

Results confirm that combining feature sets that look at different appearance aspects
can help on attaining a better performance. This is particularly evident in the i-LIDS data set
(Figs. 5.6-5.7), while in the CAVIAR4REID data set the improvement that can be attained by
combining features is only modest (Fig. 5.8). Interestingly, while the best performance on the
i-LIDS data set is exhibited by the combination of all the five feature sets considered, in the
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Figure 5.7: CMC curves attained by combining feature sets on the i-LIDS data set (MvsS
scenario with M=3). The performance of the best single feature set, randPatchesHSV, is also
reported for reference.

0 5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank score

R
e

c
o

g
n

it
io

n
 r

a
te

CMC (CAVIAR, MvsM)

 

 

All feature sets

RandPatchesHSV + RandPatchesLBP

RandPatchesHSV

Figure 5.8: CMC curves attained by by combining feature sets on the CAVIAR4REID data set
(MvsM scenario with M=5). The performance of the best single feature set, randPatchesHSV,
is also reported for reference.

CAVIAR4REID data set the best performing combination is the one involving only the two
local features randPatchesHSV and randPatchesLBP. This may be due to the wider variety of
poses shown in the images of the CAVIAR4REID, as local features are generally more robust
than global features to pose variations.

5.4.4 Performance of score combination rules and comparison with
the state of the art

The matching score combination rules of Sect. 5.3 are compared in the following. Specif-
ically, six combination rules have been tested: maximum score, minimum score, median
score, and the weighted score of Sect. 5.3.1 with three different values of the parameter C
(1, 4 and 16). The attained results are shown in Figs. 5.9-5.11, and include the performance
of the median score rule that has been used in the previous Sections (which, as becomes
evident from the plots, is not the best combination rule).
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Figure 5.9: CMC curves attained by the best combination of feature sets on the i-LIDS data
set (MvsS scenario with M=3) using different matching score combination rules.
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Figure 5.10: CMC curves attained by the best combination of feature sets on the i-LIDS data
set (MvsM scenario with M=3) using different matching score combination rules.

Results on the i-LIDS data set are reported in Figs. 5.9-5.10 respectively for the MvsS and
MvsM scenario. Note that the range of ranks has been extended to [1,119] in these plots (be-
ing 119 the number of templates), to visualise all the differences of the CMC curves. Fig. 5.11
report the results on the CAVIAR4REID data set.

On the i-LIDS data set (both scenarios), when considering the overall behaviour of the
CMC, the best performing score combination rule is the weighted one with C = 16, although
the difference with respect to the minimum score is modest. This was expected, as the i-LIDS
data set shows only slight pose variations (most images are taken from the back), and thus
the weighting based on pose similarity does not help much. Note, also, that the minimum
score rule performs slightly better than all the other rules when looking at the first ranks of
the CMC only.

The weighted rule performs better than the other ones also on the CAVIAR4REID data
set, where the best CMC is attained using C = 1. In this case, the influence of the C param-
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Figure 5.11: CMC curves attained by the best combination of feature sets on the
CAVIAR4REID data set (MvsM scenario with M=5) using different matching score combi-
nation rules.

eter is higher than in the i-LIDS. Again, this behaviour can be explained by considering the
peculiarities of the data sets. In fact, the CAVIAR4REID shows a wide variety of poses for each
individual, which explains why weighting the matches with respect to the pose similarity al-
lows for a better performance. Concerning the behaviour with respect to the C parameter, it
is first important to point out that C controls how much the weights differ one another. The
more one is confident that the similarity of two poses can be evaluated reliably, the bigger
should be the value of C . Since many images of the CAVIAR4REID are of very low quality,
the reliability of estimation of pose similarity is low, therefore low values of C are preferable.
This fact is confirmed by Fig. 5.11, that shows a performance that decreases as C increases.

Finally, it is worth to note that in all the data sets and scenarios considered the worst
performing score combination rule is the maximum score, whose corresponding CMC curve
is considerably lower than those attained using the other rules. Among the “classical” score
combination rules, in the i-LIDS data set (both MvsS and MvsM scenarios) the minimum
score rule, which is the most conservative of the three, performs best and is comparable to
the weighted ones. In the CAVIAR4REID data set, instead, the median score rule is the best
of the three, although it performs considerably worse than the weighted rules.

The best score combination rule has been compared with two state-of-the-art meth-
ods on the two data sets considered. The the Author’s best knowledge, the best performing
method, in both data set and in the MvsM scenario, proposed so far in the literature is the
one by Cheng et al.[28], denoted as CPS in the following. CPS is basically an enhanced ver-
sion of another method, SDALF [45]. In place of the symmetry-driven subdivision into torso
and legs used by SDALF, it uses a custom Pictorial Structure to subdivide the body in six
body parts: chest, head, thighs and legs. This articulated body model has been described in
Sect. 2.1.3. From each body part, two kinds of feature are extracted: Maximally Stable Colour
Regions (MSCR), which are non-regular regions of homogeneous colours, and a weighted
HSV histogram. Details on these features have been given in Sect. 2.2. The second method
used for comparison is SDALF [45], which is probably the most widely cited method for per-
son re-identification, and shows the best reported performance for the i-LiDS MvsS scenario.
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Figure 5.12: Comparison of the best performing score combination rule with SDALF [45], in
terms of CMC curve attained on the i-LIDS data set (MvsS scenario).
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Figure 5.13: Comparison of the best performing score combination rule with two state-of-
the art methods, CPS [28] and SDALF [45], in terms of CMC curve attained on the i-LIDS data
set (MvsM scenario). Note that the authors of [28] and [45] reported only the first 25 ranks of
the CMC, therefore the two plots are truncated at the 25th rank. The area under CMC curve
(AUC) is also reported (for CPS and SDALF, the values have been taken from [28], and refer
to the full-range CMC).

Figs.5.12 - 5.13 shows the comparisons on the i-LIDS data set respectively for the MvsS
and MvsM scenarios. Fig. 5.14 shows the comparison on the CAVIAR4REID data set.

The authors of [28] made only the first 25 ranks of the CMC available for the i-LIDS, there-
fore the corresponding CMC are truncated. For the same reason the CMC attained by CPS
and SDALF on the CAVIAR4REID data sets are truncated at the 30th rank. A useful scalar
value to compare CMC curves is the area under the curve (AUC), which has been evaluated
on [28] for both CPS and SDALF in both data sets. Therefore, the AUC is also reported in the
plots to complete the comparison. Note that all the AUCs are computed using the full-range
CMC.
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Figure 5.14: Comparison of the best performing score combination rule with two state-of-
the art methods, CPS [28] and SDALF [45], in terms of CMC curve attained on the i-LIDS
data set. The CMC reported for each method refers to the scenario (MvsM or MvsS) where
the method performs better. Note that the authors of [28] and [45] made only the first 30
ranks of the CMC available, therefore the corresponding CMC is truncated at the 30th rank.
The area under CMC curve (AUC) is also reported (for CPS and SDALF, the values have been
taken from [28], and refer to the full-range CMC).

Considering first the MvsM scenario (Figs. 5.13 - 5.14), in the two data sets considered
the proposed method performs worse than CPS considering the cumulative recognition rate
of the first ten (i-LIDS) and five (CAVIAR4REID) ranks. However, it shows an overall better
performance, and outperforms both CPS and SDALF in terms of AUC. Considering the MvsS
scenario (i-LIDS only), the authors of [28] did not report the performance of CPS, therefore
the proposed method is compared in Fig. 5.12 against SDALF only. Surprisingly, by con-
fronting Fig. 5.12 with Fig. 5.13 it can be noted that SDALF performs better when only one
frame is available per probe individual (MvsS scenario) than in the case of multiple frames
per probe available (MvsM). A possible explanation is that the procedure for accumulating
frames into a single descriptor used by SDALF does not retain the useful information that
can be provided by additional frames. In the MvsS scenario SDALF performs also better
than the proposed method, both considering the first ranks only and considering the overall
CMC curve and AUC.

The results attained by the proposed method are worth noting especially if one looks at
the computational requirements. In fact, the custom pictorial structure used by CPS takes
between 15 and 30 seconds per frame to be estimated on an i5 2.4GHz CPU (with the C++
code made available by Andriluka et al. [4]), which severely limits any practical usage of
CPS. SDALF is faster in descriptor computation: its implementation made available by the
authors of SDALF, written partly in C++ and partly in MATLAB, requires about 13 seconds to
build one descriptor on the same CPU [116]. Although it can be expected that a pure C++
implementation would be faster, still SDALF descriptor computation appears too slow for
a practical implementation on a real-world re-identification system. In contrast, the time
required by the proposed descriptor to compute all the feature sets from a single frame (in-
cluding dissimilarities computation) is about 250 ms, which makes it possible to extract de-
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scriptors at 4 fps (frames per second), a value that is enough for most applications. Concern-
ing matching time of one template frame with one probe frame, the authors of CPS [28] do
not report any information. However, it should be similar to that of SDALF, which is about 60
ms on the same CPU above and the code made available by the authors. Instead, the match-
ing time of the proposed method (using all the feature sets), is extremely low thanks to the
compactness of MCD dissimilarity-based descriptors: about 0.08 ms for a single match. It is
worth pointing out that this low matching time enables real-time, on-line re-identification
even with big template galleries.

5.5 Conclusions

This Section showed the potential of MCD-based representations for the task of person re-
identification. Five different, partially complementary feature sets have been combined to-
gether using MCD into a single, compact dissimilarity-based descriptor, which is able to at-
tain state-of-the-art performance on two benchmark data sets and exhibits a very low com-
putational complexity. The method has been applied to an MvsM scenario, i.e., when indi-
viduals seen by the camera network are associated to a track instead of a single frame, which
is a more realistic setting for person re-identification. In this case, each match between a
probe individual with a template individual involves more than two frames. In contrast, the
MCD matching procedure proposed in Sect. 3.3 has been designed to match pairs of frames
(SvsS scenario). To extend the MCD matching procedure to the MvsM scenario, each frame
in the probe track is at first a compared with each frame in the template track, then the
resulting scores are combined using a novel technique, which is based on pose similarity
estimation.

Experimental results have confirmed the superiority of this technique with respect to
other classical score combination rules such as the maximum, minimum or median score.
In addition, the proposed method has been compared with two existing techniques, namely
CPS [28] and SDALF [45] that have attained the highest performance so far in the data sets
considered. With respect to these techniques, the proposed method has a far lower compu-
tational complexity (especially with respect to CPS), thanks of the simplicity of the feature
sets used, and of the compactness of MCD descriptors. It also performs better, in the MvsM
scenario, than SDALF and CPS, when considering the overall CMC, attaining a higher Area
Under Curve (AUC) at the expense of a lower recognition performance in the first ranks. On
the other hand, in the MvsS scenario the performance attained is lower than that of SDALF.
While the motivation of this behaviour has to be investigated, still it is worth pointing out
that the MvsS scenario is less realistic than MvsM: in fact, typically more than one frame of
the probe individual is available in real-world scenarios, as they are usually extracted from
of a video-sequence. Therefore, it is more important to achieve a better performance in the
more realistic MvsM scenario.



Chapter 6

Using MCD for multi-modal
re-identification

As shown in Sect. 2.4, there are various cues alternative to the clothing appearance (e.g.,
gait, remote face, anthropometry) that, in principle, can be used to address the task of per-
son re-identification. They generally pose strong constraints to the application scenario
due to their requirements (e.g., precise silhouette alignment in the case of gait, near frontal
pose in the case of remote face). However, the recent introduction of integrated video and
range (RGB-D) sensors like the Kinect, and the development of techniques that use the ad-
ditional range information to estimate the pose and skeleton of individuals (Fig. 2.6), has
made it possible to extract various anthropometric measurements, like the height or the av-
erage arm length of a person. Although these measurements have a low discriminant ca-
pability, their combination with the clothing appearance is likely to be advantageous for a
person re-identification system. In this Chapter, the multi-modal approach to person re-
identification proposed in Sect. 3.5 is used to develop and experimentally evaluate a multi-
modal re-identification system, based on the combination of appearance and anthropomet-
rics.

Three anthropometric measures (height, arm length, leg length) are extracted from depth
information, from a Kinect device. Similarly to [10], to evaluate them the joint estimation
capabilities of the Kinect SDK are used, by measuring distances between selected joints.
Differently to [10], only anthropometric measures that could be extracted from the Kinect
skeleton with a good degree of reliability, and in an unconstrained pose setting, are used
here, to make them suitable to real-world re-identification scenarios. These measures are
separately combined with two appearance descriptors: SDALF [45], and a novel descriptor
based on MCMimpl (see Chapter 4), using an enhanced body part subdivision.

To the Author’s best knowledge, the proposed approach is the first one that exploits mul-
tiple modalities for person re-identification, and is among the few ones based on the emerg-
ing RGB-D technology. It is worth pointing out that the technology adopted by the Kinect
device set two limits on its usability in video-surveillance. The first one is that it can detect
objects within a maximum distance of about 5–6 mt (depending on environmental condi-
tions), which is relatively small for the considered task. The second limit is intrinsic to the
adopted technology: due to the use of IR projectors and sensors to build depth maps, the
Kinect can not be used outdoor, because of the interference in the IR band caused by sun
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(a) (b) (c) (d)

Figure 6.1: (a) The 20 skeletal points tracked by the Kinect SDK in the classical representation
of the Vitruvian Man. (b–d) Depending on he degree of confidence of the estimation of the
points position, the Kinect SDK distinguishes between good (in green) or inferred (in yellow)
points, the latter being less reliable than the former. Some of the 20 points could also not be
tracked at all, depending on the pose: e.g., in (d) only 18 points are actually being tracked,
while the right ankle and foot are missing.

light. Both limits can be overcome in real applications, by using more sophisticated sensors,
and a non IR-based technology.

After a description of the overall pipeline (Sect. 6.1), SDALF and MCMimpl descriptors
are briefly described in Sect. 6.2. In Sect. 6.3 the three considered anthropometric mea-
surements and their extraction are described. The application of MCD framework to the
different modalities is described in Sect. 6.4. The approach is experimentally evaluated on a
novel data set acquired using Kinect cameras, in Sect. 6.5. Finally, conclusions are drawn in
Sect. 6.6.

6.1 Acquisition and re-identification pipeline

The proposed method has been designed to work with video sequences, which is a realistic
setting for re-identification systems. The template gallery is thus made up of one track per
individual (i.e., the sequence of rectangular regions of the frames that contain a given indi-
vidual). The re-identification task consists of ranking a gallery of template tracks with respect
to their similarity to a probe track where an individual of interest appears. The tracking and
segmentation capabilities of the Kinect SDK have been exploited to track individuals in video
sequences, and separate their silhouette from the background. If an individual is within the
above mentioned range of 5–6 mt to the sensor, the Kinect SDK also constructs a skeleton
for each frame, made up of at most 20 skeletal 3D points, and provides their coordinates (in
meters). The actual number of skeletal points depends on the individual’s pose and distance
to the sensor (see Fig. 6.1).

Each tracked individual I is associated to a sequence of frames f I ,i , together with the
corresponding segmentation masks mI ,i and skeleton points. The frames and the skeleton
points are used to extract one clothing appearance descriptor for each frame, and the skele-
ton points are used to estimate anthropometric measures.
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6.2 Clothing appearance

One appearance descriptor is extracted for each frame f I ,i and corresponding mask mI ,i , us-
ing two different descriptors: SDALF [45] and a modified version of MCMimpl (see Sect. 4.2).

SDALF uses a two body-part subdivision into torso and legs (more details can be found
in Sect. 2.1.2), discarding the image region corresponding to the head (Fig. 6.2-a). The hor-
izontal axes that separate the two body regions are found by looking at symmetry and anti-
symmetry properties of silhouette colour and shape. From each body part, Maximally Stable
Colour Regions (MSCR) and Recurrent High-Structured Patches (RHSP) are extracted. MSCR
are non-regular regions of homogeneous colours, and are found via agglomerative cluster-
ing; each MSCR is represented by its area, centroid, second moment matrix and average
colour, resulting in a 9-dimensional vector. RHSP are rectangular patches made up of recur-
rent, repeated patterns; each one is represented by a rotation-invariant LBP histogram. Both
MSCR and RHSP are sampled mainly around the vertical axis of symmetry of each body part.
Finally, an HSV histogram is extracted from each body part. The histogram is weighted, so
that pixels of the periphery of the body receive less weight than pixels near the vertical axis.
The two weighted histograms are then concatenated to form a single feature vector.

In the formulation of Sect. 4.2, MCMimpl randomly extracts multiple, possibly overlap-
ping patches of from two body parts, obtained via the SDALF symmetry-driven subdivision
into torso and legs. Each patch is represented via an HSV colour histogram. Furthermore, for
each real patch a number of simulated ones is generated, by varying brightness and contrast,
in order to increase robustness to illumination changes. In this implementation, the original
part subdivision of MCMimpl has been changed, exploiting the skeleton points extracted by
the Kinect SDK (Fig. 2.6). Four different body parts, upper torso, lower torso,upper legs, and
lower legs (Fig. 6.2-b)) have been defined as follows.

The region containing the torso is first located as the portion of the image between the
y coordinates of shoulder and hip centres. The pixels of the mask corresponding to the first
half of such region are considered as the upper torso, and the other ones are considered as
the lower torso. The mask pixels between the coordinate of the hip center and the average
of the two y coordinates of the knees (or the y coordinate of the visible knee, if only one is
detected), define the upper legs region. Finally, the mask pixels between the average y coor-
dinate of the knees and the bottom of the mask define the lower torso region. Note that only
points that can be detected from any body pose are used to perform body part subdivision
(Fig. 2.6-b,c,d). In the following, MCMimpl will denote the enhanced MCMimpl descrip-
tor. In terms of multiple parts/multiple components representation, the SDALF descriptor
is made up of M = 5 sets of components (see Fig. 6.2-a.2): the first four are made up of the
MSCR and RHSP feature vectors extracted from torso and legs, and the fifth one is obtained
as the concatenation of the two HSV colour histograms of torso and legs. The MCMimpl
descriptor is made up of M = 4 sets of components, one for each body part (see Fig- 6.2-b.2).

6.3 Anthropometric measures

For each frame f I ,i , anthropometric measures are extracted from the corresponding skele-
ton provided by the Kinect SDK (Fig. 6.1-a). In principle, all the pairwise combinations of
such measures can be extracted from such skeletal points. However, depending on individ-
ual’s pose some skeletal points may be estimated unreliably (see Fig. 6.1-d), or may be not
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Figure 6.2: SDALF (a) and MCMimpl (b) descriptors, both based on a multiple parts/multiple
components representation. SDALF subdivides body into torso (disregarding the head)
and legs parts (a.1); from each part, RHSP and MSCR local features are extracted, and the
weighted HSV histograms of each part are concatenated, leading to five sets of components
(a.2). MCMimpl exploits the skeletal points provided by the Kinect SDK to separate body
into four parts (b.1); from each body part, a set of partly overlapping patches is randomly
extracted, leading to four sets of components (b.2).

extracted at all. Thus, after preliminary experiments, only measures in the vertical direction
have been taken into consideration, which are not affected by body pose, and usually corre-
spond to points that can be reliably tracked. Among them, in this work the following three
anthropometric measures have been selected, all expressed in meters:

1. individual’s height aheight, evaluated as the distance between the (y, z) coordinates of
the top-most and bottom-most points of body silhouette;

2. average arm length aarm, evaluated as the sum of the distances between the shoulder
and elbow points, between the elbow and wrist points, and between the wrist and hand
points, averaged over the two arms (if only one arm is tracked, the measure is taken
from that arm);

3. average leg length aleg, evaluated as the sum of the distances between the hip and knee
points, between the knee and ankle points, and between the ankle and the foot points,
averaged on the two legs (if only one leg is tracked, the measure is taken from that leg);

To represent them in an uniform range, aheight, aarm and aleg are linearly normalized in the
range [0,1]:

aheight =
aheight −min aheight

max aheight −min aheight
(6.1)

aarm = aarm −min aarm

max aarm −min aarm
(6.2)
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aleg =
aleg −min aleg

max aleg −min aleg
(6.3)

where the maximum and minimum values of each measure are obtained from the template
gallery. Each anthropometric measure is finally represented as a descriptor corresponding
to a single set of components, in which each set is made up of a single scalar component (the
normalized value of the corresponding measure):

vheight = [aheight], varm = [aarm], vleg = [aleg] (6.4)

6.4 Application of MCD

The MCD framework has been applied to the above appearance and anthropometric de-
scriptors, to obtain a multi-modal dissimilarity-based representation. The same two-stage
clustering scheme of Sect. 4.2.1 has been used to select 200 prototypes of each body part in
the case of the appearance descriptors MCMimpl and SDALF, and 8 prototypes in the case of
the anthropometric measurements. The influence of varying the number of prototypes will
be studied in Sect. 6.5. Dissimilarities are computed by taking the k-th minimum distance
over all the distances between the prototype and each of the components of the body part,

d(X , p) = k-th
x∈X

min‖x −p‖ (6.5)

with k = 10.
The same distance metric ‖·‖between components used for matching SDALF and MCMimpl

appearance descriptors is used (the reader is referred to [45] and Sect. 4.2 for further details).
For the three anthropometric modalities, each of which is represented as a scalar value in
[0,1], ‖ · ‖ has been defined as the absolute value of the difference between two measure-
ments.

6.5 Experimental evaluation

To evaluate the proposed multi-modal re-identification system, a data set of video sequences
has been acquired, each showing an individual walking in different indoor environments,
using Kinect cameras. A novel data set was needed, as to the best of the Author’s knowledge
no benchmark data sets for re-identification with both RGB and Depth information are cur-
rently available. In the following, this data set is referred to as KinectREID. Details on this
data set are provided in Sect. 6.5.1.

Two different kinds of experiments have been carried out. First, the re-identification per-
formance of each single modality (appearance-based and anthropometric-based) has been
assessed, in Sect. 6.5.2. The original MCMimpl and SDALF descriptors have been evalu-
ated separately, and compared with the corresponding MCD-based methods. Similarly, the
performance of each anthropometric measure has been separately assessed. Then, the per-
formance of two versions of the proposed multi-modal re-identification system has been
assessed (Sect. 6.5.3), obtained by combining an appearance descriptor (either MCMimpl or
SDALF) with anthropometric measures. In this step, the MCD-based fusion approach has
been also compared with common score-level fusion rules.



68 CHAPTER 6. USING MCD FOR MULTI-MODAL RE-IDENTIFICATION

Figure 6.3: Examples of some frames taken from the KinectREID data set. Note the different
view points, locations, poses and illumination conditions.

6.5.1 Data set and experimental setup

The KinectREID data set was acquired using different Kinect cameras, and consists of video
sequences of 80 different individuals taken at two different locations (the corridors of the
department, and a large lecture hall), under different lighting conditions and various view
points, including near-frontal views, near-backward views, and lateral views. Individuals
were requested to walk normally, and some of them carried bags or other accessories. Each
person was associated to 2 to 7 different video sequences. Some examples of frames of the
KinectREID data set are shown in Fig. 6.3.

All the experiments have been carried out as follows. First, one video sequence per in-
dividual has been randomly chosen as the corresponding template. The remaining video
sequences are used as probes. Then, for each template and each probe, 10 frames have been
chosen at random among the ones in which the whole body is visible, and the Kinect had
been able to extract the skeleton. Since both templates and probes are image sequences,
this kind of set-up is often called multiple shots vs. multiple shots (MvsM) scenario [45].

Each template has been then ranked with respect to its similarity to each probe. For each
comparison, the distance from each pair of template and probe frames has been measured
using the distance of Eqs. (3.9)-(3.10). The median value of all the distance has then been
taken as final similarity measure. The above procedure has been repeated 20 times, and
re-identification performance has been assessed in terms of Cumulative Matching Charac-
teristics (CMC) curve, that is, the average probability of finding the correct match within the
first n ranks, with n ranging from 1 to 80.
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Figure 6.4: Recognition performance, in terms of CMC curve, attained by mono-modal sys-
tems on the KinectREID data set by MCMimpl, SDALF, and their corresponding dissimilarity-
based versions MCMimplDis and SDALFDis (20 runs of the experiments).

6.5.2 Performance using single modalities

The recognition performance attained by mono-modal systems has been first evaluated,
both for appearance and anthropometric descriptors.

The performance of the appearance-based descriptors SDALF and MCMimpl, has been
assessed using both their original version, and their dissimilarity-based version obtained
through MCD (see Sect. 6.4), denoted respectively as SDALFDis and MCMimplDis. Fig. 6.4
shows the corresponding CMC curves. The recognition performance of the MCD-based
methods is comparable or higher to the one of the corresponding original methods, despite
the fact that MCD was originally proposed to speed up re-identification methods to make
them suitable to real-world scenarios, rather than improving their recognition performance.

As a reference, also the performance of anthropometric-based descriptors has been eval-
uated. Similarly to appearance descriptors, each MCD-based descriptor has been compared
with a baseline method, in which matching distance is computed as the absolute difference
between the normalized values of the corresponding measure. Results are shown in Fig. 6.5.
As one could expect, anthropometric modalities, when used alone, provide weak discrimi-
nant capability. This is reflected by the low performance with respect to appearance modal-
ity. Among the three measures, height turned out to be the most discriminant one.

Effect of changing the number of prototypes

The performance of the MCD-based methods may be affected by the choice of the number
of prototypes per part K . Note that K also affects computational cost (see Chapter 4): in fact,
the more prototypes are used, the longer it will take to compute dissimilarities. To assess
the impact of this parameter on the performance, the normalized area under the first 20%
ranks of the CMC curve (denoted as AUC20%) with respect to K has been evaluated. Only
the top ranks have been considered, since they are the ones of most practical interest. Re-
sults attained by SDALFDis and MCMimplDis are shown in Fig. 6.6. The AUC20% attained by
the original methods SDALF and MCMimpl is reported with dashed lines. Results attained
using anthropometric modalities, compared with the corresponding baseline, are shown in
Fig. 6.7. In all the modalities, the performance initially grows as the number of prototypes
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Figure 6.5: Recognition performance, in terms of CMC curve, attained by mono-modal sys-
tems on the KinectREID data set by the three considered anthropometric measures, using
their baseline (the matching distance is the absolute difference of the normalized values of
that measure) and MCD versions (average CMC curve over 20 runs of the experiments).
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Figure 6.6: Recognition performance, in terms of normalized AUC20% (averaged over 20 runs
of the experiments), versus the number of prototypes per part K, attained on the Kinec-
tREID data set by MCMimpl, SDALF, and their corresponding dissimilarity-based versions
MCMimplDis and SDALFDis.

increases, then rapidly reaches a nearly stable value. This makes it relatively easy to select
a value of c that gives good performance, or to find a reasonable trade-off between perfor-
mance and processing time. Note that a similar behaviour has been reported and discussed
in more detail in Chapter 4.

6.5.3 Performance of multi-modal systems

This Section assesses the performance that can be obtained by the multi-modal systems of
Sect. 6.5.2, using both the MCD-based fusion approach, and the standard score-level fusion
approach. The latter has been implemented using several well known fusion rules: min-
imum, maximum, product, and average of the individual scores. Note that the extended
MCD framework can be used to combine only dissimilarity-based descriptors, while score-
level fusion can be performed using any descriptor. Nevertheless, only dissimilarity-based
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Figure 6.7: Recognition performance, in terms of normalized AUC20% (averaged over 20 runs
of the experiments), versus the number of prototypes per part K, attained on the KinectREID
data set by the three considered anthropometric measures, using their baseline (the match-
ing distance is the absolute difference of the normalized values of that measure) and MCD
versions.
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Figure 6.8: Recognition performance, in terms of CMC curve, attained by multi-modal sys-
tems, with MCD-based fusion and score-level fusion (maximum, minimum, product, and
average rules): MCMimplDis and the three anthropometric modalities (height, arm length,
leg length).

descriptors are used also in the experiments on score-level fusion, since they outperformed
the corresponding non-dissimilarity-based ones.

Figs. 6.8 - 6.9 show respectively the performance attained by combining MCMimplDis

and SDALFDis with the three considered anthropometric measures. To better visualise the
differences in performance, in the first ten rows of Table 6.1, the cumulative recognition rate,
taken from the CMC curves of Figs. 6.8 - 6.9, is also reported for five selected ranks.

As one can see, the combination of different, heterogeneous modalities made it possible
to attain higher performance with respect to single modalities. Moreover, the MCD-based fu-
sion approach outperforms the score-level fusion approach (first and sixth row of Table 6.1),
except for higher ranks (see Table 6.1, last column). In particular, the first-rank recognition
rate of the former is about 6% higher than the latter, when the best fusion rule (average) is
used. The best performance overall has been attained when MCMimpl is used as the appear-
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Figure 6.9: (a) Recognition performance, in terms of CMC curve, attained by multi-modal
systems, with MCD-based fusion and score-level fusion (maximum, minimum, product, and
average rules): SDALFDis and the three anthropometric modalities.

fusion rule rank 1 rank 5 rank 10 rank 20 rank 40

appearance
(MCMimpl) and
anthropometry

MCD 0.495 0.749 0.863 0.949 0.987

mean rule 0.431 0.720 0.824 0.914 0.987

max rule 0.367 0.645 0.758 0.848 0.937

min rule 0.122 0.516 0.651 0.821 0.964

prod. rule 0.112 0.562 0.771 0.9072 0.987

appearance
(SDALF) and
anthropometry

MCD 0.393 0.652 0.780 0.895 0.972

mean rule 0.329 0.641 0.777 0.898 0.983

max rule 0.282 0.552 0.687 0.828 0.932

min rule 0.099 0.430 0.587 0.787 0.952

prod. rule 0.098 0.476 0.713 0.876 0.983

appearance only, MCMimplDis 0.411 0.667 0.795 0.919 0.978

appearance only, SDALFDis 0.303 0.524 0.644 0.800 0.931

Table 6.1: Cumulative recognition rates attained by the multi-modal systems, for five se-
lected ranks, taken from the CMC curves of Figs. 6.8 - 6.9. The best recognition rate for each
rank is highlighted in bold.

ance descriptor (first row of Table 6.1). These results provide evidence that the MCD-based
fusion approach can outperform the standard score-level fusion one, in the specific task of
multi-modal person re-identification.

To highlight the gain that can be achieved using multiple modalities, in Fig. 6.10 the per-
formance of the individual appearance-based descriptors is compared to the one attained
by their MCD-based fusion with anthropometric measures. The exact values of the cumula-
tive recognition rate attained by individual appearance-based descriptors are also reported
in Table 6.1 (last two rows), for five selected ranks. It can be seen that multi-modal fusion
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Figure 6.10: Performance, in terms of Cumulative Matching Characteristic curve, of the two
MCD-based combinations of appearance and anthropometric modalities, compared with
the performance of MCMimplDis and SDALFDis, on the KinectREID data set.

of appearance and anthropometric descriptors improved the first-rank recognition rate of
MCMimplDis and SDALFDis by 8% and 9%, respectively. Similarly, the cumulative recogni-
tion rate at rank five increases by 9% in the case of MCMimplDis, and 12% in the case of
SDALFDis. The improvement becomes lower for higher ranks, that are however of less in-
terest in practical scenarios. Note also that, by definition, the CMC curve attains a 100%
recognition rate at the highest rank.

6.6 Conclusions

In this Chapter, a MCD-based re-identification approach that uses a combination of clothing
appearance with three different anthropometric traits has been proposed and experimen-
tally evaluated, exploiting the depth information provided by RGB-D sensors. To the best
of the Author’s knowledge, this is the first example of multi-modal person re-identification.
While appearance cues are currently the most widely used descriptors for the task of person
re-identification, the Chapter provides empirical evidence that recognition performance can
be improved by exploiting also anthropometric cues.

It is interesting to point out some possible future research directions in the context of
multi-modal re-identification using RGB-D cameras. First, a wider range of anthropometric
cues could be used, to further improve recognition capability. In particular, since not all pos-
sible anthropometric measures of interest can be extracted from a given image or frame (e.g.,
because of the pose of the individual), a framework that takes into account missing modali-
ties should be developed, to make it possible to exploit any subset of available modalities. A
second research direction is to extend the range of modalities, beyond clothing appearance
and anthropometric measures. Skeleton-based gait [59] could be a further cue to exploit,
based on the skeleton extraction capabilities of the Kinect SDK. The combination with re-
mote face recognition techniques [99] could also help increasing recognition performance.
Possibly, the use of several, distinct modalities could boost recognition performance of re-
identification systems towards the one of systems based on strong biometrics.





Chapter 7

Using MCD for appearance-based
people search

In this Chapter, the MCD-based method for performing the task of “appearance-based peo-
ple search” with any existing person re-identification descriptor, presented in Sect. 3.4, is
implemented and evaluated. It is worth to recall that the task at hand consists of finding,
among a set of images of individuals, the ones relevant to a textual query describing cloth-
ing appearance of an individual of interest. Therefore, while it shares a lot of commonalities
with person re-identification, it nevertheless differs from it, as in person re-identification
the query is an image of the person of interest instead of a semantic description of his/her
clothing.

The method of Sect. 3.4 is applied to two descriptors, and experimentally tested on a
novel data set, consisting in a set of images taken from the VIPeR data set, labelled with
respect to a predefined set of clothing characteristics (e.g., “red shirt”, “short sleeves”).

Details on the appearance descriptors used and on the application of MCD are given in
Sect. 7.1. Then the experimental evaluation is proposed in Sect. 7.2. Finally, conclusions and
possible directions of future research are provided in Sect. 7.3.

7.1 Implementation

The people search approach Sect. 3.4 has been evaluated using two different descriptors for
person re-identification. The first descriptor is MCMimpl (Sect. 4.2). It subdivides body into
torso and legs, and represents each part with the HSV colour histograms of a bag of randomly
extracted 300 image patches. The second is the SDALF descriptor proposed in [45], which
has been already described in Sect. 6.2. A variation of the first descriptor has been also tested:
it uses a pictorial structure (Sect. 2.1) to subdivide body into nine parts: arms and legs (upper
and lower, left and right), and torso. The corresponding implementations of a people search
method are denoted respectively as MCD1, MCD2 and MCD3.

All the above descriptors enable queries related to clothing colour. MCD1 and MCD2

should permit queries related to upper or lower body, like “white upper body garment”.
MCD3 should also enable more specific queries, like “short sleeves”, that may be distin-
guished by the presence of skin-like colour in lower arms. Finally, the RHSP feature used in

75
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Figure 7.1: Example images from the VIPeR-Tagged data set.

MCD2 should should in principle enable queries related to textures, like “checked trousers”.
Prototypes are obtained by the a two stage clustering scheme as in Sect. 4.2. In MCD3,

for each body part three different sets of prototypes were created, one for each kind of lo-
cal features. In the experiments different numbers of prototypes for each body part have
been considered, ranging from 5 to 300. The k-th Hausdorff distance was used to compute
dissimilarities, with k = 10.

7.2 Experimental evaluation

This Section proposes an experimental evaluation of the three people search methods of
Sect. 7.1. Sect. 7.2.1 describes the data set; Sect. 7.2.2 explains the experimental set-up. Fi-
nally, Sect. 7.2.3 reports the results.

7.2.1 Data set

Experiments have been carried out using a subset of image taken from the VIPeR data set
[57], which has been already described in Sect. 4.3.1. Fourteen basic queries related to the
colour of the upper and lower body parts, and to the presence of short sleeves/trousers/skirts,
have been defined. They are reported in Table 7.1, where the corresponding number of rel-
evant images is also shown. These basic queries have been chosen by considering clothing
characteristics that:

1) are detectable to the considered descriptors, and

2) are present in several images of the VIPeR data set, to allow for the construction of a
training set of a sufficient size to build the corresponding detectors.

For constructing the training sets, a subset of 512 images from the VIPeR data set was labelled
according to the presence of each basic query. This subset of images with the associated
labels is denoted in the following as VIPeR-Tagged. Some examples are shown in Fig. 7.1

7.2.2 Experimental setup

The retrieval performance of the proposed people search approach on each basic query,
for each considered descriptor, has been evaluated by means of the precision-recall (P-R)
curve1. First, MCD prototypes have been selected from the whole VIPER-Tagged data set,

1Precision is the ratio between the number of images correctly labelled as relevant, and the total number
of images labelled as relevant. Recall is the ratio between the number of images correctly labelled as relevant,
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Class Cardinality Class Cardinality
red shirt 51 green shirt 34
blue/light blue shirt 34 short sleeves 220
pink shirt 35 red trousers/skirt 16
white/light gray shirt 140 black trousers/skirt 12
black shirt 156 white/light gray trousers/skirt 81
orange shirt 10 blue/light blue trousers/skirt 175
violet shirt 18 short trousers/skirt 82

Table 7.1: Labels used to tag the VIPeR-Tagged data set, and corresponding number of posi-
tive samples.

using the two-stage clustering scheme of Sect. 4.2.1. Note that prototype creation is unsu-
pervised, as the labels denoting presence/absence of the basic queries are not used in the
clustering procedure.

For each basic query, the VIPeR-Tagged has been subdivided into a training and a testing
sets of equal size (256 images each), using using a stratified sampling approach to preserve
the ratio between relevant and non-relevant images to that class. Then, a statistical classifier
has been trained on training images to implement a detector for each basic query. An SVM
classifier with linear kernel [31] has been used to this aim. Finally, for each basic query, the
P-R curve has been evaluated on testing images, by varying the SVM decision threshold. This
procedure has been repeated ten times, and the resulting P-R curves have been averaged to
obtain the final results, which are presented in the next Section.

7.2.3 Results

The performance on each basic query is summarised in Table 7.2, in terms of the corre-
sponding average break-even point (BEP), which is the point of the P-R curve whose pre-
cision equals recall. The best performance for each basic query is highlighted in bold. As
reference, Fig. 7.2 reports four representative examples of the average P-R curves attained.
An example of the ten top-ranked images for two basic queries is also shown in Fig. 7.3.

and the total number of relevant images. Precision and recall depend on the parameters that govern the final
decision between relevant and not relevant, e.g. the score threshold. By varying such parameters, it is possible
to plot a curve of precision and corresponding recall values.

Class MCD1 MCD2 MCD3 Class MCD1 MCD2 MCD3

red shirt 0.845 0.780 0.792 green shirt 0.687 0.594 0.619
blue/light blue shirt 0.645 0.523 0.494 short sleeves 0.631 0.608 0.643
pink shirt 0.534 0.578 0.461 red trousers/skirt 0.713 0.638 0.916
white/light gray shirt 0.771 0.736 0.758 black trousers/skirt 0.683 0.607 0.711
black shirt 0.728 0.705 0.736 white trousers/skirt 0.758 0.639 0.635
orange shirt 0.689 0.580 0.463 blue trousers/skirt 0.641 0.622 0.620
violet shirt 0.422 0.235 0.433 short trousers/skirt 0.416 0.393 0.557

Table 7.2: Average break-even point attained using the people search methods implemented
from the three considered descriptors.
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Figure 7.2: Precision-Recall curves attained by the three people search methods on the
VIPeR-Tagged data set, for four selected basic queries.

The proposed MCD-based method for appearance-based people search attained a rather
good performance with all descriptors, for almost all basic queries. The best performance
has been attained on basic queries related to the colours red, white and black (see Table 7.2).
The most likely reason is that such colours are well separated in the HSV space, which is
used by all the considered descriptors. As stated in Sect. 7.1, MCD3 was likely to attain the
best performance on basic queries related to the presence of skin on lower arms and legs,
namely “short sleeves” and “short trousers/skirt” (see Fig. 7.2, bottom-left plot), due to its
more refined body subdivision. Nevertheless, also MCD1 and MCD2 attained a good perfor-
mance on these classes. The reason is that, although MCD1 and MCD2 can not distinguish
between lower and upper arms or legs, they are nevertheless able to detect skin-like colour
in the whole arms or legs, which is strongly related to such basic queries.

As a further investigation, the performance, in terms of average BEP, has been evaluated
with respect to the number of prototypes K for each body part, in order to assess the influ-
ence of this important parameter of MCD. Results are shown in Fig. 7.4 for MCD3; the other
methods show a similar behaviour. As can be observed,the performance initially grows as K
increases, then reaches a nearly stable value around K = 200 (for MCD3; for the other meth-
ods, this value is respectively 100 and 200 for MCD1 and MCD2), depending on the basic
query. This behaviour can be easily explained: once the number of prototypes is enough so
that most of the distinctive visual characteristics have been captured by different clusters,
increasing the number of prototypes has mainly the effect of splitting some of the previous
clusters into two or more similar ones. Consequently, no further information is embedded
in the new prototypes. Note that the results reported in Table 7.2 and Fig. 7.2 have been
attained for Nm = 200 (for MCD1) and Nm = 100 (for MCD2 and MCD3).
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Figure 7.3: The top ten images retrieved by MCD1, for the “red shirt” (top) and “short sleeves”
(bottom) queries, sorted from left to right for decreasing values of the relevance score pro-
vided by the detector (classifier). Note that only one non-relevant image is present, high-
lighted in red.
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Figure 7.4: Performance of MCD3, in terms of average BEP, versus the number of prototypes
per part K. Note that the other methods, MCD1 and MCD2, show a similar behaviour.

7.3 Conclusions

The scope of this preliminary analysis was to experimentally evaluate the general approach
of Sect. 3.4 to implement the task of appearance-based people search, using the same kind of
descriptors used in most existing person re-identification systems.

The approach attained promising results with three different appearance descriptors, on
a novel benchmark data set consisting in images taken from the VIPeR data set manually
tagged with respect to a set of difference clothing characteristics. An interesting direction of
further research is to extend the approach to deal with video sequences. To this aim, pedes-
trian detection and tracking functionalities that should be deployed as part of a person re-
identification system, could be exploited. In this case, a bag of dissimilarity vectors coming
from different frames would be available for each person, instead of a single one. A Multiple
Instance Learning approach [37] could then be used to train the detectors.





Chapter 8

People search on multimedia data

In the previous Chapters, the reader has been introduced to two tasks for intelligent video-
surveillance, namely person re-identification and appearance-based people search; a general
dissimilarity-based framework that can be used to perform these task has been presented
and experimentally evaluated in a variety of set-ups (including the combined use of multiple
soft biometric modalities to build person descriptors).

Indeed, person re-identification and people search share a lot of commonalities, despite
being different tasks. In particular, it is worth to note that both tasks can be seen as retrieval
problems, where the system returns to the operator a ranked list of results (images or video
footages showing people previously seen by the camera network) based on their relevance
to a query. Basically, from this viewpoint the only difference between these two tasks is in
the kind of query given to the system. In the case of person re-identification, the query is an
image, or a video-sequence, containing the person of interest; in the case of people search,
the query is a semantic description of the person of interest’s clothing, and needs first to be
interpreted by the system.

In this Chapter, the commonalities of the two tasks above are further developed, to for-
malise a general model of a novel category of retrieval tasks, people search on multimedia
data. It embraces person re-identification, people search, and number of other possible
tasks. It is useful to give first an informal definition of what it is intended here for “people
search on multimedia data” (from here on, simply referred to as PSM). Basically, PSM can be
described as

“the task of retrieving individuals, seen by a network of sensors of any kind, and described
using any combination of biometric cues extracted from such sensors, that match a certain

criterion (or any combination of criteria) related to these cues”.

The attentive reader should have seen in this definition a direct resemblance to Informa-
tion Retrieval (IR)[91]. IR is the activity of obtaining documents (texts, images, multimedia
information) relevant to a given information need (the query), from a collection of docu-
ments. The relationship between IR and PSM grounds the following discussion.

The Chapter is organised in four Sections. Sect. 8.1 formally defines PSM from the clas-
sical model or IR. Sect. 8.2 then provides some examples of PSM tasks. Sect. 8.3 suggests
MCD as a possible unified framework to perform PSM tasks. Finally, Sect. 8.4 sums up and
concludes the Chapter.
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Figure 8.1: Classical Information Retrieval scheme (see the text for details).

8.1 From Information Retrieval to People Search on Multi-
media data

Consider the classical model of IR [67], which is graphically shown in Fig. 8.1. Documents
where IR shall be performed are at first indexed, i.e. represented in some way in a data base.
Indexing of a document may consist e.g. of extracting a set of features from it, or associating
(either manually or automatically) a set of keywords. Indexing can take place off-line, once
for all, on a given fixed set of documents, or on-line when the set of documents is not fixed
(every time a new document is added to the set, it is indexed on-the-fly).

The process of IR starts from an information need of the user of the IR system. This
need has to be formulated into a query. Examples of queries are: an image containing the
object of interest (e.g. Content-based Image Retrieval), a set of keywords or tags (e.g. textual
documents retrieval), an image of a face (e.g. face recognition). Once a query has been
formulated, the matching phase compares each indexed document to the query according
to a certain matching criterion, to obtain a scalar value measuring the degree of relevance
of the document to the given query. For example, in Content-based Image Retrieval the
criterion may be a distance measure between the feature vectors (e.g., a colour histogram)
of the query image and of each indexed image. Note that that the matching criterion is fixed
a-priori, and its definition is part of the system design. At the end of the matching phase, all
documents are ranked with respect to their degree of relevance to the query, and the ranked
list is proposed to the user. Possibly, the list of results is truncated so that it contains only
the N top-most ranked documents, or those that exhibit a relevance higher than a given
threshold.

It can be noted that this IR scheme can directly frame the person re-identification task:
the query is an image of the person of interest, and a ranked list of the previously seen (and
indexed) templates. The indexing procedure corresponds to descriptor creation. People
search can also fit to this scheme. In this case, during matching phase the detectors cor-
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Figure 8.2: People Search on Multimedia data scheme (see the text for details).

responding to the basic queries that compose the query must be run1. The final matching
score, necessary to produce a relevance ranking, can be any combination of the scores of the
basic detectors (e.g. the product of the scores, or the average score).

Both person re-identification and people search are therefore IR problems. Based on this,
and building on the scheme of Fig. 8.1, a possible model for PSM, which inherits from IR, can
be defined. The first, obvious step is to consider a set of people in place of a set of documents.
Generally speaking, each person can be seen and described using different modalities (e.g.,
appearance, anthropometry, but also face, speech and/or other biometrics where available)
depending on the sensors deployed and on the application scenario. The indexing phase in
IR is therefore substituted with the action of extracting a set of descriptors from each modal-
ity. In other words, each person is represented in the data base as a collection of descriptors.
Note that, as a surveillance network is expected to operate continuously, the data base of
people descriptors is constantly updated by newly seen individuals.

Concerning the matching phase, as pointed out above, in a typical IR system the corre-
sponding match criterion is fixed, defined once for all at system design, and the query must
be formulated accordingly. An useful functionality video-surveillance search systems would
be the ability to interpret an user query formulated in ways that are not directly related to
the descriptors stored in the data base, e.g. in natural language. This can be useful, for in-
stance, to directly use a textual description of a person, given by a witness, as query, instead
of decomposing such description into basic queries as happens in people search (Sect. 3.4).
To incorporate this possibility in PSM, a query interpretation phase is added, that shall gen-
erate the matching criterion that will be used during matching phase. Such phase takes care
of translating a unstructured query2, not directly related to the individuals’ representation

1Actually, the detectors can be also launched during indexing, and the corresponding outputs can be stored
in the database in place of the descriptors.

2Here the term “unstructured” refers to queries that do not have a clear, plain, “easy-for-a-computer” struc-
ture.
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used, into a quantitative criterion on the multi-modal data stored in the data base3.
The final scheme of the PSM model is shown in Fig. 8.2. Formally, PSM can be described

as follows. Let
I = {

I1 . . . In
}

(8.1)

be the set of n individuals seen by the sensors network. The step of descriptor extraction is
carried out for each modality, so that each individual is associated to a set of descriptors, one
for each modality:

I = {
MI ,1 . . . MI ,l

}
(8.2)

where l is the number of modalities.
These descriptor are stored in the data base. Given an unstructured query Q formulated

by the user, the process of query interpretation takes Q as input an outputs a match criterion
in the form of a membership function fQ (I ) = FQ

(
MI ,1 . . . MI ,l

)
fQ : M1 ×M2 × . . .×Ml → [0,1] ⊂R (8.3)

where M1, M2, . . ., Ml are the spaces associated to each modality. The membership function
fQ associates to an individual I a real number in [0,1], indicating the degree of relevance
(score) of I with respect to the information need codified by the query Q. The matching
phase applies fQ to each individual in I . Based on the resulting scores, the elements of I

are ranked and presented to the user.
Similarly to IR, the proposed scheme for PSM can be enriched by adding relevance feed-

back [112, 115], i.e. refining the matching criterion according to an indication of the user that
some of the retrieved individuals are truly positive (or negative) with respect to the original
information need.

8.1.1 Query interpretation

An important difference between PSM and the classical IR scheme is the presence of a query
interpretation phase, which in PSM generates the matching criterion. In IR, such criterion is
fixed and depends on the task. For example, in Content-based Image Retrieval (CBIR), where
the task is to retrieve images similar, in content, to a given one, the matching criterion is a
measure of similarity between images4. In PSM, the criterion may be changed depending
on the information need, to enable unstructured queries like a query given in natural lan-
guage. For example, consider the natural language query “white person with a black t-shirt
and checked blue shorts, wearing a hat and a pair of sunglasses”. During query interpretation,
the system may first find the constitutive semantic concepts that build the query, e.g. “white
person”, “black shirt” “short sleeves”, “sunglasses” etc., using Natural Language Processing,
then build a membership function that is a combination of the outputs of the detectors as-
sociated to these concepts5.

3E.g., a semantic engine able to interpret natural language can be used if the non structured query is a
textual description of the person (a task often referred to as Natural Language Processing [69]). This can be
done reliably if the application domain and the word ambiguities are limited, such as the case of the description
of a person’s clothings.

4Person re-identification can be seen as a CBIR problem.
5Note that such a system may not be equipped with a detector of all the semantic concepts that constitute

the query. If not supported concepts are found in the query, they can be signalled to the user, and discarded
when building the membership function.
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8.2 Example PSM tasks

Building on the model of PSM of Fig. 8.2, various concrete tasks can be defined that can be
useful for video-surveillance operators.

Person re-identification, for example, is a PSM task where the the query is an image or
a video track showing a person, and the matching criterion (a distance measure between
frames or between sets of frames) is fixed. Appearance-based people search is also a PSM
task. The query is, in this case, a set of basic queries combined through Boolean operators.
The Query Interpretation phase returns a membership function which is a combination of
basic detectors. As said in the previous Section, the use of Natural Image Processing could
enable a more powerful people search system, able to accept queries formulated in natural
language that can be automatically segmented into basic queries. If other cues are extracted
from the sensors network in addition to the clothing appearance (e.g., anthropometry), the
query can also be related to these cues. E.g., “person with a white shirt, black trousers, and
about 1.80 mt. tall”. Finally, it is easy to add to the Query Interpretation phase the support for
contextual constraints, e.g., spatio-temporal ones to limit the search to a certain time span
or to a subset of the sensor network.

Other PSM tasks can be enumerated that can be of help for surveillance operators and
investigators. An example is the retrieval of actions and events of interest, e.g. a person run-
ning, jumping, or getting in or out a car in a certain time span [109]. An important difference
with respect to the above tasks is that human actions (or events) are sequences of configura-
tions of the body, instead of a static characteristic. From a practical viewpoint, this means
that the descriptors stored in the database must encode such sequentiality of configurations
in a proper way, e.g. a sequence of silhouettes.

Indeed, PSM can be useful also for applications not directly connected to security needs.
For instance, fashion-related tasks can be envisaged, like retrieving and counting all the peo-
ple seen in a shopping centre that wear e.g. a particular kind of jacket, to generate statistics
on fashion trends. Since the quality of images taken by the network must be high to enable
such task, to do so camera sensors could be mounted on the top of shop windows to have a
good capture of people passing by.

8.3 MCD and PSM

In Sect. 3.4, it has been shown that the dissimilarities to MCD prototypes, which represent
low level, local or global characteristics of the body or of body parts, can be used as features
to train detectors of basic clothing appearance characteristics like “red shirt”, “short sleeves”
and so on. The motivation of such use of dissimilarities relies on the intuition that certain
prototypes (or certain combinations of them) may encode high level concepts. Although
this is particularly evident in the case of clothing appearance (see Fig. 3.5 for a clarifying toy
example), the assertion that prototypes can be related to high level concepts, and that such
relations can be learned using statistical classifiers, is likely to be true also when using do-
mains and modalities different than the appearance, even mixed with it. E.g., the high-level
concept “tall person” can be encoded by a low dissimilarity to prototypes of anthropometric
measurements corresponding to tall people, and in turn to high dissimilarities to anthropo-
metric prototypes of short people.

This fact motivates the use of MCD as a possible underlying framework for performing
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PSM tasks. With respect to the scheme in Fig. 8.1, during Descriptor Extraction individuals
are represented as dissimilarity vectors to prototypes encoding characteristics seen with dif-
ferent modalities, and the Criteria are functions of the corresponding dissimilarities (as the
spaces M1, M2, . . ., Ml in Eq. (8.3) are dissimilarity spaces). Such use of MCD should ensure
a compact individuals’ representation to any PSM task. More importantly, the same descrip-
tors and extraction pipeline could be used for many tasks, having only to deal with a proper
design of the Criterion formulation phase.

8.4 Conclusions

Relying on the commonalities between person re-identification and people search, and their
relationship with Information Retrieval, in this Chapter a possible formulation of the gen-
eral problem of People Search on Multimedia data (PSM) has been proposed. PSM em-
braces re-identification and people search, as well as a variety of other useful task for video-
surveillance and, possibly, for other application domains.

Along with a formal definition and schematisation of PSM, in Sect. 8.3 the use of MCD as
an underlying framework for PSM tasks has been envisaged. This can be an useful hint for
various possible future works, some of which will be proposed in Chapter 9.



Chapter 9

Discussion and conclusions

This thesis work presented a contribution to the literature about Intelligent Video Surveil-
lance, a topic that is attracting much interest from researchers and industries due to a con-
tinuously growing demand of security and safety inside our present society. In particular,
the thesis addressed two tasks, person re-identification and appearance-based people search,
that can provide useful tools for video-surveillance operators and forensic investigators. The
latter task is an original contribution of this thesis.

This conclusive Chapter closes the thesis. First, the major contributions of this work are
stated in Sect. 9.1. Then the thesis is critically analysed and compared with the present state
of the art in Sect. 9.2. Finally, Sect. 9.3 provides future research directions to enrich and
extend the present work.

9.1 Contributions of this thesis

The main contribution of this thesis work is a novel framework to construct descriptors of
the human appearance for Intelligent Video Surveillance tasks, that is based on dissimilar-
ity representations. The framework, called Multiple Component Dissimilarity (MCD), starts
from the original dissimilarity paradigm and extends it, in order to deal with objects decom-
posable in multiple parts and with localised characteristics, as the human body.

MCD has been applied to two Intelligent Video Surveillance tasks, namely person re-
identification and appearance-based people search, described above. With respect to these
tasks, there are three main advantages of dissimilarity representations for describing per-
sons:

• First, MCD descriptors are compact, and can represent a person using a small vector of
real values (dissimilarities). Thanks to this, MCD can drastically reduce computational
complexity, specially of the matching phase of person re-identification methods.

• Second, MCD builds upon a totally generic formulation of the underlying low-level
representation. Therefore, it can be used to combine different descriptors, even if they
are heterogeneous (in terms of the model used and/or the features used). Descrip-
tors can even come from different modalities, enabling e.g. multi-modal person re-
identification, in cases where the clothing appearance is not the only cue available.
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• Third, it provides a natural and effective way to learn high-level concepts from low-
level representations. This directly enables the task of appearance-based people search
described above.

MCD has been exploited in this thesis to achieve several results:

• a method to speed up any existing person re-identification method, which exploits
MCD descriptors’ compactness to reduce computational needs;

• a state-of-the-art re-identification method, that uses a combination of different kinds
of appearance features obtained through the use of MCD;

• a way to combine different descriptors (even heterogeneous and/or coming from dif-
ferent modalities), into a single, compact one, based on MCD;

• building on the last point, a method to perform person re-identification based on two
modalities, namely clothing appearance and anthropometry, the latter extracted using
RGB-D cameras; to the Author’s best knowledge, this is first example of multi-modal
person re-identification presented in literature;

• a method that uses MCD to perform the novel task of “appearance-based people search”,
by learning high level concepts from dissimilarity representations obtained through
MCD.

Apart from the above main achievements, this thesis work also provides two important con-
tributions:

• a novel data set for assessing multi-modal person re-identification methods that ex-
ploit RGB-D information, made up of RGB and Depth video-sequences showing indi-
viduals in different poses and locations, under different illumination conditions;

• a possible formulation of a generalisation of the tasks of people search and person re-
identification, that is named “people search on multi-media data”.

9.2 Critical analysis

The aim of this Section is to critically analyse MCD and the other major thesis contributions.
This Section is subdivided in three parts: in the first part (Sect. 9.2.1), the MCD framework
is the subject of the analysis, to the aim of correctly position ot with respect to the state-of-
the-art. In the second part (Sect. 9.2.2) the implementations of MCD to carry out person
re-identification and people search are analysed compared the rest of the literature. In the
third part (Sect. 9.2.3) a more general insight on person re-identification is given, focusing in
particular on open problems and unexplored aspects.

9.2.1 Position of MCD with respect to the state-of-the-art

It is important first to correctly position MCD with respect to the field (Intelligent Video
Surveillance). In particular, it is worth to point out the role of MCD: rather than being a
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specific method to accomplish person re-identification or other Intelligent Video Surveil-
lance tasks, it is meant as a general, novel framework to tackle such tasks, that carries three
main advantages as listed above:

(i) compactness (which can help in obtaining computationally inexpensive methods for
person re-identification),

(ii) independence to the underlying representation (which can enable fusion of multiple
descriptors and modalities),

(iii) possibility of a straightforward implementation of appearance-based people search.

To the best of the Author’s knowledge, MCD has no direct “competitors” in the literature
about person re-identification nor other Intelligent Video Surveillance applications, as no
similar frameworks have been proposed so far. However, it shares a similar spirit with other
kinds of models for representing objects in Computer Vision. In particular, two of them have
resemblances with MCD that are worth exploring.

The first one is the Bag of Words (BoW) model for describing images [135], which is
widely used in scene classification. In the BoW model, a vocabulary of visual words is at first
constructed off-line from a design data set of images, by clustering (usually using k-means)
the local features coming from all these images. Visual words are then defined as the cen-
troids of the clusters. This step is almost the same as prototype construction in MCD (except
that in MCD the different sets of prototypes are constructed, one for each body part). An
image is then represented as a normalised histogram of the occurrences of each visual word:
each local feature of the image is assigned to the closest visual word, and the corresponding
word count is increased by one.

If the number of visual words is not to high (usually, it is around one thousand), the size of
a BoW descriptor is comparable to that of a MCD descriptor: the advantage of compactness
(i) of MCD can be achieved therefore also with the BoW model. The BoW model is in prin-
ciple also independent to the kind of local features used (ii), although up to now it has not
been used to combine different kinds of local features or multi-modal descriptors. Finally, it
is in principle able to feed detectors of basic queries, to implement appearance-based peo-
ple search, as the same connection between prototypes and high level concepts applies to
visual words.

However, MCD and BoW models differ substantially in one major aspect: BoW mod-
els count the frequency (count of the occurrences) of each visual word inside each sample,
while in the dissimilarity paradigm the degree of similarity of each visual prototype is con-
sidered. Another important difference between the two is that MCD can support both local
and global features, while BoW can only be used with local features. As various clothing ap-
pearance descriptors use global features (possibly, in combination with local ones), this fact
limits the applicability of BoW models to the tasks that require the representation of humans.
It is worth noting, finally, that BoW and dissimilarity-based representations have been com-
pared in [26] in the specific task of object recognition. In particular, it has been shown that
dissimilarity representations outperform BoW representations by a good margin.

Another kind of representation that resembles MCD is the Fisher Vector (FV) model,
which inherits from BoW [106]. FV main aim was to obtain a compact image representa-
tion with more discriminative power than BoW; basically, it extends BOW by encoding also
high-order statistics (first and second order). It relies on Fisher kernels [72], a powerful tool
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whose underlying idea is to represent a signal with a gradient vector derived from a gener-
ative probability model. In FV, this idea is applied to the classic BoW model, using a visual
vocabulary obtained as in BoW, to define the generative model: a Mixture of Gaussians cen-
tred on each visual word. Fisher Vectors allows for higher classification performance than
BoW models in image categorisation tasks. Similarly to BoW, also FV is compact (i), and is
in principle feature-independent (ii), although this was not demonstrated in the literature.
Finally, as it inherits from BoW it could in principle be used to people search as well. The
main limitation of FV with respect to MCD is that, similarly as BoW, it can be used only with
local features.

The two models mentioned above exhibit commonalities and differences with respect
to MCD. It is indeed desirable, for extending the present work, to explore more thoroughly
these commonalities, and to better assess them with respect to Intelligent Video Surveillance
tasks. They can be a good source of ideas to enrich MCD as well.

9.2.2 Analysis of the proposed methods for person re-identification
and people search

The aim of the following analysis is to highlight critical points of the applications of MCD to
implement person re-identification and people search methods, described in Chapters 4, 5,
6 and 7.

Considering first the method proposed in Chapter 4 to speed up existing re-identification
methods, on the one hand the experiment analysis clearly demonstrated that the low match-
ing time guaranteed by MCD descriptors enables real-time or quasi-real-time person re-
identification. On the other hand, recognition performance of MCD descriptors may be
worse than that exhibited by the original descriptor. It was shown that the trade-off between
computational time and accuracy can be advantageous for certain kind of applications (e.g.,
the real-time application scenario described in Sect. 4.1). However, the model described in
Sect. 4.1) to evaluate such trade-off makes some simplifications that may be questionable.
The first one is the assumption that humans have always 100% accuracy. In other words,
given two images of persons, an human should always be able to tell if the two images show
the same individual or not. While this assumption seems reasonable at a first sight, it does
not take into account that the bad quality of images taken by video-surveillance images cam-
eras (e.g. low resolution, blur, over-exposed or under-exposed, etc.) may pose a challenge
also for human operators. This fact is supported by an interesting experiment reported by
Cheng et al. [28]; they showed that human operators achieved an average first-rank recog-
nition rate of 75% in a task where each query image had to be found among a set of only 45
images of pedestrians. Furthermore, the human operator may experience a loss of attention
depending on its psycho-physical conditions, which may reduce its capability to distinguish
persons. Another simplification made by the model is that the time tc required by an human
operator to compare two given images of pedestrian (one probe and one template) in more
or less constant. However, depending on the images, the operator may spend more time in
comparing details (e.g. if the two persons have very similar clothes), or give immediately a
response (e.g. if the two persons have completely different clothes). It is also hard to esti-
mate an average tc that is generally valid, as it strongly depends on how many people look
similar in the data set considered. As such, the model proposed in Sect. 4.1 should indeed be
extended, by considering cases where the accuracy of the human operator is not 100% and
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tc is not fixed. These limitations provide possible directions to improve the present work. It
is worth to say, however, that the same general conclusion (i.e., that a faster method may be
more helpful than a slower but better performing one in on-line re-identification scenarios),
is likely to be still valid, even considering the two aspects above.

Consider now the re-identification method proposed in Chapter 5. It shows a solid recog-
nition performance compared to the state-of-the-art, and low computational requirements.
There are nevertheless some aspects that could be developed further. The first aspect is the
use of MCD to to combine descriptors that already can attain themselves state-of-the-art
performance (e.g., SDALF with CPS). It would be very interesting to evaluate their comple-
mentarity and if they can be used to attain a higher recognition performance. The second
aspect is that the performance of the proposed method is still lower than SDALF and CPS,
when considering the first ranks. This could be due to the poor performance of the base
descriptors, or due to the inability of dissimilarity representations to maximally exploit their
complementarity.

Regarding the multi-modal re-identification method of Chapter 6, the main contribu-
tions to highlight are (i) that novel RGB-D sensors can be used effectively for re-identification,
and (ii) that combining multiple modalities, and more specifically appearance and anthro-
pometry can help in improving performance. Regarding (i), it is nevertheless important to
highlight the present limitations of the RGB-D technology used (the Kinect sensor). First,
it can be used indoor only, therefore many possible applications of video-surveillance sys-
tems such as monitoring of ports, parking lots, streets, etc. are excluded. In addition, the
operative range of the Kinect sensor (which is around 6 mt) is enough only for small closed
environments such as corridors and small rooms. The first problem is intrinsic of the IR
technology, as the Sun interferes with the IR band. It is however worth noting that the use
of high power IR LEDs to generate the IR beam can greatly increase robustness to the Sun
light, and permit the use of such devices in outdoor environments where there the sensor
is not subject to direct Sun illumination, at the expense of a lower resolution of the Depth
map (a technique used e.g. in the Panasonic D-IMager EKL3106). The second problem can
be overcome using better and/or more powerful IR emitters and receivers. Both problems
can be overcome by using a different technology than IR, such as laser range cameras, at the
expense of a higher price per device. Regarding (ii), the used of other anthropometric cues
should be explored. Also, as some anthropometric measures can be extracted from a given
image or frame only in certain conditions (e.g., frontal pose), a framework that takes into
account missing modalities should be developed, to make it possible to exploit any subset
of available modalities. Furthermore, it is of interest to explore the used of other modalities,
beyond clothing appearance and anthropometric measures. E.g., skeleton-based gait [59] or
remote face recognition techniques [99].

Finally, considering the method for appearance-based people search described in Chap-
ter 7, it has been shown that it is possible to effectively provide a very useful novel functional-
ity to forensic investigators using an existing person re-identification method. Nevertheless,
a lot of work has to be carried out on this topic. Firstly, Chapter 7 explored the use of still
images only, while it would be far more interesting to work with video-sequences. Secondly,
the performance was assessed with respect to basic queries only (while it would be useful
to evaluate retrieval capabilities when using combinations of basic queries), and by consid-
ering only color-related concepts (other concepts, for instance related to repeated patterns
like “striped shirt” or “checked trousers” should be implemented). Apart from these limita-
tions, that can provide directions for a further development of the method, there is one major
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problem that must be taken into account in future research, that is, the ambiguity of con-
cepts. Specifically, in this context ambiguity means that the definitions of certain concepts
may be subjective and/or partially overlap. E.g., “pink shirt” may be confused with a “red
shirt” and vice-versa depending on personal taste and/or environmental conditions; simi-
larly, dark colours can be confused with “black”, and other similar examples can be made.
This problem must be taken into account and a way to address it, even partially, should be
envisaged in future research.

9.2.3 Still unexplored aspects of person re-identification

Person re-identification is a relatively young research area. As such, many aspects have still
to be explored, and a large amount of work has to be done before re-identification systems
can be used widely in real-world scenarios. Perhaps one of the most important issues that
emerge from an analysis of the current literature is that all works focus on performance, eval-
uated mostly on the same three or four benchmark data sets (mostly VIPeR and i-LIDS).
Although it is fundamental to assess performance in order to compare methods, various
equally fundamental aspects have been almost or totally overlooked. Among them:

(i) computational complexity;

(ii) practical limitations;

(iii) ways of interacting with the operator.

Concerning point (i), the computational complexity of many methods is too high to be
used in on-line applications (e.g., SDALF and CPS, see Chapter 5). These methods therefore
represent a mere academic exercise from the viewpoint of industries and video-surveillance
operators. This thesis work tried to address this issue more systematically, however a more
thorough analysis of the true requirements of re-identification systems in terms of compu-
tational resources should be performed.

Point (ii) refers to the conditions that can reduce or even nullify the performance of per-
son re-identification systems. E.g., partial occlusions, illumination conditions, the presence
of a high number of persons seen in one view, etc. Again, these aspects have not been anal-
ysed in depth by current works. Indeed, each of them should be thoroughly studied, to as-
sess their practical influence and make operators aware of what re-identification systems
can do, and cannot do. Eventually, the aim should be to develop a framework for comparing
re-identification systems.

Point (iii) is about the design of interfaces and ways of interaction that facilitate the use of
person re-identification systems by operators. It is indeed an aspect less related to research;
still, it is an important step towards moving person re-identification from academic articles
to practical products and tools.

9.3 Future works

Various directions for future research can be envisaged. Many possible improvements and
aspects to further investigate have been pointed out in the previous Section. Apart from
them, the present work can constitute the basis for at least four novel research themes, which
are described in the following.
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Fusion of dissimilarities and attributes to describe persons.
The MCD framework allows for the construction of dissimilarity vectors to describe peo-

ple. Dissimilarity vectors represent objects as distances to prototypes encoding local or
global low-level characteristics. Apart from low-level characteristics, objects (in this case,
people) can be also described by, or be associated with, a set of attributes. E.g., attributes
relevant for person re-identification tasks would be those related to the clothing, e.g. a per-
son may wear a coat, a bag, sunglasses, a t-shirt, and so on. These two sources informations
(dissimilarities and attributes) can be conveniently used together to obtain a better descrip-
tion of pedestrians.

The exploitation of the combination of attributes with low-level features has already been
proposed by Layne et al. in a recent paper [81] showing promising results. Layne et al.
adopted a score-level fusion scheme where matching is performed using low-level features
and attributes separately, obtaining two different matching scores, then the final matching
score is obtained as a linear combination of the two.

However, instead of fusing these two sources of information at score level, another pos-
sibility is to concatenate dissimilarities (that encode low-level information) with a vector
encoding the presence/absence of the attributes (binary values, 1 or 0, or real values repre-
senting the output of attribute detectors). In a sense, this is similar to what has been done
in Chapter 6 to fuse different modalities, except that in this case one modality is the list of
attributes.

Doing so, low-level prototypes and high-level attributes are put at the same level: basi-
cally, attributes are seen as prototypes with a semantic meaning. Preliminary results have
shown a potential usefulness of such fusion technique in increasing re-identification per-
formance when dissimilarity vectors are concatenated with the degree of presence of 14 at-
tributes, estimated via the detectors used in Chapter 7. One major issue is that the weights
of the attributes in computing the matching score has to be artificially increased in order
to balance the uneven proportion between the number of attributes (usually, tens) and the
number of prototypes (usually, hundreds or even thousands). Another important issue is
that the final re-identification performance strongly depends on the performance of detec-
tors. Despite these issues, this novel way to represent objects, derived from the dissimilarity
paradigm, looks promising and demands for further research.

Development of the PSM model.
Chapter 8 presented a first tentative to formalise a general model of a novel category of

retrieval tasks, namely people search on multimedia data (PSM). This model frames both
person re-identification and appearance-based people search, as well as a number of other
possible tasks. Among them, the possibility to implement an enhanced people search sup-
porting queries in natural language has been envisaged, using Natural Language Processing.
This could be a very interesting functionality that is worth exploring in future work. Also,
it would be useful to further develop the PSM model, enhancing it by adapting techniques
and concepts derived from the literature on Information Retrieval (e.g., the use of relevance
feedback).

Generalisation of MCD to other domains.
In this thesis, the MCD framework has been developed and tailored specifically for the

task of representing pedestrians. It is nevertheless worth to note that the multiple parts-
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multiple components representation underlying MCD is not limited to humans. Indeed,
the same representation can be profitably used in other applicative domains. An interest-
ing direction of further research would therefore be to generalise MCD to other Computer
Vision domains. More specifically, MCD would be a nice starting point to develop a novel
dissimilarity-based paradigm for Computer Vision. In order to do so, it would be impor-
tant to further develop on the commonalities shared by MCD and the BoW and FV models
described in Sect. 9.2.1.
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