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The greatest challenge to any thinker is stating the problem 

 in a way that will allow a solution. 

Bertrand Russell 
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INTRODUCTION 

 

Nicotine addiction is one of the most alarming public health problem of this century. In fact, results 

shown by several agencies, such as the World Health Organization (WHO) and the Center for 

Disease Control (CDC) underline a disconcerting situation, which do not involve only developed 

countries. It has been estimated that over a billion of people smoke tobacco (WHO, 2006), and 

despite the large amount of pharmacological and non-pharmacological strategies to quit smoking, at 

the state of art, tabagism is still considered one of the first causes of preventable death worldwide 

(WHO, 2006).  

Drug addiction is a complex and  relapsing disorder characterized by several symptoms, such as the 

compulsive seeking of a drug and drug abuse despite its side effects (Koob and Volkow, 2010). 

Among this spectrum, nicotine addiction obviously represents a crucial problem in terms of 

prevalence (higher than other drugs) (Markou, 2008) and negative long-term physical problems. 

Even though only a certain percentage of people who use drugs of abuse becomes addicted (for 

nicotine is around 50%), some genetic and environmental factors have been described as triggers of 

addiction. For what concerns nicotine dependence, various polymorphisms in some genes encoding 

for specific receptors or receptor subunit of the central nervous system (e.g. dopaminergic receptors, 

nicotinic acetylcholine receptors) (Ray et al., 2009), associated with stressful life events and other 

non-biochemical modifications, have been suggested so far. In addition, most of these events 

pinpoint how progresses in the neuroscience and neuropharmacology –related field can be crucial to 

better understand this problem. 

Recently, studies have been focused on the modulatory effect of certain endogenous system in the 

response to drugs of abuse in the brain reward circuitry. Among these systems, a wide amount of 

studies are taking into account the possibility that the endogenous cannabinoid (eCb) system might 

be a suitable candidate to regulate nicotine-induced reinforcing properties. The eCb system is a 

family of lipid molecules, enzymes and receptors, also described in the brain reward circuitry 



6 
 

(Melis and Pistis, 2007), where cannabinoid type 1 receptors (CB1-Rs) are also a target for the 

exogenous cannabinoid Δ
9
-tetrahydrocannabinol.  

In the last five years several studies suggested that the CB1-Rs antagonist SR141716-A 

(rimonabant) prevents nicotine-induced effect within the brain reward circuitry (using different 

paradigms and techniques) (Cohen et al., 2002; Cheer et al., 2007). Additionally, it has been 

recently proposed the role of other components of the eCb system as putative modulators of 

nicotine effect. 

The present thesis is focused on this second possibility and it summarizes the results obtained 

carrying out experiments using in vivo extracellular electrophysiological single unit recordings in 

anaesthetized rats to study the effect of pharmacological inhibition of fatty acid amide hydrolase 

(FAAH). FAAH is the main enzyme which inactivates the eCb anandamide (AEA) and other n-

acylethanolamides (NAEs), such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), 

structurally similar to eCbs but devoid of CB1-Rs affinity (Fu et al., 2003). 

FAAH activity reduces the levels of AEA, OEA and PEA and pharmacological tools to deactivate 

this metabolic process have been proposed so far. For example, the carbamic acid derivate 

URB597, an irreversible inhibitor of FAAH, allows a long-lasting increase of AEA and NAEs 

levels in the brain and peripheral tissue (Kathuria et al., 2003; Fegley et al., 2005). 

For this reason, in the present study it was addressed whether FAAH inactivation by URB597 might 

act as a negative modulator of nicotine-induced effect in two of the most important groups of 

neurons of the brain reward circuitry: the ventral tegmental area dopaminergic neurons and the 

GABAergic medium spiny neurons of the nucleus accumbens shell. Furthermore, it was also tried 

to identify the mechanism by which URB597 modulates these effects and, finally, whether 

URB597’s action is only related to nicotine effects or it can be extended to other drugs of abuse. 

In the first chapter, the abuse liability of nicotine, evaluated through some of the most important 

parameters such as its biochemistry, epidemiology, pharmacology and neural effects in the brain 

reward circuitry will be discussed. In the second chapter, the eCb system and the novel family of 
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eCb-like molecules, devoid of CB-Rs affinity, will be introduced to better clarify the rationale of 

this study. In the third chapter, a brief excursus on methods and materials employed to carry out this 

project will be presented. In the forth chapter, it will be reported a summary of results obtained 

through the in vivo electrophysiological technique. Finally, in the fifth chapter, a detailed discussion 

of these results will be shown to connect present data to the literature and to provide some 

important final remarks about the meaning of our study. 
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Chapter I 

NICOTINE ABUSE AND ADDICTION: A MULTIDIMENSIONAL 

APPROACH 

 

 

Introduction 

Nicotine is the main psychoactive component of tobacco plant and it contributes to tobacco 

smoking habit (Stolerman and Jarvis, 1995). This compound is an alkaloid mainly found in the 

Solanacee plant Nicotiana Tabacum, where it constitutes the 0.6-3.0% of dry tobacco weight 

(Siegmund et al., 1999). Nicotine is commonly extracted from four different types of Nicotiana 

Tabacum known as Bright, Burley, Maryland and Turkish (Hoffmann and Hoffmann, 1998), 

although other species of Nicotiana, such as N.Rustica, are widely used to extract nicotine and 

manufacture cigarettes and cigars (Hoffmann and Hoffmann, 1998). 

Acute administration of nicotine to humans produces mild euphoria and mild cognitive 

enhancement (Markou, 2008) and its continuative use leads to tolerance and withdrawal (depressed 

mood, irritability and mild cognitive deficits) when the access to the drug is prevented (Shiffman et 

al., 2004). Most of these effect are due to the high nicotine-binding affinity for a specific class of 

receptors named ―nicotinic acetylcholine receptors‖ (nAChRs), whose properties and localization 

within the central and peripheral nervous system will be better explained below.     

Even though cigarette consumption is the most common route to administer nicotine, the 

phenomenon known as tabagism involves a wide array of different aspects (from the epidemiology 

of tobacco use to the neural basis that facilitates nicotine-induced effects in the central nervous 

system) which will be elucidated in this chapter. 
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1. Physical and social epidemiology of nicotine consumption 

 

Different agencies have provided a large amount of evidence regarding the widespread tobacco use 

and nicotine addiction. For example, data revealed by the World Health Organization (WHO) and 

the Center for Disease Control (CDC) have shown that 1.3 billion of people in the world smoke 

cigarette (WHO, 2006). In the United States, the 5
th
 world producer of tobacco manufactures, with 

approximately 45 millions of smokers (CDC, 2008) (male prevalence: 26.3%; female prevalence: 

21.5%) (WHO, 2008), tobacco-related health care cost is evaluated around 76 billions of dollars, 

almost 20 folds over than China (3.5 billions of dollars) (WHO, 2002), where tobacco use involves 

more than 300,000,000 of people (WHO, 2002) (male prevalence: 59.5%; female prevalence: 3.7%) 

(WHO, 2008).  

These data obviously report a disconcerting problem, which is almost all confined to tobacco 

smoking behavior. In fact, according to the National Institute on Drugs of Abuse (NIDA) the 98% 

of tobacco users take nicotine through cigarette smoke (Fratta et al., 2005), minimizing to a scarce 

2% the rest of consumption. 

Furthermore, inhaling tobacco through cigarette smoke remains the most dangerous route of 

administration because of its sudden release of toxic compounds, which have been used for 

manufacturing them. In fact, beyond the well-known abuse liability of nicotine, it is now well-

established that tobacco smokers have an increasing probability to develop several physical 

problems. Among them, severe types of cancer (mouth, bladder, lungs etc…), cardiovascular 

disease and respiratory problems (U.S. DHHS, 2004) have been reported in chronic smokers. 

Additionally, it has been estimated that tobacco-related illness lead to die with an higher rate than 

HIV-related disease, other drugs of abuse and motor vehicle accidents (U.S. DHHS, 2004).  

The American Psychiatric Association (APA) considers nicotine dependence as the occurrence of 



10 
 

both tolerance and withdrawal symptoms related to nicotine use under different forms and the 

compulsive consumption despite its side effects (APA, 2000). The abuse liability of nicotine is also 

responsible for nicotine relapse. In fact, despite the development of different strategies (e.g. nicotine 

replacement therapy), only 3-5% of people trying to quit smoking benefit from them (Stead et al., 

2008).     

In addition, beyond the strict correlation between tobacco consumption and physical injuries, a lot 

of interest has been focused on the link between nicotine addiction and psychiatric problems. In 

fact, according to the APA, smoking behavior and nicotine dependence have an higher prevalence in 

psychiatric patients than normal people (APA, 2000). For example, recent evidence points toward a 

self-medication use of nicotine in patients with schizophrenia-related cognitive impairment 

(Williams and Gandhi, 2008), although a correlation between nicotine use in schizophrenic patient 

came out earlier (O'Farrell et al., 1983). In addition, also a link between nAChRs (see below) and 

depression (Bertrand, 2005) has been recently suggested, involving the role of nicotinic receptors in 

the pathophysiology of mood disorders. These observations are robustly improved by animal 

studies showing an α4β2 nicotinic receptor involvement in some measures impaired in psychotic 

patients (Radek et al., 2010). Moreover, further data have shown an α7 nicotinic receptor subunit 

contribution in the modulation of P20-40, a paradigm set to evaluate animal models of psychosis 

(Martin and Freedman, 2007).  

Furthermore, a series of studies have also postulated the existence of a genetic vulnerability to 

nicotine dependence. In fact, studies in twins have reported a sustained degree of heritability of 

cigarette smoking (>50%) (Lessov-Schlaggar et al., 2008) coupled to an heritability of specific 

withdrawal symptoms (Xian et al., 2005). These studies also include in the predisposition to 

nicotine use: 

(1) the presence of smoking-related phenotypes accountable to the polymorphism of the cytochrome 

P450 CYP2A6 (Malaiyandi et al., 2005); 
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(2) the role of variants in some genes encoding for nAChRs specific subunits, such as the CHNRA4 

(encoding for  the α4) (Li et al., 2005; Hutchison et al., 2007) and the CHNRA3 and 5 (encoding for 

the α3 and the α5) (Saccone et al., 2007; Berrettini et al., 2008); 

(3) the polimorphysm in some dopaminergic (DA) genes (Lerman et al., 1999; Vandenbergh et al., 

2007; Huang et al., 2008) which might improve the rewarding properties of nicotine itself;      

Taken together, these considerations remarkably point out the alarming problem of nicotine abuse 

and addiction, which is quickly growing up in developed, less developed, and developing countries.  

 

2. Brief history of nicotine: from the Pre-Columbian medical use to the XXI century 

 

Early information about manufactured cigars from Nicotiana plants derives from the artworks 

painted on 10
th
 century Maya’s vessel (Kingsborough, 1825). Nonetheless, there is evidence of 

tobacco use also in 16,000 B.C., and during the course of 3,000/5,000 B.C. in Ecuador and Peru 

native’s cultures (Dowieko, 2008). 

The biggest source of data comes out from the Cristoforo Colombo landing in America. While 

exploring the Isle of Guahain (currently San Salvador) the sailors of Colombo’s crew noticed a 

strange behavior defined as ―drinking smoke‖ practiced by the so-called ―Indians‖, and which was 

reported on the Gonzalo Fernandez de Oviedo’s milestone ―Historia General y Natural de las 

Indias‖ (1526) (Penn, 2007). Presumably, the name tobacco belongs to this age and it was translated 

as a mistake from the cane pipe that indigenes utilized to smoke (called tobago by them) (Meyer, 

1999). 

These ancient populations, from Maya to American natives, used to smoke tobacco for religious 

purposes and some reports describe that Indians offered their pipes filled with tobacco to Colombo’s 
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crew thinking they were divinity. Moreover, a great array of references comes from the exploration 

of other sailors in the ―New World‖, who frequently noticed the therapeutic use of tobacco plants by 

indigenes (e.g. Pedro Alvarez Cabral, Amerigo Vespucci etc...) (Dickson, 1954; Brookes, 1937, 

1952). 

After Colombo's age tobacco plants were also imported in Europe where they became very popular 

in Spain and other countries. According to some studies, the first person who cultivated Nicotiana 

Tabacum in Europe was the French Ambassador to Portugal Jean Nicot, who sent seed of tabacum 

to France and introduced its use at the Royal Court of Paris during the XVI century (Penn, 2007). 

Henceforth, the belief of smoking tobacco medical properties became so popular to induce Caterina 

De Medici and King Charles IX to treat their migraine headache taking nicotine (Jeffers and 

Gordon, 1996). In fact, during the same century other empirical opinions, such as those belonging 

to the Spanish school of the physician Nicolas Monardes, hypothesized a therapeutic role of 

Nicotiana plants for curing a great array of physical problems (Monardes,1596) up to be considered 

as a panacea (Dickson, 1954). Nevertheless, despite this optimistic approach to tobacco use, some 

studies reported an early evidence of a negative effect caused by smoking behavior. For example, 

the Italian scientist Francesco Redi (1671) demonstrated an harmful action of tobacco oil injection 

in animals (Goodman, 1994), which was confirmed by latest studies occurred when nicotine was 

isolated. Noteworthy, other source of criticism came from Phylaretes (Phylaretes, 1602), Vaughan 

(Vaughan, 1612), and James Hart (Hart, 1633) most of them concerning the over inclusive 

consideration of tobacco as a panacea and its harmful effect when abused.    

The headword nicotine was obviously given in honor of Jean Nicot by Jean Liebault, a botanist, 

who was the first to cultivate this plant in France. He called this plant ―Herba Nicotiana‖ 

rearranging the nickname of  Nicot "ambassador’s nicotiane" (Charlton, 2004). In the XIX century 

nicotine was, then, isolated by Wilhelm Posselt and Ludwig Reimann (1828), and it was recognized 

as the main pharmacological ingredient of tobacco plants (Henningfield and Zeller, 2006) with an 
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extremely high poisonous property (Goodman, 1994). Nevertheless, as early as 1723,  nicotine, like 

crude extract of tobacco, had been already used and recognized as a powerful insecticide agent 

(Metcalf, 1948), and sometimes as a quick and effective killer-drug (Wennig, 2009).    

These steps constituted something essential to reach the nicotine empirical (Melsens, 1844) and 

chemical structure (Pinnier, 1891-95) and how to synthesize it (Pictet and Crepieux, 1903), which 

opened the field of study related to nicotine-induced effects in the human body and the manufacture 

industry of cigarette and cigars. 

 

3. From leaves to lungs: biochemistry and pharmacology of nicotine  

 

Before introducing how nicotine acts on the central nervous system as an abuse substance, it is 

worth to quickly describe the biochemistry and the pivotal passages that allow the biosynthesis of 

this compound, together with its main pharmacological features. 

 

3.1 Biochemistry and biosynthesis  

As previously mentioned, nicotine (C10H14N2) is an alkaloid found in a solanacea plant, whose 

biosynthesis takes place in the roots and accumulates in the leaves. It reaches the ~95% of total 

alkaloids of tobacco plants (Baldwin, 1989; Hashimoto and Yamada, 1994), followed by other 

compounds such as nornicotine, anatabine and anabasine (Benowitz and Jacob, 1998). Nicotine is 

a compound whose chemical and physical data are summarized in tab 1.1, and it appears like a pale 

yellow to dark brown liquid with a slight, fishy odor when warm, strongly alkaline in reaction and 

with a tendency to from salt with acid (Metcalf, 1948). The chemical structure of nicotine is 

composed by 2 different rings: pyrrolidine and pyridine (Katoh et al., 2005), and this explains its 
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IUPAC name 3-[(2S)-1-methylpyrrolidin-2-]pyridine (tab 1.1). The chemical root for the pyrrolidine 

ring is the ornithine and/or arginine-formed symmetrical diamine putrescine. Putrescine is 

methylated by the S-adenoshylnmethionine-dependent enzyme putescine N-methyltransferase 

(Biastoff et al., 2009), a protein isolated from roots of different plants (Nicotiana Tabacum, Atropa 

Belladona, Datura Stamonium) (see for example Walton et al., 1990; 1994), yielding N-

methylputrescine (Hashimoto and Yamada, 1994) which is then deaminated by the diamine oxidase. 

A cyclization product of this oxidation process is the N-methylpirrolinum cation (Katoh et al., 

2005). This chemical process is common to almost all known alkaloids (Ziegler and Facchini, 

2008). 

 

                   

Nicotine/3-[(2S)-1-methylpyrrolidin-2-yl]pyridine

Density 1.01 g/cm3

Molecular weight 162.26 g/mol

Boiling point 477°F

Melting point -277°F

Formula C10H14N2

A

B C

 

TAB1.1.Nicotine chemical features. (a) Panel showing some important chemical 

parameters of nicotine. (b) Chemical structure of nicotine. (c). Three dimensional 

chemical structure of nicotine 
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The pyridine ring derives from aspartate, which, through the aspartate oxidase, is oxidated in α-

amino-succinate (αIS). From αIS, a synthetization process by the quinoliate synthase forms 

quinoliate and, through quinoliate phospho-ribosyltransferase, it is converted in nicotinic acid 

mononucleotide (NaNM). Finally, using a nicotinamide adenine dinucleotide (NAD) biosynthesis 

pathway, NaNM is converted in nicotinate (Dawson et al., 1958; Dawson et al., 1956. Yang et al., 

1965) which is an esther of nicotinic acid (niacine or vitamin B3 of β-pyridine carbonic acid). 

The condensation between pyrrolinum cation and nicotinic acid creates the 3,6-dihidronicotine 

which is next dehydrogenated in nicotine by still poorly characterized enzymes (Ziegler and 

Facchini, 2008). A schematic representation of this anabolic process is presented in fig 1.1. Several 

studies have demonstrated that nicotine synthesis might have a defensive role against herbivore 

insects’ attack, which can damage and/or kill tobacco plants. In fact, under leaf damage caused by 

herbivore insect, a specific jasmonic acid-mediated signal is activated leading to a massive increase 

of the gene encoding for nicotine synthesis in the roots (Shoi et al., 2000; Sinclair et al., 2000). This 

mechanism leads to protect tobacco plants through the toxic effect of nicotine on the central 

nervous system of insects. 

The translocation from the root to the leaf takes place in the xylem, where nicotine is transported 

after its synthesis (Shoi et al., 2000; Shoi et al. 2002; Katoh et al.2005). Once in the leaf, nicotine is 

trapped into the vacuole after being delivered at the mesophyl cells (Hashimoto and Yamada, 2003), 

forming ion-pairs with organic acids (Katoh, 2005), and here it is accumulated. 

Nicotine can be found in 2 different isoforms: the levorotary (S)-nicotine, which is the negative (-) 

stereoisomer and shows affinity for the nAchRs, and the (R)-nicotine, with scarce or null effect on 

the above mentioned receptors. Tobacco products contain a larger amount of levorotary nicotine 

whit just a moderate amount of (R) stereoisomers. In fact, (R)-nicotine reaches the 0.1-0.6% of the 

total amount of nicotine (Armstrong, 1998), and it is almost all confined to racemization products 

under combustion (Matta et al., 2007).   
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These steps are essential to produce tobacco manufactures. In fact, when accumulated in the leafs 

nicotine is extracted following different methods and different cures, in order to obtain desiccated 

leafs of tobacco with a variable rate of nicotine inside.        

 

                             

                           

A

B C

 

Fig1.1 Nicotine biosynthesis. Schematic representation of nicotine biosynthetic pathway 

as it happens in the root of nicotiana tabacum plants. Once produced, nicotine is 

unloaded in the leaf vacuoles, where it acts as a protective agent. The covalent binding 

between the pyridine and pyrrolidine ring derives from two separate processes which 

involve several enzymes (Katoh et al. 2005). Abbreviations: AO, aspartate oxidase; QS, 

quinoliate synthase; QPT, quinoliate phosphor-ribolsyltransferase; ODC, ornithine 

decarboxylase; PMT, putrscine-N-metyltransferase; DAO, diamine oxidase 
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3.2 Pharmacology and toxicology: how does nicotine act on the mammalian body?  

Nicotine, as a drug, once administered to humans and animals, exerts pharmacological and 

toxicological effects, including addiction. The main pharmacological action of nicotine is due to the 

high affinity on nAchRs, a family of ion channels-coupled receptors widely expressed in the 

mammalians central (CNS) and peripheral (PNS) nervous system, and in a great amount of other 

cell lines and tissues (muscles and cancer cells) (Gotti et al., 2009). 

Additionally, depending on different types of tobacco manufactures, nicotine absorption and its 

effects strongly differ. For example, in a particular type of tobacco, named "flue-cured" (very 

common in cigarettes), whose smoke has an acid pH (5.5-6.0), nicotine, which is a weak base 

(pKa=8.0), requires to be ionized, and this impairs the buccal absorption of this compound  

(Benowitz et al., 2009). On the other hand, the air-cured tobacco, typical of European cigarettes and 

pipe/cigar tobacco, producing its smoke more alkaline (pH=6.5), allows an improved nicotine 

absorption through the mouth (Armitage et al., 1978; Benowitz et al., 2009). 

Furthermore, different routes of administration can be an important variable to define the blood 

concentration and the absorption rate of nicotine through body tissues. In fact, according to a study 

published on Clinical Pharmacology and Therapy by Benowitz and coll. (1988), while tobacco 

smoking leads to a faster peak than intravenous administration (Benowitz et al., 1988), other 

pharmacological preparations, such as nicotine gum (2mg/piece) and oral snuff (2.5g) are slower in 

their effect, with a much more modest peak (Benowitz et al., 1988). A summary of the main 

pharmacokinetics parameters of nicotine absorption through different route of administration is 

reported in Tab 1.2 (Benowitz et al., 2009). 

Moreover, studies in humans have shown a high variability in blood concentration (10-50 ng/ml in 

the afternoon of typical smokers) and arterial peak (up to 100 ng/ml) of nicotine (Benowitz, 2009) 

in chronic smokers. This factor can vary because of individual differences in puff strength, 
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contextual environmental factors and other parameters, such as the way of smoking to optimize the 

psychoactive effect of nicotine (U.S. DHHS, 2001). Usually, nicotine blood peak declines after 20 

minutes, due to nicotine distribution in other body tissues than bloodstream, with a volume of 

distribution close to 2.6 times body weight (Benowitz and Jacob, 1984). Only less than 5% of this 

nicotine binds to plasma proteins, where, depending on the pH (7.4) of blood, it is present under 

either an ionized (69%) or unionized (31%) form. 

  

Type of nicotine administration Cmax

ng ml-1

Tmax

min

Bioavailability

%

Smoking (one cigarette 5 min, 2 mg/cigarette) 15-30 (V)
20-60 (A)

5-8 (V)
3-5 (A)

80-90 (inhaled
nicotine)

Intravenous (5.1 mg) 30 30 100

Nasal spray (1 mg) 5-8 (V)

10-15 (A)

11-18 (V)

4-6 (A)

60-80

Gum (2mg/30 min) 6-9 30 78

Sublingual tablet (2mg/20-30 min) 3.8 60ca. 65

Transdermal patch (15 mg/16 h) 11-14 6-9h 75-100

Transdermal patch (21 mg/24 h) 12-21 9-12 82

Tab 1.2 Nicotine preparations. Panel showing some of the most common route of 

administration for nicotine coupled with their main pharmacokinetic parameters. Notably, 

transdermal patch (15 mg/16h) guarantees a wide bioavailability with a very long-lasting 

Tmax (adapted from Benowitz et al., 2009). 

 

Several tissues are permeable to nicotine including kidney, liver, spleen, lungs, skeletal muscles, 

placenta, brain and with a less rate also adipose tissue (Matta et al., 2007). Liver metabolism plays a 

central role in human and mammalian degradation of nicotine and, despite the major nicotine 

metabolite known is cotinine (~75%), a wide array of less frequent compounds are products of 
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nicotine metabolism. Among them, the most found in human urines are nicotine-N-oxide (4-7%), 

nicotine glucoronide (3-5%), and other cotinine metabolites (Hukkanen et al., 2005) (fig 1.2).  

Studies carried out to compare the presence of predominant cytocrome P450 across diverse species 

have underlined that monkeys, dogs, cats and rabbits degradate nicotine primarily in cotinine, 

whereas rats and guinea pigs produce more nicotine-N-oxide than cotinine or 3-hydroxycotinine 

(Matta et al., 2007). In addition, it has been shown that mice metabolize nicotine through the 

CYP2A5, which is instead inactive in rats (Hammond et al., 1991; Nakayama et al., 1993) 

supporting the hypothesis of a genetic difference in nicotine deactivation between humans and 

animals. 

         

         

Fig 1.2 Nicotine deactivation pathways. Graphical representation of nicotine 

metabolites. Although cotinine is the main metabolite obtained by nicotine 

degradation (75%), it is followed by a wide number of minor compounds (Matta et 

al., 2007).    
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It has also been reported that parameters like urine excretion and half-life time (t1/2) consistently 

change among humans. For example, after liver metabolism a small part of nicotine is excreted by 

kidney through urines, according to their alkaline or acid pH (from 1% to 20% of the total clearance 

respectively) (Matta et al., 2007). Moreover, although the average plasma half-life elimination for 

nicotine requires roughly 2h, it has been shown an increase of the steady state of plasma nicotine 

levels over 8h in regular smokers (Matta et al., 2007).  

However, studies across species have underlined a remarkably nicotine rate of metabolism 

difference, with similarity between non-humans and humans primates (Seaton et al., 1991), but with 

a tendency to observe a faster metabolism in other animals (Gorrod and Jenner, 1975). For example, 

it has been shown that rodents, like rats and mice, have a shorter nicotine plasma t1/2 than primates, 

which is around 45 minutes and 6-7 minutes respectively (Matta et al.2007). 

In addition, other parameters, such as age, sex and ethnic group has been associated to nicotine 

metabolism variability in humans (Benowitz et al., 2002; Schoedel et al., 2004). Also environmental 

factors like stress, pathologies like kidney disorders, infective diseases (A Hepatitis), and some 

drugs like certain anticonvulsivant and oral contraceptives, might influence nicotine metabolism 

through impairing the activity of CYP2A6  (Matta et al., 2007), contributing to complicate the 

relation between nicotine consumption and individual differences. 

 

4. Neural basis of nicotine abuse and addiction  

 

The addictive property of nicotine is obviously the main reason which causes a widespread use of 

tobacco worldwide. The large expression of nAChRs mRNA in the CNS, together with nicotine-

induced increase of DA release in the nucleus accumbens (NAc), guarantee a modulation of the 

brain reward circuitry in response to nicotine administration. Hence, through its effect, nicotine 
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facilitates short- and long-term synaptic modifications leading to abuse and addiction. Furthermore, 

nicotine effect in the CNS is not only related to its rewarding properties, additionally contributing to 

enhance cognitive and locomotor activity.      

 

4.1 Nicotinic acetylcholine receptors: a physiological target for nicotine addiction  

Even though this thesis is not primary focused on nAchRs, nothing, from the body/brain effect of 

nicotine to abuse/addiction liability of this compound, could be really understood unless a 

paragraph is dedicated to them. As previously mentioned, nAchRs belong to the super-family of 

Cys-loop ligand-gated ion channels (McGehee and Role, 1995; Role and Berg, 1996; Albuquerque 

et al., 1997; Wonnacott, 1997; Jones et al., 1999; Dani, 2001; Hogg et al., 2003), selectively 

activated by the neurotransmitter acetylcholine (Ach) and widely localized within the CNS, PNS 

and neuromuscular junction (NMJ). Through their activation, nAChRs allow an intracellular influx 

of positive ions like sodium (Na+), calcium (Ca2+) and potassium (K+) (Taly et al., 2009) inducing 

a wide array of different physiological modification. 

The history related to nAChRs discovery is long and rich of memorable findings, often awarded 

with prestigious prizes. Some of the earliest hypothesis of a receptor-mediated effect of nicotine in 

the PNS came out almost ten years before the Ach discovery by Otto Loewi and Henry H.Dale, and 

is attributed to John Langley (Langley, 1905). Langley’s discovery was followed by several decades 

of enthusiastic research in the field of study of Ach and its binding sites. In fact, during the last 

century the structure of nAChRs was better studied, taking advantage from both the discovery of 

nAChRs expression in the electric organ of the Torpedo Californica, and the discovery related to 

nicotinic receptors binding affinity of α-bungarotoxin (Albuquerque et al., 2009).  

Both in the CNS and other tissues, nAchRs are assembled from five transmembrane subunits built 

around a water-filled pore located in the centre (McGehee and Role, 1995; Jones et al., 1999; 
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Karlin, 2002) with a pseudo-crystalline form primarily identified from the above mentioned 

Torpedo electric organ (Unwin et al., 2002; Unwin, 2005) (Fig 1.4a; 1.4d). However, this similar 

structure underlines a consistent difference in subunit composition across diverse organs. For 

example, on NMJ, where nAchRs are mainly located postsynaptically to transduce the motorneuron 

impulse evoked by Ach release, five different subunits have been isolated (α, β, γ and ε/θ) 

assembled each other in the same way (Mishina et al., 1986). On the other hand, within the CNS 

only α and β subunits have been identified, although organized in such a complex way to create 

over than 20 different types of pentameters, either homomeric or heteromeric (Changeux, 2010). 

Thus, this variety of subunits composition reflects a substantial difference in pharmacological and 

kinetic properties of nAChRs (Taly et al., 2009).  

In the CNS, nine types of α (α2-10) and three of β (β2-4) isoforms have been described so far, 

although α8 expression has never been reported in mammals (Gotti and Clementi, 2004; Dani and 

Bertrand, 2007; Albuquerque et al., 2009). Most of these nicotinic receptors subunits are assembled 

in a heteromeric fashion (Karlin, 2002), with a less expression of homomeric nAchRs. A putative 

stoichiometry of heteropentameric nicotinic receptor among different subunit combination has been 

described as 2α:3β (Deneris et al., 1991; Sargent, 1993). Among these possibilities, α4β2 subunit 

and α6β2 represent the most common heteromeric receptors detected in the mammalian brain, 

whereas it is quite ascertain that only α7 and α9 might form homomeric compositions in these 

vertebrates (Anand et al., 1991; Cooper et al., 1991; Vernallis et al., 1993; Gotti et al., 1994; Le 

Novere et al., 1996) (Fig 1.4c).  

Recent studies carried out through mRNA in situ hybridization techniques, have also underlined a 

marked differences both in the distribution and density of different nicotinic subunits throughout the 

mammalian brain, with an higher expression of α4, β2 and α7 and low levels of α2, α5, α6, β3 and 

β4 (Drago et al., 2003; Fowler et al., 2008).   
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Fig 1.3 Structure of nAChRs. (a) nAChR is assembled from five transmembrane subunits with 

a central pore permeable to positive ions, and lateral binding sites for its agonist 

acetylcholine (Ach). (b) Graphical representation of a typical quaternary structure (M1-

M4) of nAChRs. (c) Graphical representation of two of the most important nAchRs: the 

homomeric α7 and the heteromeric α4β2. (d) Side view of an α7 pentamer model 

(Changeux, 2010)  

 

Furthermore, due to the lack of selective agonists and antagonists for specific nicotinic receptors 

subunits, the precise distribution of different nAChRs on precise neuronal populations was largely 

unknown, unless the advantage of new tools was available. Nowadays, through techniques like real 

time-polymerase chain reaction (RT-PCR) combined to in vitro electrophysiological recordings and 
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genetic deletion of specific subunits (see below), different research groups have been investigating 

this topic.  

For example, it is now relatively well-known which are the main subunits expressed on 

dopaminergic neurons of the ventral tegmental area and on excitatory and inhibitory afferents that 

modulate their activation or inactivation (Changeux, 2010) (see below). Additionally, specific 

studies have been carried out on hippocampus cells (Sudweeks and Yakel, 2000), comprising an 

area strongly influenced by nicotine while exerting its cognitive enhancing properties.  

nAChRs subunits have a common structure revealing 4 transmembrane domains (M1-M4) with a 

long N-terminal chain and a less extended C-terminal, both facing the extracellular space (Fig 1.4b) 

(Dani and Bertrand, 2007). The M2 transmembrane domain aligns along the pore at the centre of 

the structure contributing to draw the borders of the ion channel (Dani, 1989; Revah et al., 1991; 

Bertrand et al., 1993; Karlin, 2002). 

Early studies provided evidence of two binding sites for nAChRs agonists, located between certain 

subunits (Karlin, 2002; Sine, 2002) and later, using crystals obtained from the Ach binding protein 

(AchBP) secreted by the Limnaea Stagnalis glial cells, this data has been confirmed with a <2.6 A 

resolution in a three-dimensional structure (Smit et al., 2001). Nonetheless, studies on AchBP, 

whose permeability to agonists is extended to nicotine, Ach, α-bungarotoxin, epibatidine and (+)-

tubcurarine (Karlin et al., 2002), have also contributed to understand which subunits are involved in 

the pharmacological properties of nicotine. For example, in the heterodimer α4β2, Ach binding site 

is located in a small pocket between the adjacent α4 and β2 subunits, suggesting their equal role in 

the modulation of nicotine-induced effects (Dani and Bertrand, 2007). 

Four functional nAChRs-states have been described so far: the resting state, the open state and the 

slow and fast-onset desensitized state (Katz and Thesleff, 1957; Sakmann et al., 1980; Neubig et al., 

1982; Heidmann et al., 1983; Jackson, 1989; Hess, 1993; Edelstein et al., 1996; Auerbach and Akk, 
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1998; Prince and Sine, 1999; Reitstetter et al., 1999; Grosman and Auerbach, 2001). Among them, 

only the open position is functional while the others represent closed states. The presence of a 

nAChRs agonist, such as nicotine, quickly allows a switch of these receptors from a resting state, 

which is stable without agonist, to an open state, and then to a slow or fast-onset desensitization 

(Karlin, 2002). 

Moreover, another common feature of nAChRs is that they are allosteric proteins. Basically, 

nAChRs represent the mainstream model of allosteric protein, since the origin of the name 

―allosteric‖ share with these receptors a common history. In fact, this term was coined by Jacques 

Monod and Francois Jacob in 1961 to qualify an enzymatic nonoverlapping mechanism discovered 

by a young student named Jean-Pierre Changeux (Changeux, 2009), who will have been, some 

years later, one of the most eminent researcher on nicotinic receptors. Henceforth through several 

years of study, mostly carried out by Changeux’s group, it has been demonstrated that nAChRs 

contain multiple binding sites, non-competitive antagonists sites and gates that interact with them 

modifying the quaternary structure of domains (Karlin, 2002). This allosteric property confers to 

these receptors the capability to switch from one state to the others, following different possible 

combinations. This mechanism goes beyond the simple agonist binding and it has been theorized 

and adapted to nAChRs by the Monod-Wyman-Changeux (MWC) model (Monod et al., 1965; 

Changeux et al., 1967; Karlin, 1967, , 2002). Furthermore, through this mechanism some 

compounds might behave as negative or positive effectors on nAChRs in order to modulate its 

activity. For example, 17-β-estradiol and other neurosteroids act as a positive effector on α4β2 

nAChRs (Valera et al., 1992; Paradiso et al., 2001; Curtis et al., 2002), while genistein and src-

family kinases (SFKs) act on α7 to dephosphorilate nAChRs in a different way, drastically 

modifying their Ach-evoked response (Charpantier et al., 2005; Cho et al., 2005).   

It is also worth to mention that nAChRs kinetic varies in relation to the pentamer’s assembly. For 

example, while α7 has a relatively low affinity for Ach, with half-effective concentration around 
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200 µM, α4β2 affinity is higher (low affinity: 62 µM, high affinity: 1.6 µM) (Buisson and Bertrand, 

2001) with some modification produced by repeated exposure to agonists (Sallette et al., 2005; 

Vallejo et al., 2005). As previously mentioned, agonist exposure also produces an inactive state 

known as desensitization. Due to the less affinity of α7-containing neuronal nAChRs to agonists, it 

has been demonstrated they desensitize rapidly after a high concentration of them, whereas α4β2 

have a slower inactivating kinetic (Dani and Bertrand, 2007). On the other hand, nAChRs also show 

a slow desensitization process which involves much more α4β2 subunits, when activated by a 

prolonged lower concentration of agonists, than α7. In this case α7 does not desensitize below 1µM 

concentration of agonist, while α4β2 does it below 0.1 µM (Dani et al., 2000; Quick and Lester, 

2002; Wooltorton et al., 2003). Obviously, the knowledge of this differences in subunit composition 

and desensitization time is crucial to better understand the multifaceted effect that nicotine exerts in 

the CNS. 

Moreover, the localization of nAChRs in the CNS and NMJ slightly differs. In fact, while in the 

NMJ they are mainly located on the surface of muscle cell bodies, in the CNS a number of nicotinic 

receptors are situated on the presynaptic terminal (Sargent, 1993). This surely represents a clever 

route for Ach to modulate different processes within the brain, and to confer a prominent role to 

nicotine as a cognitive enhancing drug. Thus, nAChRs play a role in neurotransmitter release 

(McGehee et al., 1995; McGehee and Role, 1995; Gray et al., 1996; Role and Berg, 1996; Alkondon 

et al., 1997; Lena and Changeux, 1997; Wonnacott, 1997; Radcliffe and Dani, 1998; Jones et al., 

1999; Luetje, 2004; Sher et al., 2004). For example, it has been shown that presynaptic nAChRs on 

glutamatergic terminals facilitate the release of glutamate when activated, contributing to modulate 

several brain functions, including synaptic plasticity (Wonnacott, 1997). Therefore, also nicotine 

application has revealed a high capability to induce the outflow of several neurotransmitters such as 

choline and acetylcholine (Grady et al., 2001), GABA (Alkondon et al., 1997), serotonin (Kenny et 

al., 2000), norepinephrine (Singer et al., 2004), endogenous opioid peptides (Pomerleau, 1998), 



27 
 

excitatory aminoacids (Schilstrom et al., 2000), and dopamine (DA) (Di Chiara and Imperato, 

1988). 

Despite this role, brain nAChRs have been also detected  in the postsynaptic space, to allow a fast 

direct nicotinic transmission, in the preterminal space and onto dendrites, axons and soma (Dani and 

Bertrand, 2007).  

In light of this consideration, nAChRs represent a substrate whose activity is not only related to 

modulate Ach transmission, being involved in several function within the CNS. Since their 

distribution is largely extended to the whole brain, it is obvious that these receptors participate in 

several functions, from learning and memory (Ji et al., 2001; Ge and Dani, 2005) to 

pathophysiological mechanism involved in Alzheimer’s disease, schizophrenia, epilepsy and 

addiction (Lena and Changeux, 1998; Court et al., 2001; Raggenbass and Bertrand, 2002; Dani and 

Harris, 2005). 

 

4.2 Neural effects of nicotine 

Recently, taking advantage of new tools and strategies in neuroscience-related field, it has been also 

clarified which nAChR subunits are involved in specific behaviors. For example, the well-known 

nicotine-induced cognitive and psychomotor enhancing effect and its rewarding properties have 

been studied with genetically modified mice lacking the gene encoding for some nicotinic subunits 

(Changeux, 2010). These results, compared to earlier evidence about the main features of nicotine 

activity in the brain, have enlarged the knowledge about this substance.     

Providing a detailed description of nicotine-induced motor and cognitive enhancing properties goes 

beyond the scope of this thesis, and a pertinent overview of this matter can be found in a number of 

excellent papers and reviews (see for example Changeux, 2010). Under this circumstance, it is only 

worth to underline how specific subunits of the nAChR have been selectively implicated in some 
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aspects of cognitive and motor control. For example, it has been demonstrated that β2 subunit is 

involved in nicotine-induced memory enhancement related to aversive stimuli (Picciotto et al., 

1995; Caldarone et al., 2000; King et al., 2003), social interaction in the resident-intruder test 

(Granon et al., 2003), and modulation of navigation and exploration in an open field paradigm 

(Maubourguet et al., 2008). Moreover, α4 and β3 subunits seem to be involved in spontaneous 

locomotor behavior and acoustic startle response in the prepulse inhibition, respectively (le Novere 

et al., 1999; Cui et al., 2003). Finally, it has been shown that, while α7 modulates the efficiency in 

attentional tasks, β3 is employed in the modulation of seizures (Salas et al., 2004; Young et al., 

2004). 

Despite the role of nAChR subunits in the modulation of locomotor activities and cognitive 

performance, nicotine also elicits an array of modifications in the brain reward circuitry leading to 

nicotine abuse and addiction. Nicotine, as an addictive substance, produces rewarding effects acting 

on the mesolimbic DA circuit, a dense pathway of midbrain projections to forebrain structures and 

cortical areas, which regulates the response to pleasant and unpleasant stimuli. Through its 

connection, this circuit, which is one of the first DA-containing pathway discovered (Marsden, 

2006), ultimately orientates goal-directed behavior.   

Addiction is only the end point of a complex series of brain modification whose features basically 

are: (1) the compulsive drug seeking and voluntary drug intake, (2) the loss of control related to this 

behavior, and (3) the drug consumption despite its side effects (Everitt and Robbins, 2005; Koob 

and Le Moal, 2008). Thus, addiction is a relapsing brain disease which can harmfully interferes 

with the quality of life and individual wellness, also because of the emerging withdrawal symptoms 

when the access to drug is prevented (Koob and Le Moal, 2008). Moreover, after a prolonged 

consumption of an addictive drug, tolerance can be developed, leading the user to increase the rate 

and dose of drug to perceive its psychotropic effect (APA, 2000).     

The activation of the brain reward circuitry by drugs of abuse concerns a wide array of short and 
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long-term modifications which vary in relation to drug exposure, triggering the neural adaptation to 

the substance (Koob and Volkow, 2010). Among these changes, it is now well-known how drugs of 

abuse modulate the synaptic strength and synaptic plasticity in some crucial brain regions, and how 

up- and down-regulation of specific receptors subunits can guide certain adaptations. In fact, 

addictive substances modify specific form of synaptic adjustment named long-term potentiation 

(LTP) and long-term depression (LTD) (Kalivas et al., 2005; Bellone and Luscher, 2006; Kauer and 

Malenka, 2007). Basically, they are two forms of plasticity that allow synaptic strengthening or 

weakening to, ultimately, fine modulate neural circuitries and to adapt behavior to a specific 

environment (Malenka and Bear, 2004). Through a long-lasting impairment of these forms of 

synaptic plasticity drugs of abuse cause addiction (Kasanetz et al., 2010). 

Currently, among different brain areas involved in modulating steps from reward-dependent 

properties of a drug to the compulsive use (addiction), five main circuitries have been isolated. It is 

worth to mention that neuroadaptation of these circuitries follows an engagement in succession 

(Koob and Volkow, 2010), underlining how time-dependent changes are fully implicated in drug 

dependence. Basically, these circuitries make up the ―brain reward circuitry‖ (fig 1.4)  and they are: 

the mesolimbic DA system, the ventral striatum, ventral striatum/dorsal striatum/thalamus circuits, 

dorsolateral frontal cortex/inferior frontal cortex/hippocampus circuitries, and amygdala (Koob and 

Volkow, 2010). 

Specifically, the mesolimbic DA system is a pathway of projections which arises from ventral 

tegmental area (VTA) DA neurons, involving as primary target the NAc, considered as the major 

component of the ventral striatum (Wise and Bozarth, 1987; Koob and Bloom, 1988). The 

activation of this pathway triggers the earliest stages of drug intake, and it is crucially implicated in 

the acute and chronic use of addictive substances. For example, it has been shown that drugs of 

abuse exposure induces short- and long-term modifications in DA neurons firing rate (Bonci et al., 

2003), and that a single in vivo exposure to psychostimulants induces AMPA-mediated LTP on DA 
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neurons (Ungless et al., 2001). The NAc, through its connection to some of the most important 

cortical and subcortical areas (e.g. the prefrontal cortex) (Groenewegen et al., 1999) plays a crucial 

role in the modulation of rewarding properties of natural stimuli and drugs of abuse, thus, directing 

the reward-seeking and goal-directed behaviors (Grace, 2000; Jongen-Relo et al., 2003; Cassaday et 

al., 2005). In fact, it has been shown that several drugs of abuse, including cocaine, morphine, 

nicotine and cannabinoids, through their effects on VTA DA neurons, enhance the release of DA in 

the NAc (Di Chiara and Imperato, 1988), and that DA increase constitutes a biological substrate for 

natural stimuli rewarding properties (Fibiger et al., 1992; Kelley, 2004). In addition, it has been 

reported that specific depletion of DA or DA receptor blockade, induce several deficits in appetitive 

learning, and in approach behavior (Di Ciano et al., 2001; Parkinson et al., 2002; Faure et al., 2005), 

while lesions of the NAc cause disruption in motivated behavior, operant and emotional learning 

and behavioral flexibility (Reading and Dunnett, 1991; Cardinal et al., 2001; Cassaday et al., 2005) 

Further modifications related to addiction have been described, involving the upregulation of NAc 

cAMP pathway and cAMP response element binding protein (CREB) in response to chronic 

administration of opiates and cocaine, whose effect contributes to reduce the rewarding value of 

these addictive substances (Chao and Nestler, 2004).  

It is worth to mention that, despite the apparent simple organization of the VTA-NAc pathway, 

several and additional subdivision have been proposed so far, which highly complicate the 

understanding of the regulation of DA release in the NAc. In fact, beyond the comprehensive 

structural property of the NAc, it is now well-known that this area is divided in two functional 

subregions: the core (CoNAc) and the shell (ShNAc). These two areas play a well-distinct role, 

being the latter much more involved in the early steps of drug of abuse response (Goto and Grace, 

2008), and strongly connected to other emotion-regulating brain areas (Ito et al., 2004). 

Nonetheless, also the architecture of VTA has been separated in distinct regions, whose response to 

drug of abuse administration strongly differs. For example, in an elegant study, Ikemoto et al. 
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(2006) demonstrated that rats self-administer nicotine in the posterior part of the VTA rather than 

anterior (Ikemoto et al., 2006), suggesting a distinct functional organization of these two VTA 

portions.   

 

 

Fig 1.4 Brain reward circuitry and neurociruitry employed in acute response to drugs of 

abuse. Sagittal view of a rodent brain with a schematic representation of the main areas 

involved in the acute response to addictive substance. As marked in red, VTA DA neurons 

work like a maestro of this process, sending projections to several cortical, limbic and 

subcortical areas. Through their connections DA modulates the primary reinforcing 

properties of drugs of abuse. Abbreviations: AC, anterior commissure; AMG, amygdala; 

ARC, arcuate nucleus; BNST, bad nucleus stria terminalis; Cer, cerebellum; C-P, caudate-

putamen; DMT, dorsomedial thalamus; FC, frontal cortex; Hippo, hippocampus; IF, inferior 

colliculus; LC, locus coeruleus; LH, lateral hipotalamus; NAcc, nucleus accumbens; OT, 

olfactory tract; PAG, periaqueductal grey matter; RPn, reticular pontine nucleus; SC, 

superior colliculus; SNr, substantia nigra reticulata; VP, ventral pallidum; VTA, ventral 

tegmental area (Koob and Volkow, 2010).  
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In addition, other theories beyond the DA-hypothesis of reward have been proposed, arguing about 

the exclusive DA enhancement role to modulate reward (Carlezon and Thomas, 2009; Koob and 

Volkow, 2010). However, the latter hypothesis still remains the best investigated, especially when it 

concerns the early stages of drug consumption. In fact, under these conditions, the prolonged and 

unregulated drug-induced DA release contributes to create an habit-learning related to drug-induced 

rewarding effects (Everitt and Wolf, 2002).  

Nicotine, as well as other addictive substances, primarily acts on the mesolimbic/mesoaccumbens 

pathway to activate the brain reward circuitry, whose earliest modification is the increase of DA 

release from the VTA to the NAc. In fact, studies carried out with the intracranial self-stimulation 

(ICSS) in animals have shown that nicotine decreases the ICSS threshold, whereas nicotine 

withdrawal exerts the opposite effect (Epping-Jordan et al., 1998). Moreover, intravenous self-

administration of nicotine is blocked by neurotoxin-specific lesions of mesolimbic DA system 

(Watkins et al., 2000), although other measures appear to act through a DA-independent mechanism 

(Laviolette et al., 2002). Additionally, it has been shown that: (1) systemic nicotine-induced 

increase of DA in the NAc is blocked by intra-VTA infusion of the nAChR antagonist 

mecamylamine (Nisell et al., 1994), (2) infusion of dihydro-β-erythroidine in the VTA decreases 

nicotine self-administration (Corrigall et al., 1994), suggesting a preferential effect of nicotine in 

this area, and (3) specific lesions of the NAc or DA receptors antagonist injections impair nicotine-

mediated reinforcing effects (Corrigall and Coen, 1991; Corrigall et al., 1992).  

To guide these modifications, nicotine acts through a common fashion to other drugs of abuse, 

enhancing the firing rate and burst firing activity of VTA DA neurons (Erhardt et al., 2002; Mameli-

Engvall et al., 2006). Basically, even under physiological conditions, VTA DA neurons exert a 

double pattern of firing activity: (1) a single-spike firing or (2) burst rhythms (Grace and Bunney, 

1984a, 1984b; Kitai et al., 1999). The latter has been associated to a larger DA release, and to the 

expression of immediately early genes within the NAc (Chergui et al., 1996; Chergui et al., 1997). 



33 
 

For this reason, a switch from tonic firing to phasic burst firing is a feature of unexpected reward or 

reward-predicting stimuli (Schultz, 2002). Since VTA DA neurons receive a wide array of 

glutamatergic (from PFC and peduncule pontine nucleus) and GABAergic projections, it has been 

shown how the burst firing modulation is due to the balance between excitatory and inhibitory 

aminoacid release to VTA DA cell bodies, with a crucial involvement of glutamatergic, and also 

cholinergic, afferents (Floresco et al., 2003; Lodge and Grace, 2006). In addition, closer analysis of 

VTA DA firing patterns in mice have revealed four different types of firing activity divided in: (1) 

high firing, high bursts; (2) high firing, low bursts; (3) low firing, low bursts; (4) low firing, high 

bursts (Mameli-Engvall et al., 2006; Changeux, 2010), and it has been demonstrated that these 

differences are due to the activation of different types of nAChR subunits. Hence, nAChRs play a 

crucial role also under physiological condition to modulate the spontaneous activity of mesolimbic 

neurons.        

Taken together, these considerations and findings drew a very complex scenario related to nicotine 

action in the brain reward circuitry, which ultimately directs nicotine addiction. Recent studies with 

knock out and lentiviral reexpressed mice have shed some light to better understand which receptor 

subunits modulate this wide array of both molecular and behavioral modification. 

Since nAChRs are widely expressed in the brain reward circuitry, it is obvious that the ultimate 

effect produced by nicotine depends on the different balance played by distinct subunits involved in 

this mechanism. A detailed schematic description of these subunits on VTA DA neurons and 

afferent projections is reported in fig 1.5. Specifically, different studies have investigated which 

subunit triggers certain physiological behaviors of VTA DA neurons, that represent the crucial start 

point to modulate the response to rewarding stimuli. A well accepted hypothesis, confirmed by 

studies in genetically modified mice, involves a central function of β2 and α7-containing nAChRs 

in the modulation of nicotine reinforcing effects. In particular, β2 subunit is considered as the 

oligomer mainly involved in the neuron switching from a resting to an excited state, and α7 as a fine 
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regulator of excited state after β2-containing receptors activation (Mameli-Engvall et al., 2006). In 

fact, it has been demonstrated that β2
-/-

 mice only show a low-frequency, low-bursting activity 

pattern of VTA DA neurons (Mameli-Engvall et al., 2006). Moreover, VTA DA neurons do not 

respond to nicotine injection (Picciotto et al., 1998). In addition, lentiviral reexpression of β2
-/-

 

subunit in the VTA does not fully restore nicotine-induced excitation (Picciotto et al., 1998), being 

probable that it is necessary a functional activation of β2 also on excitatory projection to the VTA. 

On the other hand, α7
-/-

 mice have only high frequency, high bursting mode of VTA DA neurons, 

and nicotine injection leads to a rapid excitation of these neurons followed by a rapid return to 

baseline activity, also with a tendency to a lower firing activity (Mameli-Engvall et al., 2006).  

This evidence underlines that a concomitant activation of both α7 and β2 is necessary to obtain a 

full expression of events related to nicotine reinforcement (Changeux, 2010). To confirm this 

involvement, other studies have shown that blockade of α7-containing neurons and N-metyl-d-

aspartate receptors (NMDA-Rs) in the VTA diminishes DA release to the NAc (Schilstrom et al., 

1998), and post-mortem human studies have observed an over-expression of α4β2 in smokers brain 

tissue (Benwell et al., 1988; Breese et al., 1997). Moreover, this result on humans has also been 

reported on living patients through Position Emission Tomography (Wullner et al., 2008). In 

addition, comparing systemic administration studies in animals with tobacco smoke, it has been 

reported how the overall excitation of DA neurons and LTP on glutamatergic terminals strongly 

depend to the balance between desensitization of β2 subunit in DA cell body, and enhanced 

glutamate release through α7 stimulation (Pidoplichko et al., 1997; Mansvelder and McGehee, 

2000; Mansvelder et al., 2002; Pidoplichko et al., 2004; Dani and Harris, 2005). This occurs 

because the rate of nicotine after smoking is able to desensitize faster β2 than α7 which are less 

sensitive to nicotine, especially at lower concentration (Wooltorton et al., 2003).  
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Fig 1.5 Localization of nAchRs on VTA DA neurons and its afferent projections. VTA DA 

neurons play a crucial role in the early stage of nicotine response. Nicotine acts in these 

neurons through the widespread localization of different homo- and heteropentameters 

nAChRs. Notably α4β2 subunits have a wider expression than α7 (Changeux, 2010).  

Abbreviations: Ach, acetylcholine; DA, dopamine; Glu, glutamate; LDTg, laterodorsal 

tegmental nucleus; PPTg, pedunculo-pontine tegmental nucleus; VTA, ventral tegmental 

area; PFC, prefrontal cortex; NAc, nucleus accumbens. 

 

However, not only β2 and α7 have been involved in the physiological modulation of VTA DA 

neurons and brain reward circuitry. In fact, also α4 and α6 subunits seem to modulate some aspect 

of nicotine-induced effects in the mesolimbic system. Hence, it has been demonstrated that both α4 

and α6 control striatal DA release by Ach or nicotine injection (Faure et al., 2010). In addition, it 

has been recently observed that α4, but not α6, which is mainly expressed in the terminal regions 

(Exley et al., 2008), is centrally involved in the switch from tonic to phasic VTA DA firing rate 

(Faure et al., 2010).     

Beside this clear effect of some nAChR subunit in the modulation of VTA DA neuron response, 
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other studies have evaluated the role of specific nicotinic subunit deletion using behavioral 

paradigms. For example, it has been demonstrated that mice lacking the β2, α6 or α4 subunits fail to 

self-administer nicotine, whereas α7
-/-

 mice do not (Pons et al., 2008). Interestingly, nicotine self- 

administration is restored when a lentiviral injection elicits the reexpression of β2, α4 and α6 (Pons 

et al., 2008), suggesting a strong involvement of these subunits in the behavioral reinforcing 

properties of nicotine. Furthermore, using intra-VTA infusion of nicotine, it has been shown that β2
-

/-
 mice do not self-administer nicotine while they do it when β2 subunit is reexpressed (Maskos et 

al., 2005). By contrast, α4
-/-

 mice show an initial increase followed by a decrease of intra-VTA 

nicotine self-administration, while  α6
-/-

 do not show any difference to wild type (Maubourguet et 

al., 2008).        

Further studies have also underlined how deletion of α5 or overexpression of β4 enhance nicotine 

self-administration and that β2 subunit efficiency, rather than α7, plays a pivotal role in nicotine-

induced conditioned place preference (Stolerman et al., 2004; Walters et al., 2006). Finally, α4 

knock-in mice show a conditioned place preference with doses of nicotine 50-folds lower than wild-

type (Tapper et al., 2004) and it has been hypothesized that α6 subunit plays a role in mediating the 

rewarding properties of nicotine (Jackson et al., 2009).   

It is, finally, worth to mention how nAChR functionality may influence the chronic administration 

of nicotine and withdrawal symptoms. Since nicotine is an abused substance, it is even more 

interesting to evaluate the role of nAChRs under physiological conditions, which can explain the 

mechanisms at the downstream of nicotine addiction. As mentioned above, chronic administration 

of an addictive drug causes a short and a long-term modification within the brain reward circuitry 

which triggers, together with other events, the switch from abuse to addiction. Nicotine does that 

through a receptor sensitization to subsequent drug exposure (Caille et al., 2009). The molecular 

basis of this process depends on a combination of different molecular changes. Among them a 

possible mechanism might involve an up-regulation, instead of down-regulation typically observed 



37 
 

when other drugs are abused (Gutkin et al., 2006; Kenny and Markou, 2006), of mainly α4β2 

nAChRs in the VTA after a long-term nicotine exposure (Nashmi and Lester, 2007; Govind et al., 

2009). Moreover, it could be possible that a change in presynaptic cholinergic transmission might 

happen to modulate this sensitization process. This second mechanism might involve a balance 

between the decreased involvement of β2 subunits and a compensatory role of the α7 after a chronic 

nicotine exposure (Besson et al., 2007). Finally, also a long-term nicotine-induced reinforcement of 

glutamatergic input from cortical regions to VTA DA neuron has been evaluated (Caille et al., 

2009). Noteworthy, it has been also reported a VTA and NAc up-regulation of glutamate receptors 

after chronic exposure to nicotine which would contribute to the long-term rewarding effect of this 

drug (Ray et al., 2009).                   

Also nicotine-induced withdrawal symptoms have been studied using knockout mice. To 

summarize, it seems that nAChRs act on both somatic and affective symptoms after quitting 

smoking with a prominent role of α2, α5, α7, β4 and β2, α6 respectively (Changeux, 2010).    

In conclusion, even though studies on genetically modified mice represent a promising strategy to 

improve the knowledge on nicotinic subunits involved in specific behaviors, some limitation of this 

model should be taken into account. In fact, it has been reported that deletions in some genes 

encoding for certain subunits cause a compensatory over-expression of other proteins, affecting 

different behavioral measures (Fowler et al., 2008). This occurs especially when the gene 

inactivation is protracted along the physical development. For example, it has been shown that α7
-/-

 

mice exhibit an augmented expression of α3 and α4 subunits,  and that β3
-/-

 show an increase of α6 

(Fowler et al., 2008). Therefore, it is obvious that such kind of unplanned problem may bias against 

the reliability of measures with these models. 
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5. Final remarks  

 

In light of all these considerations tabagism appears to be a distressing problem, not easy to get 

fixed and where a wide amount of variables must be taken into account. The large expression of 

different nicotinic subunits across the brain, combined to several pharmacokinetic and 

pharmacodynamic parameters related to nicotine action in the brain and whole body, should be 

correctly evaluated to make up a pharmacotherapy to treat nicotine dependence. Currently, different 

pharmacological approaches have provided successful results in the treatment of nicotine use 

disorders. Most of them benefit from previously prescribed compounds which were  later approved 

also for nicotine addiction. Among these molecules we can include the antidepressant buproprion 

(used as a first-line therapy), the α2 noradrenergic agonist clonidine and the tricyclic antidepressant 

nortriptiline (both used as second-line therapy) (Ross and Peselow, 2009). In addition, the food and 

drug administration (FDA) have approved a wide array of nicotine replacement therapies such as 

gum, transdermal patch, inhaler etc. (Benowitz et al., 2009) although whose efficiency is quite 

limited. Finally, also the long-acting α4β2 nAChR partial agonist varenicline has been introduced as 

a drug to quit smoking, and to prevent relapse to nicotine during abstinence (Gonzales et al., 2006; 

Jorenby et al., 2006; West et al., 2008).  

Beside these compounds, some studies, either clinical and pre-clinical, are still evaluating the 

therapeutic potential of different drugs such as an immune vaccine and the cannabinoid type 1 

receptor antagonist rimonabant, clinically tested for obesity but now rejected from approval due to 

its severe side effects (Ross and Peselow, 2009). 

The hypothesis of a modulating role played by the manipulation of the endocannabinoid system in 

nicotine addiction is an intriguing topic which is captivating several research groups all around the 

world. In fact, in light of data revealing a co-morbility between tobacco and cannabis use, especially 
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in adolescents (Viveros et al., 2006), and a common neurobiological substrate where cannabinoids 

and nicotine act in the brain, a possible modulatory activity of endogenous cannabinoids on 

nicotine-induced rewarding effects should be carefully taken into account.                 
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Chapter II 

THE ENDOCANNABINOID SYSTEM: FROM CLASSICAL 

CANNABINOIDS TO NUCLEAR RECEPTORS  

  

 

Introduction 

 

The eCb system is a family of lipid molecules, enzymes and receptors whose discovery is relatively 

recent (Jonsson et al., 2006; Marsicano and Lutz, 2006). In fact, despite the old interest on 

Cannabis Sativa active principles, the essential steps which allowed the isolation of specific 

cannabinoid receptors and endogenous compounds occurred within these last 20 years (tab 2.1). 

 

1.Cannabinoid receptors 

 

Once Gaoni and Mechoulam (1964) elucidated the structure of the tricyclic dibenzopyran derivative 

Δ
9
-tetrahydrocannabinol (Δ

9
-THC; THC), the main alkaloid of Cannabis Sativa (Hollister, 1986), 

and Howlett's group in 1988 found a specific binding site for THC in the brain (Devane et al., 

1988), the intriguing possibility that neurons, and other cell lines, could express specific 

cannabinoid receptors quickly captivated more than one research group worldwide. This interest 

became something real when, the so-called cannabinoid type 1 (CB1-R) and cannabinoid type 2 

(CB2-R) receptors were cloned, in 1990 (Matsuda et al., 1990) and 1993 (Munro et al., 1993) 

respectively



41 
 

YEARS Discoveries

<1900 1964-isolation of cannabinoids from Cannabis Sativa (Woods)

1900-1950 1940-eluciadtion and synthesis of cannabinol (Todd)

1950-1970 1964-elucidation structure of THC (Gaoni and Mechoulam)

1970-1990 1984-cannabinoids decreases cyclic adenosine monophosphate (Howlett and Flemming)

1988-THC binding site in the brain (Devane)

1990-clonation of CB1-Rs (Matzuda)

>1990 1992-identification of anadamide (Devane, Mechoulam, Petrwee)

1993-identification and clonation of CB2-Rs (Murno)

1994-development of the first CB1-Rs antagonist (Rinaldi-Carmona)

1994-mechanism of cannabinoid biosynthesis (Di Marzo)

1995-identification of 2-AG (Mechoulam, Waku)

1996-clonation of FAAH (Cravatt)

1997-evidence for AEA transport (Beltramo)

1997-Neurobiology of cannabinoid dependence and withdrawal (Rodriguez De Fonseca)

1999-generation of CB1-KO mice (Ledent)

2000-AEA activates TRPV1 (Zygmund)

2001-modulation of synaptic transmission in the brain by eCbs (Kano, Wilson, Nicol)

2001-evidence about other CB-Rs (Hajos, Ledent)

2003-AEA degradation and anxiety (Kathuria)

2003-clonation of eCbs biosynthesizing enzymes (Bisogno)

TAB 2.1 Brief history of cannabinoid research.  Major breakthroughs on 

cannabinoids and endocannabinoids field of study. Notably the biggest piece of 

evidence about this topic occurred within the last 20 years (>1990).  ((Di Marzo, 

2006) with some modifications). 

 

 

Notably, progresses on this topic also stimulated a worthwhile interest regarding the 

neuropharmacology of cannabinoid receptors which, in 1994, allowed the development of SR 

141716-A (SR, rimonabant) the first and well-studied CB1-R antagonist (Rinaldi-Carmona et al., 

1994). At the state of art, after sixteen years of research, several CB1- and CB2-R agonist or 

antagonist are now available as pharmacological tools (Pertwee, 2008) (Tab 2.2).  
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L iga n d C B 1 K i va lu e (n M ) C B 2 K i va lu e (n M )

CB1 selective agonists

ACEA 1.4; 5.29 19.5; >2000

R-(+)-methAEA 17.9 to 28.3 815 to 868

Agonist without CB1-CB2

selectivity

CP55940 0.5 to 5.0 0.17 to 0.52

R-(+)-WIN55212-2 1.89 to 123 0.28 to 16.2

(-)-Δ
9
THC 5.05 to 80.3 3.13 to 75.3

AEA 61 to 543 279 to 1940

2-AG 58.3; 472 145; 1400

CB2 selective agonists

AM1241 280 3.4

JWH-133 677 3.4

CB1 selective antagonists

SR141716-A 1.8 to 12.3 514 to 13200

AM281 12 4200

AM251 7.49 2290

CB2 selective antagonists

SR144528 50.3 to >10000 0.28 to 5.6

AM630 5152 31.2

 

TAB 2.2 Ki values related to the most used CB-R agonists and antagonists. Data 

shown in this table are related to Ki values of some of the most important CB1 and 

CB2-Rs agonists and antagonists, whose activity has been studied for the 

displacement of [3H]-CP59940 and [3H]-HU-243 from CB-R binding sites (Pertwee, 

2008) 

 

1.1 Structure and localization of cannabinoid receptors 

Both CB1- and CB2-Rs are 7-transmembrane domain Gi-protein-coupled receptors with a 

widespread localization within the human and animal body. Human studies focused on structure of 

these receptors have reported a 44% of similarity in aminoacid sequence between CB1 and CB2-Rs  

with a splice variant of NH2 terminal in CB1 (Kano et al., 2009). In addition, despite evidence 
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suggesting the likely existence of CB1-Rs as homodimers (Wager-Miller et al., 2002), further 

studies have reported the presence of a CB1-heteromer dimerized with the dopaminergic receptor 

type 2 (D2-R) (Kearn et al., 2005; Mackie, 2005). This dimerization allows the formation of a 

CB1/D2 complex that is activated by CB1-Rs stimulation. Nonetheless, even a dimer with the 

Orexin type1 receptor has been proposed (Hilairet et al., 2003). Thus, this dimerization might 

suggest a specific cross-talk between eCb and other systems, whose functional role would be of 

interest in the pathophysiology of specific brain disorders (Kearn et al., 2005).  

 Despite the ubiquitous presence of CB-Rs in the mammalian body, there is a substantial difference 

about the localization of CB1 and CB2-Rs in the CNS and other tissues. In fact, it is now-well 

known that only a scarce amount of CB2-Rs is located in the CNS (mostly in the cerebellum and 

brain stem) (Van Sickle et al., 2005; Ashton et al., 2006), with a great abundance at the surface of 

immune cells (T and B cells, microglial cells), spleen, tonsils and peripheral tissue (Munro et al., 

1993; Galiegue et al., 1995; Piomelli, 2003). On the other hand, CB1-Rs expression is higher in the 

CNS (Howlett et al., 1990; Herkenham et al., 1991) rather than other tissues (muscles, liver, 

gastrointestinal tract, adipose tissue and pancreas) (Batkai et al., 2001). In the brain, CB1-Rs 

represent the most abundant Gi-protein-coupled receptor found (Rodriguez de Fonseca et al., 2005) 

and through their activation, cannabinoids exert their psychotropic effect and eCbs their 

physiological properties (Ledent et al., 1999; Elphick and Egertova, 2001). Early animal studies 

with the synthetic cannabinoid radioligand [3H]-CP55,940 reported an high level of CB1-Rs in 

regions like the innermost layers of the olfactory bulb, CA3 of the hippocampus, lateral part of the 

striatum, globus pallidus, substantia nigra pars reticulata, and cerebellar molecular layer 

(Herkenham et al., 1990; Herkenham et al., 1991; Mailleux and Vanderhaeghen, 1992). In contrast, 

moderate and low levels of these receptors have been found in the cerebral cortex, septum, 

amygdala, some regions of the hypothalamus, spinal dorsal horn, thalamus, brain stem and spinal 

ventral horn (Herkenham et al., 1990; Herkenham et al., 1991; Mailleux and Vanderhaeghen, 1992). 

Further investigations, carried out after the cDNA-CB1-Rs clonation (Matsuda et al., 1990), have 
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better clarified the cellular localization of these receptors and their mRNA expression through 

immunoistochemistry and in situ hybridization techniques (fig 2.1 a).   

Immunoistochemistry has revealed a double pattern of CB1-Rs mRNA-labeling across the CNS, 

with uniform response in the major neuronal population of the thalamus, striatum (Hohmann and 

Herkenham, 2000), hypothalamus, and cerebellum. Nonetheless, an un-uniform response was 

detected in some cell lines of the cerebral cortex (Marsicano and Lutz, 1999), hippocampus (Katona 

et al., 1999; Katona et al., 2000; Kawamura et al., 2006), and amygdala (Katona et al., 2001; 

McDonald and Mascagni, 2001). Moreover, a distinct dissociation between mRNA expression and 

immunoreactivity has been reported to underline a specific target of these receptors in the 

presynaptic space rather than postsynaptic (Kano et al., 2009), with a much more intense 

accumulation in the presynaptic portion of the axon (Kawamura et al., 2006). Furthermore, it has 

been well-demonstrated that CB1-Rs are preferentially distributed on the top of inhibitory synapse 

depending on specific brain region (Kawamura et al., 2006).   

 

1.2 Functional relevance of cannabinoid receptors and their involvement in signal transduction 

Among the main structural and functional characteristics of CB-Rs, it would be taken into account: 

(1) their critical involvement in the brain development where they control cell differentiation 

(Rueda et al., 2002), and (2) their full preservation throughout evolution (human, rat and mouse 

share 97-97% amino acid sequence identity) (Rodriguez de Fonseca et al., 2005). These features 

suggest that eCbs, through their affinity for CB-Rs, play a central role in cell and system 

physiology. Moreover, beyond their well-ascertained involvement in some physiological states, 

other evidence has underlined that blockade, genetic polymorphism and loss of CB-Rs (especially 

CB1) might be related to certain pathophysiological conditions and that exogenous cannabinoid 

administration might disrupt certain physiological processes. In fact, studies on genetic variants of 

CHNR1 (which encodes for CB1-R) has reported a positive correlation between gene polimorphism 

and a wide array of different pathological state (e.g. Alzheimer's disease, obesity, attentional 
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deficits, schizophrenia) (Kano et al., 2009). Additionally, also a loss of striatal CB1-Rs has been 

recently considered as a key pathogenetic factor for Hungtington’s disease(Blazquez et al., 2010) 

and an agonistic action at the level of CB1-Rs might improve some basal ganglia-related symptoms 

(Fernandez-Ruiz, 2009). 

Basically, cannabinoid receptors activation leads to a signal transduction pathway which inhibits the 

cyclic adenosinemonophosphate (cAMP) formation, causing consequently a decrease of protein 

kynase A (PKA)-dependent phosporylation process (Devane et al., 1988; Howlett et al., 1990). 

Besides the pivotal role of this mechanism, other mechanisms have been proposed to explain the 

CB-Rs signaling. For example, it has been shown that CB1 and CB2-Rs are also coupled to ion 

channels through GolfProtein, whose activation inhibits the Ca
2+

 influx at the level of N-P/Q and L 

Ca
2+

channels (Mackie and Hille, 1992; Twitchell et al., 1997), additionally causing an increase of 

inward rectifying potassium conductance and A current (Mackie et al., 1995) (fig 2.1 b). 

Furthermore, a coupling mechanism between these receptors and different species of intracellular 

cascades (e.g. mitogen activated kinase cascade and phophatidylinositol-3 kinase) have been 

suggested by several studies (Bouaboula et al., 1997; Howlett, 2002).  

Among the modifications caused by CB-R activation, the most important is the suppression of 

neurotransmitter release (Schlicker and Kathmann, 2001). Through this process, eCbs exert their 

specific neuromodulatory effect in the CNS and PNS. To facilitate this mechanism the localization 

of CB-Rs is, preferentially, presynaptic, and their activation depends on eCbs release from the 

postsynaptic neuron (see below). For example, it has been shown that CB1-Rs activation suppresses 

the release of almost all catecholamine (dopamine, norephinephrine, serotonin) (Ishac et al., 1996; 

Cadogan et al., 1997; Nakazi et al., 2000), acetylcholine (Gifford and Ashby, 1996), excitatory and 

inhibitory aminoacids (glutamate, GABA and glycine) (Levenes et al., 1998; Szabo et al., 1998; 

Jennings et al., 2001), and the neuropeptide colecistokinin (Beinfeld and Connolly, 2001), 

providing evidence about its pivotal role in several brain and peripheral functions.  
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Fig 2.1 CB1 expression and mechanism of action. (a). Medial section of a mouse brain 

where it is shown the expression of CB1-Rs through in situ hybridization techniques (source: 

Kano et al., 2009). Abbreviations: AON, anterior olfactory nucleus; Cb, cerebellum; CPu, 

caudate/putamen; DG, dentate gyrus; Hi, hippocampus; M1, primary motor cortex; MO, 

medulla oblonga; Mid, midbrain; NAc, nucleus accumbens; S1, primary sensory cortex; V1, 

primary visual cortex; VP, ventral pallidum. (b) Schematic representation of a typical CB1-

R activation pathway. When activated, CB1-Rs inhibit the adenilate cyclase (AC) activity, 

reducing the formation of cAMP. On the other hand, CB1-Rs activation behaves as a 

positive effector to allow an efflux of potassium (K+) by modulating G-protein-coupled 

inwardly rectifying potassium channel (GIRK), and as a negative modulator of Ca2+ 

channels. 
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1.3 Beyond classical cannabinoid receptors: is there anything else? 

In light of these considerations, at the first glance it seems that CB-Rs might be necessary and 

sufficient to regulate the whole eCb-dependent signaling, being largely widespread in some of the 

most important areas where eCbs act. However, recent and elegant studies have substantially 

disproved the exclusive involvement of these receptors in the modulation of eCb-mediated effects, 

hypothesizing the existence of at least other two subfamilies of CB receptors non-CB1 or CB2 

(Hajos et al., 2001; Hajos and Freund, 2002). Among the putative CBx receptors, it has been 

mentioned the so-called CB3-Rs (Hajos and Freund, 2002; Hajos et al., 2001), the transient receptor 

potential vanilloid type 1 (TRPV1) (Starowicz et al., 2007; Maccarrone et al., 2008), and the orphan 

G-protein coupled receptor GPR55 (Baker et al., 2006; Brown, 2007; Pertwee, 2007). It is worth to 

mention that also the peroxisome proliferator activated receptor (PPAR) has been considered as a 

CBx-R candidate. However, the central role in non-classical cannabinoid transmission of the latter 

receptor will be displayed below. 

 

2. Endocannabinoids: biosynthesis, release and deactivation 

 

Afterward the amazing discovery of CB1-Rs, a group of Israeli and British researchers leaded by 

Raphael Mechoulam reported the existence of the first described endocannabinoid in the brain, 

named anandamide (Devane et al., 1992). The headword anandamide ((5Z,8Z,11Z,14Z)-N-(2-

hydroxyethyl)icosa-5,8,11,14-tetraenamide, N-arachidonoylethanolamide, AEA) reminds the 

Sanskrit word "ananda" which means "bliss, delight", and it has been given in honor of its function. 

In 1995, was the turn of 2-arachidonyl-glicerol (2-AG), the second eCb found (Mechoulam et al., 

1995; Sugiura et al., 1995), and a wide amount of molecules with eCb-like activity has been 

discovered so far (see below). Through their effect on CB-Rs, and sometimes other receptors, eCbs 

exert their neuromodulatory function, providing a regulatory mechanism to guarantee the balance 

between excitatory and inhibitory neurotransmitter action within the nervous system.   
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1 mm

 

Fig 2.2.Molecular structure of AEA and 2-AG 

 

2.1 Synthesis and release of AEA and 2-AG: the fine modulation of eCbs in the brain 

The biosynthetic pathway of AEA and 2-AG is now established, although their involvement in 

other biochemical mechanisms (e.g. the cascade of arachidonic acid) complicates the scenario about 

their synthesis. Different studies have provided a description of some critical passages to obtain 

AEA and 2-AG and how they are deactivated by specific enzymes (see Kano, 2009 for a review). 

Both AEA and 2-AG are derivatives of arachidonic acid coniugated with ethanolamide or glycerol, 

respectively (Rodriguez de Fonseca et al., 2005). AEA is obtained from the 

phosphatidylethanolamide, which through the enzyme N-acyltransferase, in presence of Ca
2+

 and 

cAMP (Cadas et al., 1996; Piomelli, 2003) is transformed in N-arachidonoylphosphatidyl-

ethanolamine (NAPE). The cleavage of NAPE in AEA is obtained through a specific pospholipase 

D (NAPE-PLD), which belongs to the zinc metallhydrolase family of the β-hydrolase fold 

(Okamoto et al., 2004), and whose activity is regulated by depolarization and/or activation of 

ionotropic or metabotropic receptors (Giuffrida et al., 1999; Stella and Piomelli, 2001; Piomelli, 

2003; Cheer et al., 2007). Interestingly, NAPE-PLD mRNA immunoreactivity has been detected 

mostly on postsynaptic sites, contributing to clarify how eCbs exert their effects (see below), 

although also a presynaptic expression of this enzyme has been reported (Cristino et al., 2008; 

Egertova et al., 2008). An overall evaluation of NAPE-PLD mRNA reactivity in the brain has 
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underlined high levels of this enzyme  in the dentate gyrus of hippocampus, the Ammone’s horn, 

cortex, thalamus, hypothalamus and cerebellum (Cristino et al., 2008; Egertova et al., 2008). 

 In contrast, 2-AG synthesis does not only involve a linear pathway, but several arrays of it. The 

main pathway requires a combination of a phospholipase C (PLC) and a diacylglycerol lipase 

(DAG-L) activity. The first step is the PLC hydrolysis of arachidonic acid-containing membrane 

phospolipid to obtain arachidonic acid-containing diacylglicerol. From diacylglicerol the action of 

DAG-L yields 2-AG (Stella et al., 1997; Kondo et al., 1998; Jung et al., 2005). In addition, other 

studies have proposed the involvement of a phospholipase A1 and a lyso-PI-specific PLC (LPIPLC) 

(Ueda et al., 1993; Tsutsumi et al., 1994; Sugiura et al., 1995), which transform phospholipids in 

lysophospholipids (through PLA1) and then to 2-AG (through LPIPLC). Nonetheless, other 

biosynthesis mechanisms have been suggested (see Kano et al., 2009 for a review). 

AEA, whose chemical features resemble that of THC (Ryan et al., 1997; Seltzman et al., 1997), has 

an higher affinity for CB1-Rs (Ki: 89±10nM) than CB2-Rs (Ki: 371±102nM) (Reggio, 2002), 

showing also an affinity for TRPV1 (Ross, 2003). Sustained levels of AEA have been found 

throughout the mammalian brain and peripheral  tissues (Felder et al., 1993; 1996), with highest 

levels in the brain stem and striatum  (Bisogno et al., 1999; Yang et al., 1999). On the other hand, 2-

AG is able to bind both to CB1-Rs (Ki: 2.4µM) and CB2-Rs (Basavarajappa, 2007a), and its effect 

mimic that of THC (e.g. immobility, antinociception, immunomodulation) (Mechoulam et al., 

1995). Additionally, it has been reported that 2-AG brain levels are roughly 200 folds higher than 

AEA. However, the two eCbs display a superimposed distribution in the CNS (highest levels: 

brainstem, medulla, limbic system, striatum) (Sugiura et al., 2002). These higher levels of 2-AG in 

the brain might reflect its predominant involvement, when compared to other eCbs, in the 

modulation of certain cerebral physiological processes.         

Once synthesized, AEA and 2-AG exert their role in the CNS and PNS through a so-called ―on 

demand‖ process, which is peculiar for this class of neuromodulators. 
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The "on demand" (Di Marzo et al., 1994; Cadas et al., 1996)  release of AEA and 2-AG  is a feature 

which involves both a rapid production and a rapid degradation of eCbs, triggering their 

biosynthesis in response to several physiological and pathopysiological stimuli. The purpose of this 

mechanism is to allow a sudden eCb release from the postsynaptic neuron to activate CB-Rs located 

in the presynaptic space and, consequently, to inhibit the neurotransmitter release (Schlicker and 

Kathmann, 2001; Piomelli, 2003). This represents a clever mechanism to influence and modulate 

both the short- and long-term form of synaptic plasticity, especially in some brain regions strongly 

influenced by the role of synaptic re-modeling. For example, in the midbrain, which is crucially 

involved in reward processes and motor control (e.g. the VTA and substantia nigra), eCbs are 

released on demand after different circumstances and through a Ca
2+

-dependent fashion (Melis and 

Pistis, 2007). Some of these events, which trigger the release of eCbs, are: (1) depolarization of DA 

neurons (Melis et al., 2004a), (2) induction of burst firing (Melis et al., 2004b; Riegel and Lupica, 

2004), and (3) stimulation of excitatory afferents (Melis et al., 2004b). Thus, the final step of this 

process is to suppress GABA and glutamate release from projecting areas to midbrain DA neurons, 

modulating their activity and also protecting postsynaptic cells. This mechanism of short-term 

synaptic efficacy modulation has been named differently according to the suppression of GABA, or 

glutamate release. In fact, in the first case it is named depolarization-induced suppression of 

inhibition (DSI) (Llano et al., 1991; Pitler and Alger, 1992) and, in the second, depolarization-

induced suppression of excitation (DSE) (Kreitzer and Regehr, 2001) . DSI was the first mechanism 

recognized, and was primarily isolated in the cerebellum (Llano et al., 1991), whereas the specific 

acronym was given by Pitler and Alger (1992). In fact, they found a particular DSI mechanism in 

the hippocampus, acting through a Ca
2+

-dependent mechanism and that would have involved a 

retrograde messenger, whose primary candidate was glutamate (Pitler and Alger, 1992). Finally, in 

2001 eCbs where found to be responsible of GABA release suppression, since DSI was blocked by 

the CB1-R antagonists SR141716-A, and AM251 or AM281 (Ohno-Shosaku et al., 2001; Wilson 

and Nicoll, 2001). 
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 Additionally, in the same year, Wilson and Nicoll demonstrated that eCb release occurs without the 

presence of a vescicular transport (Wilson and Nicoll, 2001), suggesting a mechanism which differs 

from the classic neurotransmitter behavior. Among other evidence which strongly suggested that 

the messenger responsible for DSI was an eCb, it is worth to mention that: (1) CB1-R agonists 

enhance DSI and selectively reduce the inhibitory post-synaptic currents (IPSCs) in the 

hippocampus and cerebellum (Katona et al., 1999; Hoffman and Lupica, 2000; Takahashi and 

Linden, 2000; Ohno-Shosaku et al., 2001; Wilson et al., 2001; Wilson and Nicoll, 2001); (2) DSI is 

absent in CB1
-/-

 mice (Wilson et al., 2001; Yoshida et al., 2002), and (3) GABA interneurons, 

involved in DSI, express an high level of CB1 in their axon terminals (Katona et al., 1999).  

Afterwards was the hand of DSE discovery, by Kreitzer and Regeher, which includes the same 

aspect of DSI, but acting on glutamate release instead of GABA (Kreitzer and Regehr, 2001). Also 

in this case, different studies have reported: (1) an absence of DSE in CB1-KO mice (Ohno-

Shosaku et al., 2002), (2) a modulatory effect exerted by CB1-R agonists and antagonists (Kreitzer 

and Regehr, 2001; Maejima et al., 2001), and (3) a massive suppression of excitatory post-synaptic 

currents (EPSCs) mediated by eCbs release (Melis et al., 2004b). This mechanism has been studied  

in some brain areas such as the VTA (Melis et al., 2004b), where it seems that eCb-mediated DSE 

is triggered by the activation of D2-Rs in the postsynaptic cell (Melis et al., 2004b). A schematic 

representation of eCb-mediated DSE is reported in fig 2.3.    

Despite the central role played by DSI and DSE in the modulation of eCb-mediated synaptic 

plasticity, also long-term forms of synaptic remodeling have been assigned to eCbs. In fact, 

different eCb-induced LTDs have been described so far, together with heterosynaptic form of LTP 

(where eCbs act indirectly). Throughout these mechanisms the eCb system plays a pivotal role in 

some specific processes which require a long-lasting change in synaptic strengthening, or 

weakening. For example, in the hippocampus, LTD and LTP are critical for  learning/memory 

consolidation and a common feature of cannabinoids, such as THC, is to impair these cognitive 

functions. 



52 
 

                  

 

Fig 2.3.eCb signaling in the brain. Graphical representation of a typical AEA-mediated 

DSE. AEA (green) is produced on demand following the influx of Ca2+ through the 

stimulation of AMPA receptors by glutamate (grey). Afterward AEA is released to bind to 

CB1-Rs located in the axon terminal of presynaptic excitatory afferents. The result is a 

massive inhibition of glutamate release. Afterward, AEA is reuptaken by a putative carrier 

protein (sky-blue) and, then, brought to the postsynaptic space where it encounters a 

FAAH-dependent deactivation process.     

 

 

These long-term changes affect the synaptic strength, involving modifications whose time length 

varies from few minutes to several days, and they include a fine regulation of cellular adaptation 

(e.g.: receptor density; synaptic remodeling) (Piomelli, 2003; Kreitzer, 2005; Chevaleyre et al., 

2006; Safo et al., 2006). LTD has been intensively studied and it represents a typical feature of eCb-

mediated long-lasting effect. Providing a detailed description of eCb-mediated LTD goes beyond 

the scope of this thesis, and excellent reviews on this topic are now available (Heifets and Castillo, 

2009). The first evidence of this modulatory mechanism of synaptic plasticity emerged in 2002 

through studies carried out by Lovinger’s group (Gerdeman et al., 2002) that demonstrated an eCb-
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mediated LTD at excitatory synapses in the dorsal striatum. Further studied have extended the brain 

localization of this mechanism to the NAc (Robbe et al., 2002), amygdala (Marsicano et al., 2002; 

Azad et al., 2004; Chevaleyre et al., 2007), the above mentioned hippocampus (Chevaleyre and 

Castillo, 2003; Edwards et al., 2008; Lafourcade and Alger, 2008), PFC (Lafourcade et al., 2007), 

VTA (Pan et al., 2008) and other areas, where synthesis and postsynaptic release of eCbs trigger 

this specific eCb-mediated plasticity. For example, in the VTA and NAc, whose high relevance for 

this thesis has been already discussed, it has been shown that moderate in vitro stimulations for 5-10 

minutes, evoke an eCb-mediated LTD on inhibitory and excitatory afferents, respectively (Robbe et 

al., 2002; Hoffman et al., 2003; Soler-Llavina and Sabatini, 2006). This effect causes a consequent 

long-lasting reduction of GABA and glutamate release from presynaptic neurons. 

Even though the involvement of the eCb system in drug addiction will be better explained below, it 

is worth to mention that repeated exposures to drugs of abuse modulate eCb-LTD both in VTA and 

NAc (Fourgeaud et al., 2004; Mato et al., 2004; Pan et al., 2008),  underlining a strict relationship 

between the eCb system activation and drugs of abuse-induced long-term effect responsible of the 

switch from abuse to addiction.  

In light of these findings, it seems to be quite established that through these fine mechanisms 

(DSI/DSE, LTP/LTD etc…), the activation of the eCb system guarantees a reliable modulatory 

assemble to regulate several functions in the CNS, which would also include the information 

processing and brain protection to injuries (Melis et al., 2006).             

 

2.2 Transport and metabolism of eCbs 

Similarly to other neurotransmitter systems, eCbs possess a putative reuptake mechanism and an 

array of enzymes which inactivate and degrade them. Currently, little is known about AEA and 2-

AG membrane transporter. In fact, despite the fact that different models have been proposed, a 

specific uptake mechanism has not been found yet. Among them, the highest recognized possibility 

remains the transport of AEA into the postsynaptic cell through a putative carrier protein (Fegley et 
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al., 2004; Ligresti et al., 2004), but also the hypothesis of simple passive diffusion and endocytosis-

induced by a caveolae-related uptake process have been suggested (McFarland and Barker, 2004; 

McFarland et al., 2004). A very recent study carried out by Vincenzo di Marzo's group has 

elegantly provided evidence to the first hypothesis, measuring the activity of TRPV1 channels as 

biosensor of AEA cellular reuptake together with exploiting nanotechnology in TRPV1-

overexpressing HEK-293 cells (Ligresti et al., 2010).   

For what concerns 2-AG, there are less studies focused on the investigation of uptake mechanism. 

Mounting evidence suggests the involvement of the same mechanism discussed above for AEA 

(Beltramo and Piomelli, 2000; Bisogno et al., 2001), or a shared mechanism for AEA and 2-AG 

(Hermann et al., 2006).   

On the other hand, it is quite ascertained that AEA and 2-AG do not share the same metabolizing 

proteins. In fact, two different enzymes have been involved in AEA and 2-AG degradation, named  

fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAG-L), respectively. Although 

the main route to deactivate these eCbs is the hydrolization through the above mentioned enzymes, 

other mechanisms, such as the oxydation by lipoxigenases and cycloxygenases, have been involved 

in endocannabinoids degradation (Kano et al., 2009). 

FAAH, cloned from the rat liver, but identified also in the brain (Cravatt et al., 1996), is a 

membrane-bound enzyme belonging to the family of amidase proteins (Basavarajappa, 2007b). 

FAAH, whose structure comprises a chain formed by 579 aminoacids, is able to recognize an array 

of fatty acids, although AEA is its preferred substrate, hydrolyzing it in arachidonic acid and 

ethanolamine (Kano et al., 2009). Recently, it has been demonstrated a role of FAAH in 

deactivating the n-acylethanolamides (NAEs) oleoylethanolamide (OEA) and palitoylethanolamide 

(PEA) (see below) (Kathuria et al., 2003), whose levels, together with AEA, are drastically 

increased after pharmacological blockade of FAAH by URB597 (Fegley et al., 2005).  In fact, the 

development of genetically modified mice lacking the gene encoding for FAAH (FAAH-knock out, 

FAAH-KO) has shown a more responsiveness to the exogenous administration of AEA in these 
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animals compared to wild type (WT) (Cravatt et al., 2010). Moreover, also an endogenous level of 

AEA and other fatty acid ethanolamines higher over ten folds than control mice has been reported 

in FAAH KO (Cravatt et al., 2001). 

Nonetheless, beside FAAH activity, AEA is also metabolized by other enzymes. In fact, also the 

involvement of cyclooxigenases, such as the COX-2, LOX-2, and the cytochrome P450 has been 

reported as putative inactivating mechanism for AEA (see Basavarajappa, 2007a for a review).  

 On the other hand, MAG-L, first cloned from mouse adipocytes cDNA library (Karlsson et al., 

1997), plays a pivotal role in the degradation of 2-AG, although some studies have underlined a 

circumscribed FAAH capability to hydrolyze this eCb (Di Marzo et al., 1998). MAG-L, whose 

expression has been found in many tissues and cells, works metabolizing 2-AG  in arachydonic acid 

and glycerol (Beltramo and Piomelli, 2000; Maccarrone et al., 2001), and it is formed by 303 

aminoacids in several species of animals and in humans (Karlsson et al., 1997; Karlsson et al., 

2001). Further information about the critical steps to 2-AG deactivation and metabolism can be 

found in several excellent reviews (Basavarajappa, 2007b). In addition, it is worth to mention that a 

substantial difference between site of action of FAAH and MAG-L has been reported. In fact, while 

FAAH activity is concentrated in the postsynaptic terminal, which requires a transport of eCbs from 

the presynaptic membrane to the postsynaptic space, MAG-L acts within the presynaptic membrane 

(Choi and Lovinger, 1997; Dinh et al., 2004). This evidence suggests that MAG-L has a role in 

terminating retrograde signaling at presynaptic neurons (Kim and Alger, 2004).    

 

3. Not only anandamide: toward the discovery of new endocannabinoids 

 

As already mentioned, the discovery of CB-Rs has not definitely closed the discussion to the 

beguiling world of receptors activated by eCbs. The hypothesis of the so-called CBx, or CB3-R, and 

the suggested involvement of TRPV1 as binding site for the eCb AEA, combined with unfitting 
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studies carried out in knock-out mice for the CB1-Rs, have disproved the exclusive role of classic 

cannabinoid receptors in eCb-mediated signaling (Wiley and Martin, 2002).  

In addition, mounting evidence about the not exclusive affinity of CB1 and CB2-R agonist for their 

respective binding sites, have underlined the possibility that other systems and oligomers might 

interact with the classic eCb system to complicate its profile of action in the CNS and PNS. For 

example, it has been shown that, at concentration of 1 µM, AEA activates TRPV4 and blocks 

TRPV8, while HU-210 and CP55940 act as agonists of the orphan receptor GPR55 (Pertwee, 

2008). In addition, there is evidence about the presence of non-CB1/CB2 or V1-Rs in the brain, 

which can be activated by methAEA and the synthetic cannabinoid WIN55212-2 (Pertwee, 2008).  

Moreover, despite the well-characterized presence of AEA and 2-AG in the brain, other eCb-like 

molecules have been described in the CNS and PNS. Among them, other eCbs are the 2-

arachidonyl-glyceryl ether (nolandin, 2-AGE), O-arachidonyl-ethanolamine (virodhamine), N-

arachidonyl-dopamine (NADA), dihomo-γ-linoleonyl ethanolamide, and docostetraenoyl 

ethanolamide (Hanus et al., 1993; Hanus et al., 2001; Huang et al., 2002; Porter et al., 2002).  

In particular, a recent interest has been dedicated to OEA and PEA (fig 2.2), two NAEs, whose 

pharmacological profile remained elusive until the discovery of their agonistic action on a family of 

nuclear receptors and transcription factor known as peroxisome proliferator activated receptors 

(PPARs) (Fu et al., 2003).  

 

3.1 n-acylethanolamides, cognate molecules of classic encocannabinoids 

Even though the interest for these compounds has grown up in these years, PEA and n-

acylethanolamides were already known several decades ago, when it was found that PEA had an 

antinflammatory activity in guinea pig, and it was present in peanuts, soybean and egg yolk 

(Hansen, 2010). Additionally, early studies provided the existence of these NAEs as endogenous 

compounds in the mammalian brain (Bachur et al., 1965).   
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OEA and PEA share with AEA a common metabolizing substrate, which is the FAAH enzyme, and 

it has been demonstrated that pharmacological blockade of FAAH by the irreversible inhibitor 

URB597 increases the levels of both AEA and OEA/PEA (Kathuria et al., 2003) (see above). 

OEA and PEA, as well as AEA, belong to the family of NAEs, representing a monounsaturated and 

saturated form of them, respectively. The most peculiar feature of these endogenous NAEs is that 

they are devoid of cannabinoid-like activity, being ineffective either on CB1 or CB2-Rs,  and 

sharing affinity for the α-type PPAR (PPAR-α) (O'Sullivan, 2007). Furthermore, even PPAR-α was 

considered an orphan receptor for a long time unless it has been discovered its affinity for OEA and 

PEA (Pistis and Melis, 2010).  

Recently, a large interest has been dedicated to a putative cross talk between the eCb system and 

PPAR activation in the modulation of several brain functions. 

To corroborate this hypothesis, different studies have demonstrated that CB-R agonists and PPAR 

ligands play an opposite effect each other in the regulation of certain physiological aspects. For 

example, weather it is well-known the appetite stimulant properties of the CB1-R agonist THC 

(Fride et al., 2005), OEA activity is implicated in appetite suppression and weight loss (Fu et al., 

2003). Moreover, while THC and CB1-R agonists negatively modulate learning and memory 

(Sullivan, 2000; Davies et al., 2002), OEA and PEA are involved in different aspects of memory 

enhancement (Campolongo et al., 2009; Mazzola et al., 2009). Nonetheless, other studies have 

suggested a co-activation of these two parallel systems in the modulation of specific response both 

in the CNS and PNS. In fact,  it has been recently reported that several CB1-Rs agonists exert their 

neuroprotective action through activation of PPAR-α (Sun et al., 2006; Sun et al., 2007). 

Furthermore, NAEs significantly contribute to the anti-nociceptive and anti-inflammatory action of 

endocannabinoids (LoVerme et al., 2006; Jhaveri et al., 2008; Sagar et al., 2008). In addition, an 

intriguing synergistic effect between CB1-R activation and PPAR-α have been suggested to explain 

the cognitive enhancing properties of the FAAH inhibitor URB597 (Mazzola et al., 2009).  
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Fig 2.3 Non-classical eCbs and biosynthesis of NAEs. (a) Among the large family of eCb-

like molecules, a current specific interest has been dedicated to oleoylethanolamide 

(OEA) and palmitoylethanolamide (PEA), whose chemical structure is represented in this 

panel. (b) Different enzymatic pathways for formation of n-acylethanolamide (NAE) from 

n-acylphosphatidylethanolamine (NAPE) (Hansen, 2010). Although different pathways are 

involved in NAE formation, the most studied remains the NAPE-PLD-dependent process. In 

addition, NAEs can be also syntesized through a phospholipase C (PLC)-, a phosphatase- 

and a phospholipase B (Abh4)+phosphodiesterase (GDE1)-dependent process. NAEs can 

be hydrolyzed by a fatty acid amide hydrolase (FAAH), or a NAE-hydrolyzing acid 

amidase (NAAA). 
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NAEs, whose presence has been reported in the brain with a concentration in the rat CNS around or 

above 100 pmol/g each  (Hansen, 2010), share with AEA a lipophylic structure with high log P 

values. The latter parameter gives a reason to their low solubility in water (OEA=6.12±0.64; 

PEA=5.56±0.58) (Bojesen and Hansen, 2003). NAE synthesis and catabolic process occur 

independently of classical eCbs, and crucial stimuli at the upstream of their biosynthesis are not 

fully understood (Pistis and Melis, 2010). Some evidence suggests that, similarly to AEA and 2-

AG, these molecules are released on demand in response to certain physiological processes 

concerning injuries and inflammation (Hansen et al., 1997), contributing to modulate physiological 

response to external threats. The main biosynthesis pathway of OEA and PEA is basically the same 

observed and discussed for AEA (see above), involving NAPE-PLD (Pistis and Melis, 2010) (fig 

2.3). 

Interestingly, NAPE-PLD
-/-

 mice show a reduction in Ca
2+

-dependent conversion of NAPE to NAEs 

(Hansen and Diep, 2009) with a decrease in OEA and PEA levels, but not AEA (Leung et al., 

2006), suggesting an involvement of parallel systems and/or compensatory adaptation for AEA 

biosynthesis in this mouse strain. In addition, since it is well-known that NAPE-PLD mRNA 

immunoreactivity (see above) has been highly reported on postsynaptic space, it is possible that 

NAE synthesis might be functional to allow an autocrine signaling on PPARs expressed in the same 

cell, although they can also act as modulator of synaptic plasticity once produced in the presynaptic 

axon terminal (Pistis and Melis, 2010).  

Finally, even though it has been already mentioned that FAAH represents the main metabolic 

substrate for NAEs (see above), at least other 2 enzymes have been considered capable to deactivate 

these molecules: FAAH-2 and NAE-hydrolyzing acid amidase (NAAA) (Tsuboi et al., 2005; Wei et 

al., 2006).     
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3.2 Nuclear receptors: new targets for endocannabinoid-like molecules 

As already cited, the affinity of OEA and PEA is basically confined to PPARs, showing no binding 

properties on CB-Rs. In fact, although it is still under evaluation the possible involvement of other 

receptors not fully characterized (e.g. GPR55) (Borrelli and Izzo, 2009; Godlewski et al., 2009) in 

OEA and PEA-mediated effects, PPARs obviously represent the most studied biological target to 

understand where NAEs act. 

The PPAR subfamily is composed in three isoforms: α, γ, and β/δ, whose encoding genes are 

separated. Belonging to the family of nuclear receptors, PPARs possess a modular structure with 

two different domains: (1) a DNA-binding domain and (2) a large ligand-binding domain which 

interacts with a  great number of different ligands (e.g. fatty acids, NAEs, eicosanoids, antidiabetic 

synthetic agonists thiazolidinediones and fibrates) (Laudet et al., 1992; Escriva et al., 1998; 

Desvergne and Wahli, 1999).  Binding studies have confirmed that OEA has an higher half-

maximal concentration (EC50) for PPAR β/δ than α (1.1 µM vs. 120 nM), being much more active 

on the latter and showing no effect on γ subfamily of PPARs (Fu et al., 2003). By contrast, PEA 

shows affinity only for PPAR α (3 µM), but not for PPAR γ and β/δ (Bouaboula et al., 2005; Lo 

Verme et al., 2005). Also AEA has been reported as a putative PPAR-α and γ agonist, although 

studies have been carried out only through in vitro techniques and in transfected systems (Sun et al., 

2007). 

Providing a full description of PPAR activity in the brain, where the localization of these receptors 

(especially PPAR α) is ubiquitous (Moreno et al., 2004), is beyond the scope of this thesis. 

However, recent reviews have been focusing on this topic (see Pistis and Melis, 2010 for a review). 

In this section it is only worth to mention that PPAR-α is a lipid sensor implicated in the 

metabolism of fatty acids (Pistis and Melis, 2010). Thus, PPAR-α is expressed in several tissues 

involved in the regulation of metabolic aspect such as kidney, liver, brown fat, CNS (Braissant et 

al., 1996; Mandard et al., 2004; Moreno et al., 2004; Galan-Rodriguez et al., 2009), and in other cell 

lines (e.g. monocytes, vascular endothelium) (Chinetti et al., 1998) where its presence is mainly 
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involved in the negative modulation of inflammatory response. By contrast, γ-type PPAR 

participates in the regulation and expression of DA-Rs and DA signaling, neuroprotection and 

inflammation, while β/δ line is involved in homeostasis control, reproductive capacity in females, 

tissue repair, and cell proliferation (Wang et al., 2003; Michalik et al., 2006). Taken together, these 

studies provide an interesting profile of these receptors in the regulation of several physiological 

functions, mainly connected with metabolism. 

Similarly to other members of the nuclear receptor family, they mainly act as gene transcription 

regulators (Berger and Moller, 2002), with a tendency to develop conformational changes 

promoting the association of coactivators and corepressor proteins (Pistis and Melis, 2010). Briefly, 

they take part in gene transcription with an heterodimerization with the retinoid X receptor (RXR) 

and then binding to specific regions of the DNA called ―peroxisome proliferator response element‖ 

(PPRE). In addition, beside this conventional genomic effect of PPARs, it has been suggested also a 

non-genomic effect responsible of short-term modification induced by receptor activation (Gardner 

et al., 2005; Ropero et al., 2009). 

Some studies have provided evidence of this non-genomic mechanism. Among them it has been 

shown that (1) PPAR activity is still conserved in presence of protein and mRNA synthesis inhibitor 

(Ropero et al., 2009), (2) they possess a rapid onset (2-5 min) (Ropero et al., 2009) and (3) PPAR 

activation induces production of cytosolic effectors such as reactive oxygen species (Melis et al., 

2008). 

 

4. Endocannabinoids from reward to addiction: do they play a role in the mesoaccumbens 

pathway? 

 

In light of previous considerations, at a first glance it seems that eCb-mediated fine modulatory 

action might be an intriguing topic, when it concerns complicated phenomena like drug abuse and 

addiction. In the first chapter some space was dedicated to draw the hallmarks of the brain reward 
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circuitry and the main steps that trigger drug dependence. Furthermore, already in the introduction it 

was highlighted how the manipulation of the eCb system might modulate drug-induced effects in 

some specific areas related to responses to pleasurable stimuli.      

Recently, interest has been dedicated to the putative role of the eCb system in the midbrain DA 

neuron physiology, where it might play a pivotal function in rewarding processes and addiction. It 

has been already reported how the activation of the so-called brain reward circuitry is crucial in 

early stages of reward seeking and goal-directed behavior. In addition, it has also been underlined 

how a malfunction of this system could trigger drug dependence.  

The first evidence of a cannabinoid action in the VTA and in the neighbor substantia nigra pars 

compacta (SNc) arises from the effect of the exogenous CB1-R agonist THC, acting on VTA DA 

neurons as an abused substance (French et al., 1997; Gessa et al., 1998). This effect was mimicked 

by the CB1-Rs synthetic agonist WIN 55212-2. Both of them cause an increase of VTA DA neuron 

firing rate and bust firing, which allows an enhancement in DA release from the VTA to its 

projecting areas such as the NAc (Tanda et al., 1997; Cheer et al., 2004) and prefrontal cortex 

(Chen et al., 1990; Pistis et al., 2002b).  

Since the levels of CB1-R  mRNA in the VTA and SNc are low (Herkenham et al., 1991; Matsuda 

et al., 1993), it has been suggested that exogenous synthetic and natural agonists act on DA neurons 

through a CB1-Rs mediated inhibition of GABA and glutamate release from inhibitory and 

excitatory projections, respectively (Mechoulam et al., 1995; Marsicano and Lutz, 1999). This 

represents the already mentioned eCb-mediated DSI and DSE, whose functional relevance was 

already described. To confirm this hypothesis, several electrophysiological studies have indirectly 

demonstrated that inhibitory and excitatory projections to mesolimbic DA neurons express CB1-Rs 

(Melis et al., 2004b; Melis et al., 2004a; Riegel and Lupica, 2004), and that perfusion of CB1-Rs 

agonists depresses excitatory and inhibitory post-synaptic currents on VTA DA neurons (Szabo et 

al., 2002; Melis et al., 2004a; Marinelli et al., 2007). Moreover, direct evidence of CB1-R 
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expression on GABAergic terminals was reported by studies carried out through electron 

microscopic investigation (Katona et al., 1999).  

 

              

1 mm

 

Fig 2.3 localization of CB1-Rs in the brain reward circuitry. The eCb system is considered as 

a suitable candidate to modulate the brain reward circuitry response to pleasant stimuli, 

such as those produced by administration of drugs of abuse. In this graphical 

representation CB-Rs are preferentially located at the top of excitatory and inhibitory 

presynaptic buttons which project to the mainstream neurons of the mesocorticolimbic 

system. Abbreviations: BLA, basolateral amygdala; HIP, hippocampus; NAc, nucleus 

accumbens; VTA, ventral tegmental area; PFC, prefrontal cortex (Maldonado et al., 2006) 

 

 

In addition, it has been elegantly shown that DA neurons release eCbs after depolarization induced 

by the enhanced Ca
2+

 postsynaptic influx (Melis et al., 2004b; Riegel and Lupica, 2004) and that, 

among different eCbs implicated in this mechanism, 2-AG plays a more relevant role than AEA 

(Melis et al., 2004b). 
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Moreover, it has been demonstrated that the eCb system exerts a modulatory effect beyond the VTA 

to regulate the whole activity of the mesoaccumbens pathway. In fact, electrophysiological studies 

in rats have shown that both THC and synthetic cannabinoids depress BLA and PFC-evoked 

excitation of GABAergic medium spiny neurons (MSNs) of the ShNAc (Pistis et al., 2002a), which 

represent a common feature of drug of abuse administration. Nonetheless, it has been clearly 

elucidated that eCbs are necessary to induce LTD in the NAc and neostriatum, taking part in the 

critical steps from reward-dependent drug intake to compulsive consumption (Gerdeman et al., 

2002; Robbe et al., 2002; Robbe et al., 2003).  

Several studies have also demonstrated that the eCb system modulates drug-induced response in the 

reward pathway, providing evidence regarding its possible role in the pharmacotherapy of addiction 

(Parolaro and Rubino, 2008). For example, it has been clearly elucidated that the eCb system 

interacts with the rewarding properties of some, but not all, drugs of abuse. In fact, it has been 

shown that cannabinoids attenuate both morphine and methadone withdrawal signs while SR 

141716-A (SR, rimonabant) precipitates morphine abstinence in addicted rats (Hine et al., 1975; 

Vela et al., 1995; Yamaguchi et al., 2001; Del Arco et al., 2002; Maldonado, 2002). Moreover, an 

interplay between opioid and eCb system has been confirmed by studies showing that the opioid µ-

antagonist naloxone precipitates abstinence in THC-tolerant rats (Kaymakcalan et al., 1977), and 

that SR-precipitated withdrawal is attenuated by morphine (Lichtman et al., 2001). Moreover, using 

self-administration (SA) and conditioned place preference (CPP) paradigms in animals, it has been 

demonstrated that (1) CB1
-/-

 mice do not show morphine-induced CPP and SA at a dose capable to 

induce rewarding effects in WT (Ledent et al., 1999; Martin et al., 2000; Cossu et al., 2001), and (2) 

the same effect was observed treating rats with the CB1-R antagonist SR  (Navarro et al., 2001; De 

Vries et al., 2003; Fattore et al., 2003). Finally, a cannabinoid-dependent mechanism has been 

reported in the reinstatement of heroin seeking behavior after a long period of abstinence (Fattore et 

al., 2003).  In line with these findings, which tend to be less compelling across different studies as 

concerns CPP in CB1
-/-

 (Parolaro and Rubino, 2008), also opioid receptor KO mice do not show 
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rewarding response to THC (Castane et al., 2003). Furthermore, even the involvement of the eCb 

system in alcohol dependence has been evaluated. In fact, using a genetically selected strain of 

animals called Sardinian Preferring (SP) rats, it has been shown that SR blocks the voluntary 

alcohol consumption in these animals (Colombo et al., 1998) and that SP rats show a spontaneously 

reduced eCb-mediated DSI with a general less effect of CB1-Rs agonists on GABA IPSCs as 

compared with controls (Melis et al., 2009). In addition, electrophysiological studies on BLA 

glutamatergic neurons have demonstrated that SR prevents ethanol-induced inhibition on these 

neurons, underlining an active involvement of CB1-Rs on alcohol-mediated effects in this 

subcortical area (Perra et al., 2008).     

On the other hand, these results have not been replicated with cocaine and psychostimulants, 

leading to a controversial argumentation about the ineffective role of the eCb system in the 

modulation of cocaine and amphetamine-induced response in the VTA. In fact, although cocaine 

and amphetamine-induced SA and CPP are not blocked by either SR or genetic deletion of CB1-Rs 

(Martin et al., 2000; Cossu et al., 2001; Braida et al., 2005; Lesscher et al., 2005) and CB1-Rs 

blockade does not prevent cocaine-induced increase in DA release in the NAc (Soria et al., 2005), 

other investigations have reported opposite results. For example, according to some studies the eCb 

system plays a pivotal role in the acquisition of an operant response to self-administrable cocaine 

(Soria et al., 2005), SR is able to revert the breakpoint of cocaine-SA in rats under long access 

sessions (Orio et al., 2009) and SR has a preventive effect on cue and drug induced relapse to 

cocaine (De Vries et al., 2001; Filip et al., 2006; Wiskerke et al., 2008).    

In addition, in recent years the possibility that eCb system manipulation might interfere also with 

nicotine-induced rewarding effects in animals and humans was also evaluated. This possibility has 

attracted attention, since both THC and nicotine are usually taken in combination by humans, and 

that reciprocally can interact with each other in several behavioral paradigms and physiological 

processes. For example, interactions between THC and nicotine were studied on locomotion, 

anxiety, nociception and heart rate (Pryor et al., 1978; Valjent et al., 2002) and it was also reported 
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that nicotine potentiated some THC-induced effects such as hypothermia, bradycardia (Pryor et al., 

1978) and anxiolitic-like responses (Valjent et al., 2002). In addition, it was shown that co-

administration of THC and nicotine leaded to an higher enhancement of c-Fos immunoreactivity in 

some of the most important areas of the brain reward circuitry (e.g. ShNAc, BNST, basolateral 

amygdala) (Valjent et al., 2002).  

 Furthermore, it was postulated a type of interaction between the eCb system and nicotine addiction. 

This hypothesis has been strengthened by results showing a rewarding effect of co-infusion of 

subthreshold doses of THC and nicotine using CPP measures (Valjent et al., 2002) and that THC 

reduced the incidence of withdrawal signs caused by nicotine (Balerio et al., 2004).  

Moreover, in line with results obtained with morphine, it has been demonstrated that CB1-KO mice 

do not show any CPP for nicotine and that nicotine-induced CPP is blocked by the administration of 

SR (Le Foll and Goldberg, 2004). Conversely, other high impact studies have ruled out the 

involvement of CB1-Rs in nicotine SA under fixed-ratio schedule (Cossu et al., 2001; Castane et 

al., 2002). These findings seem to be in sharp contrast to other evidence about the action of 

rimonabant on nicotine-induced behavioral effects, and nicotine-induced DA release in the ShNAc 

(Cohen et al., 2002; Cohen et al., 2005; Cheer et al., 2007).   

Finally, very recently it has been shown that pharmacological manipulation of the eCb system, 

through the inhibition of FAAH by URB597, negatively modulated nicotine-induced behavioral 

effects such as the CPP, SA and nicotine-induced DA release in the ShNAc (Scherma et al., 2008), 

thus, opening a new avenue in the study on how eCbs modulate drug addiction. 

As mentioned before, one of the most intriguing characteristic of FAAH activity and its 

pharmacological inhibition is the capability to modulate the endogenous levels of NAEs and eCbs 

like AEA. Since FAAH blockade  not only elevates AEA, but also NAEs levels (e.g. OEA and 

PEA) it is possible that at least a part of URB597 effect might  be ascribed to NAEs rather than 

AEA, raising an interesting perspective in the pharmacological treatment of tobacco addiction.      
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5. Final remarks and purpose of our study 

 

At  first glance, all these findings underline a possible role of eCbs in the common neurobiological 

mechanism underlying drug addiction. As a matter of fact, beside the vast literature focused on 

eCbs, a current interest on the interaction between the eCb system and the effect of addictive 

substances is growing up. One reason which explains this specific attention might be ascribed to the 

lack of pharmacological strategies to treat an insidious and relapsing disorder like drug addiction. 

Hence, the possibility that manipulation of an endogenous system modulates drug-induced response 

might represent a new avenue for drug development. 

As previously mentioned (chapter I), nicotine dependence might be a suitable candidate to test this 

possible involvement. This is due to different reasons, most of them discussed above, including 

previously described encouraging results obtained with CB1-R antagonists. 

Even though in the present study it was first evaluated the actions of rimonabant on nicotine-

induced excitatory effects on VTA DA neurons, we subsequently moved to the pharmacological 

inhibition of FAAH enzyme, since previous findings had shown a unexpected effect of URB597 on 

nicotine action (Scherma et al., 2008). Next, we focused on MSNs of the ShNAc, which are the 

main targets of DA released by VTA neurons, to evaluate whether FAAH inhibition modulates 

nicotine’s action on these cells. To this aim, we carried out in vivo single unit extracellular 

recording from VTA DA neurons and MSNs of the ShNAc in urethane anaesthetized  rats. Our 

results showed that FAAH inhibition modulates nicotine effects both in the VTA and in the NAc. 

Furthermore, we discovered that NAEs, rather than classical endocannabinoids, are involved, 

suggesting the possibility of an intriguing cross talk between CB1-R and PPAR-α activation. These 

results have been sequentially presented under abstract form in several conferences (e.g. Luchicchi 

et al., 2008; 2009a; 2009b; 2009c; 2010), and in three peer reviewed articles (Melis et al., 2008; 

Luchicchi et al., 2010; Mascia et al., 2010) (see appendix). 
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Chapter III 

MATERIALS AND METHODS 

 

 

Experiments were performed in strict accordance with the Guidelines for the Care and Use of 

Mammalian  in Neuroscience and Behavioral Research (National Research Council 2004) and EEC 

Council Directive of 24 November 1986 (86/609). We made all efforts to minimize pain and 

suffering, and to reduce the number of animals used. Male Sprague Dawley albino rats (250–350 g) 

(Harlan) were housed in groups of three to six in standard conditions of temperature and humidity 

under a 12 h light/dark cycle (with lights on at 7:00 A.M.), with food and water available ad 

libitum.  

 

1. Experiments in the VTA 

 

Animals were anaesthetized with urethane (1300 mg/kg, i.p.), their femoral vein was cannulated for 

intravenous administration of pharmacological agents, and they were placed in the stereotaxic 

apparatus (Kopf) with their body temperature maintained at 37±1°C by a heating pad. Thereafter, 

the scalp was retracted and two burr holes were drilled above the VTA (-6.0 mm anteroposterior 

from bregma, 0.3-0.6 mm lateral from midline) for the placement of a recording electrode and 

above the medial part of the ShNAc (+1.5 mm anteroposterior from bregma; 1 mm lateral from 

midline) for the placement of stimulating electrode. Since only cells identified as projecting to the 

ShNAc were isolated, we delivered electrical stimuli from the ipsilateral medial ShNAc through a 

formvar-coated stimulating stainless steel bipolar electrode (250μm tip diameter) (fig 4.1). 

For intracerebroventricular drug administration, a guide cannula (23 gauge stainless steel) was 

placed into the ventricle ipsilateral to the recording side (1.0 mm posterior, 1.4 mm lateral to 

bregma and 4.0 mm ventral to the cortical surface). Structures were localized according to the 



69 
 

stereotaxic atlas of Paxinos and Watson (1997). Intracerebroventricular injections were made 

through a prefilled inner cannula (30 gauge stainless steel tubing) connected to a 50 µl Hamilton 

microsyringe, and extending 1.0 mm below the tip of the guide into the ventricle. Infusion rate was 

set at 2.5 µl/min by an electrically driven mini-pump. 

Single unit activity of neurons located in the VTA (V 7.0–8.0 mm from the cortical surface) was 

recorded extracellularly with glass micropipettes filled with 2% pontamine sky blue dissolved in 0.5 

M sodium acetate (impedance 2–5MΩ). Single unit activity was filtered (bandpass 500–5000 Hz), 

and individual spikes were isolated by means of a window discriminator (Digitimer), displayed on a 

digital storage oscilloscope (TDS 3012, Tektronics), and digitally recorded. Experiments were 

sampled on line and off line with Spike2 software (Cambridge Electronic Design) by a computer 

connected to CED 1401 interface (Cambridge Electronic Design). Single units were isolated and 

identified according to already published criteria (Grace and Bunney, 1983, , 1984a; Ungless et al., 

2004). To evaluate their selective projection to the ShNAc, we deliver a 1Hz electrical stimulation 

through the stimulating electrode to observe an antidromic response on VTA DA neurons. Since 

only one cell was recorded per rat, VTA DA neurons were selected when all criteria for 

identification were fulfilled: firing rate <10 Hz, duration of action potential >2.5 ms, inhibitory 

responses to hind paw pinching. Bursts were defined as the occurrence of two spikes at an 

interspike interval ≤80 ms, and terminated when the interspike interval exceeded 160 ms (Grace and 

Bunney, 1983). At the end of each recording section, direct current (10µA for 15 min) was passed 

through the recording electrode to eject Pontamine sky blue, which allowed the identification of the 

recorded cells. Brains were removed and fixed in 8% formalin solution. The position of the 

electrodes was microscopically identified on serial sections (60 μm) stained with cresyl violet. 
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Fig 3.1. Experiments in the VTA. Schematic representation showing the protocol carried out 

for in vivo electrophysiological recordings from VTA DA neurons. Two burr holes are drilled 

above the VTA and ShNAc for the placement of a recording and stimulating electrode, 

respectively. When a neuron is isolated, current from the ShNAc is applied in order to 

evaluate the antidromic response of VTA DA neuron to NAc stimulation.   

 

 

2. Experiments in the ShNAc 

 

We recorded extracellularly single-unit activity of neurons located in the medial part of the NAc 

(shell) (1.5 mm anterior from bregma, 0.8–1.3 mm lateral from the midline, 6.5–7.0 mm ventral 

from cortical surface) using the same instruments previously described for the VTA experiments. In 

addition, because MSNs of the ShNAc do not fire spontaneously in anaesthetized animals, we 

delivered electrical stimuli in the basolateral amygdala (BLA) to evoke spike firing in the NAc cell. 
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For this reason, we inserted a formvar-coated stimulating stainless steel bipolar electrode with an 

inclination of 15° anteroposterior on the coronal plane (250 μm tip diameter) in the ipsilateral BLA 

(3.2 mm posterior from bregma, 5.0 mm lateral from the midline, 7.0 mm ventral from the cortical 

surface) (fig 4.2), which is a major excitatory projecting area to the NAc. After the glass electrode 

had been positioned to the dorsal limit of the NAc, we searched cells that responded to the 

stimulation of the BLA. Stimuli (~0.5 mA) were delivered to the BLA at 1-second intervals, while 

the microelectrode was lowered incrementally through the NAc. When a cell was detected, we 

adjusted the position of the microelectrode in order to maximize the spike amplitude relative to 

background noise. We identified neurons that responded to BLA stimulation by their robust 

excitatory response (latency range 10–25 ms). We did not include in this study cells whose latencies 

were longer than 26 ms following BLA stimulation because they could exhibit a polysynaptic 

response component (Mulder et al., 1998). A graphical representation of BLA-evoked excitation of 

MSNs is reported in fig 3.2. The experimental protocol was essentially that published by Floresco et 

al. (2001) (Floresco et al., 2001) with some modifications (Pistis et al., 2002a). When we isolated a 

cell, we adjusted stimulation currents to approximately half-maximal intensity, such as ~50% of 

electrical stimuli (1 Hz) in the BLA elicited an action potential in the recorded cell. We calculated 

evoked spike probability by dividing the number of action potentials observed by the number of 

stimuli administered in 100-second periods. Once stable levels of evoked spike probability were 

achieved (< 10% changes over 10-15 minutes), we administered drugs intravenously and assessed 

spike probability every 100 seconds. Changes in spike probability were an index of changes 

induced by the studied compounds over the excitation of NAc cells evoked by BLA stimulation. As 

well as for VTA experiments, we recorded only one cell per rat. 
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Fig 3.2. Experiments in the Shell of the NAc. Since medium spiny neurons (MSNs) of the 

ShNAc do not fire spontaneously in anaesthetized animals, a current was applied from the 

basolateral amygdala (BLA) in order to elicit an evoked spike firing of NAc neurons. For this 

reason the current was adjusted to obtain a 50% of probability to evoke a MSNs firing rate 

after BLA stimulation.  

 

 

 

3. Statistical analysis 

 

For VTA experiments, we calculated drug-induced changes in firing rate and pattern by averaging 

the effects after drug administration (2 minutes), and normalizing them to the predrug baseline. For 

ShNAc experiments, we determined predrug spike probability baseline as the mean of at least three 

consecutive assessments (100 seconds) over 10 minutes before drug administration. We generated 
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peristimulus time histograms (1-ms bins, 100 cumulative sweeps) by CED Spike2 software 

(Cambridge Electronic Design). Following drug administration, we calculated spike probability 

every 100 seconds, and normalized it to the predrug baseline. All the numerical data are given as 

mean±standard error of the mean. Data were compared and analyzed by using two-way analysis of 

variance (ANOVA) for repeated measures (treatment vs. time), or one-way ANOVA, or Student’s t-

test for repeated measures, when appropriate. Post hoc multiple comparisons were made using the 

Dunnett’s, or Bonferroni’s tests. We performed statistical analysis by means of the NCSS program 

(Kaysville, UT, USA). The significance level was established at P < 0.05. 

 

4. Drugs 

 

Nicotine [(–)-nicotine hydrogen tartrate] was purchased from Sigma (St. Louis, MO). Morphine 

chloridrate and cocaine chloridrate were purchased from S.a.l.a.r.s (Como, Italy), and Akzo 

Pharmadivision Diosynth (Oss, the Netherlands). SCH 23390 was purchased from Sigma/RBI, and 

L-sulpiride was purchased from Ravizza (Latina, Italy). Rimonabant (SR141716-A) was a generous 

gift of Sanofi-Aventis Recherche (Montpellier, France). URB597 was purchased from Alexis 

(Lausen, Switzerland). OEA, WY14643, MK886, methAEA, and fenofibrate, and clofibrate were 

purchased from Tocris (Bristol, UK). MethOEA was a generous gift of Dr. Steven R. Goldberg 

(NIDA, Baltimore, MD, US). We diluted nicotine, SCH 23390, L-sulpiride, cocaine and morphine 

in saline. We adjusted nicotine solution to pH = 7 with NaOH. We emulsified rimonabant in 

1%Tween80 (Sigma, St Louis, MO, USA), then we diluted in saline and sonicated. We dissolved 

URB597 in dimethylsulfoxide (DMSO) (100 mg/ml) and diluted to the final concentration in saline. 

The final concentration of DMSO was 0.1%. We emulsified methOEA, WY14163, MK886, 

fenofibrate and clofibrate in 10% of Tween80, dissolved in 20% of DMSO and then diluted to the 

final concentration in distilled water. For i.c.v. administration, either OEA or methAEA were 
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dissolved in 40% w/v 2-hydroxypropyl-β-ciclodextrin, while methAEA for i.v. injection was 

dissolved in 2% of Tween80 and 2% of ethanol, and then diluted in saline.  
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Chapter IV 

RESULTS 

 

 

1. Blockade of CB-1Rs did not affect nicotine-induced effects on VTA DA neurons 

 

We first addressed whether the electrophysiological effect of nicotine on VTA DA neurons is 

prevented by the CB1-R antagonist SR141716-A (SR, rimonabant). To this aim, we recorded the 

electrical activity of single VTA DA neurons in anaesthetized animals, and we selected neurons 

only when they fulfilled all the criteria already reported in literature (see methods). A typical VTA 

DA neuron waveform, acquired from a digital storage oscilloscope, is presented in fig 4.1. Only one 

cell was recorded per rat. Moreover we restricted our sample to cells which responded to the 

stimulation of ShNAc. A total of 183 VTA DA neurons were recorded. We recorded the 

spontaneous activity of VTA DA neurons for at least 5 minutes, followed by a single administration 

of vehicle. Then, after 4 minutes of acquisition we administered nicotine (0.2 mg/kg i.v.). 

As previously reported in literature (Mereu et al., 1987; Erhardt et al., 2002; Mameli-Engvall et al., 

2006), nicotine (0.2 mg/kg i.v.) enhanced the firing rate (144.2±24.2% of baseline firing rate; 

F(5,71)=4.06; n=23; p<0.05; one-way ANOVA for repeated measures and Dunnett’s test vs. baseline) 

and burst firing (+10.6±3.8% of baseline; F(5,71)=2.89; n=23; p<0.05; one-way ANOVA for repeated 

measures and Dunnett’s test vs. baseline) of VTA DA neurons identified as projecting to the ShNAc 

(fig 4.1 c, d), while the administration of vehicle was ineffective per se (data not shown). This 

stimulatory effect, which is common to other drugs of abuse (e.g. opioids, cannabinoids and 

alcohol) enables the activation of the mesolimbic circuitry and allows the release of DA in the NAc. 

The administration of the CB1-R antagonist SR (0.5 mg/kg i.v.), 4 minutes before nicotine 

administration, did not abolish nicotine-induced activation of VTA DA neurons (F(1;103)=1.10, n=11; 

p>0.05; two-way ANOVA and Bonferroni’s test vs. controls) (fig 4.1 c, d). This result is in sharp 



76 
 

contrast to previous findings obtained through other techniques, where it was found that SR blocks 

neurochemical and behavioral effects of nicotine when tested with paradigms suggestive of 

addicting properties (Cohen et al., 2005; Cheer et al., 2007).  

 

2. URB597 fully prevented nicotine-induced effects on VTA DA neurons: involvement of CB1-

Rs and PPAR-α 

 

Since it has been already reported that FAAH blockade by URB597 fully prevents nicotine-induced 

self administration, nicotine-induced conditioned place preference and nicotine-induced increase of 

DA release in the ShNAc (Scherma et al., 2008), our next step was to evaluate whether FAAH 

inactivation might also modulate the electrophysiological effects of nicotine on the VTA DA 

neurons. Surprisingly, URB597 pretreatment (0.1 mg/kg i.v., 1-2 hours before recording) abolished 

nicotine-induced excitation of VTA DA neurons both on firing rate (74.1±6.2% of baseline firing 

rate; F(1,95)=4.95; n=6; p<0.01; two-way ANOVA and Bonferroni’s test vs. controls) and burst firing 

(-16.8±4.1% of baseline burst firing; F(1,107)=7.98; n=6; p<0.01; two-way ANOVA and Bonferroni’s 

test vs. controls) (fig 4.1 c, d) causing, on the other hand, a transient inhibition (firing rate: 

F(3,23)=3.73; n=6; p<0.001; one-way ANOVA for repeated measures vs. baseline; burst: F(3,23)=9.44; 

n=6; p<0.01; one-way ANOVA for repeated measures vs. baseline). The administration of 

URB597, per se, did not induce any change in spontaneous firing activity of VTA DA cells (firing 

rate: 3.7±0.26 Hz; n=48, in control animals vs. 3.9±0.14; n=14, in URB597 pretreated animals; 

p>0.05; Student’s T test; burst firing: 22.6±3.64% of spikes in burst; n=48, in control animals vs. 

23.0±5.15%; n=14, in URB597 pretreated animals; p>0.05; Student’s T test) (fig 4.1 e). 

Next, we addressed whether URB597-induced effects were due to the activation of CB1-Rs by  

AEA. To this aim, we pretreated animals with the CB1-R antagonist SR (0.5 mg/kg i.v., 1 minute 

before URB597). In fact, SR prevented URB597 effect on firing rate of VTA DA neurons 

(123.7±11.5% of baseline; F(1,23)=11.04; n=9; p<0.01; two way ANOVA and Bonferroni’s test vs. 
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UB597) but was ineffective on burst firing (-18.4±8.0% of baseline; F(1,23)=2.30; n=9; p>0.05; two 

way ANOVA and Bonferroni’s test for repeated measures vs. URB597) (fig 4.2 a, b). The CB1-R 

antagonist AM251 (1.0 mg/kg i.v., 1 min before URB597) mimicked the effect of SR (firing: 

F(1,61)=10.96; n=6; p<0.01; two way ANOVA and Bonferroni’s test vs.URB597; burst: F(1,75)=0.00; 

n=6; p>0.05; two-way ANOVA vs.URB597) (fig 4.2 a, b). Since URB597 does not only enhance 

AEA levels, but also OEA and PEA levels, we asked whether the lack of effect of SR and AM251 

on burst activity was due to the activation of PPAR-α. In fact, as discussed in chapter II, both OEA 

and PEA do not show affinity for CB1-Rs, but can be considered endogenous ligands for PPAR-α, a 

member of nuclear receptor transcription factor family widely expressed in the brain (Moreno et al., 

2004). Hence, the pretreatment with the PPAR-α antagonist MK886 (3 mg/kg i.p.,15 min before 

URB597) fully prevented the effect of URB597 on nicotine-induced burst firing, showing no effect 

on firing rate (firing: F(1,75)=0.00; n=13; p>0.05; two-way ANOVA and Bonferroni’s test 

vs.URB597; burst: 10.5±3.5% of baseline; F(1,72)=4.90; n=13; p<0.05; two-way ANOVA and 

Bonferroni’s test vs.URB597) (fig 4.2 a, b). These results draw a more complicated scenario, which 

involves new aspects to take into account when studying the effects of nicotine on VTA DA 

neurons.      
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Figure 4.1. Effects of rimonabant and URB597 on activation of VTA dopamine neurons by 

nicotine. (a) Average trace, acquired from a digital storage oscilloscope, showing the 

typical waveform of a VTA DA neuron recorded from an anaesthetized rat. (b) 

Representative firing rate histograms illustrating effects of intravenous nicotine (NIC, 

injected at arrowheads) on discharge activity of individual VTA DA neurons recorded from 

anaesthetized rats. The top panel shows the typical response to 0.2 mg/kg nicotine in 

control conditions following intravenous injection of vehicle (VEH). The middle panel 

illustrates the lack of effect of rimonabant (SR, 0.5 mg/kg i.v.) on spontaneous firing rate of 

dopamine neurons and on the subsequent effects of nicotine. The bottom panel shows 
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the effect of nicotine in a URB597 pretreated animal, where nicotine induced a transient 

inhibition of firing activity. (c; d) Graphs illustrating the time course of nicotine’s actions on 

firing rate and burst firing of VTA DA neurons. Pretreatment with URB597 (0.1 mg/kg, i.v.), 

but not rimonabant (0.5 mg/kg, i.v.), prevented the nicotine-induced increases in firing 

rate (c) and burst firing (d) of VTA dopamine neurons. (e) Histograms showing that URB597 

pretreatment does not affect the baseline activity of recorded VTA DA cells (p>0.05, 

Student’s t-test). Results are means, with vertical bars representing the SEM of firing rates 

and burst firing, expressed as a percentage of, or difference from, baseline (BAS) values. 

Arrows represent time of nicotine injection. *p<0.05 versus baseline (one-way ANOVA for 

repeated measures and Dunnett’s test); # p<0.01 versus controls (two-way ANOVA and 

Bonferroni’s test) 

 

 

                        

 

Figure 4.2. Contribution of CB1 receptors and PPAR-α to URB597’s reversal of nicotine’s 

effects. (a) The CB1 receptor antagonists rimonabant (SR, 0.5 mg/kg i.v.) or AM251(AM, 1.0 

mg/kg, i.v.) reversed URB597’s blockade of nicotine-induced increase in firing rate of VTA 

dopaminergic neurons (NIC, 0.2 mg/kg), whereas the PPAR-α antagonist MK886 (MK, 3 

mg/kg, i.p.) was ineffective. (b) In contrast, MK886 administration reversed URB597’s 

blockade of nicotine-induced increase in bursting activity of VTA dopamine neurons, 

whereas SR and AM251 were ineffective. Results are means, with vertical bars representing 
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the SEM of firing rates and burst firing, expressed as a percentage of, or difference from, 

baseline (BAS) values. Arrows represent time of nicotine injection. # p<0.05, SR and AM251 

versus controls (two-way ANOVA and Bonferroni’s test); § p<0.05, MK versus controls (two-

way ANOVA and Bonferroni’s test) 

 

 

 

3. Oleoylethanolamide (OEA), but not methyl-anandamide (methAEA) mimicked URB597 

effects 

 

To determine the precise contribution of CB1-R and PPAR-α in the modulation of nicotine effects 

on VTA DA neurons, we next addressed whether the FAAH resistant analogue of AEA, methAEA 

prevented the actions of nicotine. To this aim we injected methAEA at doses of 1 and 5 mg/kg i.v. 

or 5µg/5µl i.c.v. Interestingly, methAEA did not mimic the effects of URB597 (i.e. blockade of the 

excitatory effect of nicotine) (methAEA 5mg/kg firing: F(3,234)=0.68; n=6; p>0.05; two-way 

ANOVA and Bonferroni’s test vs. controls) (fig 4.3 b), suggesting that CB1-Rs are scarcely 

involved in the modulation of nicotine-induced effects on VTA DA neurons. 

Furthermore, to test the involvement of PPAR-α, we administered the PPAR-α endogenous agonist 

OEA. Since OEA is metabolically unstable, we chose to inject it in the lateral ventricle (20 μg/5μl) 

4 minutes before nicotine. OEA experiments were compared with controls receiving the same 

vehicle used to dilute OEA (40% w/v 2-hydroxypropyl-β-cyclodextrin). Interestingly, OEA, 

without producing any effect per se, fully prevented nicotine-induced excitation of VTA DA 

neurons both on firing rate (92.7±13.5% of baseline; F(1,99)=5.61; n=6; p<0.05; two-way ANOVA 

and Bonferroni’s test vs. controls), and burst firing (F(1,107)=4.28; n=6; p<0.05; two-way ANOVA 

vs. controls). Moreover, the PPAR-α antagonist MK886 (3 mg/kg i.p., 30 minutes before recording) 

blocked the effects of OEA (firing: 122.8±7.2; F(1,55)=6.06; n=8; p<0.005; two way ANOVA and 

Bonferroni’s test vs. OEA) (fig 4.3 d), thus restoring the excitatory action of nicotine. These data 
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strongly highlight the contribution of PPAR-α in the modulation of nicotine effect on mesolimbic 

DA neurons. 

 

                    

 

 

Figure 4.3. OEA, but not methAEA, prevented increases in firing rate of VTA dopaminergic 

neurons produced by nicotine. (a) Representative firing rate histograms showing the 

effects of nicotine (NIC, 0.2 mg/kg i.v., injected at arrowheads) on the discharge activity 

of individual VTA dopamine neurons recorded following injection of methAEA(1 mg/kg, 

i.v.). (b) Graph illustrating that nicotine-induced excitation of VTA dopamine neurons was 

not changed following the administration of methAEA, either intravenously (1 and 5 

mg/kg) or intracerebroventricularly (5µg/5µl). (c) Representative firing rate histograms 

showing the effects of nicotine (0.2 mg/kg i.v., injected at arrowheads) on the discharge 

activity of individual VTA dopamine neurons recorded following injection of OEA (20 
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µg/5µl, i.c.v.; top). MK886 (MK, 3 mg/kg, i.p.) reversed the OEA-induced blockade of 

nicotine’s effects (bottom). Neither OEA nor vehicle (40% w/v 2-hydroxypropyl-β-

cyclodextrin) produced significant changes in spontaneous firing rate or burst firing. (d) 

Graph depicting that nicotine-induced excitation of VTA dopamine neurons was 

abolished by OEA. MK886 (MK, 3 mg/kg, i.p.) reversed the OEA-induced blockade of 

nicotine’s effects. Results are means, with vertical bars representing SEM of firing rates, 

expressed as a percentage of baseline (BAS) values. Arrows represent the time of 

intravenous injections. The horizontal bar represents the time of intracerebroventricular 

administration. # p<0.05, OEA versus controls (two-way ANOVA and Bonferroni’s test); § 

p<0.05, MK+OEA versus OEA (two-way ANOVA and Bonferroni’s test). 

                    

 

4. The hydrolysis resistant analogue of OEA, methyl-oleoylethanolamide (methOEA) 

abolished nicotine effects on VTA DA neurons 

 

Our next aim was to test the actions of different PPAR-α agonists to confirm our previous results 

with the endogenous NAE, OEA. For these studies, in control experiments the administration of 

nicotine was preceded by a single injection of the vehicle used to dilute different PPAR-α agonists 

(see methods), which was ineffective per se. 

Consistent with previous results, the administration of the FAAH resistant analogue of OEA, 

methOEA (5 and 10 mg/kg i.v.) abolished nicotine-induced effects on VTA DA neurons (Firing 

rate: F(1,48)=5.24; n=7; p<0.05; two-way ANOVA vs. controls; burst: F(1,52)=4.73; n=7; p<0.05 two-

way ANOVA and Bonferroni’s test vs. controls) (fig 4.4 b, c),  without affecting the baseline firing 

rate, or burst firing per se (3.18±0.5 Hz for methOEA 5 mg/kg vs. 3.24±0.2 Hz for controls; p>0.05; 

Student’s T test 3.11±0.4 Hz for methOEA 10 mg/kg vs. 3.24±0.2 Hz for controls; p>0.05; 

Student’s T test).  
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5. The synthetic PPAR-α agonist WY14643 (WY) abolished the effects of nicotine in the VTA 

 

Our next step was to pretreat animals with the PPAR-α agonist WY14643 (WY). WY (40 mg/kg 

i.p., 1-2 hours before recording) blocked nicotine-induced enhancement of firing rate (95.76±5.71% 

of baseline; F(1,48)=20.36; n=7; p<0.01; two-way ANOVA and Bonferroni’s test vs. controls), and 

burst firing (F(1,48)=5.98; n=7; p<0.05; two-way ANOVA and Bonferroni’s test vs. controls) (fig 4.4 

e, f).  WY pretreatment had any effect neither on firing rate nor burst firing of VTA DA neurons 

(3.2±0.6 Hz for WY 20 mg/kg vs. 3.24 ±0.2Hz for controls; p>0.05; Student’s T test; 3.3±0.6 for 

WY 40 mg/kg vs. 3.24±0.2 for control; p>0.05; Student’s T test). Moreover, pre-administration of 

the PPAR-α antagonist MK886 (MK, 3 mg/kg i.p., 15 min before WY) abolished the effect of WY 

on these cells (firing: F(1,60)=16.57; n=5; p<0.01; two-way ANOVA  and Bonferroni’s test vs. WY; 

burst: F(1,60)=18.24; n=5; p<0.05; two-way ANOVA and Bonferroni’s test vs. WY) (fig 4.4 e, f), 

thus confirming that WY acts through a PPAR-α dependent-mechanism. A lower dose of WY (20 

mg/kg i.p.) partially, and not significantly, attenuated the effects of nicotine action (data not 

shown).   
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Figure 4.4. The PPAR-α agonists inhibited nicotine-induced activation of VTA dopamine 

neurons in anaesthetized rats. (a, d) Histograms showing the effects of  PPAR-α agonists on 

discharge activity of  individual VTA dopamine neurons after nicotine (Nic) administration. 

(b, c) The PPAR-α agonist meth-oleoylethanolamide (methOEA) (5 and 10 mg/kg 

intravenously injected 4 minutes before nicotine) significantly blocked nicotine-induced 

increases in firing rate and burst firing. (e, f) In line with methOEA experiments,  WY1463 (40 

mg/kg i.p. > 30 minutes before the start of recordings) blocked nicotine-induced increases 

in firing rate, and burst firing and the PPAR-α antagonist MK886 (3 mg/kg injected >45 

minutes before the start of recordings) significantly abolished the effects produced by 

WY14643.  Results are presented as mean ± SEM of firing rates and burst firing, expressed as 

percentages of, or differences from, baseline values, respectively. Arrows indicate time of 

drug injections.* p<0.01 versus baseline (one-way ANOVA and Dunnett’s test); # p<0.05 

versus controls (two-way ANOVA and Bonferroni’s test); § p<0.05 versus WY (two-way 

ANOVA and Bonferroni’s test) Nic, nicotine; MK, MK886; mOEA, methOEA; WY, WY14643. 
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6. Fenofibrate and clofibrate abolished nicotine effect in the VTA through a PPAR α-

dependent mechanism 

 

In addition, we tried to block nicotine action on mesolimbic DA neurons taking advantage of two 

PPAR-α agonists, fenofibrate and clofibrate, already used in clinical practice for the treatment of 

lipid disorders. Fenofibrate (200 mg/kg i.p., >1hour before recordings) abolished nicotine effects on 

VTA DA neurons (firing rate: 83.27±17.21% of baseline; F(1;32)=6.59; n=5; p<0.05; two-way 

ANOVA and Bonferroni’s test vs. controls; burst: -6.79±3.45; F(1;36)=5.16; n=5; p<0.05; two way 

ANOVA and Bonferroni’s test vs. controls) (fig 4.5 a, b) through a PPAR-α dependent mechanism, 

since this effect was reverted by the pre-administration of MK (3 mg/kg i.p., 15 minutes before 

fenofibrate) (firing rate: 149.78±11.14% of baseline; F(1;32)=6.59; n=5; p<0.05; two-way ANOVA 

and Bonferroni’s test vs. fenofibrate; burst: 21.62±9.42% of baseline; F(1;32)=5.14; n=5; p<0.05; 

two-way ANOVA and Bonferroni’s test vs. fenofibrate) (fig 4.5 a, b). Clofibrate (300 mg/kg i.p., 

>1 hour before recordings), consistently, prevented nicotine-induced increase in firing rate 

(97.00±5.04% of baseline; F(4;48)=17.59; n=7; p<0.01; two-way ANOVA and Bonferroni’s test vs. 

controls), and burst firing (F(4;44)=4.480; p<0.01; two-way ANOVA and Bonferroni’s test vs. 

controls) of VTA DA neurons (fig 4.5 c, d). These data suggest PPAR-α agonists as possible new 

treatment  of tobacco addiction.   
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Figure 4.5. Fenofibrate and clofibrate blocked nicotine-induced effects on VTA dopamine 

neurons.  (a, b) The PPAR-α agonist fenofibrate (200 mg/kg i.p., >1 hour before recordings) 

blocked nicotine effects on VTA DA neuron firing rate and burst firing. The administration of 

MK886 (MK; 3 mg/kg i.p., 15 minutes before fenofibrate) abolished the effects produced 

by fenofibrate. (c, d) In line with fenofibrate experiments, also clofibrate (300 mg/kg i.p., 
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>1 hour before recordings) prevented nicotine-induced effect both on firing rate, and 

burst firing of VTA DA neurons. (e) Representative firing rate histograms showing the action 

of nicotine in a fenofibrate- (left panel) and a MK+fenofibrate-pretreated rat (right panel).  

Results are presented as mean ± SEM of firing rates and burst firing, expressed as 

percentages of or differences from baseline values, respectively. Arrows indicate time of 

drug injections. # p<0.05 versus controls (two-way ANOVA and Bonferroni’s test); § p<0.05 

versus fenofibrate (two-way ANOVA and Bonferroni’s test); *p<0.05 versus controls (two-

way ANOVA and Bonferroni’s test). 

 

 

7. URB597 did not revert cocaine- and morphine-induced effects on VTA DA neurons 

 

Since our previous results have shown that  PPAR-α can modulate nicotine-induced effects, our 

next aim was to better clarify whether this effect was specific for nicotine or can be extended to 

other drugs of abuse. For this reason, we carried out experiments on VTA DA neurons to evaluate 

whether URB597 modified their electrophysiological response to the psychostimulant cocaine and 

the μ-opioid receptor agonist morphine.  

Cocaine, in line with previous findings (Einhorn et al., 1988), depressed the firing rate and burst 

firing of VTA DA neurons in a long-lasting manner (firing: 61.62±9.35% of baseline; F(5;30)=5.996; 

n=6; P<0.001; one-way ANOVA for repeated measures and Dunnett’s test vs. baseline; burst: -

16.42±6.14 of baseline level; F(5;25)=4.659; n=6; P<0.01; one-way ANOVA for repeated measures 

and Dunnett’s test vs. baseline) (fig 4.6 b, c). Using the above reported protocol of pretreatment, 

URB597 (0.1 mg/kg i.v.) did not prevent cocaine effects on VTA DA neurons (66.5±9.98% of 

baseline level; F(1;60)=0.0003; n=6, P>0.05; two-way ANOVA and Bonferroni’s test vs. 

vehicle+cocaine) (fig 4.6 b, c).  
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Figure 4.6. Effects of URB597 on the responses of VTA dopamine neurons to cocaine. (a) 

Representative firing rate histograms showing the decrease in firing rate of an individual 

VTA dopamine neuron produced by intravenous cocaine (COC, 1 mg/kg injected at 

arrowheads) in control conditions (left panel), and after URB597 (0.1 mg/kg i.v.) 

pretreatment (right panel). The injection of vehicle (VEH) is ineffective. (b, c) Graphs 

illustrating the time course of cocaine’s effects on firing rate and burst firing of VTA DA 

neurons with and without URB597 pre-treatment. Results are means, with vertical bars 

representing the standard error of the mean of firing rates and burst firing, expressed as a 

percentage of, or difference from, the baseline (BAS). *p < 0.01 versus baseline (one-way 

ANOVA and Dunnett’s test). 

 

 

Morphine, consistently with the literature (Matthews and German, 1984), enhanced the firing rate 

and burst firing of DA neurons in the VTA (139.46±8.17% of baseline level; F(4;20)=3.299; n=5; 

P<0.05; one-way ANOVA for repeated measures and Dunnett’s test vs. baseline) (fig 4.7 b, c). 
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Pretreatment with URB597 failed to modify this effect (firing: 159.63±9.06 of baseline level; 

F(1;40)=2.76; n=5, P=0.13 vs. vehicle+morphine; two-way ANOVA and Bonferroni’s test; burst: 

+15.34±5.13 of baseline level; F(1;40)=0.12; n=5, P>0.05 vs. vehicle+morphine; two-way ANOVA 

and Bonferroni’s test) (fig 4.7 b, c). These results support the hypothesis that the effects of PPAR-α 

agonists are specific for nicotine. 

 

  

             

 

Figure 4.7. Lack of effect of URB597 on morphine-induced increases in firing rate and burst 

firing of VTA dopamine neurons. (a) Representative firing rate histograms showing that 

intravenous injection of morphine (MORPH, 4 mg/kg) enhances firing rate of VTA DA 

neurons in control conditions (left panel) and that this effect is not blocked by the 

administration of URB597 (0.1 mg/kg, i.v.,1- 2 hours before the recordings). (b, c) Graphical 
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depiction of the time course of firing rate (b) or burst firing (c) of VTA dopamine neurons 

following intravenous administration of morphine (MORPH, 4 mg/kg). Pre-treatment with 

URB597 (0.1 mg/kg, i.v.) did not alter the effects of morphine either on firing rate or burst 

activity of VTA dopamine neurons. Results are means, with vertical bars representing the 

standard error of the mean of firing rates and burst firing, expressed as a percentage of, or 

difference from, the baseline (BAS). *p < 0.05 versus baseline (one-way ANOVA and 

Dunnett’s test). 

 

 

8. URB597 abolished nicotine-induced inhibition of MSNs in the ShNAc 

 

In the third part of our study, we addressed whether the ―classical‖ and ―non-classical‖ eCb systems 

may affect the actions of  nicotine, cocaine, and morphine on medium spiny neurons (MSNs) of the 

ShNAc. The ShNAc is a crucial area of the reward circuitry, receiving an abundant projection from 

VTA DA neurons, and modulating the primary reinforcing properties of natural stimuli and drugs of 

abuse.  A total number of 59 MSNs isolated in the medial part of the ShNAc were recorded. These 

neurons are normally quiescent in anaesthetized animals, and are excited by basolateral amygdala 

(BLA) stimulation, which is one of the major excitatory afferents. BLA stimulation evoked firing in 

MSNs of the ShNAc with a mean latency of 18.4±0.7 ms (fig 4.8 a). The average baseline spike 

probability following BLA stimulation was 46.3±1.5%. We recorded evoked activity of MSNs of 

the ShNAc for 300 seconds before the administration of nicotine, morphine, or cocaine. We 

recorded only one neuron per rat.  

As previously described in literature (Hakan et al., 1993), nicotine (0.2 mg/kg i.v.) depressed the 

excitability of MSNs evoked by BLA stimulation (64±12% of baseline level; F(5;40)=3.44, n=6, 

P<0.01; one-way ANOVA for repeated measures and Dunnett’s test vs. baseline) in a long-lasting 

manner (fig 4.8 b). This inhibitory effect is due to a combination of activation of  DA receptor type-

1 and type-2 (D1-Rs, D2-Rs). Hence, the simultaneous administration of the D1R antagonist SCH 

23390 (SCH; 1 mg/kg i.v.), and the D2-Rs antagonist L-sulpiride (10 mg/kg i.v.) abolished the 
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inhibitory response of these neurons after nicotine injection (122.5±10.6% of baseline level; 

F(1;80)=14.09; n=6; P<0.001 vs. control; two-way ANOVA and Bonferroni’s test) (fig 4.8 c). By 

contrast, neither the single injection of SCH nor L-sulpiride was able to revert nicotine effect on 

MSNs (SCH23390: F(1;70)=0.05, n=6, P>0.05; L-sulpiride: F(1;70)=0.02, n=6, P>0.05; two-way 

ANOVA and Bonferroni’s test) (fig 4.8 c).  

    

          

 

Figure 4.8. Nicotine depresses the excitability of (MSNs) in the shell of the nucleus 

accumbens (ShNAc). (a) Superimposed traces acquired from a digital storage 

oscilloscope showing a relatively constant latency of the orthodromic responses of a 

representative MSN after basolateral amygdala (BLA) stimulation. The arrowhead 

indicates the artifacts produced by BLA stimulation; the arrow shows evoked action 
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potentials of a MSN. Once a cell was isolated, the current applied to the BLA was adjusted 

to obtain ~50% of probability to elicit an action potential after a single pulse stimulation. 

(b) Representative peristimulus time histograms displaying the typical inhibitory response of 

a MSN in the ShNAc after BLA stimulation and injection of nicotine (0.2 mg/kg, i.v.). (c) 

Graph showing the time course of nicotine-induced inhibition of spike firing of MSNs. (d) 

Graphical depiction illustrating that nicotine-induced inhibition was prevented by the 

combined administration (at arrow), but not by the separate injection, of the D1-R 

antagonist SCH23390 (SCH, 1 mg/kg, i.v.) and the D2-R antagonist L-sulpiride (L-Sulp, 10 

mg/kg, i.v.). Results are means, with vertical bars representing the standard error of the 

mean of evoked spike firing, expressed as a percentage of the baseline (BAS). *p < 0.05 

versus baseline (one-way ANOVA and Dunnett’s test); #p < 0.05 versus controls ( two-way 

ANOVA and Bonferroni’s test) 

 

 

To test whether the eCb system might modulate nicotine-induced inhibitory effect in the ShNAc, 

we first  carried out experiments with the CB1-Rs antagonist SR. In line with VTA experiments, the 

administration of SR (0.5 mg/kg i.v., 200 seconds before nicotine) failed to prevent nicotine-

induced depression of MSNs excitability, suggesting that CB1-Rs are not involved (data not 

shown). 

On the other hand, consistently with the results obtained in the VTA, URB597 pretreatment (0.1 

mg/kg i.v., 1-2 hours before recording) abolished nicotine action in the ShNAc (126.6±15.6% of 

baseline level, F(1;70)=9.03, P<0.01 vs. control; two-way ANOVA and Bonferroni’s test) (fig 4.9 b). 

URB597 pretreatment did not show any effect per se on spike firing excitability of MSNs 

(1.52±0.16 mA vs. 1.9±0.4 mA, respectively; n=6; P>0.05; Student’s T test), while nicotine 

administration after URB597 caused an increase in BLA-evoked MSNs excitability (F(8;40)=3.32, 

n=6, P<0.01; one-way ANOVA for repeated measures and Dunnett’s test vs. baseline). 

These data prove that increasing levels of NAEs and eCbs, rather than CB1-R inactivation, is 

related to the modulation of nicotine rewarding properties in a crucial pathway of the brain reward 

circuitry. 
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9. SR141716-A and MK886 antagonized URB597 effects in the ShNAc  

 

Next, we investigated whether the effects of URB597 depend on activation of CB1-R or PPAR-α. 

To this aim, we pretreated a group of animals with the CB1-R antagonist SR and another group 

with the PPAR-α antagonist MK886, both of them injected 15 minutes before URB597 

administration. 

In line with VTA experiments, both SR (0.5 mg/kg i.v.) and MK (3 mg/kg i.p.), unable to produce 

any effect per se (data not shown), reverted URB597 action on MSNs after nicotine administration 

(rimonabant+URB597 vs. URB597: 63.5±21.8% of baseline level; F(1;63)=10.3, n=5, P<0.05, 

MK886+URB597 vs. URB597: 56.8,±16% of baseline level; F(1;70)= 5.462, n=6, P<0.05, two-way 

ANOVA and Bonferroni’s test) (fig 4.9 b, c). These results might suggest a possible cross-talk 

between classical eCb system and NAEs (see discussion).      
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Figure 4.9. URB597 suppresses nicotine’s action on MSNs in the ShNAc. (a) Exemplificative 

peristimulus time histograms showing that nicotine-induced decrease of MSN excitability is 

reversed by URB597, whereas the CB1-R antagonist rimonabant (SR, 0.5 mg/kg) and the 

peroxisome proliferator-activated nuclear receptor-a antagonist MK886 (3 mg/kg), 

administered 15 minutes before URB597, prevented the effects of the fatty acid amide 

hydrolase inhibitor, and restored nicotine-induced inhibition of MSN responses to 

basolateral amygdala (BLA) stimulation in the ShNAc. (b,c) Graphical depiction illustrating 

that URB597 pre-treatment prevented nicotine-induced inhibition of MSNs, and that this 

inhibition by nicotine was reversed by rimonabant (SR, 0.5 mg/kg, i.v.) (b), or MK886 (3 

mg/kg, i.p.) (c). Results are means, with vertical bars representing the standard error of the 

mean of evoked spike firing, expressed as difference percentage of the baseline (BAS). 

#p < 0.05 versus controls (two-way ANOVA and Bonferroni’s test),§ and §§ p < 0.001 versus 

URB597 (two-way ANOVA and Bonferroni’s test). 
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10. URB597 blocked cocaine effects in the NAc 

 

Since URB597 blocked nicotine effect on MSNs of the NAc, our last step was focused on testing 

whether the enhanced levels of eCbs and NAEs might also modulate cocaine and morphine action 

on these neurons.  

In line with the literature (Hakan et al., 1987),  we did not manage to obtain a stable time course of 

morphine on GABAergic MSNs. For this reason we carried out our experiments only with cocaine.  

Cocaine (1 mg/kg i.v.), as already demonstrated (White et al., 1993), exerted a strong and long-

lasting inhibitory effect on BLA-evoked MSN excitability (37.06±27.7% of baseline level; 

F(6;48)=7.28, n=7, P<0.001, one-way ANOVA for repeated measures and Dunnett’s test vs. baseline) 

(fig 4.10 b). Interestingly, URB597 pretreatment (0.1 mg/kg i.v.) abolished cocaine-induced effect 

on MSNs without affecting the baseline mean current applied to evoke a MSN excitation 

(95.3±15.1% of baseline level; F(1;77)=11.97, n=6, P<0.01 vs. control, two-way ANOVA and 

Bonferroni’s test) (fig 4.10 b).  

This result strongly differs from those observed in the VTA experiment, where URB597 was not 

able to block cocaine, thus pointing to the involvement of different mechanisms by which FAAH 

blockade may act to prevent cocaine effects.        

 

11. MK886 but not SR141716-A reverted URB597 effect on cocaine in the NAc. 

 

Finally, we tried to elucidate the mechanism by which URB597 acts in the ShNAc to abolish 

cocaine-induced effects. In contrast, the effects of URB597 depended on the activation of PPAR-α, 

since the pretreatment with MK (3 mg/kg i.p., 15 minutes before URB597) (58.02±15.59% of 

baseline level; F(1;70)=7.028, n=6, P<0.05 vs. URB597 pretreated animals, two-way ANOVA and 

Bonferroni’s test) (fig 4.10 d), but not with SR (0.5 mg/kg i.v., 15 min before recording) 

(98.34±18.45% of baseline; F(1;70)=0.04, n=6, P>0.05 vs. URB597 pretreated animals, two-way 
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ANOVA and Bonferroni’s test) (fig 4.10 c), reverted URB597 action on cocaine response in the 

ShNAc. This last result provides evidence about a possible involvement solo of PPAR-α activation, 

which could opens the way for considering these receptors as modulators of reward-seeking 

behavior. 
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Figure 4.10. URB597 suppresses cocaine’s action on MSNs of the shell of the ShNAc. (a) 

Representative peristimulus time histograms showing the response of recorded ShNAc 

MSNs after BLA stimulation. The probability of evoking MSN responses after BLA stimulation 

decreased after cocaine administration. Pre-treatment with URB597 reversed cocaine-

induced inhibition of MSNs. The peroxisome proliferator-activated nuclear receptor-a 

antagonist MK886 blocked URB597 effect and restored cocaine-induced inhibition of 

MSNs. (b–d) Graphical depictions of the time course of cocaine’s effects on MSN 

excitability in the ShNAc. Cocaine depresses the excitability of MSNs in a long-lasting 

manner (b). This effect was blocked by URB597, which fully prevented cocaine-induced 

inhibition (b). Pre-treatment with the CB1-R antagonist rimonabant (SR; 0.5 mg/kg, i.v.) did 

not alter URB597’s blockade of cocaine’s effect (c), whereas MK886 (3 mg/kg, i.p.) (d) 

completely prevented URB597’s blockade of cocaine’s actions and restored cocaine-

induced inhibition of MSNs. Results are means, with vertical bars representing the standard 

error of the mean of evoked spike firing, expressed as a percentage of the baseline (BAS). 
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*p < 0.05 versus baseline, one-way ANOVA and Dunnett’s test); #p < 0.05 versus controls, 

§P < 0.05 versus URB597 (two-way ANOVA and Bonferroni’s test). 
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Chapter V 

GENERAL DISCUSSION 

 

 

In this thesis, it was shown that the manipulation of the eCb system, through inhibition of the 

enzyme FAAH, blocked nicotine addictive properties by the activation of both the conventional eCb 

and the ―parallel‖ eCb-like systems, the latter comprising NAEs and their nuclear receptors.  

In fact, the inhibition of FAAH by the carbamic acid derivate URB597abolished nicotine-induced 

enhancement of firing rate and burst firing of VTA DA neurons. The functional consequence of this 

effect are of importance, since mesolimbic DA neurons play a pivotal role in the acute responses to 

natural rewarding stimuli and drugs of abuse. Hence, increased DA neuron discharge rate and/or 

DA release in terminal areas such as the NAc, are among the first steps of the complex and 

multifaceted neural mechanisms and cellular pathways that lead to addiction (see chapter I).    

Previous studies were focused on the involvement of the eCb system in the modulation of nicotine 

rewarding properties. For instance, early reports showed that the CB1-R antagonist rimonabant 

decreases nicotine-induced enhancement of DA outflow from the VTA to the NAc (Cohen et al., 

2002; Cheer et al., 2007), and conditioned place preference (Le Foll and Goldberg, 2004). However, 

the electrophysiological data here reported do not support this hypothesis, since URB597 but not 

rimonabant, abolished the effects of nicotine on VTA DA neurons. This finding suggests that 

enhanced levels of eCbs, rather than blockade of cannabinoid receptors exert a preventive action on 

nicotine-induced effects in mesolimbic DA neurons. The reasons of the discrepancy between the 

lack of effects by rimonabant on neuronal responses to nicotine and its effects on neurochemical 

and behavioral actions of the drug are currently unknown. However, it might be possible that the 

suppression by rimonabant of evoked DA release may be independent from the inhibition of firing 

activity of DA neurons in the VTA, and may be an effect primarily involving their terminal regions 

or local circuits within the NAc.  
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Behavioral experiments carried out by Scherma and coll. (2008) support our electrophysiological 

results, since they demonstrated a significant effect of FAAH inhibition by URB597 in preventing 

the development of nicotine-induced conditioned place preference (CPP), acquisition of nicotine 

self-administration, nicotine reinstatement, and nicotine-induced increase of DA release in the 

ShNAc in rats (Scherma et al., 2008).  

It must be pointed out that, despite the role of FAAH in the deactivation of the CB1-R agonist 

AEA, this enzyme also metabolizes other NAEs like the monounsaturated fatty acid 

oleoylethanolamide (OEA), and the saturated palmitoylethanolamide (PEA) (Kathuria et al., 2003; 

Fegley et al., 2005). Interestingly, even though OEA and PEA belong to the family of eCb-like 

molecules, they are devoid of CB1-R affinity, being ligands at the α-type peroxisome-proliferator 

activated receptors (PPAR-α), a subfamily of nuclear receptors and transcription factors highly 

implicated in several metabolic processes (Pistis and Melis, 2010) (see chapter II).      

In line with these findings, in our study we observed that the conventional eCb system is not 

primarily involved in the mechanism of action of URB597. In fact, despite rimonabant prevented 

the effects mediated by URB597 on VTA DA neuron firing rate after nicotine administration, 

further experiments showed that the stable analogue of AEA, methAEA failed to mimic the action 

of the FAAH inhibitor. Conversely, we discovered that OEA blocked nicotine-induced 

electrophysiological effects on VTA DA cells. This result highlights the role of PPAR-α in the 

modulation of nicotine rewarding properties. Notably, this finding was also corroborated by patch-

clamp experiments in vitro, where it was shown that OEA and PEA completely prevented nicotine-

induced excitation of VTA DA neurons (Melis et al., 2008).  

These results draw a very complex scenario which goes beyond our early hypothesis about the 

modulatory role of the ―classic‖ eCb system in drug-induced effects, and they provide one of the 

first evidence about a potential, functional role of nuclear receptors in the pathophysiology of CNS 

diseases. In fact, although it has been recently demonstrated that PPAR-α is ubiquitously expressed 

in the brain (Moreno et al., 2004), and that OEA and PEA are identified as its endogenous ligands 
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(Fu et al., 2003), the characterization of its central function and role in brain physiology and 

pathophysiology remained widely unknown (Hansen, 2010). Similarly, centrally mediated effects of 

the PPAR-α agonist NAEs have been poorly investigated. Evidence suggests that OEA and PEA 

might be part of an independent eCb-like system, which exerts modulatory actions by the activation 

of PPAR-α, rather than CB1-Rs. Moreover, to support this observation, several studies underlined 

how NAEs are synthesized, released and inactivated independently to conventional eCbs (Hansen et 

al., 1995; Stella and Piomelli, 2001; Mackie and Stella, 2006). 

The findings that the effects of OEA are blocked by the PPAR-α antagonist MK886, and  mimicked 

by the synthetic agonist WY14643 (WY) and by the stable analogue of OEA, methOEA, give 

further support to the hypothesis that a PPAR-α-mediated mechanism is involved in the modulation 

of nicotine effects on mesolimbic DA neurons. Notably, also the modulatory effect of fibrates 

(fenofibrate and clofibrate), already used in the clinical treatment of dyslipidemia, on nicotine-

induced actions strongly suggests that these compounds might possess a pharmacological spectrum 

that goes beyond the lipid sensor ability of PPAR-α (see chapter II). 

In line with these results, it has been recently reported that WY and methOEA block the acquisition 

of nicotine self-administration, and suppress the reinstatement to nicotine seeking behavior in rats 

and squirrel monkeys through a direct effect on PPAR-α (Mascia et al., 2010).  

Noteworthy, different studies by Sun and coll. (Sun et al., 2006; Sun et al., 2007) showed that also 

AEA displays affinity as an agonist for PPAR-α. However, our results do not support the idea that 

AEA might act as a PPAR-α agonist on DA neurons since, as already mentioned above, differently 

from OEA, methAEA did not suppress the effects of nicotine, and further in vitro experiments with 

AEA have confirmed our observation in vivo (Melis et al., 2008). In addition, other studies 

performed in an animal model of analgesia, have disconfirmed that AEA activates PPAR-α, given 

that the analgesic properties of this eCb  were still preserved in PPAR-α
-/-

 mice, whereas the effects 

of OEA and PEA were abolished (LoVerme et al., 2006). These discrepancies might arise from the 

fact that the studies of Sun and coll. were carried out in HeLa cells transiently transfected with 
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PPAR-α, raising the issue that these investigations should be performed under more physiological 

conditions, and possibly in neurons, to confirm their results.  

Besides the activation of PPAR-α, another alternative explanation of our observations might involve 

a noncompetitive antagonistic action of AEA and NAEs on nAChRs, as it was reported by several 

studies (Butt et al., 2002; Oz et al., 2003; Barrantes, 2004; Spivak et al., 2007; Butt et al., 2008). 

However, also in these cases studies were performed in Xenopus oocytes, or in mouse thalamic 

synaptosomes. We tend to exclude this hypothesis since our results show that chemically unrelated 

PPAR-α agonists are similarly effective, and that their actions are blocked by pharmacological 

antagonism of PPAR-α. 

In this thesis it was also demonstrated that the modulation of both FAAH blockade and PPAR-α 

activation on VTA DA neurons is specifically associated to nicotine action, since URB597 had no 

effect on cocaine- and morphine-induced decrease and increase of DA neurons electrical activity, 

respectively. This finding suggests that PPAR-activation might exclusively target nAChRs 

(discussed below).   

However, we found that the inhibition of FAAH does not specifically target nicotine action in the 

shell of the NAc, where URB597 blocked both nicotine- and cocaine-induced depression of MSN 

excitability after BLA stimulation. The ShNAc is crucially involved in the modulation of primary 

reinforcing properties of natural stimuli and drugs of abuse and reward-seeking behavior (Goto and 

Grace, 2008). A common electrophysiological feature of GABAergic MSNs is that they are 

depressed by the administration of the main addictive substances, including nicotine and cocaine 

(Carlezon and Thomas, 2009). This inhibitory action exerted by drugs of abuse  has an important 

functional role since, by impairing GABAergic transmission to downstream areas encoding for 

hedonic qualities of stimuli, it disinhibits structures such as the ventral pallidum and VTA, and 

augment the rewarding value of the incentive (Carlezon and Thomas, 2009). 

For this reason, our finding is of particular interest as it shows a modulatory role exerted by 

increased levels of conventional and unconventional eCbs in drug-induced response of MSNs.  
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Notably, our study in the ShNAc showed that URB597 action on nicotine-induced effects was 

prevented by either the administration of SR or MK886, underlining that URB597 effects might 

require both CB1 and PPAR-α activation. These data extend our results on VTA DA neurons, 

where both CB1 and PPAR-α played a role in URB597-mediated effect. Thus, this findings sheds 

some light into the probable cross-talk between these two systems, a possibility already taken into 

account to explain the effects of URB597 as a cognitive enhancer (Mazzola et al., 2009) . 

Further electrophysiological studies have provided additional evidence about a synergistic effect 

between the eCb system and PPAR-α activation to explain how FAAH inhibition might modulate 

nicotine-induced effect. In fact, neither methAEA nor methOEA, affect nicotine-induced depression 

on BLA-evoked MSNs spike firing (Luchicchi, Goldberg and Pistis, work in progress). This lack of 

effect would suggest that URB597 modulation in the NAc might need the combined activation of 

both CB1-R and PPAR-α to exert its suppressant action.  

Surprisingly, here it was also shown that after URB597 pretreatment, nicotine effect became 

excitatory rather than inhibitory, in the NAc. This enhancement of BLA-evoked excitability of 

MSNs might be parsimoniously explained by calling up a combination of different factors. Among 

them, it is likely that reduction of nicotine-induced DA release from the VTA to the NAc (Scherma 

et al., 2008), together with activation of CB1-Rs in the ventral striatum by AEA and the consequent 

depression of nicotine-induced GABA release, may unmask the increase of glutamate release 

induced by nicotine (Reid et al., 2000), which ultimately excites MSNs.  

The finding that URB597 modulates the effects of cocaine in the ShNAc was rather unexpected, 

since FAAH blockade did not prevent cocaine action on VTA DA neurons. For this reason, this 

result makes the scenario of cocaine-eCb interactions quite complicated. In fact, studies have 

shown that (1) CB1
-/-

 mice self-administer cocaine (Cossu et al., 2001), (2) rimonabant does not 

modify the development of cocaine induced CPP (Martin et al., 2000), and (3) URB597 does not 

alter cocaine self-administration in squirrel monkeys (Justinova et al., 2008). On the contrary, other 

investigations provided opposing results. For example, Cheer et al. (2007) demonstrated that SR 
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prevents cocaine-induced increase in DA levels in the NAc, and Orio et al. (2009) that rimonabant 

increases the breakpoint for cocaine self-administration under a fixed-ratio schedule in rats under 

long access sessions.  

One possible explanation for the discrepancy between our study and that of Justinova and coll. 

might involve differences in experimental subjects (rats vs. monkeys), and the substantial difference 

in the experimental protocol used. In fact, while in self-administration studies the injection of 

cocaine followed 1-h session protocol, and URB597 effect was examined over three consecutive 

daily sessions, in our study we examined electrical responses of neurons from specific brain areas 

(ShNAc) to an acute intravenous dose of cocaine. This effect might suggest that URB597 acts by 

impairing drug-induced electrophysiological effect in discrete manner, whereas it is ineffective on 

drug-induced associated behavior. Another possibility is that URB597 might prevent the initial 

acute effects of cocaine. In line with this hypothesis, a recent study has shown that URB597 reduces 

cocaine reinstatement in abstinent animals, but not the initial cocaine self-administration 

(Adamczyk et al., 2009). 

In the present experiments, some evidence indicating that CB1-Rs are not involved in the 

modulation exerted by URB597 on cocaine-induced effect in the ShNAc was also provided. In fact, 

this effect seems to be correlated more to the activation of PPAR-α, since the pretreatment with 

MK886 abolishes URB597 effects on MSNs. These data indicate that under these circumstances, 

FAAH inhibition results in the activation of both surface cannabinoid (by AEA) and nuclear 

receptors (by OEA/PEA).   

Taken together, these findings provide evidence of a role for PPAR-α in the CNS, alone or in 

combination with CB1-Rs, in the modulation of drug-induced effects in the mesoaccumbens 

pathway, a circuit which mediates the rewarding response to addictive substances and, ultimately, 

produces some neurobiological changes that leads to abuse and addiction. 

Finally, it is worth to mention that, even though the mechanism by which PPAR-α may modulate 

neuronal response to nicotine and cocaine in the VTA and ShNAc has not been clarify yet, different 
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hypothesis might be proposed to explain this effect. First of all, the rapid onset of agonist action 

suggests that PPAR-α may act through a non-genomic mechanism. In fact it is hard to reconcile our 

result with a classic genomic process of nuclear receptors, which requires a longer timeframe to 

produce an effect. In addition, studies in vitro carried out by our group strongly suggest that PPAR-

α activation on DA neurons negatively modulate somatodendritic nAChRs by phosphorylating them 

(Melis et al., 2008; Melis et al., 2010). In fact, it was previously shown that functional properties of 

specific nAChRs subunits (such as α7) depend on the status of tyrosine phosphorylation of the 

receptor (Charpantier et al., 2005), and that phosphorylation/dephosphorylation of tyrosine residues 

in nAChRs controls the number of functional surface receptors (Cho et al., 2005).  

For this reason it is likely that PPAR-α activation may trigger the phosphorylation of specific 

subunits of nAChRs on DA neurons by a tyrosin kinase-dependent mechanism.  This hypothesis is 

confirmed by findings in vitro using the tyrosine kinases inhibitor genistein (Melis et al., 2008). 

Hence, inhibition of tyrosine kinases restores the excitatory properties of nicotine in the presence of 

PPAR-α agonists. Although we cannot identify which specific tyrosin kinase is involved in this 

mechanism, the nAchR subunits primarily involved in the interaction with PPAR-α have been 

identified. Indeed, in an elegant experimental design utilizing both patch-clamp experiments in rats 

and lentiviral expression mice, Melis and coll. (2010) demonstrated that PPAR-α decreases both 

DA neurons activity and VTA net output by negatively modulating the β2 subunit of nAChRs 

expressed in DA neurons. β2 subunits of nAChRs are critically involved in the switch from regular 

to activate state of DA neurons (Mameli-Engvall et al., 2006; Melis et al., 2010) and their negative 

modulation might reduce the responsiveness of DA neurons to external information (Melis et al., 

2010). This effect might also explain why URB597 suppresses nicotine-induced depression of MSN 

in the ShNAc, which is a DA-dependent effect.  

How PPAR-α modulated acute neuronal responses to cocaine in the present experiments is not 

known. Among possible explanations, a conservative hypothesis may involve a negative 

modulation exerted by PPAR-α agonists, such as OEA and PEA, on cholinergic transmission within 
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the ShNAc. In fact, cholinergic interneurons of the NAc were shown to modulate the response of 

MSNs (de Rover et al., 2002). In that study, the authors hypothesized that this effect occurred 

through an increase of GABAergic interneuron activity within the ventral striatum. These neurons 

receive inputs from the cholinergic neurons mediated by nAChRs, and their synapses impinge 

directly to MSNs. Moreover, other studies have demonstrated an increase in acetylcholine release in 

the NAc after psychostimulant exposure (Guix et al., 1992; Imperato et al., 1992; Bickerdike and 

Abercrombie, 1997). Since PPAR-α, activated by endogenous agonists OEA and PEA, specifically 

modulates nAChRs by inducing their inactivation through phosphorylation (Melis et al., 2008), by 

analogy, it is likely that PPAR-α activation within the NAc might modulate cocaine’s response 

through inactivation of nAChRs in GABAergic interneurons. This should results in an impairment 

of GABA transmission to the MSNs that could explain the lack of inhibitory effect of cocaine on 

MSNs after URB597 pretreatment. Interestingly, interactions between OEA and PEA and 

acetylcholine transmission might be bidirectional, given that their biosynthesis is increased after 

stimulation of muscarinic receptors (Stella and Piomelli, 2001), which are present in the terminal 

regions of GABAergic interneurons (de Rover et al., 2002). 

A schematic representation of PPAR-α dependent modulation on nicotine and cocaine effects is 

shown in fig 5.1.      
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Fig 5.1. A possible mechanism of action by which PPAR-α activation modulates nicotine-

induced effects on VTA DA neurons and cocaine-induced depression of MSNs excitability 

in the ShNAc. (a) Schematic diagram illustrating the proposed mechanism of PPAR-α 

activation, and modulation of responses of DA neurons to nicotine, by the 

noncannabinoid fatty acid ethanolamides OEA and PEA. Their action is mimicked by the 

synthetic PPAR-α  agonist WY14643, and blocked by the PPAR-α antagonist MK886. 

URB597 enhances brain levels of OEA and PEA in vivo by inhibiting their major catabolizing 
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enzyme, FAAH. It is proposed that activated PPAR-α stimulates the activity of tyrosine 

kinases (Tyr Kin) through a nongenomic mechanism. Tyrosine kinases, in turn, induce the 

phosphorylation (P) of nAChRs, which reduces their responses to the agonists, or promotes 

rapid internalization. (b). Possible mechanisms underlying the modulation by PPAR-α on 

cocaine-induced effect in the ShNAc. Cocaine, by blocking DA transporters (DAT), 

increases DA levels in the NAc. In turn, activation of D1-Rs by DA on Ach interneurons (Ach 

intern) evokes increases of the release of acetylcholine (Ach), which activates GABA 

interneurons (GABA intern) through the activation of postsynaptic nAChRs (de Rover et al., 

2002).  Excitation of GABA interneurons depresses the excitability of MSNs. Hence,  PPAR-α 

activation might modulate nAChRs activity by reducing Ach-mediated excitation of 

GABA interneurons, and modifying the subsequent GABA release to MSNs. This figure also 

shows that activation of muscarinic receptors (mAChRs) triggers the biosynthesis of OEA 

and PEA (Stella and Piomelli, 2001), contributing to create a bidirectional interaction 

between NAEs and acetylcholine transmission.      
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CONCLUSIONS AND FINAL REMARKS 

 

 

Altogether, these findings suggest that FAAH inhibition, and the consequent PPAR-α activation by 

increased levels of FAAH substrates, one can abolish neurochemical, electrophysiological and 

behavioral effects of nicotine. Importantly our data are also corroborated by previous results 

obtained through different techniques (Melis et al., 2008; Scherma et al., 2008; Mascia et al., 2010; 

Melis et al., 2010). Overall, these observations provide a strong preclinical rationale and are 

predictive of a potential use of PPAR-α agonists in the treatment of tobacco addiction in humans. 

Since fibrates prevent nicotine-induced effects on VTA DA neurons, it seems reasonable to test 

these drugs, already used in the clinical treatment of metabolic disorders, for detoxification of 

nicotine addicted patients. Currently, there is no evidence about this possible effect of fibrates in 

humans, and doubts might arise whether these drugs do effectively reach appropriate concentration 

in the brain. However, a recent study by Porta and coll. (2009) has demonstrated that fenofibrate 

possesses anticonvulsant properties in rats (Porta et al., 2009), suggesting that these drugs might 

cross the blood-brain barrier and directly act in the CNS through a PPAR-α-dependent mechanism. 

Consistently, neuroprotective effects of PPAR agonists in CNS diseases such as Alzheimer, 

Parkinson and stroke have been reported (Heneka and Landreth, 2007). Indeed, among fibrates, 

fenofibric acid (the active metabolite of fenofibrate) does cross the blood-brain barrier though 

slowly (Deplanque et al., 2003), and its levels in the cerebrospinal fluid might actually be higher 

than generally expected. Noteworthy, Chikaisa and coll. (2008) report that a two-week feeding of 

bezafibrate phase advanced sleep-wake rhythm of about 2-3 h, increased the EEG delta-power in 

non-REM sleep, and attenuated its daily amplitude, thus ultimately supporting the central effects of 

fibrates (Chikahisa et al., 2008). 

Therefore, fibrates might represent a new interesting avenue as a strategy for smoking cessation. 
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However, studies are needed to ascertain the possibility that patients already treated with fibrates, 

and with an history of tabagism, show a reduced intake of nicotine after a short- and long- term 

treatment with these drugs. 

Additionally, a very recent study published in the journal Obesity has shown an interesting link 

between a common NAPE-PLD haplotype polymorphism and smoking cessation (Wangensteen et 

al., 2010), which may provide the first clinical evidence of an interaction between levels of NAEs 

and vulnerability to nicotine addiction.  

Irrespective of whether or not studies on humans would confirm the hypotheses of the feasibility of 

PPAR-α activation as a pharmacological tool for quitting cigarette smoking, our studies identified 

new unsuspected players in the complex interplay between neurotransmitter and neuromodulators, 

which govern neuroadaptations induced by drugs of abuse, leading to addiction. 
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Endogenous Fatty Acid Ethanolamides Suppress Nicotine-
Induced Activation of Mesolimbic Dopamine Neurons
through Nuclear Receptors

Miriam Melis,1* Giuliano Pillolla,1* Antonio Luchicchi,1 Anna Lisa Muntoni,2 Sevil Yasar,3 Steven R. Goldberg,4 and
Marco Pistis1
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Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of
tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms under-
lying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the
endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We
discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides,
among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells.
Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanol-
amide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling
molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation
of the peroxisome proliferator-activated receptor-� (PPAR-�), a nuclear receptor transcription factor involved in several aspects of lipid
metabolism and energy balance. Activation of PPAR-� triggered a nongenomic stimulation of tyrosine kinases, which might lead to
phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the
anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-� in the brain and provide a potential
new target for the treatment of nicotine addiction.

Key words: dopamine neurons; nicotine; electrophysiology; endocannabinoids; fatty acid amide hydrolase; patch clamp; peroxisome
proliferator-activated receptor

Introduction
Nicotine is the main active component in tobacco smoke, which
initiates and sustains tobacco addiction. Hence, nicotine induces
drug-seeking behavior in animals and many additional effects
commonly seen with addictive drugs (Stolerman and Shoaib,
1991). Among these effects, stimulation of mesolimbic dopamine
(DA) transmission is considered to be one of the hallmarks to
define the addicting potential of nicotine, being one of the com-
mon features of all abused drugs (Di Chiara and Imperato, 1988;
Wise, 2004). By acting at neuronal nicotinic acetylcholine recep-
tors (nAChRs), nicotine activates ventral tegmental area (VTA)

DA neurons (Mereu et al., 1987; Pidoplichko et al., 1997) and
induces DA release in the nucleus accumbens (Di Chiara and
Imperato, 1988).

Among medications aimed at achieving smoking cessation,
antagonists at the cannabinoid type-1 (CB1) receptors show
promise, based on preclinical data indicating that these com-
pounds, such as rimonabant (SR141716A) or AM251, reduce
nicotine self-administration or conditioned place preference
(CPP) (Cohen et al., 2002; Le Foll and Goldberg, 2004; Forget et
al., 2005; Shoaib, 2008), nicotine-induced DA release in the nu-
cleus accumbens (Cohen et al., 2002; Cheer et al., 2007), or smok-
ing cessation in humans (Cahill and Ussher, 2007). These data
strongly point to a facilitatory effect of the endocannabinoid sys-
tem in the motivational and DA-releasing properties of nicotine.
Indeed, endogenous cannabinoids, such as arachidonoylethano-
lamide (anandamide, AEA) and 2-arachidonoylglycerol, and CB1

receptors are involved in the neuronal mechanisms underlying
the rewarding effects of most drugs of abuse, including nicotine
(Castañé et al., 2005; Le Foll and Goldberg, 2005; Le Foll et al.,
2008; Solinas et al., 2008).
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The present study was designed to investigate modulation of
nicotine effects by the endocannabinoid system, and to clarify the
role of DA neurons in the mediation of the antiaddicting prop-
erties of CB1 antagonists. To this aim, the electrophysiological
responses of DA neurons to nicotine administration were studied
following either blockade of CB1 receptors or, conversely, en-
hancement of brain endocannabinoid levels by inhibiting fatty
acid amide hydrolase (FAAH) (Kathuria et al., 2003; Fegley et al.,
2005), the major hydrolyzing enzyme for AEA and other endog-
enous fatty acid ethanolamides (FAEs), such as the N-acylamines
oleoylethanolamide (OEA) and palmitoylethanolamide (PEA).
Unlike AEA, both OEA and PEA have no affinity for cannabinoid
receptors, but bind to the peroxisome proliferator-activated re-
ceptor (PPAR), a family of nuclear receptor transcription factors
(Fu et al., 2003; Lo Verme et al., 2005). Three subtypes of PPARs
(�, �/� and �) play important roles in lipid metabolism, insulin
sensitivity, glucose homeostasis and inflammation (Berger and
Moller, 2002). Through PPAR-�, OEA and PEA are peripherally
acting satiety signals that modulate feeding, body weight and
lipid metabolism (Rodriguez de Fonseca et al., 2001; Fu et al.,
2003) and have antinociceptive effects in visceral and inflamma-
tory pain models (Lo Verme et al., 2005; D’Agostino et al., 2007;
Suardiaz et al., 2007).

We discovered that, contrary to our expectations, enhance-
ment of brain FAE levels, rather than blockade of CB1 receptors,
inhibited the responses of DA neurons to nicotine. More impor-
tantly, the noncannabinoid FAEs OEA and PEA play a novel and
unsuspected role, as PPAR-� agonists, in the negative regulation
of neuronal responses to nicotine.

Materials and Methods
Electrophysiology: single unit recordings. We performed the experiments
in strict accordance with the Guidelines for the Care and Use of Mam-
mals in Neuroscience and Behavioral Research (National Research
Council 2004) and EEC Council Directive of 24 November 1986 (86/
609). We made all efforts to minimize pain and suffering and to reduce
the number of animals used.

Male Sprague Dawley rats (250 –350 g) (Harlan) were housed in
groups of three to six in standard conditions of temperature and humid-
ity under a 12 h light/dark cycle (with lights on at 7:00 A.M.) with food
and water available ad libitum.

Animals were anesthetized with urethane (1300 mg/kg, i.p.), their
femoral vein was cannulated for intravenous administration of pharma-
cological agents, and they were placed in the stereotaxic apparatus (Kopf)
with their body temperature maintained at 37 � 1°C by a heating pad.
Thereafter, the scalp was retracted and one burr hole was drilled above
the VTA (�6.0 mm anteroposterior from bregma, 0.3– 0.6 mm lateral
from midline) for the placement of a recording electrode. For intracere-
broventricular drug administration, a guide cannula (23 gauge stainless
steel) was placed into the ventricle ipsilateral to the recording side (1.0
mm posterior, 1.4 mm lateral to bregma and 4.0 mm ventral to the
cortical surface). Structures were localized according to the stereotaxic
atlas of Paxinos and Watson (1997). Intracerebroventricular injections
were made through a prefilled inner cannula (30 gauge stainless steel
tubing) connected to a 50 �l Hamilton microsyringe and extending 1.0
mm below the tip of the guide into the ventricle. Infusion rate was set at
2.5 �l/min by an electrically driven mini-pump.

Single unit activity of neurons located in the VTA (V 7.0 – 8.0 mm
from the cortical surface) was recorded extracellularly with glass mi-
cropipettes filled with 2% pontamine sky blue dissolved in 0.5 M sodium
acetate (impedance 2–5 M�). Single unit activity was filtered (bandpass
500 –5000 Hz) and individual spikes were isolated by means of a window
discriminator (Digitimer), displayed on a digital storage oscilloscope
(TDS 3012, Tektronics) and digitally recorded. Experiments were sam-
pled on line and off line with Spike2 software (Cambridge Electronic

Design) by a computer connected to CED 1401 interface (Cambridge
Electronic Design).

Single units were isolated and identified according to already pub-
lished criteria (Grace and Bunney, 1983, 1984; Ungless et al., 2004). Since
only one cell was recorded per rat, VTA DA neurons were selected when
all criteria for identification were fulfilled: firing rate �10 Hz, duration of
action potential �2.5 ms, inhibitory responses to hindpaw pinching.
Bursts were defined as the occurrence of two spikes at an interspike
interval �80 ms, and terminated when the interspike interval exceeded
160 ms (Grace and Bunney, 1983).

At the end of each recording section, direct current (10 �A for 15 min)
was passed through the recording electrode to eject Pontamine sky blue,
which allowed the identification of the recorded cells. Brains were re-
moved and fixed in 8% formalin solution. The position of the electrodes
was microscopically identified on serial sections (60 �m) stained with
cresyl violet.

Electrophysiology: patch-clamp recordings. The preparation of VTA
slices was as described previously (Johnson and North, 1992). Briefly,
male Sprague Dawley rats (10 –28 d) were anesthetized with halothane in
a vapor chamber and killed by decapitation. A block of tissue containing
the midbrain was rapidly dissected and sliced in the horizontal plane (300
�m) with a vibratome (Leica VT1000S) in ice-cold low-Ca 2� solution
containing (in mM): 126 NaCl, 1.6 KCl, 1.2 NaH2PO4, 1.2 MgCl2, 0.625
CaCl2, 18 NaHCO3, and 11 glucose. Slices were transferred to a holding
chamber with artificial CSF (ACSF, 37°C) saturated with 95% O2 and 5%
CO2 containing (in mM): 126 NaCl, 1.6 KCl, 1.2 NaH2PO4, 1.2 MgCl2,
2.4 CaCl2, 18 NaHCO3, and 11 glucose. Slices were allowed to recover for
at least 1 h before being placed in the recording chamber and superfused
with the ACSF (37°C) saturated with 95% O2 and 5% CO2. Cells were
visualized with an upright microscope with infrared illumination (Ax-
ioskop FS 2 plus, Zeiss), and whole-cell patch-clamp recordings were
made by using an Axopatch 200B amplifier (Axon Instruments). Both
voltage- and current-clamp experiments were made with electrodes filled
with a solution containing the following (in mM): 117 KCl 144, 10
HEPES, BAPTA 3.45, CaCl 1, 2.5 Mg2ATP, and 0.25 Mg2GTP (pH 7.2–
7.4, 275–285 mOsm). Experiments were begun only after series resis-
tance had stabilized (typically 15– 40 M�). Series and input resistance
were monitored continuously on-line with a 5 mV depolarizing step (25
ms). Data were filtered at 2 kHz, digitized at 10 kHz, and collected on-line
with acquisition software (pClamp 8.2, Axon Instruments). DA neurons
from the posterior VTA were identified by the presence of a large Ih

current (Johnson and North, 1992) that was assayed immediately after
break-in, using a series of incremental 10 mV hyperpolarizing steps from
a holding potential of �70 mV. Each slice received only a single drug
exposure.

Drugs. Nicotine ((�)-nicotine hydrogen tartrate) was purchased from
Sigma. OEA, PEA, methanandamide (mAEA), AM281, AM251, capsaz-
epine, WY14643, MK886, genistein, PP2 were purchased from Tocris.
Rimonabant (SR141716A) was a generous gift of Sanofi-Aventis Recher-
che (Montpellier). Nicotine was diluted in saline (pH � 7). For i.c.v.
administration, OEA or mAEA were dissolved in 40% w/v
2-hydroxypropyl-�-cyclodextrin. mAEA for i.v. injections was dissolved
in 2% Tween 80 and 2% ethanol and then diluted in saline. Rimonabant
was emulsified in 1% Tween 80, then diluted in saline solution and
sonicated. URB597 and MK886 were dissolved in DMSO (100 �g/�l)
and diluted to the final concentration in saline. All drugs for patch-clamp
experiments were dissolved in DMSO as stock solutions and then dilute
to the final volume in ACSF (final concentration �0.01%).

Statistical analysis. Drug-induced changes in firing rate and pattern
were calculated by averaging the effects after drug administration (2 min
or 30 s bins for in vivo and in vitro electrophysiology, respectively) and
normalizing to the predrug baseline. All the numerical data are given as
mean � SEM. Data were compared and analyzed by using two-way
ANOVA for repeated measures (treatment � time), or one-way ANOVA
or Student’s t test for repeated measures, when appropriate. Post hoc
multiple comparisons were made using the Dunnett’s test. Statistical
analysis was performed by means of the NCSS program. The signifi-
cance level was established at p � 0.05.
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Results
Effects of rimonabant and URB597 on activation of VTA
dopamine neurons by nicotine in vivo
We recorded the activity of VTA DA neurons in urethane anes-
thetized rats. Cells were recorded only when they fulfilled all
established criteria for VTA DA neuron identification (see Mate-
rials and Methods). A typical DA neuron broad waveform is
shown in Figure 1A. Consistent with previous in vivo studies
(Mereu et al., 1987; Erhardt et al., 2002), nicotine (0.2 mg/kg, i.v.)
enhanced firing rate of VTA DA neurons to 144.2 � 24.2% of
baseline and burst firing to � 10.6 � 3.8% (F(5,71) � 4.06, n � 23,
p � 0.05; F(5,71) � 2.89, n � 23, p � 0.05, respectively, one-way

ANOVA for repeated measure) (Fig. 1B–
D). As previously reported, nicotine-
induced excitation was short lasting, being
significant 2 and 4 min following adminis-
tration (Dunnett’s post hoc). Injections of
all the different vehicles (either intraperi-
toneal, intravenous, or intracerebroven-
tricular) that were used in all subsequent
experiments neither significantly changed
the discharge activity of DA neurons nor
modulated the effect of the subsequent
nicotine administration. Therefore, all con-
trol experiments with nicotine were pooled.

We first studied the effect of CB1 recep-
tor blockade on nicotine-induced excita-
tion of DA neurons. Rimonabant
(SR141716A, 0.5 mg/kg, i.v. 4 min before
nicotine) did not modify the excitatory re-
sponse of DA neurons to nicotine com-
pared with vehicle (F(1,103) � 1.10, n � 11,
p � 0.3, two-way ANOVA for repeated
measures) (Fig. 1B–D). Next, we investi-
gated the effect of enhancement of endog-
enous endocannabinoid tone. Rats were
pretreated between 60 and 120 min (aver-
age 72.4 min) before electrophysiological
recordings with URB597 (0.1 mg/kg, i.v.),
an irreversible FAAH inhibitor. The inter-
val between URB597 administration and
recordings varied among experiments,
nevertheless, this dose of URB597 is within
the range of doses shown to enhance per-
sistently (�6 h) brain AEA levels (Kathu-
ria et al., 2003; Fegley et al., 2005), with
maximal effects 1–2 h following adminis-
tration (Fegley et al., 2005). URB597 did
not change spontaneous baseline firing
rate (3.7 � 0.26 Hz, n � 48, in control
animals; 3.9 � 0.14, n � 14, in URB-
pretreated animals, p � 0.36, Student’s t
test) or burst firing (22.6 � 3.64% of
spikes in bursts, n � 48, in control ani-
mals; 23.0 � 5.15%, n � 14; in URB-
pretreated animals, p � 0.96, Student’s t
test) of VTA DA neurons assessed before
nicotine administration, but, unexpect-
edly, it completely prevented nicotine’s ef-
fects on DA neuronal activity (74.1 �
6.2% and �16.8 � 4.1% of baseline, for
firing rate and burst firing, respectively)
(Fig. 1B,C,D). Two-way ANOVA showed

a highly significant effect of URB597 treatment on the effects of
nicotine on firing rate (F(1,95) � 4.95, n � 6, p � 0.01) and burst
firing (F(1,107) � 7.98, n � 6, p � 0.01). Hence, following URB597
pretreatment, nicotine transiently inhibited, rather than excited, fir-
ing rate and burst firing of DA neurons (F(3,23) � 3.73, p � 0.001,
n � 6; F(3,23) � 9.44, p � 0.01, one-way ANOVA for repeated mea-
sures) (Fig. 1B,C,D).

Contribution of CB1 receptors and PPAR-� to URB597
antagonism of nicotine effects in vivo
URB597 has been shown to increase not only AEA, but also OEA
and PEA levels (Kathuria et al., 2003). We first investigated
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Figure 1. Effects of rimonabant and URB597 on activation of VTA dopamine neurons by nicotine. A, Average trace, acquired
from a digital storage oscilloscope, showing the typical, broad, notched waveform of a VTA dopamine neuron recorded from an
anesthetized rat. B, Representative firing rate histograms showing effects of intravenous nicotine (NIC, injected at arrowheads) on
discharge activity of individual VTA dopamine neurons recorded from anesthetized rats. The top panel shows the typical response
to 0.2 mg/kg nicotine in control conditions following intravenous injection of vehicle (VEH). The middle panel shows the lack of
effect of rimonabant (SR, 0.5 mg/kg, i.v.) on spontaneous firing rate of dopamine neurons and on the subsequent effects of
nicotine. The bottom panel shows the effect of nicotine in a URB597 pretreated animal, where nicotine induced a transient
inhibition of firing activity. C, D, Graphs illustrating the time course of nicotine’s effects on firing rate and burst firing of VTA
dopamine neurons. Pretreatment with URB597 (0.1 mg/kg, i.v.), but not rimonabant (0.5 mg/kg, i.v.), prevented the nicotine-
induced increases in firing rate (C) and burst firing (D) of VTA dopamine neurons. Results are means, with vertical bars represent-
ing the SEM of firing rates and burst firing, expressed as a percentage of or difference from baseline (BAS) values. Arrows represent
time of nicotine injection. *p � 0.05 versus baseline (one-way ANOVA for repeated measures and Dunnett’s test).
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whether AEA mediates URB597’s antagonism of nicotine effects
by acting at CB1 receptors. For this purpose, we administered the
CB1 antagonist rimonabant together with URB597. Rimonabant
(0.5 mg/kg, i.v. 1 min before URB597) significantly reduced the
ability of URB597 to block nicotine-induced stimulation of DA
neuron discharge rate (123.7 � 11.5% of baseline), but not of
burst firing (�18.4 � 8.0% of baseline) (F(1,23) � 11.04, n � 9,
p � 0.01; F(1,23) � 2.30, n � 9, p � 0.2, respectively, two-way
ANOVA for repeated measures) (Fig. 2A,B). The CB1 receptor
antagonist AM251 (1.0 mg/kg, i.v. 1 min before URB597, n � 5)
fully replicated the effects of rimonabant (Fig. 2A,B) (firing rate:
F(1,61) � 10.96, n � 6, p � 0.01; burst firing: F(1,75) � 0.00, n � 6,
p � 0.9, two-way ANOVA for repeated measures). This dissoci-
ation between URB597 effects on nicotine-induced increases in
firing rate and burst firing was further analyzed by assessing the
contribution of the noncannabinoid FAEs (OEA and PEA),
which are ligands at PPAR-� (Fu et al., 2003). We asked whether
the effect of URB597 could be antagonized by the synthetic selec-
tive PPAR-� antagonist MK886 (3 mg/kg, i.p.). MK886 signifi-
cantly prevented URB597 from altering nicotine-induced stimu-
lation of bursting (�10.5 � 3.5% of baseline) (F(1,72) � 4.90, n �
13, p � 0.05, two-way ANOVA for repeated measures) (Fig. 2B),
but not firing rate (F(1,75) � 0.0, n � 13, p � 0.95, two-way
ANOVA for repeated measures) (Fig. 2A). These results suggest
that diverse FAEs may modulate nicotine effects on DA neurons
through different mechanisms.

Oleoylethanolamide blocks nicotine effects in vivo
via PPAR-�
To determine the precise contribution of either CB1 or PPAR-�
receptors in the observed effects, we assessed whether mAEA, the
metabolically stable analog of AEA, and OEA modulated the re-
sponse to nicotine of VTA DA neurons. mAEA was administered
intravenously at doses of 1 and 5 mg/kg (n � 6 each group) (Fig.
3A,B), or i.c.v. at a dose of 5 �g/5 �l (n � 6) (Fig. 3B) 4 min
before nicotine administration. These doses, which exert CB1

receptor-mediated behavioral effects in vivo (Solinas et al., 2006,
2007), did not affect either baseline firing rate or burst firing of
DA neurons or modulate the excitatory response to nicotine ad-
ministration, compared with vehicle (F(3,234) � 0.68, n � 6, p �
0.57, two-way ANOVA for repeated measures). Due to the poor
metabolic stability of OEA, we chose to administer it (20 �g/5
�l), or a corresponding volume of vehicle (40% w/v
2-hydroxypropyl-�-cyclodextrin), into the lateral ventricle 4 min
before nicotine. In contrast to mAEA, OEA completely prevented
the activation of DA neurons induced by nicotine (92.7 � 13.5%
of baseline at 2 min postnicotine) (Fig. 3C,D), whereas vehicle
injection was inactive (n � 6, data not shown). Two-way ANOVA
showed a significant effect of OEA treatment on nicotine-
induced stimulation of firing rate and burst firing (F(1,99) � 5.61,
n � 6, p � 0.05; F(1,107) � 4.28, n � 6, p � 0.05, respectively,
two-way ANOVA for repeated measures). Neither OEA nor ve-
hicle produced significant changes in the spontaneous firing rate
or burst firing of DA neurons (Fig. 3C,D). Next, MK886 pretreat-
ment (3 mg/kg, i.p., 30 min before recordings) prevented the
blockade by OEA of nicotine’s excitatory effects (122.8 � 7.2% of
baseline at 4 min postnicotine), when compared with OEA alone
(F(1,55) � 6.06, n � 8, p � 0.05, two-way ANOVA for repeated
measures) (Fig. 3C,D), thus highlighting the role of PPAR-� in
the effects of OEA.

Blockade of nicotine-induced excitation of dopamine neurons
in vitro by noncannabinoid fatty acid ethanolamides
We next asked whether modulation of nicotine effects by
PPAR-� could be studied in brain slices containing the mesen-
cephalon by using whole-cell patch-clamp recordings. The effect
of nicotine was studied on posterior VTA DA neurons. Figure 4A
(top) shows a typical action potential of a representative DA neu-
ron, when recorded in the current-clamp mode, with its typical
low threshold, broad action potential, and prominent afterhyper-
polarization. The second derivative of this action potential orig-
inates the waveform (Fig. 4A, bottom) that has been used for cell
identification of DA neurons in many in vivo extracellular studies
(Grace and Bunney, 1983, 1984; Ungless et al., 2004), and quali-
tatively corresponds to the typical action potential recorded in
vivo and shown in Figure 1A. DA neurons recorded under
current-clamp mode displayed an average frequency of 1.8 � 0.1
Hz (n � 102) and fired spontaneously in a clock-like, single-spike
mode. Consistent with the literature (Pidoplichko et al., 1997),
DA neurons responded to bath-applied nicotine (1 �M, 2 min)
with a transient excitation of discharge rate (	40%) (Fig. 4B–D).
This excitation peaked (137 � 12.8% of baseline, n � 6), and was
statistically significant (F(6,41) � 8.03, p � 0.0001, one-way
ANOVA), during the first minute of application. Under voltage-
clamp mode (Vholding� �70 mV), nicotine caused a transient
inward current of 40.3 � 5.6 pA (n � 6) (Fig. 4F), due to rapid
activation and desensitization of nAChRs (Pidoplichko et al.,
1997). We next examined the effects of the three different FAEs
(i.e., mAEA, OEA and PEA) on nicotine induced excitation of
VTA DA neurons. These drugs were applied for 5 min to assess
whether they per se modulated spontaneous firing of DA neu-
rons, and then coapplied with nicotine (1 �M). mAEA was tested
at two different concentrations, 30 nM and 1 �M. The lower con-
centration of mAEA did not significantly affect spontaneous dis-
charge rate of DA neurons or modulate nicotine-evoked excita-
tion (the peak of nicotine with mAEA was 147.7 � 13.7% of
baseline firing rate, p � 0.58, t test, vs nicotine alone) (Fig. 4E,G).
Since this concentration of mAEA might have been too low, we
next tested a concentration of 1 �M, which itself significantly
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Figure 2. Contribution of CB1 receptors and PPAR-� to URB597’s reversal of nicotine’s ef-
fects in vivo. A, The CB1 receptor antagonists rimonabant (SR, 0.5 mg/kg, i.v.) or AM251 (AM, 1.0
mg/kg, i.v.) reversed URB597’s blockade of nicotine-induced increases in firing rate of VTA
dopaminergic neurons produced by nicotine (NIC, 0.2 mg/kg), whereas the PPAR-� antagonist
MK886 (MK, 3 mg/kg, i.p.) was ineffective. B, In contrast, MK886 administration reversed
URB597’s blockade of nicotine-induced increase in bursting activity of VTA dopamine neurons,
whereas rimonabant and AM251 were ineffective. Results are means, with vertical bars repre-
senting the SEM of firing rates and burst firing, expressed as a percentage of or difference from
baseline (BAS) values. Arrows represent time of nicotine injection. *p � 0.05 versus baseline
(one-way ANOVA for repeated measures and Dunnett’s test).
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enhanced firing rate of DA neurons to 370.6 � 110% of baseline
level (F(5,125) � 21.74, n � 6, p � 0.0001, one-way ANOVA for
repeated measures; data not shown). We asked whether mAEA-
induced stimulation was due to activation of CB1 and/or TRPV1
receptors. The CB1 receptor antagonist AM281, at a concentra-
tion (500 nM) that fully reverses activation of CB1 receptors by
maximal concentrations of agonists (Melis et al., 2004), had no
effect on mAEA-induced stimulation of DA neuron firing rate
(F(1,72) � 0.67, n � 5, p � 0.4365, two-way ANOVA; data not
shown). However, this stimulation was completely blocked by
the TRPV1 receptor antagonist capsazepine (10 �M, F(1,171) �
8.13, n � 5– 6, p � 0.019, two-way ANOVA; data not shown).
This observation is consistent with other studies showing that
TRPV1 agonists stimulate DA neuron activity by enhancing glu-

tamatergic synaptic transmission onto DA
neurons (Marinelli et al., 2005). To isolate
the agonistic activity of mAEA at CB1 re-
ceptors, or possibly at PPAR-�, and avoid
TRPV1-induced excitation of DA cells that
could mask or confound the effects of the
subsequent application of nicotine, we ap-
plied nicotine in the presence of capsaz-
epine. Under these circumstances, excita-
tory effects of nicotine were unmodified
compared with controls (151.4 � 13.5% of
baseline, t � 0.77, n � 6, p � 0.4563, t test)
(Fig. 4G), suggesting that CB1 receptor
stimulation did not affect nicotine-
induced excitation of DA neuron firing
and that mAEA did not activate PPAR-�
(see below).

Next, we tested two different noncan-
nabinoid FAEs, OEA and PEA. Interest-
ingly, OEA (0.3, 1 and 3 �M) dose-
dependently prevented nicotine-induced
excitation (97.44 � 5% and 92.01 � 7% of
baseline at 1 and 3 �M, respectively; 1 �M:
n � 5, t � 2.65, p � 0.01; 3 �M: n � 7, t �
3.22, p � 0.04) (Fig. 4H), without affecting
DA neuron spontaneous activity during
preapplication (Fig. 4E). The effects of
OEA were mimicked by PEA (10 �M,
101.9 � 3% of baseline, n � 6, t � 2.66,
p � 0.01) (Fig. 4E,G). Consistently, under
voltage-clamp mode (Vholding� �70 mV),
the nicotine-induced inward current was
completely abolished when nicotine was
perfused in the presence of OEA (3 �M, 5
min preapplication: �0.3 � 3.4 pA, n � 6,
t � 7.13, p � 0.0004, paired t test) (Fig.
4F), or PEA (10 �M, 5 min preapplication:
�0.6 � 7.5 pA, N � 5, t � 4.442, p �
0.001, paired t test) (Fig. 4F). During pre-
application, OEA and PEA did not induce
inward or outward currents onto DA neu-
rons (data not shown).

Based on these results, we expected that
the PPAR-� antagonist MK886 would
block the actions of OEA and PEA on
nicotine-induced excitation. As predicted,
when OEA or PEA were coapplied with
MK886 (300 nM), nicotine’s effects on fir-
ing rate of DA neurons were restored

(155.8 � 16.6% and 163.8 � 11.3% of baseline in the presence of
OEA and PEA, respectively; OEA�MK886 vs OEA alone: F(2,323)

� 7.59, n � 8, p � 0.004, two-way ANOVA; PEA�MK886 versus
PEA alone: F(1,228) � 4.84, n � 8, p � 0.04, two-way ANOVA)
(Fig. 5A,B,C). MK886 when perfused either alone or in combi-
nation with OEA/PEA did not alter spontaneous firing rate of
VTA DA neurons (Fig. 5C). However, MK886 significantly en-
hanced nicotine-induced activation of DA neurons (207 � 27%
of baseline, MK886�nicotine vs nicotine: t � 2.167, n � 7, p �
0.05, t test) (Fig. 5B).

Next, we determined whether the synthetic PPAR-� agonist
WY14643 would alter the effects of nicotine on DA cells.
WY14643 (300 nM) was per se ineffective on DA neuronal firing
rate, but fully prevented nicotine-induced excitation (83.7 �
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Figure 3. OEA, but not mAEA, prevented increases in firing rate of VTA dopaminergic neurons produced by nicotine. A,
Representative firing rate histograms showing the effects of nicotine (NIC, 0.2 mg/kg i.v., injected at arrowheads) on the discharge
activity of individual VTA dopamine neurons recorded following injection of mAEA (1 mg/kg, i.v.). B, Graph showing that nicotine-
induced excitation of VTA dopamine neurons was not changed following the administration of mAEA, either intravenously (1 and
5 mg/kg) or intracerebroventricularly (5 �g/5 �l). C, Representative firing rate histograms showing the effects of NIC (0.2 mg/kg
i.v., injected at arrowheads) on the discharge activity of individual VTA dopamine neurons recorded following injection of OEA (20
�g/5 �l, i.c.v.; top). MK886 (MK, 3 mg/kg, i.p.) reversed the OEA-induced blockade of nicotine’s effects (bottom). Neither OEA nor
vehicle (40% w/v 2-hydroxypropyl-�-cyclodextrin) produced significant changes in spontaneous firing rate or burst firing. D,
Graph showing that nicotine-induced excitation of VTA dopamine neurons was abolished by OEA. MK886 (MK, 3 mg/kg, i.p.)
reversed the OEA-induced blockade of nicotine’s effects. Results are means, with vertical bars representing SEM of firing rates,
expressed as a percentage of baseline (BAS) values. Arrows represent the time of intravenous injections. The horizontal bar
represents the time of intracerebroventricular administration. *p � 0.05 versus baseline (one-way ANOVA for repeated measures
and Dunnett’s test).
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14.7% of baseline, n � 9, t � 2.54, p � 0.02) (Fig. 5D,E). The
effect of WY14643 was also reversed by MK886 (167.7 � 22.7% of
baseline; WY14643�MK886 vs WY14643 alone: F(1,228) � 5.30, n �
5, p � 0.05, two-way ANOVA) (Fig. 5D,E), confirming the role of
PPAR-� in the modulation of DA neuron responses to nicotine.

Mechanisms downstream of PPAR-� activation in the
modulation of nicotine effects: involvement of tyrosine
kinases
Although it is well established that PPAR-� regulates gene ex-
pression (Berger and Moller, 2002), the effects of OEA, PEA and
WY14643 observed in the present study were fairly rapid in onset,
thus ruling out gene induction as a possible mechanism, and
suggesting a more likely nongenomic (Gardner et al., 2005)
mechanism occurring in such a short time scale. Among many
diverse pathways, we chose to investigate the regulation of ty-
rosine kinases, because PPAR-� agonists have been shown to
activate several tyrosine kinases, such as the Src family kinase
(SFK) (Gardner et al., 2005), which phosphorylates and nega-
tively regulates �7 nAChRs (Charpantier et al., 2005).

We hypothesized that phosphorylation of nAChRs could ac-
count for PPAR-� mediated inhibition of nicotine effects. To
explore this possibility, we incubated slices with the general ty-
rosine kinase inhibitor genistein (10 �M), which has indirect ef-
fects on nAChRs arising from the inhibition of intracellular phos-

phorylation pathways. Experiments were conducted under
voltage-clamp mode on nicotine-induced inward currents, since
genistein had aspecific channel blocker properties which led to a
complete blockade of action potential generation (data not
shown). Genistein was able to prevent OEA blockade of nicotine
effects and restored nicotine-evoked inward currents (37.8�4.4 pA,
n � 6, t � 6.79, p � 0.0001) (Fig. 6A,B), demonstrating that inhibi-
tion of tyrosine kinases reverses the effect of PPAR-� activation.

To investigate which tyrosine kinase phosphorylates and neg-
atively modulates nAChRs, we focused on SFKs, on the basis of
previous reports highlighting the role of SFK in the regulation of
�7 nAChRs (Charpantier et al., 2005). We predicted that inhibi-
tion of SFK would reverse the effects of OEA. To test this hypoth-
esis, slices were incubated (1 h) and continuously perfused with
the SFK inhibitor PP2 (10 �M). This treatment did not change
electrophysiological features of recorded DA neurons (data not
shown). However, PP2 failed to reverse OEA blockade of nico-
tine’s effects on DA cells under both voltage- and current-clamp
modes. Indeed, in the presence of PP2, OEA abolished nicotine-
induced inward currents (�1.4 � 5.7, n � 5, t � 0.16, p � 0.5)
(Fig. 6A,B) as well as the nicotine-induced enhancement of firing
rate (100.9 � 7.1% of baseline, F(1,108) � 0.06, n � 6, p � 0.8,
two-way ANOVA) (Fig. 6C,D), suggesting that SFK is not involved
in the negative modulation of nAChRs by PPAR-� agonists.
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Figure 4. Activation of dopamine neurons by nicotine is prevented by OEA and PEA in vitro. A, Typical action potential waveform of a dopamine neuron recorded under current-clamp mode (top)
and its second derivative (bottom). B, Representative traces of a dopamine neuron spontaneous activity during baseline level (top), nicotine application (nic, 1 �M for 2 min; middle), and wash out
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expressed as mean � SEM. *p � 0.05, **p � 0.01.
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Discussion
The present study revealed that naturally occurring noncannabi-
noid FAEs can modulate the responses of VTA DA neurons to
nicotine via PPAR-�, possibly by phosphorylation of nAChRs.
This is the first evidence of an important functional role of this
family of nuclear receptor transcription factors in the brain. It
also highlights the role of FAEs, devoid of cannabinoid actions, in
the regulation of neuronal functions.

Centrally mediated effects of the noncannabinoid FAEs have
been poorly characterized, although OEA and PEA might consti-
tute an independent endocannabinoid-like system. This view is
supported by the findings that their synthesis and inactivation
occurs independently of “classic” endocannabinoids, although in
a similar on demand manner (Hansen et al., 1995; Stella and
Piomelli, 2001; Mackie and Stella, 2006). The molecular targets
underlying their pharmacological effects have remained elusive
until the discovery of their agonistic actions at PPAR-� (Fu et al.,
2003). These nuclear receptors are ubiquitously distributed in the
CNS (Moreno et al., 2004), but their roles in neuronal physiol-
ogy, or in pathophysiological mechanisms of brain disorders, are
largely unknown.

Indirect enhancement of brain FAEs levels obtained by block-
ade of their major hydrolyzing enzyme, FAAH, by URB597
(Kathuria et al., 2003) has been reported to produce antidepres-
sant, anxiolytic and analgesic effects in rodents (Kathuria et al.,
2003; Gobbi et al., 2005; Piomelli et al., 2006; Russo et al., 2007).
All of these effects are prevented by treatment with CB1 receptor
antagonists, and have been ascribed to increased AEA levels, thus
suggesting that augmented levels of OEA and PEA do not con-
tribute significantly. However, a PPAR-� antagonist was recently
reported to block the peripheral analgesic effects of URB597,
suggesting that analgesia may be mediated by FAEs binding at
PPAR-� (Jhaveri et al., 2008). In the present experiments, we
discovered that inhibition of FAAH, rather than blockade of CB1

receptors, suppresses nicotine-induced activation of DA neu-
rons. The lack of effect by rimonabant was unexpected in light of
recent reports that CB1 antagonists decrease DA release evoked
by nicotine in the nucleus accumbens (Cohen et al., 2002; Cheer
et al., 2007). One can argue, however, that the suppression by
rimonabant of evoked DA release may be independent from the
inhibition of firing activity of DA neurons in the VTA, and may

4

Figure 5. OEA and PEA block nicotine activation of dopamine neurons through a PPAR-�-
mediated mechanism. A, Representative traces of the spontaneous activity of a dopamine neu-
ron during baseline (top), OEA (3 �M) plus the PPAR-� antagonist MK886 (0.3 �M) preappli-
cation (5 min, second panel), subsequent nicotine application (1 �M, 2 min, third panel), and
wash out (bottom). B, Bar graph illustrating the effect of MK886 on nicotine-induced activation
of VTA DA neurons and on OEA- and PEA-mediated inhibition of nicotine excitation (average of
the first minute of nicotine perfusion). Note that activation of dopamine neurons by nicotine
was fully restored when either OEA or PEA were coapplied with MK886. Notably, MK886 itself
significantly potentiated nicotine-induced excitation. C, Time course of the effect of MK886 (0.3
�M), alone or in combination with either OEA or PEA, on nicotine induced excitation. The dashed
bar represents the time of fatty acid ethanolamide (OEA, PEA) plus MK886 or MK886 alone
application. The solid bar represents the time of nicotine application. D, Representative traces of
dopamine neuron firing rate showing that the PPAR-� agonist WY14643 (300 nM) mimicked
the actions of OEA and PEA by preventing nicotine-induced excitation (top), which was then
restored by the coapplication of MK886 (bottom). E, Time course of the effect of nicotine on
dopamine neuron firing rate in the presence of WY14643 (open symbols) or WY14643 plus
MK886 (closed symbols). The dashed and the solid bars represent the times of PPAR-� agonist/
antagonist or nicotine application, respectively. In the inset, the bar graph summarizes the
effects of WY14643 (WY) on nicotine-induced excitation of dopamine neuron firing rate (FR)
with or without MK886. Numbers above bars indicate the n values for each group of experi-
ments. Data are expressed as mean � SEM. *p � 0.05.
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be an effect primarily involving their ter-
minal regions or local circuits within the
nucleus accumbens. Hence, presynapti-
cally located nAChRs potently regulate DA
release in the striatum, including the nu-
cleus accumbens (Zhou et al., 2001). The
effect of URB597 was even more surpris-
ing, since it contradicts the notion that the
endocannabinoid system exerts a facilita-
tory effect on nicotine reward and addic-
tion. Consistent with the present results,
recent findings indicate that URB597 pre-
vents the development of nicotine-
induced CPP, acquisition of nicotine self-
administration and nicotine-induced
reinstatement in both CPP and self-
administration models of relapse
(Scherma et al., 2008).

Here, we found that the effects of
URB597 were not entirely dependent on
CB1 receptor stimulation, since nicotine-
induced increases in DA neuron bursting
were not reversed by rimonabant or
AM251, whereas increases in firing rate
were. The PPAR-� antagonist MK886 re-
versed URB597’s blockade of nicotine-
induced bursting in DA neurons, suggest-
ing that FAEs, other than AEA, play a role
in antagonizing the effects of nicotine.
More importantly, OEA, but not mAEA,
blocked the effects of nicotine on DA neu-
rons in vivo. These results were substanti-
ated by the findings that both OEA and
PEA, but not mAEA, completely pre-
vented nicotine-induced excitation of DA
neurons in vitro. Additionally, OEA and
PEA actions via PPAR-� were confirmed
by the antagonism exerted by MK886, and
by the observation that the PPAR-� ago-
nist WY14643 mimicked the actions of
noncannabinoid FAEs. Although AEA has
been reported to display binding affinity
for PPAR-� (Sun et al., 2006, 2007), our
results are not consistent with those find-
ings, since mAEA had no effects on
nicotine-induced excitation of DA neu-
rons, contrary to OEA and PEA. However,
the studies of Sun et al. (2006, 2007) were
performed in HeLa cells transiently trans-
fected with PPAR-�, thus other investiga-
tions are necessary to confirm the binding properties of AEA at
PPAR-� under more physiological conditions and, more impor-
tantly, in neurons. Remarkably, the analgesic properties of mAEA
are fully preserved in PPAR-� knock-out mice, suggesting a
PPAR-�-independent mechanism of action, whereas those of
OEA and PEA are abolished (LoVerme et al., 2006).

Studies on recombinant or native nAChRs expressed in Xeno-
pus oocytes or in mouse thalamic synaptosomes, respectively,
have demonstrated that AEA (Oz et al., 2003; Spivak et al., 2007;
Butt et al., 2008) or fatty acids (Butt et al., 2002; Barrantes, 2004)
can modulate nAChR function as noncompetitive antagonists.
Our results tend to exclude this possibility. In fact, they strongly
support the notion that OEA and PEA effects are specifically

mediated by PPAR-�, since they are blocked by the selective syn-
thetic antagonist and mimicked by the agonist. Additionally, we
found that mAEA did not alter nicotine-induced DA neuron ex-
citation, making its action as nAChR antagonist unlikely.

As mentioned above, rimonabant revealed a significant com-
ponent mediated by CB1 receptors in the effects of URB597. This
piece of evidence is apparently difficult to reconcile with the re-
sults obtained with mAEA. Hence, mAEA does not significantly
modulate nicotine’s effects either in vivo or in vitro, arguing
against an involvement of CB1 receptors in the modulation of the
excitatory actions of nicotine on VTA DA neurons. There are
possible explanations for this discrepancy: first, the effects of
URB597 are due to the combination of CB1- (by AEA) and
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neuron firing rate showing that PP2 failed to prevent OEA’s action on nicotine-induced excitation (middle). D, Bar graph summa-
rizing the effect of OEA on nicotine-induced enhancement of dopamine neuron discharge rate (average of the first minute of
nicotine perfusion) alone or in the presence of PP2. Numbers above bars indicate the n values for each group of experiments. Data
are expressed as mean � SEM. *p � 0.05.
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PPAR-�- (by OEA and PEA) mediated effects. CB1 receptors and
PPAR-� may share opposing or reinforcing intracellular path-
ways (including modulation of protein kinases) (for review, see
Alexander and Kendall, 2007). Second, URB597 enhances brain
levels of endogenously released FAEs in a discrete and region-
specific manner, and may influence the release of other endocan-
nabinoids as well, including 2-arachidonoylglycerol (Di Marzo
and Maccarrone, 2008; Maccarrone et al., 2008). Conversely, ex-
ogenously applied mAEA induces the activation of CB1 receptors
throughout the brain. The third possible explanation is a differ-
ential involvement of TRPV1 channels, which may be activated
by AEA (following URB597 administration) or by mAEA itself.
However, our results in vitro tend to exclude the possibility that
TRPV1 receptors play a significant role in the modulation of
nicotine effects, since their activation by mAEA, or blockade by
the selective antagonist capsazepine did not change nicotine-
induced excitation of DA neurons.

We investigated also the mechanism by which PPAR-� may
modulate the effects of nicotine. Due to the rapid onset of agonist
actions, we hypothesized that this could be a nongenomic effect.
Hence, PPARs exert pleiotropic effects on many different intra-
cellular pathways, including protein kinases (Gardner et al.,
2005). It was recently shown that the functional properties of �7
nAChRs depend on the tyrosine phosphorylation status of the
receptor, being the result of a balance between SFKs and tyrosine
phosphatases (Charpantier et al., 2005), which negatively or pos-
itively modulate nAChR-mediated currents, respectively. Addi-
tionally, phosphorylation/dephosphorylation of tyrosine resi-
dues in nAChRs controls the number of functional surface
receptors (Cho et al., 2005).

Interestingly, we found that the effects of the tyrosine kinase
inhibitor genistein were consistent with the idea that PPAR-�-
mediated nAChR phosphorylation could account for the block-
ade of neuronal responses to nicotine, although at this stage we
cannot identify the specific tyrosine kinase involved. A proposed
mechanism is displayed in Figure 7. A constitutive interaction
between PPAR-� and tyrosine kinases is also possible, and may
tonically control the ratio of phosphorylated/dephosphorylated
nAChRs, as indicated by the enhanced effects of nicotine in the
presence of the PPAR-� antagonist MK886. It cannot be ex-

cluded that OEA and PEA may be endogenous modulators of
acetylcholine transmission, since stimulation of muscarinic re-
ceptors was shown to stimulate the biosynthesis of OEA and PEA
(Stella and Piomelli, 2001), suggesting the intriguing possibility
of a reciprocal control between acetylcholine and FAEs.

This novel mechanism of regulation of nAChRs by PPAR-�
may represent a new therapeutic avenue for the discovery of med-
ications to support patients during nicotine abstinence. Our data
demonstrate that the actions of OEA are not restricted to the
periphery and suggest that modulation of neuronal responses to
nicotine by OEA may represent an interesting extension of its
peripheral anorexic properties. PPAR-� agonists, such as fi-
brates, are well established medications clinically used in the
treatment of lipid metabolism disorders. Their central effects are
considered negligible due to their poor ability to cross the blood
brain barrier. However, changes in brain lipid metabolism and/or
composition, or modifications of the levels of endogenous lipid
signaling molecules may exert unsuspected actions on neuro-
transmitter functions, which might be exploited therapeutically.

References
Alexander SP, Kendall DA (2007) The complications of promiscuity: endo-

cannabinoid action and metabolism. Br J Pharmacol 152:602– 623.
Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetyl-

choline receptor function. Brain Res Brain Res Rev 47:71–95.
Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev

Med 53:409 – 435.
Butt C, Alptekin A, Shippenberg T, Oz M (2008) Endogenous cannabinoid

anandamide inhibits nicotinic acetylcholine receptor function in mouse
thalamic synaptosomes. J Neurochem 105:1235–1243.

Butt CM, Hutton SR, Marks MJ, Collins AC (2002) Bovine serum albumin
enhances nicotinic acetylcholine receptor function in mouse thalamic
synaptosomes. J Neurochem 83:48 –56.

Cahill K, Ussher M (2007) Cannabinoid type 1 receptor antagonists
(rimonabant) for smoking cessation. Cochrane Database Syst
Rev:CD005353.
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lockade of Nicotine Reward and Reinstatement by
ctivation of Alpha-Type Peroxisome
roliferator-Activated Receptors

aola Mascia, Marco Pistis, Zuzana Justinova, Leigh V. Panlilio, Antonio Luchicchi, Salvatore Lecca,
aria Scherma, Walter Fratta, Paola Fadda, Chanel Barnes, Godfrey H. Redhi, Sevil Yasar,

ernard Le Foll, Gianluigi Tanda, Daniele Piomelli, and Steven R. Goldberg

ackground: Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in
ats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the
oncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type perox-

some proliferator-activated nuclear receptors (PPAR-�). Here, we evaluated whether directly acting PPAR-� agonists can modulate
eward-related effects of nicotine.

ethods: We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-� agonists
[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-
asting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and

onkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in
nesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats.

esults: The PPAR-� agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and
onkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-� agonists also

ose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced
levations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral,
lectrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-� antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-
imethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886).

onclusions: These findings indicate that PPAR-� might provide a valuable new target for antismoking medications.
ey Words: FAAH, nicotine, OEA, PEA, PPAR-�, reinstatement,
eward

t has recently been recognized that peroxisome proliferator-
activated nuclear receptors, which are known to be involved in
metabolism and other cellular functions in many internal or-

ans, also comprise a cannabinoid-like signaling system in the brain
1). Like the endogenous cannabinoid anandamide, the fatty acid
mides oleoylethanolamide (OEA) and palmitoylethanolamide
PEA) are endogenous ligands for the alpha subtype of the peroxi-
ome proliferator-activated receptor (PPAR-�), are synthesized on
emand, and are primarily degraded by fatty acid amide hydrolase
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(FAAH). Drugs that selectively inhibit FAAH prevent degradation
and increase brain levels of anandamide, OEA, and PEA (2,3). But,
unlike anandamide, OEA and PEA are devoid of action at cannabi-
noid receptors (4 – 6).

We recently reported that a FAAH-inhibiting drug can counter-
act addiction-related effects of nicotine in several animal models
(7–9). In rats, FAAH inhibition suppressed the development of nic-
otine-induced conditioned place preference and nicotine self-ad-
ministration, widely used animal models of nicotine’s habit-form-
ing effects (9). Inhibition of FAAH also suppressed reinstatement of
nicotine seeking, an animal model of relapse (7). In addition to these
behavioral effects, we found that FAAH inhibition prevented the
neurochemical and electrophysiological effects of nicotine on re-
ward circuits of the brain that underlie addictive behavior. That is,
FAAH inhibition prevented nicotine-induced elevations of the neu-
rotransmitter dopamine in the nucleus accumbens shell (9), and it
attenuated nicotine-induced excitation of dopamine neurons in
the ventral tegmental area (VTA) (8). Surprisingly, the latter effect
did not appear to be mediated by cannabinoid receptors because it
was not mimicked in vivo by intravenous (IV) or intracerebroven-
tricular administration of the cannabinoid methanandamide (a hy-
drolysis-resistant analog of anandamide) but rather by intracere-
broventricular administration of the noncannabinoid FAAH
substrate, OEA (8). In addition, in vitro activation of VTA dopamine
neurons by nicotine in brain slices was prevented by both OEA and
PEA but not by methanandamide (8). OEA and PEA are potent
agonists of PPAR-�, which is expressed in many areas of the rat
brain (including cortex, VTA, midbrain, medulla, hippocampus, sub-

stantia nigra, and olfactory tubercle [10 –14]) and might regulate
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holinergic neurotransmission and learning and memory processes
15,16). These findings suggest that FAAH inhibition counteracts
he rewarding effects of nicotine by activating PPAR-�.

In the present study, we combined behavioral, neurochemical,
nd electrophysiological approaches to determine whether di-
ectly acting PPAR-� agonists can counteract several reward- and
ependence-related effects of nicotine: 1) nicotine self-administra-

ion in rats and squirrel monkeys; 2) reinstatement of nicotine seek-
ng precipitated by re-exposure to nicotine in rats and squirrel

onkeys after a period of abstinence; 3) the interoceptive effects of
icotine in a drug-discrimination procedure in rats; 4) electrophys-

ological effects of nicotine on the activity of VTA dopamine neu-
ons in anesthetized rats; and 5) nicotine-induced elevations in
opamine levels in the nucleus accumbens shell of freely moving

ats.

ethods and Materials

nimals
Male Sprague-Dawley rats (Charles River Laboratories, Wilming-

on, Massachusetts; Harlan-Nossan, Milan, Italy) weighing 300 g to
50 g were housed in temperature- and humidity-controlled rooms
n a 12-hour light/dark cycle. Experiments were conducted during

he light phase. For self-administration experiments, food intake
as limited to 20 g/day. For drug discrimination experiments, food
as restricted to maintain weight at �85% of the subject’s highest

ecorded weight.
Ten adult male squirrel monkeys (Saimiri sciureus) weighing .9 kg

o 1.1 kg were housed in individual cages in a temperature- and
umidity-controlled room with unrestricted access to water. Mon-
eys were fed five high-protein biscuits per day (Laboratory Diet
045, PMI Nutrition International, Richmond, Indiana) and two
ieces of Banana Softies (Bio-Serv, Frenchtown, New Jersey). Fresh

ruits, vegetables, and environmental enrichment were provided
aily. Three monkeys (441, 431, and 577) self-administered nicotine.
hree monkeys (70F7, 5045, and 39B) self-administered cocaine.
our monkeys (34A, 27B, 30 A, 1549) were used for food-reinforce-
ent experiments.

Monkeys and rats at the National Institute on Drug Abuse-Intra-
ural Research Program were maintained in facilities fully accred-

ted by the Association for Assessment and Accreditation of Labo-
atory Animal Care International, and all procedures were approved
y the National Institute on Drug Abuse Institutional Animal Care
nd Use Committee and conducted in accordance with the 2003
uidelines of the National Research Council. Rats in the electro-
hysiology study were maintained at the University of Cagliari,
here all procedures were conducted in accordance with the

uropean Economic Community Council Directive (86/609;
L27/01/92, Number 116).

rugs
Nicotine (Sigma, St. Louis, Missouri) was dissolved in saline (pH

orrected to 7.0) and injected subcutaneously (SC) or IV. Cocaine
ydrochloride (RTI International, Research Triangle Park, North
arolina) was injected IV. The PPAR-� agonist methyl oleoylethano-

amide [methOEA], (N-[(1R)-2-hydroxy-1-methylethyl-9Z-octade-
enamide) (donated by Dr. Daniele Piomelli, University of California,
rvine, California) was dissolved in 2% Tween 80, 2% ethanol, and
terile water. The PPAR-� agonist [[4-Chloro-6-[(2,3-dimethylphe-
yl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) (Tocris, Ellis-
ille, MO, USA) and the PPAR-� antagonist 1-[(4-Chlorophenyl)
ethyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-
ndole-2-propanoic acid (MK886) (Tocris) were dissolved in 2% to 4%

ww.sobp.org/journal
Tween 80, 30% dimethyl sulfoxide, and sterile water. Methyl
oleoylethanolamide, WY14643, and MK886 were injected intraperi-
toneally (IP) (1 mL/kg) in rats and intramuscular (IM) (.3 mL/kg) in
monkeys, except for electrophysiology, where methOEA was in-
jected IV. Dose selection was based on previous studies using
WY14643 (8,16,17), methOEA (18), and MK886 (8,16).

Self-Administration (Rats)
General procedure and apparatus were described previously

(9,19). Self-administration sessions (2 hours/day) under a one-re-
sponse fixed-ratio schedule of IV nicotine injection (10 or 30 �g/kg/
injection) began 7 to 10 days after catheterization. The response
requirement was increased to a five-response fixed-ratio over 15 to
23 sessions. Responses in the left nose-poke hole produced nico-
tine and pulsed the house light (5 Hz) for a 20-second time-out.
Responses in the other, inactive hole had no scheduled effect. Once
a criterion was reached (�9 nicotine injections/session for three
consecutive sessions), rats received a pretreatment injection (either
drug or vehicle) before each subsequent session, with drugs tested
only when the criterion had been met during the preceding three
vehicle sessions. Doses of WY14643 (20 or 40 mg/kg IP, 20 minutes
before the session, tested in counterbalanced order) or methOEA
(10 mg/kg IM, 40 minutes before the session) were each tested for
three consecutive sessions. Mean data from the three drug pre-
treatment sessions for each dose were compared with the mean
from the three preceding vehicle pretreatment sessions.

Reinstatement (Rats)
Rats learned to self-administer nicotine (30 �g/kg/injection IV)

as described above and then were placed under extinction, during
which responding had no programmed consequence. When there
were �10 active hole responses per session for three consecutive
sessions, reinstatement tests were conducted with a pretreatment
injection (vehicle, 20 or 40 mg/kg WY14643, IP, 20 minutes before
the session) and a priming injection (vehicle or .2 mg/kg nicotine,
SC, 10 minutes before the session). Rats were required to meet the
response-cessation requirement before each test. Nine rats were
tested at both doses of WY14643, and some (two rats at 20 mg/kg
and six rats at 40 mg/kg WY14643) were only tested with one dose
of WY14643. During the reinstatement test session, responding in
the active hole pulsed the house light for 20 seconds; to increase
sensitivity of the reinstatement test, only a single response was
required to produce this cue. This reinstatement procedure com-
bines nicotine- and cue-induced reinstatement, which has been
used in several previous studies (20 –23), has several advantages.
First, when the cues are removed during extinction, the response-
cessation criterion is met more rapidly (mean � SEM � 5.2 � .8
sessions in the present study without the stimulus vs. 11.3 � 1.5 in a
pilot group with the stimulus). Second, reinstatement by the com-
bination of nicotine and cues is more robust than when only nico-
tine or only the cues are presented. This was important because,
consistent with the findings of others (20), we have found that a
substantial number of rats fail to show reinstatement when given
nicotine alone. Finally, the combination of nicotine and cues may
be a more relevant and stringent model of the human relapse
situation than cues alone or nicotine alone.

Self Administration (Monkeys)
General procedure and apparatus were described previously

(24,25). At the start of the session, the house light was extinguished
and a green stimulus light was presented. In the presence of the
green light, 10 responses on the lever (10-response fixed-ratio)

produced a .2-second, .2-mL, 30 �g/kg injection of nicotine, extin-
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uished the green light, and illuminated the amber stimulus light
or 2 seconds. Each reinforcement was followed by a 60-second
ime-out period, during which the chamber was dark and lever
resses had no programmed consequences. One-hour sessions
ere conducted 5 days per week.

After four to five sessions of vehicle pretreatment in which
esponding was stable (�15% variability), drug pretreatments
ere given for five consecutive sessions. Data from the five drug
retreatment sessions were compared with the three preceding
ehicle pretreatment sessions. The drug pretreatments were
Y14643 (10, 20, and 40 mg/kg IM, 20 minutes before the ses-

ion), MK886 (1 mg/kg IM, 45 minutes before the session), MK886
1 mg/kg) plus WY14643 (20 mg/kg), and methOEA (10 mg/kg
M, 40 minutes before the session). The WY14643 pretreatments
20 and 40 mg/kg IM, 20 minutes before the session) were also
ested in two additional groups of monkeys self-administering
ocaine (30 �g/kg/injection) or food pellets under the same
xed-ratio schedule.

einstatement (Monkeys)
Monkeys trained to self-administer nicotine (30 �g/kg/injec-

ion, IV), as described above, were placed under extinction by
ubstituting vehicle for nicotine but maintaining the response-
ependent presentation of the nicotine-paired stimulus. When

esponding reached a low, stable level (�10 injections per ses-
ion, with no obvious increasing or decreasing trend), priming
njections (vehicle or .1 mg/kg IV nicotine, immediately before
he session) were given after pretreatment with WY14643 (20 or
0 mg/kg) or WY14643 (20 or 40 mg/kg) plus MK886 (1 mg/kg).
retreatments were given in the home cage, and primes were
iven while the monkey was in the training chamber. Each test
as performed for a single session followed by extinction ses-

ions with no pretreatment.

icotine Discrimination (Rats)
General procedure and apparatus were described previously

26). Rats were trained under a discrete trial schedule of food pellet
elivery (10-response fixed-ratio, 45-second time-out) to respond
n one lever after a subcutaneous injection of a training dose of .4
g/kg nicotine (10 minutes before the session) and on the other

ever after an injection of saline. Sessions lasted for 20 reinforce-
ents or 30 minutes. WY14643 (40 mg/kg) was substituted for the

raining dose of nicotine and was also administered together with
arious doses of nicotine (.01–.4 mg/kg) to assess possible alter-
tions of the nicotine dose-response curve.

lectrophysiology (Anesthetized Rats)
General procedure was described previously (8). Single-unit ac-

ivity of VTA neurons was recorded extracellularly with glass mi-
ropipettes filled with 2% pontamine sky blue (Sigma-Aldrich, Mi-

an, Italy) dissolved in .5 mol/L sodium acetate (impedance 2–5
�). Single units were isolated and identified according to previ-

usly published criteria (27,28). All neurons were antidromically
dentified as projecting to the nucleus accumbens shell by anti-
romic spikes elicited by stimulation of the shell of the nucleus
ccumbens. An antidromic response was defined as the ability of
voked spikes to follow stimulation frequencies of �250 Hz, dis-
laying constant latency and collision with spontaneously occur-

ing spikes (29). Nicotine (.2 mg/kg) was administered IV after 5 to
0 minutes of baseline recording. MethOEA (0, 5, or 10 mg/kg IV)
as injected 4 minutes before nicotine. WY14643 (20 or 40 mg/kg IP)

as injected � 30 minutes before the start of recordings; MK886 (3
mg/kg IP) was injected 15 minutes before WY14643. Only one cell was
recorded per rat.

Microdialysis (Freely Moving Rats)
General procedure was described previously (30). Rats were sur-

gically implanted with a concentric dialysis probe aimed at the shell
of the nucleus accumbens (anterior 	2.0 and lateral 1.1 from
bregma, vertical – 8.0 from dura) (31). Experiments were performed
on freely moving rats 20 to 24 hours after the surgical implant.
Ringer’s solution (147.0 mmol/L sodium chloride, 2.2 mmol/L cal-
cium chloride, 4.0 mmol/L potassium chloride) was delivered at a
constant flow rate of 1.0 �L per minute. Collection of dialysate
samples (10 �L) started after 90 minutes, with samples collected
every 20 minutes and immediately analyzed by an high-perfor-
mance liquid chromatography system coupled to electrochemical
detection to quantify dopamine. Rats were treated only after stable
dopamine values (�10% variability) were obtained for at least three
consecutive samples. Probe location in the nucleus accumbens
shell was determined histologically after each experiment, and only
data from rats with correct probe placement were analyzed. The
WY14643 (0, 20, or 40 mg/kg IP) was injected 20 minutes before
nicotine (.4 mg/kg SC) or cocaine (3 mg/kg IP), and methOEA (0, 5, or
10 mg/kg IP) was injected 40 minutes before nicotine (.4 mg/kg SC).
The MK886 (3 mg/kg IP) was injected 20 minutes before WY14643
or methOEA.

Statistical Analysis
All results are presented as group means (� SEM). For experi-

ments comparing only two conditions, Student t test was per-
formed. Self-administration and reinstatement data were analyzed
with PROC MIXED (SAS Institute, Cary, North Carolina) with Tukey-
Kramer comparisons. For self-administration, the dependent vari-
able was injections per session and the independent variables were
pretreatment (dose) and session type (baseline sessions vs. pre-
treatment sessions), allowing each pretreatment condition to be
compared with the most recent baseline. For selected conditions
where consecutive sessions are illustrated (Figures 1B, 2B, and 2C),

Figure 1. The PPAR-� agonists WY14643 (20 and 40 mg/kg) and methOEA
(10 mg/kg) reduced nicotine self-administration in rats. The PPAR-� ago-
nists were given intraperitoneally 20 minutes (WY14643) or 40 minutes
(methOEA) before three consecutive sessions in which rats self-adminis-
tered nicotine (.01 or .03 mg/kg/injection) under a five-response fixed ratio
schedule. (A) Average rate of injection over three test sessions, compared
with average of three sessions of vehicle treatment. (B) Rates of nicotine
self-administration during individual sessions under baseline conditions
(sessions 1–3), after treatment with 40 mg/kg WY14643 (sessions 4 – 6), and
after return to baseline conditions (sessions 7–9). n � 6 for rats at the .01
mg/kg/injection nicotine dose; n � 12 for rats at the .03 mg/kg/injection
nicotine dose, except for methOEA, where n � 5. *Significant difference
from vehicle treatment. Data are represented as group means � SEM. inj.,
injection; mOEA, methOEA; Nic., nicotine; Veh, vehicle; WY, WY14643.
additional analyses were performed using session as a factor. For

www.sobp.org/journal
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einstatement in rats, the factors were nose-poke hole (active vs.
nactive), prime (saline vs. nicotine), and pretreatment (dose of

Y14643); for monkeys, separate one-way analyses of variance
ere conducted for the three doses of WY14643. Electrophysiology

nd microdialysis data were analyzed using analysis of variance
ith Dunnett or Student-Newman-Keuls comparison procedures,

espectively. Experiment-wise significance levels of .05 were main-
ained in all analyses.

esults

PAR-� Activation Suppressed Nicotine Self-Administration
n Rats and Monkeys

The PPAR-� agonists WY14643 and methOEA significantly de-
reased ongoing nicotine self-administration in both rats [Figure
A: main effect of WY14643, F (1,11) � 5.4, p � .05; main effect of
ession F (1,11) � 41.8, p � .0001; for .01 mg/kg nicotine baseline, t
est, t (5) � 5.019, p � .05; methOEA: t (4) � 5.4, p � .006] and

onkeys [WY14643 in Figure 2A: interaction of WY14643 and ses-
ion F (2,4) � 8.25, p � .05; methOEA in Figure 2A: t (2) � 25.8, p �
01]. At the most effective doses, self-administration behavior was
ecreased significantly throughout the course of PPAR-� agonist

reatment [Figure 1B: F (3,27) � 7.99, p � .001; Figure 2B: F (5,10) �
1.04, p � .001; Figure 2D: F (5,10) � 6.23, p � .007] and rapidly
eturned to higher levels when treatment was discontinued. In rats,
esponse rates in the inactive hole occurred at a fairly constant
ercentage of response rates in the active hole regardless of pre-

reatment (mean percentage � SEM � 26 � 5 under vehicle treat-
ent, 21 � 3 under 20 mg/kg WY14643, and 27 � 9 under 40 mg/kg

igure 2. The PPAR-� agonists WY14643 (10, 20 and 40 mg/kg intramuscula
g/kg IM, 40 minutes before session) significantly reduced the rate of nico

atio schedule at a nicotine dose of 30 �g/kg/injection. The effects of WY146
1 mg/kg IM, 45 minutes before session), which had no significant effect whe
verage of five sessions of vehicle treatment. (B,D) Rates of nicotine self-ad
fter treatment with 40 mg/kg WY14643 (sessions 4 – 8) or 10 mg/kg methO
g/kg IM, 20 minutes before session) did not alter the number of 30 �g/kg c

n identical 10-response fixed ratio schedule in squirrel monkeys. n � 3 for m
ifference from vehicle treatment. Data are represented as group means �
Y14643). The specificity of WY14643’s effects was verified by giv-

ww.sobp.org/journal
ing the PPAR-� antagonist MK886 as a pretreatment in monkeys.
MK886 reversed the decreases in nicotine self-administration pro-
duced by WY14643 but had no effect on nicotine self-administra-
tion when given alone. On the final day of treatment with the most
effective dose of WY14643 (40 mg/kg), nicotine intake was de-
creased by 35% in rats and 76% in monkeys.

PPAR-� Activation Suppressed Reinstatement When
Abstinent Rats and Monkeys Were Re-exposed to Nicotine

When relapse was modeled using a reinstatement procedure,
the nicotine-seeking response (nose poking in rats, lever pressing in
monkeys) was reinstated by a noncontingent priming injection of
nicotine before the session (Figure 3). WY14643 significantly re-
duced this reinstatement in rats [Figure 3A: main effect of active vs.
inactive nose-poking hole, F (1,14) � 20.4, p � .0005; interaction of
WY14643 dose and nicotine, F (2,13) � 7.7, p � .01] and monkeys
[Figure 3B: 20 mg/kg WY14643: F (3,6) � 15.4, p � .005; 40 mg/kg
WY14643: F (3,6) � 93.5, p � .001]. WY14643 alone did not reinstate
drug seeking. In rats, nicotine also increased responding in the
inactive hole, and WY14643 prevented this increase. However, it
should be noted that responding in the active hole remained
higher than responding in inactive hole under all testing condi-
tions, indicating that the nicotine-induced increases in active-hole
responding were due to reward rather than nonspecific increases in
locomotor activity. Pretreatment of monkeys with the PPAR-� an-
tagonist MK886 prevented the effects of WY14643 in this model of
relapse, demonstrating the receptor specificity of these effects (Fig-

], 20 minutes before session for five consecutive sessions) and methOEA (10
njections self-administered by squirrel monkeys under a 10-response fixed

mg/kg) were reversed by pretreatment with the PPAR-� antagonist MK886
n alone. (A) Average rate of injection over five test sessions, compared with

tration during individual sessions under baseline conditions (sessions 1–3),
d after return to baseline conditions (sessions 9 –11). (C) WY14643 (20 or 40
e injections self-administered or the number of food pellets obtained under
ys under all conditions except food reinforcement, where n � 4. *Significant
inj., injection; MK, MK886; mOEA, methOEA; WY, WY14643.
rly [IM
tine i
43 (20
n give
minis
EA, an
ocain
onke
ure 3B).
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PAR-� Activation Did Not Alter Nicotine’s Interoceptive
ffects or Produce a General Depression of Operant Behavior

The ability of WY14643 to reduce nicotine self-administration
nd reinstatement was not due to a nonspecific disruption of
perant behavior. WY14643 had no effect on cocaine- or food-

einforced responding in squirrel monkeys under testing condi-
ions identical to those used with nicotine (Figure 2D), and it did
ot alter food-reinforced responding by rats as measured in the
rug discrimination procedure (even when combined with intra-
eritoneal nicotine injection; Figure 4B) or rats’ ability to detect

hat they had received nicotine (Figure 4A) in a drug-discrimina-

igure 3. The PPAR-� agonist WY14643 blocked reinstatement of nicotine
elf-administration after a period of abstinence in rats and monkeys. (A) In
ats, WY14643 (20 mg/kg intraperitoneally [IP], n � 11; and 40 mg/kg IP, n �
5) dose-dependently reduced the reinstatement of extinguished nicotine-
eeking responses produced by a priming injection of nicotine. (B) In squir-
el monkeys, WY14643 (20 or 40 mg/kg intramuscularly [IM], 20 minutes
efore the session) dose-dependently reduced the reinstatement of extin-
uished nicotine-seeking responses produced by a priming injection of
icotine (.1 mg/kg intravenously) before the session (n � 3). This effect of
Y14643 was prevented by pretreatment with the PPAR-� antagonist
K886 (1 mg/kg IM, 45 minutes before session). Data are presented as

roup means � SEM. *Significant difference from vehicle pretreatment
uring a saline prime session. # Significant difference from vehicle pretreat-
ent during a nicotine prime session. Diamond represents a significant

ifference from inactive hole responding during a saline prime session. MK,
K886; Nic, nicotine; WY, WY14643.
ion procedure.
PPAR-� Activation Prevented Nicotine-Induced Changes in
Dopamine Cell Firing in the Ventral Tegmental Area of Rats

In single-unit in vivo recording experiments in anesthetized rats,
IV injection of .2 mg/kg nicotine enhanced firing rate [Figure 5A:
F (6,7) � 6.99, p � .0001] and burst firing [Figure 5B: F (6,7) � 2.837;
p � .05] of VTA dopamine neurons that were antidromically identi-
fied as projecting to the nucleus accumbens. At doses of WY14643
that significantly reduced nicotine self-administration and nico-
tine-induced reinstatement in the behavioral experiments,
WY14643 and methOEA did not alter spontaneous firing rate (Fig-
ure 5A,C; basal mean Hz � SEM; control rats: 3.24 � .2; WY14643 20
mg/kg: 3.2 � .6; WY14643 40 mg/kg: 3.3 � .6; methOEA 5 mg/kg:
3.18 � .5; MK886 	 WY14643 40 mg/kg: 3.6 � .8; methOEA 10
mg/kg: 3.11 � .4] or burst firing (Figure 5B,D; basal mean % of
spikes/bursts � SEM; control rats: 12.9 � 3.72; WY14643 20 mg/kg:
13.6 � 9.88; WY14643 40 mg/kg: 15.8 � 6.1; MK886 	 WY14643 40
mg/kg: 8.0 � 6.4; methOEA 5 mg/kg: 8.7 � 3.57; methOEA 10
mg/kg: 8.9 � 1.61] of VTA dopamine neurons when given alone.
However, when given before nicotine, 20 mg/kg of WY14643 par-
tially blocked and 40 mg/kg of WY14643 completely blocked nico-
tine-induced excitation of dopamine neurons [Figure 5A,B: effect of
WY14643 on firing rate, F (1,48) � 20.36, p � .001; and burst firing,
F (1,48) � 5.98, p � .05]. Intravenous administration of methOEA (5
and 10 mg/kg) also completely prevented excitation of dopamine

Figure 4. The PPAR-� agonist WY14643 (40 mg/kg intraperitoneal, 20 min-
utes before session) did not alter the interoceptive effects of nicotine or the
rate of food-maintained lever pressing under a nicotine drug discrimination
procedure in rats (n � 12). When given alone or in combination with any
dose of nicotine (.01–.4 mg/kg subcutaneous), WY14643 did not signifi-
cantly affect the percentage of responses on the nicotine-appropriate lever
(A) or the rate of lever responding (B). Data are presented as group means �

SEM. Nic., nicotine; Resp., responding; WY, WY14643.

www.sobp.org/journal
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eurons by nicotine [Figure 5C,D: effects of two doses of methOEA
n firing rate: F (1,48) � 5.02, p � .05, and F (1,48) � 5.24, p � .05;
nd burst firing: F (1,52) � 6.34, p � .05, and F (1,52) � 4.73, p � .05].
retreatment with the PPAR-� antagonist MK886 completely re-
ersed WY14643’s blockade of nicotine-induced increases in firing
ate (Figure 5A) and burst firing [Figure 5B: MK886 	 WY14643 vs.

Y14643, F (1,60) � 16.57, p � .01; F (1,60) � 18.24, p � .05, for firing
ate and burst firing, respectively].

PAR-� Activation Prevented Nicotine-Induced Increases in
opamine Levels in the Nucleus Accumbens Shell of Rats

In vivo microdialysis experiments in freely moving rats showed
hat systemic injection of .4 mg/kg nicotine increased extracellular
opamine levels in the nucleus accumbens shell by �100% [Figure
A: F (12,48) � 16.23, p � .0001; Figure 6B: F (13,65) � 58.61; p �

0001]. WY14643 alone did not alter dopamine levels, but it signifi-

igure 5. The PPAR-� agonists inhibited nicotine-induced activation of vent
timulatory effects of nicotine (.2 mg/kg intravenous, n � 7) on discharge act
at and the actions of the PPAR-� agonists (A,C). Line graphs show the time
eally injected � 30 minutes before the start of recordings, n � 7) significa
PAR-� antagonist MK886 (3 mg/kg injected �45 minutes before the start

A,B). Methyl oleoylethanolamide (methOEA) (5 and 10 mg/kg intravenously
ignificantly blocking nicotine-induced increases in firing rate (C) and burs
xpressed as percentages of or differences from baseline values, respective
B) are repeated in (D). Arrows indicate time of drug injections. The followin
unnett’s post hoc comparisons): WY14643 40 mg/kg, methOEA 5 mg/kg, a
0 mg/kg and by methOEA 5 and 10 mg/kg. Both firing rate and burst firing d
ic, nicotine; MK, MK886; mOEA, methOEA; WY, WY14643.
antly reduced nicotine-induced elevations in dopamine levels in a

ww.sobp.org/journal
dose-related manner [Figure 6A: time–treatment interaction,
F (18,108) � 3.01, p � .001; basal level, expressed as mean fmoles/10
�L sample � SEM for control rats: 31 � 2.7; WY14643 40 mg/kg: 31.8
� 5.2]. Administration of methOEA also did not alter dopamine
levels by itself (Figure 6D) but markedly reduced nicotine-induced
elevations in dopamine levels [Figure 6B: time–treatment interac-
tion, F (26,169) � 5.95, p � .0001]. The PPAR-� antagonist MK886
had no effect when given alone but completely reversed
WY14643’s (40 mg/kg) blockade of nicotine-induced elevations in
dopamine levels [Figure 6C: time–treatment interaction, F (26,169)
� 4.06, p � .05]. Similarly, MK866 prevented the effects of 10 mg/kg
of methOEA [Figure 6D: time–treatment interaction, F (28,182) �
3.06, p � .01]. In contrast, WY14643 did not alter the effects of
cocaine on dopamine levels in the nucleus accumbens shell. Basal
levels of dopamine in dialysates, expressed as mean fmoles/10 �L
sample � SEM, did not differ between groups before injections

gmental area dopamine neurons in anesthetized rats. Histograms show the
f an individual ventral tegmental area dopamine neuron in a representative

se of nicotine’s effects. The PPAR-� agonist WY1463 (40 mg/kg intraperito-
locked nicotine-induced increases in firing rate (A) and burst firing (B). The
cordings, n � 5) significantly abolished the effects produced by WY14643
ted 4 minutes before nicotine, n � 7 both) mimicked the effects of WY14643,
g (D). Results are presented as mean � SEM of firing rates and burst firing,
te that data for vehicle in (A) are repeated in (C) and that data for vehicle in
tments significantly reduced the effects of nicotine on firing rate (ps � .05,
thOEA 10 mg/kg. Burst firing was significantly reduced by WY14643 20 and

d when WY14643 40 mg/kg was given with versus without MK886 (ps � .05).
ral te
ivity o
cour

ntly b
of re
injec

t firin
ly. No
g trea

nd me
iffere
(Figure 5A,C; vehicle 	 nicotine: 31.2 � 5.2; WY14643 40 mg/kg 	
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aline: 31.8 � 5.2; WY14643 20 mg/kg 	 nicotine: 30.8 � 4.5; WY14643
0 mg/kg 	 nicotine: 36.0 � 5.9; MK886 	 vehicle 	 saline: 41.0 � 6.0;
K886 	 WY14643 40 mg/kg 	 nicotine: 32.0 � 4.8; Figure 5B,D;

ehicle 	 nicotine: 30.8 � 2.9; methOEA 5 mg/kg 	 nicotine:
1.5 � 1.3; methOEA 10 mg/kg 	 nicotine: 33.8 � 4.2; MK886 	
ehicle 	 saline: 32.5 � 3.2; MK886 	 methOEA 10 mg/kg 	 nico-
ine: 30.4 � 3.3; Figure 5E; vehicle 	 cocaine: 34.9 � 5.8; cocaine 	

Y14643: 36.6 � 5.4).

iscussion

These findings indicate that activation of PPAR-� can counteract
ddiction-related effects of nicotine on the brain and behavior. In both
ats and monkeys, the PPAR-� agonists WY14643 and methOEA signif-
cantly decreased nicotine self-administration and suppressed rein-

igure 6. The PPAR-� agonists inhibited nicotine-induced elevations in dop
ith WY14643 (20 and 40 mg/kg intraperitoneally [IP], n � 5 both) or methOE

espectively, before nicotine (.4 mg/kg subcutaneous, n � 6), significantly re
he PPAR-� antagonist MK886 (3 mg/kg IP) injected 20 minutes before 40
eduction of nicotine-induced elevations in dopamine levels produced by W
ignificantly reduced the effects of nicotine (Tukey post hoc comparisons): W
p � .001). The MK886 (3 mg/kg IP, n � 4) had no significant effect when giv
ad no significant effect when given with the vehicles of MK886 and saline
ost hoc comparisons): WY14643 20 mg/kg, (p � .05); WY14643 40 mg/kg

njected 20 minutes before cocaine (3 mg/kg IP; n � 5) did not significant
Y14643 	 nicotine in (A) are repeated in (C) and that data for vehicle 	 nic

f drug or vehicle injection. Results are presented as group means � SEM, ex
ic, nicotine; Veh, vehicle; WY, WY14643.
tatement of nicotine seeking, which models relapse, the main obsta-
cle to smoking cessation. At the doses that produced these effects with
nicotine self-administration, there was no indication that PPAR-� li-
gands had any effect on food- or cocaine-maintained behavior. The
reduction of nicotine self-administration and reinstatement by PPAR-�
agonists was most likely due to these drugs’ ability to prevent nicotine-
induced excitation of dopaminergic transmission in reward-related
areas of the brain. Specifically, PPAR-� agonists prevented nicotine-
induced increases in firing rate and burst firing in dopamine neurons in
the VTA, and they prevented nicotine-induced (but not cocaine-in-
duced) elevations of dopamine levels in the shell of the nucleus accum-
bens. These potentially therapeutic behavioral, electrophysiological,
and neurochemical effects of PPAR-� agonists were reversed by the
PPAR-� antagonist MK886, verifying that they were indeed due to
PPAR-� activation.

e levels in the nucleus accumbens shell of freely moving rats. Pretreatment
mg/kg IP, n � 5) but not their vehicle (n � 5 both), given 20 and 40 minutes,
d the increase in extracellular dopamine levels produced by nicotine (A,B).

g WY14643 (n � 6) or 10 mg/kg methOEA (n � 6) completely reversed the
3 (40 mg/kg IP) and methOEA (10 mg/kg IP) (C,D). The following treatments
43 20 mg/kg, (p � .05); WY14643 40 mg/kg, (p � .001); methOEA 10 mg/kg
h the vehicle of WY14643 and saline (C), and methOEA (10 mg/kg IP, n � 4)

he following treatments significantly reduced the effects of nicotine (Tukey
.001); methOEA 10 mg/kg (p � .001). The WY14643 (40 mg/kg IP, n � 5)

er the effects of cocaine (E). Note that data for vehicle 	 nicotine and for
and for methOEA 	 nicotine in (B) are repeated in (D). Arrows indicate time
ed as percent of basal values. DA, dopamine; MK, MK886; mOEA, methOEA;
amin
A (10
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The fact that the PPAR-� agonist WY14643 did not alter the

www.sobp.org/journal



i
d
r
d
r
s
i
r
a
c
n
d
w
t
e

n
a
i
c
a
U
fi
P
r
l

e
u
M
a
n
a
p
f
(
p
i
b
l
n
e
t
fi
c
l
l
s
m
n
k
i
a
h
g
t
t
b
c
n
a
i

8 BIOL PSYCHIATRY 2010;xx:xxx P. Mascia et al.

w

ARTICLE IN PRESS
nteroceptive effects of nicotine in the drug-discrimination proce-
ure is consistent with previous findings that nicotine’s reward-

elated dopaminergic effects are not well captured by this proce-
ure (32). For example, even though the cannabinoid type 1

eceptor antagonist rimonabant can block nicotine reward (i.e.,
elf-administration, conditioned place preference) and nicotine-
nduced increases of dopamine levels in the nucleus accumbens,
imonabant does not alter nicotine discrimination (26,33). Similarly,
ntagonism of the dopamine D3 receptor blocks nicotine-induced
onditioned place preference but does not alter nicotine discrimi-
ation (34). The finding that WY14643 blocked nicotine’s effects on
opamine but did not alter its discriminative effects is consistent
ith previous data suggesting that neurobiological substrates be-

ween reward-related and interoceptive effects of nicotine are not
ntirely overlapping (35).

The nicotine-related behavioral, electrophysiological, and
eurochemical effects of PPAR-� agonists in the present study
re very close to the effects obtained earlier with the FAAH

nhibitor URB597 ([3-(3-carbamoylphenyl)phenyl] N-cyclohexyl-
arbamate) (7,9). The results obtained here with the PPAR-�
gonist WY14643 are also consistent with the finding that
RB597 does not alter nicotine discrimination (36). All of these
ndings converge to suggest that the elevation of endogenous
PAR-� ligands OEA and PEA induced by URB597 modulates the
ewarding effects of nicotine; further studies are needed to de-
ineate the role of anandamide.

The mechanism by which PPAR-� agonists and FAAH inhibition
xert these unanticipated antiaddictive actions is not completely
nderstood. However, the following points are well established.
esolimbic dopamine plays a pivotal role in nicotine dependence,

nd the VTA and nucleus accumbens shell are critical brain areas for
icotine’s rewarding effects (37–39). Nicotinic receptors in the VTA
re located both on cell bodies of dopaminergic neurons and on
resynaptic nerve endings of glutamatergic neurons that descend

rom the medial prefrontal cortex and impinge on these cell bodies
40). Nicotine facilitates dopaminergic neurotransmission and do-
amine release in the nucleus accumbens shell by directly stimulat-

ng nicotinic receptors on cell bodies of dopaminergic neurons and
y indirectly stimulating glutamate release, which in turn stimu-

ates VTA dopaminergic neuron firing and dopamine release in the
ucleus accumbens shell. Our data show that activation of PPAR-�,
ither indirectly through FAAH inhibition or directly by administra-
ion of a PPAR-� agonist, prevents nicotine-induced increases in
ring rate and burst firing in dopamine neurons in the VTA and as a
onsequence prevents nicotine-induced elevations of dopamine

evels in the shell of the nucleus accumbens. The mechanism under-
ying these effects was elucidated by our recent in vitro findings
howing that activation of PPAR-� produces a nongenomic (rapid)

odulation of nicotinic receptors on cell bodies of dopaminergic
eurons in the VTA by promoting their phosphorylation by tyrosine
inases (8). Phosphorylated nicotinic receptors show diminished

onic conductance (41) and are rapidly internalized (42), reducing or
bolishing the responses of dopamine neurons to nicotine, and we
ave demonstrated that the general tyrosine kinase inhibitor
enistein reverses OEA’s ability to block nicotine-induced excita-

ion of VTA dopamine neurons (8). Additionally, we have found that
he 
2 subunit of nicotinic receptors is critical for PPAR-� effects,
ecause deletion of this subunit abolished the effects of PPAR-�
ompounds, whereas its selective re-expression in VTA dopamine
eurons restores both the behavioral effects of nicotine (motor
ctivity) and PPAR-� actions (43). Taken together, all of these find-
ngs suggest a mechanism by which PPAR-� may modulate the

ww.sobp.org/journal
reward-related dopaminergic effects of nicotine that provide a ba-
sis for nicotine self-administration.

In conclusion, our findings demonstrate that nicotine’s ability to
have rewarding effects and reinstate drug-seeking behavior after a
period of abstinence are suppressed by PPAR-� activation, accom-
plished directly by PPAR-� agonists or indirectly by FAAH inhibition.
These behavioral effects appear to be due to modulation of
nicotine’s excitatory effects on reward-related mesolimbic dopa-
mine transmission. Notably, PPAR-� agonists and FAAH inhibitors
appear to suppress nicotine reward and reinstatement much like
the cannabinoid inverse agonist/antagonist rimonabant but do not
share the adverse psychoactive effects produced by medications
that target cannabinoid type 1 receptors (3,9,19). Thus, PPAR-� is a
promising new molecular target for the treatment of the devastat-
ing problem of tobacco dependence.
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ABSTRACT adb_222 1..12

The endocannabinoid system regulates neurotransmission in brain regions relevant to neurobiological and behavioral
actions of addicting drugs. We recently demonstrated that inhibition by URB597 of fatty acid amide hydrolase (FAAH),
the main enzyme that degrades the endogenous cannabinoid N-acylethanolamine (NAE) anandamide and the endog-
enous non-cannabinoid NAEs oleoylethanolamide and palmitoylethanolamide, blocks nicotine-induced excitation of
ventral tegmental area (VTA) dopamine (DA) neurons and DA release in the shell of the nucleus accumbens (ShNAc),
as well as nicotine-induced drug self-administration, conditioned place preference and relapse in rats. Here, we studied
whether effects of FAAH inhibition on nicotine-induced changes in activity of VTA DA neurons were specific for
nicotine or extended to two drugs of abuse acting through different mechanisms, cocaine and morphine. We also
evaluated whether FAAH inhibition affects nicotine-, cocaine- or morphine-induced actions in the ShNAc. Experiments
involved single-unit electrophysiological recordings from DA neurons in the VTA and medium spiny neurons in the
ShNAc in anesthetized rats. We found that URB597 blocked effects of nicotine and cocaine in the ShNAc through
activation of both surface cannabinoid CB1-receptors and alpha-type peroxisome proliferator-activated nuclear recep-
tor. URB597 did not alter the effects of either cocaine or morphine on VTA DA neurons. These results show that the
blockade of nicotine-induced excitation of VTA DA neurons, which we previously described, is selective for nicotine and
indicate novel mechanisms recruited to regulate the effects of addicting drugs within the ShNAc of the brain reward
system.

Keywords Cocaine, dopamine neurons, electrophysiology, nicotine, nucleus accumbens, peroxisome proliferator-
activated receptor-a.
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INTRODUCTION

The endocannabinoids are a family of lipid signaling mol-
ecules, which play a pivotal role in the modulation of
several physiological and pathophysiological conditions
within the central nervous system (CNS) and in the
periphery. Although there are a number of endogenous
compounds with endocannabinoid-like activity, the
best characterized are n-arachidonoylethanolamide

(anandamide) (Devane et al. 1992) and 2-arachidonoyl
glycerol (2-AG) (Sugiura et al. 1995). Within the CNS,
anandamide and 2-AG are synthesized on demand in
postsynaptic cell membranes and show affinity for type-1
cannabinoid receptors (CB1), which are mainly located
on presynaptic neurons (Kano et al. 2009). Once pro-
duced, endocannabinoids inhibit neurotransmitter
release and then are moved intracellularly by a putative
carrier protein (Hillard & Jarrahian 2000), where they
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are then deactivated by two main enzymes, fatty acid
amide hydrolase (FAAH), which catabolizes anandamide
(Cravatt et al. 1996), and monoacylglycerol lipase,
which catabolizes 2-AG (Dinh et al. 2002). Two
non-cannabinoid N-acylethanolamines (NAEs), the
anorexiant oleoylethanolamide (OEA) and the anti-
inflammatory palmitoylethanolamide (PEA), which are
structurally similar to anandamide but are endogenous
ligands for alpha-type nuclear peroxisome proliferator-
activated receptors (PPAR-a), are also endogenous sub-
strates for FAAH (Rodriguez de Fonseca et al. 2001;
Cravatt & Lichtman 2002). Their centrally mediated
effects have been poorly characterized, although OEA
and PEA might be involved in modulation of synaptic
signaling as endogenous ligands for an independent
endocannabinoid-like system. Evidence is accumulating,
which suggests a significant contribution of OEA and
PEA, and PPAR-a nuclear receptors in effects observed
following pharmacological inhibition of FAAH (Mazzola
et al. 2009).

The endocannabinoid system regulates neurotrans-
mission in brain regions relevant to neurobiological
and behavioral actions of addicting drugs or natural
rewarding stimuli (Maldonado, Valverde & Berrendero
2006; Solinas, Yasar & Goldberg 2007; Solinas, Gold-
berg & Piomelli 2008). Several lines of evidence indicate
that endocannabinoids are released by midbrain dopam-
ine (DA) neurons (Melis et al. 2004; Riegel & Lupica
2004) to regulate their own afferents. As a conse-
quence, pharmacological manipulation of endocannab-
inoid signaling fine-tunes the effects of different
addicting drugs. For example, recent studies have inves-
tigated how pharmacological inhibition of FAAH, and
the consequent increase in anandamide levels, modu-
lates the effects of nicotine (Merritt et al. 2008; Scherma
et al. 2008; Forget, Coen & Le Foll 2009). In rats, the
FAAH inhibitor cyclohexyl carbamic acid 3′-carbamoyl-
3-yl ester (URB597) blocked nicotine-induced condi-
tioned place preference, acquisition of nicotine
self-administration behavior, nicotine-induced relapse to
drug-seeking behavior and nicotine-induced DA
increases in the shell of the nucleus accumbens
(ShNAc) (Scherma et al. 2008). We also found that
URB597 completely prevents nicotine-induced increases
in firing rate and burst firing of ventral tegmental area
(VTA) DA neurons of anesthetized rats (Melis et al.
2008), thus inhibiting one of the primary neuronal
responses to nicotine administration in the brain reward
system (Maskos et al. 2005).

In this study, we asked whether inhibition of FAAH
might prevent not only the effects of nicotine but also the
effects of other addicting drugs, such as cocaine and mor-
phine, on VTA DA neurons. In addition, because DA
neurons in the VTA directly project to the ShNAc, we also

compared the effects of FAAH inhibition on responses to
nicotine, cocaine and morphine of GABAergic medium
spiny neurons (MSNs) in the ShNAc. Together with the
VTA, the ShNAc plays a crucial role in the primary rein-
forcing properties of addicting drugs and orients reward-
seeking behavior (Carlezon & Thomas 2009). We found
that FAAH inhibition by URB597 specifically modulates
neuronal responses to different substances in these two
distinct areas through actions on both cannabinoid CB1-
receptors and PPAR-a nuclear receptors. This suggests
that both endogenous cannabinoid (anandamide) and
non-cannabinoid (OEA and PEA) fatty acid ethanola-
mides, which are all substrates for FAAH, participate in
the fine-tuning of neurophysiological and behavioral
effects of addicting drugs.

MATERIALS AND METHODS

Male Sprague Dawley rats (250–350 g) (Harlan, San
Pietro al Natisone, Italy) were used in both the NAc and
the VTA experiments. We housed animals in groups of
three to six in standard conditions of temperature and
humidity under a 12-hour light/dark cycle (with lights
on at 7:00 a.m.) with food and water available ad libitum.
We anesthetized animals with urethane (1300 mg/kg,
intraperitoneal [i.p.]), cannulated their femoral vein for
intravenous administration of pharmacological agents
and placed in the stereotaxic apparatus (Kopf, Tujunga,
CA) with their body temperature maintained at 37 � 1°C
by a heating pad.

We performed the experiments in strict accordance
with the Guidelines for the Care and Use of Mammals in
Neuroscience and Behavioral Research (Committee on
Guidelines for the Use of Animals in Neuroscience and
Behavioral Research 2003) and EEC Council Directive of
24 November 1986 (86/609). We made all efforts to
minimize pain and suffering, and to reduce the number of
animals used.

Experiments in the VTA

The scalp was retracted and one burr hole was drilled
above the VTA (6.0 mm posterior from bregma, 0.3–
0.6 mm lateral from midline) for the placement of a
recording electrode. We localized structures according to
the stereotaxic atlas of Paxinos & Watson (1997). Single-
unit activity of neurons located in the VTA (V 7.0–
8.0 mm from the cortical surface) was recorded
extracellularly with glass micropipettes filled with 2%
pontamine sky blue dissolved in 0.5 M of sodium acetate
(impedance 2–5 MW). Single-unit activity was filtered
(band pass 500–5000 Hz), and individual spikes were
isolated by means of a window discriminator (Neurolog
Instruments, Digitimer, Herts, UK), displayed on a digital
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storage oscilloscope (TDS 3012, Tektronics, Marlow, UK)
and digitally recorded. We sampled experiments on-line
and off-line with Spike2 software (Cambridge Electronic
Design, Cambridge, UK) by a computer connected to CED
1401 interface (Cambridge Electronic Design). Single
units were isolated and identified according to already
published criteria (Grace & Bunney 1983, 1984; Ungless,
Magill & Bolam 2004). Because we recorded only one cell
per rat, we selected VTA DA neurons when all criteria for
identification were fulfilled: firing rate � 10 Hz, duration
of action potential � 2.5 ms and inhibitory responses to
hindpaw pinching. We defined bursts as the occurrence
of two spikes at an interspike interval � 80 ms. Bursts
terminated when the interspike interval exceeded
160 ms (Grace & Bunney 1983). At the end of each
recording section, direct current (10 mA for 15 minutes)
was passed through the recording electrode to eject pon-
tamine sky blue, which allowed the identification of the
recorded cells. Brains were removed and fixed in 8% for-
malin solution. We identified the position of the elec-
trodes microscopically on serial sections (60 mm) stained
with cresyl violet.

Experiments in the ShNAc

We recorded extracellularly single-unit activity of
neurons located in the medial part of the NAc (shell)
(1.5 mm anterior from bregma, 0.8–1.3 mm lateral from
the midline, 6.5–7.0 mm ventral from cortical surface)
using the same instruments previously described for the
VTA experiments. In addition, because MSNs of the
ShNAc do not fire spontaneously in anesthetized animals,
we delivered electrical stimuli in the basolateral amygdala
(BLA) to evoke spike firing in the NAc cell. For this reason,
we inserted a formvar-coated stimulating stainless steel
bipolar electrode with an inclination of 15° anteroposte-
rior on the coronal plane (250-mm tip diameter) in the
ipsilateral BLA (3.2 mm posterior from bregma, 5.0 mm
lateral from the midline, 7.0 mm ventral from the cortical
surface), which is a major excitatory projecting area to
the NAc.

After the glass electrode had been positioned to the
dorsal limit of the NAc, we searched cells that responded
to the stimulation of the BLA. Stimuli (~0.5 mA) were
delivered to the BLA at 1-second intervals, while the
microelectrode was lowered incrementally through the
NAc. Once we detected a cell, we adjusted the position of
the microelectrode in order to maximize the spike ampli-
tude relative to background noise. We identified neurons
that responded to BLA stimulation by their robust excita-
tory response (latency range 10–25 ms). We did not
include in this study cells whose latencies were longer
than 26 ms following BLA stimulation because they
could exhibit a polysynaptic response component
(Mulder, Hodenpijl & Lopes da Silva 1998).

The experimental protocol was essentially that pub-
lished by Floresco et al. (2001) with some modifications
(Pistis et al. 2002). Once we isolated a cell, we adjusted
stimulation currents to approximately half-maximal
intensity, such as ~50% of electrical stimuli (1 Hz) in the
BLA elicited an action potential in the recorded cell. We
calculated evoked spike probability by dividing the
number of action potentials observed by the number of
stimuli administered in 100-second periods.

Once stable levels of evoked spike probability were
achieved (< 10% changes over 10-15 minutes), we
administered drugs intravenously and assessed spike
probability every 100 seconds. Changes in spike probabil-
ity were an index of changes induced by the studied com-
pounds over the excitation of NAc cells evoked by BLA
stimulation. As well as for the VTA experiments, we
recorded only one cell per rat.

Statistical analysis

For VTA experiments, we calculated drug-induced
changes in firing rate and pattern by averaging the effects
after drug administration (2 minutes) and normalizing to
the predrug baseline.

For ShNAc experiments, we determined predrug spike
probability baseline as the mean of at least three con-
secutive assessments (100 seconds) over 10 minutes
before drug administration. We generated peristimulus
time histograms (1-ms bins, 100 cumulative sweeps) by
CED Spike2 software (Cambridge Electronic Design). Fol-
lowing drug administration, we calculated spike prob-
ability every 100 seconds and normalized it to the
predrug baseline.

All the numerical data are given as mean � standard
error of the mean. Data were compared and analyzed by
using two-way analysis of variance (ANOVA) for repeated
measures (treatment ¥ time), or one-way ANOVA or Stu-
dent’s t-test for repeated measures, when appropriate.
Post hoc multiple comparisons were made using the Dun-
nett’s or Bonferroni’s tests. We performed statistical
analysis by means of the NCSS program (Kaysville, UT,
USA). The significance level was established at P < 0.05.

Drugs

Nicotine [(–)-nicotine hydrogen tartrate] was purchased
from Sigma (St. Louis, MO). Morphine chloridrate and
cocaine chloridrate were purchased from S.a.l.a.r.s
(Como, Italy) and Akzo Pharmadivision Diosynth (Oss,
the Netherlands). SCH 23390 was purchased from
Sigma/RBI, and L-sulpiride was purchased from Ravizza
(Latina, Italy). Rimonabant (SR141716A) was a gener-
ous gift of Sanofi-Aventis Recherche (Montpellier,
France). URB597 was purchased from Alexis (Lausen,
Switzerland). MK886 was purchased from Tocris (Bristol,
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UK). We diluted nicotine, SCH 23390, L-sulpiride,
cocaine and morphine in saline. We adjusted nicotine
solution to pH = 7 with NaOH. We emulsified rimonabant
in 1% Tween80 (Sigma, St Louis, MO, USA), and then, we
diluted in saline and sonicated. We dissolved URB597 in
dimethylsulfoxide (DMSO) (100 mg/ml) and diluted to the
final concentration in saline. The final concentration of
DMSO was 0.1%. We emulsified MK886 in 10% of
Tween80, dissolved in 20% of DMSO and then diluted to
the final concentration in distilled water.

RESULTS

FAAH inhibition does not affect morphine and cocaine
effect on VTA DA neurons

We first assessed whether FAAH inhibition modulates
responses of VTA DA neurons to cocaine and morphine.

We recorded from VTA DA neurons (n = 22) only when
they fulfilled all criteria reported in the literature (see
methods). A typical waveform of a DA neuron action
potential is graphically depicted in Fig. 1a. When we iso-
lated a neuron, we recorded its basal activity for at least 5
minutes before administration of vehicle, and, after an
additional 4 minutes, we injected morphine or cocaine.
The vehicle used for these experiments had no effect on
VTA DA neurons.

In line with previous studies (Einhorn, Johansen &
White 1988), cocaine (1.0 mg/kg, i.v.) inhibited firing
rate (61.62 � 9.35% of baseline; F(5;30) = 5.996; n = 6;
P < 0.001; one-way ANOVA for repeated measures
and Dunnett’s test) (Fig 1b,d) and burst firing
(-16.42 � 6.14 of baseline level; F(5;25) = 4.659; n = 6;
P < 0.01; one-way ANOVA for repeated measures and
Dunnett’s test) (Fig. 1e) of VTA DA neurons. As reported
in literature (Matthews & German 1984), morphine
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Figure 1 Effects of URB597 on the responses of ventral tegmental area (VTA) dopamine (DA) neurons to cocaine. (a) Average trace,
acquired from a digital storage oscilloscope, showing the typical broad, notched waveform of an isolated VTA DA neuron recorded from an
anesthetized rat. (b) Representative firing rate histogram showing the decrease in firing rate of an individual VTA DA neuron produced by
intravenous cocaine (COC, 1 mg/kg injected at arrowheads) in control conditions.The injection of vehicle (VEH) is ineffective. (c) This rate
histogram displays that URB597 pre-treatment (0.1 mg/kg, i.v.) does not alter cocaine’s depression of firing rate of a VTA DA neuron. (d,e)
Graphs illustrating the time course of cocaine’s effects on firing rate and burst firing of VTA DA neurons with and without URB597
pre-treatment. Pre-treatment with URB597 (0.1 mg/kg, i.v.) does not affect the inhibition of VTA DA neurons induced by cocaine (COC,
1 mg/kg, i.v.; arrow) either in firing rate (d) or burst firing (e). (f) These histograms show that the pre-treatment with URB597 did not affect
baseline firing activity (top) or burst firing (bottom) of recorded VTA DA neurons (P > 0.05, Student’s t-test). Results are means, with vertical
bars representing the standard error of the mean of firing rate and burst firing, expressed as a percentage of, or difference from, the baseline
(BAS). *P < 0.01 versus baseline, one-way analysis of variance and Dunnett’s test
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(4.0 mg/kg, i.v.) stimulated firing rate (Fig. 2a,c) and
burst firing (Fig. 2d) (139.46 � 8.17% of baseline level;
F(4;20) = 3.299; n = 5; P < 0.05; one-way ANOVA for
repeated measures and Dunnett’s test) of VTA DA
neurons. In a separate group of rats, we administered the
FAAH inhibitor URB597 (0.1 mg/kg, i.v., 1–2 hours
before recordings), which persistently (> 6 hours)
increases brain levels of anandamide (Kathuria et al.
2003). URB597 pre-treatment did not change cocaine
effects on firing rate (URB + cocaine: 66.5 � 9.98% of
baseline level; F(1;60) = 0.0003; n = 6, P > 0.05 versus
vehicle + cocaine) (Fig. 1c,d) and burst firing (URB +
cocaine: -18.13 � 6.68 of baseline level; F(1;60) = 0.15;
n = 6, P > 0.05 versus vehicle + cocaine) (Fig. 1e).
URB597 pre-treatment slightly enhanced the excitatory
action of morphine on firing rate, but this effect did
not reach statistical significance (URB + morphine:
159.63 � 9.06 of baseline level; F(1;40) = 2.76; n = 5,
P = 0.13 versus vehicle + morphine; two-way ANOVA
and Bonferroni’s test) (Fig. 2b,c). The effect of morphine
on burst firing was similar between controls and
URB597-treated animals (URB + morphine: +15.34 �

5.13 of baseline level; F(1;40) = 0.12; n = 5, P > 0.05
versus vehicle + morphine; two-way ANOVA and Bonfer-
roni’s test) (Fig. 2d).

URB597 had no significant effect on either the
frequency or burst firing of DA neurons; the mean
baseline frequency of VTA DA neurons recorded was

3.9 � 1.7 Hz in control animals and 3.8 � 1.53 Hz in
URB597-pre-treated animals (n = 11, P > 0.05 versus
controls; Student’s t-test) (Fig. 1f). There was also no
significant change in the percent of spikes in bursts
after URB597 (21.5 � 3.32% for control rats and
33.9 � 10.22% for URB597-pre-treated animals,
n = 11, P > 0.05; Student’s t-test) (Fig. 1f). Thus, there
was no effect of URB597 on cocaine or morphine-
induced actions on DA neurons in the VTA, in contrast
to our previous findings with nicotine (Melis et al.
2008), demonstrating a selective blockade by FAAH inhi-
bition of nicotine-induced alterations in VTA DA neuron
excitability.

FAAH inhibition blocks the effects of nicotine on MSNs
of the ShNAc

The ShNAc plays a pivotal role in the mechanisms under-
lying the primary reinforcing effects produced by natural
stimuli and by drugs of abuse, as well as in reinstatement
of drug-seeking behavior in abstinent animals. We next
assessed whether FAAH inhibition modulates responses
of MSNs in the ShNAc to nicotine.

All recorded MSNs (n = 59) were quiescent, responded
to BLA stimulation and were located in the medial part
of the ShNAc. BLA stimulation evoked firing in MSNs of
the ShNAc with a mean latency of 18.4 � 0.7 ms
(Fig. 3a,b). The average baseline spike probability
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Figure 2 Lack of effect of URB597 on
morphine-induced increases in firing rate
and burst firing of ventral tegmental area
(VTA) dopamine (DA) neurons. (a) Repre-
sentative firing rate histogram showing
that intravenous injection of morphine
(MORPH, 4 mg/kg) enhances firing rate of
VTA DA neurons in control conditions. (b)
This exemplificative rate histogram displays
that the administration of URB597 (0.1 mg/
kg, i.v., 2 hours before the recordings) did
not affect morphine-induced enhancement
of firing rate in a VTA DA neuron. (c,d)
Graphical depiction of the time course of
firing rate (c) or burst firing (d) of VTA
DA neurons following intravenous admin-
istration of morphine (MORPH, 4 mg/kg).
Pre-treatment with URB597 (0.1 mg/kg,
i.v.) did not alter the effects of morphine
either on firing rate or burst activity ofVTA
DA neurons. Results are means, with verti-
cal bars representing the standard error of
the mean of firing rate and burst firing,
expressed as a percentage of, or difference
from, the baseline (BAS). *P < 0.05 versus
baseline, one-way analysis of variance and
Dunnett’s test

FAAH inhibition on neuronal responses 5

© 2010 The Authors. Journal compilation © 2010 Society for the Study of Addiction Addiction Biology



following BLA stimulation was 46.3 � 1.5%. We
recorded evoked activity of MSNs of the ShNAc for 300
seconds before the administration of nicotine, morphine
or cocaine. As previously reported (Hakan, Hart & Eyl
1993), nicotine (0.2 mg/kg, i.v.) depressed the excitability
of MSNs in the ShNAc, as measured by their response to
BLA stimulation (64 � 12% of baseline level; F(5;40) =
3.44, n = 6, P < 0.01; one-way ANOVA for repeated mea-
sures and Dunnett’s test) (Fig. 3b,c). This effect required
the joint activation of DA receptors by nicotine-induced

release of DA, because combined administration of the DA
D1 receptor antagonist SCH23390 (1.0 mg/kg, i.v.) and
the DA D2 receptor antagonist L-sulpiride (10 mg/kg, i.v.),
4 minutes before nicotine, fully prevented the depression
of MSN excitability by nicotine (122.5 � 10.6% of base-
line level; F(1;80) = 14.09; n = 6; P < 0.001 versus control;
two-way ANOVA and Bonferroni’s test) (Fig. 3d). Neither
L-sulpiride nor SCH23390, when administered sepa-
rately, were able to prevent nicotine-induced depression
of MSN excitability (SCH23390: F(1;70) = 0.05, n = 6,
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Figure 3 Nicotine depresses the excitability of medium spiny neurons (MSNs) in the shell of the nucleus accumbens (ShNAc). (a)
Superimposed traces acquired from a digital storage oscilloscope showing a relatively constant latency of the orthodromic responses of a
representative MSN after basolateral amygdala (BLA) stimulation. The arrowhead indicates the artifacts produced by BLA stimulation; the
arrow shows evoked action potentials of a MSN. Once a cell was isolated, the current applied to the BLA was adjusted to obtain ~50% of
probability to elicit an action potential after a single pulse stimulation. (b) Representative peristimulus time histograms displaying the typical
inhibitory response of a MSN in the ShNAc after BLA stimulation and injection of nicotine (0.2 mg/kg, i.v.). (c) Graph showing the time course
of nicotine-induced inhibition of spike firing of MSNs. (d) Graphical depiction illustrating that nicotine-induced inhibition was prevented by the
combined administration (at arrow), but not by the separate injection, of the dopamine D1 receptor antagonist SCH23390 (SCH, 1 mg/kg,
i.v.) and the D2 receptor antagonist L-sulpiride (L-Sulp, 10 mg/kg, i.v.). Results are means, with vertical bars representing the standard error of
the mean of evoked spike firing, expressed as a percentage of the baseline (BAS). *P < 0.05 versus baseline, one-way analysis of variance
(ANOVA) and Dunnett’s test; #P < 0.05 versus vehicle + nicotine, two-way ANOVA and Bonferroni’s test
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P > 0.05; L-sulpiride: F(1;70) = 0.02, n = 6, P > 0.05; two-
way ANOVA for repeated measures and Dunnett’s test)
(Fig. 3d).

Pre-treatment with URB597 (0.1 mg/kg, i.v., 1–2
hours before recordings) blocked nicotine’s depression of
MSNs in the ShNAc (Fig. 4a,b) (126.6 � 15.6% of base-
line level, n = 6, F(1;70) = 9.03, P < 0.01 versus control;
two-way ANOVA and Bonferroni’s test). Consistent with
the data obtained in the VTA, URB597 had no significant
effect by itself; the mean current administered for spike
firing evoked by BLA stimulation in MSNs in the ShNAc
was not different between controls and URB597-pre-
treated animals (1.52 � 0.16 mA versus 1.9 � 0.4 mA,
respectively; n = 6; P > 0.05; Student’s t-test) (Fig. 4b,

inset). Interestingly, after URB597 treatment, nicotine
increased, rather than depressed, firing evoked by BLA
stimulation in MSNs (F(8;40) = 3.32, n = 6, P < 0.01; one-
way ANOVA for repeated measures and Dunnett’s test)
(Fig. 4a,b). These results indicate that FAAH inhibition
prevents the inhibitory effects of nicotine on MSNs in the
ShNAc.

URB597 blocks nicotine’s effects in the ShNAc via
CB1-receptor- and PPAR-a-dependent mechanisms

Next, we explored the mechanism by which URB597
blocks nicotine-induced inhibition of MSNs in the ShNAc.
In fact, it is well established that URB597 elevates brain
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Figure 4 URB597 suppresses nicotine’s action on medium spiny neurons (MSNs) in the shell of the nucleus accumbens (ShNAc). (a)
Exemplificative peristimulus time histograms showing that nicotine-induced decrease of MSN excitability is reversed by URB597, whereas the
CB1-receptor antagonist rimonabant (SR, 0.5 mg/kg) and the peroxisome proliferator-activated nuclear receptor-a antagonist MK886
(3 mg/kg), administered 15 minutes before URB597, prevented the effects of the fatty acid amide hydrolase inhibitor and restored
nicotine-induced inhibition of MSNs’ responses to basolateral amygdala (BLA) stimulation in the ShNAc. (b,c) Graphical depiction illustrating
that URB597 pre-treatment prevented nicotine-induced inhibition of MSNs and that this inhibition by nicotine was reversed by rimonabant
(SR, 0.5 mg/kg, i.v.) (b) or MK886 (3 mg/kg, i.p.) (c).The histogram in the inset displays that the mean current administered in the BLA to evoke
spike firing in MSNs was not different between controls (CTRL) and URB597-pre-treated animals. Results are means, with vertical bars
representing the standard error of the mean of evoked spike firing, expressed as difference percentage of the baseline (BAS). #P < 0.05 versus
vehicle + nicotine, §§P < 0.001 versus URB + nicotine, two-way analysis of variance and Bonferroni’s test
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levels of both anandamide, an endogenous CB1-receptor
ligand, and also of non-cannabinoid NAEs, such as OEA
and PEA, which show no affinity for CB1-receptors but
are agonists at PPAR-a (Fu et al. 2003; Fegley et al. 2005).
To explore the possible contributions of these two receptor
systems to URB597’s blockade of nicotine’s effects on
MSNs in the ShNAc, we treated one group of rats with
both URB597 (0.1 mg/kg, i.v.) and the CB1-receptor
antagonist rimonabant (SR141716A; 0.5 mg/kg, i.v.)
1–2 hours before recording and treated another group
with URB597 together with the selective PPAR-a antago-
nist MK886 (Kehrer et al. 2001) (3 mg/kg, i.p., 15
minutes before URB597). Interestingly, both rimonabant
and MK886 fully reversed URB597’s blockade of nico-
tine’s effects in MSNs of the ShNAc (rimonabant +
URB597 versus URB597: 63.5 � 21.8% of baseline level;
F(1;63) = 10.3, n = 5, P < 0.05, MK886 + URB597 versus
URB597: 56.8 � 16% of baseline level; F(1;70) = 5.462,
n = 6, P < 0.05, two-way ANOVA and Bonferroni’s test)
(Fig. 4a–c).

FAAH inhibition prevents cocaine’s action on MSNs in
the ShNAc

We then studied the effects of cocaine and morphine on
MSN excitability in the ShNAc, and the consequences of
FAAH inhibition by URB597. Cocaine (1.0 mg/kg, i.v.), in
agreement with previous studies (White et al. 1993),
depressed the excitability of MSNs of the ShNAc
(37.06 � 10.6% of baseline level; F(6;48) = 7.28, n = 7,
P < 0.001, one-way ANOVA for repeated measures and
Dunnett’s test) (Fig. 5a,b), as measured by their response
to BLA stimulation. When we studied the effect of mor-
phine (4.0 mg/kg, i.v.), the effects were highly variable
(data not shown) and, overall, did not reach statistical
significance, in line with other studies (Hakan & Henrik-
sen 1987). For this reason, we did not further character-
ize the effect of URB597 on morphine-induced effects on
MSNs. Pre-treatment of rats with URB597 (0.1 mg/kg,
i.v., 1–2 hours before recordings) prevented cocaine-
induced depression of MSNs in the ShNAc (95.3 �

15.1% of baseline level; F(1;77) = 11.97, n = 6, P < 0.01
versus control, two-way ANOVA and Bonferroni’s test)
(Fig. 5a,b).

URB597 blocks cocaine’s effects in the ShNAc via a
PPAR-a-dependent mechanism

Finally, we explored the mechanism by which URB597
blocks cocaine-induced inhibition of excitability of MSNs
in the ShNAc. When we coadministered URB597 and the
CB1-receptor antagonist rimonabant (SR141716A;
0.5 mg/kg, i.v.), we found that URB597’s actions were
not reversed by CB1-receptor blockade (98.34 � 18.45%

of baseline; F(1;70) = 0.04, n = 6, P > 0.05 versus
URB597-pre-treated animals, two-way ANOVA and Bon-
ferroni’s test) (Fig. 5c), suggesting that CB1-receptors
were not involved. However, when we pre-treated rats
with MK886 (3.0 mg/kg, i.p., 15 minutes before URB597
administration), URB597’s blockade of cocaine’s inhibi-
tion of MSNs was completely prevented, and cocaine
exerted an inhibitory effect similar to that observed under
control conditions (58.02 � 15.59% of baseline level;
F(1;70) = 7.028, n = 6, P < 0.05 versus URB597–pre-
treated animals, two-way ANOVA and Bonferroni’s test)
(Fig. 5d). These data suggest that endogenous PPAR-a
ligands modulate the effects of cocaine in the ShNAc.

DISCUSSION

In this study, FAAH inhibition by URB597 blocked the
acute inhibitory effects of both nicotine and cocaine on
firing of MSNs in the ShNAc that was evoked by BLA
stimulation in anesthetized rats. Pharmacological block-
ade of the target receptors for endogenous lipids that are
the primary substrates for FAAH (CB1-receptors and
PPAR-a) showed that URB597’s blockade of nicotine’s
inhibition of MSN excitability was because of the com-
bined activation of both surface CB1-receptor and
nuclear PPAR-a, while URB597’s blockade of cocaine’s
inhibition of MSN excitability was due only to activation
of PPAR-a and did not involve CB1-receptors.

In the VTA, URB597 did not prevent the decreases in
firing rate and burst firing produced by cocaine, or the
increases in firing rate and burst firing produced by mor-
phine, in DA neurons of anesthetized rats. These results
extend our previous findings, where FAAH inhibition
by URB597 completely abolished nicotine-induced
increases in firing rate and burst firing of VTA DA
neurons in anesthetized rats (Melis et al. 2008) and
nicotine-induced neurochemical and behavioral effects in
rats (Scherma et al. 2008). In that study, URB597
blocked nicotine-induced increases in DA levels in the
ShNAc and blocked the development of nicotine self-
administration and nicotine-induced conditioned place
preferences (Scherma et al. 2008).

The present finding that nicotine-induced depression
of MSN excitability requires the combined activation of
D1 and D2 DA receptors suggests that DA release in the
ShNAc plays a crucial role in this effect. Moreover,
because URB597’s blockade of nicotine’s inhibition
of MSN excitability in the ShNAc was reversed by either
the selective CB1-receptor antagonist/inverse agonist
rimonabant or by the PPAR-a antagonist MK886, the
blockade of nicotine’s effects by URB597 appears to
involve both surface CB1-receptors and nuclear PPAR-a.
Following URB597 administration, we found that nico-
tine became excitatory on MSNs in the ShNAc. The
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reason for this reversal of nicotine’s effect is not clear. One
possibility is that it might be the result of a combination
of factors: (1) the depression of nicotine-induced DA
release (Scherma et al. 2008) and (2) activation of CB1-
receptors in the NAc by anandamide and depression of
nicotine-induced GABA release. These effects may ulti-
mately unmask the enhancement of glutamate release
induced by nicotine (Reid et al. 2000) and the consequent
excitation of MSNs.

Although URB597 did not affect the inhibitory
actions of cocaine on VTA DA neurons, it completely
prevented cocaine-induced inhibition of MSN in the
ShNAc. These findings add some complexity to the con-
troversial issue of interactions between the endocan-
nabinoid system and the effects of cocaine or, more

generally, of psychostimulants (Wiskerke et al. 2008).
For example, it has been demonstrated that CB1-
receptor knockout mice will self-administrate cocaine
(Cossu et al. 2001) and that rimonabant does not
modify the development of cocaine-induced conditioned
place preference (Martin et al. 2000). Moreover,
URB597 does not alter cocaine self-administration by
squirrel monkeys under a fixed ratio schedule (Justinova
et al. 2008). In contrast, other studies have shown that
rimonabant prevents cocaine-induced increases in DA
levels in the NAc (Cheer et al. 2007) and increases the
breakpoint for cocaine self-administration under a fixed
ratio schedule in rats with extended access to the drug
(Orio et al. 2009). Thus, the present finding that
URB597 blocks the inhibitory effects of cocaine on MSN
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Figure 5 URB597 suppresses cocaine’s action on medium spiny neurons (MSNs) of the shell of the nucleus accumbens (ShNAc). (a)
Representative peristimulus time histograms showing the response of recorded ShNAc MSNs after basolateral amygdala (BLA) stimulation.
The probability of evoking MSN responses after BLA stimulation decreased after cocaine administration. Pre-treatment with URB597 reversed
cocaine-induced inhibition of MSNs.The peroxisome proliferator-activated nuclear receptor-a antagonist MK886 blocked URB597’s effect and
restored cocaine-induced inhibition of MSNs. (b–d) Graphical depictions of the time course of cocaine’s effects on MSN excitability in the
ShNAc. Cocaine depresses the excitability of MSNs in a long-lasting manner (b).This effect was blocked by URB597, which fully prevented
cocaine-induced inhibition (b). Pre-treatment with the CB1-receptor antagonist rimonabant (SR; 0.5 mg/kg, i.v.) did not alter URB597’s
blockade of cocaine’s actions (c), whereas MK886 (3 mg/kg, i.p.) (d) completely prevented URB597’s blockade of cocaine’s actions and
restored cocaine-induced inhibition of MSNs. Results are means, with vertical bars representing the standard error of the mean of evoked spike
firing, expressed as a percentage of the baseline (BAS). *P < 0.05 versus baseline, one-way analysis of variance (ANOVA) and Dunnett’s test;
#P < 0.05 versus vehicle + cocaine, §P < 0.05 versus URB597 + cocaine, two-way ANOVA and Bonferroni’s test
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excitability in the ShNAc, although not the inhibitory
effects of cocaine on DA neurons in the VTA, was unex-
pected, particularly because we previously found that
URB597 had no effect on cocaine self-administration by
squirrel monkeys (Justinova et al. 2008). However,
besides the difference in experimental subjects (squirrel
monkeys versus rats), there was a difference in the pro-
tocols of cocaine administration in these two studies.
Unlike the self-administration studies in monkeys, where
intravenous injections of cocaine were repeatedly self-
administered during 1-hour sessions and the effects of
URB597 were examined over three consecutive daily
sessions, in the present experiments, the electrical activ-
ity of neurons was examined in a single brain area fol-
lowing a single acute intravenous injection of cocaine. It
is possible that URB597’s effect could impair the drug-
induced acute responses of a specific neuronal popula-
tion without significantly affecting behavior induced by
chronic administration of the same drug. Thus, this
piece of evidence might reveal that, at least for cocaine,
FAAH inhibition might prevent the initial acute effects of
cocaine administration. In support of this hypothesis, a
recent study suggests that FAAH inhibitors do not affect
cocaine self-administration but significantly reduced
cocaine-induced reinstatement in abstinent animals
(Adamczyk et al. 2009).

In the present experiments, URB597 blocked the
inhibitory effect of cocaine on MSN excitability in the
ShNAc through a non-CB1-receptor-dependent mecha-
nism, because MK886, but not rimonabant, completely
reversed URB597’s blockade of cocaine’s inhibition of
MSNs in the ShNAc. This result further supports the con-
clusion that the effects of FAAH inhibition on the actions
of addicting drugs are often because of a combination of
different mechanisms, involving both surface CB1-
receptors for the endocannabinoid anandamide and
PPAR-a nuclear receptors for the non-cannabinoid OEA
and PEA. In line with other studies, however, the lack of
effect of rimonabant in the present experiments with
cocaine indicates that CB1-receptors are probably not
primarily involved in the acute reinforcing effects of psy-
chostimulants (Maldonado et al. 2006; Wiskerke et al.
2008).

How PPAR-a modulated acute neuronal responses to
cocaine in the present experiments is not known. Among
possible explanations, a conservative hypothesis may
involve a negative modulation exerted by PPAR-a ago-
nists, such as OEA and PEA, on cholinergic transmission
within the ShNAc. In fact, cholinergic interneurons of
the NAc were shown to modulate the response of MSNs
(de Rover et al. 2002). In that study, the authors hypoth-
esized that this effect occurred through an increase of
GABAergic interneuron activity within the ventral stria-
tum. These neurons receive inputs from the cholinergic

neurons mediated by nAChRs, and their synapses
impinge directly to MSNs. Moreover, other studies have
demonstrated an increase in acetylcholine release in the
NAc after psychostimulant exposure (Guix, Hurd &
Ungerstedt 1992; Imperato et al. 1992; Bickerdike &
Abercrombie 1997). In our previous in vitro studies in
brain slices, we identified a mechanism by which PPAR-a,
activated by endogenous agonists OEA and PEA, specifi-
cally modulates nAChRs by inducing their inactivation
through phosphorylation (Melis et al. 2008). By analogy,
it is likely that PPAR-a activation within the NAc might
modulate cocaine’s response through inactivation of
nAChRs in GABAergic interneurons. This should result
in an impairment of GABA transmission to the MSNs that
could explain the lack of inhibitory effect of cocaine on
MSNs after URB597 pre-treatment. Interestingly, interac-
tions between OEA and PEA, and acetylcholine transmis-
sion might be bidirectional, given that their biosynthesis
is increased after stimulation of muscarinic receptors
(Stella & Piomelli 2001), which are present in the termi-
nal regions of GABAergic interneurons (de Rover et al.
2002).

It must be pointed out that, since all drugs were
administered systemically, we were unable to determine
whether the observed effects of PPAR-a agonists were
because of activation of nuclear receptors within the
NAc or other brain regions. However, relatively high
levels of PPAR-a binding was detected in the rodent stria-
tum (Moreno, Farioli-Vecchioli & Ceru 2004), coex-
pressed with tyrosine hydroxylase (Plaza-Zabala et al.
2009), thus a direct action of PPAR-a agonists in this
brain region is likely.

Endocannabinoids have been involved in the modula-
tion of forms of synaptic plasticity that occur in the NAc
or in the VTA early after the administration of addictive
substances belonging to different classes (Hoffman et al.
2003; Mato et al. 2004; Pan, Hillard & Liu 2008).
It is likely that, besides ‘classical’ endocannabinoids,
endocannabinoid-like lipid messengers might also
modulate acute effects of addicting substances. Indeed,
irrespective of mechanisms involved, pharmacological
inhibition of FAAH might represent an opportunity to
reveal how homeostatic signals, such as the endocannab-
inoid anandamide and the non-cannabinoid acetyletha-
nolamides OEA and PEA, and their respective target
receptors, might be recruited to regulate the effects of
addicting drugs within brain reward pathways, and
might represent a potential new approach to the treat-
ment of drug addiction.
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