
Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Simulating Complex Multi-core
Computing Systems: Techniques

and Tools

Simone SECCHI

Advisor: Prof. Luigi RAFFO
Curriculum: ING-INF/01 Elettronica

XXIII Cycle
March 2011

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Simulating Complex Multi-core
Computing Systems: Techniques

and Tools

Simone SECCHI

Advisor: Prof. Luigi RAFFO
Curriculum: ING-INF/01 Elettronica

XXIII Cycle
March 2011

To those I often neglected
and forgot to appreciate

Contents

1 Introduction 1
1.1 Main objectives and thesis organization . 7

2 State of the art 9
2.1 State of the art in FPGA-based system-level emulation 9

2.1.1 RAMP - Research Accelerator for Multicore Processors 10
2.1.2 The PROTOFLEX simulator architecture 13
2.1.3 The Microsoft GIANO simulator . 14
2.1.4 FAST: FPGA-Accelerated Simulation Techologies 15
2.1.5 FPGA-based emulation for thermal modeling 16
2.1.6 Lessons learned from the state of the art 16

2.2 State of the art in parallel software simulators for high-performance computing 18
2.2.1 The Wisconsin Wind Tunnel II (WWTII) simulator 18
2.2.2 The COTSon simulator . 20
2.2.3 The Graphite simulator . 21
2.2.4 The BigSim simulator . 23
2.2.5 Lessons learned from the state of the art 24

3 An FPGA-based framework for technology-aware system-level emulation 27
3.1 Framework Overview . 29
3.2 System-level platform description input file . 30
3.3 The soft IP cores RTL repository . 33

3.3.1 Elements of the Open Core communication Protocol (OCP) 33
3.3.2 Processing elements, memories and I/O 34
3.3.3 Interconnection elements . 35
3.3.4 Synchronization modules . 37
3.3.5 Software libraries . 39

3.4 The SHMPI platform builder . 41
3.5 Performance extraction . 42
3.6 Analytic modeling for prospective ASIC implementation 43

3.6.1 Area modeling . 44
3.6.2 Power modeling . 45

3.7 Framework validation . 46
3.7.1 A first case study: analysis of the scalability of a parallel kernel 46
3.7.2 A further case study: architectural design space exploration 48

i

ii CONTENTS

3.7.3 Implementation effort evaluation . 51
3.8 Support for runtime reconfiguration . 52

3.8.1 Problem formulation . 53
3.8.2 Algorithm description . 53
3.8.3 Toolchain and hardware/software implementation 57
3.8.4 Hardware support for runtime reconfiguration 58
3.8.5 Software support for runtime reconfiguration 60
3.8.6 FPGA implementation overhead reduction techniques 60

3.9 Use Cases . 61
3.9.1 Hardware overhead due to runtime configurability 63

4 A parallel software simulator for high performance computing systems 65
4.1 The Cray XMT . 66
4.2 Simulator overview . 69

4.2.1 Front-end . 72
4.2.2 System calls . 73

4.3 Processor model . 73
4.3.1 Dynamic stream and team addition/removal 74

4.4 Dynamic switching . 75
4.5 Host thread synchronization . 76
4.6 Memory and Network model . 78

4.6.1 Static latency estimation . 78
4.6.2 Contention evaluation . 79
4.6.3 Contention modeling: a speed-accuracy trade-off 82
4.6.4 Cache modeling . 87
4.6.5 Synchronization and further optimizations 88

4.7 Experimental evaluation . 89
4.7.1 Experimental setup . 89
4.7.2 Simulator accuracy . 90
4.7.3 Simulator performance . 90

5 Conclusion 93
5.1 Future developments . 94

Bibliography 95

List of Figures

1.1 Frequency scaling over last generations of Intel CPUs 1
1.2 Number of cores integrated on single chip processors 2
1.3 Trends and processors in high performance computing 3
1.4 Peak performance growth of supercomputing machines over the last 70 years. . . 4

2.1 BEE prototyping board . 11
2.2 RAMP Gold structure . 12
2.3 Protoflex hybrid simulation architecture . 13
2.4 PROTOFLEX instruction-interleaved virtualization 13
2.5 Microsoft GIANO co-simulation structure . 14
2.6 FAST operation example with a single-processor architecture 15
2.7 FPGA-based emulation framework with thermal modeling 17
2.8 Elsie’s relation to the WWTII simulation framework. 18
2.9 Quantum-based host processors synchronization 19
2.10 The COTSon simulation framework architecture . 21
2.11 Graphite high-level organization . 22
2.12 The BigSim simulator architecture . 24

3.1 Overview of the framework . 29
3.2 Xpipes switch architecture . 35
3.3 Performance counters pinpointing graphical view 43
3.4 Model development methodology . 44
3.5 Virtex5-based prototyping board . 47
3.6 Performance metrics for the scalability analysis . 48
3.7 Explored topologies layout . 49
3.8 Dynamic per-switch power consumption . 49
3.9 Time, latency, area, power and energy figures . 50
3.10 FPGA synthesis and implementation time . 52
3.11 Example of a worst-case topology definition . 54
3.12 Configuration algorithm flow chart . 55
3.13 General overview of the prototyping flow . 58
3.14 Hardware for runtime reconfiguration . 59
3.15 Use cases results . 62
3.16 Impact of reconfiguration on the implementation time 62

4.1 System-level XMT architecture . 67

iii

iv LIST OF FIGURES

4.2 Node-level XMT architecture . 67
4.3 Overview of the Cray XMT hashing mechanism . 69
4.4 Overview of the simulator infrastructure . 69
4.5 C++ class hierarchy . 70
4.6 Target core - Host core mapping . 71
4.7 Latency histogram for memory-scrambled array accesses 79
4.8 Contention on the memory controller . 80
4.9 Network contention measurements: random and patterned accesses. 81
4.10 Network contention measurements: single-hop latency 82
4.11 English text input . 85
4.12 TCP dump input . 86
4.13 Random input . 86
4.14 Simulation speed results. 86
4.15 Simulator accuracy results . 90
4.16 Performance results: Aho-Corasick . 91
4.17 Performance results: Matrix Multiplication . 91

List of Tables

3.1 Implemented OCP signals . 34
3.2 Hardware overhead figures . 63
3.3 Frequency overhead figures . 63

4.1 Main features of the three accuracy levels . 76

v

Chapter 1

Introduction

As the era of frequency scaling has come to an end, the computing industry changed course
and parallelism is now the new buzzword. In the last decade, several factors, such as the
ever-increasing need for computational power and the renewed attention to energy-related
issues, have led to the reconsideration of parallel computation in its multiple forms as a vi-
able way to sustain the pervasive need for computational power of most electronic devices.
Complex computing architectures have been explicitly conceived to benefit from (a combi-
nation of) the different features of parallelism, ranging from instruction level (ILP), through
data level (DLP), to the so-called thread level parallelism(TLP) [7]. This trend has become
widespread, with different timing and at different scale, in all areas of computing.

Figure 1.1: Frequency scaling over last generations of Intel CPUs

In the embedded systems and general purpose computing domain, this evolution trans-
lated into the integration of complete heterogeneous multi-core systems on a single chip
(Multi-Processor Systems-on-Chip, MPSoCs). As a consequence of this trend, even the well
known Moore’s Law has been adapted to address the increasing number of cores integrated

1

2 CHAPTER 1. INTRODUCTION

in a single chip. Instead of predicting a steady increase in single-processor operating fre-
quencies (which are expected to stabilize when not decrease because of power issues), the
evolution of the most famous statement of digital electronics now anticipates a doubling of
the number of per-chip cores every two years, as the market enters the so called “multi-core
era”. Figure 1.1 show the flat curve for Intel’s main CPUs frequency scaling over different
processors generations.

Figure 1.2 instead, plots the number of cores integrated on single-chip parallel proces-
sors, as stated by the reformulation of Moore´s Law. The heterogeneity and inherent com-
plexity of such systems have in turn increased the complexity of the overall embedded sys-
tems hardware/software design flow. Moreover, this complexity has to be handled under
strict time-to-market constraints.

Figure 1.2: Number of cores integrated on single chip processors

On the large-scale and high-performance computing domain, the computational power
needed by advanced scientific problems in domains such as earth sciences, material sci-
ences, chemistry, biology, physics and social sciences is the major driving force to the de-
velopment of faster supercomputing machines. Although the fastest machine in the world
is now able to reach a peak performance speed of 4.7 PetaFlops (1015 floating point oper-
ations per second)[37], USA and China are already the leading players in the race to the
development of next-generation Exascale computing architectures. It is anticipated that
not only such architectures will aggregate millions of cores with inter- and intra-chip par-
allelism (several thousands of at least 1000-cores processors), but also they will exploit the
edge-cutting performance of complex multi-threaded hybrid-core architectures, as complex
GPU and hybrid APU chips are entering the domain [21][1]. Figure 1.3 plots the current and
future trends in high performance computing, mentioning the kind of processors employed
for each system generation. Figure 1.4 plots the performance growth of supercomputing
machines during the last 70 years. As of 2010, the Tianhe-1A supercomputer at the National
Supercomputing Center in Tianjin, China, has overcome by 1.4 times the US AMD Opteron-
based Cray XT5 Jaguar at the Oak Ridge National Laboratory. According to Nvidia, Tianhe-1A

3

has achieved a processing rate of 2.507 PF on the LINPACK benchmark. The machine con-
sists of 14,336 Intel Xeon CPUs and 7,168 Nvidia Tesla M2050 GPUs with a proprietary in-
terconnect subsystem of Chinese origin, reporting twice the speed of InfiniBand. Tianhe-1A
spans 103 cabinets, weighs 155 tons, and consumes 4.04 megawatts of electricity. Interest-
ingly, however, the most relevant aspect of the performance trend is not the current and
future scale of such high performance computing systems (it could have easily been pre-
dicted as a natural prosecution of the raw computational power aggregation trend), but the
inherent high complexity of the design of such machines, resulting from the switch toward
hybrid CPU-GPU architectures.

Figure 1.3: Trends and processors in high performance computing

Because of the considerations mentioned above, the complexity of designing such sys-
tems has increased considerably. On the embedded side, the design space to be explored
is typically vast, mainly because of the high heterogeneity of the system and the resulting
number of degrees of freedom that the designer needs to take into account. To mention
some, one could consider the number and kind of homogeneous/heterogeneous process-
ing elements, the architectural parameters of the interconnection subsystem, the number
of layers and the operating policies of the memory hierarchy, or the different types of hard-
ware support for threading and synchronization. Moreover, the continuous reduction of the
technological feature size and the reduced power budget increase the probability for possi-
ble modifications to happen late in the design flow, when not leading to costly respins of the
entire project. Regarding high performance systems, the design complexity mainly follows
the scale of the machine. Developing machines intended to run billions of threads, tailoring

4 CHAPTER 1. INTRODUCTION

Figure 1.4: Peak performance growth of supercomputing machines over the last 70 years.

a fast communication medium to let them synchronize one with each other and enabling
parallel access to hundreds of TeraBytes of distributed memory are rapidly becoming very
challenging tasks.

To facilitate the design of such complex platforms, effective techniques for predicting the
performances and identifying the most critical design choices at the early stages are needed.
Functional verification has been for years the main tool that hardware designers have been
resorting to, in order to assess whether the built system was able to perform the logic func-
tionality it was intended to perform. Functional verification was also used to explore the
available design space, meaning to anticipate the effects that different design choices could
have on the overall performance and behavior of the system under development.

In hardware design, functional verification can be pursued in many different ways, among
which the most applied solutions are certainly:

• Logic simulation - this term usually identifies all the verification approaches that take
as input an exact description of the system to be developed, specified with a hardware
description language, and simulate its behavior by running a software, called simula-
tor, on a separate platform. The description of the hardware under development can
be made at different levels of abstraction, ranging from high level descriptions (usu-
ally called algorithmic), through cycle-accurate levels (Register Transfer Level, RTL), to
very detailed gate- or even layout-level descriptions.

• Logic emulation - this term identifies all the approaches to functional verification that
try to mimic the functionality of a piece of logic with different logic. Using different
logic to emulate the system under development might be convenient due to differ-
ent reasons. For instance, the selected logic used to emulate the system under design

5

might speed-up the entire verification process, or reduce the cost to affordable levels.
Moreover, one might even want to validate the behavior of a complex system built out
of pieces of logic whose hardware description is not available, and thus resort to alter-
native logic that guarantees adequate similarity of the overall system-level behavior.

Both the approaches mentioned above have their respective advantages and disadvan-
tages. Simulation is the most natural and general way for the designer to get feedback about
its design. Because it basically takes as input the design itself, the designer interacts with it
using the vocabulary and abstractions of the design itself. There is no layer of translation to
obscure the behavior of the design. The accuracy can be, for synchronous logic, the highest
desirable at cycle-level. Moreover, the cost is usually very low and the effort required to de-
bug and then verify the design is proportional to the maturity of the design. That is to say that
early in the design flow, bugs and incorrect behavior are usually found quickly. As the design
matures, it takes longer to find the errors. While this is beneficial early in the design process,
it becomes more problematic later. As for the disadvantages, simulation requires consider-
able computing resources to be performed and, as the complexity of the design increases,
always gets more and more time-consuming. Emulation has several advantages, which de-
pend merely on the kind of logic that it is chosen to emulate the desired piece of hardware.
The emulating system can usually be more rapid with respect to simulation infrastructure,
although slower enough with respect to the real hardware to still be less expensive to real-
ize. This higher speed can be crucial when complex software validation has to be performed
on top of the emulated system. Emulation is often the right choice in the early steps of the
design flow, as several details on specific hardware parts are not yet available. It is often per-
formed employing reconfigurable hardware platforms, in which case the emulation speed
usually overcomes by orders of magnitude raw simulation speed. This approaches are of-
ten referred to as prototyping (although sometimes this term also indicates simulation tech-
niques). The disadvantages of emulation are quite obvious, the system under development
is, in some of its composing blocks, different from the design objective, therefore it is inap-
propriate even defining an accuracy level, since only functional correctness can be proven.
For the same reason, probing of single signals is unfeasible, as opposed to simulation-based
approaches.

In the recent past, these two areas of functional verification have been undergoing radi-
cal changes, in order to cope with the ever-increasing complexity of the computing systems.
This trend in functional verification has been going on, with different shapes and paces,
both in the embedded system and high performance computing domains. In general, the
huge complexity of today’s and tomorrow’s computing systems has exacerbated the con-
straints posed by the most important trade-off that holds in functional verification, namely
the speed-accuracy trade-off. In fact, as the systems get larger and more complex, simulating
or emulating at the maximum detail the entire system becomes too much time-consuming.

In the embedded systems domain, after the advent of heterogeneous MPSoC architec-
tures, software cycle-accurate simulation has turned to be not practical anymore because of
the large timing overhead required to handle all the signals, interfaces and states present
in the system. Moreover, due to tight integration and time-to-market constraints, hard-
ware/software co-development has been established as the major design paradigm, forc-
ing the simulation/emulation to provide support to verify hardware functionalities and run
complex software, such as operating systems or complex applications, at the same time.

6 CHAPTER 1. INTRODUCTION

Finally, there is an increasing need to narrow the gap between the earlier and the latter
stages of the hw/sw design flow, since modifications in advanced stages generates unsus-
tainable costs and impact on the overall project design closure. Therefore, evaluation of
technology and physical metrics (prospective on-silicon area occupation, power and energy
consumption, operating frequency, thermal distribution) about the system under design are
desirable already in the early design steps.

For all these reasons, both in the academic and industrial communities, the interest has
recently shifted toward the adoption of hardware-based emulation/prototyping platforms.
Such platforms are able to achieve higher speed with respect to pure software simulation
while maintaining cycle-accuracy, and are thus able to run complex software stacks and ap-
plications in reasonable times. One of the key driving forces behind the success gained by
hardware-based emulation is the availability of reconfigurable devices, such as the Field-
Programmable Gate Arrays (FPGAs). Their ability to implement the functionalities of every
generic piece of logic, combined with efficient synthesis/implementation tools that convert
RTL descriptions into real hardware, make them a convenient layer for hardware emulation.
In addition to that, ASIC technology scaling has an impact also on FPGA integration capa-
bilities, cost and price, promising to reach, in the next futures, ever higher equivalent gates
figures.

Also in the high performance computing field, pure cycle-accurate software simulation
has been for years an essential tool for the development of new architectures and for the
analysis of software performance. Nevertheless, simulating high performance parallel ma-
chines, with high core/processor counts and complex architectures, poses several contrast-
ing challenges. Designing sufficiently fast simulators to explore new architectural features
with meaningful applications for systems of this size is difficult. Communication backbones
should be correctly modeled, because they significantly influence the execution times of the
applications. Moreover, interesting applications often have a large memory footprint, so
simulators should limit as much as possible their space overhead.

Only fast simulators can adequately support the research of new software approaches,
from operating systems to languages, from runtimes to applications, for present and future
machines of this class. At the same time, high simulation speed should not trade off sim-
ulation accuracy, to guarantee relevant analysis with respect to existing architectures. The
majority of architectural and system simulators is single-threaded [47][13][15][48][34]. Even
if some of them are very accurate, these solutions are too slow to run more than small appli-
cation kernels in reasonable times, and cannot adequately scale to multicore processors or
large multiprocessor systems. This is a significant limit, considering that future supercom-
puting machines are expected to count thousands of cores and hundreds of thousands of
processors.

The current trend in this field is to achieve further simulation speedup by looking at par-
allel software simulation, aiming at applying current parallelization techniques at the sim-
ulator code itself. To this extent, Shared Memory multiProcessor (SMP) servers and small
clusters have become more affordable and consequently more attractive for accelerating
sequential simulator codes. Thus, in the last few years the research focus has shifted to-
wards simulators able to export different types of parallelism for accelerating the simulation
of multicore or multiprocessor systems [39][40][38].

1.1. MAIN OBJECTIVES AND THESIS ORGANIZATION 7

1.1 Main objectives and thesis organization

This thesis is organized in two parallel tracks, as it aims at reflecting the objectives of the two
different research threads that have been carried on, in the field introduced above, during the
last years of activity. The two main objectives and activities can be summarized as follows:

• The first section of the document covers the research activity performed in the field of
technology-aware FPGA-based emulation of multi-core architectures for embedded sys-
tems. The basic idea behind this research activity is to target the problems and trends
mentioned above for the embedded systems design field. In particular, the objective is
to take profit from the advantages provided by on-hardware prototyping and to con-
sider, already at system/architectural level, the variables related to the low-level imple-
mentation, introducing the concept of “system-level design with technology aware-
ness”. The activity has been mainly focused on coupling FPGA-based hardware pro-
totyping and RTL-based power modeling to address the problem of technology-aware
rapid emulation of embedded computing systems. A complete library-based frame-
work for rapid and accurate prototyping of Network-on-Chip-based multi-core em-
bedded systems over FPGA platforms has been developed and will be presented, to-
gether with some validation use cases.

• The second section of this thesis will instead focus on simulation of high performance
computing systems. The objective of this research activity was to address the current
and future trends in simulating high-performance architectures, by exploiting parallel
computation to speed-up the simulator performances. In particular, the development
of a fast and accurate parallel software simulator for the Cray XMT multithreaded su-
percomputer will be presented and discussed. The simulator is able to execute the
same, native and unmodified, applications of the real machine, by exploiting large
SMP commodity servers having an almost constant simulation speed as the number of
simulated processor increases, up to the number of available host cores, while main-
taining runtime tunable cycle-level accuracy.

Chapter 2

State of the art

In this chapter the major solutions at the state of the art for simulating/emulating both
multi-core embedded systems and large-scale high-performance computing machines will
be presented and discussed. Particular focus will be put in the solutions that have been
relevant to the conception of the base ideas for the research activities described in this doc-
ument. This chapter will proceed according to the organization of the entire thesis, which
features two parallel tracks. Likewise, the first section will address the discussion of the state
of the art in hardware-based emulation of embedded computing systems, while the second
section will go through the state of the art in parallel software simulators for large-scale high-
performance computing machines.

2.1 State of the art in FPGA-based system-level em-
ulation

As already mentioned in chapter 1, the idea of resorting to hardware-based system-level em-
ulators has been proposed in the recent past as a prospective solution to the speed-accuracy
trade-off that takes place when simulating highly complex heterogeneous embedded sys-
tems, like typical MPSoC platforms usually are. FPGA devices seem to be the most promis-
ing platform for the development of hardware-based emulation strategies because of their
(re-)configuration capabilities and because the relative toolchains are mature, reliable and
rich of debugging features. These tools take in input an HDL description of the logic to be
implemented which is actually very similar to the RTL description of the system under de-
sign, therefore little effort needs to be done to adapt the code for prototyping. Moreover,
their integration capacity, scalability, the relatively low cost and the decreasing power con-
sumption figures suggest FPGAs are going to be the reference platform for hardware-based
emulation onto the next years to come [51]. The idea of adopting FPGAs for system-level
hardware-based emulation has been around for couple of years now, and putting effort to
improve efficiency of the related tools and to foster IP reuse even for emulation purposes
has been recognized as crucial to the effective success of on-chip many-cores architectures
[7]. In order for this kind of approaches to establish theirself as they promise to do, the avail-
ability of open-source modules, from open-access repositories such as Opencores.org [22],
Open SPARC [45], and Power.org [4] needs to be strongly encouraged.

9

10 CHAPTER 2. STATE OF THE ART

2.1.1 RAMP - Research Accelerator for Multicore Processors

Among the different works that addressed FPGA-based system-level emulation, the most fa-
mous is the RAMP project. The Research Accelerator for Multiple Processor (RAMP) project
is an NSF-funded open-source effort of a group of faculty, institutions and companies (UCBerke-
ley, UTAustin, MIT, Stanford, University of Washington, Carnegie Mellon University, Intel,
IBM, Xilinx, Sun, Microsoft) to create an FPGA-based emulation and computing platform
that will enable rapid innovation in parallel software and multicore architecture [46], [53].

The major sources of inspiration that led the researchers in conceiving such project were:

• The difficulty for researchers to build modern chips, due to the high complexity, het-
erogeneity and strict time-to-market constraints.

• The rapid advance in FPGAs, which are doubling in capacity every 18 months. FPGAs
now have the capacity for millions of gates and millions of bits of memory, and they
can be reconfigured almost as easily and rapidly as modifying software.

• Flexibility, large scale, and low cost is more important than absolute performance for
researchers, as long as performance is fast enough to do their experiments in a timely
fashion. This perspective suggested the use of FPGAs for system emulation.

• “Smaller is better” means that many of these hardware modules can fit inside an FPGA
today, avoiding the much tougher mapping problems of the past when a single module
had to span many FPGAs.

• The increasing success of IP reuse as a design concept, coupled with the increasing
availability of open-source RTL modules and standard for inter-module interfacing
[43] which can be inserted into FPGAs with little effort.

The project is structured as a cluster of single-target specific efforts. Different platforms
have been developed to demonstrate the advantages of FPGA-based emulation. All these
platforms shared the same underlying prototyping board, called Berkeley Emulation Engine
(BEE), which has also been developed within the RAMP project. A view of the actual proto-
typing board is provided in Figure 2.1.

The BEE prototyping board contains five Xilinx Virtex-II Pro 70 FPGAs, the latest devices
available at design time, each containing two PowerPC 405 hard cores and connected to
four independent 72-bit DDR2 banks, capable of a peak throughput of 3.4 GBps. There are
four user FPGAs, connected in a 5 GBps ring, and one control FPGA, which is instead con-
nected in a 2.5 GBps star with the user FPGAs. The control and user FPGAs have two and
four 10 Gbps high-speed serial I/O links off-board, respectively. These serial links run to
10GBASECX4 connectors, which allow Infiniband, 10 Gb Ethernet or XAUI (Ten-gigabit At-
tachment Unit Interface) connections over fiber or copper. Finally, a robust set of peripher-
als, including RS232 and Ethernet transceivers, are connected to the control FPGA, allowing
the BEE to run a complete kernel of Linux.

The different RAMP initiatives are the following:

• RAMP Blue - led by the Berkeley research unit, this initiative built a large-scale FPGA
prototype of a multi-core architecture (up to 1008 cores on 20 BEE boards) out of
reusable soft IP cores (Xilinx Microblaze CPUs) that uses MPI-like message passing

2.1. STATE OF THE ART IN FPGA-BASED SYSTEM-LEVEL EMULATION 11

Figure 2.1: BEE prototyping board

primitives to run real high performance applications like the NAS parallel benchmarks
([11], [32]) or to simulate the behavior of Internet-based applications using the TCP/IP
protocol stack. Further information on the implementation details of this platform
can be found in [33].

• RAMP Red - also known under the name ATLAS [54], this initiative, led by the Stanford
research unit, is the first prototype of a Chip MultiProcessor with hardware support
for transactional memory. It embeds 8 PowerPC cores which access coherent shared
memory in a transactional manner. The full-system prototype operates at 100MHz,
boots Linux and provides significant performance and ease-of-use benefits for a range
of parallel applications. Once again, the ATLAS infrastructure provides significant ben-
efits for transactional memory research such as 100x performance improvement over
a full software simulation solution.

• RAMP Gold - led by the Berkeley research unit, the RAMP Gold prototype [50] is a high-
throughput, cycle-accurate full-system simulator that runs on a single Xilinx Virtex-5
FPGA board, and which simulates a 64-core shared-memory target machine capable
of booting real operating systems. Because of some of its interesting main features and
since it is the only actual FPGA-based framework developed within the RAMP project,
we will discuss in detail the RAMP Gold project in the following.

The RAMP Gold simulator

Figure 2.2 shows the structure of RAMP Gold. The most important aspect of this simula-
tion framework is that the timing and functional models of the design under test are imple-
mented in the FPGA but kept separated. The functional model is responsible for executing

12 CHAPTER 2. STATE OF THE ART

the target ISA and maintaining architectural state. The timing model determines how much
time an instruction takes to execute in the target machine and schedules threads to execute
on the functional model accordingly. The interface between the functional and timing mod-
els is designed to be simple and extensible to facilitate rapid evaluation of alternative target
memory hierarchies and microarchitectures. The distinction between functional and timing
models is quite usual in the simulation of multi-core architectures, as can be found in many
software simulators [9]. The advantages of such a separation are a simplified FPGA mapping
of the functional model and a higher configurability and reuse capability of both the models.

Figure 2.2: RAMP Gold structure

The functional model is essentially a 64-thread feed-through pipeline where each thread
simulates an independent target core. The functional model supports the full SPARC V8
ISA in hardware on the FPGA, including floating point and precise exceptions. It also has
sufficient hardware to run an operating system, including MMUs, timers, and interrupt con-
trollers. The functional functional model has been validated using the SPARC V8 certifica-
tion suite from SPARC International, and it can boot the Linux 2.6.21 kernel as well as ROS, a
prototype manycore research operating system.

The timing model, on the other hand, tracks the performance of the 64 cores of the sim-
ulated target architecture. The base target core is an in-order single issue core that sustains
one instruction per cycle, except for instruction and data cache misses. Each target core
has private L1 instruction and data caches. The cores share an L2 cache via a nonblocking
crossbar interconnect. Each L2 bank connects to a DRAM controller, which models delay
through a first-come-first-serve queue with a fixed service rate. Most of the timing model
parameters can be configured at runtime by writing control registers that reside on the I/O
bus. Among these are the size, block size, and associativity of L1 and L2 caches, the number
of L2 cache banks and their latencies, and DRAM bandwidth and latency. To measure target
performance, 657 64-bit hardware performance counters have been included in the timing
model, and in the functional model to measure the simulator performance itself.

2.1. STATE OF THE ART IN FPGA-BASED SYSTEM-LEVEL EMULATION 13

2.1.2 The PROTOFLEX simulator architecture

PROTOFLEX ([20], [27]) is a full-system FPGA-based simulation architecture, proposed by
a research team at Carnegie Mellon University led by Professor Eric S. Chung. The two key
concepts that characterize the PROTOFLEX approach are hybrid software-FPGA simulation,
realized with a mechanism called transplanting, and time-multiplexed interleaved simula-
tion. The first instantiation of the PROTOFLEX architecture incorporating the aforemen-
tioned concepts is the BlueSPARC simulator, which models a 16-core UltraSPARC III SMP
server, hosted on the same BEE2 prototyping platform developed within the RAMP project.
Hybrid simulation within BlueSPARC couples FPGA-based emulation with software simula-
tion through the adoption of VirtuTech Simics simulator [34]. Figure 2.3 shows the hybrid
simulation functional structure.

Figure 2.3: Protoflex hybrid simulation architecture

Hybrid simulation is essentially a mechanism originally devised to accelerate complex
and unbalanced software simulations. Components in a simulated system are selectively
partitioned across both FPGA and software hosts. This technique, called transplanting in
PROTOFLEX, is motivated by the observation that the great majority of behaviors encoun-
tered dynamically in a simulation are contained in a small subset of total system behaviors.
It is this small subset of behaviors that determines the overall simulation performance. Thus,
to improve software simulation performance while minimizing the hardware development,
one should apply FPGA acceleration only to components that exhibit the most frequently
encountered behaviors. Transplanting works by defining a state for the simulation, common
to the FPGA and software host platforms. This state gets “transplanted” to and from FPGA
when an acceleration is needed and possible through specific hardware placed on the FPGA.

Figure 2.4: PROTOFLEX instruction-interleaved virtualization

14 CHAPTER 2. STATE OF THE ART

The second major feature of the PROTOFLEX simulation architecture is virtualization
of the simulation of multiple processor contexts onto a single fast engine through time-
multiplexing. Virtualization decouples the scale of the simulated system from the required
scale of the FPGA platform and the hardware development effort. The scale of the FPGA
platform is in fact only a function of the desired throughput (i.e., achieved by scaling up
the number of engines). Figure 2.4 illustrates the high-level block diagram of a large-scale
multiprocessor simulator using a small number of interleaved engines. Time-multiplexing is
implemented, in PROTOFLEX, by essentially borrowing the concept of Simultaneous Multi-
Threading (SMT) from common multi-threaded architectures, and by letting each pipeline
simulate instructions from different target cores. Moreover, in the figure, multiple simulated
processors in a large-scale target system are shown mapped to share a smaller number of
engines.

2.1.3 The Microsoft GIANO simulator

Giano [30] is an extensible and modular simulation framework developed at Microsoft Re-
search for the full-system simulation of arbitrary computer systems, with special empha-
sis on the hardware-software co-development of system software and Real-Time embedded
applications. It allows the simultaneous execution of binary code on a simulated micropro-
cessor and of Verilog code on a simulated FPGA, within a single target system capable of
interacting in real-time with the outside world. The graphical user interface uses Microsoft
Visio to create the interconnection graph of the user-provided simulation modules in Plat-
formXML, an XML-based platform description language.

Figure 2.5: Microsoft GIANO co-simulation structure

2.1. STATE OF THE ART IN FPGA-BASED SYSTEM-LEVEL EMULATION 15

Figure 2.5 shows a typical host processor - FPGA device partitioning and the primitives
through which the communication between the two worlds is realized. The host code run-
ning on the host microprocessor runs a DLL for handling the communication with the FPGA
device, which instead instantiates classical I/O devices. The GIANO simulator has been used
in different design cases. Its accuracy cannot be defined as cycle-level, since it merely de-
pends on the accuracy level of the modules description and partitioning between FPGA and
host microprocessor.

2.1.4 FAST: FPGA-Accelerated Simulation Techologies

FAST is a simulation methodology that aims at defining techniques and mechanisms to pro-
duce fast cycle-accurate full-system simulators capable of running unmodified applications
and operating systems on top of current instruction sets such as the x86. FAST is another ex-
ample of partitioned simulators. It defines a speculative functional model component that
simulates the instruction set architecture and a timing model component that predicts per-
formance. The speculative functional model normally runs on a host machine on top of a
standard software simulator, possibly parallelized, while the timing model is implemented
in FPGA hardware for achieving high speed.

The functional model simulates the computer at the functional level including the in-
struction set architecture (ISA) and peripherals, and executes applications, operating sys-
tem and BIOS code. The timing model simulates only the microarchitectural structures that
affect the desired metrics. For example, to predict performance, structures such as pipeline
registers, arbiters and associativity need to be modeled. On the contrary, because data values
are often not required to predict performance, data path components such as ALUs, data reg-
ister values and cache values are generally not included in the timing model. The functional
model sequentially executes the program, generating a functional path instruction trace,
and pipes that stream to the timing model. It is often the case that the functional path is
equivalent to the right path where branches are always correctly predicted. Each instruction
entry in the trace includes everything needed by the timing model that the functional model
can conveniently provide, such as a fixed-length opcode, instruction size, source, destina-
tion and condition code architectural register names, instruction and data virtual addresses
and data written to special registers, such as software-filled TLB entries.

Figure 2.6: FAST operation example with a single-processor architecture

16 CHAPTER 2. STATE OF THE ART

In the example shown in Figure 2.6, the functional model executes and outputs eight
instructions to the timing model via the trace buffer (TB). Each logical TB entry contains
information used by multiple stages in the timing model and is thus not deallocated until
the instruction is fully committed. In that case, the target is a single issue machine with three
functional units, ALU (+), Load/Store-DataCache ($) and Branch (B), and the ability to write
up to three instructions (one per functional unit) to the ROB per cycle. The timing model
first “fetches” from the TB, then cycle-by-cycle processes each instruction by arbitrating for
and consuming the required resources in the correct order, thus accurately predicting what
would happen in the target microarchitecture.

2.1.5 FPGA-based emulation for thermal modeling

An interesting exploitation of FPGA-based hardware emulation is been proposed by Atienza
and others ([24], [8]), at the Laboratory of Integrated Systems at EPFL institute, Losanna.
They developed an automatic framework for full-system FPGA-based emulation and then
used it to extract in real-time execution traces and pass them to a thermal model, that feed-
backs control inputs to a thermal manager unit, implemented in hardware on the FPGA, that
applies appropriate thermal management policies to reduce the thermal dissipation into the
chip. Moreover, the paper estimates clearly the speed-up obtained by the FPGA-based em-
ulation framework itself over standard software simulation as three orders of magnitude,
without accounting for the FPGA synthesis and implementation phase. Figure 2.7 plots the
operating flow graph of the FPGA-based framework, when coupled to a thermal modeling
and closed-loop control engine.

Although this approach slightly differs from emulation since the thermal modeling and
feedback phase is not part of any emulation process, but instead aims at regulating tem-
perature in the actual FPGA die, still it provides some interesting information on how the
FPGA-based emulation can be used to obtain (real-time) activity traces that can eventually
be used to estimate different metrics, not only purely functional ones (execution time, inter-
connection congestion, cache hit/miss rate, ...) but also related to physical entities (power
and energy consumption, thermal distribution within the die, ...).

2.1.6 Lessons learned from the state of the art

All the different approaches presented and discussed so far have led us to make some con-
siderations on the use of FPGA devices for system-level emulation, on the advantages and
disadvantages, on the opportunities offered by these devices, that we want to summarize in
the following list of features:

• speed - FPGA devices can normally run, at the state of technology, at 100-200 MHz
speed. Although 10 times slower than an average processor operating frequency, this
speed is still high enough to overcome simulation speed, without accounting for FPGA
synthesis and implementation overhead.

• scalability - FPGA devices currently integrates in a single chip up to couple of million
equivalent gates, and technology promises to scale in the near future. Therefore, these
devices will be soon able to integrate many cores and peripherals, facing the growing
complexity of embedded systems.

2.1. STATE OF THE ART IN FPGA-BASED SYSTEM-LEVEL EMULATION 17

Figure 2.7: FPGA-based emulation framework with thermal modeling

• toolchain - The toolchain for FPGA synthesis and implementation are quite mature
and, although they still are the real bottleneck in the implementation flow in terms of
time-consumption, designer’s life is really simplified. Nevertheless, research to miti-
gate the effect of synthesis and implementation on the overall FPGA development time
needs to be carried on.

• reusability - IP core reusability is an inherent feature of hardware-based emulation.
Creation of open-access module libraries and repositories needs to be encouraged in
order to enable effective system-level framework development.

• state monitoring - FPGA devices can really provide real-time monitoring of signals and
architectural states. The number of chip I/O pins is still a limiting factor, though.

• co-simulation - Several solutions exist at the state of the art for FPGA-based acceler-
ated co-simulation. Often the simulation is partitioned between timing and functional
models, respectively running on the FPGA device and on a host processor through
software simulation. Research still needs to be done on efficient interfacing of the two
worlds and on partitioning.

• physical-awareness - FPGA devices can enable the extraction of real-time activity traces
that can be passed to dedicated models for estimation of physical metrics such as
power/energy consumption or thermal distribution.

18 CHAPTER 2. STATE OF THE ART

2.2 State of the art in parallel software simulators
for high-performance computing

2.2.1 The Wisconsin Wind Tunnel II (WWTII) simulator

The Wisconsin Wind Tunnel II simulator [40] is a parallel software simulator explicitly de-
signed for multi-core target processors. It is the successor to the famous WWT [17] software
simulator, which was designed to run on a single host processor and to simulate mainly
uni-processor architectures. WWT employed instrumented direct execution to calculate the
execution times of the target machines. Direct execution is one of the main techniques to
emulate target ISA and binary code on top of a host machine with a different ISA, by basically
providing a low-level translation of the target elementary instructions on the host machine
ISA. The WWT II simulator is able to run parallel simulations of large multi-core systems
on Sparc platforms ranging from workstation clusters (COW) to symmetric multiprocessor
architectures (SMP).

Figure 2.8: Elsie’s relation to the WWTII simulation framework.

The main features of the WWTII simulator are summarized in the following list:

• direct execution with executable instrumentation to calculate target architecture exe-
cution times. For instance, insertion of instruction to handle specific clock variables is
performed on the target binary code. WWTII developers used pre-existing binary edit-
ing libraries to build an executable editor tool named Elsie (Edits Loads and Stores In
Executables), to perform the target clock instrumentation on target executables. Elsie
also replaces target memory instructions (loads and stores, for example) with snippets
that jump into the simulator, which simulates the target memory subsystem. Figure

2.2. STATE OF THE ART IN PARALLEL SOFTWARE SIMULATORS FOR HIGH-PERFORMANCE

COMPUTING 19

2.8 shows how target binary code instrumentation is related to the whole WWTII em-
ulation framework.

• emulation of host missing features that are instead required by the target binary code.
This feature is essential and must be implemented in each direct execution based sim-
ulator, since it is very likely that not all the target system instructions might be traduced
into host instructions for direct execution. A classical example of such need is when
shared-memory target machines have to be simulated on top of distributed memory
host machines. Nevertheless, emulation of missing features increases the simulator
generality, thus resulting in improved portability. The WWTII approach replaces target
memory reference instructions with code segments that transfer control to the simu-
lator itself for execution. Emulation is implemented through the Elsie tool as well.

• Communication of target inter-processor messages is implemented through a specific
messaging library, called SAM, which abstracts the target machine architectural de-
tails, and therefore enables the simulator to be run on distributed machines (which
generally use the MPI library over distributed memory), on COW (which generally use
Sockets) and on SMP (which generally use shared-memory interprocess communica-
tion primitives).

• Synchronization of host processors is handled through lax time quantum based barri-
ers. This means that the host processors do not necessarily synchronize at every clock
cycle, but once every N target clock cycles. N must be tuned at simulation configu-
ration time according to the host machine architecture, since it affects the resulting
accuracy. Figure 2.9 plots a sample synchronization case with 4 host processors. The
synchronization is implemented inside the SAM library as well.

Figure 2.9: Quantum-based host processors synchronization

20 CHAPTER 2. STATE OF THE ART

2.2.2 The COTSon simulator

COTSon [39][28] is a multithreaded simulator framework for many-core architectures jointly
developed by HP Labs and AMD. It splits simulation in fast functional emulation and timing
models, cooperating to improve at runtime the simulation accuracy at a speed sufficient to
simulate the full stack of applications, middleware and OSs. It basically abandoned the idea
of “always-on” cycle-level simulation in favor of statistical sampling approaches that can
trade accuracy for speed.

Functional simulation “emulates” the behavior of the target system, including the OS and
common devices such as disks, video, or network interfaces. An emulator is normally only
concerned with functional correctness, so the notion of time is imprecise and often just a
representation of the wall-clock time of the host. COTSon uses AMD´s SimNow simulator
[25] for the functional simulation of each node in the cluster. The SimNow simulator is a fast
and configurable x86 and AMD64 platforms simulator for AMD’s family of processors. It uses
dynamic compilation and caching techniques to speed up CPU simulation.

Timing simulation is used to assess the exact performance of a system. It models the
operation latency of devices simulated by the functional simulator and assures that events
generated by these devices are simulated in a correct time ordering. Timing simulations are
approximations to their real counterparts, and the concept of accuracy of a timing simula-
tion is needed to measure the fidelity of these simulators with respect to existing systems.
COTSon architecture relies on the assumption that absolute accuracy is not always strictly
necessary and in many cases it is not even desired, due to its high engineering cost. In many
situations, substituting absolute with relative accuracy between different timing simulations
is enough for users to discover trends for the proposed techniques. In order to implement
timing simulation in COTSon, HP Labs and AMD have jointly augmented the SimNow simu-
lator with a double communication layer which allows any device included in the target ar-
chitecture to export functional events and receive timing information from them. All events
are directed by COTSon to their timing model, which is selected by the user. Each timing
model may describe which events it is interested in via a dynamic subscription mechanism.
There are two main types of device communication: synchronous and asynchronous.

Figure 2.10 shows an overview of the COTSon architecture.
Considering the aforementioned separation between functional and timing simulation,

COTSon architecture is functional-directed (also called trace-driven) meaning that it lets the
functional simulation produce an open-loop trace of the executed instructions that can later
be replayed by a timing simulator, in case a higher accuracy is desired. The functional sim-
ulation inserts extra code in the instruction cache that dynamically generates events for the
timing modules. The cycle-accurate simulation of these events, namely instructions and
memory accesses, involves fetching the instruction, decoding it, renaming it, and so on.

One of the main features of the COTSon simulation framework is statistical sampling,
through which timing simulation phases are triggered. Sampling consists of determining
what are the interesting or representative phases of the simulation and just simulating those.
The results from these samples are then combined to produce global simulation results.
Sampling is central to asynchronous devices. The sampler is selected by the user per ex-
periment and is responsible for deciding the representative phases of execution. It does so
by selecting the type of the current sample and its length, i.e., COTSon asks the sampler what
to do next and for how long. The sampler may reply with a command to enter one of four
distinct phases: functional, simple warming, detailed warming and simulation. The two

2.2. STATE OF THE ART IN PARALLEL SOFTWARE SIMULATORS FOR HIGH-PERFORMANCE

COMPUTING 21

Figure 2.10: The COTSon simulation framework architecture

warming phases are necessary to warm up the timing phases, cleaning the caches, branch
target buffers, reordering buffers, renaming tables.

2.2.3 The Graphite simulator

The Graphite simulator [38] is a parallel simulation framework developed at the Massachusetts
Institute of Technology. It provides both functional and performance modeling for cores,
on-chip networks, and memory subsystems including cache hierarchies with full cache co-
herence. The design of Graphite is modular, allowing the different models to be replaced
to simulate different architectures or tradeoff performance for accuracy. Graphite runs on
commodity Linux machines and can execute unmodified Pthread applications. Figure 2.11
plots the high-level organization of the Graphite simulation infrastructure, together with the
basic target thread - host thread mapping. Every target core is mapped onto a host thread
of execution. Multiple threads then run within a single host process and then share a ad-
dress space. The different host processes communicate at low-level through TCP/IP Socket
technology.

Among the different features of Graphite, we now recall and discuss the following: direct
execution, multi-machine distribution, analytical modeling and lax synchronization.

• direct native execution is implemented on the host machine to increase the perfor-
mance during functional modeling of the computing cores. Through dynamic bi-
nary translation then, Graphite adds new functionality (e.g., new instructions or a di-
rect core-to-core messaging interface) and intercepts operations that require action
from the simulator (e.g., memory operations that feed into the cache model). There
is no need to recompile target applications or binary codes for different configura-
tions of the simulation system. Application threads are executed under a dynamic

22 CHAPTER 2. STATE OF THE ART

Figure 2.11: Graphite high-level organization

binary translator which rewrites instructions to generate events at key points. These
events cause traps into Graphite´s simulation backend which contains the compute
core, memory, and network modeling modules. Points of interest intercepted by the
dynamic binary translator include memory references, system calls, synchronization
routines and user-level messages.

• multi-machine distribution is allowed to accelerate simulation and enable the study
of large-scale multicore chips. This ability is completely transparent to the applica-
tion and programmer. Threads in the application are automatically mapped and dis-
tributed to cores of the target architecture spread across multiple host machines. The
simulator maintains the illusion that all of the threads are running in a single process
with a single shared address space.

• analytical timing models take in input specific instructions and events from the core,
network and memory subsystem and update individual local clocks in each core.

• target cores synchronization is handled through message timestamps. However, to re-
duce the time wasted on synchronization, Graphite does not strictly enforce the order-
ing of all events in the system. In certain cases, timestamps are ignored and operation
latencies are based on the ordering of events during native execution rather than the
precise ordering they would have in the simulated system.

• host threads creation and synchronization is handled in different manners. Graphite
implements a threading interface that intercepts thread creation requests from the ap-
plication and seamlessly distributes these threads across multiple hosts. Host cores

2.2. STATE OF THE ART IN PARALLEL SOFTWARE SIMULATORS FOR HIGH-PERFORMANCE

COMPUTING 23

synchronization supports several strategies that represent different timing accuracy
and simulator performance tradeoffs: lax synchronization, lax with barrier synchro-
nization, and lax with point-to-point synchronization. Lax synchronization is the most
permissive in letting clocks differ and offers the best performance and scalability. Lax
with Barrier Synchronization implements quanta-based barrier synchronization (LaxBar-
rier), where all active threads wait on a barrier after a configurable number of cycles.
Lax with Point-to-point Synchronization implements a synchronization scheme called
point-to-point synchronization (LaxP2P). LaxP2P aims at achieving the quanta based
accuracy of LaxBarrier without sacrificing the scalability and performance of lax syn-
chronization. In this scheme, each tile periodically chooses another tile at random and
synchronizes with it.

2.2.4 The BigSim simulator

The BigSim parallel simulator [58][19] is a project developed at the University of Illinois at
Urbana-Champaign, based on the CHARM++ parallel programming system [57]. The au-
thors claim to be able to emulate effectively very large scale machines with oversubscrip-
tion indices of up to 1000 (e.g. simulating a 1M-core target machine on a 1K-core cluster).
This inaccurate emulation mode, however, does not provide any performance estimation
on the target architecture. The basic idea of the BigSim simulation infrastructure involves
letting the emulated execution of the application code proceed as usual, while concurrently
running a parallel algorithm that corrects time-stamps of individual messages. In the pro-
grammer´s view, each host node consists of a number of hardware-supported threads with
common shared memory. A runtime library call allows a host thread to send a short message
to a destination target node. The header of each message encodes a handle function to be in-
voked at the destination. A designated number of threads continuously monitor the incom-
ing buffer for arriving messages, extract them and invoke the designated handler function.
The simulation philosophy is called Parallel Discrete Event Simulation (PDES), and provides
two different operating modes, online (direct execution) mode and postmortem mode event
simulation. Online mode simulation runs the parallel simulation along with the actual exe-
cution of the applications. The advantage of this online direct execution approach is that it
makes possible to simulate programs that perform runtime analysis.

Figure 2.12 plots the architecture of the BigSim simulator.
The physical target processors are mapped to logical processors (LPs), each of which has

a local virtual clock that keeps track of its progress. In the simulation, user messages together
with their subsequent computations play the role of events. The different LPs are synchro-
nized through an optimistic synchronization approach, which mainly consists of:

• Checkpointing overhead - time spent in storing program state before an event is exe-
cuted which might change that state.

• Rollback overhead - time spent in undoing events and sending cancellation messages.

• Forward execution overhead - time spent in re-executing events that were previously
rolled back.

Regarding timing simulation of the computational core, three approaches are imple-
mented, with different accuracy levels and complexity. First, user supplied expressions for

24 CHAPTER 2. STATE OF THE ART

Figure 2.12: The BigSim simulator architecture

every block of code estimating the time that it takes to run on the target machine can be
provided. Second, wall clock measurements of the time taken on the host machine can be
used via a suitable multiplier (scale factor) to obtain the predicted running time on the tar-
get machine. Third, with the highest accuracy, hardware performance counters on the host
machine can be used to count floating point, integer and branch instructions (for example),
and then to use a simple heuristic to give the predicted total target machine computation
time. Cache performance and memory footprint effects can be approximated by percentage
of memory accesses and cache hit/miss ratio.

Regarding network performance prediction, static latency estimation is performed as
a default solution in the simulator. This estimation merely depends on architecture- and
topology-dependent factors, and does not take into account any kind of network contention.
A contention-aware model is also usable, and described in [19], within the BigNetSim net-
work simulation environment.

2.2.5 Lessons learned from the state of the art

The analysis of the state-of-the-art solution carried on so far has led us to identify the main
features that a modern parallel software simulator aimed at simulation of large scale com-
puting machines should provide. These features also define the most important choices that
the simulator developer has to make in designing his/her simulator.

• direct execution - the simulator could provide direct execution of target binary code
on the host machine. It is usually implemented through assembly-level translation of
single instructions from the target ISA to the host one. It usually improves performance
but also reduces simulator generality and portability over different host platforms.

2.2. STATE OF THE ART IN PARALLEL SOFTWARE SIMULATORS FOR HIGH-PERFORMANCE

COMPUTING 25

• separation between functional and timing models - different accuracy levels are usu-
ally implemented and included in different sections of the simulator, namely the func-
tional and timing parts. This is considered a best-practice since cycle-accuracy for
such large scale machines is simply not feasible everywhere and everytime during the
simulation time. Consider also dynamic accuracy switching policies for further per-
formance scaling.

• host threads/cores synchronization - this is an issue that every simulator designer has
to face. Parallel simulators run on parallel machines with different architectures and
memory organizations such as MPPs, CoWs, SMPs, therefore this problem has to be
solved according to the selected platform. Does affect the portability if not handled
appropriately.

• target threads/cores mapping onto host threads/cores - this is another must-face issue.
Affects the choice on host cores synchronization and performance in general. Even
trivial solution (1 target thread to 1 host thread) can be satisfactory.

• customization - this is probably the most controversial feature. A simulator usually
aims at being as general and widely applicable as possible, but some architectures
specifically require simulator tuning, especially in a field where performance matters
this much, as high-performance machines simulation.

Chapter 3

An FPGA-based framework for
technology-aware system-level
emulation

As described in Section 1, the increasing complexity in embedded system design poses the
need for comprehensive tools that could facilitate accurate and fast explorations of such
huge design spaces, by providing rapid functional performance exploration and design char-
acterizations by a physical/technological viewpoint. The high flexibility of modern reconfig-
urable devices is often considered a viable way to speed-up emulation of such systems, while
analytic modeling has been demonstrated to help in physical system characterization, by
targeting classic features such as power consumption, area obstruction, operating frequency
estimation for the advanced design steps. The basic approach of this research activity is to
concurrently explore the adoption of such techniques to achieve rapid system-level emula-
tion and provide, at the same time, sufficiently accurate modeling of the main physical fea-
tures of the design of interest. If successful, such an approach would considerably shorten
the whole design flow traversal time, by condensating in a single multi-objective explo-
ration phase a number of previously separate design phases, such as functional performance
estimation and physical characterization. Although not completely accurate, technology-
aware system-level simulation could help the designers in reducing the number of design
refinement iterations and the occurrence of potential late costly design modifications. This
chapter will therefore describe the research activity performed in the field of FPGA-based
technology-aware system-level emulation of embedded multicore systems. In particular, we
will discuss the conception and the development of a semi-automatic framework for the
system-level FPGA prototyping of multi-core platforms, able to provide detailed functional
information on the platform under development and physical metrics on power consump-
tion, maximum operating frequency and area occupation of a prospective ASIC implemen-
tation of the system.

As already hinted in Section 2, the analysis of the most relevant solutions at the state
of the art suggested a number of critical features that tend to appear in modern hardware-
based simulation systems. The main ideas that led us in developing our emulation frame-
work are listed and discussed as follows:

27

28
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

• extensibility and library-based approach - the framework should base upon re-usable
IP modules with standard interfaces, in order to be able to emulate as many differ-
ent systems as possible. By using standard interface modules the framework would
also gain in extensibility. This features requires to develop an instantiation engine that
relies on libraries of modules, described at RTL, targeting FPGA devices. A standard
interface for communication among the different modules should be defined as well.

• analytic RTL-trace based models - the framework should be able to provide informa-
tion related to the eventual physical implementation of the system under design. In
order to do so, different physical models have to be developed for the different se-
lectable ASIC processes which the actual realization will rely on. These models should
at least target system-level metrics such as power and area consumption or operating
frequency. The models aiming at evaluating dynamic metrics, such as dynamic power
consumption, should be able to take as input traces extracted from the FPGA execu-
tion of an RTL system description.

• system-level description input - The number of necessary interactions between the
framework and the designer should be minimized. Further tuning of the design could
always be applied by modifying the prototyped system at any phase of the design. The
designer should be able to obtain a first set of emulated metrics already at the earliest
design steps, hence inputing a properly instrumented system-level platform descrip-
tion. By system-level, we mean that the building blocks of the platform configurations
should have the granularity of the processing elements, with basic interconnection ar-
chitecture and topology description. A basic organization of the address mapping of
the different memorization cores and I/O blocks should be provided as well.

• counter-based performance extraction - Functional performance extraction should be
provided. Classic functional metrics are application execution times, number of mem-
ory accesses, average cache efficiency and related hit ratio, congestion of the different
interconnection modules, interrupt event tracing. This is the typical kind of informa-
tion that allows the designer to choose the best system-level configuration and ar-
chitectural parameters. Such information might be extracted with the development
of hardware performance counters and monitors that can be instantiated and pin-
pointed in a semi-automatic way, by providing explicit declaration at system-level de-
scription.

• minimize synthesis-flow overhead - The emulation speed is crucial, in order to over-
come the limits posed by classic software-based simulation. FPGA-based hardware
emulation has proven to be effective to this aim, but still it is affected by the time nec-
essary to traverse the entire synthesis and implementation flow. One could argue that
using such approaches inside a design exploration loop or with generic iterative re-
finement processes, this overhead could be unaffordable. In order to solve this issue,
approaches aimed at minimizing this overhead in design exploration contexts have to
be developed.

• capability of running complete sw stacks - The emulated platform should be capable
of running complete software application as well as selected computation kernels. In
order to do so, standard compilation toolchains should me made available to produce

3.1. FRAMEWORK OVERVIEW 29

binary code for the selected processing elements. In addition, a set of communication
libraries must be developed to enable compliance with the de-facto standard mod-
els of computation. Such libraries must build an Hardware Abstraction Layer (HAL)
to abstract the underlying hardware architectural details and implement the effective
communication according to the application model of computation.

3.1 Framework Overview

Figure 3.1: Overview of the framework

Figure 3.1 gives a block view of the framework, when employed in a possible design space
exploration loop. It should be noted that this is not the primary purpose of this research
activity, neither it is the aim of this document. Instead, the application for design space ex-
ploration purposes is only one of the possible use scenarios for the proposed framework.
The inputs of the whole exploration would be the application code and the constraints to
be satisfied by the final system, either physical (area, power, frequency) or functional (la-
tency, bandwidth, execution time). The designer specifies, within a topology text file, a list
of all the cores to be instantiated in the system, along with the specific interconnection de-
scription, architectural parameters and the different memory address spaces organization.
To date, all the applications tested in the benchmarks have been parallelized according to
a shared-memory model of computation, employing an in-house implemented library for
multi-tasking on multi-processor systems. The parallelization in tasks is fully parametric,
enabling the creation of as much tasks as it is needed. All the synchronization is handled

30
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

through the explicit use of specific hardware semaphores for regulation of the accesses to
the shared memory. A detailed description of such modules will be provided in the follow-
ing.

A high-level topology compiler is in charge of parsing the topology description file and
generating the RTL files that describe the hardware top view of the complete platform. This
stage is also intended to generate the hw/sw platform description files to be passed to the Xil-
inx EDK©platform instantiation toolset. This phase of the flow will be specifically addressed
and further explained in Section 3.4. The composition and configuration of the selected plat-
form builds upon a repository of soft IP cores. The content of this library will be described in
detail in Section 3.3. The use of these repositories does not prevent the inclusion of further
modules into the system, since custom cores can always be added as RTL or pre-synthesized
netlists with little effort. This is a crucial feature of the RTL libraries, since extensibility is key
to the applicability range of the framework. That is also the reason why all the modules in-
cluded in the library are fully compliant to a common interfacing standard, which is a subset
of the well-known OCP-IP communication standard [43], as we will discuss in the following
sections.

Regarding the software part of the system, the Xilinx development environment includes
the standard compilation and debugging tool-chains for the soft processors that can be in-
stantiated, while the drivers of the peripherals are automatically generated already at the
platform compilation stage, according to the parameters provided by the user. The RTL files
of the components can potentially be passed, with minor modifications, to an ASIC synthe-
sis flow, in order to obtain power and area figures of the designed platform and to refine the
area and power models of the building blocks instantiated within the system. So far, this
capability is provided only for the interconnection modules. The framework operating flow
proceeds with the FPGA synthesis and implementation through the adoption of the Xilinx
proprietary tools (within the Xilinx ISE©environment). The execution of the targeted appli-
cation on the configured FPGA can be easily profiled with deep accuracy. Moreover, the em-
ulation of the complete platform enables the rapid collection of cycle-accurate information
on the switching activity, that can be used, in cooperation with the available power models,
to obtain detailed figures related to a prospective ASIC implementation of the system. An
example of such kind of models is described in Sect. 3.6.

3.2 System-level platform description input file

The designer is able to input a platform description by passing in input to the framework a
text file that describes the main system-level building blocks of the design under emulation.
The granularity of the input file is at the single processing, interconnection, I/O and memo-
rization module level. Regarding, the interconnection subsystem architecture, the designer
can describe, in case a source routing NoC-based is selected (which is the case of the Xpipes
interconnection library), the number of switches, the n-arity of each switch, the number of
buffering input/output stages, the routing tables and normally has to tag the different links
connecting the switches. Regarding the memorization layer, the type of memory has to be
selected. Currently the system is able to instantiate on-FPGA Xilinx proprietary hard BRAM
modules, configuring them to emulate single- and double-port memory cores. The address
space and the related processor into which the memory module is connected have to be
specified. If the memory is shared among the different processing element, the module has

3.2. SYSTEM-LEVEL PLATFORM DESCRIPTION INPUT FILE 31

to be declared to be such. Regarding the different I/O and synchronization controller and
modules, the address spaces have to be declared as well.

The following code contains snippets taken from an actual input system description file:

// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
// define the topology here
// name, mesh/torus specifier (mesh/torus/other)
// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
topology(topology_2x2, other);

// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
// define the cores here
// core name and number, switch number, NI clock divider, NI buffers,
// initiator/target type, type of core (if a specific one is requested),
// memory mapping (only if target), fixed specifier
// (only if target and of shared type)
// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
core(core_0, switch_0, 1, 6, userdefined, initiator);
core(core_1, switch_1, 1, 6, userdefined, initiator);
core(core_2, switch_2, 1, 6, userdefined, initiator);
core(core_3, switch_3, 1, 6, userdefined, initiator);

core(pm_4, switch_0, 1, 6, double, target:0x10,high:0x1000ffff);
core(pm_5, switch_1, 1, 6, double, target:0x12,high:0x1200ffff);
core(pm_6, switch_2, 1, 6, ocpmemory, target:0x14,high:0x1400ffff);
core(pm_7, switch_3, 1, 6, ocpmemory, target:0x16,high:0x1600ffff);

core(ts_8, switch_3, 1, 6, Testandset,target:0xff,high:0xffffffff);
core(ul_9, switch_0, 1, 6, Uartlite,target:0x46,high:0x4600ffff);
core(shm_10, switch_1, 1, 6, shared, target:0x06, high:0x0600ffff);

// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
// define the switches here
// switch number, switch inputs, switch outputs, number of buffers,
// core ID to which the switch performance counter is attached,
// port ID to which the switch performance counter is attached.
// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
switch(switch_0, 5, 5, 6, 0, 0);
switch(switch_1, 5, 5, 6, 1, 0);
switch(switch_2, 5, 5, 6, 2, 0);
switch(switch_3, 5, 5, 6, 3, 0);

// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
// define the links here
// link number, source, destination
// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

32
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

link(link0, switch_0, switch_1);
link(link1, switch_1, switch_0);

.

.

.

link(link6, switch_1, switch_3);
link(link7, switch_3, switch_1);

// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
// define the routes here
// source core, destination core, the order in which switches need to be
// traversed from the source core to the destination core
// ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
route(core_0, pm_4, switches:0);
route(core_0, ts_8, switches:0,1,3);
route(core_0, ul_9, switches:0);
route(core_0, shm_10, switches:0,1);

.

.

.

route(core_3, pm_7, switches:3);
route(core_3, ts_8, switches:3);
route(core_3, ul_9, switches:3,2,0);
route(core_3, shm_10, switches:3,1);

route(pm_4, core_0, switches:0);
route(pm_4, pm_5, switches:0,1);
route(pm_4, pm_6, switches:0,2);
route(pm_4, pm_7, switches:0,1,3);

.

.

.

route(pm_7, core_3, switches:3);
route(pm_7, pm_4, switches:3,2,0);
route(pm_7, pm_5, switches:3,1);
route(pm_7, pm_6, switches:3,2);

.

.

.

3.3. THE SOFT IP CORES RTL REPOSITORY 33

route(ts_8, core_0, switches:3,2,0);
route(ts_8, core_1, switches:3,1);
route(ts_8, core_2, switches:3,2);
route(ts_8, core_3, switches:3);

The code snippet contains the description of a sample NoC-based topology namedtopology_2x2,
which contains 4 processing elements, 2 double-port local memories, 2 single-port local
memories, a test&set synchronization module, an UART controller for interfacing with a se-
rial port and a shared memory, all declared with the same core() primitive and different
parameters. The parameters allow for specifying different clock domains (unused in this
case), the number of buffering stages in the network interface (6 in this case), the core iden-
tifier and the basic memory mapping of each device. Local memories with multiple ports
have different mappings for each port with respect to the local processor and the other pro-
cessors, if direct messaging is enabled.

The NoC switches are defined using the switch() primitive, whose parameters allow the
designer to specify a name for the switch, the number of inputs and outputs of that switch,
which define the arity of the switch itself, the number of buffering stages (output buffering
is used in this interconnection library module) and two other IDs. These two other IDs re-
spectively identify the core and the port which the switch performance counters are actually
attached to. The actual performance counter logic will be described in detail in Section 3.5.
The link() primitive enable link identification. Its parameters simply point to the inter-
connected switch modules. Links have to be declared as if they were half-duplex, meaning
that between two switches connected through a full-duplex link there must be two separate
links. In addition to that, if source routing is used, the route() primitive enables specify-
ing the routing path between every core pair inside the network, and its parameters specify
the list of switch traversed by the packets from source to destination. Direct communication
between two computing cores is not allowed. If direct messaging is intended to happen at
higher level, the underlying mechanism implies a communication from the source process-
ing element to the remote memory that is attached to the destination processing element.

3.3 The soft IP cores RTL repository

This section will describe the components currently available in the soft IP cores repository.
All the modules included in the libraries are highly parametric. This is a key feature with
respect to the prospective adoption of the framework for design exploration purposes. Dif-
ferent computing and memorization elements have being recently added to the libraries that
will not be described within this document. The building blocks have been made compliant,
where not already done, to a subset of the well known OCP open communication standard
[43]. We will first provide a brief introduction to the main features of the standard.

3.3.1 Elements of the Open Core communication Protocol (OCP)

The Open Core Protocol (OCP) defines a bus-independent between IP cores that reduces de-
sign time, design risk, and manufacturing costs for SOC designs. An IP core can be a simple
peripheral core, a high-performance microprocessor, or an on-chip communication subsys-
tem such as a wrapped on-chip bus. The OCP defines a single-clock synchronous interface

34
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

point-to-point interface between two communicating entities such as IP cores and bus in-
terface modules (bus wrappers). One entity acts as the master of the OCP instance, and the
other as the slave. Only the master can present commands and is the controlling entity. The
slave responds to commands presented to it, either by accepting data from the master, or
presenting data to the master. For two entities to communicate in a peer-to-peer fashion,
there need to be two instances of the OCP connecting them - one where the first entity is a
master, and one where the first entity is a slave. The characteristics of the IP core determine
whether the core needs master, slave, or both sides of the OCP.

A transfer across this protocol occurs as follows. A system initiator (as the OCP master)
presents command, control, and possibly data to its connected slave (a wrapper interface
module that abstracts the underlying hardware details). The interface module plays the re-
quest across the on-chip physical interconnection system, which can be a bus, a crossbar, a
NoC or whatever. The OCP does not specify the underlying hardware functionality. Instead,
the interface designer converts the OCP request into a transfer for the underlying hardware.
The receiving wrapper interface module (as the OCP master) converts the underlying hard-
ware transfer operation into a legal OCP command. The system target (OCP slave) receives
the command and takes the requested action.

The OCP standard defines a huge number of signals, which are grouped in different cate-
gories, according to the functionality that the different interconnected modules provide. We
chose to implement only compliance with a small subset of the OCP signals, whose list is
reported in Table 3.1 together with a brief signal functionality description.

Name Width Driver Function
Clk 1 varies OCP clock

MAddr configurable master Transfer address
MCmd 3 master Transfer command
MData configurable master Write data

MDataValid 1 master Write data valid
MRespAccept 1 master Master accepts response
MByteEnable 4 master One-hot byte enable
SCmdAccept 1 slave Slave accepts transfer

SData configurable slave Read data
SDataAccept 1 slave Slave accepts write data

SResp 2 slave Transfer response

Table 3.1: Implemented OCP signals

Where needed, OCP-compliant wrappers modules have been developed to adapt the
original module interface to the one specified by the protocol.

3.3.2 Processing elements, memories and I/O

The computing element library has been mainly focused around the FPGA-oriented Xilinx
proprietary soft cores, that is to say the Microblaze©[55] and PowerPC©[56] cores. Recently,
a set of other processing elements have been added to the repository, namely a set of multi-
media oriented Application Specific Integrated Processors (ASIP) provided by Silicon Hive,
Inc. and a processor specifically designed for the packet processing domain provided by

3.3. THE SOFT IP CORES RTL REPOSITORY 35

Lantiq Deutschland GmbH. Nevertheless, their restricted access does not allow to publish
here the architectural details. For this reason, we cannot provide here all the architectural
details on the processing element library.

As for what regards the memorization and I/O elements, standard Xilinx soft cores are
currently being used. The memory modules can be automatically configured as single- or
double-port BRAM-based modules. The separation between such cases is operated accord-
ing to the system-level description provided by the designer. In case direct processor-to-
processor message-passing is enabled, double-port memories will be selected, together with
the necessary logic to handle DMAs at the network interface level.

Regarding the I/O, standard controller modules are available, such as UART, Ethernet and
RocketIO controllers.

3.3.3 Interconnection elements

The Xpipes NoC component library ([14], [6]) is a highly flexible library of component blocks
that has been chosen as baseline reference for the development activity. The library is suit-
able for the creation of arbitrary topologies, thanks to the capability of its modules of being
almost completely configured at design time. Xpipes, natively, includes three main compo-
nents: switches, network interfaces (NIs) and links. Figure 3.2 plots the basic architecture of
the Xpipes switch. It is a very simple switch configuration, where output buffer is employed
through multi-stage variable-latency FIFOs. A round-robin priority arbiter with selectable
inputs is employed to allocate the all-to-all crossbar output ports. The minimum traversal
latency per switch is 2 clock ticks per flit.

Figure 3.2: Xpipes switch architecture

The backbone of the NoC is composed of switches, whose main function is to route pack-
ets from sources to destinations. Arbitrary switch connectivity is possible, allowing for im-
plementation of any topology. Switches provide buffering resources to lower congestion and
improve performance. In Xpipes, both output and input buffering can be chosen, i.e. FI-
FOs may be present at each input and output port. Switches also handle flow control issues,
and resolve conflicts among packets when they overlap in requesting access to the same
physical links. A NI is needed to connect each IP core to the NoC. NIs convert transaction

36
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

requests/responses into packets and vice versa. Packets are then split into a sequence of flits
before transmission, to decrease the physical wire parallelism requirements. In Xpipes, two
separate NIs are defined, an initiator and a target one, respectively associated to OCP system
masters and OCP system slaves. A master/slave device will require an NI of each type to be
attached to it. The interface among IP cores and NIs is point-to-point as defined by the OCP
subset described in Table 3.1, guaranteeing maximum reusability and compliance with the
interface standards.

NI Look-Up Tables (LUTs) are used to specify the path that packets will follow in the net-
work to reach their destination (source routing). Two different clock signals can potentially
be attached to the NIs: one to drive the NI front-end (OCP interface), the other to drive the
NI back-end (Xpipes interface). The Xpipes clock frequency must be an integer multiple of
the OCP one. This arrangement allows the NoC to run at a fast clock even though some or
all of the attached IP cores are slower, which is crucial to keep transaction latency low. Since
each IP core can run at a different frequency of the Xpipes frequency, mixed-clock platforms
are possible. Inter-block links are a critical component of NoCs, given the technology trends
for global wires. The problem of signal propagation delay is, or will soon become, critical.
For this reason, xpipes supports link pipelining, i.e. the interleaving of logical buffers along
links. Proper flow control protocols are implemented in link transmitters and receivers (NIs
and switches) to make the link latency transparent to the surrounding logic. Therefore, the
overall platform can run at a fast clock frequency, without the longest wires being a global
speed limiter. Only the links which are too long for single-cycle propagation will need to pay
a repeater latency penalty.

Within the development of the framework, the original Xpipes library has been extended
explicitly for adaptation and integration in current project, and to provide advanced com-
munication capabilities required for fast prototyping. Here follows a list of the main features
that have been added to the library:

• Capability of initializing and handling DMAs (meaning direct memory to memory trans-
fers). The need for this feature has appeared in order to support, at low level, all those
models of computations that rely on direct processor-to-processor message passing.
In order to implement this added capability, additional logic has been inserted in the
processor and memory network interfaces. The way this logic works is basically that
the sending processors programs, through memory-mapped registers, a DMA transfer
from its memory to a destination memory, by specifying the destination network ad-
dress and the burst length. The transaction is then translated into an OCP burst trans-
fer, that takes place from the source memory directly to the destination one. Upon
receive, the destination network interface is able to store the incoming data on a tem-
porary memory buffer or, if the receiving processor has already reached the receiving
primitive call within the application, directly into the destination memory area. Fur-
ther detail on the software implementation of the message-passing strategy will be
provided in Section 3.3.5.

• Runtime reconfiguration of the routing strategy has been implemented in order to en-
able the interconnection subsystem to reorganize its source routed paths to account
for prospective modifications within the interconnection architecture. this feature is
particularly useful in case faulty elements are detected within the network. In such
cases, reconfiguring the routing strategy can help in bypassing, at traffic flow control

3.3. THE SOFT IP CORES RTL REPOSITORY 37

level, these nodes. However, the use of such approaches is not object of this research
activity.

• Insertion of performance counters inside NoC modules has been enabled through ad-
dition of dedicated hardware monitors directly attached to the output buffers of the
switch. The value of the counters are then written into dedicated memory-mapped
registers through which they are accessible to the processing element.

• Bypassing capabilities inside the switches have been implemented in order to repro-
duce combinatorial links between two nodes of the network. This capability enables
hardware modification of the actual network topology, and is useful for reducing the
overhead of the FPGA synthesis and implementation process. An entire section, Sect.
3.8 will be dedicated to describe this approaches and the related hardware/software
implementation.

All the mentioned additional features required some modifications of the processor-to-
NI interface circuitry. Several dedicated adapters have been developed in this aim, allowing
at the same time the seamless integration of the Xpipes library (natively compliant with OCP)
with the rest of the environment. Some address decoding logic has been added inside the
core in order to detect those load/store operations that are not intended to generate traffic
over the network, such as accesses to memory mapped registers, to performance counters,
to reconfiguration circuitry. Here is a list of the modifications required to implement the
mentioned features:

• a master-and-slave (initiator-and-target) network interface: this module, added to the
original Xpipes library is used when message passing and memory-to-memory trans-
fers have to be supported, to make network node capable of performing the operations
related to both communication ends.

• hardware counters have been instantiated at the core interface and inside the switches,
to detect the activity metrics needed to use the models described in Section 3.6. This
counters are needed to evaluate in detail the performances achievable with every can-
didate architecture.

• routing LUTs programmability: the LUTs that contain the directives related with the
routing strategy for every source-destination pair in the system have been made pro-
grammable by local connected core or remotely, through the use of a special packet.

3.3.4 Synchronization modules

Every application written to exploit thread-level parallelism on top of a multi-core plat-
form, not only in the embedded field, requires synchronization among the different running
threads. In case the memory organization includes some kind of shared memory layer, this
can be implemented through well-established lock-unlock mechanisms. This mechanisms
can be implemented through full software solutions that rely on specific atomic instructions
and ISAs, or through dedicated hardware modules that handle the atomicity control. In or-
der to implement atomic memory access to specific locations, since not all the processors
included in the processing element library supported native LL/SC instructions within their

38
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

ISAs, we decided to develop hardware semaphore modules for locking/unlocking specific
memory locations. These modules implement in hardware the atomic Test&Set mechanism.

The basic idea of such mechanism is, before actually accessing the shared memory loca-
tion, to acquire a hardware lock for that location. The hardware lock is asked for acquisition
via a simple load to a specific memory address (the address of the semaphores bank). Upon
request, the bank of semaphores has specific logic to check if a request for that location has
already arrived, and if not, replies with an ack (encoded in the data field) and atomically lock
that location. If that location is already locked, on the opposite, the reply data will contain
a particular encoding for a nack. The hardware implementation for such a mechanism re-
quires a bank of registers (the lock registers) to store the requested location addresses and
the semaphore bits (one for each location), plus all the logic to compare in a combinatorial
fashion the desired address with all the locked addresses. The hardware Test&Set has been
implemented with a standard OCP interface and can be added as a normal I/O module, by
specifying its memory-mapping.

On the software side, two low-level functions have been implemented to lock and unlock
a specific location. The functions have been implemented as assembly microcode to opti-
mize the execution time. Their code is structured as follows, considering a network address
for the Test&Set modules of 0xF F in the address MSB:

void lock(int * lock_index){

__asm__ (
"addi r1, r1, ­12 \n\t "
" sw r10, r0, r1 \n\t "
" swi r9, r1, 4 \n\t "
" swi r11, r1, 8 \n\t "
" or r0, r0, r0 \n\t "
" ori r9, %0, 0xff000000 \n\t "
" LOCK: \n\t "
" lw r10, r0, r9 \n\t "
" or r0, r0, r0 \n\t "
" or r0, r0, r0 \n\t "
" bnei r10,LOCK \n\t "
" or r0, r0, r0 \n\t "
" or r0, r0, r0 \n\t "

" lw r10, r0, r1 \n\t "
" lwi r9, r1, 4 \n\t "
" lwi r11, r1, 8 \n\t "
" addi r1, r1, 12 \n\t "

:
:"r" (lock_index) //input
);
}

void unlock(int * lock_index){

3.3. THE SOFT IP CORES RTL REPOSITORY 39

__asm__(" UNLOCK: "
" addi r1, r1, ­8 \n\t "
" sw r10, r0, r1 \n\t "
" swi r9, r1, 4 \n\t "
" or r0, r0, r0 \n\t "
" ori r9, %0, 0xff000000 \n\t "
" sw r0, r0, r9 \n\t "
" or r0, r0, r0 \n\t "
" or r0, r0, r0 \n\t "
" lw r10, r0, r1 \n\t "

" lwi r9, r1, 4 \n\t "
" addi r1, r1, 8 \n\t "

:
: "r" (lock_index) //input
);
}

3.3.5 Software libraries

As part of the library-based approach, we developed several software routines that constitute
the framework Hardware Abstraction Layer (HAL). These routines are required to provide to
the application/firmware level the necessary APIs to implement the desired model of parallel
computation, and can be included through standard header files. Here follows a list of the
main software functions, along with their functionality:

• Shared memory lock/unlock primitives - these functions have been already described
in Section 3.3.4. They provide lock/unlock primitives for shared-memory multi-core
systems and rely on the hardware Test&Set synchronization module.

• Thread spawn and wait primitives - these functions emulate the creation of threads
of execution on remote processors. The thread creation is emulated through pointer
passing. Basically, the spawning thread calls a create() function, that sets a pointer
in a shared memory location and wakes up a remote processor that was polling on that
address. This mechanism, however, has the strong implication that all the processors
load the same instruction and initialized data regions at startup, in a SPMD fashion. In
such a way that thread instructions are already located in each processor local instruc-
tion memory. Otherwise, remote thread creation would have implied a thread load
from the shared memory or, more likely, a thread load from the off-chip memory. The
spawned thread, as already hinted, runs on a processor that was stuck waiting for the
function pointer on that specific location, by calling a wait_task() function. Upon
exit, the wait_task() function returns the pointer to the task to be executed.

• Shared memory barrier synchronization primitives - these functions implement the
barrier synchronization for shared memory systems. They rely on the specificbar_type
data type, whose struct follows:

typedef struct bar_type_ {

40
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

volatile int num_p;
volatile int counter;
volatile int lock_b;
volatile int flag;
} bar_type ;

The barrier is implemented by atomically (locking the lock_b variable) incrementing a
shared counter (counter) and by busy waiting until it reaches the predefined number
of accesses (num_p), meaning that all the desired threads have entered the barrier. The
barrier has to be first initialized by calling the barinit() function, that specifies the
locking address and the number of expected threads.

• Message-passing send and receive primitives - these functions implement the classic
send and receive primitives for message passing models of computations. The library
contains an MPI-like implementation of the primitives [49]. The SHMPI_send() func-
tion implements a non-blocking send and takes as input the address of the memory
region to be sent through the network and the related size, plus the identifier of the
receiving process and an unique message identifier, which resembles the classic MPI
tag concept. What the function does is basically programming the DMA logic inside
the source processor’s network interface logic to perform the OCP burst transfer to
the desired destination, and then return in a non blocking fashion. Accordingly, the
SHMPI_recv() function implements a blocking receive primitive. Its parameters are
complementary to those of the SHMPI_send() function, meaning that the source pro-
cessor must be identified explicitly, and the tag field must match the one of the sent
message. Inside the SHMPI_recv() function, one of two cases might occur. First op-
tion, the message could have been already received at the calling time, therefore it
must be copied from the local memory buffer (where the DMA had previously writ-
ten it) to the desired memory address. Second option, the message might be still in
flight from the source processor to the destination one, therefore the receiving DMA
could be programmed to perform, upon receive, a direct copy to the desired mem-
ory location, saving a memcopy from the message buffer to the desired area. In the
latter case, the function behaves as a blocking receive. Alternatively, a non blocking
SHMPI_nb_recv() function might be used. It basically performs the first check of
the two previously mentioned. If the message has already been received it performs
a memory copy from the buffer to the desired address, otherwise it returns with a neg-
ative code. The non-blocking function is useful to the aim of overlapping communi-
cation and computation but, however, must be coupled with a polling mechanism to
avoid erroneous usage of not yet arrived data.

• printing functions - these functions have been designed for debug purposes and print
characters and numbers through the UART controller to the serial I/O port. Atomic use
of the controller is guaranteed both at the single charachter level and at entire string
level. Their names are shmpi_print() and shmpi_putnum().

• functions for accessing the performance counters - these functions access the memory-
mapped performance counters and print them on the UART controller for debugging
and elaboration purposes. There are separate functions for accessing the performance
counters related to processing/memorization elements, called print_core_pc() and

3.4. THE SHMPI PLATFORM BUILDER 41

for the switching elements, called print_switch_pc(). More details on the perfor-
mance counters will be provided in Section 3.5.

3.4 The SHMPI platform builder

As illustrated in Figure 3.1, the platform instantiation stage is handled by the SHMPI topol-
ogy compiler, a tool that automatically creates the hardware/software platform description
files basing on the specification input file provided by the user, instantiating the desired set
of building modules (cores, interconnection building blocks, memories) from the library of
configurable soft-cores. The SHMPI topology compiler extends to the composition of the
entire multi-core hw/sw platform and to the integration with the Xilinx development tools
the×pipes compiler, a tool developed for the automatic instantiation of application-specific
interconnection networks [31]. In further detail, the SHMPI topology compiler able to con-
struct the desired platform, instantiating and interconnecting, through a customized ×pipes
NoC layer, an arbitrary number of processors, memories (private or shared), memory con-
trollers, I/O peripherals, buses, bridges, dedicated point-to-point communication channels,
etc.

The topology compiler automatically generates the hardware/software description files
that are necessary for the FPGA implementation of the whole hw/sw platform. Since the
Xilinx proprietary tools are used to handle the FPGA synthesis flow, the generated files must
respect the specific syntax in order to be correctly processed. Among the generated output
files, the following are included:

• a high-level hardware description (.mhs file) of the entire platform to be synthesized.
This file includes the specification and configuration of all the hardware cores, along
with the interconnection of their I/O ports.

• a description (.mss,.h,.c file) of the software part of the platform. These file include the
address definition for all the peripherals, in addition to the actual drivers that are going
to be included from the application to effectively use the peripherals.

• all the necessary RTL files (.v) describing the modules composing the platform, being
these either custom modules or library soft-cores.

From an implementation viewpoint, the platform builder has been developed as a stand-
alone sequential C/C++ code, which runs through different consecutive phases, as described
in the following list:

• a parsing phase, which scans the entire system-level description input file to build a
set of data structures that store the number and identifiers of cores, memories, inter-
connection elements, links and routing tables.

• a switch configuration phase, which calls a different program to configure the switch
according to the designer description and eventually generate their RTL description.
This phase also generates the routing tables initialization phase in order to correctly
implement source routing within the network.

42
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

• a top module generation phase, which builds the RTL description of the top level Ver-
ilog platform description file. This file contains the highest view of all the modules
included in the system to be synthesized for FPGA.

• a phase that generates all the files necessary to the Xilinx proprietary FPGA synthesis
and implementation flow. Other than the .v files, necessary files include some hard-
ware platform description files (.mhs and .mpd), a software platform description file
(.mss), a peripheral list file (.pao), an ISE project file (.xise).

• a simulation script generation phase. This phase generates a ModelSim script file (.do)
and the related testbench file (.v) in case software waveform simulation of the platform
needs to be performed for debugging purposes.

• a phase to generate the memory initialization files (.bmm), that direct the Xilinx toolchain
in correctly mapping the application binaries into the different BRAM modules instan-
tiated in the platform.

Upon successful execution of the SHMPI builder, all the directories and files are in place
for continuing the FPGA implementation flow down to device configuration. These phases
rely on Xilinx proprietary toolchain, therefore require its availability for the designer. If no
manual tuning is needed at this stage, the toolchain can be traversed with a single script
which is available for the designer.

3.5 Performance extraction

The extraction of the performance metrics is handled through the insertion of a dedicated
set of event-counters, directly connected to the monitored logic. The insertion of this mea-
surement subsystem does not overload the whole emulation in terms of occupied hardware
resources within the FPGA fabric, since the event-counters involve very scarce logic utiliza-
tion. Three types of performance counters are allowed, according to the architectural ele-
ment they are connected to. It is possible to insert monitors at the processing core inter-
face, at the switch output channel interface and at the memory port interface, as depicted
in a sample platform in Figure 3.3. The specification of which events are intended to be
monitored can be easily included in the topology file that is passed as input to the whole
framework. The SHMPI topology compiler is able to handle the insertion of the necessary
hardware modules and the automatic binding of the event-counters to the proper signal.

The basic usage of the event-counters does not imply the instantiation of dedicated Block-
RAM buffers for the storage of event traces. However, the addition of such buffers and of the
necessary communication structure (a bus shared amongst the counters) is quite straight-
forward, inside the topology description file.

The overhead introduced while accessing the performance counters depends on three
utilization factors, namely which core is going to access them, when they are accessed, how
they are physically connected to the rest of the system. The allowed alternatives are:

• Regarding which core is intended to access the performance extraction subsystem, two
main options exist. A dedicated processing core can be added to the emulated system,
in order to perform the access to the event-counters without affecting the regular ex-
ecution on the other emulated processors. Alternatively, in order to save hardware

3.6. ANALYTIC MODELING FOR PROSPECTIVE ASIC IMPLEMENTATION 43

Figure 3.3: Performance counters pinpointing graphical view

resources, the same processing cores of the emulated platform can interleave the exe-
cution of their instructions with the accesses to the performance counters.

• Concerning the time of the access to the performance counters, they can be accessed
off-line (at the end of the execution) or at runtime, in case the read values should be
used to implement runtime resources management mechanisms.

• Finally, the event-counters can be connected to the rest of the system via dedicated
point-to-point connections, at the price of additional hardware resources to be uti-
lized, or they can be accessed through the same interconnection layer already present
in the emulated system, at the price of an overhead in the actual traffic pattern gener-
ated by the application.

3.6 Analytic modeling for prospective ASIC imple-
mentation

As already mentioned, within the proposed framework the use of analytic models is cou-
pled to FPGA fast emulation, in order to obtain early power and area figures related to a
prospective ASIC implementation, without the need to perform long-lasting cycle-accurate
simulations. The metrics extracted with the FPGA-based emulation of the system are passed
as input to the analytic models for the estimation of the physical figures of interest. So far,
the modeled physical metrics are static and dynamic power, operating frequency and area
obstruction. Some of them can be predicted resorting only to static architectural param-
eters, other need activity traces from the FPGA-based execution. The considered models
were already present at the state of the art at the beginning of this research activity, and are
described in [36], referring to the power consumption and area occupation of the ×pipes
NoC building blocks. The models parameters and relations had been proposed based on
prior knowledge on the switch architecture and building blocks, while the tuning of the co-

44
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

efficient parameters had been done by defining two separate training and validation sets of
architectures, running ASIC synthesis (0.13 µm process) on them and performing the tuning
process sketched in Figure 3.4.

Figure 3.4: Model development methodology

The main model parameters are:

• switch cardinality (number of ports). To account for rectangular switches, we sepa-
rately consider the amount of input ports (npi) and output ports (npo)

• amount of buffering devoted to flow control handling and performance optimization,
also called buffer depth (bd) (expressed in terms of single-flit buffering elements)

• number of bits of the incoming and outgoing elementary data blocks, also called flit
width (f w).

The accuracy of these models is assessed in [36] to be lower then 10% when complete
topologies are considered, with respect to post layout analysis of real ASIC implementations.
This accuracy value is quite reasonable for system-level estimation purposes.

3.6.1 Area modeling

The formula for the area occupation model is as follows:

3.6. ANALYTIC MODELING FOR PROSPECTIVE ASIC IMPLEMENTATION 45

A(f w,bd ,np) = A1∗npo∗ f w∗bd+A2∗npi∗ f w+A3∗npo∗npi+A4∗ f w∗npo∗npi (3.1)

The coefficients A1, A2, A3, A4 depend on the architectural configurations and are tuned
as mentioned before. The rationale of this formula is that the area of the target switch can
be rendered as the sum of four contributions: output buffers, input buffers, arbitration and
flow control logic, crossbar. Each contribution strongly depends on a known combination
of architectural parameters as follows:

• Output buffers, which are dominated by flip-flop area, can be supposed to depend
linearly on flit width f w and buffer depth bd (Xpipes switches are output-buffered),
which respectively represent the width and depth of the buffer. There are npo of such
buffers.

• Input buffers are similar to the case above, but since they have a constant depth, they
do not depend on bd . Obviously npi is used in place of npo

• Since a distributed arbitration technique is used in the target switch, one arbiter is
instantiated at each output port. Each arbiter has a complexity proportional to the
number of candidate input ports npi , therefore the overall contribution is the prod-
uct of the input and output cardinalities. The arbiter logic is clearly independent of
datapath parameters such as the flit width and the buffer depth.

• The area overhead due to the crossbar must have a linear dependency on flit width,
must be independent of the buffering resources, and must have a linear dependency
on the product of input and output cardinalities.

3.6.2 Power modeling

The formula for the power model is as follows:

P (bd , f w,npo ,npi ,T) = P A +
npo∑
j=1

[PB ∗TO j]+
npo∑
j=1

[PC ∗TOC j]+
npi∑
j=1

[PC ∗TIC j] (3.2)

where P A, PB , PC and PD depend on architectural configurations and are tuned with the
same approach defined earlier, while the traffic variables are:

• TO j : percentage of time during which the output port j is successfully transmitting flits.
This coefficient models traffic in absence of congestion.

• TOC j : percentage of time during which the output port j is trying to transmit, but flits
are rejected. This coefficient models external congestion due to traffic spikes.

• TIC j : percentage of time during which the input port j of the switch is trying to trans-
mit flits through one of the output ports, but arbitration is denied by the switch logic.
This coefficient models the contention for the same output port inside of the switch.

46
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

This document presents only the results obtained by the application of the models to the
modules that build the interconnection network, since the utilized processing and memo-
rization cores are specifically targeted for FPGA-based systems instead of an eventual ASIC
implementation. Nevertheless, the approach is widely extensible in case more general pro-
cessing and memorization elements should be taken into consideration.

The insertion of the analytic models in the emulation framework, in addition to the plain
estimation of power and area costs of a prospective ASIC implementation, enables the eval-
uation of the variation of such metrics versus the variation of the selected target frequency of
the synthesis process. Obviously, since the target ASIC system and the emulated FPGA-based
system operate at different frequencies, emulation consistency issues might arise when in-
terfacing with off-chip devices (e.g. memories, I/O ports). In fact accessing latencies, ex-
pressed in terms of clock ticks, might be considerably different in the two cases. To this aim,
the clock speed of all the off-chip devices that are intended to interface with the final system
must be scaled up/down proportionally to the emulated operating frequency.

3.7 Framework validation

The framework has been employed in two prospective use scenarios, in order to assess its
usefulness for rapid architectural emulation and accurate performance extraction, both at
the functional and the technology levels. For each of them, the performed experiments and
the extracted metrics will be presented and briefly discussed. The adopted hardware FPGA-
based platform features a Xilinx Virtex5 XC5VLX330 device, counting over 2M equivalent
gates. Figure 3.5 portraits the adopted prototyping board. It also features the most com-
mon I/O interfaces (Serial, VGA, Ethernet, FireWire, USB, leds and switches), 4 sockets for
FPGA-based daughter boards, a LCD display, a number of quartz oscillators for selectable-
frequency clock generation, banks of off-chip DRAM and a connector for a Flash storage
device.

The considered application is in both cases a shared memory implementation of the
RadixSort algorithm, included in the well known SPLASH2 suite [44]. The application kernel
is configurable in terms of the number of tasks that operate in parallel, therefore the map-
ping of different versions of the code on the platform, with different levels of parallelism
requires little effort.

3.7.1 A first case study: analysis of the scalability of a paral-
lel kernel

The first case study employs the emulation framework to analyze the scalability of a shared
memory application over a regular 2D 4x4 quasi-mesh topology, where every node of the
mesh includes a processing core (MicroBlaze) and a local on-chip memory (32 KBytes), both
connected to a packet-based switching core, instantiated from the ×pipes interconnection
library. The memory architecture includes, in addition to the on-chip local memories con-
nected to each processor, a 64KBytes on-chip shared memory, attached to a border-line
switch on a corner of the mesh. All the accesses to shared memory locations are handled
with lock/unlock mechanisms, which employ a bank of hardware test and set registers, con-
nected to the opposite corner of the mesh, with respect to the shared memory connection
point.

3.7. FRAMEWORK VALIDATION 47

Figure 3.5: Virtex5-based prototyping board

The time required for the entire hw-sw emulation is negligible and, provided that the
code is properly instrumented to access the performance counters, several metrics can be
evaluated. As already explained in Sect. 3.5, the accessible metrics vary from functional to
technological ones. Figure 3.6 shows an example of the kind of information that the pro-
posed framework is able to provide, after a single execution of the application on the FPGA
emulated platform.

In Figure 3.6 (top-left), the execution times and the total latencies for the different map-
ping patterns over the quasi-mesh topologies are presented, changing the number of parallel
processes from 2 to 16. Figure 3.6 (top-right) shows in further detail the scalability of the la-
tencies, averaged over the number of accesses and over the different processors, separating
the accesses to the shared memory from those directed to the Test&Set locations. It is worth
noting that it has been decided to consider the latency of accessing the Test&Set peripheral
as the amount of time necessary to acquire the lock on a precise location, thus including
within a single latency count different trials to obtain a lock on a specific location. The re-
maining figures relate to the technology-dependent metrics that it is possible to extract. The
power consumption is estimated at every switch using information on the flit congestion
at each output channel: Figure 3.6 (bottom-right) shows the contribution of each switch to
the dynamic power consumed in the system, for the case of 16 active processes. Figure 3.6
(bottom-left) shows the total power consumed by the topology, scaling up the number of
active processes. In the same picture, the energy consumption is depicted: the execution
time reduction, for the higher number of active processes, mitigates the difference in aver-
age power consumption.

The best configuration depends on the constraints on the application execution time. If
all the 4 architectures satisfied these constraints, then the best choice would probably be
the 4-cores mesh, since it halves the execution time (clock ticks) while keeping the energy
consumption almost constant. The tool also helps in modeling analytically the operating

48
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

Figure 3.6: Performance metrics for the scalability analysis. The upper figures show the exe-
cution times compared with the total latencies (left), and the average latencies for different
types of accesses (right). The lower figures show the power/energy consumption, for the
total topology (left) and for the single switches(right).

frequency (to convert clock ticks in execution time) and the area occupation of the intercon-
nection network.

3.7.2 A further case study: architectural design space explo-
ration

In this subsection we present a second case study. We show how the framework can be ex-
ploited as an evaluation platform to explore performance and hardware costs of different
architectural configurations. The user would be able to compare different solutions, to find
out the optimal ones and to evaluate bottlenecks and detailed performance metrics of dif-
ferent candidate architectures, for example within a Design Space Exploration environment.

As an example, we show the results of the comparison between three different system
configurations featuring different NoC topologies as interconnect infrastructure. The evalu-
ated system configurations are depicted in Figure 3.7. Each configuration includes 8 proces-

3.7. FRAMEWORK VALIDATION 49

Figure 3.7: Explored topologies layout: the connected cores and the instantiated switches
are drawn.

sors, 8 local memories and three shared devices (a memory, a hardware semaphore and an
I/O controller). The first interconnection topology (called “star” in the following) features 8
clusters including a 3x3 switch connected to a processor and to its private memory, linked to
a big 11x11 central switch that is directly communicating with the shared devices. Since us-
ing only one single switch would be unfeasible given the size of the required switch, “star” is
the topology with the smaller number of hops that implements the communication patterns
required by the application. The second topology (called “tree” in the following) is similar,
but the 11x11 switch, whose crossbar complexity appears to be likely critical for the working
frequency of the whole network, was replaced with three 5x5 switches, thus trading off an
higher bandwidth with an increased number of hops bringing to higher latencies. The two
mentioned topologies have been compared with a regular topology, a 4x2 quasi-mesh. The
position of the cores inside the mesh layout has been chosen in order to not exceed the 5x5
size for the switches inside the interconnect fabric.

Figure 3.8: Dynamic per-switch power consumption for the three topologies under test.

Some system level comparisons, obtained, after the execution of the RadixSort paral-
lel kernel on the three candidate architectures, accessing the performance/event counters
inside the system, are plotted in Figure 3.9. The framework was able to detect total execu-
tion time expressed in terms of clock ticks, general latencies, average latencies towards each
different device, number of occurrences of traffic-related events and many other metrics,
according to what specified in the system-level description file. To keep coherence with a

50
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

prospective ASIC implementation of the considered architecture, the previously mentioned
power, frequency and area models were used to back-annotate the evaluation results. In this
way we were able to obtain a detailed pre-estimation of the behavior of the considered archi-
tecture with respect to die area occupation, power and energy consumption, and execution
time, as plotted. This step enhances the prototyping with the technology-awareness needed
to perform meaningful design space exploration.

Figure 3.9: The upper figures plot the execution times and the total latencies, both in terms of
clock ticks (left) and real seconds (right). The times are calculated considering the maximum
operating frequencies of the different topologies, estimated with the analytic models. Area,
power and energy figures are shown in the lower figures.

As an example, it can be noticed, observing Figure 3.9, how the back-annotation step al-
lows to detect the benefits in execution time that can be obtained trading off latency with
frequency in passing from “star” to “tree”, or how “star” is able to burn less energy than “tree”
even if slower in executing the kernel. In a real-life design, such kind of trade-offs would
have been evaluated according to the constraints input to the framework. In Figure 3.8 for
example we plotted the “dynamic” power consumption related to each switch in each topol-
ogy (i.e the additional power dissipated by switches due to the traffic flowing through them
or congested in their buffers), to find out if bottlenecks or hot spots can be identified. The

3.7. FRAMEWORK VALIDATION 51

same kind of graph could be plotted for the “static” power (i.e. the power dissipated inde-
pendently of the traffic conditions). Thanks to the simultaneous use of FPGA performance
counters and models, the effort required to evaluate the three architectures was limited to
their implementation on the target device, while without the framework, the same results
would have needed much longer executions of the kernel on a software-based simulator
(simulation times depend on the simulation accuracy but easily exceed one hour with such
kind of kernels, for cycle-true simulations) and preliminary synthesis and place and route
experiments on ASIC (usually several hours). A discussion related to the effort needed by the
synthesis is reported in section 3.7.3.

3.7.3 Implementation effort evaluation

In the first case study that we presented, the user exploits the framework for prototyping dif-
ferent software configurations and mapping strategies on a pre-determined hardware archi-
tecture. In this scenario, to obtain the experimental results related to a given configuration,
the framework just needs to iteratively update the bitstream with different application bina-
ries and rerun the execution on the configurable hardware. These steps are commonly quite
fast so the number of iterations that are performed during the analysis will hardly become
critical. A different situation arises when the goal is to explore different hardware archi-
tectural configurations, as we did in the second case study, since every step of the analysis
requires the iteration of the whole implementation flow.

The implementation process needed to program modern FPGA devices requires often
a considerable CPU time, that obviously grows when the architecture under test becomes
more complex. This time has to be duely taken into account if the user plans to use the
framework as evaluation step within a design space exploration process, since it can become
a critical factor limiting the number of estimations that can be performed during a reason-
able time. Very often DSE algorithms use cycle-accurate evaluations only for a limited num-
ber of key iterations, using faster, less accurate models during the rest of the optimization
cycles [42]. In Figure 3.10 we plot an overview of the processing effort needed to implement
different quasi-mesh topologies featuring a different number of processors.

The implementation flows have been performed by ISE 10.1.3 running on a Dual Core
AMD Opteron Processor (2210 MHz) with 6 GB RAM. To shrink the synthesis effort we man-
aged to build a library of reusable pre-synthesized components, featuring different parame-
ter configurations. In this way the synthesis time, provided that all the cores instantiated in
the considered configuration are present in the library, is reduced to the time needed by the
synthesis tool to link the cores and to elaborate the connections in the top-module, which is
quite short if compared with the other implementation steps. Obviously, all the steps require
a time that increases with the complexity of the architecture. For topologies not bigger than 8
processors, the implementation effort is lower than one hour. Thus, taking into account that
the execution of the parallel kernel to be tested on the implemented system is several orders
of magnitude faster than the same execution on a cycle accurate software-based simulator
[24], the exploitation of the framework as evaluation platform reduces significantly the iter-
ation time. This is especially true when the software application is complex but the number
of cores to be integrated hardly increases very much, like, for example, in embedded systems
domain. Obvious evolution of the research, from this point of view, will be the tailoring of
the implementation flow to manage pre-routed macros, in order to shrink the mapping and
place-and-route time as we did for synthesis. As can be noticed from the Figure 3.10, this

52
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

Figure 3.10: Computational effort needed to complete the implementation flow for different
architectural configurations

can bring to a big reduction of the implementation time, since it would tackle the longest
implementation steps.

3.8 Support for runtime reconfiguration

We already discussed in Section 3.7.3 some results on the effort introduced, in the overall sys-
tem emulation time, by the FPGA synthesis, implementation and configuration processes.
Figure 3.10 plotted the overall decomposed in the main phases of the FPGA implementa-
tion flow against an increasing area of the platform under test. Especially when the required
FPGA resources approach the physical limit of on-chip available resources, this overhead
increases significantly, since the Place&Route and mapping algorithms usually end up per-
forming more iterations before converging to a solution. In order to reduce the impact of
this overhead, we now propose an approach based on runtime FPGA reconfiguration. The
considered case features a number of candidate architectures to be emulated, normally re-
quiring one complete FPGA synthesis and implementation process for each architecture to
be emulated.

The different steps of the design flow of NoC-based architectures often present cases in
which one or more features of the system under exploration are fixed. A classical example is
the exploration of the interconnection topology where the design space is defined only by the
network architectural features, while for example the number of processors or the memory
hierarchy could be reasonably considered stable. The interconnection topology selection for
a specific application could be decomposed in two distinct problems. First, a set of candi-
date topologies needs to be defined, either by a human designer leveraging his experience
and knowledge of the application domain, or in an iterative way by a dedicated exploration
algorithm. Second, a way to evaluate the performances of the candidate topology and to
produce effective metrics that can drive the choice is needed.

In this section, we investigate the use of runtime platform reconfiguration for NoC topol-
ogy selection purposes, by employing a software-based reconfiguration mechanism of an

3.8. SUPPORT FOR RUNTIME RECONFIGURATION 53

emulation platform equipped with the hardware resources necessary for the emulation of
different interconnection topologies. Our aim is to mitigate the afore-mentioned overhead
introduced by the FPGA implementation flow. The reconfiguration method is kept as simple
and as flexible as possible.

3.8.1 Problem formulation

Given a set of interconnection topologies to be emulated, we investigate the possibility of
identifying and reconfiguring what we call a worst case topology (WC). The basic idea be-
hind this approach is to implement on the FPGA a topology that is over-provided with the
hardware resources necessary to emulate all the topologies included in the predefined set
of candidates; then, at runtime, each specific topology will be mapped on top of the imple-
mented hardware of the WC one, exploiting dedicated software-based configuration mech-
anisms. If such an approach is feasible, then several emulation steps could be performed
after a single FPGA synthesis and implementation run, resulting in a speed-up of the whole
topology selection process.

In figure 3.11, an example of definition of a worst case topology is provided. We first
consider three architectures under test, namely U T − i with i = 1,2,3. The only difference
between the three is the interconnection topology, while the number and kind of computing,
memorization and peripheral devices is the same, as can be seen by the picture. We start
by associating a switch to every memory or processing core of the architecture and then
iteratively add other switches as we parse the three interconnection topologies, to obtain
topology W C −2. By considering that many of the switches have become 1x1 switches, we
get rid of them to define W C −C , the final worst case topology.

Specific hw-sw mechanisms supporting runtime reconfiguration need to be implemented.
To mention one of the most challenging problems, considering a processing core, connected
to a specific switch in the WC topology, it might be connected to a different one in the topol-
ogy under emulation. To avoid a new synthesis run, there must be the possibility of mapping
the topology under test on top of the WC one, configuring the connections to that process-
ing core to avoid accounting for latencies introduced by the switching elements that are not
included in the topology to be emulated. Thus, static direct zero-latency connection of two
specific ports of a generic switch must be made configurable at runtime, resulting in the
emulation of a combinational path bypassing a certain switch.

3.8.2 Algorithm description

In Sect. 3.8.1 the guidelines of the proposed approach have been defined, and the idea of
performing different topology emulations through software-based runtime reconfiguration
of the same WC topology hardware has been presented. In this section we present in de-
tail the definition of the aforementioned worst case topology and how the topologies to be
emulated are mapped on it.

The WC topology is defined iteratively. As a first step a switch is assigned to every core
(processing element, memory or peripheral) to be included in the architecture. Thus, be-
ing P the number of cores to interconnect, P switches (referred to as “core switches” here-
after) are instantiated inside the topology. The collection of the switches to be included in
the topology is then updated according to the analysis of every topology under evaluation.
For each candidate configuration, the number of switches SNC , that equals the number of

54
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

Figure 3.11: Example of a worst-case topology definition

switches that are not connected to any core or that are connected to more than one core
(“non-core switches” hereafter), is calculated. After the analysis of the whole set of topologies
to emulate, the collection includes a number of switches SW C , i.e. the sum of the number of
cores to interconnect and the highest number of switches SNC among all the N topologies to
emulate:

SW C = P +max{SNC (i)} f or i = 1, ..., N ; (3.3)

The SW C switches are initially connected in an all-to-all fashion, therefore the size, ex-
pressed in terms of number of ports, equals to SW C for those switches that are not directly
connected to a core and to SW C +1 for those that are directly connected to a core (e.g. upper-
left sketch in Figure 3.11).

The topologies, whether they are one of those to be emulated or the WC one, can be char-
acterized by a connectivity matrix C M and two auxiliary vectors, SW _C and P_C , defined as
follows:

3.8. SUPPORT FOR RUNTIME RECONFIGURATION 55

Figure 3.12: Flow chart of the algorithm for mapping the topologies to be emulated on top of
the worst case topology

C Mi j =


OPi j if link between switch i

and switch j exists;
−1 if link between switch i

and switch j does not exist.

(3.4)

where OPi j is the identifier, within switch i , of the output port of switch i connected to
switch j . We assume that the switch hardware is built in such a way that OPi j identifies also
the input port of switch i connected to switch j in the backwards link (i.e.: the port is full-
duplex and has only one identifier). The size of the C M matrix obviously equals the number
of switches present in the related interconnection topology.

The SW _C vector has size P , and its i -th element indicates the number of the switch
connected to the i -th core of the topology. The P_C vector has size P , and its i -th element
indicates the number of the output port of the switch SW _C (i) that is connected to the i -th
core of the topology.

The matrices defined above must be identified for each topology under emulation, in-
cluded the WC, and can be used as inputs for the mapping algorithm. This process, whose
flow-chart is plotted in Fig. 3.12, is in charge of generating the reconfiguration patterns, by-
passing the switches where needed to ensure the correct emulation of the candidate topolo-
gies.

The algorithm scans all the cores included in the system, for each of the candidate topolo-
gies to be emulated. For the i -th core in the system, it first checks if the switch connected

56
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

to the core is the same in the worst case topology and in the emulated topology, by looking-
up into SW _Ck and SW _CW C vectors. If so, then the mapping of the considered core is
straight-forward and no bypass must be established. On the contrary, if the core is con-
nected to different switches in the two topologies, then a bypass is needed from the switch
connected to the core in the WC topology to the switch connected to the core in the em-
ulated topology, namely in switch SW _CW C (i) from input port P_CW C (i) to output port
C MW C (SW _Ck (i),SW _CW C (i)).

Moreover, for every topology, the algorithm annotates, performing a comparison be-
tween C MW C and C Mk , which ports and links inside the WC topology are actually used in
at least one candidate configuration. The unneeded port and links can thus be removed in
the WC template and the corresponding switch resized. This is a crucial step in order to save
FPGA resources, as we will discuss in the following. Remaining switches that just directly
connect one core with another switch (i.e. 1x1 switches with two full-duplex ports) can be
removed and replaced with direct connections (e.g. the switch connected to the node N 6 in
lower left sketch in Figure 3.11).

We can now examine again Figure 3.11 to explain in detail the example of worst case
topology identification.

• Example 1: Definition of the overprovided topology able to emulate three different
topologies under test (UT1, UT2, UT3). The three topologies under emulation inter-
connect 19 cores (8 processors, 8 memories and 3 shared devices).

• Step 0: The first step of the algorithm is the analysis of the system population (repre-
sented in UT-0). The first version of the overprovided topology is obtained assigning a
switch to every core in the system (WC-0).

• Step 1: UT-1 is parsed, 9 switches (highlighted) that are connected to more than one
core are identified. WC-0 includes only “core switches”, thus the overprovided topol-
ogy is updated (WC-1) with the insertion of the highlighted 8 switches.

• Step 2: UT-2 is parsed, 9 switches connected to more than one core and 2 switches that
are not connected to cores are identified. The number of “non-core” switches in the
WC-2 is thus increased to 11.

• Step 3: UT-3 is parsed, 8 “non-core” switches are identified. WC-2 already includes 11
“non-core switches”, thus the WC-2 topology does not need to be updated.

• Step 4: The switches inside the topologies are connected in an all-to-all fashion than
the unused connections, never referenced by any topology under test, are removed, as
represented in WC-T.

• Step 5: The unneeded 1x1 “core switches” with two input ports and two output ports,
that would be permanently set in bypass-mode independently on the candidate topol-
ogy under consideration, are removed and replaced with direct links. WC-C is the
eventual overprovided topology to be synthesized.

The selection of the links to bypass is another crucial step of the algorithm. Obviously,
this bypass can be realized through several paths. The algorithm checks if the 1-hop direct
path between the two switches is already in use in the emulated topology, by checking the

3.8. SUPPORT FOR RUNTIME RECONFIGURATION 57

link between switches SW _Ck (i) and SW _CW C (i) in C Mk matrix. If not, the bypass is im-
plemented through that path, and the algorithm annotates the related link, that will then be
used by the framework configuration engine to generate all the hardware and software pa-
rameters and routines necessary to actually implement the bypass mechanism, as explained
in Section 3.8.3.

If the 1-hop direct path is already in use in the emulated topology, it cannot be bypassed
since the combinational path would obviously invalidate the emulation of the topology, al-
tering the timing of the communications. Therefore, the algorithm searches for a 2-hop path
connecting the two switches of interest; all the possible paths are checked. If it finds a 2-hop
path composed of links not used in the emulated topology, then the bypass directives are
activated for connecting the switches with a combinational path. In case it is not possible to
find a 2-hop path, then the process fails, returning an error message.

We decided to stop the search criterion at 2-hop paths in order to avoid creating longer
combinational closed loops. As a matter of facts, the hardware support for the bypass mech-
anism that we implemented succeeds in recognizing up to 2-hop combinational paths and
in disabling them, whereas for longer paths the combinational loop would preclude the fea-
sibility of the hardware synthesis and implementation process. This limit is mainly due to
the creation of combinational closed loops, that are obviously unacceptable in hardware
logic synthesis.

3.8.3 Toolchain and hardware/software implementation

We have developed a whole design flow implementing the proposed technique, essentially
enriching the framework we described in this chapter so far. It still receives in input a system-
level specification of a target multi-core system but, instead of a single interconnection topol-
ogy, a set of candidate interconnect topologies is provided. Again, the framework instanti-
ates an FPGA platform for emulation, on which an accurate profiling of a target software
application can be performed and cycle-accurate information on the switching activity can
be collected. The designer is still allowed to insert specific performance counters at the pro-
cessing core interface, at the switch output channel interface and at the memory port.

A general overview of the modified design flow is given in figure 3.13.
We modified the tool for platform instantiation described in Section 3.4. When invoked

on one single file, runtime reconfigurability for multi-topology prototyping is not enabled.
In this case, the tool only generates the input for the Xilinx proprietary tools that are used
to handle the FPGA synthesis flow. The hw/sw generated files are still compliant with the
specific syntax and formats in order to be correctly processed. To allow fast prototyping
of multiple candidate interconnect configurations inside the system, we allowed the tool
to accept different topology specification files. Among the topologies, one is specified to
be the WC topology, generated offline according to the definition mechanism explained in
section 3.8.2, the others are considered as topologies under emulation. After the definition
of the WC topology, the tool applies the mapping algorithm, as described in section 3.8.2, to
identify how to map the topologies under emulation on the WC template and to produce the
information needed to program it accordingly. The identified reconfiguration patterns are
produced in output as:

• parameters included by the HDL modules, defining which ports inside the switches
must be equipped with the circuitry supporting the bypass

58
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

Figure 3.13: General overview of the prototyping flow

• C functions to be included for compilation that, when executed by the processors in
the system, trigger the runtime reconfiguration.

The hardware and software mechanisms enabling this kind of process will be described
in further detail in the following sections.

3.8.4 Hardware support for runtime reconfiguration

The HDL modules describing the switch hardware architecture, which are included in the
framework repository as described in Section 3.3.3 have been enriched with reconfiguration
capabilities:

• The reconfigurable switches can be set in bypass mode: a static direct connection
between an input port and an output port builds a zero-latency combinational path
among them, that bypasses all the switching logic for that specific I/O pair.

• The routing tables inside the Network Interfaces have been made programmable, al-
lowing to define different routing paths during emulation of different topologies.

3.8. SUPPORT FOR RUNTIME RECONFIGURATION 59

Figure 3.14: Sketch of the hardware resources dedicated to the implementation of the switch
reconfiguration mechanism.

Every switch in the WC topology is programmable by a processor, connected through a
direct point-to-point link. The processors in the system can thus enable the switch bypass-
ing mechanism via software; this inhibits the use of the involved input and output ports as
long as that configuration is preserved. In order to provide this capability, we added, for each
switch port, several memory-mapped registers, namely two per output port and one per in-
put port. The memory mapped register at the input (e.g. by pass_i nput_0 in Fig. 3.14) has
to be written when the user wants to bypass the corresponding input buffer. A combina-
tional path is thus established between the corresponding input port of the switch and the
output circuitry. To complete the bypass path, at the considered output port, the processor
connected to the considered switch has to write:

• one “input selection” register (e.g by pass_to_0 in Fig. 3.14), that specifies the ID of
the input port that has to be directly bypassed with the considered output.

• one “bypass enable” register (e.g by pass_0 in Fig. 3.14), that enables the bypass of the
output buffer and forces the selection input of the corresponding crossbar branch to
be statically driven by the content of the "input selection" register.

The routing tables, originally implemented as LUT ROMs, have been made accessible
for writing as memory mapped devices. A RAM memory has been developed, whose con-
tent is updated at the beginning of a new emulation with the routing information related
to the topology under test, according to the software programming routines produced by
the SHMPI topology builder (see section 3.8.5). At runtime, the RAMs are accessed in read
mode by the NIs, every time a network transaction required by the application is initialized,
to obtain the routing information to be placed in the header flit.

Finally, besides topology selection, a further exploration capability has been enabled.
The Xpipes links width has been made programmable via software (the size can be chosen
among a predefined set), allowing to rapidly solve the bandwidth/area-power trade-off for
the target application. A memory mapped register is added inside the NI so that, by writing
it, a processor is capable of configuring the link width. The WC topology is parameterized

60
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

to instantiate the widest links. According to the programmable register content, the NI ex-
ploits for communication only part of the physically available wires, to emulate narrower
flits, driving the remaining bits in the links with meaningless zeros. It is thus possible to
emulate perfectly accurate latency figures corresponding to different serialization factors.

3.8.5 Software support for runtime reconfiguration

As depicted in Fig. 3.13, the runtime reconfiguration mechanism is handled via dedicated
circuitry inside the interconnection network building blocks, but also with specific software
modules. The SHMPI topology builder, indeed, generates the software routines for:

• the configuration of the routing tables of all the cores included in the system: each
topology to be emulated on top of the WC topology needs a set of routing tables. In
order to generate these tables, the SHMPI topology builder, when parsing the high-
level topology declaration files, annotates the routing tables referred to the emulated
topology.

• the configuration of the memory-mapped registers that implement, as described in
Sect. 3.8.4, the bypass mechanisms in hardware. These routines are generated right
after the execution of the algorithm described in Sect. 3.8.2, which identifies the by-
pass configurations that need to be implemented.

Since the processing cores of the system are the modules in charge of configuring the
bypass registers and the routing tables, the routines generated at this step are then linked
by the executables running on each processor, and called right before the start of the actual
application code. The execution of the application on the configured platform will start only
after all the switches are properly bypassed and all the cores have the routing tables updated.

3.8.6 FPGA implementation overhead reduction techniques

As a consequence of the provision of runtime reconfiguration capabilities, it is easy to expect
a degradation of the quality of results with respect to the hardware implementation of a sin-
gle sample topology on the FPGA device. In particular, aspects related to the implementation
quality, that can be affected and potentially preclude the usability of the proposed approach
are:

• the area occupation of the WC topology, which determines whether or not the proto-
typing platform fits on one given target programmable device,

• its working frequency, that, if impacted by switches with a high number of ports or by
long combinational paths traversing bypassed switches, can potentially increase the
emulation time and reduce the benefits of on-hardware emulation.

The mentioned aspects have been duely taken into account while implementing the
toolchain. As already mentioned, in order to minimize the area occupation of the WC netlist,
during the parsing of the topologies under emulation, the platform Builder annotates which
links are used by at least one among them. At the end of the analysis, the unused switches

3.9. USE CASES 61

are removed, the remaining switches are accordingly resized, and thus the amount of pro-
grammable logic blocks needed by the netlist is reduced. Moreover, the communication
paths flowing through every output port of all the switches are analyzed, and the switch
hardware is customized minimizing the size of the multiplexers. Resulting area/frequency
figures, corresponding to the use cases presented in Section 3.9, are reported as experimen-
tal results assessing how the mentioned overhead can be effectively controlled and how the
proposed approach is applicable to systems characterized by considerable complexity.

3.9 Use Cases

In this section we present an use case of the previously described runtime reconfiguration
techniques. We plot the results obtained while performing the topology selection process
over a set of 16 different system configurations. The considered system included 8 proces-
sors, 8 private memories, one shared memory, one hardware based synchronization device
(namely a test-and-set semaphore used to support mutual exclusion in case of concurrent
accesses to shared memory), one output peripheral (used to output the results related to
performance extraction and switching activity estimation). The different topologies used to
interconnect the cores inside the system where obtained from the application of a simple
exploration algorithm, that iteratively clusters the network switch to trade-off latency (the
number of hops in the network increases with clustering) vs. frequency (smaller switches
have a smaller critical period). The application executed on the system is again the well
known Radi xSor t included in the Splash2 benchmark suite [44].

The adopted hardware FPGA-based platform is the same reproduced in Figure 3.5. In fig-
ure 3.15 we show the results of the evaluation obtained with respect to total execution time,
to total latency, and to total energy and power dissipation. The figures showing absolute
time, power and energy values are obtained by back-annotating the FPGA emulation results
with the models described in Section 3.6.

The RTL libraries synthesized for FPGA (for evaluation) are the same libraries that would
be used for ASIC (for real production). Provided that the bypassing mechanism is adequately
applied and given that the presence of unused ports inside the WC topology do not affect the
switch functionality, we can state that the prototyping does not insert any error in the esti-
mation of "functional related" (execution time, latency, switching activity) performances.
Cycle/signal level accuracy is guaranteed by definition without the need of a test compar-
ison (emulated vs. prospective implementation). The accuracy of the models described
in Section 3.6 is assessed to be lower then 10%, with respect to post layout analysis of real
ASIC implementations. From the performed analysis a designer could estimate topolog y_0
to be the optimal configuration for the target application from the point of view of energy
consumption and actual execution time. To identify communication bottleneck or conges-
tion/power hot-spots inside the topologies, node-level detailed performances can be ob-
tained, referring to each single port of the switches included in the topology under test.

All the presented data are obtained after traversing only one synthesis/implementation
flow. As already proved in Section 3.7.3, the time needed to run synthesis and implementa-
tion with commercial tools increases with the size of the system and can be estimated in a
matter of hours. Exploiting the runtime configuration capability, enables to try different in-
terconnection topologies and configurations by performing only one actual FPGA synthesis
and implementation flow plus several software compilations and FPGA programming, con-

62
CHAPTER 3. AN FPGA-BASED FRAMEWORK FOR TECHNOLOGY-AWARE SYSTEM-LEVEL

EMULATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6

Topologies

Execution Times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Topologies

Execution Times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Topologies

Power Consumption

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Topologies

Energy Consumption

Figure 3.15: Use cases results. Execution times are reported for the different topologies un-
der emulation, both in terms of clock ticks and real seconds, thus accounting for the archi-
tectural maximum operating frequency, which is obtained via analytic modeling. Moreover,
modeled power and energy consumption figures are reported for the different topologies

suming approximately a matter of few minutes each, allowing a time saving that increases
with the number of candidate topologies under prototyping. Figure 3.16 plots the impact
of runtime reconfiguration on the overhead introduced by FPGA synthesis/implementation
process.

Figure 3.16: Impact of runtime reconfiguration on FPGA synthesis and implementation over-
head. The original framework traversing time is compared with the modified framework
one.)

3.9. USE CASES 63

3.9.1 Hardware overhead due to runtime configurability

We present an overview of the overhead introduced by the support for runtime programming
of the network in terms of hardware resources. We compare, for two different Design Space
Explorations (DSE in the following), the programmable logic resources required for the im-
plementation of the most hardware-hungry topology under test (when implemented for a
stand-alone evaluation without support for runtime reconfiguration) with those required to
implement the corresponding WC template. The DSE runs involved respectively 4 and 16
topologies under prototyping (TUP in the figure). As can be noticed from Tables 3.2 and 3.3,
the introduced device utilization overhead is limited in both cases and is controllable when
the number of candidate topologies increases. We report also a comparison related with
working frequency, potentially limiting the emulation speed. The table shows how the crit-
ical path is almost insensitive to the introduction of the support for rapid prototyping. This
is mainly due to the fact that the critical path is always bounded inside the switches, thanks
to the WC topology definition algorithm that limits the bypassed switches at the boundaries
of the topology. The results show how the overhead reduction mechanisms explained in sec-
tion 3.8.6, effectively allow to support prototyping of quite complex systems with state-of-the
art commercial devices.

Occupied Slices Slice Registers Slice LUTS
Largest TUP (4 topologies DSE) 17327(33%) 33,885(16%) 44673(21%)

WC (4 topologies DSE) 20627(39%) 41313(19%) 58862(28%)
Largest TUP (16 topologies DSE) 17397(33%) 34487(16%) 44926(21%)

WC (16 topologies DSE) 21815(42%) 44943(21%) 64696(31%)

Table 3.2: Experimental results related with the hardware overhead introduced by the sup-
port for fast prototyping

Critical path
Slowest TUP (4 topologies DSE) 10,902

WC (4 topologies DSE) 10,902
Slowest TUP (16 topologies DSE) 10,976 ns

WC (16 topologies DSE) 11,307 ns

Table 3.3: Experimental results related with the critical path overhead introduced by the by-
passing logic.

Chapter 4

A parallel software simulator for
high performance computing
systems

As described in Section 1, the high performance computing field is undergoing a phase of
crucial changes and complexity increases, with the introduction of the first supercomputer
architectures based on hybrid-core computing nodes, that couple the programmability of
classic parallel CPUs with the impressive amount of parallelism of modern GPU units. This
boost in both system and single-node complexity requires support for effective full-system
simulation, and recent approaches have started to look at simulator scalability by exploiting
modern parallel commodity computing platforms, like SMPs, grids and CoWs.

In this chapter, we present the main research activities carried on in the field of parallel
software simulators for high performance systems. We will present and discuss a cycle-level
simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs un-
modified XMT applications. We discuss how we tackled the challenges posed by its develop-
ment, detailing the techniques introduced to make the simulation as fast as possible while
maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware
threads) to host computing cores, the simulation speed remains constant as the number of
simulated processors increases, up to the number of available host cores. The simulator
supports zero-overhead switching among different accuracy levels at run-time and includes
a network model that takes into account contention and hot-spotting. On a modern 48-core
SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times
slower than real time when compared to a 128-processor XMT, while remaining within 10%
of accuracy. Emulation is only from 25 to 200 times slower than real time.

Irregular applications, such as data mining and analysis or graph-based computations,
are applications that show unpredictable memory/network access patterns and control struc-
tures [41]. Highly multithreaded architectures with large processor counts, like the Cray
MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clus-
ters. However, the research on highly multithreaded systems is currently limited by the lack
of adequate architectural simulation infrastructures due to issues such as size of the ma-
chines, memory footprint, simulation speed, accuracy and customization.

As already hinted in Section 2, the analysis of the most relevant solutions at the state

65

66
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

of the art suggested a number of critical features that appear in modern parallel software
simulation systems. The main ideas that led us in developing our simulator are listed and
discussed as follows:

• Execution of unmodified code - The simulator should implement the whole Cray XMT
ISA and be able to run unmodified binary code, in order to be fully employable in an
actual software development cycle with none or minimum overhead. Moreover, this
would allow to monitor with the highest accuracy the runtime behavior.

• Customization - For such a particular machine, the simulator has to be customized
to match some of the most inherent architectural features. For example, physically
distributed memory with an abstract shared address space must be reproduced and/or
modeled. Fine-grain synchronization is another critical feature which the machine
implement at the level of the single memory cell, and must be reproduced exactly.

• Speed - The simulator has to be as high-speed as possible, in order to enable real sim-
ulation scalability to high number of processing cores and memories (thousands). In
order to do so, some aspects may have to be simulated with high detail, while oth-
ers may be modeled at a more abstract level. For example, as we will discuss in the
following sections, since the machine implements a fine-grained memory scrambling
scheme, a pretty uniform network traffic can be supposed to take place because of the
uniformly spread memory accesses. This assumption may lead to the consideration
that the whole interconnection layer might be simulated by only modeling memory
access latency with reasonable accuracy.

• Dynamically selectable speed/accuracy balancing - Different accuracy-level simula-
tion operating modes might be implemented and provided for dynamic switching at
application execution time. This feature is crucial in order to allow the execution of
full binaries including OS, runtime and application. Different accuracy levels might be
desirable in different sections of the binary execution, trading off accuracy and simu-
lation speed.

• Thread-core mapping - Particular attention should be paid to the mapping of the sim-
ulated cores to the simulating threads, and in turn to the physical cores of the host
machine. This factor plays an important role in simulator performance and scalabil-
ity.

4.1 The Cray XMT

Before presenting the simulator conception and development, we are in this section going
to discuss the main features of the target supercomputing machine, the Cray XMT. The Cray
XMT is a shared-memory multithreaded supercomputer developed by Cray under the code-
name “Eldorado“ [29] to specifically address the needs of irregular data-intensive applica-
tions. The Cray XMT is the successor to the Tera MTA and the Cray MTA-2. The system is
composed of dual-socket Opteron AMD service nodes and custom-designed multithreaded
compute nodes with ThreadStorm processors, communicating through the Cray Seastar-2.2
high speed interconnect. It can allocate up to 96 ThreadStorm processors per cabinet and
8192 per system, with up to 128 TB of shared memory.

4.1. THE CRAY XMT 67

Figure 4.1 plots the system organization, while Figure 4.2 gives a view of the single node
architecture organization.

Figure 4.1: System-level XMT architecture

Figure 4.2: Node-level XMT architecture

Each ThreadStorm is a 64-bit Very Long Instruction Word (VLIW) processor containing a
Memory unit (M-unit), an Arithmetic unit (A-unit) and a Control unit (C-unit). The Thread-
Storm is able to switch, on a cycle-by-cycle basis, among 128 fine-grained hardware streams

68
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

to avoid the stalls generated by memory accesses and provide a high level of latency tol-
erance. At runtime, a software thread is mapped to a hardware stream which includes a
program counter, a status word, a set of target and exception registers, and 32 general pur-
pose registers. The pipeline has a length of 21 stages for all the instructions and, by design,
a new instruction from the same stream cannot be issued if the previous did not exit the
pipeline. However, the processor supports look-ahead, so independent instructions of the
same stream can be issued every 21 cycles, even if memory operations have not completed.
The look-ahead is inserted by the compiler and it is up to 8 instructions, so each stream may
have up to 8 pending memory operations at the same time. Thanks to the lookahead fea-
ture, the memory operations can complete out-of-order. The processor has a 64 KB, 4-way
associative instruction cache for exploiting code locality, and runs at a nominal frequency of
500 MHz. All the processors are connected through a 3D packed-switched toroidal intercon-
nection network based on the Cray Seastar2 System-on-Chip. The Seastar2 is an evolution
of the Seastar chip [16], which includes, in a single ASIC, a 3D router, high-speed serial links,
a Network Interface and a dedicated PowerPC 440 embedded processor to implement DMA
functionalities.

The memory subsystem of the service and the compute nodes are completely separated,
and do not interact each other. The memory controller of each ThreadStorm processor man-
ages up to 8 GB of 128-bit wide DDR memory and has a 128 KB, 4-way associative data buffer
(small cache) that helps in reducing the access latencies. The memory of the system is ac-
cessed with a shared memory abstraction: load/store operations to any physical memory
location can be generated from any ThreadStorm processor connected to the Seastar-2.2
network. The network is configured in a 3D toroidal topology. Physical addresses up to 48
bits are supported. The memory is hashed with a granularity of 64 bytes, so that logically
sequential data are allocated to physical memories attached to different processors, reduc-
ing memory and network hot-spots. The hashing mechanism is always active: even when
using a single processor, the accessed data are distributed, almost uniformly, on the mem-
ories connected to all the processors of the full system. Figure 4.3 represents the hashing
mechanism in a 128-processor machine configuration.

Each memory location is associated with a full-empty bit, which works as a lock, a pointer-
forwarding bit, which signals memory locations containing pointers rather than data, al-
lowing automatic generation of a new memory reference, and two trap bits, which allow
the generation of a signal when the location is accessed for storing or loading. Trap bits
are widely used by the runtime system for setting monitors (for synchronization) or setting
function continuations (for workload distribution). The ThreadStorm processor only uses 2
additional bits with respect to memory words of 64 bits. The first represents the full-empty
state, while the second signals if the location is forwarded or has any of the trap bits enabled.
In such cases, the value contained in the memory cell is considered a pointer, so the last three
bits, which are not used for addressing (memory is addressed in 64-bit words), can store the
real values of these access state bits. The memory references may also return specific error
codes for latency limits or after a predefined number of retries, if the location is not in the
expected unlocked or locked state.

The software environment on the Cray XMT is composed by a custom, multithreaded
operating system for the ThreadStorm compute nodes (MTX), a parallelizing C/C++ cross-
compiler targeting the ThreadStorm processor, a standard Linux 64-bit environment for the
service and I/O nodes, and by the libraries that provide communication and interaction be-
tween the two parts of the system. The parallelism of an application for the Cray XMT is

4.2. SIMULATOR OVERVIEW 69

Figure 4.3: Overview of the Cray XMT hashing mechanism

expressed through the use of pragmas and is mainly extracted by analyzing loop nests and
by mapping the loop iterations to threads.

4.2 Simulator overview

Figure 4.4: Overview of the simulator infrastructure

Figure 4.4 shows an overview of the simulator architecture. The simulator has been de-

70
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

veloped as mixed C/C++ code, and is portable across different Linux platforms. The simu-
lator only models the ThreadStorm compute nodes, where the computation of the applica-
tions happens. The binary of the application is loaded and predecoded at simulator startup.
Pre-decoding is a key feature of our simulator, since it allowed us to avoid modeling explicitly
the pipeline decoding stage. The binary instructions are therefore already decoded after this
pre-decoding stage. The memory state of the simulated applications is saved in a structure
optimized for size and speed, which contains both the data and the access state bits of each
memory cell. Operating system emulation support is provided by intercepting the system
calls in the simulated programs and by mapping them to the host system calls. As we will see
in the following, this system call emulation mechanism corrupts the simulated functional
timing concept, therefore has to be isolated from the timed simulation phases. Binary de-
coding, memory state, and system call management constitute the emulation component of
our infrastructure, while the ThreadStorm models represent the simulation component. The
various architectural building blocks of the processors are modeled in dedicated C++ classes,
which offer a clock tick method defining their timed behavior. The whole system is then in-
stantiated inside a top-level System class, responsible for activating the clock tick methods of
the whole hierarchy of components. Figure 4.5 shows a diagram of the class hierarchy within
the project. Only the main classes are shown for the sake of simplicity.

Figure 4.5: C++ class hierarchy

The parallelization strategy of our simulator generates a host thread for each simulated
ThreadStorm processor and relies on pthreads. In the best case scenario, a host core is as-

4.2. SIMULATOR OVERVIEW 71

signed to each simulated processor. In case there are more simulated processors than host
cores, we try to assign the same number of ThreadStorms to each host core. This mapping
strategy was chosen in order to provide a first level of load balancing among the different
threads that simulate the target cores. Figure 4.6 shows the adopted mapping strategy.

Figure 4.6: Sketch of the target core - host core mapping strategy on a 4-core x86 processor.

Regarding the simulation of the memory access latency, our simulation approach asso-
ciates to each issued instruction a latency counter. When the latency of the instruction has
expired, we update the corresponding stream state. At each clock tick, the simulator up-
dates the clock variables and decrements the latency counters. We will describe in detail
the latency assignment phase in the following sections. High performance of simulation is
maintained by applying several strategies, both inside the processor models and all over the
simulation infrastructure, that take into consideration the specific characteristics of the Cray
XMT and of the SMP host systems.

At the processor level, we support dynamic addition and removal of streams, depending
on the requests of the XMT runtime, which we run together with the applications through
static linking. Moreover, we integrated the support for zero-overhead switching among dif-
ferent accuracy levels at the application level, as will be discussed in the following. Since the
Cray XMT can execute multiple jobs at the same time, the runtime is also able to dynamically
allocate processors (defined as logical Teams of streams) from a minimum to a maximum re-
quested number. On the real machine this is useful for using processors that still have free
streams in a multi-job environment. On the simulator, the team allocation calls can be in-
tercepted to dynamically spawn new simulator threads.

At the system level, the main elements of our approach rely on the objective of simulat-
ing a machine that widely exploit the shared memory abstraction. As discussed previously
in Section 4.1, the memory of the Cray XMT is physically distributed, but a large number

72
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

of memory references is always traversing the network of the processors due to the address
space hashing. Thus, the typical approach in state-of-the-art simulators of modeling each
node as a component able to access only its own physical memory subset would incur in a
high overhead. This overhead would descend mainly from the messaging among the nodes
and from the operations required by the memory controllers for reading/writing data to
the memory state. The presence of memory hot-spots in the simulated applications, where
many references are concurrently accessing the same locations, would also hinder the over-
all performance of a parallel simulation by overloading few cores with all the incoming mem-
ory operations. Instead, we observe that, when running on a SMP system, the data structures
of the simulator are already shared. Consequently, each ThreadStorm model can already
access the locations referred by the memory operations, without requiring to describe the
interaction among the different models and to perform a detailed simulation of the inter-
connection network. The timings of local and memory remote operations can, in fact, be
obtained through a sufficiently accurate analytic variable latency model [17]. However, the
latency model should be able to account for contention effects, and allow easy modifica-
tions of the parameters for exploring possible future new configurations. Furthermore, this
approach requires efficient synchronization strategies to handle cases when multiple simu-
lator threads (each one simulating a ThreadStorm) try to access the same memory location
at the same time. Finally, it is still necessary to find low overhead solutions to synchronize
the simulation threads, since some threads can potentially proceed faster than others.

The emulation part of the infrastructure is composed of two elements. The first is a fron-
tend that decodes the XMT binary applications and manages the shared memory state. The
second implements system call support. We present them in the following sections.

4.2.1 Front-end

The simulator frontend [35] is responsible for decoding the binary of the XMT applications
and for managing the shared memory state of the simulator. At simulation boot-time, the
frontend reads the executable, decodes the VLIW instructions, and organizes the data in
three memory regions. The first contains the .TEXT segment, the second hosts the .BSS and
.DATA segments and the third is used to manage stack and heap segments. The first two
regions are organized as radix trees, to allow a fast lookup when fetching the instructions or
loading/storing data, while maintaining a reasonable size of the structures. For the .TEXT re-
gion, each leaf correspond to a pointer to a structure containing the operations (up to three)
forming the VLIW instructions and the lookahead value. For the .BSS and .DATA region the
leaves contain the data of the simulated memory cells. Once the simulated virtual address
has been identified in the host, the physical host address is used, avoiding the repetition of
the search in the radix tree. The elements of the stack and heap regions, instead, are dynam-
ically allocated on the host when requested by the simulated programs. To guarantee high
performance when allocating, reading, writing and freeing these dynamic memory regions,
their identifiers and sizes are tracked through tables, accessed by masking and shifting a re-
served range of addresses of the simulated memory space. The advantage of using masks
and shifts over accessing array elements is established with modern processor architectures
(in terms of available registers) and compiler technologies (in terms of best exploitation of
the available registers).

The simulated memory cells of the .BSS and .DATA regions and of the stack and heap
regions are composed by a 64-bit word, which contains the real data, and a 8-bit tag which

4.3. PROCESSOR MODEL 73

stores the access state bits. We use 8-bits for the access state to guarantee portability of the
simulator and efficiency in accessing the simulated memory cells.

4.2.2 System calls

In the Cray XMT, when a program performs an operating system call, it executes a load on a
reserved memory location where the syscall table is contained. In our simulation infrastruc-
ture, we trap these loads, and determine which specific system call is invoked by checking
the offset of the load on the syscall table. We then subsequently intercept the jump to the
syscall and execute it on the host, reading the parameters and writing the return values in
the appropriate registers following the function call convention of ThreadStorm Application
Binary Interface (ABI).

The Cray XMT environment supports around 240 system calls which perform operations
relating to memory allocation (e.g. brk, mmap, munmap), file statics and reading/writing,
process control and information maintenance. Process control and information mainte-
nance system calls includes identification of the executing streams, the identification, ac-
quisition and release of teams, the setting up and the reading of processor hardware coun-
ters (e.g. load/store counters, trap counters, stream create counters) and are proprietary for
the machine. We implemented the full set of common operating system calls and all the re-
quired specific XMT system calls to seamlessly execute any application. When intercepted,
memory allocation system calls are obviously mapped to our frontend, which allocates and
deallocates the requested memory from the memory state. File management system calls,
instead, are executed directly on the host file system. Note that the XMT runtime is based
on Free BSD, while our simulator has been designed for Linux hosts, so even the file man-
agement system calls may return different values. The simulator integrates the conversion
logic to map the values returned by the host-executed system call in the format expected by
the runtime. Process control and information maintenance proprietary system calls finally
interact with the simulator as requested. We underline that in the XMT, while team acqui-
sition and release are controlled with system calls, streams are managed with explicit create
and quit assembly instructions.

When a system call is invoked, before executing it we guarantee the consistency of the
state of the processor by allowing the completion of all the current pending memory oper-
ations. If a syscall is invoked during parallel simulation, we acquire a lock as soon as it is
recognized, assuring that there is only a syscall executing and so protecting memory alloca-
tion and file operations.

4.3 Processor model

In this section, we describe the implementation of the ThreadStorm processor model, de-
tailing the mechanisms for dynamic addition and removal of streams and teams. As shown
in Figure 4.4, for each ThreadStorm processor, we designed the stream states, the stream
scheduler and the pipeline with the three execution units. Each stream state comprises:

• the 32 General Purpose Registers (GP)

• the Stream Status Word (SSW)

74
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

• the 8 Target Registers (TG)

• the 8 Exception Registers (EX)

The M-unit supports lookahead the way the real machine does, and has a load-store
queue for each stream that manages up to 8 pending memory operations with out-of-order
retirement. We developed specific benchmarks to assess that also the real machine is imple-
menting out-of-order retirement of the completed memory operations. The A-unit and the
C-unit are mostly similar, since the C-unit can execute many of the arithmetic operations
of the A-units plus some control operations, and are modeled together. Each processor has
its own memory controller, which manages the accesses to the memory state following the
access control rules dictated by full/empty, forwarding and trap bits. The memory controller
also contains the model of the 128 KB data cache, and interacts with the memory and net-
work latency model when local or remote memory locations are accessed. The main features
of the memory controller will be discussed in the following sections.

4.3.1 Dynamic stream and team addition/removal

When the runtime system requires new streams, it executes one of the assembly instructions
that verifies how many streams are available in the processor and eventually reserves them
for future create operations (STREAM_RESERVE). To effectively create a new stream, it then
invokes another assembly instruction (STREAM_CREATE_IMM), which sets the basic con-
text, the initial status, the first program counter and finally sets the stream as available for
the hardware scheduler. The stream is released with a STREAM_QUIT assembly instruction.
It is important to say that all these assembly operations require the entire VLIW instruction
(M-A-C operations).

To speed up the simulation of the ThreadStorm processor, instead of instantiating the
stream contexts from the beginning, we implemented a solution that intercepts the calls to
the stream-related assembly instructions and dynamically adds or remove the stream con-
texts to the model. From the implementation point of view, we use a circular double-linked
list where each element of the stream list points to a dynamically allocated stream context.
Elements are circularly connected to the previous and next elements of the list, so streams
can be dynamically added and removed at any position with a constant number of opera-
tions, given only the stream identifier. The stream is available for scheduling if it appears in
the linked list, so no checking of the stream status is required, and the only procedure per-
formed by the scheduler is to follow the list. Since in many sections of the program the run-
time does not use all the 128 streams of the processor, the approach significantly reduces the
simulation time without changing the modeled behavior. Furthermore, the approach can
also limit the memory footprint of the models when simulating those programs for which
the developers asked, through the appropriate MTA pragmas, a low number of streams.

A similar strategy is followed to spawn the threads that simulate the ThreadStorm pro-
cessors. The XMT runtime, in fact, is able to acquire processors progressively, up to the max-
imum number that is requested when a job is submitted to the machine. We take advantage
of this behavior by trapping these requests, which, as previously discussed, on the real ma-
chine are performed through system calls and dubbed as Team additions. After trapping
the calls, we consequently spawn new threads, each one simulating a different ThreadStorm
processor.

4.4. DYNAMIC SWITCHING 75

4.4 Dynamic switching

Another crucial feature for speeding up simulation is the support for dynamic accuracy
switching during the simulation itself. Dynamic accuracy switching mechanisms make pos-
sible to enable accurate, but slow, simulation only on the interesting parts of an application
(e.g., computational kernels), while other parts (e.g., runtime boot, memory allocation) ex-
ecute in a functionally accurate, but much faster, emulation mode. This allows to run com-
plete applications with full datasets rather than stripped down versions, augmenting the rel-
evance of the analysis. We implemented this feature with no overhead for the simulator, by
offering a primitive that can be included at the application level. The following application
code snippet gives an example of how this simulator call can be inserted in the application,
to dynamically adapt the accuracy level to the relevance of different code regions.

...
#pragma mta fence
SIMULATE(1);
#pragma mta fence
\emph{Non timing critical code}
...
#pragma mta fence
SIMULATE(2);
#pragma mta fence
...
for(unsigned i=0; i<ARRAY_SIZE; i++){
reduction+=array[i];
}
#pragma mta fence
SIMULATE(0);
#pragma mta fence
...

The first code region is emulated with intermediate accuracy level, by calling theSIMULATE(1)
primitive. The MTA fence pragmas tell the compiler to not move instructions before or after
the place where they are placed. In the code, the reduction for is then simulated with high
accuracy by dynamically switching to the SIMULATE(2) mode, while the remaining of the
code is just emulated, by switching back to the SIMULATE(0) mode.

The simulator traps this primitive, similarly to a system call, during the execution of
the program and changes the accuracy level without disrupting the execution flow. The
SIMULATE() primitive is actually mapped in the same syscall table, but with reserved ad-
dress values. The dynamic switching works by changing the latency counters used in our
memory access latency simulation approach and by intercepting the stream-related instruc-
tions. The simulator supports three accuracy levels, as follows:

• Emulation 0: single cycle latency for memory operations and the pipeline, high retry
limit, no stream creation is allowed

• Emulation 1: single cycle latency for memory operations and the pipeline, high retry
limit, stream creation allowed

76
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

• Simulation: Network and memory latency models for memory operations, 21 cycles
latency for the pipeline, real machine retry limit, stream creation allowed.

Emulation 0 removes all latencies, thus it is to issue an instruction and execute all launched
memory operations in each simulated clock tick. It runs a single stream for each team (pro-
cessor) allocated, therefore achieving higher speed. Emulation 1 adds stream creation, al-
lowing the application to grow the number of streams to the number requested by the run-
time (or up to the physical limit, whichever is reached first). It can be useful for executing
warm-up runs, allowing the runtime to perform stack expansion before the timed runs. For
these two accuracy levels we also raise the retry limit for the memory references. The retry
limit is a parameter of the Cray XMT runtime system that determines the maximum number
of times a memory reference can be retried before the memory operation returns with an
error code, when the destination memory cell is locked through the full empty bit. When
the retry limit is reached, an exception is generated and then handled by a runtime trap
handler, which eventually re-executes the memory operation. If it fails again, it moves to a
monitor-type synchronization by setting one of the trap bits and queuing the waiting oper-
ation. This mechanism is used for synchronization-intensive programs to reduce the traffic
due to repetitive polling on locked memory locations. Since the trap handler is quite large,
and all the latencies are zeroed, in low accuracy modes we allow the operations to continu-
ously retry until a location is unlocked. Simulation, instead, enables the maximum accuracy
by using the full network and memory latency models and simulating the real latency of
the ThreadStorm pipeline. Since traps are relevant for synchronization operations, the retry
limit is also set to the values used on the real XMT.

Table 4.1 recaps the main features of the three accuracy levels selectable at runtime.

Emulation 0 Emulation 1 Simulation
Memory Latency NO NO YES

Cache Latency NO NO YES
Retry Limit Traps NO NO YES
Pipeline Latency NO NO YES
Stream Creation NO YES YES

Table 4.1: Main features of the three accuracy levels

4.5 Host thread synchronization

One of the key features of every parallel software simulator is thread or process synchroniza-
tion. It usually is the limiting factor toward scalability, and is required both with shared-
memory based simulators, which usually employ threading libraries to this aim, and with
distributed-memory simulators, which usually rely on process APIs such as the MPI library.
In our simulator, all the simulated processors are clocked independently. From the func-
tional point of view, synchronization of the simulated programs is obtained by the simu-
lated synchronization features inherent to the ThreadStorm themselves. However, when
simulating systems with multiple ThreadStorms at the maximum accuracy level, we may
have threads that perform more work than others due to an unbalanced stream andor team

4.5. HOST THREAD SYNCHRONIZATION 77

assignment. Therefore, to obtain a state coherent with the real machine, we still need a syn-
chronization mechanism to reduce the divergence among the simulator threads.

As explained in Section 2.2, several alternatives were available at the state of the art for the
issue of simulation threads synchronization. Some are trivial, other are complex and employ
speculative execution of the simulating host threads and consequent roll-back mechanism
in case inconsistencies are generated. In general terms, a trade-off can be identified between
the synchronization granularity, which defines the slacks that might occur in simulated time
among the host threads, and the performance overhead introduced by the synchronization
primitives.

In our simulator, this objective is reached by implementing a “relaxed” pthreads barrier
synchronization. We insert the barrier construct every 65,000 simulated clock ticks, which
we empirically verified to allow for fair progression of all the simulation threads. The param-
eter is, anyway, tunable. Furthermore, when the number of simulated processors is less or
equal to the number of host cores, our infrastructure also exploits thread pinning to remove
eventual overheads due to context switching. When the number of threads is higher than the
number of cores, instead, we trigger every 1,000 clock cycles a scheduler yield that makes it
switch to other waiting threads, guaranteeing a more efficient progression.

The following code snippet identifies the main features of our thread synchronization
approach.

void * run_thread (void * data)
{

...

System * system = (System *) data­>system;

if (num_teams > num_proc)
pin_thread (tid);

pthread_barrier_wait(&barr);
int64_t i = 0;

while (i < cycles || cycles == ­1) {
(system­>teams[tid])­>clock_tick ();

if (i % 1000 == 0)
sched_yield();

if (i % 65536 == 0) {
pthread_barrier_wait(&barr);

if (! (system­>active)) {
break;

}
pthread_barrier_wait(&barr);

}
i++;

}

78
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

...

return NULL;
}

4.6 Memory and Network model

In the Cray XMT, the shared memory abstraction and the granularity of the memory hash-
ing make it extremely difficult to efficiently model the network and its interaction with the
memory controller. On the other hand, these same features also allow using a faster latency
model for describing the behavior of the memory operations and the network. In fact, the
occurrence of network congestion or memory hot-spots is mitigated by the address scram-
bling. Our assumption is that, when simulating the ThreadStorm processors on a SMP, the
memory state is already shared among the threads mapped to the different models, so we
only need to determine the delay of a memory operation and, after that delay, change ac-
cordingly the appropriate slot of the M-unit. This means that there is no need to perform an
actual remote host memory operation every time a target memory operation is simulated,
but we only need to model the latency that the target memory reference would incur into, in
order to maintain timing accuracy.

To determine these delays, we developed a variable latency model, that takes into con-
sideration topology of the network and behavior of the data caches on the memory con-
trollers. In addition to these factors, the model is also able, upon selection from the designer,
to capture contention effects. This model has been conceived and tuned by running ad-hoc
benchmarks on the real machine. The validation of the model has also been carried out
by comparison with application executions on the real machine. By using such a latency
model, we let the cores that simulate different processors access the same shared structure,
thus we also devised an efficient method for synchronizing the accesses. In general terms,
memorynetwork latency can be expressed as the sum of two components:

L = Lst ati c +C (λ) (4.1)

where Lst ati c equals the (static) latency of the packet traversing an empty network and C
is an estimation of the dynamic contention dependent on the actual load of the network λ.
To capture this behavior, we introduced in the latency estimation subsystem a mechanism
based on contention counters. We are now going to describe how we estimate the static and
dynamic contribution to memorynetwork latency.

4.6.1 Static latency estimation

To estimate the static latency of the memory subsystem, we have performed a set of exper-
iments on the real machine, programming several read accesses to a large block of virtually
contiguous-address data, while executing a single stream on a single processor. The exact
latency of each access has been measured using the ThreadStorm 64-bit clock counter, pop-
ulating the histogram that we show in Figure 4.7. Since the specific Cray XMT system used
for the experiments adopts a 4x4x8 3D-Torus network topology, with dimensional routing,
the maximum number of hops covered by a message, ignoring faults, is 8.

4.6. MEMORY AND NETWORK MODEL 79

Figure 4.7: Latency histogram for memory-scrambled array accesses

Local memory cache hit and cache miss latencies, as well as the latency incurred by a
single-hop memory access within the network, can be spotted from a visual inspection of
Figure 4.7. The lowest measured latencies pertain to read accesses on the local memory (i.e.,
the memory residing in the same network tile of the processor that issues the read operation)
with a cache hit. The next larger latency also pertain to a local memory access, but shows an
additional delay due to a cache miss. All the higher-latency samples are related to read ac-
cesses to remote memories. Such kind of accesses undergo the latency of the source and
destination memory controllers and network interfaces, in addition to a variable count of
hop delays, depending on the distance between the issuing processor and the target mem-
ory. Note that these measurements only depend on the size of the Cray XMT system: even
when using a single processor, data are distributed all over the memory partitions due to the
shared memory abstraction and the scrambling. Thus, when determining the latency of the
memory operations, we are only interested in the size (total number of processors) of the
simulated XMT system.

Estimated values of the latency parameters can be obtained as follows:

Lmax =N _HOPmax ∗LHOP +LMC+N IC +Lmi ss (4.2)

Lmi n =LHOP +LMC+N IC +Lhi t (4.3)

where LMC+N IC and LHOP respectively stand for the latency of the memory controller -
network interface path and for the latency of a single hop within the torus network. Lmax

and Lmi n are easily measured along with the latency acquisition, while Lhi t and Lmi ss can
be determined with high accuracy from the lowest latency values. Therefore, considering a
4x4x8 3D torus network, N _HOPmax equals 8, LHOP and LMC+N IC can be obtained with the
same accuracy.

4.6.2 Contention evaluation

The latency model described in Section 4.6.1 accounts for the latency variability introduced
by the scrambling. However, for high workloads or particular memory access patterns, net-

80
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

work latency is also affected by memory/network contention. Contention may appear when
applications employ high processor counts or when a limited number of processors access
simultaneously the same few memory locations. The latter case might lead to hot-spots in
the interconnection network or in the memory controller, even if countermeasures exist in
the hardware to mitigate their effects [16], [5].

Memory contention evaluation

We started considering memory contention separately from network contention. In order to
evaluate contention on the memory controller only, we isolated the case of different memory
references incoming to a single memory controller. The tests run with an increasing number
of streams, from 1 to 100, on a single processor. Each stream executes two loads on the
local memory controller. The loads are scheduled to be issued at the same time, in a non-
blocking fashion. The accessed address is identical for all the streams, ensuring that the
same bank inside the local memory is selected. The streams are also explicitly synchronized
via an assembly-optimized barrier before the loads can be issued.

The ThreadStorm M-Unit supports a maximum of 180 total pending memory references
for all the streams that are running on the processor. Since our test generates up to 100
streams, scheduling 2 loads per stream practically ensures that this limit is never reached, as
the streams are still slightly de-synchronized. This residual de-synchronization is due to the
cycle-by-cycle stream scheduling process and is thus unavoidable.

Figure 4.8: Contention on the memory controller

Figure 4.8 plots the results of the described test. The contention generated at the memory
controller interface is limited to few tens of clock ticks for up to 200 simultaneous loads.

Network contention evaluation

Regarding contention on the whole network, we designed different tests, using 128 proces-
sors to generate an increasing number of memory loads. Every load is performed by a dedi-
cated stream. The number of streams running in each of 127 processors is randomly chosen
to perform the desired overall number of loads. The 128th processor, instead, runs a single

4.6. MEMORY AND NETWORK MODEL 81

stream, which performs another load to a specific address and measures the related latency.
The address is chosen in order to define a specific distance from the source processor to
the destination memory. For a 4x4x8 torus network, distance ranges from 1 to 8 hops. The
contention measures were acquired according to two benchmark configurations, which gen-
erate traffic patterns with opposite distributions:

1. The interfering streams, running on 127 processors, perform a load on a random mem-
ory address, causing the statistical distribution of the generated network traffic to be
uniform. The 128th stream, which measures the latency, performs a load on a memory
address to an increasingly distant memory, from 1 to 8 hops.

2. All the interfering streams, running on 127 processors, perform a load on the same
memory address which is being accessed by the reference stream, on the 128th pro-
cessor. Again, the distance between the 128th processor, which measures the load
latency, and the accessed memory increases from 1 to 8 hops. Since every stream is
now accessing the same address from randomly different sources, the network traffic
is not uniformly distributed. Instead, the destination router and the closest ones will
undergo a heavy traffic, resulting in the formation of network hot-spots.

Figure 4.9 shows the latency for the case of maximum source to destination distance (8 hops),
when the interfering streams access random addresses or the same address. In presence of
randomly directed traffic, the measured contention is limited to 100 clock ticks, resulting in
a barely noticeable 10% delay increase. When all the streams access the same address, in-
stead, a hot-spot occurs and contention generates delays of thousands of clock ticks. It is
worth nothing that network contention and memory contention are not distinguishable by
only looking at these numbers. However, it is likely that the contention measured when mul-
tiple streams are accessing the same location is originating both from the memory controller
and from the last routers along the communication path. Thus, we decided to focus on the
modeling of the global contention behavior, rather than trying to separately identify the two
contributions.

Figure 4.9: Contention measurements for a single load to a memory location at 8 hops, with
an increasing number of interfering accesses on random addresses or on the same address.

82
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

Also, Figure 4.9 suggests a linear relationship between the load latency and the total num-
ber of packets in the network. This confirms that the arbitration algorithm implemented in
the SeaStar router assigns the available bandwidth to the output-queued packets in a fair
manner, through the adoption of an age-based arbitration scheme [5].

Single hop network contention

In order to assess the contention occurring on a single router output channel, we also ran a
more detailed benchmark. We measured the latency of a load from a processor to a 1-hop
distant memory controller, when all the other neighboring processors are accessing, at the
same time and with multiple streams, the same memory controller. This benchmark limits
the contention generated by the interfering streams to the output port of the router to which
the accessed memory controller is attached. In fact, since the interfering streams run on the
neighboring processors (1-hop distance), they all converge to the same output port of the
destination router from different input ports.

We enabled a maximum of 200 memory load per processor, yielding a total number of
1200 interfering memory loads. Figure 4.10 plots the resulting latency.

Figure 4.10: 1-hop load latencies with neighboring processors interfering to the same ad-
dress.

4.6.3 Contention modeling: a speed-accuracy trade-off

In modeling the contention that takes place in the network and memory subsystems, it is
well known that a speed-accuracy trade-off holds [17], [23]. In the evaluation of the best
solution to this trade-off, we found that the Cray XMT machine, with its particular memory
organization and fine-grained hashing of the address space, was worthy a detailed explo-
ration. In this section, we present the characteristics and the implementation details of three
different accuracy-level network models that we want to compare. We also highlight how the

4.6. MEMORY AND NETWORK MODEL 83

contention estimation is related to the results obtained through the benchmarks described
in Section 4.6.2.

In general, latency assignment to every memory operation within the simulator is han-
dled in a twofold manner. First, a static component of the latency is assigned at the gener-
ation of the memory reference, inside the M-Unit. If network contention simulation is en-
abled, a dynamic contribution is then added according to the level of estimated contention.

To estimate this dynamic contribution to latency, we decided to implement a set of mech-
anisms based on contention counters. In designing a counter-based contention prediction
technique, the main available degrees of freedom are:

• the granularity of the contention counters. This ranges from a single contention counter
that accounts for all the memory references entering the network to dedicated con-
tention counters for each input/output port of every single router of the network.

• how the latency is calculated as a function of the contention counters. The complexity
of this function contributes to the overhead on the simulator speed.

As hinted above, there is a trade-off between the accuracy of contention estimation and
the resulting overhead on simulation speed that needs to be solved conveniently. The single
counter solution is very simple and lightweight, but does not account for the network topol-
ogy at all and is not able to distinguish between accesses to different memory locations,
therefore missing the formation of network hot-spots. On the other end, dedicated counters
for each router input/output port are able to track the actual message path, hence detecting
possible network hot-spots, but show high complexity and simulation overhead. We imple-
mented three different models, that simulate the network behavior at an increasing level of
detail. Each one of these represents a different evaluation of the simulation speed-accuracy
trade-off. All the models are integrated in the simulation framework and the selection on
which model to use is done at the beginning of the simulation. The main features and re-
lated differences are described below.

Static model

The first model is also the basic operation mode of the simulator, which we already described
in Section 4.6.1. It essentially accounts for static network parameters and does not consider
any kind of contention when predicting the memory access latency. On the other hand, this
solution has two important advantages with respect to simulation speed.

First, very few calculations have to be done to predict the latency value. It is only re-
quired to translate the accessed virtual address into a physical address and then calculate
the number of hops from source to destination. Dimensional routing is used, according to
the SeaStar interconnection network architecture [5]. Second, when integrated into a par-
allel simulator, this solution does not introduce any data structure to be shared among the
simulator threads. For this reason, network modeling does not require any further synchro-
nization mechanism.

Destination-based contention model

The second model is able to capture network contention. It extends the static latency assign-
ment of the previous model with a contention estimation based on counters. Each memory

84
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

inside the network has an associated event counter. Every memory reference operates on
the counter related to the destination memory. The contention contribution depends only
on the value of that specific counter. Therefore, the assigned latency depends only on the
number of references that are specifically accessing the same destination memory.

The rationale behind such model comes from the experiment results plotted in Figure
4.9. From those experiments, it appeared that the uniformly distributed traffic does not ex-
perience significant network contention. Instead, when undergoing highly-patterned traffic
flows, the network was not able to mitigate the effects of resource contention, and end-to-
end latency increased noticeably.

From an implementation point of view, the simulator operates as follows. When process-
ing the memory reference, the contention counter will be incremented every time a memory
reference is entering the network, and decremented at the exit point, separately for the for-
ward and backward paths. The contention contribution is then estimated as a linear func-
tion of the counter value over a certain threshold. By looking at Figure 4.9, the linear approx-
imation over a certain threshold appears to be quite a straightforward choice. In Section
4.6.2, we found the slope and threshold values to vary with the distance between measuring
processor and accessed memory. Likewise, we now set the threshold value and the slope to
depend on the distance between the source and the destination processors. Since we chose
to associate a different contention counter to each destination processor, the threshold and
slope parameters have been tuned to fit the results for the case of interfering accesses di-
rected to the same address.

This model introduces an additional overhead in simulation speed with respect to the
static model. The computation of the contention for each memory reference is quite similar,
since it requires only an additional linear curve evaluation. Instead, accessing the counters,
which are shared among the different processors, requires specific synchronization for the
simulation threads, therefore potentially reducing overall speed.

Detailed distributed contention model

The third model has the highest level of detail and is able to capture contention on the single
router output link assignment. It associates an event counter at each different router output
port and traces the complete path followed by the packet from source to destination. The
entire path through the network is simulated through a Finite State Machine (FSM). For ev-
ery transaction, the FSM keeps trace of the router that contains the packet, at each specific
clock tick. The path is calculated using dimensional XYZ routing. The state changes when
the latency necessary to traverse that router has expired. The latency is estimated before
entering the router, and accounts for two contributions. The first one models static router
delay and is constant. The second one models actual contention on the required output
port, considering the number of packets that are currently requiring that port. This number
is stored in the contention counter associated to the desired output port. The counter is in-
cremented once the packet enters the router and decremented once the link is assigned to
that packet. In Section 4.6.2 we presented a benchmark that isolated contention on a spe-
cific router output port. Figure 4.10 reported the latency-vs-traffic curve. According to the
curve, we modeled the relation between the contention contribution to router latency and
the reference counter to be linear with threshold. The threshold and slope values have been
tuned to fit the least square regression line of the curve.

4.6. MEMORY AND NETWORK MODEL 85

Although the model is able to capture link contention, it does not account for packet size
and for worm-hole routing effects, which take place when packets have more than 1 flit. This
assumption relies on the fact that SeaStar2 network packets have a relatively low limit for the
payload size (64 bytes) [5].

This model generates a significant overhead to simulation speed, both for latency com-
putation and for thread synchronization. First, it inserts all the computation necessary to
handle the network FSM. Second, each memory reference requires several accesses to the
shared output port contention counters, instead of a single access as in the previous model.

Evaluating the tradeoff

This section presents the quantitative evaluation of the different models described above
with the actual XMT machine. The reference application is based on an implementation of
the Aho-Corasick string matching algorithm, which we will describe in detail in the follow-
ing. So far, it is important only to know that we experienced on the real machine a lot of
contention with this application. The considered application has a reference English dictio-
nary of 20K patterns. We used three different inputs, an English text file, a TCP traffic dump
and random input. The machine on which the experiments have been run is an 8-core work-
station with 2 sockets and a quad-core Intel Xeon X5560 processor per socket, running at 2.8
GHz. The machine is equipped with 24 GB of RAM and supports the HyperThreading tech-
nology. The reference XMT machine is a 128-processor configuration that employs a 4x4x8
3D toroidal network topology. The results are presented with respect to simulation accuracy
and simulation speed, in order to evaluate the trade-off in modeling detail.

Left part of Figures 4.11, 4.12 and 4.13 compare the execution times of the XMT against
application execution when employing the different network models. In this case, a static
network simulation with 8 processors underestimates the overall execution time of 50%. It
is important to recall that, on such kind of DSM machines, even when low processor counts
are used to run the application kernel, the memory is still physically distributed across all
the network. Therefore, the distribution of the destination memories still spans across the
entire 128-nodes network.

Figure 4.11: English text input

Right part of Figures 4.11, 4.12 and 4.13 plot the accuracy numbers with respect to execu-
tion on the reference Cray XMT machine. Accuracy measurements are expressed as signed
numbers. A positive number indicates that simulation is overestimating the execution time
with respect to the real machine.

Figure 4.14 plots the simulation speed results for the different network models. As ex-
pected, the comparison results in decreasing speeds as the level of detail of the simulation

86
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

Figure 4.12: TCP dump input

Figure 4.13: Random input

increases. This is more evident as long as the simulator POSIX Pthreads are not context-
switched to share host cores, thus up to 8 simulated processors for our experimental con-
figuration. Beyond that point, thread switching overhead becomes dominant and the speed
difference is less noticeable. The static latency prediction mechanism obviously achieves
the highest speed, about 500 KCyclessec on this specific machine. When inserting the dy-
namic contention estimation, the destination-based model introduces the shared counter
logic and further inter-thread synchronization overhead that result in a 20% reduction of the
overall simulation speed. In turn, when contention estimation is improved to a finer granu-
larity, like in the distributed model, another 15% of the simulation speed is lost.

Figure 4.14: Simulation speed results.

4.6. MEMORY AND NETWORK MODEL 87

In terms of number of simulated processors, the results for all the different models are
coherent with the parallelization scheme of the full-system simulator. By mapping each sim-
ulated processor to a single pthread and synchronizing them with a loose barrier scheme,
simulation speed is essentially kept constant up to the number of available physical cores
(i.e. 8 in this experimental configuration). Over the number of available physical cores, sim-
ulation speed starts to decrease due to the overhead of thread context switching. If specific
multi-threading technologies are available on the machine that runs the simulator (e.g., In-
tel HyperThreading technology) this effect might be mitigated up to the number of available
logical cores. Nevertheless, thread synchronization and memory bandwidth of the host ma-
chine still have an impact on simulation speed.

Accuracy results have shown that the static latency estimation mechanism is not viable
for specific inputs or high processor counts. Of the two different dynamic latency assign-
ment models that have been developed, the most convenient solution to the speed-accuracy
trade-off seems to be the destination-based contention model. In fact, in terms of accu-
racy, the results are similar whereas, in terms of simulation speed, the distributed contention
model is 15% slower.

Although it might seem strange that the distributed contention estimation obtains the
same accuracy as the destination-based model, the actual reasons for these results are inher-
ent to the whole Cray XMT simulator organization. In fact, the simulator models the actual
memory scrambling guaranteeing that the overall data distribution across the network has
the same distribution (i.e. uniform), but it does not implement the same exact scrambling
mechanism implemented in the real hardware. Moreover, the mapping of the logical pro-
cessors to the actual processors of the network is performed by the operating system, and
might change noticeably from run to run. In particular, fine-grained synchronization and
the related timing are highly dependent on the mapping of some specific variables. All these
factors make it unfeasible to achieve accuracies finer than 5-10%. This is especially true for
applications that execute in times of the order of seconds, like the ones we considered for
this work. The mentioned remarks are generalizable for all the multi-threaded machines
that make use of memory scrambling and fine-grained synchronization mechanisms to op-
erate on a large physically distributed shared address space.

4.6.4 Cache modeling

The memory controller of the ThreadStorm processor hosts a 128 KB 4-way associative data
cache. This is the only data cache present in the architecture and it does not need any co-
herency protocol, since it only caches the data from its own memory partition. The cache
acts with a Least Recently Used (LRU) policy, and has a line size of 8 words (64 bytes), cor-
responding to the granularity of the XMT scrambling. Consequently, when there is a miss
in the cache, the whole line is pulled from memory and saved in the cache, even if only the
requested value is returned to the memory operation. Subsequent local or remote accesses
to one of the words in the line will then hit the cache, reducing the latency of the memory
operation.

The rationale behind this cache is not to exploit locality, usually not present in irregular
applications, but to enable protocol translation between Threadstorm and HyperTransport.
However, it has a noticeable impact on the overall accuracy. To account for the effects of
this cache in our variable latency model, we directly modeled it in the memory controller.
When the delay of the memory operation is determined (regardless of the fact that con-

88
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

tention modeling is enabled or not), we know which is the location of the requested data
in the simulated memory space by just checking the address and following the scrambling
algorithm. By knowing the simulated memory location, we calculate the number of network
hops that the memory operation should traverse to reach the destination memory controller.
We then check the cache pertaining to the destination memory controller, to see if the data
is already present. If so, only the cache hit latency is added to the network latency and the
memory controller - NIC interface latency. If the data is not present, instead, we add the
latency of the cache miss, also including the actual memory access, and consequently cache
the whole memory line, following the LRU replacement algorithm. Note that checking and
eventual replacement of cache lines is performed by the thread executing the simulated pro-
cessor model, eliminating the need of communication among the threads.

4.6.5 Synchronization and further optimizations

Since the simulator threads running the ThreadStorm models do not communicate, a syn-
chronization mechanism is required in case the same location of the memory state is concur-
rently accessed by more than one simulated processor. Our design choice was to implement
a vector of mutexes, assigning multiple memory state locations to the same lock. Empiri-
cally, we set the size of this vector to 1024 elements. Implementing a lock for each memory
location would, in fact, be overly expensive in terms of memory occupation, and hardly use-
ful. A memory operation updates the memory state only when the delay calculated through
the latency model has passed, so it is very unlikely that more than 1024 different locations are
updated exactly at the same time from different simulated processors. On the other hand, we
still guarantee that the memory state seen by the various processors when the same memory
location is accessed intensively remains coherent.

As previously explained, cache updates are performed by the threads that request a mem-
ory operation. Consequently, in case of a hit, it is necessary to lock the cache line to update
the data, while in case of a miss it is required to lock the line chosen for replacement. For
synchronizing these operations we defined, for each data cache, a vector of locks whose size
corresponds to the number of cache sets. Since the cache is 4-way associative, there are 512
sets, with each set containing 4 lines, and thus we lock a full set. As cache sets are frequently
accessed, this choice guarantees high performance by only acquiring a lock if really neces-
sary for set updates. When simulating a machine with 128 Threadstorms, the vector of locks
for the caches has size 65,536.

We also optimized the M-Unit model to reduce the overheads when managing memory
operations. In the ThreadStorm, when lookahead is enabled, each stream launches memory
operations in order (as in a circular queue) and retires them out-of-order. Thus, a standard
implementation of the load store/queues with a vector would require continuous checking
to find the started and the completed memory operations. Each of the 128 streams of a
ThreadStorm can launch up to 8 memory operations, so every clock tick the check would be
performed 1024 times. Instead, we count and separately save the indexes of those operations
effectively started. The variable latency model is then applied only on them. Memory oper-
ations complete when the latency calculated through the model has passed. When this hap-
pens, a flag is set. Retirement (i.e., register write back, exception generation) is performed
only at those clock ticks in which the flag is active.

4.7. EXPERIMENTAL EVALUATION 89

4.7 Experimental evaluation

We performed several experiments to assess the accuracy and the performance of the simu-
lator with respect to the real Cray XMT supercomputer. In this section we initially describe
the large SMP simulation hosts and the applications used as benchmarks, discussing their
main features. Then, we show how our accuracy achieved on all the benchmarks. Finally, we
discuss the performance scaling of the simulator.

4.7.1 Experimental setup

Many of the considered applications are irregular. Most of them have been specifically op-
timized for the Cray XMT and benefit from its architectural features. In detail, we chose the
following benchmarks:

• a 1000-by-1000 matrix multiplication. Although matrix multiplication is not irregu-
lar, we included it to validate the simulator performance and accuracy only with the
synchronization introduced by the runtime for workload distribution.

• a multithreaded implementation of the Breadth-First Search (BFS) algorithm for the
Cray MTA-2 [10], using as input a 20,000-vertices-200-neighbors graph.

• an implementation for the Cray XMT of the Aho-Corasick string matching algorithm
[52], using a dictionary of 20,000 English words and three different input streams: the
King James Bible (KJV), a TCP/IP dump and a data set with entries generated at ran-
dom from the ASCII alphabet with an uniform distribution (RND). We execute a stan-
dard and an optimized (to reduce hot-spotting) version of the algorithm.

• 5 kernels from GraphCT, a Graph Characterization Toolkit designed for the analysis of
graphs representing social network data [26]. The benchmark is also able to generate
artificial datasets, configurable in size and shape. In our experiments, we used the
Degree Distribution, the Connected Components, the Modularity, the Conductance and
the Clustering Coefficient kernels on artificial graphs with 219 vertices.

• an optimized triadic analysis applications for the Cray XMT [18], typically used for
finding interesting aspects of a social network. We used two different datasets: a medium
sized one, The Edinburgh Associative Thesaurus from the Pajek datasets [12] and a
large one, representing the graph of the related clips from Youtube.

All the applications, after being compiled and statically linked with the Cray XMT toolchain
6.4, have been executed unmodified on the simulator. We conducted the simulations on two
different SMP host machines. The first is a dual Intel Xeon 5650 (Westmere) machine, where
each processor includes 6 cores with HyperThreading (2 threads per core, for a total of 12
cores and 24 threads), 12 MB of L3 cache and runs at 2.66 GHz. The machine has 24 GB of
DDR3-1066 memory. The second system, instead, presents 4 AMD Opteron 6176 SE (Magny
Cours) processors and 256 GB of DDR3-1066 memory. Each Opteron features 12 cores, or-
ganized in two dies of 6 cores with 6 MB of L3 cache and runs at 2.3 GHz. Thus, the system
has a total of 48 cores. In the rest of the section, we refer to the Intel machine as the 12-core
Xeon and to the AMD machine as the 48-core Opteron. Both the machines use Redhat En-
terprise Linux 5.5 with kernel version 2.6.18-194.26.1.el5. The simulator has been compiled

90
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

with GCC 4.4 at optimization level O3, enabling the specific flags for each architecture. The
results of the simulator have been compared to execution times of the applications on the
real Cray XMT supercomputer with 128 ThreadStorms.

4.7.2 Simulator accuracy

Figure 4.15: Simulator accuracy for the different benchmarks, with increasing number of
teams.

Figure 4.15 reports the accuracy data in Simulation mode while increasing the number
of teams up to 128 for all the benchmarks. For each applications, we performed 10 runs both
on the actual hardware and on the simulator, averaging the execution times and determining
the percent relative accuracy. The simulated execution times do not diverge from the real
XMT ones by more than 10%, for all the applications. The majority of the results is under
the 5% range, also including long benchmarks, such as the Triadic analysis on the Youtube
data set (around 180 seconds on a single ThreadStorm), and benchmarks with large memory
footprints, such as the GCT kernels. BFS, which is a synchronization intensive benchmark,
remains under 1% up to 64 teams and under 3% for 128 teams.

Figure 4.15 also highlights a non predictable fluctuation of the simulator accuracy.
This effect is due to the memory scrambler of the XMT and to the team allocation per-

formed by the runtime. In fact, the simulator follows the uniform distribution of the XMT,
but the actual hardware scrambling mechanism is proprietary. Furthermore, the specific
ThreadStorms chosen by the runtime on the XMT may be different from run to run, pos-
sibly not coinciding with those selected on the simulator. This behavior alone can already
cause performance variations on the real machine around 10%. Both scrambling and team
allocation determine different network hop distances for the variables involved in stream
and team management (spawning, synchronization, joining), thus influencing the execu-
tion times. Errors under 10% for a supercomputing machine also are excellent with respect
to the current state of the art.

4.7.3 Simulator performance

Figures 4.16 and 4.17 show the slowdown incurred by the simulator in its different accuracy
levels with respect to our reference XMT machine, while scaling the number of teams of the

4.7. EXPERIMENTAL EVALUATION 91

Figure 4.16: Slowdown of the standard Aho-Corasick benchmark on the KJV data set with
increasing number of teams

Figure 4.17: Slowdown of the matrix multiplication benchmark with increasing number of
teams

target architecture up to 128. By discussing the slowdowns, calculated by dividing the simu-
lation or emulation times by the execution times of the real machines, we can fairly compare
the various operating modes. We consider the slowdowns for the Aho-Corasick algorithm
and for the matrix multiplication, because these represent two opposites in our benchmark
set. In fact, matrix multiplication only involves the static synchronization of the runtime for
spawning and joining threads. Aho-Corasick, instead, presents larger amount of synchro-
nization at the application level. This in turn causes higher synchronization overheads in
the runtime, for dynamic work scheduling among simulated streams, and in the simulator,
for contented locks on the shared memory state. We can see that, in Simulation, the in-
frastructure maintains a constant slowdown with respect to the XMT, up to the number of
available host cores.

With Aho-Corasick (Figure 4.16) the 12-core Xeon maintains a slowdown around 500
times up to 12 teams, while the 48-core Opteron presents a slowdown between 700 and
900 times up to 48 teams. Although the 12-core Xeon shows a better single threaded per-
formance, due to the higher clock rate and the improved architecture, the 48-core Opteron
shows a significant performance advantage, resulting in many cases more than twice as fast,
when simulating higher number of teams. The reason is, obviously, that the host cores are
oversubscribed with fewer simulation threads. Since all the simulated teams have a substan-

92
CHAPTER 4. A PARALLEL SOFTWARE SIMULATOR FOR HIGH PERFORMANCE COMPUTING

SYSTEMS

tial workload, there are not benefits from HyperThreading on the 12-core Xeon: the slow-
down goes from 500 to 800 times when raising the number of teams to 16, and doubles with
24. In Simulation, these slowdowns correspond to a peak performance around 1,000 KCy-
cles/s for the 12-core Xeon and around 600 KCycles/s for the 48-core Opteron, when map-
ping a single simulation thread to each host core. The 48-core Opteron reaches 250 KCycles
with 128 teams. As a reference, the ThreadStorm runs at 500 MHz. Emulation 0 slowdowns
start from 20 times for the 12-core Xeon and 25 times for the 48-core Opteron with 1 team,
and remain under 100 times with 128 teams for both. In this mode, all the latencies are re-
moved, the contention is not considered and only a single stream per team is used. In the
Aho-Corasick benchmark, the synchronization overheads become prevalent and the multi-
processor/multi-die configuration of the 48-core Opteron has a significant impact. In fact,
lock and barrier constructs are up to twice as slower on the 48-core Opteron, and this is re-
flected in performance similar to the 12-core Xeon for large numbers of teams. The behavior
is confirmed when moving to Emulation 1, where stream creation is enabled. Again, the per-
formance of the host machines remain similar with many teams, because the synchroniza-
tion overhead has a major impact. Since each team is now emulating multiple streams, and
each stream is performing synchronization operations, the overhead is even higher. So, the
performance of Emulation 1, which is much better than full Simulation for few teams, gets
progressively worse. Nevertheless, it still remains useful for warm-up runs, when compared
to full Simulation.

The matrix multiplication benchmark (Figure 4.17) shows the same, stable behavior in
Simulation, when there are fewer simulation threads than host cores, for both the machines.
Since the workload distribution among the teams is more balanced, the slowdown grows
proportionally with the number of teams assigned to a host core. For example, for the 48-
core Opteron, we can see that the slowdowns up to 48 teams remain between 1000 and 1200
times, the slowdown for 56 and 64 teams aligns at 1600 times and the slowdowns for 96 and
128 teams are on the 2000 times line. However, the Simulation slowdown of matrix multi-
plication with respect to Aho-corasick is higher, due to the higher computational intensity.
In terms of KCycles/s, in Simulation our infrastructure reaches 800 KCycles/s on the 12-core
Xeon for low number of teams, and 200 KCycles/s on 48-core Opteron system for 128 teams.
Emulation 0 slowdowns range from 21 to 172 times for the 12-core Xeon and from 31 to 211
times for the 48-core Opteron. Emulation 1, instead, runs from 64 to 500 times slower for
the 12-core Xeon and from 113 to 300 times slower for the 48-core Opteron. With high num-
bers of teams, the 12-core Xeon results faster than the 48-core Opteron in Emulation 0, but
it is slower in Emulation 1. At the opposite of Aho-Corasick, it is the single stream used in
Emulation 0 that increases the synchronization requests of the runtime. In fact, the work
queues are static and always present the same number of elements (i.e., all the independent
operations resulting from the unrolling of the multiplication loop) at all the accuracy levels.
However, since the operations are independent, with multiple teams the work is distributed
more evenly to the different simulated teams.

Combined together, the high performance and the good accuracy make our infrastruc-
ture a valuable tool for the study of multithreaded architectures. By purposely modifying key
elementary components and latencies, such as cache, memory, network hops, load/store
queues or thread switching, with parameters from other vendors, roadmaps or by introduc-
ing potentially interesting new architectural solutions, our simulator will be able to provide
interesting insights on the development of next generation massively multithreaded ma-
chines.

Chapter 5

Conclusion

In this thesis, the problem of simulating complex multi-core architectures has been ad-
dressed the two outermost fields of the vast computing spectrum, namely multi-core hetero-
geneous embedded systems and many-processors high performance computing machines.
We described the conception, design and development of two simulators that faced the most
critical problem in modern simulation techniques, namely the trade-off between simulation
speed and accuracy.

The first part of the thesis describe the research activity performed in the field of technology-
aware system-level FPGA-based emulation of embedded multi-core architectures. We aimed
at developing a framework for rapid power- and energy-aware emulation of such architec-
tures, that would be able to reduce the gap between the different design steps and facili-
tate the design closure. An FPGA-based framework for the exploration and characterization
of MP-SoC architectures has been presented, with particular emphasis on NoC-based sys-
tems. The two main points of strength of the proposed framework are high-level automatic
hw-sw platform instantiation, integrated with Xilinx proprietary tools for FPGA implemen-
tation, and the use of analytic models that, basing on functional information provided by the
FPGA emulation, are able to estimate different technology-related parameters of a prospec-
tive ASIC implementation, such as power and energy consumption, area occupation, and
maximum achievable operating frequency. Moreover, we also look at software-based plat-
form reconfiguration in order to reduce the impact of the FPGA synthesis/implementation
process. The problem of NoC topology selection has been addressed as a possible design ex-
ploration use-case. The main point of strength of the proposed approach is that, by looking
at the runtime software-based reconfiguration capabilities of the hardware platform, several
emulation steps could be performed after a unique FPGA synthesis and implementation run.
In such a way, we show that different NoC-based interconnection topologies could be emu-
lated on hardware by mapping them via software on a larger worst case topology.

The approach has proved to be orders of magnitude faster than pure software cycle-
accurate simulation. Moreover, looking at software runtime reconfiguration, the experi-
mental data have shown that the overhead introduced by the over-provision of hardware
resources to the worst case topology that is actually implemented on hardware does not pre-
clude the feasibility of the approach. This is especially true with large FPGA devices that are
entering the market in the latest years.

In general, we can say that the presented use cases validate the usefulness of the frame-

93

94 CHAPTER 5. CONCLUSION

work in all the contexts where rapid simulation methodologies are required; in general, it
is possible to foresee an employment of the proposed framework as an effective support to
quantitative design space exploration or simply as an environment for rapid prototyping of
complex multi-core platforms.

In the second part of the thesis, we addressed the problem of effectively simulating high
performance machine, with thousands of cores, on top of commodity parallel clusters. To
this aim, we presented a parallel simulation infrastructure of the Cray XMT supercomputer
optimized for SMP hosts. The Cray XMT is a multithreaded machine specifically designed
for the execution of data-intensive parallel irregular applications and, due to its architec-
tural features, it does not easily adapt to currently existing simulation tools. We explained
how SMP hosts cope with the characteristics of the target machine. We detailed the various
components of the simulation infrastructure: the frontend, the system call support, the pro-
cessor model and the memory and network model. We discussed the design choices behind
each one, made by considering the features the host systems, of the target machine and of
its runtime. Various optimization and synchronization strategies allow reaching high sim-
ulation speed without reducing the accuracy. The network and memory model takes into
account contention with limited performance overhead. The simulator runs unmodified
XMT binary code, and supports dynamic accuracy switching at the application level.

On current SMP workstations with up to 48 cores, our infrastructure is able to simulate
a set of irregular applications, with large memory footprints, from 500 to 2000 times slower
than the real execution times of a 128-processor XMT machine within an accuracy of 10%.
While emulating, the slowdowns range from 25 to 200 times. We believe that this tool rep-
resents an important step towards the efficient simulation of large scale multithreaded ma-
chines, paving the way for the evolution of these architectures.

5.1 Future developments

Regarding the FPGA-based emulation framework, already planned future work includes the
extension of the library of components, as well as the consideration of hard routed macros
and hardware partial reconfigurability mechanisms to further reduce the overhead intro-
duced in the architectural exploration by the FPGA synthesis and implementation flow. The
addition of configurability and extensibility inside the processing unit ISA will be taken into
account as well, to enable the easy instantiation of highly-specific heterogeneous platforms.
Currently, the framework is employed in two EU-funded projects [3] [2] to explore complex
ASIP-based multicore architectures. We envision additional dissemination of the framework
and employment for the exploration of different industrial-strength system architectures.

On the high performance computing side, the simulator is going to be released soon un-
der the GPL open-source license. We believe its spreading will be huge within the Cray XMT
user supercomputing community. Currently, we are working on the simulation of the inter-
connection subsystem, to make it more machine-independent. We foresee both minimal
modifications to support the next generation products of the XMT family, the Cray XMT2
and XMT3. At the same time, we are working on some architectural exploration to inves-
tigate on multi-core solutions for the single node. We intend to simulate the performance
of multi-core chips that feature several ThreadStorm processors and memory controllers,
both to maximize the per-core IPC and to match the per chip injection rate with the network
sustainable bandwidth.

Bibliography

[1] The AMD Fusion family of APUs, 2010. http://fusion.amd.com. [cited at p. 2]

[2] Architecture Synthesis and Application Mapping (ASAM), 2010.
http://eolab.diee.unica.it/research/projects/asam-automatic-architecture-synthesis-and-
applicatio. [cited at p. 94]

[3] MADNESS - Methods for predictAble Design of heterogeneous Embedded Systems with adap-
tivity and reliability Support, 2010. http://www.madnessproject.org/. [cited at p. 94]

[4] The Power architecture Organization, 2010. http://www.power.org/. [cited at p. 9]

[5] Dennis Abts and Deborah Weisser. Age-Based Packet Arbitration in Large-Radix k-ary n-cubes.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing, SC ’07, pages 5:1–5:11, New
York, NY, USA, 2007. ACM. [cited at p. 80, 82, 83, 85]

[6] F. Angiolini, P. Meloni, S. Carta, L. Benini, and L. Raffo. Contrasting a NoC and a Traditional
Interconnect Fabric with Layout Awareness. In Proceedings of the DATE ’06 Conference, Munich,
Germany, 2006. [cited at p. 35]

[7] Krste Asanovic and et al. The Landscape of Parallel Computing Research: A View from Berkeley.
Technical Report UCB/EECS-2006-183, Univ. of California, Berkeley. [cited at p. 1, 9]

[8] David Atienza, Pablo G. Del Valle, Giacomo Paci, Francesco Poletti, Luca Benini, Giovanni
De Micheli, and Jose M. Mendias. A fast hw/sw fpga-based thermal emulation framework for
multi-processor system-on-chip. In Proceedings of the 43rd annual Design Automation Confer-
ence, DAC ’06, pages 618–623, New York, NY, USA, 2006. ACM. [cited at p. 16]

[9] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for computer system
modeling. Computer, 35:59–67, February 2002. [cited at p. 12]

[10] David A. Bader and Kamesh Madduri. Designing multithreaded algorithms for breadth-first
search and st-connectivity on the cray mta-2. In ICPP ’06: Proceedings of the 2006 International
Conference on Parallel Processing, pages 523–530, Washington, DC, USA, 2006. IEEE Computer
Society. [cited at p. 89]

[11] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi, P. O. Frederick-
son, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The nas parallel
benchmarks. Technical report, The International Journal of Supercomputer Applications, 1991.
[cited at p. 11]

[12] Vladimir Batagelj and Andrej Mrvar. Pajek datasets, 2006. [cited at p. 89]

95

96 BIBLIOGRAPHY

[13] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual Technical Conference, pages 41–41, Berkeley, CA, USA,
2005. USENIX Association. [cited at p. 6]

[14] D. Bertozzi and L. Benini. X-pipes: A Network-on-Chip Architecture for Gigascale Systems-on-
Chip. IEEE Circuits and Systems Magazine, 4(2):18–31, 2004. [cited at p. 35]

[15] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. Proteus: A high-performance
parallel-architecture simulator. Technical report, Cambridge, MA, USA, 1991. [cited at p. 6]

[16] R. Brightwell, K.T. Predretti, K.D. Underwood, and T. Hudson. SeaStar Interconnect: Balanced
Bandwidth for Scalable Performance. Micro, IEEE, 26(3):41 –57, 2006. [cited at p. 68, 80]

[17] D.C. Burger and D.A. Wood. Accuracy vs. Performance in Parallel Simulation of Interconnection
Networks. In Parallel Processing Symposium, 1995. Proceedings., 9th International, pages 22 –31,
apr. 1995. [cited at p. 18, 72, 82]

[18] George Chin, Andres Marquez, Sutanay Choudhury, and Kristyn Maschhoff. Implementing and
evaluating multithreaded triad census algorithms on the cray xmt. In IPDPS ’09: the 2009 IEEE
International Symposium on Parallel & Distributed Processing, pages 1–9, 2009. [cited at p. 89]

[19] Nilesh Choudhury, Yogesh Mehta, Terry L. Wilmarth, Eric J. Bohm, and Laxmikant V. Kalé. Scal-
ing an Optimistic Parallel Simulation of Large-Scale Interconnection Networks. In Proceedings
of the 37th conference on Winter simulation, WSC ’05, pages 591–600. Winter Simulation Confer-
ence, 2005. [cited at p. 23, 24]

[20] Eric S. Chung, Michael K. Papamichael, Eriko Nurvitadhi, James C. Hoe, Ken Mai, and Babak Fal-
safi. ProtoFlex: Towards Scalable, Full-System Multiprocessor Simulations Using FPGAs. ACM
Trans. Reconfigurable Technol. Syst., 2:15:1–15:32, June 2009. [cited at p. 13]

[21] The Convey Computer Corporation. The Convey Computer, 2010.
http://www.conveycomputer.com. [cited at p. 2]

[22] Open Cores. The OpenCores initiative, 2010. http://www.opencores.org/. [cited at p. 9]

[23] Donglai Dai and D.K. Panda. How Much Does Network Contention Affect Distributed Shared
Memory Performance? In Parallel Processing, 1997., Proceedings of the 1997 International Con-
ference on, pages 454 –461, August 1997. [cited at p. 82]

[24] P.G. Del Valle, D. Atienza, I. Magan, J.G. Flores, E.A. Perez, J.M. Mendias, L. Benini, and
G. De Micheli. Architectural Exploration of MPSoC Designs Based on an FPGA Emulation Frame-
work. In Proceedings of XXI Conference on Design of Circuits and Integrated Systems (DCIS), pages
12–18, 2006. [cited at p. 16, 51]

[25] AMD Developer Central. AMD SimNow Simulator, 2010. http://developer.amd.com/simnow.aspx.
[cited at p. 20]

[26] David Ediger, Karl Jiang, Jason Riedy, David A. Bader, Courtney Corley, Rob Farber, and
William N. Reynolds. Massive social network analysis: Mining Twitter for social good. In ICPP
’10: Proceedings to appear, 2010. [cited at p. 89]

[27] E.S. Chung et al. PROToFLEX: FPGA-accelerated hybrid functional simulator. pages 1–6, March
2007. [cited at p. 13]

BIBLIOGRAPHY 97

[28] A. Falcon, P. Faraboschi, and D. Ortega. Combining simulation and virtualization through dy-
namic sampling. Performance Analysis of Systems and Software, IEEE International Symmpo-
sium on, 0:72–83, 2007. [cited at p. 20]

[29] John Feo, David Harper, Simon Kahan, and Petr Konecny. ELDORADO. In CF ’05: Proceed-
ings of the 2nd conference on Computing frontiers, pages 28–34, New York, NY, USA, 2005. ACM.
[cited at p. 66]

[30] Alessandro Forin, Behnam Neekzad, and Nathaniel L. Lynch. Giano: The two-headed system
simulator. Technical Report MSR-TR-2006-130, Microsoft Research. [cited at p. 14]

[31] A. Jalabert, S. Murali, L. Benini, and G. De Micheli. XpipesCompiler: A Tool for Instantiating
Application Specific Networks on Chip. In DATE ’04: Proceedings of the conference on Design,
automation and test in Europe, Washington, DC, USA, 2004. IEEE Computer Society. [cited at p. 41]

[32] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel Benchmarks and
Its Performance. [cited at p. 11]

[33] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and Pierre yves Droz. Ramp
blue: a message-passing manycore system in fpgas. In In 2007 International Conference on Field
Programmable Logic and Applications, FPL 2007, pages 27–29, 2007. [cited at p. 11]

[34] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A Full System Simulation Platform. Computer, 35(2):50–58,
Feb 2002. [cited at p. 6, 13]

[35] Joseph B. Manzano, Andres Marquez, and Guang G. Gao. MODA: A memory centric perfor-
mance analysis tool. In 11th LCI International Conference on High-Performance Clustered Com-
puting, 2010. [cited at p. 72]

[36] P. Meloni, I. Loi, F. Angiolini, S. Carta, M. Barbaro, L. Raffo, and L. Benini. Area and Power Model-
ing for Networks-on-Chip with Layout Awareness. VLSI-Design Journal, Hindawi Publications,
(ID 50285), 2007. [cited at p. 43, 44]

[37] Hans W. Meuer. The TOP500 Project: Looking Back Over 15 Years of Supercomputing Experi-
ence. Informatik-Spektrum, 31(3):203–222, June 2008. [cited at p. 2]

[38] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for multicores. pages 1 –12, jan. 2010. [cited at p. 6, 21]

[39] Matteo Monchiero, Jung Ho Ahn, Ayose Falcón, Daniel Ortega, and Paolo Faraboschi. How to
simulate 1000 cores. SIGARCH Comput. Archit. News, 37(2):10–19, 2009. [cited at p. 6, 20]

[40] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow, Mark D. Hill,
David A. Wood, Steven Huss-Lederman, and James R. Larus. Wisconsin Wind Tunnel II: A fast,
portable parallel architecture simulator. IEEE Concurrency, 8:12–20, 2000. [cited at p. 6, 18]

[41] Shubhendu S. Mukherjee, Shamik D. Sharma, Mark D. Hill, James R. Larus, Anne Rogers, and
Joel Saltz. Efficient support for irregular applications on distributed-memory machines. In
PPOPP ’95: the fifth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 68–79, 1995. [cited at p. 65]

98 BIBLIOGRAPHY

[42] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu, and E. De-
prettere. Daedalus: toward composable multimedia mp-soc design. In DAC ’08: Proceedings of
the 45th annual Design Automation Conference, pages 574–579, New York, NY, USA, 2008. ACM.
[cited at p. 51]

[43] (OCP-IP). Open Core Protocol Standard, 2003. http://www.ocpip.org/home. [cited at p. 10, 30, 33]

[44] J. Pal Singh, S. C. Woo, M. Ohara, E. Torrie, and A. Gupta. The SPLASH-2 Programs: Charac-
terization and Methodological Considerations. Proceedings of the International Symposium on
Computer Architecture, 1995. [cited at p. 46, 61]

[45] Ishwar Parulkar, Alan Wood, Sun Microsystems, James C. Hoe, Babak Falsafi, Sarita V. Adve, and
Josep Torrellas. OpenSPARC: An open platform for hardware reliability experimentation, 2007.
[cited at p. 9]

[46] D.A. Patterson. Ramp: research accelerator for multiple processors - a community vision for a
shared experimental parallel hw/sw platform. Performance Analysis of Systems and Software,
IEEE International Symmposium on, 0:1, 2006. [cited at p. 10]

[47] J. Renau, B. Fraguela, J. Tuck, M. Prvulovic W. Liu, L. Ceze, S. Sarangi, P. Sack, K. Strauss, and
P. Montesinos. SESC simulator. http://sesc.sourceforge.net, January 2005. [cited at p. 6]

[48] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. Complete computer system simulation:
the SimOS approach. Parallel Distributed Technology: Systems Applications, IEEE, 3(4):34 –43,
1995. [cited at p. 6]

[49] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI-The Com-
plete Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd. (revised) edition,
1998. [cited at p. 40]

[50] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook, David Patterson,
and Krste Asanović. RAMP gold: an FPGA-based architecture simulator for multiprocessors. In
Proceedings of the 47th Design Automation Conference, DAC ’10, pages 463–468, New York, NY,
USA, 2010. ACM. [cited at p. 11]

[51] K.D. Underwood and K.S. Hemmert. Closing the gap: CPU and FPGA trends in sustainable
floating-point BLAS performance. In Field-Programmable Custom Computing Machines - FCCM
2004. 12th Annual IEEE Symposium on, pages 219–228. [cited at p. 9]

[52] Oreste Villa, Daniel Chavarria-Miranda, and Kristyn Maschhoff. Input-independent, scalable
and fast string matching on the Cray XMT. In IPDPS ’09: Proceedings of the 2009 IEEE Interna-
tional Symposium on Parallel&Distributed Processing, pages 1–12, Washington, DC, USA, 2009.
IEEE Computer Society. [cited at p. 89]

[53] John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christoforos Kozyrakis, James C.
Hoe, Derek Chiou, and Krste Asanovic;. Ramp: Research accelerator for multiple processors.
IEEE Micro, 27:46–57, 2007. [cited at p. 10]

[54] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge, C. Kozyrakis, and K. Olukotun. A Practical FPGA-
based Framework for Novel CMP Research. In FPGA ’07: Proceedings of the 2007 ACM/SIGDA
15th international symposium on Field programmable gate arrays, pages 116–125, New York, NY,
USA, 2007. ACM. [cited at p. 11]

[55] Xilinx. MicroBlaze Processor Reference Guide UG081.(v 9.0), 2010.
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf. [cited at p. 34]

BIBLIOGRAPHY 99

[56] Xilinx. PowerPc Processor Reference Guide UG011.(v 1.3), 2010.
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf. [cited at p. 34]

[57] Mohammed J. Zaki and Ching J. Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Min-
ing. [cited at p. 23]

[58] G. Zheng, Gunavardhan Kakulapati, and L.V. Kale. BigSim: a Parallel Simulator for Performance
Prediction of Extremely Large Parallel Machines. In Parallel and Distributed Processing Sympo-
sium, 2004. Proceedings. 18th International, page 78, apr. 2004. [cited at p. 23]

List of Publications Related to the
Thesis

Journal papers

• P. Meloni, S. Secchi, L. Raffo - An FPGA-based Framework for Technology-Aware Prototyping
of Multi-Core Embedded Architectures. IEEE Embedded Systems Letters, 2010. (Relation to
Chapter 3)

• O. Villa, A. Tumeo, S. Secchi, J.B. Manzano - Fast and Accurate Simulation of the Cray XMT Mul-
tithreaded Supercomputer. IEEE Transactions on Computers, 2011. Conditionally accepted.
(Relation to Chapter 4)

Conference papers

• S. Secchi, P. Meloni, L. Raffo - Exploiting FPGAs for technology-aware system-level evaluation of
multi-core architectures. ISPASS - IEEE International Symposium on Performance Analysis of
Systems and Software, White Plains, NY, 2010. (Relation to Chapter 3)

• P. Meloni, S.Secchi, L. Raffo - Technology-Aware Prototyping of Multi-Core Architectures: an
FPGA-based framework. Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO´2010), held in conjunction with the HIPEAC 2010 conference, Pisa, Italy. (Relation to
Chapter 3)

• P. Meloni, S. Secchi, L. Raffo - Enabling fast Network-on-Chip topology selection: an FPGA-
based runtime reconfigurable prototyper. 18th IEEE/IFIP International Conference on VLSI and
Systems on- Chip, VLSI-SoC 2010, Madrid, Spain. (Relation to Chapter 3)

• S. Secchi, A. Tumeo, O. Villa - Contention Modeling for Multithreaded Distributed Shared Mem-
ory Machines: the Cray XMT. CCGRID 2011 - The 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. Newport Beach, CA, USA. To appear. (Relation to Chap-
ter 4)

Posters with published proceedings

• S. Secchi, P. Meloni, L. Raffo - An FPGA Research Environment for Rapid MPSoC Exploration.
Advanced Computer Architecture and Compilation for Embedded Systems (ACACES ’09). (Re-
lation to Chapter 3)

101

List of publications unrelated to the
thesis

Conference papers

• F. Palumbo, D. Pani, L. Raffo, S. Secchi - A surface tension and coalescence model for dynamic
distributed resources allocation in Massively Parallel Processor on-Chip. KRASNOGOR N. et al.
(Eds), Proceedings of the Nature Inspired Cooperative Strategies for Optimization conference
(NICSO 2007), Springer-Verlag Heidelberg.

• F. Palumbo, S. Secchi, D. Pani, L. Raffo - A novel non-exclusive dual-mode architecture for MPSoCs-
oriented network on chip designs. Proc. SAMOS 2008, International Workshop on Systems,
Architectures, Modeling, and Simulation, Samos, Greece.

• S. Secchi, F. Palumbo, D. Pani, L. Raffo - A network on chip architecture for heterogeneous traf-
fic support with non-esclusive dual-mode switching. 11th EUROMICRO Conference on Digital
System Design (DSD 2008), Parma, Italy.

• D. Pani, S. Secchi, L. Raffo - Self organization on a swarm computing fabric: a new way to look at
fault tolerance. ACM International Conference on Computing Frontiers 2010. Bertinoro, Italy.

• A. Tumeo, S. Secchi, O. Villa - Experiences with string matching on the Fermi architecture. ARCS
2011 - Architecture of Computing Systems, Como, Italy. To appear.

Posters with published proceedings

• F. Palumbo, S. Secchi, D. Pani, L. Raffo - Non-Exclusive Dual-mode Approach for NoC Designs.
Advanced Computer Architecture and Compilation for Embedded Systems (ACACES ’08)

103

