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During the interaction of sulphide minerals with the environment many reactions may 

occur. The knowledge of sulphur chemical state is important in order to clarify the 

mechanisms of oxidation/dissolution and precipitation reactions also in biotic 

conditions on the surface of these minerals. To date different hypotheses have been 

proposed for identifying the sulphur compounds that may form but no consensus is 

reached so far because the identification has been carried out either only on the basis 

of the photoelectron signals or combining the photoelectron signal with the centroid 

of the X-ray induced SKLL Auger line. 

The objectives of this thesis are: the development of an analytical strategy for the 

unambiguous identification of sulphur chemical state in nanometer thick layers that 

form on mineral surfaces after leaching. To this purpose the acquisition of detailed 

spectra of a series of metal sulphides and of model systems made of mixtures of 

sulphur and polysulphides prepared under controlled conditions is necessary. Second 

objective was the establishment of the curve-fitting procedure to allow the separation 

of the different components present on the surface (sulphide, polysulphides, 

sulphates) not only of the S2p XP-spectra but also of the SKLL spectra. Based on 

these results the Auger parameter values will be determined and will be used together 

with the chemical state plot to distinguish the chemical state of sulphur species 

formed on the mineral surfaces after different surface treatments. In this way, the 

surface reactivity of sulphide minerals and more in general, of sulphur –bearing 

particles will be determined 

The present work is organized in six chapters: the first one presents a short overview 

on the environmental problems that may occur when sulphide minerals, especially, 

those bearing eco-toxic elements such as arsenic, are exposed to the acidic mine 

drainage in the presence of oxidants and/or of microorganisms which enhance 

oxidation kinetics. It then outlines the analytical strategy that was adopted in this 

work for the identification of the sulphur chemical state. 

In the second chapter a literature survey is provided: it underlines the role of sulphur 

in sulphide bearing minerals: Section 2.1 reports information about the mineral 

enargite and the chemical state of sulphur on its surface as it is available to date. 

Section 2.2 deals with the literature on the possibility of using the KLL Auger 
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transition. In chapter 3 a brief description of X-ray photoelectron and X-ray excited 

Auger electron spectroscopy is given while the materials and methods used in the 

present work are presented in chapter 4.  

In chapter 5 – results and discussion - the X-ray photoelectron spectroscopy (XPS) 

and X-ray excited Auger electron spectroscopy (XAES) analyses on alkaline and 

transition metal sulphide and sulphates, polysulphides and sulphide minerals are 

presented. In particular the spectra recorded on the S2p and S KLL lines of the 

sulphides and sulphates are shown: they were collected for getting the peak fitting 

parameters and apply them to the model systems obtained by mixing sulphur with 

sodium tetrasulphide and to investigate the composition of mineral surfaces. Minerals 

were analysed freshly cleaved, ground and after air exposure. The chemical state of 

sulphur in sulphates, sulphides (alkali- and transition metal compounds, minerals) and 

polysulphide is then discussed. For the first time the X-ray excited Auger SKLL lines 

were fitted with parameters based on standards. In this way, which can be considered 

as an extension of previous work, a separation of the different components and a more 

precise determination of their kinetic energy were achieved. The Auger parameter and 

the chemical state plot were obtained by combining the S2p photoelectron lines and 

the SKLL Auger lines. On this basis a clear distinction of the chemical state of 

sulphur in sulphates, in alkali sulphides and in transition metal sulphides was possible. 

The chemical state of sulphur in the bulk of minerals such as enargite or pyrite was 

determined. The chemical state of sulphur that formed on the surface of compounds 

after exposure to air or after grinding was found to vary according the coordinating 

metal and its concentration.  

It can be assessed that the analytical approach developed in the presented thesis and 

based on the curve – fitting procedure applied to the X-ray induced Auger electron 

spectroscopy appears to be a very promising method for identifying the chemical state 

of sulphur and for providing a new insight in the surface chemistry of sulphide 

minerals. 
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Chapter 1 

Introduction 

 

 

 

This chapter provides a short overview on the environmental problems that may occur when 

sulphide minerals, especially, those bearing eco-toxic elements such as arsenic, are exposed 

to the acidic mine drainage in the presence of oxidants and/or of microorganisms which 

enhance oxidation kinetics. Special attention was devoted to the role played by sulphur in the 

stability of the minerals since it was shown that a very thin sulphur-enriched layer on the 

mineral surfaces may affect the oxidation/dissolution reactions. Hereafter the analytical 

strategy that was adopted in this work for the identification of the sulphur chemical state is 

outlined. 
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1.1 Sulphur chemical state identification 

The identification of the oxidation state, the chemical environment and the 

coordination of sulphur is important for understanding the chemical reactions at the 

surface of sulphide minerals. Sulphide minerals ore deposits are the main natural 

sources of several precious and base metals, and as such they are of remarkable 

economic value. On the other hand, they are thermodynamically unstable in supergene 

conditions, i.e. when in contact with the atmosphere, and upon oxidation, they may 

release into the environment several ecotoxines such as heavy metals, As, Se and Te. 

The interaction of the metal sulphides with the environment occurs at their surface; 

therefore the study of metal sulphide surfaces is of utmost importance for two reasons: 

- some processes of ore beneficiation, most notably flotation, depend on the mineral 

surface properties; therefore, studies of sulphide surfaces may provide clues to a 

better understanding of mineral dressing problems arising in commercial plants 

and possibly to a more effective application of mineral separation processes; 

- the first steps of oxidation/dissolution of sulphides in the supergene environment 

occur at the mineral surface; hence, understanding of the dissolution mechanism 

occurring at their surface is critical for the assessment of the potential 

environmental impact of mining and smelting activities. 

With these two objectives in mind, several studies were conducted on sulphide 

surfaces (Nesbitt et al 1995 [1], 1999 [2]; England et al. 1999 [3]; Fullston et al., 1999 

[4], to mention but a few). In a previous Ph.D. thesis [5] – which was carried out 

within the research group wherein also this work, was conducted – 

oxidation/dissolution experiments were performed in acidic conditions, also in the 

presence of iron- and sulphur oxidizing microorganisms, on enargite (Cu3AsS4), a 

mineral to which some attention was recently drawn because it is locally abundant in 

certain types of ore deposits. The reasons for having recourse to X-ray photoelectron 

spectroscopy (XPS) for this investigation are related to its high surface sensitivity, 

intrinsic no-destructiveness and chemical state identification suitability. 

Enargite surface properties drew, comparatively to other sulphides and sulphosalts, 

little attention, but in recent years a number of studies have been carried out, 

including electrochemical [6,7] and XPS [4] studies, mostly conducted in alkaline 
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conditions, with the ultimate goal of predicting the behaviour of enargite in flotation. 

A detailed characterization of different natural and synthetic enargites was performed 

by XPS surface analysis [8] and a valuable database for Cu, As and S in enargites 

under natural, cleaved and sputtered conditions was therein proposed. XPS 

investigations of enargite surfaces were also carried out before [9] and after treatment 

with air-saturated distilled water, and in acidic (H2SO4) conditions as well as in acidic 

ferric solutions [10,11], to simulate natural environments where enargite is exposed to 

extremely acidic conditions generated by pyrite oxidation. 

The results confirmed the rather refractory behaviour of enargite compared to other 

sulphides, as established by other authors; notably, there is no significant shift of the 

binding energies of copper and arsenic, even in the most extreme conditions (H2SO4 

or acidic ferric solutions), but the formation of a metal depleted/sulphur enriched 

layer, 5-10 nm thick, was observed [10]. On the other hand, the untreated surface of 

natural crystals, exposed for a number of years to atmospheric conditions, show 

evidence of Cu-O and As-O bonds formation [8] indicating that an oxidized surface 

has to be considered as the starting condition on natural enargite that has not 

undergone any grinding or cleavage. 

The most intense photoelectron line, S2p, for a sulphide mineral is complex on 

account of the spin-orbit coupling that splits the signal into two components: S2p3/2 

and S2p1/2 only separated by 1.2 eV and because of the wide variety of formal 

oxidation states for sulphur, that may result after a leaching process. In fact, between 

the extremes consisting of S
2-

 (sulphide) and S
6+

 (sulphate), a variety of intermediate 

oxidation states and thus of different compounds can be formed during oxidation, 

dissolution and precipitation reactions. It was suggested [6] that the comparatively 

refractory behaviour of enargite may be due to the creation of a passive film of a 

rather elusive, ill-defined CuS2 compound [12]. The exact nature of this hypothetic 

species is still unclear. 
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1.2 Scope of the thesis 

Scope of this thesis is the development of an analytical strategy for the unambiguous 

identification of sulphur chemical state in nanometer thick layers that form on mineral 

surfaces after leaching. To this purpose the acquisition of detailed spectra of a series 

of metal sulphides and of model systems made of mixtures of sulphur and 

polysulphides prepared under controlled conditions is necessary. Furthermore the 

establishment of the curve-fitting procedure to allow the separation of the components 

not only of the S2p XP-spectra but also of the SKLL spectra is required. In addition, 

the Auger parameter values, compared with other results (when available) will be 

determined will be used to distinguish the species formed on the mineral surfaces after 

different surface treatments. In this way, the surface reactivity of sulphide minerals 

and more in general, of sulphur –bearing particles will be determined. 

This approach is applied for the first time in this work. 
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Chapter 2 

Literature review 
 

 

 

In this chapter a literature survey is given underlining the role of sulphur in bearing sulphide 

minerals: Section 2.1 reports information about the mineral enargite and the chemical state 

of sulphur on its surface. Section 2.2 deals with the literature on the possibility of using the 

KLL Auger transition. 
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2.1 Sulphur on enargite surface 

Enargite is a copper arsenic sulphide with formula Cu3AsS4, frequently associated, as 

a minor component. to complex sulphide minerals mined for the production of 

metallic copper or for gold recovery. It is found in significant amounts in the so-called 

“high sulphidation” volcanic-hosted epithermal deposits [1]. Along with other 

arsenic-bearing sulphides, it is of environmental concern on account of the potential 

release of toxic arsenic species in acid mine drainage (AMD). A thorough study of the 

surface chemistry of enargite, i.e. the precise determination of the chemical state of 

the elements arsenic, copper and especially sulphur in different conditions of the 

enargite surface, is a fundamental tool in understanding oxidation, dissolution and 

precipitation phenomena and thus in AMD control. 

 

2.1.1 Properties of enargite [2] 

Enargite is a blackish gray mineral with a metallic luster, Mohs hardness = 3, and 

density = 4.5 g/cm
3
. Enargite crystallizes in the orthorhombic system, pyramidal 

class, space group Pnm21. It occurs in granular masses, but well-formed crystals are 

not rare; its habit may be tabular (001), or prismatic, elongated along c. Enargite 

shows an excellent cleavage along (110); other cleavage planes are (100) and (010). 

The crystal type is that of wurtzite (ZnS), with Zn positions occupied by Cu and As; 

both elements are in fourfold coordination with S. The unit cell parameters are 

a=7.339 Å, b=6.428 Å, c=6.145 Å. Enargite is a semiconductor of the type . 

The flat band potential is about -0.16V vs the standard hydrogen electrode, SHE. 

Copper is nominally in the monovalent state, and arsenic in the pentavalent state. In 

most natural occurrences, enargite is associated with pyrite, and other copper and/or 

arsenic and/or base metal sulphides (chalcopyrite, chalcocite, covellite, digenite, 

tennantite, sphalerite, galena). Enargite may contain minor amounts of other elements 

(Sb, Ag, Fe) [2]. 
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2.1.2 Chemical state of the elements on enargite surface 

The surface chemistry of sulphide minerals such as pyrite [3 and reference cited 

therein], arsenopyrite [4 and reference cited therein] and chalcopyrite [5] is well 

documented. A number of papers has been published regarding the surface chemistry 

of enargite [6 - 11]. In an early work the research group, the author of this work 

participates in, reported results on the XPS characterization of synthetic and natural 

enargites [12, 13]. Qualitative and quantitative surface analyses of natural enargites 

(from Peru and the Furtei mine, Sardinia) were performed and the results were 

compared to those found for synthetic enargite. Most natural and synthetic samples 

showed comparable binding energies for all elements, and quantitative surface 

compositions matching well the bulk composition (as determined by electron 

microprobe) [12 - 14].  

Table 2.1: Binding Energies (eV) of the different photoelectron lines and 

kinetic energies (eV) of the Auger lines in natural and synthetic enargite 

samples (C1s = 285.0 eV). Data from [12, 14] (EN stands for Enargite). 

 

Element 

line 

EN Synthetic 

Powder [12] 

EN from Peru 

crystal as 

received [12] 

EN from Peru 

crystal 

cleaved [14] 

EN Furtei Mine 

crystal as 

received [14] 

EN Furtei 

Mine crystal 

cleaved [14] 

EN Genaro 

Mine crystal as 

received [14] 

EN Genaro 

Mine crystal 

cleaved [14] 

As3d5/2 (I) 44.0 ± 0.2 43.8 ± 0.2 43.9 ± 0.1 44.3 ± 0.1 43.8 ± 0.2 43.3 ± 0.1 43.5 ± 0.1 

As3d5/2 (II)  45.5 ± 0.2    45.3 ± 0.1  

AsLMM 1222.8 ± 0.2 1223.1 ± 0.2 1222.8 ± 0.1 1222.5 ± 0.1 1222.7 ± 0.2 1223.3 ± 0.2 1223.0 ± 0.1 

Cu2p3/2 932.6 ± 0.2 932.5 ± 0.2 932.6 ± 0.1 932.4 ± 0.2 932.8 ± 0.2 932.4 ± 0.1 932.6 ± 0.1 

CuLMM 916.8 ± 0.2 917.1 ± 0.2 916.8 ± 0.1 917.0 ± 0.2 916.7 ± 0.2 916.8 ± 0.2 917.0 ± 0.2 

S2p3/2 (I) 162.4 ± 0.2 162.0 ± 0.2 162.1 ± 0.1 162.8 ± 0.2 161.5 ± 0.2 162.0 ± 0.1 162.1 ± 0.1 

S2p3/2 (II) 164.2 ± 0.2 163.7 ± 0.1 - 164.3 ± 0.2 164.2 ± 0.2 163.5 ± 0.1 164.0 ± 0.2 

S2p 3/2 (III)  168.7 ± 0.1    168.5 ± 0.1  

SKLL 2115.0 ± 0.2 2115.6 ± 0.2 2116.7 ± 0.2 2115.0 ± 0.2 2116.3 ± 0.2 2115.7 ± 0.2 2115.8 ± 0.1 

 

A comparison of the binding energies of arsenic, copper and sulphur atoms on freshly 

cleaved and different “as-received” samples (table 2.1) stresses that arsenic and 
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copper exhibit remarkably constant binding energies whereas the sulphur atom at the 

surface of enargite is more susceptible to changes in the enargite surface state and 

composition. The same result was found in a study on enargite surface reactivity in 

acidic ferric solutions simulating the AMD environment [15], where the chemical 

state of copper and arsenic did not change during immersion in acidic, oxidizing 

solutions. Also in this case, the main changes were found for the sulphur atoms at the 

surface of enargite. 

 

 

Figure 2.1: High-resolution spectrum of S2p region for a Enargite sample 

exposed to FeCl3 0.025M solution for 24 hours [14]. 

The most intense sulphur line, S2p, is asymmetric due to spin - orbit splitting in 2p3/2 

and 2p1/2 components with a 2 : 1 ratio [16] and a binding energy difference of 1.2 eV 

[17]. The sulphur S2p spectrum of enargite (figure 2.1) is composed of two 

components, one with the S2p3/2 signal at 162.0 ± 0.2 eV (blue curves in Figure 2.1) 

and the other at 163.5 ± 0.2 eV (red plot in Figure 2.1). The lower binding energy 

component can be attributed to the sulphur atoms in the bulk of enargite (see table 1). 

The attribution of the component at higher binding energy, the intensity of which by 

ARXPS measurements [14, 15] increases after immersion into acidic solutions [15] 

and which is located at the outermost surface, has been (and still is) controversial. 

Essentially, three different attributions were proposed: elemental sulphur, 

polysulphide or the formation of metal-deficient surface layer [14, 15]. Part of the 

ambiguity in the precise attribution of the chemical state of this sulphur compound 

may reside in the fact that an attribution only based on XPS binding energies of 

photoelectron core lines [6 – 13] is intrinsically difficult. 
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2.1.3 Auger parameter and chemical state plot 

The use of the Auger parameter concept and especially the two- dimensional 

“chemical state plot” introduced by Wagner [19] was shown to provide for enargite 

[14, 15] and other geological materials [18] more reliable information on the chemical 

state of the elements. This requires the acquisition of high-resolution spectra of the 

corresponding X-ray induced Auger lines AsLMM, CuLMM and SKLL and the 

determination of the kinetic energy of the principal Auger signals (table 1, 2).  

Indeed, when both the binding energy of the photoelectron and the kinetic energy of 

the Auger electron are measured, a new parameter known as the Auger parameter () 

can be determined. Wagner originally defined the Auger parameter as the difference 

between the kinetic energy of the most intense Auger line and the most intense 

photoelectron line, making reference to the Fermi level rather than the vacuum level. 

The definition of the Auger parameter ' [20] used most frequently is 

' =  + h = Ek (Auger) + Eb (photoelectron) (1) 

The modified parameter ', as so defined, is then independent of h and always 

positive and it is simply the sum of the kinetic energy of the Auger signal and the 

binding energy of the photoelectron signal. This sum will be the same, independent of 

sample charging. Yu et al. [21], Peisert et al. [22] and Mugford [23] reported in the 

nineties the Auger parameters of solid sulphur-containing compounds. Mugdorf’s 

work was performed using the AgL radiation in the so-called high-energy XPS 

mode. In a previous work of the research group where the thesis has been carried out 

the Auger parameters for a series of reference compounds and for enargite were 

determined (table 2) [14]. 
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Table 2: Binding energy and Auger kinetic energy of sulphur S2p3/2 

(±0.2 eV) and SKLL (±0.2 eV) signals of sulphur compounds with the 

Auger parameter for sulphur compounds [14]. 

 

Compound S2p3/2 BE (eV) SKLL KE (eV) ’(eV) 

CuS 162.7 2115.6 2278.3 

Cu2S 162.1 2115.9 2278.0 

FeS 162.8 2116.1 2278.9 

Pyrite 162.5 2116.2 2278.7 

ENSynthetic 162.4 2115.0 2277.4 

ENPeru as rec 162.0 2115.6 2277.6 

ENPeru cleaved 162.1 2116.7 2278.8 

ENFurtei as rec 162.8 2115.0 2277.8 

ENFurtei cleaved 161.5 2116.3 2277.8 

As2S3 163.6 2113.4 2277.0 

CuSO4 169.2 2106.6 2275.8 

 

It is worth noticing that the kinetic energy of the SKLL Auger line was simply 

determined at its maximum intensity: no attempt to further process the Auger signal 

was made. The Auger parameter in the chemical state plot is found as a series of 

diagonal lines representing equal Auger parameters. 
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Figure 2.2: Chemical state plot of sulphur compounds [15]. 

 

The chemical state plot of sulphur compounds (figure 2.2) shows all the sulphides in 

the upper right corner, the sulphates in the lower left corner (not shown). All enargite 

samples fall on the same line with Auger parameter ' 2277.8 ± 0.2 eV, clearly 

separated from elemental sulphur (' 2277.2 ± 0.2 eV) and the other sulphide minerals 

(pyrite, arsenopyrite) or reference compounds (FeS, CuS). The fact that both sulphur 

signals (figure 2.1), the low BE S 2p(1) associated to the bulk and the high BE S 2p(2) 

associated to sulphur at the surface, have the same Auger parameter has to be verified 

(as the maximum of the SKLL peak was only taken to determine the kinetic energy). 

The authors concluded that, based on the chemical state plot, the assignment of the 

high BE sulphur compound to elemental sulphur could be excluded. The distinction 

between a polysulphide layer (Sn
2-

, 2 < n < 8) or a copper-deficient sulphur layer is 

difficult and requires further investigations. 
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2.1.4 Layer thickness of the sulphur-enriched surface layer 

Quantitative analysis with the three-layer model [24] showed that on “as received” 

crystals of natural enargite, that had been exposed for a long time to the atmosphere, 

an oxidised layer of 0.5 nm thickness enriched in arsenic had been formed [13]. 

Similarly, after 24 h exposure of the enargite samples to acidic oxidizing solutions a 

strongly sulphur enriched layer of up to 0.7 nm was found [15]. The calculated 

thickness – based simply on the integrated XPS intensity of the high BE sulphur S2p 

(2) compound (Fig. 2.1) - would correspond to slightly more than one monolayer. 

Including copper ions into the sulphur-rich enargite surface layer the thickness may 

range from 1 to 2 nm. In addition, the thickness of this altered layer was found to 

increase with increasing enargite dissolution [15, 25]. This layer and the underlying 

altered interface very likely influence the interaction of enargite with the natural 

environment and its behaviour in mineral processing plants and should be taken into 

account in the assessment of the potential impact of enargite-bearing ores on the 

environment [13 – 15, 25] also as a consequence of the effect of the presence of iron- 

and sulphur oxidizing microorganisms [26]. 

 

2.2 KLL Auger transition 

As outlined above, the SKLL Auger transition signals did not allow distinguishing the 

two components as in the S2p photoelectron lines (fig. 2.1). The Auger parameter was 

calculated based on the position of the centre of gravity of the SKLL signal. In this 

study a new approach based on curve fitting of the X-ray excited Auger lines was 

tested. This requires a) SKLL signals with good signal / noise ratio acquired on well-

defined standards creating the necessary database, and b) a thorough theoretical 

analysis of the Auger transition. Unfortunately, under the experimental conditions 

available for this thesis it was impossible to collect the S1s because its binding energy 

(2472 eV) is not accessible with the conventional XPS source. 

The determination of the Auger transition rates and total Auger probability for the 

KLL transitions for various atoms (Z=1 to 80) was calculated in the past [27] and 

many authors applied those calculations to real samples for example in the study of 

KLL Auger spectra of sodium, magnesium [28] and fluorine [29]. Both sodium and 
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magnesium oxides as well as different fluorine salts show all five well resolved lines 

as predicted in the extreme L-S coupling theory. In the fluorine salts a cation-

dependence of the Auger transition energies and line-widths is observed. Studies on 

KLL Auger transition of copper, nickel, sodium and magnesium has been performed 

recently [30, 31] in order to test atomic theory and update models available. The main 

result of these studies was the evidence of intensive satellite structure of intrinsic 

origin in copper and nickel [30] and correlations between lines of the spectra and 

shake-up/shake off processes [31]. 

First information about chemical shift in Auger spectra on sulphur compounds date 

back to the 1970 [32, 33]. Sodium thiosulphate is a historic compound for which the 

chemical shift in sulphur was first observed. The Auger lines of Na2S2O3 studied by 

Fahlman et al. [32] show a double peaked shape with an energy separation of 4.3 eV 

between the peak corresponding to the oxidation number 6
+
 and that corresponding to 

the oxidation number 2
-
. Evidence was provided that the Auger transition energy 

depends on the chemical state of the sulphur atom and the higher oxidation number 

has the lower transition energy. No double structure was observed for the sodium 

Auger line, and this means that both sodium atoms of the molecule are in the same 

chemical state. The difference in Auger chemical shift was attributed to final state 

effects, i.e. to differences in relaxation energies [34]. Moretti [20] reviewed final state 

relaxation energies and their relation with the Auger parameter [20]. For solid sulphur 

compounds, relaxation energy was studied and discussed in terms of initial state 

charge and dielectric screening models [22]. 
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Chapter 3 
X-ray photoelectron spectroscopy and 

X-ray excited Auger electron spectroscopy 

 

 

 

In this chapter a brief description of X-ray photoelectron and X-ray excited Auger 

electron spectroscopic is provided. 
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X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 

3.1 Physical principle [1, 2, 3] 

Herz in 1887 discovered and described the emission of electrons from a material 

under UV irradiation. Einstein in 1905 gave the correct interpretation of the 

photoelectric effect and for this he was awarded the Nobel prize for Physics in 1921. 

Following his work, Rutherford and his group succeeded in the measurement of 

energies of the electrons emitted from metals bombarded by hard X-rays. After the 

end of the Second War World and the development of high-vacuum systems the 

measurement of the kinetic energy of the emitted electrons with zero energy loss 

became feasible. Siegbahn coined in 1967 the acronym ESCA (electron spectroscopy 

for chemical analysis) since he was able to measure accurately the energy of the 

electrons emitted from the core levels of the atoms irradiated with soft X-rays and he 

was the first to publish that changes in the kinetic energy of the electrons could be 

related to changes in the chemical bonds of the element [4]. 

In X-ray photoelectron spectroscopy soft X-ray sources are traditionally used: the 

beam can penetrate many micrometers into materials; the absorption by an atom in the 

solid may lead to the photoemission of the electrons from the core-levels as well as 

from the valence levels. The photon energy, h, must be greater than the binding 

energy (BE) in order to obtain electron photoemission. A fraction of the electrons are 

emitted from the sample in vacuum, without suffering energy loss during their travel 

through the solid, and they are discriminated on the basis of their kinetic energy to 

produce a spectrum of the electron intensity, expressed as counts, counts/s, 

counts/s*eV, versus electron energy. The kinetic energy (KE) of the electron is the 

experimental quantity measured by the spectrometer, but this is dependent on the 

photon energy of the X-rays employed and is therefore not an intrinsic property of the 

materials being studied. On the other hand, the binding energy (BE) is a parameter 

that identifies the electron specifically, both in terms of its parent element and atomic 

energy level from which it was photoemitted. The fundamental relationship between 

the parameters involved in an XPS experiment is: 
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where  is the spectrometer work-function i.e. the potential difference for electrons 

between the Fermi level and the maximum potential just outside a specified surface 

(ISO 18115:2001). The electron binding energy in a conducting solid is in effect, 

relative to the Fermi level. Thus, it is essential that the energy scale be accurately 

linear and correctly calibrated (ISO 15472:2001). The electron binding energies differ 

from element to element and therefore an accurate measurement of the binding energy 

allows almost a straightforward elemental identification. All elements can be 

identified under the common laboratory conditions, with the exception of hydrogen 

and helium.  

Once a photoelectron has been emitted, the ionized atom must relax. This can be 

achieved by emission of an X-ray photon (X-ray fluorescence) or ejection of an Auger 

secondary electron. Thus, Auger electrons are produced as a consequence of the XPS 

primary process, and this secondary phenomenon is often referred to as XAES (X-ray 

induced Auger electron spectroscopy or X-ray excited Auger electron spectroscopy). 

Auger peaks can provide valuable chemical information about an atom but they can 

also interfere with photoelectronic peaks. Signal superposition can be avoided by 

changing the X-ray source. 

The sampling depth of the XPS technique varies with the KE of the electrons being 

used. It is determined by a quantity  = λ*cosθ known as electron attenuation length 

(AL). It depends on the inelastic mean free path λ (IMFP), which depends firstly on 

the KE of the electron and the density of the solid being passed through by the 

electron, and on the emission angle θ, i.e. the angle at which particles leave a 

specimen measured with respect to the normal to the specimen surface. Typical 

sampling depth is ca. 3. In the energy range of interest in electron spectroscopy, i.e. 

200-2000 eV,  is equal to very few nanometers (< 10 nm). This is the reason why 

XPS is a surface-sensitive technique. 
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3.2. Notation [5] 

The formalism used for XPS to describe which electrons are involved in each of the 

observed transitions differs from that used for Auger electron spectroscopy (AES): 

XPS uses the so-called spectroscopists’ notation whereas Auger electrons are 

identified by the equivalent X-ray notation. 

In the former, transitions are labeled according to the scheme nlj where n is the 

principal quantum number, l is the electron angular momentum quantum number and j 

[given by |l+s| (s is the spin angular momentum quantum number)] is the so-called 

total angular momentum quantum number. In the X-ray notation, the principal 

quantum numbers are identified with letters K, L, M etc. whereas subscript numbers 

refer to the j values, more information about notation was provided in § 3.3.2. The 

relationship between the two notations is given in Table 3.1. 

 

Table 3.1: The spectroscopic terms are listed opposite their X-ray equivalents. 

Quantum numbers X-ray suffix X-ray level Spectroscopic level 

n l j 

1 0 1/2 1 K 1s1/2 

2 0 1/2 1 L1 2s1/2 

2 1 1/2 2 L2 2p1/2 

2 1 3/2 3 L3 2p3/2 

3 0 1/2 1 M1 3s1/2 

3 1 1/2 2 M2 3p1/2 

3 1 3/2 3 M3 3p3/2 

3 2 3/2 4 M4 3d3/2 

3 2 5/2 5 M5 3d5/2 

 etc.  etc. etc. etc. 
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3.3 Spectra [5,6] 

The first step in characterizing the surface chemistry of the specimen under 

investigation is recording a survey, or wide scan over a region that provides the peaks 

that the different elements can emit after irradiation with the source. Usually, the 

range 0-1200 eV (obtainable both with Al kα and Mg kα sources) is sufficient. Peak 

identification is achieved by means of electron energy reference tables. This 

procedure is applied for the identification of the elements present when the sample 

composition is unknown and for ascertaining the composition when it is known. In the 

latter case, the peak identification ensures the operator that the spectrum reflects the 

sample composition and possibly, it allows the identification of contaminants such as 

carbon or oxygen due to the reaction of the sample surface with the ambient 

atmosphere [7]. 

As stated above, the electrons excited and emitted without energy loss, contribute to 

the characteristic peaks in the spectrum whereas those that undergo inelastic 

photoemission contribute to the spectrum with weak signals when the losses are 

discrete and with the step-like increase in the background when emitted after random 

scattering. There is also a contribution to the background from the continuous photon 

radiation emitted from the anode due to the deceleration of incident electrons within 

the conventional Al or Mg sources; this radiation is called “Bremsstrahlung” 

radiation: its spectral distribution is continuous up to the energy of the incident 

electrons. In XPS, the bremsstrahlung may also photoionize inner shells that would be 

energetically impossible by characteristic Al or Mg K X-rays. As a result, Auger 

electron features may appear at negative binding energy values and, in addition, the 

intensities of other Auger electron features may be greater than if the inner shell 

vacancies would be created only by the characteristic X-rays. The Bremsstrahlung-

excited Auger electron features can be helpful in determining the Auger parameters 

needed to identify chemical states and in this work it was used for recording the 

SKLL spectra. The Bremsstrahlung is removed when the source is monochromatic. 

After the survey spectrum, the acquisition of spectra around the element peak of 

interest with a higher resolution follows. Curve fitting routine applied to these spectra 

allows the differentiation of overlapping peaks thus providing more detailed and 
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valuable chemical information of the specimen and making quantitative analysis 

possible even when an inhomogeneous elemental distribution occurs within the depth.  

 

3.3.1 Chemical shift 

The chemical shift is defined as the change in peak energy arising from a change in 

the chemical environment of the atom (ISO 18115:2001). In agreement with this 

definition, the electrostatic potential of the core electrons will be modified if an atom 

is bonded to another one, since its valence electron density will be altered with respect 

to its elemental state. As a consequence, a change of the BE of the signal (chemical 

shift) should be observable in the spectrum. The chemical shift can vary from a 

fraction up to several eV. Owing to line width of the X-ray source used in XPS (0.3 - 

0.9 eV) data processing, shift of an element in several of its compounds enable to 

identify its chemical state [8].  

 

3.3.2 Spin-orbit coupling [6] 

Since an electron is a charged particle, its orbit around a nucleus induces a magnetic 

field whose intensity and direction depend on the electron velocity and on the radius 

of the orbit respectively. The two latter quantities can be characterized by an angular 

momentum, called the orbital angular momentum, which of course is quantized since 

the electron can travel only on certain discrete orbitals. The characteristic quantum 

number is l, and l can take the values 0, 1, 2, 3, 4, …. Another property of an orbiting 

electron is the electronic spin, which can be positive or negative and also induces an 

inherent magnetic field; the latter in turn has an associated spin momentum, 

characterized by a spin quantum number s, which can take either of the values ±1/2. 

Thus the total electronic angular momentum is a combination of the orbital angular 

and spin momenta, and this combination is in fact simply the vector sum of the two 

momenta. However, it is most important in the present context to notice that the 

vector summation can be carried out in two ways, summarized in the names of j-j 

coupling and of L-S (also called Russell-Saunders) coupling, respectively. 



30 

 

3.3.2.1 j-j coupling 

In j-j coupling the total angular momentum of a single isolated electron is obtained by 

vector summation of the individual electron spin and angular momenta. According to 

§ 3.2 j can take the values 1/2, 3/2, 5/2 etc. To arrive at the total angular momentum 

for the whole atom, summation is then performed for all electrons, the result being the 

total atomic angular momentum with an associated quantum number J, where J = j. 

This description of the summation is known as j-j coupling. This kind of coupling is 

the best description of electronic interaction in elements of high atomic number, i.e. 

Z> 75, the annotation based on it has been used for both Auger and spectroscopic 

features for all parts of the Periodic Table. This does not matter for the features 

arising from photoelectron production, since the final state of the atom is singly 

ionized, but in the Auger process, where the final state is doubly ionized, interactions 

between the two holes in the final state can lead to situations where j-j description is 

inadequate. 

The X-ray notation is almost always used for Auger transitions, so that, for example, 

in j-j coupling there would be six predicted KLL transition, i.e. KL1L1, KL1L2, KL1L3, 

KL2L2, KL2L3, KL3L3. The spectroscopy annotation is directly equivalent to that for 

the X-ray, and is more obviously related to the various quantum numbers. In it, the 

principal quantum number appear first, then states with l = 0, 1, 2, 3, … are 

designated s, p, d, f, …, respectively, and follow the first number, and finally the j 

values are appended as suffixes. Thus the state written L3 in the X-ray notation, in 

which n =1 2, l = 1 and j = 3/2, would be written 2p3/2 in the spectroscopy notation. It 

is conventional to identify by means of the spectroscopic notation the atomic level 

from which it was ejected. 
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Table 3.2: Notation in L-S coupling. 

Transition Configuration L S Term 

KL1L1 2s
0
2p

6
 0 0 

1
S 

KL1L2,3 2s
1
2p

5
 1 0 

1
P 

1 1 
3
P 

KL2,3L2,3 2s
2
2p

4
 0 0 

1
S 

[1 1 
3
P]

a 

2 0 
1
D 

aForbidden 

 

Table 3.3: Notation in intermediate coupling. 

Transition Configuration L-S term L S J IC term 

KL1L1 2s
0
2p

6
 

1
S 0 0 0 

1
S0 

KL1L2,3 2s
1
2p

5
 

1
P 1 0 1 

1
P1 

1 1 0 
3
P0

 

3
P 1 1 1 

3
P1 

1 1 2 
3
P2 

KL2,3L2,3 2s
2
2p

4
 

1
S 0 0 0 

1
S0 

1 1 0 
3
P0

 

3
P [1 1 1 

3
P1]

a 

1 1 2 
3
P2

 

1
D 2 0 2 

1
D2 

aForbidden 

 

3.3.2.2 L-S coupling 

The other way of carrying out the vector summation is first to sum all the individual 

electronic angular momenta and then all the individual electronic spin momenta. 

These two total momenta are then characterized by two quantum numbers, i.e. the 

total atomic orbital angular momentum quantum number L, which is equal to l, and 

the total atomic spin quantum number S, which is equal to s. Coupling of the two 

total momenta to give the total atomic angular momentum can then be characterized 

as before by quantum number J, which is now, however, equal to | L ± S |. Since L 
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and S can take the values 0, 1, 2, 3, …, J can take any integral value between | L + S | 

and |L – S | and for this reason the origin of the name “L-S coupling” is obvious. L-S 

coupling has been found to apply to elements of low atomic number, i.e. Z<20. In 

this coupling scheme the annotation is that of term symbols of the form 
(2S+1)

L 

describing the electron distribution in the final state. By analogy with the 

spectroscopic notation of Table 3.1, states with L = 0, 1, 2, 3, …are designated by 

capitals S, P, D, F,…, whereas the total spin quantum number S enters as the prefix 

(2S + 1). (Here the state S corresponding to L = 0 should not be confused with S, the 

total spin quantum number.) As for j-j coupling, L-S coupling predicts six possible 

components in the KLL series, listed in Table 3.2, but one of these is forbidden owing 

to the principle of conservation of parity. Also shown in table 3.2 is a frequently used 

way of describing the final state configuration following an Auger transition ABC, by 

writing down the electron populations in the levels B and C, e.g. 2s
1
2p

5
 for KL1L2,3. 

The L-S classification and notation has been used mostly by those recording Auger 

spectra at high –energy resolution in order to provide data for comparison with 

theoretical calculations (ref. in § 2.2), and is not normally encountered in everyday 

use. The same is true of the mixed, or intermediate, coupling scheme which must be 

used in the region of the Periodic Table where neither L-S nor j-j coupling is adequate 

to describing the final state configuration. In intermediate coupling, each L-S term is 

split into multiplets of different J values, so that the term symbols are now in the form 

(2S+1)
Lj. As can be seen from Table 3.3, ten possible final states are predicted in the 

KLL series, but one is forbidden for the same reason as before. There have been 

several examples of experimental evidence for the existence of nine lines in a KLL 

spectrum. 
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Figure 3.1: From the left, L-S coupling, L-S / j-j correlation for elements 

of the 4
th

 main group and j-j coupling [9]. 

 

3.3.3 Multiplet splitting 

Multiplet splitting of a photoelectron peak may occur in a compound that has unpaired 

electrons in the valence band, and arises from different spin distributions of the 

electrons of the band structure. This results in a doublet of the core level peak being 

considered. Multiplet splitting effects are observed for several transition metals. 

 

3.3.4 Satellite peaks 

The initial-state energy changes are mainly due to the chemical bond formed by the 

atom. Final state effects that occur after photoelectron emission, such as core hole 

screening, relaxation of electron orbitals and polarization of surrounding ions cause 

other peaks to appear in XPS spectra known as satellites. 

Shake-up satellites may occur when the outgoing photoelectron simultaneously 

interacts with a valence electron and excites it (shakes it up) to a higher energy level; 

the energy of the core electron is then slightly reduced giving a satellite structure a 

few eV below (but above on a binding energy scale) the core level position. Another 

feature is the shake-off satellite where the valence electron is completely ejected from 

the ion. 
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3.3.5 Energy scale correction for charging 

Photoemission from an insulating sample causes electrostatic charging to occur in the 

positive direction. This causes a shift in the peak position in the direction of higher 

BE. The energy scale correction by referring all the peaks to that of the aliphatic C1s 

at 285.0 eV is the one used in this thesis and is generally accepted. Other methods are 

discussed in [10]. 

 

3.3.6 Calibration  

An accurate spectrometer calibration is required to extract chemical shift information 

by comparing the measured BE with bibliography or databases, to use spectral 

addition or subtraction to enhance experimental data interpretation and to provide a 

qualified analysis. 

The linearity of the BE scale is checked by comparing the Au4f7/2, the Ag3d5/2, the 

Cu2p3/2 and the CuLMM positions with their expected values. A guideline to the 

calibration procedure and to the reference peaks can be found in ISO 15472:2001 

[11]. 

 

3.4 Data processing 

Data processing is required to obtain the maximum amount of information from a 

spectrum. There are several commercially available programs to perform curve fitting 

routines quickly and easily. CASA XPS (Casasoftware Ltd., UK) was used in this 

work. 

Data processing, is a multi-steps process. The following action has to be taken: 

 spectra inspection 

 spike removal 

 satellite subtraction 

 background subtraction 

 peak fitting 
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3.4.1 Satellite subtraction 

Subtraction of the satellites due to use of a non-monochromatic X-ray source must be 

carried out carefully out as spectral distortion may result from an incorrect removal. 

Some authors [12; 13] suggest keeping all satellites to preserve all the data. 

 

3.4.2 Background subtraction 

As for satellite subtraction, a background removal can be done and, if incorrectly 

performed, will cause problems with any quantification model. Three kinds of 

background subtraction are applied in XPS data analysis: the linear, the integral, 

based on Shirley method, and Tougaard, based on elastic and inelastic energy loss 

processes. The linear background often does not satisfactorily approximate the 

experimental curve. The Shirley background adopted in this work tries to remove as 

much asymmetry as possible from the peak, under the assumption that the background 

is only due to inelastic scattering of the high kinetic energy electrons. The details of 

the calculation of Shirley background with Sherwood’s iteration can be found in [12]. 

Some authors suggest the evaluation of the background during the fitting routine to 

avoid spectral distortion [12, 13, 14]. 

 

3.4.3 Peak fitting 

In many cases the information provided by photoelectron spectroscopy is contained in 

a spectrum that consists of a number of overlapping peaks. This happens when the 

FWHM height of a photoelectron line is wider than the same parameter for a standard 

acquired under the same experimental conditions. Some criteria can be useful to 

establish the number of components peaks: 

 Visual inspection of the peak shape to check for asymmetry and the presence of 

shoulders or humps; 

 Calculation of the FWHM height ratio between a test spectrum and a reference 

spectrum. If the ratio is <1.05, one peak is assigned. If it is close to 1.15 and not 
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valleis appear or the test spectrum is 20% wider than that of the reference 

spectrum, two peaks are assigned; 

 Visual inspection of the first and second derivative spectra; 

 Minimization of the sum of the squared residuals. 

Whenever possible, it is convenient to employ a monochromatic X-ray source but this 

may lead to substantial loss of intensity. The two ways for spectrum interpretation are 

deconvolution and curve fitting of the spectrum. The first one aims at the removal of 

instrumental broadening from the experimental data and should not be confused with 

curve fitting also known as peak synthesis or peak fitting, that is based on the use of 

Gaussian / Lorentzian functions. The second approach was adopted in this work and 

will be briefly described hereafter. 

A spectrum can be synthesized by summing a series of functions representing 

individual peaks in order to produce a final function that closely represents the 

experimental spectrum. The peak function is generally designed to be a function of 

appropriate peak variables such as position, intensity, width, and function type and 

peak tail characteristics. Such a curve synthesis provides a useful initial guess for the 

refining process of non-linear least squares curve fitting. 

A number of types of function have been used for this purpose.  A core level 

photoemission peak inherently has Lorentzian shape whose width is the inverse of the 

core lifetime. The phonons, the vibrational response of the host lattice, produce 

broadening of essentially Gaussian character. The Voigt function is the convolution of 

these contributions and is sometimes approximated by the sum or the product of a 

mixed Gaussian/Lorentzian function. The second one has been adopted in this work. 

Tail parameters may be included in the Gaussian/Lorentzian function to take into 

account the asymmetric line shape. Curve fitting of this type assumes that a particular 

peak profile is uniquely characterized once its full width at half maximum (FWHM) 

has been fixed, and cannot be resolved into subcomponents. This is done by acquiring 

a series of standard materials in the same experimental conditions of the samples 

under investigation. 

Several non-linear least squares algorithms for the optimization of the curve synthesis 

process have been proposed. The one used in this work is based on Marquardt’s 
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method [15]. More details can be found in [12] and in the CASA XPS pdf user’s 

manual, version 1.0, March 2000. 

 

3.5. Auger Parameter [16, 17] 

In 1971 Charles Wagner introduced the Auger parameter concept that increases the 

usefulness of XPS for identifying chemicals states. He noticed [16, 17] that the 

difference in two kinetic energies (Auger and photoelectron), which is accurately 

measurable in the presence of static charging, can be very useful in the 

characterization of insulator and semiconductor materials. 

The original Auger parameter was defined as the difference in kinetic energies of 

prominent and conveniently situated Auger and photoelectron peaks from the same 

elements, recorded in the same spectrum, i.e. 

α’= KE (C’C’’’C’’’) – KE(C) (1) 

Where KE (C’C’’C’’’) is the kinetic energy of the Auger transition involving 

electrons from C’, C’’ and C’’’ core levels C. 

Eq. (1) could produce negative values for α but, being KE (photoelectron) = hν – BE 

(photoelectron), it is possible to define α’, the modified Auger Parameter: 

α’
 
= KE (C’C’’C’’’) + BE(C)  (2) 

The so-defined modified parameter α
’ 
is then independent of hν and always positive 

and it is simply the sum of the kinetic energy of the Auger signal and the binding 

energy of the photoelectron signal. 

The Auger parameter concept was based on the following ideas: 

 there is a fixed difference between two line energies (Auger and photoelectron) 

of the same element in the same sample; 

 Charge corrections to the individual peak measurements are unnecessary 

because they simply cancel during the estimation of the Auger parameter; 
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 Work function corrections are also unnecessary, and vacuum level data can 

directly be compared to Fermi level data. 

The concept of the Auger parameter (eq. 2) is of considerable analytical value, 

because it is independent of charging effects and changes with the chemical 

environment of the element under consideration. 

The Auger parameter is still a one-dimensional quantity like the photoelectron binding 

energy or the Auger kinetic energy alone. Actually, a more useful general approach 

than the Auger parameter alone is the display of photoelectron and Auger data in the 

form of a scatter plot. The positions of the sharpest Auger line and the most intense 

photoelectron line, recorded on a two dimensional plot of compounds of each 

element, form the basis for an alternative approach to chemical state identification. In 

this plot, called Wagner plot or chemical state plot, the Auger kinetic energy is on the 

ordinate and the photoelectron binding energy is on the abscissa and oriented in the 

negative direction. Eq. (2) shows that the Auger parameters are the intercepts of the 

linear relationship KE (Auger) vs. BE (photoemission) to be read directly on the 

straight lines with slope -1. 

In the chemical state plot the position of the different chemicals states depends on 

both initials and final state effects. The initial state effects include the contribution to 

the chemical shift of both the valence charge and the Madelung potential (which takes 

into account the charges of all the other atoms in a compound) at the core-ionized 

atom. The final state effects include information about the extra-atomic polarization 

energy, which is directly measured by the Auger parameter α’
 
= KE + BE. 

In the final state of the photoemission process an atom is left with a core-hole and this 

positive charge will polarize the surrounding atoms and the valence electrons. There 

will be a relaxation energy that will lower the binding energy values. The relaxation 

energy can be divided into two parts: an atomic contribution, that depends on the 

atomic number and the core orbital involved in the process, and an extra-atomic 

contribution which is the relaxation energy associated with the rest of the system 

(with the flow of electron density from the surrounding toward the core-ionized atom) 

[17]. 
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In the simplest approximation, assuming that the intra-atomic relaxation energy is 

independent of the chemical environment, the shifts in the core ionization energy, 

ΔBE, and in the kinetic energy of an Auger transition, ΔKE, are given by the 

following equations [18]: 

ΔBE = ΔV – ΔR
ea

 (3) 

ΔKE = -ΔV + 3 ΔR
ea

 (4) 

ΔV reflects differences in the initial orbital energy of the electron in the initial (un-

ionized) state; and ΔR
ea

 reflects differences in the final-state extra-atomic relaxation 

energy. The shift in the Auger parameter Δα’ provides, according to eq. (5), a direct 

measurement of the shifts in the extra-atomic relaxation energy [18]: 

Δα’ = ΔBE + ΔKE = 2 ΔR
ea

 (5) 

Three different situations can be found in the Wagner chemical state plot: 

1) Identical Auger parameter 

The individual data point of different compounds or samples are found on a 

diagonal line with equation KE = α’ - BE with a slope ΔKE / ΔBE = -1 in the 

Wagner plot (the lines show a positive slope in the graph owing to the 

negatively oriented x-axis). Such compounds show the same Auger parameter α
’ 

and identical chemical state. 

2) Initial and final state effects have similar values 

The BE values for an element in different compounds or samples are similar: 

ΔBE = ΔV – ΔR
ea

 = 0, so ΔV = ΔR
ea 

(initial and final state effects have similar 

values). Differences in α
ǀ
 are due to differences in the bond nature: the more 

positive the Auger parameter shift, the more covalent the bond; the more 

negative the Auger parameter shift, the more ionic the bond. 

3) Similar initial state effects 

The data point for an element in different compounds or samples fall on a line 

with slope ΔKE / ΔBE = -3. This indicates similar initials state effects (ΔV in 

eqs. 3 and 4, the difference in the Madelung potential VM and the term related to 

the ground state valence charge q of the core-ionized atom). 
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3.6 Quantitative analysis 

In order to quantify spectra from XPS, one must convert peak intensities (usually peak 

areas) to atomic concentrations. The easiest case concerns homogeneous samples. The 

situation is more complicated for samples with surface films that are either thinner 

than the information depth of the technique or discontinuous. 

As will be shown in the sequel, experimental peak intensities depend upon several 

parameters, which are dependent on the photoemitting element, the matrix, the 

physics of the X-ray photoemission phenomenon, the mechanics and dynamics of the 

electron travelling through the sample, the spectrometer geometry, experimental 

design, etc. Thus, the experimental peak intensities can be considered “raw” data that 

have to be corrected in order to obtain comparable quantities. The peak intensity 

correction factors are usually referred to as sensitivity factors. There are three main 

approaches for evaluating the sensitivity factors. (i) They can be found in the 

literature or experimentally determined in-house. (ii) Alternatively, sensitivity factors 

can be calculated taking into account all the physical parameters involved in XPS 

peak “generation”. (iii) The last approach is known as the first principle method [10]. 

This method has been used here and will be described in some detail. The most 

generic expression used in XPS quantitative analysis is: 

 

where A is the element or the chemical species, Ii is the experimental intensity of the 

chosen XPS peak generated from the species I, Si is the sensitivity factor for that 

particular XPS peak generated from the species i. 

In the first principle method, the intensity Ii of a particular peak of the generic species 

I, is given by the following expression: 
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whose solution for the atomic density Ni could be used in the above expression for the 

atomic concentration. It may be rewritten as: 

 

 is the photoionization cross-section which is defined as the “effective area” of the 

collision between an incident X-ray photon and an atom of the species i in the sample. 

 depends upon the photon energy h, the element of I and the quantic numbers n, l, s 

and j describing the initial state of the photoemitted electron [19]. 

D is the detector efficiency function that describes the efficiency of the spectrometer 

detector versus the electronic kinetic energy Ei, i.e. the ratio of the electron actually 

counted and the total number of electrons arrived at the detector. 

L is the angular asymmetry function that takes into account the non-isotropic nature of 

the electronic photoemission phenomenon. It depends upon the X-ray source and the 

quantic numbers n, l, s and j describing the initial state of the photoemitted electron 

[20]. 

J0 is the X-ray photon flux versus the x and y coordinates. T is the so-called 

transmission function of the spectrometer. It can be defined as the number of electrons 

actually counted and the number of electrons entering the detection system of the 

spectrometer.  

λ is the inelastic mean free path of the emitted electrons, which depends upon the 

electron KE and the density of the material M (i.e. the sample). 

The above rigorous expression for peak intensity Ii is indeed very complex, but can be 

simplified with certain assumptions. First of all, under the hypothesis that the sample 

is homogeneous down to a depth greater than the sampling depth of the XPS 

technique: 

 

Thus, the above expression for intensity of a photoelectron line Ii can be rewritten as: 
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where  = λ*cosθ is the attenuation length, i.e. is the maximum path-length that can 

be travelled by the photoelectron (with a certain KE) in the material M without 

loosing energy in inelastic scattering events. 
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Chapter 4 

Experimental 
 

 

 

In this chapter the materials and methods used in the present work are presented. 

First, the reference compounds and the minerals employed are listed. Then, the protocol for 

the preparation of the mixtures of sulphides and polysulphides is described along with the 

procedures adopted for performing the X-ray photoelectron and the X-ray excited Auger 

electron spectroscopic experiments. 
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4.1. Materials 

 

4.1.1 Reference materials 

In the following paragraphs the reference compounds, the investigated model systems 

consisting of mixtures of sulphur and polysulphide and the mineral samples are 

described. 

 

4.1.1.1 Sulphur, sulphides and sulphates 

A series of alkaline sulphides and sulphates and of sulphides and sulphates of 

transition metal elements were analysed by XPS and XAES. Their suppliers are listed 

in table 4.1 along with their appearance and purity and the chemical abstract number 

(CAS).  

Table 4.1: Sulphides and sulphates used in this work; purity, supplier, appearance and 

CAS are reported. 

Molecular 

formula 

 

Purity 

 

Supplier 

 

Appearance 

 

Color 

 

CAS 

S8 - - Solid  7704-34-9 

Sulphides 

Li2S 

anhydrous 

99% Alfa Aesar Hygroscopic 

powder 

White 12136-58-2 

Na2S 

anhydrous 

100% Alfa Aesar Hygroscopic 

solid 

Colorless to yellow 1313-82-2 

Na2S4 90-95%, 

H2O 5% 

max. 

Alfa Aesar  Hygroscopic 

powder 

Light 

brown/yellow/orange 

12034-39-8 

K2Sn K2S 42% 

min. 

Riedel de 

Haën 

Lumps Light brown to yellow 

with green dots 

37199-66-9 

FeS 99.9% Aldrich Powder Black 1317-37-9 

Cu2S 99.99% Aldrich Powder Black 22205-45-4 

CuS 99.99+% Aldrich Powder Black 1317-40-4 

Sulphates 

Li2SO4*H2O 99% Merck Powder White 10102-25-7 

Na2SO4 99% min. Riedel de 

Haën 

Powder White 7757-82-6 

K2SO4 99% Merck Powder White 7778-80-5 

Rb2SO4 99.8% Aldrich Powder White 7488-54-2 

Cs2SO4 99.99% Aldrich Powder White 10294-54-9 

 

The air- or moisture sensitive compounds arrived stored in sealed bottles under 

nitrogen. All containers were opened in a glove box (UNILAB, manufactured by 

http://toolserver.org/~magnus/cas.php?cas=7704-34-9&language=it
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MBraun.), filled with argon and located near to the XP-spectrometer. Residual oxygen 

and water in the glove box were monitored and resulted to be always 1 mg/kg and less 

than 1 mg/kg respectively. The solids were crushed using an agate pestle and mortar 

and then compressed into a disk, such as those used for preparation of KBr disks for 

infrared spectroscopy, to form a pellet. The pellet was then attached to a double-sided 

adhesive tape mounted on a standard sample holder (Figure 4.1). The sample was then 

sealed, in the interior of the glove box, into an air tight bell device and transferred, out 

of contact with the air, to the fast-entry air lock of the spectrometer (Figure 4.1) [1]. 

 

 

Figure 4.1: Bell-device for transferring the sample from the glove box to the fast 

entry air lock of the XP-spectrometer [1]. 

 

4.1.1.2 Model systems: Sulphur and polysulphides mixtures 

In order to simulate the situation that may occur at the mineral surface, a series of 

mixtures, as model systems, were prepared using sodium tetrasulphide (Na2S4) and 

sulphur (S8). The sodium tetrasulphide container was opened inside of the glove box 

and was crushed in an agate mortar for five minutes. A piece of solid elemental 

sulphur was ground for five minutes inside of the glove box. With two powdered 

samples two mixtures were prepared, one 50:50 and one 20:80 by weight, respectively 

corresponding to 42 – 58 atomic % and to 16:84 atomic %. The mixtures were 

weighted inside the glove box using a balance with a sensitivity of ± 0.01 g. Each 

mixture was further crushed for five minutes before preparing the pellet to be 

transferred to the spectrometer. 
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4.1.3 Mineral samples 

The minerals investigated are listed in Table 4.2. All minerals were measured in the 

following conditions: (i) freshly cleaved, (ii) after air exposure for one week and (iii) 

after comminution in an agate mortar. Furthermore, pyrite samples were measured 

after different comminution conditions: in air, under argon in the glove box and in air 

and using acetone to limit iron oxidation. 

Table 4.2: Minerals. 

 

Name 

 

 

Chemical 

formula 

 

Origin 

Arsenopyrite FeAsS China 

Chalcopyrite CuFeS2 Unknown 

Enargite Cu3AsS4 Leonard Mine, Butte, 

Montana, USA 

Pyrite FeS2 Unknown 

 

The minerals were characterized by means of X-ray diffraction. Enargite, arsenopyrite 

and pyrite samples were found to consist of a single phase, whereas various phases 

were present in chalcopyrite. 

4.2. Methods 
 

4.2.1. X-ray photoelectron spectroscopy 

Three different spectrometers were used: the Theta Probe (Thermo Fisher Scientific), 

the ESCALAB MKII upgraded with 5 channelectrons and a hemispherical analyser 

(Vacuum Generator Ltd) now Thermo Fisher Scientific and the SIGMA 2 with the 

Alpha 100 analyser (Thermo Fisher Scientific). The first spectrometer is equipped 

with an AlK monochromatic source, the other two are equipped with MgK and 

AlK non-monochromatic sources. The first series of measurements was carried out 

on a set of sulphides and sulphates (see Results, § 5.1.1 – 5.1.6) in order to determine 

the curve-fitting parameters using the high-resolution mode. The second series of 

measurements were performed using the ESCALAB MKII; only few selected 

samples, i.e. K2SO4, Cu2S, CuS and FeS, were analysed with the SIGMA 2 to 
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investigate the charging effect on insulating samples in the high-energy region of the 

XP-spectrum where the SKLL signal can be detected. 

In the sequel the main characteristics of the three spectrometers are reported and the 

experimental set-up is provided for each of them. 

 

4.2.2 Theta Probe 

The Theta Probe (Thermo Fischer Scientific, Waltham MA, USA) shown in figure 4.2 

is equipped with a radian lens unit and a two dimensional detector that collects the 

photoemitted electrons over a 60° angular range, in parallel, without tilting the 

sample. The electrons are excited using an AlK monochromatic micro-focused 

source with a spot size of 300 µm and a power of 70 W. The pass energy was set at 

100 eV and the analyser was operated in the fixed analyzer transmission mode. The 

energy resolution in these conditions is found to be equal to 0.83 eV. This 

spectrometer is computer-controlled and the spectra are acquired by Avantage a 

Windows
TM

 – based data system. In this work the instrument was used in the 

conventional mode, also called standard lens mode, since there were no requirements 

for angle-resolved information.  

 

 

 

 

 

 

 
Figure 4.2 : THETA PROBE, Thermo Fisher Scientific Inc., 

East Grinstead, UK at Università di Cagliari. 
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A scheme of the spectrometer geometry is represented in figure 4.3 [2].  

 

Figure 4.3: Angles diagram for specifying Theta Probe geometry from 

Surface Science Spectra [2]. 

Table 4.3 lists the most significant information for the Theta Probe configuration. 

Table 4.3: Theta Probe configuration 

Emission Angle (e) 53° 

Incident Angle (i) 30° 

Source-to-Analyser Angle (s) 67.38° 

Specimen Azimuthal Angle (s) 30.6° 

Sputter Source Incident Angle (ig) 45° 

Sputter Source Polar Angle (ig) 58.43° 

Sputter Source Azimuthal Angle (ig) 24.2° 

 

The pump system consists of two turbo-molecular pumps, one operating in the fast 

entry air lock chamber, the other in the analysis chamber. In the analysis chamber a 

titanium sublimation pump is also fitted and these two pumps allow the achievement 

of a base residual
 
pressure always lower than 5·10

-8
 Pa. During the experiments the 

residual pressure resulted being equal to 5*10
-7

 Pa. 
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Further equipment is an ion gun (angle ion gun-to-sample normal: 45°), a combined 

low-energy electron/ion flood gun for charge compensation and a cooling stage. 

The calibration of the spectrometer was performed according to the instructions of the 

manufacturer and the linearity of the binding energy scale was periodically checked 

according to ISO 15472:2001 [3]. 

The list of the regions collected is given in table 4.4. 

 

Table 4.4: List of regions and relative energy ranges used for 

experiments, as well of step sizes and times per step. 

Name Energy Range (eV) Step size (eV) Time per step (ms) 

Survey 0-1400 1 50 

Valence Band -5-40 0.05 50 

S2p 150-175 0.05 100 

S2s 215-245 0.05 50 

SLMM 1310-1360 0.05 50 

C1s 275-300 0.05 50 

O1s 520-545 0.05 50 

Cations 

As3d 30-55 0.05 50 

AsLMM 250-275 0.05 50 

Cu2p 920-970 0.05 50 

CuLMM 560-575 0.05 50 

Fe2p 700-730 0.05 50 

FeLMM 760-810 0.05 50 

K2p 285-300 0.05 50 

 

4.2.3 ESCALAB MKII 

The ESCALAB MKII installed at Università di Cagliari in 1985 [figure 4.4] was 

manufactured by Vacuum Generator and was upgraded in the nineties. This 

instrument is a multi-technique surface analysis system that is mainly used as X-ray 

photoelectron spectrometer but is also provided with an electron source for Auger 

electron spectroscopy and two ion sources Ag21 for argon ion etching in situ and an 

AG61 for ISS. 

It consists of a spherical sector analyser and a set of five channel electron multipliers. 
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The analyser is equipped with electrostatic lens and mechanical apertures: in this 

thesis the large area mode was selected. The lens was operated in the standard mode 

[potential was 0.2 V at 100 eV kinetic energy and 2.08V at 1000 eV kinetic energy]. 

The main part of the instrument is the Mu-metal analysis chamber where the residual 

pressure is usually maintained around 10
-7

 Pa by a turbo-molecular pump and a 

titanium sublimation pump. The sample is introduced through a fast entry chamber 

where a rotary pump keeps the residual pressure at 10
-3

 mbar. The pressure in the 

analysis chamber during measurements was always maintained below 5*10
-5

 Pa. The 

cooling of the stage at the liquid nitrogen temperature started before introducing the 

sample in order to cool down the stage. It was continuously cooled during the 

measurements to avoid sulphur sublimation that might occur under vacuum at room 

temperature [4]. 

A standard X-ray source with aluminium and magnesium anodes is mounted. The 

magnesium and aluminium coatings are deposited on a silver substrate, which covers 

the copper, to eliminate the excitation of the sample by the CuL when the anode is 

old. The energy of the X-rays emitted from the source depends upon the anode 

material of which they are formed. If Mg k is required, the cathode nearest the 

magnesium face is used otherwise the cathode nearest to the aluminium face is 

selected. The anode is designed to minimize the cross contamination of the X-ray 

radiation that was found to be always lower than 0.25%. A 1 μm aluminium windows 

shields the sample from stray electrons from the sources. Spectra were collected with 

the Al kα1,2 (1486.6 eV) operated at 20 mA and 15 kV (300 W) and with the Mg kα1,2 

(1253.6 eV) operated at 20 mA and 15 kV (300 W) when the photoelectron signals 

were superimposed to the Auger-excited ones. The analyzer was operated in constant 

analyzer energy (CAE) mode, at 20 eV pass energy (PE) for high-resolution spectra, 

and at 50 eV PE for the acquisition of the survey spectra. The full width at half 

maximum (FWHM) of the Ag3d5/2 line, at 20 eV was measured to be 1.1 eV. The 

intensity /energy response function was evaluated to be equal to . In table 4.5 

the energy range of the spectral regions acquired with the ESCALAB is shown. The 

emission angle was always 0°. 
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Table 4.5: List of regions and relative energy ranges used for 

experiments, step sizes and times per step are listed too. 

Name Energy Range (eV) Step size (eV) Time per step (ms) 
Survey (Al) 0-1400 1 100 

Survey (Mg) 0-1200 1 100 

Valence Band -10-40 0.1 100 

S2p 155-175 0.05 100 
SKLL -645-595 0.05 100 

S2s 218-238 0.05 100 

SLMM 1310-1370 0.05 100 

C1s 275-295 0.05 100 
O1s 525-545 0.05 100 

Cations 

As3d 30-55 0.05 100 

AsLMM 250-275 0.05 100 
Cs3d 715-745 0.05 100 

Cu2p 920-970 0.05 100 

CuLMM 560-575 0.05 100 

Fe2p 700-740 0.05 100 
Fe3s 82-102 0.05 100 

Fe3p 43-63 0.05 100 

FeLMM 760-810 0.05 100 

K2p 292-316 0.05 100 
Li1s 50-70 0.05 100 

Na1s 1068-1092 0.05 100 

Rb3d 105-125 0.05 100 

 

Figure 4.4 : VG ESCALAB 200, Thermo Fisher Scientific 

Inc., East Grinstead, UK at Università di Cagliari. 
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Table 4.6 lists the most significant information for the ESCALB MKII configuration 

angles are defined as in figure 4.3. 

Table 4.6: Angles referred to figure 4.3 for specifying 
ESCALB MKII geometry configuration for sources and 

analyser [5] 

Emission Angle (e) 0° 

Incident Angle (i) 49° 

Source-to-Analyzer Angle (s) 49° 

Specimen Azimuthal Angle (s) 40° 

Sputter Source Incident Angle (ig) 48° 

Sputter Source Polar Angle (ig) 53° 

Sputter Source Azimuthal Angle (ig) 85° 

 

A periodic calibration was performed to assess the linear response of XPS 

spectrometer over the whole energy scale [5]. Au, Ag and Cu foils were ion-etched 

for three minutes prior to the analysis. The energy beam was 6 keV. The Au4f7/2, 

Cu2p3/2, Ag3d5/2 and Cu LVV spectral lines were used to perform the calibration. The 

accuracy attained was  ± 0.05 eV. 

Charging, whenever observed, was corrected by referring all photoelectron signals to 

that of the aliphatic carbon from residual oil to 285 eV. 

 

4.2.3.1 X-ray excited Auger electron spectroscopy 

Al Kα source allows the measure of the SKLL line that is found at ca. 2115 eV using 

the bremsstrahlung. To ensure an appropriate alignment at higher binding energies 

near SKLL peak, the position of the AuM4N7N7 Auger peak at 2101.2 eV was also 

checked [6, 7] In this work it was found at 2101.1 eV. 
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4.2.4 SIGMA 2  

The SIGMA 2 instrument is installed in the Laboratory for Surface Science and 

Technology at the ETH [Eidgenössische Technische Hochschule - Politecnico 

Federale Svizzero] in Zürich. In this case too, the analysis chamber is of mu-metal (an 

alloy with high magnetic permeability made of 80% Ni, 14.48% Fe, 5%Mo, 0.5% Si 

and 0.02% Cu) and the ultra-high vacuum (5*10
-8

 Pa) is achieved by means of the 

turbo-molecular pump and the titanium sublimation pump that are mounted on it. 

Samples are loaded on a sample carrier arm of the fast entry air lock and the high-

vacuum is achieved in about 15 minutes thanks to a turbo-molecular pump and a 

rotary pump that are mounted on a different line from the one which is operating on 

the analysis chamber. A twin source with aluminium and magnesium anodes is fitted. 

The in focus positioning of the sample surface is achieved by means of a microscope. 

The analyser worked in fixed analyser transmission mode being the pass energy equal 

to 20 eV and to 50 eV for collecting the high-resolution spectra and the survey spectra 

respectively. In this case also the instrument operated in the large area mode 

(LAXPS); the applied potentials to the lens were: lens 1 = 5.194 V; lens 2 = 2.092 V; 

lens 3= 2.798 V. 

An ion source, EX05, with its digital power supply allows the argon ion etching of the 

metal samples for the calibration and the collection of composition in-depth profile. 
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Figure 4.5: SIGMA 2 Thermo Fisher Scientific Inc. at LSST ETH Zurich. 

 

Table 4.7: Angles of the main components of the 

SIGMA 2. Symbols are those of figure 4.3. 

Emission Angle (e) 0° 

Incident Angle (i) 50° 

Source-to-Analyzer Angle (s) 50° 

Specimen Azimuthal Angle (s) 180° 

Sputter Source Incident Angle (ig) 45° 

Sputter Source Polar Angle (ig) 45° 

Sputter Source Azimuthal Angle (ig) 100° 

 

Also in this case the calibration of the spectrometer was performed according to ISO 

15472 and the AuM4N7N7 Auger peak at 2101.3 eV was collected. 
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Table 4.8: Acquired regions and relative energy ranges used for the 

experiments. Step sizes and times per step are listed too. 

Name Energy Range (eV) Step size (eV) Time per step (ms) 

Survey (Al) 0-1400 1 50 

Valence Band -5 - 40 0.1 50 

S2p 150-175 0.05 50 

SKLL -500-630 0.1 50 

S2s 221-244 0.05 50 

SLMM 1200-1280 0.1 50 

S2p – S2s 160-250 0.1 50 

C1s 275-300 0.1 50 

O1s 520-545 0.05 50 

Cations 

Cu2p 925-970 0.1 100 

Cu3p 65-85 0.1 100 

Fe2p 694-750 0.05 50 

FeLMM 760-820 0.1 50 

K 2p 285-317 0.05 50 

KLMM 1190-1300 0.1 50 

 

When charging was observed it was corrected by referring all photoelectron signals to 

that of the aliphatic carbon from residual oil to 285 eV. 

 

4.2.5 Data processing and quantitative analysis 

The high-resolution spectra were processed with CASA XPS software (v. 2.3.15 Casa 

Software Ltd., Wilmslow, Cheshire, UK). An iterated Shirley-Sherwood background 

subtraction was applied prior to curve fitting with a product of Gaussian-Lorentzian 

curves. The Gaussian-Lorentzian ratio for each peak was determined from 

measurements on reference compounds. To calculate the atomic percentage of the 

elements, the first principle method was applied. The final formula is: 

 (1) 

where A is the element or the chemical species, Ii is the experimental intensity 

(counts/s*eV) of the chosen XPS peak generated from species i, Si is the sensitivity 

factor for that particular XPS peak generated from the species i: 
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 i is the photoemission cross-section, available on the tables of the Scofield’s 

work [8]. 

  is the asymmetry function, because for the 

ESCALAB 200 the value of  is 49.1° . i, asymmetry 

parameter, can be found in  the tables of Reilman’s work [9];  

  is the analyzer transmission function for the ESCALAB 200; 

  is the attenuation length. θ, angle formed by the normal at the 

surface of the sample and the axis of the lenses which collect emitted 

photoelectrons, for the ESCALAB 200 is 0° if the sample is rotated of 15° 

compared to ground (data collection at 0°) and therefore . 

 is the inelastic mean free path IMFP. The most widely used 

predictive formulas are the Seah and Dench [10], the TPP-2M [11] and the G-

1 [12]. In this work has been used Seah and Dench formula. 

Signal intensity correction for taking into account the electron attenuation due 

to the contamination layer was applied using the algorithm proposed by Smith 

[13].  

Signal intensity correction for taking into account the electron attenuation due to the 

contamination layer was applied using the algorithm proposed by Smith [13].  

The effect of hydrocarbon overlayer is the preferential attenuation of the signal by 

those elements with higher binding energy (lower kinetic energy) peaks resulting in a 

wrong evaluation of the quantitative composition of the sample surface. The presence 

of the hydrocarbon overlayer results in an apparent carbon concentration that depends 

on the layer thickness. Overlayer thickness can be evaluated my means of equation 2: 











100
1lncos,1

x
d CsC 

 (2) 

where x is the carbon atomic percentage (determined assuming that sample 

composition is homogeneous) by means of equation 1,  is the photoelectron emission 
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angle relative to the surface normal and C1s,C is the effective electron attenuation 

length for C1s photoelectrons in the hydrocarbon overlayer that can be estimated by 

equation 3: 

contam
0.7608



as suggested by Smith as the best fit for inelastic mean free path in organic 

contamination.  

The knowledge of contamination layer thickness allows the correction of the 

preferential attenuation of signals by elements with higher binding energies by means 

of equation  













 cos
exp%%

i

measicorri

d
AtAt  (4) 

where Ati%meas is the atom percentage of the element i determined applying 

equation (1) to all elements constituting the sample surface without taking into 

account the carbon, d is the hydrocarbon contamination thickness determined by 

equation (2), and i is the effective electron attenuation length for photoelectrons 

from the element i and line of interest in the hydrocarbon overlayer determined by 

using eq. 3. 

In table 4.9, 4.10 and 4.11 the parameters used for calculating the sensitivity factors, 

using the three different spectrometers are shown. 

 

Table 4.9: Parameters for the calculation of the sensitivity factors when using the 

Theta Probe at Università di Cagliari. 

Element Ref.   L () Q (KE) cos s 

As 3d doublet 43.5 1.821 1.146 3.420 2.195 26.030 

C 1s 285 1.000 1.278 3.444 2.003 14.652 

Cu 2p3/2 932.9 16.37 1.196 3.508 2.261 155.275 

Fe 2p3/2 707.6 10.82 1.202 3.488 1.613 121.547 

K 2p doublet 292.8 3.97 1.171 3.446 1.996 53.135 

O 1s 530.6 2.93 1.278 3.470 1.787 38.578 

S 2p doublet 162.7 1.677 1.156 3.432 2.102 23.237 
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Table 4.10: Parameters for the calculation of the sensitivity factors when using the 

ESCALAB MKII at Università di Cagliari. 

Element Ref. BE  L () Q (KE) cos s 

As 3d doublet 44.4 1.821 0.925 0.026 3.646 0.162 

C 1s 285 1.000 0.857 0.029 3.329 0.082 

Cu 2p3/2 932.4 16.73 0.899 0.043 2.262 1.445 

Fe 2p3/2 707.8 10.82 0.896 0.036 2.680 0.931 

K2p doublet 292.7 3.97 0.912 0.029 3.318 0.348 

Li 1s 54.9 0.0568 0.857 0.026 3.633 0.005 

Na1s 1071.3 8.52 0.857 0.049 1.960 0.702 

O 1s 531.5 2.93 0.857 0.032 2.968 0.241 

S 2p doublet 161.5 1.677 0.920 0.028 3.495 0.148 

Pb 4f doublet 137.7 22.74 0.927 0.027 3.526 2.024 

 

Table 4.11: Parameters for the calculation of the sensitivity factors when using the 

SIGMA 2 at Zürich. 

Element BE 

(eV)
 L () Q (KE) cos

(nm) 

s 

C 1s 285 1.000 0.881 4.688 3.328 13.746 

Cu 2p3/2 932.5 16.73 0.916 4.947 2.262 171.480 

Fe 2p3/2 709.2 10.82 0.914 4.833 2.678 127.958 

K 2p doublet 292.9 3.97 0.923 4.690 3.317 56.998 

O 1s 530.5 2.93 0.881 4.764 2.969 36.511 

S 2p doublet 169.0 1.677 0.933 4.658 3.485 25.410 

 

In the case of a resolved doublet, i.e. Cu2p and Fe2p, the sensitivity factors were 

calculated considering the Cu2p3/2 and the Fe2p3/2 peaks, whereas for a not resolved 

doublet, i.e. As3d, K2p, S2p and Pb4f the whole area under the photoelectron signal 

was taken. In this last case, i is equal to the sum of the ’s of two components of the 

doublet. 
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Chapter 5 

Results and Discussion 
 

 

 

In this chapter the X-ray photoelectron spectroscopy (XPS) and X-ray excited Auger electron 

spectroscopy (XAES) analyses on alkaline and transition metal sulphide and sulphates, 

polysulphides and sulphide minerals are presented. In particular the spectra of the S2p and S 

KLL lines of the sulphides and sulphates were used for getting the peak fitting parameters and 

apply them to the model systems obtained by mixing sulphur with sodium tetrasulphide. 

Minerals were analysed freshly cleaved, ground and after air exposure. The chemical state of 

sulphur in sulphates, sulphides (alkali- and transition metal compounds, minerals) and 

polysulphide is discussed. For the first time the X-ray excited Auger SKLL lines were fitted 

with parameters based on standards. In this way, which can be considered as an extension of 

previous work, a separation of the different components and a more precise determination of 

their kinetic energy were achieved. The Auger parameter and the chemical state plot were 

obtained by combining the S2p photoelectron lines and the SKLL Auger lines. On this basis a 

clear distinction of the chemical state of sulphur in sulphates, in alkali sulphides and in 

transition metal sulphides was possible. The chemical state of sulphur in the bulk of minerals 

such as enargite or pyrite was determined. The chemical state of sulphur that formed on the 

surface of compounds after exposure to air or after grinding was found to vary according the 

coordinating metal and its concentration.  
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5.1 Reference compounds 

Reference compounds used for this work were group IA sulphates (Li2SO4*H2O, 

Na2SO4, K2SO4, Rb2SO4 and Cs2SO4), elemental sulphur (S8), various sulphides (Li2S, 

Na2S, Na2S4, K2Sn, Cu2S, CuS and FeS) and model systems prepared by mixing Na2S4 

and S8. The spectra of these compounds were recorded in order to obtain curve-fitting 

parameters, necessary for modelling the XPS and XAES spectra of mineral samples. 

The samples were prepared in a glove box, they were mounted as pellets on bi-

adhesive tape and they were inserted into the spectrometer analysis chamber by means 

of a bell device [1]. For each sample survey spectra and high-resolution spectra were 

acquired. 

 

5.1.1 Group IA sulphates 

In this section the survey spectra, the high resolution photoelectron and X-ray induced 

Auger electron spectra of sulphur, as well as the photoelectron lines of the cations for 

the following sulphates: Li2SO4*H2O, Na2SO4, K2SO4, Rb2SO4 and Cs2SO4 are 

presented. In a recently published paper on the alkali metals sulphates (group IA) the 

photoelectron lines were only shown [2]. 

The survey spectra acquired with Al Kα source (Figure 5.1) confirm the absence of 

elements different from those expected. In the case of Na2SO4 also the Mg Kα source 

had to be used in order to avoid the problem of signal overlapping of the O1s with the 

NaKLL signals. This approach allows the achievement of more accurate quantitative 

results. Figure 5.2 shows the high-resolution spectra of photoelectron S2p peaks and 

Auger SKLL signals for the group IA of sulphates. 
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Figure 5.1: survey spectra of group IA sulphates. 
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Figure 5.2: High-resolution photoelectron and X-ray induced Auger electron spectra  

 

As figure 5.2 shows, all the S2p signals consist of a doublet, owing to the spin-orbit 

coupling. The most intense component corresponds to the quantic number of total 

angular momentum j=3/2, while the least intense component corresponds to j=1/2. 

The area of the least intense peak was always constrained to be 1/2 of the most intense 

one, in agreement with the theoretical value. The binding energy difference between 

the two components was found being 1.18 eV in agreement with [3]. The binding 

g h 

i l 



68 

 

energy values of the S2p signal (see table 5.1) are also in agreement with literature 

[2,4]. 

Table 5.1 lists the curve-fitting parameters obtained for the photoelectron signals 

S2p3/2 of the group IA sulphates, after satellite removal and Shirley-Sherwood 

background subtraction. Binding energy of the signal, full-width-at-half-maximum 

(FWHM) height and Gaussian/Lorentzian (GL) ratio obtained using Casa XPS 

software are reported. 

Table 5.1: Position (eV), FWHM (eV) and line shape of photoelectron signals of 

group IA sulphates. Standard deviation of three independent measurements is given. 

 

 

Sulphates 

S2p3/2 

Binding Energy (eV) 

FWHM 

(eV) 

 

Line Shape 

Li2SO4*H2O 169.6±0.1 1.6 GL(75) 

Na2SO4 168.8±0.1 1.6 GL(75) 

K2SO4 169.0±0.1 1.5 GL(75) 

Rb2SO4 168.4±0.2 1.8 GL(75) 

Cs2SO4 167.8±0.1 1.4 GL(75) 

 

The X-ray induced Auger Signal S KLL (see figure 5.2) consists of three components. 

The most intense, 
1
D, is due to the KL2,3L2,3 transition that corresponds to 2s

2
2p

4
 final 

configuration. The second signal at lower kinetic energies, 
1
S, is due to the other 

possible transition, KL1L1, that corresponds instead to 2s
0
2p

6
 final configuration. The 

different intensity of these two components reflects the different probability of each 

transition (see § 3.3.2). There is also a third component between 
1
D and 

1
S lines, 
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probably an excitation line due to a satellite. This component is present in all SKLL 

sulphate spectra.  

XAES spectra of the SKLL line were fitted using a linear background subtraction. 

Table 5.2 lists curve-fitting parameters for each components of the SKLL signals i.e. 

KE position, FWHM GL ratio.  

Table 5.2: Kinetic energy (eV), FWHM (eV) and line shape of X-ray induced Auger 

signals of group IA sulphates. Standard deviation is calculated over three independent 

measurements. 

 

Compounds 

S KL2,3L2,3 (
1
D) satellite S KL1L1 (

1
S) 

KE (eV) FWHM 

(eV) 

Line 

Shape 

KE (eV) FWHM 

(eV) 

Line 

Shape 

KE. (eV) FWHM 

(eV) 

Line 

Shape 

Li2SO4*H2O 2105.1±0.1 1.7 GL(90) 

T(1.8) 

2101.3±0.2 1.9±0.1 GL(30) 

 

2097.5±0.1 2.9 GL(30) 

 

Na2SO4 2106.2±0.1 1.8±0.1 GL(95) 

T(1.8) 

2101.8±0.2 2.0±0.1 GL(30) 

 

2098.1±0.1 3.2±0.2 GL(30) 

 

K2SO4 2105.1±0.1 2.0±0.1 GL(95) 

T(1.8) 

2101.0±0.1 1.9±0.1 GL(30) 2097.0±0.1 3.6±0.5 GL(30) 

Rb2SO4 2106.8±0.3 1.9 GL(95) 

T(1.8) 

2102.6 3.0±0.1 GL(30) 

 

2098.5 3.0±0.1 GL(30) 

 

Cs2SO4 2107.5±0.2 1.9 GL(95) 

T(1.8) 

2103.3±0.2 

 

2.3 GL(30) 2099.4±0.1 4.0±0.2 GL(30) 

 

The high-resolution spectra of the different cations (Li1s, Na1s, K2p, Rb3d and Cs3d) 

as well as the O1s region of the group IA sulphates are shown in figure 5.3. Li1s and 

Na1s spectra were fitted with a singlet, reflecting (as for the S2p spectra), the 

presence of only one chemical state of the cation. The binding energies of Li1s and 

Na1s respectively 56.0±0.1 eV and 1071.5±0.1 eV (table 5.3) are in good agreement 

with the literature [5, 4, 6]. The spectrum of K2p (figure 5.3e) is a doublet with a 

binding energy difference of 2.8 eV [3]; the peak at 292.9±0.1 eV, can be assigned to 

a sulphate [7]. 
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Rb3d and Cs3d spectra were fitted with a doublet, the area of the less intense peak 

was always assumed to be 2/3 of the most intense one, as predicted by the ratio of 

their respective degeneracies (2j+1). Separation between Rb3d5/2 - Rb3d3/2 and Cs3d5/2 

- Cs3d3/2 signals were found to be respectively 1.49 eV and 13.94 eV in agreement 

with [3]. The binding energy values of Rb3d5/2 and Cs3d5/2 are found to be 109.8±0.2 

eV and 723.9±0.2 eV respectively, in good agreement with [2, 8]. 
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Figure 5.3: High-resolution photoelectron spectra of the cations Li1s, Na1s, K2p, 

Rb3d, Cs3d and O1s regions of group IA sulphates. 

g h 

i l 
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Table 5.3: Binding energy (eV), FWHM (eV) and line shape of photoelectron signals 

of group IA sulphates cations. Standard deviation is calculated on three independent 

measurements. 

Compounds BE (eV) cation FWHM (eV) Line Shape 

Li2SO4*H2O Li1s = 56.0±0.1 1.7±0.1 GL(55)T(2) 

Na2SO4 Na1s = 1071.6±0.1 1.7 GL(76)T(2.4) 

K2SO4 K2p3/2 = 293.3±0.1 1.7 GL(60) 

Rb2SO4 Rb3d5/2 = 109.8±0.2 1.9 GL(50) 

Cs2SO4 Cs3d5/2 = 723.9±0.2 2.0 GL(75) 

 

Table 5.4: Binding energy (eV), FWHM (eV) and line shape of the O1s photoelectron 

signal of group IA sulphates. Standard deviation is calculated on three independent 

measurements. 

Compounds O1s BE (eV)  FWHM (eV)* Line Shape 

Li2SO4*H2O 532.6±0.1 1.8 GL(45) 

Na2SO4 532.0±0.1 1.8 GL(45) 
a 

K2SO4 531.6 1.8 GL(45) 

Rb2SO4 531.4±0.2 1.8 GL(45) 

Cs2SO4 531.0±0.1 1.8 GL(45) 

aThis spectrum has been acquired with Mg kα 

* FWHM was constrained to 1.8 eV 

 

The O1s spectrum (figure 5.3 right column) consists of three components in all cases: 

the most intense one corresponds to oxygen in sulphate, the less intense corresponds 

to oxygen in hydroxide and the third one corresponds to oxygen of hydration water. In 

the O1s of Li2SO4*H2O, that exhibits hydroxide and water components more intense 
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than other sulphates, the ratio between the oxygen assigned to water and the total 

oxygen in the molecule is 0.20, in good agreement with the ratio equal to 0.200.03, 

found experimentally. The binding energy for O1s hydroxide Li2SO4*H2O agrees 

with literature [9]. 

 

5.1.2 Chemical state of sulphates 

In sulphates (SO4
2-

 ions), sulphur is coordinated to four oxygen atoms: the charge 

balance is established with cations. In this work alkali sulphates were studied. The 

S2p binding energy of sulphur in sulphates decreases from Li to Cs (table 5.1), in 

agreement also with literature data. A similar trend (figure 5.4) can be found for the 

binding energy of the O1s signal, also here in good agreement with literature [2].  

 

Figure 5.4: Trends of S2p and O1s binding energy values versus the atomic number in 

sulphate samples. 
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Figure 5.5: S KLL kinetic energy value of group I sulphates vs the atomic number of 

the cation (see table 5.2). 

 

In a first step, the modified Auger parameter (') can be determined by combining the 

information from S2p binding energy and SKLL kinetic energy (table 5.2). Wagner 

originally defined the Auger parameter as the difference between the kinetic energy of 

the most intense Auger line and the most intense photoelectron line, making reference 

to the Fermi level rather than the vacuum level. The definition of the Auger parameter 

' most frequently used is 

' =  + h = Ek (Auger) + Eb (photoelectron) (6.1) 

The modified parameter ' defined this way is then independent of h and always 

positive and it is simply the sum of the kinetic energy of the Auger signal and the 

binding energy of the photoelectron signal. A further advantage is that this sum will 

be the same independent of sample charging. The Auger parameter for the different 

alkali sulphates is reported in table 5.5. 
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Table 5.5: S2p and S 2s binding energy values (eV), SKLL kinetic energy (eV) and 

Auger parameter (eV) of sulphates. 

Compound S2p 

BE (± 0.1 eV) 

SKLL 

KE (± 0.1 eV) 

’ (eV)  S 2s 

BE (± 0.1 eV) 

Li2SO4 169.6 2105.1 2274.7 233.7±0.1 

Na2SO4 168.8 2106.2 2275.0 233.1±0.1 

K2SO4 169.0 2105.1 2274.1 233.0±0.1 

Rb2SO4 168.4 2106.8 2275.2 Rb3p3/2 overlaps 

Cs2SO4 167.8 2107.5 2275.3 232.7±0.1 

 

It can be observed that the calculated Auger parameter ’ is fairly constant, indicating 

that the chemical environment of sulphur in the sulphates does not change. A two-

dimensional representation, the so called Wagner plot or chemical state plot, can be 

obtained (Figure 5.6) by combining binding energy and kinetic energy of the 

respective S2p and SKLL lines,. 

The Auger parameter ’ previously calculated is represented in the Wagner chemical 

state plot by a diagonal line with the slope -1 (note that the binding energy axis is 

plotted reversed). In particular, the diagonal line which is most close to the points of 

the sulphate compounds has the Auger parameter ’ = 2277 ± 0.2 eV. 
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Figure 5.6: Wagner chemical state plot of sulphur in alkali 

sulphates (Li, Na, K, Rb, Cs) 

 

Additional information can be obtained from the S2s signals (table 5.5): the binding 

energy of the S2s signals also decreases from Li to Cs sulphates similarly to the S2p 

binding energy. The chemical shifts observed in sulphates (difference between the 

binding / kinetic energy of Li and Cs for different signals) increase from S2s, O1s, 

S2p to SKLL (1, 1.6, 1.8 and 2.4 eV respectively). The largest difference was found 

for the SKLL signals, confirming that the use of these lines is a very powerful tool for 

the identification of the chemical states of the elements. As the corresponding SLMM 

signals showed a poor signal-to-noise ratio, no reliable data were obtained. An 
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exception is the K2SO4, recorded with the SIGMA 2 equipped with Alpha 100 

analyser: the kinetic energy of the SLMM signal was found equal to 149.9 ± 0.1 eV. 

5.1.3 Elemental sulphur (S8)  

All modifications of crystalline sulphur contain a cyclic molecule consisting of 6 to 20 

sulphur atoms; the most common is the molecule with 8 atoms that exists in 3 

allotropic main forms: Sα, Sβ and Sγ [10]. Figure 5.7 shows the survey spectrum and 

the high-resolution S2p and SKLL signals recorded on elemental sulphur. 

 

 

Figure 5.7: survey and high-resolution spectra of S2p and SKLL of elemental 

sulphur. 
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Also in this case, the S2p signal consists of a single doublet. The curve-fitting 

parameters for the S2p spectra are listed in table 5.6; the binding energy of the S2p3/2 

signal at 164.3±0.1 eV is in good agreement with previous investigations [11]. 

 

Table 5.6: Binding energy (eV), FWHM (eV) and line shape of photoelectron signals 

of elemental sulphur. Standard deviation is calculated on three independent 

measurements. 

S2p3/2 

BE (eV) 

FWHM 

(eV) 

Line Shape 

164.3±0.1 1.3±0.1 GL(45) 

 

Table 5.7: Kinetic energy (eV), FWHM (eV) and line shape of X-ray induced Auger 

signals of elemental sulphur. Standard deviation is calculated on three independent 

measurements. 

S KL2,3L2,3 (
1
D) satellite S KL1L1 (

1
S) 

KE 

(eV) 

FWHM 

(eV) 

Line 

Shape 

KE 

(eV) 

FWHM 

(eV) 

Line 

Shape 

KE 

(eV) 

FWHM 

(eV) 

Line 

Shape 

2112.8±0.3 2.1 GL(90) 

T(1.8) 

2108.7±0.2 2.7±0.1 GL(30) 

 

2104.8±0.2 3.8 GL(30) 
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5.1.4 Sulphides and polysulphides of group I elements  

A series of sulphides of group I elements (Li2S, Na2S, Na2S4 and K2Sn) were analysed. 

As in the case of sulphates (par. 5.1.1), XPS survey and S2p and SKLL high-

resolutions spectra were measured together with the spectra of the cations and oxygen 

O1s. The spectra presented in this section were recorded after 5 minutes grinding of 

the samples. The effect of grinding time on Na2S and Na2S4 samples is presented in 

detail in paragraph 5.1.8.  

The survey spectra (Figure 5.8) acquired with Al Kα source indicate the presence of a 

small C1s signal that demonstrates the quality of the sample preparation, whereas the 

O1s is quite intense despite the fact that these sulphides were sent enclosed in a sealed 

bottle. They were apparently oxidized owing to a contact with air prior to their 

shipment. The S2p and SKLL high-resolutions spectra of sulphides and poly-

sulphides of group I elements are given in Figure 5.9.  
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Figure 5.8: Survey spectra of the group I sulphides and poly-sulphides measured on 

powdered samples 
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Figure 5.9: High-resolution spectra of the group I sulphides and poly-sulphides 

measured on powdered samples 

  

 

g h 
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As can be seen from figure 5.9, the S2p spectra of sulphides and poly-sulphides show 

several components that were fitted using the parameters listed in table 5.8 and 

described in the experimental section (paragraph 4.2.5). At high binding energies (at 

ca. 168.4 eV) a component that can be assigned to sulphates (this chapter, paragraph 

5.1.1) is always detected. Its intensity is particularly pronounced in the case of 

Li2S*H2O. The signal attributed to sulphide shows always a shoulder, resulting in the 

presence of two components (each consisting of a S2p doublet). Curve fitting reveals 

one component at lower binding energy, ca. 160.5 eV, and one at higher binding 

energy, ca. 163.4 eV. The resulting binding energies and the curve fitting parameters 

are given in table 5.8.  

 

Table 5.8: Binding energy and Kinetic energy (eV), FWHM (eV) and line shape of the 

components in the SKLL signals of Li, Na, K sulphides and polysulphide. Standard 

deviation is calculated on three independent measurements. 

  S2p peak fitting parameters SKLL peak fitting parameters 

Compound Componen

t 

Bindig 

Energy 

 (eV) S2p3/2 

FWHM 

(eV) 

Line 

Shape 

Kinetic Energy 

(eV) 

(
1
D)SKL2,3L2,3 

FWHM 

(eV) 

Line Shape 

Li2S (I) 160.5±0.1 1.4 GL(75) 2114.4±0.3 1.7 GL(80)T(2) 

(II) 162.1±0.1 1.4 GL(75) 2113.7±0.1 1.7 GL(80)T(2) 

(III) 163.4±0.1 1.4 GL(75) 2111.8±0.2 1.7 GL(80)T(2) 

(IV) 167.4±0.2 1.4 GL(75) 2107.3±0.2 1.9 GL(80)T(2) 

(V) 169.3±0.2 1.4 GL(75) 2105.5±0.2 1.9 GL(80)T(2) 

Na2S (I) 160.8 ± 0.1 1.5 GL(75) 2115.0±0.1 2.6 GL(80)T(1.5) 

(II) 162.5 ±0.1 1.5 GL(75) 2112.4±0.1 2.6 GL(80)T(1.5) 

(III) 168.4 ±0.1 1.5 GL(75) 2107.2±0.1 2.6 GL(95)T(1.8) 

Na2S4 (I) 161.5±0.1 1.5 GL(75) 2114.8 2.7 GL(80)T(1.5) 

(II) 163.1±0.2 1.5 GL(75) 2113.4 2.7 GL(80)T(1.5) 

(III) 168.6±0.2 1.5 GL(75) 2107.0 1.9 GL(95)T(1.8) 

K2Sn  (I) 161.7±0.1 1.5 GL(75) 2114.2±0.2 3.0 GL(80)T(1.5) 

(II) 163.3±0.2 1.5 GL(75) 2112.6±0.1 2.9 GL(80)T(1.5) 

 (III) 168.4±0.1 1.5 GL(75) 2106.2±0.1 2.0 GL(95)T(1.8) 
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In the following, the individual compounds are described in more detail. Lithium 

sulphide showed five S2p doublets between 160.5 eV and 169.3 eV (Fig. 5.9a). The 

former is ascribed to sulphide S
2- 

species and the latter to SO4
2-

. The intermediate 

components might be assigned to polysulphide species with different chain-length 

(162.1 eV and 163.4 eV) and to sulphite SO3
2- 

(167.4 eV). This last assignment is in 

agreement with published data on Na2SO3 [12]. Also the SKLL spectrum was fitted 

with five components (Fig. 5.9b), each of them constituted by three peaks (SKLL 
1
D, 

SKLL 
1
S and SKLL SAT). The area ratio between SKLL 

1
D components was kept 

constant and equal to the ratio calculated from photoelectron signals. Li1s peak shows 

two components. The less intense at ca. 56 eV can be assigned to lithium bound to S-

O groups while the most intense at about 54.4 eV could be assigned to Li-

sulphide/polysulphide. (Figure 5.10a) 

Commercial sodium sulphide Na2S showed three S2p doublets (Fig. 5.9c). Sulphide is 

found at 160.8 eV, and sulphate at 168.4 eV. The intermediate peak (B.E. 162.5 eV) is 

ascribed to polysulphide sulphur. S2p peak of sulphide is in good agreement with 

[13]. They reported the S2p signal at 159.4 eV but they used the C1s at 283.7 eV as 

internal reference for charge correction: adding 1.3 eV to 159.4 eV the value of 160.7 

eV is found in excellent agreement with this work. SKLL was fitted with three 

components. 

Also sodium tetrasulphide, Na2S4, showed three components in the S2p spectrum 

(Fig. 5.9e): the one at lower binding energy is found at 161.5 eV. The polysulphide 

component is found at 163.1 eV and the sulphate one at 168.6 eV. It is interesting to 

notice that the first peak exhibits a higher binding energy than that measured on the 

sulphide of Na2S (160.8 eV). This component could be due to a polysulphide with a 
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shorter chain length compared to the polysulphides that origin the peak at 163.1 eV. 

Sodium Na1s was found at 1071 eV in both Na2S and Na2S4 (Figure 5.10c and e). 

K2Sn is a commercial polysulphide. The chain-length of the polysulphide is not 

provided by the supplier. The sulphur S2p peak shows three components (Fig. 5.9g), 

at 161.7 eV, 163.3 eV and 168.4 eV respectively. (
1
D) SKL2,3L2,3 lines are found at 

2112.6 eV, 2114.2 eV and 2106.2 eV (Fig. 5.9h). K2p3/2 is found at ca. 298.7 eV 

(Figure 5.7g). 
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Figure 5.10: High-resolution spectra of the cations (Li, Na, K) and O1s line of group I 

sulphides and poly-sulphides measured on powdered samples 

g h 
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5.1.5 Chemical state of sulphides 

Sulphide S
2-

 is the formal most negative charge on sulphur atom. Sulphides have got 

the lowest binding energies that are ranging between 161 eV and 163 eV: they thus 

clearly differ from sulphates (binding energy ca. 168.5 eV – 170 eV). The alkali 

sulphides studied in this work (figure 5.9, table 5.8) fall in the “upper right” region of 

the chemical state plot. The Auger parameter is calculated and it is found being 

2275.6 ± 0.2 eV. A second smaller peak, identified in the S2p (binding energy ca. 163 

eV) and in the SKLL spectra (kinetic energy 2113 eV), is found in the chemical state 

plot on the same diagonal line as the sulphide, with Auger parameter ’ = 2275.6 ± 

0.2 eV. 

 

Figure 5.11: Chemical state plot of alkali sulphides, sulphates and elemental sulphur.  
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5.1.6 Copper and iron sulphides 

Copper and iron sulphides were also investigated in this work in the frame of the 

surface characterization of natural sulphide minerals such as enargite (Cu3AsS4), 

pyrite and arsenopyrite. As for all the other compounds studied, XPS survey and S2p 

and SKLL high-resolutions spectra were recorded together with the spectra of the 

cations and the oxygen O1s. The spectra showed in this section were taken on 

powdered samples after five minutes of grinding in agate mortar. 

The survey spectra (Figure 5.12) acquired with the Al Kα source confirm the absence 

of contaminants: in these cases both C1s and O1s signals are much less intense than 

the main photoelectronic signals of the cations. The S2p and S KLL high-resolutions 

spectra of transition metal sulphides are shown in Figure 5.13. 
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Figure 5.12: survey spectra of transition metal sulphides studied in this work. 
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Figure 5.13: High-resolution photoelectron and X-ray induced Auger spectra for 

sulphur of Cu2S (a and b), CuS (c and d) and FeS (e and f). 

  

a b 

c d 

e f 
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Cu2S 

Cu2S (Fig. 5.13a) showed an intense peak at 161.9 eV that is close to the value 

reported for Cu (I) sulphide [14] and two additional small components at 164.4 eV 

and at 168.1 eV respectively. The component at 164.4 eV may be ascribed to 

elemental sulphur as it is substantiated by the kinetic energy of the corresponding 

SKLL line (2112.7 eV) (Fig 5.13b). The peak at higher binding energy is due to small 

amounts of sulphate on the sample surface. Cu2p (Fig. 5.14a; table 5.9) shows an 

intense peak at 932.2 eV which is in very good agreement with results reported by 

[14]. A small component at 934.5 eV is also detectable: it can be assigned to copper 

(II) sulphate as confirmed by the satellite structure at higher binding energy (941. 6 

eV and 943.7 eV). 
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CuS 

The S2p of CuS shows three peaks (Fig 5.13c). The signal at 162.7 eV and the one at 

164.2 eV are due to two different kinds of sulphur atoms in CuS. In effect it is known 

[15] that in covellite (CuS) exists both S
2-

 and S2
2-

 ions. In agreement with literature 

the area ratio of these two components is 2:1 [15]. The peak at 169.4 is ascribed to 

sulphate and it is closed to value reported by [14]. SKLL shows three components as 

well; the first one (KE= 2115.5 eV) could be assigned to S
2-

, the component at 2113. 

7 eV at S2
2-

 and the third one at sulphur in SO4
2-

 ions. Copper Cu2p3/2 (fig. 5.14c) 

was found at 932.6 in agreement with [14]. 

The iron sulphide sample (FeS) showed four different oxidation states in the S2p 

spectrum (Fig 5.13e) and four different components were used also for curve fitting 

the SKLL spectrum (Fig 5.13f). The most intense peak at 161.5 eV could be ascribed 

to disulphide and the one at 163.4 to polysulphide according to [16]. Peaks at higher 

binding energy values are due to S-O species at the sample surface, probably Fe (II) - 

sulphate and Fe (III) – sulphate. [17]. The presence of Fe (III) – sulphate is also 

confirmed by the component at 713 eV  (Fig. 5.14e and tab. 5.10) in the Fe2p3/2 

signal [17]. The surface of FeS was very oxidized and together with Fe (III) sulphate 

component, Fe2O3 at 710.5 eV [18] and Fe (III) – sulfide at 708.6 eV [19] were 

detected. No signals from Fe (II) compounds are present. 
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Figure 5.14: high-resolution photoelectron spectra of copper Cu2p3/2 and iron Fe2p3/2 

and O1s regions of Cu2S (a and b), CuS (c and d) and FeS (e and f). 

  

a b 

c d 

e f 
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Table 5.9: Binding energy (eV), FWHM (eV) and line shape of the components in the S2p 

signals of transition metal sulphides. Standard deviation on three independent measurements 

is listed. 

  S2p peak fitting parameters SKLL peak fitting parameters 

Compound Component Bindig 

Energy 

 (eV) S2p3/2 

FWHM Line 

Shape 

Kinetic Energy 

(eV) 

(1D)SKL2,3L2,3 

FWHM Line Shape 

Cu2S (I) 161.9±0.1 1.7 GL(75) 2116.0±0.2 1.9 GL(95)T(1.8) 

(II) 164.4±0.2 1.7 GL(75) 2112.7±0.2 1.9 GL(95)T(1.8) 

(II) 168.1±0.1 1.7 GL(75) 2107.5±0.2 1.9 GL(95)T(1.8) 

CuS (I) 162.7±0.1 1.7 GL(75) 2115.5±0.1 1.7 GL(80)T(1.8) 

(II) 164.2±0.2 1.7 GL(75) 2113.7±0.1 1.7 GL(80)T(1.8) 

(II) 169.4±0.1 1.7 GL(75) 2106.6±0.2 1.7 GL(80)T(1.8) 

FeS* (I) 161.5±0.1 1.7 GL(75) 2115.8±0.2 2.3 GL(90)T(1.5) 

(II) 163.4±0.2 1.7 GL(75) 2114.7±0.1 2.3 GL(90)T(1.5) 

(III) 166.9±0.1 1.7 GL(75) 2109.1±0.2 2.3 GL(90)T(1.5) 

(IV) 168.9±0.1 1.7 GL(75) 2107.7±0.1 1.7 GL(90)T(1.5) 

 

 

Table 5.10: Copper and iron sulphides peak fitting parameters 

Compounds Line BE Position (eV) cation FWHM Line Shape 

Cu2S Cu2p (I) 932.2 ±0.1 1.6 GL(90)T(1.5) 

Cu2p (II) 934.8 ±0.1 2.0 GL(90)T(1.5) 

CuS Cu2p (I) 932.6±0.2 1.7 GL(90)T(1.5) 

FeS Fe2p (I) 708.6±0.1 1.7 GL(75) 

Fe2p (II) 710.5±0.1 1.7 GL(75) 

Fe2p (III) 713±0.1 1.7 GL(75) 
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5.1.7 The chemical state plot of metal sulphides 

Sulphur of transition metals (FeS, CuS, Cu2S) in the freshly-cleaved state show S2p 

binding energies at ca. 162 eV. The S2p and SKLL spectra (figure 5.13) exhibit (to a 

varying extent) two peaks in addition to the signal from sulphates. In the chemical 

state plot (figure 5.15) the transition metal sulphides appear as a distinct group with 

the most positive kinetic energies and an Auger parameter of 2278 ± 0.2 eV. The 

position of the second, weak peak at a binding energy of ca. 164 eV in the chemical 

state plot (open circles) decreases from FeS to Cu2S. Thus, the chemical state of the 

sulphur compound on the surface of the cleaved samples is strongly influenced by the 

type of cation. It is interesting to notice that the position of the small peak of Cu2S 

falls on the line where elemental sulphur and the weak peak of the alkali sulphides are 

located (Auger parameter 2277 eV). 

 

Figure 5.15: Chemical state plot of transition metal sulphides (the other compounds 

are shown for comparison) 
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5.1.8 Effect of grinding time of polysulphides 

a) Sodium tetrasulphide (Na2S4) 

Sodium tetrasulphide is tetragonal, crystallized in space group I42d and the crystal 

structure is built up of unbranched S4
2-

 ions surrounded by Na
+
 ions [20]. The sodium-

sulphur system was studied in the past and the existence and stability of Na2Sn with 

n=1, 2, 3, 4 and 5 was proven. Sodium hexasulphide does not exist [21]. Sodium 

tetrasulphide can be used as mercury capturing agent in a novel mercury control 

technology for solid waste incineration [22]. This sample appears as a yellow/brown 

powder and was analyzed “as received” and after different grinding times (5 and 20 

minutes). The high-resolution spectra after different grinding times are shown in 

figure 5.16.  

Figures 5.16 (a), (c) and (e) show the high-resolution spectra of the S2p region. In all 

the spectra three components can be distinguished. The first component is found at 

160.3 eV in the as received sample and can be ascribed to sulphide [11]. This 

component exhibits a shift at higher binding energy values with grinding time. After 

20 minutes grinding it is found at 161.3 eV. The second component is found at 162.0 

eV in the as received sample and its binding energy increases upon grinding time; 

after 20 minutes it is found at 163.0 eV. This component is assigned to polysulphide. 

The component at higher B.E. values (168.4 eV) is assigned to the sulphate. The 

intensity of the sulphate component decreases from 14% in the as received sample to 

4% after 20 minutes grinding. The area ratio between sulphide and polysulphide 

components increases from 0.17 in the as received sample to 0.63 after 20 minutes 

grinding. The binding energies of the S2p signals, the kinetic energies of the SKLL 

signals and all curve-fitting parameters are summarized in table 5.11.  
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Figure 5.16: S2p and SKLL high-resolution spectra of sodium tetrasulphide analysed 

as received and after different grinding times: as received (a and b); 5 minutes (c and 

d); 20 minutes (e and f). ESCALAB MK II - Source: Al Kα (15mV * 20mA) 

 

(b) (a) 

(c) (d) 

(e) (f) 
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Table 5.11: S2p binding energies, SKLL kinetic energies and fitting parameters of the 

different components in sodium tetrasulphide after different times of grinding 

Sample 

Signal  

BE 

(eV)  

KE 

(eV)  

FWHM  

Line Shape Asignal/Amain 

peak  

KEpolysulphide-

KEline 

 

 

 

As 

received 

S2psulphide 160.3  - 1.5  GL(75) 0.13 - 

S2ppolysulphide 162.0  - 1.5  GL(75) 1  - 

S2psulphate  168.4 - 1.5  GL(75) 0.36 - 

SKLLsulphide - 2115.3 3.0  GL(80)T(1.5) - 3.4  

SKLLpolysulphide - 2111.9 3.0  GL(80)T(1.5) - 0 

SKLLsulphate -  2107.2 2.1 GL(95)T(1.8) - 8.1 

 

 

 

Ground 

5’ 

S2psulphide 160.8 - 1.5  GL(75) 0.50 - 

S2ppolysulphide 162.5  - 1.5  GL(75) 1 - 

S2psulphate  168.4 - 1.5  GL(75) 0.17 - 

SKLLsulphide - 2115.1 2.5  GL(80)T(1.5) - 1.5 

SKLLpolysulphide - 2113.6 2.5  GL(80)T(1.5) - 0 

SKLLsulphate -  2107.4 1.9 GL(95)T(1.8) - 7.7 

 

 

 

Ground 

20’ 

S2psulphide 161.3 - 1.4 GL(75) 0.60 - 

S2ppolysulphide 163.0  - 1.4  GL(75) 1 - 

S2psulphate  168.4 - 1.4  GL(75) 0.11 - 

SKLLsulphide - 2114.8 2.9 GL(80)T(1.5) - 1.4 

SKLLpolysulphide - 2113.4 2.9  GL(80)T(1.5) - 0 

SKLLsulphate -  2107.0 1.8 GL(95)T(1.8) - 7.8 

 

Figure 5.16 (b), (d) and (f) shows the high-resolution spectra of the x-ray induced 

SKLL region. The kinetic energy of sulphide component decreases from 2115.3 eV in 

the as received sample to 2115.1 eV to 2114.8 eV in the sample ground for 20’ (Table 

5.11) . In contrast the kinetic energy of the polysulphide component first increases 
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from 2111.9 eV in the as received sample to 2113.4 eV after 20 minutes grinding. The 

difference between the two components decreases from 3.4 eV to 1.4 eV after 20 

minutes grinding. 

b) Sodium disulphide (Na2S) 

Na2S is characterized by the antifluorite structure, which means that the Na
+
 centers 

occupy sites of the fluoride in the CaF2 lattice, and the larger S
2−

 occupy the sites for 

Ca
2+

. This sample appears as white irregular and small pieces that was analysed as 

received and after different grinding times (5 minutes and 20 minutes). During the 

analysis the colour of the sample became purple. 

Figures 5.17 (a), (c) and (e) show the high-resolution spectra of the S2p region. In all 

the spectra three components can be observed. The first component is found at 161.1 

eV in the as received sample and at 160.8 in the sample ground for 20 minutes; it can 

be ascribed to sulphide [11].  The second component is found at 163.1 eV in the as 

received sample and at 162.5 eV in the sample ground for 20 minutes. This 

component is assigned to polysulphide and the one at 168.4 eV to sulphate. The 

kinetic energies of the first component (sulphides) in the SKLL spectra (Fig. 5.17 (b), 

(c) and (d)) increases from 2112.8 eV to 2115.0 eV with increasing grinding time. The 

second component, assigned to polysulphides increases as well from 2109.9 eV to 

2112.6 eV. All the curve-fitting parameters are summarized in table 5.12.  

 

http://en.wikipedia.org/wiki/Antifluorite
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Figure 5.17: high-resolution spectra of S2p and SKLL regions of sodium sulphide 

analysed as received and after different grinding time: as received (a and b); 5 minutes 
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grinding (c and d); 20 minutes grinding (e and f). ESCALAB MK II - Source: Al Kα 

(15mV * 20mA) 

 

Table 5.12: S2p Binding energy, SKLL kinetic energy and curve fitting parameters of 

the different components in sodium disulphide. Kinetic energies of the main peak 
1
D 

SKLL are only listed 

Sample 

Signal  
BE 

(eV)  

KE (eV)  FWHM  

Line 

Shape 

Asignal/ 

Apolysulphide 

KEpolysulphide-

KEline 

 

 

 

As received 

S2psulphide 161.1  - 1.4  GL(75) 0.51 - 

S2ppolysulphide 163.1  - 1.4  GL(75) 1  - 

S2psulphate  168.4 - 1.4  GL(75) 0.28 - 

SKLLsulphide - 2112.8 3.0  
GL(95)

T(1.8) 

0.5 2.9 

SKLLpolysulphide - 2109.9 3.0  

GL(95)

T(1.8) 

1 0 

SKLLsulphate -  2105.7 2.0 
GL(95)

T(1.8) 

0.88 7.1 

 

 

 

Ground 5’ 

S2psulphide 161.2 - 1.5  GL(75) 0.61 - 

S2ppolysulphide 163.1 - 1.5  GL(75) 1 - 

S2psulphate  168.4 - 1.5  GL(75) 0.46 - 

SKLLsulphide - 2113.0 2.3 
GL(95)

T(1.8) 

0.55 2.5 

SKLLpolysulphide - 2110.5 2.3  

GL(95)

T(1.8) 

1 0 

SKLLsulphate -  2105.8 2.3 
GL(95)

T(1.8) 

1.15 7.2 

 

 

 

Ground 20’ 

S2psulphide 160.8 - 1.4 GL(75) 0.42 - 

S2ppolysulphide 162.5 - 1.4  GL(75) 1 - 

S2psulphate  168.4 - 1.4  GL(75) 0.20 - 

SKLLsulphide - 2115.0 2.6  
GL(95)

T(1.8) 

- 2.4 

SKLLpolysulphide - 2112.6 2.6  

GL(95)

T(1.8) 

- 0 

SKLLsulphate -  2107.2 2.6 
GL(95)

T(1.8) 

- 7.6 
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Grinding effect on Na2S4 

With increasing time of grinding the percentages of Na and S at the surface of Na2S4 

are changing in parallel to the decreasing oxygen (sulphate) content. The sample that 

underwent the longest grinding time exhibits a composition close to the stoichiometric 

one (Fig. 5.18).  

 

Figure 5.18 : Na2S4 surface composition versus grinding time. 

 

With increasing grinding time not only the surface composition reaches the 

stoichiometric one but the binding energies of sulphides and polysulphides S2p line of 

Na2S4 increase and the kinetic energies of the SKLL lines decrease. No conclusion 

may be drawn from this information alone. Combining the binding energy of S2p 

photoelectron signals with the kinetic energy of SKLL lines the two-dimensional 

chemical state plot is obtained (figure 5.19). From this plot different information can 

be drawn. First, it is possible to clearly distinguish between the region of existence of 
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sulphides (red and blue full dots), sulphates (green dots) and polysulphides (open 

dots).  

 

 

Figure 5.19: Chemical state plot of Na2S4 samples after different grinding times. 

 

Second the Auger parameter is found to be between 2275.6 eV and 2276.1 eV for the 

sulphides, between 2273.9 eV and 2276.4 eV for the polysulphides, and it is 2275.6 

eV for the sulphates. 

It might be concluded that prolonged grinding seems to promote the sulphur 

polymerization that might end with the formation of elemental sulphur. This finding 

suggests that the chemical state plot allows to following the changes in the surface 

chemistry of sulphide-bearing materials subjected to different processes. 
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5.2 Model systems: mixtures of sodium tetrasulphide and elemental 

sulphur 

In order to test to what extent the contribution of sulphide and of polysulphide in the 

S2p and SKLL signals could be separated, two model systems made mixing sodium 

tetrasulphide and elemental sulphur, Na2S4 - S8 were prepared by separately grinding 

each compound in an agate mortar for 5 minutes and then mixing them together and 

grinding for five further minutes. The two mixtures were made up with two different 

ratios of the components: 42% Na2S4 - 58% S8 and 16% Na2S4 - 84% S8. Figure 5.20 

shows the survey spectra of the two mixtures, acquired with Al Kα source. The survey 

spectra confirm the absence of elements different from those expected. 
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Figure 5.20: survey spectra of sodium tetrasulphide-elemental sulphur mixtures: 

(a) 42% Na2S4 - 58% S8 and (b) 16% Na2S4 - 84% S8 
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Figure 5.21: High-resolution spectra of S2p and SKLL regions of sodium 

tetrasulphide-elemental sulphur mixtures: 42% Na2S4 - 58% S8 (a) and (b); 16% 

Na2S4 - 84% S8 (c) and (d). Source: Al Kα. 

 

Figure 5.21a shows the high-resolution spectrum of the S2p signal of 42% Na2S4 - 

58% S8 mixture, acquired with the Al Kα source. This signal presents three doublets. 

The component which is found at the lowest binding energy value, 161.5 eV, can be 

assigned to the sulphide (figure 5.21, table 5.13), the second one at 163.0 eV can be 

assigned to the polysulphide and the third one, at 169.1 eV, can be assigned to 

a b 

c d 
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sulphates. Figure 5.21c shows the high-resolution spectrum of S2p signal of 16% 

Na2S4 - 84% S8 mixtures, acquired with Al Kα source. This signal too presents three 

components, but the contribution of the minor constituent of the mixture, sodium 

tetrasulphide, is very low. The assignment of the components is the same as above: at 

the lowest binding energy, 161.8 eV, sulphide component is found, whereas the 

second component at 164.0 eV can be assigned to elemental sulphur and the third one 

169.1 eV to sulphate. The curve fitting components for S2p signals of the mixtures are 

reported in table 5.13. 

 

Table 5.13: S2p Binding energies, SKLL kinetic energies and fitting parameters of the 

components in sodium tetrasulphide - elemental sulphur mixtures. 

Na2S4-S8 

mix 
Signal  BE (eV)  KE (eV)  FWHM  

Line Shape 

42%-58% 

S2psulphide 161.5 - 1.4 GL(75) 

S2ppolysulphide 163.0 - 1.4 GL(75) 

S2psulphate  169.1 - 1.2 GL(75) 

SKLLsulphide - 2116.4 2.1 GL(95)T(1.8) 

SKLLpolysulphide - 2114.2 2.1  GL(95)T(1.8) 

SKLLsulphate -  2106.5 2.1 GL(35) 

16%-84% 

S2psulphide 161.8 - 1.4 GL(75) 

S2pel.sulphur 164.0 - 1.3  GL(75) 

S2psulphate  169.1 - 1.5 GL(75) 

SKLL(1D) - 2115.7 3.1 GL(90)T(3.5) 

SKLL(sat) - 2112.9 3.1  GL(75) 

 

Figure 5.21b shows SKLL Auger spectrum of 42% Na2S4 - 58% S8 mixture acquired 

with Al Kα source. Also in this spectrum three components can be revealed as in the 



110 

 

S2p photoelectron signal. Sulphide component has the higher values, 2116.4 eV in 

KE, at 2114.2 eV there is a polysulphide component and at 2106.5 eV the sulphate 

component is found. Only two peaks at 2115.7 eV and 2112.9 eV are detected for 

sulphide and elemental sulphur in 16% Na2S4 - 84% S8 mixture. 

In the chemical state plot of the Na2S4 - S8 mixtures (figure 5.22) the points for the 

two mixtures can be found on the same diagonal line as elemental sulfur, the points 

for the sulfides show a slightly higher Auger parameter ’. Thus, even if the binding 

energy and the kinetic energy of the sulphur contribution in the mixture do not match 

those of elemental sulfur, the chemical state remains that of elemental sulphur.  

 

Figure 5.22: Chemical state plot of the Na2S4 - S8 mixtures. Sulfides and elemental 

sulphur are given for comparison. 
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In 42% Na2S4 - 58% S8 both the binding energies and kinetic energies values are 

different from those observed for elemental sulphur (§ 5.1.2) and for Na2S4 (§5.1.4). 

The reason of the observed shifts could be attributed to the reaction that can occur 

between sulphur and sulphide/polysulphide leading to polymerization and production 

of polysulphides with different chain lengths. 
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5.3 Minerals 

The minerals used are various sulfides such as pyrite (FeS2), enargite (Cu3AsS4), 

arsenopyrite (FeAS), chalcopyrite (CuFeS2). S2p photoelectron and SKLL x-ray 

induced Auger signals were studied, for the first time by means of accurate analysis of 

SKLL signals, for a more clear assignment of the sulfur component located in the 

proximity of binding energy of 163.5 eV. All minerals (except pyrite, FeS2) were 

analyzed immediately after cleavage, after grinding and after one week air exposed. 

The minerals were fractured and ground inside a glove box, and with the powders thus 

produced pellets were pressed and mounted on bi-adhesive tape. The transfer to the 

spectrometer analysis chamber was performed without contact to the atmosphere, 

using a bell device [1] that could be closed inside the glove box and opened inside the 

analysis chamber. All spectra acquired were fitted using the parameters obtained on 

the reference compounds (§ 5.1). For each sample survey spectra and high-resolution 

spectra of S2p, SKLL and various ions bonded to sulfur were recorded.  

 

5.3.1 Pyrite 

Pyrite is a most common sulfide mineral Figure 5.23 shows survey spectra of pyrite 

freshly cleaved and after 10 min grinding in acetone or in air. The spectra show that 

no contaminants are present. The signal of adventitious carbon, fixed at 285.0 eV, was 

used to compensate for sample charging. Afterwards curve fitting of XPS/XAES 

signals and quantitative analysis were performed; the high-resolution spectra of S2p 

and SKLL are shown in figure 5.24 In table 5.14 binding energy values of 
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photoelectron S2p and Fe2p signals as well as kinetic energy values for SKLL Auger 

signals are summarized, together with peak fitting parameters. 
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Figure 5.23: survey spectra of pyrite (a) freshly cleaved, (b) 10 min grinding, (c) 10 

min grinding in acetone  

a 

b 

c 
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Figure 5.24: High-resolution spectra of S2p and SKLL of pyrite freshly cleaved (a, 

b), after 10 minutes grinding in air (c, d) and after10 minutes grinding in acetone (e, 

f). 

a b c d e f 
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Figure 5.24 (a) shows high resolution spectrum of S2p signal acquired with Al Kα 

source. Curve fitting parameters are summarized in Table 5.14. 

Table 5.14: Binding energy, kinetic energy and curve fitting parameters of the 

different components in the sulfur S2p, Fe2p3/2 and SKLL signals.  

 Line Bindig/Kinetic 

Energy 

(eV ± 0.2) 

FWHM (eV) Line Shape 

FeS2 

Freshly 

cleaved 

S2p 3/2 (a) 163.0 1.2 GL(75) 

S2p 3/2 (b) 165.1 1.9 GL(75) 

S2p 3/2 (c) 168.9 1.9 GL(75) 

SKLL (
1
D) (a) 2115.8 1.4 GL(95)T(1.8) 

SKLL (
1
D) (b) 2113.5 1.4 GL(95)T(1.8) 

SKLL (
1
D) (c) 2107.2 1.7 GL(95)T(1.8) 

Fe2p3/2 707.5 1.0 GL(98)T(1.2) 

Fe2p3/2 710.4 3.5 GL(40) 

FeS2 

10 min 

ground air 

S2p 3/2 (a) 163.2 1.3 GL(75) 

S2p 3/2 (b) 165.3 1.9 GL(75) 

S2p 3/2 (c) 168.7 1.9 GL(75) 

SKLL (
1
D) (a) 2115.4 1.5 GL(95)T(1.8) 

SKLL (
1
D) (b) 2113.1 1.5 GL(95)T(1.8) 

SKLL (
1
D) (c) 2107.2 1.5 GL(95)T(1.8) 

Fe2p3/2 707.8 1.0 GL(98)T(1.1) 

Fe2p3/2 711.0 3.8 GL(40) 

FeS2 

10 min 

ground acetone 

S2p 3/2 (a) 163.1 1.2 GL(75) 

S2p 3/2 (b) 165.1 1.9 GL(75) 

S2p 3/2 (c) 169.0 1.8 GL(75) 

SKLL (
1
D)  (a) 2115.6 1.4 GL(95)T(1.8) 

SKLL (
1
D)  (b) 2113.3 1.4 GL(95)T(1.8) 

SKLL (
1
D)  (c) 2107.4 1.6 GL(95)T(1.8) 

Fe2p3/2 707.7 1.0 GL(98)T(1.1) 

Fe2p3/2 711.4 3.9 GL(40) 

 

The binding energy of the main component is 163.0 (table 5.14) eV for the cleaved 

pyrite sample and no significant shifts are observed after grinding in air or in acetone. 
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This component is assigned to pyritic sulfur. A small component 165.1 eV could be 

due to sulfite, according to [23] and it does not show any shift after grinding The third 

and less intense component is found at about 169 eV and is ascribed to sulfate.  

SKLL spectra show an intense component at 2115.8 eV for the cleaved sample, due to 

pyritic sulfur. Small shifts are observed for ground samples (2115.4 eV and 2115. 6 in 

air and acetone respectively). The second component is found at 2113.5 eV for 

cleaved pyrite and shows a small decrease in its value for acetone ground (2113.3 eV) 

and for air ground (2113.1 eV). The kinetic energy of the sulfate component is 2107. 

2 eV for all samples. 

High-resolution Fe2p3/2 spectra are shown in Fig. 5.25. For each sample Fe2p3/2 

exhibits two components (table 5.14). The most intense one is found at 707.5 eV for 

freshly cleaved pyrite (Fig. 5.25a) , at 707.8 for pyrite ground in air (Fig. 5.25c) and at 

707.7 for pyrite ground in acetone (Fig. 5.25e) . This component can be assigned to 

pyritic iron. The second component shows a shift from 710.4 eV in freshly cleaved 

pyrite to 711.4 eV in pyrite ground in acetone. In freshly cleaved pyrite the second 

component is assigned to Fe (III) oxide, whereas in pyrite ground in acetone it is 

ascribed to Fe (III) – oxyhydroxide [18]. 

Figure 5.25(b, d, e) shows high-resolution spectra of O1s signal. There are three 

components: one at low BE, 530.8 eV, due to hydroxide species, the most intense at 

532.2 eV ascribed to sulfate species and the last one at 534.0 eV due to the presence 

of water.  
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Figure 5.25: High-resolution spectra of Fe2p3/2 and O1s of pyrite freshly cleaved (a, 

b), after 10 minutes grinding in air (c, d) and after 10 minutes grinding in acetone (e, 

f)

a b 

c d 

e f 
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5.3.2 Arsenopyrite 

Arsenopyrite (FeAsS) crystals from a Chinese mine were analyzed by X-ray 

photoelectron spectroscopy after cleavage. The same crystal was analyzed after one 

week exposure to the laboratory atmosphere. XPS experiments on ground samples (10 

minutes in glove box under argon atmosphere) were performed. Figure 5.18 shows the 

survey spectrum of freshly cleaved arsenopyrite. On the surface of freshly cleaved 

arsenopyrite crystals just elements belonging to FeAsS were detected, together with 

small amounts of oxygen and carbon. This is in agreement with XRD results that 

showed the presence of a pure FeAsS phase (§ 4.1.3). 
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Figure 5.26: Survey spectra of arsenopyrite: freshly cleaved (a); exposed to air for 

one week (b) and ground (c). 

 

a 

b 

c 
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S2p and SKLL high-resolution spectra are shown in figure 5.27 and peak fitting 

parameters are summarized in table 5.15. 
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Figure 5.27: High-resolution spectra of S2p and SKLL of freshly cleaved 

arsenopyrite (a, b), after 10 minutes grinding in air (c, d) and 10 minutes grinding in 

acetone (e, f) 

 

From the comparison of both S2p and SKLL spectra of the three different 

arsenopyrite samples it is possible to observe that air exposure leads to oxidation of 

arsenopyrite surface. Freshly cleaved (Fig. 5.27 a and b) and ground samples (Fig. 

5.27 e and f) show just one component in the S2p and SKLL spectra (Table 5.15). Air 

exposure leads to oxidation of the surface and more than one component is present on 

S2p and SKLL spectra (Fig. 5.27 c and d). The most intense peak of freshly cleaved 

and air exposed FeAsS crystal can be ascribed to (Fe-As)
2-

 according to [24]. The 

peak at 164.1 eV in air exposed arsenopyrite is close to elemental sulfur (see § 5.1.3) 

and the higher binding energy peak is assigned to sulfate (table 5.15). 
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Table 5.15: S2p and SKLL peak fitting parameters for arsenopyrite (FeAsS). 

 Line Binding/Kinetic 

Energy (eV ± 0.2) 

FWHM (eV) Line Shape 

freshly cleaved 
S2p 3/2 (a) 162.6 1.5 GL(75) 

SKLL (
1
D) (a) 2115.3 1.6 GL(95)T(1.8) 

1 week air 

exposed 
S2p 3/2 (a) 162.5 1.6 GL(75) 

S2p 3/2 (b) 164.1 1.9 GL(75) 

S2p 3/2 (c) 169.8 1.9 GL(75) 

SKLL (
1
D) (a) 2114.6 2.2 GL(95)T(1.8) 

SKLL (
1
D) (b) 2112.5 2.2 GL(95)T(1.8) 

SKLL (
1
D) (c) 2105.7 1.8 GL(95)T(1.8) 

ground for 10’ 

in glove box 

S2p 3/2 (a) 162.1 1.5 GL(75) 

SKLL (
1
D) (a) 2116.4 1.6 GL(95)T(1.8) 
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5.3.3 Chalcopyrite 

Chalcopyrite (CuFeS2) samples were analyzed after cleavage inside the glove box. 

The same crystal was then analysed after one week of exposure to laboratory 

atmosphere. Chalcopyrite was also analyzed after ten minutes grinding inside the 

glove box for. Figure 5.28 shows survey spectra of freshly cleaved chalcopyrite. 
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Figure 5.28: Survey spectra of freshly cleaved (a), exposed to air for one week (b) and 

ground (c) chalcopyrite CuFeS2 

 

From survey spectra (Fig. 5.28) it is possible to observe that not only copper, iron and 

sulfur, but also calcium, fluorine and small amount of silicon are present on the 

sample surface. These results confirm XRD results on chalcopyrite powder that 

a 

b 

c 
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showed the presence not only of chalcopyrite phase but also other phases such as 

silica. S2p and SKLL high-resolution spectra are shown in figure 5.29 and peak fitting 

parameters are summarized in table 5.16. 

Table 5.16: S2p and SKLL peak fitting parameter for CuFeS2 

 Line Bindig/Kinetic 

Energy (eV ± 0.2) 

FWHM (eV) Line Shape 

freshly cleaved S2p 3/2 (a) 161.5 1.23 GL(75) 

S2p 3/2 (b) 163.4 1.9 GL(75) 

S2p 3/2 (c) 170.2 1.9 GL(75) 

SKLL (
1
D) (a) 2115.3 1.6 GL(95)T(1.5) 

SKLL (
1
D) (b) 2112.4 1.9 GL(95)T(1.5) 

SKLL (
1
D) (c) 2106.6 1.9 GL(95)T(1.5) 

exposed for 

one week to 

atmosphere 

S2p 3/2 (a) 162.1 1.23 GL(75) 

S2p 3/2 (b) 164.0 1.9 GL(75) 

S2p 3/2 (c) 169.7 1.9 GL(75) 

SKLL (
1
D) (a) 2114.7 1.5 GL(95)T(1.5) 

SKLL (
1
D) (b) 2112.0 1.8 GL(95)T(1.5) 

SKLL (
1
D) (c) 2106.6 2.0 GL(95)T(1.5) 

ground in glove 

box for 10 

minutes 

S2p 3/2 (a) 162.2 1.23 GL(75) 

S2p 3/2 (b) 163.5 1.9 GL(75) 

S2p 3/2 (c) 165.1 1.9 GL(75) 

SKLL (
1
D) (a) 2115.3 1.6 GL(95)T(1.5) 

SKLL (
1
D) (b) 2112.7 1.9 GL(95)T(1.5) 

SKLL (
1
D) (c) 2107.3 2.0 GL(95)T(1.5) 
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Figure 5.29: S2p and SKLL high resolution spectra of: freshly cleaved chalcopyrite 

crystal (a and b), crystal exposed after one week air exposure (c and d) and ground 

chalcopyrite (e and f). 

 

The data in table 5.16 show that the most intense S2p peak shifts from 161.5 eV for 

the cleaved sample to 162.2 eV for the ground sample. The peak at 161.5 eV in the 
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S2p spectrum of the freshly cleaved sample can be assigned to chalcopyrite sulfide S
2-

, in agreement with [25]. The peaks at higher binding energy values (162.1 eV and 

162.2 eV respectively for chalcopyrite exposed to air and ground chalcopyrite) can be 

assigned to disulfide S2
2-

, those at 163.6 eV to polysulfide and the peak at 164.0 eV in 

air exposed chalcopyrite can be due to elemental sulfur or polysulfide. The curve 

fitting of SKLL and calculation of Auger parameter will permit to identify the 

chemical state of that sulfur species (see discussion chapter). 
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5.2.3 Enargite 

Enargite (Cu3AsS4) crystals from Leonard Mine, Butte Montana, USA, were analyzed 

after cleavage inside the glove box. The same crystals were then analyzed after one 

week of exposure to laboratory atmosphere. Enargite was analyzed also after ten 

minutes grinding inside the glove box. Figure 5.30 shows survey spectra of freshly 

cleaved (a), exposed to atmosphere (b) and ground samples (c). 
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Figure 5.30: Survey spectra of freshly cleaved (a), exposed to air for one week (b) 

and ground (c) enargite Cu3AsS4 

 

From survey spectra (Fig. 5.30) it is possible to observe that only copper, arsenic and 

sulfur are present on the sample surface, together with small amounts of carbon and 

oxygen. These results confirm XRD results on enargite powder that only showed the 

a 

b 

c 
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presence of the enargite phase. S2p and SKLL high-resolution spectra are shown in 

figure 5.31 and peak fitting parameters are summarized in table 5.17. 

Table 5.17: S2p and SKLL peak fitting parameter for Cu3AsS4. 

Cu3AsS4 – freshly cleaved  

Line Bindig/Kinetic 

Energy (eV ± 0.2) 

FWHM (eV) Line Shape 

S2p 3/2 (a) 161.3 1.2 GL(75) 

S2p 3/2 (b) 164.1 1.2 GL(75) 

SKLL (
1
D) (a) 2115.8 1.6 GL(95)T(1.5) 

SKLL (
1
D) (b) 2113.0 1.9 GL(95)T(1.5) 

 

Cu3AsS4 – one week exposure to atmosphere 

Line Bindig/Kinetic 

Energy (eV ± 0.2)  

FWHM (eV) Line Shape 

S2p 3/2 (a) 162.5 1.3 GL(75) 

S2p 3/2 (b) 164.5 1.3 GL(75) 

S2p 3/2 (c) 168.9 1.3 GL(75) 

SKLL (
1
D) (a) 2114.5 1.9 GL(95)T(1.5) 

SKLL (
1
D) (b) 2111.8 1.8 GL(95)T(1.5) 

SKLL (
1
D) (c) 2106.7 1.9 GL(95)T(1.5) 

 

Cu3AsS4 – ground inside the glove box for 10 minutes 

Line Bindig/Kinetic 

Energy (eV ± 0.2)  

FWHM (eV) Line Shape 

S2p 3/2 (a) 161.8 1.23 GL(75) 

S2p 3/2 (b) 163.4 1.9 GL(75) 

SKLL (
1
D) (a) 2115.9 1.6 GL(95)T(1.5) 

SKLL (
1
D) (b) 2113.3 1.9 GL(95)T(1.5) 
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Figure 5.31: S2p and SKLL high resolution spectra of: freshly cleaved enargite 

crystal (a and b), crystal exposed to air for one week (c and d) and ground enargite (e 

and f). 
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S2p binding energy value of 161.3 for cleaved enargite sample is in agreement with 

[14]. The second component at 164.1 will be assigned in the discussion chapter. After 

air exposure for one week a shift of the most intense peak towards higher binding 

energy values is observed together with a peak at 168.5 eV ascribed to sulfur in 

sulfates. After grinding two peaks at 161.8 eV and 163.5 eV are only observed. No 

sulfate component is present. 
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5.3.5 Chemical state of sulphur in minerals 

Various minerals (pyrite FeS2, enargite Cu3AsS4, arsenopyrite FeAsS and chalcopyrite 

CuFeS2) - freshly cleaved, after grinding and after air-exposure -were examined in 

this work (§ 5.3.1 - § 5.3.4). The chemical state plot of these minerals was drawn 

(figure 5.32), like it was done for sulphates and sulphides. 

 

Figure 5.32: Chemical state plot of sulphide minerals (other compounds are shown 

for comparison). 

 

In addition to the already discussed region of sulphates, alkali and transition metal 

sulphides, essentially two new groups can be distinguished. The first one is pyrite 

(FeS2). The main S2p peak in the high-resolution photoelectron spectrum is found at 



135 

 

ca. 163 eV, the SKLL peak at ca. 2115 eV (§ 5.3.1). The Auger parameter is 

calculated being equal to 2278.6 ± 0.2 eV, thus clearly more positive compared to 

transition metal sulphides. The minor peak associated to sulphur on the surface of 

pyrite is found at higher binding energies but lower kinetic energies with the same 

Auger parameter (points are located on the same diagonal line): this suggests the 

presence of chain-lengths longer than S2
2-

. 

Enargite, Cu3AsS4, shows a S2p binding energy value for the main peak assigned to 

sulphur in the bulk of the mineral similar to that of pyrite, the kinetic energy of the 

SKLL signal being clearly lower (ca. 2114 eV). The Auger parameter results to be: ’ 

= 2276.8 ± 0.2 eV. The points of the sulphur component at the surface of enargite fall 

on the same diagonal line. On the basis of these results one may confirm that the 

sulphur at lower binding energy (sulphur in the bulk) is a sulphide – type compound. 

The component at higher binding energy with the same Auger parameter is supporting 

the formation of polysulphides on the surface after grinding. The just cleaved and air 

exposed enargite surface exhibit a component close to the elemental sulphur in the 

chemical state plot. 
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Chapter 6 

Conclusions 
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The chemical state of sulphur at the surface of sulphur-bearing materials (compounds 

or minerals) is a challenging task that is based on the Auger parameter ’ and the two 

dimensional chemical state plot. Owing to the simultaneous presence of sulphides, 

polysulphides and sulphates, the S2p photoelectron and the SKLL Auger lines are 

multi-component. Whereas curve fitting for S2p photoelectron lines is a standard 

procedure, in this work for the first time the curve fitting of SKLL line of a series of 

sulfides and sulfates compounds has been attempted. This results in a more accurate 

determination of the SKLL kinetic energy of the different components compared with 

the conventional way of using only the centroid. By combining the photoelectron S2p 

and S2s signals and the Auger SKLL and SLMM lines it has been possible to identify 

the chemical state of sulfur on the surface of different mineral samples. 

From this work the following conclusions can be drawn: 

1) The chemical state plot of reference compounds allows to distinguish among three 

different regions, characterized by three different values of the Auger parameter: the 

sulphates, the alkali sulphides and the transition metals sulphides regions. 

2) In the alkali sulphates series (Li to Cs) the binding energy of S2s, S2p and SKLL 

decreases from lithium to cesium; this decrease is more pronounced for the SKLL line 

than for S2p and S2s lines. The difference in binding energies of S2p and kinetic 

energies of SKLL of these compounds reflects differences in initial state effects: local 

valence charge and Madelung potential. Being the local valence charge the same for 

each metal ion and for sulphates anions, differences in Madelung potential should 

cause the distribution along a line characterized by an α’ value of 2276.6 ± 0.2 eV. 

3) Alkali sulphide compounds (Li2S, Na2S, K2S) show two compounds assigned to 

sulphide and polysulphide with nearly the same Auger parameter as alkali sulphates. 

This confirms that initial state effects are dominant in determining the shift in S2p 

binding and SKLL kinetic energy.  Mechanical grinding changes the surface 

composition towards elemental sulphur increasing the grinding time.  
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4) In the mixtures of Na2S4 and elemental sulphur S8 the individual compounds could 

be detected both in the S2p and SKLL lines. The signals of elemental sulphur show 

the same Auger parameter as the pure S8 standard. Sulphur in Na2S4, however, 

exhibits in the mixtures a higher binding and kinetic energy compared with the pure 

Na2S4 and the Auger parameter is close to that of elemental sulphur.  

5) The chemical state of sulphur in minerals differs according to the metals present. 

Pyrite (FeS2) and arsenopyrite (FeAsS) show the highest Auger parameter (’ = 

2278.2 ± 0.2 eV), the copper- bearing chalcopyrite (CuFeS2) and enargite (CuAsS4) 

show Auger parameters of 2277.0 ± 0.2 eV for sulphides. The polysulphides that 

formed on the mineral surface after air exposure or grinding exhibit a chemical state 

between those of elemental sulphur and of the polysulphides in the alkali sulphide 

standards.  

From this work it can thus be advanced as a hypothesis that the chemical state of 

sulphur on mineral surfaces, that is often a metal-deficient sulphur surface layer, can 

be placed in an interval between a polysulfide and elemental sulphur.  
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APPENDIX  – Example of calibrations. 

 

Table A1: Calibration of energy scales [1]of the AlKα (1486.6 eV) and MgKα (1253.6 

eV) sources (a, c) and associated errors (b, d) of the VG ESCALAB 200. Position of 

the Au M4N6,7N6,7 lines are indicated too [2, 3]. 

 

 

 

 

a b 

c d 
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Table A2: Calibration of energy scales [1]of the AlKα (1486.6 eV) monochromatic 

source (a) and associated errors (b) of the Thetaprobe spectrometer. 

 

 

 

Table A3: Experimental binding energies measured during the calibration of 

spectrometers compared to reference values [4,5,6]. 

 

 

Peak Monochromatic Al Kα 

Ref. Exp. 

ESCALAB 

Ref. Exp. 

ESCALAB 

Ref. Exp. 

THETA 

PROBE 

Au 4f7/2 83.95 83.907 83.95 83.900 83.96 83.713 

Ag3d5/2 368.22 567.950 368.22 335.000 368.21 368.21 

Cu L3VV 567.93 932.617 334.90 932.600 
a 

- 

Cu 2p3/2 932.63 368.207 932.62 368.199 932.62 932.68 

Au M4N6,7N6,7 -614.6
b 

-614.850 -848.6
a 

-847.446 
c
 - 

 

a
 not given 

b
 according to value of 2101.2 eV in kinetic energy.[2, 3] 

c
 not detectable with monochromatic sources  

 

 

a b 
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