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ABSTRACT

Current, classical delignification processes are affected by some economical and

environmental drawbacks. These approaches often seem to be inadequate, par-

ticularly in the perspective of a sustainable green process. Since immobilized

metalloporphines can strictly emulate the active site of ligninolytic peroxidases,

their use in delignification processes has been presented and future trends out-

lined.

In order to achieve a structural emulation, several coordinating groups have

been used to coordinatively immobilize metalloporphines. Synthesized adducts

have been characterized by UV/vis and IR spectroscopies, and effective coordi-

native bond between metalloporphine and supports was shown.

The biomimetic catalysts have been also investigated about their peroxi-

dase catalysis and ability to emulate lignolytic peroxidases action and substrate

specificity. The adducts showed a remarkable ability to catalyze veratryl al-

cohol oxidation at the expenses of H2O2. Kinetic and operational characteri-

zation of the catalysts is also reported. Both lignin peroxidase and manganese

peroxidase–like catalysis have been obtained, under very mild experimental con-

ditions, using many lignin model compounds. Redox mediation was possible,

allowing also treatment of water–insoluble substrates.

In the perspective of broadening industrial applications of the catalysts, the

bleaching of several pollutant and durable textile dyes has been attempted with

similar promising results, resulting particularly suitable for industrial scaling–

up.

Accordingly, the inexpensiveness of the synthesis and the mild operational

conditions allow these adducts to be proposed as feasible catalysts also for in-

dustrial large scale processes.
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SOMMARIO

La rimozione della lignina dai materiali lignocellulosici costituisce una sfida

industriale ancora aperta, poiché gli attuali approcci finora proposti non eccel-

lono per economicità e sostenibilità ambientale del processo. Neppure quello

biocatalitico (basato sia sugli enzimi lignolitici, che sui microrganismi loro pro-

duttori, i funghi del marciume bianco) ha finora trovato un valido compromesso

tra costo ed efficienza del processo.

Le perossidasi ligninolitiche tuttavia costituiscono ottimi modelli per la sin-

tesi di catalizzatori biomimetici in grado di operare una delignificazione più

ecocompatibile: in particolare, sono state sviluppate numerose metalloporfine

sintetiche che, libere nel mezzo di reazione, hanno mostrato promettenti pro-

prietà catalitiche emulanti le perossidasi lignolitiche. Tuttavia, come tali non

presentano alcuna applicabilità su larga scala, per ragioni di ordine economico.

Nel presente lavoro sono stati, dunque, sintetizzati alcuni catalizzatori bio-

mimetici emulanti il sito attivo di questi enzimi, sfruttando supporti organici

ed inorganici modificati chimicamente con funzioni in grado di legare tramite

legame di coordinazione le metalloporfine sintetiche.

Gli addotti cos̀ı sintetizzati sono stati dapprima caratterizzati tramite spet-

troscopia UV/Vis e FT–IR, ed è stato descritto come l’immobilizzazione avvenga

effettivamente attraverso un legame di coordinazione, mostrando pertanto un’ef-

fettiva emulazione strutturale delle perossidasi lignolitiche.

Successivamente, i catalizzatori sono stati caratterizzati dal punto di vista

funzionale, evidenziando proprietà di emulazione sia della lignina perossidasi,

che della manganese perossidasi in presenza dell’ossidante più eco–compatibile

possibile: il perossido di idrogeno. L’amplissima specificità di substrato, la sin-

tesi poco costosa e le condizioni di reazione estremamente blande (pH neutro,
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pressione e temperatura ambiente, ossidante ambientalmente compatibile e to-

tale assenza di solventi organici) rendono questi catalizzatori quantomai adatti

allo scaling–up industriale nel trattamento di materiali lignocellulosici in genere.

Lo studio di mediatori di ossidoriduzione diffusibili suggerisce anche una loro

possibile applicazione con substrati non solubili in acqua, poiché le forme ossi-

date di questi (ad esempio Mn(III) e VA•+) possono efficacemente fungere da

tramite tra il catalizzatore eterogeneo e simili substrati.

Le potenzialità applicative degli addotti sono state ulteriormente ampliate

attraverso uno screening di decolorazione di coloranti sintetici appartenenti a

classi chimiche differenti. Anche in questo caso l’elevata efficienza e le blande

condizioni operative risultano essere promettenti in ottica applicativa.
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1. INTRODUCTION

1 INTRODUCTION

Not only non-natural chemicals can be regarded as pollutants and environmen-

tally persistent.

Lignocellulosic materials totally derive from natural sources. However, being

released in the environment in huge amounts (it has been estimated that every

year ∼200x109 tons of plant biomass are produced [1]), they represent highly

durable pollutants whose removal is a serious issue from both a chemical and

environmental point of view.

In fact, their cellulosic component can be usually exploited in various ways;

so removal should be addressed only towards lignin and hemicelluloses. But

the close association in plants of these three constituents makes this goal very

complicated.

An efficient method to selectively remove lignocellulosic components could

allow complete exploitation of the others. For example, paper [2, 3] and bio-

ethanol [4, 5] can arise from cellulose. Different aromatic compounds can be

produced from lignin [6, 7], converting potential wastes in useful sources of

chemical featured by high surplus value.

Several methods have been developed to selectively remove lignocellulosic

components, including mainly mechanical and oxidative treatments.

Despite of the large efforts of the scientific community, economical feasibility

of these processes is however distant. And for instance bioethanol production

from lignocellulosic wastes is not yet a large scale process, deserving further

enhancements to be economically achievable [4].

14



1. INTRODUCTION

Besides treatment of lignocellulosic, such oxidative methods can also find em-

ployment in the the removal of many pollutant wastes, like olive mill wastewater

[8, 9] and textile dyes [10]. This emphasizes the importance of their development

especially with the aim of enhancing their efficiency and inexpensiveness.

1.1 Lignocelluloses

The main part of biomass in nature is composed by wood, grass and most of the

plant litter: these materials are collectively called lignocellulose [11] (or better

lignocelluloses, due to their high heterogeneity).

Figure 1: Structure of a wood cell [12]. S3 secondary wall 3; S2 secondary

wall 2; S1 secondary wall 1; P primary wall; ML middle lamella.

Three major components can be identified in lignocellulosic materials: cel-

lulose, hemicelluloses and lignins. They represents the biggest source of organic

matter in earth; Fengel and Wegener [12] estimate the presence of 2.5–4x1011

tons of cellulose and 2–3x1011 tons of lignins in earth, that correspond about to

40% and 30% of total organic matter carbon.

They are closely associated in plants cell walls, and this makes very difficult

15



1. INTRODUCTION

to isolate single components. In Figure 1 a schematic composition of plant cell

wall is reported.

In its three major layers (middle lamella, primary and secondary wall) there

is not a uniform distribution of cellulose, hemicellulose and lignin, as the former

is most present in secondary wall and the latter in predominant in the middle

lamella [12, 13].

Also distribution in various plants is very heterogeneous. As reported in

Table 1, there are clear differences between different wood plants. Gramineous

plants have considerable amounts of hemicelluloses in middle lamella.

Plant Material Cellulose (%) Hemicellulose (%) Lignin (%)

Hardwood stems 40–55 25–40 18–25

Softwood stems 45–50 25–35 25–35

Bark 20–50 10–20 35–50

Wheat 51–54 26–30 16–18

Flax 57 15 2

Hemp 67 16 3.3

Ramie 69 13 0.6

Grass 25–40 35–50 10–30

Nut shells 25–30 25–30 30–40

Leaves 15–20 80–85 0

Table 1: Lignocellulosic components content in selected plants and agricul-

tural residues [4, 12, 14].

Usually lignin component slows down plant biomass degradation. In this per-

spective plant cell wall composition should be carefully taken into account during

the devolopment of processes based on the exploitation of plant biomasses.
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1. INTRODUCTION
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Figure 2: Cellulose repeating unit.

1.2 Cellulose

All plant cell walls contain cellulose, that is typically the most valued component

of plant biomass.

It is a linear homopolymer consisting of repeating units of β–D–glucopy-

ranose linked together by β–(1 → 4)−glycosidic bonds as reported in Figure

2. This forces each monomer to be 180° rotated in comparison to the previous

and the following residue, explaining the totally different chemical properties of

seemingly similar polymers like starch and glycogen.

Because of the high degree of polymerization (up to 15,000) [11], the molecu-

lar mass is very high but this does not explain its complete insolubility in water.

This feature is due to the crystalline nature of cellulose: 36 monomers are usu-

ally associated by hydrogen bonds forming microfibrils which give strength to

the wood [11, 12]. Microfibrils can also associate to form ultrastructures like

macrofibrilis and fibres.

Crystalline cellulose is much more resistant to degradation than non–crystal-

line, that is degraded faster. However, microorganisms produce several enzymes

able to completely depolymerize cellulose [13]. Endoglucanases and cellobiohy-

drolases first hydrolyze cellulose to cellobiose (the corresponding disaccharide)

and cellodextrins, that are at last hydrolized to glucose by exoglucanases and

17



1. INTRODUCTION

β–glucosidases. Glucose can be then introduced in both aerobic and anaero-

bic metabolisms to be completely oxidized to carbon dioxide or fermentation

products.

Many fungi are able to operate this degradation, such as soft and brown rot

fungi (Basidiomycetes), Ascomycetous and rumen fungi [13]. Moreover, also

many bacteria have similar enzymatic equipment.

Besides, also chemical methods (in particular acidic boiling) can efficiently

depolymerize this homopolymer, even if a substantial fraction of the obtained

glucose is changed into toxic furaldehyde derivatives.

However, as already stressed, usually cellulose represents the most valued

component of plant biomass: in this perspective industrial process usually do not

require its removal. But they rather consist in cellulose purification from other

components. So their aim is usually undamaged cellulose protection during

lignins and hemicelluloses depolymerization.

1.3 Hemicelluloses

The term ”hemicelluloses” is referred to a heterogeneous class of polysaccharides

different from cellulose present in plant cell walls (in particular in secondary wall,

but also in the primary one).

They are most often heteropolysaccharides, composed by sugars and acid

sugars like uronic acids. They are usually classified on the basis of their principal

sugar: so they are divided into glucomannans, galactomannans or arabinoxylans

[11, 12, 13].

Monomers are typically linked by β–glycosidic bond, but there can be found

different bonds (like β–(1 → 4), β–(1 → 3), β–(1 → 6), but also α–(1 → 2)

and α–(1 → 6) [13]) and frequent branches, leading to gels rather than fibres.

Consequently, identification of any ordered structure is usually not possible.

They are usually present in lignocelluloses covalently linked to lignin, en-

hancing plant tissue strength.

The amorphous nature and the low degree of polymerization (up to 100–

200) make hemicelluloses degradation easier than that of cellulose, since milder
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1. INTRODUCTION

acid or basic treatment is able to completely depolymerize and solubilize them.

Furthermore, different microbial hydrolases (namely xylanases, xylosidases and

mannosidases) are able to completely degrade hemicelluloses [13].

1.4 Lignins

Lignin is a natural polymer present in all vascular plants (and not in algae,

bacteria and bryophytes [15]), providing them strength and rigidity. It is partic-

ularly present in secondary wall and middle lamella [12]. Total water insolubility

of lignin confers impermeability to plants, and this greatly enhances their resis-

tance to biodegradation, chemical, physical, and mechanical attacks [13].

Lignin is an aromatic, cross–linked, three–dimensional and heterogeneous

polymer, featured by the peculiar property of not being hydrolyzable, contrary

to the other lignocellulose components. This makes lignin the most durable and

recalcitrant component of plant biomass (half–life estimated ∼150 years [16]).

Molecular mass is very high (600–1000 KDa), but not uniform between dif-

ferent plants and samples. Lignin is more reduced than polysaccharidic compo-

nents, with a 50% more carbon content.

1.4.1 Lignin structure

Incredible complexity of lignin structure makes its complete determination a

huge effort for scientific community, since it has been only partially understood

[15, 17, 18, 19, 20, 21, 22].

The biggest hurdle towards this issue is the great heterogeneity of this poly-

mer, that appears to be significantly different amongst phylogenetically related

plants. And the differences are both due to different monomers composition,

and to different bonds. This makes more correct the term ”lignins”, rather than

lignin.

Lignin can be described as a high MW polymer composed by three ma-

jor monomers called phenylpropanoids (or C6C3 compounds, or monolignols,

Figure 3): p–coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol.
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OH

OH

OH

OH

OCH3

OH

OH

OCH3H3CO

C

C
1C

6
C
2

C
3

C
5 C

4

C

C
γ

β

α

(1) (2) (3)

Figure 3: The three phenylpropanoid monolignols present in lignin struc-

ture: p–coumaryl alcohol (1), coniferyl alcohol (2) and sinapyl alcohol (3).

Their definition derives from the presence in their structure of a phenolic ring

(variously, methoxy–substituted) and an unsaturated propanoid carbon chain.

The γ carbon atom of this chain has primary alcoholic nature.

The monolignols are synthesized by plants starting from aminoacid pheny-

lalanine [20] through the cinnamate pathway [23].

In the first reaction phenylalanine is deaminated by the key enzyme of this

metabolic path (Phenylalanine Ammonia Lyase, PAL E.C. 4.3.1.24) to produce

cinnamic acid. This is then para–hydroxylated, variously methoxylated and

lastly reduced in γ position, as summarized in Figure 4.

Plants differ remarkably about relative amounts of this three monomers.

Gymnosperm are particularly rich in coniferyl alcohol, as for instance in spruce

the ratio between coniferyl, sinapyl and coumaryl alcohols is 94:5:1 [24]. On the

contrary in dicotyledons sinapyl alcohol is more frequent (for instance Eucalyptus

globulus contains about 82–86% syringyl units [25]), and in gramineous and

monocotyledons coumaryl alcohol is more widespread.

Besides, the presence of hydroxycinnamate analogs has been described espe-
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Figure 4: Cinnamic acid pathway allows plant monolignols biosynthesis

starting from phenylalanine.
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1. INTRODUCTION

cially in grass lignins [26], being particularly involved in covalent bonding with

hemicelluloses.

1.4.2 Oxidative polymerization of monolignols

In the presence of hydrogen peroxide and some plant peroxidases [27] (or –

it is debatable– by O2–dependent laccases [28]), monolignols are converted to

phenoxy radicals. These are stabilized by electronic delocalization, as unpaired

electron is shared among phenolic oxygen, aromatic ring and β carbon.

These radicals then spontaneously undergo addition. Such reaction seems

to be quite random, giving the typical three–dimensional and irregular lignin

structure, where several type of bonds can be found (Figure 5): β–aryl ether or

β–O–4, phenylcoumaran or β–5, resinol or β–β, biphenyl or 5–5,diphenyl ether

or 4–O–5, and also α–aryl ether or α–O–4 [13, 21, 25]. Moreover, some other

structural motifs have been found such as dibenzodioxocins, arylisochromanes,

spirodienones.

None of them is sensible to hydrolysis (unlike polisaccharide components of

plant cell wall). This explains the remarkable chemical durability of lignins,

that can therefore be considered as recalcitrant pollutants. Especially taking

into account the huge amounts of lignin–based wastes produced every year [1].

Lignin biosynthesis is a relatively slow process relying on a continuous mo-

nomer supply; monolignol concentrations remain constantly very low so that

gradual growth of the three–dimensional lignin structure sharply prevails over

monolignol coupling/dimerization [24, 29, 30, 31, 32].

Accordingly, great care should be exerted when inferring structural informa-

tion from dehydrogenative polymerizates coming from in vitro oxidation/dehy-

drogenation of monolignol mixtures [33], unless the reactant concentrations are

kept very low for a long time, and the polymerization process takes place in the

presence of lignin, acting as a template [24].

Due to this peculiar polymerization process, it is impossible to outline the

precise structure of a lignin molecule. Only pieces of lignin molecules can be

hypothesized, as shown in Figure 6.
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Figure 5: Most frequent bonds present between monolignols.
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Figure 6: A simplified scheme of a lignin structure (from spruce) showing

some of the chemical bonds commonly found in lignins.

More recently, an alternative hypothesis on lignin biosynthesis has been de-

veloped and corroborated by some experimental findings [22, 34, 35, 36], based

on the assumption that monolignol (radical) binding dirigent proteins should

direct the biosynthesis, which would therefore be not random, but template–

based.

The controversy is quite fascinating [37]; however, the presence of well de-

fined structural domains in lignins such as the hexamers and pentamers of

synapyl alcohol found in Eucalyptus globulus lignin [38] does not modify the

statistical occurrence of the linkages to be (bio)cleaved to accomplish lignin

degradation and solubilization. On the other hand, the precise identification of

the genes, codifying for dirigent proteins along lignin biosynthesis, could have

an outstanding importance in tuning that biosynthesis [39] towards modified,

more soluble and/or more degradable lignins.

Besides its inertness, lignin depolymerization and removal from plant bio-
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Figure 7: Most common bonds between lignin and polysaccharides present

in the plant cell wall [19].

masses is made more difficult by non–covalent and covalent bonds present be-

tween lignin and polysaccharidic components [19].

Some of these are reported in Figure 7. They are mainly ester and ether

bonds. In particular, ester bonds are frequent between hemicelluloses and hy-

droxycinnamates units [26].

1.5 Dyes

Synthetic dyes are extensively used in many technological fields, such as textile

industry, paper production, food technology, hair colorings [40]. Moreover, they

have also been employed for monitoring wastewater treatment, and as ground

water tracers.

Many chemical classes of synthetic dyes are known and frequently employed

on industrial scale. Typical examples are azodyes, anthraquinones, triphenyl-

methanes, phenothiazine etc (Figure 8). Regardless of their chemical structure,

industrial dyes are usually featured by a high resistance to degradation (both
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Figure 8: Several type of dyes, belonging to different chemical classes, that

can be bleached by the same means used for delignification.
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physical and chemical). Accordingly, they represent extremely recalcitrant pol-

lutants.

Lignocellulose and textile dyes share many methods for their oxidative degra-

dation. This usually leads to extend the application of lignin–degrading systems

also to their degradation.

This can be usually done for two principal aims. First of all, visible-absorbing

dyes can represent easier routine assays for delignifying systems, both chemical

and enzymatic, as for instance demonstrated for Azure B and lignin peroxidase

[41].

Moreover, industrial dyes represent a serious environmental concern due to

their inertness, their high annual production (over 10,000 tons per year [40]) and

low yields of textile processes (the percentage of the lost dye in the effluents can

reach up to 50% [42]).

The impact of dye wastes can then be easily understood from both aesthetical

and economical points of view, as classical approaches towards their removal are

usually featured by high costs.

The European community has not been indifferent to such problem, as stated

by European directive 2002/61/EC [43]. This directive forbids the use of some

products, derivatives of a restricted number of azo dyes. However, these restric-

tion measures are not enough to solve the problems due to the huge amount of

dyes discharged in the environment every year.

Besides, their toxicity and carcinogenity have been clearly demonstrated

[44, 45, 46, 47]. Accordingly, their removal from wastewater can be a challenging

chemical issue. Especially in the perspective of the development of clean and

environmentally friendly dyeing processes.

1.6 Classical approaches towards delignification

A wide range of methods have been developed to remove lignin from ligno-

cellulose. They are based on physical treatment, chemical derivatization or

oxidation.

Usually, on industrial scale, due to high costs and low yields, combinations
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of treatments are employed. Among these, reductive agent like sodium borohy-

dride (NaBH4) are used to reduce the quinones formed during oxidative steps,

increasing yield of following treatments [48].

However, especially in pulp and paper production the first step is repre-

sented by hemicelluloses removal. For this purpose, enzymatic treatment with

xylanases is typically performed, in order to degrade polysaccharides different

from cellulose that can affect the following steps [49, 50].

1.6.1 Physical methods

A classical approach in lignocelluloses pretreatment was mechanical comminu-

tion [4] through a combination of chipping, grinding and milling. However, by

this way the main result is to reduce cellulose crystallinity. The size of the

materials is usually 10–30 mm after chipping and 0.2-–2 mm after milling or

grinding. But lignin structure is affected very poorly and energy consumption

is high.

A significant improvement of mechanical approach is steam explosion [51].

In this method, chipped biomass is treated with high–pressure saturated steam

and then the pressure is quickly reduced. This makes the materials undergo an

explosive decompression. Steam explosion is typically initiated at a temperature

of 160—260� (corresponding pressure 0.69—4.83 MPa) for several seconds to

a few minutes before the material is exposed to atmospheric pressure.

The process causes hemicellulose degradation and lignin transformation due

to high temperature, thus increasing the potential of cellulose hydrolysis. Ninety

percent efficiency of enzymatic hydrolysis has been achieved in 24 h for poplar

chips pretreated by steam explosion, compared to only 15% hydrolysis of un-

treated chips [52].

Steam explosion represented an important enhancement of traditional meth-

ods, especially in the perspective of the lower energy requirement (comparing

to traditional mechanical treatments) and no recycling or environmental costs.

Limitations include instead destruction of a portion of the xylan fraction, in-

complete disruption of the lignin—carbohydrate matrix, and generation of com-

pounds that may be inhibitory to microorganisms used in the downstream pro-
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cesses [53].

Addition of H2SO4, or SO2,, or CO2, or NH3 in steam explosion can improve

lignin degradation, decrease the production of inhibitory compounds, and lead

to more efficient process [54, 55, 56, 57].

In particular Zheng and coworkers showed in 1998 that CO2 explosion was

more cost–effective than ammonia explosion and did not cause the formation of

inhibitory compounds that could occur in steam explosion [57].

Unfortunately, all these methods require high temperature and pressure,

causing serious economical concerns for both processes and systems.

1.6.2 Chemical methods

Many chemicals can also be used in delignification: in particular, nowadays the

chemical lignin removal in the pulp and paper industries is mainly achieved by

the Kraft process [58].

The Kraft process is based on a strongly alkaline attack of the woody mate-

rial, with a caustic liquor, containing concentrate sodium hydroxide and sodium

sulfide (the ”white liquor”) under harsh temperature and pressure conditions

[51, 59]. The mechanism of alkaline hydrolysis is believed to be saponification of

intermolecular ester bonds crosslinking xylan hemicelluloses and lignin or other

hemicellulose. Accordingly, separation of lignin and polysaccharides can occur

[4].

The targets of the alkaline attack are also the α–aryl ether and β–aryl ether

linkages (mainly α–O–4 and β–O–4), i.e. the linkages joining the C6C3 units

together. Cleavage of an α–O–4 linkage is favored when the corresponding phe-

nolic hydroxyl is free; in that case a quinomethide is formed concomitant with

the expulsion of the α–OR− anion as the leaving group. This reaction is respon-

sible for lignin fragmentation but also to a certain extent for the breakage of

the main lignin–hemicellulose linkages. In any case, the resulting quinomethide

undergoes a nucleophilic attack (usually from hydroxide or water) restoring the

aromatic character of the phenylpropanoid unit. When α–hydroxyls are free,

the preferred linkage to cleave is the β–O–4, with the intermediate formation

of a very reactive α–β–oxirane that quickly undergoes a nucleophilic attack by
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water or hydroxide, and an α,β diol is formed.

Hydrosulfide is less basic but more nucleophilic than hydroxide so the pres-

ence of sulfide greatly enhances the efficiency of the pulping process; anyway

the two anions show similar mechanisms in the attack and breakdown of lignin.

In conclusion, the degraded and solubilized lignin is richer in free phenolic

hydroxyls (responsible for its solubility in alkali) and poorer in α–O–4 and β–

O–4 linkages; it could be recovered from the spent liquor (”black liquor”) by

precipitation with acids and is known as Kraft lignin. Conversely, remaining,

undissolved lignin in the pulp is poorer in phenolic hydroxyls and should be

bleached to obtain white paper.

Caustic treatment of lignocellulosic materials can also cause swelling, and

internal surface area is increased. The digestibility of NaOH–treated hardwood

increased from 14% to 55% with the decrease of lignin content from 24—55%

to 20%. Unfortunately, no effect of dilute NaOH treatment was observed for

softwoods with lignin content greater than 26% [60].

Ammonia can substitute NaOH [61]. But described condition are quite ex-

treme: high ammonia concentration (up to 20%) and temperature (170�) in

particular. However, delignification is quite efficient (over 60%).

Conversely, sulfite pulping is based on the nucleophilic properties of hy-

drogenosulfite ion HSO−

3 which is the prevailing ionic form of sulfite in a wide

range of pH, from moderately acidic to about neutral. Hydrogenosulfite is well

known as a sulfonating agent for certain organic electrophilic compounds (owing

to a relatively high electron density on sulfur atom) and this feature can be well

exploited to achieve lignin fragmentation and solubilization. Apart from the

so–called labile sulfonate groups (readily hydrolyzable by alkalies) arising from

addition reactions to carbonyl groups, the striking feature of the sulfite pulping

is the introduction of C–linked sulfonate groups into the lignin backbone.

In particular, both α–O–4 and β–O–4 arylether linkages are broken with

release of phenolic hydroxyl groups whereas a sulfonate group –SO−

3 is attached

to the α or respectively β carbon atom [62]. Generally speaking, sulfitolysis

takes place at acidic pHs on nonphenolic substructures, and at neutral or even
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slightly alkaline pHs on the phenolic ones [63]. Moreover, some further sulfonic

acid have been characterized in soluble lignosulfonates [64]. The overall result

of hydrogenosulfite attack is lignin fragmentation and solubilization of the aris-

ing fragments, bearing sulfonate moieties. The obtained lignosulfonates have a

number of technical applications [65]. It is worth noting that a minor fraction

of (poorly) sulfonated lignin is almost insoluble and remains in the obtained

chemical pulp.

Delignification is usually incomplete, and for certain uses the remaining

lignin is a problem since it adversely affects the physico–mechanical properties

of the paper. Moreover, remaining lignin is brownish and it tends to become

more and more colored with time due to oxidation reactions that also give acids

off. Such acids, when not neutralized by calcium carbonate added to the paper

paste, tend to promote cellulose hydrolysis thus lowering the paper strength.

Therefore, a pulp bleaching step usually follows the delignification, to obtain

white pulps and to stop alteration of remaining lignin that cause the problems

cited above.

The use of various chlorine–based chemicals (such as ClO2 and chlorite salts)

have been proposed under extreme operational conditions [66, 67]. In this case,

the action is due to oxidative attack of chlorine–containing compounds.

Unfortunately their action proceeds with both oxidation and chlorination,

and the arising chlorolignins are highly recalcitrant to (bio)degradation and

quite toxic. Sodium chlorite and chlorine dioxide, although much more costly

than chlorine, act mainly via oxidative reactions. However, a noticeable degree

of chlorination is unavoidable.

Also hydrogen peroxide can effectively act as a delignificant agent [68] espe-

cially in alkaline environments.

The effectiveness of alkaline delignification or bleaching is due to the for-

mation of important HO−

2 concentrations above pH 11, where this nucleophile

can attack electrophilic positions in the oxidizable molecules. Even more impor-

tant, H2O2 becomes unstable within the pH range 10–12, where H2O2 and HO−

2

concentrations are comparable. The decomposition reactions are as follows:
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H2O2 +HO−

2
⇀↽ OH •+O−

2 •+H2O (1)

OH •+O−

2 •
⇀↽ O2 +OH− (2)

2O−

2 •+H2O ⇀↽1 O2 +HO−

2 +OH− (3)

1O2 +O−

2 •
⇀↽ O2 +O−

2 • (4)

The occurrence of reaction 3 explains why at least a fraction of formed

molecular oxygen is in its singlet, very reactive state. Undoubtedly, the transient

superoxide and hydroxyl radicals arising from reaction 1 play a key role in

oxidation reactions by alkaline hydrogen peroxide. According to this hypothesis,

the maximum effect of hydrogen peroxide towards lignin reaches its maximum

just at pH ∼ 11.5 (pKa for H2O2 is 11.6).

Many studies have been performed about alkaline oxidative pulping by H2O2,

leading to a growing interest not only towards lignin–retaining bleaching but

also towards optimization of delignifying/bleaching treatments, alternative to

conventional Kraft pulping [69, 70, 71]. In fact, even if hydrogen peroxide is

decidedly more expensive than the white liquor of Kraft pulping is, the reaction

conditions are much milder, and moreover the effluents could be faced and

managed more easily. The reactivity and mechanistic changes observed in the

system hydrogen peroxide/lignin in the presence of redox active transition metal

ions must be emphasized: in that case, the following reaction take place [72]:

Men+ +H2O2 ⇀↽ Me(n+1)+ +OH− +OH • (5)

This is the Fenton reaction, showing hydroxyl generation and scavenging by

a metal ion (Fe, Mn, Cu) engaged in a one-electron redox cycle.

In the presence of a phenoxide ion (this discussion is referred to sharply

alkaline reaction conditions) further reactions can take place:

PhO− +Me(n+1)+ ⇀↽ PhO •+Men+ (6)
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PhO− +OH• ⇀↽ PhO •+OH− (7)

PhO •+O−

2 • → oxidative degradation (8)

PhO− +1 O2 → oxidative degradation (9)

However, the continuous ferrous salt supply (it does not act as catalyst)

and the significant release of ferric ions in the environment restrict practical

applications of such reagents.

Lignin oxidation can be also achieved using both molecular oxygen and

ozone, that can be combined with various catalysts both chemical (TiO2, ZnO)

and physical (UV radiations) [73, 74, 75, 76, 77].

Ozonolysis has many advantages, since it effectively removes lignin, not pro-

ducing toxic residues for the downstream processes. Moreover the reactions are

carried out at room temperature and pressure [4, 78]. Vidal and coworker for

instance showed a decrease for the percentage of lignin from 29% to 8% after

ozonolysis pretreatment of poplar sawdust [78].

However, a large amount of ozone is required, making the process expensive.

Furthermore ozone is very costly, unstable, toxic and explosive.

Besides these methods, also organic solvents (combined in case with inor-

ganic acid catalysts such as HCl or H2SO4) can be used to break the internal

lignin and hemicellulose bonds. The organic solvents used in the process include

methanol, ethanol, acetone, ethylene glycol, triethylene glycol and tetrahydro-

furfuryl alcohol [4].

However, the organic solvent use causes obvious environmental and econom-

ical issues, since operational conditions are not always mild. Moreover, solvent

removal and recovery from the wastes is strictly necessary.
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Furthermore, more recently new catalysts like molybdovanadophosphate polyan-

ions, methyltrioxorhenium derivatives, polyoxometalates, and TAML were pro-

posed, working under quite promising operational conditions [79, 80, 81, 82, 83].

1.6.3 Biological methods

Despite their large industrial applications, physico–chemical approaches towards

delignification clearly suffer from economical and operational concerns, since

they usually deal with extreme conditions and/or expensive reactants.

Accordingly, in order to achieve a greener alternative, lignin–degrading mi-

croorganisms have been deeply studied during the last decades [11, 13]. Par-

ticular interest arose around ligninolytic fungi, that due to a specific lignolytic

enzymatic pattern are able to live on wood and in some cases to degrade it.

Only two classes of fungi are able to oxidize lignin: brown–rot and white–rot

fungi, both belonging to Basidiomycetes [13].

Brown–rot fungi, however, degrade mainly cellulose and only marginally

lignin. While many white–rot fungi are able to completely oxidize lignin, using

it as principal carbon source, and not damaging cellulose. Accordingly, this

class is the most promising from an industrial point of view.

Among white–rot fungi, the most investigated species have been Pleuro-

tus eryngii and Phanerochaete chrysosporium. However, many other Basid-

iomycetes genera belong to this group, like Trametes, Phlebia, Ceriporiopsis,

Dichomitus, Ganoderma, Stereum and Bjerkandera.

Biological delignification can be achieved using whole cells in bioconversion

processes. These processes showed promising milder operational conditions, in

comparison to physo–chemical methods. Fungal reactions, in fact, occur at low

temperature and pressure, in absence of any organic solvent, and catalysts can

be recovered for many reaction cycles in an environmentally sustainable process

[84, 85, 86, 87].
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1.6.4 Enzymatic methods

Otherwise, ligninolytic enzymes can be purified from producing–fungi and em-

ployed in biotransformations processes.

White–rot fungi synthesize two classes of lignin–degrading enzymes: laccases

(LC, E.C. 1.10.3.2) and peroxidases (LP).

The former are cuproenzymes known since XIX century, containing in their

active site four Cu2+, while the latter are hemoproteins discovered only in 1980s.

Lignolytic peroxidases can be further classified into three groups depending on

their substrate specificity: lignin peroxidase (LiP, E.C. 1.11.1.14), manganese

peroxidase (MnP, E.C. 1.11.1.13), and versatile peroxidase (VP, E.C. 1.11.1.16).

1.6.4.1 Laccase

Laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2), belonging to blue

multi–copper oxidases, are enzymes able to catalyze the oxidation of various

low–molecular weight compounds, including: benzenediols, aminophenols, po-

lyphenols, polyamines, and lignin–related molecules, while concomitantly reduc-

ing molecular oxygen to water [88].

Laccases are common enzymes in nature, and they are found widely in plants

and fungi as well as in some bacteria and insects. The first laccase was reported

in 1883 from Rhus vernicifera, the Japanese lacquer tree [89], from which the

laccase designation derived. Laccases have subsequently been discovered in

numerous other plants.

However, the majority of laccases characterized so far have been derived

from fungi, especially from white–rot Basidiomycetes that are efficient lignin

degraders. Only a few bacterial laccases have been described, like the laccases of

the plant root-associated bacterium Azospirillum lipoferum [90]. In addition to

plants, laccases have been found in some insects, where they have been suggested

to be active in cuticle sclerotization [91].

Laccase contains four cupric ions Cu2+ with a different complexation by

the residues of the active site. These ions are able to accept one electron each

during four monoelectron oxidations of substrates. The cuprous ions are then
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reoxidized to cupric, releasing the four electrons to molecular oxygen [92, 93, 94],

according to global reaction 10.

O2 + 4H+ + 4e− → 2H2O (10)

Reducing substrates (phenolics or aromatic amines) are oxidized to various

radicals, that can evolve in different ways depending on oxygen availability.

During delignification for instance non–enzymatic reactions can occur releasing

ROS (Reactive Oxygen Species , like hydroxyl radical OH•), or further decom-

position to quinones is possibile. Then, fungal quinone reductases usually allow

to form phenols again [95, 96, 97] in an only apparently futile cycle, that in fact

leads to the continous formation of ROS, the real lignin–degrading species.

Many potential applications and production processes of laccases have been

suggested [88, 98, 99]. However, this enzyme suffers from a limited substrate

spectrum in comparison to lignolytic peroxidases. In particular, as shown in

§1.4.1, lignin loses most of its phenolic nature during polymerization: and lac-

case are not able to oxidize aromatic non–phenolic compounds. Moreover, its

oxidation action is limited to quinone step. As shown for model dye alizarin

red S [10], this can be a serious concern during wastes detoxification, since only

partial oxidation can take place.

Some improvements can be obtained coupling laccase catalysis with redox

mediators [88]. In particular, TEMPO and OH–TEMPO are promising com-

pounds towards this issue.

1.6.4.2 Lignolytic peroxidases

The first two lignolytic peroxidases (LP) were discovered in 1980s in a lig-

nolytic Basidiomycete (Phanerochaete chrysosporium): lignin peroxidase (LiP)

and manganese peroxidase (MnP) [100, 101]. More recently, a third LP has

been identified: versatile peroxidase (VP) [102]

White–rot fungi synthesize different LPs patterns among various genera.

For instance Phanerochaete crysosporium only synthetizes LiP and MnP, while

Pleurotus spp. produce LC and some MnP or VP isozymes only under particular
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growth conditions.

All LPs are featured by unusual high redox potential, and significant se-

quence and structure homology [103].

These enzymes, included in Peroxidase Class II, share general tertiary fold-

ing and helical topography with peroxidases in Class I, such as Cytochrome C

Peroxidase (CCP, EC 1.11.1.5) [104]. Accordingly, their substrate specificity

seems to be modulated by changes near the protein surface, without substantial

modification of polypeptide core [105].

LPs are secretory globular proteins (PM ∼ 40000 a.m.u.), containing about

340 residues clustered in 11–12 predominantly–α–helices. Two main domains

are formed (proximal and distal), delimiting a central cavity harboring the pros-

thetic group (an iron(III)–coordinating protoporphyrin IX, Figure 9).

Fe3+ coordination is completed by proximal His and a water molecule linked

by a weak bond. LPs present two Ca2+ binding sites and 8 cysteine residues

forming 4 disulfide bridges (with exception of MnP having 5 bridges), stabilizing

protein structure [103, 106].

VPs, the latter to be identified, have not been structurally characterized.

Molecular models are only available [103].

LPs show close similarity also about catalytic cycle, being similar to other

peroxidases [107, 108, 109] as reported in Figure 10 and Figure 11.

Hydrogen peroxide is their natural electron acceptor, acting as two–electron

oxidizing substrate for LP native form (path (a) Figures 10 and 11). In partic-

ular, one electron derives from Fe(III), which is oxidized to Fe(IV) forming an

oxoferryl specie with oxygen atom deriving from H2O2. Second electron is taken

from porphyrin delocalized electronic system, forming a cationic π porphyrinic

radical. This completely oxidized form of LP is known as Compound I.

This intermediate contains two oxidizing equivalents. Accordingly, partic-

ular reducing substrates can release one electron in two consecutive mono–

electronic reducing steps, forming firstly Compound II and then native LP (path

(b) and (c) of Figures 10 and 11).

LiP, MnP and VP differ on reducing substrates specificity. For instance
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Figure 9: LiP active site structure shows most important interactions be-

tween heme and apoprotein residues, In particular proximal and distal His,

and H–bond between heme propionate and Asp183 are evidenced [106].

Figure 10: Lignin peroxidase catalytic cycle is similar to that of other per-

oxidases.
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Figure 11: Manganese peroxidase catalytic cycle differs from LiP’s one for

reducing substrates specificity.

LiP is able to oxidize phenolics, but its best substrates are non–phenolic aro-

matic compounds [93, 103, 109, 110]. These compounds release one electron

to Compounds I or II forming phenoxy radical or cationic aromatic radicals,

that can evolve variously, leading to lignin oxidative depolymerization through

Cα–Cβ , Cα–H or C–O bonds breaking. As an alternative, carbonyl groups can

be formed entering in cycle similar to LC (already described in §1.6.4.1) with

ROS production.

However, lignin is a sterically hindering compound, usually not able to enter

into the LiP active site (especially in the early stages of depolymerization).

Then, the need of a redox mediator of the reaction is clear.

Several substrates have been proven able to act in this way, such as tryp-

tophan [111], and many methoxy–substituted aromatic compounds [110, 112].

However, one in particular, veratryl alcohol (3,4–dimethoxybenzyl alcohol, VA)

has been identified as natural LiP substrate.

Although no LiP crystal structure has been obtained showing VA binding
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site, indirect techniques like site–directed mutagenesis suggested at least two

binding sites for VA [113].

However, two more schemes of action have been proposed for VA. LiP could

be protected from H2O2–mediated inactivation by VA. In fact, oxidant excess

leads to Compound III formation, since iron has valence III binding O−

2 . Com-

pound III can evolve in catalytically inactive forms. Only VA (and not other

aromatic or phenolic compounds) is able to regenerate LiP native (and catalyt-

ically active) state [113, 114, 115].

VA has been also suggested to allow catalytic cycle completion [116]. Many

substrates can quickly reduce Compound I to Compound II. However limiting

stage of the reaction is the second reduction to LiP native state. Only VA has

been suggested able to perform this reaction, since in its absence formation of

high amounts of Compound II has been observed.

Since no definitive evidence has been showed for real VA role, all three

schemes of action have been suggested to coexist [112].

MnP catalytic cycle is definitely less complicated, as only Mn2+ ion can act

as reducing substrate [109, 117], yielding Mn3+. This acts as redox mediator

in Compound I and II reduction. Mn3+ is a very unstable chemical species,

which is however stabilized in extracellular environment by organic acids (like

oxalic [112]) complexation, allowing its diffusion towards real substrates that

can release one electron, reducing it to Mn2+.

Such substrates can be phenolics and non–phenolic aromatic compounds,

that evolve in a similar way described for LiP. MnP is furthermore able to

oxidize, through active specie Mn3+, aromatic amines, carboxylic acids, thiols

and unsaturated fatty acids [109], whose arising radicals can degrade lignin.

VP has been the last LP to be identified [102]. Mn–oxidizing peroxidases

with Mn–independent activity have been firstly described in Pleurotus spp. and

Bjerkandera spp.. VPs are in fact able to oxidize directly both Mn2+ (like MnP),

and other aromatic substrates (such as lignin mimicking compounds, like VA).

But VPs are also able to oxidize hydroquinones and substituted phenolics (very
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weak LiP and MnP substrates).

1.6.5 Drawbacks of biological and enzymatic approaches

In the last decades, LC and LPs have been proposed for many industrial ap-

plications related to delignification, pollutants removal from wastewaters, pulp

and paper production etc. Both using purified enzymes, and whole white–rot

fungi cells [118, 119, 120, 121].

Up to now, however, industrial applications of these enzymes are prevented

by some factors: high cost of enzymes and mediators; extreme fragility of LPs;

easy enzyme inactivation by excess of H2O2; no effective protocols for the het-

erologous expression of these enzymes.

Redox mediators, in fact, must be almost continuously supplied in reaction

media, as they are highly reactive species unavoidably undergoing irreversible

degradation.

Moreover, many other proteins seem to be involved in delignification process.

It has been demonstrated that in vivo lignin oxidation requires the synergistic

action of other enzymes such as cellobiose:quinone oxidoreductase, glucose ox-

idase, aryl alcohol oxidase, glyoxalate oxidase [96, 122] as already described in

§1.6.4.2: only in this way ROS are produced (through a quinone redox cycle)

and the reaction becomes effective. In this perspective, it is not surprising that

purified peroxidases or laccases singly do not delignify intact lignocellulose in

vitro [123, 124].

The only feasible way could be the use of whole fungal cells in delignifica-

tion process, which could constantly supply redox mediators and all the other

indispensable enzyme activities.

But also this approach suffers by some drawbacks, due to very slow fungal

metabolism and large biomass contamination (by the fungal hyphae) of reaction

products (and related expensive separation). On the other hand, the mechanical

properties of the obtained pulps are sometimes very good (even if an undesired

yellowing of the product is often observed).
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1.7 Metalloporphines: a ”bioinspired” alternative

In order to overcome these drawbacks, new generations of biomimetic catalysts

have been developed, with the common aim of emulating LPs activity, under

mild and cost–effective operational conditions.

Several biomimetic methods have been proposed involving metalloporphines,

molybdovanadophosphate, metallophthalocyanines, polyoxometalates and iro-

n(III) tetraamido macrocycles [79, 80, 81]. Among them, only metalloporphines

strictly resemble LPs cofactor (compare Figure 9) and seem to be suitable for

real emulation of their active sites.

Metal complexes of porphines and porphyrins (mainly Mn and Fe) have been

shown to be able to catalyze many oxidation and oxygenation reactions with

several monoxygen donors (iodosylbenzene, NaClO, H2O2, peroxyacids etc).

These studies have been mainly addressed to the emulation of cytochrome P450

in hydrocarbons oxygenation, but also in oxidation of amines, N–demethylation

of secondary aromatic amines or oxidative chlorinations [125, 126, 127], while

LPs emulation has been quite less investigated [128].

For these purposes, the use of natural metalloporphyrins has been prevented

by their insolubility in common solvents and low stability in oxidizing envi-

ronment: luckily, a broad range of synthetic analogues (mainly unsubstituted

in the β positions, therefore being more correctly called metalloporphines) are

available since some decades (Figure 12).

The synthesis of the ancestor of this family of molecules was firstly described

in 1935, when Rothemund boiled benzaldehyde and pyrrole in refluxing pro-

pionic acid to easily afford 5,10,15,20-tetraphenylporphine (TPP). Only more

recently catalytic activity of the complexes Fe–TPP and Mn–TPP have been

studied, but they were very unstable catalysts being degraded by their own

substrates (iodosylbenzene and NaOCl) [125]. However, the way was open and

these complexes deserved the label ”first generation catalysts”.

In a short time, it became clear that increasing electron–withdrawing power

of meso–substituents would lead to higher stability and activity of the catalyst.

This could be achieved through the presence of halogen atoms as substituents

in the meso phenyl groups. Those were the so-called ”second generation cat-
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Figure 12: Chemical structures of the most studied metalloporphi-

nes. 1: 5,10,15,20–tetrakisphenylporphine (TPP). 2: 5,10,15,20–tetra-

kis(2,6–dichlorophenyl)porphine (TDCPP). 3: β–octachloro–5,10,15,20–

tetrakis(2,6–dichlorophenyl)porphine (β–Cl8–TDCPP). 4: 5,10,15,20–te-

trakis(pentafluorophenyl)porphine (TFPP). 5: 5,10,15,20–tetrakis(4–sul-

fonatophenyl)porphine (TSPP). 6: 5,10,15,20-tetrakis(N –methyl–4–pyri-

dyl)porphine (TMPP).
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alysts”. In particular the insertion of two chlorine atoms in the 2,6 position

of phenyls (TDCPP) had positive effects: Fe and Mn–TDCPP were capable of

high conversion of the substrates without significant loss of activity, and this

led to a dramatic improvement of performances.

Also β–octa–halogenated porphines (like β–Cl8–TDCPP) were synthesized:

however, catalytic studies were quite conflicting and not very promising.

More efficient seemed to be perhalogenated porphines in the phenyl po-

sitions: in particular metal complexes of 5,10,15,20-tetrakis(pentafluorophe-

nyl)porphine (TFPP) and their derivatives exhibit excellent catalytic and sta-

bility properties [129].

Metal complexes of TFPP are, though, not water–soluble: that could be

overcome by sulfonating TFPP β–positions, or by completely changing meso

electron–withdrawing pendants. Both use of 4–sulfonatophenyl (TSPP) and

N –methyl–4–pyridinio (TMPP) substituents allowed the synthesis of stable,

efficient and less expensive catalysts.

Metal complexes of TFPP, TSPP and TMPP could be easily synthesized

at laboratory scale, but they are also commercially available and represent a

promising base for development of pre–industrial delignification processes.

1.7.1 Metalloporphines emulate LPs reactions

First investigations about biomimetic degradation of lignin and lignin model

compounds were performed with natural heme using t–buthylhydroperoxide

(tBuOOH) as the oxidant [130]. Catalyst insolubility and instability under oxi-

dizing conditions suggested however employment of next generation porphines.

Fe–β–sulfonated-TDCPP, and both Fe– and Mn–TSPP showed better stabil-

ity during aqueous oxidation of VA and other lignin model compounds [131, 132],

with a product selectivity very similar to LiP.

In those experiments KHSO5, tBuOOH or mCPBA were employed as the

oxidants: however, the perfect oxidant from an industrial point of view should be

inexpensive, totally miscible with H2O (no organic solvent should be needed in a

”green” process), and its degradation products should not be harmful. From this
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perspective, the best ”clean” oxidant can only be H2O2, as its decomposition

produces only O2 and H2O.

H2O2 has been proposed as oxidant by Artaud and coworkers in 1993 [133]:

several Fe metalloporphines (such as TDCPP, TFPP and β–sulfonated–TFPP)

were investigated though in a partially organic reaction mixture. Those catalysts

led to significant yields with many lignin model compounds.

The oxidation of real lignins has been showed few years later. Kurek and

coworkers [134] noticed effective oxidative degradation of spruce lignin in pres-

ence of Fe–β–sulfonated–TFPP and H2O2. The reaction was managed at very

mild temperature (22�) but in the presence of high concentrations of organic

solvent (a mixture 9:1 dioxane:H2O was used as reaction medium).

Crestini and coworkers in 1999 [135] were able to completely eliminate or-

ganic solvent during their screening of some hydrosoluble metalloporphines (the

most interesting being Mn–TSPP and Mn–TMPP). Residual kraft lignin was

oxidized in presence of H2O2 at a slightly higher temperature (50�) but under

very mild pH conditions (pH 6 in citrate buffer).

1.7.2 Immobilization of metalloporphines

Those studies were very promising, but did not allow an immediate application

of metalloporphines in delignification processes.

From an economical point of view, catalyst recovery after reaction is essen-

tial, in order to completely exploit its activity. Besides, complete toxicological

studies of porphines have not yet been completed: so they cannot be released

in the environment, but must be (possibly easily) removed from any waste.

Moreover, when metalloporphines work free in solution, they are less sta-

ble as side reactions can occur, such as µ–oxo dimers (catalytically inactive)

formation or homolytic cleavage of O–O bond to yield Fe(IV)–OH and OH•

[136].

In this perspective, immobilization of the catalysts on a solid support should

be considered as a mandatory aim.

Many approaches have been developed to immobilize metalloporphines: ad-

sorption, ion–exchange and covalent bond formation in particular. In all cases
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catalysts seem to retain much of their activity as LP emulators. Just few studies,

however, are reported about LPs–like activity of those immobilized metallopor-

phines.

Labat and Meunier [131] emulated LiP activity by immobilizing Mn– and

Fe–TSPP on ion–exchange resin Amberlite IRA 900: catalyst stability was no-

ticeably enhanced, and repeated use gave excellent results.

More recently Crestini and coworkers [137] used supported Mn–TMPP on

a smectite clay to achieve oxidation of lignin and lignin model compounds.

Operational conditions were extremely mild and only temperature was quite

high (ranging 60–90�), but no organic solvent was necessary saving dioxane to

solubilize reagents. Also in this case porphine stability seemed to be improved:

repeated use of the catalyst for the oxidation of model compounds was efficient,

leading to quite high conversion rate.

Not even in those cases, however, real LPs emulation was achieved.

In these enzymes, fifth coordination position of heme iron is occupied by

imidazole–N of proximal histidine (Figure 9): in this perspective closer emu-

lation of their active site requires the presence of an appropriate axial ligand,

perhaps imidazole.

Moreover, fundamental effects of axial ligand for porphine catalytic efficiency

have been exhaustively demonstrated [125]. Using free bulk ligands, stabiliza-

tion of high valence metal oxo species has been observed: this can be a problem

though, when ligand/porphine interaction is too strong. It can lead to bis–

ligated form which can interfere with oxygen donor/metal proper interaction,

which is certainly more favored with mono–ligated species. Moreover, if stabi-

lization of high valence metal species is too strong, reduction of oxidized metal-

loporphine species could be slower. Besides, electron–deficient ligands are also

able to increase redox potential of oxidized metalloporphines species, speeding

up catalytic cycle completion.

Good ligands have also proven able to affect porphines chemio– and enan-

tioselectivity and to facilitate heterolytic cleavage of O–O bond. This prevents

formation of OH•, the main responsible of undesired cellulose damage during
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delignification processes.

Several possible ligands have been proposed: pyridine and alkyl substituted

derivatives, N–amine oxides, and the more bioinspired imidazole.

Among them only the latter allows a real emulation of LPs active site (Figure

9). Moreover, its positive catalytic effects have been clearly demonstrated [138].

However, all those studies have been performed using free ligands.

The need of a good axial ligand for metalloporphine can be, however, com-

bined with that of a suitable immobilization of the catalyst. This can be

achieved properly by grafting imidazole (or other coordinating group) residues

on solid supports, and immobilizing metalloporphines on these through a coor-

dinative bond.

Such generation of catalysts can be referred as real LPs emulators.

This approach avoids the continuous supply of ligands in a hypothetical

multicyclic use of the catalyst: it means an economical saving of the process.

Besides, if the support grafting is properly operated, only mono–ligated metal-

loporphines can be obtained.

Metalloporphine immobilization on an imidazole-grafted support has been

already described [139].

In that study 3–imidazolyl–propyl–trimethoxysilane was used to function-

alize silica gel surface, on which Fe–TMPP was then supported. The adduct

was not characterized about its LP–like activity: however, it showed a poor

performance in hydroxylation and epoxidation of hydrocarbons.

This can be partially explained with the very short and hydrophobic spacer

between metalloporphine and support. In order to completely emulate enzyme

activity, a longer, hydrophilic and flexible spacer should be considered.

1.8 Aim of this study

Emulation of LPs is a challenging task with many promising industrial applica-

tions.

This should be based on robust and catalytically efficient metalloporphines
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properly immobilized on solid supports providing axial ligands, in order to

achieve both structural and functional emulation. This is economically and envi-

ronmentally crucial as it implies mild operational conditions, strictly resembling

natural delignification pathway. In other words, a really green process.

According to these consideration, the first purpose of this study is the de-

velopment of properly immobilized metalloporphines.

In this perspective, several supports have to be grafted with enough long

spacers ending with coordinating chemical groups like the more bioinspired im-

idazole, but also mercapto (Fe(III)–heme coordinating group in Cytochrome

P450 [126]) and pyridine. This is, in fact, a quite more electron–withdrawing

group compared to imidazole: this could lead to higher redox potential of co-

ordinated metalloporphine. Some investigations have already been attempted

[140], but pyridine seems to be weaker than imidazole as a metalloporphine

ligand.

Then, screening of possible metalloporphines/supports combinations is nec-

essary. In order to achieve an economically affordable process, the most common

commercially–available metalloporphines are studied: Mn–TSPP, Fe–TFPP and

Mn–TMPP.

The catalysts are investigated according to their ability to emulate LPs ac-

tivity with common lignin–emulating compounds (particularly VA) in the pres-

ence of H2O2. During this step the main purpose is to obtain extremely mild

operational conditions (in terms of pH, temperature, low [H2O2], no organic

solvents), without any metalloporphine leakage, in order to achieve a real green

process. Moreover, catalytic mechanisms are investigated elucidating the simi-

larities between biomimetic and LPs catalysis, and their dependence on coordi-

nating groups.

Moreover, the range of studied substrates is broadened including industrial

dyes, since also textile wastewaters represent a serious environmental issue, still

needing easy, inexpensive and feasible processes of treatment, as described in

§1.5.

In all these contexts, heterogeneous catalysts like immobilized metallopor-
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phines should face the necessity of redox mediation, in order to overcome mass

transfer issues. Crestini and coworkers [137] already found 1–hydroxybenzo-

triazole as an efficient mediator in immobilized metalloporphines oxidation of

lignin. But, in order to maintain the process as ”green” as possible, also redox

mediator should be harmless and sustainable: in this perspective, the immediate

aim can be not strictly LiP, but rather MnP emulation. As only Mn2+ could

represent the cleanest redox mediator.

Therefore, redox mediators screening is necessary, with particular attention

to MnP emulation.
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2 EXPERIMENTAL

2.1 Materials

All the reagents used were of the best grade available, and were used without

further purification. In particular, ARS came from Fluka (cat. No. 05600),

AzB from Fluka (cat. No. 11660), FeTFPP from Aldrich (cat. No. 252913),

glutaraldehyde from Fluka (cat. No. 49629, it was as a 50% aqueous solution,

mainly containing oligomers in addition to the monomeric aldehyde), HRP from

Sigma–Aldrich (cat. No.P–6782), LiP from Sigma–Aldrich (cat. No. 42603),

MB from Fluka (cat. No. 66720), MG from Aldrich (cat. No. 198080), MO

from Sigma–Aldrich (cat. No. 234109), MnTMPP from Aldrich (cat. No.

453161), MnTSPP from Sigma–Aldrich (cat. No. 441813), PNS from Fluka

(cat. No. 199648), PVA from Aldrich (cat. No. 363138, fully hydrolyzed, Av.

MW 30,000–50,000), SG 100 from Fluka (cat. No. 60746), XO from Fluka (cat.

No. 9615).

Fungal LC was purified from Pleurotus sajor–caju liquid cultures as described

elsewhere [141].

2.2 Methods

2.2.1 APS synthesis

Aminopropylsilica (APS) was prepared by reacting 10 mmol of (3–aminopro-

pyl)triethoxysilane in 20 mL of dioxane and 10 g of Silica Gel 100 (SG).
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The slurry was kept at 80� overnight. The activated silica, was consecu-

tively washed with 0.5 M HCl, with H2O, with 0.1 M NaOH and again with

H2O. The wet silica was then carefully dried overnight in a vacuum oven at

50�.

2.2.2 IPS synthesis

Firstly, 3–(1–imidazolyl)propylcarbamoyl–3’–aminopropyl–triethoxysilane was

synthesized by reacting 2.6 g (10 mmol) of (3–isocyanatopropyl)triethoxysilane

and 1.4 g (11 mmol) of N –(3–aminopropyl)imidazole in 20 mL dioxane.

The mixture was allowed to react overnight at 25�, and to this newly

synthesized silane 10 g of SG 100 were added. The slurry was kept at 80�

overnight. The activated silica, 3–(1–imidazolyl)propylcarbamoyl–3’–aminopro-

pylsilica (IPS), was consecutively washed with 0.5 M HCl, with H2O, with 0.1

M NaOH and again with H2O. The wet silica was then carefully dried overnight

in a vacuum oven at 50�.

2.2.3 PSG synthesis

PSG was prepared as described above for IPS §2.2.2, using 4–picolylamine (4–

(aminomethyl)pyridine) instead of N –(3–aminopropyl)imidazole.

2.2.4 MSG synthesis

Each gram of APS was suspended in 10 mL NaHCO3 0.1 M containing 0.5 g N–

acetyl–DL–homocysteine thiolactone. The slurry was then kept for 24 h under

gentle stirring at 25�.

MSG was then consecutively washed with H2O, KH2PO4 0.1 M, H2O again,

sodium dithionite 0.1 M, H2O again and 2–propanol.

The mercapto–grafted silica was then carefully dried overnight in a vacuum

oven at 50� and immediately porphinated in order avoid possible oxidation of

–SH group.
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2.2.5 AP–PVA synthesis

For aminopropyl crosslinked PVA (AP-PVA) synthesis, 500 mL of a 10% w/v

PVA aqueous solution were treated with 5 mL 4–aminobutyraldehyde diethyl

acetal, and pH was adjusted to 2 with 6 M HCl.

Then 10 mL of a 50% v/v glutaraldehyde aqueous solution were added under

stirring and the pH adjusted to 0 with 6 M HCl. The obtained gel was kept

at 90� for 1 h into a water bath, and finally overnight at 25�. The product

was broken into coarse lumps with a spatula, soaked with water to remove most

HCl, ground for 10’ at 16,000 rpm with Ultra Turrax T25 Basic (IKA Technik ,

Milan, Italy), and exhaustively washed with water, 0.1 M NaOH, water again,

2–propanol, and finally carefully dried into a warm oven.

In control experiments, no functionalized crosslinked PVA was obtained

omitting 4–aminobutyraldehyde diethyl acetal.

2.2.6 Im–PVA synthesis

Each gram of the AP–PVA powder was suspended in an excess water to form a

fluid slurry and treated with 0.1 mL of imidazole–4(5)–carboxaldehyde. The pH

was adjusted to 5 with 0.1 M sodium acetate buffer, and reduction of the Schiff

base between the aldehyde and amino groups of the support was accomplished

by adding 0.5 g sodium cyanoborohydride, under gentle stirring.

After 24 h the support was exhaustively washed with 0.1 M aqueous glycerol,

water, 0.1 M NaOH, water again, and 2–propanol. The wet Im–PVA was then

carefully dried overnight in a vacuum oven at 50�. The product was stored in

a well–closed bottle at room temperature until use.

To determine the amount of aminopropyl moieties and the extent of their

further derivatization with imidazole functions, an already described photomet-

ric procedure [142] was used involving the chromogenic reaction with ninhydrin

and hydrindantin.
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2.2.7 PP-PVA synthesis

PP–PVA was synthesized as described above for Im–PVA (§2.2.6), using 4–py-

ridinecarboxaldehyde instead of imidazole–4(5)–carboxaldehyde.

2.2.8 M–PVA synthesis

AP–PVA was treated with N–acetyl–DL–homocysteine thiolactone, as already

described for APS in §2.2.4, leading to thiyl–grafted PVA–based support.

2.2.9 Porphination of supports

Samples of one gram of supports were treated with different amounts of met-

alloporphines, ranging from 2 to 120 mg (usually 20 mg where not differently

specified), solubilized in 10 mL of proper solvent, then the reaction mixtures

were kept at 25� in the dark (because of metalloporphines photosensitivity)

under stirring overnight.

For MnTSPP and FeTMPP solvent, aqueous 50 mM NaHCO3 was chosen,

in order to prevent imidazole–N , pyridine–N and amino–group protonation.

During porphination of thiyl–grafted support, water was used. For FeTFPP,

dimethylsulfoxide (DMSO) was preferred.

After this, excess of metalloporphine was washed away with aqueous 1

M NaCl and finally with H2O. For FeTFPP treated support, DSMO and 2–

propanol washes were used insted.

Unbound metalloporphines were then quantified through spectrophotometric

measurement at specific λmax for each porphine (468 nm for MnTSPP, 460 nm

for MnTMPP, and 411 nm for FeTFPP), by using a calibration curve. Thus,

the amounts of bound metalloporphine were determined by difference between

the two measurements.

The adducts were finally dried at 50� in a vacuum oven overnight, and

stored in the dark until use.
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2.2.10 Spettrophotometric analysis

UV–vis measurements were performed on an UltroSpec 2100 pro spectropho-

tometer (Amersham Bioscience, Uppsala, Sweden). While reflectance spectra

were carried out at 25� using a Cary 5 UV-Vis-NIR spectrophotometer (Var-

ian, Palo Alto, CA, USA).

FT–IR spectra (resolution 4 cm−1) were recorded after the samples were

obtained as KBr pellets, with a KBr beam–splitter and KBr windows on a

Nicolet 5700 spectrometer (Thermo Electron Corporation, Madison, USA) at

25�.

2.2.11 Surface area determination

Nitrogen physisorption measurements were carried out at –196� on an Autosorb-

1 volumetric analyzer (Quantachrome, Boynton Beach FL, USA) apparatus.

The samples (100 mg) were degassed at 70� under vacuum for 4 h before of the

measurement. The isotherms were used to quantify the textural properties of

the samples. The specific surface areas (SBET ) of the samples were calculated

using the BET method.

The total pore volume Vp was evaluated on the basis of the amount adsorbed

at a relative pressure of about 0.98, by converting the amount of nitrogen gas

adsorbed at STP to the liquid volume at –196� (using the conversion factor c =

0.001547). The pore size distributions were obtained from the desorption branch

of the isotherm using the corrected form of the Kelvin equation by means of the

Barrett–Joyner–Halenda method with a cylindrical pore model. The external

surface area (Sext) and the micropore volume (Vµp) were assessed by the t–

plot method, using the Harkins–Jura equation to estimate the thickness of a

monolayer of nitrogen adsorbed at –196�, t = [13.99/(0.034-log p/p0]1/2.
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2.2.12 Catalytic activity determination

2.2.12.1 LP–like assays

A mixture containing 20 mg of catalyst suspended in 2 mL of 25 mM buffer so-

lution containing 1 mM VA and 8.8 mM hydrogen peroxide, was kept stirring at

25� in the dark. Increase in absorbance at 310 nm was measured after 30 min

incubation, to detect the formed veratraldehyde (ǫ310 = 9,300 M−1 cm−1 [143]).

Both catalysts and substrates amounts have been changed in specified experi-

ments; this was usually done to operate under saturating conditions (according

to measured KM values). For each sample, blank samples without catalyst and

substrates were prepared. UV–Vis spectra in the range 230–700 nm were also

recorded.

Some McIlvaine buffers at different pH were used: pH 3, pH 4, pH 5, pH 6,

pH 7, and pH 8.

To evaluate catalysts multi–cyclic use, assays were repeated several times.

Between cycles, catalysts were regenerated through exhaustive washings with

H2O, 2–propanol, and subsequent drying.

Michaelis and Menten kinetic parameters were calculated by using R 2.5.1

software (R Foundation for Statistical Computing , Vienna).

Alternatively, the dye Azure B (AzB) was used as the substrate, since it

has been suggested as an easy–to–use chromophoric LiP substrate [41]. To a

mixture containing 25 mM buffer, 0.88 mM hydrogen peroxide, and 0.01 mM

Azure B, in a final volume of 2 mL, 20 mg of catalyst were added. After 30 min

of stirring in the dark, decrease in absorbance at 651 nm was detected (ǫ651 =

48,800 M−1cm−1 [41]).

For certain experiments, the well–known hydroxyl radical scavenger 0.1 M

mannitol was also added. In other experiments, 0.1 M 2–deoxyribose was present

in the reaction mixtures, that were subsequently analyzed by means of a de-

scribed method [144] for thiobarbituric acid reactive substances (TBARS) de-

termination.

In order to evaluate hydroxyl radical formation and its effect on catalytic ac-

tivity, control experiments were performed using, respectively, 100 mMmannitol

55



2. EXPERIMENTAL

and 20 mM APH, at the same conditions as above.

Some other compounds were also tested as substrates: 4–methoxybenzyl

alcohol, 4–hydroxy–3–methoxybenzyl alcohol (vanillyl alcohol), 3–hydroxy–4–

methoxybenzyl alcohol (isovanillyl alcohol), 3,4,5–trimethoxybenzyl alcohol, 3,4–

dimethoxybenzaldehyde (veratraldehyde), 3,4–dimethoxybenzoic acid (veratric

acid), 1,2–dimethoxybenzene (veratrole), 1,2,3–trimethoxybenzene, 4–hydroxy–

3–methoxycinnamic acid (ferulic acid).

They were always present at the final concentration of 1 mM in the presence

of 1,2–dimethoxyethane 10% (to allow their solubilization).

Determination of some non–commercial putative products of VA degrada-

tion (4,5–dimethoxy–1,2–benzoquinone, 2–hydroxymethyl–5–methoxy–1,4–ben-

zoquinone, methoxy–1,4–benzoquinone) was performed by separating the indi-

vidual peaks and comparing retention times and UV/Vis absorption spectra to

those of authentic samples synthesized on purpose starting from commmercially

available molecules [145, 146, 147].

For MnP–like assay, all the experiments as above were repeated in the pres-

ence of 1 mM MnSO4 and 50 mM malonic acid.

2.2.12.2 Dye decoloration assays

During dye decoloration experiments, six dyes belonging to different chemical

classes were used (Figure 8 at page 26): alizarin red S (ARS), phenosafranine

(PNS), xylenol orange (XO), methylene blue (MB), methyl green (MG), and

methyl orange (MO).

Dyes decoloration was quantified at 25� by spectrophotometric assay: 20

mg of catalyst were added, in a final volume of 2 mL, to 25 mM buffer, 8.8 mM

H2O2 and the dye concentration reported in Table 2. Blanks were prepared

without hydrogen peroxide and substrates. The mixtures were kept stirring in

the dark at 25� for 30’, and the absorbance decrease at the λmax reported in

Table 2 was recorded. When reaction pH was different from 7, before absorbance

measurement the pH was corrected to 7 with 0.1 mL of potassium phosphate

buffer 1 M (pH 7). UV–Vis spectra in the range 230–700 nm were also recorded.
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Dye MW λmax ǫ Final concentration

(amu) (nm) (M−1cm−1) used (mM)

ARS 342.26 520 7,200 0.29

PNS 322.80 525 32,000 0.31

XO 782.56 435 10,500 2.00

MB 319.86 660 79,500 0.15

MG 472.51 632 55,700 1.50

MO 372.34 464 24,800 1.25

Table 2: Dyes analyzed during this study.

Some additional experiments were performed in the presence of some well–

known redox–mediator: 4–hydroxy-2,2,6,6–tetramethylpiperidine–1–oxyl (OH–

TEMPO), N–hydroxyphthalimide (NPH), N–hydroxysuccinimide (NHS), and

N–hydroxybenzotriazole (NHT).

When used, they were present in the reaction medium, under the same

conditions as above, at the final concentration of 1 mM.

2.2.13 HPLC analysis

Samples for HPLC analysis were centrifuged at 10,000 g for 10’, and the resulting

supernatants immediately injected.

Identification of the compounds was carried out with a System Gold appara-

tus (Beckman, Cassina de’ Pecchi, Italy) equipped with a UV–Vis detector mod-

ule. The column used for chromatographic separations was an ODS–Hypersil,

250x4 mm i.d., 3.5 mm particle size (Hewlett–Packard , Milan, Italy).

Separations of the compounds were achieved at room temperature with

0.085% phosphoric acid in water (solvent A) and 95% acetonitrile in 0.085%

phosphoric acid (solvent B) as the mobile phase. Chromatographic conditions:

initial 10% B, 10 → 90% B in 7 min at 1 mL min−1 flow rate.
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2.2.14 GC–MS analysis

Analysis of the reaction products was conducted using an HP 5980 gas–chro-

matograph connected with an HP 5971 A mass spectrometer.

The measurements were carried out by working in electronic impact at 70

eV with a source temperature of 100�. Gas–chromatographic separation was

performed with an HP 5 – MS column (length 30 m, inner diameter 0.25 mm,

film thickness 0.25 µm). Analysis conditions: initial temperature 120� for 15’,

then 10�/minute gradient until 250�. This temperature was kept for 5’.

2.2.15 Enzymatic comparison experiments

When horseradish peroxidase was used, up to 20 E.U. were present in a final

volume of 1 mL of 25 mM buffer (pH 4, 5, 6, or 7) and dyes at the concentration

reported in Table 3. H2O2 concentration was 8.8 mM.

Dye Final concentration

used (µM)

ARS 119

PNS 31

XO 200

MB 15

MG 150

MO 65

Table 3: Final dyes concentrations used during enzymatic bleaching exper-

iments.

The same conditions were adopted for the experiments with laccase (23 E.U.

added); every experiment was repeated with and without added H2O2.

In the case of LiP, 0.2 E.U. were present in the final volume of 1 mL, and
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the H2O2 concentration was 0.176 mM. For certain experiments, 0.1 mM VA

(final concentration) was added to the reaction mixtures.

Moreover, in order to mimick MnP action, other experiments were carried

out using Mn(III) as the putative oxidizing agent. To this purpose, 1 mM

manganese triacetate was dissolved in 50 mM sodium malonate buffer, pH 6.5

[117], and the final mixture contained this solution along with dyes at the same

concentration reported in Table 3.

For PNS also control experiments of uncatalyzed bleaching were performed.

PNS was oxidized by ammonium peroxodisulfate in aqueous HCl, as already

described [148]; also additional experiments were carried out with the same

oxidant, but with 0.3 mM PNS concentration. In addition, different pH values,

i.e. 4 and 7, were tested.
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3 RESULTS AND DISCUSSION

3.1 IPS/MnTSPP

The first tested LP–like catalyst was MnTSPP coordinatively immobilized on

an imidazole–grafted silica (IPS).

The chosen commercial silica gel is easily available in large amounts at a

very low price: this makes it an ideal base for the development of heterogeneous

catalysts. The synthesis of the imidazolyl silane (§2.2.2) represents a case of the

well–known reaction between alkyl isocyanates and aliphatic primary amines,

leading to N,N’–disubstituted ureas. The obtained product was subsequently

used as a silanizing agent without any need of purification (in order to synthesize

IPS), and led to a functionalization degree of 0.29 mmol imidazolyl groups/g sil-

ica. In the case of the control experiment with (3–aminopropyl)triethoxysilane,

APS was obtained with a functionalization degree of 0.61 mmol amino groups/g

silica. This higher yield of functionalization for APS is presumably due to

the sharp basic character of aminopropyltriethoxysilane in comparison with the

weak basicity of the imidazolyl moiety (silanization reactions usually require a

basic catalyst).

With concern to the metalloporphine loading by IPS, a typical hyperbolic

saturation curve was obtained (Figure 13), and a proportion of 60 mg metallo-

porphine per gram of IPS (corresponding to a loading of 40.8 mg per gram IPS)

was chosen for further experimental work. With concern to control experiments,

SG showed no interaction with MnTSPP, which was completely recovered by

simply washing the support with distilled water. This excludes any unspecific
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Figure 13: MnTSPP loading versus MnTSPP concentration. Bound

MnTSPP was intended per gram IPS. Added MnTSPP was dissolved in

10 mL aqueous NaHCO3 50 mM.

interaction with the metalloporphine. In the case of APS, the metalloporphine

was adsorbed at first and it resisted against to the water washings. However,

MnTSPP was promptly and almost totally released upon washing with the NaCl

solution (contrarily to that was seen with the IPS/MnTSPP adduct).

These results indicate a specific, axial coordinative interaction between the

imidazole nitrogen of IPS side chains and the Mn(III) chelated within the por-

phine macrocycle (Figure 14). This interaction is therefore insensitive to the rise

of ionic strength caused by NaCl. Moreover, this specific interaction seems to

be rather strong and therefore prevents imidazole protonation (and concomitant

MnTSPP release) unless pH drops below 3 (not shown). On the other hand,

the interaction between APS side-chains and MnTSPP would be ionic in na-

ture (APS amino groups and MnTSPP sulfonato moieties should be involved),

explaining its lability.

Comparison between Figures 9 and 14 reveals the great resemblance between

IPS/MnTSPP adduct catalytic site and active site of LPs.

The changes of the support from the commercial SG to IPS and to IPS/Mn-

TSPP adduct could be checked by inspection of the IR spectra (Figure 15):

the reaction of 3–(1–imidazolyl)propylcarbamoyl–3’–aminopropyl–triethoxysila-
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Figure 14: Schematic representation of the proposed coordinative interac-

tion between IPS and MnTSPP.

ne with silica led to decrease of -–OH band at 3500 cm−1, and two new bands

appeared at 1450–1550 cm−1 and 700 cm−1, too. Further differences were also

noted after metalloporphine complexation: in particular the band at 1250 cm−1.

Surface area and porosity of IPS was also estimated by liquid–nitrogen ph-

ysisorption. To have the isotherms, the adsorbed volume is plotted against

relative pressure (equilibrium pressure, p/saturation pressure, p0). The adsorp-

tion and desorption isotherms are reported in Figure 16.

Physisorbed molecules are fairly free to move around the surface of the sam-

ple. As more gas molecules are introduced into the system, the adsorbate

molecules tend to form a thin layer that covers the entire adsorbent surface.

Based on the well–known Brunauer, Emmett and Teller (BET) theory, one can

estimate the number of molecules required to cover the adsorbent surface with

a monolayer of adsorbed molecules (Nm). Multiplying Nm by the crosssectional

area of an adsorbate molecule (16.2 Å2 for N2) yields the sample’s surface area

(SBET ). Furthermonre, computational methods such as the one by Barrett,
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Figure 15: IR spectra of SG, IPS, IPS/MnTSPP.
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Figure 16: Adsorption and desorption isotherms generated during ph-

ysisorption analysis of IPS.
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Joyner and Halenda (BJH) allow the computation of pore sizes from equilib-

rium gas pressures, from which also total pore volume can be estimated. All

these data are summarized in Table 4.

Support
SBET Pore Diameter Pore Volume

(m2g−1) (Å) (cm3g−1)

SG 335.3 104.1 0.872

IPS 235.1 81.2 0.477

Table 4: Surface analysis parameters determined on plain SG and function-

alized IPS.

Silanization of IPS led to a slight decrease of all the parameters. In particular

surface area of plain SG was 335.3 m2g−1, while after imidazole–grafting it was

235.1 m2g−1. However, decrease was quite small, not affecting global porosity

properties of the support. Besides, this decrease can be considered as a further

evidence of effective functionalization of the support.

Adsorption and desorption mechanisms differ, accordingly adsorption and

desorption isotherms do not overlay each other (Figure 16). The resulting hys-

teresis leads to isotherm shapes that can be mechanistically related to those

expected from particular pore–shapes. In particular, in the case of IPS a type

IV isotherms with hysteresis type H2 (according to IUPAC classification [149])

was found, that is correlated with an ink–bottle–like shape (pores having a

narrow neck and wide body). No change on the pore–shape was caused by

silanization.

It is worth noting that the amount of bound MnTSPP (about 45 µmol/g

under saturating conditions) is by far lower than the imidazolyl moieties (290

µmol/g). This finding could be explained by the above observation on SG

structure: the majority of the imidazolyl moieties, although bound at the ends

of flexible chains, would be unable (because of sterical hindrance) to properly

interact with manganese ions that are firmly complexed within the rigid and
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bulky tetraphenylporphine structure.

Whereas SG and APS were almost unable to load MnTSPP, IPS support

bound a noticeable amount of metalloporphine, as revealed by the blackish–

brown color of the adduct. Accordingly, only this preparation could catalyze

the oxidation of veratryl alcohol (VA) at the expenses of hydrogen peroxide at a

significant rate. Consequently, further characterization was mainly focused on

the IPS/MnTSPP adduct.

3.1.1 LiP–like activity characterization

VA is commonly used as a convenient substrate to assess the LiP activity

[41, 150, 151, 152]. In fact, preparation of pure lignin samples is not easy, and

the physicochemical properties of the obtained products widely vary depending

on both the chosen plant sources and the purification protocols; therefore the

results are hardly reproducible. So, various model compounds have been pro-

posed to carry out photometric LiP assays [41], and chosen to avoid interference

by other enzymes that often come with LiP, such as peroxidase(s) and laccase.

Among these compounds, VA is inexpensive and enough water soluble to obtain

aqueous solutions, and thus it is suitable for photometric measurements. In fact,

the compound is oxidized by LiP to form the corresponding aldehyde which can

be detected by virtue of its adsorption at λmax of 310 nm. VA simply behaves

as a nonsubstrate for both peroxidase and laccase, although being oxidized —at

the expenses of molecular oxygen and with concomitant H2O2 release-– by an-

other fungal enzyme, veratryl alcohol oxidase (VAO, EC 1.1.3.7) [153]. In the

present work, VA has been also chosen because its adsorption by the adduct

–as well as that one of the corresponding aldehyde– is negligible (not shown).

Product formation could be clearly checked by UV spectrophotometry (Figure

17).

Among the wide variety of oxidants proposed for use with metalloporphine

catalysts [125, 154, 155, 156], hydrogen peroxide has been chosen in the present

study for various reasons: i) the substance is easily available in large amounts

at a relatively low price, and is suitable for safe transport and stocking; ii) it

is completely miscible with water thus avoiding the need of using any organic
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Figure 17: Spectral changes of VA oxidized by H2O2 in the presence of the

IPS/MnTSPP adduct.

solvent; iii) the only degradation products are water and molecular oxygen,

which are harmless and obviously do not imply any recovery process of the

exhausted oxidant. In conclusion H2O2 is the oxidant of choice for catalytic

oxidative processing of wastewaters, as already stated [157], and was the sole

oxidant used throughout this study.

Addition of more hydrogen peroxide when veratraldehyde production ceased,

produced no effects on the absorption spectra, thus showing that under the

tested conditions no further oxidation of the aldehyde took place, and also

suggesting that VA was almost totally consumed. The same inertness of the

compound was seen when veratraldehyde was directly subjected to H2O2 action

in the presence of the catalyst: the former could be regarded as a dead end

product of VA oxidation. On the contrary, VA addition to the reaction mix-

ture where the substrate had been apparently exhausted, caused a significant

rise of the aldehyde peak, therefore indicating that the aromatic alcohol had

been almost entirely consumed whereas an excess of hydrogen peroxide was still

present (not shown).

The catalytic activity depended on pH of reaction medium, being the opti-

mum centered at pH 7 (Figure 18).

A Michaelis–Menten–like kinetics was found for both hydrogen peroxide con-
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Figure 18: Catalytic dependence on pH for the IPS/MnTSPP adduct.

sumption and veratraldehyde formation (Table 5), showing that the catalyst

could be saturated by both H2O2 and VA.

The catalyst was suitable for repeated use: catalytic activity remained over

90% of the starting one for the first 3 cycles, but it quickly decreased below

20% after 8 cycles. Results are summarized in Table 6. This activity drop is

concomitant with a color fading of the adduct, and is perhaps depending on an

oxidative degradation of the porphine ring due to a prolonged action of relatively

concentrate hydrogen peroxide.

Both kinetic values and multicycle use feasibility are compatible with large

scale applications, since catalysts is able to work with a substrate amount in the

order of magnitude of millimolar (many enzymes suffer from substrate inhibition

and cannot handle such high concentrations). Besides, catalyst recovery seems

to be economically profitable.

3.1.2 Reaction mechanism

As it concerns the reaction mechanism, it was observed that the amount of

aldehyde production is far to be stoichiometric: after two hours of reaction, the

absorption peak at λ = 310 nm reached a maximum which corresponds to a

conversion of about 17%, indicating that the reaction did not proceed further.

This finding was confirmed by GC–MS and HPLC analysis: a conversion

of 87.9% was obtained after 24 h, whereas veratraldehyde concentration was
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Substrate Kinetic Parameter Value

VA

KM 5.5 ± 0.9 mM

kcat 18.6 ± 0.9 min−1

kcat/KM 3.4 ± 0.7 mM−1 min−1

H2O2

KM 10.3 ± 2.1 mM

kcat 16.5 ± 1.4 min−1

kcat/KM 1.6 ± 0.5 mM−1 min−1

Table 5: Kinetic parameters of the IPS/MnTSPP adduct in the presence

of the substrates, H2O2 and VA. The assay mixture contained, in a final

volume of 2 mL, 15 mg of catalyst, 8.8 mM hydrogen peroxide, 1.25 mM

VA and 25 mM potassium phosphate buffer pH 7. Absorbance increase at

310 nm was then read after 30’ of stirring reaction (n = 3).

only 12.9% of initial VA concentration. HPLC revelead also a small production

of veratric acid (about 5%), as stated in Figure 19. No other products were

detected by this technique. Therefore, oxidation of VA under the described

conditions must go to other products, undetectable by GC–MS and UV–HPLC,

but affecting the absorbance at 310 nm, which explains the observed discrepancy

of conversion to veratraldehyde between UV, HPLC, and GC–MS data.

A wide range of lignin model compounds was then tested: catalyst showed

the ability to oxidize with significant conversion rates both non–phenolic and

phenolic substrates (Table 7); with a preference for the latter. Only 1,2,3–

trimethoxybenzene was not a substrate of IPS/MnTSPP adduct. Among non–

phenolic substrates, the catalyst is able to degrade methoxy–substituted benzyl

alcohols: this is a very promising feature since these constituents are common

in highly polymerised lignin.

As point of fact, catalysis of IPS/MnTSPP adduct was not affected by the

presence of Mn(II) complexes. Accordingly, its activity can be labelled only
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Cycle Number % Catalytic Activity

1 100 ± 1

2 98 ± 2

3 93 ± 3

4 88 ± 2

5 80 ± 4

Table 6: Catalytic activity of the IPS/MnTSPP adduct upon multicyclic

use in the presence of 15 mg of catalyst, 8.8 mM hydrogen peroxide, 1.25

mM VA and 25 mM potassium phosphate buffer pH 7 (final volume 2 mL).

After 30’ of stirring reaction, absorbance increase at 310 nm was detected.

Between cycles, catalyst was regenerated through washings with H2O and

2–propanol.

LiP–like, but not MnP or VP–like.

Much work has been spent to the identification of reaction products arising

by LiP action on methoxybenzenes and among these on veratryl alcohol [93, 151,

158]. A general agreement nowadays exists on the idea that the first product of

LiP–catalyzed oxidation of methoxybenzenes and related compounds, of course

including lignin and congeners and derivatives, is an aromatic radical cation,

which could evolve in different manners, depending on its chemical nature and on

the experimental conditions. In particular, veratraldehyde is the main product

in the case of LiP catalysis (Figure 20), where deprotonation and rearrangement

of the cation radical lead to veratraldehyde.

A very different pathway could be observed when model metalloporphines

have been used [133]. In particular, work with H2O2 and electron–deficient

Fe(III)–porphines produced high yields of 2–hydroxymethyl–5–methoxy–1,4-

benzoquinone (Figure 21), whose formation is not surprising when taking into

account that the catalytic center is freely accessible by water molecules. There-
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Figure 19: VA degradation by H2O2 in the presence of the IPS/MnTSPP

adduct, and concomitant production of veratraldehyde and veratric acid.

Figure 20: Putative reaction pathway from VA to veratraldehyde.
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Substrate Conversion 3 h (%)

Ferulic acid 99 ± 2

Isovanillyl alcohol 98 ± 3

Vanillyl alcohol 98 ± 3

4–Methoxybenzyl alcohol 20 ± 4

Veratryl alcohol 49 ± 5

3,4,5–Trimethoxybenzyl alcohol 28 ± 2

1,2,3–Trimethoxybenzene 0 ± 1

1,2–Dimethoxybenzene 29 ± 3

Veratric acid 9 ± 2

Table 7: Sustrate specificity of IPS/MnTSPP adduct with various lignin–

model compounds. Catalytic activity was detected in the presence of 15

mg of catalyst, 8.8 mM hydrogen peroxide, 1 mM substrate, DME 10%,

and 25 mM potassium phosphate buffer pH 7 (final volume 2 mL). Samples

were then analyzed through UV–HPLC.

fore, hydration of the intermediate cation radical prevails over deprotonation.

By analogy, this could explain why, also in the case of MnTSPP, only a minor

fraction of VA was converted to the corresponding aldehyde even if VA was al-

most totally consumed. The same quinone unfortunately has not been detected

during IPS/MnTSPP adduct catalysis by UV–HPLC analysis. Perhaps, main

products could be further oxidized compounds, such as dicarboxylic acids. Or

maybe oligomerized or polymerized products arose from VA.

On the contrary, a significant difference was found between the above men-

tioned Fe(III)–porphines and MnTSPP used here: the former cleave veratralde-

hyde to muconic dimethylesters [133] while the latter showed no significant

action towards the aldehyde.

The different pattern of reaction products between IPS/MnTSPP and LPs
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Figure 21: Putative reaction pathway from VA to 2–hydroxymethyl–5–me-

thoxy–1,4–benzoquinone.

shows how the structural emulation did not lead to a perfect functional emu-

lation. However, since the IPS/MnTSPP products seem to be more oxidized

than the ones deriving from LPs catalysis, these differences could conceivably

be welcome from an applicative perspective.

The IPS/MnTSPP adduct appears to be a very promising heterogeneous

catalyst, that could be well suitable for the oxidative degradation (by means

of hydrogen peroxide) of water soluble lignin derivatives such as those coming

from pulp and paper plants. The presented data suggest a deep oxidative action

which is a favourable prerequisite for a further mineralization. These findings

will conceivably allow to broaden the application fields of the catalyst, such as

in the treatment of various industrial substrates and wastewaters.
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Time Remaining Dye %

(h) ARS PNS XO MB MG MO

0 100 100 100 100 100 100

0.33 80 13 64 23 37 15

0.66 54 9 60 6 22 14

1 38 8 58 4 18 13

3 15 6 43 1 10 11

5 1 6 31 0 6 8

Table 8: Bleaching of each dye studied by means of IPS/MnTSPP.

3.1.3 Dyes decoloration

Accordingly, in order to broaden its industrial applications, IPS/MnTSPP adduct

has been investigated about its ability to bleaching textile dyes, since they rep-

resent high pollutant wastes, released in the environment in significant amounts

(§1.5).

In order to completely evaluate IPS/MnTSPP substrate specificity, six dyes

belonging to different chemical classes (such as azodyes, anthraquinones, triph-

enylmethanes, and phenothiazine) have been included in the study (Figure 8 at

page 26).

Under the same mild operational conditions described above, the biomimetic

catalyst easily degraded all tested dyes, as summarized in Table 8, showing a

wide substrate specificity.

In just 1 h about 90% of starting dyes was bleached. Only ARS and XO

showed slight slower conversion rates, as 62% and 42% respectively of initial dye

were removed during the same time.

However, textile wastewaters are usually composed by a mixture of several

dyes. In this perspective, IPS/MnTSPP adduct was also tested about its ability

to bleach a mixture of all six dyes. As reported in Figure 22, bleaching was
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Figure 22: IPS/MnTSPP adduct in the presence of H2O2 is able to ef-

fectively bleach a mixture containing high concentrations of the six dyes

included in this study.

effective also in this situation, suggesting the catalyst suitable for real industrial

applications.

This statement is further corroborated by the extremely mild operational

conditions, at which these results have been obtained: low pressure and temper-

ature (25�), organic solvents absence, most eco–friendly oxidant (H2O2 [157])

at low concentration (8.8 mM).

Also pH was at neutrality: as shown in Table 9, for each dyes pH optimum

was determined. In all cases, this value was close to 7, allowing simultaneous

degradation of the six dyes to be performed at neutrality.

Bleaching of the six dyes was also kinetically characterized. In all cases,

Michealis–Menten kinetics was observed, whose parameter have been reported

in Table 10. The inspection of the table revealed that the catalyst showed a

KM for dyes always in the millimolar order of magnitude, not suffering substrate

inhibition in this range. This is a crucial feature, since industrial wastes usually

contain dyes quite concentrated (the millimolar order of magnitude can be a

good approximation). And not all the methods proposed for their bleaching are
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Dye Optimum pH

ARS 7

PNS 8

XO 6

MB 7

MG 7

MO 6

Table 9: In the presence of H2O2, adduct IPS/MnTSPP presents for each

dye a pH optimum close to 7.

able to work under these conditions.

Lignolytic enzymes (studied for comparison) suffered, for instance, from a

remarkable substrate inhibition not allowing them to be used at concentrations

higher than those reported in Table 3 at page 58. Besides, these enzymes suffer

also from H2O2 inhibition, leading to use this reagent more diluted than during

biomimetic catalysis. Accordingly, under the same operational conditions it is

not surprising that enzymatic bleaching efficiency was lower.

The lignolytic enzymes studied were laccase (LC), also in the presence of

H2O2, horseradish peroxidase (HRP), and lignin peroxidase. Besides, Mn(III)

was also used as oxidizing agent, mimicking manganese peroxidase action [117].

Their ability to bleach the dyes, under the studied operational conditions,

has been summarized in Table 11.

On the whole, none of the examined enzymes was able to bleach all the

studied dyes. In particular, PNS is resistant to LC, HRP, and Mn3+, while only

a partial degradation with concomitant irreversible inactivation is observed with

LiP (vide ultra, §3.1.3.2). On the other hand, IPS/MnTSPP is able to effectively

bleach all the studied dyes, as described above and shown in Table 8.
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Dye

Reducing substrate H2O2

KM kcat kcat/KM KM kcat kcat/KM

(mM) (min−1) (mM−1min−1) (mM) (min−1) (mM−1min−1)

ARS 2.11 ± 0.74 0.14 ± 0.03 0.066 ± 0.037 3.21 ± 0.12 0.13 ± 0.01 0.040 ± 0.004

PNS 0.32 ± 0.04 2.2 ± 0.1 7.0 ± 1.2 3.0 ± 0.4 1.9 ± 0.1 0.63 ± 0.13

XO 1.33 ± 0.38 98 ± 14 74 ± 31 7.9 ± 1.9 78 ± 8.9 9.9 ± 3.6

MB 0.11 ± 0.02 19.0 ± 1.8 166 ± 52 2.4 ± 0.5 15.2 ± 1.3 6.4 ± 2.1

MG 0.72 ± 0.12 108 ± 9 150 ± 37 0.43 ± 0.08 159 ± 12 369 ± 100

MO 0.63 ± 0.05 67 ± 4 105 ± 16 7.4 ± 1.5 71 ± 8 9.6 ± 3.2

Table 10: Kinetic parameters measured for the bleaching of each dye by means of IPS/MnTSPP and

H2O2.
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Dye LC LC + H2O2 HRP LiP Mn3+

ARS + ++ +/− +/− +

PNS − − − +/− −

XO + + + − +

MB − +/− +/− +/− −

MG + + ++ +/− ++

MO + +/− + +/− +

Table 11: Enzymatic bleaching of the dyes included in the present study.

Experimental conditions are reported in §2.2.15 at page 58.

All these features allow to consider biomimetic catalysis a more feasible

alternative for industrial treatment of textile wastewaters.

According to the hypothesis of a monoelectronic abstraction as the first step

of the bleaching process, some redox mediators, capable of cycling between their

”resting” states and the oxidized, radical counterparts have been tested for their

influence towards the decoloration process (Table 12).

The results, however, were very poor as it was possible only in few cases

to double or triplicate catalytic activity. But also in these cases environmental

impact of redox mediator should not suggest their routinely employment. In

some cases (like for PNS), a noticeable quenching of the catalytic action was

observed.

Unluckily, the only environmentally–affordable alternative (Mn2+ as redox

mediator) was not able to affect IPS/MnTSPP activity (as already stated in

§3.1.2).

The catalyst was also investigated for its reuse potential. After bleaching of

the dyes, the catalyst was recovered, washed, and reused. Results are reported

in Table 13.
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Redox % Remaining Catalytic Activity

Mediator ARS PNS XO MB MG MO

None 100 100 100 100 100 100

OH–TEMPO 98 45 277 56 336 16

NHT 142 46 162 38 299 121

NHS 141 89 146 90 313 122

NPH 103 32 74 56 340 57

Table 12: The presence of some redox mediators seems to affect the dyes

decoloration rate. Percentage of activity is referred to a control experiment

in absence of mediators (n = 3).

Cycle % Remaining Catalytic Activity

Number ARS PNS XO MB MG MO

1 100 100 100 100 100 100

2 68 73 100 99 98 44

3 49 70 93 73 97 37

4 33 61 88 49 97 34

5 30 51 47 37 97 28

6 28 49 41 34 96 28

7 28 44 31 34 96 28

8 26 41 30 26 94 27

9 25 39 29 25 94 20

10 25 35 27 24 90 19

Table 13: Catalytic activity of the IPS/MnTSPP adduct upon multicyclic

use during the decoloration of the studied dyes (n = 3).
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On the average, a rapid decrease of catalytic activity was observed in the

first 2–3 cycles. After that, a stable activity of about 25–30% was still present

for at least 8–10 cycles.

This could be explained if one considers that a fraction of some dyes re-

mained tightly adsorbed on to the catalyst even when the supernatant was

completely decolorized. This adsorbed dye most probably reduced the catalytic

performance through steric hindrance and/or electrostatic repulsion of incom-

ing substrate molecules, explaining the different behavior observed in the case

of VA (compare Table 6).

In conclusion, the described catalytic bleaching process is characterized by a

high efficiency combined with very mild conditions. Dilute hydrogen peroxide is

a relatively safe and inexpensive reagent, and the catalyst could be successfully

recycled, rendering on the whole the bleaching process economically feasible.

Furthermore, the comparison with the lignolytic enzymes showed a clearly

wider substrate specificity for the biomimetic catalyst, which was also able to

remove larger amounts of each dye from the reaction medium. These features

definitely broaden its practical applications for textile wastewaters treatment.

3.1.3.1 ARS insights

The bleaching mechanism of some model dyes have been investigated deeply, as

in the case of ARS for instance.

As already stressed, in the presence of the heterogeneous IPS/MnTSPP cat-

alyst, hydrogen peroxide became capable of efficiently bleaching ARS under

very mild conditions (neutral pH, ambient temperature, low hydrogen peroxide

concentration) (Figure 23). As a point of fact, H2O2 alone was quite unable to

bleach the dye under the same experimental conditions.

The pH dependence of catalytic activity is fully reported in Figure 24. Con-

trarily to that already seen in the case of the oxidation of VA by H2O2 (§3.1.1

and Figure 18), where catalytic activity was almost pH–independent in the

range 4.5–8, an optimum at pH 7 was found in ARS decoloration. ARS exists

mainly as the monoanion (yellow) below pH 5.5, as the dianion (red) below
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Figure 23: Spectral changes during oxidative catalytic degradation of ARS

by 8.8 mM H2O2 in the presence of IPS/MnTSPP catalyst in 25 mM

McIlvaine buffer, pH 7.

pH 11, and is completely deprotonated under sharply alkaline conditions as the

trianion (purple) [159]. The pH dependence of the oxidative bleaching strongly

suggests that the process takes place on the dianion (Figure 25). Over pH 7,

the bleaching efficiency of the H2O2/catalyst system slightly decreased, most

probably as the catalyst itself became less effective. Therefore pH 7 represents

the best compromise between catalyst efficiency and substrate reactivity.

Despite of the widespread occurrence of hydroxyanthraquinones in nature

and their use in several application fields, their oxidative degradation has been

until now the target of a few studies, so the degradation mechanism(s) is largely

unknown. Alizarin (1,2–dihydroxy–9,10–anthraquinone) bleaching by hydrogen

peroxide in sharply alkaline environment has been studied in detail [160] and

a mechanism involving double bond epoxidations as the key steps has been

proposed.

As ARS could well represent a water–soluble, useful model for the oxidative

degradation of anthraquinone derivatives, it has been the targed of a number of

studies. Electrochemical oxidation of ARS [161, 162] and photoinduced oxida-

tion over titania [163, 164, 165, 166, 167] have been described. All these studies

proposed the involvement of reactive oxygen species (namely hydroxyl radicals)
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Figure 24: Dependence on pH of the ARS degradation rate by H2O2 and

IPS/MnTSPP. Data are obtained in the presence of 10 mg catalyst, 8.8

mM hydrogen peroxide, 290 µM ARS and 25 mM buffer (final volume 2

mL).

Figure 25: The proposed route for ARS oxidative degradation.
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attacking the junction between the quinone and the catechol rings of the dye,

and leading to a deep oxidative cleavage. The complete mineralization of the

isolable intermediate phthalic acid under suitable experimental conditions has

also been claimed.

With concern to the biomimetic catalytic system, a mechanism involving hy-

droxyl radicals must be ruled out. In fact, treatment of ARS with the hydroxyl

radical generator APH did not affect the dye under the described conditions.

Moreover, addition of the hydroxyl radical scavenger mannitol could not influ-

ence ARS bleaching by hydrogen peroxide in the presence of IPS/MnTSPP.

Hydrogen peroxide reacted with IPS/MnTSPP leading to a PorphMn(V)=O

intermediate, according to an earlier study [154] and to our finding that sy-

ringaldazine and ABTS, classical peroxidase substrates acting as one–electron

donors, were rapidly oxidized by H2O2 in the presence of MnTSPP/IPS (not

shown). Two consecutive monoelectronic reductions of PorphMn(V)=O to the

resting state, leading to an ARS semiquinone radical, capable of evolving to

the very reactive 1,2,9,10–anthradiquinone–3–sulfonic acid, could well be thus

suggested. In other words, a reaction pathway strictly resembling that found

with peroxidase or laccase should be considered. However, diquinones arising

from hydroxyanthraquinones are (as expected) very prone to nucleophilic attack

by water, so their isolation under the described experimental conditions is not

possible.

The formation of the same diquinone as above should have taken place also

when ARS was treated with fungal laccase (ARS is so weak as a HRP and LiP

substrate that the experiments involving these latter enzymes were useless).

As laccase cannot catalyze reactions other than the extraction of one electron

from phenolics leading to phenoxyl radicals (disproportion to quinones usually

follows), the close similarity between the two spectral patterns strongly suggest

the proposed formation of the diquinone as a key intermediate in ARS bleaching.

However, IPS/MnTSPP in the presence of H2O2 was a much more efficient

catalyst than laccase, perhaps because the former could act as an oxygen donor

and therefore oxidize intermediates (as the above mentioned diquinone) that are

simply nonsubstrates for laccase (Figure 25). Accordingly, laccase plus H2O2
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Figure 26: ARS bleaching by laccase alone (top) and by laccase plus H2O2

(bottom). 23 E.U. laccase were present, dissolved in 25 mM McIlavine

buffer, pH 6. When present H2O2 was 8.8 mM.

(the chosen concentration of the latter was unable to adversely affect laccase

activity) was more efficient than laccase alone was, although not so efficient as

seen with our biomimetic catalyst (Figure 26).

However, despite of the speed and efficiency of the bleaching, no complete

mineralization was achieved by H2O2/MnTSPP/IPS, and HPLC analysis after

bleaching completion revealed the presence of phthalic acid as the main prod-

uct of the process, according to the relative chemical inertness of this compound

(Figure 27). This can be, however, considered a substantial progress with re-

spect to the parent anthraquinone dye.

Summing up all the collected data, IPS/MnTSPP do not functionally em-

ulate even in this case any precise enzymic activity, presenting however signifi-
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Figure 27: Phthalic acid formation during ARS bleaching. Data obtained

by HPLC analysis of the reaction mixture as described in the text.

cantly better operational features, especially from an industrial point of view.

3.1.3.2 PNS insights

Another dye, whose bleaching was deeply investigated and compared with other

chemical approaches, has been PNS.

As previously described [148], a complex mixture of oligomers and insoluble

polymers arose, when 0.2 M PNS was oxidized by 0.5 M potassium peroxodisul-

fate dissolved in 0.2 M HCl (Figure 28).

However, PNS concentrations as high as 0.2 M are quite unlikely in indus-

trial wastewaters, and, therefore, a far lower concentration was tested in this

study. No precipitate was observed when 0.3 mM PNS was oxidized by per-

oxodisulfate. The dye was gradually bleached under all the tested pH values

(Figure 29). This result is not surprising, considering the comparatively low

PNS concentration used; the nitrenium dication that formed most probably un-

derwent rapid hydrolysis, leading to a reactive quinone and further decomposing

to colorless compounds. The efficacy of peroxodisulfate as an oxidizing agent

towards PNS is also dependent on its concentration: below 10 mM, no oxidation

was observed.

It is also worth noting that concentrations of residual PNS obtained by
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Figure 28: The oxidative oligomerization of PNS upon treatment with am-

monium peroxodisulfate in 0.2 M HCl. The very strong electrophile, a

nitrenium dication, arising from peroxodisulfate action, is the key inter-

mediate for PNS dimerization and subsequent oligomerization.

HPLC analysis were strictly proportional to absorbance decrease at 525 nm, so

that decrease was assumed as a measure of PNS degradation.

Under the experimental conditions described here for the biomimetic method

(8.8 mM H2O2 in the presence of the IPS/MnTSPP catalyst), no oxidative

polymerization was evident: on the contrary, a noticeable bleaching of the dye

was observed, leading to a clear and almost colorless solution (Figure 30), with

87% of the PNS degraded within 20 min at pH 8. In particular, the observed

spectral UV/Vis bleaching pattern noticeably differed from that observed with

0.5 M potassium peroxodisulfate at pH 7: a small absorption peak centered at

approximately 295 nm was observed after peroxodisulfate oxidation, whereas

a small peak at 340 nm arose upon H2O2 treatment in the presence of the

biomimetic catalyst. By contrast, no oxidation of PNS was found when 8.8 mM

H2O2 was used in the absence of the IPS/MnTSPP catalyst.

Moreover, the MnTSPP–derived high–valency specie has been found to be a

Mn(V)=O species, and this is presumably further stabilized by a coordinative
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Figure 29: PNS bleaching in the presence of 0.5 M ammonium peroxodisul-

fate at different pH values. It was determined that 0.5 M peroxodisulfate

was very effective as a bleaching agent for PNS along a wide pH range.
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Figure 30: PNS bleaching in the presence of 8.8 mM H2O2 and the

IPS/MnTSPP catalyst at pH 8. Nearly complete bleaching of PNS was

seen under the described experimental conditions.

bond with the imidazolyl moiety [168] of the functionalized silica beads. This

very reactive ”oxomanganyl” intermediate [169], somewhat paralleling ”Com-

pound I” in the peroxidase catalytic cycle, could, in principle, evolve further via

two different routes: a) the addition of one electron (from the oxidizable sub-

strate) leading to a Mn(IV)=O intermediate [170] (and comparable to ”Com-

pound II” in the catalytic cycle of peroxidases), or b) direct oxygenation of

the oxidizable substrate leading to catalyst regeneration. By following this lat-

ter path, IPS/MnTSPP could be regarded as a P450 analogue, rather than a

peroxidase-like catalyst, with two obvious differences: i) the oxygen donor is

H2O2 instead of the quite inexpensive O2; ii) no costly sacrificial reductant is

required to obtain the hypervalent active intermediate.

Obviously, these two routes a) and b) could potentially co–exist, with the

relative importance of each depending on a number of conditions.

An alternative Fenton–like mechanism, involving the direct release of OH•

radicals upon the interaction of Mn(III)TSPP with H2O2, and the concomitant

formation of a Mn(IV) hydroxospecies, has been ruled out by earlier studies
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[154]. To corroborate this statement, some additional experiments were per-

formed to gather information for depicting a reasonable reaction mechanism.

The addition of the well–known hydroxyl radical scavenger mannitol to the

reaction mixture containing the IPS/MnTSPP catalyst had no significant influ-

ence on the PNS oxidative bleaching rate; conversely, incubation of PNS with

the well–known OH• generator APH resulted in no alteration of the dye. The

hydroxyl radical was therefore not involved in PNS bleaching, at least under the

experimental conditions adopted here.

In another series of experiments, well–known redox mediators were added to

the reaction mixtures (Table 12). Not surprisingly, a noticeable quenching of the

catalytic action was observed with all the mediators, which shared the feature

of being oxygen-centered radicals, and presumably less reactive than OH•. On

the other hand, when another dye (ARS §3.1.3.1) was tested under quite similar

conditions, it was bleached more rapidly in the presence of NHS and NHT. The

two catalytic routes (a) and (b) could therefore act at the same time, with a

relative contribution depending on the particular substrate to be oxidized. In

the case of PNS, its ionization energy of 7.98 eV [148] renders the abstraction of

one electron to form the radical dication unlikely (although still possible), and

the oxygen–centered radicals produced by the redox mediators used were thus

unable to promote this process. Their action rather exhausted the oxidizing

power of the oxomanganyl reactive species arising from the reaction of H2O2

with the catalyst. This was quite confirmed by the absence of activity on PNS

by LC and Mn3+ (vide ultra).

The direct, comparatively fast oxygenation (as compared to oxidation) of the

dye (or/and of any highly reactive intermediate(s)) by the oxomanganyl reactive

species could be therefore the main mechanism responsible for the bleaching pro-

cess. The structure of the colorless species absorbing at 340 nm, which gradually

formed as the dye was bleached, is still awaiting chemical characterization.

The bleaching efficiency was dependent on pH (Figure 31), in a different

manner from that observed for alizarin red S under the same experimental

conditions, therefore suggesting that the actual ionization state of the dyes

must play a role at least as important as that of the catalyst itself. PNS exists

88



3. RESULTS AND DISCUSSION

Figure 31: Bleaching efficiency of PNS by H2O2 in the presence of the

IPS/MnTSPP catalyst as a function of pH.

as a monocation within the wide pH range studied here, and therefore, the

variation in the catalytic efficiency in this case should be ascribed exclusively

to the catalyst.

The chosen pH range was 3–8, taking into account that metalloporphine

leaching was observed at pH values below 3 (as a consequence of imidazole

protonation), and, on the other hand, slow solubilization of amorphous silica

gel above pH 8 is a well-known phenomenon.

As the IPS/MnTSPP adduct is a bio–inspired catalyst resembling hemoen-

zymes, it seemed reasonable to test and compare the ability of commercial HRP

to promote PNS bleaching by H2O2. However, no catalytic activity was observed

within the tested pH range 3–8, even when a large excess (20 E.U. mL–1) of the

enzyme was present, and PNS remained unchanged even after several hours of

incubation. This is not surprising, however, considering the comparatively low

redox potential of this enzyme.

The same inertness was found when a fungal LC was tested, either alone or

in the presence of H2O2. This latter was added by following the idea that a

putative radical species, arising from the enzymatic action, could be oxidized

by hydrogen peroxide, thereby enhancing the action of the enzyme on PNS. In
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fact, a synergistic action between LC and H2O2 has been described in the case

of ARS oxidative bleaching. Such a synergistic action clearly did not take place

in the case of PNS, where LC was quite unable to promote the first one–electron

abstraction reaction, thus rendering the presence of H2O2 useless.

In the case of LiP, dramatically different results were observed. In this case,

both H2O2 and PNS concentrations were substantially reduced, to prevent in-

hibition by the substrate (as already described). As expected, the enzyme was

inactive at pH 7, but active at pH 4.5, with a maximum activity at pH 3 (Fig-

ure 32). The spectral pattern of PNS bleaching versus time was considerably

different from that observed with the IPS/MnTSPP catalyst; on the contrary,

the spectral pattern was similar to that observed when PNS was treated with

potassium peroxodisulfate, therefore suggesting a similar mechanism. This con-

clusion is in agreement with the well known LiP behavior, as this enzyme is a

true peroxidase and cannot act as a mono–oxygenase. At pH 3, LiP action was

very fast, but stopped within a few minutes while the PNS degradation reaction

was far from completion. This loss of activity was not due to H2O2 exhaustion:

addition of further hydrogen peroxide to the reaction mixture had no significant

effect on the spectrum (not shown). An inspection of the spectral pattern of

LiP action reveals that even this enzyme was unable to promote complete PNS

degradation, as shown by the formation and persistence of a small absorption

peak at about 295 nm, whereas the visible peak centered at 525 nm was replaced

by a low peak at 534 nm. This corresponds to a new compound, much more

polar than PNS, as chromatographic analysis revealed (not shown). Only 58%

PNS was bleached after 10 min, as confirmed by HPLC analysis and the reaction

did not proceed further, thus suggesting LiP inactivation by reaction product(s)

such as the polar, colored compound absorbing at 534 nm. Therefore one could

reasonably conclude that IPS/MnTSPP adduct and LiP differ fundamentally in

their action mechanism, and H2O2 in the presence of immobilized MnTSPP is

not a real functional emulator of LiP/H2O2 system.

As the physiological intermediacy of VA in LiP catalysis is well known [171],

further experiments were carried out in which this redox mediator was present

together with H2O2 and LiP. The presence of veratryl alcohol adversely affected
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Figure 32: PNS bleaching in the presence of 0.176 mM H2O2 and LiP at pH

3 (left) and pH 4.5 (right). The maximum efficiency of enzymatic bleaching

was observed, as expected, at pH 3.

the bleaching process, which was slow and incomplete, and a new peak, most

probably corresponding to veratraldehyde, arose at 310 nm (Figure 33).

Only marginal changes in PNS spectra were observed in the presence of

Mn(III)/malonate complex (not shown), therefore suggesting that manganese

peroxidase would be substantially inactive towards the dye.

According to these results, PNS (and probably other phenylphenazinium

dyes) could be efficiently destroyed in aqueous environments under very mild

conditions by oxidation with dilute hydrogen peroxide in the presence of the

IPS/MnTSPP catalyst. Two catalytic mechanisms, which probably occur at

the same time, were proposed: the one being peroxidase-like, and the other

resembling the mono–oxygenase activity of P450.

Biomimetic approach is superior in comparison with alternative treatments

involving peroxodisulfate (at oxidant concentrations far higher than stoichiomet-

ric ratios) or LiP (incomplete bleaching, poor efficiency due to inactivation by

H2O2, expensive and rather unstable enzyme). Therefore, the metalloporphine–

based system could be developed and scaled up in view of future technological

applications also for the removal of PNS and/or chemically related dyes from
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Figure 33: PNS bleaching in the presence of 0.176 mM H2O2 plus 1 mM

VA and LiP at pH 3. Veratryl alcohol prevented PNS degradation by LiP,

behaving as a competitive substrate rather than a redox mediator.

industrial wastewaters.

3.2 PP–PVA/FeTFPP

Besides imidazole, also less bioinspired pyridine was tested about its ability to

coordinatively immobilize metalloporphines. Pyridine is, in fact, a quite more

electron–withdrawing group compared to imidazole: this could lead to higher

redox potential of coordinated metalloporphine.

Preliminary studies, however, showed that pyridine ligand leads to higher

loading yields with Fe(III)–porphines, while imidazole prefers to bind Mn(III)–

porphines.

Accordingly, FeTFPP was immobilized on a pyridine–grafted PVA crosslinked

with glutaraldehyde.

PVA is an inexpensive, non–toxic, biodegradable, hydrophilic polymer, suit-

able for a wide range of modification reactions, including crosslinking, and

therefore of potential interest for a number of applications, including enzyme

immobilization and topochemical functionalization [172]. In the present study

a crosslinked and functionalized structure was obtained by acetalation with

glutaraldehyde and 4–aminobutyraldehyde (in the form of the corresponding
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diethylacetal) under strong acidic conditions. A transparent, colorless, highly

hydrophilic gel was obtained, carrying aminopropyl sidechains, that could in

turn be modified by reductive coupling with pyridine–4–carboxaldehyde in the

presence of sodium cyanoborohydride.

Yields were satisfactory and the procedure led to a highly functionalized

product: 384 µmol aminogroups per gram of AP–PVA (corresponding to 74%

of the theoretical value) and 327 µmol pyridyl groups per gram PP-PVA (cor-

responding to 85% of the theoretical value).

FeTFPP was chosen in the present study as it is well known for its noticeable

chemical stability and catalytic efficiency [173]. FeTFPP is insoluble in water

and soluble in some organic solvents. Among these, DMSO was chosen because

it shows high swelling properties towards PVA, so allowing for metalloporphine

entering into the polymer beads. As much as 67 mg FeTFPP per g of PP–PVA

(corresponding to 63 µmol metalloporphine) could be loaded at the maximum

tested metalloporphine concentration, even if a metalloporphine/PP–PVA ra-

tio of 20 mg/g was chosen (leading to an effective loading of 15 mg FeTFPP

per g support, corresponding to 14 µmol of metalloporphine) because it gave

the optimum catalytic efficiency in terms of specific activity (data not shown).

It should be noted that —although no support saturation was reached even

at the highest metalloporphine concentration-– the loading process left a rel-

evant fraction of the pyridyl groups unreacted. This was most probably due

to the noticeable sterical hindrance encountered by the planar, bulky, and hy-

drophobic FeTFPP in diffusing within the macromolecular support network to

find the proper alignment between the pyridyl nitrogen atom and the porphine

macrocycle.

The FT–IR spectra were not in contradiction with the proposed structures

(Figure 34). In particular, some assignments could be reasonably be made:

O—H, 3650–3000 cm–1 relative to the stretchings of both free and hydrogen–

bond–engaged —OH function; 2900 cm–1 relative to C–H stretching of C–H

bonds, both pertaining to the PVA backbone. The stretching of N–H (from

aminopropyl moieties before and after reaction with pyridine carboxaldehyde)

could not be seen as it falls into the same region where the O—H stretching
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Figure 34: The FT–IR spectra of AP–PVA; PP–PVA; PP–PVA/FeTFPP;

FeTFPP.

is found. Inclusion of pyridyl moieties led to a new peak around 1950 cm−1,

and also the region 1750–1500 cm−1 seems clearly modified. Unfortunately,

the metalloporphine loading was too low to allow for unambiguous assignments

of the complex pattern seen in the fingerprint region of the spectrum of the

polymer/metalloporphine adduct.

Despite of the sharp hydrophobic character of the metalloporphine, the dark

red PP–PVA/FeTFPP adduct (Figure 35) fully retained the hydrophilic charac-

ter as well as the swelling properties of the original polymer; therefore the adduct

could be tested in aqueous environment to assess its catalytic properties. No

metalloporphine loss could be seen in water or by extraction with organic sol-

vents such as acetonitrile, DMSO, 2–propanol, that are good solvents for the

free metalloporphine. This is in agreement with a relatively strong coordinative

interaction between the iron(III) within FeTFPP and the pyridine nitrogen of

the polymer. Accordingly, no metalloporphine was bound by plain crosslinked

PVA or by AP–PVA which could no form any coordinative interaction.
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Figure 35: The chemical structure of the PP-–PVA/FeTFPP adduct.

Pyridyl instead of the more bioinspired imidazolyl was chosen as a functional

substituent on the PVA beads because of its stronger electron–withdrawing

effect, which should reasonably increase the oxidizing catalytic efficiency of the

bound metalloporphine. Accordingly, a quite similar catalyst but bearing the

imidazolyl functionality instead of the pyridyl one was prepared and found to

be on the whole less active (not shown) and therefore abandoned.

3.2.1 LP–like activity characterization

VA is one of the known physiological substrates of fungal LiP, its monoelectronic

oxidation by the enzyme being also crucial in generate the redox mediator which

shuttles between LiP and lignin [174]. VA is the substrate of choice for LiP ac-

tivity measurements [152], and has been also used to test LiP–like activity of

metalloporphines [175]. It behaved as a good substrate for the adduct and was

therefore used through the present study for rapid and reliable photometric mea-

surements. Even if veratraldehyde was not the main reaction product, a linear

relation was found by means of HPLC analysis between produced veratralde-

hyde and consumed VA (not shown), so the reliability of the measurements was
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assessed.

Alternatively, another photometric assay was based on the quenching of the

visible absorption peak (λmax = 651 nm) of the dye Azure B (AzB), which has

been recognized as a substrate for LiP whereas it is a nonsubstrate for MnP and

resists the oxidizing power of Mn(III) [41], therefore allowing for differentiating

between the two catalytic activities.

To assess the ability of the catalyst to oxidize other substrates, either phe-

nolic or non–phenolic, some molecules were chosen among naturally occurring

aromatic compounds, more or less (bio)chemically related to lignin. As the ox-

idation led to product mixtures, quantitative determination of conversion was

carried out by HPLC analysis.

The catalytic activity of the adduct was strongly pH–dependent: on a par-

allel with LiP enzyme, the noticeable activity found at pH 3 quickly dropped

as pH increased, and at pH 7 only phenolic substrates were oxidized, whereas

the others remained almost unchanged. The conversion yields for both VA and

AzB at different pH values are summarized in Figure 36.

A dramatic change in the behavior of the adduct could be seen in the presence

of Mn(II): while no significant effect was caused at pH 3, the addition of MnSO4

together with malonic acid (which is capable of stabilizing and solubilizing the

true oxidant species, Mn(III) [176]) rendered the catalyst fully active at pH 7,

so that the peroxidase–like activity was completely restored also towards non–

phenolic substrates. The conversion results obtained at pH 3 and pH 7, both in

the presence or in the absence of added Mn2+ and malonic acid are summarized

in Figure 37.

Some kinetic parameters were calculated under different experimental condi-

tions, and the related results are summarized in Table 14. The catalyst showed

a substrate saturation behavior for both hydrogen peroxide and electron donors.

Inspection of the table shows that KM values fell into the millimolar range,

which explains why conversion is only partial for the less reactive substrates;

on the other hand, reaction speed could be compatible with potential practical

applications.

By this last view, it is worth noting that residual activity after six catalytic
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Figure 36: Conversion yields for (a) VA and (b) azure B in the presence of

the PP-–PVA/FeTFPP adduct at various pH values. Effect of pH on VA

conversion (a): 100 mg of catalyst, 25 mM of McIlvaine buffer, 4.4 mM

hydrogen peroxide and 1 mM VA. Final volume 5 mL. Effect of pH on

azure B conversion (b): 100 mg of catalyst, 25 mM McIlvaine buffer, 0.88

mM hydrogen peroxide and 0.01 mM azure B. Final volume 5 mL. When

working in the presence of Mn(II), 1 mM MnSO4 and 50 mM malonic acid

were added.
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Figure 37: Conversion yields of various electron donors by the PP–

PVA/FeTFPP catalyst at pH 3 (a) and at pH 7 (b), both in the absence

and in the presence of Mn2+ and malonic acid.

98



3. RESULTS AND DISCUSSION

Reducing Substrate Kinetic Value

Substrate Varied Parameter

VA

VA KM 1.18 ± 0.45 mM

VA kcat 3.1 ± 0.4 min−1

VA kcat/KM 2.6 ± 1.3 mM−1 min−1

H2O2 KM 7.5 ± 1.0 mM

H2O2 kcat 3.2 ± 0.4 min−1

H2O2 kcat/KM 0.43 ± 0.11 mM−1 min−1

AzB

AzB KM 0.021 ± 0.005 mM

AzB kcat 0.068 ± 0.019 min−1

AzB kcat/KM 3.38 ± 1.3 mM−1 min−1

H2O2 KM 1.83 ± 0.45 mM

H2O2 kcat 0.081 ± 0.007 min−1

H2O2 kcat/KM 0.044 ± 0.014 mM−1 min−1

Table 14: Some kinetic parameters for the FeTFPP/PP–PVA adduct; n =

3.

cycles is still >80%, which is a quite encouraging performance (Table 15).

3.2.2 Reaction mechanism

The reaction between redox–active metalloporphines and hydrogen peroxide

leading to homolytic cleavage of the O—O bond and OH• generation is well

known [140, 177, 178]. Hydroxyl radical rapidly attacks the metalloporphine

leading to irreversible catalyst degradation.

Such a situation (which usually prevents practical use of free metallopor-

phines as catalysts when H2O2 is used as the oxidant) dramatically changes
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Cycle Number % Catalytic Activity

1 100 ± 1

2 96 ± 3

3 95 ± 2

4 92 ± 3

5 89 ± 3

6 81 ± 4

Table 15: Multicyclic activity of FeTFPP/PP–PVA as a LiP emulator in

the presence of azure B as the electron donor. For each cycle 20 mg of

catalyst were added to a mixture (1 mL final volume) containing 25 mM

buffer, 0.88 mM hydrogen peroxide, and 0.01 mM azure B, at pH 3; n =

3.

when an axial coordination of the metal ion by imidazole or pyridine takes

place: in this case, a high-valent PorphMe=O species arises with a heterolytic

cleavage mechanism [179, 180]. This is just the case of the described adduct,

where FeTFPP molecules are coordinatively bound to pyridyl moieties on the

polymer beads. That no hydroxyl radicals were generated upon H2O2 addition

was confirmed by the observation that mannitol (a well–known OH• scavenger)

was quite unable to affect the catalytic properties of the adduct, and that more-

over no TBARS was found at all when 2–deoxyribose was added to the reaction

mixtures (not shown).

In point of fact, the catalyst temporarily turned dark brown when treated

with H2O2, and reverted gradually to red as the hydrogen donor was converted

into product(s), when a phenolic substrate was used. This behavior strongly

suggests that the catalyst was changed to an analogue of peroxidase Compound

I upon addition of hydrogen peroxide. Figure 38 shows the differences that

arose in reflectance spectra upon H2O2 treatment of the catalyst, and reversion
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Figure 38: Reflectance spectra of PP–PVA/FeTFPP upon treatment with

H2O2 and upon further treatment with vanillyl alcohol (reactions were

performed at pH 7).

of Compound I to the resting state upon treatment with the phenolic substrate,

vanillyl alcohol. Figure 39 shows the FT–IR spectrum of Compound I, clearly

showing deep differences in comparison with adduct resting state (Figure 34).

The hypothesized reaction pathways (including Compund I and II formation)

for LiP–like and MnP–like activities are analogous to LiP and MnP reaction

scheme (Figures 10 and 11, respectively).

The observation that only a fraction of VA was converted to the correspond-

ing aldehyde prompted further investigation about the other products, arising

from VA plus H2O2 in the presence of the catalyst. Oxidative degradation of

VA (as well as that of other related methoxybenzenes) by LiP and MnP has

been the object of a number of deep studies [93, 133, 147, 151, 158], and the

conclusion has been reached, that the radical cation which is the first product

of peroxidase action, rapidly evolves giving rise to several different products,

depending on the experimental conditions tested; at least in the case of LiP and

VP the conformation of the enzyme active site should play a role in driving the
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Figure 39: FT–IR spectrum of Compound I.

rearrangement of the primary radical cation. In the case of the heterogeneous

catalyst described here, no active site comparable to that of true peroxidases

is present, one face of the metalloporphine being fully exposed to the aqueous

phase surrounding the polymer beads.

Therefore one can reasonably hypothesize that the primary radical cation

quickly abandons the catalytic site and diffuses into the aqueous phase, its fate

being no longer affected by the catalyst. Despite the sharp structural differences

between the true LiP and the catalyst described here, the overall reaction mech-

anism seemed to parallel that found for LiP and MnP. Under the tested experi-

mental conditions (pH = 3, no Mn2+ nor malonic acid added), only a fraction of

VA was converted to veratraldehyde (about 9%), and even less to veratric acid

(about 3%), as confirmed by HPLC and GC–MS analyses. Among the possible

benzoquinone derivatives, already described among the products arising from

LiP action on VA [147], only 2–hydroxymethyl–5–methoxy–1,4–benzoquinone

was found in noticeable amounts (69%), so it could be well considered as the

102



3. RESULTS AND DISCUSSION

main reaction product under the tested experimental conditions.

The compound was found however to be not very stable in aqueous envi-

ronment (it was not detectable by GC analysis [147]), and this is why it was

not used for quantitative determinations instead of veratraldehyde formation or

azure B bleaching. The other quinones (if formed) were evidently so unstable

under the experimental conditions tested, that most probably quickly underwent

oxidative ring fission and/or rearrangement to other products, which escaped

the identification by GC–MS. Accordingly, a fraction of VA was converted to

a mixture of UV–absorbing, colorless products whose identification was not at-

tempted although the formation of unsaturated lactones arising from VA ring

oxidative cleavage could well be suggested [133].

The observed pH dependence of VA oxidation in the presence of the cata-

lyst strongly supports a structural (protonation and/or charge state) change on

the metalloporphine side, as VA is an uncharged species and cannot be proto-

nated/deprotonated within the studied pH range.

This behavior strictly parallels that observed for the pH dependence of LiP–

catalyzed oxidation of high redox–potential, non–phenolic substrates, and is

more probably due to increased redox potentials of Compounds I and II at low

pH values (maybe owing to the protonation of the ferryl oxygen) rather than to

specific features of the heme pocket [181].

Emulation of MnP is a challenging task when specific catalysis is required,

as a Mn2+ binding site has been found close to the ferriheme in the enzyme

whereas phenolics oxidation is prevented by sterical hindrance and by lack of a

long–range electron transfer pathway [103]; PP–PVA/FeTFPP adduct obviously

lacks both such binding site and any residue hindering substrate approach to the

redox–active centre. Therefore the conclusion could be drawn that its ability

to oxidize Mn2+ to a (chelated) Mn(III) species must be inherent to FeTFPP

axially bound to the pyridyl functionality on to polymer beads. Differently from

MnP, Mn2+ oxidation took place only around neutrality, where the catalyst

was unable to promote VA oxidation. An electrostatic repulsion between Mn2+

and positively charged Compounds I and II at low pH values could explain this

behavior. This finding, together with the observation that the addition of Mn2+
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to the reaction mixtures is of no effect at pH 3 strongly supports the conclusion

that the couple Mn(II)/Mn(III) could act under suitable pH conditions as a

redox mediator in VA oxidation, but not vice versa.

The study about the PP–PVA/FeTFPP adduct is the first one dealing with

the immobilization of the hydrophobic and water–insoluble iron(III)porphine

FeTFPP on pyridyl–functionalized, crosslinked PVA polymer beads to obtain a

stable, sharply hydrophilic, catalytically active preparation.

The obtained adduct showed interesting catalytic properties in aqueous envi-

ronment, and in particular behaved as a LiP at acidic pH values, and turned to

a MnP–like catalyst around neutrality. These activities render the catalyst po-

tentially interesting for insoluble substrates such as lignin, as the redox couples

VA/VA•+ and in particular Mn(II)/Mn(III) could easily shuttle between the

insoluble catalyst and the insoluble substrate. Therefore this adduct could find

future applications in the pulp and paper industry and wherever water–insoluble

organic wastes of lignocellulosic nature should be oxidatively degraded.

For what in our knowledge, this is the first report of both LiP–like and

MnP–like activity in the same immobilized metalloporphine, strictly resembling

in this perspective rather VP catalysis.

3.2.3 Dyes bleaching

Besides AzB, PP–PVA/FeTFPP was also tested about its ability to bleach a

complete serie of dyes belonging to different chemical classes (ARS, PNS, XO,

MB, MG, and MO). The results are summed up in Figure 40.

PP–PVA/FeTFPP adduct, similarly to IPS/MnTSPP, effectively bleached

all dyes. In 1 h the conversion was at least 40%. Conversely, the substrate

specificity was completely different. IPS/MnTSPP, in fact, showed in the same

time almost complete conversion of basic dyes like PNS and MG (Table 8 at page

73), while the slowest kinetics regarded acid dyes (ARS and XO particularly). In

the case of PP–PVA/FeTFPP adduct, acid dyes like MO and XO were bleached

almost completely in 1 h, while the other four showed almost similar conversion

values (about 40–60%).
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Figure 40: PP-PVA/FeTFPP adduct effectively bleached several dyes be-

longing to different chemical classes.

However, the wide substrate specificity and the conversion rates can be re-

garded in all cases as satisfactory, and promising in the perspective of the treat-

ment of real textile wastewaters.

3.3 M–PVA/FeTFPP

Cytochrome P450 is a large superfamily of hemoproteins, catalyzing monooxy-

genase reactions [182], since O2 is the oxidizing agent and NADPH the reducing

agent.

In this enzyme, a mercapto group of a cysteine is present in the active site

as proximal ligand of heme.

Since the ability of metalloporphines to emulate P450 catalysis during mo-

nooxygenase reactions has been deeply studied [126], some mercapto–grafted

supports have been synthesized (both SG and PVA–based) and their ability to

immobilize commercial metalloporphines has been investigated, as reported on

Table 16.
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Metalloporphine
% Relative Activity

MSG M–PVA

MnTSPP n.a. 25

FeTFPP 28 100

MnTMPP 32 38

Table 16: Relative activity of some mercapto–grafted supports during im-

mobilization of metalloporphines (n = 3). In the case of MSG/MnTSPP,

no stable bounding between metalloporphine and support was experienced.

The inspection of the table shows that the best combination was M–PVA/Fe-

TFPP, while both silica–based and MnTMPP–containing catalysts gave poor

results. Accordingly, the study was mainly focused on the former adduct.

M–PVA was able to bind 8.81 mg FeTFPP per g of support (when 20 mg

of metalloporphine was added), showing a saturating behavior similar to that

described for IPS/MnTSPP and PP-PVA/FeTFPP. This FeTFPP concentra-

tion was chosen since it allowed the highest specific catalytic activity (data not

shown).

As a point of fact, M–PVA/FeTFPP was not able in the presence of O2 and

NADPH to act as a monooxygenase with various possible oxygen–acceptors.

The situation, however, drastically changed when H2O2 was present in the re-

action mixture: under these conditions, M–PVA/FeTFPP became able to act

as a peroxidase–like catalyst, both in VA and ARS oxidations. In the case of

VA, a pattern of oxidation similar to that obtained with IPS/MnTSPP (Figure

17 at page 66) was observed, as a rising peak at 310 nm was present likely due

to veratraldehyde production. This hypothesis was corroborated by UV–HPLC

data, showing in 3 h a 22% yield in aldehyde, while no veratric acid was formed.

Unfortunately, VA conversion was very poor as in 3 h only 18% of starting

substrate was oxidized. Small amounts of 2–hydroxymethyl–5–methoxy–1,4–

benzoquinone were also detected (less than 5%), suggesting a quite different
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Figure 41: Spectral changes during oxidative catalytic degradation of ARS

by 8.8 mM H2O2 in the presence of M–PVA/FeTFPP catalyst in 25 mM

McIlvaine buffer, pH 3.

catalytic route if compared with PP–PVA/FeTFPP.

In the case of ARS, instead, better performances were observed, conversion

being over 80% in 1 h (Figure 41).

This behavior can be explained as VA can be only oxidized through mono–

electronic oxidations. While ARS (or better ARS partial oxidation–deriving

species) can be also substrate for monooxygenase reactions (§3.1.3.1).

During this study, the possibility for metalloporphines to act both as mono–

electronic oxidant and as oxygen donor, has already been stressed. This results

suggest that mercapto–coordinating group is able to make the latter route more

likely, according with attempted structural emulation. In fact, enzymes like

LiP, MnP, and VP present imidazole as proximal coordinating group. These

enzymes are only able to perform mono–electronic oxidations In good agreement,

imidazolyl–supported metalloporphines (such as IPS/MnTSPP) are able of al-

most complete conversion of substrates like VA. Mercapto coordinating group,
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instead, changed their activity towards oxygen—donor ability, as in cytochrome

P450.

The M–PVA/FeTFPP catalysis with both VA and ARS has been investi-

gated on a broad pH range, also in presence of Mn(II) to emulate MnP–like

action. The results are reported in Figure 42.

VA oxidation showed a maximum at pH 3, but Mn(II) presence was able to

dramatically increase this activity, with maximum at pH 4 and 6. However, the

values are quite similar in the whole pH range tested, in a similar manner as

shown when the same metalloporphine was pyridyl–immobilized (Figure 36).

On the other hand, a quite different pattern was observed for ARS bleaching.

In this case, Mn(II) clearly affected catalytic activity, that was lower and stable

through pH range test. In its absence, ARS bleaching was faster, presenting an

optimum at pH 3.

Catalyst was also kinetically characterized, showing a typical Michaelis–

Menten saturation for both VA and ARS (Table 17).

A comparison with similar data for IPS/MnTSPP and PP-PVA/FeTFPP,

clearly confirms lower M–PVA/FeTFPP specificity for VA, and also kcat was

lower. While, performances with ARS were comparable to analogous data for

IPS/MnTSPP.

The poor LiP–like performances of M–PVA/FeTFPP were confirmed during

oxidation screening of various lignin–model compounds (Figure 43).

Conversion was only partial also with phenolic substrates, since 87% of ferulic

acid, and only 30% and 46% respectively of isovanillyl and vanillyl alcohol were

removed in 1 h, while both IPS/MnTSPP and PP-PVA/FeTFPP were able of

almost complete conversions.

Veratric acid, 1,2,3–trimethoxybenzene, and 3,4,5–trimethoxybenzyl alcohol

were not M–PVA/FeTFPP substrates at all. In all other cases, 1 h conversion

was comprised between 10 and 20%. This is a very low value, especially if com-

pared with IPS/MnTSPP and PP–PVA/FeTFPP results (Table 7 and Figure

37, respectively).
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Figure 42: Relative activity for VA and ARS in the presence of the M-

–PVA/FeTFPP adduct at various pH values. When working in the pres-

ence of Mn(II), 1 mM MnSO4 and 50 mM malonic acid were added.
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Reducing Substrate Kinetic Value

Substrate Varied Parameter

VA

VA KM 7.6 ± 2.5 mM

VA kcat 0.47 ± 0.04 min−1

VA kcat/KM 0.06 ± 0.02 mM−1 min−1

H2O2 KM 1.5 ± 0.2 mM

H2O2 kcat 0.41 ± 0.06 min−1

H2O2 kcat/KM 0.28 ± 0.07 mM−1 min−1

ARS

ARS KM 1.12 ± 0.02 mM

ARS kcat 2.0 ± 0.2 min−1

ARS kcat/KM 1.8 ± 0.5 mM−1 min−1

H2O2 KM 2.3 ± 0.3 mM

H2O2 kcat 1.46 ± 0.05 min−1

H2O2 kcat/KM 0.65 ± 0.09 mM−1 min−1

Table 17: Some kinetic parameters for the M–PVA/FeTFPP adduct; n =

3.

Besides Mn(II), also other redox mediators were tested with similar results

(Table 18).

While ARS bleaching was not greatly affected by their presence, VA oxida-

tion was triplicated for instance in the presence of OH–TEMPO.

According to all these data reported, M–PVA/FeTFPP was not a good LiP

emulator. This finding was corroborated also by multicycle analysis. During VA

oxidation, only 7% of activity was still present at the second cycle. Afterwards,

catalytic activity was completely lost.

More promising results were, instead, obtained for ARS (Table 19).

Inspection of table suggests quite a similar behavior if compared with IPS/Mn-
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A: Veratryl alcohol
B: Veratraldehyde
C: Veratric acid
D: Isovanillyl alcohol
E: Vanillyl alcohol
F: 1,2,3-Trimetoxybenzene
G: Ferulic acid
H: Veratrole
I: 4-Methoxybenzyl alcohol
J: 3,4,5-Trimethoxybenzyl alcohol

Figure 43: Sustrate specificity of M–PVA/FeTFPP adduct with various

lignin–model compounds. Catalytic activity was detected in the presence

of 10 mg of catalyst, 8.8 mM hydrogen peroxide, 1 mM substrate, DME

10%, 1 mM MnSO4 and 50 mM malonic acid, and 25 mM buffer pH 4 (final

volume 2 mL). Samples were then analyzed through UV–HPLC.
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Redox % Remaining Activity

Mediator VA ARS

None 100 100

OH–TEMPO 314 68

NHT 20 110

NHS 259 106

NPH 104 116

Table 18: The presence of some redox mediators seems to affect the oxi-

dation rate of VA and ARS. Percentage of activity is referred to a control

experiment in absence of mediators (n = 3).

TSPP bleaching.

The ability of M–PVA/FeTFPP to bleach a complete serie of dyes belonging

to different chemical classes (ARS, PNS, XO, MB, MG, and MO) was also

tested. The results are summarized in Figure 44.

The acid dyes MO and ARS were almost completely degraded in 1 h, whereas

PNS, MG, and MB conversuib rate were about 50% in the same time. Only XO

were decolorated with a slower kinetics (only 20% conversion).

However, in all cases the adduct was catalytically active, confirming the wide

substrate specificity of immobilized metalloporphine.

The comparison of these results with the analogous ones for IPS/MnTSPP

and PP–PVA/FeTFPP (Table 8 and Figure 40 respectively) clearly shows how,

in the worst circumstance, the combination of these three catalysts could con-

ceivably allow a complete decoloration of any textile waste.

In conclusion, the use of the mercapto group to immobilize metalloporphines

gave quite poor results, not comparable to what observed in the cases of imida-

zole and pyridine. Particularly, in the perspective of industrial applications.

112



3. RESULTS AND DISCUSSION

Cycle Number % Catalytic Activity

1 100 ± 1

2 85 ± 4

3 67 ± 5

4 55 ± 3

5 38 ± 2

6 28 ± 4

7 16 ± 2

8 12 ± 2

9 11 ± 1

10 11 ± 2

Table 19: Multicyclic activity of M–PVA/FeTFPP in the presence of ARS

as the electron donor. For each cycle 10 mg of catalyst were added to a

mixture (1 mL final volume) containing 25 mM buffer, 8.8 mM hydrogen

peroxide, and 2.36 mM ARS, at pH 3; n = 3.

However, the collected data suggest mercapto function to change FeTFPP

route of catalysis, since oxygen—donor behavior became more likely than mono–

electronic oxidative one.

3.4 MnTMPP

During this study a hydrosoluble acid metalloporphine and a hydrophobic one

were studied. In order to complete the chemical spectrum of analyzed met-

alloporphines, a basic hydrosoluble metalloporphine was included: MnTMPP.

This can be regarded as an ideal catalyst for industrial processes, since it is a

very stable and catalytically active metalloporphine commercially available at

a reasonable price.
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Figure 44: M–PVA/FeTFPP adduct effectively bleached several dyes be-

longing to different chemical classes.

Accordingly, this metalloporphine was immobilized on the already synthe-

sized supports, imidazolyl and pyridyl–grafted, both SG and PVA–based. Some

control experiments with plain SG and PVA were also performed. The results

are summarized in Table 20.

The sharp basicity of MnTMPP (four quaternary ammonium cations per

molecule) strongly affected its immobilization on supports that were grafted

with basic functions. Consequently, no effective immobilization was possible

neither on pyridine and imidazole–grafted supports.

The highest metalloporphine loading was obtained with plain SG, probably

due to its acid properties and cation exchange ability. Quite surprisingly, also

plain crosslinked PVA was able to load a small (but comparable to grafted

supports) amounts of MnTMPP.

Besides, all the tiny amounts of immobilized MnTMPP presented negligible

catalytic activity.

Accordingly, no real LP emulation was obtained with MnTMPP. The col-

lected data suggested ion exchange as the most feasible way for its immobiliza-
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Support
MnTMPP bound

(mg/g support)

SG 4.1 ± 0.8

IPS n.d.

PSG n.d.

PVA 2.9 ± 0.3

Im–PVA 3.6 ± 0.2

PP-PVA 2.8 ± 0.4

Table 20: MnTMPP was not effectively immobilized neither with pyridine,

or imidazole–grafted supports; n = 3, n.d.: not detectable.

tion (for instance using a more acid support than plain SG). However, such case

falls beyond the scope of this work since no LP emulation could be obtained.

In this perspective, MnTMPP use was then abandoned.
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4 CONCLUSIONS

Oxidative approaches towards removal of lignocellulosic and related materials

are not currently featured by enough efficiency and inexpensiveness. Accord-

ingly, in order to decrease environmental impact and economical costs of indus-

trial processes, new methods need to be proposed.

In this perspective, during this study several catalysts have been developed,

using properly immobilized commercial metalloporphines mimicking lignolytic

peroxidase catalysis.

Emulation of these enzymes was achieved by grafting on inexpensive sup-

ports (such as SG and PVA) coordinating groups like imidazole and pyridine,

resembling heme coordination in active site of peroxidases. In particular acid hy-

drosoluble MnTSPP was best immobilized on imidazole–grafted support, while

hydrophobic FeTFPP gave optimum results when coordinated by pyridyl func-

tions, leading to real LP structural emulation.

The catalysts were then catalytically characterized about LiP, and MnP–like

activity, in order to elucidate if structural emulation was also able to lead to

functional emulation.

IPS/MnTSPP showed very promising LiP–like catalytic abilities in VA and

other lignin–model compounds oxidation, while no action upon Mn(II) was ob-

served. However, it appears suitable for applications in many industrial fields,

since a deep oxidative action was shown. Furthermore, the mild operational

conditions used (low temperature, neutral pH, low pressure, ”clean” oxidant,
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absence of any organic solvents) strongly suggest future industrial applications

in treatment of lignocellulosic materials.

IPS/MnTSPP was also investigated about the bleaching of several textile

dyes, belonging to different chemical classes. The catalyst was able to degrade

all dyes, showing a wide substrate specificity. Even in this case, catalysis was

featured by a high efficiency combined with very mild conditions, quite promis-

ing for real textile wastewaters treatment. Biomimetic bleaching was also com-

pared with enzymatic catalysis, the former being more effective especially in the

perspective of industrial applications.

PP–PVA/FeTFPP adduct showed, on the contrary, both a LiP and MnP–

like activity, closer resembling VP emulation. This is the first report of such

catalytic activity for an immobilized metalloporphine. The oxidative action

was also in this case deep, effective, and featured by extremely mild operational

conditions.

Its ability to use both VA/VA•+ and Mn(II)/Mn(III) redox couples allows

PP–PVA/FeTFPP to found application in industrial treatment of many water–

insoluble wastes, since both Mn(III) and VA•+ can easily shuttle between the

insoluble catalyst and the insoluble substrate.

Some molecular details of the catalysis were also obtained, identifying simi-

larities and differences between biomimetic and enzymatic catalysis. In partic-

ular, the ability of immobilized metalloporphines to act as oxygen–donor was

showed, explaining deeper oxidative action. This can be a crucial feature in

order to make feasible industrial applications of these catalysts.

Also cytochrome P450 structural emulation was attempted, but catalytic

features of the adducts were quite poor.

Basic metalloporphine MnTMPP was also tested, but no effective immobi-

lization resembling LPs was achieved.

On the whole, these data outline new perspectives for oxidative removal of

lignocellulosic and related materials, both water–soluble and water–insoluble.

The described catalysts represent effective and economical feasible alternative
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towards this issue, since they are particularly suitable for large scale scaling–up.

In particular, the extremely mild operational conditions can dramatically

change the approach during pulp and paper bleaching, and oxidation of indus-

trial wastewaters.

Accordingly, the next step will be the treatment of real industrial substrates

(such as lignocellulosic, textile, and olive mill wastewaters), in the perspective

of developing scaled–up industrial processes.

However, the number of tested supports and metalloporphines can also be

broadened, in order to optimize operational conditions and catalytic efficiency.

In this context, the effect of redox mediators would be also taken in extreme

care, as it can allow to treat also water–insoluble substrates.
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Il dottorato è un percorso molto più lungo dei tre anni di cui sarebbe com-
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[73] Mansilla HD, Yeber MC, Freer J, Rodŕıguez J, and Baeza J. Homogeneous and hetero-
geneous advanced oxidation of a bleaching effluent from the pulp and paper industry.
Water Science and Technology, (36):273–278, 1997.

[74] Tanaka K, Calanag RC, and Hisanaga T. Photocatalyzed degradation of lignin on TiO2.
Journal of Molecular Catalysis, (138):287–294, 1999.

[75] Roncero MB, Torres AL, JF Colom, and Vidal T. TFC bleaching of wheat straw pulp
using ozone and xylanase. Part A: paper quality assessment. Bioresource Technology,
(87):305–314, 2003.

[76] Machado AE, de Mirand JA, Freitas RF, Duarte ET, Ferreira LF, Albuquerque YD,
Ruggiero R, Sattler C, and de Oliveira L. Destruction of the organic matter present
in the effluent from a cellulose and paper industry using photocatalysis. Journal of

Photochemistry and Photobiology, (155):231–241, 2003.

[77] Hostachy JC, Lenon G, Pisicchio JL, Coste C, and Legay C. Reduction of pulp and
paper mill pollution by ozone treatment. Water Science and Technology, (35):261–268,
1997.

[78] Vidal PF and Molinier J. Ozonolysis of lignin – improvement of in vitro digestibility of
poplar sawdust. Biomass, (16):1–17, 1988.

[79] Evtuguin DV, Daniel AID, Silvestre AJD, Amado FML, and Neto CP. Lignin aerobic
oxidation promoted by molybdovanadophosphate polyanion [PMo7V5O40]8−. Study on
the oxidative cleavage of β–O–4 aryl ether structures using model compounds. Journal
of Molecular Catalysis A: Chemical, (154):217–224, 2000.

[80] Collins TJ. TAML Oxidant Activators: A New Approach to the Activation of Hydrogen
Peroxide for Environmentally Significant Problems. Accounts of Chemical Research,
(35):782–790, 2002.

[81] Weinstock IA, Atalla RH, Reiner RS, Moen MA, Hammel KE, Houtman CJ, Hill CL,
and Harrup MK. A new environmentally benign technology for transforming wood pulp
into paper. engineering polyoxometalates as catalysts for multiple processes. Journal of
Molecular Catalysis A: Chemical, (116):59–84, 1997.

125



REFERENCES

[82] Crestini C, Caponi MC, Argyropoulos DS, and Saladino R. Immobilized methyltrioxo
rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds.
Bioorganic and Medicinal Chemistry, (14):5292–5302, 2006.

[83] Saladino R, Ginnasi MC, Collalto D, Bernini R, and Crestini C. An Efficient and
Selective Epoxidation of Olefins with Novel Methyltrioxorhenium/(Fluorous Ponytailed)
2,2–Bipyridine Catalysts. Advanced Synthesis & Catalysis, (352):1284–1290, 2010.

[84] Breen A and Singleton FL. Fungi in lignocellulose breakdown and biopulping. Current

Opinion in Biotechnology, (10):252–258, 1999.

[85] Mart́ınez AT, Camarero S, Gutiérrez A, Bocchini P, and Galletti GC. Studies on wheat
lignin degradation by Pleurotus species using analytical pyrolysis. Journal of Analytical

and Applied Pyrolysis, (58–59):401–411, 2001.

[86] Shi J, Chinn MS, and Sharma-Shivappa RR. Microbial pretreatment of cotton stalks
by solid state cultivation of Phanerochaete chrysosporium. Bioresource Technology,
(99):6556–6564, 2008.

[87] Yu H, Guo G, Zhang X, Yan K, and Xu C. The effect of biological pretreatment with the
selective white–rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods
and hardwoods. Bioresource Technology, (100):5170–5175, 2009.

[88] Witayakran S and Ragauskas AJ. Synthetic applications of laccase in green chemistry.
Advanced Synthesis & Catalysis, (351):1187–1209, 2009.

[89] Reinhammar B. Laccase. In: Lontie R (ed.) Copper proteins and copper enzymes, pages
1–35. CRC Press, Boca Raton, 1984.

[90] Givaudan A, Effose A, Faure D, Potier P, Bouillant ML, and Bally R. Polyphenol
oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase
activity in non–motile strains of Azospirillum lipoferum. FEMS Microbiology Letters,
(108):205–210, 1993.

[91] Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, and Kanost
MR. Characterization of cDNAs encoding putative laccase–like multicopper oxidases
and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria
mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, (34):29–41,
2004.

[92] Xu F. Oxydation of phenols, anilines and benzenethiols by fungal laccases: correla-
tion beetween activity and redox potentials as well as halide inhibition. Biochemistry,
(35):7608–7614, 1996.

[93] Kersten PJ, Kalyanaraman B, Hammel KE, Reihammar B, and Kirk TK. Comparision
of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxy-
benzenes. Biochemical Journal, (268):475–480, 1990.

[94] Youn HD, Hah YC, and Kang SO. Role of laccase in lignin degradation by white-rot
fungi. FEBS Microbiology Letters, (132):183–188, 1995.
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