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Abstract 

 

The morphological diversity and complexity of naturally occurring forms and 

patterns have been a motivation for humans to copy and adopt ideas from Nature 

to achieve functional, aesthetic and social value. Common biogenic materials, such 

as biominerals, constructed with mineral phases and an organic matrix exhibit 

delicate structure with unusual optimal chemical-physical, morphological and 

mechanical properties, and have inspired ideas for the design and synthesis of 

biomimetic functional materials. The organic templates play an important role in 

directing assembly of the mineral/organic composites, and in controlling the 

nucleation and subsequent crystallization. Consequently, knowledge about the 

molecular interactions at mineral/organic interfaces is essential for understanding 

the principles of the organic-matrix-mediated biomineralization process.  

The microscopic properties of biomineral hydrozincite [Zn5(CO3)2(OH)6] from 

Naracauli Creek (SW Sardinia) were investigated by using X-ray Diffraction (XRD), 

Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Scanning 

Electron Microscopy (SEM), and High-Resolution Transmission Electron 

Microscopy (HR-TEM) and the organic matrix present has been extracted and 

characterized by using Fourier Transform Infrared (FT-IR). 

In the context of molecular interactions at mineral/organic interfaces we describe 

an experimental study of the interaction of Bis(2-ethylhexil)phthalate (DEHP) with 

hydrozincite. This interaction, under controlled laboratory experiments, was 

investigated by using Fourier Transform Infrared (FT-IR) and Nuclear Magnetic 

Resonance Spectroscopy (NMR). 
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Preface 

 

This PhD was born from the collaboration with the Department of Earth Sciences 

Cagliari University. The research team superintended by Dr. Giovanni De Giudici 

from several years deal  with the heavy metal abatement  in the water of Naracauli 

creek (Sardinia, Italy) that follows the precipitation of biomineral hydrozincite. In 

this context the aim of my doctoral work was above all devoted to characterize the 

structural of biogenic hydrozincite deposition using spectroscopic, difractometric 

and microscopic technique, such as X-ray Diffraction, Fourier Transform Infrared, 

Nuclear Magnetic Resonance, Scanning Electron Microscopy, and High-Resolution 

Transmission Electron Microscopy, and in a second time my interest was adressed 

to the chemical physical study of the interaction between synthetic hydrozincite and 

phthalates using Fourier Transform Infrared and Nuclear Magnetic Resonance. 

This thesis reports the experimental work carried out at the Chemical Science 

Department, Cagliari University (Italy) under the supervision of Prof. Mariano Casu 

and a semester at the Geosciences Department of the Stony Brook University 

(New York, USA) under the supervision of Prof. Brian Phillips. 

This description is divided into five sections: 

a) The first section presents a literature review about the interactions between 

minerals and organic molecules.  

b) The second section contains the experimental methods and the descriptions of 

the samples object of the study. 

c) The third section illustrates the general theory concerning the Solid State NMR. 

d) The fourth section is devoted to the results concerning the structural 

characterization of the biomineral hydrozincite. 

e) The fifth section examines the results concerning the interaction between 

synthetic hydrozincite mineral and Bis(2-ethylexyl)phthalate. 
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Chapter I Introduction 

 

Generalities 

 

Chemical interactions at crystal-water interfaces are crucial to a wide range of 

scientific and technological topics, including corrosion, heterogeneous catalysts, 

chemical sensors, teeth and bones, titanium implants and other prosthetic medical 

devices, and myriad commercial products including paints, glues, dyes, lubricants, 

solvents, and cleaners. Geochemists pay special attention to reactions between 

mineral surfaces and aqueous species interactions central to weathering, soil 

formation, hydrothermal ore-forming fluids, biomineralization, biofilm formation, 

uptake and release of chemicals that affect water quality, and many other natural 

processes (Davis and Kent, 1990; Stumm, 1992; Vaughan, 1995; Hochella, 1995; 

Drever, 1997; Langmuir, 1997; Brown et al., 1998; Brown and Parks, 2001; Davis 

et al., 2004; De Yoreo and Dove, 2004; Lee et al., 2006, 2007; Glamoclija et al., 

2009). Studies of mineral-molecule interactions related to origins of life build on this 

vast geochemical literature. The study of the interaction of organic molecules on 

mineral surface is a very fascinating field that attracts the attention of researchers 

in different area: they go to the chemistry, the biology, the earth sciences and the 

material sciences.    Mineral surface commonly include structural defects which 

provide promising docking loci for organic molecules, and this surface order-

disorder provide some of the most fundamental constrains on reactions such a 

sorption, coprecipitation, crystal growth and dissolution. 

At the same time, however, in nature are present organic pollutants and the 

mineral surfaces play an important role controlling the fate and transport of 

http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-58
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-241
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-259
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-114
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-69
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-156
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-29
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-28
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-59
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-59
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-65
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-160
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-159
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-94
http://cshperspectives.cshlp.org/content/2/5/a002162.full#ref-94
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contaminants in the environment. It is very fundamental to understand the 

molecular level interaction between surface mineral and organic pollutants for 

translate the information in the large scale for the design of chemical and biological 

remediation strategies.   

 

1.1 Biomineralization and biominerals 

 

Biomineralization refers to the process by which organisms form minerals. Over 60 

different types of minerals with biological origins are known (Lowenstam and 

Weiner, 1989). Of the many essential elements required by living organisms,  

 

Figure 1.1 Elegant examples of biomineralized products, in (A) radiolarians and 
(B) nautilus shell. 

calcium is the most common of those found in biological minerals. Typical 

examples of these biominerals are certain layers of seashell, corals and eggshells. 

A variety of biomineral materials existing in nature present abundant morphologies 

and structure (Lowestam and Weiner, 1989). Examples include the widely varied 

scale produce by radiolarians (Fig. 1.1 A), and the impressive logarithmic 

symmetry of the nautilus shell (Fig. 1.1 B).                                                
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Organisms have evolved the ability to direct the formation of minerals into 

morphologies not naturally found in their inorganically derived counterparts. The 

resulting biominerals have unique morphologies, hierarchical structures and 

specific functions and often exhibit remarkable properties.The biomacromolecules 

exert a precise control on the deposition of the minerals and, thereby, create 

minerals with different shape and sizes. For example, human teeth show significant 

durability due to the well-aligned structure of hydroxiapatite crystals contains a 

small amount of protein (Furedimilhofer et al., 1994). With the study of biomineral 

systems, the biological concept, mechanism, function and design feature are 

abstracted as starting point on the road to new synthetic materials and devices with 

advanced structure and functions, this are called  bio-inspired materials that have 

various application in different field as  bioceramics, biosensing, biomedicals 

engineering end bionanothecnology. 

Numerous living organisms form minerals, biogenic minerals, or biominerals that 

are composite materials that contain an organic matrix and nano or macro scale 

amorphous or crystalline minerals. Biomineral composite materials include bone, 

dentine, enamel, statoliths, otoliths, mollusk and crustacean shells, coccolith 

scales, eggshells, sponge silica skeletons, algal, radiolarian and diatom silica 

micro-shells, and a variety oftransition metal minerals produced by different 

bacteria (Lowenstam and Weiner, 1989; Weiner and Addadi, 1997; Banfield and 

Nealson, 1997; Fortin et al., 1997; Fitts et al., 1999; Lower et al., 2001; Mann, 

2001; De Yoreo and Vekilov, 2003; Weiner and Dove, 2003; De Yoreo and Dove, 

2004). Calcium is the most common essential element found in biological minerals. 

For example, familiar skeletal structures such as shell are built from calcium 

carbonate whereas the bones of higher organisms are composed of calcium 

phosphate. The biomineralization of calcium carbonate is found across many forms 

of life from the cell wall scales of coccolithophores to the inner ears of mammals 



4 
 

(Mann, 2001). These different structures are formed by a wide variety of organisms 

that initialize substantially different biological process to result in at various 

polymorphs of CaCO3 with distinctive mineralogies and composition (Morse and 

Mackenzie, 1990). Organism are evolved the ability to direct the formation of 

minerals into morphologies not naturally present in their inorganically counterparts. 

As results the biominerals present specific functions and exhibit particular 

properties. From a materials science perspective, organic molecules are soft, 

compliant and fracture resistant while inorganic crystals are hard and brittle. 

Biomineral composites combine the best of these properties and minimize the 

weaknesses: they are both hard and fracture resistant (Currey, 1977; Schäffer et 

al., 1997; Kamat et al., 2000). This is due to several factors: structure, nano-size 

and chemical composition. Only recently materials scientists have begun to learn 

how to build a synthetic composite material that outperforms each component 

taken separately, and have done so inspired by shell nacre (Tang et al., 2003). 

These unique process and particular properties of biomineralization are of interest 

for many scientific disciplines as chemistry, geology and materials science. The 

morphological control exerted in biomineralization may be separated into a three 

component system (Mann, 1983; Weiner, 1991): 

 an insoluble organic matrix, which can play a role in compartmentalization 

of the growing mineral, and/or templating the nucleation for controlled 

crystallographic orientation and /or phase; 

 soluble acid macromolecules  (e.g. sulphate and/orphosphorylated 

glycoproteins contain large amounts of glutamic and aspartic acid) which 

are frequently occluded within the crystals (Weiner, 1991) and are thought 

to play a role in the control of crystal shape; 

 vesicular compartments, which provide spatial and temporal control of ion 

and additive transport to the mineralization front. 
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There are two types of biomineralization depending on the level of biological 

control: ―biologically induced‖ and ―organic matrix-mediated‖ mineralization 

(Lowenstam, 1981), with the latter generalized in ―biologically controlled‖ 

mineralization (Mann, 1983).  

Biologically induced mineralization (BIM) occurs as result of chemical change in 

environment of an organism which can promote mineral precipitation as in the case 

of coral formation; in biologically controlled mineralization (BCM) morphologically 

complex structures nucleate and grow in concert with a genetically programmed 

macromolecules matrix of proteins. 

 

1.1.1 Biologically induced mineralization 

 

Minerals that form by biologically induced mineralization (BIM) processes generally 

nucleate and grow extracellularly as a result of metabolic activity of the organism 

and subsequent chemical reactions involving metabolic byproducts. In many 

cases, the biological system has a little control on the mineralization (Weiner and 

Dove, 2003) and the organisms secrete one or more metabolic products that react 

with ions or compounds in the environment resulting in the subsequent deposition 

of mineral particles. The minerals that form are often characterized by poor 

crystallinity, broad particle-size distributions, and lack of specific crystal 

morphologies. In addition, the lack of control over mineral formation often results in 

poor mineral specificity and/or the inclusion of impurities in the mineral lattice. BIM 

is equivalent to inorganic mineralization under the same environmental conditions 

and the minerals are therefore likely to have crystallochemical features that are 

generally indistinguishable from minerals produced by inorganic chemical 

reactions. In some cases, the metabolic products diffuse away and minerals form 

from solution (Bazylinski and Frankel, 2003). However, bacterial surfaces such as 
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cell walls or polymeric materials (exopolymers) exuded by bacteria, including 

slimes, sheaths, or biofilms, and even dormant spores, can act as important sites 

for the adsorption of ions and mineral nucleation and growth (Beveridge, 1989; 

Konhauser, 1998; Banfield and Zhang, 2001; Bäuerlein, 2003). 

 

1.1.2 Biologically controlled mineralization 

 

In biologically controlled mineralization, BCM, the organism exerts a great degree 

of crystallochemical control over the nucleation and growth of the mineral particles. 

For the most part, the minerals are directly synthesized at a specific location within 

or on the cell and only under certain conditions. The mineral particles produced by 

bacteria in BCM are characterized as well-ordered crystals with narrow size 

distributions, and specific, consistent particle morphologies. Because of these 

features, BCM processes are likely to be under specific chemical/biochemical and 

genetic control. In the microbial world, the most characterized example of BCM is 

magnetosome formation by the magnetotactic bacteria, a group of microorganisms 

in which BCM-produced magnetic crystals appear to have a relatively specific 

function.  Biologically controlled mineralization can be described as occurring extra, 

inter or intracellular, and this distinctions refer to the location of the mineralization 

sites. However, not all the mineralization processes can be classified in this simple 

manner.  
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1.2 The nature of mineral surfaces 

 

The theoretical crystalline surface terminates in an arrangement of atoms that 

approximates the planar truncation of a periodic three-dimensional crystal 

structure, but in real crystals this ideal situation is altered in several ways (e.g., 

Hochella and White, 1990; Somorjai, 1994; Hochella, 1995; Vaughan, 1995; Brown 

et al., 1998): 

 surface atoms reside in an environment quite different from those below 

the surface, and thus undergo relaxation owing to boundary effects 

typically slight deviations from their formal crystallographic positions 

(Hochella, 1990; Stipp and Hochella, 1991; Wright et al., 2001);  

 mineral surfaces in air or an aqueous medium are commonly subject to 

chemical alteration through oxidation, hydration, or hydroxylation 

(Guevremont et al., 1998; Biino et al., 1999; Stipp, 2002); 

 crystals invariably have defects and impurities that alter local surface 

physical properties and chemical reactivity (Hochella, 1990; Cygan et al., 

2002). 

The topology of real crystal surfaces also represents an important deviation from 

ideality because crystal surfaces are seldom flat.  

Mineral surfaces, with their low-level symmetries and multiple crystallographically 

distinct atomic sites, present additional complexities compared for example with 

the metals (Lasaga, 1990; Hazen, 2004). Although some common surfaces of 

rock-forming minerals can be ideally planar at the atomic scale (e.g., the [100] 

plane of quartz [SiO2], the [001] planes of graphite [C] and molybdenite [MoS2], and 

the [001] planes of varied layer silicates such as micas and chlorites), most 

surfaces are intrinsically irregular. Mineral surfaces also commonly include growth 

defects, step edges and kink sites, which provide promising docking loci for organic 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C116
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C231
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C114
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C258
http://www.ncbi.nlm.nih.gov/pubmed/11848981
http://www.ncbi.nlm.nih.gov/pubmed/11848981
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C113
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C238
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C271
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C99
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C17
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C237
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C113
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C56
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C56
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C157
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C101
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molecules (Lasaga, 1990; Teng and Dove, 1997; Teng et al., 1998; Orme et al., 

2001; Hazen and Sholl, 2003; De Yoreo and Dove, 2004). For example, Teng et 

al., 2006) showed the step-dependent adsorption of succinic acid (1,4-dicaboxlyic 

acid) on irregular growth surfaces of calcite. The presence of succinic acid in 

solution blocks certain growth directions and thus dramatically modifies calcite 

surface growth morphology. Additional complexities arise from a variety of 

geological materials that do not have periodic two-dimensional surfaces, notably 

amorphous materials such as basaltic glass from seafloor volcanoes. Mesoporous 

zeolites and nano-particulate clays (including layer phyllosilicates and hydroxide 

minerals) interact with organic molecules in complex three-dimensional 

environments (Smith, 1998; Greenwell and Coveney, 2006; Benetoli et al., 2007). 

For example, Pitsch et al. (1995) showed that double-layer hydroxide minerals 

such as hydrotalcite efficiently adsorb glycoaldehyde phosphate and formaldehyde, 

presumably into their relatively spacious inter-layer regions, and promote 

condensation reactions to tetrose and hexose sugar phosphates. Given these 

complexities, any realistic modeling of interactions between biomolecules and 

mineral surfaces must take into account the geometries of both molecules and 

surfaces. Mineral surfaces undergo important modifications in an aqueous 

environment, especially in an electrolyte solution such as sea water (Parks, 1990; 

Davis and Kent, 1990; Van Cappellen et al., 1993; De Leeuw and Parker, 1997; De 

Leeuw et al., 1999; Wright et al., 2001; Stipp, 2002). In the classic electrical double 

layer (EDL) model, a crystal surface in pure water directly contacts a compact 

quasi-periodic layer of H
+
 or OH

−
 ions, whereas a second diffuse layer of mobile 

ions extends from the compact layer a few Ångstroms into the fluid. The nature of 

the EDL is strongly dependent on pH: At lower pH, the surface is typically 

protonated and thus positively charged, whereas at higher pH, the surface is 

negatively charged with hydroxyls. Adsorbed ionic and molecular species modify 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C157
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C245
http://www.ncbi.nlm.nih.gov/pubmed/9784126
http://www.ncbi.nlm.nih.gov/pubmed/11459051
http://www.ncbi.nlm.nih.gov/pubmed/11459051
http://www.ncbi.nlm.nih.gov/pubmed/12776102
http://www.ncbi.nlm.nih.gov/pubmed/15550649
http://www.ncbi.nlm.nih.gov/pubmed/17090031
http://www.ncbi.nlm.nih.gov/pubmed/17090031
http://www.ncbi.nlm.nih.gov/pubmed/9520372
http://www.ncbi.nlm.nih.gov/pubmed/16372196
http://www.ncbi.nlm.nih.gov/pubmed/17578677
http://www.ncbi.nlm.nih.gov/pubmed/11536701
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C188
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C58
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C256
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C63
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C64
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C64
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C271
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C237
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the electrical double layer of mineral surfaces by displacing OH
−
, H

+
, and H2O at 

the solid-fluid interface. More than a century of experimental and theoretical 

research has explored the interaction of dissolved aqueous chemical species with 

mineral surfaces (Parsons, 1990; Hochella and White, 1990; Brown et al., 1998). 

Most of this important literature focuses on dissolved ions and inorganic 

complexes; however, many of the principles developed for mineral–ion interactions 

also apply to biomolecules. All surface-promoted reactions require at least one 

molecular species to interact with the surface. These interactions can be mediated 

by water molecules, protons, or hydroxyl groups through relatively weak 

interactions (outer-sphere adsorption, or ―physisorption‖). Alternatively, one or 

more chemical bonds can form (inner-sphere adsorption, or ―chemisorption‖). 

Chemisorbed ions typically bond to one or two surface atoms, whereas larger 

molecules can adopt a variety of surface topologies with multiple attachments 

(Davis and Kent, 1990; Zhang et al., 2004; Sverjensky et al., 2008; Jonsson et al., 

2009). Details of molecular adsorption are dependent on several variables, most 

notably pH, the nature and concentrations of molecular solutes, and the identities 

and concentrations of electrolytes (Schindler, 1990; Sverjensky, 2005; Sverjensky 

and Fukushi, 2006; Jonsson et al., 2009). Additional complexities arise when 

organic molecules interact with crystal surface defects (Teng and Dove, 1997; 

Teng et al., 1998, 2000; Orme et al., 2001; De Yoreo and Dove, 2004; Elhadj et al., 

2006). Such interactions can be strikingly revealed during crystal growth or 

dissolution in the presence of organic molecules, which can preferentially dock 

along crystallographically distinct edges and kinks. Such binding may inhibit crystal 

growth in certain directions and thus result in unusual crystal morphologies (e.g., 

Teng et al., 2006). 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C190
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C116
http://www.ncbi.nlm.nih.gov/pubmed/11848981
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C58
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C277
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C243
http://www.ncbi.nlm.nih.gov/pubmed/19821622
http://www.ncbi.nlm.nih.gov/pubmed/19821622
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C211
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C241
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C242
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C242
http://www.ncbi.nlm.nih.gov/pubmed/19821622
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C245
http://www.ncbi.nlm.nih.gov/pubmed/9784126
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C247
http://www.ncbi.nlm.nih.gov/pubmed/11459051
http://www.ncbi.nlm.nih.gov/pubmed/15550649
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C74
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857174/#A002162C74
http://www.ncbi.nlm.nih.gov/pubmed/17090031
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1.3 The organic mineral interface 

 

Biomineralization mechanisms are not completely clear (Mount et al., 2004), their 

understanding may provide models for new material, inspired design solutions and 

give new insight into the genetic control of biological structure (e.g. Schäffer et al., 

1997). The mechanism of biomineralization are poorly understood at the molecular 

level, in the bone, shell and some bacterial filaments, the organic matrix direct the 

formation of specific crystal phase, habit, size and orientation of the mineral. In the 

Figure 1.2 is shows a biomineralization paradigm (Gilbert et al., 2005), but is not 

generalized and it is a simply intended to guide our reasoning and gives a visual 

model, however, it not included all biomineralization systems. To this day, the 

organic molecular components have been identified in only few biominerals. This 

paradigm, therefore, is to be interpreted as a conceptual mechanism, not a detailed 

model of interaction between known molecules. This paradigm can simplify the 

idea of the organic mineral interface and the chemical bonds at the interface. In 

BCM and BIM process (Lowenstam, 1981) the organic components are formed 

first, then these bind a few ions, which serve as nucleation sites for crystal growth 

(Lowenstam and Weiner, 1989; Falini et al., 1996). In Figure 1.2, the organic matrix 

(A) is composed from macromolecules which depending on the particular 

biomineral may include a single organic molecule, e.g., a polysaccharide or a 

complex arrangement of proteins and glycoproteins. In all cases the organic 

components have charged functional groups that attract ions from solution (B). The 

steric arrangement of organic macromolecules, their sequence, and folding 

determines the precise position in three dimensions of the ions. Such positions are 

only compatible with a specific mineral, even more: they are only compatible with a 

well-determined polymorph of a specific mineral (C). 
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The crystal structure shown (C) is aragonite, the large white ions in (B) are Ca
2+

, 

while the small-white and large-dark atoms are C and O, respectively in (C). In (D) 

is showed the zoom of the organic mineral interface, the inner-atomic bonds are 

indicated by dashed lines. 

 

Figure 1.2 The organic matrix (A) is composed of macromolecules, the organic 
components have charged functional groups that attract ions from 
solution (B). The steric arrangement of organic macromolecules, their 
sequence, and folding determines the precise position in three 
dimensions of the ions. Such positions are only compatible with a 
specific mineral, even more: they are only compatible with a well-
determined polymorph of a specific mineral (C).The crystal structure 
shown (C) is aragonite, the large white ions in (B) are      Ca

2+
, while 

the small-white and large-dark atoms are C and O, respectively in (C). 
(D) Zooming in on the organic-mineral interface: the inter-atomic bonds 
are indicated by dashed lines. 

 

Several authors suggest that the negatively charged amino acids, aspartate and 

glutamate, along their proteins sequences attract positive ions from solution and 

iniziate crystal nucleation and growth (Mann, 2001; Weiner and Dove, 2003; Gotliv 

et al., 2005). The concentration of amino acid usually constitute between 30 and 40 

mol% of the protein matrix. Gotliv et al. (Gotliv et al., 2005) show that the ―Asprich‖ 
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family of proteins from the bivalve mollusk Atrina rigida contained more than 50 

mol% of aspartate and 10 mol% of glutamate. For this reason, the paradigm by 

which negatively charged amino acid collect ions from solution provide the 

nucleation sites and direct growth biomineralization, is very interesting. 

 

1.4 The role of mineral in the pollution immobilization 

 

Minerals play an important role in the regulation of contaminants in ecosystems. In 

fact they can attenuate potentially toxic concentrations of contaminants and 

accordingly diminish the risk of surface water and groundwater contamination. For 

instance, silicates and oxides can adsorb organic pollutants, promoting their 

degradation to nontoxic forms, attenuating their movement through the 

environment, or preventing their uptake by plants and their introduction into the 

food chain. The characteristic of minerals as particle distribution, high specific area, 

structural order-disorder, and chemical groups in the surface make them highly 

reactive and permitted strong physical and chemical interaction with pollutant 

species, but at the other and also the physical chemical properties of the organic 

pollutant are dedicate by the structure of the molecule and the nature of the atom 

present in it, have an important role in the interactions. 

For example, an important feature of clay minerals is the presence of structural 

negative charges, which enables clay minerals to adsorb different kind of 

molecules, especially organic and inorganic cations (Rytwo et al., 2002; Gürses et 

al., 2004; Lombardi et al., 2006), and at very low pH, the edges of 2:1 and 1:1 clay 

minerals carry a positive charge, which makes them capable to interact with 

anionic compounds. Fe, Al, Mn, Si and Ti oxides exhibit variable or pH-dependent 

surface charge, which is due to the amphoteric character of their surface hydroxyl 

groups. As a result, most oxides exhibit positive charge at low pH and negative 
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charge at high pH. Oxides with high point of zero charge, e.g. for goethite and 

hematite between pH 6-9, are therefore important adsorbents for anionic organic 

and inorganic substances (Cornell and Schwertmann, 2003). The quantification 

and understanding of immobilization mechanisms are of fundamental significance 

for predicting the fate of organic contaminants in a specific environment. In 

addition, knowledge about these mechanisms is essential for the development of 

efficient methods for contaminated soil and aquifer remediation. Sorption is 

generally the strongest interaction mechanism and can affect the fate of a 

contaminant in a number of ways. Apart from affecting mobility, and the potential 

for a contaminant to reach groundwater, sorption can affect the biodegradation and 

toxicity of a compound by influencing the bioavailability (Allard and Neilson, 1997; 

Guo, et al., 2000; Eggleton and Thomas, 2004; Arias-Estevez et al., 2008). There 

are generally many intermolecular interactions involved in sorption, but the 

dominant processes depend on chemical-specific properties, such molecular size 

and configuration, and polarity or lipophilicity, as well as mineral-specific 

properties, such as pH, surface groups and structural disordered.  

For example, for polar contaminants, surface interactions include ionic and/or 

covalent and hydrogen bonding. Anionic contaminants are only weakly sorbed by 

minerals with permanent charge, such as clays, because they are electrostatically 

repulsed from negatively charged surfaces. Cationic contaminants are strongly 

sorbed on permanent negatively charged clay mineral surfaces by cation 

exchange. They interact much more strongly with the solid phase of soils and 

sediments than anionic ones, since ionisable organic-matter moieties and clay 

mineral surfaces are generally neutral or negatively charged over the pH range 

found in the environment. 

However, for non-polar contaminants, the non-polar hydrophobic domains of 

organic matter provide important sorption sites and binding through hydrophobic 
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interactions (Van der Waals forces) will dominate the contaminant sorption 

(Wauchope et al., 2002; Semple et al. 2003). Sorption of hydrophobic organic 

contaminants to soil organic matter may be controlled by the amount of aromatic 

carbon (Abelmann et al., 2005), aliphatic carbon (Simpson et al., 2003, Chen et al., 

2007), or the polarity of the soil organic matter (Tanaka et al., 2005). Müller et al. 

(2007) showed that also mineral surfaces could significantly contribute to the 

retention of hydrophobic organic contaminants, especially in subsurface soil 

horizons and aquifer sediments with small amounts of organic matter. The link 

between structure and physico-chemical properties of geosorbents and sorption 

activity of hydrophobic organic pollutants upon interaction with solid matrices has 

been established recently (Ehlers and Loibner, 2006). The conclusions are from 

high importance for studies on risk assessment and remediation. Currently 

research has focused on the development of low cost and highly reactive 

innovative materials. These modified natural or designed materials can be very 

useful in treating aqueous systems, including wastewater and aqueous waste 

streams, by removing undesired substances. In addition, it might be possible to 

incorporate or inject these materials into soil and subsoil, in order to enhance the 

sorption and retention of organic contaminants. From these studies it can be 

concluded that operative mechanisms for any particular interaction between 

contaminants, soil constituents and soil biota depends on the nature and properties 

of the soil surfaces, the chemistry of the system (e.g. pH, kind of exchangeable 

cations, water saturation degree) and the chemical nature of the organic 

contaminant. 
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1.5 Objectives 

 

The main purpose of this study was to investigate and gain understanding of the 

fascinating word of biominerals and their interaction with organic molecules. 

The first part of the thesis presents the structural and morphological 

characterization of biomineral hydrozincite and inorganic hydrozincite. This 

biomineral is a zinc carbonate [Zn5(CO3)2(OH)6] that has been found in  a mine 

environment at  Naracauli creek (Sardinia, Italy) in association with cyanobacteria 

(Scytonema sp.) and algae (Chlorella) (Podda et al., 2000). At Naracauli creek, as 

already shown in the literature, the precipitation of this biomineral results in the 

abatement of zinc concentration from hundreds ppm to few ppm in few hundred 

meters downstream. The presence of organic matter and the structural differences 

compared to inorganic mineral surface is presented is highlighted. 

In the second part of the thesis the study has been devoted to the physics 

chemical study of the interaction between synthetic hydrozincite and several 

phthalate. The problem of phthalate was born later when during investigation of the 

molecular-level basis of biomineralization, we found the presence of Bis(2-

ethylexyl)phthalate (DEHP) in some of the in-vitro synthesized samples. The DEHP 

was released by the tubing in PVC used for the synthetic preparation and capture 

by the mineral synthetic surface. The DEHP have an important role in the 

environmental sounds, due to the human health risk. 

 

 

 

 

 

http://search.tiscali.it/?tiscalitype=web&collection=web&q=physics+chemical+study
http://search.tiscali.it/?tiscalitype=web&collection=web&q=physics+chemical+study
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1.6 Overview on hydrozincite mineral 

 

Hydrozincite [Zn5(CO3)2(OH)6]
 
is a mineral formed in the oxidized zones of zinc 

deposits and is found as masses or crusts and is often not readily observed and 

may be confused with other minerals such as calcite. The mineral is often 

associated with other minerals such as smithsonite, calcite, hemimorphite, 

aurichalcite (Anthony et al., 2003). 

The crystal structure of hydrozincite was first studied in a museum sample by 

Subrata Ghose in 1964 (Ghose, 1964) using single crystal X-ray diffraction. The 

structure is monoclinic with a0=13.62, b0=6.30, c0=5.42 A, β = 95°50’, the space 

group is C2/m. There are two Zn sites, one in octahedral and one in tetrahedral 

coordination as shown in Figure 1.3. The octahedral sites outnumber the 

tetrahedral in the 3:2 ratio. Zinc atoms in tetrahedral coordination occur above 

holes that are present in sheets of octahedral zinc atoms. CO3 groups are binding 

the sheets parallel to (100). Out of the three oxygen atoms in the CO3 group the 

first is bonded to an octahedral, the second to the tetrahedral oxygen site while the 

remaining one is hydrogen bonded to three OH groups. The tetrahedral Zn-O 

distance is limited to 1.95 Å and is significantly smaller than the octahedral Zn-O 

distance at 2.10 Å. This author found also that synthetic crystals of hydrozincite 

have low crystallinity, and speculated that plane defects are the likely cause for the 

observed decrease in crystal order. After Ghose other authors studied the mineral 

hydrozincite, Infrared spectra from several hydrozincite specimens can differ 

significantly and show peak broadening (Jambor, 1966; Zabinsky, 1966). This 

difference was explained to the contributions of different plane defects. Conversely, 

Jambor (1964) and, more recently, Hales and Frost (2007) proposed that hydrous 

zinc carbonate could have two, or more, polymorphs. 
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Figure 1.3 The crystal structure of [Zn5(CO3)2(OH)6]. The atoms of Zn are 
represented with cyan balls and they can be in octahedral and 
tetrahedral environment, as can be seen from the outline of the 
polyhedra shaded in gray. The atoms of O (red balls) are at the 
vertices of the polyhedra either stand-alone or bound with a hydrogen 
atom into an OH bond depicted as a black ball. The atom of C is 
shown as a yellow ball and finds itself in CO3 group bridging the 
Zn(OH)2 that grow parallel to (100). 

 

Beside structural issues, hydrozincite attracted the interest of many authors 

because of its role in the corrosion of Zn-rich materials (Stoffyn-Egli et al., 1998; 

Morales et al., 2006; Ghosh and Singh, 2007), for its involvement in controlling the 
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mobility of zinc in soils (Uygur and Rimmel, 2000) and waters (Mercy et al., 1998; 

Podda et al., 2000; Zuddas and Podda, 2005). Occurrence of hydrozincite forming 

in Zn-polluted calcareous soils was recently found by Jacquat et al. (2008). In 

addition, bioprecipitation of hydrozincite could represent an alternative biological 

approach for bioremediation of zinc-contaminated waters. A zinc carbonate, 

hydrozincite [Zn5(CO3)2(OH)6], has been found in a mine environment at Naracauli 

creek (Sardinia, Italy) in association with cyanobacteria (Scytonema sp.) and algae 

(Chlorella) (Podda et al., 2000). At Naracauli creek, as already shown in the 

literature, the precipitation of this biomineral results in the abatement of zinc 

concentration from hundreds ppm to few ppm in few hundreds meters downstream. 

In addition, the bioprecipitation is also effective in the uptake of other heavy metals 

(Cd, Pb, etc) that are concentrated in the precipitate sediments.  

 

1.7 Phthalates and Bis(2-ethylexyl)phthalate 

 

Phthalate esters are a large group of chemical compounds that are frequently used 

as plasticizers, solvents, and adhesives cosmetics, pesticides, building 

maintenance products, lubrificants, and personal care goods that surround 

consumers at home, work, and in hospitals (Kato et al., 2004). 

Phthalates are principal components of flexible polyvinyl chloride (PVC) products. 

PVC, after polyethylene is the second most widely used thermoplastic polymer, this 

material without additive is inherently a rigid and brittle material, requiring large 

amounts of plasticizer to make flexible products. In fact, approximately 90% of 

global plasticizer production is destined for use in PVC plastic (Bizzari et al., 2000; 

Houhhan and Wiles, 2000). The remaining 10% is used in other applications as 

adhesives, caulks, skin creams, detergents, electrical capacitors, hairspray, ink, 

solvents, lubrification oils, lotions, nail polish, paint, fragrances, and 
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pharmaceuticals (Shah and Shertukde, 2003). In personal care products, phthalate 

provide flexibility, create a film, and help dissolve and fix other cosmetics 

ingredients. The film forming and flexibility properties imparted by phthalates are 

also useful in paint, inks, fillers, adhesive and caulks and insulating properties in 

electrical cabling and capacitors (Gil et al., 2006). 

The oily plasticizing properties of phthalates come from their chemical structure. 

Phthalate represent a broad chemical family containing a benzene ring, two 

carbonyl groups, and two alcohol groups to generate a diester structure. Common 

branched phthalates such as Bis(2-ethylhexyl)phthalate, Di-n-butyl phthalate, N-

butyl-benzyl phthalate and Di-isononyl phthalate features branched chain alcohol 

moieties of 6 to 13 carbons. The linear phthalates containing linear alcohol groups 

and include short chain phthalates such as DEP and DMP, and other phthalate 

which chain lengths of 7 to 11 carbons are use to impart increased flexibility at low 

temperature.  

The benzene ring based structure of phthalates helps reduce their viscosity but 

also makes them harder to degrade (Hatco Corp., 2002).   Plasticizers act by 

breaking up the secondary bonds holding the polymer chains together and forming 

relatively weaker polymer-plasticizer bonds and thus impart mobility to the polymer 

chain and/or polymer chain segments. Plasticizing efficiency is generally 

considered to be a function of organic/inorganic moiety, functional groups present 

in the plasticizer molecule, the structure, a chain length, a molecular weight, etc. 

Thus, different plasticizers confer different plasticization effects because of the 

differences in the strength of plasticizer- polymer and plasticizer-plasticizer 

interactions. Phthalates move freely through the PVC polymer to impart flexibility 

and other characteristics (Tickner et al., 1999). Since they are not covalently bound 

to the polymer humans are exposed to contaminants in numerous ways, they are 

fairly easily released to air, water, saliva, blood, nutritional formula and other 
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extracting materials (National Chemicals Inspectorate, 1977; Petersen and 

Breindahl, 2000; Koch et al., 2003). This is especially true for Bis(2-

ethylhexyl)phthalate (DEHP). DEHP is the most important phthalate and more than 

two million tons alone are produced worldwide each year (Lorz et al., 2002). 

DEHP, in fact, is extensively used to plasticize polyvinylchloride (PVC), which in 

turn is used to coat wires and flexible cables (Scholz et al., 2003). There is a large 

literature on the release of DEHP from plastic devices into the environment 

(Thuren, 1986; Calafant et al., 2004; Morrentsen et al., 2005).  

DEHP migrates from the surface of the polymeric matrix during the use and 

distribution of products, or after their disposal (Petersen et al., 1997).  DEHP has 

been a subject of public debate during recent years because it is suspected of 

being a human cancer-causing agent and could cause liver and kidney damage. 

Moreover it might damage the development of the reproductive organs and 

interfere with their development by acting as a mimic of the sex hormone, estrogen 

(Nielsen and Larsen, 1996).  Environmental degradation of phthalates can occur by 

hydrolysis, photodegradation and biodegradation (Staples et al., 1997). These 

processes, however, are slow and therefore doing not play an important role in 

degradation under typical environmental conditions (Asaoka et al., 2000). The most 

common methods for DEHP removal from water are aerobic (Khan and Jung, 

2008) and anaerobic biological stabilisation, chemical stabilisation by lime, before 

or after dewatering and aerobic composting of the dewatered sludge (Marttinen et 

al., 2004). 
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Chapter II Materials and experimental   

procedures 

2.1 The samples object of the study 

 

 Natural hydrozincite 

 

The sample labeled with the name Nar is a natural sample from Rio Naracauli. The 

Rio Naracauli flows in a 30.2 km
2
 basin west of the Ingurtosu mine in the Arburese 

mine district in southwestern Sardinia
 
(Fig. 2.1).  The river is about 8.2 km long and 

flows into the western
 
Mediterranean Sea. The Rio Naracauli has a very limited 

flow,
 
particularly in the upper part. Upstream it receives drainage

 
from mine tailings 

on the left, and downstream it receives drainage
 
from three adits: the Rio Pitzinurri 

(outlet A), the Ledoux mine
 
gallery (outlet B), and the Rio Bau (outlet C). The 

hydrogeological
 
details of this area have been reported by Pala et al. (1996).

 
A 

series of stations (stations 1 to 11 in the creek and stations A to C in the three 

tributaries) were chosen along 3.4
 
km of the Rio Naracauli (Fig. 2.1). Station 1 was 

located at the
 
tailings pond. In stations 2 to 4, a photosynthetic microbial

 
population 

visibly encrusted the sediments with a green mat in
 
spring, which developed into 

white material, particularly at stations
 
3 and 4. This is an annual event that varies in 

intensity depending
 
on the meteorological conditions. The white precipitate is then

 

mechanically transported away by rainfalls. Stations 5 to 7 were
 
located after the 

Rio Pitzinurri tributary. In the
 
sediments of these stations white precipitate residues 

were still
 
visible. Stations 8 to 10 were located after the Ledoux gallery. Station 

11 was located downstream from the Rio Bau
 
tributary, where white deposits were 

not
 
observed. The Nar sample was collected between the station 2 and 4 dried at 

room temperature and cleaned by the visible impurities. 

http://aem.asm.org/cgi/content/full/66/11/5092?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=podda&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#F1
http://aem.asm.org/cgi/content/full/66/11/5092?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=podda&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#F1
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Figure 2.1 Schematic map of the sampling area, with tailings distribution (hatched   

areas). Samples 1 to 11 ( ) are from the Rio Naracauli stream; 
samples A to C were collected in the tributaries before the inflows. 

 

 Geological hydrozincites 

 

We have investigated two geological samples of hydrozincite kindly provided to us 

by the Mineral Museum of the Earth Science Department of the University of 

Cagliari. Both samples come from mining districts of Sardinia, Geol1 from 

Malfidano mine and Geol2 from Sa Duchessa mine. 

The mining district of southwest Sardinia, Italy, is one of
 
the classic areas where 

primary carbonate-hosted Zn-Pb sulfide
 
ores are associated with a relatively thick 

secondary oxidation
 
zone containing Zn (hydroxy-)carbonates and silicates, the so-

called
 
"calamine," exploited until the 1970s. The extent of the capping

 
oxidized ore 

zones, reaching deep below the surface, is generally
 
independent of the present-

day water table. The base of the
 
oxidation profile containing nonsulfide Zn minerals 

in various
 
uplifted blocks in the Iglesiente area can be either elevated above or 
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submerged below the recent water table. The genesis
 
of the ores is therefore 

considered to be related to fossil,
 
locally reactivated, oxidation phenomena. The 

mineralogy of
 
the nonsulfide mineralization is generally complex and consists

 
of 

smithsonite, hydrozincite, and hemimorphite as the main economic
 
minerals, 

accompanied by iron and manganese oxy-hydroxides and
 
residual clays. These 

geological samples are more than million years old (Boni et al., 2003). 

 

 Hydrozincite synthesis 

 

Hy1 – the sample was synthesized according to the protocol of Garcia-Clavel 

(1989) for the preparation of binary carbonate. The sample has been made by fast 

precipitation at 373 K mixing equal amounts of a 32 mM  (NH4)2CO3 (Aldrich) 

solution and  a 80 mM Zn(NO3)2·6H2O  (Aldrich) solution. The precipitate obtained 

was filtered, washed with cold distilled water and dried at room temperature. 

 

Hy2 – the sample was synthesized according to the protocol of Paquette and 

Reeder (1995) at 298 K. One liter of a 50 mM Zn(NO3)2·6H2O (Carlo Erba 

Reagents) and 280 mM NH4Cl (Carlo Erba Reagent) solution was placed into a  

closed reactor. The reactor was in communication with a vial containing (NH4)2CO3 

(Aldrich) as a fine powder. The slow decomposition of this salt releases NH3 and 

CO2 to the solution. During the next 15 days hydrozincite began to precipitate at 

the water–vapour interface. The solution pH, initially was slightly acid (4.9-5.2) and 

the final pH was 7. The precipitate obtained was filtered, washed with deionizzed 

water and dried at room temperature. 

Hy3 –  the sample has been make at 298 K by mixing of 0.2 mM of NaHCO3(Carlo 

Erba Reagent 99,9%), 3 mM of Na2CO3 (Aldrich) and 3 mM of ZnSO4*7H2O 
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(Aldrich) into deionized water, subsequently acidified by using HCl to adjust the 

initial pH at 6.7. The concentration of zinc was determined considering the 

concentration of Zn
2+

 in the natural water of Naracauli Creek during the 

hydrozincite bioprecipitation (Podda et al., 2000). The solution stirred throughout 

the synthesis in a glass baker was continually bubbled with air through glass tubing 

connect with an aquarium pump. After 15 days the solution was filtered and the 

precipitate rinsed several times with deionized water and then dried at room 

temperature. 

Hy4 – the sample has been make at 298 K by mixing of 0.2 mM of NaHCO3(Carlo 

Erba Reagent 99,9%), 3 mM of Na2CO3 (Aldrich) and 3 mM of ZnSO4*7H2O 

(Aldrich) into deionized water, subsequently acidified by using HCl to adjust the 

initial pH at 6.7. The concentration of zinc was determined considering the 

concentration of Zn
2+

 in the natural water of Naracauli Creek during the 

hydrozincite bioprecipitation (Podda et al., 2000). The solution stirred throughout 

the synthesis in a glass baker was continually bubbled with air through plastic 

tubing connect with an aquarium pump. After 15 days the solution was filtered and 

the precipitate rinsed several times with deionized water and then dried at room 

temperature. A portion of sample has been subsequently washed with 1 ml of 

acetone (Aldrich) which was then separate from the solid; this washing procedure 

was repeated three times. The name of washed sample is Hy4/1. 

Hy5 – the sample has been making as described for the sample Hy3 but adding 

slices of flexible tube in PVC (Tygon) at the bottom of reaction glass baker. A 

portion of sample has been subsequently washed with 1 ml of acetone (Aldrich) 

which was then separate from the solid; this washing procedure was repeated 

three times. The name of washed sample is Hy5/1. 
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Hy3-MIXDEHP – 300mg of hydrozincite Hy3 has been mixed with various 

quantities of pure Bis(2-ethylexyl)phthalate (Aldrich, 99%) as reported in the Table 

2.1. A portion of each mixing samples has been subsequently washed with 1 ml of 

acetone (Aldrich) which was then separate from the solid; this washing procedure 

was repeated three times for each mixing samples. 

 

Sample HY3 (mg) DEHP (µl) Sample washed 

Hy3-25DEHP 300 25 Hy3-25DEHP/1 

Hy3-50DEHP 300 50 Hy3-50DEHP/1 

Hy3-100DEHP 300 100 Hy3-100DEHP/1 

Hy3-200DEHP 300 200 Hy3-200DEHP/1 

Hy3-400DEHP 300 400 Hy3-400DEHP/1 

 

Table 2.1 Summary of conditions for preparation of mixed samples. 

 

 Calcite synthesis 

 

Cal1 – the sample was synthesized according to the protocol of Paquette and 

Reeder (1995) at 298 K. In this method the solid ammonium carbonate sublimates, 

and product NH3 and CO2 gases diffuse into an aqueous solution of calcium and 

ammonium chloride. 200 mM of CaCl2*6H2O (Aldrich) was adding to 300 mM of 

NH4Cl (Aldrich) in 1 l of deionizzed water. The glass baker contain the aqueous 

solution was placed inside a closed container in the presence of ammonium 

carbonate, so that creates a rich atmosphere of NH3 and CO2 that diffuses into the 

aqueous solution. The solution pH, initially slightly acid (4.9-5.2), during the next 15 

days, the calcite crystals nucleated at the surface of the solution. The final pH was 
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7. The precipitate obtained was filtered, washed with demonized water and dried at 

room temperature. 

Cal2 – the sample has been making following the protocol for Cal1, but in this case 

the sliced out flexible pipes were added at the bottom of the reaction system. 

 

Cal1-100DEHP – 300mg of calcite Cal1 has been mixed with 100µl pure Bis(2-

ethylexyl)phthalate (Aldrich, 99%). A portion of each mixing sample has been 

subsequently washed with 1 ml of acetone (Aldrich) which was then separate from 

the solid; this washing procedure was repeated three times for each mixing 

samples. The name of washed sample is Cal1-100DEHP/1. 

 

2.2 Extractions 

 

 Extraction of Bis(2-ethylexyl)phthalate in synthetic 

hydrozincite 

 

Powder synthetic hydrozincite was soaked in chloroform at 40°C for 12 h, after this 

time, the mixture was filtered. The mixture contains extract and chloroform was 

evaporated in a rotary evaporator. 

 

 Extraction insoluble organic matrix in biomineral sample 

 

The powder sample was immersed in 5 ml of distilled water,  then decalcified by 

progressive addition of 50% acetic acid to maintain the pH above 4. The entire 

extract was centrifuge ad 4500 xg for 15 min, which separated the supernatant 

(SOM: soluble organic matrix) and precipitated (IOM: insoluble organic matrix) 
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fractions. The insoluble fraction was desalted by successive centrifugation in 

distilled water, and lyophilized. 

 

 Extraction of lipidic fraction in biomineral sample 

 

Powder sample was soaked in warm chloroform/methanol (1:1v/v) for three days, 

under a mild and constant stirring, and sonicated every day.the mixture was then 

centrifugated at 4500 xg for 15 min to separate the powder and insoluble parts 

from the solvent –soluble part. 

 

2.3 Techniques - structural characterization 

 

 X-Ray diffraction  

 

XRD was performed with a θ-2θ conventional diffractometer (Siemens D-500) with 

Mo Kα radiation (0.709 Å) and with θ-2θ conventional diffractometer (Seifert 

X3000) with Cu Kα radiation (1.5418 Å). For XRD analysis, 200 mg of each sample 

were lightly ground in agate mortar and was packed into the sample holder for X-

Ray diffraction analysis, for the Seifert diffractometer the sample was packed into 

zero-background sample holder.  

The particle size of sample was estimate from the full-width at half maximum 

(FWHM) of most intense peak according to the Debye-Scherrer formula. The 

exactly FWHM and peak position was obtained by a non linear fitting of the XRD 

spectra with Log Normal function using Origin 5.0 program from Microcal Software. 
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 Infrared Spectroscopy 

 

Fourier transform Infrared (FT-IR) spectra were collected in the Mid region from 

400 cm
-1

 to 4000 cm
-1

 at  4 cm
-1

 resolution over 64 averaged scans using a Bruker 

Equinox 55 spectrophotometer. For FT-IR analysis of solids, 10 mg of solid sample 

was ground in an agate mortar with 30 mg of KBr and pressed; liquid samples 

were analyzed adding a drop of liquid between two KBr windows. 

 

 Nuclear Magnetic Resonance 

 

High-resolution NMR spectra were collected using a Varian Unity Inova 

spectrometer with a 9.39 T wide-bore Oxford magnet operating at a proton 

frequency of 399.952 MHz. Solid state analysis was performed using solid state 4 

mm probe solid state; liquid samples were analyzed in a 5 mm indirect, PFG (15N-

31P) and VT probe. 

13
C Magic Angle Spinning (MAS) experiments for solids were performed packing 

using ~ 100 mg of sample lightly ground in agate mortar and packed into a 4 mm 

Si3N4 rotors, 7 kHz spin rate, recycle time 1, 5, 100, 700 and 1200 s, 7.5 µs pulse 

length (90°) and 50 kHz spectral window.  

13
C Cross  Polarization Magic Angle Spinning (CPMAS) spectra were collected with 

contact times of 0.3, 1, 2, 4, 8 and 16 ms, and a recycle time of 2 s. 
13

C chemical 

shifts were referenced externally to hexamethylbenzene (CH3 = 17.4 ppm).  

The species distributions in 
13

C CPMAS experiments were obtained by a non linear 

fitting of the NMR signals to individual Gaussian by means of the Origin 5.0 
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program from Microcal Software, in the fitting procedure, the position, line width, 

and intensity were varied to find the best fit curve to the experimental spectrum. 

1
H experiments were carried out with the sample contained in a 5 mm tube using 7 

μs pulse (90°), 2 s repetition time, and spectral width of 4 kHz. The NMR 

experiments used for proton resonance assignments also included magnitude 

Correlation Spectroscopy (COSY) (Aue et al., 1976).   

13
C spectra were recorded at the frequency of 100.564 MHz using a spectral width 

of 20 kHz and 90° pulse. 
13

C assignments were made from Heteronuclear Multiple 

Bond Coherence (HMBC) (Wilker et al., 1993) and Heteronuclear Single Quantum 

Coherence (HSQC) (Kay et al., 1992) spectra. Chemical shifts in all spectra were 

referenced to DSS (2,2-dimethyl-2-silapentane-5-sulfonate). 

The concentration of phthalate in hydrozincite synthesis has been calculates using 

the Internal Standard Method. To obtain the absolute concentration of our 

compound in the NMR sample, the area of the signals have been compared to the 

area of a reference (pure methanol, Aldrich 99,99%) with known concentration. 

 

 HR-Trasmission Electron Microscopy 

 

HRTEM images were collected using JEM 2010UHR (Jeol) microscope with a 

LAB6 thermoionic source operating at 200kV and equipped with a Gatan imaging 

filer (GIF). Energy-filtered images were acquired using 3 mm GIF entrance 

aperture and a slit width of 15 eV. All high-resolution images were acquired digitally 

using 1 or 2 sec of exposure and 1x binning (1024 x 1024 pixels) of the charge-

coupled-device (CCD) camera.  
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The samples were lightly ground in an agata mortar and were disperse in octane 

(or distilled water) and further submitted to an ultrasonic bath. The suspensions 

were then dropped on carbon coated copper grids for high-resolution transmission 

electron microscopy. A fast Fourier transform (FFT) was calculated on the images 

by using the Digital Micrograph (JEOL) software. Because of the ~19x 

magnification between the TEM viewing screen and the CCD camera, a 

preliminary calibration using a standard gold sample was performed to obtain 

corrected values of d-spacing in the samples. 

 

 Scanning Electron Microscopy 

 

Surface morphological analyses were investigated with an environmental scanning 

electron microscope (ESEM QUANTA 200, FEI, Hillsboro, Oregon) (SEM) working 

at 25 kV electron accelerating voltage. The samples were prepared by mounting 

onto aluminium stubs and carbon-coated with a layer about 10 nm thick by using 

metal-coating plant under a vacuum of 0.01 Pa (10
-4

 Torr).  

 

2.4 Analytical analysis 

 

The major elemental concentrations were determined by inductively plasma atomic 

emission spectrometry (ICP-AES; FISION-ARL3520). 

 

Carbon and nitrogen content were obtained by using FIsion Instruments 1108 

CHNS (T = 1000°C) elemental analyzer. 

 

Other trace elemental concentrations were determined by inductively-coupled 

plasma-mass spectrometry (ICP-MS; Perkin-Elmer; ELAN 5000). 
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Chapter III High Resolution Solid-State 
13C Nuclear Magnetic 

Resonance Spectroscopy 

 

3.1 Introduction 

 

The utilization of Nuclear Magnetic Resonance (NMR) techniques for the structural 

characterization has a very long tradition (Kogel-Knabner, 1997; Wilson et al., 

1981). The advent of modern solid-state NMR spectrometers, which are capable of 

producing liquid-like spectra, ushered in a new era of organic matter 

characterization. A major attraction of this technique is the fact that samples can be 

analyzed often times without any prior pretreatment, thus rendering solid state 

NMR a non-destructive approach to characterization without the production of 

artifacts. 

Although solid-state NMR spectroscopy has these added advantages, several 

disadvantages do exist. Larger quantities of material are needed to perform NMR 

in the solid-state (~ 70-200 mg). Already an insensitive technique, solid-state NMR 

gives very low and broad signals such that much more accumulation time is 

needed to obtain spectra with reasonable S/N ratios. Despite these limitations, 

several techniques have been developed to overcome these shortcomings, 

principally cross-polarization with magic angle spinning (CPMAS) and high power 

proton decoupling (HPDEC). The theory of NMR has been widely reported and the 

following discussion will be adopted from several sources (Hays, 1982; Schaefer et 

al., 1975). 

13
C is the most common nucleus studied in geochemical materials and the focus of 

this dissertation, although a variety of other nuclei such as 
15

N and 
31

P are 

available for investigation. Since NMR is considered an insensitive technique, the 
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concentration of the particular element under study in the sample, as well as its 

natural abundance, is of importance. Also, characteristics of the nuclei of interest 

are critical such as the gyromagnetic ratio, γ, where nuclei with small values are 

much more difficult to detect because they have small nuclear dipole moments. 

 

3.2   Magic Angle Spinning 

 

One of the problems encountered in solid-state NMR spectroscopy is that of 

chemical shift anisotropy (CSA). It has been shown (Wilson, 1987) that the 

chemical shift observed in the solid state can be expressed as: 

 

σobs = 3/2σisosin
2
θ + 1/2(3cos

2
θ -1) Σpσpcos

2
p    

 

where p are the angles of the nuclei axes of rotation to the principal axes and σp 

are the various chemical shift tensors. Since chemical shift is a tensor, there are 

three chemical shift components (x,y,z planes), which in most cases are not 

identical. Upon performing NMR on static samples where all possible orientations 

of these tensors exist, powder patterns are produced which are associated with 

broad resonances due to this anisotropy. 

In order to remove CSA, the sample is spun at the magic angle of 54.7° relative to 

the external magnetic field Bo (z axis) (Schaefer and  Stejskal, 1976; Schaefer and 

Stejskal, 1977). The effect on the chemical shift can be understood mathematically 

that if θ = 54.7°, we recognize that 3cos
2
(54.7)-1 is equal to zero.  

Then σobs = σiso. σiso is the isotropic chemical shift characterized by sharp 

resonances which are naturally obtained in solution-state NMR where molecular 

tumbling allows for these orientational effects on chemical shifts to be averaged. 
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Therefore, MAS mimics this molecular motion and allows liquid-like spectra to be 

obtained on solid samples. 

Since the chemical shift of a particular 
13

C environment is dependent on the 

orientation of the parent molecule with respect to the external magnetic field, the 

MAS rate must have a greater frequency than the frequency range of the chemical 

shift in the static powder sample. If this is not the case, several spinning sidebands 

will be observed in addition to a sharp central peak for a particular chemical shift. 

These sidebands are located on both sides of the center signal at integral multiples 

of the MAS rate and extend over the entire frequency rage of the chemical shift in 

the static solid state spectrum. 

 

3.3 High Power Proton Decupling 

 

High power proton decoupling (HPDEC) (Bloch, 1958), in conjunction with magic 

angle spinning, removes 
13

C-
1
H dipolar interactions. These same interactions, 

which allow for efficient cross-polarization, also cause severe broadening in solid-

state spectra due to the 99% abundance of the 
1
H nucleus. As the 

13
C nucleus is 

rare, almost all of this broadening arises from interaction with neighboring protons. 

Proton decoupling in solution-state NMR is a familiar technique, but the application 

to solids requires much greater power (100W vs. 10W or less) because the 
13

C-
1
H 

interaction is much stronger. HPDEC is achieved by applying continuous high 

power at frequencies comparable to the proton line widths, usually tens to 

hundreds of kHz (Schaefer et al. 1975), for the whole duration of 
13

C data 

acquisition. 
13

C-
1
H dipolar interactions result from the through space interaction 

between 
13

C and 
1
H magnetic dipoles. This interaction modifies the 

13
C spectrum 

because 
1
H dipoles change the effective Bo at the 

13
C nucleus by adding to it (

1
H 

dipoles align with Bo) or by subtracting from it (
1
H dipoles align against Bo). The 
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magnitude of the interaction is dependent on the distance between carbons and 

protons and on their orientation with respect to Bo. The dipolar interactions spread 

a particular 

13
C NMR frequency over a wide range in the solid-state 

13
C NMR spectrum. 

HPDEC effectively flips the 
1
H dipoles rapidly, aligning them with and against Bo, 

thus averaging the dipolar 
13

C-
1
H interaction. The frequency range of carbon 

functional groups, which experience dipolar interactions, now spans a smaller 

range, and thus narrower resonances can be observed. 

 

3.4 Cross-Polarization 

 

Cross-polarization allows the low natural abundance of the 
13

C nucleus to be 

overcome in a way far superior to DP-MAS (Direct Polarization). Unlike solution 

state NMR, proton NMR in the solid-state of these materials gives broad, 

featureless signals due to very strong 
1
H-

1
H dipolar interactions (Sullivan and 

Maciel, 1982). The cartesian coordinate representation for a typical CPMAS 

experiment is seen in Figure 3.1. When proton nuclei are placed in a magnetic 

field, the magnetic dipoles of these nuclei align themselves with (low energy) or 

against (high energy) the magnetic field, Bo, according to the Boltzmann 

distribution. However, as more nuclei align themselves in the low energy 

configuration, a net magnetization, MoH, develops along the z axis. A 90° proton 

radiofrequency (rf) pulse is then applied along x’, after which each M1H (proton 

magnetization) points along y’. 
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Figure 3.1 Cross-Polarization scheme showing magnetization vectors during a 

CPMAS experiment: (a) proton magnetization along +z’ axis at 
equilibrium (b) magnetization tipped along y’ after 90° pulse along x’ 
from (a) (c) spin-locking of proton magnetization along y’. 

 

An rf proton spin lock with magnitude B1H is immediately applied along y’ such that 

the magnetization M1H is now forced to rotate (locked) about y’ with a frequency 

given by: 

 

ν1ρH = γHB1H/2π      

 

where γH is the gyromagnetic ratio of the protons. Without the presence of B1H, 

each M1H would spread out in the x’y’ plane (
1
H NMR plane) because each M1H 

corresponds to a different 
1
H NMR frequency and each M1H starts to move out of 

the x’y’ plane because of spin-lattice (T1) relaxation. If B1H is left on indefinitely, the 

magnitude of each M1H will gradually decrease because of spin-lattice relaxation in 

the rotating frame (T1ρ) as well. 

In the cross-polarization experiment, a
 13

C spin lock with magnitude B1C is applied 

simultaneously along the x’’y’’ plane (
13

C NMR plane). If the magnitude of B1C is 

adjusted to a matching condition known as Hartmann-Hahn (Hartmann and Hahn, 

1962) given by: 
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γHB1H = γCB1C      

 

where γH and γC are the gyromagnetic ratio of proton and carbon, respectively, and 

B1H and B1C represent the spin locking rf of protons and carbons, respectively, then 

a rapid transfer of magnetization between 
1
H and 

13
C can occur. Since at the start 

of the 
1
H and 

13
C spin locks, M1H equals MoH (proton magnetization along z axis 

before 90
o 

pulse) and M1C equals zero, magnetization is transferred from 
1
H to 

13
C 

nuclei. 
13

C dipoles that initially contributed towards MoC are forced to re-orient 

themselves in a non-zero M1C component at the expense of the
 1

H dipoles that 

contributed towards M1H. This magnetization transfer is known as cross-

polarization (Pines et al., 1973) and is defined by a time constant TCH. 

The time duration of the matched spin locks is termed the contact time. At the end 

of the contact time, the spin locks are turned off and the 
13

C M1 components are 

detected in the presence of high power proton decoupling. For CP from 
1
H to 

13
C 

with the matching condition met, the signal intensity of each 
13

C spectral 

component, M1C, as a function of the contact time, t, is given by: 

 

M1C (t) = (MoCγH/γC)/(1-TCH/T1ρH)[exp(-t/ T1ρH)-exp(-t/TCH)]    

 

where MoC is the magnitude of the equilibrium magnetization of each 
13

C species in 

Bo (external magnetic field) and is directly proportional to the concentration of each 

13
C species in the sample and T1ρH is the proton spin lattice relaxation in the 

rotating frame. 

The CPMAS NMR experiment has many advantages over DPMAS. With CPMAS, 

a signal enhancement of up to four is possible given the gyromagnetic ratios of 

proton and carbon (γH/γC = 4). Furthermore, the recycle delay necessary between 
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experiments (5~T1H) is dictated by the longest 
1
H T1 in the sample rather than the 

longest 
13

C T1 as is the case for DP-MAS. Usually, T1H <<< T1C. Thus, more 

CPMAS experiments can be performed in a given time and the overall signal gain 

will be enhanced over DP-MAS. However, in order for the CP process to be 

successful, TCH << t (contact time) << T1ρH for all 
13

C species present in the 

sample. Thus, cross-polarization is a competing process of M1C growth based on 

TCH and M1C decay based on T1ρH. 

Given the heterogeneous nature of geochemical materials, which give rise to broad 

NMR signals, a variety of TCH values are expected to exist. TCH depends on various 

factors including the nature of lattice motions in the sample, the spinning rate of the 

sample, which is especially true for non-protonated carbon nuclei, and the 

exactness of the Hartmann-Hahn match (Alemany et al., 1983). This cross-

polarization rate is dependent not only on the number of bonded protons, but also 

has a rCH (Wershaw, 1993) dependence (i.e. the distance between carbon and 

protons both inter- and intra-molecularly). Hence, non-protonated carbons polarize 

at a much slower rate than protonated carbons. Also, carbons which possess some 

mobility cross-polarize much slower due to attenuations in 
13

C-
1
H and 

1
H-

1
H dipolar 

interactions. For these circumstances, longer c are required to fully achieve cross-

polarization at the expense of rigid, protonated carbon signals. Consequently, TCH 

values go as:  

non-protonated C > mobile CH3 > protonated aromatic C, CH > CH2 > static CH3  

TCH values are constant for all spectrometers since dipolar interactions are 

independent of the external magnetic field provided that an exact Hartmann – 

Hahn match exists and the same MAS rates are used. If MAS rates were 

increased,  an expected increase in TCH would likely result. Carbon nuclei of low or 

remote protonation experience a much weaker 
13

C-
1
H dipolar interaction, and thus, 

TCH may be long such that these carbon nuclei may not cross-polarize as efficiently 
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as protonated carbons. This results in intensity distortions and quantitation 

problems. Inefficient proton spin diffusion processes in proton-dilute samples also 

create difficulties in the effectiveness and linearity of the CP process by causing a 

decrease in 
13

C-
1
H Hartmann-Hahn matches if long enough recycle delays are not 

employed (Alemany et al., 1983). Also, intermolecular interactions may be 

comparable or even longer than intramolecular interactions for carbons separated 

from protons by three bonds or more causing poor cross-polarization which 

requires long contact times. 

 

3.5 Relaxation Phenomena 

 

Like other spectroscopic techniques, solid-state NMR involves transitions between 

energy states. In NMR, a radiofrequency 90° pulse is applied to perturb 

magnetization away from an equilibrium position (along z axis with Bo), and the 

decay back to this position can then be followed to give the NMR spin dynamics of 

the sample. 

These spin dynamics give insights into structural properties of the sample such as 

its rigidity/mobility or crystalline/amorphous nature. These relaxation parameters 

can also give clues into environmental processes such as sorption of organic 

chemicals and metal binding to the macromolecules, minerals, soils or others. Spin 

dynamics are also useful in their own right as guidelines to optimize the CPMAS 

experiment. 

 

3.5.1  Transverse relaxation (T2) 

 

Upon excitation of 
13

C or 
1
H nuclei, these nuclei may exchange energy with 

neighboring nuclei of the same kind in order to return to equilibrium along z. In 
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effect, a mutual flipping of the spins of the interacting  nuclei results which is 

termed spin-spin or transverse relaxation (T2). This phenomenon occurs only 

between identical nuclei such that the Mx and My (magnetization in the xy plane) 

components of the total M magnetization are reduced with a time constant T2 

according to: 

 

Mt
x,y

 = Moe
-t/T2

     

 

where Mt
x,y

 is the x and y components of the total magnetization, Mo is the 

equilibrium magnetization and t is a time unit. The rate of spin-spin relaxation is 

related to the line width at half height, ν1/2. However, due to imperfect magnetic 

field homogeneity, different regions of the sample experience slightly different 

frequencies, and thus shorter T2 values. Thus, 

 

ν1/2 = 1/πT2 + γΔBo/2π     

 

where γΔBo/2π describes this magnetic field inhomogeneity. 

 

3.5.2  Transverse relaxation (T1) 

 

In addition to energy exchange with neighboring nuclei, energy exchange may also 

occur with the surroundings, or lattice. When a group of nuclei is placed in a 

magnetic field, Bo, a small equilibrium magnetization develops along the direction 

of Bo (z axis) given by the Boltzmann distribution. The rate at which Mz 

(magnetization in the z axis) approaches Mo (equilibrium magnetization) can be 

described as: 
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Mo-Mz = Ce
-t/T1

      

 

where C represents the degree of equilibrium attained by the magnetization at 

time, t, and T1 (spin–lattice relaxation), the rate at which the nuclei can transfer 

energy to the lattice. T1 measurements depend on the medium in which the 

measurement is made. Spin-lattice relaxation for solids is much longer (up to days) 

than for liquids (10
-2

 to 10
2
 s). 

Conversely, T2 values are generally much shorter than T1, in any medium. A 

related relaxation rate is the spin-lattice relaxation rate in the rotating frame, T1ρ. 

This time constant characterizes the decay of Mo in an applied field, B1, which is 

much smaller than Bo. After a 90° pulse and spin locking, as discussed in the 

cross- polarization section of this text, B1 is turned off and the magnetization along 

y is allowed to decay. This decay is described by: 

 

Mt = Moe
-t/T1ρ

      

 

and given as being in the rotating frame because the effective field is now B1 and 

not Bo. 
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Chapter IV Structural and morphological 

properties of hydrozincite minerals 

 

4.1 X-Ray Diffraction measurement 

 

The crystal structure of hydrozincite was first studied in a geological sample by 

using single crystal X-ray diffraction (Ghose, 1964). The Figure 4.1 shows some of 

collected XRD patterns. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1  XRD patterns of geological (Geol1 and Geol2), synthetic (Hy1, Hy2 

and Hy3), and biomineral (Nar) samples. All the patterns are in 
agreement with expected hydrozincite diffraction pattern. 
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All observe Bragg reflection can be indexed as a hydrozincite single phase with a 

monocline structure, according to experimental (PDF Card 19-1458) and calculated 

(PDF 72-1100) references patterns.  The XRD patterns confirm the presence of 

only hydrozincite phase in the samples.  

The I100 peak appears at 2θ~6° correspond to the (200) hydrozincite main 

reflection. For the geological samples, the relative peak intensity for the (200) peak 

is much higher than reported for the monocline structure in the references cards. 

This can be explained as a preferred orientation, in fact the preferred orientation 

can create a systematic variation in diffraction peak intensity, this information is in 

aggrement with the {100} crystallographic form, as observed also by SEM (Fig. 4.3 

a and b), at least for the Geol1 and Geol2 samples. 

The diffraction  spectra for the  Geol1 and Geol2  samples present peaks 

diffraction well  defined, while peaks from  the synthesized samples clearly show 

peak broadening, and the largest peak broadening for the biomineral sample (Nar). 

The broadening of the signals suggests a progressive decrease in the size of 

crystal-coherent domains. 

If the crystallite smaller than 120 nm the diffraction spectra present broad 

diffraction peak, in this case is possible to estimate the crystallite size by the full-

width at the half maximum (FWHM) of the most intense peak,  according with the 

Debye-Scherrer formula: 

 

 

where K is the shape factor, λ is the x-ray wavelength, for  Å, β is the line 

broadening at half the maximum intensity (FWHM) in radians, and θ is the Bragg 

angle (Scherrer, 1918; Patterson, 1939).The fitting of XRD spectra has been made 

cos
2

K
B

http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Intensity_(physics)
http://en.wikipedia.org/wiki/Full_width_at_half_maximum
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Bragg_diffraction
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by Origin 5.0 program from Microcal Software, for each collected diffraction spectra 

the dimension has been calculated by fitting of the main reflections. 

The averages sized calculated on the main reflection were ~21 nm for Geol1, ~19 

nm for Geol2, ~14 nm for Hy2, ~10 nm for Hy1, ~9 nm for Hy3 and ~7 nm for Nar. 

Thus, the progressive decrease in the size of crystal coherent domains should be 

dependent on the structural evolution of the minerals and/or on the crystallinzation 

process. Specifically, the persistence of the nanocrystals should be explained 

according to the mechanism on an imperfect oriented aggregation of nanoparticles 

(Meldrum and  Cölfen, 2007). 

 

4.2 Infrared Spectroscopy investigation 

 

Infrared spectroscopy is usually applied in the investigation of both inorganic and 

organic materials (Hasse et al., 2000; Wang et al., 2003). It allows the identification 

of characteristic functional groups in molecules that correspond to specific 

molecular vibrations (Conley, 1966). In addition, sampling is easy and requires a 

small amount of materials (about 1 mg). FT-IR has also been applied for 

comparing the organic composition of different molluscan shells (Dauphin, 1999; 

Dauphin et al., 2008). The main features of all FT-IR spectra in the range 400 – 

1800 cm
-1

 are shown in the Figure 4.2.  
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Figure 4.2 FT IR spectrum for geological samples (Geol1 and Geol2), synthetic 

samples (Hy1, Hy2 and Hy3), and biomineral sample (Nar). 
 

The carbonate vibrational stretching and bending of hydrozincite are attributed in 

comparison with the literature attributions (Music’ et al., 2002), and the main peaks 

are shown in Table 4.1. For comparison the IR peaks of carbonate groups taken 

from (Music’ et al., 2002) are show in the Table 4.1. The four peaks in the region 

1520–1390 cm
−1

 are ascribed to the asymmetric CO3
2-

 stretching ν3 mode (the 

correlation field splitting is well observed in the spectrum). The peak at 1047 cm
-1

 is 

assigned to the ν1 symmetric CO3
2-

stretching mode. The strong and sharp peaks 

at 836 cm
−1

  is assigned to ν2  out-of-plane OCO bending mode and that at 709 

cm
−1

 is assigned to ν4 asymmetric OCO bending mode. All the samples show 

bands in the range 2900-3600 cm
-1

 which can be ascribed to the water molecules 

and to the OH stretching modes. Both museum samples exhibit in the 2900-3600 
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cm
-1

 region a broad signal with on the top three peaks observed at  3235, 3298, 

3382 cm
-1

 in Geol1 and at 3235, 3301, 3379 cm
-1

  in Geol2. 

 

Mode Z4
a
 Geol1 Geol2 Hy1 Hy2 Hy3 Nar 

v1 1047 1047 1047 1046 1046 1046 1046 

v2 837 836 836 835 835 834 835 

v4 710 709 709 709 709 709 709 

v3 1362 1363 1351 1354   1355 1345 

v3 1387 1389 1389 1386 1382 1386 1380 

v3 1511 1506 1501 1505 1508 1510 1509 

v3 1549 1548 1546 1547 1550 1555 1556 

  3234 3235 3235 3300 3300 3368 3369 

vOH 3303 3298 3301 3562 3566 3569 3569 

  3363 3282 3379         

 

Table 4.1 FT IR frequencies (cm-1) of Hydrozincite samples compared with sample 
Z4 taken from Music´ et al. (2002). 

 

These peaks are in very good agreement with that reported in literature: 3234, 

3303 and 3363 cm
-1

 (Music et al., 2002) and attributed to the structured OH groups 

in hydrozincite. In this mineral, two oxygen atoms of the carbonate group are 

bonded to an octahedral and tetrahedral zinc atom each, whereas the third oxygen 

atom is hydrogen bonded to three OH groups. The hydrogen bonds present are of 

different strength, in spite of the similar hydrogen bond lengths, due to the different 

hydrogen bond acceptor strengths of the carbonate oxygen atoms (Schmidt and 

Lutz, 1993). This means that the stretching vibrations of the structural OH groups 

in hydrozincite should show three types of interactions in chemical bonding. In the 

IR spectrum of all the other samples in Figure 4.2, two broad bands centred at 

about 3500 cm
-1

 and 3300 cm
-1 

can be observed. These indicate the presence of 
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large amount of adsorbed water on the surface of the hydrozincite. The broad 

absorption bands at 1640 cm
-1

, assigned to the bending of water molecules, 

demonstrate the presence of molecularly adsorbed water in the crystal. The 

stretching vibrations corresponding to the structural OH group, which contributes to 

the IR band between 3200 – 3400 cm
-1

, are not resolved in these samples. 

The geological samples present a gradual separation of the IR bands 

corresponding to the structural   OH groups in [Zn5(CO3)2(OH)6]. Zabinski (1964) 

investigated the IR spectra of several hydrozincite minerals from different localities.  

Hydrozincite mineral from Dorchester showed a broad IR band centred at 3450 cm
-

1
, whereas the best crystallized hydrozincite mineral from Sedmocislenici showed 

well-resolved IR band at 3230 and 3303 cm
-1

 and a weak shoulder at 3350 cm
-1

. 

This author concluded that the change in the microstructure of hydrozincite caused 

this effect in the corresponding spectra. According to this author, hydrozincite 

consist essentially of Zn5(OH)6O2
4-

 sheets with additional Zn atoms and CO3 

groups above and below these sheets. The carbonate group hold these sheets 

together and, consequently, a deficiency of carbonate groups in hydrozincite 

facilities a disorder in the layer sequence. This means that the disorder crystal 

structure of hydrozincite influences the FT-IR spectrum as observed in the 

biomineral sample, in fact the spectrum showed a poor crystallinity respect the 

synthetic and in particular respect the geological samples. With an increase in the 

staking disorder the hydrogen bonds become elonged for different amounts in the 

various sheets and the corresponding IR bands are broadened and shifted toward 

higher wave number (Music´ et al., 2002). 
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4.3 The morphologies analyzed by Scanning Electron 

Microscopy 

 

The morphological features of the samples studied are significantly dependent on 

the mineral growth process. Geol1 and Geol2 show globular aggregates (Fig. 4.3 

a) and crystals are characterized by a platelet shape (Fig. 4.3 b), probably caused 

by the association of crystallographic forms {100} and {010}. Samples grown under 

a condition of inorganic synthesis show acicular crystals (Fig. 4.3 c) having a short 

side typically 100 and 200 nm in length, while the largest side is 2-10 µm and 

platelet shaped (Fig. 4.3 d). Synthetic crystals show shapes and sized similar to 

the geologically occurring crystals. The distinctive feature of the Naracauli samples 

is that the hydrozincite form a packed network (Fig. 4.3 e) and encrust 

cyanobacteria sheaths (Fig. 4.3 f). The crystals of the Nar samples show a platelet 

shape (Fig. 4.3 g) having the shortest side typically 50-100 nm long. These crystals 

are misaligned and form mesoporous aggregate having a sponge-like surface. In 

addition, some filaments of organic material are clearly visible between sheaths 

(Fig. 4.3 g) and sometime protrude out from the inner sheaths. 
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Figure 4.3 SEM images of Geologic sample Geol1 (a and b), synthetic sample 
Synth2 (c and d), and Naracauli natural biomineral (Nar). 
Morphological units flattened on {100} can be recognized for all 
samples. The morphology of Nar sample is characterized by sheaths 
and sole organic matter filaments. 



67 
 

4.4 HR - Transmission Electron Microscopy structural 

informations 

 

A representative HRTEM micrograph of geologic samples is provided in Figure 4.4 

image a  and b, where a low magnification image (Fig. 4.4 a) of the Geol1 sample 

shows a euredral particle. Due to the thickness of these well crystallized particles, 

only the extreme edge is transparent to electrons in high-resolution mode at high 

magnification (Fig. 4.4 b). The image of figure 3.4 b shows nanocrystalline domains 

larger than 5 nm with a grain boundary network. The observed nanocrystals exhibit 

the lattice plane distance of 2.85 Å, which corresponds to the (220) hydrozincite 

planes, as calculated by fast Fourier transform (FFT) in the inset (Fig. 4.4 b). 

Representative images of the Nar sample are show in Figure 4.4 c, with the FFT in 

the figure 4.4d (inset). The particle size distribution of the Nar sample, calculated 

on about 2000 particles observe in dark-field images, is reported in Figure 4.4 d. 

The average particle size is about 3-4 nm and the particle size distribution is 

narrow. TEM results are in good agreement with FWHM from XRD; the value (3-4 

nm), lower than the average crystallites size determined by XRD (7 nm), could be 

the result of the presence of some attached isoriented primary nanoparticles. In the 

literature were reported to spontaneously self-organized to a superstructure with a 

common crystalloghraphic orientation in a process called‖ oriented attachment‖ 

(Banfield et al., 2000; Meldrum and Cölfen, 2007). Figure 4.4 c (inset 1 and 3) 

clearly indicates that nanocrystals can aggregate by fusion at the grain boundaries. 

Sometimes misalignment between crystallites falls below 10°. More often 

nanocrystals sharing some of the atomic position at their grain boundaries show 

misalignment higher than 10°. The fusion process should be able to decrease the 

excess of surface free energy and then stabilize the nanocrystals. According to 

Meldrum and Cölfen (2007) the platelet observed by SEM can be consider as a 
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mesocrystals produced by imperfect oriented aggregation of the nanocrystals 

observed by TEM. In the Nar sample, the aggregation and fusion process cannot 

be scaled up and mesocrystals are only platelets observed in Figures 1 g and  h. In 

high resolution mode, some nanocrystals are observed with the lattice plane 

distance of 2.72 and 3.14 Å corresponding to the (021) and (020) hydrozincite 

planes. In comparison with geologic samples, the Nar sample show lattice defects, 

which can be related to the presence of staking modes (Fig. 4.4 c inset 2), in 

addition to nanocrystals in contact through grain boundaries. An HRTEM image of 

Hy2 sample is show in Figure 4.4 e with the FFT in the inset. The HRTEM image 

show grain boundaries and lattice defects, which can be ascribed to the presence 

of stacking modes on the basis of the typical streaking of the reciprocal rows 

observed in the FFT.  
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Figure 4.4 HRTEM images: Geol2 sample at low (a) and high magnification with 
FFT in the inset (b); Nar sample at high magnification (c-left) where 
lattice defects as grain boundaries (1,3) and stacking modes (2) are 
evidenced (c-right); FFT of Nar sample and particle size 
distributions(d); Hy1 sample at high magnification with FFT in the inset 
(e).  
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4.5 Solid State Nuclear Magnetic Resonance 

 
13

C NMR spectroscopy has been a routine tool of organic chemistry for many 

years, but there has been little investigation of the 
13

C behavior of inorganic phase. 

The first paper regarding the mineral carbonate with biogenic origin has been 

published in the 1989 (Papenguth et al., 1989). 

The information that we obtain from a solid-state NMR spectrum concern the 

presence of polytipes, different number of lattice defects in the sample, namely 

plane defects such as stacking faults (Tateyama et al., 1997;  Harris, 2004). This 

because NMR spectra are influenced by the local environment, extending to only 

few spheres of coordination, so long–range order is not required to produce a 

signal. The local environment can lower the local symmetry, thus affecting the 

individual chemical shift and broadening of the observed peak, which are the result 

of a superposition of the signals arising from all the carbon atoms in given sites 

(Mehring, 1983;  Engelhardt, 1987). 
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4.5.1 13C MAS experiments 

 

The 
13

C NMR experiments were collected with different relaxation delay, between 

0.2 s and 1200 s. The Figure 4.7 and Figure 4.8 show the 
13

C spectra of the 

samples Geol1, Geol2, Hy1, Hy2, Hy3 and Nar collected with 5 s and 1200 s. In 

the spectra of Geol1 and Geol2, shown in the Figure 4.7 and collected with 5 s of 

relaxation delay, a peak with FWHM of ~1ppm is present at 163.8 ppm. Figure 4.7 

shows that no signals are observed in the spectra of Hy1 and Hy3, while a large 

featureless signals is observed in the spectrum of Hy2 in the range 160-168 ppm. 

The spectrum of Nar sample shows overlapping signals falling in the 162-169 ppm 

range, with a main signal at ~164 ppm.  

 
Figure 4.7 

13
C MAS NMR spectra of geologic samples (Geol1 and Geol2), 

synthetic samples (Hy1, Hy2 and Hy3), and biomineral sample (Nar).  
The spectra were collected at two relaxation delay of 5 s. All spectra 
have 50Hz line broadening. 
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The spectra Geol1 and Geol2 collected with 1200 s of relaxation delay are shown 

in the Figure 4.8.  

  
Figure 4.8 

13
C MAS NMR spectra of geologic samples (Geol1 and Geol2), 

synthetic samples (Hy1, Hy2 and  Hy3), and biomineral sample (Nar). 
The spectra were collected at 1200 s. All spectra have 50Hz line 
broadening. 

 

The samples collected at 1200 s of delay show a main peak at 164 ppm, such as 

that observed in the spectra collected with 5 s of relaxation delay (Fig. 4.7); 

however, small shoulders at both low and high frequencies can now be identified. 

In addition, a small high frequencies signal at 168 ppm can be observed in   the 

spectrum of Geol1. The spectrum of Hy1 collected with 1200 s of relaxation delay 

(Fig. 4.8) present overlapping signals in the range between 163-169 ppm, the 

spectra of Hy2 and Hy3 show similar features to those of Hy1; however the peaks 

in the range 165.5-169 ppm are broader. The spectrum of the Nar sample shows 
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the same features under both delay conditions. As observed in Figure 4.8, even 

the use of a very long relaxation delay (1200 s) gives 
13

C MAS NMR spectra of low 

quality. 

 

4.5.2 13C CPMAS experiments 

 

 The use of 
13

C Cross-Polarization Magic Angle Spinning (CPMAS) technique 

gives spectra with a better signal to noise ratio (Fig. 4.9 and 4.10). The CPMAS 

technique is also useful for detecting biopolymers (Ueyama  et al. 1998; Takahashi 

et al., 2004). The 
13

C CPMAS NMR spectra should be effective for the organic 

components which have many protons, in fact in the 
1
H-

13
C Cross-Polarization 

experiment the proton magnetization transfer to a carbon nucleus occurs during 

the contact time period and depend on the distance between the protons and 

carbon nuclei; moreover, it is governed by the characteristic proton spin-lattice 

relaxation time in the rotating frame (T1ρ) and 
1
H-

13
C cross polarization time.  

Figure 4.9 shows the spectra collected whit a contact time of 4 ms for Geol1, 

Geol2, Hy1, Hy2 and Hy3 and with 1 ms of contact time for Nar sample. The 

geological and synthetic samples show the maximum polarization time as 10 ms, 

while the natural sample present 1 ms of maximum polarization time. 
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Figure 4.9 
13

C CPMAS NMR spectra of geological samples (Geol1 and Geol2), 
synthetic samples (Hy1, Hy2 and Hy3) and biomineral sample (Nar). 
Geological and synthetic spectra collected with 4 ms and Nar sample 
collected with 1 ms of contact time. All spectra have 50-Hz line 
broadening. 

 

In the experiments reported in the Figure 4.9 and in the experiments with 10 ms of 

contact time (Fig. 4.10) the sample Geol1, Geol2, Hy1, Hy2 and Hy3 present 

overlapping signals in the 162-169 ppm range,  whose the main signals appears at 

~164 ppm. The Nar sample was not cross polarizable with a contact time of 10 ms. 

this because, as described above, the presence of paragmanetic impurities in the 

sample Nar induces a shortening of the T1ρ relaxation process. 
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Figure 4.10 

13
C CPMAS NMR spectra of geological samples (Geol1 and Geol2), 

synthetic samples (Hy1, Hy2, Hy3) and biomineral sample (Nar) 
collected with 10 ms contact time. All spectra have 50-Hz line 
broadening. 

 

4.5.3 Individual Gaussian decomposition of 13C CPMAS 

overlapped signals 

 

The CPMAS NMR technique gives spectra with a  better signals to noise ratio 

respect the MAS NMR experiment, for this reason, we consider the analysis of 

CPMAS spectra suitable to discriminate the single components of the overlapped 

signals, at least for the chemical shift of the different observed peaks. The 

overlapped signals collected with 4ms of contact time for the geological and 

synthetic samples were decomposed into individual Gaussian by using the 

Software package Origin 7 from Microcal. The Figure 4.11 shows the experimental 

and simulates spectra of the Geol1 (a), Geol2 (b), Hy1 (c), Hy2 (d) and Hy3 (e). 
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This approach has been used in literature either for the simulation of infrared and 

Raman spectra of hydrozincite and smithsonite systems (Hales and Frost, 2007) or 

NMR spectra as silicon carbide (Mykhaylyk, 2002). The information obtained (i.e., 

positions, FWHM, and chemical shift values of geological samples) were reported 

in the Table 4.3 The relative areas of the signals in the Table 4.3 should be taken 

with caution and only as an indication of the relative amounts of the different 

structural conditions.  

 
Figure 4.11 

13
C CPMAS  NMR spectra of Geol1 (a), Geol2 (b), Hy1 (c),Hy2(d) and 

Hy3 (e) samples. The species distributions in 
13

C CPMAS experiment 
of the samples were obtained by a nonlinear fitting of the NMR 
spectrum to individual Gaussians (grey curves). In the fitting 
procedure, the position, line width, and intensity were varied to find 
the best fit curve (red curve) to the experimental spectrum. The 
residuals were show offset for clarity (black curve).  
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  Geol1 Geol2 Hy1 Hy2 Hy3 

δ 163.0±0.4 163.0±0.3 162.9±0.2 162.7±0.3 162.9±0.1 

FWHM 1.21±0.06 0.92±0.08 0.93±0.07 1.62±0.08 1.33±0.01 

%  13 10 9 4 11 

δ 164.1±0.3 164.1±0.2 164.2±0.2 164.3±0.1 164.2±0.2 

FWHM 0.82±0.04 0.85±0.04 0.91±0.03 1.45±0.06 1.01±0.08 

%  74 66 40 39 37 

δ 165.2±0.4 165.2±0.3 165.3±0.3 165.9±0.4 165.4±0.4 

FWHM 1.23±0.06 0.91±0.07 1.34±0.07 1.72±0.09 1.61±0.04 

%  13 15 24 23 26 

δ   167.9±0.4 168.0±0.3 168.0±0.4 167.6±0.4 

FWHM   1.54±0.05 1.65±0.06 1.82±0.07 1.53±0.01 

%   9 25 20 12 

δ   169.3±0.4 169.4±0.3 168.8±0.3 

FWHM   1.55±0.08 1.57±0.05 1.57±0.05 

%     2 14 14 

 

Table 4.3 Chemical shift (ppm), FWHM (ppm), and percentage of carbon CPMAS 
signals decomposed into individual Gaussians for geologic and 
synthetic samples collected with 4ms contact time.  

 

The fitting results clearly show that the signals at 164 ppm are the main signals for 

all samples, as observed in the 
13

C MAS (Fig. 4.7 and 4.8) spectra. In the Geol1 

samples two more signals were detected at ~163 and ~165 ppm, whereas in the 

Geol2 samples further signals is detected at ~168 ppm. In the spectra of both 

synthetic samples, more components are present, and a good simulation can be 

achieved using only five Gaussians at ~163, ~164, ~166, ~168, and ~169 ppm. 
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4.5.4 Considerations on the overlapped signals 

 

 It is worth noting that, even though the hydrozincite structure (Ghose 1964) has 

only one crystallographically independent site for the carbon atom, but all MAS and 

CPMAS spectra in the Figure 4.4 and 4.5 show several peaks in the range 150-180 

ppm, more dominant in the biomineral and synthetic samples. Several reasons can 

be taken into consideration to explain the presence of these additional signals: 

1. The presence of paramagnetic metals can influences the chemical shift, 

the spin lattice relaxation time (T1) and the line with the carbon signals   (La 

Mar et al. 1973) The amount of paramagnetic metal impurities in the Nar 

sample is lower than 0.3%, is below 0.1% in the Geol1 and Geol2 samples, 

and far below 0.1% in Hy1, Hy2 and Hy3 samples (Table 4.4). As 

consequence, since overlapping signals are present in Nar, synthetic 

samples, the presence of paramagnetic metal impurities cannot be 

responsible for the appearance of additional signals. It is worth noting that 

the spectra Hy1, Hy2 and Hy3 clearly show very broad signals at 5 s of 

delay (Fig. 4.7), whereas small peaks are observed with 1200s delay (Fig. 

4.8). Thus large T1 characterizes the NMR signals of these samples. 

However, the spectrum of the Nar sample appears to be independent of 

the investigated delays, showing that the NMR signals are affected by 

short T1 (<5 s). Geological samples show a slight dependence on the 

experimental delay. This seems to indicate that samples having low 

paramagnetic metal impurity content show dependence on relaxation delay 

(synthetics), samples having high concentration impurities contents show 

very little dependence (Nar), and samples of intermediate content show a 

slight dependence. This shows that the paragmanetic impurities do have 
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strong effects on the NMR spin lattice relaxation times affecting the 

appearance of the peaks as a function of relaxation delay in the MAS 

spectra (Fig. 4.7 - 4.8). Similar information is obtained from the CPMAS 

spectra (Fig. 4.9 - 4.10). It may be suggest that in Nar, the presence of 

higher concentration of paramagnetic impurities, when compared to the 

other samples, induces a shortening of the T1ρ relaxation process, limiting 

the polarization transfer to C nuclei. This can explain to loss of cross-

polarizable carbon signal in Nar sample collected at 10 ms contact time 

(Fig. 4.10). 

 

 Geol1 Geol2 Hy1 Hy2 Hy3 Nar 

Zn 
(g/Kg) 

511 539 550 543 540 515 

Pb 
(mg/Kg) 

110 <0.4 0.05 81 25 1800 

Cd 
(mg/Kg) 

974 116 <0.4 <0.4 <0.4 560 

Fe 
(mg/Kg) 

300 21 <6.2 <0.4 <0.4 1970 

Mn 
(mg/Kg) 

300 2.00 0.01 0.04 0.02 220 

Cu 
(mg/Kg) 

17 12 8.08 7.02 7.56 150 

Ni 
(mg/Kg) 

23 10 0.08 0.08 0.08 330 

Co 
(mg/Kg) 

0.02 0.02 0.02 0.02 0.01 26 

Ba 
(mg/Kg) 

26 29 1.01 1.02 1.03 22 

Sr 
(mg/Kg) 

1.07 0.06 0.01 0.01 0.01  9 

 

Table 4.4 Concentration of paramagnetic impurities in the geologic samples (Geol1 
and Geol2), synthetic samples (Hy1, Hy2 and Hy3) and biomineral 
samples (Nar). 
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2.   The appearances of extra peaks in the range of 150-180 ppm could be 

explain by the presence of carbonyl/amide-carbons from organic 

biopolymers, as previously observed (Takahashi et al., 2004).  However 

the presence of additional signals can be clearly excluded for the synthetic 

samples, since they were synthesized in our laboratory in the absence of 

any organic molecule, as evidenced by the absence of organic filaments in 

TEM images. As to the Geol1 and Geol2 samples, they show lower 

additional signals than the other samples analyzed, and, like the previous 

sample, the SEM images do not show traces of organic filaments. This 

evidence, and the fact that the amount of carbon estimates through CHNS-

O analysis was in agreement with the stoichiometry of the hydrozincite 

formula (4.44%) for all geological and synthetic samples (Geol1 4.41%; 

Geol2 4.37%; Hy1 4.29%; Hy2 4.34%; Hy3 4.32%) rule out this possibility. 

Different consideration should be made regarding the Nar sample. In this 

sample, the C estimate through CHNS-O analysis revealed an excess of C 

(4.84%), which suggest the presence of biopolymer C. This evidence 

confirms the presence of some organic material in the Nar sample, as 

observed in SEM images (Fig. 4.3 g), and it is in good agreement with the 

signals observed in CPMAS spectrum, as shown in the next paragraph. In 

fact, the CPMAS spectrum Figure 4.12 of the Nar sample is characterized 

by a broad signals that can be attributed, as revealed by CHN-O analysis, 

to aliphatic chains (~22ppm) and to O-aliphatic –carbons (~73ppm and 

~110 ppm), whereas these signals were not observed in the other 

samples. Carbonyl-C atoms would be expected in the range 160<d<190 
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ppm. All this evidence would suggest the presence of signals coming from 

carbonyl C from organic material in the range of 150-180 or at least, and 

more importantly, that the organic material has some influence in the 

formation of this additional signals.  

3.   The NMR technique is well known to be sensitive to the crystal order and to 

the presence of lattice defects such as stacking faults. The relation 

between stacking and/or polytype and NMR peak formation is well known 

in literature for several phase such as silicon carbide (Tateyama et al., 

1997;  Harris, 2004; Hartman et al., 1987), calcium silicate hydrate (Cong 

and Kirkpatrick, 1996)  and saponite (Vogels, 2005). Depending on mineral 

synthesis, different stacking sequences or polytypes can possibly be 

achieved, (Vogels et al., 2005), and these result in different energy minima 

(Ryjáček et al., 2005) Despite the fact that the C has only one 

crystallographic position in the ideal structure of hydrozincite, 
13

C NMR 

spectra of our samples show up to five peaks depending on the mineral 

formation. These additional peaks can be ascribed to the presence of 

lattice defects, namely grain boundaries and stacking modes, that lower 

the crystal structure symmetry present in these hydrozincite crystals, in 

agreement with HRTEM analysis. 
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4.5.5 Evidence of organic matrix in hydrozincite biomineral 

 

This approach cannot be used for the Nar sample, in fact as observe in the  whole 

spectrum collected with 1 ms to contact time (Fig. 3.12), this shows additional 

broad signal at ~22, ~73, ~103, ~173, ~181 ppm which were not present in all the 

spectra of the other samples. 

 

 
Figure 4.12 The whole 

13
C CPMAS spectrum of biomineral sample collected at 1 

ms contact time. (* indicates spinning side bands of the overlapping 
signals in the 163-169 ppm range). 

050100150200
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These additional signals may be attributed to the presence of organic material. The 

hypothesis has been confirmed in addition to the SEM image (Fig. 4.3 g) also 

through the  CHNS-O analysis, that revealed an excess of C (4.84%), for Nar 

sample respect the other samples (~ 4.2%), which suggest the presence of 

biopolymer C. The 
13

C CPMAS signals can be attributed, as revealed by CHN-O 

analysis, to aliphatic chains (~22ppm) and to O-aliphatic –carbons (~73ppm and 

~110 ppm). In literature, Takahashi et al. (2004) show similar results for the 

biopolymer present in biomineral CaCO3 Pinctada fucata. 

 

4.6 FT-IR characterization of organic matrix 

 

The mineral phase of biomineral is intimately associated with a biological material, 

or matrix, that binds the crystals together from their early stages of assembly. The 

literature show that the biological component represents less than 5% of the entire 

biomineral volume (Marxen et al., 1998;  Marin and Luquet, 2004; Dauphin, 2006); 

and, it is an integral part of the mineral and is responsible for crystal nucleation, 

growth and physical properties. (Lowenstam, 1981; Weiner, 1981).  Therefore, 

knowing how this is achieved is extremely important to understand the whole 

mineralization process.  

The matrix has been frequently investigated. Two fractions are present, one is the 

(water)-soluble fraction, and the other is the insoluble component.  

It is essentially inter-crystalline, and acts as the framework upon which crystals are 

deposited. Therefore, the dissolution of the crystalline matter of the biomineral 

allows not only a clear three dimensional view of the insoluble matrix, but also a 

means of its biochemical characterization (Tong et al., 2002; Dauphin et al., 2003 

a,b). The matrix basically contains proteins, carbohydrates, polysaccharides and 
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lipids (Levi-Kalisman et al., 2001).The soluble fraction is essentially associated with 

the surface of the insoluble and structured matrix, and also found within the 

crystals (Tong et al., 2002). 

The mineral deposition dynamics and the biological and chemical reactions 

underlying it have not been completely explained. Recent studies by Cartwright 

and Checa (2007) emphasize the complexity of the phenomena involved, of 

biological and physical–chemical nature. The matrix is present between each 

crystalline layer and also within the crystals, comprised of crystalline subunits (Gre´ 

goire, 1961; Checa and Rodriguez-Navarro, 2001; Tong et al., 2002; Cartwright 

and Checa, 2007).  

The third component of the organic matrix of calcareous biominerals is lipids.  

Although analyses dealing with this component, for example in biomineral as 

molluscan shells are scarce. Goulletquer and Wolowicz (1989) have estimated that 

proteins represent 90% of the organic matrix of the shell, carbohydrates vary from 

0.15 to 0.29%, while lipids vary from 0.8 to 2.9%. Fatty acids, cholesterol, 

phytadienes and ketones have been described in modern and fossil shells 

(Cobabe and Pratt, 1995). Recently, Farre and Dauphin (2009) verified through 

spectrometry and thin layer chromatography the difference in lipids content 

between prismatic and nacreous layers of P. nobilis (Mytiloidea) and P. 

margaritifera (Pterioida, Pteriidae); both organisms contain lipids, but there are 

compositional differences.  

FT-IR has also been applied for comparing the organic composition of different 

biominerals as molluscan shells (Dauphin, 1999; Dauphin et al., 2008). The 

biogenic crystal growth is controlled by an organic matrix responsible for defining: 

(a) crystal nucleation; (b) crystal size; (c) crystal orientation; (d) crystal 

morphological characteristics (Wilbur and Saleuddin, 1983). The use of infrared 

spectroscopy has identified the functional groups responsible for organic matrix. 
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The organic matrix, clearly visible in the 
13

C CPMAS NMR (Fig. 4.12) and SEM 

(Fig. 4.3 g) images for the Nar sample, has been extract and characterized by FT-

IR. In the Figure 4.18 the FT-IR spectra for the Nar biomineral sample, the 

insoluble organic matrix (IOM) and lipidic fraction are reported. 

 

5001000150020002500300035004000

wave number (cm
-1

)

Nar

IOM Nar

lipidic Nar

 

Figure 4.18 FT-IR spectra of biomineral Nar sample, insoluble organic matrix 
(IOM) and lipidic extraction. 

 

4.6.1 Characterization of insoluble extract 

 

For the better analysis of IOM the FT-IR spectrum has been divided in three range, 

the Figure 4.19 show the FT-IR between 4000-2700 cm-1, this part is 

characterized by bands corresponding to the N-H  stretching at 3620 cm
-1

, amide A 

at 3300 cm
-1

, three signals at 2954, 2925 and 2854 cm
-1

 corresponding to CH2 and 

CH3 vibrations. 
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Figure 4.19 Detailed FT-IR spectrum of IOM Nar sample in the range 4000-2700  

cm
-1

. 
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Figure 4.20 Detailed FT-IR spectrum of IOM Nar sample in the range 1900-1400 

cm
-1

. 
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In the range between 1900-1400 cm
-1

   (Fig. 4.20) are very clearly the vibration of 

amide I and amide II: amide I at 1653 cm
-1

 (v C=O), band of amide II at 1557 cm
-1 

(v C-N and δ N-H) and 1548 cm
-1

 (v C=O).  This part of the spectrum is very similar 

with other FT-IR spectrum of IOM for Pinna Nobilis  and Pinctada Margaritifera 

calcitric prisms bivalves (Dauphin, 2003).  

 

 
Figure 4.21 Detailed FT-IR spectrum of IOM Nar sample in the range 1400- 400 

cm
-1

. 

 

FT-IR between  1400-400 cm
-1

 is reported in the Figure 4.21. Band between 1000 

and 1150 cm
-1

 are usually considered to characterize the presence of 

polysaccharides. The FT-IR showed two important bands in this region at 1084 and 

1032 cm
-1

 which suggest the presence of polysaccharides in the insoluble matrix 

extracted from Nar sample. 
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4.6.2 Characterization of lipidic extract 
 

FT-IR data on lipidic extracted form biomineral are very rare. Nevertheless, Samata 

and Ogura (1997) have shown that lipids were present in the nacreous layer of 

Pinctada fucata. The FT-IR of lipid extract from Nar sample is reported in the 

Figure 4.22. The spectrum shown characteristic frequencies for the lipids: a strong 

broad band centered at 3422 cm
-1

 due to HOH stretching; IR absorption bands of  

 

Figure 4.22 FT-IR spectrum of lipidic extract from biomineral Nar. 

 

aliphatic CH moieties at 2960, 2928, 2877 and 2855 cm
-1

, the bands around 2960 

cm
-1

 and 2928 cm
-1

 are derived from asymmetric stretching of end-methyl aliphatic 

CH3 and methylene-chain CH2, respectively (Bellamy, 1954), while the weaker 

bands from symmetric stretching of aliphatic CH3 and CH2 are also seen around 
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2877 cm
−1

 and 2855 cm
−1

, respectively; intense signals at 1729 cm
-1

 due to 

carboxylic acid (νC=O); a weaker band for amide I at 1630 cm
-1

; CH2 bending and 

CH3 symmetric bending at 1461 cm
-1

 and 1383 cm
-1

, respectively; is also clearly 

the presence of phosphate diester, in fact the FT-IR showed the asymmetric 

stretching at 1277 cm
-1

, and the symmetric stretching at 1072 cm
-1

 due to this 

group. 

 

4.6 Conclusions 

 

The microscopic properties of biomineral hydrozincite from Naracauli Creek (SW 

Sardinia) were investigated by using X-ray Diffraction (XRD), Fourier Transform 

Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Scanning Electron 

Microscopy (SEM), and High-Resolution Transmission Electron Microscopy 

(HRTEM). Because the biomineral hydrozincite turned out to significantly deviate 

from ideal structure of hydrozincite, synthetic and geologic samples were also 

investigated for comparison. SEM imaging shows that biomineral hydrozincite is 

made of small platelet-shaped crystallites having a 20-50 nm long side at the 

shortest and other sides measuring hundreds of nanometers long. These are 

interlaced to form sheaths several micrometers long. HRTEM analysis of the 

biomineral samples shows an imperfectly oriented aggregation of the nanocrystals 

that is discussed in terms of mesocrystals. TEM and XRD analysis indicate a 

progressive decrease in size of the particles in the biomineral compared to the 

synthetic and geologic hydrozincite samples, with coherent diffraction domains in 

the biomineral hydrozincite that are smaller by 30-50% that in the other samples 

investigated. 
13

C magic angle spinning (MAS) and cross-polarization magic angle 

spinning (CPMAS) NMR spectra show more than one peak for all the investigated 

samples, despite the fact that carbon atoms have a unique crystallographic 
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position in the hydrozincite structure. The additional peaks can reflect the presence 

of lattice defects, such as grain boundaries and stacking modes, can be observed 

both in the biomineral and in the synthetic samples. Further additional peaks in the 

NMR spectra of biomineral samples are attributed to organic molecules, relicts of 

the biomineralization process, in agreement with the filaments observed in SEM 

images of biomineral samples. The organic components of the biomineral sample 

has been extracted and characterized by FT-IR, it is composed by proteins, 

polysaccharides and lipids, and the result is very similar with other biomineral 

formation reported in literature 
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Chapter V Characterization of the interaction 

hydrozincite/DEHP 

 

5.1 Hydrozincite in vitro synthesis 

 

Another important aspect of the research was to understand the phenomenon, at 

the molecular level, of the hydrozincite biomineralization. 

But during the attempt to reproduce the hydrozincite biomineral in vitro, we have 

found the presence of new molecule bounding with the mineral. The Figure 5.1 

showed the FT-IR spectra of synthetics hydrozincite Hy3 and Hy4. 

Both FT-IR spectra in the range of 400 – 1800 cm
-1

, are the carbonate stretching 

and bending modes of hydrozincite (see chapter IV), in agreement with those 

reported in literature (Music et al., 2002): the four peaks in the region of 1520–1390 

cm
−1

 ascribed to the asymmetric C-O stretching ν3 mode (the correlation field 

splitting is well observed in the spectrum); the strong and sharp peak at 836 cm
−1

 

assigned to the ν2 out-of-plane O-C-O bending mode and the one at  709 cm
−1

 is 

assigned to ν4 asymmetric O-C-O bending modes and the peak at 1047 cm
-1

  

assigned  to the ν1 symmetric C-O stretching mode (Music et al., 2002). The 

spectrum exhibits broad signals which were attributed to the contributions of 

different lattice defects   and grain boundaries (Hales
 
and Frost, 2007).   But in the 

15% of synthesized hydrozincite samples, the FT-IR spectrum, besides the signals 

ascribed to hydrozincite, shows several new peaks (Hy4): a series of signals in the 

region of the C-H stretching at 2962, 2925, 2875, 2858 cm
-1

; an intense signal at 

1730 cm
-1

, which is typical of ester C=O stretching; and two small bands at 1290 

cm
-1

 and 1189 cm
-1

. The new signals were partially removed after washing the 

sample with acetone at room temperature (Fig. 5.1, sample Hy4/1).  
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Figure 5.1 FT-IR spectra of synthetic hydrozincite (Hy3), synthetic hydrozincite 
with unkown molecule (Hy4), Hy4 washed with acetone (Hy4/1) and the 
extract molecule. 

 

The acetone extract was evaporated and the residue, which appeared as a viscous 

liquid, was characterized through FT-IR and NMR spectroscopy. The FT-IR 

spectrum of this sample (Fig. 5.1 extract) exhibits new signals which were not 

evident in the Hy4 spectrum, as they were hidden by the hydrozincite signals. 

These signals are present in the region of C-H bending at 1467 cm
-1

, and in the 

region of C-O stretching at 1293, 1273, 1141, 1125, 1075 cm
-1

 respectively, and 

two signals at 744 and 705 cm
-1

. 
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5.2 Identification of extract molecule 

 

This extract molecule has been identified by means 1D 
1
H and 

13
C, and 2D COSY, 

HSQC and HMBC NMR experiments. In Figure 5.2 and 5.3 the 
1
H NMR and 

13
C 

NMR experiment for the extract molecules in Acetone-d6 are reported. 

 

 

Figure  5.2 
1
H NMR spectrum for extract molecules by Hy4. 
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Figure 5.3  
13

C NMR spectrum for extract molecules by Hy4 sample.  

 

In the 
1
H NMR (Fig. 5.2) spectrum the signals at  7.85 ppm and 7.78 ppm  

exhibiting the AA’BB’ system typical of a di-substituted ring whereas the signals at 

4.33 ppm is the AB part of the ABX pattern formed by three protons in the 

OCH2CH group. The 
13

C NMR (Fig. 5.3) spectrum of unknown compound  showed 

12 carbon signals.   
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Figure 5.4 COSY experiment acquired with 64 transients with a total 2 K data 
points along the t2 axis and 512 data points along the t1 axis. 
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Figure 5.5 
1
H/

13
C HSQC spectrum recorded with 64 transients with 2k points in the 

t2 dimension and 512 in the t1 dimension. 
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Figure 5.6 
1
H/

13
C HMBC spectrum recorded with 128 transients with 2k points in 

the t2 dimension and 512 points in the t1 dimension 

 

The COSY (Correlation Spectroscopy) experiment showed the cross peaks 

couplings (2 and 3 bond) between two protons, the spectrum in the figure 5.4 H-5 

showed cross peaks with H-6 methine protons, H-9 correlated with H14 and H10. A 

HSQC (Heteronuclear Single Quantum Coherence) experiment was utilized to 

assign the protons to their attached carbons. In the spectrum reported in the figure 

5.5, the carbons 4/5 and 3/6 showed cross peaks with two multipletes at 7.85 and 

7.78 ppm; the C-9 showed the cross peak at 1.78 ppm, the C-10 at 1.59 ppm, the 

C11 and C12 respectively at 1.49 and 1.47 ppm, the C-14 at 1.53 ppm; C-11 and 

C-15 showed the cross peaks respectively at 1.02 and 1.05 ppm. HMBC 

(Heteronuclear Multiple Bond Coherence) was utilized for the determination of 

connectivity between two different nuclear species; in the Figure 5.6 the   

interactions where found between H-4,5 and  C-1,2  and between H-13  and C-12, 
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C-11  and between H-15 and  between C-14 .  All these correlation suggested that 

the unknown molecule correspond to Bis(2-ethylexil)phthalate, an schematic 

representation of the molecules is reported in Figure 5.7   

 

 

 

 

Figure 5.7 The schematic representation of Bis(2-ethylexyl)phthalate. 

 

The complete assignment of the 
13

C NMR and 
1
H signals of neat DEHP, which 

result in good agreement with previous assignments (Cohen  et al., 2001) is shown 

in Table 5.1. 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFF-4J4B9F8-4&_user=496651&_coverDate=04%2F10%2F2006&_rdoc=1&_fmt=full&_orig=search&_cdi=5225&_sort=d&_docanchor=&view=c&_acct=C000024278&_version=1&_urlVersion=0&_userid=496651&md5=2809e1560347c504230a33a9ae7d224f#tbl1
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DEHP 
13

C δ 
1
H δ 

(ppm) (ppm) 

 1/2 132.8   

 4/5 128.98 7.85m 

 3/6 131.37 7.78m 

7 167.37   

8 67.52 4.33dd 

4.30dd 

9 38.78 1.78sept 

10 29.68 1.59quad 

11 23.38 1.49quint 

12 22.64 1.47sest 

13 13.66 1.02t 

14 30.55 1.53sest 

15 10.66 1.03t 

 

Table 5.1   Complete assignment of 
1
H and 

13
C chemical shift for DEHP. 

  

5.3 Origin of DEHP pollution  

 

DEHP is commonly used as a plasticizer and is contained in the plastic materials 

used in the synthesis, for this reason we have analyzed the plastic devices (flexible 

tube and plastic container) used for the synthesis. In the Figure 5.8 the FT-IR 

analysis of plastic devices in comparison with extract molecule and pure DEHP are 

reported. 
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Figure 5.8 FT-IR spectra of extract molecule by Hy4, pure DEHP and plastic 
device as flexible tube and plastic containers. 

 

The signal characteristic for DEHP at 1730 cm-1 which is attributing to the 

carboxylic group is present in the FT-IR spectrum of flexible tube. 

These results would suggest that DEHP migrates from the PVC tube into the 

solution and is then taken up by hydrozincite during precipitation.  

 

5.4 FT-IR study of hydrozincite synthesized in presence of 

PVC 

 

In order to test the reproducibility of DEHP uptake, hydrozincite was synthesized in 

the presence of sliced flexible tubing sections (Hy5).  As can be observed in the 

FT-IR spectrum of the sample Hy5 signals attributed to DEHP are clearly visible 

(Fig. 5.9); the spectrum of the Hy3 sample is shown for comparison. The 
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experiment was repeated several times always giving the same result when the pH 

of the solution was set at 6.8, which was found to be stable during the experiments.   

 

 

 

Figure 5.9 FT-IR of synthetic hydrozincite Hy3, hydrozincite synthesized in 
presence of PVC slices (Hy5) and Hy5 after washing with acetone 
Hy5/1. 

 

In order to evaluate whether the DEHP was only adsorbed by hydrozincite, the 

sample Hy5 was washed with acetone at room temperature in a glass tube. The 

FT-IR spectrum of the washed hydrozincite (Hy5/1) showed that the signal 

intensities pertaining to DEHP were significantly reduced. However, as can be 

observed from the signals attributed to C-H stretching vibration, some of the DEHP 

remained. The absence of the signal attributed to the C=O stretching vibration is 

evident. 
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For explain this different evolution of the DEHP signals in the FT-IR spectra after 

washing, we have prepared several samples of hydrozincite (Hy3) mixed with pure 

DEHP. 

 

5.5 FT-IR study of  hydrozincite/DEHP mixture 

 

Several samples are prepared by mixing hydrozincite Hy3 with different quantities 

of pure commercial DEHP. The FT-IR spectra for the hydrozincite samples mixed 

with  25µl, 50 µl, 100 µl, 200 µl, 400 µl of pure DEHP are show in Figure 5.10.   

 

 
Figure 5.10 FT-IR spectra 300 mg of hydrozincite Hy3 mixed with 25µl of pure 

DEHP (Hy3-25DEHP), with 50µl of pure DEHP (Hy3-50DEHP), with 
100µl of pure DEHP (Hy3-100DEHP), with 200µl of pure DEHP (Hy3-
200DEHP) and with 400µl of pure DEHP (Hy3-400DEHP). 
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The intensity of the signals in the region of C-H stretching (2800-3000 cm
-1

) and 

the signal of the C=O stretching at 1730 cm
-1

 increase with addition of DEHP. The 

FT-IR spectra does not show any shift of the above mentioned signals, neither the 

signals attribute to hydrozincite show broadening or shift. 

5001000150020002500300035004000
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Figure 5.11 FT-IR spectra of Hy5, Hy5 after washing (Hy5/1), Hy3-25DEHP, Hy3-
25DEHP after washing (Hy3-25DEHP/1), Hy3-400DEHP and Hy3-
400DEHP after washing (Hy3-400DEHP/1). 

 

The Figure 5.11 display the FT-IR spectra of Hy5, Hy5/1, Hy3-25DEHP,Hy3-

25DEHP/1, Hy3-400DEHP, Hy3-400DEHP/1. The samples Hy5/1, Hy3-25DEHP/1, 

Hy3-400DEHP/1 were the samples washed with acetone. After washing (Hy3-

25DEHP/1 and Hy3-400DEHP/1) the FT-IR spectra showed that the intensity of the 

C-H stretching signals and C=O signals decrease proportionally, but for the sample 

Hy5 this proportionally is not respect, in fact after washing (Hy5/1) the FT-IR  

present the signals for the C-H but is not present the C=O stretching. 



111 
 

This result indicates that the C=O stretching signal of the DEHP is broadened 

beyond detection in the spectrum of Hy5/1, and this suggest that DEHP is strongly 

bound to the hydrozincite, possibly through   the C=O groups, when flexible tubing 

is present during   the hydrozincite synthesis (sample Hy5), while it shows a 

weaker interaction with the surface of the hydrozincite when added to hydozincite 

nanocrystals (sample Hy3-400DEHP). 

For comparison the synthetic calcite has been prepared in the presence of flexible 

tubing slices (Cal2). The FT-IR spectra are reported in Figure 5.12. The FT-IR 

spectra are consistent with the previously reported spectra of pure calcite (White, 

1974; Balmain et al., 1999; Cebeci and So¨nmez, 2004). Both spectra showed the 

diagnostic and characteristic signals for the calcite at 1428, 878, and 714  cm
-1

   

that correspond to the v2, v3 and v4 mode of vibration stretching. In the spectra 

are present also the bands for the overtone of calcium carbonate at 2983, 2782, 

2589, 2511 cm
-1 

and a broad
 
band in the region of 3700-3100 cm

-1
 attributable to 

the stretching modes of structural water. 

The spectrum for the calcite synthesized in the presence of flexible tubing slices 

resulted indistinguishable from the calcite control spectra (Cal1). This result shows 

no evidence of DEHP incorporation into calcite during growth, under the 

experimental conditions used.  

 



112 
 

5001000150020002500300035004000

wave number (cm
-1

Cal1

Cal2

 

Figure 5.12 FT-IR of synthetic calcite Cal1 and synthetic calcite synthesized in 
presence of PVC (Cal2). 

 

5.6 13C MAS NMR investigation of hydrozincite/DEHP 

 

 NMR spectroscopy is well suited for the study of organic compound – solution or 

organic compound adsorbed interaction because it is an element specific method 

that is extremely sensitive to the electron density (shielding) near the nucleous of 

interest. NMR techniques can be used to obtain a variety of information about an 

adsorbed molecule, including mechanisms of adsorption and surface sites 

involved, the dynamics (molecular diffusion, chemical exchange) of an adsorbed 

molecule on a mineral surface (Fyfe, 1983). The 
13

C NMR spectra of pure DEHP 

(neat DEHP), hydrozincite in which 25 µl of neat DEHP was added to 300 mg of 
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hydrozincite (Hy3-25DEHP) and hydrozincite synthesized in the presence of sliced 

flexible tubing sections (Hy5) are shown in Figure 5.13. 

 

Figure 5.13 
13

C MAS spectra of the following samples:  DEHP as a neat liquid ( 
DEHP), hydrozincite mixed with DEHP (Hy3-25DEHP) ,  DEHP 
adsorbed on hydrozincite  by sliced pipes ( Hy5), calcite mixed with 
DEHP (Cal1-100DEHP). 

 

 In the Hy3-25DEHP and Hy5 MAS spectra signal from the carbonate group of 

hydrozincite, which occurs between 160 – 170 ppm, is not visible. This absence of 

carbonate peaks is due to the short repetition time (1 s) used in the experiments 

relative to the long spin lattice relaxation time that characterizes the hydrozincite 

carbonate carbon (> 50 s). However, all the carbon signals pertaining to DEHP, 

which exhibit spin lattice relaxation times shorter that 1 s, are clearly visible.  

04080120160
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 Cal1-25DEHP

13
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The most important differences concerning the 
13

C NMR spectra of DEHP as a 

neat liquid and DEHP in the Hy5 and Hy3-25DEHP samples are highlighted in the 

following: 

 

- 
13

C spectrum of neat liquid DEHP taken without sample spinning (spinning 

at 1 kHz did not change the quality of the spectrum) is shown in Figure 

5.13 and the chemical shift values are listed in Table 5.1. The Full Width at 

Half Maximum (FWHM) of the carbon signals of this sample range 

between 0.82 ppm (C3/6) to 0.72 ppm (C7). 

 

- 
13

C MAS peaks of the aliphatic chains of DEHP mixed with hydrozincite 

(Hy3-25DEHP) are very similar to those observed for neat liquid DEHP.  

Slight differences were observed in the regions for C8, carboxyl and ring 

carbons:  the peaks for C8, carboxyl and ring carbons in the Hy3-25DEHP 

MAS spectra are slightly broader (FWHM >1.0 ppm) and the carboxyl 

signal is shifted 0.4 ppm downfield (Table 5.1). 

 

- 
13

C MAS spectrum of the Hy5 sample exhibits overlapping resonances and 

a downfield shift of the aliphatic carbons (Fig. 5.13 and Table 5.1). The ring 

carbons show only a single, unresolved broad peak (FWHM = 5.3 ppm) 

shifted downfield (~3 ppm) and the carboxyl peak is also broadened 

(FWHM > 3 ppm) and shifted downfield (3.5 ppm). 
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Carbon 

type 

 

13
C (ppm) 

    DEHP    Hy3-25DEHP     Hy5
a
 

1/2 Ring carbon 132.8 132.6  

3/6 Ring carbon 130.7 130.9 132.6 

4/5 Ring carbon 128.8 128.8  

7 Carbonyl 

group 

166.7 167.2 169.5 

8 Methylene 

group 

67.4 67.4 67.7 

9 Methyne 

group 

38.8 38.8 39.4 

10 Methylene 

group 

28.9 28.9 30.4 

11 Methylene 

group 

23.9 23.9  

23.7 

12 Methyl group 23.0 23.0 

13 Methyl group 10.8 10.8 11.0 

14 Methylene 

group 

30.4 30.4 30.5 

15 Methyl group 13.9 13.9 13.9 

 

Table 5.2  
13

C chemical shift (ppm) for DEHP, Hy3-25DEHP and Hy5 taken from 
the MAS NMR spectra.  a) The 

13
C chemical shifts are reported as the 

medium position of the overlapped signals. 
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It is important to observe that the C7 carboxyl carbon in Hy5 sample is ~3 ppm 

shifted respect the pure DEHP and Hy3-DEHP. At the same time some others 

carbons (3/6 and 4/5 ring carbons between 2 and 3.8 ppm; C9 ~0.6 ppm and C10 

~1.4 ppm) close to the C7 show significant shifts. This would suggest that the C=O 

group of DEHP is in close contact with the surface of the mineral. 

The 
13

C MAS spectrum of a calcite sample in which 100 µl of neat DEHP was 

added to 300 mg of calcite (Cal1-100DEHP) is also shown in Figure 5.13.  The 

carbon signals of this sample did not show chemical shift variations compared to 

those of neat DEHP, but the signals appear broader.  No 
13

C MAS signal was 

observed from a calcite sample precipitated in the presence of sliced tubing 

sections (data not show).  This observation would suggest that the DEHP released 

by the PVC slices is not strongly adsorbed at the surface of the calcite and 

consequently it is not incorporated during crystal growth. 

 

5.7 13C CPMAS NMR investigation on hydrozincite /DEHP 

 

Additional information can be obtained from the analysis of the 
13

C CPMAS 

spectra.  Cross-polarization is a method of signal enhancement, whereby energy is 

transferred from abundant spins (
1
H) to the rare spins (

13
C). For the 

1
H–

13
C CP 

experiment, the efficiency of polarization transfer depends on the strength of the 

static dipolar interaction between 
1
H and 

13
C spins, which is determined by the 

number of protons directly bound to the carbons or close to them and the 
1
H–

13
C 

internuclear distances (<10 Å). Effective intermolecular CP transfer also requires 

molecular rigidity, being hindered by molecular motions in the kilohertz range. 

(Fyfe, 1980; Demco et al., 1975; Hoffmann and Mayer, 1999).  
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Figure 5.14  
13

C CPMAS NMR spectra of the following samples: pure hydrozincite 
(Hy3) hydrozincite mixed with DEHP (Hy3-25DEHP),  DEHP adsorbed 
on hydrozincite  by sliced pipes (Hy5). 

 

The Figure 5.14 shows the 
13

C CPMAS NMR spectrum of the Hy3, Hy3-25DEHP 

and Hy5 samples collected with 8 ms contact time.  No 
13

C CPMAS NMR signal of 

DEHP as a neat liquid is observed at any contact time, owing to molecular 

tumbling. The CPMAS spectrum of the Hy3 sample shows overlapping signals in 

the 162 – 169 ppm range, whose main peak appears at ~163.8 ppm. These signals 

are attributed to the carbonate group of hydrozincite, despite the fact that the 

carbonate in this mineral has only one crystallographic position in the ideal 

structure (De Giudici et al., 2009; Ghose, 1964) as described in the chapter IV. 

These additional peaks have been ascribed to the presence of lattice defects, 

namely grain boundaries and stacking faults that lower the crystal order in these 
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hydrozincite nanocrystals (Giudici et al., 2009). This feature is not changed in the 

CPMAS spectra of the Hy3-25DEHP and Hy5 samples as shown in Figure 5.14.  

Carbon signals attributed to DEHP are observed in CPMAS spectra of the Hy3-

25DEHP and Hy5 samples, which show that this molecule behaves like a solid.  As 

shown in Figure 5.14, the aliphatic region (5-50 ppm) of the Hy3-25DEHP sample 

presents the same features as observed in the Hy3-25DEHP MAS spectrum, 

whereas the C8, the C4,5 and C3,6 carbons are broadened (FWHM  >1.4 ppm). 

The signal attributed to the ring C1,2 carbons is not observed, probably due to 

extreme broadening. The signal of the carboxyl group cannot be observed because 

it is buried under the hydrozincite carbonate peaks. 

As observed for the Hy3-25DEHP sample, the 
13

C CPMAS signals of the aliphatic 

region (5-50 ppm) of the Hy5 sample are also similar to those in the corresponding 

MAS spectrum. Differences are observed for the other carbon signals: the C8 peak 

disappears and those for the ring carbons are broad, as observed in the MAS 

spectrum. The carboxyl signal cannot be detected because it is buried below the 

hydrozincite carbonate peaks as stated for the Hy3-25DEHP sample. The behavior 

of the C=O, the C8 and the ring carbon resonances in the Hy5 sample is indicative 

of binding of the DEHP with hydrozincite, in agreement with the FT-IR results, and 

further suggests that these carbons are closest to the coordinating atoms. These 

data suggest that DEHP migrates from the PVC tubing, where it is bound by 

complex formation of the type >C=O::::H-CH2-Cl (Baijayantimala and 

Swaminathan, 1996), to hydrozincite where it is incorporated between the 

crystallites during hydrozincite crystallization. At the same time the complex 

overlapping signals of aliphatic chains suggest the presence of significant 

structural disorder.  Different modes of binding may occur at the hydrozincite 

surface. This consideration is in agreement with the observation of Phillips et al., 

(Phillips et al., 2005) of broad peaks in 
13

C CPMAS NMR spectra of citrate 
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coprecipitated with calcite which indicates multiple conformations of citrate with the 

calcite.  

Signals from DEHP are absent in the 
13

C CPMAS spectrum Cal1-25DEHP and in 

the spectrum of the calcite sample precipitated in the presence of sliced PVC 

tubing sections (data not shown). The absence of CPMAS signal from the Cal1-

25DEHP sample suggests that the DEHP is too mobile to cross-polarize and has a 

low affinity for binding at surface Ca sites compared to DEHP interacting with 

surface Zn sites in Hy3-25DEHP. 

 

5.8 13C CPMAS NMR experiments with different contact 

times 

 

The CP technique is based on heteronuclear dipolar interaction, it is sensitive to 

internuclear dipolar interaction, to internuclear distance and to the mobility of 

molecules or functional groups involved (Kolodziejski and Klinowski, 2002). This 

means that CP can be used to establish the connectivity between coupled nuclei 

and to monitor molecular dynamics in solids, a very useful feature in the structural 

determination. To gain such information it is indispensable to measure the spin 

lattice relaxation time in the rotating frame, T1ρ, and the cross-polarization time 

(TCH). Variable contact time CP experiments allow simultaneous monitoring of TCH 

and T1ρ. However these experiments require spectra with a good signal/noise ratio, 

which is not our case. In fact, as it is observed in the Figure 5.14 using the 
13

C 

natural abundance the ratio signal/noise is poor. Moreover important information, 

although qualitative, can be obtained by collecting the spectra with few contact 

times. 
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Figure 5.15 
13

C CPMAS experiments collected with 2, 8 and 16 ms of contact time 
for the samples Hy3-25DEHP (a) and Hy5 (b). 

 

The experiments for the sample Hy3-25DEHP and Hy5 have been collected using 

2, 8 and 16 ms of contact times. The Figure 5.15 a and b display the spectra for 

the samples Hy3-25DEHP and Hy5, respectively. In these experiments we 

analyzed the signals for the DEHP in the range between 0-150 ppm. Over this 

range the signals of the hydrozincite carbons do not allow the observation of C=O 

carbon of DEHP.   

Several considerations can be drawn on the evolution of the carbons signals in 

these experiments: 

Hy3-25DEHP – In the experiment performed with 2 ms of contact time only the ring 

carbons (C3/6 and C4/5) and   the carbons C8 and C9 signals are observed. The 

intensities of the aliphatic chains signals are very low. All signals increase at 8 ms 

of contact time and decrease at 16 ms of contact time. This evolution is more 

evident for the carbons C13 and C15.  
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Hy5 – the CPMAS spectra collected with 2, 8, 16 ms of the Hy5 sample show 

broad signal as reported before. The intensity of the ring carbons and C8 and C9 

decrease at 8 ms and disappear at 16 ms, while the aliphatic carbons show similar 

evolution as observed in the Hy3-25DEHP. 

The behavior of the C8 and the ring carbon resonances in the Hy5 sample, when 

compared to the behavior of the same signals in the Hy3-25DEHP,  is indicative of 

reduced mobility and/or  of a stronger 
1
H-

13
C hetero nuclear dipolar coupled 

network, thus suggesting that those atoms are the most involved in the interaction  

with the mineral. The aliphatic chains display slower CP kinetics in both samples 

denoting a lower rigidity of this portion of the molecules of DEHP. The non-rigid 

environment and inefficient cross-polarization have been observed previously for 

organic molecules intercalated in smectite (Corrado et al., 1990; O’Brein et al., 

1991) and for the adsorbed pyridine on clay minerals (Ukrainczyk and Smith, 

1996). These results, which are in good agreement with the FT-IR, 
13

C MAS and 

CPMAS results, confirm that the portion of the molecule including the carboxyl 

group of DEHP, in the sample Hy5, is strictly bound to the surface of hyrozincite. 

 

5.9 1H  MAS informations 

 

Further experiments were carried out on Hy3-25DEHP and Hy5 samples in order to 

investigate the surface of the hydrozincite mineral, through the 
1
H resonance of 

water and DEHP molecules. The mobility of a molecule at the surface of solid 

matrix can be assessed; as reported in the literature, also with 
1
H MAS 

experiments  that are very promising in differentiating molecular species according 

to their degree of mobility in solids (Chamignon et al., 2004). 

In the Figure 5.18 the 
1
H MAS spectra of Hy3-25DEHP and Hy5 are reported. 
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The spectrum of Hy3-25DEHP shows broad peaks respect to the 
1
H spectra 

acquired in liquid state (see paragraph 5.2). The peaks at 7.8 and 7.6 ppm are 

attributed to the proton resonance of the ring protons 4/5 and 3/6, respectively;  

two broad resonances at 4.5 and 4.3 ppm attributable to the proton in the position 

8 in the DEHP molecule the very broad resonance in the range between 2.2 and 

0.5 ppm with two maximum at 1.4 and 1.0 ppm are due to the aliphatic chain; the 

signal centered at 5.1 ppm is  due to the water content present at the surface of the 

hydrozincite mineral. 

Figure 5.16 
1
H MAS experiments from Hy3-25DEHP mixed sample and from 

precipitate sample in the presence of PVC Hy5. 

 

The spectrum of the Hy5 sample shows 
1
H signals much broader than those 

observed in the Hy3-25DEHP spectrum, in agreement with the 
13

C MAS and 

CPMAS spectra. In particular, the resonances of the ring protons and the protons 

in the position 8 in the DEHP molecule are particularly broad. It is remarkable the 
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1
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broadening of the proton resonance (~5 ppm) attributed to the water molecules at 

the hydrozincite surface. 

MAS NMR signals basically reflect the degree of mobility of the species loaded 

onto the surface of a solid matrix: very mobile molecules give narrow signals, close 

to those of liquid-state NMR spectra. In contrast, when the strength of the 

interaction increases, the signals are broader. In this way, it is possible to 

differentiate adsorbed versus incorporated DEHP.  Similar examples are reported 

in literature for the study of 4-chloro-2-methylphenoxyacetic acid in clays 

(Combourieu et al., 2001). 

Thus, it appears that the 
1
H MAS NMR is suitable to discriminate different species 

(mobile and immobile) of a DEHP loaded onto the surface of hydrozincite. From 

these considerations it is evident that DEHP molecules in the Hy3-25DEHP are 

weakly-bound to the surface of the hydrozincite. On the contrary, the results clearly 

show that, in the Hy5 sample, the DEHP molecules are strongly bound or 

incorporated between the hydozincite nanoparticles. 

 

5.10 X-Ray Diffraction complementary informations 

The structural differences between synthetic hydrozincite Hy3 and synthetic 

hydrozincite synthesized in the presence of PVC slices Hy5 have been 

investigated by XRD diffraction. The XRD patterns of the two samples are reported 

in Figure 5.17. Both XRD patterns exhibit Bragg reflections that can be indexed as 

hydrozincite single phase with a monocline structure, according to experimental 

(PDF Card 19-1458) and calculated (PDF 72-1100) references patterns. 
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Figure 5.17 XRD patterns of Hy3 and Hy5.  

 

The XRD patterns do not reveal important modification of mineral structures for 

Hy5 compared with the Hy3, and this result is in agreement with the NMr and FTIR 

evidences.  Slight differences might be observed in the peak positions. In the 

pattern of Hy5 sample, compared with Hy3, a small shift to a lower value is 

observable for the peak (200) [2theta=12.97° for Hy3 and  12.87° for  Hy5]. This 

results in a low increase of the d-spacing for this reflection. However, the (020) and 

(021) reflections show a small shift to higher values that are correlated with a 

decrease of the d-spacing for these reflections. This might be an evidence for the 

intercalation of DEHP in hydrozincite structure, although these changes are not 

very evident, this can be due at the low concentration of DEHP in Hy5 sample. In 

fact, in the literature, significant variations in XRD patterns for intercalated 

molecules are reported for high concentration of intercalated molecules 

(Chamignon et al., 2004). 
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All diffraction peaks are slightly broad in the HY5 sample; the broadening can be 

ascribed to the presence of DEHP with consequent increase of disorder in the 

structure, and this is in agreement with the previous 
13

C MAS measurements. 

 

5.11 Conclusions  

 

The interaction of Bis(2-ethylhexil)phthalate (DEHP) with hydrozincite 

[Zn5(CO3)2(OH)6], under controlled laboratory experiments, was investigated by 

using Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance 

Spectroscopy (NMR) and X-ray Diffraction (XRD).  

Our results from FT-IR and solid state 
13

C NMR indicate that DEHP released from 

flexible PVC tubing is bound to the hydrozincite structure during crystallization. 

Under our experimental conditions the hydrozincite contains about ~10% (w/w) 

DEHP taken up from the tubing.  
13

C MAS and CPMAS NMR spectra reveal that 

the chemical shift, the intensity and the line width of DEHP carboxylic group and 

the ring carbons are greatly affected. These data suggest that the carboxyl head 

group is directly involved in the binding to hydrozincite. At the same time, the 

observed broad and overlapping aliphatic carbon signals of DEHP, is indicative of 

structural disorder. Overall these results would suggest that DEHP is sequestered 

from the tubes and incorporated at the hydrozincite nanoparticles surface during 

the crystallization. In contrast, 
13

C MAS and CPMAS NMR data show that DEHP is 

not incorporated in calcite precipitated in the presence of flexible tubing.  XRD 

results are also consistent with an increase of structural disorder in hydrozincite 

structure caused by the presence of DEHP, in agreement with the 
13

C MAS 

measurements. 

This result suggests a specific interaction between DEHP and surface Zn-centers 

is responsible for the strong uptake of DEHP by hydrozincite. 
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General considerations 

 

Materials have played an important role in our civilization, embedding our political 

history and culture. Historian have used the state of materials technology as 

nomenclature for various periods mankind’s history (e.g., stone, bronze and iron) 

but the field of Material Science and Engineering began to be considered its own 

discipline around the mid 1960’s. The advancement in human history can be traced 

by the progress in materials processing techniques, from the development of the 

Damascus steel used to produce unrivaled weaponry, to the refinement of silicon 

for computer chips in modern computer systems. Yet, towards the end of the 20
th
 

century, it was discovered that while mankind had indeed advanced in the 

development of technology, there were still lessons that could be learned from 

Nature. Scientist and engineers have long envied Nature’s ability to design 

crystalline structures whose properties are often superior to those of similar 

synthetic materials. The work contained whiting this dissertation can be considered 

a piece of knowledge which can contribute in understanding the complex world of 

biomineralization and the reactivity of minerals. Finally, the mechanism governing 

the hydrozincite biomineral formation at the molecular level is not yet understood. 

The role of organic matter in the biomineralization requires further investigation. 

Despite this, the information acquired in this PhD period about the morphology, 

structure and organic matter present in the hydrozincite biogenic formation will be 

used for modeling the mechanism formation of biominerals and for the prediction of 

their reactivity and stability under specific environmental conditions. 

Further studies are required to examine the stability, strength and geometry of the 

interaction between DEHP molecule and hydrozincite surfaces and to assess 

whether nanocrystalline hydrozincite can be regarded as an effective sorbent that 
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incorporates DEHP for the use in remediation strategies under different 

environmental conditions.  
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Appendix 

 

 PDF Card 19-1458 Wavelength = 1.54056Å 
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 PDF Card 72-1100 Wavelength = 1.54056Å 
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 PDF Card 19-1458 Wavelength = 0.70930 Å 
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 PDF Card 72-1100 Wavelength = 1.54056 Å 
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