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Abstract: Metabolomics is the systematic study of the small-molecule profiles of biological samples
produced by specific cellular processes. The high-throughput technologies used in metabolomic
investigations generate datasets where variables are strongly correlated and redundancy is present
in the data. Discovering the hidden information is a challenge, and suitable approaches for data
analysis must be employed. Projection to latent structures regression (PLS) has successfully solved a
large number of problems, from multivariate calibration to classification, becoming a basic tool of
metabolomics. PLS2 is the most used implementation of PLS. Despite its success, PLS2 showed some
limitations when the so called ‘structured noise’ affects the data. Suitable methods have been recently
introduced to patch up these limitations. In this study, a comprehensive and up-to-date presentation
of PLS2 focused on metabolomics is provided. After a brief discussion of the mathematical framework
of PLS2, the post-transformation procedure is introduced as a basic tool for model interpretation.
Orthogonally-constrained PLS2 is presented as strategy to include constraints in the model according
to the experimental design. Two experimental datasets are investigated to show how PLS2 and its
improvements work in practice.

Keywords: projection to latent structures regression; PLS-DA; post-transformation of PLS2;
orthogonally-constrained PLS2

1. Introduction

The analytical platforms used for metabolomics investigations produce large and complex datasets.
Since a single metabolite can produce more than one analytical signal and the perturbation of a specific
pathway can generate variations in metabolite concentrations that are not independent, redundancy
and multicollinearity are structurally present in the data. Moreover, the difficulty to collect a large
number of samples and the possibility to simultaneously measure hundreds or thousands of features
produce short and wide data matrices. As a result, discovering the hidden information is a challenge,
and suitable approaches for data analysis must be employed.

Metabolomics has been developed within the field of analytical chemistry. For this reason
chemometric tools have been originally applied and most of the literature about data processing
and analysis is in the domain of chemometrics rather than in the one of statistics. The chemometric
approach to data analysis is different from that of classical statistics. Specifically, classical models
based on probability distributions (‘hard data modelling’) are substituted by algorithmic approaches
where no assumptions about data distribution are made (‘soft modelling’ approach). Projection to
latent structures regression (PLS) is one of these algorithmic approaches. It was introduced at the
beginning of 1980s as a heuristic method for modelling relationships between two data matrices,
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one containing the predictors and the other the responses [1–3]. In a larger sense, PLS is nowadays
used to indicate a family of techniques that perform regression using the latent space discovered
submitting two data matrices, X and Y, to a suitable bilinear decomposition. NIPALS-PLS2 (indicated
in the following as PLS2) was the first algorithm proposed to perform PLS regression. Other algorithms
were later introduced. Statistically inspired modification of PLS (SIMPLS) [4] and undeflated PLS
(UDPLS) [5] are alternative algorithms that, however, provide different models. The use of PLS2 in
metabolomics has been promoted by its capability to handle several collinear and noisy variables,
the possibility to interpret the models by simple graphical representations and its implementation in
several commercial software. It has been successfully applied to solve a large number of problems,
from multivariate calibration to classification problems. However, if, on one hand, PLS2 provides
good predictive models, often outperforming other regression methods [6,7], on the other hand it
shows some structural limitations when specific clusters or trends in the data, that are not related
to the response, are present. In these situations, PLS2 is often driven towards wrong directions for
projecting the data and produces inefficient data representations where too many latent variables are
used. To overcome this unwanted behaviour, post-transformation procedures have been proposed [8,9].
Moreover, orthogonally constraints have been introduced in the maximization problem of PLS2 to take
explicitly into account the structure of the experimental design [10].

If someone wants to solve a data analysis metabolomic problem by PLS2, it is not sufficient to
simply know PLS2, but it becomes fundamental to know and use the state-of-the-art of this technique.
Practitioners should take care in choosing the right number of latent variables to avoid too complex
models. Again, they should check the linearity into the latent space between x- and y-scores, highlight
the presence of irrelevant structured variation and decide how to take it into account in performing data
modelling. The aim of the present study is to provide a comprehensive and up-to-date presentation of
PLS2 focused on its application to metabolomics. It is not a review of all the available literature, but a
discussion of the state of development of this technique.

The paper is structured as follows: Section 2 is dedicated to the PLS2 algorithm. Specifically,
its main properties, the post-transformation procedure, the strategy used to introduce orthogonal
constraints, and the case of non-linearity are discussed. In Section 3, the approaches used to interpret
the model are illustrated. Two experimental datasets are investigated in Section 4, including the
discussion of both multivariate calibration and classification problems. Concluding remarks are
reported in Section 5.

Notation

The common notation, where column vectors are indicated in lower case characters (e.g., a) and
matrices in upper case characters (e.g., A), is employed. The transpose of the matrix A is At, the row
vectors are denoted as the transpose of the columns vectors (e.g., at), the scalar product between the
two vectors a and b is then indicated as atb and the matrix product of the two matrices A and B as AB.
The vector with all l elements equal to zero is denoted as 0l , the matrix with all elements equal to zero
as 0 and the identity matrix of size n as In. The matrix obtained juxtaposing the two matrices A and B
is [AB].

Let us assume that X ∈ RN×P and Y ∈ RN×M are two scaled and mean-centred data matrices
(where the rows represent the observations and the columns the variables) representing the X-block
of the predictors and the Y-block of the responses, respectively. Under this assumption, the scalar
product of the linear combinations of the columns of X and Y can be interpreted as covariances (up to
a constant factor).

2. The PLS2 Algorithm

The PLS2 algorithm was developed within the framework of the NIPALS algorithm by Wold
and Martens at the beginning of 1980 [1–3]. In subsequent years, several algorithms have been
introduced to implement PLS2 in the limit case of a single y-response [11,12], but the formulation in
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the case of multiple Y-response has maintained its original form until now. PLS2 is implemented in the
NIPALS form in several commercial software for multivariate data analysis. However, a more in-depth
investigation of the properties of PLS2 can be obtained introducing the different (but equivalent)
algorithm presented in the following.

Given the matrix Y of the responses and the matrix X of the predictors, the aim of PLS2 is to
calculate the matrix of the regression coefficients B that produces the linear regression model:

Y = XB + FA

where FA is the matrix of residuals. Since no assumptions about the statistical distribution of the
residuals are made, the term ‘model’ will not be used in the statistical sense of ‘model based on a set of
probability distributions’, but to indicate a particular ‘matrix decomposition’.

PLS2 regression is performed decomposing the matrix of the predictors and that of the responses
using a suitable orthogonal score matrix T = [t1 . . . tA] as:

X = TPt + EA

and:
Y = TQt + FA

under the constraint:
T = XW∗

where W∗ is a suitable matrix to be calculated, P = XtT
(
TtT
)−1 and Q = YtT

(
TtT
)−1 the loading

matrices of the X- and Y-block, respectively, and EA the matrix of the residuals of the X-block (Figure 1).
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Figure 1. Matrix decomposition generated by PLS2.

PLS2 linearly transforms the space of the predictors to obtain a new set of orthogonal variables
(called latent variables whose values are the scores ti), which can be used to model the response
in the least-squares sense. In this way, the limits of ordinary least squares (OLS) regression due to
redundancy and multicollinearity are overcome.

The matrix of the regression coefficients results:

B = W∗Qt.

The core of PLS2 is the strategy used to calculate W∗. Following Di Ruscio [13] and Stocchero and
Paris [8], W∗ can be calculated by the ‘eigenvalue’ PLS2 algorithm:

Given:

• two matrices X and Y;
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• the integer number A of latent variables.

Let E0 = X, F0 = Y
For i = 1, . . . , A

Et
i−1Fi−1Ft

i−1Ei−1wi = λiwi (1)
ti = Ei−1wi
Ei = Q̂ti

Ei−1 X-deflation step
Fi = Q̂ti

Fi−1 Y-deflation step
EndFor

The matrix
_
Qti

= IN − ti
(
tt
i ti
)−1tt

i is the orthogonal projection matrix that projects any matrix A
onto the space orthogonal to the score vector ti, whereas Ei and Fi are the residual matrices of the X-
and Y-block at the step i, respectively. If the weight vectors wi used to project the residual matrix Ei
are arranged in the weight matrix W = [w1 . . . wA], the matrix W∗ becomes:

W∗ = W
(
PtW

)−1

and the PLS2 model is obtained.
The explicit expression of the matrix B in terms of the weight matrix is:

B = W
(
WtXtXW

)−1WtXtY (2)

If N > P and the columns of the design matrix X are mutually orthogonal, the matrix of the
regression coefficients is equal to that of the OLS regression model, i.e., B =

(
XtX

)−1XtY, when one
considers a number of latent variables equal to the number of variables of X. These conditions are
satisfied for example in case of full factorial or fractional factorial designs.

In general, the matrix of the regression coefficients becomes:

B = VS−1UtY

when the maximum number of latent variables is generated. Here, we have considered the singular
value decomposition X = USVt. Moreover, it is worth noting that the expression of the matrix B in
terms of W for a model with A latent variables is the same obtained in case of constrained OLS where
the constraint is QtB = 0, being Q : QtW = 0, rank(Q) = P− A and [QW] a non-singular matrix.

The ‘eigenvalue’ PLS2 algorithm is composed of two main ingredients: a well-defined eigenvalue
problem to be solved (equation 1) and the iterative deflation algorithm, that corresponds to the reported
algorithm when in 1 a general and non-trivial wi is used. The solution of the eigenvalue problem 1
solves the following maximization problem:

wi, ci s.t. argmaxtt
iui = argmax

wt
iwi = 1

ct
ici = 1

wt
iE

t
i−1Fi−1ci (3)

where ui is the score vectors of the Y-block obtained projecting the residual matrix Fi−1 along the unit
vector ci. The maximization problem can be read as: to find the weight vectors wi and ci that produce
the score vectors ti and ui maximizing their covariance when used to project the residual matrices of
the X- and Y-block, respectively. If wi is known, one has:

ci ∝ Ft
i−1Ei−1wi

and:
ui ∝ Fi−1Ft

i−1Ei−1wi.
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The score vector ui is not involved directly in the regression model. However, it is important to
check if ti and ui support a linear model, for example by a graphical inspection, because the linearity
of ti and ui is not in principle guaranteed and must be subsequently evaluated. The plot ti vs. ui could
highlight a non-linear behaviour of the responses and, thus, could suggest to transform the responses
or to use non-linear methods, such as kernel-PLS2 [14].

2.1. Main Properties

The properties of PLS2 derive both from the specific equation used to calculate the weight
vectors in 1 and from the properties of the iterative deflation algorithm. They have been discussed by
Höskuldsson [15] and are summarized in the following:

- the score vectors of the X-block are a set of mutually orthogonal vectors;
- the weight vectors wi are a set of mutually orthonormal vectors; and
- the matrix PtW is an upper triangular matrix with determinant equal to 1 [11].

In general, the score vectors ui and the columns of the loading matrices P and Q are not sets of
mutually orthogonal vectors. Most of the tools developed for model interpretation are based on these
properties. For example, the orthogonality of the score vectors has been used to develop the correlation
loading plot discussed in Section 3.1, whereas the fact that the weight vectors are mutually orthogonal
has driven the formulation of the VIP score introduced in Section 3.3. Moreover, since the matrix PtW
is not a diagonal matrix, it can be proved that PLS2 performs an oblique projection of the OLS estimate
and the geometry of PLS2 can be investigated under this point of view. For a detailed discussion of
this topic the reader can refer to Phatak and de Jong [16].

Another important property that has been discussed in reference 8, which is strictly related to the
iterative deflation algorithm, is discussed in the following section.

2.2. Structured Noise and Post-Transformation of PLS2 (ptPLS2)

The metabolite content of a biofluid depends on a large number of factors. For example, in a
case/control study of a particular disease, the metabolite content of the collected urine samples can
depend on age, sex, weight, lifestyle, diet, pathological state, and drug treatment of the recruited
subjects. All these factors and the specific factor under investigation (patient/healthy subject) act
together to generate data variation. Since PLS2 works by maximizing the covariance in the x-y latent
space, the presence of clusters or specific trends in the data, which are not due to the factor of interest,
could drive the data projection along directions that are inefficient in explaining the response. Indeed,
the covariance between the score vectors ti and ui can be written in terms of correlation and variance as:

tt
iui ∝ var(ti)

1/2cor(ti, ui).

Thus, the covariance can be maximized through three different strategies: by maximizing
the correlation between the vectors ti and ui, capturing the linear relationship between X and Y;
by maximizing the variance of the score vector ti, which provides an explanation of X; by maximizing
both covariance and variance. When the covariance is maximized acting on the variance of the scores,
PLS2 explains before the variance within the X-block instead of the covariance between predictors and
responses. The first latent variables capture the X-block variation while only the next latent variables
explain the responses. As a consequence, PLS2 generates an excessive number of latent variables.

The sources of variation that confound PLS2 are called ‘structured noise’ since they can be
modelled in terms of latent variables (and then they are ‘structured’ in the data) but behave as a ‘noise’
in that they are unable to explain the response. Two different approaches have been introduced to
overcome this unwanted behaviour of PLS2: Orthogonal PLS (OPLS) [10,17] and post-transformation
of PLS2 (ptPLS2) [8]. OPLS has been successfully applied to metabolomic problems and, today,
is considered as a standard technique. It is implemented in commercial software and freeware
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packages for data analysis. However, its relationships with PLS2 for multiple Y-response (as in the case
of discriminant analysis when more than two classes are considered) have not been investigated in the
literature. Here we discuss ptPLS2 that shows clear relationships with PLS2, both for single y- and
multiple Y-response, and that is equivalent to OPLS in the case of single y-response. Other methods
generating a predictive component equivalent to that of OPLS and ptPLS2 have been proposed for
single y-response [18,19].

The original formulation of ptPLS2 is based on the following property of the iterative deflation
algorithm: if one uses a non-singular matrix H to transform the weight matrix W as:

W̃ = WH,

the same residuals of the X- and Y-block and the same matrix B are obtained when
∼
W is used within

the iterative deflation algorithm instead of W. However, the score structures of the X- and Y-block
decomposition can be different from the original ones.

ptPLS2 can be summarised as a three-step procedure: (i) a PLS2 model is built to obtain the
weight matrix W; (ii) the weights are subjected to a suitable orthogonal transformation described by

the matrix G; and (iii) a new model is built introducing the transformed weights
∼
W = WG within the

iterative deflation algorithm. If G is calculated according to [8], the new score matrix is composed of
two different and independent blocks: one, indicated as Tp, modelling the data variation correlated to
Y and specifying the so called ‘predictive’ or ‘parallel’ part of the model of X, and the other, called To,
orthogonal to the Y-block, describing the ‘non-predictive’ or ‘orthogonal’ part of the model. As a result,
the following decompositions of the X- and Y-block are obtained:

X = TpPt
p + ToPt

o + E (4)

Y = TpQt
p + F

In the decomposition, Tp and Pp are the score matrix and the loading matrix of the predictive part
of the model of X, respectively, To and Po the score matrix and the loading matrix of the non-predictive
part, and Qp is the loading matrix of the Y-block. The matrix of the regression coefficients is the same
as PLS2 and ptPLS2 shows the same goodness-of-fit and power in prediction of PLS2.

ptPLS2 plays a twofold role in metabolomics. Firstly, the response can be explained considering
only the predictive part of the model, which usually spans a reduced latent space in comparison with
that of the original PLS2 model. Secondly, the investigation of the non-predictive part can highlight
sources of variation that are included in the PLS2 model, but that are not related to the response.
This helps in the design of new experiments where the factors associated to the non-predictive latent
variables are controlled and the factors of interest can be studied with methods based on projection,
such as ANOVA-simultaneous component analysis (ASCA) [20] and orthogonally-constrained PLS2
(oCPLS2) [10], without confounding effects.

Recently, a new (but equivalent) formulation based on the scores has been proposed [9].

2.3. Orthogonally-Constrained PLS2 (oCPLS2)

Orthogonally-constrained PLS2 (oCPLS2) has been introduced to explicitly include in PLS2 the
constraints specified by a well-defined experimental design [10]. Once the main factors acting on
the metabolite content of a biological sample are identified and included in an orthogonal design
together with the factor of interest, the projection of the residual matrix of the X-block can be driven
towards directions orthogonal to the factors that could confound PLS2, focusing the model on the
factor under investigation (representing the response). In order to do so, the potential confounding
factors are coded in the matrix Z ∈ RN×L specifying the L-constraints and the scores of the X-block are
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generated to maximize the covariance with ui being orthogonal to Z. From a mathematical point of
view, this requirement can be expressed as in the following maximization problem:

wi, ci s.t. argmax
Ztti=0L

tt
iui = argmax

wt
iwi = 1

ct
ici = 1

ZtEi−1wi = 0L

wt
iE

t
i−1Fi−1ci

whose solution is obtained solving [10]:

Q̂Vi

(
Et

i−1Fi−1Ft
i−1Ei−1

)
Q̂Vi

wi = siwi (5)

The matrix Q̂Vi
is the orthogonal projection matrix that projects any vector v onto the space

orthogonal to the column space of Vi, the latter being the right column orthonormal matrix of the
singular value decomposition of ZtEi−1.

Substituting Equation (1) with Equation (5) in the ‘eigenvalue’ PLS2 algorithm, the oCPLS2
algorithm is obtained. Since oCPLS2 behaves similarly to PLS2 when structured noise is still present in
the data, the post-transformation approach can be applied to improve the identification of the effective
latent space.

2.4. Non-Linear Problems: Kernel-PLS (KPLS2)

When non-linear relationships between predictors and responses are present in the data, several
techniques based on PLS2 have been proposed. Their use depends on the degree of non-linearity.
Implicit non-linear latent variable regression (INLR) [21] can be applied in the presence of mild
non-linearity whereas in the case of moderate or strong non-linearity PLS based on GIFI-ing
(GIFI-PLS) [22] or more complex approaches, such as kernel-PLS (KPLS2) [23] should be applied.

In untargeted metabolomic studies, where the most common scenario is that of a small set of
observations (from twenty to one hundred) and a large number of predictors (hundreds or thousands),
non-linear modelling is seldom applied because it is difficult to evaluate the presence of over-fitting,
and often a subset of the measured predictors shows a non-linear behaviour. In this case, we recommend
the use of PLS2, transforming the y-response if needed. However, if the number of predictors is
smaller than the number of observations, as in targeted metabolomics investigations, and a robust
model validation procedure can be applied, an efficient approach to include non-linearity is to use KPLS2.

In KPLS2, PLS2 regression is not performed directly on the predictors where the problem is
non-linear, but it is instead performed on the so called ‘feature space’ obtained transforming the
original x-space by suitable functions that turn a non-linear problem into a linear one. Using the
formulation of the PLS2 algorithm based on the normalized scores (i.e., the dual formulation of the
‘eigenvalue’ PLS2 algorithm described here) [9], the scalar product in the feature space can be evaluated
using kernel functions that make the model easy to calculate. The main disadvantage of KPLS2 is that
model interpretation is limited to the investigation of the score space. The evaluation of the role played
by the predictors in the model is not straightforward and complex approaches should be applied [24].

The latent space discovered by KPLS2 can be decomposed into predictive and non-predictive
subspaces thanks to the application of a suitable post-transformation procedure that works on the
scores, called post-transformation of the score matrix (ptLV) [9]. To achieve the same aim, kernel-OPLS
(KOPLS) has been introduced [25]. Since the relationships between KOPLS and KPLS2 in the case
of multiple Y-response have not been investigated whereas the relationships between KPLS2 and its
post-transformed model are known, we suggest the use of KPLS2 and ptLV in the case of datasets with
moderate or strong non-linearity.
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3. Model Interpretation

One of the main advantages of PLS2 with respect to other techniques is the possibility to extract
information about the relationships between predictors and responses by direct model interpretation,
for example through plots. This is a common opinion between practitioners although it is true
only in the presence of mild correlation between the predictors, when the regression coefficients
can be directly used for model interpretation. In that case, when the PLS2 model uses a small
number of latent variables (two or three latent variables), the w*q plot is an efficient tool, since the
relationships between predictors and responses can be investigated using a single plot, also in the
case of more than one response [14,26]. On the other hand, in the presence of strong correlation, it is
not trivial to obtain a clear and irrefutable interpretation of the model and, in principle, a unique
interpretation in terms of the measured predictors may not exist. Indeed, when strong correlations
act in the X-block, the regression coefficients do not represent independent effects. Moreover, highly
correlated predictors can show different coefficients despite containing the same information. In that
case, the regression coefficients cannot be used for model interpretation. Only the latent variables
discovered by PLS2 should be considered as they are the only independent predictors able to explain
the response. Specifically, the predictive Y-loadings, i.e., the matrix Qp, should be investigated
to discover the relationships between predictive latent variables and Y-response. However, latent
variables may not have a clear physico-chemical meaning, being a linear combination of the measured
predictors, while model interpretation in terms of the measured predictors could be requested to
support the model from a mechanistic point of view. Consequently, neither regression coefficients nor
y-loadings can guarantee the possibility to interpret the model. For this reason, suitable parameters
(for example variable influence on projection and selectivity ratio) or procedures (for example stability
selection and elimination of uninformative variables in PLS2) have been introduced to allow for model
interpretation. The best parameter or procedure to use should be chosen case-by-case because they
have been developed considering specific applications and properties of the model. It is important to
remark that interpretability is only a way of getting information. Complex models can equally provide
accurate and reliable information about the effects of predictors on responses even if they are not
interpretable [27].

In the following, we discuss three main questions related to the problem of model interpretation.

3.1. Which are the Relationships Between Predictors and Responses?

Two tools are commonly used in metabolomics to discover the relationships between predictors
and responses: the w*q plot and the correlation loading plot.

The w*q plot is based on the relationship B = W∗Qt that allows the calculation of the regression
coefficients from the matrix W∗ and the loadings of the Y-block. The w* of each predictor (the column
of W∗) and the y-loading q of each response (the columns of Q) are reported in the same plot and, by a
suitable geometrical construction, the values of the regression coefficients for a given predictor can be
obtained. The use of the w*q plot is described in [14,26] (where it is called w*c plot). It is worth noting
that the plot provides reliable information only in the absence of strong multicollinearity and when
the model uses only two or three latent variables.

In the correlation loading plot, the Pearson’s correlation coefficients between each (predictive)
latent variable and the predictors, and the Pearson’s correlation coefficients between each (predictive)
latent variable and the responses are plotted in the same graph. One can use this plot as tool for model
interpretation thanks to the orthogonality of the scores. In the plot, the points close to that representing
the response of interest, or close to its image obtained by origin reflection, represent the predictors
that are positively or negatively correlated to the response. In the presence of strong multicollinearity,
we recommend the use of the correlation loading plot, which provides a qualitative explanation of
the relationships between predictors and responses (if the goodness-of-fit is high, the relationships
become generally quantitative).
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3.2. How is it Possible to Interpret the Latent Variables in Terms of Single Metabolites?

Given the latent structure of the model, one wants to use single predictors to describe the
complexity of the latent structure from a physico-chemical point of view, aiming to obtain a simplified
description. The Pearson’s correlation coefficient or the predictive loadings are often used to assess
which predictors are the most similar to the predictive latent variables. Recently, Kvalheim and
co-workers have introduced a new parameter called Selectivity Ratio (SR) [28,29]. It can be applied
only to models with a single predictive latent variable. It is based on the heuristic assumption that
the similarity between predictor and latent variable increases with the increasing of the variance
explained by the latent variable, and on the possibility to decompose the latent space into two
orthogonal subspaces, one predictive and the other orthogonal to the response. Starting from the
X-block decomposition 4, SR can be defined for each predictor as the ratio between its variance
explained by the predictive latent variable (calculated from TpPt

p) and its variance unexplained by that
latent variable (calculated from ToPt

o + E). The most interesting variables to be used for explaining the
nature of the predictive latent variable are those showing the highest SR. In [29] a method to estimate
the threshold to be used for selecting relevant metabolites at a given significance level is described.

3.3. Which are the Most Important Metabolites in the Model?

Different strategies have been proposed to evaluate the importance of a predictor in the PLS2
model. In this study we describe only those widely considered in the field to be the most promising.
All the presented strategies are based on heuristic definition of importance.

A suitable parameter, called variable influence on projection (VIP score), has been introduced
to measure the importance of the variable i in the PLS2 model [30]. VIP is probably the most used
parameter to assess the importance of the variable in the PLS2 model. For the x-variable i, the VIP
score is defined as:

VIPi =

(
P

SSY

A

∑
j=1

W2
ij SSY j

)1/2

where SSYj is the sum of squares of Y explained by component j, SSY the total sum of squares of Y
explained by the model, A the total number of latent variables, and P the total number of x-variables.
It is based on the fact that all the properties of the PLS2 model depend on the weight matrix and that
the weight vectors are mutually orthogonal. VIP is largely applied for both model refinement and
model interpretation since it provides a ranking for the influence of the x-variables in building the
latent space. In the presence of strong correlation, strongly correlated factors show similar VIP while
their regression coefficients could be different. In model refinement, variables with VIP less than a
certain threshold are excluded. The threshold to be used is usually estimated by cross-validation. It is
important to remark that the use of 1 as a threshold should be considered only as a rule of thumb.
Indeed, the only justification is the property that 1 is the mean value of the square of VIP.

The VIP score has been adapted to the case of predictive and non-predictive latent variables
obtaining the two scores VIPp and VIPo, respectively [8]. It is worth noting that variables having high
VIPs could show high values of VIPo and low values of VIPp. This happens when their main role is to
model structured noise instead of explaining the response. Their influence is globally high because
their effect is to remove variability that limits PLS2 in finding the right direction to project the data.
Moreover, in the presence of structured noise, the exclusion of the variables with the highest VIP could
improve the model, because VIPo and VIP could be correlated. In that case, removing variables with
high VIP could correspond to removing structured noise.

Instead of calculating specific parameters to assess the importance of the variable, two different
procedures have been proposed to select a subset of predictors which are important for the model.

The first one is stability selection. The central idea of stability selection is that real data variations
should be present consistently and, therefore, should be found even under perturbation of the data
by subsampling or bootstrapping. The procedure has been implemented combining Monte-Carlo
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sampling and PLS2 with VIP selection [31]. A large number of random subsamples of the data is
extracted by Monte-Carlo sampling, and subsequently PLS2 with VIP selection is applied to each
subsample. The most important predictors are those selected in more than 50% of the sub-models
generated during the stability selection procedure.

The other procedure is called elimination of uninformative variables in the PLS2 model
(UVE-PLS) [32]. The idea is to identify the set of uninformative variables by adding artificial noise
variables to the collected data. A closed form of the PLS2 model is obtained for the dataset containing
the experimental and the artificial variables. The experimental variables that do not have more
importance than the artificial variables are eliminated. By doing so, the set of important predictors
is selected.

4. Applications to Metabolomics

In this section, two real datasets are investigated. Figure 2 summarizes the strategies used
for modelling the data in the applications discussed in the following. Models and plots have been
generated using R-scripts and in-house R-functions implemented by the R 3.3.2 platform (R Foundation
for Statistical Computing, Vienna, Austria). In Supplementary Materials the basic R-functions used for
model building are reported.
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4.1. Data Pre-Processing and Data Pre-Treatment

Data pre-processing and data pre-treatment are two steps of the metabolomics workflow that
must be applied prior to performing data analysis. Practitioners must specify in detail how the
procedures have been applied in order to make the whole workflow reproducible [33]. Accordingly,
we recommend the use of a script language (for example based on R programming).

Data pre-processing includes all the procedures that allow the transformation of raw data
into a data table. With regards to NMR data, the procedures most commonly used for data
pre-processing are: phasing, baseline correction, peak-picking, spectra alignment and binning [34,35].
For GC/U(H)PLC-MS data, data extraction is the tricky step [36].

The main procedures applied in data pre-treatment are briefly described in the following. Missing
value imputation is usually required for MS-based metabolomics when data extraction produces
undetected peaks or for targeted approaches when the metabolite concentration in some samples
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is under the limit of quantification. In [37], the approaches employed for missing value imputation
are discussed. Data transformation (for example log- or square root transformation) is applied to
make the relationships between predictors and responses linear or to remove heteroscedastic noise.
Data normalization is used both for correcting dilution differences in biological samples and to
reduce the effect of signal loss in long analytical session [38]. Moreover, since PLS2 is sensitive to
the scale of the variables, scaling factors are usually applied. In targeted metabolomics, univariate
scaling is the most used method whereas Pareto scaling or no scaling are employed in untargeted
approaches. Mean centering is usually applied to remove the effect of the center of the data distribution
in data projection.

4.2. Mulivariate Calibration Problems: PLS2

In multivariate calibration, the relationships between one or more quantitative factors and spectral
data (for example UV/IR/NIR data) are investigated. The objective is to find a mathematical model
able to predict the factors once the spectral data have been recorded. For its nature, multivariate
calibration is an inverse method. Indeed, if from a physico-chemical point of view the factors produce
the variation in the spectral data (that are the real responses), in multivariate calibration, one uses
spectral data to predict the factors, inverting the role of factor and response. PLS2 is the most used
technique to build multivariate calibration models.

Metabolic fingerprints have been successfully used as spectral data to predict toxicity, biological
activities, or biological parameters. A metabolic fingerprint is a collection of a very large number of
metabolites (from 1000 to 5000) that are (semi-)quantified by high-throughput analytical platforms,
such as NMR or GC/U(H)PLC-MS, in a biological sample. An example of application is discussed in
the following section.

According to good practice for model building, the optimal number of latent variables to use has
been calculated as follows. Different PLS2 models have been generated for an increasing number of
latent variables. For each model, Q2 (i.e., R2 calculated by cross-validation) was calculated applying
seven-fold cross-validation and the behavior of the model under permutation tests on the Y-response
was investigated (1000 random permutations). We considered the number of latent variables of the
model showing the first maximum of Q2 under the condition to pass the permutation test as the
optimal number of latent variables.

4.3. The ‘Aqueous Humor’ Dataset

Fifty-nine post-mortem aqueous humor (AH) samples were collected from closed and opened
sheep eyes at different post-mortem intervals (PMI), ranging from 118 to 1429 minutes. Each sample
was analyzed by 1H NMR spectroscopy. After raw data processing, Chenomx Profiler (Chenomx,
Canada) was applied to obtain a dataset composed of 43 quantified metabolites. A stratified random
selection procedure based on the different values of PMI was applied to select the training set
(38 samples) and the test set (21 samples). Data were mean centered prior to performing data analysis.
More details about sample collection, experimental procedure and data pre-processing can be found
in [39].

4.3.1. Design of Experiment and PLS2

The experimental design considers two factors: the quantitative factor PMI and the qualitative
factor EYE having the two levels opened and closed. Since from each head at a given PMI two
samples were collected, one from opened and the other from closed eye, the design resulted an
orthogonal design and the effects of PMI and EYE could be investigated without the risk of confounding.
To evaluate if these two factors act on the metabolite content of the samples, a PLS2 model was built.
We considered the Y-block composed of PMI and EYE whereas the metabolite concentrations were
included in the X-block. Considering the training set, the factors were regressed on the set of the
43 metabolites obtaining a PLS2 model with four latent variables, R2

PMI = 0.96 (p = 0.001), R2
EYE = 0.61
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(p = 0.001), Q2
PMI = 0.90 (p = 0.001), Q2

EYE = 0.41 (p = 0.001). To better investigate the latent structure of
the model, post-transformation was applied to separate the predictive latent subspace described by two
predictive latent variables from the non-predictive latent subspace described by two non-predictive
latent variables. The score scatter plot and the correlation loading plot of the post-transformed model
are reported in Figure 3. The model highlights a strong effect of PMI and a mild effect of EYE on the
metabolite content of AH. Moreover, specific subsets of metabolites can be identified as mainly related
to the two factors.
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Figure 3. ptPLS2 model built to investigate the effects of PMI and EYE on the metabolite content of
AH. In the score scatter plot of panel A, each AH sample is represented as a circle with a color code
depending on the value of PMI. The arrow indicates the direction where PMI increases. Samples
of opened or closed eyes are arranged above or below the arrow, respectively. In the correlation
loading plot of panel B, the quantified metabolites (light grey circles) and the factors (PMI in blue
and EYE in red) are reported in the same plot. It is possible to highlight a group of metabolites
(choline, taurine, and succinate) closely related to the effect of PMI whereas other metabolites (citrate,
3-hydroxyisobutyrate, glycerol, and uracil) are related to the effect of EYE.

If one considers an interaction model including also the term PMI*EYE in the Y-block, the PLS2
analysis highlights a weak effect of also the interaction term (data not shown). Then, if someone wants
to predict the PMI given the metabolite content of AH, the effect of the state of eye has to be taken
into consideration.

4.3.2. Predicting PMI by oCPLS2

To generate a calibration model for PMI independent of the state of eye, we applied oCPLS2.
The matrix Z of the constraints was obtained codifying the qualitative factor opened/closed eye
as dummy variable with 0 and 1 depending on the type of sample. PMI was transformed by the
square root prior to performing data analysis to take into account a weak non-linearity of the problem.
The non-linearity was detected plotting the first latent variable of the model without transformation
and the response. After square root transformation, the plot showed a linear behavior between score
and response (data not shown). The model showed three latent variables, R2

PMI = 0.95 (p = 0.001),
Q2

PMI = 0.92 (p = 0.001), and a standard deviation error in calculation equal to 88 min. The prediction
of the test set allowed us to estimate the standard deviation error in prediction that resulted to be equal
to 99 min. It is interesting to note that the first latent variable explains only the 26% of the total variance
of the response, whereas the second the 68%. This behavior indicates the presence of structured noise.
Indeed, only after the projection of the X-block in the subspace orthogonal to the first latent variable,
PLS2 is able to find the right direction to obtain efficient projections of the data. Thus, the model was
post-transformed to calculate the predictive latent variable that simplified model interpretation.
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Model interpretation was based on the selectivity ratio. In Figure 4 the spectrum of SR is
reported. Assuming a significance level α = 0.05 (the threshold for SR resulted F(0.05,36,35) = 1.75),
three metabolites were selected as mainly related to PMI. It is important to remark that the selected
variables should be considered as the most interesting to interpret the predictive latent variable in
terms of measured metabolites rather than the single markers of PMI (that should be discovered by
univariate methods). As a consequence, the set of selected metabolites can be used as a basis to obtain
a simplified explanation of PMI in terms of metabolites.
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Since a weak non-linearity affects the problem, we tried to apply KPLS2 using a second degree
polynomial kernel. The KPLS2 model showed 4 latent variables, R2

PMI = 0.96 (p = 0.001), Q2
PMI = 0.94

(p = 0.001), and a standard deviation error in calculation equal to 76 min. The standard deviation error
in prediction estimated on the test set resulted to be 98 min. This model performed better than the
oCPLS2 model. However, because the test set was too small to allow a robust model validation for a
kernel method, and KPLS2 does not provide a mechanistic view of the process under investigation,
we did not consider the improvements in performance so relevant to justify the use of a kernel method.

4.4. Classification Problems: PLS2-DA

PLS2 has been developed to perform linear regression. However, the following two-step
procedure can be applied to obtain a classifier based on PLS2. In the first step, a PLS2 model is
built regressing a suitable dummy Y-response specifying the class membership on the predictors
whereas, in the second step, the latent variables calculated by PLS2 (or by ptPLS2) are used to build a
classical classifier, for example a naive Bayes classifier, or are used as variables for linear discriminant
analysis (LDA). The model obtained in the first step is called PLS2-DA (or simply PLS-DA). It is
worth noting that without the second step, it is not possible to establish the class membership of
an observation because it is necessary to define rules or procedures to interpret the predictions of
PLS2-DA in terms of class. As a consequence, when one uses PLS2-DA, it is necessary to specify the
rules used for assessing the class membership. [40] is a well-written tutorial on this topic.

4.4.1. Dummy Y-Response and Scaling

The formulation of PLS2-DA is based on a dummy Y-response composed of ones and zeros used
to specify the class membership. For a G-class problem, the Y-matrix is built considering G columns,
being each column associated to a particular class. An observation belonging to class i is codified with
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1 in column i and zero in the other columns. Thus, the Y-matrix is autoscaled (i.e., univariate scaled
and mean centered) before the application of PLS2. This formulation is heuristic. It has been justified
by the analogy with LDA, which can be obtained regressing the dummy Y-response on the X-matrix
by OLS.

In the case of balanced classes, PLS2-DA calculates latent variables that maximize the among-
groups variation. However, in the general case of unbalanced classes, the maximization problem 3
becomes a complex function of the number of samples of each class and the among-groups variation is
not maximized, except for a two-class problem where the among-groups variation is still maximized.

Barker and Rayens investigated the mathematical framework of PLS2-DA and suggested to
modify the scaling in order to obtain a more formal statistical explanation [41].

4.4.2. Application to the ‘Aqueous Humor’ Dataset

Considering the training set of the ‘aqueous humor’ dataset, the range of PMI was split into three
intervals corresponding to PMI less than 500 min (10 samples), PMI from 500 to 1000 min (14 samples)
and PMI greater than 1000 min (14 samples). The objective was to investigate the changes in the
metabolite content of AH during these three intervals. Since R2 and Q2 are not suitable parameters in
classification because the response is a qualitative variable, we consider the Cohen’s kappa. Specifically,
in the model parameter optimization step, we considered the Cohen’s kappa in calculation (k) and the
Cohen’s kappa calculated by seven-fold cross-validation (k7-fold). The number of latent variables of the
PLS2-DA model was determined on the basis of the first maximum of k7-fold under the condition to
pass the permutation test on the Y-response (1000 random permutations). The class membership was
assessed applying LDA to the scores of the PLS2-DA model.

The PLS2-DA model showed three latent variables and the classifier k = 0.96 (p = 0.001) and k7-fold
= 0.96 (p = 0.001). The test set was predicted misclassifying three samples (k in prediction = 0.77).

The investigation of the score scatter plots and the correlation loading plots of the PLS2-DA part
of the classifier after post-transformation (Figure 5) provided a simplified characterization of the three
classes in terms of metabolites. Specifically, isoleucine and leucine presented the highest levels for
PMI < 500 min, lactate resulted to be higher for PMI in the range [500,1000] min than in the other two
classes, and choline, creatine, acetate, dimethylsulfone, succinate, and taurine showed the highest
levels for PMI > 1000 min. The orthogonal latent variable could be interpreted as representing the
effects of the state of the eye, and resulted to be mainly correlated to 3-hydroxyisobutyrate, citrate,
glutamine, and glycerol.

4.4.3. Application to the ‘Type 1 Diabetes’ Dataset

The dataset was generated analyzing the urine samples of 56 patients with type 1 diabetes and
30 healthy controls by UPLC-MS. A clinical examination, including pubertal stage evaluation according
to Tanner scale, was conducted and a detailed family and personal medical history was collected for
all the enrolled subjects.

For the accurate detection of metabolites in the samples, the compounds separated in the
UPLC were ionized and analyzed through a quadrupole time-of-flight (QToF) mass spectrometer.
The electrospray ionization source operated either in positive and negative mode. Raw data were
extracted by MarkerLynx software (Waters, Milford, MA, USA). Probabilistic quotient normalization,
log-transformation, and mean centering were applied prior to performing data analysis. Two datasets,
one corresponding to the positive ionization mode with 2381 variables (POS dataset) and the other to
the negative ionization mode with 1435 variables (NEG dataset), were obtained. More details about
sample collection, experimental procedure and data pre-processing can be found in [42]. The aim of
the study was to compare the urinary metabolome of the two groups of subjects. Specifically, the POS
dataset has been investigated as an example of short and wide dataset.
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Figure 5. ptPLS2-DA model; the two predictive latent variables tp[1] and tp[2] are reported in the
score scatter plot of panel A where the samples of the three classes result to belong to three different
regions; in the correlation loading plot of panel B, groups of metabolites characterizing each class can
be identified; if one considers the orthogonal latent variable to, samples of opened eyes show positive
values while samples of closed eyes negative values (panel C); the correlation loading plot of panel D
allows the identification of metabolites related to the state of the eye; samples with PMI < 500 min are
colored in blue, samples with PMI between 500 and 1000 min in green and samples with PMI > 1000
min in red; triangles are used for samples of closed eyes whereas circles for opened eyes.

Since urinary metabolome could be affected by weight, sex, age and pubertal stage,
we investigated whether the two groups showed differences in these parameters. Assuming a
significance level α = 0.05, we did not find differences between the two groups.

Stability selection based on Monte-Carlo sampling and PLS2-DA with VIP selection has been
applied to select a subset of relevant metabolites useful to discriminate the two groups [31].
One-hundred random subsamples of the collected samples were extracted by Monte-Carlo sampling
(with a prior probability of 0.70), and then PLS2-DA with VIP selection was applied to each subsample,
obtaining a set of 100 discriminant models. For each model, the number of latent variables and the
threshold to use for VIP selection were optimized on the basis of the maximum value of k7-fold. The class
membership was determined by LDA applied on the scores of the PLS2-DA model. The predictors
selected in more than 50 models were considered as relevant. Moreover, the performance in prediction
of each model was estimated predicting the outcomes of the samples excluded during subsampling.

A total of 318 variables were selected as relevant, and 279 showed q for the t-test (we have
applied a false discovery rate according to the Storey method) less than 0.20 and area under the
receiver operating characteristic curve greater than 0.50 (significance level α = 0.05). After variable
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annotation, metabolites mainly represented by gluco- and mineral-corticoids, phenylalanine and
tryptophan catabolites, small peptides, and gut bacterial products showed higher level in children with
type 1 diabetes. The Cohen’s kappa in prediction resulted 0.94 (95% CI = 0.78–1.00). In Figure 6 the
score scatter plot and the correlation loading plot of the ptPLS2-DA model obtained considering the
whole dataset are reported. The model showed one predictive latent variable and two non-predictive
latent variables, and the classifiers k = 1.00 (p = 0.001) and k7-fold = 0.92 (p = 0.001). The predictive
latent variable did not show significant correlation (significance level α = 0.05) with weight, sex, age,
and Tanner index.
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Figure 6. ptPLS2-DA model; the predictive latent variables tp and the first non-predictive latent
variable to[1] are reported in the score scatter plot of panel A where the samples of the two classes
belong to two different regions; in the correlation loading plot of panel B, groups of metabolites
characterizing each class can be identified; samples of subjects with type 1 diabetes (T1D) are colored
in red whereas samples of the control group (CTRL) in blue.

5. Conclusions

PLS2 is a heuristic regression method that combines the measured predictors into suitable latent
variables to perform least squares regression in the latent space. It solves many of the problems related
to the structure of the metabolomic data. Indeed, it is robust in the presence of multicollinearity,
redundancy, and noise, and can be applied to short and wide matrices.

Since PLS2 could include unnecessary sources of variation in the model, the possibility to
distinguish predictive and non-predictive latent variables simplifies model interpretation and allows a
better estimation of the effects in the regression model.

When a well-defined experimental design is implemented, orthogonal constraints can be
included in the maximization problem of PLS2 in order to remove specific sources of variation that
could confound data projection. In this way, general models independent of specified factors can
be generated.

However, further investigations are needed to deal with some important issues.
Since in PLS2 the exact estimation of the prediction error is hampered by the non-linearity of

the regression coefficients with respect to the response and a model in the statistical sense is not
formulated, it is difficult to put PLS2 in the general framework of linear regression modelling. Then,
it is necessary to investigate how to bridge the gap with traditional methods and clarify why the
maximization problem solved by PLS2 works so well in practice.

Moreover, new parameters or procedures for model interpretation should be developed to better
clarify the role played by the metabolites in the model when strong multicollinearity affects the data.
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Finally, the concept of applicability domain should be introduced and adapted to the needs of
metabolomics. This is fundamental to state whether the assumptions of the model are met and for
which new samples the model can be reliably applied, avoiding extrapolation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/3/51/s1.
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