
Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Agile methodologies and blockchain
development

Simona Ibba

Advisors: Giorgio Giacinto and Michele Marchesi
Curriculum: ING-INF/05

Cycle XXXI
January 2019

Dedicated to my mother Luisanna and my
grandmother Maria

Contents

Aknowledgments 1

1 Introduction 3

Introduction 3
1.1 Thesis overview . 5

2 Blockchain technology 7
2.1 Initial Coin Offerings . 8

2.1.1 The main characteristics of ICOs 8
2.1.2 How does an ICO work? . 9

2.2 Smart contracts and Solidity . 10
2.2.1 Smart Contracts . 10
2.2.2 Solidity . 11

3 ICOs and Lean Startup Methodology 13
3.1 Background . 14
3.2 ICOs: overview . 15

3.2.1 Overview of ICOs phenomenon statistics 15
3.2.2 ICOs’ critical aspects . 20

3.3 ICOs as Lean Startups . 22
3.3.1 Three different case studies 23

3.4 Conclusions . 25

4 Initial Coin Offerings and Agile Methods 27
4.1 Background . 29
4.2 Research Method . 31

4.2.1 Data Collection Steps . 31
Step 1 . 31
Step 2 . 32

4.2.2 Analysis Setup . 33
4.3 Data Analysis . 33

i

ii CONTENTS

4.3.1 Analysis of ICOs teams . 34
Team size and composition 34

4.3.2 Gender heterogeneity . 35
4.3.3 ICO Rating . 36
4.3.4 Social Media . 36
4.3.5 Financial aspects . 37

Ico market capitalization . 38
4.4 Analysis of Agile ICOs projects . 39

4.4.1 Roadmap and ICO state . 39
4.4.2 Software development . 42

Smart Contract code metrics 43
Testing . 46

4.5 Discussion . 47
4.6 Conclusions . 49

5 Ethereum Smart Contracts 51
5.1 Background . 53
5.2 Analysis of the Smart Contracts dataset 55

5.2.1 Smart Contracts parameters: analysis 56
Contract Name . 56
Compiler Version . 58
Balances and transactions . 59

5.2.2 Measures on Smart Contracts source codes 60
5.3 Detailed analysis on the top 20 used Smart Contracts 66

5.3.1 Smart Contracts description 67
5.3.2 Smart Contracts usage indicators 71

Blockchain interaction . 72
Developers’ interactions: versions and reuse of code 74

5.3.3 Code metrics . 76
5.3.4 Analysis of results . 79

5.4 Sample of Smart Contracts source codes 80
5.4.1 Crowdsale . 80
5.4.2 ReplaySafeSplit . 80
5.4.3 KittyCore . 81

5.5 Discussion . 83
5.6 Conclusion . 85

6 Agile methods for blockchain applications 87
6.1 A blockchain-based system for employment contracts 87

6.1.1 Background . 88
6.1.2 The Decentralized Employment System 90

CONTENTS iii

6.1.3 The D-ES state system . 90
6.1.4 Implementation of the decentralized system 92
6.1.5 The Platform . 93
6.1.6 Discussion . 93

6.2 Smart Contracts as Blockchain-oriented Microservices 94
6.2.1 Model . 96

6.3 CitySense: blockchain-oriented Smart Cities 96
6.3.1 Background . 98
6.3.2 The system . 99
6.3.3 CitySense . 100
6.3.4 The blockchain solution . 101
6.3.5 Discussion . 103

7 Conclusions 105

List of Publications Related to the Thesis 109

List of all Publications 111

iv CONTENTS

List of Figures

3.1 Team size distribution . 19
3.2 Raised amount per team size. 20

4.1 Flow diagram describing the selection process of the Agile ICOs . 33
4.2 All ICOs . 38
4.3 Agile ICOs . 38
4.4 All ICO . 39
4.5 Agile ICO . 39
4.6 Histogram of the number of months of development described in

the Agile ICO roadmaps . 40
4.7 Histogram of the number of months passed after the end of the ICO 41

5.1 Example of definition of the pragma version. In the first row is
specified that in the following will be used the version 0.4.18 of
solidity . 59

5.2 Histogram of the number of verified contracts per compiler version 60
5.3 Date of release of compiler versions and the date of the first con-

tract activation per compiler version. 61
5.4 CCDF of the balance in Ethereum per contract 62
5.5 CCDF of the number of transactions per contract 63
5.6 Contracts declaration in solidity . 63
5.7 Histogram of the number of line per source code 65
5.8 Histogram of the number of contract declaration per source code 65
5.9 Histogram of the length of bytecodes in byte 66

6.1 The state diagram describing the employment phases controlled
by the D-ES. 91

6.2 E-commerce system as a composition of smart contract-based
microservices . 97

6.3 Layers of structure . 102

v

vi LIST OF FIGURES

List of Tables

3.1 The first ten nation involved in the ICO phenomenon spread . . . 16
3.2 An industrial sector taxonomy of ICOs 17
3.3 The ten most important ICOs of 2017 18
3.4 Summary of the four key elements selected to investigate how they

affect the total raised amount in terms of correlation coefficient. . 19

4.1 Summary of statistics on ICO team. The average percentage of
advisors and female people per team are computed on teams of at
least one person . 34

4.2 The ten most common file extensions in Agile ICO projects. 43
4.3 Definition of computed source code metrics. 44
4.4 Volume metrics of smart contracts belonging to Agile ICO projects. 45
4.5 Cyclomatic metrics computed in the solidity files belonging to

Agile ICO projects. 46

5.1 The 10 most used contract names 58
5.2 Smart Contract balance . 61
5.3 Statistics on code metrics computed among 10174 contract source

codes . 66
5.4 Matrix of the cross-correlation coefficients between metrics and

indicators computed among 10174 contracts 67
5.5 List of the twenty smart contracts under examination. 67
5.6 Contract usage indicators . 73
5.7 Code metrics results in the twenty selected source codes 77
5.8 Cross Correlation Matrix of source code metrics 79
5.9 Correlation coefficients between usage indicators and code metrics 79

vii

viii LIST OF TABLES

Aknowledgments - Ringraziamenti

Fare ricerca è un po’ come essere esploratori. Non ci sono terre emerse da
scoprire. Esistono però mondi nuovi su cui investigare, idee da sperimentare,
strade da inventare. Con impegno, con entusiasmo, ma anche con quel giusto
piglio e quel sano buonumore che dà gusto al lavoro. Me lo hai insegnato tu,
caro Michele. Grazie per il tuo incontenibile desiderio di conoscenza, per la tua
lungimiranza umana e accademica, per la tua correttezza. Seguirti nelle tante
sfide scientifiche di questi anni non è stato semplice. È stato sicuramente un
bellissimo ed arricchente terreno di crescita in cui migliorarsi e rischiare con
la certezza di avere in te un approdo sicuro a cui aggrapparsi nelle eccessive
intemperanze.

Grazie a te Giulio per aver scommesso per primo su di me. In questi anni,
davanti ai successi, ti immaginavo sorridente ed orgoglioso a contemplare i
frutti di un lavoro che, fondato sulle tue prime decisive indicazioni, in qualche
modo ti appartiene.

Grazie a tutti i colleghi dell’Agile Group. Si può vivere il lavoro in tanti modi:
è stato bello condividere con voi la passione per lo studio, l’impegno, le piccole
battaglie di ogni giorno. Essere partecipi degli stessi progetti, abitare gli stessi
ambienti per tante ore, sono i segni di una piccola comunità che cresce con
la sua ricchezza e le sue fragilità, ma anche con la capacità di poter portare
sempre competenza e valore in ogni confronto tecnico e scientifico. Grazie
in particolare a Roberto per aver condiviso e guidato l’ultimo tratto di questo
percorso, a Filippo per avermi valorizzato in ogni contesto e per la sua costante,
affidabile e briosa presenza, ad Ilaria perché nella sua semplicità, nel suo senso
di responsabilità, nella sua generosità c’è un’immensa grandezza. Grazie ad An-
drea, fratello e amico nelle tante battaglie per le premure e le delicate attenzioni.
Grazie a Gavina per i passi vissuti insieme che hanno impreziosito il cammino
comune. Grazie a Michaela per la sua costante e disarmante disponibilità.

Grazie alla mia famiglia che con discrezione, orgoglio e fiducia ha custodito i
miei passi a volte incomprensibili.

Lo studio e la ricerca hanno come alleati la costanza, la pazienza, una sana
curiosità e quel trepidare che ti regala il guizzo di osare su strade che ancora non

1

2

immagini. Capita quindi che, mentre ti cimenti in nuove tecnologie, tu possa
scoprire che la ricerca più importante, che comprende tutte le altre, è la ricerca
di sé e della Verità. Le strade si aprono all’impossibile, si intessono di un Mistero
inesauribile che dimora in te nonostante l’inquietudine. Si spalanca il desiderio
di metterti in cammino verso l’Infinito e di lasciarsi sorprendere e avvolgere
dalla Sua gratuità. Grazie allora alle Monache Agostiniane di Pennabilli con
cui condivido, fra sorelle e amiche, questa ricerca in comunione con loro e con
l’umanità. Grazie per aver prudentemente e discretamente atteso i miei passi di
libertà. È bello scrivere qua, nella nostra casa, le ultime righe di questo lavoro di
tesi. Si aprono nuove pagine e nuovi scenari. Non so quali scoperte si potranno
fare insieme. So che la ricerca continua. Ed è Bellezza. E stupore. Grazie!

Chapter 1

Introduction

The blockchain is one of the most interesting technologies developed in recent
years and it is known as the first native digital medium for value, as well as
Internet was the first digital medium for information. Blockchain is a ledger, a
register, a decentralized and public shared database, reachable by accessing a
peer-to-peer network. Each unit of the register represents a block. The blocks are
linked together in the same order in which they were created and are connected
using cryptographic algorithms that make them and the information stored
therein not modifiable.

In recent years, therefore, research centers, software houses and, above
all, many startups started using blockchain as a new form of technological
democracy, really decentralized and able to guarantee everyone the opportu-
nity to make, verify and control, in full transparency, any type of transaction.
Blockchain technology therefore allows new forms of distributed software archi-
tectures whose components do not require a central control authority. Software
development needs to be supported by architectural models or blockchain ori-
ented meta-models. The introduction of smart contracts [21], small computer
programs stored inside the Ethereum[105] blockchain, modifies the typical soft-
ware engineering methodologies. The distributed applications developed on
blockchain technologies, can in fact follow rules different from used for the
development of the normal centralized applications. For example, traditional
software development models assume that all components of the technology
are flexible and can be modified as wanted. The blockchain is instead based on
a totally different assumption: the information stored on the blockchain and
therefore the smart contracts can not be modified or deleted without compro-
mising the integrity of the blockchain itself. Moreover the smart contracts run in
an isolated environment and their results must be the same whatever node they
run in. They cannot access the external world that changes with time, but can
access and send messages to the blockchain itself that is immutable.

3

4 CHAPTER 1. INTRODUCTION

Such an innovative context entails new challenges in software engineering.
Greater emphasis on specific security and testing practices, new development
tools, specific modeling languages and new metrics to evaluate software quality
are needed. These new metrics are required to measure complexity, communi-
cation, decentralized systems, but also resource consumption (e.g. the so-called
gas in the ethereum system).

In this scenario Agile methodologies, that are suited to system whose re-
quirements are not completely understood, or tend to change, could be a good
strategy of software development for blockchain applications. Some of the
characteristics of the Agile methodologies are in fact present in decentralized
applications (DApps). They are very innovative applications, that must be writ-
ten correctly and as fast as possible in order to be launched in the market. Agile
is iterative and incremental with short iterations, and is suited to deliver quickly
and often and therefore it is appropriate in the context of DApp development.
Agile methods moreover are suited for small, self-organizing teams working
together, as is the case for many DApp teams. One of the most interesting appli-
cations based on blockchain are the Initial Coin Offerings (ICOs). An ICO is an
innovative way to raise funds and launch a startup. It is also an opportunity to
take part in a project, or in a DAO (Decentralized Autonomous Organization).
The use of ICOs is a global phenomenon that involves many nations and several
business categories: ICOs collected over 5.2 billion dollars in 2017. The success
of an ICO is based on the credibility and innovativeness of project proposals.
This fund-raising tool contains however some critical issues, such as the use of
tokens that have no intrinsic value and do not generate direct liquidity, and the
role of investors in the startup’s management. The Lean software development,
an approach that maximizes the value given to the customer, and aims to elim-
inate waste and optimize across organizations, could be helpful to face these
critical aspects.

The ICOs and, more generally the decentralized applications are based on
smart contracts. By means of blockchain explorers like Etherscan.io, it is possible
find the deployed smart contracts for all decentralized applications. Considering
the technological breakthrough introduced by blockchain it is important to know
characteristics and measures and quality parameters of the development process
and its phases, as well as metrics to help ensure that the development process
is under control to meet the product’s quality goals. This thesis analyzes the
software development process of blockchain-based applications. In particular
this work wants to study the following aspects.

• Understanding the main characteristics of ICOs, investigate software en-
gineering activities related to ICOs, recognize the ICOs developed using
Agile methods and make a comparison between the characteristics of

1.1. THESIS OVERVIEW 5

ICOs and those of Agile ICOs. In addition, we perform a deeper analysis of
Agile ICOs concerning project planning, software development and code
quality.

• Evaluating the lean startup approach as a methodology for the imple-
mentation of an ICO based on the collaboration between all stakeholders
and founded on a continuous iteration process that allows investors to
be an integral part in the startup’s development and therefore to interact
continuously with the executive team and product development team.

• Analizyng smart contracts deployed on the Ethereum blockchain perform-
ing a comprehensive exploratory study. The objective of the analysis is to
provide empirical results about smart contracts features, their interaction
with the blockchain, the role of the development community, and the
source code characteristics.

• Presenting some applications based on blockchain developed using Agile
methodologies.

1.1 Thesis overview

The thesis is organized as follows.
Chapter 2 describes blockchain technology and its evolution over time. It

provides the essential elements for the understanding of the functioning of the
Initial Coin Offerings (ICOs) as a way, as an opportunity to take part in a software
project, in a Decentralized autonomous organization (DAO). It introduces a
particular typology of software programs called smart contracts the EVM on the
Ethereum blockchain environment, called Solidity whose main characteristics
are described in next sections.

Chapter 3 evaluates the lean startup approach as a methodology for the
implementation of an ICO based on the collaboration between all stakeholders
and founded on a continuous iteration process that allows investors to be an
integral part in the software startup’s development and therefore to interact
continuously with the executive team and product development team.

Chapter 4 aims to understand if and how agile practices are used in ICOs
in response to such high technological, process and market variability. To do
this, we take into account the principles of Agile Software Development and we
study if and how Agile methodologies and practices are used in the development
of ICOs. It conduces an analysis of smart contracts source codes of the Agile
ICOs in terms of code metrics and use of test tools. It aims also to provide a

6 CHAPTER 1. INTRODUCTION

deep analysis of the Agile ICOs in terms of their project planning and software
development.

Chapter 5 analyses software features and metrics of smart contracts, in or-
der to measure progress and performance and to provide food for thought for
improvement of these software artifacts. We performed an empirical study
collecting the dataset of all smart contracts source codes available from Ether-
scan.io up to December 2017. Moreover it computed several software metrics on
the entire dataset and we identified the twenty most used smart contracts, rep-
resenting a reduced set on which we performed a systematic and more detailed
analysis, in terms of both functionality and development history.

Chapter 6 describes some applications we designed and developed with
Agile methodologies.

Chapter 7 finally draws the conclusions of this thesis highlighting results and
contributions and presenting futures works.

Chapter 2

Blockchain technology

Blockchain technology is a data structure of the Decentralized Ledger Tech-
nology (DLT) family that generates trust and ensures data integrity without
the need of a trusted third part. A blockchain is shared in the nodes of a peer-
to-peer network and each node stores a copy of it. Data recorded inside the
blockchain is obtained through transactions. From a general and high-level
point of view, a transaction is a valid message between two authorized accounts.
In particular, each blockchain implementation includes validation algorithms,
message protocols, and a data-upgrading strategy. Nowadays, the first and most
important blockchain implementation is the bitcoin system [64]. This system
introduced the blockchain as the solution to the “double spending” problem in
digital money transfer.

In this blockchain, transaction data is organized in blocks. Each block is
digitally signed (by means of a hashing operation) and linked to the previous
one. This makes data immutable and defends integrity. Block creation is a
task entrusted to network nodes that listen for transaction requests waiting
to be validated. Transactions are composed of a list of sender accounts, a list
of receiver accounts, and of an amount of digital coins (called bitcoins). The
transaction is valid only if each sender wants to transfer coins that he/she has
previously received (by means a transaction already recorded in the blockchain).
In bitcoins, the block creation passes through a proof-of-work, a cryptographic
puzzle for which the difficulty is proportional to the total computing power of
the network. Those which first solve the cryptographic puzzle are called “miners”
and obtain a prize in bitcoins, that can be spent with a transaction.

The second step in DLT evolution consists in the advent of the blockchain-
based Decentralized Platform for Applications. In this case, the most important
implementation is the Ethereum system [17]. Ethereum introduced a new ty-
pology of account, a robotic account that lives inside the blockchain. This type
of account is known as a contract (or smart contract, as coined by Szabo [94]

7

8 CHAPTER 2. BLOCKCHAIN TECHNOLOGY

in 1997). Like normal accounts, a contract is able to both receive and send
transactions. In addition, a contract contains a computer program that makes it
able to compute and store data automatically.

In particular, smart contract programs contain a set of functions that other
accounts can call by means of a specific transaction. Indeed, Ethereum transac-
tions are messages that concern not only coin transfer.

The Ethereum blockchain is a state machine and each change in stored
data (i.e., account balances, smart contract data, etc.) passes through a state
transition. A new state depends on the data recorded in the previous state and
on transaction bodies.

Because of the energy effort of network nodes, each blokchain operation
has a cost. In the bitcoin system, users can pay a voluntary fee to the network
for each transaction. In the Ethereum system, the fee mechanism revolves
around the gas. In particular, the execution of each transaction and of each
smart contract instruction requires a certain amount of gas. Operations have
different gas costs. For example, storing data is more expensive than executing
an arithmetic sum. Conversely, reading stored data is free. The gas price is not
fixed. Users can decide how much pay it. However, users have to take in account
that if the chosen gas price is too low, the network can ignore their requests.

Smart contracts purposes range from crowdfunding campaigns and money
control to supply chain management and transparency [6]. They also allow the
creation of decentralized organizations in which rules are written inside the
code, in a programming language. Permission management, data availability,
and validation and checking operations are typical features that smart contracts
can provide through the decentralized platform.

2.1 Initial Coin Offerings

We can describe an ICO both as a way, not regulated by an authority, to raise
funds and launch a startup, and as an opportunity to take part in a project, in a
DAO or even in an economic system.

2.1.1 The main characteristics of ICOs

The idea of ICO is very similar to the well-known concept of Initial Public Offer-
ing (IPO), where a company decides to place its shares on the stock exchange, to
open its capital to new shareholders. In this way, new listed companies enter
the stock market and consequently increase their capital. We can therefore
define ICOs as investments that provide "crypto objects" to investors. These are
commonly named tokens. Tokens are also considered to be coins offered during

2.1. INITIAL COIN OFFERINGS 9

an ICO, and as such they can be considered equivalent to the shares purchased
under an IPO. Note also that the vast majority of ICOs issue tokens in exchange
for cryptocurrencies convertible into real money; this allows investors to access
the functionality of a particular project. Moreover, ICOs in general remain open
for a period of a few weeks, up to a maximum of one or two months. In the
following we indicate the main features of an ICO.

• ICO prices are set by the creators of the startup or by the person who
designed the project;

• the investor who owns the tokens issued by a startup in the phase of capital
raising does not always have the right to express an opinion or to be part of
decisions about the project, even if it remains one of the available options;

• the first investors will probably have greater advantages included in their
tokens as incentives. The creators of a startup, to thank investors and to
improve their loyalty, often offers them a variable bonus percentage that
is proportional to the amount of cryptocurrency that the investor chooses
to put in that token, and then in that startup;

• after the conclusion of an ICO, its tokens are traded on some cryptocur-
rency exchange, which is a website where digital currencies can be traded
against each others, and against legal money, so that they can be traded
very soon with respect to other kinds of startup financing;

• the startups that collect capital through ICOs are not subject to taxation
(at least by now).

2.1.2 How does an ICO work?

A startup initiates the ICO process by establishing, first of all, three aspects: the
blockchain underlying the system, its protocols and rules. Subsequently the
ICO’s creators define and make available the tokens that will be sold. In addition,
in order to evoke the greatest possible interest, startups announce their ICO in
several ways. The most used are represented by social media and ICO websites
in which ICO’s creators describe their business project.

The new token issued during the ICO will also need to be traded in an ex-
change, in a similar way of trading in the stock exchange after an Initial Public
Offering (IPO). ICOs active or about to be activated can be traced through differ-
ent websites, whereas the sale of tokens against cryptocurrencies is performed
through selected exchange platforms (the most famous being Bittrex, Kraken,
Poloniex, Livecoin, SpaceBTC and Bitlish). In order to buy tokens, the investors

10 CHAPTER 2. BLOCKCHAIN TECHNOLOGY

must possess a virtual wallet holding the needed cryptocurrencies, that can in
turn be bought in an exchange using traditional money. Investors can buy ICO
tokens very easily and directly, starting from the startup website. So, investors
eager to invest in promising startups through their ICOs have to explore thor-
oughly the various exchange platforms and the social media dealing with ICOs.
In this way, they find and evaluate the active and forthcoming ICOs, and can
make their choice, buying the chosen tokens.

2.2 Smart contracts and Solidity

Our analysis takes into account a particular typology of software programs called
smart contracts, written in a programming language specific for running in the
EVM on the Ethereum blockchain environment, called Solidity.

2.2.1 Smart Contracts

A smart contract is a computer program that aims to implement a logical se-
quence of steps according to some clauses and rules. In a conceptual level, smart
contracts consist of three parts [94]:

• the code of a program that becomes the expression of a contractual logic;

• the set of messages which the program can receive, and which represent
the events that activate the contract;

• the set of methods which activate the reactions foreseen by the contractual
logic.

Smart Contracts run in a blockchain where contract transactions can be
permanently recorded in a transparent environment and are immutable. Once
the smart contract is deployed into the blockchain its code cannot be modified
and the clauses introduced by the parties in the contract will obligatorily be re-
spected because of the computational nature of the system, as for the execution
of any software program.

There are different blockchain able to run programs implementing smart
contracts. Even the Bitcoin blockchain supports a limited amount of software
code that can be deployed using transaction in a blockchain address [5]. Other
examples are Hyperledger Fabric [18], the Qtum platform [27] and the Achain
platform [26].

Among all, the most popular is the Ethereum platform, the first blockchain
specifically conceived to run smart contracts, and the most popular program-
ming language for smart contracts is “Solidity”. In this platform it is possible to

2.2. SMART CONTRACTS AND SOLIDITY 11

read some information that characterize each Ethereum transaction. In particu-
lar, smart contracts are activated by messages, that are ethereum transactions
executed by the message sender.

Currently the Ethereum platform hosts the large majority of smart contracts.
The process to deploy a smart contract into the Ethereum blockchain is

composed of three phases. The first phase consists in the code writing in solidity
language; the second consists in the code compiling, that can be executed in
a local environment (i.e. the remix environment1) to convert the script in the
EVM bytecode [92]; and finally the last phase consists in creating a transaction
in the blockchain, that actually deploys the contract. At the moment of the
deployment, the blockchain assigns an address to the smart contract. Accessing
to that address it is possible to visualize some useful data of the smart contract
like its address, its balance, and its Application Binary Interface (ABI).

In order to avoid the possibility of the EVM overload, the execution of smart
contract functions (when they involve a changing of the blockchain data) lead
to a cost in terms of cryptocurrency. In particular, to each low level operation
is associated a computational cost (defined in units of Gas)[105]. The price in
Ether of a unit of Gas is not fixed but follows the free market rules.

2.2.2 Solidity

Solidity is a contract-oriented, high-level language whose definition was influ-
enced by Object Oriented (OO) languages like Python, C++, and especially by
JavaScript.

It is a typed programming language and supports traditional types such as
integer, string, array, as well as structures, associative arrays, and enumerations.
Moreover, Solidity has a specific type, the address, that identifies users and other
contracts. Each contract variable can be interpreted as a record of a database
which can be queried and modified by calling functions of the code that manages
the database. The set of variables and their associated values represent the state
of the contract. Smart Contracts functions can be externally called by means
of blockchain transactions. In order to make the development more modular,
specific function modifiers can be defined and associated to different functions,
for instance to perform checks in a declarative way.

Recently, appeared some mainstream integrated development environments
(IDE’s) supporting solidity code development, as for example IntelliJ IDEA, de-
veloped by JetBrains. We used the Intellij-Solidity plugin2 to read and compare
contracts source codes.

1Available online at https://remix.ethereum.org/
2https://plugins.jetbrains.com/plugin/9475-intellij-solidity

https://remix.ethereum.org/

12 CHAPTER 2. BLOCKCHAIN TECHNOLOGY

On the contrary there is still a lack of tools specific for analyzing Solid-
ity source code metrics, so that we recurred to the similarity of Solidity with
Javascript and C++ for the analysis of Solidity source codes metrics. In fact, an
exploratory evaluation of the features of smart contracts source codes can be
performed using metrics and methodologies obtained adapting the existing
ones.

Chapter 3

ICOs and Lean Startup Methodology

An Initial Coin Offering (ICO) is an innovative way to raise funds and launch a
startup. It is also an opportunity to take part in a project, or in a DAO (Decentral-
ized Autonomous Organization). The use of ICO is a global phenomenon that
involves many nations and several business categories: ICOs collected over 5.2
billion dollars only in 2017. The success of an ICO is based on the credibility and
innovativeness of project proposals.

ICOs are the new trend in the cryptocurrencies field. The technology to create
a new cryptocurrency is cheap: in a short time and without large investments
any company can present itself to the market with its fundraising and the related
token. With these premises, an ICO is the most innovative solution to finance
themselves outside the traditional channels, especially for startups.

In fact, a good source of funding is essential to launch a startup. At first, it is
possible to apply for local or international institutional funding, that generally
does not provide for the repayment of the grant, but which also involves very
long waiting times and a very complex bureaucracy. Even traditional funding
operations that involve venture capitalists (VCs) or business angels have long
waiting times. The risk is also that a traditional VC could acquire a high percent-
age of shares and become prevailing in the key decisions of the company. On the
other hand, a typical fundraiser needs a good marketing campaign, with many
supporters participating with small amounts of money. Even a financial partner
can be very risky, especially if the partner is a very experienced person who want
to steal the business idea. The creation of an ICO therefore represents a valid
way to collect initial capital for startups.

The success of an ICO is fundamentally based on three key elements: reli-
ability of team members, evaluation of the project and of its white paper, and
comments from other investors. Analyzing these three factors, investors should
be able to answer two simple questions: "What novelty and what value does this
project bring to the world?" And consequently: "Does it make sense to invest

13

14 CHAPTER 3. ICOS AND LEAN STARTUP METHODOLOGY

in this project?" The questions arising from this premise are therefore the fol-
lowing: "Can an investor monitor the evolution of the startup based on an ICO
and actively collaborate on the success of this startup?". This work evaluates
the lean startup approach as a methodology for the implementation of an ICO
based on the collaboration between all the stakeholders involved and founded
on a continuous iteration process that allows investors to be an integral part
in the startup’s development and therefore to interact continuously with the
executive team and product development team. The chapter is structured as
follows. Section 3.1 presents the related works. Section 3.2 proposes an ICOs
overview which includes phenomenon statistics, a taxonomy, and a description
of critical aspects. In section 3.3 we show ICOs as Lean Startups and discuss
about some study cases. Finally, in section 3.4 we present the conclusions.

3.1 Background

To date, because of its novelty, literature hardly addresses this topic. In October
2017 Flool et al.[37], analyzing the history of the blockchain technology and of
cryptocurrencies, presented the ICO phenomenon as a realization of an anarcho-
capitalists system, made trusty by the underlying technology. Authors reported
results of their studies related to key elements which make good an ICO, stating
that the crucial element is trust (generated by the technology and by the ICO fea-
tures). The initial coin offering process has also been studied by Kaal et. al[48] in
November 2017. They described ICOs and the related environment. In addition,
they underline the similarities and differences between ICOs and the IPOs of the
stocks market, focusing the attention on risks and bad practices which could
compromise investments and the general trust in the ICO system. Trust creation
can not ignore the legal aspects of the ICO funding mechanism. Barsan[4] gave
particular attention to this aspect. He highlights regulator organisms are well
equipped to apply existing regulation to virtual currencies and ICOs. He also
provides a legal classification of ICOs, distinguishing the currency-like tokens
from the security-like ones. In order to evaluate risks and actual value of an ICO,
Venegas [100] proposed an empirical approach based on the correlation analysis
of the network activity. Adhami et al. [3] too, focused the attention on empirical
evaluation of ICOs, classifying them in accomplished and failed. Very recently,
Fenu et al. analyzed 1387 ICOs, assessing the factors that were critical to theirs
success [35] using a statistical analysis, whereas Hartmann et al. analysed 28
ICO websites to reveal the state of the practice in terms of ICO evaluation [42].

ICOs are a startup funding method that has similarity with the crowdfunding.
In 2014, Mollick presented results of his empirical analyses on the dynamics of
crowdfunding [58] and factors that influence the performances. Recently, Wang

3.2. ICOS: OVERVIEW 15

et al. studied the effects of the interaction between creators and backers on
crowdfunding success [102], basing on the sentiment analysis of the comments.
On the other hand, several works focused the attention on the lean startup
development and their funding opportunity. Poppendieck et al. described lean
startup concept and its key elements in their tutorial [77] in 2012. In 2013, Bosch
et al. proposed a early stage startup development framework [14] in which all
stages which a startup team has to accomplish during the first phases of their
business initiative, starting from the idea generation to the validation of the
Minimum Viable Product (MVP), are described.

3.2 ICOs: overview

3.2.1 Overview of ICOs phenomenon statistics

In this section, in order to figure out the dimension of the ICO phenomenon,
we provide some statistics. We analyzed from the 1th of December up to the
12th January 2017 specialized websites1 which collect ICOs and their details. We
can state that 2017 was the year of ICOs. According to icowatchlist.com data,
during that year ICO raised over 3.3 billion dollars. By comparison, in 2016
ICOs raised a total of 106 million dollars2. Exploring ICOs we realize that they
represent a global phenomenon. In particular, 88 nations presented at least one
ICO. Despite this reality, it must be said that four countries raised over the 54%
of the total. They are Switzerland (21%), United States (19.1%), Israel (7.6%) and
Singapore (6.7%). As regards the number of ICOs per nation, USA, Russia, UK
and Singapore are the most active nations. Table 3.1, summarizes the first ten
nations per total raised amount.

By the end of 2017 the icobench.com website listed 1259 ICOs, referring to
a heterogeneous set of projects. About 50% of ICO projects are ICOs already
ended. 33% are ongoing ICO and the remaining 17% are upcoming ICOs.

In order to understand the ICO trend we decided to categorize them by
industrial sector. In this regard, we pinpointed all relevant data from the afore-
mentioned ICO websites. However, each website presents information by con-

1ICO data are extracted from the following websites:
http://www.icobench.com,
http://www.coinschedule.com,
http://www.icowatchlist.com,
http://www.coingecko.com,
http://www.icoalert.com,
http://www.icostats.com,
http://www.icodrops.com

2https://www.coindesk.com/2016-ico-blockchain-replace-traditional-vc/

16 CHAPTER 3. ICOS AND LEAN STARTUP METHODOLOGY

Country Total Raised % of Total ICO Projects
Switzerland 463,775,825 21.02% 51
United States 421,402,100 19.10% 248
Israel 167,370,000 7.59% 15
Singapore 148,780,000 6.74% 79
Russian Federation 81,174,361 3.68% 202
France 78,050,000 3.54% 15
United Kingdom 61,050,000 2.77% 106
Serbia 53,070,000 2.41% 4
Gibraltar 27,480,000 1.25% 14
Spain 26,660,000 1.21% 10

Table 3.1: The first ten nation involved in the ICO phenomenon spread

sidering different criteria and perspective, and only few of them propose a
classification. In general, an ICO is described by: name, logo, token, start date,
end date, description, website, white paper, social links, accepted cryptocur-
rency, development platform, ICO price, min and max target amount to raise,
country, upcoming, ongoing, ended, and so on.

Merging and cross-referencing the analyzed data, we built the taxonomy
shown in Table 3.2. To identify the taxonomy dimensions, we made a list of
categories already identified by the various websites, using as labels the most
used ones. In some cases we joined some of them. In total, we identified 24
dimensions which represent the category of industrial ICO sectors. Afterward,
we populated the taxonomy considering both the number of projects developed
and the amount of funds raised in each specific sector. In this way, we were
able to understand the ICO sector trend and the investors’ interest towards
projects. We represent results in percentage terms. Table 3.2 shows that projects
in Blockchain Platform & Services are the most popular: 20% of projects has
been launched in this sector. We can also see that these projects are the most
heavily funded, having received 25% of the total raised amount. The second
most funded category is Network/Communication/Storage with 20% of funds
raised. Therefore, we notice that nearly half of all investors are interested in the
two above mentioned categories.

Since ICO funding is an ever changing phenomenon, the proposed classifi-
cation should not be considered as definitive, but as a starting point on a path
toward a more exhaustive categorization.

We show in Table 3.3 the ten most funded ICOs in 2017, reporting also their
category, according to the taxonomy shown in Table 3.2.

3.2. ICOS: OVERVIEW 17

Category
% Projects
per Category

% Fund raised
per Category

Blockchain Platform&Services 20,00% 25,00%
Finance 12,00% 7,00%
Trading & Investing 10,00% 8,50%
Commerce/Retail 8,00% 3,00%
Payments/Wallets/Cryptocurrency 8,00% 9,00%
Gaming/VR 6,00% 4,00%
Funding/VC 5,00% 1,20%
Network/Communication/Storage 5,00% 20,00%
Betting/Gambling 3,00% 2,00%
Data/Artificial Intelligence/Machine Learning 3,00% 2,00%
Media/Content 3,00% 0,50%
Healthcare 2,00% 7,00%
Real estate 2,00% 0,80%
Security/Identity 2,00% 2,00%
Social Network 2,00% 3,00%
Energy/Utilities 1,50% 0,40%
Education 1,00% 0,01%
Industry/Logistics 1,00% 0,20%
Insurance 1,00% 0,20%
Mining 1,00% 0,30%
Transportation 0,70% 0,20%
Tourism 0,40% 0,10%
Legal 0,05% 0,40%
Other 2,35% 3,19%

Table 3.2: An industrial sector taxonomy of ICOs

ICO Dataset The dataset has been populated using the API provided by icobench.com
website3. On date 16th January 2018, we updated the ICO dataset, holding on
that date information regarding 1542 ICOs. In particular, we used the POST
request

https://icobench.com/api/v1/ico/{id}

where {id} is a progressive number that uniquely identifies an ICO. This request
provided comprehensive information about each ICO stored in the website
database. The data were extracted using a script written in R language, which
includes the httr 4 library developed by Wickham.

In order to analyze a temporally homogeneous set of ICOs, we selected the
ICOs started and ended during 2017. This set includes 690 ICOs. The sum

3https://github.com/ICObench/data-api for references
4https://cran.r-project.org/web/packages/httr/httr.pdf

18 CHAPTER 3. ICOS AND LEAN STARTUP METHODOLOGY

Name
Total Raised

(USD M.)
Category Start Date Duration

Team
(Advisors)

Nation

HDAC 258
BC Platform

&Services
27/11/17 25 17 (7) Switzerland

FileCoin 257
Network/

Communication/
Storage

10/08/17 31 13 (0) USA

Tezos 232
BC Platform

&Services
01/07/17 12 11 (3) USA

EOS 185
BC Platform

&Services
11/06/17 15 4 (0) USA

Paragon
Coin

183
BC Platform

&Sevices
15/09/17 30 12 (0) Russia

Sirin Lab 158
Commerce/

Retail
12/12/17 14 42 (7) Switzerland

Bancor 153
BC Platform

&Services
12/06/17 31

8
(10+5)

Israel

Polkadot 145
BC Platform

&Services
15/10/17 12 NA Singapore

QASH 105
Trading

&Investing
606/11/17 02 9 (9) Singapore

Status 102 Other 20/06/17 31 7 (0) Switzerland

Table 3.3: The ten most important ICOs of 2017

of the raised amounts by these ICOs during 2017 is about 5.20 billion dollars.
Considering only ICOs with non-zero raised amount, the average value of these
amounts is about 17.21 million dollars, whereas the median is 7.30 million
dollars. To focus the attention on the magnitude of the raised amounts, we
considered the raised amount in l og10 scale. This value is included in the range
2-9. In addition, to describe each ended ICO, we extracted four static key features
from the dataset: the ICO Duration in days, the Rate (a rating score provided
by icobench.com that summarize the overall quality of the ICO), the total Team
size, the number of advisors, and the total raised amount. We then excluded
119 ICOs having zero team members or whose total raised amount was not-
available. We investigated if and how key features influence the final raised
amount computing, at first, the correlation factor between each key element
and the raised amount for each ICO. In table 3.4 we summarize the four key
features and their values. It is interesting to note that the ICO duration and the
raised amount have a negative correlation. We focused the attention on the
team size, considering all people registered in the dataset, including developers,
advisors and supporters of the ICO. The average number of team members is
10.9, with a standard deviation equal to 7.1. In fig. 3.1 the distribution of the
team size is provided.

The correlation between the time size and the raised amount of the ICO in
log10 scale is equal to 0.32. To investigate the relation between team size and

3.2. ICOS: OVERVIEW 19

Figure 3.1: Team size distribution

Duration Team Size Advisors Rating
Max Value 112 days 58 17 4.9
Average 29.65 days 10.87 2.17 3.18
Standard Deviation 18.09 7.05 3.37 0.80
Correlation* -0.28 0.32 0.22 0.34

Table 3.4: Summary of the four key elements selected to investigate how they
affect the total raised amount in terms of correlation coefficient.

ICO success, we computed the average raised amount per team size (AR), and the
minimum raised amount per team size (MR). Results show that both these data
are more correlated with the team size than the original data. The AR and the
team size have a correlation coefficient equal to 0.51, whereas MR and team size
have a correlation coefficient equal to 0.76. To describe the proportionality of
these results with the team size, we computed the linear regression y = m(x)+q ,
where and x is the team size and y is the log10 of the amount. The AR function
has parameters m = 0.017 (with standard error 0.11) and q = 6.67 (with standard
error 0.12). The MR function has parameters m = 0.064 (with standard error
0.009) and q = 4.88 (with standard error 0.23) Fig. 3.2 shows these two functions.
Blue diamond dots represent the linear regression function of the minimum
raised amount per team size. Red squared dots represent the linear regression
function of the average raised amount per team size.

20 CHAPTER 3. ICOS AND LEAN STARTUP METHODOLOGY

Figure 3.2: Raised amount per team size.

3.2.2 ICOs’ critical aspects

An ICO is based on the assumption that investors will buy the ICO token in order
to obtain a future return on investment (ROI). In particular, an investor will buy
the token at the ICO selling price with the aim of selling it after ICO ends, at
a higher price. For this reason, an ICO must be organized to be attractive to
investors. In short, an ICO must first of all be credible. ICO general information,
the product information, the team composition, and the vision of the propos-
ing startup, are key elements in the eyes of investors during the evaluation of
investment opportunity.

In traditional VC rounds, investors acquire an ownership percentage, after
a business evaluation. Conversely, ICO investors do not enter in the business
ownership. Investors aim to obtain a profit on what they are buying, i.e. the
token. Actually, token are something that will allow the access to some services
after the startup idea will be realized. Investors wish to buy tokens whose
value will increase after the startup business will launch its product. The first
investment performance indicator is the ROI. As of writing, the vast majority
of closed ICOs are characterized by a positive ROI, and several cases present
a very high increase of the token value (see for instance the ROI of Stratis and
NEO, characterized by a return on January 2018, greater than one thousand
percent!). In few cases, investors lost theirs money, as in the case of Paragon
ICO, one of the ICOs which raised most money, that currently has a negative

3.2. ICOS: OVERVIEW 21

ROI (-44%). Another important aspect is that ICO investment can be liquidated
just by selling the bought tokens (the equivalent of the exit operation in venture
capital). Tokens, however, are not directly payable in fiat currency. They have
to be sold in specialized exchange websites, at the market price. This price
is typically highly volatile, thus presenting a high risk. Summarizing, critical
aspects of ICOs are:

• ICO project must be credible for investors (feasibility of the project, etc.);

• Token should have an intrinsic value: an ICO does not generate direct
liquidity, but the value is given by its token;

• Risk of low or negative ROI;

• The investors, who are used to risk, play the role of the controller.

• The ICO tool is highly innovative: it is not possible to carry out historical
analyzes or analytical forecasts. The key element of success is based on
management flexibility.

The critical aspects of an ICO also can partially or totally match the typical
crucial aspects of a startup firm, which operates in conditions of extreme vul-
nerability and faces many challenges. According to several authors [12] [81], the
high failure rate of startups can be mainly attributed to the way in which the
startup is managed and not only to typical market factors such as competition.
The main risk of an ICO, and consequently of a startup [81], is therefore to spend
time, money and energy in the development of a service or a product which
people are not interested in.

What would be needed to reduce the identified problems?
After highlighting the limitations of an ICO and the challenges that a startup

faces, in the followings we point out what are the elements that can contribute
to the success of an ICO.

• Investor involvement not only in the fundraising phase, but also in the
subsequent phases. Business risk is therefore shared, and investors are
called upon to invest only in projects they really believe in and where they
can make a significant contribution also in terms of ideas. In this way, the
risk of speculation is limited.

• The design idea must be manageable through a token.

• The business model must be feasible and therefore concrete, sufficiently
detailed, but at the same time must be flexible.

22 CHAPTER 3. ICOS AND LEAN STARTUP METHODOLOGY

• A complex project can be divided into phases: the first steps, if the startup
project is innovative, are the most critical.

• It is good to test the project idea right away by analyzing feedback from a
small number of users.

The elements highlighted above, designed to increase the probability of
success of a startup, are supported by numerous studies [11] [61][89] [57], and
are typical of lean startup methodology in which the focus is on the customer,
the decision-making process is based on the facts and pivoting and agile/lean
thinking is fundamental.

3.3 ICOs as Lean Startups

In order to create a successful ICO it could be helpful the use of The Lean
methodology and Value Proposition Canvas. These strategies in fact can be
used to ensure that the market of designed product actually exists and that the
idea can be considered good. In the context of an ICO, moreover, the activities
can not be exclusively focused on reaching a solution, but it is necessary to
examine the problem in detail before proceeding with any elaboration [62]. At
the start of an ICO, in fact, both the problem and the solution are not generally
well understood by investors and often also by the development team. In this
context of uncertainty, the typical elements of lean startup methodology such
as prototyping, execution of experiments [60], validation of initial business
hypotheses and continuous learning can be easily applied as elements of greater
security [81] [11]. We outline below some aspects of this methodology that can
be easily applied to the management of an ICO.

1. The Pivot. It is a change of direction during the development of the project.
All changes are based on what is learnt in the previous stages. If you re-
duce the time between the pivots you increase chances of success and
you spend less money. The pivot is connected to the concept of feedback
cycle formed by the three phases Build-Measure-Learn (BML) and to the
Minimum Viable Product (MVP). A chance of success is proportional to
the minimum time it takes to get through the BML loop, and then to the
minimum time between pivots. With this approach, you start with an idea
of product or startup, and the end result can be something else. The direct
feedback and the tests by potential users of the product could therefore in-
duce to change market segment, customer type, costs, partners, strategies,
while maintaining the same vision of the startup. In an ICO, given that
initial investors back the team more than the idea, the pivoting should not
be a problem.

3.3. ICOS AS LEAN STARTUPS 23

2. Validated learning. This process should apply to an ICO that works in an
area of extreme uncertainty in order to verify the progress of the project
[81]. A positive marker of an ICO in fact cannot be just the revenue. An
iterative validated learning process allows an evaluation of the hypothesis
(that could be valid or invalid) by running experiments and by the analysis
of information that leads to the formulation of new ideas. Identifying a
very clear use case that requires the decentralized approach typical of
blockchain technology could be the fist step of this process.

3. Testing. The Lean startup methodology highlights the importance of test
cycles. It allows to verify concretely if the need really exists, if it is perceived
by the identified target, and if it is strong enough to be satisfied. Testing
speeds up learning and create a competitive value. When a stakeholder
analyses an ICO, one of the most relevant questions is if the idea and
the team are good in that specific context. According to Lean Startup
methodology, the success of an ICO could be connected to testing the
product in each phase, to verify the need and the use of the product. In
accordance with the decentralized nature of the blockchain, the use of
tests applied in a decentralized way can be useful.

3.3.1 Three different case studies

We aim to analyze the ICO phenomenon based on the Lean startup methodology.
We examined those ICOs in which the proposer team states explicitly that a Lean
startup approach is used. We examined three different case studies, each with a
different application of this methodology. The first ICO uses the principles of
modularity, simplicity and scalability typical of Lean startup methodology to
develop a platform to build decentralized applications; the second, according to
Lean startup methodology, focuses its attention on feedback from users. Finally,
the third ICO designs a platform that, using the Lean startup methodology, aims
to address the problem of lack of interaction between investors and development
team of ICOs.

Lisk - Blockchain Application Platform. Lisk5 is one of the oldest ICOs and
is a Lean startup. It was registered in Switzerland by Max Kordek, Oliver Beddows
and Guido Schmitz-Krummacher on 22 February 2016 and raised money in bit-
coins. The platform was born from a fork of Crypti’s blockchain and its price, as
well as that of most tokens, peaked in 2017. At present, Lisk is one of the most
solid startups financed by an ICO. Lisk has raised over 14,000 Bitcoins or about $
9 million at the time of the campaign, and has now a market cap of more than one

5https://lisk.io/

24 CHAPTER 3. ICOS AND LEAN STARTUP METHODOLOGY

$ billion. Every month, on the ICO website a monthly report is published on the
activities of the startup and on its financial evolution. Lisk spends around 76,000
CHF for its running costs per month. The daily volume traded on exchanges is of
several tens of million CHF. Lisk is based on the principles of modularity, simplic-
ity and scalability typical of Lean startup methodology, and provides a platform
for the construction and distribution of decentralized apps. Developers have
the ability to build decentralized applications (DApp) with some mainstream
programming languages such as JavaScript and Node.js. Therefore, developers
do not need to learn the Solidity language, as in the Ethereum blockchain. Unlike
what happens to the DApp on Ethereum, the applications developed on Lisk
will be built on a parallel blockchain (sidechain), so as not to create problems
for the main blockchain, especially in the case of bugs. A modular SDK allows
developers to take advantage of a series of libraries, modules, algorithms and
third-party tools that make the development environment user-friendly and
customizable, and therefore suitable for creating blockchain applications.

Galactikka - A social networking project. Galactikka6 is another ICO in
which the proposing team declares to use the Lean startup methodology. Galac-
tikka is an innovative social network that allows authors to promote their original
content and to earn money with their posts, photos and video materials when
they are published and shared. The platform integrates a community, blogs and
a system for Q&A. The goal of Galactikka is therefore to help amateur authors to
make themselves known and to profit from their creativity. Galactikka was de-
signed in Russia, so its main language is Russian. Galactikka uses the approach
of phases and interactions typical of the Lean Startup methodology, giving great
value to the feedback provided by the users. For this reason, in the first instance,
the team prefers to use only the Russian language, because it is the language
best known to them. In the first phase also the contents inserted by the users
will have to be in Russian language. According to the Lean startup method, it
is in fact convenient to test the application on a small group of users. In this
way, the development team intends to concentrate initially on a limited user
target, whose language is fully understood, in order to avoid wasting energy
and resources on a global audience that is too large. In this way, it is possible to
increase the speed of project development.

doGood - Blockchain-fueled social platform for lean startup. doGood7

aims to get through one of the main limitations of an ICO: the lack of tools that
can allow investors to provide feedback during the development phases of the
project idea related to a startup. With a Lean startup approach, doGood wants

6http://galactikka.com/
7https://dogood.io/

3.4. CONCLUSIONS 25

to offer funders the opportunity to monitor the team’s progress and to provide
direct guidance at all stages of the project. The Lean startup methodology is
needed, given the uncertainty in the evolution of the project, and in order to
ensure that the proponent team provides the promised results, thus determining
an increase in the value of the token. Using the Lean startup methodology, the
doGood ICO seeks to improve interactions between the team and other stake-
holders. Smart contracts help decision making and reduce the cost and the
time-to-market. In this way, it is possible to increase token value and reduce
the risks involved in these ventures. doGood is therefore a web platform that
stems from the idea that it is necessary to improve interaction between people
by proposing a democratic method to solve complex problems based on open
innovation principles, design thinking and especially on Lean startup philoso-
phies. Every person involved in the project, and therefore also every investor, in
a decentralized way and from any part of the world can indeed perform a series
of activities and be totally protagonist of the success of the startup. Incentives
and governance system are based on the Ethereum blockchain, aiming to a
better identification of solutions to problems, and to the ability of proposing
arrangements in a decentralized and large-scale manner. The system is designed
with the hybrid use of two architectural paradigms: a client-server architecture
(centralized), and a client-server architecture based on blockchain technology
(decentralized). This ICO merges the use of smart contracts with the Lean startup
methodology, gaining a double advantage for investors – they have greater visi-
bility within the project and the related startup, and can provide relevant and
appropriate information on the construction of the system. The token is called
just GOOD. A smart contract system, in application of the Lean startup method-
ology, is connected to the various decision-making milestones of the project’s
evolution. A GOOD token is assigned to a project in exchange for the VOTE
tokens. VOTE-type tokens are used by investors, proportional to the amount of
GOOD Token held, to be able to cast their votes in the decision-making stages
of the project. In this way, the Product Development Team can understand
unequivocally, as a result of a democratic operation, what are the wishes of the
investors. The use of the blockchain is useful for its intrinsic properties that
guarantee authenticity and security of the vote of the stakeholders.

3.4 Conclusions

Startups based on a ICO are playing a fundamental role in creating the market of
blockchain applications. An ICO can be a valuable tool for those teams that want
to quickly obtain financing, but it also has several limitations, due essentially
to the immaturity of the technological system and to the risk of financial spec-

26 CHAPTER 3. ICOS AND LEAN STARTUP METHODOLOGY

ulation. The Lean startup approach can be useful to solve some of ICO issues.
The tokenization nature of an ICO proposal needs a form of sustainable and
regulated token sale event, that can be built on an MVP. The concepts of pivot
and validated learning can be very useful, but also the investors’ goals must be
taken into account. They can be directed exclusively to immediate gain and
not to company growth, strategic planning or operational work. A Lean startup
methodology could be useful in order to respond to a tokenization that gives
rise to new business models and new products or services that must effectively
address customer needs. Many iterations and the direct involvement of all the
stakeholders can further improve and help to market the original idea.

The following chapter presents the development of ICOs with Agili method-
ologies.

Chapter 4

Initial Coin Offerings and Agile
Methods

As reported in the previous chapter, an ICO is a new way to perform crowdfund-
ing campaigns, based on blockchain technology [64, 93, 49]. It allows to finance
startups working on blockchain technology or applications on a global scale,
directly and without intermediaries.

With the aim of involving as many investors as possible, a startup will create
and distributes tokens. The token is developed through a smart contract, a
computer program running on a public blockchain [17]. Smart contracts are the
base for the development of decentralized applications (DApps). Most smart
contracts used for ICOs run on Ethereum blockchain, and are usually written in
a programming language called Solidity.

Although startups performing ICOs share many characteristics with soft-
ware startups not based on blockchain technology, several factors make the
software development context of ICOs unique. We want therefore study this
specificity. Consequently, the research presented in this chapter aims primarily
at understanding the main software development characteristics of ICO startups,
from the planning phase to the testing phase, taking into consideration also the
quality of code.

To this purpose, we analyzed the whole set of ICOs gathered from ICObench1

and registered until February 20, 2018. We focused on their main features, such
as: the team size and roles in order to understand if its composition is consistent
with the best known software development methodologies; the rating provided
by ICObench in order to investigate the projects quality; the use of social media
in order to discover if ICOs teams believe that the communication with investors
and their feedback are important; some financial aspects related to motivating

1http://icobench.com

27

28

the people involved in an ICO.
The market of ICOs is extremely volatile and complex. ICO teams and in-

vestors should pay particular attention to the speed of changes and to the tech-
nological risks that characterize its evolution.

Furthermore, software startups in general, and even more so, startups founded
through an ICO, operate in conditions of great uncertainty and the team’s ability
to manage changes is crucial. Software startups, therefore, need to follow the-
market trends, and to adapt to ever-changing business activities and risks [23].
For this reason, in this work we investigated the use of Agile methodologies in
ICOs, as a mean of managing uncertainty.

In fact, according to many studies [65, 43, 44], Agile methodologies are opti-
mal for projects that, like ICOs, demonstrate high variability in the development
process, in the abilities of the team or stakeholders, and in the technology being
used. In particular, Agile development is especially appropriate for products or
services providing high value for the customers, and for all involved stakeholders
[43]. Considering the decentralized nature of the blockchain, an ICO can in fact
have investors, customers and other stakeholders from all over the world. We
aim to understand if and how agile practices are used in ICOs in response to
such high technological, process and market variability. To do this, we take into
account the principles of Agile Software Development and we study if and how
Agile methodologies and practices are used in the development of ICOs.

First, for each ICO registered on ICObench until February 20, 2018, we carried
out a textual analysis of its online available documentation, in order to detect
any typical Agile keywords. In this way, we found a subset of ICOs developed with
an Agile approach (for the sake of simplicity named Agile ICOs in the following).
We also made a comparison between the characteristics of Agile ICOs and the
properties of the whole dataset in terms of team composition, rating, financial
aspects and use of social media.

In addition, we analyzed more in depth the set of Agile ICOs, specifically
focusing on their roadmap and their project development. We conducted an
analysis of smart contracts[52] source codes of the Agile ICOs in terms of code
metrics and use of test tools.

To summarize, the goals of this chapter are understanding the main charac-
teristics of ICOs, investigating software engineering activities related to ICOs,
recognizing the ICOs developed using Agile methods, and making a comparison
between the characteristics of ICOs and those of Agile ICOs. This works aims also
to provide a deep analysis of the Agile ICOs in terms of their project planning,
software development, and source codes.

The remaining of this chapter is organized as follows. Section 4.1 describes
the most relevant related work on ICOs and on Agile methodologies. Section
4.2 presents the research method. This section describes the steps which al-

4.1. BACKGROUND 29

lowed to define our dataset, to find the Agile ICOs, and to perform our analysis.
Section 4.3 describes the results of the analysis of the ICOs dataset, including
the comparison between the results obtained for the ICOs in general, and the
results obtained for the Agile ICOs. These results include the team composition,
the rating, the financial aspects. Section 4.4 analyzes in depth Agile ICOs. This
section includes the results of the analysis of the ICO roadmaps, of the software
projects and of the smart contracts. Section 4.5 provides a discussion about the
outcomes of our analysis. Finally, Section 4.6 concludes the chapter.

4.1 Background

Research literature on blockchain in general, and on ICOs in particular, is limited
to the last few years.

[57] shows that the Agile and Lean Startup methodologies can be compatible
and complementary. Agile methodologies drive software development, whereas
the Lean Startup methodology is more oriented towards the development and
management of the business and of the product. Agile methodologies were
used in Sabrix, Inc [13], a startup software company that, to accommodate the
pressing demands of users, exploited the urgency as the main engine for the
development of the product, and allowed the startup to switch from a initial
chaotic management to the correct implementation of a software product –
team and product progressed simultaneously. In order to verify if agile practices
are applied in software startups, [73] performed a survey involving 1526 software
startups, with questions related to five agile methodologies, including regular
refactoring, agile planning, frequent release and daily standup meeting. The
survey was focused on the relationship between velocity and quality in agile
practices, and they discovered that the software startups favored velocity over
quality. [40] claims that startups run the risk of failure and of being quickly out of
business, if some engineering practices are not used. They studied the software
development strategies employed by startups, and point out that it is necessary
to reduce time-to-market, speeding up the development of product using users’
feedback. [74] provides an exploration of the state-of-art on software startup
research and specifies which software engineering practices must be chosen
to increase the ability of startups to survive under highly uncertain conditions.
Recently, [39] proposes a unified and multidimensional framework to represent
together the role, active or passive, of digital startups with respect to change,
and to the level of dynamism of the environment. According to the results of
this exploratory study, Lean Startup Approaches (LSA) are strongly related to the
use of Agile development methodologies. In addition, startups oriented to have
an active role in determining changes use the approach called Business model

30 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

innovation.

The blockchain technology is an invention that led to a high dynamism in
several business areas [93]. It gave rise to the definition of a new branch of
software engineering called "Blockchain-Oriented Software Engineering" [78].
According to [19], the blockchain technology and in particular the invention
of digital tokens, has the potential to create a new entrepreneurial landscape,
representing the opportunity to invest in early-stage projects, and, on the other
hand, the opportunity for startups to fund their projects in a more democratic
way. These opportunities represents the core of the Initial Coin Offerings (ICOs)
phenomenon, subject of this study.

[50] presents a model that rationalizes the use an ICO for the launch of a peer-
to-peer platform that still needs to be built. This work highlights two strategies
that can generate value: a coordination model among many subjects involved in
a peer to peer network and the use of "popular wisdom", that is, the analysis of
information available on the web and posted by users or by other stakeholders
that describe the quality of the platform.

The possibility of using an ICO as a fundraising tool to finance business and
technology initiatives directly and without intermediaries was analyzed by [45].
In this work, they analyzed the Lean Startup methodology as a tool to face the
main critical aspects of a startup and examined some ICOs based on lean startup
approach.

A first overview about ICOs was made by [35]. They examined all ICOs,
published on 2017 on icobench.com website in order to evaluate their quality
and software development management and to discover the features that can
influence the ICO success. A similar analysis is described in [3]. According to
this work, the success factors of an ICO originate in the process behind the
organization of the ICO. Another success factor is the quality of the services
provided to the investors who buy the tokens.

The main problem of an ICO is the capability of investors to make a dis-
tinction between a genuine fundraising activity and a scam. [42] analyzed this
phenomenon, collected information from specific websites, and categorized the
ICOs in order to identify their key success factors. Other issues are related to
the legal aspects of an ICO. Another aspect to be managed is the possibility of
changes in ICO legal regulation. The rapid explosion of the ICOs phenomenon
has generated some legislative loopholes. In [29] it is pointed out the lack of
clear rules for the accounting of ICO funds in the company balance sheet. In
[33] it is described how ICOs are regulated in different countries. At the moment,
there are no uniform ICO regulation standards.

4.2. RESEARCH METHOD 31

4.2 Research Method

The phenomenon of crowdfunding based on cryptocurrency is very recent. This
study is the first in literature about this subject, and has an exploratory nature.
We analyzed all ICOs records on ICObench2 until February 20, 2018. This is a
free ICO rating platform that collects data about thousands of ICO. It provides
the ICObench Data API3, allowing developers to get the information stored in
the platform, including ICO listings, ratings, and stats. The research approach is
composed of two main parts: data collection and analysis of all ICOs registered
on ICObench until February 20, 2018, and the choice, through appropriate
keywords, of the ICOs to be specifically analyzed, because they are managed
with an Agile approach.

4.2.1 Data Collection Steps

We divided the data acquisition process into different steps, as described below.
To collect the data related to ICOs we used ICObench Data API4 - ICObench
Data API was introduced on December 12, 20175 - to study the list of all ICOs,
the list of ICOs by search parameters and filters, the list of all ICOs ratings, all
information in the ICO profile and other statistics. ICObench Data API has
already been used in other major studies [59, 41, 20]. We called the extraction of
this data "Step 1".

To identify which ICOs exhibit an agile approach, we defined some search
keywords and searched these words within the white papers of ICOs downloaded
through ICObench in Step 1. A white paper is a comprehensive technical report
describing the product or service of the ICO. We define this process "Step 2"

Step 1

We collected the ICOs’ data from the specialized website called icobench.com.
To date, this website provides an useful API for developers and data scientists
who want to create new applications or to analyze the ICO phenomenon6.

In particular, this API needs user authentication and uses the HMAC method
with SHA384 algorithm to authenticate the query. The data provided are in JSON
format. In order to acquire the full available data, we used the POST request

2https://icobench.com
3https://github.com/ICObench/data-api
4application programming interface
5https://medium.com/@ICObench/icobench-2017-in-numbers-d987b0a280d0
6For the API specification see https://icobench.com/developers, accessed on July 16, 2018.

https://icobench.com
https://github.com/ICObench/data-api
https://medium.com/@ICObench/icobench-2017-in-numbers-d987b0a280d0
https://icobench.com/developers

32 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

called "ICO - Profile", which we sent for all ICOs’ "id"https://icobench.com/api/
v1/ico/{id|url}

We implemented in R [80] the procedure to automatize the connection to
the API, to call the request, to organize and save the ICO data in the R list data
type. We collected the data of the first 1.952 ICOs recorded in the icobench.com
database until February 20, 2018. We discovered that 115 of them had no avail-
able data. The data of the acquired ICOs occupy about 50 MB of memory.

Each list item describes an ICO with up to 25 named sublists, that group
hundreds of named values. We focused on five sublists: team, rating, finance,
dates, links. The team includes name, country, title, link to socials media, and so
on for each team member. The rating provides the icobench ICO evaluation vote.
The Dates includes the date related to the timing of the ICO (opening, closing).
Links contains the URLs of the ICO official website and the link to the ICO white
paper. Because of the importance of the ICOs’ white papers, we wrote a R script
to download all the available documents. We collected a total of 1.144 readable
PDF files. The ICOs white papers pdf files occupy 4.3 GB of memory.

Step 2

We identified the ICOs that apply agile practices by searching for keywords in
their white papers. We chose the keywords to look for in the following way.

• We used the Google Keyword Planner tool and we obtained all the key-
words associated with the main keyword: "agile methodology". In this way
we got over 700 keywords.

• We selected all keywords that have an average monthly number of searches
on Google above 1000.

• We included keywords consisting of single words (for example "scrum")
and their specifications covering at most another word. For example we
selected the keyword "scrum programming" and we excluded the keyword
"scrum programming development" because implicitly included in the
previous one.

Eventually, we obtained 90 keywords.We performed a textual analysis, by means
of a R script, to verify in which white papers at least one of the 90 selected
keywords was present. We analyzed all 1.144 readable white papers. The script
converts the pdf content in a text string. Subsequently, for each white paper it
counts the number of occurrences of each keyword in a case-insensitive mode.
As a result, the script returns the table of keywords occurrences per ICO white
paper. We identified 55 ICOs in which at least one of the 90 selected keywords is

https://icobench.com/api/v1/ico/{id|url}
https://icobench.com/api/v1/ico/{id|url}

4.3. DATA ANALYSIS 33

present. We then manually verified that each of these 55 white papers actually
referred to an agile software development mode. The obtained subset is about
the 5% of the total analyzed ICOs. For simplicity, in the rest of the document, we
will call this subset Agile ICOs. Fig. 4.1 schematically describes the process that
allowed us to identify the 55 ICOs.

Figure 4.1: Flow diagram describing the selection process of the Agile ICOs

4.2.2 Analysis Setup

After the creation of the set of Agile ICOs, we compared them with the overall set
of ICOs. We implemented specific R scripts to collect and analyze the informa-
tion available in the ICO dataset. We collected data about the size of the team,
and its composition in terms of roles and gender. We obtained the gender of
team members by means of a names database realized by Mark Kantrowitz7. We
used R to classify the team members by gender, to perform statistical and com-
parative analysis, and to collect and analyze some of the business and financial
information available in the ICO dataset, also including the rating and the use of
social media.

4.3 Data Analysis

In this section we report the results of the analysis. As described previously, we
organized the analysis in steps. In the followings we present the numbers, the
distributions and the statistical values that characterize the acquired ICOs, and
in particular the Agile ICOs.

7available from http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/
names/

http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/

34 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

4.3.1 Analysis of ICOs teams

According to [87], one of the main factors that impact the sustained usage of
agile methods is the team composition, that should have a right balance in terms
of technical skills, domain knowledge, team size, and gender, race and culture.

Team size and composition

We analyzed a total of 18,699 people involved in ICO founding teams. We firstly
analyzed the size of the team that develops each ICO. We consider 1646 ICOs that
declare at least one team member. We found that the mean size of the ICO team
amounts to 11.4 people. The maximum team size includes 67 people. These
results are higher than the results reported in [45], where the average team size
was 10.87, and the maximum team size was 57.

When we computed these statistics on the subset of 55 Agile ICOs we found
that ICOs in this typology have larger teams. In facts, the average size is 14.9
people, despite the fact that the larger team includes 43 people. This data has its
intrinsic importance. In an ICO, a very small and anonymous team increases
the investment risk and may be a scam. It is therefore important for investors to
be able to consult the information relating to each team member, both on the
ICO website and on LinkedIn or Twitter. The greater number of people involved,
with a detailed description of each person supported by the link to the related
social pages, the lower the probability that the ICO may be a scam.

An advisor is a domain expert (for instance an academic), or an investor, or a
consultant. We found that 4.461 people involved in ICOs are advisors. As shown
in Tab 4.1, advisors represents 18.9% of team composition, or in other terms
there is nearly an advisor every five people.

ICO Stats Avg. Size Max size % Advisors % Women
All 11.4 67 18.90 16.30
Agile 14.9 43 23.04 15.00

Table 4.1: Summary of statistics on ICO team. The average percentage of advisors
and female people per team are computed on teams of at least one person

In Agile ICOs, there are more advisors. On average, they represents over
the 23% of the team. According to [35], in a very large team sometimes there
are many advisors who contribute suggestions, but are not really involved in
the ICO operations. We can consider advisors as a group of individuals with
experience and able to provide credibility and value to the project, as long as they
specifically work in the ICO and, create added value. We can see in fact that some
advisors have their names in over 100 projects, each of which spans overlapping

4.3. DATA ANALYSIS 35

periods of time. Such an advisor cannot physically allocate enough time to a
project, to provide true value to their customers. We can compare the roles
inside an ICO team with the typical roles described in the SCRUM methodology.
In particular, in the SCRUM methodology the world is divided into "pigs" and
"chickens" [86]. The former, during the development of the project, bring into
play "the skin". All other stakeholders are spectators (chickens). The chickens
may also be strongly interested in the project, but they do not work in a strict
and direct way like the pigs. By analogy, in an ICO we can define team members
as pigs, while advisors can be considered as chickens. In fact, the advisors are
consultants who can support the team if it is needed; often they are selected for
marketing reasons, and do not work directly to the development of the project.

4.3.2 Gender heterogeneity

We investigated the gender heterogeneity in ICO teams. It is well known that a
global gender gap exists in entrepreneurship, and in particular in the techno-
logical startup founding teams. Female presence in startup teams is typically
below 30%, which is the highest percentage recorded in the Chicago startup
ecosystem [9]. For example, in a recent survey [73] that examined about 1526
software startups, they discovered that in their teams a very small percentage
(8%) are females, in comparison to the percentage of males (76%). Note that
16% of team members did not reveal gender information.

Also ICO teams consist of people predominantly male. Our algorithm clas-
sified 9776 people; we found that the female presence is equal to 16.3%. Con-
sidering the average of the number of men and women per ICO founding team,
we found that the number of men is about 5 times larger than the number of
women. Considering the Agile ICO set, we noticed that the female presence is
slightly lower than the presence computed in the total dataset. In facts, these
teams have 15% of women, being on average composed by 6.5 men per 1 women.
There is no case of team composed only by women.

In the ICOs, however, the presence of women is twice the presence detected
by [73] in software startups not based on an ICO. [69] shows that gender diversity
plays a significant role when considering productivity and collaboration within
a software development team. These results could also be applied to ICO teams.
In addition, also in relation to investors, according to [82], the number of women
interested in investments in cryptocurrencies represents currently the 13% (one
in eight women) of the total. This research also suggests that women invest
very differently than men: the former take a much more strategic approach,
and suffer less the "Fear of Missing Out" [79] than their male counterpart. The
study also shows that women investors tend to collaborate much more than
men, consulting family and friends about their investment before proceeding.

36 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

4.3.3 ICO Rating

The statistical analysis of the ICO Rating (a score parameter provided by ICObench
that summarize the ICO reliability) allow us to compare the overall results with
the subset of Agile ICO. The Rating is a real number which ranges from zero
to five computed by ICObench, using a weighted average of two distinct eval-
uations. The first is computed by a proprietary assessment algorithm which
considers the team composition, ICO information, product presentation, the
marketing campaign and the presence on & social media. The second is assigned
by experts who evaluate from 1 to 5 the ICO for team, vision, and product8. Ac-
tually, we found that ICOs Ratings vary from 0.4 to 4.9. On average, ICOs have
a Rating equal to 3.1. Agile ICOs have, on average a better Rating score. In
fact, the average Rating value of the 55 ICOs is 3.6. Considering the diversity of
samples analyzed - the first with 1646 elements, the second with 55 elements
- we performed a statistical analysis on the significance of the differences. We
first verified that the values of the ICO rating do not follow a normal distribution.
In facts, the Anderson-Darling normality test 9 produces p-value <2.2e-16 (the
distribution is normal if p-value > 0.05 [97]). We then performed the Wilcoxon
test[38] which is not based on distributional assumptions and therefore provides
reliable results even when data do not have a Gaussian distribution. Through
the test carried out10 we can see that the differences are significant. The p-value
= 2.476e-05 is in fact lower than the threshold valueα= 0.05. Empirical evidence
is strongly contrary to the null hypothesis and the observed data are statistically
significant. The minimum value of Agile ICOs is 2.1.

4.3.4 Social Media

We analyzed the use social media in order to understand how ICOs use this
channel to communicate with investors and customers. 1810 ICOs out of 1952
use at least one social media. 1769 ICOs have at least one Twitter account, 1528
have a Facebook page. Telegram is used by 1231 ICOs, Youtube by 1112, Medium
by 1069, Reddit by 812, GitHub by 796, Slack by 555 and Discord by 46 ICOs.
All Agile ICOs communicate with investors and customers by means of social
media. All Agile ICOs in fact have a Twitter account and 51 out of 55 have at least
one Facebook page. Telegram is used by 42 Agile ICOs, Youtube by 39, Medium
by 38, Reddit by 32, GitHub by 32, Slack by 14 and Discord by 3 ICOs. Given the
decentralized nature of ICOs, the developers have to create a strong and active
virtual community to support projects. As reported in [91], social media became

8https://icobench.com/ratings
9computed in R using the library nortest

10computed using the implementation provided by R

4.3. DATA ANALYSIS 37

part of the standard communication tools in recent years.Telegram groups and
Slack channels are used as tools to which interested parties can ask questions
about the ICO. On the other hand, social networks are used by the team to share
information and news, and to raise awareness on their cryptocurrency and ICO.
According to [28], the communities of cryptocurrency users require transparent
and reactive communication. According to Agile Methods, a software product
is a constantly evolving project in which the initial idea could be modified
and adapted, using the feedback provided continuously by users. External
feedback at each stage allows the development of true competitive value of the
product and services offered, promoting quality, efficiency and trust. Given the
decentralized nature of the blockchain, social media are the only way, for an
ICO, to communicate with users and investors. It is therefore not surprising that
the use of social media is greater in Agile ICOs than in non-Agile ones.

4.3.5 Financial aspects

A token is a digital asset that in addition to having an exchange value, has an
intrinsic value that derives from its use. ICObench describes the way in which
the tokens are sold. The parameters reported on the website are: the number of
tokens for sale, the percentage of token to be sold during the ICO, the hard and
the soft capitalization, namely the goal of the ICO offer expressed in a reference
currency, and the minimum selling target to be reached to develop the product.
The number of ICOs which provide this parameter is 1053. We discovered that
over 60% of such ICOs provides more than 50% of their tokens to investors.
The remaining tokens are managed by the team. In particular, about 44% of
ICOs choose to distribute more than 60% of its tokens to investors during the
crowdfunding. This set is not characterized by a normal distribution of values.
Applying the Anderson-Darling normality test we obtained a p-value equal to
6.404e-12, lower than the threshold α equal to 0.05.

Agile ICOs differ with respect to the general statistics. The 38 out of 55 Agile
ICOs which provide this parameter, on average distribute a lower percentage of
tokens to the investors during the crowdfunding. In particular, only 50% of ICOs
distribute more than 50% of tokens during the crowdfunding, and only 23% of
Agile ICOs assign more than 60% of tokens to investors. The remaining tokens
are managed by the ICO team. According to the results of the Anderson-Darling
normality test, we can consider these values as sample of a normal distribution
of values (p-value = 0.06406 > 0.05). We hypothesize that a greater availability
of tokens for the ICO team is consistent with the principles underlying the
Agile Manifesto [7], in which the projects are based on motivated individuals
who must have all the support needed to complete the work. The result of the
Wilcoxon test allows us to consider significant the differences between the two

38 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

sets of data. The p-value is equal to 0.0262 and is lower than 0.05. So the null
hypotesis is rejected, and the two samples can be considered as taken from
different populations.

Figure 4.2: All ICOs Figure 4.3: Agile ICOs

Histogram of the number of ICOs per percentage of Token to be sold during the
ICO

Ico market capitalization

The market cap is the value of tokens expressed in a reference currency. An ICO,
through its hard cap (hard capitalization), sets the limit of how much money
will be accepted to finance the development of the product. The excess money
received is returned to the investors. The soft cap (soft capitalization) is the
minimum amount required by the project in order to continue its development.
If this amount is not reached, investors can withdraw their contribution. A
crowdsale that reaches the soft cap is considered successful.

We found that 469 ICOs provide both the hard cap and the soft cap.Among
these, the soft cap is on average 19% of the hard cap, so a crowdsale that reaches
19% of the hard cap is considered successful. Analyzing in particular Agile ICOs,
25 out 55 provide both hard cap and soft cap. In this case, on average, the soft
cap is 25% of the hard cap, so in Agile ICOs only a crowdsale that reaches 25%
of the hard cap is considered successful. Therefore, Agile ICOs needs a initial
capital proportionally higher than the non-Agile ICOs to develop the project. No
Agile IC reached 100% of the hard cap (the maximum percentage is 85%).

In this case, the differences found between Agile ICOs and other ICOs are
not significant. The results of the Wilcoxon test suggest that the two set of data
can be considered as elements of the same population. The resulting p-value is
equal to 0.05878, greater than the threshold value, α, equal to 0.05, and therefore
the null hypothesis can be considered valid.

The distribution of the ratio (in percentage values) between softcap and
hardcap is shown in Fig. 4.4 and 4.5.

4.4. ANALYSIS OF AGILE ICOS PROJECTS 39

Figure 4.4: All ICO Figure 4.5: Agile ICO

Histogram of the percentage of the Hard Cap per ICO to be reached to consider
the ICO as a success.

4.4 Analysis of Agile ICOs projects

In this section we focus on the analysis of software projects of Agile ICOs. We
studied in particular two aspects: the first is the ICO roadmap, the typical step
by step description with which the ICO proposers declare their development
program of the proposed product or service. The second is the software develop-
ment project, that is the available repository of the ICO source files. This second
aspect includes the analysis of development tools and testing practices used by
the developers of the ICO.

4.4.1 Roadmap and ICO state

As we said in section 4.3, a team describes, usually in the white paper, the
roadmap of activities after the crowdfounding, and outlines the actions which
they aim to achieve during the product development. Generally, this description
is a simple graphica overview of the project’s goals and deliverables, and of
the related timeline. Investors look the roadmap to know when and how the
business idea will be operative and profitable, to understand the development
phases of the product. We chose to identify the starting-point of a roadmap as
the time when the ICO crowfunding closes, and the team gathers the money
needed to develop the product. In the subset of 55 Agile ICOs, only 9 ICOs
don’t provide a roadmap. In the remaining 46 ICOs the roadmap is also called
milestone, timeline or highlights. In these, the time period that roadmaps cover,
ranges from few month to over five years, as shownin Fig. 4.6 and summarized
in the following:

• only 18 ICOs present a roadmap longer than one year;

• the longest roadmap extends 72 months after the end of the ICO;

40 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

• the average duration of roadmaps is 16 months after the ICO end;

• in 2 cases, the roadmap is concluded with the closing of the ICO.

Figure 4.6: Histogram of the number of months of development described in the
Agile ICO roadmaps

We define the time of post-ico state as the number of month passed after
the ICO period. Fig. 4.7 shows the distribution of the state of ICOs in terms of
number of month passed after the end of the ICO selling phase.

The roadmaps therefore concern the future of the ICO and provide a realistic
plan on the use of the funds in view of the objectives set. The content of the
roadmap helps investors to understand when and how they are involved in
the project, and provides them a view on possible changes. A too detailed
roadmap is typical of the plan-driven methodologies and contradicts one of the
fundamental principles of Agile methodologies, that aim to respond to change
more than to follow a predetermined plan[22]. In a roadmap developed with an
Agile approach, the possible difficulties that the team can meet and the way to
deal within possible obstacles should be taken into consideration. A roadmap
developed with an Agile approach should therefore be compared not only to the
future features of a project, that is difficult to accurately detail and predict, but
should also show the daily work and progress of the team, with a special focus
on feedback and opinions of the people involved. The roadmap is therefore a
useful tool to promote the transparency of development, also in order to manage
customer expectations. Focusing on specific features diverts attention from the
general vision of the project. An Agile roadmap is therefore able to embrace the

4.4. ANALYSIS OF AGILE ICOS PROJECTS 41

inevitable changes, to communicate a short-term plan, but it must also include a
flexibility that allows this plan to be adjusted to the customer’s value or changes
imposed by the market. According to [85, 1] we define below some guidelines
that characterize a roadmap designed with an Agile approach.

• The roadmap must be oriented towards objectives much more than to-
wards the features be developed, so that everyone involved can understand
the evolution of the product.

• The creation of Agile roadmaps requires continuous communication
within the team, and with investors. It also needs to harness the effort of
all the parts involved.

• In an ICO, it is essential to respond adequately to the needs of investors.
Responding promptly to customers’ needs through continuous dialogue
is one of the essential characteristics of the Agile approach. The roadmap
should therefore take into account all investors’ feedback for possible im-
provements. The new ideas, evaluated through a score, must be included
in a future release backlog. The ideas of investors and customers should
therefore guide the definition of future priorities.

• The roadmap should be changed quite frequently (from one to three
months) in order to adapt the plans with the obtained feedback. Updating
the roadmap can help a project to face changes without diverting attention
from long-term goals.

Figure 4.7: Histogram of the number of months passed after the end of the ICO

42 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

4.4.2 Software development

In order to better understand the process of software development of ICOs, for
each of the 55 ICO projects selected in step 2 we examined the documentation
to find the availability of software project repositories in which the development
team stores and manages the software under development. We found that:

• 36 ICOs have a software project publicly available on the Github platform.

• 12 of the remaining ICOs published in the Ethereum blockchain explorer
Etherscan11 the solidity code of the smart contract used to implement the
token selling.

• 7 ICOs do not have a publicly available software project nor provide any
smart contract solidity file.

Summarizing, 48 out of 55 Agile ICOs provide at least the smart contracts
used to develop the token of the ICO. These smart contracts are written in
Solidity [2], which is the most popular high-level language for implementing
smart contracts. It was influenced by C++, Python and JavaScript and is designed
specifically for the Ethereum platform. Solidity files have extension .sol.

We analyzed the 32 Agile ICOs software projects available on Github. In
particular, we counted the number of repositories (the folders of the project), the
typology of files, and the number of solidity files.

In summary, the 32 Github projects contain a total of 14.199 files. The
total number of folders is about 2800. On average, each project contains 5.8
repositories, and the maximum number of repositories per project is 38.

Regarding the contents, source code files represents the most of the files
present in ICO software projects. In particular, js files (javascript) dominate the
scene with 5.015 files, equal to 35.32% of the total. The projects contain 786
smart contracts written in solidity (.sol), equal to 5.54% of the total. Graphics file
formats (like png and svg formats) represent the second most frequent kind of
files. Tab. 4.2 summarizes the number of occurrences of the ten most common
file types found in Agile ICO software projects.

To better understand the process underlying the development of Agile ICOs,
we have verified for each project the use of specific development frameworks
and in particular the use of Truffle. Truffle is a popular development frame-
work for Ethereum that includes built-in smart contract compilation, linking,
deployment, binary management, and automated testing12.

11https://etherscan.io/
12Truffle is available at https://truffleframework.com

https://etherscan.io/
https://truffleframework.com

4.4. ANALYSIS OF AGILE ICOS PROJECTS 43

Extension # Files Percentage
js 5015 35.32%
png 1043 7.35%
sol 786 5.54%
cs 680 4.79%
md 594 4.18%
hpp 533 3.75%
json 485 3.42%
cpp 467 3.29%
go 436 3.07%
svg 418 2.94%
others 3742 26.35%

Table 4.2: The ten most common file extensions in Agile ICO projects.

Smart Contract code metrics

In this section we report the results of the analysis of the smart contracts used to
implement the Agile ICOs. In particular, in order to characterize the content of
these solidity files (with extension .sol), we applied a selection of code metrics.
We also report the comparison between our results with the results provided by
Tonelli et. al [99], related to more than 12.000 smart contracts published on the
blockchain explorer Etherscan and deployed on the Ethereum blockchain until
January 2018.

In our analysis we examined 502 solidity files found in Agile ICOs github
projects, which could be referred directly to the ICO developers. We excluded
from our analysis the files copied (or forked) from other projects (including
templates taken from development framework like Openzeppelin13).

We added to the analysis the 12 smart contracts published only in Etherscan,
as described before. In total, we examined 514 smart contract files. For each of
them we applied the software metrics defined in Table 4.3, that include volume
metrics and complexity metrics In the following, we will use the term contract
to refer to a specific type of object of the Solidity language [2] The declaration
of an object contract is similar to the declaration of a class of object oriented
languages. In a contract definition it is possible declare functions and variables,
that can be modified to be private, public or internal to the contract. A solidity
contract can also inherit from other contracts.

Table 4.4 reports the summary of the statistics of the computed volume
source code metrics. We considered "function" the declaration, through the

13https://openzeppelin.org/

44 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

LOC Lines of Code: number of lines containing executable code

CPL
Comment per Line: number of lines containing comments
divided by the number of lines of code

NDC Number of Declared Contracts in the solidity code file
NDF Number of Declared Functions in the solidity code file

FPC
Functions Per Contract (number of functions in the source code
file divided by the number of contracts)

AFL
Average function length in a solidity code file, in terms of lines
of code

Acyclo
Average McCabe Cyclomatic Complexity of the functions
among a solidity file

Mcyclo
The maximum McCabe Cyclomatic Complexity computed
among all functions of the solidity file

SumCyclo
Sum of the single McCabe Cyclomatic for all functions
complexity of the solidity file.

Table 4.3: Definition of computed source code metrics.

keyword function, of the executable units of code within a contract. We did
not considered as functions the definition of function modifiers. In solidity a
modifier is a short portions of code defined through the keyword modifier that
can be called and incorporated in functions. They can be used to easily change
the behavior of functions.

In this table we also provide, for each metric, the value of the First Quartile
that separates the lowest 25% of values from the highest 75%, and the Third
Quartile that separates the lowest 75% of values from the highest 25%. All the
reported statistics represent an overview of the distribution of metrics values. All
statistical analysis were performed using R. Results show that smart contracts in
Agile ICO projects have on average 65.59 lines of code. The maximum number
of LOC is 808 and the minimum is 2. For comparison, results of [99] report that
the mean number of LOC is 183.8. We found that smart contracts present in
Agile projects are characterized by a lower number of LOC.

The mean and the median value of CPL allows us to state that examined files
are well commented. As reported, there is expected about one line of comments
every two lines of code.

The examined solidity files declare, on average, only two contracts. This
number can be considered low, in relation to the value of 9.2 reported in [99].
The maximum number of contract declarations is 66 and the minimum is 1.

In total, the mean number of functions (NDF) declared in a contract is about
6.6, the maximum value is 71 and the minimum is zero. Also in this case, the

4.4. ANALYSIS OF AGILE ICOS PROJECTS 45

mean number is lower than the results of [99] (25.9 functions per file). The
mean values of NDC and NDF can be considered related to the value of the LOC
metric. Solidity files are shorter and consequently less functions and contracts
are declared. Contracts having no function declarations can be used to define
variables and data structures to be inherited by other contracts. In general, if
there is no constructor, the contract will assume the default constructor.

The metric Function Per Contract (FPC) represents the equivalent of the
number of method per class in object oriented languages. Considering each
contract in the files, we found that, on average, each of them declare 4.3 func-
tions. The maximum number of declared functions per contract is 28 and the
minimum is zero. On average, each contract has functions that are long 7.8
lines (AFL). The maximum average length is 172.5 The related distribution is
characterized by a high standard deviation.

From these results we can deduce that the smart contracts of Agile ICOs
tend to be short programs, with a limited number of elements (contracts and
functions) and with short functions. This favors easier reuse and maintenance
of the code [84].

In general, the development of the ICO token pass through the implemen-
tation of a standard interface called ERC2014. Given the availability of already
implemented ERC20 tokens, the reuse of code is commonly adopted during the
creation of new tokens. The high values of standard deviation show that smart
contracts are very different from each other; these results are typical of long-tail
distributions, whose tails collect the highest values.

Metric LOC CPL NDC NDF FPC AFL
Mean 65.59 0.453 1.961 6.661 4.291 7.785

Median 28 0.317 1 3 3 5.667
St. Dev 88.47 0.48 4.87 8.96 4.50 12.19

Max. 808 2.727 66 71 28 172.5
Min. 2 0 1 0 0 1

1st Qu. 16 0.067 1 2 2 3
3rd Qu. 81.75 0.717 1 8 5 9

Table 4.4: Volume metrics of smart contracts belonging to Agile ICO projects.

For each solidity file, we computed the McCabe cyclomatic complexity [56]
of all the functions implemented in it. The cyclomatic complexity measures
the number of linearly independent paths through a function. We used a com-
mercial software15. Table 4.5 summarizes the results related to the average, the

14https://theethereum.wiki/w/index.php/ERC20_Token_Standard
15We computed the cyclomatic metrics using Understand, by scitools. Cyclomatic metrics are

https://theethereum.wiki/w/index.php/ERC20_Token_Standard

46 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

maximum and the sum of the cyclomatic complexity of all the functions defined
in each solidity file belonging to Agile ICO projects. The minimum values of
these metrics are equal to zero due to the presence of contracts that do not
implement any function.

We found that the average cyclomatic complexity (ACyclo) has a value equal
to 1.2. The maximum value of the average cyclomatic complexity is 7.

The maximum cyclomatic complexity (MaxCyclo) is, for each contract, the
the maximum value of McCabe cyclomatic complexity among the functions of
the contract. Its mean value is 1.83, and its highest value is equal to 17.

Contracts are characterized by a limited sum of the cyclomatic complexity
(SumCyclo) computed for each function in their solidity files. The mean value
of the sum is 7.97, lower than the value reported in [99], due to the fact that
contracts of Agile ICO projects are shorter in terms of LOC. Values of this metric
are characterized by a standard deviation equal to 12.27, and a maximum value
equal to 134. These value are typical of long tail distributions.

Metric ACyclo MaxCyclo SumCyclo
Mean 1.21 1.833 7.969

Median 1 1 4
St. Dev 0.59 1.70 12.27

Min. 0.00 0 0
Max. 7 17 134

1st Qu. 1 1 2
3rd Qu. 1 2 9

Table 4.5: Cyclomatic metrics computed in the solidity files belonging to Agile
ICO projects.

Testing

In the Ethereum platform, each smart contract deployed in the blockchain both
the data related to the transactions, and the code that implements the logic
to allow the sending of transactions between two or more actors. Therefore,
data and logic that compose a smart contract are stored irreversibly. Given
the principle of the immutability of the blockchain, once a smart contract gets
deployed, its code cannot be changed.

If a developer finds a bug or wants to correct an error, s/he has to develop
a new smart contract, deploy it on the blockchain and transfer all the existing
data to the new contract. The deployment of a smart contract includes an

described in https://scitools.com/support/cyclomatic-complexity/

4.5. DISCUSSION 47

Ethereum transaction that requires the payment of a fee, which depends on the
size of the Smart Contract. For this reason, the test phase before the deployment
is very important and it should be managed appropriately also through the
adoption of best practices and specific tools for continuous testing, typical of
Agile methodologies.

We therefore analyzed the use of development tools and practices for Smart
Contracts. In particular we look for the use of the Truffle suite for testing prac-
tices. We found that Truffle is commonly used in Agile ICOs. 19 out of 36 projects
include the typical Truffle elements (the file truffle.js and the directories build,
contracts, and migration). Using Truffle, developers can take advantage of sev-
eral development tools included in this suite. One of the most relevant is the
possibility to create a Test suite. Tests can be written both in solidity and in
javascript. We found that 16 of the 19 Agile ICO projects that use Truffle in-
clude a test suite. In addition, we found the presence of other kinds of testing
code developed to test other components of the project. The use of Truffle,
which provides an automated testing framework to test smart contract before
the deployment on blockchain, is fully consistent with the application of Agile
methodologies.

4.5 Discussion

The results of this study provide an overview of the world of ICOs, which can
be described as is a new blockchain based fundraising mechanism in which a
startup sells its tokens in exchange for Bitcoins or Ethers. The ICOs, therefore,
offer important new possibilities related to the intrinsic properties of blockchain
technology. In order to make the most of this potential, in such recent and
innovative context, it is necessary to employ appropriate software development
methodologies. We believe that the Agile methodologies, which are suitable for
the management of innovative startups because they allow to easily face the
changes, can also be useful when applied to the ICOs. Agile methods are suited
to develop system whose requirements are not completely understood, or tend
to change. These characteristics are present in ICOs because they are typically
very innovative applications and often there is a run to launch an ICO to be the
first on the market. An Agile approach is based on iterative and incremental
development with short iterations, and is suited to deliver quickly and to deliver
often. In addition, Agile methodologies are suited for small, self-organizing
teams working together, as is the case for many ICO teams. In our analysis we
found that in Agile ICOs the team is on average made up of 14.9 people, of which
23.04% on average are advisors. This means that the development team is on
average made up of 10 people. Among them, we include 6 or 7 developers, but

48 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

also other professionals, like testers or UI designers. In SCRUM methodology, for
example, a development team consists of 3-9 people. For larger projects, Scrum
provides a mechanism called Scrum of Scrums that assign the large project to
several teams [63]. On the other hand, we need to take into account some im-
portant factors inherent in decentralized technologies that need to be carefully
controlled in applying Agile methodologies. An ICO is based on the use of smart
contracts that record data transactions and manage the specific functionalities
of the project. The data stored on the blockchain are immutable, so in order to
modify a smart contract we have to deploy a new smart contract. Agile devel-
opment, on the contrary, insists on continuous feedback from users to foster
innovation and it also strongly highlights the necessity to continually iterate on
the product. This is the part of the process that can create issues for blockchain
products. Another aspect that must be taken into great consideration is the one
related to project planning. The planning of an agile project is based on the split
of functionalities in user stories, which are fragments of functionalities that give
value to the user. The analysis of the requirements leads to the definition of a
certain number of stories, each having an intrinsic value to the project. A user
story must be measurable, and must be developed in a limited time. A roadmap
developed with an agile approach should therefore pay particular attention to
the feedback and wishes of all involved stakeholders. The roadmap is therefore
a useful tool to promote the transparency of the development, also in order to
manage customer expectations. It must not be too detailed, and must allow the
implementation of the project as a set of user stories or features. The implemen-
tation flow could take place in Sprints, and each user story should be provided
with one or more Acceptance Tests [55].

Regarding the quality of the code, the results obtained by us are not con-
sistent with those found by [31], that made a comparison between software
metrics in a software system (written in Python and in Java) and developed using
agile methodologies and in systems developed using plan-driven methodologies.
They assert that metrics distribution generated from Agile methodologies are not
related to better quality of software. Unlike ours for example they found that the
LOC distribution does not demonstrate major differences. In our analysis smart
contracts present in Agile projects are characterized by a lower number of LOC
in comparison with ICOs that not use agile methodologies. In general all smart
contracts tend to be short with a limited number of contracts and functions. It is
also connected with the fact that to deploy a file on the blockchain it is necessary
to pay a fee proportional to the size of the file. The simplicity of the code is
perfectly consistent with one of the five fundamental values of the XP [8].

4.6. CONCLUSIONS 49

4.6 Conclusions

The chapter proposed an analysis of Initial Coin Offerings, a new phenomenon
that has recently become a relevant topic of study within the blockchain commu-
nity. In order to better understand this phenomenon, operating in an uncertain
and constantly changing context, we investigated all engineering activities re-
lated to ICOs, from the planning phase to the testing phase. We analyzed the
whole set of ICOs registered in ICObench until the February 20, 2018 in order
to discover the team composition, the communication channels with investors
distributed around the world and the financial aspects. We therefore studied
the use of agile practices in ICOs as a method to cope with change. We have
selected and analyzed in detail a subset of ICOs specifically developed with agile
methodologies relatively to their roadmap, project development, and source
code quality. Overall, about the 5% of the examined ICOs apply Agile practices.
In addition we conducted an analysis of smart contracts of Agile ICOs in terms
of code metrics, language versions and use of test tools. We discovered that
the agile methodologies are suited to develop ICOs because these are highly
innovative projects, whose requirements are not completely understood or tend
to change. The agile approach is iterative and incremental with short iterations
and is suited to deliver quickly and to deliver often. This property is very useful
in the context of ICOs. On the other hand the necessity to continually iterate
on the product, typical of agile methodologies, can create issues for ICOs. The
immutability of the blockchain must be taken into consideration. In fact, smart
contracts can not be updated once they have been loaded. To face this difficult
the Test Driven Development is very useful. Also the practice of Collective code
ownership is guaranteed in ICOs by the transparency of smart contracts in the
blockchain. Another practice of Agile development that are applied in ICOs is
the use of Coding Standards. The too detailed roadmaps are instead typical of
the plan-driven methodologies. Finally we can say that the smart contracts of
Agile ICOs have good metrics of the software because their source codes are very
short and simple.

Limitations. We summarize below the main limitations of study. The first
issue is related to the novelty of work. The typology of analysis made is therefore
pioneering. We focused part of our study on the collection of Agile Keywords
inside the white paper, in order to recognize which kind of ICOs funded project
used Agile practices. We did not analyze therefore ICOs in which no agile key-
words are ufficially stated in the white paper, but the development could be
anyway Agile based. We are indeed aware that not all ICOs they may have de-
clared whithin its own documentation Agile keywords even if they use Agile
Methods for developing projects. We collected 55 Agile ICOs and we calculated
the software metrics only on the smart contracts of these ICOs (for a total of 514

50 CHAPTER 4. INITIAL COIN OFFERINGS AND AGILE METHODS

smart contracts). We made a comparison between this subset and the code met-
rics related to all smart contracts stored on Ethereum blockchain in 2017 (around
12000 smart contracts). Our subset may be small but the results obtained can
serve for a future generalization considering a consistent dataset.

Future works. In the next iteration of this empirical study we want examine
more aspects of ICOs to recognize the use of Agile practices in a more compre-
hensive way taking into consideration an analysis related to each single agile
methods. In the future will be possible use the results of this work as a snapshot
dated February 2018 of ICOs characteristics, and use it for a time-based com-
parison focusing mainly on the rate of adoption of Agile pratices. In addition,
a future work should provide a correlation analysis between the usage of Agile
practices and the ICOs success, both in terms of capitalization and in terms of
the development of their projects.

A further study related to smart contracts is presented in the next chapter.

Chapter 5

Ethereum Smart Contracts

The publication of the Ethereum white paper in 2014 [17] and the implemen-
tation of the Ethereum platform moved the blockchain technology [93] to the
second generation. In fact, what this platform for decentralized applications
proposed, was new and disruptive, that is a blockchain-based programmable
Turing complete virtual machine to run software code written specifically for the
blockchain environment [105]. Such software was originally conceived to take
advantage of the blockchain features in order to automatically implement the
constraints two parties can agree upon when they sign a contract in a trustless
environment, so that the software code was named “smart contract”. Nowadays,
the initial concept has been largely extended so that smart contracts can be
considered as general purpose software programs.

Smart Contracts (SCs for short) are small computer programs stored inside
the Ethereum public ledger and associated to a particular blockchain address
which references the SC software code. Ethereum smart contracts are mainly
written in Solidity, a programming language derived from Javascript, Python and
C++, which allows to run programs on the blockchain infrastructure as decentral-
ized applications. The smart contracts code is compiled and the corresponding
opcode is loaded into a blockchain address and run by the Ethereum Virtual
Machine (EVM). Virtually, SCs can perform any computational task standard
programs can perform, but there are specific constraints that must be respected
due to the decentralized structure of the blockchain and to the consensus proto-
col adopted by Ethereum, so that SCs display specific features and issues which
are unknown in traditional software development. A typical example is the
extraction of a pseudo-random number which should be replicated in all the
blockchain nodes in order to obtain the same result [52].

Due to these specificities, this technology is having a great success and has
paved the way for a new set of applications, yet to be fully defined. Ethereum
is the most important blockchain based platform in terms of number of trans-

51

52

actions. At time of writing the number of accounts stored in the blockchain is
just over twenty-five million. The number of contract accounts activated in the
Ethereum platform is over four million five hundred thousand (about 18% of the
total)1. Contract accounts are used both to create decentralized applications
and to create new digital tokens, looking to new business opportunities and
to an easier way of funding (the ICO phenomenon [45, 35]). The byte-codes
of contracts are always available, because they are recorded in the blockchain.
However, byte-codes are not intelligible; in order to increase the trust of users,
developers of decentralized applications may provide the source code of their
contracts.Furthermore, third party websites, like Etherscan.io, offer a verification
service that makes smart contracts public. The overall success of decentralized
applications presents practitioners and software engineers with new and spe-
cific challenges and blockchain oriented software should be managed according
to their specificity [78]. Furthermore, in the scenario of a wide diffusion of the
blockchain technology, smart contracts could represent the backbone for several
future software development decentralized applications [93, 46, 54, 53]. Since
blockchain is a newborn technology, the development of new decentralized ap-
plications could take advantage of a thorough analysis of what has been created
up to now, with the aim of correcting errors of the past and improving software
development best practices.

By the end of 2017 the amount of smart contract source code freely available
and the number of related transactions on the Ethereum blockchain reached
a size which allows a systematic empirical and statistical study. This study
considers the source code features and some smart contracts code measures,
the evolution of the Solidity language, and other features relating smart contract
source code to the transactions performed on the Ethereum blockchain. Such
an empirical analysis would have been an impossible task just a few months
before the time of our study because of the scarcity of smart contracts source
code available deployed on the blockchain and for the contemporary scarcity of
statistics related to the operations and interactions among smart contracts and
the blockchain.

This study aims at understanding software features and metrics of smart
contracts, in order to measure progress and performance and to provide food
for thought for improvement of these software artifacts.

We performed an empirical study collecting the dataset of all smart contracts
source codes available from Etherscan.io up to December 2017. We computed
several software metrics on the entire dataset and we identified the twenty
most used smart contracts, representing a reduced set on which we performed
a systematic and more detailed analysis, in terms of both functionality and

1data from https://www.etherchain.org/contracts

5.1. BACKGROUND 53

development history. We identified some empirical indicators useful to describe
smart contracts from a statistical point of view. By means of these indicators
we studied the usage of smart contracts in the Ethereum blockchain and their
evolution over time.

Results lead us to observe an active developer community that constantly
follows the evolution of the language, develops more and more specialized smart
contracts, and improves contracts already developed. Code measures shows that
smart contracts have a limited number of line of code, but are well commented
and implements specifics functionalities.

The remaining of chapter is organized as follows: Section 5.1 provides a
selection of related work in the field of smart contract analysis and metric ap-
plied to specific software categories. Section 5.1 provides a description of the
solidity language and of the Ethereum environment. Section 5.2 describes the
dataset and the results of the analysis in terms of contract name, compiler ver-
sion, balance and transactions, and of the measure of source codes, such as the
number of line of code, the number of contract declarations and the related size
of the bytecodes. Section 5.3 analyzes twenty smart contracts, selected form the
dataset by the highest number of transactions. Firstly provides a description of
each contract, then describes the interaction of the development community in
terms of number of versions and of reuse of code. Finally reports the results of
the code analysis performed by means volumetric and complexity code metrics.
Section 5.4 summarizes results of code metrics applied on the source codes. Sec-
tion 5.5 discusses the findings of this work, summarizing results and providing
some considerations derived from them. Section 5.6 concludes the chapter.

5.1 Background

Research literature on blockchain in general and on smart contracts in partic-
ular, from a software development perspective is limited to the last few years.
The development and the diffusion of “Solidity” as programming language for
writing smart contracts on the Ethereum platform started very recently and the
definition and implementation of the language and of its Virtual Machine on
Ethereum (EVM) is still ongoing.

In this section we provide an overview of the more recent findings in the
field with a glimpse on the specific domain of smart contracts programming and
related topics already published in software literature.

Only very recently, the research on software engineering and computer sci-
ence paid particular attention to the blockchain technology and its specificities.
In 2017, Porru et al [78] underline the need of a new branch of software engi-
neering, and coined the term BOSE (Blockchain-oriented software engineering).

54 CHAPTER 5. ETHEREUM SMART CONTRACTS

In this context, authors highlighted the need of new professional roles, new
specialized metrics and new modeling languages in order to ensure security and
reliability. They designed possible solutions proposing the directions for future
specific steps of the BOSE.

Bartoletti et al. [6] conducted a survey of smart contracts by studying their
usage, development platforms and design patterns. Furthermore, they catego-
rized the contracts by their application domain in order to understand the best
convenient investment.

Tonelli et. Al [99] analyzed more than 12000 certified smart contracts pro-
vided by Etherscan, along with Bytecode and ABI. They results reports that
metrics are less variable than in traditional software systems because of the
specificity of the domain. Furthermore in smart contract software metrics there
are no large variations from the mean. All values are generally within a range of
few standard deviations from the mean.

In order to define a specific Blockchain Software Engineering, Destefanis et
al. [30] argue that smart contracts have a non-standard software life-cycle and
therefore applications can hardly be updated or it is more difficult to release a
new version of the software.

Wan et al. [101], in order to design efficient tools to detect and prevent
bugs within the blockchain, performed an empirical study to understand the
blockchain bug characteristics. They investigated the bugs frequency distribu-
tion manually examining 1108 bugs in eight open source blockchain.

Bragagnolo et al. in [15] presented SmartInspect, a tool able to debug smart
contract code, addressing the lack of inspectability of a deployed code. In fact,
once a smart contract is deployed, data are encoded and the source code can
not be redeployed. Authors proposed a solution by analyzing the contract state
through a decompilation techniques and a mirror-based architecture without
redeployed it.

Rocha et al. [83] implemented a tool to handle smart contract written in
Solidity language, the solution is specifically designed for Pharo (a live program-
ming environment based on Smalltalk code language).

Norvill et al. [67] used Etherscan.io in order to explore smart contracts and
to analyze bytecode level metrics or to identify similarities between compiled
pieces of code. They focused their attention on contracts compiled code, source
code, and metadata such as the contract name.

The smart contracts are the basis for Initial Coin Offerings (ICO), the new
means of crowdfunding centered around cryptocurrency in the blockchain
development area. In this regard Fenu et al. [35] analysed the quality and
the software development management of 1388 ICOs in the 2017. Ibba et al.
[45] investigated on the ICO process analyzing a dataset obtained collecting
data from specialized websites. They emphasized the advantages which Lean

5.2. ANALYSIS OF THE SMART CONTRACTS DATASET 55

methodologies could lead both to the team organization and to involve the
stakeholders.

Eventually [70] Ortu et al. proposed the usage of micro patterns to evaluate
the software quality, their results suggest that this approach could be a useful
way to monitor the software evolution and to trace refactoring operations.

In general the literature on smart contracts software and in particular on the
Solidity programming language is still limited and a comprehensive empirical
analysis on a dataset of thousands smart contracts source codes and the metrics
representing and characterizing their interaction and usage within the Ethereum
blockchain has not been performed yet.

5.2 Analysis of the Smart Contracts dataset

We performed an exploratory empirical study on 10174 smart contracts, de-
ployed in the Ethereum blockchain and validated using the Etherscan validation
service. Our dataset includes all smart contracts uploaded until the end of the
year 2017. The analysis considers two sets of information at different levels. The
first set characterizes the contract with respect to the blockchain environment
and to the interactions with it. It is a set of parameters associated to, and defining
the contract state, which can be time varying. It consists of a list containing
descriptive information of each smart contract. In particular, it contains the
Ethereum address, the contract name, the number of transactions, the com-
piler version and the balance of each smart contract verified in Etherscan. We
extracted all the information from both the source code and by browsing the
Ethereum blockchain transactions related to each contract, starting from the list
of verified smart contract source codes provided by etherscan.io2.

The second set characterizes software code, is fixed, and can be viewed
as independent from the blockchain environment. It consists of a collection
of 10174 ".sol" files containing the contracts source code as extracted from
the Etherscan website. In fact, Etherscan provides a descriptive page for each
contract as well as the source code in separated frames. We extracted the source
code from the contract page implementing an R script3. Given a contract address,
the script loads the HTML code of the contract page, recognizes the start and
the end of the source code, extracts and saves it in plain text. The size of the
source codes dataset is about 100 MB.

Our exploratory study first examines the two sets independently, then com-
pares the information collected on both.

2List available at https://etherscan.io/contractsVerified
3https://bitbucket.org/account/user/smartcontractsanalyzers/projects/CD

56 CHAPTER 5. ETHEREUM SMART CONTRACTS

We first analyzed the parameters that characterize the smart contracts in the
blockchain, aiming to provide statistical information of features like the name
usage, the compiler version, the number of transactions, and the balance of
contracts.

In the second part we characterized smart contracts source codes, also by
means of a statistical analysis. In particular, we computed a set of code metrics
for each smart contract in the dataset and present the statistics characterizing
the entire dataset.

5.2.1 Smart Contracts parameters: analysis

We evaluated the main parameters and metadata that describe every smart con-
tract in our dataset. Specifically, we focused our attention on the contract name,
the compiler version, the number of transactions, and the contract balance in
Ether.

We chose to analyze the list of contract names in order to evaluate if the
ethereum developers community uses specific names for specific functionalities
or whether the contract name does not have particular meaning.

The analysis of the dataset of the compiler versions allows us to understand if
developers follow the continuously updating of the language specifics, released
in order to fix bugs and to provide new and optimized functionalities.

The contract balances and the number of transactions are two series of values
characterizing contracts in terms of usage, popularity, and in terms of funds
inserted into that account we obtained both a snapshot of the interaction of each
contract in the blockchain and an overall statistics on their values. The number
of transactions is the total number of transaction that a contract receives and
sends from normal accounts (owned by users). This number does not include
transactions sent between contracts (called internal transactions).

All these data are public available for each smart contract deployed in the
Ethereum blockchain and verified by Etherscan.

Contract Name

In the Etherscan platform, smart contracts are characterized by a Contract Name.
According with the Etherscan specification, the Contract Name must match the
ContractName in the source code that is deployed into the blockchain. See for
instance the contract Crowdsale in Appendix 5.4.1 or the contract KittyCore in
appendix 5.4.3.

So we refer to Contract Name either as the name of Etherscan which identifies
the solidity file containing the source code or to the keyword inside the solidity
file where, for each file, there may be different contracts. In facts the language

5.2. ANALYSIS OF THE SMART CONTRACTS DATASET 57

syntax, the keyword contract substitutes the keyword class, but a contract has
features similar of a class. In facts a contract can be represented as a structure
that includes a set of variables and a set of functions, that can be public or private.
But the similarity is hardly complete. For example, class code can be called from
other classes in standard software and methods can be called using methods and
class names. Classes can be statically coupled when a class resources to code
of another class in the system. Class names are also chosen according to good
programming practices where the name reflects also class functionalities and
purpose (eg. the “rectangle” class, the “point” class). On the contrary, some of
these features are lost in smart contracts and so does the semantic of the name.
The contract name looses any “architectural” design meaning and its methods
or functions, its functionalities, are called by mean of blockchain transactions.

As a consequence different smart contracts may hold the same name and
contain completely different code, or may be two slightly different versions of a
same contract, o may be the very same contract deployed many times for testing
purposes, or again part of code existing in one project and reused in another (eg
the “token” contract, ERC20 compliant contracts) and so on. So it is of particular
interest the analysis of contract name occurrences.

In our study we analyzed the collection of Contract Names in our dataset
and we found that among the 10174 contracts, only 6205 names differ. More
specifically, we found that:

• 4980 smart contracts have a unique Contract Name and are deployed
only one time on the blockchain: there is no other address holding a
contract with the same name.Therefore there is no ambiguity, the contract
is identified by the name.

• 1225 Contract Names are used more than once (from 2 to 213 times). So
that there are very popular names where different blockchain addresses
register many contracts with identical names, but also the same contract
(with the same solidity code) multiple times.

Tab. 5.1 reports the list of the ten most used contract names and shows that
some contract names (eg. crowdsale, token, ECR20Token) occur more than one
hundred times.

The occurrence of the same contract name multiple times is due to at least
three possibilities: contracts codes are identical and the very same contract is
used many times in different accounts; contracts codes are similar for functional-
ities and code metrics, but the codes differ slightly, so that are one a modification
or adaptation of the other; contracts are completely different in code and metrics
and they only share the same name, because semantic has still a limited role in
smart contracts software development.

58 CHAPTER 5. ETHEREUM SMART CONTRACTS

Contract Name Number
Crowdsale 213
Token 143
ERC20Token 138
ApprovedTokenDone 82
Presale 81
MyToken 66
TokenERC20 63
PreICOProxyBuyer 60
CrowdsaleToken 56
MultiSigWallet 54

Table 5.1: The 10 most used contract names

A typical example of contracts sharing common names are contracts asso-
ciated to ICOs[35]. The contract “Crowdsale” belongs to this category, since
its code manages token crowdsales with different purposes and may be easily
reused.

In general smart contracts with the same contract name, although belonging
to different projects, have very similar functionalities and metrics.

Among the 213 smart contracts called Crowdsale, we found that six source
codes are deployed at least twice. One of these codes 4 has 4 duplicates. This
is a smart contract with the same bytecode and identical metrics that were
subsequently memorized in the blockchain.

Compiler Version

According to [83] any smart contract written in Solidity has a grammar that starts
with the SourceUnit rule which contains instances of a pragma directive that
declares the source file compiler version. It starts with the keyword “pragma”
followed by an identifier, and then any combination of one or more characters
until a semicolon terminates the row (see Fig. 5.1).

This declaration ensures that the contract does not suddenly behave dif-
ferently with a new compiler version. In our dataset, the latest version of the
compiler is the v0.4.20 and the most used version is the v0.4.18.

In fact Solidity is fast evolving and new features or functionalities of the
language are introduced from time to time, rendering unstable the behavior
of the code under different versions. Versions may be updated when a bug is
discovered or new language constructs are needed and so on.

Fig. 5.2 reports the histogram of the number of verified contracts per com-
piler version. There are some specific cases that we consider useful to mention

4See for instance the source code of the address 0xa1877c74562821ff59ffc0bc999e6a2e164f4d87

5.2. ANALYSIS OF THE SMART CONTRACTS DATASET 59

Figure 5.1: Example of definition of the pragma version. In the first row is
specified that in the following will be used the version 0.4.18 of solidity

pragma s o l i d i t y ^ 0 . 4 . 1 8 ;

contract Simple {
. . .
}

. . .

for our analysis. The only smart contract with compiler v0.1.6 is developed by
Piper Merriam, the creator of Ethereum Alarm Clock (ECM) that allows users to
schedule a contract call for a specified future block 5.

There is only one contract6 that use the version v0.1.7. It is a smart contract
developed by Gavin Wood, one of the Ethereum founders and the inventor of
Solidity v0.1.6 and v0.1.7 have been introduced in October 2015 and November
respectively. Five versions have the first transaction verified on 24.03.2016, when
the Etherscan service was launched.

In order to understand how fast the developers acknowledge the updating of
the language, we collected the date of release of the documentation (generally
available on Github) related to a new version of the pragma and we compared it
with the date of first transaction that involves a contract with the same version
of pragma. In most cases, given a compiler version, the first transaction related
to the smart contract (or the first activation) has been executed the same day or
a few days after the release of that version in Github (23 out of 34).

In the remaining cases, the documentation of the pragma version has been
made available after the date of the first usage.

Fig. 5.3 shows the history of compiler versions and the dates of the releases of
the compiler new versions (red dots) and the first transaction to a smart contract
characterized by the same compiler version. The figure shows a net growth
reflecting the growth in use of smart contracts in 2016 and 2017.

Balances and transactions

Focusing on the smart contract balance, we found that a very few smart contracts
collect the majority of the total balance of all smart contracts. In fact, the total
balance among the 10175 smart contracts is about 4.64 millions Ether, but 80%
of the total balance belongs to 10 smart contract alone, namely to less then
0.1% of the contracts accounts. In general smart contracts do not aim to collect
Ethers, except in the case they are wallets. A wallet is a smart contract realized
to securely collect Ethers and could implements some functions such as the

5with address 0x07307d0b136a79bac718f43388aed706389c4588
6with address 0xbF35fAA9C265bAf50C9CFF8c389C363B05753275 and contract name wallet

60 CHAPTER 5. ETHEREUM SMART CONTRACTS

Figure 5.2: Histogram of the number of verified contracts per compiler version

multiple ownership or the escrow. Tab. 5.2 summarizes the information about
these contracts.

Considering the contract name in this table, the most of them can be recog-
nized as being wallets. In order to investigate on the distribution of the wealth,
we represented in Fig 5.4 the distribution of the balance of the contracts in
our dataset. The figure shows the Complementary Cumulative Distribution
Function (CCDF) of the balance. The plot is in log-log scale and axes tags are in
normal scale.

Fig. 5.5 shows the CCDF of the total number of transactions of smart con-
tracts. This second distribution follows a power-law-like behavior until the
values around 104 transactions.

We computed the correlation among the two datasets. The resulting correla-
tion coefficient is 0.026 stating that there is no correlation between the number
of transaction of a smart contract and its balance.

Despite the two distributions display similar features and show a flat-tail,
there is no simple general relationship among smart contract balance and the
number of transactions. In facts, as reported in Tab. 5.2, smart contracts whit
high balance may hold a low number of transactions and vice-versa.

5.2.2 Measures on Smart Contracts source codes

In this paragraph we describe the analysis performed on the contracts source
codes, discuss the parameters under investigation and provide the results of

5.2. ANALYSIS OF THE SMART CONTRACTS DATASET 61

Figure 5.3: Date of release of compiler versions and the date of the first contract
activation per compiler version.

Address Balance ContractName TxCount % Tot balance
0xab7c74abC0C4d48d1bdad5DCB26153FC8780f83E 1500000,00 Wallet 243 32,33%
0xf0160428a8552ac9bb7e050d90eeade4ddd52843 466648,15 TokenSales 3512 10,06%
0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9 369023,14 MultiSigWallet 226 7,95%
0xa646e29877d52b9e2de457eca09c724ff16d0a2b 269419,35 MultiSigWallet 37 5,81%
0xcafe1a77e84698c83ca8931f54a755176ef75f2c 263522,66 MultiSigWallet 335 5,68%
0xbf4ed7b27f1d666546e30d74d50d173d20bca754 232267,28 WithdrawDAO 18771 5,01%
0x851b7f3ab81bd8df354f0d7640efcd7288553419 218474,70 MultiSigWalletWithDailyLimit 72 4,71%
0xB62EF4c58F3997424B0CCeaB28811633201706Bc 203467,99 Fundraiser 75 4,39%
0x16a0772b17ae004e6645e0e95bf50ad69498a34e 91780,96 MultiSigWallet 90 1,98%
0xa4dDd3977920796BFb14cA8d0FB97491fA72a11d 79431,47 RefundVault 26 1,71%

Table 5.2: Smart Contract balance

the source code analysis. In order to analyze the contracts source code, we
computed the values of the following code metrics, that can be divided in two
groups. The first group represents the Volume metrics. The second group
includes Contract oriented metrics which describe the logical size of the source
code.

Volume metrics
M1, Line of Code (LoC) is the number of line of code excluding comments

and blank lines. For comparison, we computed also the total number of code
lines (including blanks and comments).

M2, Comments per line (CpL) is the ratio between lines of comment and lines
of code.

Contract oriented metrics
M3, Number of Declared Contract (NDC) is the number of contracts (the

62 CHAPTER 5. ETHEREUM SMART CONTRACTS

Figure 5.4: CCDF of the balance in Ethereum per contract

equivalent of classes in OO languages) declared in the source code. In solidity
the declaration of a contract type is defined with the keyword contract. A contract
can inherits from other contracts declared in the source code and can instantiate
contracts, as described in Appendix 5.4.1. Fig.5.6 shows the declaration of
two contracts. The contract Derived inherits functions and variables from the
contract Base. Note that despite the source code can contain several contract
declarations, the deployment regards only one of them (that can use or inherit
the other contracts in the source code).

M4, Number of Declared Functions (NDF) is the number of functions declared
in the source code.

Furthermore, we measure the length of the bytecode of each contract. The
bytecode is the result of the compiling operation and its length depends on the
content of the source code, on the version of the compiler and on the compiling
optimizations.

The results are reported in Tab. 5.3. The table reports different statistics: the
averages, variances, standard deviations, medians, minima, and maxima values
for each metric.

All metrics displays the features typical of a flat tail distributions. They have
high dispersion around the mean, with values of standard deviation compa-
rable or even higher than the median, except for the number of lines. Such

5.2. ANALYSIS OF THE SMART CONTRACTS DATASET 63

Figure 5.5: CCDF of the number of transactions per contract

contract Base {
/ / . . .

}
contract Derived i s Base () {

/ / . .
}

Figure 5.6: Contracts declaration in solidity

64 CHAPTER 5. ETHEREUM SMART CONTRACTS

phenomenon is typically related to the presence of statistical units with very
large values of the metric which contribute to rise the value of the average with
respect to the median. The maximum values are an order of magnitude larger
than the average, indicating the presence of outliers. The shortest bytecode has
a length of 57 bytes. Considering the maximum values, the longest source code
has a length over 10 times the average value in the dataset. The same can be said
for metrics M1 (LoC) and M3 (NDC). The longest Bytecode is about five times
the average. Max values of M2 (CpL) and M4 (NDF) are much higher than the
average value.

In order to represent the distribution of metrics values in the dataset we plot
the histograms for the number of lines, of the number of contract declaration
per file (NDC) and of the length of the bytecode.

Fig. 5.7 shows the histogram of the number of lines. Each bin is large one
hundred units. The mode of the distribution is between 100 and 200 lines. Fig.
5.8 shows the number of occurrences of the discrete values of the NDC, i.e the
number of contract declarations per source code file. In this case the bin size is
set to one.

The mode of the number of contract declarations per file is 1 since source
codes with more than 15 contract declarations are rare. These two graphs show
a fast decreasing trend, characterized by a long tail.

Fig. 5.9 provides the histogram of the length of contracts bytecodes. Each bin
is large 1000 bytes. This graph presents a normal-like distribution. The mode is
between 6000 and 7000 byte.

In order to investigate if and how code metrics influence each other, we
computed a cross correlation matrix. Tab 5.4 reports the results of the cross
correlation coefficients between code metrics, adding in the analysis the length
of the bytecode and the number of transactions of each contract, that will be
discussed later. The highest correlation coefficient is between the metric M1
(LoC) and the total number of lines. Also the M4 (NDF) has a high correlation
coefficient with the LoC and the total number of lines. The M2 (CpL) is not
correlated with the length of the code or with the M4 (NDF). This means that
the number of comments on the code is heterogeneous and, in general, not
proportional to the length of the source code.

The length of the bytecode is only moderately correlated both with the code
length and with the number of declared functions. In addition, the number of
transaction that involve a smart contract is not correlated with any code metric.
This means that, for instance, highly used smart contracts have very different
source codes. In the following we will confirm this results by means a deeply
analyze the contracts counting the highest number of transactions.

5.2. ANALYSIS OF THE SMART CONTRACTS DATASET 65

Figure 5.7: Histogram of the number of line per source code

Figure 5.8: Histogram of the number of contract declaration per source code

66 CHAPTER 5. ETHEREUM SMART CONTRACTS

Lines M1: LoC M2: CpL M3: NDC M4: NDF Bytecode
Average 321.81 180.01 0.48 4.39 5.30 9448.99
Variance 110453.33 35452.37 0.19 13.92 49.33 47139522.84
Standard Dev. 332.35 188.29 0.44 3.73 7.02 6865.82
Median 206.00 117.00 0.42 3.00 3 7967.00
Min 0.00 0.00 0.00 0.00 0 57.00
Max 4240.00 2294.00 10.07 36.00 125.00 50607.00

Table 5.3: Statistics on code metrics computed among 10174 contract source
codes

Figure 5.9: Histogram of the length of bytecodes in byte

5.3 Detailed analysis on the top 20 used Smart Con-
tracts

We present a detailed analysis of the twenty smart contracts with the largest
number of transactions (Tx count). Tab. 5.5 lists these contracts. Such contracts
can be classified according to their typology [6] in five categories: Wallet, Finan-
cial, Game, Library, and Notary. Wallet contracts are characterized to be deposits
of ether and they usually have a high balance. Financial contracts aim to provide
functions useful to manage financial goods such as tokens. Game contracts
implement lotteries and digital collections. Library contracts are developed and
deployed to provide functionality useful for other contracts (i.e maths libraries).
Finally, Notary contracts take advantage on the blockchain characteristics to

5.3. DETAILED ANALYSIS ON THE TOP 20 USED SMART CONTRACTS 67

Line Total Bytecode M1: LoC M2: CpL M4: NDF Tx Count
Line Total 1 0,52 0,95 0,22 0,91 0,02
Bytecode 0,52 1 0,56 0,03 0,52 0,02
LoC 0,95 0,56 1 0,02 0,91 0,02
CpL 0,22 0,03 0,02 1 0,12 -0,01
NDF 0,91 0,52 0,91 0,12 1 0,02
Tx Count 0,02 0,02 0,02 -0,01 0,02 1

Table 5.4: Matrix of the cross-correlation coefficients between metrics and indi-
cators computed among 10174 contracts

record the agreements between parts.
We selected the top twenty smart contracts in order of number of transac-

tions (Tx count), see Tab. 5.5.
In the following we provide a short description for each of them.

Address Tx count Contract name Project Typology Standard
1 0x8d12a197cb00d4747a1fe03395095ce2a5cc6819 6562254 Etherdelta Ether Delta Wallet
2 0x03df4c372a29376d2c8df33a1b5f001cd8d68b0e 1450979 Bitocinereum Bitcoinereum Finantial ERC-20
3 0x06012c8cf97bead5deae237070f9587f8e7a266d 1390301 KittyCore CryptoKitties Game ERC-721
4 0xE94b04a0FeD112f3664e45adb2B8915693dD5FF3 1241476 ReplaySafeSplit BitTrex Library
5 0x6090a6e47849629b7245dfa1ca21d94cd15878ef 1103826 Registrar Ethereum Name Service Notary
6 0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0 1005345 Dstoken EOS Financial ERC-20
7 0xa3c1e324ca1ce40db73ed6026c4a177f099b5770 768834 Controller BitTrex Library
8 0xd26114cd6ee289accf82350c8d8487fedb8a0c07 750295 OMGToken OmiseGO Financial ERC-20
9 0xf230b790e05390fc8295f4d3f60332c93bed42e2 742060 TronToken TRON Financial ERC-20
10 0x93e682107d1e9defb0b5ee701c71707a4b2e46bc 557685 MCAP MCAP Labs Financial ERC-20
11 0xa74476443119a942de498590fe1f2454d7d4ac0d 535935 GolemNetworkToken Golem Network Financial ERC-20
12 0xb1690c08e213a35ed9bab7b318de14420fb57d8c 514167 SaleClockAuction CryptoKitties Game
13 0xaBbb6bEbFA05aA13e908EaA492Bd7a8343760477 421810 ReplaySafeSplit Library
14 0xd0a6e6c54dbc68db5db3a091b171a77407ff7ccf 370266 EOSSale EOS Financial ERC-20
15 0x744d70fdbe2ba4cf95131626614a1763df805b9e 296699 SNT Status Network Financial ERC-20
16 0x9a642d6b3368ddc662CA244bAdf32cDA716005BC 296623 HumanStandardToken QTUM Financial ERC-20
17 0xb97048628db6b661d4c2aa833e95dbe1a905b280 279107 PayToken TenXPay Financial ERC-20
18 0xece701c76bd00d1c3f96410a0c69ea8dfcf5f34e 269043 Etheroll Dice Game ERC-20
19 0xaa1a6e3e6ef20068f7f8d8c835d2d22fd5116444 253559 ReplaySafeSplit Library
20 0x0D8775F648430679A709E98d2b0Cb6250d2887EF 213364 BAToken Brave Browser Financial ERC-20

Table 5.5: List of the twenty smart contracts under examination.

5.3.1 Smart Contracts description

EtherDelta. It is tagged as etherdelta_2 on Etherscan and is the smart contract ex-
ecuted to store and transfer tokens with Ethereum wallets, in the cryptocurrency
exchange EtherDelta7. EtherDelta is in fact one of the most used decentralized
trading platform for Ethereum and manages ERC20 compatible tokens. In order
to trade on EtherDelta an user must create a wallet or use an existing wallet
which interacts with this smart contract.

7https://etherdelta.com

68 CHAPTER 5. ETHEREUM SMART CONTRACTS

Bitcoinereum8 is the fist Bitcoin-like mineable Ethereum ERC20 Token and,
through the Bitcoin Supply mechanism, enables a bitcoin-like currency to run on
the ethereum blockchain. To bring the Bitcoin supply mechanism into Ethereum,
Bitcoins enter Ethereum blockchain in form of ERC20 tokens.

KittyCore and SaleClockAuction are two smart contracts belonging to one
of the most popular applications of Ethereum blockchain, CryptoKitties, the
game in which users can buy, sell, and breed cartoon kittens. The application
was launched on November 28 and in a little more than a month these two
contracts (out of a total of 17 smart contracts developed in this project) have
been responsible for 6,2% of all transactions on the ethereum network.

ReplaySafeSplit. In the set of 20 smart contracts, the contract name Re-
playSafeSplit appears three times. The functionality of these three smart con-
tracts are very similar: they are used to split Ether funds in several addresses and
protect against replay attacks between Ethereum Classic (ETC) and Ethereum
(ETH). As a result of the hard fork of the Ethereum network (on July 20th, 2016),
holders of an ETH fund prior to the 1920000 block ended up with two funds
on the same address and therefore found themselves having ETH and ETC in
equal quantities: the ETHs on the network support-dao-fork network and ETC
on the oppose-dao-fork network. The two coins are still linked to each other:
a move of the ETHs move also ETC and vice versa. ReplaySafeSplit is used to
separate ETH pre-forks on two new and different addresses, one specific for
ETH post-fork and another one specific for ETC. ReplaySafeSplit recalls the fork
oracle smart contract9. A specific version (labeled Bittrex_210 on Etherscan) is
used on the Digital Currency Exchange Bittrex (https://bittrex.com/) with the
same capabilities.

Registrar. It is one of two smart contracts that compose the core of the
Ethereum Name Service11(ENS), an extensible naming system based on the
Ethereum blockchain. Registrar owns a domain and, according to the rules
written in the contract, issues subdomains of that domain to users. For each
domain and subdomain Registrar memorizes the owner (an external account,
typically an user or an other smart contract), the resolver and the time-to-live
for all records.

DSToken (labeled EOSTokenContract) and EOSSale (labeled EOSCrowdsale)
are smart contracts of the famous Infrastructure for Decentralized Applications
EOS12 that introduces a blockchain architecture designed to allow the verti-
cal and horizontal scaling of decentralized applications. EOSTokenContract is

8http://www.bitcoinereum.com/
9Having address 0x2bd2326c993dfaef84f696526064ff22eba5b362

10Having address 0xE94b04a0FeD112f3664e45adb2B8915693dD5FF3
11https://ens.domains/
12https://eos.io/

5.3. DETAILED ANALYSIS ON THE TOP 20 USED SMART CONTRACTS 69

in fact the token of the EOS ICO that aims to finance block.one, the platform
that, based on scalability, flexibility and usability criteria, intends to make the
blockchain technology accessible to businesses which, in this way, can memo-
rize smart contracts on blockchain. EOS tokens are ERC-20 compatible tokens
distributed on the Ethereum blockchain under a related ERC-20 smart contract.
EOSTokenContract handles all the logic of ownership and transfers; Instead,
EOSCrowdsale manages all the logic of contributions, periods and claiming.

Controller. It is one of the two smart contracts that implements the core of
Bittrex (the other one is ReplaySafeSplit, as previously described) and manages
the exchange of cryptocurrency. The main function of Controller is MakeWal-
let that is used to create ETH wallets and has control functions of owner and
destination.

OMGToken (labeled OmiseGoToken). It is the token of OmiseGO (OMG)13,
currently one of the most famous cryptocurrencies of the ICO market which
aims to simplify and make cryptocurrency transactions almost instantaneous.
OMG is a public Ethereum-based financial technology for use in mainstream
digital wallets. At the same time it is an e-wallet and payment platform acting
through assets and crypotocurrencies. The advisors of OMG are almost all from
the Ethereum foundation. OMGToken is an ERC20 basic token on Ethereum.
Once the OMG blockchain is created, the OMG tokens are transferred to this
new blockchain.

TronToken (TRX) is the token of the TRON ecosystem14 is the blockchain-
based decentralized protocol and open-source platform that aims to construct a
global free content entertainment system and provides funtions of credit sharing
and payment for many services such as online casinos, mobile games, live shows,
social networks. It is based on an ICO and is a ERC20 standard Ethereum token.
Starting from December 2017 it is the second most used token with market
capitalization that rose from $477 million to $3 billion just within 5 days (from
December 13 to December 18).

MCAP15 uses the ERC 20 protocol for peer-to-peer transactions and is the
token of MCAP Labs ecosystem. Its ICO was launched by BitcoinGrowthFund
(BGF) with the aim to invest in the mining of cryptocurrencies, especially Bit-
coin. The algorithms developed by BGF identifies which cryptocurrency must
be mined at any time to maximise profit. The smart contract has five functions:
mcap to initialize contracts with initial supply tokens to the creator of the con-
tract; transfert that sends coins; approve which allows another contract to spend
some tokens in the owner behalf; approveAndCall that in a single transaction

13https://omisego.network/
14https://tronlab.com/en.html
15https://bitcoingrowthfund.com/mcap)

70 CHAPTER 5. ETHEREUM SMART CONTRACTS

approves and communicates the approved contract and finally transfer, called
from a contract that attempts to obtain the coins.

GolemNetworkToken (GNT). It is the token of the Golem Network project16,
a decentralized distributed network of computers in which users can sell and
buy computing power. Through Golem Network users can decentralize all the
tasks thanks to the computer of another user connected to the network, or sell
the computing power of their own computer to help those who need it. The
GNT Token is partially-ERC20-compliant because it does not implement the
approve, allowance, and transferFrom functions, and the Approval event. On
the Ethereum blockchain, the crowdfunding start block is 2607800 and it was
launched in the 11th November 2016. The main functions of this smart contract
are: management of payments for resource usage and remuneration for software
developers; submitting of deposits by providers and software developers and
participation in the process of software validation and certification.

SNT (labeled StatusTokenContract) is the token of Status Network17, an open
source messaging platform that includes a DApps browser, a messenger, a wallet,
and can be described as a mobile operating system to access Ethereum from
anywhere. It is therefore a peer-to-peer messaging app without central server
to store private data or conversation. Status Network aims, through the use
of blockchain technology, to remove centralized third-party applications or
middlemen in the people communications. The entire project combines 10
smart contracts. SNT is a ERC20-compliant token and derives from the MiniMe
Token18 that allows for token cloning (forking). SNT has a modular architecture
and is used to power the Status Client, including some fundamental utilities
such as a Decentralized Push Notification Market, the Governance of the Status
client, Username Registration using ENS, and so on.

HumanStandardToken (labeled QtumTokenContract) is the token of the
Qtum project19, a Value Transfer Protocol (VTP) blockchain. Qtum is there-
fore a smart contract ecosystem for businesses that want to run decentalized
apps blockchain-based, executable on mobile devices. The aims is to turn
any human-readable agreements into a smart contract. Qtum uses Bitcoin’s
UTXO model in order to allow the contact execution also on mobile devices.
HumanStandardToken is a ERC20-compliant and includes 3 contracts called
Token, StandardToken and HumanStandardToken. The contract Token modifies
ERC20 base standard in the totalSupply function because a getter function for
the totalSupply is automatically created.

16https://golem.network/
17https://blog.status.im
18https://github.com/Giveth/minime
19https://qtum.org/

5.3. DETAILED ANALYSIS ON THE TOP 20 USED SMART CONTRACTS 71

PayToken (labeled TenXContract) is the token of the TenXPay (TENX)20

project that aims to solve one of the major problems of the cryptocurrency
market: how you spend cryptocurrencies in the real world. It is a portfolio-bank
based on cryptographic assets with a debit card. With an encryption-protected
off-line multi-asset instant transaction network, the service supports unlimited
cryptographic assets (initially only supports ETH, ERC20, DASH and BTC). Users
can choose which cryptographic asset to use for payment by debit card and ATM
withdrawals. The contract calls a function named MakeWallet. PayToken is a
ERC20-compliant token. Users can store PayToken in any ERC20-enabled wallet.

Etheroll (labeled Etheroll_old_3) is a smart contract of the Ethereum Dice
game project and is used to place bets on dice games using Ethers with no
deposits or sign-ups. The dice rolls are random and cryptographied in a secure
way, thanks to the Ethereum blockchain. In order to obtain the final results of
dices, the Etheroll smart-contract invokes the API of Random.org21, performs
sha3() encryption on its result and on IPFS address of the TLSNotary proof.In
the following we will provide more detailed information of this Smart Contract.

BAToken (labeled BatTokenContract - BAT) is the token of the new Brave
browser, created by Brendan Eich, creator of Javascript and cofounder of Mozilla.
Users are paid in digital currency to view advertising or to click on the advertising
banners. BAT is ERC20-compliant.

Most of the smart contracts listed in Tab.5.5 are financial contracts, and
the description highlight the economic interest behind the contract. We found
that the several of the described projects makes use of an ICO to fund, and
consequently promote, the business idea. These projects are Etherdelta, EOS,
OmiseGo, TRON, MCAP, Golem, Status, Qtum, TENX, Etheroll, and Brave Browser.
One of the success factors of an ICO is the team size and its composition[35, 45].
So, projects which resort to an ICO are more likely supported by a convincing
and well-formed development team.

5.3.2 Smart Contracts usage indicators

In this section we define empirical indicators useful to describe smart contracts
usage from a statistical point of view. We identified various usage indicators
characterizing how and to which extent smart contracts code is called or used in
the application of the Ethereum blockchain. We divided the usage indicators
in two groups. A first group, characterizing blockchain interaction, describes
the occurrences in the blockchain of contract-related operations. It contains the
following indicators.

20https://www.tenx.tech/
21https://api.random.org/json-rpc/1/invoke

72 CHAPTER 5. ETHEREUM SMART CONTRACTS

I1, Number of transactions (Tx Count): the overall number of transactions
(both in input and in output) involving the contract.

I2, Transaction per day (Tx/day): the number of transactions normalized with
respect to the days of activity (DoA) namely the elapsed time in days between
the contract creation and its last transaction.

The selected indicators can be easily extracted from the blockchain data and
offer a snapshot of the impact that the contract had on the blockchain.

A second group, developers’ interaction, includes indicators describing the
evolution of a contract in terms of its development history and of its reuse to
create new contracts. It contains the following indicators.

I3, Number of Deployments: counts the total number of contract versions
deployed in the Ethereum blockchain and verified using the etherscan service.
Consider that each deploy involves a cost in Ether. We compared this indicator
with the total number of contracts having the same name.

I4, Number of versions: counts the number of versions of a smart contract
which are used within the same project. This indicator consider only versions
of the contract that have been active in a certain period of time and it does not
count contracts with a low number of transactions (less than 100). It indicates a
continuous activity of development.

I5, Number of code reuse: counts the number of new contracts created reusing
another smart contract source code belonging to a different project. As the
previous indicator, we excluded from this analysis contracts having a low number
of transactions (less than 100).

We also take into account the balance of the smart contracts (i.e. the amount
in Ether associated to the contract address). But we don’t consider it as a good
usage indicator because it increases and decreases over time, and, furthermore,
only few contracts are used as a deposit of Ether, see subsection 5.2.1.

Tab 5.6 reports the value of the usage indicators for the twenty smart con-
tracts analyzed together with the compiler version. Results show that these
contracts are characterized to be involved every day in a big number of transac-
tions, and to have a null balance in the most of the cases. On the other hand, the
indicators describes the heterogeneity in the usage of these smart contracts in
terms developers’ interactions.

Blockchain interaction

The twenty smart contracts chosen have the highest value of I1 (TxCount),
namely the total number of transactions. A transaction that involves a smart
contract is also called message and contains the instructions needed to execute
a function of the contract. It involves a change of blockchain data (i.e its state).
Consider that every blockchain change has a cost, that depends on the computa-

5.3. DETAILED ANALYSIS ON THE TOP 20 USED SMART CONTRACTS 73

Contract name I1: Tx count I2: Tx/day Balance DoA I3: NoD / Tot I4: NoV I5: RoC Compiler
1 Etherdelta 6562254 20191.55 4.61e+14 325 8 / 8 5 0 v0.4.9
2 Bitcoinereum 1450979 17694.87 0 82 1 / 1 1 0 v0.4.17
3 KittyCore 1390301 42130.33 70.9 33 1 / 1 1 0 v0.4.18
4 ReplaySafeSplit 1241476 2369.23 0 524 6/6 1 0 v0.3.5
5 Registrar 1103826 4580.19 0, 241 3 / 11 2 0 v0.4.10
6 DSToken 1005345 5376.18 1373.27 187 10 / 10 1 6 v0.4.11
7 Controller 768834 5571.26 0 138 4 / 16 2 0 v0.4.11
8 OMGToken 750295 4191.59 0 179 1 / 1 1 0 v0.4.11
9 TronToken 742060 5936.48 0 125 1 / 1 1 0 v0.4.16
10 MCAP 557685 2523.46 0 221 3 / 4 1 0 v0.4.11
11 GolemNetworkToken 535935 1201.65 0 446 3 / 3 1 0 v0.4.4
12 SaleClockAuction 514167 15580.82 7.09 33 1 / 1 1 0 v0.4.18
13 ReplaySafeSplit 421810 876.94 0 481 6 / 6 1 0 v0.3.5
14 EOSSale 370266 1969.50 0 188 1 / 1 1 0 v0.4.11
15 SNT 296699 1521.53 0 195 1 / 1 1 0 v0.4.11
16 HumanStandardToken 296623 1694,99 0 175 44 / 44 1 11 v0.4.10
17 PayToken 279107 1409.63 0 198 1 / 1 1 0 v0.4.11
18 Etheroll 269043 1724.63 0.79 156 20 / 21 4 0 v0.4.10
19 ReplaySafeSplit 253559 479.32 0 529 6 / 6 1 2 v0.3.5
20 BAToken 213364 987.80 0 216 1 / 1 1 0 v0.4.10

Table 5.6: Contract usage indicators

tional effort needed to execute the transaction. This selected contracts are those
that have involved many changes of state of the Ethereum blockchain.

The average number of transactions for the entire dataset of smart contracts
downloaded from etherscan.io is 3019

On Tab 5.6 the contract BAToken, in position twenty, has a number of trans-
actions over seventy times higher than the average value of the complete dataset.
The first contract Etherdelta has been involved in a transaction twenty thou-
sand times more than the average usage. In total, these contracts are about the
0.2% of the total set but are involved in about the 61.3% of the total number of
transactions. These numbers are in line with the distribution of the number
of transaction previously reported in Fig 5.5. The enormously larger usage of
this subset of smart contracts, explains the presence of a strong flat-tail in the
statistical distribution reported in Fig 5.5 and justifies our choice of examining
in detail the most used smart contracts.

The values of I2 (Tx/day) are a normalization of the values of the indicator I1,
obtained dividing them by the effective usage time. This allows us to compare
smart contracts at terms of frequency of interactions, although them have been
deployed in the blockchain in different times.

The number of usage days is the number of days between the first and
the last transaction of the contract. All the contracts under examination are
characterized by a high value of I2, from a minimum of 479.32 up to 42130.33
transactions per day. Contracts with a high value of I2 can be considered either
needful contracts in the Ethereum ecosystem, or contracts that have had a
extraordinary popularity in their activity period.

74 CHAPTER 5. ETHEREUM SMART CONTRACTS

It is relevant the case of the contract KittyCore, that, as described before, is
a game. Considering the value of the indicator I2 of that contract, that is the
highest value of transaction rate among the twenty selected contracts, we found
that this contract is involved in about 30 transactions per minute. It is associated
to the contract SaleClockAuction that also has a very high value of I2.

In Tab. 5.6 we reported the Days of activity (DoA) for each contract. The
contract KittyCore counts only 33 DoA. The longest-running contracts are the Re-
playSafeSplit family (all exist and have been used for more than a year), followed
by Etherdelta and Registrar.

For what concerns the balances, only five out of twenty smart contracts have
non null balances and only two are significantly high. In particular, the two
contracts are Etherdelta and Dstoken. As already described, the first is a popular
wallet. The second is a financial token born to fund a nascent blockchain. The
analysis shows that the most of the twenty smart contracts does not aim to
collect ether inside.

Developers’ interactions: versions and reuse of code

We examined next the interaction of developers with smart contracts through
the blockchain. According to the indicators defined, we analyze the number of
deployments (I3), the number of versions (I4) and the number of times of code
reuse (I5) for each smart contract.

One of the objectives of our exploratory study is to investigate if smart con-
tracts have been implemented passing through a code development process.
For this reason, we checked the history of each contract, examining the presence
of past versions and if improved versions have been deployed into the Ethereum
blockchain.

We started our investigation filtering the dataset by the contract name, and
then, since different smart contracts can have the same name, by means of an
accurate analysis of the lines of code, we extracted the set of contracts referable to
the same development history. The analysis of the source code allows to identify
different contracts holding the same name. These contracts have been analyzed
as different contracts. For computing the indicator I3 (Number of Deployments),
we consider the number of contracts referable to the same source code. In Tab
5.6 we reported the I3 indicator (NoD) together with the number of contracts
with the same name (Tot).

We defined a new version of a smart contract each new smart contract
that once uploaded in the blockchain replaces the previous one in terms of
blockchain interactions. The new version could contain code changes. We re-
ported the values of the usage indicator I4 (Number of Version) in Tab 5.6 as
NoV.

5.3. DETAILED ANALYSIS ON THE TOP 20 USED SMART CONTRACTS 75

Finally, for the indicator of Reuse of Code (I5) we considered reuse of the
code of a smart contract the cases where the source code of the contract is used
to implement a very similar contract that has the same name but is referable
to a different project (for instance to implement a new token). The number of
reuse of code is reported in Tab 5.6 as RoC.

Evaluating version or reuse of code we did not consider those smart contracts
which have a low number of transactions (less than one hundred), because they
are rarely operational and could be only tests. So, they do not represents properly
a new version or a reuse.

In the following we analyze some contracts, focusing on the developers
interaction, namely in terms of versions and reuse of code.

EtherDelta has eight contracts with the same name. It has five different
version, and the last one created is the most active. Two of the old versions
are still used but they have a low number of transactions, about one per week.
We notice that both of them have a lower amount of Ethers than the first one,
therefore we can suppose that these smart contracts were used only by the
contract developers and not by final users.

ReplaySafeSplit has three different smart contracts in the top twenty and
all of them are active, and are involved, on average, in a transaction every five
minutes. By analyzing the code and the project’s history, we found that they
have a different usage for different projects. We classified them as reuse of
smart contract code for the smart contract, as reported in the row 19 in Table
5.7. The other two (rows 4 and 13) are the examples of the reuse of code of the
aforementioned smart contract and they do not have new versions and are not
reused.

We found eleven contracts named Registrar. Analyzing these contracts we
found that only 3 source codes can be evaluated in terms of the indicator I3,
and the remaining have a completely different code. In addition, the discarded
smart contracts have been involved in less than 10 transaction and these were
probably tests. Only one out of three is active and belongs to the top twenty. We
found one old version of this contract, and no reuse of code.

DSToken has ten records and we found six reuse of code, each of which de-
rives from the smart contract in table 5.5, line 6. To confirm this, we checked on
Etherscan that different labels are associated to these (still active) six addresses.

By considering a transaction number higher than one hundred and with
reference to Etherscan, we found for HumanStandardToken 11 documented
reuse of code. The remaining contracts are not evaluated in terms of reuse or
versions of code given the low number of transactions (in the order of units).
However the code in these contracts have the same functionalities. We can state
that, among those investigated, these two smart contracts are undoubtedly the
most popular in terms of reuse of code because they were used as a reference

76 CHAPTER 5. ETHEREUM SMART CONTRACTS

for different projects.
The Controller has two versions related to the project Bittrex. We detected

a situation similar to Registrar: only 4 smart contracts belong to the project
analyzed. The remaining 12 have a number of transactions in the order of units
and a source code completely different. To be more precise we respectively
found: three couples of smart contracts and 6 smart contracts with the same
source code or a different version of this.

Considering the records of MCAP we did not find different versions or reuse
of code. One of the records has a different code and the other two are probably
tests because of the low number of transactions (in the order of units). Similarly,
GolemNetworkToken has no new versions or reuse of code.

Finally, all but one of the smart contracts named Etheroll found in the dataset
are related to the same project. We considered four of these as different versions
and the remaining as tests because of the low number of transactions. Actually,
the previous versions are not still used. This phenomena, in terms of source code
improvement, is similar to EtherDelta case. Referring to Table 5.6 the Etheroll
smart contract in line 18 is no longer used and it has been replaced by the current
active version22.

We also analyzed the declared pragma version. We found that the in cases of
different version of the smart contract, the pragma version of new versions is
generally updated with respect to the previous one, but not always correpsonds
to the most updated version of the language.There is only one case, the Etheroll
Smart Contract23, that does not update the version with respect to the previous
one (v04.10) even if the next version (v04.11) has already been released. In all
cases of Smart Contract updating, the developers have deployed the new version
in the blockchain, supporting the related costs.

5.3.3 Code metrics

For every smart contract source code listed in Tab. 5.5 we computed the code
metrics described in Section 5.2.2 and the following additional code metrics.

M5, Line code per Function (LpF): it is the average number of lines of code
written to implement a function.

M6, Max cyclomatic complexity (MCC): it is the max value of the McCabe
cyclomatic complexity among the cyclomatic complexities of all functions in
the contract.

M7, Sum of cyclomatic complexities (SCC): it is the sum of the McCabe com-
plexity of each function in the source code. That value depends on the number

22Having address 0xD91E45416bfbBEc6e2D1ae4aC83b788A21Acf583
23Having address 0xece701c76bd00d1c3f96410a0c69ea8dfcf5f34e

5.3. DETAILED ANALYSIS ON THE TOP 20 USED SMART CONTRACTS 77

of function in the contract. The average cyclomatic complexity among a smart
contract source code is equal to the division between its values of M7 and M4.

The last two metrics are Complexity Metrics. In particular, the cyclomatic
complexity measures the number of linearly independent paths through a func-
tion in the source code. We computed the cyclomatic complexity according to
McCabe definition[56] and using a commercial software24.

We report in Tab. 5.7 the resulting values for the metrics from M1 to M7
computed for each smart cSontract source code belonging to the selected set.

Contract Name M1: LoC M2: CpL M5: LpF M3: NDC M4: NDF M6: MCC M7: SCC
Etherdelta 232 0.18 5 7 32 4 60
Bitcoinereum 132 0.03 7 1 17 5 23
KittyCore 971 0.74 8 16 69 7 82
ReplaySafeSplit 20 0.2 7 2 2 3 4
Registrar 324 0.64 6 3 29 5 58
Dstoken 376 0.12 4 9 51 4 64
Controller 170 0.01 4 6 23 4 32
OMGToken 185 0.71 7 10 25 2 36
TronToken 131 0.03 7 1 17 5 23
MCAP 62 0.4 8 2 6 5 15
GolemNetworkToken 161 0.49 11 3 11 6 42
SaleClockAuction 300 0.68 7 6 21 2 23
ReplaySafeSplit 28 0.43 4 3 2 5 6
EOSSale 584 0.13 5 11 68 4 87
SNT 850 0.8 9 14 57 4 94
HumanStandardToken 70 0.93 6 3 8 2 11
PayToken 253 0.87 6 10 31 3 39
Etheroll 1112 0.41 4 5 52 3 64
ReplaySafeSplit 17 0.24 3 2 2 3 4
BAToken 129 0.31 8 4 12 7 30
Average Values 305.35 0.4175 6.3 5.9 26.7 3.85 39.5

Table 5.7: Code metrics results in the twenty selected source codes

Results in Tab. 5.7 allow us to compare the value of metrics from M1 to
M4 for the overall set of contracts presented in Tab. 5.3 with those of the top
twenty contracts having the higher number of transactions and representing the
contracts having the larger interaction in the blockchain.

We found that the source codes of the top twenty contracts have, on average,
a value of M1 (LoC) equal to 305.35, that is higher, in average, than the value
of M1 computed on the full dataset (180.01 lines). In particular, exactly half of
the source codes have a value of M1 higher than 180. Results confirms that the
number of transaction and number of line of code are not correlated.

Analyzing M2 in Tab 5.7, namely the number of comments per line of code ,
we can observe a high variability of the results. Values ranges from one line of

24We computed the cyclomatic metrics using Understand, that is a scitools software. These
cyclomatic metrics are described in https://scitools.com/support/cyclomatic-complexity/

78 CHAPTER 5. ETHEREUM SMART CONTRACTS

comments every one hundred lines of code to about one line of comments per
one line of code. On average, there are 0.41 comments per line of code and this
number is a little lower than the average value of the full dataset (0.49).

Considering the number of declared contracts measured by M3, and the
number of declared functions measured by M4, we can observe, on average,
higher values of declarations in comparison with the global results. In particular
the average value of M3 is 5.90 (the average value of the full dataset is equal
to 4.39) and M3 values range between a minimum of 1 to a maximum of 16,
and half of the smart contracts have M3 greater than 4. High values of M3
means that source codes of smart contracts are written exploiting the inheritance
mechanism. The source code of KittyCore (having the maximum number of
declared contracts) is a typical example of systematic use of the inheritance. The
structure of this contract is reported in Appendix 5.4.3.

The average value of M4 is 26.70, and it is about five times the average value
of the full dataset (that is equal to 5.30). This means that, on average, the twenty
selected contracts implements an higher number of functions. In facts, 17 out of
20 declare more than 5 functions. Values of M4 have minimum 1 and maximum
69. The highest values of declarations is related to the contract in third position,
namely KittyCore that implements a large number of functionalities. High values
of declarations characterize also some tokens (i.e Dstoken, EOSSale, SNT. These
contracts improve the functionalities defined in the ERC-20 standard, by adding
specific and customized features.

Analyzing the results of the metric M5 (Number of lines per function), com-
puted only for the set of twenty contracts, we can observe that the functions have,
on average, 6.30 lines. The contract GolemNetworkToken has the larger value.
Considering the ERC-20 compliant contracts, the variability of the functions
length suggests that tokens are not all implemented in the same way.

Considering the cyclomatic complexity metrics, M6 and M7,we can observe
that the majority of the source codes has a maximum complexity (M6, MCC)
lower than four (or in other words, it is hard to find functions with cyclomatic
complexity greater that 4).

Both the source code of KittyCore and the source code of BAToken have a
function characterized by the highest value of cyclomatic complexity equal to
seven. See in Appendix 5.4.3 for the function of KttyCore which has the maximum
cyclomatic complexity.

The lower value of M6 is equal to 2 and characterizes the contracts OMGTo-
ken, SaleClockAuction and HumanStandardToken.

Considering M7, namely the sum of the cyclomatic complexity of each func-
tion declared in the source code, the three most complex contracts belong to
SNT, EOSSale, and KittyCore. The three versions of ReplaySafeSplit are charac-
terized by very low value of M7 because the low number of function. The codes

5.3. DETAILED ANALYSIS ON THE TOP 20 USED SMART CONTRACTS 79

reported in the 5.4.2 shows that this contract has only two functions.

5.3.4 Analysis of results

M1 LoC M2 CpL M5 LpF M3 NDC M4 NDF M6 MCC M7 SCC
M1 LoC 1.00 0.25 0.03 0.68 0.88 0.14 0.82
M2 CpL 0.25 1.00 0.34 0.40 0.12 -0.17 0.15
M5 LpF 0.03 0.34 1.00 0.09 -0.04 0.59 0.13
M4 NDC 0.68 0.40 0.09 1.00 0.83 0.13 0.78
M5 NDF 0.88 0.12 -0.04 0.83 1.00 0.23 0.94
M6 MCC 0.14 -0.17 0.59 0.13 0.23 1.00 0.36
M7 SCC 0.82 0.15 0.13 0.78 0.94 0.36 1.00

Table 5.8: Cross Correlation Matrix of source code metrics

Tab 5.8 shows the correlation matrix between metrics computed among the
twenty selected contracts. As we can expect, metrics values of M1, M3, M4 and
M7 are mutually correlated and this means that the longer is the code, the more
complex is the program. In particular, the sum of the cyclomatic complexity
(M7) and the number of declare function (M4) have a correlation factor that
represent a strong linearity of the ratio between the two metrics. The values of
M5 and M6 have a average-high value of correlation factor. The metric M2 does
not present particular cases of correlation.

In order to analyze the relationship between source codes and the use of
the contracts, we analyzed if results of the applied metrics are correlated with
the usage indicators. We studied if and how the two analysis are correlated
computing the correlation matrix in Tab. 5.9 that reports the correlation factors
computed for the twenty selected contract.

I1 Tx count I2 Tx/day I3 NoU
M1 LoC -0.05 0.35 0.00
M2 CpL -0.25 0.05 0.26
M5 LpF -0.11 0.14 -0.28
M3 NDC 0.06 0.41 -0.21
M4 NDF 0.08 0.39 -0.13
M6 MCC 0.13 0.39 -0.40
M7 SCC 0.18 0.31 -0.18

Table 5.9: Correlation coefficients between usage indicators and code metrics

We discovered that the two analysis are few correlated. In particular, the
indicator I1 (Tx count) is weakly correlated with all the metrics. The indica-

80 CHAPTER 5. ETHEREUM SMART CONTRACTS

tor I2 (Tx/day) shows a interesting moderate correlation with the metrics that
describes the size and complexity of the source code (M1, M3, M4, M6 and M7).

5.4 Sample of Smart Contracts source codes

5.4.1 Crowdsale

A portion of the source code of the contract Crowdsale deployed at the address:
0xa1877c74562821ff59ffc0bc999e6a2e164f4d87. This smart contract is named

"Crowdsale".
The source code includes two contract definitions. The first contract is token

and the second is Crowdsale. The contract token is an interface. In an interface,
all functions are only declared but not implemented. The contract Crowdsale
declare an "instance" of the the contract token called tokenReward and assign to
it the contents of an already deployed smart contract. In the source code, the
instance of a contract can be used to execute its functionalities.

pragma s o l i d i t y ^ 0 . 4 . 8 ;
contract token {

function t r a n s f e r (address receiver , uint amount) { }
}

contract Crowdsale {
uint public amountRaised ;
uint public resAmount ;
uint public soldTokens ;
mapping(address => uint256) public balanceOf ;

/ / i n i t i a l i z a t i o n
. . .
token public tokenReward =

token (0x2Fd8019ce2AAc3bf9DB18D851A57EFe1a6151BBF) ;
/ * addressOfTokenUsedAsReward * /

. . .
}

5.4.2 ReplaySafeSplit

The original source code of ReplaySafeSplit. This code has the lowest sum of
cyclomatic complexity belong the set of the twenty most used smart contracts.

Its source code is available on etherscan.io at the address:
0xE94b04a0FeD112f3664e45adb2B8915693dD5FF3

contract AmIOnTheFork {

5.4. SAMPLE OF SMART CONTRACTS SOURCE CODES 81

function forked () constant returns (bool) ;
}
contract ReplaySafeSplit {

/ / Fork oracle to use
AmIOnTheFork amIOnTheFork =

AmIOnTheFork(0 x2bd2326c993dfaef84f696526064ff22eba5b362) ;
event e (address a) ;
/ / S p l i t s the funds into 2 addresses
function s p l i t (address targetFork , address targetNoFork) returns (bool) {

i f (amIOnTheFork . forked () && targetFork . send (msg . value)) {
e (targetFork) ;

return true ;
} else i f (! amIOnTheFork . forked () && targetNoFork . send (msg . value)) {

e (targetNoFork) ;
return true ;

}
throw ; / / don ’ t accept value transfer , otherwise i t would be trapped .

}

/ / R e j e c t value t r a n s f e r s .
function () {

throw ;
}

}

5.4.3 KittyCore

Contract declaration and the listing of the function isValidMatingPair. This func-
tion has the higher cyclomatic complexity. The contract name of the deployed
contract corresponds with the name of the last contract declaration. The last
contract inherits most of the contracts declared above. The function isValidMat-
ingPair is the function which has the highest cyclomatic complexity among the
contract. The complete source code is available on etherscan.io at the address:

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d

pragma s o l i d i t y ^ 0 . 4 . 1 1 ;

contract Ownable { . . . }
contract ERC721 { . . . }
contract GeneScienceInterface { . . . }
contract KittyAccessControl { . . . }
contract KittyBase i s KittyAccessControl { . . . }
contract ERC721Metadata { . . . }
contract KittyOwnership i s KittyBase , ERC721 { . . . }
contract KittyBreeding i s KittyOwnership {

82 CHAPTER 5. ETHEREUM SMART CONTRACTS

. . .
function _isValidMatingPair (

K i t t y storage _matron ,
uint256 _matronId ,
K i t t y storage _sire ,
uint256 _ s i r e I d
)
private
view
returns (bool)
{

/ / A K i t t y can ’ t breed with i t s e l f !
i f (_matronId == _ s i r e I d) {

return f a l s e ;
}

/ / K i t t i e s can ’ t breed with t h e i r parents .
i f (_matron . matronId == _ s i r e I d | | _matron . s i r e I d == _ s i r e I d) {

return f a l s e ;
}
i f (_ s i r e . matronId == _matronId | | _ s i r e . s i r e I d == _matronId) {

return f a l s e ;
}

/ / We can short c i r c u i t the s i b l i n g check (below) i f e i t h e r cat i s
/ / gen zero (has a matron ID of zero) .
i f (_ s i r e . matronId == 0 | | _matron . matronId == 0) {

return true ;
}

/ / K i t t i e s can ’ t breed with f u l l or half s i b l i n g s .
i f (_ s i r e . matronId == _matron . matronId | | _ s i r e . matronId == _matron . s i r e I d) {

return f a l s e ;
}
i f (_ s i r e . s i r e I d == _matron . matronId | | _ s i r e . s i r e I d == _matron . s i r e I d) {

return f a l s e ;
}

return true ;
}

. . .
}

contract ClockAuctionBase { . . . }
contract Pausable i s Ownable { . . . }
contract ClockAuction i s Pausable , ClockAuctionBase { . . . }
contract SiringClockAuction i s ClockAuction { . . . }
contract SaleClockAuction i s ClockAuction { . . . }

5.5. DISCUSSION 83

contract KittyAuction i s KittyBreeding { . . . }
contract KittyMinting i s KittyAuction { . . . }
contract KittyCore i s KittyMinting { . . . }

5.5 Discussion

Results of this exploratory study provide us a very interesting overview of the
world of smart contracts. This world can be described as very active in the usage
of the blockchain, heterogeneous in the typologies and in the code features, and
supported by an interactive and reactive development community.

We found that the smart contract developers’ community follows constantly
the evolution of the smart contract programming language, Solidity. This can
find reasons in the necessity to develop, already from the start, efficient and
secure smart contracts. In facts, the update of a smart contract for bug fixing or
for adding new functionalities consists in the deployment of a new one Smart
Contract in the blockchain and, in parallel, on the disposal of the old one. Cre-
ation of a Smart Contract leads to a cost in Ether that depends on the dimension
of its bytecode (that is the results of the compiling).

Focusing on the purpose of smart contracts we found that developers have
overtaken the concept of "parties’ agreements" that characterizes the first idea
of smart contract. In facts they created several typology of decentralized ap-
plications, ranging from games to utility tokens. We can also underline the
importance of the reuse of the code. Thanks to the availability of thousands
smart contracts source codes, developers can start from already implemented
contracts to create new and more efficient applications, or updated and cus-
tomized versions of old smart contracts. In addition, source codes are generally
well commented, and this helps new developers to understand their contents.
The "contract name" of a deployed smart contract could cause some misun-
derstanding. We discover that some specific names are very used despite in
general are associated with very different source codes. So, the name is not
representative of the contract.

Analyzing the interaction of deployed smart contracts with the blockchain,
we discover that the number of transactions and the balance of the correspond-
ing addresses follows power-law distributions. For what concerns the balance,
we discover that the distribution of the wealth overtakes the Pareto law because
the wealth is strongly centralized on very few contracts (about the 90% belongs
to twenty out of over ten thousands deployed smart contracts). This is related to
the variety of typology of smart contracts. In particular, the most of the wealth
belongs to contracts of the wallet type, responsible of the management and
protection of high amount of cryptocurrency.

84 CHAPTER 5. ETHEREUM SMART CONTRACTS

The results of the analysis of the Source Codes give us a picture of a het-
erogeneous collection of scripts. This is characterized by code metrics that on
average don’t assume high values (for instance, the average number of line of
code is about one hundred and eighty lines), but have high variances. Source
codes present, on average, four contract declaration, revealing the use of the
inheritance or the recalling of already deployed contracts. The cross correlation
analysis shows us that the smart contract bytecode (that can be seen as the
payload of the transaction with which the Smart Contract is deployed) is mildly
correlated with the number of lines of code and with the number of declared
functions. Anyhow, we found that the number of transactions is not correlated
with the source code characteristics.

We analyzed in detail a subset of twenty smart contracts, namely those that
have the highest number of transactions. We discover that they are mainly
financial smart contracts (that implement a token compatible with the standard
ERC20). We found also wallet, library, notary, and game Contracts. Most of
the contract in this subset belongs to a project funded using an ICO, fact that
emphasize the role of the development team and justify the use of ERC20 tokens.

For better describe the activity behind these twenty smart contracts we
define five usage indicators. These characterize both the interaction with the
blockchain in terms of number of transaction and number of transaction per day,
and of the activity of the development community in terms of number of uploads,
number of versions and number of reuse of code. We discovered that the game
contract "KittyCore " has had, from the beginning, a high interaction with the
blockchain. We also found that some contracts are still active in the blockchain
after years, as is the case of the contracts called ReplaySafeSplit. Regarding the
number of uploads and the number of "reuses of code", we discovered that
eleven contracts have a development story behind it. In facts, these contracts
are the results of the continuously improving and the related replacement of
the old versions. In four cases we can report the release of a new version of the
contract. We found that the source code of four contracts was reused to develop
new smart contracts.

Finally, we analyzed the source code metrics of these twenty contracts. Find-
ings show us that statistics of this subset of very used smart contracts differs
from statistics computed belong the total set. In particular, these contracts
are, on average, longer (about three hundred lines) and define five times more
functions. In addition, we discover that these two metrics are strongly correlated
with the sum of the McCabe cyclomatic complexity computed for the functions
in the source codes. Finally, we computed the correlation coefficient between
source code metrics and usage indicators. Results reveal that the number of
transactions per day (that represents the frequency of usage of a smart contract)
is moderately correlated with the number of lines of code, with the number of

5.6. CONCLUSION 85

declared functions, and with the cyclomatic complexity of the source code.

5.6 Conclusion

This chapter presented the setup, the analysis and the results of an exploratory
study that take in exam Ethereum smart contracts and their source code. We
aimed to discover characteristics of source codes and compare them with the use
of the smart contract in the Ethereum Platform. We acquired a dataset of 10174
source codes, published by the 31st of December 2017, and we analyzed this
dataset in order to provide an empirical description. We conduct an exploratory
study that examined the dataset from several points of view.

In our opinion, this exploratory study offers food for thought that should be
the starting point for further analysis. Future works should consider an higher
number of smart contracts (taking into account the remaining of smart contracts
without available source code) and further and specific code metrics (i.e to eval-
uate eventual code optimization in order to limit the Ethereum gas consumption
or to measure the use of libraries and the interaction with already deployed
contracts), other usage indicators (such us the internal transactions and the
interaction between deployed contracts) and a widely analysis of correlation.

86 CHAPTER 5. ETHEREUM SMART CONTRACTS

Chapter 6

Agile methods for blockchain
applications

The application of blockchain technology certainly does not end with the ICOs.
In this chapter some applications of the blockchain developed with Agile method-
ologies are reported.

6.1 A blockchain-based system for employment con-
tracts

Temporary work contracts play a critical role in the current world economic
and social context. Increasing international competition, slow economic growth
and high unemployment rates have lead to the creation of greater job flexibility
in many countries and institutions. The diffusion of non-standard contractual
arrangements is also largely facilitated by technological innovations. In a global
economic context, the competitiveness of companies is closely linked to the
ability to adapt rapidly to new challenges and changes. Temporary employment
could be an important and flexible business tool, in order to react to the market
fluctuations, affected by economic policies and some seasonal conditions. As
a result, according to International Labour Organization 1 atypical contractual
arrangements are a feature of the contemporary world of work.

However non-standard work contracts are often characterized by a lack of
workers’ guarantees, insecurity, low wages, limited growth prospects, lack of
vocational training and less access to social security systems. Moreover young
people, regardless of the level of education they have and the skills they possess,
are engaged in non-standard jobs more frequently than other groups of the

1http://www.ilo.org/global/about-the-ilo/newsroom/news/WCMS_534122

87

http://www.ilo.org/global/about-the-ilo/newsroom/news/WCMS_534122

88 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

population.
In addition to this labor flexibility is also often associated with the absence

of a development model combining the social quality and sustainability of new
forms of work to economic growth and enabling transition from one job to
another and more generally, a full acquisition of human rights. It is therefore
necessary to build social protection instruments that do not only protect workers
from the risk, but also from the charm of flexibility.

We want to show how blockchain technology can be used to address the
fundamental problems that occur around temporary employment, in order
to protect employees and to prevent that the competition being distorted in
the benefit of those companies that wish grow on the backs of exploited illegal
workers. In particular, we answer if the blockchain technology can simplify the
management of temporary employment relationship.

In fact both businesses and employees need the recognition of the value of
their work, and, in this complex scenario of non-standard work contracts, the
use of blockchain technology of may be an excellent solution in order to ensure
reliability, transparency and security. Blockchain technology indeed is based on
a decentralized technical database to efficiently manage transactions. It stores
these transactions in a Peer-to-Peer network. Blockchain technology is also
a public registry: transactions consist of encrypted data that are verified and
approved by the nodes participating in the network, and, subsequently, added
in a block and recorded in the blockchain. The blockchain is shared between
all nodes of the network. The same information are present on all nodes and
therefore becomes unmodifiable unless through an operation that requires the
approval of the majority of the nodes in the network. In any case, it will not
change the history of these same information. Therefore this technology intro-
duces a new level of transparency and efficiency, by allowing the network to
manage the transactions and creating confident transactions in an untrustwor-
thy environment. Focusing on the system implementation, we want to discover
if smart contracts can implement a temporary employment relationship model.

Blockchain technology allows to quickly register work contracts with full
protection of the rights both of the worker and of the employer, in compliance
with the legislation. Smart contracts are immutably saved on the blockchain
and can be observed and checked for compliance at any time by the competent
authorities.

6.1.1 Background

Blockchain technology can be used in all contexts where a decentralized system
is necessary in order to ensure the involvement of many actors in the same
network and guarantee a full transparency and reliability between people who

6.1. A BLOCKCHAIN-BASED SYSTEM FOR EMPLOYMENT CONTRACTS 89

do not know each other. Therefore blockchain technology is not only useful
for creating digital currencies or new financial technologies, but can be applied
for a wide variety of applications, such as protection systems of digital identity,
provenance of documents, organizational data management, digital and physi-
cal assets. An important research is that carried out by [34]. They, designing an
interdisciplinary approach, analyze legal aspects and consequences of the use
of blockchain for job organizations that want to challenge the law and the labor
market. [66] instead examines the use of smart contracts, combined with intel-
ligent multi-agent systems and Internet-of-Things devices, in order to deliver
self-aware contracts with a high degree of automation for peer-to-peer collabo-
rations. They apply a smart contract, mapped onto an automated protocol, for
initiating and terminating a rental contract.

An innovative regulation of labour hours and the associated payments, is pro-
posed by Chronobank Team2. They apply recent advancements in blockchain
and cryptographic technologies in order to develop a non-volatile and inflation-
ary resistant digital asset. The transfer system considers the average hourly rate
of human labour as the most fundamental unit of economic value.

An interesting research about is that of Wang et al. [103]. In their work the
technology blockchain is used to certify the human resource documentations
and to connect the information with the documentation. In this case the de-
centralized mechanism provides a low cost and high efficiency of data transfer
and gets a high-performance work system in the human resource management
of enterprises. In addition, [68] shows the potential of blockchain technology
in governmental tasks such as secure document handling and digital ID man-
agement and provides proof of its compliance for authenticating of persistent
documents.

The Blockchain Research Lab 3 developed a prototype to manage a smart
contract between agency, manufacturer and worker. They focus on the case
of the necessity to create a valid contract between the agency and the worker
considering that the agency needs a leasing permission and the manufacturer
needs enough funds to pay the agency. The system, through a smart contract,
checks the coexistence of all these requirements.

The blockchain technology is also a promising technology for the implemen-
tation of several typology of decentralized systems. In particular, in the field
of a public and collaborative smart city system, blockchain represents a smart
solution. In [46] thanks to the use of smart contracts and an Agile Involvement
of Citizens, is proposed a shared and public database of eviormental signals.

2https://chronobank.io/files/whitepaper.pdf
3https://blog.hacking.law/blockchain-technology-and-the-future-of-temporary-employment-51ff7062b6

https://chronobank.io/files/whitepaper.pdf
https://blog.hacking.law/blockchain-technology-and-the-future-of-temporary-employment-51ff7062b6

90 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

6.1.2 The Decentralized Employment System

In this section we describe the technical aspect of the proposed Decentralized
Employment System (D-ES).

The system is a solution that makes transparent and traceable any employ-
ment relationship, established for the temporary work. The system simplifies
the recruitment procedure, and it is a useful tool to prevent the black labour.

In order to model the system, we first identify the actors which will be con-
sidered in the development. The model considers four typology of actors. Two
typology of actors represent human users. The first is the Employer, who creates
the work activity and announces the availability of vacant posts. The second is
the Worker, who applies for a temporary job.

The other two typologies of actor are components of the system. Because the
technical difficulty of putting directly the hands in the blockchain, the DES will
provide a simplified user interface, in the form of web platform. The Platform is
the actor that makes users (Employers and Workers) able to create new works,
to apply for them, and to access further information about the employment
relationship. And finally, the last actor is the blockchain. The system will be
based on the blockchain technology because its capability to provide trust and
security, and for the possibility of developing decentralized application we will
exploit to implement the D-ES. In the system, the blockchain has the double
role: the role of ledger, public and unchangeable, and the role of control system
which safeguards workers and prevents scams. In fact, thanks the availability of
a decentralized virtual machine, the blockchain is not only a database but also a
computing resource.

6.1.3 The D-ES state system

We model an employment relationship as a state system in which states de-
scribes the current phase of the relationship.

Taking in account the need of a legal recognition and authorization, we sup-
pose actors of the system able to create legal employment relationships. For
instance, the Employer should have the legal rights to hire people. At the same
time, a Worker should be legally recognized to be able for a specific job. We rep-
resent this point defining a background system representing a generic Central
Authority. The Central Authority, in order to supervise the employment relation-
ships, could take advantage of the transparency property of the blockchain. In
the section 6.1.6 provide further details of this aspect.

In order to describe the model, we first specify states, the events that change
the state, and the role of the actors. Fig.6.1 shows the D-ES state diagram. The
initial state, S0, is an idle state. The D-ES is ready for the creation of a new

6.1. A BLOCKCHAIN-BASED SYSTEM FOR EMPLOYMENT CONTRACTS 91

Figure 6.1: The state diagram describing the employment phases controlled by
the D-ES.

employment relationship.

The first event is called “new job offer” and it consists in the creation of a
new job offer. It happens when a Employer completes the procedure to setting
up a job offer, aided by the platform. The Employer uses the interface provided
by the platform in order to specify all the properties of the new open position:
the number of working hours, the time wage, the job title, etc. In addition, the
Employer deposits the amount of digital asset in order to cover the value of the
wage. When all is done, the platform creates and sends to the Blokchain some
ready-made message. Those messages include all the information required to
create the set of smart contracts with which the D-ES will control the employ-
ment relationship. Technical detail of smart contracts will be discussed in the
following.

The “new job offer” event changes the state from the initial state to the
“awaiting appliers” state. In this state, the D-ES is configured to accept the
application of new workers. Now, workers can apply for the open position. In
this state, the platform shows the job offer to the workers. An internal event
“application” describes when a worker applies for the job offer. The worker has
to send a message to the blokchcain, or precisely, to a smart contract. That
smart contract is charged to acquire the application request, and to compute

92 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

and return to the Worker, an applicant’s identification code.
When an applicant Worker meets the Employer, they can give rise the “hiring”

event. The Employer now being in posses of the applicant identifier. He sends a
message to the blockchain in order to start the employment relationship.

Now the system is arrived to the “relationship” state. In this state, the Worker
can check, at any time, its working situation and verify the number of the ma-
tured working hours. An internal event “workday” describes the maturation of a
daily number of working hours, and occurs when the Employer sends a message
to the blockchain in order to certify that the worker has completed a work day.

Automatically, when the stipulated working hours are over, the contract
declares the end of the relationship and occurs the “payment" event. During this
event, the system moves the wage deposited by the Employer in the account of
the Worker. This event moves from the “relationship” to the “conclusion” state.

6.1.4 Implementation of the decentralized system

The blockchain has an active role and it is a real actor of the system. Summariz-
ing, the blockchain will identify the Employers, identify the Workers, record every
employment relationship, control and compute the evolution of the employ-
ment relationship, and, finally, compute and transfer the wage from Employers
to Workers.

All these actions will be done by means the execution of a decentralized com-
puter programs called smart contracts. The D-ES works through a decentralized
ecosystem of three typologies of smart contract. They are named: “sc_deposit”,
“sc_application”, “sc_relationship”. In order to automate the creation of new
employment relationship, the three typologies of smart contract will be recorded
ready-made in the Platform system.

According with the system state described before, the Platform customizes
the three smart contracts with the job description data provided by the Employer.
At the event “new job offer”, the three smart contracts are created, configured
and written inside the blockchain. Each one of the three smart contracts knows
the address of the others two.

The contract type “sc_deposit” implements a token deposit. Token and coin
deposits are a popular application in the Ethereum system. In our system, the
sc_deposit includes a payment function programmed to transfer the deposited
wage to a specified Worker’s address. This function can be called only by the
sc_relationship contract which address is recorded in the sc_deposit memory.

Each contract type “sc_application” provides the application function. This
function is programmed to be called by Workers’ addresses and returns a crypto-
graphic identification code, valid only for the employment relationship that it

6.1. A BLOCKCHAIN-BASED SYSTEM FOR EMPLOYMENT CONTRACTS 93

represents. In addition, that smart contract records and provides information
about the job offer.

Finally, a contract type “sc_relationship” provides the hiring function. This
function is programmed to create an employment relationship. It receives mes-
sages from the Employer address, containing the blockchain address of the
Worker and his identification code as produced by the associated “sc_application”.
The contract checks the validity of the identification code. In addition, the con-
tract stores the current number of working hours matured by Workers. This
contract is also able to ask “sc_application” for the agreed number of working
hours. A second function workday updates the number of work hours when
receives the appropriate message from the Employer. This function automati-
cally computes the end of the employment relationship. In that case, in order to
call the payment function, it sends a message to the “sc_deposit”, specifying the
address of the Worker.

6.1.5 The Platform

We anticipate the need for a Platform (that can be seen as an user interface),
responsive and easy to use. This Platform provides forms and instructions
that makes simple the creation of the blokchain system and the control the
employment relationship. The Platform creates the three smart contract. It
simplifies the creation of a new job offer and provide a friendly interface for the
applicant workers. Furthermore it provides the visualization of the state of the
employment relationship.

6.1.6 Discussion

This section proposes a blockchain based system able to simplify the man-
agement, control and supervise the temporary employment relationship. The
blockchain resulted perfectly adapted to simplify and automate the tempo-
rary employment system. Our system provides high-performance in managing
temporary contracts by addressing some of the key aspects that make them un-
suitable for being applied to the the present working context. It aims to protect
the rights of workers and enterprises at the same time, but also to ensure full
control of the competent authorities during the verification of the necessary
requirements for signing of the contract (the conditions related to employer and
worker must be fulfilled at the same time) and during the verification of proper
contract’s performance. In fact, the competent authorities are not always able
to detect illegal actions in terms of taxation and protection of workers in real
time, and generally do not have the capacity to carry out constant and complete
monitoring. The benefits of applying our system can thus be summarized as

94 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

follows. In the temporary work contracts based on blockchain and smart con-
tract, employee and business data and agreements between them are analyzed
automatically in order to facilitate the processing of contracts, make this proce-
dure fully automated, increase the accuracy and processing speeds and allow
full compliance with existing contractual law. It can cancel the time to verify the
contract correctness by the competent authorities: if a contract was concluded,
the requirements of the employer and the employee were corrected. In addition,
the competent authority can carry out constant checks in real time by simply
accessing data recorded on blockchain. Contracts may also be dispatched auto-
matically to the competent authorities. The immutability of the data saved on
blockchain makes the payments that are consistent with what is stated in the
contract terms. Contractual terms must match payment execution and must be
based on hours worked.

6.2 Smart Contracts as Blockchain-oriented Microser-
vices

The paradigms of microservices and of smart contracts share many similarities.
Microservices are small applications developed as set of autonomous services,
decomposing a monolithic architecture in independently deployed isolated
services with a clear and well defined purpose [96, 95]. They naturally implement
a modular structure and changes to a part of the application only requires
changes and redeployment of a limited number of services.

Smart Contracts as well represent and well defined, usually isolated, pro-
grams, typically implementing simple and autonomous tasks with a well de-
fined purpose, which can be considered as services provided by the Contract.
Blockchain features naturally implement a modular structure where changes
to a small part of the aplication only involves changes and redeployment of a
limited number of smart contracts.

More recent approaches to microservices require or suggest the execution of
the services on the edge, and in the IoT framework services can be provided by
any processing unit. Smart Contracts run on a blockchain and interaction occurs
into the blockchain by mean of transactions, implemented by all blockchain-
oriented systems[78]. Decentralization is common to both paradigms and in the
case of smart contracts it is implemented by the blockchain nodes.

In particular, smart contracts are computer programs which are executed
inside blockchains of second generation. This represents the main innovation
brought by the Ethereum platform [17]. Several are the case of studies concern-
ing the application of smart contracts in scenario different from the financial

6.2. SMART CONTRACTS AS BLOCKCHAIN-ORIENTED MICROSERVICES 95

applications, in which are exploited the property of decentralization of data
and computation, and the intrinsic data availability typical of blockchain based
architecture [46, 53, 75, 54, 76]. We have to take into account that in public
blockchains the validation of blocks occurs in a competitive manner, so that
every operation (i.e. smart contract code deployment, data insertion or request,
information exchange and so on) involves a non negligible cost. Furthermore
smart contracts deployed on public blockchain display criticalities that must be
taken into account when providing services [32, 104, 16, 30].

To implement a microservice architecture, we propose the use of a private
Ethereum blockchain. This avoids operative costs that characterize public
blockchains and ensures a better control of privacy. In blockchain systems,
each message is recorded and time-marked. By using a private blockchain it
is possible to obtain a unique timing for all (micro-) services provided by the
system, solving the possible problem of different timestamps associated with
a public, competitive validating blockchain where each node can validate the
transactions at different times.

Other private blockchains are based on the Bitcoin system. Hyperledger
4 is an umbrella of open source project hosted by The Linux Foundation, it is
composed by a various of enterprise-ready solutions such as Fabric, Sawtooth
and Iroha. One of the feature of Hyperledger is the blockchain permissioned.
All nodes within the network are authenticated and authorized to partecipate
reducing security risks. Only involved parties can see information about the
related transactions that are not visible on the whole network such as in public
blockchain like Bitcoin or Ethereum.

Generalizing the concept of blockchain we can take in consideration all the
DLTs (Decentralized Ledger Technology). For instance, we can take in exam the
solution of IOTA to the problem of transaction costs. In this architecture, blocks
are reduced to only one and free transaction, that when is created must validate
two previous transactions, in order to create a structure called The Tangle5. In
the microservices scenario, the Tangle should be used to send costless service
requests. But this DLT focuses only on the data management and transparency,
and does not provide a decentralized platform to run smart contracts we want
describe as services.

In the following, we describe a blockchain-oriented microservices architec-
ture based on smart contracts, for the case study of an e-commerce application.

4https://www.hyperledger.org/
5https://iota.org

https://iota.org

96 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

6.2.1 Model

We present a dummy but paradigmatic example of an e-commerce application
6 whose microservice architecture is reshaped in services provided by smart
contracts running onto a private blockchain. Fig. 6.2 shows the conceptual
scheme of the e-commerce system. The architecture of the system is composed
of two layers.

The first layer is the interface between applications and the blockchain. It
provides the ABI (The Ethereum Application Binary Interface) for the develop-
ment of software applications, and the user interface in which ABI are embedded.
In particular, a software application can use smart contract’s ABI to compose and
make requests of services. The contract’s ABI allows to specify which function in
the contract to invoke, as well as guarantees that the contract will return data in
the expected format.

The second layer is composed of the set of smart contracts running in the
blockchain. In our model, each microservice is implemented by means of an
atomic smart contract. Communication between layers takes place with remote
procedure calls (RPC), through the Web3 Ethereum library7 that allows to write
javascript programs able to execute blockchain transactions, contract calls and
so on.

Specificity of blockchain can be used to easily implement services. For
instance, each user is uniquely identified by an Ethereum address. The Account
service records and manages this information. In addition, depending on the
client profile, the system enables different functionalities or services. Once
registered, data are stored permanently within the blockchain and all nodes
have a copy of the blockchain.

The user registration and the login are conceived as different microser-
vices autonomously managed by a dedicated smart contract. Inventory service
records product information inside the blockchain and returns these informa-
tion to the storefront web page, or to the application. Some of its functionality
are available only for enabled users. Likewise it can be said for the Shipping
Service.

6.3 CitySense: blockchain-oriented Smart Cities

A Smart City is an urban system where some requirements exist simultaneously:
a functional management model of traffic and public transport, a context in
which citizens can work remotely, without moving, in a lot of activities, the

6http://microservices.io/patterns/microservices.html
7https://web3js.readthedocs.io/en/1.0/getting-started.html

6.3. CITYSENSE: BLOCKCHAIN-ORIENTED SMART CITIES 97

Figure 6.2: E-commerce system as a composition of smart contract-based mi-
croservices

opportunity to live in safety thanks to the use of innovative solutions of public
surveillance, assistance and the application of appropriate technology for energy
saving and to reduce the environmental impact. Linked to these technical
aspects we want to identify some political and human issues which are equally
important. In fact, a Smart City is able to create new ways of participation in
public life and calls on people to become active citizens in order to enhance a
continuous and two-way relationship with local government [106].

In this complex scenario the implementation of an urban IoT may be an
excellent solution for real optimization and management of public services.
Several kinds of data, collected by sensors in a IoT system [47], can be used to
increase the openness of public government and political choices, to improve
the people’s awareness about well-being of the city and to encourage the involve-
ment of citizens in the drive for sustainable development. In order to achieve
these goals, we have chosen blockchain technology as public available shared
database and then as instrument of reliability, transparency and security. More-
over, we are going to apply SCRUM methodology to build this system blockchain
based and we are going to involve citizens in the software development. In this
way, we can make a real open source community.

98 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

6.3.1 Background

Smart Cities projects are focused on viability, digital services, payments and
environment, but it should be improved in the following key areas: provide
better ground coverage of the services, as every item can be both client and
server, and distribute the processing tasks (for power, money, time, etc.) among
a big number of calculators capable of simple operations. Modern smartphones
are up, in performance, to some of the mainframe servers deployed 20 years
ago in the ISP industry [71]. Tailored software and simple computation tasks
can be written to be executed by such small devices with good performances.
Across Europe, several cities have been engaged in environment safeguard plans,
starting from the 2008 SETIS Plan to reduce CO2 emission that widespread over
12 countries and 200 mid-sized towns, up to single town’s projects to reduce
power consumption and invest on new energy markets while the industrial ones
that relies on technologies and sources from the last century are slowly fading
away. Emphasizing on the social approach of a smart city plan would be the key
for raising the interest of the citizens who will became the main actors in this
project, for contributing to the mass effect of self knowledge of the environment
they live in and for keeping it as wealthy as possible. This social approach can
be interpreted correctly by the blockchain technology. In fact, after its introduc-
tion, the blockchain technology has interested more and more scientists who
study potentialities and applications in a multidisciplinary world of topics. For
instance, researchers studied aspects related to the network [76], economy [90],
and software engineering [78]. We reported the most recent publications, which
show the state of art in the field of blockchain and in smart contracts applications
to smart cities and Internet of Things. The feasibility of a blockchain-oriented
smart city is an in-progress study. Looking in the web, is easy to find related
initiatives, like that of the Dubai government which is programming to create
a blockchain based smart city 8, and debates about potentiality of this applica-
tion 9. Sharma et al. [88] studied an application of blockchain technology to
build a vehicle network which takes in account several problematics that are the
mobility of nodes (which represent vehicles), the confidentiality and security of
data. Security aspects are also discussed by Biswas et al. in their work [10]. We
take this work into particular consideration since it work discusses the need of a
specific security framework.
Such framework is composed of four layers: the physical layer (which includes
sensors), the communication layer (in which is considered the blockchain), the
database layer and the interface layer (that considers all applications). Consider-
ing the IoT a key element for the smart cities development, we briefly discuss IoT

8http://www.coindesk.com/dubais-museum-future-sees-blockchain-smart-cities/
9https://dcebrief.com/blockchain-powers-new-smart-city-initiative/

http://www.coindesk.com/dubais-museum-future-sees-blockchain-smart-cities/
https://dcebrief.com/blockchain-powers-new-smart-city-initiative/

6.3. CITYSENSE: BLOCKCHAIN-ORIENTED SMART CITIES 99

related applications of the blockchain technology. It is an enabling technology
for empowering the potentiality of the IoT. The work of Quaddah et al.[72] pro-
vides a well-defined framework named FairAccess to enable the communication
between nodes by means of some blockchain based mechanisms (i.e smart
contracts and transactions). Thanks to the blockchain, this framework provides
a stronger and transparent access control tool. E-business aspects of IoT tech-
nology are discussed by Zhang [107]. He studied a blockchain application which
implements a seller-buyer model describing business operations between two
or more devices. Christidis and Devetsikiotis [21] provide a discussion based
on the literature, proving that smart contracts and blockchain applied to the
IoT can be pretty powerful. They also provide an interesting section about the
blockchain taxonomy. IoT (RFID based) and blockchain can also enable prod-
ucts traceability in a supply chain, as discussed by Tian [98], and can also enable
the control of remote robots, as discussed by Ferrer [36]. Recent studies [51]
have shown that a smart city needs to have a smart local council and a smart
methodology in order to develop an efficient software. A good way to achieve
this goal is the use of SCRUM process with some changes with respect to the
original approach.

6.3.2 The system

Networks of Things acquire and share information on what is happening of
interest to the citizens and can be used within the city to build a smart system of
services.

The Smart Object network will be able to receive and store information from
the surrounding environment through the use of sensors, in order to measure
the values of the phenomena of interest, and through the use of actuators that act
on the context. Our idea is to develop an IoT application, based on blockchain,
to investigate some aspects of urban setting, to acquire relevant data and to
process the information received.

We use SCRUM methodology in order to implement this innovative blockchain-
based system. We chose to apply a SCRUM process because of its capabilities
of being flexible, adaptive and iterative. These aspects are perfectly in line with
the intrinsic properties of blockchain, like decentralization and reliability, and
especially like the capability of managing data, transactions and all changes in a
much faster and more efficient way. Therefore, we believe that Scrum may con-
stitute a suitable methodology in order to increase the communication between
users who send useful data recorded on the blockchain, and in order to exploit
the continuous evolution of software and the collective accountability.

According to SCRUM methodology, in order to verify the correctness of sys-
tem developed, the client’s role is extremely important in several aspects at

100 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

all the stages of the process. The contribution of customers impacts directly
on product quality. For this reason, the clients must be involved in any deci-
sion adopted and shall collaborate closely with the development team. In our
work, we consider as clients all citizens who wish to contribute to well-being
of the city through the transmission of data from mobile devices by means a
specific application. The same application will allow the transfer of information
that comes from sensors. It will also be able to provide other functionalities,
like sending messages, providing reports and user feedbacks. The data can be
recorded on blockchain by means of a connection to the peer-to-peer network.
The Product Owner will be responsible for analyzing information provided by
users through the mobile applications, for interpreting consumer expectations
and requirements, for filtering communications transmitted, for identifying
priorities and for distributing tasks within the development team. The local
government will be involved by the Product Owner in the analysis of information
communicated by users in order to provide feedback to the developers and take
decisions. The city council then, through its decisions, shall participate in all
phases of work and for each sprint from preparation of the public tender to
monitoring of activities performed. This method favours effective application of
an entirely cooperative approach.

6.3.3 CitySense

In order to conduct our study, we have identified some measurable phenomena
and their characterizing quantities (noise, concentration of hydrogen, methane,
carbon monoxide and microparticulates in the air, temperature, humidity and
light). These quantities are related to environmental pollution issues in which
the public opinion is most involved because they have a direct impact on peo-
ple’s lives.

The increasing diffusion of small programmable embedded devices that are
easily connected to networks via wireless technologies had increased the number
of actors eligible to participate to IoT networks that can share information. From
this perspective, peculiar to the IoT world, the creation of an ecosystem of small
interconnected “Smart Objects”, that can be considered as an extension to the
human body (nowadays we think about smartphone, smartwatches, wristbands
and portable gadgets) would bring to life a complex and intelligent network of
distributed systems that can interfere, both in a good and in a bad way, with the
surrounding environment.

If we apply this schema to a geographic area, such as a town or a county, we
can imagine a full coverage of the ground made by portable devices that collect
data and send them back to a central collection endpoint.

6.3. CITYSENSE: BLOCKCHAIN-ORIENTED SMART CITIES 101

The data collection mechanism works by combining the measurements
acquired by the mobile devices with the validation process made with a specific
mining software that process the data.

Mobile phones are the best devices to be used for this task as they provide a
quite good computational capability, moderate battery life, wireless connectivity
to other near devices, internet access and they are easily programmable to run
generic purpose software on top. To connect to hardware-level machine, like
electronic devices and sensors, a HW/SW connection layer should be deployed.
As Today, a lot of such programmable tiny operational boards equipped with
AVR processing units could be used for this task. Miniaturized boards with small
footprint up to 30mmx20mm [1S] can be connected to small power sensors such
as DTH-22 for temperature and humidity, TEMT6000 for light, GP2Y1010AU0F
for PM8 detection, due to their low current requirements and MUXable digital
I/Os, as the number of analogic inputs is low on this miniaturized boards. Bigger
sensors, such as C0, Hydrogen, Methane, require a huge amount (1 Amp x 5/9
Volts) of current in comparison to the previous digital ones, as they need to heat
a filament (just like happened in vacuum tubes) to be able to operate.

This current consumption has an impact also on portability of the complete
kit, as the power requirements would be too much for the desired target (people
on the move). On the other hand, employing small sensors like the one men-
tioned above, in conjunction with a BLE (Low Power Bluetooth 4.0 connectivity)
can open up a wide variety of solutions, like the possibility to attach such de-
vice to a small solar panel, the size of a pocket mirror, or to be powered from a
dynamo connected to a bicycle wheel. Also, the number of sensors deployed
could be larger as the software elaborates the results in a more sophisticated way.
Computational power on this task in not a real big issue as digital multiplexing
on data is quite easy for this scenario. All the sensor package can be powered
via a very common and cheap 3.7V LiPo battery, and even be powered from the
USB OTG phone (if capable), that can boost up to 5V to 450 mA.

6.3.4 The blockchain solution

The blockchain is an enabling technology which allows to obtain the satisfaction
of security and availability of data, and provides the computational power that
makes it able to control the communication between nodes.

In order to develop the CitySense system, we use the Ethereum platform to
record measurements arriving from the IoT network of sensors. In our system,
sensors are IoT devices, programmed to be connected with the blockchain and
able to send messages. As in [10], CitySense is structured by layers as is shown
in Fig. 6.3.

Layers of the system will be implemented in parallel. Each layer has specific

102 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

Figure 6.3: Layers of structure

and distinctive requirements and will be implemented in an iterative process,
with the advantages of the SCRUM methodology. The set of sensors composes
the physical layer. In our system, sensors are carried around the city by their
owners. For this reason, each measurement must be associated with the geo-
graphical position, in addition to the typology of measurement and to the times-
tamp. Considering the network layer, in our system sensors are programmed
to send measurements to the blockchain through the peer-to-peer network by
means of a light version of existent clients such as geth. Actually, sensors can
be connected to a mobile device (for instance a smartphone) to run, or can
be autonomous systems able to connect to the peer-to-peer network. Differ-
ent communication mechanisms, such as WiFi, 3G or Bluetooth, can be used.
Specific communication protocols should be defined considering the cost of
a transaction in the Ethereum system (which is proportional with the payload
size of the message), and designed according to a convenient data format. In
CitySense the blockchain consists in the database layer in which measurements
are organized and stored. In our system we use contracts to control and save
data. A first contract is designed to be the receiver of messages coming from
sensors. We call it acquisition and sorting contract (ASC). Depending on the
geographical position, the ASC sends the measurement to one of the set of
specialized contracts that we call geographic contracts (GC). Inside each GC
only measurements coming from a specific geographic area are stored. With
specific implemented functions, GCs can be queried to provide measurements
organized in several ways (for instance measurement can be organized by their
typology, by timestamp, by value).

6.3. CITYSENSE: BLOCKCHAIN-ORIENTED SMART CITIES 103

The variety of applications enabled by the CitySense system composes the
application layer. Thanks to the collaborative nature of our system, the same
people who participate to the creation of the CitySense are also able to take
advantage of the information that is made available. For instance, a CitySense
mobile application could be useful to people who want to know the environment
quality of a specific area in the city. Furthermore, web applications could be
used by a public administration to check if and where the city has pollution
problems.

6.3.5 Discussion

In our vision, blockchain represents the disruptive technology which will drive
the development of future smart-cities related applications. Key features, such as
to be a shared, transparent, distributed, secure, available and smart technology,
make the blockchain an opportunity to improve potentialities of IoT and smart-
cities development. As it is known, blockchain data are publicly available. In a
smart-city, transparency makes citizen aware and able to know the contribution
of each of them and how public governments use data. In case of need (i.s.
sensitive or personal data) it is always possible to encrypt data before they are
stored inside the blockchain.

In a blockchain based service, nodes participate to the objective in a demo-
cratic way, under the constraint of the consensus rule. Therefore, blockchain
enables trust-free transactions without the need of a central control authority.
IoT devices participate in the peer-to-peer network sending messages to it, as
nodes of the system and under the blockchain rules. In a blockchain system,
smart contracts, computer programs located and working in the blockchain, can
automatically acquire data from IoT devices and produce computed outputs.
Because of the distributed nature, smart contracts cannot be modified or inter-
rupted. For this reason, their usage could improve the reliability of a smart-city
system.

IoT, SCRUM methodology and blockchain form the basis of digital transfor-
mation. A trust distributed technology ensure privacy, scalability, transparency
and reliability. In a Smart City the number of linked objects is set to increase
and will produce higher and higher operating costs. The blockchain will be a key
element for the cost-cutting in the tracking and coordination of physical devices
and will solve failure problems of traditional networks. Currently all IoT systems
depend on client and server communication protocols, such as SSL and TLS and
on cryptographic mechanisms such as the Public Key system, used in order to
make the communication system verifiable and to authenticate the nodes of
the network. Such architecture will soon have to face several problems (delay
transmission for example) caused by data traffic congestion. Therefore, the

104 CHAPTER 6. AGILE METHODS FOR BLOCKCHAIN APPLICATIONS

decentralization, which is an intrinsic property of blockchain, could be the right
solution in order to increase the network efficiency and reduce management
costs. CitySense will allow a direct communication between smart devices and
will verify the transactions without a central server.

Scrum methodology will be also used in order to ensure software quality,
reduce the time-to-market, enhance the support of the citizens and create an
infrastructure that allows the transfer of data in real time using a sensor networks
with a low energy consumption [24]. The support of the citizens is essential
to make this project succeed, but at the same time implies more complexity.
For this reason we estimated a duration of 30 days for every sprint: this choice
improves the collaboration of stakeholders. We planned also unitary tests for
each iteration [25].

Chapter 7

Conclusions

The three main objectives of the work described in this thesis were:

• to understand the main characteristics of ICOs and evaluate the lean
startup approach as a methodology for the implementation of an ICO;

• to investigate software engineering activities related to ICOs, recognize
the ICOs developed using Agile methods;

• to analyze and characterize the smart contracts deployed on the Ethereum
and to provide empirical results about smart contracts features, their
interaction with the blockchain, the role of the development community,
and the source code characteristics.

In our work we analyzed the new and complex phenomenon of ICOs, an
alternative means of financing startups based on the concept of token and
on a decentralized blockchain approach. Startups based on a ICO are playing
a fundamental role in creating the market of blockchain applications. ICOs
provide a pre-sale of tokens what will be used to pay for a service to be launched
on the market, or even the launch of a new cryptocurrency. In most cases, the
same investors become consumers or users of the same service. All of this allows
investors to buy crypto tokens at a discounted price, even if in reality their value
will be dictated by the mechanism of supply and demand only after being placed
on the market. An ICO can be a valuable tool for those teams that want to
quickly obtain financing, but it also has several limitations, due essentially to the
immaturity of the technological system and to the risk of financial speculation.

In chapter 3, we analyzed the ICO phenomenon starting from the available
data provided by ICO datasets, performing various statistical computations to
understand what affects the ICO success. Then, we tried to understand if the
Lean startup approach can be useful to solve some of ICO issues. The tokeniza-
tion nature of an ICO proposal needs a form of sustainable and regulated token

105

106

sale event, that can be built on an MVP. The concepts of pivot and validated
learning can be very useful, but also the investors’ goals must be taken into ac-
count. They can be directed exclusively to immediate gain and not to company
growth, strategic planning or operational work. A Lean startup methodology
could be useful in order to respond to a tokenization that gives rise to new
business models and new products or services that must effectively address cus-
tomer needs. Many iterations and the direct involvement of all the stakeholders
can further improve and help to market the original idea.

In chapter 4 we investigated all engineering activities related to ICOs, from
the planning phase to the testing phase. We analyzed the whole set of ICOs
registered in ICObench until the February 20, 2018 in order to discover the team
composition, the communication channels with investors distributed around
the world and the financial aspects. We therefore studied the use of Agile prac-
tices in ICOs as a method to cope with change. We have selected and analyzed in
detail a subset of ICOs specifically developed with Agile methodologies relatively
to their roadmap, project development, and source code quality. Overall, about
the 5% of the examined ICOs apply Agile practices. In addition we conducted an
analysis of smart contacts of Agile ICOs in terms of code metrics, language ver-
sions and use of test tools. We discovered that the Agile methodologies are suited
to develop ICOs because these are highly innovative projects, whose require-
ments are not completely understood or tend to change. The Agile approach is
iterative and incremental with short iterations and is suited to deliver quickly
and to deliver often. This property is very useful in the context of ICOs. On the
other hand, the necessity to continually iterate on the product, typical of Agile
methodologies, can create issues for ICOs. The immutability of the blockchain
must be taken into consideration. In fact, smart contracts can not be updated
once they have been loaded. To face this difficult the Test Driven Development
is very useful. Also the practice of Collective code ownership is guaranteed in
ICOs by the transparency of smart contracts in the blockchain. Another practice
of Agile development that are applied in ICOs is the use of Coding Standards.
The too detailed roadmaps are instead typical of the plan-driven methodologies.
Finally we can say that the smart contracts of Agile ICOs have good metrics of
the software because their source codes are very short and simple.

The chapter 5 presents the setup, the analysis and the results of an ex-
ploratory study that take in exam Ethereum smart contracts and their source
code. We acquired a dataset of 10174 source codes, published by the 31 De-
cember 2017, and we analyzed this dataset in order to provide an empirical
description. We conduct an exploratory study that examined the dataset from
several points of view. In our opinion, this exploratory study offers food for
thought that should be the starting point for further analysis. Future work
should consider a higher number of smart contracts (taking into account the

Conclusions 107

remaining of smart contracts without available source code) and further and
specific code metrics (i.e to evaluate eventual code optimization in order to
limit the Ethereum gas consumption or to measure the use of libraries and the
interaction with already deployed contracts), other usage indicators (such us
the internal transactions and the interaction between deployed contracts) and a
widely analysis of correlation.

108

List of Publications Related to the
Thesis

• IBBA, S., et al. CitySense: blockchain-oriented smart cities. In: Proceed-
ings of the XP2017 Scientific Workshops. ACM, 2017. p. 12.

• Mannaro, K., Baralla, G., Pinna, A., & IBBA, S. (2018). A Blockchain Ap-
proach Applied to a Teledermatology Platform in the Sardinian Region
(Italy). Information, 9(2), 44.

• Pinna, A., & IBBA, S. (2018). A blockchain-based Decentralized System for
proper handling of temporary Employment contracts. Intelligent Com-
puting - Proceedings of the 2018 Computing Conference - Advances in
Intelligent Systems and Computing - Springer - Winner of the Best Stu-
dent Paper Award

• Tonelli, R., Pinna, A., Baralla, G., & IBBA, S. Ethereum Smart Contracts
as Blockchain-oriented Microservices. In: Proceedings of the XP2018
Scientific Workshops. ACM, 2018

• IBBA, S., Pinna, A., Baralla, G., & Marchesi, M. (2018, May). ICOs Overview:
Should Investors Choose an ICO Developed with the Lean Startup Method-
ology?. In International Conference on Agile Software Development (pp.
293-308). Springer, Cham.

• IBBA, S., Pinna, A., Lunesu, M.I., Marchesi, M., Tonelli, R. (2018). Initial
Coin Offerings and Agile Practices. Future Internet - IN PRESS

• Pinna, A., IBBA, S., Baralla, G., Tonelli, R. Marchesi, M. A Massive Anal-
ysis of Ethereum Smart Contracts. Exploratory study and code metrics.
Information and software technology - UNDER REVIEW

109

110

List of all Publications

• IBBA, S., Orrù, M., Pani, F. E., & Porru, S. (2015, November). Hashtag of
Instagram: From Folksonomy to Complex Network. In KEOD (pp. 279-
284).

• Pani, F. E., Porru, S., & IBBA, S. (2015, July). A Model for Digital Content
Management. In Proceedings of 4th International Conference on Data
Management Technologies and Applications (pp. 240-247). SCITEPRESS-
Science and Technology Publications, Lda.

• Eros Pani, F., Porru, S., Orrù, M., & IBBA, S. (2015, November). A Complex
Network Approach for Museum Services. In Proceedings of the Interna-
tional Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management (pp. 216-221). SCITEPRESS-Science and
Technology Publications, Lda.

• IBBA, S., & Pani, F. E. (2016). Digital libraries: the challenge of integrating
Instagram with a taxonomy for content management. Future Internet,
8(2), 16.

• Stocchi, M., Lunesu, I., IBBA, S., Baralla, G., & Marchesi, M. (2016). The
Future of Bitcoin: a Synchrosqueezing Wavelet Transform to Predict Search
Engine Query Trends. In KDWeb.

• Stocchi, M., Lunesu, I., IBBA, S., Baralla, G., & Marchesi, M. (2016). A Syn-
chrosqueezed Wavelet Transform Assisted Machine Learning Framework
for Time Series Forecasting. In KDWeb.

• IBBA, S., et al. CitySense: blockchain-oriented smart cities. In: Proceed-
ings of the XP2017 Scientific Workshops. ACM, 2017. p. 12.

• IBBA, S., Pani, F. E., & Alberto Buschettu. (2016, November). Categorization
and Matching for Drone-based Services. In KMIS (pp. 223-227).

111

112

• Mannaro, K., Baralla, G., IBBA, S., Pinna, A., & Garau, C. (2017, October).
Towards a smart region: The case study of a teledermatology platform in
sardinian region (Italy). In Wireless and Mobile Computing, Networking
and Communications (WiMob), (pp. 370-377). IEEE.

• IBBA, S., Pani, F. E., Stockton, J. G., Barabino, G., Marchesi, M., & Tigano,
D. (2017). Incidence of predatory journals in computer science literature.
Library Review, 66(6/7), 505-522.

• Calderamo, M., IBBA, S., Pani, F. E., Piras, F., & Porru, S. An Innovative Web
Application for Advanced Library Services. European Project Space on
Computational Intelligence, Knowledge Discovery and Systems Engineer-
ing for Health and Sports, 3.

• Pani, F. E., Valcalda, B., IBBA, S., & Porru, S. Document Management. The
Success of European Projects using New Information and Communication
Technologies, 97.

• Calderamo, M., IBBA, S., Pani, F. E., Piras, F., & Porru, S. Advanced Museum
Services. The Success of European Projects using New Information and
Communication Technologies, 38.

• Mannaro, K., Baralla, G., Pinna, A., & IBBA, S. (2018). A Blockchain Ap-
proach Applied to a Teledermatology Platform in the Sardinian Region
(Italy). Information, 9(2), 44.

• Baralla, G., IBBA, S., & Zenoni, R. (2017). Aposentu: A Social Semantic
Platform for Hotels.

• Pinna, A., & IBBA, S. (2018). A blockchain-based Decentralized System for
proper handling of temporary Employment contracts. Intelligent Com-
puting - Proceedings of the 2018 Computing Conference - Advances in
Intelligent Systems and Computing, Springer - Winner of the Best Stu-
dent Paper Award

• Tonelli, R., Pinna, A., Baralla, G., & IBBA, S. Ethereum Smart Contracts
as Blockchain-oriented Microservices. In: Proceedings of the XP2018
Scientific Workshops. ACM, 2018

• IBBA, S., Pinna, A., Baralla, G., & Marchesi, M. (2018, May). ICOs Overview:
Should Investors Choose an ICO Developed with the Lean Startup Method-
ology?. In International Conference on Agile Software Development (pp.
293-308). Springer, Cham.

List of all Publications 113

• IBBA, S., Pinna, A., Baralla, G.,Tonelli, R., & IBBA, S.Survey: how much
the academic startups know and use Agile Software and Lean Startup
methodologies? In: Proceedings of the XP2018 Scientific Workshops. ACM,
2018

• Baralla, G., IBBA, S. Marchesi, M., Tonelli, R., Missineo, S.,. A blockchain
based system to ensure transparency and reliability in food supply. In
Proceedings of the International Workshop on future perspective of decen-
tralized applications - 24th International European Conference on Parallel
and Distributed Computing, 2018

• IBBA, S., Pinna, A., Lunesu, M.I., Marchesi, M., Tonelli, R. (2018). Initial
Coin Offerings and Agile Practices. Future Internet - IN PRESS

• Pinna, A., IBBA, S., Baralla, G., Tonelli, R. Marchesi, M. A Massive Anal-
ysis of Ethereum Smart Contracts. Exploratory study and code metrics.
Information and software technology - UNDER REVIEW

114

Bibliography

[1] Jury.online tech development: Agile roadmap, 2018. [cited at p. 41]

[2] Solidity documentation, release 0.4.25, ethereum, 2018. [cited at p. 42, 43]

[3] Saman Adhami, Giancarlo Giudici, and Stefano Martinazzi. Why do businesses
go crypto? an empirical analysis of initial coin offerings. Journal of Economics
and Business, 2018. [cited at p. 14, 30]

[4] Iris Barsan. Legal challenges of initial coin offerings (icp). 2017. [cited at p. 14]

[5] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. Fun with bitcoin smart
contracts. [cited at p. 10]

[6] Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart contracts:
platforms, applications, and design patterns. In International Conference on Fi-
nancial Cryptography and Data Security, pages 494–509. Springer, 2017. [cited at p. 8,

54, 66]

[7] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. Manifesto for agile software development. 2001. [cited at p. 37]

[8] Kent Beck and Erich Gamma. Extreme programming explained: embrace change.
addison-wesley professional, 2000. [cited at p. 48]

[9] Elisabeth SC Berger and Andreas Kuckertz. Female entrepreneurship in startup
ecosystems worldwide. Journal of Business Research, 69(11):5163–5168, 2016.
[cited at p. 35]

[10] K. Biswas and V. Muthukkumarasamy. Securing smart cities using blockchain
technology. In 2016 IEEE 18th International Conference on High Performance
Computing and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems (HPCC/S-
martCity/DSS), pages 1392–1393, Dec 2016. [cited at p. 98, 101]

[11] Jens Björk, Jens Ljungblad, and Jan Bosch. Lean product development in early
stage startups. In IW-LCSP@ ICSOB, pages 19–32, 2013. [cited at p. 22]

115

116 BIBLIOGRAPHY

[12] Steve Blank. The four steps to the epiphany: successful strategies for products that
win. BookBaby, 2013. [cited at p. 21]

[13] Joseph A Blotner. Agile techniques to avoid firefighting at a start-up. In OOPSLA
2002 Practitioners Reports, pages 1–ff. ACM, 2002. [cited at p. 29]

[14] Jan Bosch, Helena Holmström Olsson, Jens Björk, and Jens Ljungblad. The early
stage software startup development model: a framework for operationalizing lean
principles in software startups. In Lean Enterprise Software and Systems, pages
1–15. Springer, 2013. [cited at p. 15]

[15] Santiago Bragagnolo, Henrique Rocha, Marcus Denker, and Stephane Ducasse.
Smartinspect: Smart contract inspection technical report. Inria Lille, December
2017. [cited at p. 54]

[16] Santiago Bragagnolo, Henrique Rocha, Marcus Denker, and Stéphane Ducasse.
Smartinspect: solidity smart contract inspector. In 2018 International Work-
shop on Blockchain Oriented Software Engineering, IWBOSE@SANER 2018, Cam-
pobasso, Italy, March 20, 2018, pages 9–18, 2018. [cited at p. 95]

[17] Vitalik Buterin et al. A next-generation smart contract and decentralized applica-
tion platform. white paper, 2014. [cited at p. 7, 27, 51, 94]

[18] Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop
on Distributed Cryptocurrencies and Consensus Ledgers, 2016. [cited at p. 10]

[19] Yan Chen. Blockchain tokens and the potential democratization of entrepreneur-
ship and innovation. Business Horizons, 61(4):567 – 575, 2018. [cited at p. 30]

[20] Jiri Chod and Evgeny Lyandres. A theory of icos: Diversification, agency, and
information asymmetry. 2018. [cited at p. 31]

[21] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart con-
tracts for the internet of things. Ieee Access, 4:2292–2303, 2016. [cited at p. 3, 99]

[22] Alistair Cockburn and Jim Highsmith. Agile software development, the people
factor. Computer, 34(11):131–133, 2001. [cited at p. 40]

[23] Gerry Coleman and Rory V O’Connor. An investigation into software develop-
ment process formation in software start-ups. Journal of Enterprise Information
Management, 21(6):633–648, 2008. [cited at p. 28]

[24] Giulio Concas, Giuseppe Destefanis, Michele Marchesi, Marco Ortu, and Roberto
Tonelli. Micro patterns in agile software. In International Conference on Agile
Software Development, pages 210–222. Springer, 2013. [cited at p. 104]

BIBLIOGRAPHY 117

[25] Steve Counsell, Giuseppe Destefanis, Xiaohui Liu, Sigrid Eldh, Andreas Ermedahl,
and Kenneth Andersson. Comparing test and production code quality in a large
commercial multicore system. In Software Engineering and Advanced Appli-
cations (SEAA), 2016 42th Euromicro Conference on, pages 86–91. IEEE, 2016.
[cited at p. 104]

[26] Tony; et al. Cui. Achain blockchain whitepaper, 2017. [cited at p. 10]

[27] Patrick Dai, Neil Mahi, Jordan Earls, and Alex Norta. Smart-contract value-transfer
protocols on a distributed mobile application platform. URL: https://qtum. org/u-
ploads/files/cf6d69348ca50dd985b60425ccf282f3. pdf, 2017. [cited at p. 10]

[28] Josh Davis. Do you have a communications strategy for your initial coin offering
(ico)?, 2017. [cited at p. 37]

[29] D. S. Demidenko, E. D. Malevskaia-Malevich, and Y. A. Dubolazova. Iso as a real
source of funding. pricing issues. In 2018 International Conference on Information
Networking (ICOIN), pages 622–625, Jan 2018. [cited at p. 30]

[30] Giuseppe Destefanis, Andrea Bracciali, Michele Marchesi, Marco Ortu, Roberto
Tonelli, and Robert Hierons. Smart contracts vulnerabilities: A call for blockchain
software engineering? [cited at p. 54, 95]

[31] Giuseppe Destefanis, Steve Counsell, Giulio Concas, and Roberto Tonelli. Software
metrics in agile software: An empirical study. In International Conference on Agile
Software Development, pages 157–170. Springer, 2014. [cited at p. 48]

[32] Giuseppe Destefanis, Michele Marchesi, Marco Ortu, Roberto Tonelli, Andrea
Bracciali, and Robert M. Hierons. Smart contracts vulnerabilities: a call for
blockchain software engineering? In 2018 International Workshop on Blockchain
Oriented Software Engineering, IWBOSE@SANER 2018, Campobasso, Italy, March
20, 2018, pages 19–25, 2018. [cited at p. 95]

[33] SS Emtseva and NV Morozov. Comparative analysis of legal regulation of ico in
selected countries. KnE Social Sciences, 3(2):77–84, 2018. [cited at p. 30]

[34] Michele Faioli, Emanuele Petrilli, and Donato Faioli. Blockchain, contratti e
lavoro. la ri-rivoluzione del digitale nel mondo produttivo e nella pa. Economia &
lavoro, 50(2):139–158, 2016. [cited at p. 89]

[35] Gianni Fenu, Lodovica Marchesi, Michele Marchesi, and Roberto Tonelli. The
ico phenomenon and its relationships with ethereum smart contract environ-
ment. In Blockchain Oriented Software Engineering (IWBOSE), 2018 International
Workshop on, pages 26–32. IEEE, 2018. [cited at p. 14, 30, 34, 52, 54, 58, 71]

[36] Eduardo Castello Ferrer. The blockchain: a new framework for robotic swarm
systems. CoRR, abs/1608.00695, 2016. [cited at p. 99]

118 BIBLIOGRAPHY

[37] John Flood and Lachlan Robb. Trust, anarcho-capitalism, blockchain and initial
coin offerings. 2017. [cited at p. 14]

[38] Edmund A Gehan. A generalized wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika, 52(1-2):203–224, 1965. [cited at p. 36]

[39] Antonio Ghezzi and Angelo Cavallo. Agile business model innovation in digital
entrepreneurship: Lean startup approaches. Journal of Business Research, 2018.
[cited at p. 29]

[40] Carmine Giardino, Nicolo Paternoster, Michael Unterkalmsteiner, Tony Gorschek,
and Pekka Abrahamsson. Software development in startup companies: the green-
field startup model. IEEE Transactions on Software Engineering, 42(6):585–604,
2016. [cited at p. 29]

[41] Christopher Hahn, Adrian Wons, Christopher Hahn, and Adrian Wons. Umset-
zung des icos, 2018. [cited at p. 31]

[42] Felix Hartmann, Xiaofeng Wang, and Maria Ilaria Lunesu. Evaluation of initial
cryptoasset offerings: the state of the practice. In Blockchain Oriented Software
Engineering (IWBOSE), 2018 International Workshop on, pages 33–39. IEEE, 2018.
[cited at p. 14, 30]

[43] James A Highsmith and Jim Highsmith. Agile software development ecosystems,
volume 13. Addison-Wesley Professional, 2002. [cited at p. 28]

[44] Jim Highsmith and Alistair Cockburn. Agile software development: The business
of innovation. Computer, 34(9):120–127, 2001. [cited at p. 28]

[45] Simona Ibba, Andrea Pinna, Gavina Baralla, and Michele Marchesi. Icos overview:
Should investors choose an ico developed with the lean startup methodology? In
International Conference on Agile Software Development, pages 293–308. Springer,
2018. [cited at p. 30, 34, 52, 54, 71]

[46] Simona Ibba, Andrea Pinna, Matteo Seu, and Filippo Eros Pani. Citysense:
Blockchain-oriented smart cities. In Proceedings of the XP2017 Scientific Work-
shops, XP ’17, pages 12:1–12:5, New York, NY, USA, 2017. ACM. [cited at p. 52, 89,

95]

[47] Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, and Marimuthu Palaniswami. An
information framework for creating a smart city through internet of things. IEEE
Internet of Things Journal, 1(2):112–121, 2014. [cited at p. 97]

[48] Wulf Kaal and Marco Dell’Erba. Initial coin offerings: Emerging practices, risk
factors, and red flags. 2017. [cited at p. 14]

BIBLIOGRAPHY 119

[49] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 839–858.
IEEE, 2016. [cited at p. 27]

[50] Jiasun Li and William Mann. Initial coin offering and platform building. 2018.
[cited at p. 30]

[51] Michal Lom, Ondrej Pribyl, and Tomas Zelinka. Hybrid-agile approach in smart
cities procurement, 2016. [cited at p. 99]

[52] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Mak-
ing smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 254–269. ACM, 2016. [cited at p. 28,

51]

[53] Katiuscia Mannaro, Gavina Baralla, Andrea Pinna, and Simona Ibba. A blockchain
approach applied to a teledermatology platform in the sardinian region (italy).
Information, 9(2):44, 2018. [cited at p. 52, 95]

[54] Katiuscia Mannaro, Andrea Pinna, and Michele Marchesi. Crypto-trading:
Blockchain-oriented energy market. In AEIT International Annual Conference,
2017, pages 1–5. IEEE, 2017. [cited at p. 52, 95]

[55] Robert C Martin. Agile software development: principles, patterns, and practices.
Prentice Hall, 2002. [cited at p. 48]

[56] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engi-
neering, (4):308–320, 1976. [cited at p. 45, 77]

[57] Adnan Miski. Development of a mobile application using the lean startup method-
ology. International Journal of Scientific & Engineering Research, 5(1):1743–1748,
2014. [cited at p. 22, 29]

[58] Ethan Mollick. The dynamics of crowdfunding: An exploratory study. Journal of
business venturing, 29(1):1–16, 2014. [cited at p. 14]

[59] Paul P Momtaz. Initial coin offerings. 2018. [cited at p. 31]

[60] Dobrila Rancic Moogk. Minimum viable product and the importance of experi-
mentation in technology startups. Technology Innovation Management Review,
2(3), 2012. [cited at p. 22]

[61] Roland M Müller and Katja Thoring. Design thinking vs. lean startup: A compari-
son of two user-driven innovation strategies. Leading through design, 151, 2012.
[cited at p. 22]

120 BIBLIOGRAPHY

[62] John W Mullins, John Walker Mullins, John Mullins, and Randy Komisar. Getting
to plan B: Breaking through to a better business model. Harvard Business Press,
2009. [cited at p. 22]

[63] Ashish Mundra, Sanjay Misra, and Chitra A Dhawale. Practical scrum-scrum team:
Way to produce successful and quality software. In Computational Science and
Its Applications (ICCSA), 2013 13th International Conference on, pages 119–123.
IEEE, 2013. [cited at p. 48]

[64] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. [cited at p. 7,

27]

[65] Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Challenges of
migrating to agile methodologies. Communications of the ACM, 48(5):72–78, 2005.
[cited at p. 28]

[66] Alex Norta, Anton Vedeshin, Hando Rand, Simon Tobies, Addi Rull, Margus Poola,
and Teddi Rull. Self-aware agent-supported contract management on blockchains
for legal accountability. URL: http://whitepaper. agrello. org/Agrello_Self-Aware_
Whitepaper. pdf, 2017. [cited at p. 89]

[67] Robert Norvill, Beltran Borja Fiz Pontiveros, Radu State, Irfan Awan, and Andrea
Cullen. Automated labeling of unknown contracts in ethereum. In Computer
Communication and Networks (ICCCN), 2017 26th International Conference on,
pages 1–6. IEEE, 2017. [cited at p. 54]

[68] Svein Ølnes and Arild Jansen. Blockchain technology as s support infrastructure
in e-government. In International Conference on Electronic Government, pages
215–227. Springer, 2017. [cited at p. 89]

[69] Marco Ortu, Giuseppe Destefanis, Steve Counsell, Stephen Swift, Michele March-
esi, and Roberto Tonelli. How diverse is your team? investigating gender and
nationality diversity in github teams. Peerj Preprints, 2016. [cited at p. 35]

[70] Marco Ortu, Giuseppe Destefanis, Matteo Orru, Roberto Tonelli, and Michele L
Marchesi. Could micro patterns be used as software stability indicator? In
Patterns Promotion and Anti-patterns Prevention (PPAP), 2015 IEEE 2nd Workshop
on, pages 11–12. IEEE, 2015. [cited at p. 55]

[71] Marco Ortu, Giuseppe Destefanis, Stephen Swift, and Michele Marchesi. Measur-
ing high and low priority defects on traditional and mobile open source software.
In Proceedings of the 7th International Workshop on Emerging Trends in Software
Metrics, pages 1–7. ACM, 2016. [cited at p. 98]

[72] Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. Fairaccess: a new
blockchain-based access control framework for the internet of things. Security
and Communication Networks, pages n/a–n/a, 2017. SCN-16-0184. [cited at p. 99]

BIBLIOGRAPHY 121

[73] Jevgenija Pantiuchina, Marco Mondini, Dron Khanna, Xiaofeng Wang, and Pekka
Abrahamsson. Are software startups applying agile practices? the state of the
practice from a large survey. In International Conference on Agile Software Devel-
opment, pages 167–183. Springer, 2017. [cited at p. 29, 35]

[74] Nicolò Paternoster, Carmine Giardino, Michael Unterkalmsteiner, Tony Gorschek,
and Pekka Abrahamsson. Software development in startup companies: A sys-
tematic mapping study. Information and Software Technology, 56(10):1200–1218,
2014. [cited at p. 29]

[75] Andrea Pinna and Simona Ibba. A blockchain-based decentralized system
for proper handling of temporary employment contracts. arXiv preprint
arXiv:1711.09758, 2017. [cited at p. 95]

[76] Andrea Pinna, Roberto Tonelli, Matteo Orru, and Michele Marchesi. A petri nets
model for blockchain analysis. The Computer Journal, 2018. [cited at p. 95, 98]

[77] Mary Poppendieck and Michael A Cusumano. Lean software development: A
tutorial. IEEE software, 29(5):26–32, 2012. [cited at p. 15]

[78] Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli. Blockchain-
oriented software engineering: Challenges and new directions. In Proceedings of
the 39th International Conference on Software Engineering Companion, ICSE-C
’17, pages 169–171, Piscataway, NJ, USA, 2017. IEEE Press. [cited at p. 30, 52, 53, 94, 98]

[79] Andrew K Przybylski, Kou Murayama, Cody R DeHaan, and Valerie Gladwell. Mo-
tivational, emotional, and behavioral correlates of fear of missing out. Computers
in Human Behavior, 29(4):1841–1848, 2013. [cited at p. 35]

[80] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2018. [cited at p. 32]

[81] Eric Ries. The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses. Crown Books, 2011. [cited at p. 21, 22, 23]

[82] Torjus Roberg. Research suggests that women are now leading the market for
crypto investment, 2018. [cited at p. 35]

[83] Henrique Rocha, Stéphane Ducasse, Marcus Denker, and Jason Lecerf. Solidity
parsing using smacc: Challenges and irregularities. In International Workshop on
Smalltalk Technology IWST’17, 2017. [cited at p. 54, 58]

[84] Cláudio Sant’Anna, Alessandro Garcia, Christina Chavez, Carlos Lucena, and
Arndt Von Staa. On the reuse and maintenance of aspect-oriented software:
An assessment framework. In Proceedings of Brazilian symposium on software
engineering, pages 19–34, 2003. [cited at p. 45]

122 BIBLIOGRAPHY

[85] Robbin Schuurman. Tips for agile product roadmaps and product roadmap
examples, 2017. [cited at p. 41]

[86] Ken Schwaber. Agile project management with Scrum. Microsoft press, 2004.
[cited at p. 35]

[87] Mali Senapathi and Ananth Srinivasan. Sustained agile usage: a systematic liter-
ature review. In Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, pages 119–124. ACM, 2013. [cited at p. 34]

[88] Pradip Kumar Sharma, Seo Yeon Moon, and Jong Hyuk Park. Block-vn: A dis-
tributed blockchain based vehicular network architecture in smart city. Journal
of Information Processing Systems, 13(1):84 195, 2017. [cited at p. 98]

[89] Sandra EP Silva, Robisom D Calado, Messias B Silva, and MA Nascimento. Lean
startup applied in healthcare: A viable methodology for continuous improvement
in the development of new products and services. IFAC Proceedings Volumes,
46(24):295–299, 2013. [cited at p. 22]

[90] M. Stocchi, I. Lunesu, S. Ibba, G. Baralla, and M. Marchesi. The future of bitcoin:
a synchrosqueezing wavelet transform to predict search engine query trends. In
CEUR Workshop Proceedings, editor, 2nd international workshop on Knowledge
Discovering on the Web (KDWEB), volume 1748. ceur-ws.org, 2016. [cited at p. 98]

[91] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and
Alexey Zagalsky. The (r) evolution of social media in software engineering. In
Proceedings of the on Future of Software Engineering, pages 100–116. ACM, 2014.
[cited at p. 36]

[92] Matt Suiche. Porosity: A decompiler for blockchain-based smart contracts byte-
code. DEF CON, 25, 2017. [cited at p. 11]

[93] Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.",
2015. [cited at p. 27, 30, 51, 52]

[94] Nick Szabo. The idea of smart contracts. 1997. [cited at p. 7, 10]

[95] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motivations, and
issues for migrating to microservices architectures: An empirical investigation.
IEEE Cloud Computing, 4(5):22–32, 2017. [cited at p. 94]

[96] Davide Taibi, Valentina Lenarduzzi, Claus Pahl, and Andrea Janes. Microservices
in agile software development: a workshop-based study into issues, advantages,
and disadvantages. In Proceedings of the XP2017 Scientific Workshops, page 23.
ACM, 2017. [cited at p. 94]

[97] H.C. Thode. Testing For Normality. Statistics, textbooks and monographs. Taylor
& Francis, 2002. [cited at p. 36]

BIBLIOGRAPHY 123

[98] Feng Tian. An agri-food supply chain traceability system for china based on rfid
blockchain technology. In 2016 13th International Conference on Service Systems
and Service Management (ICSSSM), pages 1–6, June 2016. [cited at p. 99]

[99] Roberto Tonelli, Giuseppe Destefanis, Michele Marchesi, and Marco Ortu. Smart
contracts software metrics: a first study. arXiv preprint arXiv:1802.01517, 2018.
[cited at p. 43, 44, 45, 46, 54]

[100] Percy Venegas. Initial coin offering (ico) risk, value and cost in blockchain trustless
crypto markets. 2017. [cited at p. 14]

[101] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. Bug characteristics in blockchain
systems: a large-scale empirical study. In Mining Software Repositories (MSR),
2017 IEEE/ACM 14th International Conference on, pages 413–424. IEEE, 2017.
[cited at p. 54]

[102] Nianxin Wang, Qingxiang Li, Huigang Liang, Taofeng Ye, and Shilun Ge. Under-
standing the importance of interaction between creators and backers in crowd-
funding success. Electronic Commerce Research and Applications, 27:106–117,
2018. [cited at p. 15]

[103] Xin Wang, Libo Feng, Hui Zhang, Chan Lyu, Li Wang, and Yue You. Human
resource information management model based on blockchain technology. In
Service-Oriented System Engineering (SOSE), 2017 IEEE Symposium on, pages
168–173. IEEE, 2017. [cited at p. 89]

[104] Maximilian Wohrer and Uwe Zdun. Smart contracts: security patterns in the
ethereum ecosystem and solidity. In 2018 International Workshop on Blockchain
Oriented Software Engineering, IWBOSE@SANER 2018, Campobasso, Italy, March
20, 2018, pages 2–8, 2018. [cited at p. 95]

[105] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151:1–32, 2014. [cited at p. 3, 11, 51]

[106] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele
Zorzi. Internet of things for smart cities. IEEE Internet of Things journal, 1(1):22–
32, 2014. [cited at p. 97]

[107] Yu Zhang and Jiangtao Wen. The IoT electric business model: Using blockchain
technology for the internet of things. Peer-to-Peer Networking and Applications,
page 1–12, 2016. [cited at p. 99]

	Aknowledgments
	Introduction
	Introduction
	Thesis overview

	Blockchain technology
	Initial Coin Offerings
	The main characteristics of ICOs
	How does an ICO work?

	Smart contracts and Solidity
	Smart Contracts
	Solidity

	ICOs and Lean Startup Methodology
	Background
	ICOs: overview
	Overview of ICOs phenomenon statistics
	ICOs' critical aspects

	ICOs as Lean Startups
	Three different case studies

	Conclusions

	Initial Coin Offerings and Agile Methods
	Background
	Research Method
	Data Collection Steps
	Step 1
	Step 2

	Analysis Setup

	Data Analysis
	Analysis of ICOs teams
	Team size and composition

	Gender heterogeneity
	ICO Rating
	Social Media
	Financial aspects
	Ico market capitalization

	Analysis of Agile ICOs projects
	Roadmap and ICO state
	Software development
	Smart Contract code metrics
	Testing

	Discussion
	Conclusions

	Ethereum Smart Contracts
	Background
	Analysis of the Smart Contracts dataset
	Smart Contracts parameters: analysis
	Contract Name
	Compiler Version
	Balances and transactions

	Measures on Smart Contracts source codes

	Detailed analysis on the top 20 used Smart Contracts
	Smart Contracts description
	Smart Contracts usage indicators
	Blockchain interaction
	Developers' interactions: versions and reuse of code

	Code metrics
	Analysis of results

	Sample of Smart Contracts source codes
	Crowdsale
	ReplaySafeSplit
	KittyCore

	Discussion
	Conclusion

	Agile methods for blockchain applications
	A blockchain-based system for employment contracts
	Background
	The Decentralized Employment System
	The D-ES state system
	Implementation of the decentralized system
	The Platform
	Discussion

	Smart Contracts as Blockchain-oriented Microservices
	Model

	CitySense: blockchain-oriented Smart Cities
	Background
	The system
	CitySense
	The blockchain solution
	Discussion

	Conclusions
	List of Publications Related to the Thesis
	List of all Publications

